xref: /linux/net/core/skbuff.c (revision 8f5b5f78113e881cb8570c961b0dc42b218a1b9e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/bitfield.h>
62 #include <linux/if_vlan.h>
63 #include <linux/mpls.h>
64 #include <linux/kcov.h>
65 #include <linux/iov_iter.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/gso.h>
72 #include <net/hotdata.h>
73 #include <net/ip6_checksum.h>
74 #include <net/xfrm.h>
75 #include <net/mpls.h>
76 #include <net/mptcp.h>
77 #include <net/mctp.h>
78 #include <net/page_pool/helpers.h>
79 #include <net/dropreason.h>
80 
81 #include <linux/uaccess.h>
82 #include <trace/events/skb.h>
83 #include <linux/highmem.h>
84 #include <linux/capability.h>
85 #include <linux/user_namespace.h>
86 #include <linux/indirect_call_wrapper.h>
87 #include <linux/textsearch.h>
88 
89 #include "dev.h"
90 #include "sock_destructor.h"
91 
92 #ifdef CONFIG_SKB_EXTENSIONS
93 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
94 #endif
95 
96 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
97 
98 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
99  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
100  * size, and we can differentiate heads from skb_small_head_cache
101  * vs system slabs by looking at their size (skb_end_offset()).
102  */
103 #define SKB_SMALL_HEAD_CACHE_SIZE					\
104 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
105 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
106 		SKB_SMALL_HEAD_SIZE)
107 
108 #define SKB_SMALL_HEAD_HEADROOM						\
109 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
110 
111 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
112 EXPORT_SYMBOL(sysctl_max_skb_frags);
113 
114 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
115  * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
116  * netmem is a page.
117  */
118 static_assert(offsetof(struct bio_vec, bv_page) ==
119 	      offsetof(skb_frag_t, netmem));
120 static_assert(sizeof_field(struct bio_vec, bv_page) ==
121 	      sizeof_field(skb_frag_t, netmem));
122 
123 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
124 static_assert(sizeof_field(struct bio_vec, bv_len) ==
125 	      sizeof_field(skb_frag_t, len));
126 
127 static_assert(offsetof(struct bio_vec, bv_offset) ==
128 	      offsetof(skb_frag_t, offset));
129 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
130 	      sizeof_field(skb_frag_t, offset));
131 
132 #undef FN
133 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
134 static const char * const drop_reasons[] = {
135 	[SKB_CONSUMED] = "CONSUMED",
136 	DEFINE_DROP_REASON(FN, FN)
137 };
138 
139 static const struct drop_reason_list drop_reasons_core = {
140 	.reasons = drop_reasons,
141 	.n_reasons = ARRAY_SIZE(drop_reasons),
142 };
143 
144 const struct drop_reason_list __rcu *
145 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
146 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
147 };
148 EXPORT_SYMBOL(drop_reasons_by_subsys);
149 
150 /**
151  * drop_reasons_register_subsys - register another drop reason subsystem
152  * @subsys: the subsystem to register, must not be the core
153  * @list: the list of drop reasons within the subsystem, must point to
154  *	a statically initialized list
155  */
156 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
157 				  const struct drop_reason_list *list)
158 {
159 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
160 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
161 		 "invalid subsystem %d\n", subsys))
162 		return;
163 
164 	/* must point to statically allocated memory, so INIT is OK */
165 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
166 }
167 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
168 
169 /**
170  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
171  * @subsys: the subsystem to remove, must not be the core
172  *
173  * Note: This will synchronize_rcu() to ensure no users when it returns.
174  */
175 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
176 {
177 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
178 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
179 		 "invalid subsystem %d\n", subsys))
180 		return;
181 
182 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
183 
184 	synchronize_rcu();
185 }
186 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
187 
188 /**
189  *	skb_panic - private function for out-of-line support
190  *	@skb:	buffer
191  *	@sz:	size
192  *	@addr:	address
193  *	@msg:	skb_over_panic or skb_under_panic
194  *
195  *	Out-of-line support for skb_put() and skb_push().
196  *	Called via the wrapper skb_over_panic() or skb_under_panic().
197  *	Keep out of line to prevent kernel bloat.
198  *	__builtin_return_address is not used because it is not always reliable.
199  */
200 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
201 		      const char msg[])
202 {
203 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
204 		 msg, addr, skb->len, sz, skb->head, skb->data,
205 		 (unsigned long)skb->tail, (unsigned long)skb->end,
206 		 skb->dev ? skb->dev->name : "<NULL>");
207 	BUG();
208 }
209 
210 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
211 {
212 	skb_panic(skb, sz, addr, __func__);
213 }
214 
215 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
216 {
217 	skb_panic(skb, sz, addr, __func__);
218 }
219 
220 #define NAPI_SKB_CACHE_SIZE	64
221 #define NAPI_SKB_CACHE_BULK	16
222 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
223 
224 #if PAGE_SIZE == SZ_4K
225 
226 #define NAPI_HAS_SMALL_PAGE_FRAG	1
227 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
228 
229 /* specialized page frag allocator using a single order 0 page
230  * and slicing it into 1K sized fragment. Constrained to systems
231  * with a very limited amount of 1K fragments fitting a single
232  * page - to avoid excessive truesize underestimation
233  */
234 
235 struct page_frag_1k {
236 	void *va;
237 	u16 offset;
238 	bool pfmemalloc;
239 };
240 
241 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
242 {
243 	struct page *page;
244 	int offset;
245 
246 	offset = nc->offset - SZ_1K;
247 	if (likely(offset >= 0))
248 		goto use_frag;
249 
250 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
251 	if (!page)
252 		return NULL;
253 
254 	nc->va = page_address(page);
255 	nc->pfmemalloc = page_is_pfmemalloc(page);
256 	offset = PAGE_SIZE - SZ_1K;
257 	page_ref_add(page, offset / SZ_1K);
258 
259 use_frag:
260 	nc->offset = offset;
261 	return nc->va + offset;
262 }
263 #else
264 
265 /* the small page is actually unused in this build; add dummy helpers
266  * to please the compiler and avoid later preprocessor's conditionals
267  */
268 #define NAPI_HAS_SMALL_PAGE_FRAG	0
269 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
270 
271 struct page_frag_1k {
272 };
273 
274 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
275 {
276 	return NULL;
277 }
278 
279 #endif
280 
281 struct napi_alloc_cache {
282 	struct page_frag_cache page;
283 	struct page_frag_1k page_small;
284 	unsigned int skb_count;
285 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
286 };
287 
288 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
289 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
290 
291 /* Double check that napi_get_frags() allocates skbs with
292  * skb->head being backed by slab, not a page fragment.
293  * This is to make sure bug fixed in 3226b158e67c
294  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
295  * does not accidentally come back.
296  */
297 void napi_get_frags_check(struct napi_struct *napi)
298 {
299 	struct sk_buff *skb;
300 
301 	local_bh_disable();
302 	skb = napi_get_frags(napi);
303 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
304 	napi_free_frags(napi);
305 	local_bh_enable();
306 }
307 
308 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
309 {
310 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
311 
312 	fragsz = SKB_DATA_ALIGN(fragsz);
313 
314 	return __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
315 				       align_mask);
316 }
317 EXPORT_SYMBOL(__napi_alloc_frag_align);
318 
319 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
320 {
321 	void *data;
322 
323 	fragsz = SKB_DATA_ALIGN(fragsz);
324 	if (in_hardirq() || irqs_disabled()) {
325 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
326 
327 		data = __page_frag_alloc_align(nc, fragsz, GFP_ATOMIC,
328 					       align_mask);
329 	} else {
330 		struct napi_alloc_cache *nc;
331 
332 		local_bh_disable();
333 		nc = this_cpu_ptr(&napi_alloc_cache);
334 		data = __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
335 					       align_mask);
336 		local_bh_enable();
337 	}
338 	return data;
339 }
340 EXPORT_SYMBOL(__netdev_alloc_frag_align);
341 
342 static struct sk_buff *napi_skb_cache_get(void)
343 {
344 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
345 	struct sk_buff *skb;
346 
347 	if (unlikely(!nc->skb_count)) {
348 		nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
349 						      GFP_ATOMIC,
350 						      NAPI_SKB_CACHE_BULK,
351 						      nc->skb_cache);
352 		if (unlikely(!nc->skb_count))
353 			return NULL;
354 	}
355 
356 	skb = nc->skb_cache[--nc->skb_count];
357 	kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
358 
359 	return skb;
360 }
361 
362 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
363 					 unsigned int size)
364 {
365 	struct skb_shared_info *shinfo;
366 
367 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
368 
369 	/* Assumes caller memset cleared SKB */
370 	skb->truesize = SKB_TRUESIZE(size);
371 	refcount_set(&skb->users, 1);
372 	skb->head = data;
373 	skb->data = data;
374 	skb_reset_tail_pointer(skb);
375 	skb_set_end_offset(skb, size);
376 	skb->mac_header = (typeof(skb->mac_header))~0U;
377 	skb->transport_header = (typeof(skb->transport_header))~0U;
378 	skb->alloc_cpu = raw_smp_processor_id();
379 	/* make sure we initialize shinfo sequentially */
380 	shinfo = skb_shinfo(skb);
381 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
382 	atomic_set(&shinfo->dataref, 1);
383 
384 	skb_set_kcov_handle(skb, kcov_common_handle());
385 }
386 
387 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
388 				     unsigned int *size)
389 {
390 	void *resized;
391 
392 	/* Must find the allocation size (and grow it to match). */
393 	*size = ksize(data);
394 	/* krealloc() will immediately return "data" when
395 	 * "ksize(data)" is requested: it is the existing upper
396 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
397 	 * that this "new" pointer needs to be passed back to the
398 	 * caller for use so the __alloc_size hinting will be
399 	 * tracked correctly.
400 	 */
401 	resized = krealloc(data, *size, GFP_ATOMIC);
402 	WARN_ON_ONCE(resized != data);
403 	return resized;
404 }
405 
406 /* build_skb() variant which can operate on slab buffers.
407  * Note that this should be used sparingly as slab buffers
408  * cannot be combined efficiently by GRO!
409  */
410 struct sk_buff *slab_build_skb(void *data)
411 {
412 	struct sk_buff *skb;
413 	unsigned int size;
414 
415 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
416 	if (unlikely(!skb))
417 		return NULL;
418 
419 	memset(skb, 0, offsetof(struct sk_buff, tail));
420 	data = __slab_build_skb(skb, data, &size);
421 	__finalize_skb_around(skb, data, size);
422 
423 	return skb;
424 }
425 EXPORT_SYMBOL(slab_build_skb);
426 
427 /* Caller must provide SKB that is memset cleared */
428 static void __build_skb_around(struct sk_buff *skb, void *data,
429 			       unsigned int frag_size)
430 {
431 	unsigned int size = frag_size;
432 
433 	/* frag_size == 0 is considered deprecated now. Callers
434 	 * using slab buffer should use slab_build_skb() instead.
435 	 */
436 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
437 		data = __slab_build_skb(skb, data, &size);
438 
439 	__finalize_skb_around(skb, data, size);
440 }
441 
442 /**
443  * __build_skb - build a network buffer
444  * @data: data buffer provided by caller
445  * @frag_size: size of data (must not be 0)
446  *
447  * Allocate a new &sk_buff. Caller provides space holding head and
448  * skb_shared_info. @data must have been allocated from the page
449  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
450  * allocation is deprecated, and callers should use slab_build_skb()
451  * instead.)
452  * The return is the new skb buffer.
453  * On a failure the return is %NULL, and @data is not freed.
454  * Notes :
455  *  Before IO, driver allocates only data buffer where NIC put incoming frame
456  *  Driver should add room at head (NET_SKB_PAD) and
457  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
458  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
459  *  before giving packet to stack.
460  *  RX rings only contains data buffers, not full skbs.
461  */
462 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
463 {
464 	struct sk_buff *skb;
465 
466 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
467 	if (unlikely(!skb))
468 		return NULL;
469 
470 	memset(skb, 0, offsetof(struct sk_buff, tail));
471 	__build_skb_around(skb, data, frag_size);
472 
473 	return skb;
474 }
475 
476 /* build_skb() is wrapper over __build_skb(), that specifically
477  * takes care of skb->head and skb->pfmemalloc
478  */
479 struct sk_buff *build_skb(void *data, unsigned int frag_size)
480 {
481 	struct sk_buff *skb = __build_skb(data, frag_size);
482 
483 	if (likely(skb && frag_size)) {
484 		skb->head_frag = 1;
485 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
486 	}
487 	return skb;
488 }
489 EXPORT_SYMBOL(build_skb);
490 
491 /**
492  * build_skb_around - build a network buffer around provided skb
493  * @skb: sk_buff provide by caller, must be memset cleared
494  * @data: data buffer provided by caller
495  * @frag_size: size of data
496  */
497 struct sk_buff *build_skb_around(struct sk_buff *skb,
498 				 void *data, unsigned int frag_size)
499 {
500 	if (unlikely(!skb))
501 		return NULL;
502 
503 	__build_skb_around(skb, data, frag_size);
504 
505 	if (frag_size) {
506 		skb->head_frag = 1;
507 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
508 	}
509 	return skb;
510 }
511 EXPORT_SYMBOL(build_skb_around);
512 
513 /**
514  * __napi_build_skb - build a network buffer
515  * @data: data buffer provided by caller
516  * @frag_size: size of data
517  *
518  * Version of __build_skb() that uses NAPI percpu caches to obtain
519  * skbuff_head instead of inplace allocation.
520  *
521  * Returns a new &sk_buff on success, %NULL on allocation failure.
522  */
523 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
524 {
525 	struct sk_buff *skb;
526 
527 	skb = napi_skb_cache_get();
528 	if (unlikely(!skb))
529 		return NULL;
530 
531 	memset(skb, 0, offsetof(struct sk_buff, tail));
532 	__build_skb_around(skb, data, frag_size);
533 
534 	return skb;
535 }
536 
537 /**
538  * napi_build_skb - build a network buffer
539  * @data: data buffer provided by caller
540  * @frag_size: size of data
541  *
542  * Version of __napi_build_skb() that takes care of skb->head_frag
543  * and skb->pfmemalloc when the data is a page or page fragment.
544  *
545  * Returns a new &sk_buff on success, %NULL on allocation failure.
546  */
547 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
548 {
549 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
550 
551 	if (likely(skb) && frag_size) {
552 		skb->head_frag = 1;
553 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
554 	}
555 
556 	return skb;
557 }
558 EXPORT_SYMBOL(napi_build_skb);
559 
560 /*
561  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
562  * the caller if emergency pfmemalloc reserves are being used. If it is and
563  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
564  * may be used. Otherwise, the packet data may be discarded until enough
565  * memory is free
566  */
567 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
568 			     bool *pfmemalloc)
569 {
570 	bool ret_pfmemalloc = false;
571 	size_t obj_size;
572 	void *obj;
573 
574 	obj_size = SKB_HEAD_ALIGN(*size);
575 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
576 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
577 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
578 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
579 				node);
580 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
581 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
582 			goto out;
583 		/* Try again but now we are using pfmemalloc reserves */
584 		ret_pfmemalloc = true;
585 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
586 		goto out;
587 	}
588 
589 	obj_size = kmalloc_size_roundup(obj_size);
590 	/* The following cast might truncate high-order bits of obj_size, this
591 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
592 	 */
593 	*size = (unsigned int)obj_size;
594 
595 	/*
596 	 * Try a regular allocation, when that fails and we're not entitled
597 	 * to the reserves, fail.
598 	 */
599 	obj = kmalloc_node_track_caller(obj_size,
600 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
601 					node);
602 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
603 		goto out;
604 
605 	/* Try again but now we are using pfmemalloc reserves */
606 	ret_pfmemalloc = true;
607 	obj = kmalloc_node_track_caller(obj_size, flags, node);
608 
609 out:
610 	if (pfmemalloc)
611 		*pfmemalloc = ret_pfmemalloc;
612 
613 	return obj;
614 }
615 
616 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
617  *	'private' fields and also do memory statistics to find all the
618  *	[BEEP] leaks.
619  *
620  */
621 
622 /**
623  *	__alloc_skb	-	allocate a network buffer
624  *	@size: size to allocate
625  *	@gfp_mask: allocation mask
626  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
627  *		instead of head cache and allocate a cloned (child) skb.
628  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
629  *		allocations in case the data is required for writeback
630  *	@node: numa node to allocate memory on
631  *
632  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
633  *	tail room of at least size bytes. The object has a reference count
634  *	of one. The return is the buffer. On a failure the return is %NULL.
635  *
636  *	Buffers may only be allocated from interrupts using a @gfp_mask of
637  *	%GFP_ATOMIC.
638  */
639 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
640 			    int flags, int node)
641 {
642 	struct kmem_cache *cache;
643 	struct sk_buff *skb;
644 	bool pfmemalloc;
645 	u8 *data;
646 
647 	cache = (flags & SKB_ALLOC_FCLONE)
648 		? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
649 
650 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
651 		gfp_mask |= __GFP_MEMALLOC;
652 
653 	/* Get the HEAD */
654 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
655 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
656 		skb = napi_skb_cache_get();
657 	else
658 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
659 	if (unlikely(!skb))
660 		return NULL;
661 	prefetchw(skb);
662 
663 	/* We do our best to align skb_shared_info on a separate cache
664 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
665 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
666 	 * Both skb->head and skb_shared_info are cache line aligned.
667 	 */
668 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
669 	if (unlikely(!data))
670 		goto nodata;
671 	/* kmalloc_size_roundup() might give us more room than requested.
672 	 * Put skb_shared_info exactly at the end of allocated zone,
673 	 * to allow max possible filling before reallocation.
674 	 */
675 	prefetchw(data + SKB_WITH_OVERHEAD(size));
676 
677 	/*
678 	 * Only clear those fields we need to clear, not those that we will
679 	 * actually initialise below. Hence, don't put any more fields after
680 	 * the tail pointer in struct sk_buff!
681 	 */
682 	memset(skb, 0, offsetof(struct sk_buff, tail));
683 	__build_skb_around(skb, data, size);
684 	skb->pfmemalloc = pfmemalloc;
685 
686 	if (flags & SKB_ALLOC_FCLONE) {
687 		struct sk_buff_fclones *fclones;
688 
689 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
690 
691 		skb->fclone = SKB_FCLONE_ORIG;
692 		refcount_set(&fclones->fclone_ref, 1);
693 	}
694 
695 	return skb;
696 
697 nodata:
698 	kmem_cache_free(cache, skb);
699 	return NULL;
700 }
701 EXPORT_SYMBOL(__alloc_skb);
702 
703 /**
704  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
705  *	@dev: network device to receive on
706  *	@len: length to allocate
707  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
708  *
709  *	Allocate a new &sk_buff and assign it a usage count of one. The
710  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
711  *	the headroom they think they need without accounting for the
712  *	built in space. The built in space is used for optimisations.
713  *
714  *	%NULL is returned if there is no free memory.
715  */
716 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
717 				   gfp_t gfp_mask)
718 {
719 	struct page_frag_cache *nc;
720 	struct sk_buff *skb;
721 	bool pfmemalloc;
722 	void *data;
723 
724 	len += NET_SKB_PAD;
725 
726 	/* If requested length is either too small or too big,
727 	 * we use kmalloc() for skb->head allocation.
728 	 */
729 	if (len <= SKB_WITH_OVERHEAD(1024) ||
730 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
731 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
732 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
733 		if (!skb)
734 			goto skb_fail;
735 		goto skb_success;
736 	}
737 
738 	len = SKB_HEAD_ALIGN(len);
739 
740 	if (sk_memalloc_socks())
741 		gfp_mask |= __GFP_MEMALLOC;
742 
743 	if (in_hardirq() || irqs_disabled()) {
744 		nc = this_cpu_ptr(&netdev_alloc_cache);
745 		data = page_frag_alloc(nc, len, gfp_mask);
746 		pfmemalloc = nc->pfmemalloc;
747 	} else {
748 		local_bh_disable();
749 		nc = this_cpu_ptr(&napi_alloc_cache.page);
750 		data = page_frag_alloc(nc, len, gfp_mask);
751 		pfmemalloc = nc->pfmemalloc;
752 		local_bh_enable();
753 	}
754 
755 	if (unlikely(!data))
756 		return NULL;
757 
758 	skb = __build_skb(data, len);
759 	if (unlikely(!skb)) {
760 		skb_free_frag(data);
761 		return NULL;
762 	}
763 
764 	if (pfmemalloc)
765 		skb->pfmemalloc = 1;
766 	skb->head_frag = 1;
767 
768 skb_success:
769 	skb_reserve(skb, NET_SKB_PAD);
770 	skb->dev = dev;
771 
772 skb_fail:
773 	return skb;
774 }
775 EXPORT_SYMBOL(__netdev_alloc_skb);
776 
777 /**
778  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
779  *	@napi: napi instance this buffer was allocated for
780  *	@len: length to allocate
781  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
782  *
783  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
784  *	attempt to allocate the head from a special reserved region used
785  *	only for NAPI Rx allocation.  By doing this we can save several
786  *	CPU cycles by avoiding having to disable and re-enable IRQs.
787  *
788  *	%NULL is returned if there is no free memory.
789  */
790 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
791 				 gfp_t gfp_mask)
792 {
793 	struct napi_alloc_cache *nc;
794 	struct sk_buff *skb;
795 	bool pfmemalloc;
796 	void *data;
797 
798 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
799 	len += NET_SKB_PAD + NET_IP_ALIGN;
800 
801 	/* If requested length is either too small or too big,
802 	 * we use kmalloc() for skb->head allocation.
803 	 * When the small frag allocator is available, prefer it over kmalloc
804 	 * for small fragments
805 	 */
806 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
807 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
808 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
809 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
810 				  NUMA_NO_NODE);
811 		if (!skb)
812 			goto skb_fail;
813 		goto skb_success;
814 	}
815 
816 	nc = this_cpu_ptr(&napi_alloc_cache);
817 
818 	if (sk_memalloc_socks())
819 		gfp_mask |= __GFP_MEMALLOC;
820 
821 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
822 		/* we are artificially inflating the allocation size, but
823 		 * that is not as bad as it may look like, as:
824 		 * - 'len' less than GRO_MAX_HEAD makes little sense
825 		 * - On most systems, larger 'len' values lead to fragment
826 		 *   size above 512 bytes
827 		 * - kmalloc would use the kmalloc-1k slab for such values
828 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
829 		 *   little networking, as that implies no WiFi and no
830 		 *   tunnels support, and 32 bits arches.
831 		 */
832 		len = SZ_1K;
833 
834 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
835 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
836 	} else {
837 		len = SKB_HEAD_ALIGN(len);
838 
839 		data = page_frag_alloc(&nc->page, len, gfp_mask);
840 		pfmemalloc = nc->page.pfmemalloc;
841 	}
842 
843 	if (unlikely(!data))
844 		return NULL;
845 
846 	skb = __napi_build_skb(data, len);
847 	if (unlikely(!skb)) {
848 		skb_free_frag(data);
849 		return NULL;
850 	}
851 
852 	if (pfmemalloc)
853 		skb->pfmemalloc = 1;
854 	skb->head_frag = 1;
855 
856 skb_success:
857 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
858 	skb->dev = napi->dev;
859 
860 skb_fail:
861 	return skb;
862 }
863 EXPORT_SYMBOL(__napi_alloc_skb);
864 
865 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
866 			    int off, int size, unsigned int truesize)
867 {
868 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
869 
870 	skb_fill_netmem_desc(skb, i, netmem, off, size);
871 	skb->len += size;
872 	skb->data_len += size;
873 	skb->truesize += truesize;
874 }
875 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
876 
877 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
878 			  unsigned int truesize)
879 {
880 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
881 
882 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
883 
884 	skb_frag_size_add(frag, size);
885 	skb->len += size;
886 	skb->data_len += size;
887 	skb->truesize += truesize;
888 }
889 EXPORT_SYMBOL(skb_coalesce_rx_frag);
890 
891 static void skb_drop_list(struct sk_buff **listp)
892 {
893 	kfree_skb_list(*listp);
894 	*listp = NULL;
895 }
896 
897 static inline void skb_drop_fraglist(struct sk_buff *skb)
898 {
899 	skb_drop_list(&skb_shinfo(skb)->frag_list);
900 }
901 
902 static void skb_clone_fraglist(struct sk_buff *skb)
903 {
904 	struct sk_buff *list;
905 
906 	skb_walk_frags(skb, list)
907 		skb_get(list);
908 }
909 
910 static bool is_pp_page(struct page *page)
911 {
912 	return (page->pp_magic & ~0x3UL) == PP_SIGNATURE;
913 }
914 
915 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
916 		    unsigned int headroom)
917 {
918 #if IS_ENABLED(CONFIG_PAGE_POOL)
919 	u32 size, truesize, len, max_head_size, off;
920 	struct sk_buff *skb = *pskb, *nskb;
921 	int err, i, head_off;
922 	void *data;
923 
924 	/* XDP does not support fraglist so we need to linearize
925 	 * the skb.
926 	 */
927 	if (skb_has_frag_list(skb))
928 		return -EOPNOTSUPP;
929 
930 	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
931 	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
932 		return -ENOMEM;
933 
934 	size = min_t(u32, skb->len, max_head_size);
935 	truesize = SKB_HEAD_ALIGN(size) + headroom;
936 	data = page_pool_dev_alloc_va(pool, &truesize);
937 	if (!data)
938 		return -ENOMEM;
939 
940 	nskb = napi_build_skb(data, truesize);
941 	if (!nskb) {
942 		page_pool_free_va(pool, data, true);
943 		return -ENOMEM;
944 	}
945 
946 	skb_reserve(nskb, headroom);
947 	skb_copy_header(nskb, skb);
948 	skb_mark_for_recycle(nskb);
949 
950 	err = skb_copy_bits(skb, 0, nskb->data, size);
951 	if (err) {
952 		consume_skb(nskb);
953 		return err;
954 	}
955 	skb_put(nskb, size);
956 
957 	head_off = skb_headroom(nskb) - skb_headroom(skb);
958 	skb_headers_offset_update(nskb, head_off);
959 
960 	off = size;
961 	len = skb->len - off;
962 	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
963 		struct page *page;
964 		u32 page_off;
965 
966 		size = min_t(u32, len, PAGE_SIZE);
967 		truesize = size;
968 
969 		page = page_pool_dev_alloc(pool, &page_off, &truesize);
970 		if (!page) {
971 			consume_skb(nskb);
972 			return -ENOMEM;
973 		}
974 
975 		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
976 		err = skb_copy_bits(skb, off, page_address(page) + page_off,
977 				    size);
978 		if (err) {
979 			consume_skb(nskb);
980 			return err;
981 		}
982 
983 		len -= size;
984 		off += size;
985 	}
986 
987 	consume_skb(skb);
988 	*pskb = nskb;
989 
990 	return 0;
991 #else
992 	return -EOPNOTSUPP;
993 #endif
994 }
995 EXPORT_SYMBOL(skb_pp_cow_data);
996 
997 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
998 			 struct bpf_prog *prog)
999 {
1000 	if (!prog->aux->xdp_has_frags)
1001 		return -EINVAL;
1002 
1003 	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
1004 }
1005 EXPORT_SYMBOL(skb_cow_data_for_xdp);
1006 
1007 #if IS_ENABLED(CONFIG_PAGE_POOL)
1008 bool napi_pp_put_page(struct page *page, bool napi_safe)
1009 {
1010 	bool allow_direct = false;
1011 	struct page_pool *pp;
1012 
1013 	page = compound_head(page);
1014 
1015 	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
1016 	 * in order to preserve any existing bits, such as bit 0 for the
1017 	 * head page of compound page and bit 1 for pfmemalloc page, so
1018 	 * mask those bits for freeing side when doing below checking,
1019 	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
1020 	 * to avoid recycling the pfmemalloc page.
1021 	 */
1022 	if (unlikely(!is_pp_page(page)))
1023 		return false;
1024 
1025 	pp = page->pp;
1026 
1027 	/* Allow direct recycle if we have reasons to believe that we are
1028 	 * in the same context as the consumer would run, so there's
1029 	 * no possible race.
1030 	 * __page_pool_put_page() makes sure we're not in hardirq context
1031 	 * and interrupts are enabled prior to accessing the cache.
1032 	 */
1033 	if (napi_safe || in_softirq()) {
1034 		const struct napi_struct *napi = READ_ONCE(pp->p.napi);
1035 		unsigned int cpuid = smp_processor_id();
1036 
1037 		allow_direct = napi && READ_ONCE(napi->list_owner) == cpuid;
1038 		allow_direct |= READ_ONCE(pp->cpuid) == cpuid;
1039 	}
1040 
1041 	/* Driver set this to memory recycling info. Reset it on recycle.
1042 	 * This will *not* work for NIC using a split-page memory model.
1043 	 * The page will be returned to the pool here regardless of the
1044 	 * 'flipped' fragment being in use or not.
1045 	 */
1046 	page_pool_put_full_page(pp, page, allow_direct);
1047 
1048 	return true;
1049 }
1050 EXPORT_SYMBOL(napi_pp_put_page);
1051 #endif
1052 
1053 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
1054 {
1055 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1056 		return false;
1057 	return napi_pp_put_page(virt_to_page(data), napi_safe);
1058 }
1059 
1060 /**
1061  * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1062  * @skb:	page pool aware skb
1063  *
1064  * Increase the fragment reference count (pp_ref_count) of a skb. This is
1065  * intended to gain fragment references only for page pool aware skbs,
1066  * i.e. when skb->pp_recycle is true, and not for fragments in a
1067  * non-pp-recycling skb. It has a fallback to increase references on normal
1068  * pages, as page pool aware skbs may also have normal page fragments.
1069  */
1070 static int skb_pp_frag_ref(struct sk_buff *skb)
1071 {
1072 	struct skb_shared_info *shinfo;
1073 	struct page *head_page;
1074 	int i;
1075 
1076 	if (!skb->pp_recycle)
1077 		return -EINVAL;
1078 
1079 	shinfo = skb_shinfo(skb);
1080 
1081 	for (i = 0; i < shinfo->nr_frags; i++) {
1082 		head_page = compound_head(skb_frag_page(&shinfo->frags[i]));
1083 		if (likely(is_pp_page(head_page)))
1084 			page_pool_ref_page(head_page);
1085 		else
1086 			page_ref_inc(head_page);
1087 	}
1088 	return 0;
1089 }
1090 
1091 static void skb_kfree_head(void *head, unsigned int end_offset)
1092 {
1093 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1094 		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1095 	else
1096 		kfree(head);
1097 }
1098 
1099 static void skb_free_head(struct sk_buff *skb, bool napi_safe)
1100 {
1101 	unsigned char *head = skb->head;
1102 
1103 	if (skb->head_frag) {
1104 		if (skb_pp_recycle(skb, head, napi_safe))
1105 			return;
1106 		skb_free_frag(head);
1107 	} else {
1108 		skb_kfree_head(head, skb_end_offset(skb));
1109 	}
1110 }
1111 
1112 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
1113 			     bool napi_safe)
1114 {
1115 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1116 	int i;
1117 
1118 	if (!skb_data_unref(skb, shinfo))
1119 		goto exit;
1120 
1121 	if (skb_zcopy(skb)) {
1122 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1123 
1124 		skb_zcopy_clear(skb, true);
1125 		if (skip_unref)
1126 			goto free_head;
1127 	}
1128 
1129 	for (i = 0; i < shinfo->nr_frags; i++)
1130 		napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
1131 
1132 free_head:
1133 	if (shinfo->frag_list)
1134 		kfree_skb_list_reason(shinfo->frag_list, reason);
1135 
1136 	skb_free_head(skb, napi_safe);
1137 exit:
1138 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1139 	 * bit is only set on the head though, so in order to avoid races
1140 	 * while trying to recycle fragments on __skb_frag_unref() we need
1141 	 * to make one SKB responsible for triggering the recycle path.
1142 	 * So disable the recycling bit if an SKB is cloned and we have
1143 	 * additional references to the fragmented part of the SKB.
1144 	 * Eventually the last SKB will have the recycling bit set and it's
1145 	 * dataref set to 0, which will trigger the recycling
1146 	 */
1147 	skb->pp_recycle = 0;
1148 }
1149 
1150 /*
1151  *	Free an skbuff by memory without cleaning the state.
1152  */
1153 static void kfree_skbmem(struct sk_buff *skb)
1154 {
1155 	struct sk_buff_fclones *fclones;
1156 
1157 	switch (skb->fclone) {
1158 	case SKB_FCLONE_UNAVAILABLE:
1159 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1160 		return;
1161 
1162 	case SKB_FCLONE_ORIG:
1163 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1164 
1165 		/* We usually free the clone (TX completion) before original skb
1166 		 * This test would have no chance to be true for the clone,
1167 		 * while here, branch prediction will be good.
1168 		 */
1169 		if (refcount_read(&fclones->fclone_ref) == 1)
1170 			goto fastpath;
1171 		break;
1172 
1173 	default: /* SKB_FCLONE_CLONE */
1174 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1175 		break;
1176 	}
1177 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1178 		return;
1179 fastpath:
1180 	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1181 }
1182 
1183 void skb_release_head_state(struct sk_buff *skb)
1184 {
1185 	skb_dst_drop(skb);
1186 	if (skb->destructor) {
1187 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1188 		skb->destructor(skb);
1189 	}
1190 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1191 	nf_conntrack_put(skb_nfct(skb));
1192 #endif
1193 	skb_ext_put(skb);
1194 }
1195 
1196 /* Free everything but the sk_buff shell. */
1197 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
1198 			    bool napi_safe)
1199 {
1200 	skb_release_head_state(skb);
1201 	if (likely(skb->head))
1202 		skb_release_data(skb, reason, napi_safe);
1203 }
1204 
1205 /**
1206  *	__kfree_skb - private function
1207  *	@skb: buffer
1208  *
1209  *	Free an sk_buff. Release anything attached to the buffer.
1210  *	Clean the state. This is an internal helper function. Users should
1211  *	always call kfree_skb
1212  */
1213 
1214 void __kfree_skb(struct sk_buff *skb)
1215 {
1216 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1217 	kfree_skbmem(skb);
1218 }
1219 EXPORT_SYMBOL(__kfree_skb);
1220 
1221 static __always_inline
1222 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1223 {
1224 	if (unlikely(!skb_unref(skb)))
1225 		return false;
1226 
1227 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1228 			       u32_get_bits(reason,
1229 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1230 				SKB_DROP_REASON_SUBSYS_NUM);
1231 
1232 	if (reason == SKB_CONSUMED)
1233 		trace_consume_skb(skb, __builtin_return_address(0));
1234 	else
1235 		trace_kfree_skb(skb, __builtin_return_address(0), reason);
1236 	return true;
1237 }
1238 
1239 /**
1240  *	kfree_skb_reason - free an sk_buff with special reason
1241  *	@skb: buffer to free
1242  *	@reason: reason why this skb is dropped
1243  *
1244  *	Drop a reference to the buffer and free it if the usage count has
1245  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1246  *	tracepoint.
1247  */
1248 void __fix_address
1249 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1250 {
1251 	if (__kfree_skb_reason(skb, reason))
1252 		__kfree_skb(skb);
1253 }
1254 EXPORT_SYMBOL(kfree_skb_reason);
1255 
1256 #define KFREE_SKB_BULK_SIZE	16
1257 
1258 struct skb_free_array {
1259 	unsigned int skb_count;
1260 	void *skb_array[KFREE_SKB_BULK_SIZE];
1261 };
1262 
1263 static void kfree_skb_add_bulk(struct sk_buff *skb,
1264 			       struct skb_free_array *sa,
1265 			       enum skb_drop_reason reason)
1266 {
1267 	/* if SKB is a clone, don't handle this case */
1268 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1269 		__kfree_skb(skb);
1270 		return;
1271 	}
1272 
1273 	skb_release_all(skb, reason, false);
1274 	sa->skb_array[sa->skb_count++] = skb;
1275 
1276 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1277 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1278 				     sa->skb_array);
1279 		sa->skb_count = 0;
1280 	}
1281 }
1282 
1283 void __fix_address
1284 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1285 {
1286 	struct skb_free_array sa;
1287 
1288 	sa.skb_count = 0;
1289 
1290 	while (segs) {
1291 		struct sk_buff *next = segs->next;
1292 
1293 		if (__kfree_skb_reason(segs, reason)) {
1294 			skb_poison_list(segs);
1295 			kfree_skb_add_bulk(segs, &sa, reason);
1296 		}
1297 
1298 		segs = next;
1299 	}
1300 
1301 	if (sa.skb_count)
1302 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1303 }
1304 EXPORT_SYMBOL(kfree_skb_list_reason);
1305 
1306 /* Dump skb information and contents.
1307  *
1308  * Must only be called from net_ratelimit()-ed paths.
1309  *
1310  * Dumps whole packets if full_pkt, only headers otherwise.
1311  */
1312 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1313 {
1314 	struct skb_shared_info *sh = skb_shinfo(skb);
1315 	struct net_device *dev = skb->dev;
1316 	struct sock *sk = skb->sk;
1317 	struct sk_buff *list_skb;
1318 	bool has_mac, has_trans;
1319 	int headroom, tailroom;
1320 	int i, len, seg_len;
1321 
1322 	if (full_pkt)
1323 		len = skb->len;
1324 	else
1325 		len = min_t(int, skb->len, MAX_HEADER + 128);
1326 
1327 	headroom = skb_headroom(skb);
1328 	tailroom = skb_tailroom(skb);
1329 
1330 	has_mac = skb_mac_header_was_set(skb);
1331 	has_trans = skb_transport_header_was_set(skb);
1332 
1333 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1334 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1335 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1336 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1337 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1338 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1339 	       has_mac ? skb->mac_header : -1,
1340 	       has_mac ? skb_mac_header_len(skb) : -1,
1341 	       skb->network_header,
1342 	       has_trans ? skb_network_header_len(skb) : -1,
1343 	       has_trans ? skb->transport_header : -1,
1344 	       sh->tx_flags, sh->nr_frags,
1345 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1346 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
1347 	       skb->csum_valid, skb->csum_level,
1348 	       skb->hash, skb->sw_hash, skb->l4_hash,
1349 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1350 
1351 	if (dev)
1352 		printk("%sdev name=%s feat=%pNF\n",
1353 		       level, dev->name, &dev->features);
1354 	if (sk)
1355 		printk("%ssk family=%hu type=%u proto=%u\n",
1356 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1357 
1358 	if (full_pkt && headroom)
1359 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1360 			       16, 1, skb->head, headroom, false);
1361 
1362 	seg_len = min_t(int, skb_headlen(skb), len);
1363 	if (seg_len)
1364 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1365 			       16, 1, skb->data, seg_len, false);
1366 	len -= seg_len;
1367 
1368 	if (full_pkt && tailroom)
1369 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1370 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1371 
1372 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1373 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1374 		u32 p_off, p_len, copied;
1375 		struct page *p;
1376 		u8 *vaddr;
1377 
1378 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1379 				      skb_frag_size(frag), p, p_off, p_len,
1380 				      copied) {
1381 			seg_len = min_t(int, p_len, len);
1382 			vaddr = kmap_atomic(p);
1383 			print_hex_dump(level, "skb frag:     ",
1384 				       DUMP_PREFIX_OFFSET,
1385 				       16, 1, vaddr + p_off, seg_len, false);
1386 			kunmap_atomic(vaddr);
1387 			len -= seg_len;
1388 			if (!len)
1389 				break;
1390 		}
1391 	}
1392 
1393 	if (full_pkt && skb_has_frag_list(skb)) {
1394 		printk("skb fraglist:\n");
1395 		skb_walk_frags(skb, list_skb)
1396 			skb_dump(level, list_skb, true);
1397 	}
1398 }
1399 EXPORT_SYMBOL(skb_dump);
1400 
1401 /**
1402  *	skb_tx_error - report an sk_buff xmit error
1403  *	@skb: buffer that triggered an error
1404  *
1405  *	Report xmit error if a device callback is tracking this skb.
1406  *	skb must be freed afterwards.
1407  */
1408 void skb_tx_error(struct sk_buff *skb)
1409 {
1410 	if (skb) {
1411 		skb_zcopy_downgrade_managed(skb);
1412 		skb_zcopy_clear(skb, true);
1413 	}
1414 }
1415 EXPORT_SYMBOL(skb_tx_error);
1416 
1417 #ifdef CONFIG_TRACEPOINTS
1418 /**
1419  *	consume_skb - free an skbuff
1420  *	@skb: buffer to free
1421  *
1422  *	Drop a ref to the buffer and free it if the usage count has hit zero
1423  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1424  *	is being dropped after a failure and notes that
1425  */
1426 void consume_skb(struct sk_buff *skb)
1427 {
1428 	if (!skb_unref(skb))
1429 		return;
1430 
1431 	trace_consume_skb(skb, __builtin_return_address(0));
1432 	__kfree_skb(skb);
1433 }
1434 EXPORT_SYMBOL(consume_skb);
1435 #endif
1436 
1437 /**
1438  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1439  *	@skb: buffer to free
1440  *
1441  *	Alike consume_skb(), but this variant assumes that this is the last
1442  *	skb reference and all the head states have been already dropped
1443  */
1444 void __consume_stateless_skb(struct sk_buff *skb)
1445 {
1446 	trace_consume_skb(skb, __builtin_return_address(0));
1447 	skb_release_data(skb, SKB_CONSUMED, false);
1448 	kfree_skbmem(skb);
1449 }
1450 
1451 static void napi_skb_cache_put(struct sk_buff *skb)
1452 {
1453 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1454 	u32 i;
1455 
1456 	if (!kasan_mempool_poison_object(skb))
1457 		return;
1458 
1459 	nc->skb_cache[nc->skb_count++] = skb;
1460 
1461 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1462 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1463 			kasan_mempool_unpoison_object(nc->skb_cache[i],
1464 						kmem_cache_size(net_hotdata.skbuff_cache));
1465 
1466 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1467 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1468 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1469 	}
1470 }
1471 
1472 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1473 {
1474 	skb_release_all(skb, reason, true);
1475 	napi_skb_cache_put(skb);
1476 }
1477 
1478 void napi_skb_free_stolen_head(struct sk_buff *skb)
1479 {
1480 	if (unlikely(skb->slow_gro)) {
1481 		nf_reset_ct(skb);
1482 		skb_dst_drop(skb);
1483 		skb_ext_put(skb);
1484 		skb_orphan(skb);
1485 		skb->slow_gro = 0;
1486 	}
1487 	napi_skb_cache_put(skb);
1488 }
1489 
1490 void napi_consume_skb(struct sk_buff *skb, int budget)
1491 {
1492 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1493 	if (unlikely(!budget)) {
1494 		dev_consume_skb_any(skb);
1495 		return;
1496 	}
1497 
1498 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1499 
1500 	if (!skb_unref(skb))
1501 		return;
1502 
1503 	/* if reaching here SKB is ready to free */
1504 	trace_consume_skb(skb, __builtin_return_address(0));
1505 
1506 	/* if SKB is a clone, don't handle this case */
1507 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1508 		__kfree_skb(skb);
1509 		return;
1510 	}
1511 
1512 	skb_release_all(skb, SKB_CONSUMED, !!budget);
1513 	napi_skb_cache_put(skb);
1514 }
1515 EXPORT_SYMBOL(napi_consume_skb);
1516 
1517 /* Make sure a field is contained by headers group */
1518 #define CHECK_SKB_FIELD(field) \
1519 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1520 		     offsetof(struct sk_buff, headers.field));	\
1521 
1522 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1523 {
1524 	new->tstamp		= old->tstamp;
1525 	/* We do not copy old->sk */
1526 	new->dev		= old->dev;
1527 	memcpy(new->cb, old->cb, sizeof(old->cb));
1528 	skb_dst_copy(new, old);
1529 	__skb_ext_copy(new, old);
1530 	__nf_copy(new, old, false);
1531 
1532 	/* Note : this field could be in the headers group.
1533 	 * It is not yet because we do not want to have a 16 bit hole
1534 	 */
1535 	new->queue_mapping = old->queue_mapping;
1536 
1537 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1538 	CHECK_SKB_FIELD(protocol);
1539 	CHECK_SKB_FIELD(csum);
1540 	CHECK_SKB_FIELD(hash);
1541 	CHECK_SKB_FIELD(priority);
1542 	CHECK_SKB_FIELD(skb_iif);
1543 	CHECK_SKB_FIELD(vlan_proto);
1544 	CHECK_SKB_FIELD(vlan_tci);
1545 	CHECK_SKB_FIELD(transport_header);
1546 	CHECK_SKB_FIELD(network_header);
1547 	CHECK_SKB_FIELD(mac_header);
1548 	CHECK_SKB_FIELD(inner_protocol);
1549 	CHECK_SKB_FIELD(inner_transport_header);
1550 	CHECK_SKB_FIELD(inner_network_header);
1551 	CHECK_SKB_FIELD(inner_mac_header);
1552 	CHECK_SKB_FIELD(mark);
1553 #ifdef CONFIG_NETWORK_SECMARK
1554 	CHECK_SKB_FIELD(secmark);
1555 #endif
1556 #ifdef CONFIG_NET_RX_BUSY_POLL
1557 	CHECK_SKB_FIELD(napi_id);
1558 #endif
1559 	CHECK_SKB_FIELD(alloc_cpu);
1560 #ifdef CONFIG_XPS
1561 	CHECK_SKB_FIELD(sender_cpu);
1562 #endif
1563 #ifdef CONFIG_NET_SCHED
1564 	CHECK_SKB_FIELD(tc_index);
1565 #endif
1566 
1567 }
1568 
1569 /*
1570  * You should not add any new code to this function.  Add it to
1571  * __copy_skb_header above instead.
1572  */
1573 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1574 {
1575 #define C(x) n->x = skb->x
1576 
1577 	n->next = n->prev = NULL;
1578 	n->sk = NULL;
1579 	__copy_skb_header(n, skb);
1580 
1581 	C(len);
1582 	C(data_len);
1583 	C(mac_len);
1584 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1585 	n->cloned = 1;
1586 	n->nohdr = 0;
1587 	n->peeked = 0;
1588 	C(pfmemalloc);
1589 	C(pp_recycle);
1590 	n->destructor = NULL;
1591 	C(tail);
1592 	C(end);
1593 	C(head);
1594 	C(head_frag);
1595 	C(data);
1596 	C(truesize);
1597 	refcount_set(&n->users, 1);
1598 
1599 	atomic_inc(&(skb_shinfo(skb)->dataref));
1600 	skb->cloned = 1;
1601 
1602 	return n;
1603 #undef C
1604 }
1605 
1606 /**
1607  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1608  * @first: first sk_buff of the msg
1609  */
1610 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1611 {
1612 	struct sk_buff *n;
1613 
1614 	n = alloc_skb(0, GFP_ATOMIC);
1615 	if (!n)
1616 		return NULL;
1617 
1618 	n->len = first->len;
1619 	n->data_len = first->len;
1620 	n->truesize = first->truesize;
1621 
1622 	skb_shinfo(n)->frag_list = first;
1623 
1624 	__copy_skb_header(n, first);
1625 	n->destructor = NULL;
1626 
1627 	return n;
1628 }
1629 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1630 
1631 /**
1632  *	skb_morph	-	morph one skb into another
1633  *	@dst: the skb to receive the contents
1634  *	@src: the skb to supply the contents
1635  *
1636  *	This is identical to skb_clone except that the target skb is
1637  *	supplied by the user.
1638  *
1639  *	The target skb is returned upon exit.
1640  */
1641 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1642 {
1643 	skb_release_all(dst, SKB_CONSUMED, false);
1644 	return __skb_clone(dst, src);
1645 }
1646 EXPORT_SYMBOL_GPL(skb_morph);
1647 
1648 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1649 {
1650 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1651 	struct user_struct *user;
1652 
1653 	if (capable(CAP_IPC_LOCK) || !size)
1654 		return 0;
1655 
1656 	rlim = rlimit(RLIMIT_MEMLOCK);
1657 	if (rlim == RLIM_INFINITY)
1658 		return 0;
1659 
1660 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1661 	max_pg = rlim >> PAGE_SHIFT;
1662 	user = mmp->user ? : current_user();
1663 
1664 	old_pg = atomic_long_read(&user->locked_vm);
1665 	do {
1666 		new_pg = old_pg + num_pg;
1667 		if (new_pg > max_pg)
1668 			return -ENOBUFS;
1669 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1670 
1671 	if (!mmp->user) {
1672 		mmp->user = get_uid(user);
1673 		mmp->num_pg = num_pg;
1674 	} else {
1675 		mmp->num_pg += num_pg;
1676 	}
1677 
1678 	return 0;
1679 }
1680 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1681 
1682 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1683 {
1684 	if (mmp->user) {
1685 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1686 		free_uid(mmp->user);
1687 	}
1688 }
1689 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1690 
1691 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1692 {
1693 	struct ubuf_info_msgzc *uarg;
1694 	struct sk_buff *skb;
1695 
1696 	WARN_ON_ONCE(!in_task());
1697 
1698 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1699 	if (!skb)
1700 		return NULL;
1701 
1702 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1703 	uarg = (void *)skb->cb;
1704 	uarg->mmp.user = NULL;
1705 
1706 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1707 		kfree_skb(skb);
1708 		return NULL;
1709 	}
1710 
1711 	uarg->ubuf.ops = &msg_zerocopy_ubuf_ops;
1712 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1713 	uarg->len = 1;
1714 	uarg->bytelen = size;
1715 	uarg->zerocopy = 1;
1716 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1717 	refcount_set(&uarg->ubuf.refcnt, 1);
1718 	sock_hold(sk);
1719 
1720 	return &uarg->ubuf;
1721 }
1722 
1723 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1724 {
1725 	return container_of((void *)uarg, struct sk_buff, cb);
1726 }
1727 
1728 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1729 				       struct ubuf_info *uarg)
1730 {
1731 	if (uarg) {
1732 		struct ubuf_info_msgzc *uarg_zc;
1733 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1734 		u32 bytelen, next;
1735 
1736 		/* there might be non MSG_ZEROCOPY users */
1737 		if (uarg->ops != &msg_zerocopy_ubuf_ops)
1738 			return NULL;
1739 
1740 		/* realloc only when socket is locked (TCP, UDP cork),
1741 		 * so uarg->len and sk_zckey access is serialized
1742 		 */
1743 		if (!sock_owned_by_user(sk)) {
1744 			WARN_ON_ONCE(1);
1745 			return NULL;
1746 		}
1747 
1748 		uarg_zc = uarg_to_msgzc(uarg);
1749 		bytelen = uarg_zc->bytelen + size;
1750 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1751 			/* TCP can create new skb to attach new uarg */
1752 			if (sk->sk_type == SOCK_STREAM)
1753 				goto new_alloc;
1754 			return NULL;
1755 		}
1756 
1757 		next = (u32)atomic_read(&sk->sk_zckey);
1758 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1759 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1760 				return NULL;
1761 			uarg_zc->len++;
1762 			uarg_zc->bytelen = bytelen;
1763 			atomic_set(&sk->sk_zckey, ++next);
1764 
1765 			/* no extra ref when appending to datagram (MSG_MORE) */
1766 			if (sk->sk_type == SOCK_STREAM)
1767 				net_zcopy_get(uarg);
1768 
1769 			return uarg;
1770 		}
1771 	}
1772 
1773 new_alloc:
1774 	return msg_zerocopy_alloc(sk, size);
1775 }
1776 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1777 
1778 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1779 {
1780 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1781 	u32 old_lo, old_hi;
1782 	u64 sum_len;
1783 
1784 	old_lo = serr->ee.ee_info;
1785 	old_hi = serr->ee.ee_data;
1786 	sum_len = old_hi - old_lo + 1ULL + len;
1787 
1788 	if (sum_len >= (1ULL << 32))
1789 		return false;
1790 
1791 	if (lo != old_hi + 1)
1792 		return false;
1793 
1794 	serr->ee.ee_data += len;
1795 	return true;
1796 }
1797 
1798 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1799 {
1800 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1801 	struct sock_exterr_skb *serr;
1802 	struct sock *sk = skb->sk;
1803 	struct sk_buff_head *q;
1804 	unsigned long flags;
1805 	bool is_zerocopy;
1806 	u32 lo, hi;
1807 	u16 len;
1808 
1809 	mm_unaccount_pinned_pages(&uarg->mmp);
1810 
1811 	/* if !len, there was only 1 call, and it was aborted
1812 	 * so do not queue a completion notification
1813 	 */
1814 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1815 		goto release;
1816 
1817 	len = uarg->len;
1818 	lo = uarg->id;
1819 	hi = uarg->id + len - 1;
1820 	is_zerocopy = uarg->zerocopy;
1821 
1822 	serr = SKB_EXT_ERR(skb);
1823 	memset(serr, 0, sizeof(*serr));
1824 	serr->ee.ee_errno = 0;
1825 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1826 	serr->ee.ee_data = hi;
1827 	serr->ee.ee_info = lo;
1828 	if (!is_zerocopy)
1829 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1830 
1831 	q = &sk->sk_error_queue;
1832 	spin_lock_irqsave(&q->lock, flags);
1833 	tail = skb_peek_tail(q);
1834 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1835 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1836 		__skb_queue_tail(q, skb);
1837 		skb = NULL;
1838 	}
1839 	spin_unlock_irqrestore(&q->lock, flags);
1840 
1841 	sk_error_report(sk);
1842 
1843 release:
1844 	consume_skb(skb);
1845 	sock_put(sk);
1846 }
1847 
1848 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg,
1849 				  bool success)
1850 {
1851 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1852 
1853 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1854 
1855 	if (refcount_dec_and_test(&uarg->refcnt))
1856 		__msg_zerocopy_callback(uarg_zc);
1857 }
1858 
1859 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1860 {
1861 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1862 
1863 	atomic_dec(&sk->sk_zckey);
1864 	uarg_to_msgzc(uarg)->len--;
1865 
1866 	if (have_uref)
1867 		msg_zerocopy_complete(NULL, uarg, true);
1868 }
1869 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1870 
1871 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = {
1872 	.complete = msg_zerocopy_complete,
1873 };
1874 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops);
1875 
1876 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1877 			     struct msghdr *msg, int len,
1878 			     struct ubuf_info *uarg)
1879 {
1880 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1881 	int err, orig_len = skb->len;
1882 
1883 	if (uarg->ops->link_skb) {
1884 		err = uarg->ops->link_skb(skb, uarg);
1885 		if (err)
1886 			return err;
1887 	} else {
1888 		/* An skb can only point to one uarg. This edge case happens
1889 		 * when TCP appends to an skb, but zerocopy_realloc triggered
1890 		 * a new alloc.
1891 		 */
1892 		if (orig_uarg && uarg != orig_uarg)
1893 			return -EEXIST;
1894 	}
1895 
1896 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1897 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1898 		struct sock *save_sk = skb->sk;
1899 
1900 		/* Streams do not free skb on error. Reset to prev state. */
1901 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1902 		skb->sk = sk;
1903 		___pskb_trim(skb, orig_len);
1904 		skb->sk = save_sk;
1905 		return err;
1906 	}
1907 
1908 	if (!uarg->ops->link_skb)
1909 		skb_zcopy_set(skb, uarg, NULL);
1910 	return skb->len - orig_len;
1911 }
1912 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1913 
1914 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1915 {
1916 	int i;
1917 
1918 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1919 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1920 		skb_frag_ref(skb, i);
1921 }
1922 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1923 
1924 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1925 			      gfp_t gfp_mask)
1926 {
1927 	if (skb_zcopy(orig)) {
1928 		if (skb_zcopy(nskb)) {
1929 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1930 			if (!gfp_mask) {
1931 				WARN_ON_ONCE(1);
1932 				return -ENOMEM;
1933 			}
1934 			if (skb_uarg(nskb) == skb_uarg(orig))
1935 				return 0;
1936 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1937 				return -EIO;
1938 		}
1939 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1940 	}
1941 	return 0;
1942 }
1943 
1944 /**
1945  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1946  *	@skb: the skb to modify
1947  *	@gfp_mask: allocation priority
1948  *
1949  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1950  *	It will copy all frags into kernel and drop the reference
1951  *	to userspace pages.
1952  *
1953  *	If this function is called from an interrupt gfp_mask() must be
1954  *	%GFP_ATOMIC.
1955  *
1956  *	Returns 0 on success or a negative error code on failure
1957  *	to allocate kernel memory to copy to.
1958  */
1959 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1960 {
1961 	int num_frags = skb_shinfo(skb)->nr_frags;
1962 	struct page *page, *head = NULL;
1963 	int i, order, psize, new_frags;
1964 	u32 d_off;
1965 
1966 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1967 		return -EINVAL;
1968 
1969 	if (!num_frags)
1970 		goto release;
1971 
1972 	/* We might have to allocate high order pages, so compute what minimum
1973 	 * page order is needed.
1974 	 */
1975 	order = 0;
1976 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1977 		order++;
1978 	psize = (PAGE_SIZE << order);
1979 
1980 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1981 	for (i = 0; i < new_frags; i++) {
1982 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1983 		if (!page) {
1984 			while (head) {
1985 				struct page *next = (struct page *)page_private(head);
1986 				put_page(head);
1987 				head = next;
1988 			}
1989 			return -ENOMEM;
1990 		}
1991 		set_page_private(page, (unsigned long)head);
1992 		head = page;
1993 	}
1994 
1995 	page = head;
1996 	d_off = 0;
1997 	for (i = 0; i < num_frags; i++) {
1998 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1999 		u32 p_off, p_len, copied;
2000 		struct page *p;
2001 		u8 *vaddr;
2002 
2003 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
2004 				      p, p_off, p_len, copied) {
2005 			u32 copy, done = 0;
2006 			vaddr = kmap_atomic(p);
2007 
2008 			while (done < p_len) {
2009 				if (d_off == psize) {
2010 					d_off = 0;
2011 					page = (struct page *)page_private(page);
2012 				}
2013 				copy = min_t(u32, psize - d_off, p_len - done);
2014 				memcpy(page_address(page) + d_off,
2015 				       vaddr + p_off + done, copy);
2016 				done += copy;
2017 				d_off += copy;
2018 			}
2019 			kunmap_atomic(vaddr);
2020 		}
2021 	}
2022 
2023 	/* skb frags release userspace buffers */
2024 	for (i = 0; i < num_frags; i++)
2025 		skb_frag_unref(skb, i);
2026 
2027 	/* skb frags point to kernel buffers */
2028 	for (i = 0; i < new_frags - 1; i++) {
2029 		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
2030 		head = (struct page *)page_private(head);
2031 	}
2032 	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2033 			       d_off);
2034 	skb_shinfo(skb)->nr_frags = new_frags;
2035 
2036 release:
2037 	skb_zcopy_clear(skb, false);
2038 	return 0;
2039 }
2040 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2041 
2042 /**
2043  *	skb_clone	-	duplicate an sk_buff
2044  *	@skb: buffer to clone
2045  *	@gfp_mask: allocation priority
2046  *
2047  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
2048  *	copies share the same packet data but not structure. The new
2049  *	buffer has a reference count of 1. If the allocation fails the
2050  *	function returns %NULL otherwise the new buffer is returned.
2051  *
2052  *	If this function is called from an interrupt gfp_mask() must be
2053  *	%GFP_ATOMIC.
2054  */
2055 
2056 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2057 {
2058 	struct sk_buff_fclones *fclones = container_of(skb,
2059 						       struct sk_buff_fclones,
2060 						       skb1);
2061 	struct sk_buff *n;
2062 
2063 	if (skb_orphan_frags(skb, gfp_mask))
2064 		return NULL;
2065 
2066 	if (skb->fclone == SKB_FCLONE_ORIG &&
2067 	    refcount_read(&fclones->fclone_ref) == 1) {
2068 		n = &fclones->skb2;
2069 		refcount_set(&fclones->fclone_ref, 2);
2070 		n->fclone = SKB_FCLONE_CLONE;
2071 	} else {
2072 		if (skb_pfmemalloc(skb))
2073 			gfp_mask |= __GFP_MEMALLOC;
2074 
2075 		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2076 		if (!n)
2077 			return NULL;
2078 
2079 		n->fclone = SKB_FCLONE_UNAVAILABLE;
2080 	}
2081 
2082 	return __skb_clone(n, skb);
2083 }
2084 EXPORT_SYMBOL(skb_clone);
2085 
2086 void skb_headers_offset_update(struct sk_buff *skb, int off)
2087 {
2088 	/* Only adjust this if it actually is csum_start rather than csum */
2089 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2090 		skb->csum_start += off;
2091 	/* {transport,network,mac}_header and tail are relative to skb->head */
2092 	skb->transport_header += off;
2093 	skb->network_header   += off;
2094 	if (skb_mac_header_was_set(skb))
2095 		skb->mac_header += off;
2096 	skb->inner_transport_header += off;
2097 	skb->inner_network_header += off;
2098 	skb->inner_mac_header += off;
2099 }
2100 EXPORT_SYMBOL(skb_headers_offset_update);
2101 
2102 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2103 {
2104 	__copy_skb_header(new, old);
2105 
2106 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2107 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2108 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2109 }
2110 EXPORT_SYMBOL(skb_copy_header);
2111 
2112 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2113 {
2114 	if (skb_pfmemalloc(skb))
2115 		return SKB_ALLOC_RX;
2116 	return 0;
2117 }
2118 
2119 /**
2120  *	skb_copy	-	create private copy of an sk_buff
2121  *	@skb: buffer to copy
2122  *	@gfp_mask: allocation priority
2123  *
2124  *	Make a copy of both an &sk_buff and its data. This is used when the
2125  *	caller wishes to modify the data and needs a private copy of the
2126  *	data to alter. Returns %NULL on failure or the pointer to the buffer
2127  *	on success. The returned buffer has a reference count of 1.
2128  *
2129  *	As by-product this function converts non-linear &sk_buff to linear
2130  *	one, so that &sk_buff becomes completely private and caller is allowed
2131  *	to modify all the data of returned buffer. This means that this
2132  *	function is not recommended for use in circumstances when only
2133  *	header is going to be modified. Use pskb_copy() instead.
2134  */
2135 
2136 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2137 {
2138 	struct sk_buff *n;
2139 	unsigned int size;
2140 	int headerlen;
2141 
2142 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2143 		return NULL;
2144 
2145 	headerlen = skb_headroom(skb);
2146 	size = skb_end_offset(skb) + skb->data_len;
2147 	n = __alloc_skb(size, gfp_mask,
2148 			skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2149 	if (!n)
2150 		return NULL;
2151 
2152 	/* Set the data pointer */
2153 	skb_reserve(n, headerlen);
2154 	/* Set the tail pointer and length */
2155 	skb_put(n, skb->len);
2156 
2157 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2158 
2159 	skb_copy_header(n, skb);
2160 	return n;
2161 }
2162 EXPORT_SYMBOL(skb_copy);
2163 
2164 /**
2165  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2166  *	@skb: buffer to copy
2167  *	@headroom: headroom of new skb
2168  *	@gfp_mask: allocation priority
2169  *	@fclone: if true allocate the copy of the skb from the fclone
2170  *	cache instead of the head cache; it is recommended to set this
2171  *	to true for the cases where the copy will likely be cloned
2172  *
2173  *	Make a copy of both an &sk_buff and part of its data, located
2174  *	in header. Fragmented data remain shared. This is used when
2175  *	the caller wishes to modify only header of &sk_buff and needs
2176  *	private copy of the header to alter. Returns %NULL on failure
2177  *	or the pointer to the buffer on success.
2178  *	The returned buffer has a reference count of 1.
2179  */
2180 
2181 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2182 				   gfp_t gfp_mask, bool fclone)
2183 {
2184 	unsigned int size = skb_headlen(skb) + headroom;
2185 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2186 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2187 
2188 	if (!n)
2189 		goto out;
2190 
2191 	/* Set the data pointer */
2192 	skb_reserve(n, headroom);
2193 	/* Set the tail pointer and length */
2194 	skb_put(n, skb_headlen(skb));
2195 	/* Copy the bytes */
2196 	skb_copy_from_linear_data(skb, n->data, n->len);
2197 
2198 	n->truesize += skb->data_len;
2199 	n->data_len  = skb->data_len;
2200 	n->len	     = skb->len;
2201 
2202 	if (skb_shinfo(skb)->nr_frags) {
2203 		int i;
2204 
2205 		if (skb_orphan_frags(skb, gfp_mask) ||
2206 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2207 			kfree_skb(n);
2208 			n = NULL;
2209 			goto out;
2210 		}
2211 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2212 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2213 			skb_frag_ref(skb, i);
2214 		}
2215 		skb_shinfo(n)->nr_frags = i;
2216 	}
2217 
2218 	if (skb_has_frag_list(skb)) {
2219 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2220 		skb_clone_fraglist(n);
2221 	}
2222 
2223 	skb_copy_header(n, skb);
2224 out:
2225 	return n;
2226 }
2227 EXPORT_SYMBOL(__pskb_copy_fclone);
2228 
2229 /**
2230  *	pskb_expand_head - reallocate header of &sk_buff
2231  *	@skb: buffer to reallocate
2232  *	@nhead: room to add at head
2233  *	@ntail: room to add at tail
2234  *	@gfp_mask: allocation priority
2235  *
2236  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2237  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2238  *	reference count of 1. Returns zero in the case of success or error,
2239  *	if expansion failed. In the last case, &sk_buff is not changed.
2240  *
2241  *	All the pointers pointing into skb header may change and must be
2242  *	reloaded after call to this function.
2243  */
2244 
2245 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2246 		     gfp_t gfp_mask)
2247 {
2248 	unsigned int osize = skb_end_offset(skb);
2249 	unsigned int size = osize + nhead + ntail;
2250 	long off;
2251 	u8 *data;
2252 	int i;
2253 
2254 	BUG_ON(nhead < 0);
2255 
2256 	BUG_ON(skb_shared(skb));
2257 
2258 	skb_zcopy_downgrade_managed(skb);
2259 
2260 	if (skb_pfmemalloc(skb))
2261 		gfp_mask |= __GFP_MEMALLOC;
2262 
2263 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2264 	if (!data)
2265 		goto nodata;
2266 	size = SKB_WITH_OVERHEAD(size);
2267 
2268 	/* Copy only real data... and, alas, header. This should be
2269 	 * optimized for the cases when header is void.
2270 	 */
2271 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2272 
2273 	memcpy((struct skb_shared_info *)(data + size),
2274 	       skb_shinfo(skb),
2275 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2276 
2277 	/*
2278 	 * if shinfo is shared we must drop the old head gracefully, but if it
2279 	 * is not we can just drop the old head and let the existing refcount
2280 	 * be since all we did is relocate the values
2281 	 */
2282 	if (skb_cloned(skb)) {
2283 		if (skb_orphan_frags(skb, gfp_mask))
2284 			goto nofrags;
2285 		if (skb_zcopy(skb))
2286 			refcount_inc(&skb_uarg(skb)->refcnt);
2287 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2288 			skb_frag_ref(skb, i);
2289 
2290 		if (skb_has_frag_list(skb))
2291 			skb_clone_fraglist(skb);
2292 
2293 		skb_release_data(skb, SKB_CONSUMED, false);
2294 	} else {
2295 		skb_free_head(skb, false);
2296 	}
2297 	off = (data + nhead) - skb->head;
2298 
2299 	skb->head     = data;
2300 	skb->head_frag = 0;
2301 	skb->data    += off;
2302 
2303 	skb_set_end_offset(skb, size);
2304 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2305 	off           = nhead;
2306 #endif
2307 	skb->tail	      += off;
2308 	skb_headers_offset_update(skb, nhead);
2309 	skb->cloned   = 0;
2310 	skb->hdr_len  = 0;
2311 	skb->nohdr    = 0;
2312 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2313 
2314 	skb_metadata_clear(skb);
2315 
2316 	/* It is not generally safe to change skb->truesize.
2317 	 * For the moment, we really care of rx path, or
2318 	 * when skb is orphaned (not attached to a socket).
2319 	 */
2320 	if (!skb->sk || skb->destructor == sock_edemux)
2321 		skb->truesize += size - osize;
2322 
2323 	return 0;
2324 
2325 nofrags:
2326 	skb_kfree_head(data, size);
2327 nodata:
2328 	return -ENOMEM;
2329 }
2330 EXPORT_SYMBOL(pskb_expand_head);
2331 
2332 /* Make private copy of skb with writable head and some headroom */
2333 
2334 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2335 {
2336 	struct sk_buff *skb2;
2337 	int delta = headroom - skb_headroom(skb);
2338 
2339 	if (delta <= 0)
2340 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2341 	else {
2342 		skb2 = skb_clone(skb, GFP_ATOMIC);
2343 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2344 					     GFP_ATOMIC)) {
2345 			kfree_skb(skb2);
2346 			skb2 = NULL;
2347 		}
2348 	}
2349 	return skb2;
2350 }
2351 EXPORT_SYMBOL(skb_realloc_headroom);
2352 
2353 /* Note: We plan to rework this in linux-6.4 */
2354 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2355 {
2356 	unsigned int saved_end_offset, saved_truesize;
2357 	struct skb_shared_info *shinfo;
2358 	int res;
2359 
2360 	saved_end_offset = skb_end_offset(skb);
2361 	saved_truesize = skb->truesize;
2362 
2363 	res = pskb_expand_head(skb, 0, 0, pri);
2364 	if (res)
2365 		return res;
2366 
2367 	skb->truesize = saved_truesize;
2368 
2369 	if (likely(skb_end_offset(skb) == saved_end_offset))
2370 		return 0;
2371 
2372 	/* We can not change skb->end if the original or new value
2373 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2374 	 */
2375 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2376 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2377 		/* We think this path should not be taken.
2378 		 * Add a temporary trace to warn us just in case.
2379 		 */
2380 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2381 			    saved_end_offset, skb_end_offset(skb));
2382 		WARN_ON_ONCE(1);
2383 		return 0;
2384 	}
2385 
2386 	shinfo = skb_shinfo(skb);
2387 
2388 	/* We are about to change back skb->end,
2389 	 * we need to move skb_shinfo() to its new location.
2390 	 */
2391 	memmove(skb->head + saved_end_offset,
2392 		shinfo,
2393 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2394 
2395 	skb_set_end_offset(skb, saved_end_offset);
2396 
2397 	return 0;
2398 }
2399 
2400 /**
2401  *	skb_expand_head - reallocate header of &sk_buff
2402  *	@skb: buffer to reallocate
2403  *	@headroom: needed headroom
2404  *
2405  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2406  *	if possible; copies skb->sk to new skb as needed
2407  *	and frees original skb in case of failures.
2408  *
2409  *	It expect increased headroom and generates warning otherwise.
2410  */
2411 
2412 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2413 {
2414 	int delta = headroom - skb_headroom(skb);
2415 	int osize = skb_end_offset(skb);
2416 	struct sock *sk = skb->sk;
2417 
2418 	if (WARN_ONCE(delta <= 0,
2419 		      "%s is expecting an increase in the headroom", __func__))
2420 		return skb;
2421 
2422 	delta = SKB_DATA_ALIGN(delta);
2423 	/* pskb_expand_head() might crash, if skb is shared. */
2424 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2425 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2426 
2427 		if (unlikely(!nskb))
2428 			goto fail;
2429 
2430 		if (sk)
2431 			skb_set_owner_w(nskb, sk);
2432 		consume_skb(skb);
2433 		skb = nskb;
2434 	}
2435 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2436 		goto fail;
2437 
2438 	if (sk && is_skb_wmem(skb)) {
2439 		delta = skb_end_offset(skb) - osize;
2440 		refcount_add(delta, &sk->sk_wmem_alloc);
2441 		skb->truesize += delta;
2442 	}
2443 	return skb;
2444 
2445 fail:
2446 	kfree_skb(skb);
2447 	return NULL;
2448 }
2449 EXPORT_SYMBOL(skb_expand_head);
2450 
2451 /**
2452  *	skb_copy_expand	-	copy and expand sk_buff
2453  *	@skb: buffer to copy
2454  *	@newheadroom: new free bytes at head
2455  *	@newtailroom: new free bytes at tail
2456  *	@gfp_mask: allocation priority
2457  *
2458  *	Make a copy of both an &sk_buff and its data and while doing so
2459  *	allocate additional space.
2460  *
2461  *	This is used when the caller wishes to modify the data and needs a
2462  *	private copy of the data to alter as well as more space for new fields.
2463  *	Returns %NULL on failure or the pointer to the buffer
2464  *	on success. The returned buffer has a reference count of 1.
2465  *
2466  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2467  *	is called from an interrupt.
2468  */
2469 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2470 				int newheadroom, int newtailroom,
2471 				gfp_t gfp_mask)
2472 {
2473 	/*
2474 	 *	Allocate the copy buffer
2475 	 */
2476 	int head_copy_len, head_copy_off;
2477 	struct sk_buff *n;
2478 	int oldheadroom;
2479 
2480 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2481 		return NULL;
2482 
2483 	oldheadroom = skb_headroom(skb);
2484 	n = __alloc_skb(newheadroom + skb->len + newtailroom,
2485 			gfp_mask, skb_alloc_rx_flag(skb),
2486 			NUMA_NO_NODE);
2487 	if (!n)
2488 		return NULL;
2489 
2490 	skb_reserve(n, newheadroom);
2491 
2492 	/* Set the tail pointer and length */
2493 	skb_put(n, skb->len);
2494 
2495 	head_copy_len = oldheadroom;
2496 	head_copy_off = 0;
2497 	if (newheadroom <= head_copy_len)
2498 		head_copy_len = newheadroom;
2499 	else
2500 		head_copy_off = newheadroom - head_copy_len;
2501 
2502 	/* Copy the linear header and data. */
2503 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2504 			     skb->len + head_copy_len));
2505 
2506 	skb_copy_header(n, skb);
2507 
2508 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2509 
2510 	return n;
2511 }
2512 EXPORT_SYMBOL(skb_copy_expand);
2513 
2514 /**
2515  *	__skb_pad		-	zero pad the tail of an skb
2516  *	@skb: buffer to pad
2517  *	@pad: space to pad
2518  *	@free_on_error: free buffer on error
2519  *
2520  *	Ensure that a buffer is followed by a padding area that is zero
2521  *	filled. Used by network drivers which may DMA or transfer data
2522  *	beyond the buffer end onto the wire.
2523  *
2524  *	May return error in out of memory cases. The skb is freed on error
2525  *	if @free_on_error is true.
2526  */
2527 
2528 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2529 {
2530 	int err;
2531 	int ntail;
2532 
2533 	/* If the skbuff is non linear tailroom is always zero.. */
2534 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2535 		memset(skb->data+skb->len, 0, pad);
2536 		return 0;
2537 	}
2538 
2539 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2540 	if (likely(skb_cloned(skb) || ntail > 0)) {
2541 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2542 		if (unlikely(err))
2543 			goto free_skb;
2544 	}
2545 
2546 	/* FIXME: The use of this function with non-linear skb's really needs
2547 	 * to be audited.
2548 	 */
2549 	err = skb_linearize(skb);
2550 	if (unlikely(err))
2551 		goto free_skb;
2552 
2553 	memset(skb->data + skb->len, 0, pad);
2554 	return 0;
2555 
2556 free_skb:
2557 	if (free_on_error)
2558 		kfree_skb(skb);
2559 	return err;
2560 }
2561 EXPORT_SYMBOL(__skb_pad);
2562 
2563 /**
2564  *	pskb_put - add data to the tail of a potentially fragmented buffer
2565  *	@skb: start of the buffer to use
2566  *	@tail: tail fragment of the buffer to use
2567  *	@len: amount of data to add
2568  *
2569  *	This function extends the used data area of the potentially
2570  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2571  *	@skb itself. If this would exceed the total buffer size the kernel
2572  *	will panic. A pointer to the first byte of the extra data is
2573  *	returned.
2574  */
2575 
2576 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2577 {
2578 	if (tail != skb) {
2579 		skb->data_len += len;
2580 		skb->len += len;
2581 	}
2582 	return skb_put(tail, len);
2583 }
2584 EXPORT_SYMBOL_GPL(pskb_put);
2585 
2586 /**
2587  *	skb_put - add data to a buffer
2588  *	@skb: buffer to use
2589  *	@len: amount of data to add
2590  *
2591  *	This function extends the used data area of the buffer. If this would
2592  *	exceed the total buffer size the kernel will panic. A pointer to the
2593  *	first byte of the extra data is returned.
2594  */
2595 void *skb_put(struct sk_buff *skb, unsigned int len)
2596 {
2597 	void *tmp = skb_tail_pointer(skb);
2598 	SKB_LINEAR_ASSERT(skb);
2599 	skb->tail += len;
2600 	skb->len  += len;
2601 	if (unlikely(skb->tail > skb->end))
2602 		skb_over_panic(skb, len, __builtin_return_address(0));
2603 	return tmp;
2604 }
2605 EXPORT_SYMBOL(skb_put);
2606 
2607 /**
2608  *	skb_push - add data to the start of a buffer
2609  *	@skb: buffer to use
2610  *	@len: amount of data to add
2611  *
2612  *	This function extends the used data area of the buffer at the buffer
2613  *	start. If this would exceed the total buffer headroom the kernel will
2614  *	panic. A pointer to the first byte of the extra data is returned.
2615  */
2616 void *skb_push(struct sk_buff *skb, unsigned int len)
2617 {
2618 	skb->data -= len;
2619 	skb->len  += len;
2620 	if (unlikely(skb->data < skb->head))
2621 		skb_under_panic(skb, len, __builtin_return_address(0));
2622 	return skb->data;
2623 }
2624 EXPORT_SYMBOL(skb_push);
2625 
2626 /**
2627  *	skb_pull - remove data from the start of a buffer
2628  *	@skb: buffer to use
2629  *	@len: amount of data to remove
2630  *
2631  *	This function removes data from the start of a buffer, returning
2632  *	the memory to the headroom. A pointer to the next data in the buffer
2633  *	is returned. Once the data has been pulled future pushes will overwrite
2634  *	the old data.
2635  */
2636 void *skb_pull(struct sk_buff *skb, unsigned int len)
2637 {
2638 	return skb_pull_inline(skb, len);
2639 }
2640 EXPORT_SYMBOL(skb_pull);
2641 
2642 /**
2643  *	skb_pull_data - remove data from the start of a buffer returning its
2644  *	original position.
2645  *	@skb: buffer to use
2646  *	@len: amount of data to remove
2647  *
2648  *	This function removes data from the start of a buffer, returning
2649  *	the memory to the headroom. A pointer to the original data in the buffer
2650  *	is returned after checking if there is enough data to pull. Once the
2651  *	data has been pulled future pushes will overwrite the old data.
2652  */
2653 void *skb_pull_data(struct sk_buff *skb, size_t len)
2654 {
2655 	void *data = skb->data;
2656 
2657 	if (skb->len < len)
2658 		return NULL;
2659 
2660 	skb_pull(skb, len);
2661 
2662 	return data;
2663 }
2664 EXPORT_SYMBOL(skb_pull_data);
2665 
2666 /**
2667  *	skb_trim - remove end from a buffer
2668  *	@skb: buffer to alter
2669  *	@len: new length
2670  *
2671  *	Cut the length of a buffer down by removing data from the tail. If
2672  *	the buffer is already under the length specified it is not modified.
2673  *	The skb must be linear.
2674  */
2675 void skb_trim(struct sk_buff *skb, unsigned int len)
2676 {
2677 	if (skb->len > len)
2678 		__skb_trim(skb, len);
2679 }
2680 EXPORT_SYMBOL(skb_trim);
2681 
2682 /* Trims skb to length len. It can change skb pointers.
2683  */
2684 
2685 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2686 {
2687 	struct sk_buff **fragp;
2688 	struct sk_buff *frag;
2689 	int offset = skb_headlen(skb);
2690 	int nfrags = skb_shinfo(skb)->nr_frags;
2691 	int i;
2692 	int err;
2693 
2694 	if (skb_cloned(skb) &&
2695 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2696 		return err;
2697 
2698 	i = 0;
2699 	if (offset >= len)
2700 		goto drop_pages;
2701 
2702 	for (; i < nfrags; i++) {
2703 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2704 
2705 		if (end < len) {
2706 			offset = end;
2707 			continue;
2708 		}
2709 
2710 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2711 
2712 drop_pages:
2713 		skb_shinfo(skb)->nr_frags = i;
2714 
2715 		for (; i < nfrags; i++)
2716 			skb_frag_unref(skb, i);
2717 
2718 		if (skb_has_frag_list(skb))
2719 			skb_drop_fraglist(skb);
2720 		goto done;
2721 	}
2722 
2723 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2724 	     fragp = &frag->next) {
2725 		int end = offset + frag->len;
2726 
2727 		if (skb_shared(frag)) {
2728 			struct sk_buff *nfrag;
2729 
2730 			nfrag = skb_clone(frag, GFP_ATOMIC);
2731 			if (unlikely(!nfrag))
2732 				return -ENOMEM;
2733 
2734 			nfrag->next = frag->next;
2735 			consume_skb(frag);
2736 			frag = nfrag;
2737 			*fragp = frag;
2738 		}
2739 
2740 		if (end < len) {
2741 			offset = end;
2742 			continue;
2743 		}
2744 
2745 		if (end > len &&
2746 		    unlikely((err = pskb_trim(frag, len - offset))))
2747 			return err;
2748 
2749 		if (frag->next)
2750 			skb_drop_list(&frag->next);
2751 		break;
2752 	}
2753 
2754 done:
2755 	if (len > skb_headlen(skb)) {
2756 		skb->data_len -= skb->len - len;
2757 		skb->len       = len;
2758 	} else {
2759 		skb->len       = len;
2760 		skb->data_len  = 0;
2761 		skb_set_tail_pointer(skb, len);
2762 	}
2763 
2764 	if (!skb->sk || skb->destructor == sock_edemux)
2765 		skb_condense(skb);
2766 	return 0;
2767 }
2768 EXPORT_SYMBOL(___pskb_trim);
2769 
2770 /* Note : use pskb_trim_rcsum() instead of calling this directly
2771  */
2772 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2773 {
2774 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2775 		int delta = skb->len - len;
2776 
2777 		skb->csum = csum_block_sub(skb->csum,
2778 					   skb_checksum(skb, len, delta, 0),
2779 					   len);
2780 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2781 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2782 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2783 
2784 		if (offset + sizeof(__sum16) > hdlen)
2785 			return -EINVAL;
2786 	}
2787 	return __pskb_trim(skb, len);
2788 }
2789 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2790 
2791 /**
2792  *	__pskb_pull_tail - advance tail of skb header
2793  *	@skb: buffer to reallocate
2794  *	@delta: number of bytes to advance tail
2795  *
2796  *	The function makes a sense only on a fragmented &sk_buff,
2797  *	it expands header moving its tail forward and copying necessary
2798  *	data from fragmented part.
2799  *
2800  *	&sk_buff MUST have reference count of 1.
2801  *
2802  *	Returns %NULL (and &sk_buff does not change) if pull failed
2803  *	or value of new tail of skb in the case of success.
2804  *
2805  *	All the pointers pointing into skb header may change and must be
2806  *	reloaded after call to this function.
2807  */
2808 
2809 /* Moves tail of skb head forward, copying data from fragmented part,
2810  * when it is necessary.
2811  * 1. It may fail due to malloc failure.
2812  * 2. It may change skb pointers.
2813  *
2814  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2815  */
2816 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2817 {
2818 	/* If skb has not enough free space at tail, get new one
2819 	 * plus 128 bytes for future expansions. If we have enough
2820 	 * room at tail, reallocate without expansion only if skb is cloned.
2821 	 */
2822 	int i, k, eat = (skb->tail + delta) - skb->end;
2823 
2824 	if (eat > 0 || skb_cloned(skb)) {
2825 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2826 				     GFP_ATOMIC))
2827 			return NULL;
2828 	}
2829 
2830 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2831 			     skb_tail_pointer(skb), delta));
2832 
2833 	/* Optimization: no fragments, no reasons to preestimate
2834 	 * size of pulled pages. Superb.
2835 	 */
2836 	if (!skb_has_frag_list(skb))
2837 		goto pull_pages;
2838 
2839 	/* Estimate size of pulled pages. */
2840 	eat = delta;
2841 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2842 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2843 
2844 		if (size >= eat)
2845 			goto pull_pages;
2846 		eat -= size;
2847 	}
2848 
2849 	/* If we need update frag list, we are in troubles.
2850 	 * Certainly, it is possible to add an offset to skb data,
2851 	 * but taking into account that pulling is expected to
2852 	 * be very rare operation, it is worth to fight against
2853 	 * further bloating skb head and crucify ourselves here instead.
2854 	 * Pure masohism, indeed. 8)8)
2855 	 */
2856 	if (eat) {
2857 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2858 		struct sk_buff *clone = NULL;
2859 		struct sk_buff *insp = NULL;
2860 
2861 		do {
2862 			if (list->len <= eat) {
2863 				/* Eaten as whole. */
2864 				eat -= list->len;
2865 				list = list->next;
2866 				insp = list;
2867 			} else {
2868 				/* Eaten partially. */
2869 				if (skb_is_gso(skb) && !list->head_frag &&
2870 				    skb_headlen(list))
2871 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2872 
2873 				if (skb_shared(list)) {
2874 					/* Sucks! We need to fork list. :-( */
2875 					clone = skb_clone(list, GFP_ATOMIC);
2876 					if (!clone)
2877 						return NULL;
2878 					insp = list->next;
2879 					list = clone;
2880 				} else {
2881 					/* This may be pulled without
2882 					 * problems. */
2883 					insp = list;
2884 				}
2885 				if (!pskb_pull(list, eat)) {
2886 					kfree_skb(clone);
2887 					return NULL;
2888 				}
2889 				break;
2890 			}
2891 		} while (eat);
2892 
2893 		/* Free pulled out fragments. */
2894 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2895 			skb_shinfo(skb)->frag_list = list->next;
2896 			consume_skb(list);
2897 		}
2898 		/* And insert new clone at head. */
2899 		if (clone) {
2900 			clone->next = list;
2901 			skb_shinfo(skb)->frag_list = clone;
2902 		}
2903 	}
2904 	/* Success! Now we may commit changes to skb data. */
2905 
2906 pull_pages:
2907 	eat = delta;
2908 	k = 0;
2909 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2910 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2911 
2912 		if (size <= eat) {
2913 			skb_frag_unref(skb, i);
2914 			eat -= size;
2915 		} else {
2916 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2917 
2918 			*frag = skb_shinfo(skb)->frags[i];
2919 			if (eat) {
2920 				skb_frag_off_add(frag, eat);
2921 				skb_frag_size_sub(frag, eat);
2922 				if (!i)
2923 					goto end;
2924 				eat = 0;
2925 			}
2926 			k++;
2927 		}
2928 	}
2929 	skb_shinfo(skb)->nr_frags = k;
2930 
2931 end:
2932 	skb->tail     += delta;
2933 	skb->data_len -= delta;
2934 
2935 	if (!skb->data_len)
2936 		skb_zcopy_clear(skb, false);
2937 
2938 	return skb_tail_pointer(skb);
2939 }
2940 EXPORT_SYMBOL(__pskb_pull_tail);
2941 
2942 /**
2943  *	skb_copy_bits - copy bits from skb to kernel buffer
2944  *	@skb: source skb
2945  *	@offset: offset in source
2946  *	@to: destination buffer
2947  *	@len: number of bytes to copy
2948  *
2949  *	Copy the specified number of bytes from the source skb to the
2950  *	destination buffer.
2951  *
2952  *	CAUTION ! :
2953  *		If its prototype is ever changed,
2954  *		check arch/{*}/net/{*}.S files,
2955  *		since it is called from BPF assembly code.
2956  */
2957 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2958 {
2959 	int start = skb_headlen(skb);
2960 	struct sk_buff *frag_iter;
2961 	int i, copy;
2962 
2963 	if (offset > (int)skb->len - len)
2964 		goto fault;
2965 
2966 	/* Copy header. */
2967 	if ((copy = start - offset) > 0) {
2968 		if (copy > len)
2969 			copy = len;
2970 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2971 		if ((len -= copy) == 0)
2972 			return 0;
2973 		offset += copy;
2974 		to     += copy;
2975 	}
2976 
2977 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2978 		int end;
2979 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2980 
2981 		WARN_ON(start > offset + len);
2982 
2983 		end = start + skb_frag_size(f);
2984 		if ((copy = end - offset) > 0) {
2985 			u32 p_off, p_len, copied;
2986 			struct page *p;
2987 			u8 *vaddr;
2988 
2989 			if (copy > len)
2990 				copy = len;
2991 
2992 			skb_frag_foreach_page(f,
2993 					      skb_frag_off(f) + offset - start,
2994 					      copy, p, p_off, p_len, copied) {
2995 				vaddr = kmap_atomic(p);
2996 				memcpy(to + copied, vaddr + p_off, p_len);
2997 				kunmap_atomic(vaddr);
2998 			}
2999 
3000 			if ((len -= copy) == 0)
3001 				return 0;
3002 			offset += copy;
3003 			to     += copy;
3004 		}
3005 		start = end;
3006 	}
3007 
3008 	skb_walk_frags(skb, frag_iter) {
3009 		int end;
3010 
3011 		WARN_ON(start > offset + len);
3012 
3013 		end = start + frag_iter->len;
3014 		if ((copy = end - offset) > 0) {
3015 			if (copy > len)
3016 				copy = len;
3017 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
3018 				goto fault;
3019 			if ((len -= copy) == 0)
3020 				return 0;
3021 			offset += copy;
3022 			to     += copy;
3023 		}
3024 		start = end;
3025 	}
3026 
3027 	if (!len)
3028 		return 0;
3029 
3030 fault:
3031 	return -EFAULT;
3032 }
3033 EXPORT_SYMBOL(skb_copy_bits);
3034 
3035 /*
3036  * Callback from splice_to_pipe(), if we need to release some pages
3037  * at the end of the spd in case we error'ed out in filling the pipe.
3038  */
3039 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3040 {
3041 	put_page(spd->pages[i]);
3042 }
3043 
3044 static struct page *linear_to_page(struct page *page, unsigned int *len,
3045 				   unsigned int *offset,
3046 				   struct sock *sk)
3047 {
3048 	struct page_frag *pfrag = sk_page_frag(sk);
3049 
3050 	if (!sk_page_frag_refill(sk, pfrag))
3051 		return NULL;
3052 
3053 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3054 
3055 	memcpy(page_address(pfrag->page) + pfrag->offset,
3056 	       page_address(page) + *offset, *len);
3057 	*offset = pfrag->offset;
3058 	pfrag->offset += *len;
3059 
3060 	return pfrag->page;
3061 }
3062 
3063 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3064 			     struct page *page,
3065 			     unsigned int offset)
3066 {
3067 	return	spd->nr_pages &&
3068 		spd->pages[spd->nr_pages - 1] == page &&
3069 		(spd->partial[spd->nr_pages - 1].offset +
3070 		 spd->partial[spd->nr_pages - 1].len == offset);
3071 }
3072 
3073 /*
3074  * Fill page/offset/length into spd, if it can hold more pages.
3075  */
3076 static bool spd_fill_page(struct splice_pipe_desc *spd,
3077 			  struct pipe_inode_info *pipe, struct page *page,
3078 			  unsigned int *len, unsigned int offset,
3079 			  bool linear,
3080 			  struct sock *sk)
3081 {
3082 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3083 		return true;
3084 
3085 	if (linear) {
3086 		page = linear_to_page(page, len, &offset, sk);
3087 		if (!page)
3088 			return true;
3089 	}
3090 	if (spd_can_coalesce(spd, page, offset)) {
3091 		spd->partial[spd->nr_pages - 1].len += *len;
3092 		return false;
3093 	}
3094 	get_page(page);
3095 	spd->pages[spd->nr_pages] = page;
3096 	spd->partial[spd->nr_pages].len = *len;
3097 	spd->partial[spd->nr_pages].offset = offset;
3098 	spd->nr_pages++;
3099 
3100 	return false;
3101 }
3102 
3103 static bool __splice_segment(struct page *page, unsigned int poff,
3104 			     unsigned int plen, unsigned int *off,
3105 			     unsigned int *len,
3106 			     struct splice_pipe_desc *spd, bool linear,
3107 			     struct sock *sk,
3108 			     struct pipe_inode_info *pipe)
3109 {
3110 	if (!*len)
3111 		return true;
3112 
3113 	/* skip this segment if already processed */
3114 	if (*off >= plen) {
3115 		*off -= plen;
3116 		return false;
3117 	}
3118 
3119 	/* ignore any bits we already processed */
3120 	poff += *off;
3121 	plen -= *off;
3122 	*off = 0;
3123 
3124 	do {
3125 		unsigned int flen = min(*len, plen);
3126 
3127 		if (spd_fill_page(spd, pipe, page, &flen, poff,
3128 				  linear, sk))
3129 			return true;
3130 		poff += flen;
3131 		plen -= flen;
3132 		*len -= flen;
3133 	} while (*len && plen);
3134 
3135 	return false;
3136 }
3137 
3138 /*
3139  * Map linear and fragment data from the skb to spd. It reports true if the
3140  * pipe is full or if we already spliced the requested length.
3141  */
3142 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3143 			      unsigned int *offset, unsigned int *len,
3144 			      struct splice_pipe_desc *spd, struct sock *sk)
3145 {
3146 	int seg;
3147 	struct sk_buff *iter;
3148 
3149 	/* map the linear part :
3150 	 * If skb->head_frag is set, this 'linear' part is backed by a
3151 	 * fragment, and if the head is not shared with any clones then
3152 	 * we can avoid a copy since we own the head portion of this page.
3153 	 */
3154 	if (__splice_segment(virt_to_page(skb->data),
3155 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3156 			     skb_headlen(skb),
3157 			     offset, len, spd,
3158 			     skb_head_is_locked(skb),
3159 			     sk, pipe))
3160 		return true;
3161 
3162 	/*
3163 	 * then map the fragments
3164 	 */
3165 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3166 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3167 
3168 		if (__splice_segment(skb_frag_page(f),
3169 				     skb_frag_off(f), skb_frag_size(f),
3170 				     offset, len, spd, false, sk, pipe))
3171 			return true;
3172 	}
3173 
3174 	skb_walk_frags(skb, iter) {
3175 		if (*offset >= iter->len) {
3176 			*offset -= iter->len;
3177 			continue;
3178 		}
3179 		/* __skb_splice_bits() only fails if the output has no room
3180 		 * left, so no point in going over the frag_list for the error
3181 		 * case.
3182 		 */
3183 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3184 			return true;
3185 	}
3186 
3187 	return false;
3188 }
3189 
3190 /*
3191  * Map data from the skb to a pipe. Should handle both the linear part,
3192  * the fragments, and the frag list.
3193  */
3194 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3195 		    struct pipe_inode_info *pipe, unsigned int tlen,
3196 		    unsigned int flags)
3197 {
3198 	struct partial_page partial[MAX_SKB_FRAGS];
3199 	struct page *pages[MAX_SKB_FRAGS];
3200 	struct splice_pipe_desc spd = {
3201 		.pages = pages,
3202 		.partial = partial,
3203 		.nr_pages_max = MAX_SKB_FRAGS,
3204 		.ops = &nosteal_pipe_buf_ops,
3205 		.spd_release = sock_spd_release,
3206 	};
3207 	int ret = 0;
3208 
3209 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3210 
3211 	if (spd.nr_pages)
3212 		ret = splice_to_pipe(pipe, &spd);
3213 
3214 	return ret;
3215 }
3216 EXPORT_SYMBOL_GPL(skb_splice_bits);
3217 
3218 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3219 {
3220 	struct socket *sock = sk->sk_socket;
3221 	size_t size = msg_data_left(msg);
3222 
3223 	if (!sock)
3224 		return -EINVAL;
3225 
3226 	if (!sock->ops->sendmsg_locked)
3227 		return sock_no_sendmsg_locked(sk, msg, size);
3228 
3229 	return sock->ops->sendmsg_locked(sk, msg, size);
3230 }
3231 
3232 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3233 {
3234 	struct socket *sock = sk->sk_socket;
3235 
3236 	if (!sock)
3237 		return -EINVAL;
3238 	return sock_sendmsg(sock, msg);
3239 }
3240 
3241 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3242 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3243 			   int len, sendmsg_func sendmsg)
3244 {
3245 	unsigned int orig_len = len;
3246 	struct sk_buff *head = skb;
3247 	unsigned short fragidx;
3248 	int slen, ret;
3249 
3250 do_frag_list:
3251 
3252 	/* Deal with head data */
3253 	while (offset < skb_headlen(skb) && len) {
3254 		struct kvec kv;
3255 		struct msghdr msg;
3256 
3257 		slen = min_t(int, len, skb_headlen(skb) - offset);
3258 		kv.iov_base = skb->data + offset;
3259 		kv.iov_len = slen;
3260 		memset(&msg, 0, sizeof(msg));
3261 		msg.msg_flags = MSG_DONTWAIT;
3262 
3263 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3264 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3265 				      sendmsg_unlocked, sk, &msg);
3266 		if (ret <= 0)
3267 			goto error;
3268 
3269 		offset += ret;
3270 		len -= ret;
3271 	}
3272 
3273 	/* All the data was skb head? */
3274 	if (!len)
3275 		goto out;
3276 
3277 	/* Make offset relative to start of frags */
3278 	offset -= skb_headlen(skb);
3279 
3280 	/* Find where we are in frag list */
3281 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3282 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3283 
3284 		if (offset < skb_frag_size(frag))
3285 			break;
3286 
3287 		offset -= skb_frag_size(frag);
3288 	}
3289 
3290 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3291 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3292 
3293 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3294 
3295 		while (slen) {
3296 			struct bio_vec bvec;
3297 			struct msghdr msg = {
3298 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3299 			};
3300 
3301 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3302 				      skb_frag_off(frag) + offset);
3303 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3304 				      slen);
3305 
3306 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3307 					      sendmsg_unlocked, sk, &msg);
3308 			if (ret <= 0)
3309 				goto error;
3310 
3311 			len -= ret;
3312 			offset += ret;
3313 			slen -= ret;
3314 		}
3315 
3316 		offset = 0;
3317 	}
3318 
3319 	if (len) {
3320 		/* Process any frag lists */
3321 
3322 		if (skb == head) {
3323 			if (skb_has_frag_list(skb)) {
3324 				skb = skb_shinfo(skb)->frag_list;
3325 				goto do_frag_list;
3326 			}
3327 		} else if (skb->next) {
3328 			skb = skb->next;
3329 			goto do_frag_list;
3330 		}
3331 	}
3332 
3333 out:
3334 	return orig_len - len;
3335 
3336 error:
3337 	return orig_len == len ? ret : orig_len - len;
3338 }
3339 
3340 /* Send skb data on a socket. Socket must be locked. */
3341 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3342 			 int len)
3343 {
3344 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3345 }
3346 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3347 
3348 /* Send skb data on a socket. Socket must be unlocked. */
3349 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3350 {
3351 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3352 }
3353 
3354 /**
3355  *	skb_store_bits - store bits from kernel buffer to skb
3356  *	@skb: destination buffer
3357  *	@offset: offset in destination
3358  *	@from: source buffer
3359  *	@len: number of bytes to copy
3360  *
3361  *	Copy the specified number of bytes from the source buffer to the
3362  *	destination skb.  This function handles all the messy bits of
3363  *	traversing fragment lists and such.
3364  */
3365 
3366 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3367 {
3368 	int start = skb_headlen(skb);
3369 	struct sk_buff *frag_iter;
3370 	int i, copy;
3371 
3372 	if (offset > (int)skb->len - len)
3373 		goto fault;
3374 
3375 	if ((copy = start - offset) > 0) {
3376 		if (copy > len)
3377 			copy = len;
3378 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3379 		if ((len -= copy) == 0)
3380 			return 0;
3381 		offset += copy;
3382 		from += copy;
3383 	}
3384 
3385 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3386 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3387 		int end;
3388 
3389 		WARN_ON(start > offset + len);
3390 
3391 		end = start + skb_frag_size(frag);
3392 		if ((copy = end - offset) > 0) {
3393 			u32 p_off, p_len, copied;
3394 			struct page *p;
3395 			u8 *vaddr;
3396 
3397 			if (copy > len)
3398 				copy = len;
3399 
3400 			skb_frag_foreach_page(frag,
3401 					      skb_frag_off(frag) + offset - start,
3402 					      copy, p, p_off, p_len, copied) {
3403 				vaddr = kmap_atomic(p);
3404 				memcpy(vaddr + p_off, from + copied, p_len);
3405 				kunmap_atomic(vaddr);
3406 			}
3407 
3408 			if ((len -= copy) == 0)
3409 				return 0;
3410 			offset += copy;
3411 			from += copy;
3412 		}
3413 		start = end;
3414 	}
3415 
3416 	skb_walk_frags(skb, frag_iter) {
3417 		int end;
3418 
3419 		WARN_ON(start > offset + len);
3420 
3421 		end = start + frag_iter->len;
3422 		if ((copy = end - offset) > 0) {
3423 			if (copy > len)
3424 				copy = len;
3425 			if (skb_store_bits(frag_iter, offset - start,
3426 					   from, copy))
3427 				goto fault;
3428 			if ((len -= copy) == 0)
3429 				return 0;
3430 			offset += copy;
3431 			from += copy;
3432 		}
3433 		start = end;
3434 	}
3435 	if (!len)
3436 		return 0;
3437 
3438 fault:
3439 	return -EFAULT;
3440 }
3441 EXPORT_SYMBOL(skb_store_bits);
3442 
3443 /* Checksum skb data. */
3444 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3445 		      __wsum csum, const struct skb_checksum_ops *ops)
3446 {
3447 	int start = skb_headlen(skb);
3448 	int i, copy = start - offset;
3449 	struct sk_buff *frag_iter;
3450 	int pos = 0;
3451 
3452 	/* Checksum header. */
3453 	if (copy > 0) {
3454 		if (copy > len)
3455 			copy = len;
3456 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3457 				       skb->data + offset, copy, csum);
3458 		if ((len -= copy) == 0)
3459 			return csum;
3460 		offset += copy;
3461 		pos	= copy;
3462 	}
3463 
3464 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3465 		int end;
3466 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3467 
3468 		WARN_ON(start > offset + len);
3469 
3470 		end = start + skb_frag_size(frag);
3471 		if ((copy = end - offset) > 0) {
3472 			u32 p_off, p_len, copied;
3473 			struct page *p;
3474 			__wsum csum2;
3475 			u8 *vaddr;
3476 
3477 			if (copy > len)
3478 				copy = len;
3479 
3480 			skb_frag_foreach_page(frag,
3481 					      skb_frag_off(frag) + offset - start,
3482 					      copy, p, p_off, p_len, copied) {
3483 				vaddr = kmap_atomic(p);
3484 				csum2 = INDIRECT_CALL_1(ops->update,
3485 							csum_partial_ext,
3486 							vaddr + p_off, p_len, 0);
3487 				kunmap_atomic(vaddr);
3488 				csum = INDIRECT_CALL_1(ops->combine,
3489 						       csum_block_add_ext, csum,
3490 						       csum2, pos, p_len);
3491 				pos += p_len;
3492 			}
3493 
3494 			if (!(len -= copy))
3495 				return csum;
3496 			offset += copy;
3497 		}
3498 		start = end;
3499 	}
3500 
3501 	skb_walk_frags(skb, frag_iter) {
3502 		int end;
3503 
3504 		WARN_ON(start > offset + len);
3505 
3506 		end = start + frag_iter->len;
3507 		if ((copy = end - offset) > 0) {
3508 			__wsum csum2;
3509 			if (copy > len)
3510 				copy = len;
3511 			csum2 = __skb_checksum(frag_iter, offset - start,
3512 					       copy, 0, ops);
3513 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3514 					       csum, csum2, pos, copy);
3515 			if ((len -= copy) == 0)
3516 				return csum;
3517 			offset += copy;
3518 			pos    += copy;
3519 		}
3520 		start = end;
3521 	}
3522 	BUG_ON(len);
3523 
3524 	return csum;
3525 }
3526 EXPORT_SYMBOL(__skb_checksum);
3527 
3528 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3529 		    int len, __wsum csum)
3530 {
3531 	const struct skb_checksum_ops ops = {
3532 		.update  = csum_partial_ext,
3533 		.combine = csum_block_add_ext,
3534 	};
3535 
3536 	return __skb_checksum(skb, offset, len, csum, &ops);
3537 }
3538 EXPORT_SYMBOL(skb_checksum);
3539 
3540 /* Both of above in one bottle. */
3541 
3542 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3543 				    u8 *to, int len)
3544 {
3545 	int start = skb_headlen(skb);
3546 	int i, copy = start - offset;
3547 	struct sk_buff *frag_iter;
3548 	int pos = 0;
3549 	__wsum csum = 0;
3550 
3551 	/* Copy header. */
3552 	if (copy > 0) {
3553 		if (copy > len)
3554 			copy = len;
3555 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3556 						 copy);
3557 		if ((len -= copy) == 0)
3558 			return csum;
3559 		offset += copy;
3560 		to     += copy;
3561 		pos	= copy;
3562 	}
3563 
3564 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3565 		int end;
3566 
3567 		WARN_ON(start > offset + len);
3568 
3569 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3570 		if ((copy = end - offset) > 0) {
3571 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3572 			u32 p_off, p_len, copied;
3573 			struct page *p;
3574 			__wsum csum2;
3575 			u8 *vaddr;
3576 
3577 			if (copy > len)
3578 				copy = len;
3579 
3580 			skb_frag_foreach_page(frag,
3581 					      skb_frag_off(frag) + offset - start,
3582 					      copy, p, p_off, p_len, copied) {
3583 				vaddr = kmap_atomic(p);
3584 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3585 								  to + copied,
3586 								  p_len);
3587 				kunmap_atomic(vaddr);
3588 				csum = csum_block_add(csum, csum2, pos);
3589 				pos += p_len;
3590 			}
3591 
3592 			if (!(len -= copy))
3593 				return csum;
3594 			offset += copy;
3595 			to     += copy;
3596 		}
3597 		start = end;
3598 	}
3599 
3600 	skb_walk_frags(skb, frag_iter) {
3601 		__wsum csum2;
3602 		int end;
3603 
3604 		WARN_ON(start > offset + len);
3605 
3606 		end = start + frag_iter->len;
3607 		if ((copy = end - offset) > 0) {
3608 			if (copy > len)
3609 				copy = len;
3610 			csum2 = skb_copy_and_csum_bits(frag_iter,
3611 						       offset - start,
3612 						       to, copy);
3613 			csum = csum_block_add(csum, csum2, pos);
3614 			if ((len -= copy) == 0)
3615 				return csum;
3616 			offset += copy;
3617 			to     += copy;
3618 			pos    += copy;
3619 		}
3620 		start = end;
3621 	}
3622 	BUG_ON(len);
3623 	return csum;
3624 }
3625 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3626 
3627 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3628 {
3629 	__sum16 sum;
3630 
3631 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3632 	/* See comments in __skb_checksum_complete(). */
3633 	if (likely(!sum)) {
3634 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3635 		    !skb->csum_complete_sw)
3636 			netdev_rx_csum_fault(skb->dev, skb);
3637 	}
3638 	if (!skb_shared(skb))
3639 		skb->csum_valid = !sum;
3640 	return sum;
3641 }
3642 EXPORT_SYMBOL(__skb_checksum_complete_head);
3643 
3644 /* This function assumes skb->csum already holds pseudo header's checksum,
3645  * which has been changed from the hardware checksum, for example, by
3646  * __skb_checksum_validate_complete(). And, the original skb->csum must
3647  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3648  *
3649  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3650  * zero. The new checksum is stored back into skb->csum unless the skb is
3651  * shared.
3652  */
3653 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3654 {
3655 	__wsum csum;
3656 	__sum16 sum;
3657 
3658 	csum = skb_checksum(skb, 0, skb->len, 0);
3659 
3660 	sum = csum_fold(csum_add(skb->csum, csum));
3661 	/* This check is inverted, because we already knew the hardware
3662 	 * checksum is invalid before calling this function. So, if the
3663 	 * re-computed checksum is valid instead, then we have a mismatch
3664 	 * between the original skb->csum and skb_checksum(). This means either
3665 	 * the original hardware checksum is incorrect or we screw up skb->csum
3666 	 * when moving skb->data around.
3667 	 */
3668 	if (likely(!sum)) {
3669 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3670 		    !skb->csum_complete_sw)
3671 			netdev_rx_csum_fault(skb->dev, skb);
3672 	}
3673 
3674 	if (!skb_shared(skb)) {
3675 		/* Save full packet checksum */
3676 		skb->csum = csum;
3677 		skb->ip_summed = CHECKSUM_COMPLETE;
3678 		skb->csum_complete_sw = 1;
3679 		skb->csum_valid = !sum;
3680 	}
3681 
3682 	return sum;
3683 }
3684 EXPORT_SYMBOL(__skb_checksum_complete);
3685 
3686 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3687 {
3688 	net_warn_ratelimited(
3689 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3690 		__func__);
3691 	return 0;
3692 }
3693 
3694 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3695 				       int offset, int len)
3696 {
3697 	net_warn_ratelimited(
3698 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3699 		__func__);
3700 	return 0;
3701 }
3702 
3703 static const struct skb_checksum_ops default_crc32c_ops = {
3704 	.update  = warn_crc32c_csum_update,
3705 	.combine = warn_crc32c_csum_combine,
3706 };
3707 
3708 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3709 	&default_crc32c_ops;
3710 EXPORT_SYMBOL(crc32c_csum_stub);
3711 
3712  /**
3713  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3714  *	@from: source buffer
3715  *
3716  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3717  *	into skb_zerocopy().
3718  */
3719 unsigned int
3720 skb_zerocopy_headlen(const struct sk_buff *from)
3721 {
3722 	unsigned int hlen = 0;
3723 
3724 	if (!from->head_frag ||
3725 	    skb_headlen(from) < L1_CACHE_BYTES ||
3726 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3727 		hlen = skb_headlen(from);
3728 		if (!hlen)
3729 			hlen = from->len;
3730 	}
3731 
3732 	if (skb_has_frag_list(from))
3733 		hlen = from->len;
3734 
3735 	return hlen;
3736 }
3737 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3738 
3739 /**
3740  *	skb_zerocopy - Zero copy skb to skb
3741  *	@to: destination buffer
3742  *	@from: source buffer
3743  *	@len: number of bytes to copy from source buffer
3744  *	@hlen: size of linear headroom in destination buffer
3745  *
3746  *	Copies up to `len` bytes from `from` to `to` by creating references
3747  *	to the frags in the source buffer.
3748  *
3749  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3750  *	headroom in the `to` buffer.
3751  *
3752  *	Return value:
3753  *	0: everything is OK
3754  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3755  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3756  */
3757 int
3758 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3759 {
3760 	int i, j = 0;
3761 	int plen = 0; /* length of skb->head fragment */
3762 	int ret;
3763 	struct page *page;
3764 	unsigned int offset;
3765 
3766 	BUG_ON(!from->head_frag && !hlen);
3767 
3768 	/* dont bother with small payloads */
3769 	if (len <= skb_tailroom(to))
3770 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3771 
3772 	if (hlen) {
3773 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3774 		if (unlikely(ret))
3775 			return ret;
3776 		len -= hlen;
3777 	} else {
3778 		plen = min_t(int, skb_headlen(from), len);
3779 		if (plen) {
3780 			page = virt_to_head_page(from->head);
3781 			offset = from->data - (unsigned char *)page_address(page);
3782 			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3783 					       offset, plen);
3784 			get_page(page);
3785 			j = 1;
3786 			len -= plen;
3787 		}
3788 	}
3789 
3790 	skb_len_add(to, len + plen);
3791 
3792 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3793 		skb_tx_error(from);
3794 		return -ENOMEM;
3795 	}
3796 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3797 
3798 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3799 		int size;
3800 
3801 		if (!len)
3802 			break;
3803 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3804 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3805 					len);
3806 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3807 		len -= size;
3808 		skb_frag_ref(to, j);
3809 		j++;
3810 	}
3811 	skb_shinfo(to)->nr_frags = j;
3812 
3813 	return 0;
3814 }
3815 EXPORT_SYMBOL_GPL(skb_zerocopy);
3816 
3817 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3818 {
3819 	__wsum csum;
3820 	long csstart;
3821 
3822 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3823 		csstart = skb_checksum_start_offset(skb);
3824 	else
3825 		csstart = skb_headlen(skb);
3826 
3827 	BUG_ON(csstart > skb_headlen(skb));
3828 
3829 	skb_copy_from_linear_data(skb, to, csstart);
3830 
3831 	csum = 0;
3832 	if (csstart != skb->len)
3833 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3834 					      skb->len - csstart);
3835 
3836 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3837 		long csstuff = csstart + skb->csum_offset;
3838 
3839 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3840 	}
3841 }
3842 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3843 
3844 /**
3845  *	skb_dequeue - remove from the head of the queue
3846  *	@list: list to dequeue from
3847  *
3848  *	Remove the head of the list. The list lock is taken so the function
3849  *	may be used safely with other locking list functions. The head item is
3850  *	returned or %NULL if the list is empty.
3851  */
3852 
3853 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3854 {
3855 	unsigned long flags;
3856 	struct sk_buff *result;
3857 
3858 	spin_lock_irqsave(&list->lock, flags);
3859 	result = __skb_dequeue(list);
3860 	spin_unlock_irqrestore(&list->lock, flags);
3861 	return result;
3862 }
3863 EXPORT_SYMBOL(skb_dequeue);
3864 
3865 /**
3866  *	skb_dequeue_tail - remove from the tail of the queue
3867  *	@list: list to dequeue from
3868  *
3869  *	Remove the tail of the list. The list lock is taken so the function
3870  *	may be used safely with other locking list functions. The tail item is
3871  *	returned or %NULL if the list is empty.
3872  */
3873 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3874 {
3875 	unsigned long flags;
3876 	struct sk_buff *result;
3877 
3878 	spin_lock_irqsave(&list->lock, flags);
3879 	result = __skb_dequeue_tail(list);
3880 	spin_unlock_irqrestore(&list->lock, flags);
3881 	return result;
3882 }
3883 EXPORT_SYMBOL(skb_dequeue_tail);
3884 
3885 /**
3886  *	skb_queue_purge_reason - empty a list
3887  *	@list: list to empty
3888  *	@reason: drop reason
3889  *
3890  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3891  *	the list and one reference dropped. This function takes the list
3892  *	lock and is atomic with respect to other list locking functions.
3893  */
3894 void skb_queue_purge_reason(struct sk_buff_head *list,
3895 			    enum skb_drop_reason reason)
3896 {
3897 	struct sk_buff_head tmp;
3898 	unsigned long flags;
3899 
3900 	if (skb_queue_empty_lockless(list))
3901 		return;
3902 
3903 	__skb_queue_head_init(&tmp);
3904 
3905 	spin_lock_irqsave(&list->lock, flags);
3906 	skb_queue_splice_init(list, &tmp);
3907 	spin_unlock_irqrestore(&list->lock, flags);
3908 
3909 	__skb_queue_purge_reason(&tmp, reason);
3910 }
3911 EXPORT_SYMBOL(skb_queue_purge_reason);
3912 
3913 /**
3914  *	skb_rbtree_purge - empty a skb rbtree
3915  *	@root: root of the rbtree to empty
3916  *	Return value: the sum of truesizes of all purged skbs.
3917  *
3918  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3919  *	the list and one reference dropped. This function does not take
3920  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3921  *	out-of-order queue is protected by the socket lock).
3922  */
3923 unsigned int skb_rbtree_purge(struct rb_root *root)
3924 {
3925 	struct rb_node *p = rb_first(root);
3926 	unsigned int sum = 0;
3927 
3928 	while (p) {
3929 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3930 
3931 		p = rb_next(p);
3932 		rb_erase(&skb->rbnode, root);
3933 		sum += skb->truesize;
3934 		kfree_skb(skb);
3935 	}
3936 	return sum;
3937 }
3938 
3939 void skb_errqueue_purge(struct sk_buff_head *list)
3940 {
3941 	struct sk_buff *skb, *next;
3942 	struct sk_buff_head kill;
3943 	unsigned long flags;
3944 
3945 	__skb_queue_head_init(&kill);
3946 
3947 	spin_lock_irqsave(&list->lock, flags);
3948 	skb_queue_walk_safe(list, skb, next) {
3949 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3950 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3951 			continue;
3952 		__skb_unlink(skb, list);
3953 		__skb_queue_tail(&kill, skb);
3954 	}
3955 	spin_unlock_irqrestore(&list->lock, flags);
3956 	__skb_queue_purge(&kill);
3957 }
3958 EXPORT_SYMBOL(skb_errqueue_purge);
3959 
3960 /**
3961  *	skb_queue_head - queue a buffer at the list head
3962  *	@list: list to use
3963  *	@newsk: buffer to queue
3964  *
3965  *	Queue a buffer at the start of the list. This function takes the
3966  *	list lock and can be used safely with other locking &sk_buff functions
3967  *	safely.
3968  *
3969  *	A buffer cannot be placed on two lists at the same time.
3970  */
3971 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3972 {
3973 	unsigned long flags;
3974 
3975 	spin_lock_irqsave(&list->lock, flags);
3976 	__skb_queue_head(list, newsk);
3977 	spin_unlock_irqrestore(&list->lock, flags);
3978 }
3979 EXPORT_SYMBOL(skb_queue_head);
3980 
3981 /**
3982  *	skb_queue_tail - queue a buffer at the list tail
3983  *	@list: list to use
3984  *	@newsk: buffer to queue
3985  *
3986  *	Queue a buffer at the tail of the list. This function takes the
3987  *	list lock and can be used safely with other locking &sk_buff functions
3988  *	safely.
3989  *
3990  *	A buffer cannot be placed on two lists at the same time.
3991  */
3992 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3993 {
3994 	unsigned long flags;
3995 
3996 	spin_lock_irqsave(&list->lock, flags);
3997 	__skb_queue_tail(list, newsk);
3998 	spin_unlock_irqrestore(&list->lock, flags);
3999 }
4000 EXPORT_SYMBOL(skb_queue_tail);
4001 
4002 /**
4003  *	skb_unlink	-	remove a buffer from a list
4004  *	@skb: buffer to remove
4005  *	@list: list to use
4006  *
4007  *	Remove a packet from a list. The list locks are taken and this
4008  *	function is atomic with respect to other list locked calls
4009  *
4010  *	You must know what list the SKB is on.
4011  */
4012 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
4013 {
4014 	unsigned long flags;
4015 
4016 	spin_lock_irqsave(&list->lock, flags);
4017 	__skb_unlink(skb, list);
4018 	spin_unlock_irqrestore(&list->lock, flags);
4019 }
4020 EXPORT_SYMBOL(skb_unlink);
4021 
4022 /**
4023  *	skb_append	-	append a buffer
4024  *	@old: buffer to insert after
4025  *	@newsk: buffer to insert
4026  *	@list: list to use
4027  *
4028  *	Place a packet after a given packet in a list. The list locks are taken
4029  *	and this function is atomic with respect to other list locked calls.
4030  *	A buffer cannot be placed on two lists at the same time.
4031  */
4032 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4033 {
4034 	unsigned long flags;
4035 
4036 	spin_lock_irqsave(&list->lock, flags);
4037 	__skb_queue_after(list, old, newsk);
4038 	spin_unlock_irqrestore(&list->lock, flags);
4039 }
4040 EXPORT_SYMBOL(skb_append);
4041 
4042 static inline void skb_split_inside_header(struct sk_buff *skb,
4043 					   struct sk_buff* skb1,
4044 					   const u32 len, const int pos)
4045 {
4046 	int i;
4047 
4048 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4049 					 pos - len);
4050 	/* And move data appendix as is. */
4051 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4052 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4053 
4054 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4055 	skb_shinfo(skb)->nr_frags  = 0;
4056 	skb1->data_len		   = skb->data_len;
4057 	skb1->len		   += skb1->data_len;
4058 	skb->data_len		   = 0;
4059 	skb->len		   = len;
4060 	skb_set_tail_pointer(skb, len);
4061 }
4062 
4063 static inline void skb_split_no_header(struct sk_buff *skb,
4064 				       struct sk_buff* skb1,
4065 				       const u32 len, int pos)
4066 {
4067 	int i, k = 0;
4068 	const int nfrags = skb_shinfo(skb)->nr_frags;
4069 
4070 	skb_shinfo(skb)->nr_frags = 0;
4071 	skb1->len		  = skb1->data_len = skb->len - len;
4072 	skb->len		  = len;
4073 	skb->data_len		  = len - pos;
4074 
4075 	for (i = 0; i < nfrags; i++) {
4076 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4077 
4078 		if (pos + size > len) {
4079 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4080 
4081 			if (pos < len) {
4082 				/* Split frag.
4083 				 * We have two variants in this case:
4084 				 * 1. Move all the frag to the second
4085 				 *    part, if it is possible. F.e.
4086 				 *    this approach is mandatory for TUX,
4087 				 *    where splitting is expensive.
4088 				 * 2. Split is accurately. We make this.
4089 				 */
4090 				skb_frag_ref(skb, i);
4091 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4092 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4093 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4094 				skb_shinfo(skb)->nr_frags++;
4095 			}
4096 			k++;
4097 		} else
4098 			skb_shinfo(skb)->nr_frags++;
4099 		pos += size;
4100 	}
4101 	skb_shinfo(skb1)->nr_frags = k;
4102 }
4103 
4104 /**
4105  * skb_split - Split fragmented skb to two parts at length len.
4106  * @skb: the buffer to split
4107  * @skb1: the buffer to receive the second part
4108  * @len: new length for skb
4109  */
4110 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4111 {
4112 	int pos = skb_headlen(skb);
4113 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4114 
4115 	skb_zcopy_downgrade_managed(skb);
4116 
4117 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4118 	skb_zerocopy_clone(skb1, skb, 0);
4119 	if (len < pos)	/* Split line is inside header. */
4120 		skb_split_inside_header(skb, skb1, len, pos);
4121 	else		/* Second chunk has no header, nothing to copy. */
4122 		skb_split_no_header(skb, skb1, len, pos);
4123 }
4124 EXPORT_SYMBOL(skb_split);
4125 
4126 /* Shifting from/to a cloned skb is a no-go.
4127  *
4128  * Caller cannot keep skb_shinfo related pointers past calling here!
4129  */
4130 static int skb_prepare_for_shift(struct sk_buff *skb)
4131 {
4132 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4133 }
4134 
4135 /**
4136  * skb_shift - Shifts paged data partially from skb to another
4137  * @tgt: buffer into which tail data gets added
4138  * @skb: buffer from which the paged data comes from
4139  * @shiftlen: shift up to this many bytes
4140  *
4141  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4142  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4143  * It's up to caller to free skb if everything was shifted.
4144  *
4145  * If @tgt runs out of frags, the whole operation is aborted.
4146  *
4147  * Skb cannot include anything else but paged data while tgt is allowed
4148  * to have non-paged data as well.
4149  *
4150  * TODO: full sized shift could be optimized but that would need
4151  * specialized skb free'er to handle frags without up-to-date nr_frags.
4152  */
4153 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4154 {
4155 	int from, to, merge, todo;
4156 	skb_frag_t *fragfrom, *fragto;
4157 
4158 	BUG_ON(shiftlen > skb->len);
4159 
4160 	if (skb_headlen(skb))
4161 		return 0;
4162 	if (skb_zcopy(tgt) || skb_zcopy(skb))
4163 		return 0;
4164 
4165 	todo = shiftlen;
4166 	from = 0;
4167 	to = skb_shinfo(tgt)->nr_frags;
4168 	fragfrom = &skb_shinfo(skb)->frags[from];
4169 
4170 	/* Actual merge is delayed until the point when we know we can
4171 	 * commit all, so that we don't have to undo partial changes
4172 	 */
4173 	if (!to ||
4174 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4175 			      skb_frag_off(fragfrom))) {
4176 		merge = -1;
4177 	} else {
4178 		merge = to - 1;
4179 
4180 		todo -= skb_frag_size(fragfrom);
4181 		if (todo < 0) {
4182 			if (skb_prepare_for_shift(skb) ||
4183 			    skb_prepare_for_shift(tgt))
4184 				return 0;
4185 
4186 			/* All previous frag pointers might be stale! */
4187 			fragfrom = &skb_shinfo(skb)->frags[from];
4188 			fragto = &skb_shinfo(tgt)->frags[merge];
4189 
4190 			skb_frag_size_add(fragto, shiftlen);
4191 			skb_frag_size_sub(fragfrom, shiftlen);
4192 			skb_frag_off_add(fragfrom, shiftlen);
4193 
4194 			goto onlymerged;
4195 		}
4196 
4197 		from++;
4198 	}
4199 
4200 	/* Skip full, not-fitting skb to avoid expensive operations */
4201 	if ((shiftlen == skb->len) &&
4202 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4203 		return 0;
4204 
4205 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4206 		return 0;
4207 
4208 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4209 		if (to == MAX_SKB_FRAGS)
4210 			return 0;
4211 
4212 		fragfrom = &skb_shinfo(skb)->frags[from];
4213 		fragto = &skb_shinfo(tgt)->frags[to];
4214 
4215 		if (todo >= skb_frag_size(fragfrom)) {
4216 			*fragto = *fragfrom;
4217 			todo -= skb_frag_size(fragfrom);
4218 			from++;
4219 			to++;
4220 
4221 		} else {
4222 			__skb_frag_ref(fragfrom);
4223 			skb_frag_page_copy(fragto, fragfrom);
4224 			skb_frag_off_copy(fragto, fragfrom);
4225 			skb_frag_size_set(fragto, todo);
4226 
4227 			skb_frag_off_add(fragfrom, todo);
4228 			skb_frag_size_sub(fragfrom, todo);
4229 			todo = 0;
4230 
4231 			to++;
4232 			break;
4233 		}
4234 	}
4235 
4236 	/* Ready to "commit" this state change to tgt */
4237 	skb_shinfo(tgt)->nr_frags = to;
4238 
4239 	if (merge >= 0) {
4240 		fragfrom = &skb_shinfo(skb)->frags[0];
4241 		fragto = &skb_shinfo(tgt)->frags[merge];
4242 
4243 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4244 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4245 	}
4246 
4247 	/* Reposition in the original skb */
4248 	to = 0;
4249 	while (from < skb_shinfo(skb)->nr_frags)
4250 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4251 	skb_shinfo(skb)->nr_frags = to;
4252 
4253 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4254 
4255 onlymerged:
4256 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4257 	 * the other hand might need it if it needs to be resent
4258 	 */
4259 	tgt->ip_summed = CHECKSUM_PARTIAL;
4260 	skb->ip_summed = CHECKSUM_PARTIAL;
4261 
4262 	skb_len_add(skb, -shiftlen);
4263 	skb_len_add(tgt, shiftlen);
4264 
4265 	return shiftlen;
4266 }
4267 
4268 /**
4269  * skb_prepare_seq_read - Prepare a sequential read of skb data
4270  * @skb: the buffer to read
4271  * @from: lower offset of data to be read
4272  * @to: upper offset of data to be read
4273  * @st: state variable
4274  *
4275  * Initializes the specified state variable. Must be called before
4276  * invoking skb_seq_read() for the first time.
4277  */
4278 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4279 			  unsigned int to, struct skb_seq_state *st)
4280 {
4281 	st->lower_offset = from;
4282 	st->upper_offset = to;
4283 	st->root_skb = st->cur_skb = skb;
4284 	st->frag_idx = st->stepped_offset = 0;
4285 	st->frag_data = NULL;
4286 	st->frag_off = 0;
4287 }
4288 EXPORT_SYMBOL(skb_prepare_seq_read);
4289 
4290 /**
4291  * skb_seq_read - Sequentially read skb data
4292  * @consumed: number of bytes consumed by the caller so far
4293  * @data: destination pointer for data to be returned
4294  * @st: state variable
4295  *
4296  * Reads a block of skb data at @consumed relative to the
4297  * lower offset specified to skb_prepare_seq_read(). Assigns
4298  * the head of the data block to @data and returns the length
4299  * of the block or 0 if the end of the skb data or the upper
4300  * offset has been reached.
4301  *
4302  * The caller is not required to consume all of the data
4303  * returned, i.e. @consumed is typically set to the number
4304  * of bytes already consumed and the next call to
4305  * skb_seq_read() will return the remaining part of the block.
4306  *
4307  * Note 1: The size of each block of data returned can be arbitrary,
4308  *       this limitation is the cost for zerocopy sequential
4309  *       reads of potentially non linear data.
4310  *
4311  * Note 2: Fragment lists within fragments are not implemented
4312  *       at the moment, state->root_skb could be replaced with
4313  *       a stack for this purpose.
4314  */
4315 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4316 			  struct skb_seq_state *st)
4317 {
4318 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4319 	skb_frag_t *frag;
4320 
4321 	if (unlikely(abs_offset >= st->upper_offset)) {
4322 		if (st->frag_data) {
4323 			kunmap_atomic(st->frag_data);
4324 			st->frag_data = NULL;
4325 		}
4326 		return 0;
4327 	}
4328 
4329 next_skb:
4330 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4331 
4332 	if (abs_offset < block_limit && !st->frag_data) {
4333 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4334 		return block_limit - abs_offset;
4335 	}
4336 
4337 	if (st->frag_idx == 0 && !st->frag_data)
4338 		st->stepped_offset += skb_headlen(st->cur_skb);
4339 
4340 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4341 		unsigned int pg_idx, pg_off, pg_sz;
4342 
4343 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4344 
4345 		pg_idx = 0;
4346 		pg_off = skb_frag_off(frag);
4347 		pg_sz = skb_frag_size(frag);
4348 
4349 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4350 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4351 			pg_off = offset_in_page(pg_off + st->frag_off);
4352 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4353 						    PAGE_SIZE - pg_off);
4354 		}
4355 
4356 		block_limit = pg_sz + st->stepped_offset;
4357 		if (abs_offset < block_limit) {
4358 			if (!st->frag_data)
4359 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4360 
4361 			*data = (u8 *)st->frag_data + pg_off +
4362 				(abs_offset - st->stepped_offset);
4363 
4364 			return block_limit - abs_offset;
4365 		}
4366 
4367 		if (st->frag_data) {
4368 			kunmap_atomic(st->frag_data);
4369 			st->frag_data = NULL;
4370 		}
4371 
4372 		st->stepped_offset += pg_sz;
4373 		st->frag_off += pg_sz;
4374 		if (st->frag_off == skb_frag_size(frag)) {
4375 			st->frag_off = 0;
4376 			st->frag_idx++;
4377 		}
4378 	}
4379 
4380 	if (st->frag_data) {
4381 		kunmap_atomic(st->frag_data);
4382 		st->frag_data = NULL;
4383 	}
4384 
4385 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4386 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4387 		st->frag_idx = 0;
4388 		goto next_skb;
4389 	} else if (st->cur_skb->next) {
4390 		st->cur_skb = st->cur_skb->next;
4391 		st->frag_idx = 0;
4392 		goto next_skb;
4393 	}
4394 
4395 	return 0;
4396 }
4397 EXPORT_SYMBOL(skb_seq_read);
4398 
4399 /**
4400  * skb_abort_seq_read - Abort a sequential read of skb data
4401  * @st: state variable
4402  *
4403  * Must be called if skb_seq_read() was not called until it
4404  * returned 0.
4405  */
4406 void skb_abort_seq_read(struct skb_seq_state *st)
4407 {
4408 	if (st->frag_data)
4409 		kunmap_atomic(st->frag_data);
4410 }
4411 EXPORT_SYMBOL(skb_abort_seq_read);
4412 
4413 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4414 
4415 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4416 					  struct ts_config *conf,
4417 					  struct ts_state *state)
4418 {
4419 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4420 }
4421 
4422 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4423 {
4424 	skb_abort_seq_read(TS_SKB_CB(state));
4425 }
4426 
4427 /**
4428  * skb_find_text - Find a text pattern in skb data
4429  * @skb: the buffer to look in
4430  * @from: search offset
4431  * @to: search limit
4432  * @config: textsearch configuration
4433  *
4434  * Finds a pattern in the skb data according to the specified
4435  * textsearch configuration. Use textsearch_next() to retrieve
4436  * subsequent occurrences of the pattern. Returns the offset
4437  * to the first occurrence or UINT_MAX if no match was found.
4438  */
4439 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4440 			   unsigned int to, struct ts_config *config)
4441 {
4442 	unsigned int patlen = config->ops->get_pattern_len(config);
4443 	struct ts_state state;
4444 	unsigned int ret;
4445 
4446 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4447 
4448 	config->get_next_block = skb_ts_get_next_block;
4449 	config->finish = skb_ts_finish;
4450 
4451 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4452 
4453 	ret = textsearch_find(config, &state);
4454 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4455 }
4456 EXPORT_SYMBOL(skb_find_text);
4457 
4458 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4459 			 int offset, size_t size, size_t max_frags)
4460 {
4461 	int i = skb_shinfo(skb)->nr_frags;
4462 
4463 	if (skb_can_coalesce(skb, i, page, offset)) {
4464 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4465 	} else if (i < max_frags) {
4466 		skb_zcopy_downgrade_managed(skb);
4467 		get_page(page);
4468 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4469 	} else {
4470 		return -EMSGSIZE;
4471 	}
4472 
4473 	return 0;
4474 }
4475 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4476 
4477 /**
4478  *	skb_pull_rcsum - pull skb and update receive checksum
4479  *	@skb: buffer to update
4480  *	@len: length of data pulled
4481  *
4482  *	This function performs an skb_pull on the packet and updates
4483  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4484  *	receive path processing instead of skb_pull unless you know
4485  *	that the checksum difference is zero (e.g., a valid IP header)
4486  *	or you are setting ip_summed to CHECKSUM_NONE.
4487  */
4488 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4489 {
4490 	unsigned char *data = skb->data;
4491 
4492 	BUG_ON(len > skb->len);
4493 	__skb_pull(skb, len);
4494 	skb_postpull_rcsum(skb, data, len);
4495 	return skb->data;
4496 }
4497 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4498 
4499 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4500 {
4501 	skb_frag_t head_frag;
4502 	struct page *page;
4503 
4504 	page = virt_to_head_page(frag_skb->head);
4505 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4506 				(unsigned char *)page_address(page),
4507 				skb_headlen(frag_skb));
4508 	return head_frag;
4509 }
4510 
4511 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4512 				 netdev_features_t features,
4513 				 unsigned int offset)
4514 {
4515 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4516 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4517 	unsigned int delta_truesize = 0;
4518 	unsigned int delta_len = 0;
4519 	struct sk_buff *tail = NULL;
4520 	struct sk_buff *nskb, *tmp;
4521 	int len_diff, err;
4522 
4523 	skb_push(skb, -skb_network_offset(skb) + offset);
4524 
4525 	/* Ensure the head is writeable before touching the shared info */
4526 	err = skb_unclone(skb, GFP_ATOMIC);
4527 	if (err)
4528 		goto err_linearize;
4529 
4530 	skb_shinfo(skb)->frag_list = NULL;
4531 
4532 	while (list_skb) {
4533 		nskb = list_skb;
4534 		list_skb = list_skb->next;
4535 
4536 		err = 0;
4537 		delta_truesize += nskb->truesize;
4538 		if (skb_shared(nskb)) {
4539 			tmp = skb_clone(nskb, GFP_ATOMIC);
4540 			if (tmp) {
4541 				consume_skb(nskb);
4542 				nskb = tmp;
4543 				err = skb_unclone(nskb, GFP_ATOMIC);
4544 			} else {
4545 				err = -ENOMEM;
4546 			}
4547 		}
4548 
4549 		if (!tail)
4550 			skb->next = nskb;
4551 		else
4552 			tail->next = nskb;
4553 
4554 		if (unlikely(err)) {
4555 			nskb->next = list_skb;
4556 			goto err_linearize;
4557 		}
4558 
4559 		tail = nskb;
4560 
4561 		delta_len += nskb->len;
4562 
4563 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4564 
4565 		skb_release_head_state(nskb);
4566 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4567 		__copy_skb_header(nskb, skb);
4568 
4569 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4570 		nskb->transport_header += len_diff;
4571 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4572 						 nskb->data - tnl_hlen,
4573 						 offset + tnl_hlen);
4574 
4575 		if (skb_needs_linearize(nskb, features) &&
4576 		    __skb_linearize(nskb))
4577 			goto err_linearize;
4578 	}
4579 
4580 	skb->truesize = skb->truesize - delta_truesize;
4581 	skb->data_len = skb->data_len - delta_len;
4582 	skb->len = skb->len - delta_len;
4583 
4584 	skb_gso_reset(skb);
4585 
4586 	skb->prev = tail;
4587 
4588 	if (skb_needs_linearize(skb, features) &&
4589 	    __skb_linearize(skb))
4590 		goto err_linearize;
4591 
4592 	skb_get(skb);
4593 
4594 	return skb;
4595 
4596 err_linearize:
4597 	kfree_skb_list(skb->next);
4598 	skb->next = NULL;
4599 	return ERR_PTR(-ENOMEM);
4600 }
4601 EXPORT_SYMBOL_GPL(skb_segment_list);
4602 
4603 /**
4604  *	skb_segment - Perform protocol segmentation on skb.
4605  *	@head_skb: buffer to segment
4606  *	@features: features for the output path (see dev->features)
4607  *
4608  *	This function performs segmentation on the given skb.  It returns
4609  *	a pointer to the first in a list of new skbs for the segments.
4610  *	In case of error it returns ERR_PTR(err).
4611  */
4612 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4613 			    netdev_features_t features)
4614 {
4615 	struct sk_buff *segs = NULL;
4616 	struct sk_buff *tail = NULL;
4617 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4618 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4619 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4620 	unsigned int offset = doffset;
4621 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4622 	unsigned int partial_segs = 0;
4623 	unsigned int headroom;
4624 	unsigned int len = head_skb->len;
4625 	struct sk_buff *frag_skb;
4626 	skb_frag_t *frag;
4627 	__be16 proto;
4628 	bool csum, sg;
4629 	int err = -ENOMEM;
4630 	int i = 0;
4631 	int nfrags, pos;
4632 
4633 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4634 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4635 		struct sk_buff *check_skb;
4636 
4637 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4638 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4639 				/* gso_size is untrusted, and we have a frag_list with
4640 				 * a linear non head_frag item.
4641 				 *
4642 				 * If head_skb's headlen does not fit requested gso_size,
4643 				 * it means that the frag_list members do NOT terminate
4644 				 * on exact gso_size boundaries. Hence we cannot perform
4645 				 * skb_frag_t page sharing. Therefore we must fallback to
4646 				 * copying the frag_list skbs; we do so by disabling SG.
4647 				 */
4648 				features &= ~NETIF_F_SG;
4649 				break;
4650 			}
4651 		}
4652 	}
4653 
4654 	__skb_push(head_skb, doffset);
4655 	proto = skb_network_protocol(head_skb, NULL);
4656 	if (unlikely(!proto))
4657 		return ERR_PTR(-EINVAL);
4658 
4659 	sg = !!(features & NETIF_F_SG);
4660 	csum = !!can_checksum_protocol(features, proto);
4661 
4662 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4663 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4664 			struct sk_buff *iter;
4665 			unsigned int frag_len;
4666 
4667 			if (!list_skb ||
4668 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4669 				goto normal;
4670 
4671 			/* If we get here then all the required
4672 			 * GSO features except frag_list are supported.
4673 			 * Try to split the SKB to multiple GSO SKBs
4674 			 * with no frag_list.
4675 			 * Currently we can do that only when the buffers don't
4676 			 * have a linear part and all the buffers except
4677 			 * the last are of the same length.
4678 			 */
4679 			frag_len = list_skb->len;
4680 			skb_walk_frags(head_skb, iter) {
4681 				if (frag_len != iter->len && iter->next)
4682 					goto normal;
4683 				if (skb_headlen(iter) && !iter->head_frag)
4684 					goto normal;
4685 
4686 				len -= iter->len;
4687 			}
4688 
4689 			if (len != frag_len)
4690 				goto normal;
4691 		}
4692 
4693 		/* GSO partial only requires that we trim off any excess that
4694 		 * doesn't fit into an MSS sized block, so take care of that
4695 		 * now.
4696 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4697 		 */
4698 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4699 		if (partial_segs > 1)
4700 			mss *= partial_segs;
4701 		else
4702 			partial_segs = 0;
4703 	}
4704 
4705 normal:
4706 	headroom = skb_headroom(head_skb);
4707 	pos = skb_headlen(head_skb);
4708 
4709 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4710 		return ERR_PTR(-ENOMEM);
4711 
4712 	nfrags = skb_shinfo(head_skb)->nr_frags;
4713 	frag = skb_shinfo(head_skb)->frags;
4714 	frag_skb = head_skb;
4715 
4716 	do {
4717 		struct sk_buff *nskb;
4718 		skb_frag_t *nskb_frag;
4719 		int hsize;
4720 		int size;
4721 
4722 		if (unlikely(mss == GSO_BY_FRAGS)) {
4723 			len = list_skb->len;
4724 		} else {
4725 			len = head_skb->len - offset;
4726 			if (len > mss)
4727 				len = mss;
4728 		}
4729 
4730 		hsize = skb_headlen(head_skb) - offset;
4731 
4732 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4733 		    (skb_headlen(list_skb) == len || sg)) {
4734 			BUG_ON(skb_headlen(list_skb) > len);
4735 
4736 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4737 			if (unlikely(!nskb))
4738 				goto err;
4739 
4740 			i = 0;
4741 			nfrags = skb_shinfo(list_skb)->nr_frags;
4742 			frag = skb_shinfo(list_skb)->frags;
4743 			frag_skb = list_skb;
4744 			pos += skb_headlen(list_skb);
4745 
4746 			while (pos < offset + len) {
4747 				BUG_ON(i >= nfrags);
4748 
4749 				size = skb_frag_size(frag);
4750 				if (pos + size > offset + len)
4751 					break;
4752 
4753 				i++;
4754 				pos += size;
4755 				frag++;
4756 			}
4757 
4758 			list_skb = list_skb->next;
4759 
4760 			if (unlikely(pskb_trim(nskb, len))) {
4761 				kfree_skb(nskb);
4762 				goto err;
4763 			}
4764 
4765 			hsize = skb_end_offset(nskb);
4766 			if (skb_cow_head(nskb, doffset + headroom)) {
4767 				kfree_skb(nskb);
4768 				goto err;
4769 			}
4770 
4771 			nskb->truesize += skb_end_offset(nskb) - hsize;
4772 			skb_release_head_state(nskb);
4773 			__skb_push(nskb, doffset);
4774 		} else {
4775 			if (hsize < 0)
4776 				hsize = 0;
4777 			if (hsize > len || !sg)
4778 				hsize = len;
4779 
4780 			nskb = __alloc_skb(hsize + doffset + headroom,
4781 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4782 					   NUMA_NO_NODE);
4783 
4784 			if (unlikely(!nskb))
4785 				goto err;
4786 
4787 			skb_reserve(nskb, headroom);
4788 			__skb_put(nskb, doffset);
4789 		}
4790 
4791 		if (segs)
4792 			tail->next = nskb;
4793 		else
4794 			segs = nskb;
4795 		tail = nskb;
4796 
4797 		__copy_skb_header(nskb, head_skb);
4798 
4799 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4800 		skb_reset_mac_len(nskb);
4801 
4802 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4803 						 nskb->data - tnl_hlen,
4804 						 doffset + tnl_hlen);
4805 
4806 		if (nskb->len == len + doffset)
4807 			goto perform_csum_check;
4808 
4809 		if (!sg) {
4810 			if (!csum) {
4811 				if (!nskb->remcsum_offload)
4812 					nskb->ip_summed = CHECKSUM_NONE;
4813 				SKB_GSO_CB(nskb)->csum =
4814 					skb_copy_and_csum_bits(head_skb, offset,
4815 							       skb_put(nskb,
4816 								       len),
4817 							       len);
4818 				SKB_GSO_CB(nskb)->csum_start =
4819 					skb_headroom(nskb) + doffset;
4820 			} else {
4821 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4822 					goto err;
4823 			}
4824 			continue;
4825 		}
4826 
4827 		nskb_frag = skb_shinfo(nskb)->frags;
4828 
4829 		skb_copy_from_linear_data_offset(head_skb, offset,
4830 						 skb_put(nskb, hsize), hsize);
4831 
4832 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4833 					   SKBFL_SHARED_FRAG;
4834 
4835 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4836 			goto err;
4837 
4838 		while (pos < offset + len) {
4839 			if (i >= nfrags) {
4840 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4841 				    skb_zerocopy_clone(nskb, list_skb,
4842 						       GFP_ATOMIC))
4843 					goto err;
4844 
4845 				i = 0;
4846 				nfrags = skb_shinfo(list_skb)->nr_frags;
4847 				frag = skb_shinfo(list_skb)->frags;
4848 				frag_skb = list_skb;
4849 				if (!skb_headlen(list_skb)) {
4850 					BUG_ON(!nfrags);
4851 				} else {
4852 					BUG_ON(!list_skb->head_frag);
4853 
4854 					/* to make room for head_frag. */
4855 					i--;
4856 					frag--;
4857 				}
4858 
4859 				list_skb = list_skb->next;
4860 			}
4861 
4862 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4863 				     MAX_SKB_FRAGS)) {
4864 				net_warn_ratelimited(
4865 					"skb_segment: too many frags: %u %u\n",
4866 					pos, mss);
4867 				err = -EINVAL;
4868 				goto err;
4869 			}
4870 
4871 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4872 			__skb_frag_ref(nskb_frag);
4873 			size = skb_frag_size(nskb_frag);
4874 
4875 			if (pos < offset) {
4876 				skb_frag_off_add(nskb_frag, offset - pos);
4877 				skb_frag_size_sub(nskb_frag, offset - pos);
4878 			}
4879 
4880 			skb_shinfo(nskb)->nr_frags++;
4881 
4882 			if (pos + size <= offset + len) {
4883 				i++;
4884 				frag++;
4885 				pos += size;
4886 			} else {
4887 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4888 				goto skip_fraglist;
4889 			}
4890 
4891 			nskb_frag++;
4892 		}
4893 
4894 skip_fraglist:
4895 		nskb->data_len = len - hsize;
4896 		nskb->len += nskb->data_len;
4897 		nskb->truesize += nskb->data_len;
4898 
4899 perform_csum_check:
4900 		if (!csum) {
4901 			if (skb_has_shared_frag(nskb) &&
4902 			    __skb_linearize(nskb))
4903 				goto err;
4904 
4905 			if (!nskb->remcsum_offload)
4906 				nskb->ip_summed = CHECKSUM_NONE;
4907 			SKB_GSO_CB(nskb)->csum =
4908 				skb_checksum(nskb, doffset,
4909 					     nskb->len - doffset, 0);
4910 			SKB_GSO_CB(nskb)->csum_start =
4911 				skb_headroom(nskb) + doffset;
4912 		}
4913 	} while ((offset += len) < head_skb->len);
4914 
4915 	/* Some callers want to get the end of the list.
4916 	 * Put it in segs->prev to avoid walking the list.
4917 	 * (see validate_xmit_skb_list() for example)
4918 	 */
4919 	segs->prev = tail;
4920 
4921 	if (partial_segs) {
4922 		struct sk_buff *iter;
4923 		int type = skb_shinfo(head_skb)->gso_type;
4924 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4925 
4926 		/* Update type to add partial and then remove dodgy if set */
4927 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4928 		type &= ~SKB_GSO_DODGY;
4929 
4930 		/* Update GSO info and prepare to start updating headers on
4931 		 * our way back down the stack of protocols.
4932 		 */
4933 		for (iter = segs; iter; iter = iter->next) {
4934 			skb_shinfo(iter)->gso_size = gso_size;
4935 			skb_shinfo(iter)->gso_segs = partial_segs;
4936 			skb_shinfo(iter)->gso_type = type;
4937 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4938 		}
4939 
4940 		if (tail->len - doffset <= gso_size)
4941 			skb_shinfo(tail)->gso_size = 0;
4942 		else if (tail != segs)
4943 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4944 	}
4945 
4946 	/* Following permits correct backpressure, for protocols
4947 	 * using skb_set_owner_w().
4948 	 * Idea is to tranfert ownership from head_skb to last segment.
4949 	 */
4950 	if (head_skb->destructor == sock_wfree) {
4951 		swap(tail->truesize, head_skb->truesize);
4952 		swap(tail->destructor, head_skb->destructor);
4953 		swap(tail->sk, head_skb->sk);
4954 	}
4955 	return segs;
4956 
4957 err:
4958 	kfree_skb_list(segs);
4959 	return ERR_PTR(err);
4960 }
4961 EXPORT_SYMBOL_GPL(skb_segment);
4962 
4963 #ifdef CONFIG_SKB_EXTENSIONS
4964 #define SKB_EXT_ALIGN_VALUE	8
4965 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4966 
4967 static const u8 skb_ext_type_len[] = {
4968 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4969 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4970 #endif
4971 #ifdef CONFIG_XFRM
4972 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4973 #endif
4974 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4975 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4976 #endif
4977 #if IS_ENABLED(CONFIG_MPTCP)
4978 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4979 #endif
4980 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4981 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4982 #endif
4983 };
4984 
4985 static __always_inline unsigned int skb_ext_total_length(void)
4986 {
4987 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4988 	int i;
4989 
4990 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4991 		l += skb_ext_type_len[i];
4992 
4993 	return l;
4994 }
4995 
4996 static void skb_extensions_init(void)
4997 {
4998 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4999 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
5000 	BUILD_BUG_ON(skb_ext_total_length() > 255);
5001 #endif
5002 
5003 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
5004 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
5005 					     0,
5006 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5007 					     NULL);
5008 }
5009 #else
5010 static void skb_extensions_init(void) {}
5011 #endif
5012 
5013 /* The SKB kmem_cache slab is critical for network performance.  Never
5014  * merge/alias the slab with similar sized objects.  This avoids fragmentation
5015  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
5016  */
5017 #ifndef CONFIG_SLUB_TINY
5018 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
5019 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5020 #define FLAG_SKB_NO_MERGE	0
5021 #endif
5022 
5023 void __init skb_init(void)
5024 {
5025 	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5026 					      sizeof(struct sk_buff),
5027 					      0,
5028 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5029 						FLAG_SKB_NO_MERGE,
5030 					      offsetof(struct sk_buff, cb),
5031 					      sizeof_field(struct sk_buff, cb),
5032 					      NULL);
5033 	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5034 						sizeof(struct sk_buff_fclones),
5035 						0,
5036 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5037 						NULL);
5038 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5039 	 * struct skb_shared_info is located at the end of skb->head,
5040 	 * and should not be copied to/from user.
5041 	 */
5042 	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5043 						SKB_SMALL_HEAD_CACHE_SIZE,
5044 						0,
5045 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5046 						0,
5047 						SKB_SMALL_HEAD_HEADROOM,
5048 						NULL);
5049 	skb_extensions_init();
5050 }
5051 
5052 static int
5053 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5054 	       unsigned int recursion_level)
5055 {
5056 	int start = skb_headlen(skb);
5057 	int i, copy = start - offset;
5058 	struct sk_buff *frag_iter;
5059 	int elt = 0;
5060 
5061 	if (unlikely(recursion_level >= 24))
5062 		return -EMSGSIZE;
5063 
5064 	if (copy > 0) {
5065 		if (copy > len)
5066 			copy = len;
5067 		sg_set_buf(sg, skb->data + offset, copy);
5068 		elt++;
5069 		if ((len -= copy) == 0)
5070 			return elt;
5071 		offset += copy;
5072 	}
5073 
5074 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5075 		int end;
5076 
5077 		WARN_ON(start > offset + len);
5078 
5079 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5080 		if ((copy = end - offset) > 0) {
5081 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5082 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5083 				return -EMSGSIZE;
5084 
5085 			if (copy > len)
5086 				copy = len;
5087 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5088 				    skb_frag_off(frag) + offset - start);
5089 			elt++;
5090 			if (!(len -= copy))
5091 				return elt;
5092 			offset += copy;
5093 		}
5094 		start = end;
5095 	}
5096 
5097 	skb_walk_frags(skb, frag_iter) {
5098 		int end, ret;
5099 
5100 		WARN_ON(start > offset + len);
5101 
5102 		end = start + frag_iter->len;
5103 		if ((copy = end - offset) > 0) {
5104 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5105 				return -EMSGSIZE;
5106 
5107 			if (copy > len)
5108 				copy = len;
5109 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5110 					      copy, recursion_level + 1);
5111 			if (unlikely(ret < 0))
5112 				return ret;
5113 			elt += ret;
5114 			if ((len -= copy) == 0)
5115 				return elt;
5116 			offset += copy;
5117 		}
5118 		start = end;
5119 	}
5120 	BUG_ON(len);
5121 	return elt;
5122 }
5123 
5124 /**
5125  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5126  *	@skb: Socket buffer containing the buffers to be mapped
5127  *	@sg: The scatter-gather list to map into
5128  *	@offset: The offset into the buffer's contents to start mapping
5129  *	@len: Length of buffer space to be mapped
5130  *
5131  *	Fill the specified scatter-gather list with mappings/pointers into a
5132  *	region of the buffer space attached to a socket buffer. Returns either
5133  *	the number of scatterlist items used, or -EMSGSIZE if the contents
5134  *	could not fit.
5135  */
5136 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5137 {
5138 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5139 
5140 	if (nsg <= 0)
5141 		return nsg;
5142 
5143 	sg_mark_end(&sg[nsg - 1]);
5144 
5145 	return nsg;
5146 }
5147 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5148 
5149 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5150  * sglist without mark the sg which contain last skb data as the end.
5151  * So the caller can mannipulate sg list as will when padding new data after
5152  * the first call without calling sg_unmark_end to expend sg list.
5153  *
5154  * Scenario to use skb_to_sgvec_nomark:
5155  * 1. sg_init_table
5156  * 2. skb_to_sgvec_nomark(payload1)
5157  * 3. skb_to_sgvec_nomark(payload2)
5158  *
5159  * This is equivalent to:
5160  * 1. sg_init_table
5161  * 2. skb_to_sgvec(payload1)
5162  * 3. sg_unmark_end
5163  * 4. skb_to_sgvec(payload2)
5164  *
5165  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
5166  * is more preferable.
5167  */
5168 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5169 			int offset, int len)
5170 {
5171 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5172 }
5173 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5174 
5175 
5176 
5177 /**
5178  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5179  *	@skb: The socket buffer to check.
5180  *	@tailbits: Amount of trailing space to be added
5181  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5182  *
5183  *	Make sure that the data buffers attached to a socket buffer are
5184  *	writable. If they are not, private copies are made of the data buffers
5185  *	and the socket buffer is set to use these instead.
5186  *
5187  *	If @tailbits is given, make sure that there is space to write @tailbits
5188  *	bytes of data beyond current end of socket buffer.  @trailer will be
5189  *	set to point to the skb in which this space begins.
5190  *
5191  *	The number of scatterlist elements required to completely map the
5192  *	COW'd and extended socket buffer will be returned.
5193  */
5194 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5195 {
5196 	int copyflag;
5197 	int elt;
5198 	struct sk_buff *skb1, **skb_p;
5199 
5200 	/* If skb is cloned or its head is paged, reallocate
5201 	 * head pulling out all the pages (pages are considered not writable
5202 	 * at the moment even if they are anonymous).
5203 	 */
5204 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5205 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5206 		return -ENOMEM;
5207 
5208 	/* Easy case. Most of packets will go this way. */
5209 	if (!skb_has_frag_list(skb)) {
5210 		/* A little of trouble, not enough of space for trailer.
5211 		 * This should not happen, when stack is tuned to generate
5212 		 * good frames. OK, on miss we reallocate and reserve even more
5213 		 * space, 128 bytes is fair. */
5214 
5215 		if (skb_tailroom(skb) < tailbits &&
5216 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5217 			return -ENOMEM;
5218 
5219 		/* Voila! */
5220 		*trailer = skb;
5221 		return 1;
5222 	}
5223 
5224 	/* Misery. We are in troubles, going to mincer fragments... */
5225 
5226 	elt = 1;
5227 	skb_p = &skb_shinfo(skb)->frag_list;
5228 	copyflag = 0;
5229 
5230 	while ((skb1 = *skb_p) != NULL) {
5231 		int ntail = 0;
5232 
5233 		/* The fragment is partially pulled by someone,
5234 		 * this can happen on input. Copy it and everything
5235 		 * after it. */
5236 
5237 		if (skb_shared(skb1))
5238 			copyflag = 1;
5239 
5240 		/* If the skb is the last, worry about trailer. */
5241 
5242 		if (skb1->next == NULL && tailbits) {
5243 			if (skb_shinfo(skb1)->nr_frags ||
5244 			    skb_has_frag_list(skb1) ||
5245 			    skb_tailroom(skb1) < tailbits)
5246 				ntail = tailbits + 128;
5247 		}
5248 
5249 		if (copyflag ||
5250 		    skb_cloned(skb1) ||
5251 		    ntail ||
5252 		    skb_shinfo(skb1)->nr_frags ||
5253 		    skb_has_frag_list(skb1)) {
5254 			struct sk_buff *skb2;
5255 
5256 			/* Fuck, we are miserable poor guys... */
5257 			if (ntail == 0)
5258 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5259 			else
5260 				skb2 = skb_copy_expand(skb1,
5261 						       skb_headroom(skb1),
5262 						       ntail,
5263 						       GFP_ATOMIC);
5264 			if (unlikely(skb2 == NULL))
5265 				return -ENOMEM;
5266 
5267 			if (skb1->sk)
5268 				skb_set_owner_w(skb2, skb1->sk);
5269 
5270 			/* Looking around. Are we still alive?
5271 			 * OK, link new skb, drop old one */
5272 
5273 			skb2->next = skb1->next;
5274 			*skb_p = skb2;
5275 			kfree_skb(skb1);
5276 			skb1 = skb2;
5277 		}
5278 		elt++;
5279 		*trailer = skb1;
5280 		skb_p = &skb1->next;
5281 	}
5282 
5283 	return elt;
5284 }
5285 EXPORT_SYMBOL_GPL(skb_cow_data);
5286 
5287 static void sock_rmem_free(struct sk_buff *skb)
5288 {
5289 	struct sock *sk = skb->sk;
5290 
5291 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5292 }
5293 
5294 static void skb_set_err_queue(struct sk_buff *skb)
5295 {
5296 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5297 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5298 	 */
5299 	skb->pkt_type = PACKET_OUTGOING;
5300 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5301 }
5302 
5303 /*
5304  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5305  */
5306 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5307 {
5308 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5309 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5310 		return -ENOMEM;
5311 
5312 	skb_orphan(skb);
5313 	skb->sk = sk;
5314 	skb->destructor = sock_rmem_free;
5315 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5316 	skb_set_err_queue(skb);
5317 
5318 	/* before exiting rcu section, make sure dst is refcounted */
5319 	skb_dst_force(skb);
5320 
5321 	skb_queue_tail(&sk->sk_error_queue, skb);
5322 	if (!sock_flag(sk, SOCK_DEAD))
5323 		sk_error_report(sk);
5324 	return 0;
5325 }
5326 EXPORT_SYMBOL(sock_queue_err_skb);
5327 
5328 static bool is_icmp_err_skb(const struct sk_buff *skb)
5329 {
5330 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5331 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5332 }
5333 
5334 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5335 {
5336 	struct sk_buff_head *q = &sk->sk_error_queue;
5337 	struct sk_buff *skb, *skb_next = NULL;
5338 	bool icmp_next = false;
5339 	unsigned long flags;
5340 
5341 	if (skb_queue_empty_lockless(q))
5342 		return NULL;
5343 
5344 	spin_lock_irqsave(&q->lock, flags);
5345 	skb = __skb_dequeue(q);
5346 	if (skb && (skb_next = skb_peek(q))) {
5347 		icmp_next = is_icmp_err_skb(skb_next);
5348 		if (icmp_next)
5349 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5350 	}
5351 	spin_unlock_irqrestore(&q->lock, flags);
5352 
5353 	if (is_icmp_err_skb(skb) && !icmp_next)
5354 		sk->sk_err = 0;
5355 
5356 	if (skb_next)
5357 		sk_error_report(sk);
5358 
5359 	return skb;
5360 }
5361 EXPORT_SYMBOL(sock_dequeue_err_skb);
5362 
5363 /**
5364  * skb_clone_sk - create clone of skb, and take reference to socket
5365  * @skb: the skb to clone
5366  *
5367  * This function creates a clone of a buffer that holds a reference on
5368  * sk_refcnt.  Buffers created via this function are meant to be
5369  * returned using sock_queue_err_skb, or free via kfree_skb.
5370  *
5371  * When passing buffers allocated with this function to sock_queue_err_skb
5372  * it is necessary to wrap the call with sock_hold/sock_put in order to
5373  * prevent the socket from being released prior to being enqueued on
5374  * the sk_error_queue.
5375  */
5376 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5377 {
5378 	struct sock *sk = skb->sk;
5379 	struct sk_buff *clone;
5380 
5381 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5382 		return NULL;
5383 
5384 	clone = skb_clone(skb, GFP_ATOMIC);
5385 	if (!clone) {
5386 		sock_put(sk);
5387 		return NULL;
5388 	}
5389 
5390 	clone->sk = sk;
5391 	clone->destructor = sock_efree;
5392 
5393 	return clone;
5394 }
5395 EXPORT_SYMBOL(skb_clone_sk);
5396 
5397 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5398 					struct sock *sk,
5399 					int tstype,
5400 					bool opt_stats)
5401 {
5402 	struct sock_exterr_skb *serr;
5403 	int err;
5404 
5405 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5406 
5407 	serr = SKB_EXT_ERR(skb);
5408 	memset(serr, 0, sizeof(*serr));
5409 	serr->ee.ee_errno = ENOMSG;
5410 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5411 	serr->ee.ee_info = tstype;
5412 	serr->opt_stats = opt_stats;
5413 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5414 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5415 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5416 		if (sk_is_tcp(sk))
5417 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5418 	}
5419 
5420 	err = sock_queue_err_skb(sk, skb);
5421 
5422 	if (err)
5423 		kfree_skb(skb);
5424 }
5425 
5426 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5427 {
5428 	bool ret;
5429 
5430 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5431 		return true;
5432 
5433 	read_lock_bh(&sk->sk_callback_lock);
5434 	ret = sk->sk_socket && sk->sk_socket->file &&
5435 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5436 	read_unlock_bh(&sk->sk_callback_lock);
5437 	return ret;
5438 }
5439 
5440 void skb_complete_tx_timestamp(struct sk_buff *skb,
5441 			       struct skb_shared_hwtstamps *hwtstamps)
5442 {
5443 	struct sock *sk = skb->sk;
5444 
5445 	if (!skb_may_tx_timestamp(sk, false))
5446 		goto err;
5447 
5448 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5449 	 * but only if the socket refcount is not zero.
5450 	 */
5451 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5452 		*skb_hwtstamps(skb) = *hwtstamps;
5453 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5454 		sock_put(sk);
5455 		return;
5456 	}
5457 
5458 err:
5459 	kfree_skb(skb);
5460 }
5461 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5462 
5463 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5464 		     const struct sk_buff *ack_skb,
5465 		     struct skb_shared_hwtstamps *hwtstamps,
5466 		     struct sock *sk, int tstype)
5467 {
5468 	struct sk_buff *skb;
5469 	bool tsonly, opt_stats = false;
5470 	u32 tsflags;
5471 
5472 	if (!sk)
5473 		return;
5474 
5475 	tsflags = READ_ONCE(sk->sk_tsflags);
5476 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5477 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5478 		return;
5479 
5480 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5481 	if (!skb_may_tx_timestamp(sk, tsonly))
5482 		return;
5483 
5484 	if (tsonly) {
5485 #ifdef CONFIG_INET
5486 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5487 		    sk_is_tcp(sk)) {
5488 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5489 							     ack_skb);
5490 			opt_stats = true;
5491 		} else
5492 #endif
5493 			skb = alloc_skb(0, GFP_ATOMIC);
5494 	} else {
5495 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5496 
5497 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5498 			kfree_skb(skb);
5499 			return;
5500 		}
5501 	}
5502 	if (!skb)
5503 		return;
5504 
5505 	if (tsonly) {
5506 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5507 					     SKBTX_ANY_TSTAMP;
5508 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5509 	}
5510 
5511 	if (hwtstamps)
5512 		*skb_hwtstamps(skb) = *hwtstamps;
5513 	else
5514 		__net_timestamp(skb);
5515 
5516 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5517 }
5518 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5519 
5520 void skb_tstamp_tx(struct sk_buff *orig_skb,
5521 		   struct skb_shared_hwtstamps *hwtstamps)
5522 {
5523 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5524 			       SCM_TSTAMP_SND);
5525 }
5526 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5527 
5528 #ifdef CONFIG_WIRELESS
5529 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5530 {
5531 	struct sock *sk = skb->sk;
5532 	struct sock_exterr_skb *serr;
5533 	int err = 1;
5534 
5535 	skb->wifi_acked_valid = 1;
5536 	skb->wifi_acked = acked;
5537 
5538 	serr = SKB_EXT_ERR(skb);
5539 	memset(serr, 0, sizeof(*serr));
5540 	serr->ee.ee_errno = ENOMSG;
5541 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5542 
5543 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5544 	 * but only if the socket refcount is not zero.
5545 	 */
5546 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5547 		err = sock_queue_err_skb(sk, skb);
5548 		sock_put(sk);
5549 	}
5550 	if (err)
5551 		kfree_skb(skb);
5552 }
5553 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5554 #endif /* CONFIG_WIRELESS */
5555 
5556 /**
5557  * skb_partial_csum_set - set up and verify partial csum values for packet
5558  * @skb: the skb to set
5559  * @start: the number of bytes after skb->data to start checksumming.
5560  * @off: the offset from start to place the checksum.
5561  *
5562  * For untrusted partially-checksummed packets, we need to make sure the values
5563  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5564  *
5565  * This function checks and sets those values and skb->ip_summed: if this
5566  * returns false you should drop the packet.
5567  */
5568 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5569 {
5570 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5571 	u32 csum_start = skb_headroom(skb) + (u32)start;
5572 
5573 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5574 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5575 				     start, off, skb_headroom(skb), skb_headlen(skb));
5576 		return false;
5577 	}
5578 	skb->ip_summed = CHECKSUM_PARTIAL;
5579 	skb->csum_start = csum_start;
5580 	skb->csum_offset = off;
5581 	skb->transport_header = csum_start;
5582 	return true;
5583 }
5584 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5585 
5586 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5587 			       unsigned int max)
5588 {
5589 	if (skb_headlen(skb) >= len)
5590 		return 0;
5591 
5592 	/* If we need to pullup then pullup to the max, so we
5593 	 * won't need to do it again.
5594 	 */
5595 	if (max > skb->len)
5596 		max = skb->len;
5597 
5598 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5599 		return -ENOMEM;
5600 
5601 	if (skb_headlen(skb) < len)
5602 		return -EPROTO;
5603 
5604 	return 0;
5605 }
5606 
5607 #define MAX_TCP_HDR_LEN (15 * 4)
5608 
5609 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5610 				      typeof(IPPROTO_IP) proto,
5611 				      unsigned int off)
5612 {
5613 	int err;
5614 
5615 	switch (proto) {
5616 	case IPPROTO_TCP:
5617 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5618 					  off + MAX_TCP_HDR_LEN);
5619 		if (!err && !skb_partial_csum_set(skb, off,
5620 						  offsetof(struct tcphdr,
5621 							   check)))
5622 			err = -EPROTO;
5623 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5624 
5625 	case IPPROTO_UDP:
5626 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5627 					  off + sizeof(struct udphdr));
5628 		if (!err && !skb_partial_csum_set(skb, off,
5629 						  offsetof(struct udphdr,
5630 							   check)))
5631 			err = -EPROTO;
5632 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5633 	}
5634 
5635 	return ERR_PTR(-EPROTO);
5636 }
5637 
5638 /* This value should be large enough to cover a tagged ethernet header plus
5639  * maximally sized IP and TCP or UDP headers.
5640  */
5641 #define MAX_IP_HDR_LEN 128
5642 
5643 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5644 {
5645 	unsigned int off;
5646 	bool fragment;
5647 	__sum16 *csum;
5648 	int err;
5649 
5650 	fragment = false;
5651 
5652 	err = skb_maybe_pull_tail(skb,
5653 				  sizeof(struct iphdr),
5654 				  MAX_IP_HDR_LEN);
5655 	if (err < 0)
5656 		goto out;
5657 
5658 	if (ip_is_fragment(ip_hdr(skb)))
5659 		fragment = true;
5660 
5661 	off = ip_hdrlen(skb);
5662 
5663 	err = -EPROTO;
5664 
5665 	if (fragment)
5666 		goto out;
5667 
5668 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5669 	if (IS_ERR(csum))
5670 		return PTR_ERR(csum);
5671 
5672 	if (recalculate)
5673 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5674 					   ip_hdr(skb)->daddr,
5675 					   skb->len - off,
5676 					   ip_hdr(skb)->protocol, 0);
5677 	err = 0;
5678 
5679 out:
5680 	return err;
5681 }
5682 
5683 /* This value should be large enough to cover a tagged ethernet header plus
5684  * an IPv6 header, all options, and a maximal TCP or UDP header.
5685  */
5686 #define MAX_IPV6_HDR_LEN 256
5687 
5688 #define OPT_HDR(type, skb, off) \
5689 	(type *)(skb_network_header(skb) + (off))
5690 
5691 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5692 {
5693 	int err;
5694 	u8 nexthdr;
5695 	unsigned int off;
5696 	unsigned int len;
5697 	bool fragment;
5698 	bool done;
5699 	__sum16 *csum;
5700 
5701 	fragment = false;
5702 	done = false;
5703 
5704 	off = sizeof(struct ipv6hdr);
5705 
5706 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5707 	if (err < 0)
5708 		goto out;
5709 
5710 	nexthdr = ipv6_hdr(skb)->nexthdr;
5711 
5712 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5713 	while (off <= len && !done) {
5714 		switch (nexthdr) {
5715 		case IPPROTO_DSTOPTS:
5716 		case IPPROTO_HOPOPTS:
5717 		case IPPROTO_ROUTING: {
5718 			struct ipv6_opt_hdr *hp;
5719 
5720 			err = skb_maybe_pull_tail(skb,
5721 						  off +
5722 						  sizeof(struct ipv6_opt_hdr),
5723 						  MAX_IPV6_HDR_LEN);
5724 			if (err < 0)
5725 				goto out;
5726 
5727 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5728 			nexthdr = hp->nexthdr;
5729 			off += ipv6_optlen(hp);
5730 			break;
5731 		}
5732 		case IPPROTO_AH: {
5733 			struct ip_auth_hdr *hp;
5734 
5735 			err = skb_maybe_pull_tail(skb,
5736 						  off +
5737 						  sizeof(struct ip_auth_hdr),
5738 						  MAX_IPV6_HDR_LEN);
5739 			if (err < 0)
5740 				goto out;
5741 
5742 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5743 			nexthdr = hp->nexthdr;
5744 			off += ipv6_authlen(hp);
5745 			break;
5746 		}
5747 		case IPPROTO_FRAGMENT: {
5748 			struct frag_hdr *hp;
5749 
5750 			err = skb_maybe_pull_tail(skb,
5751 						  off +
5752 						  sizeof(struct frag_hdr),
5753 						  MAX_IPV6_HDR_LEN);
5754 			if (err < 0)
5755 				goto out;
5756 
5757 			hp = OPT_HDR(struct frag_hdr, skb, off);
5758 
5759 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5760 				fragment = true;
5761 
5762 			nexthdr = hp->nexthdr;
5763 			off += sizeof(struct frag_hdr);
5764 			break;
5765 		}
5766 		default:
5767 			done = true;
5768 			break;
5769 		}
5770 	}
5771 
5772 	err = -EPROTO;
5773 
5774 	if (!done || fragment)
5775 		goto out;
5776 
5777 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5778 	if (IS_ERR(csum))
5779 		return PTR_ERR(csum);
5780 
5781 	if (recalculate)
5782 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5783 					 &ipv6_hdr(skb)->daddr,
5784 					 skb->len - off, nexthdr, 0);
5785 	err = 0;
5786 
5787 out:
5788 	return err;
5789 }
5790 
5791 /**
5792  * skb_checksum_setup - set up partial checksum offset
5793  * @skb: the skb to set up
5794  * @recalculate: if true the pseudo-header checksum will be recalculated
5795  */
5796 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5797 {
5798 	int err;
5799 
5800 	switch (skb->protocol) {
5801 	case htons(ETH_P_IP):
5802 		err = skb_checksum_setup_ipv4(skb, recalculate);
5803 		break;
5804 
5805 	case htons(ETH_P_IPV6):
5806 		err = skb_checksum_setup_ipv6(skb, recalculate);
5807 		break;
5808 
5809 	default:
5810 		err = -EPROTO;
5811 		break;
5812 	}
5813 
5814 	return err;
5815 }
5816 EXPORT_SYMBOL(skb_checksum_setup);
5817 
5818 /**
5819  * skb_checksum_maybe_trim - maybe trims the given skb
5820  * @skb: the skb to check
5821  * @transport_len: the data length beyond the network header
5822  *
5823  * Checks whether the given skb has data beyond the given transport length.
5824  * If so, returns a cloned skb trimmed to this transport length.
5825  * Otherwise returns the provided skb. Returns NULL in error cases
5826  * (e.g. transport_len exceeds skb length or out-of-memory).
5827  *
5828  * Caller needs to set the skb transport header and free any returned skb if it
5829  * differs from the provided skb.
5830  */
5831 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5832 					       unsigned int transport_len)
5833 {
5834 	struct sk_buff *skb_chk;
5835 	unsigned int len = skb_transport_offset(skb) + transport_len;
5836 	int ret;
5837 
5838 	if (skb->len < len)
5839 		return NULL;
5840 	else if (skb->len == len)
5841 		return skb;
5842 
5843 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5844 	if (!skb_chk)
5845 		return NULL;
5846 
5847 	ret = pskb_trim_rcsum(skb_chk, len);
5848 	if (ret) {
5849 		kfree_skb(skb_chk);
5850 		return NULL;
5851 	}
5852 
5853 	return skb_chk;
5854 }
5855 
5856 /**
5857  * skb_checksum_trimmed - validate checksum of an skb
5858  * @skb: the skb to check
5859  * @transport_len: the data length beyond the network header
5860  * @skb_chkf: checksum function to use
5861  *
5862  * Applies the given checksum function skb_chkf to the provided skb.
5863  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5864  *
5865  * If the skb has data beyond the given transport length, then a
5866  * trimmed & cloned skb is checked and returned.
5867  *
5868  * Caller needs to set the skb transport header and free any returned skb if it
5869  * differs from the provided skb.
5870  */
5871 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5872 				     unsigned int transport_len,
5873 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5874 {
5875 	struct sk_buff *skb_chk;
5876 	unsigned int offset = skb_transport_offset(skb);
5877 	__sum16 ret;
5878 
5879 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5880 	if (!skb_chk)
5881 		goto err;
5882 
5883 	if (!pskb_may_pull(skb_chk, offset))
5884 		goto err;
5885 
5886 	skb_pull_rcsum(skb_chk, offset);
5887 	ret = skb_chkf(skb_chk);
5888 	skb_push_rcsum(skb_chk, offset);
5889 
5890 	if (ret)
5891 		goto err;
5892 
5893 	return skb_chk;
5894 
5895 err:
5896 	if (skb_chk && skb_chk != skb)
5897 		kfree_skb(skb_chk);
5898 
5899 	return NULL;
5900 
5901 }
5902 EXPORT_SYMBOL(skb_checksum_trimmed);
5903 
5904 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5905 {
5906 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5907 			     skb->dev->name);
5908 }
5909 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5910 
5911 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5912 {
5913 	if (head_stolen) {
5914 		skb_release_head_state(skb);
5915 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
5916 	} else {
5917 		__kfree_skb(skb);
5918 	}
5919 }
5920 EXPORT_SYMBOL(kfree_skb_partial);
5921 
5922 /**
5923  * skb_try_coalesce - try to merge skb to prior one
5924  * @to: prior buffer
5925  * @from: buffer to add
5926  * @fragstolen: pointer to boolean
5927  * @delta_truesize: how much more was allocated than was requested
5928  */
5929 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5930 		      bool *fragstolen, int *delta_truesize)
5931 {
5932 	struct skb_shared_info *to_shinfo, *from_shinfo;
5933 	int i, delta, len = from->len;
5934 
5935 	*fragstolen = false;
5936 
5937 	if (skb_cloned(to))
5938 		return false;
5939 
5940 	/* In general, avoid mixing page_pool and non-page_pool allocated
5941 	 * pages within the same SKB. In theory we could take full
5942 	 * references if @from is cloned and !@to->pp_recycle but its
5943 	 * tricky (due to potential race with the clone disappearing) and
5944 	 * rare, so not worth dealing with.
5945 	 */
5946 	if (to->pp_recycle != from->pp_recycle)
5947 		return false;
5948 
5949 	if (len <= skb_tailroom(to)) {
5950 		if (len)
5951 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5952 		*delta_truesize = 0;
5953 		return true;
5954 	}
5955 
5956 	to_shinfo = skb_shinfo(to);
5957 	from_shinfo = skb_shinfo(from);
5958 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5959 		return false;
5960 	if (skb_zcopy(to) || skb_zcopy(from))
5961 		return false;
5962 
5963 	if (skb_headlen(from) != 0) {
5964 		struct page *page;
5965 		unsigned int offset;
5966 
5967 		if (to_shinfo->nr_frags +
5968 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5969 			return false;
5970 
5971 		if (skb_head_is_locked(from))
5972 			return false;
5973 
5974 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5975 
5976 		page = virt_to_head_page(from->head);
5977 		offset = from->data - (unsigned char *)page_address(page);
5978 
5979 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5980 				   page, offset, skb_headlen(from));
5981 		*fragstolen = true;
5982 	} else {
5983 		if (to_shinfo->nr_frags +
5984 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5985 			return false;
5986 
5987 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5988 	}
5989 
5990 	WARN_ON_ONCE(delta < len);
5991 
5992 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5993 	       from_shinfo->frags,
5994 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5995 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5996 
5997 	if (!skb_cloned(from))
5998 		from_shinfo->nr_frags = 0;
5999 
6000 	/* if the skb is not cloned this does nothing
6001 	 * since we set nr_frags to 0.
6002 	 */
6003 	if (skb_pp_frag_ref(from)) {
6004 		for (i = 0; i < from_shinfo->nr_frags; i++)
6005 			__skb_frag_ref(&from_shinfo->frags[i]);
6006 	}
6007 
6008 	to->truesize += delta;
6009 	to->len += len;
6010 	to->data_len += len;
6011 
6012 	*delta_truesize = delta;
6013 	return true;
6014 }
6015 EXPORT_SYMBOL(skb_try_coalesce);
6016 
6017 /**
6018  * skb_scrub_packet - scrub an skb
6019  *
6020  * @skb: buffer to clean
6021  * @xnet: packet is crossing netns
6022  *
6023  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
6024  * into/from a tunnel. Some information have to be cleared during these
6025  * operations.
6026  * skb_scrub_packet can also be used to clean a skb before injecting it in
6027  * another namespace (@xnet == true). We have to clear all information in the
6028  * skb that could impact namespace isolation.
6029  */
6030 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6031 {
6032 	skb->pkt_type = PACKET_HOST;
6033 	skb->skb_iif = 0;
6034 	skb->ignore_df = 0;
6035 	skb_dst_drop(skb);
6036 	skb_ext_reset(skb);
6037 	nf_reset_ct(skb);
6038 	nf_reset_trace(skb);
6039 
6040 #ifdef CONFIG_NET_SWITCHDEV
6041 	skb->offload_fwd_mark = 0;
6042 	skb->offload_l3_fwd_mark = 0;
6043 #endif
6044 
6045 	if (!xnet)
6046 		return;
6047 
6048 	ipvs_reset(skb);
6049 	skb->mark = 0;
6050 	skb_clear_tstamp(skb);
6051 }
6052 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6053 
6054 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6055 {
6056 	int mac_len, meta_len;
6057 	void *meta;
6058 
6059 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
6060 		kfree_skb(skb);
6061 		return NULL;
6062 	}
6063 
6064 	mac_len = skb->data - skb_mac_header(skb);
6065 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6066 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6067 			mac_len - VLAN_HLEN - ETH_TLEN);
6068 	}
6069 
6070 	meta_len = skb_metadata_len(skb);
6071 	if (meta_len) {
6072 		meta = skb_metadata_end(skb) - meta_len;
6073 		memmove(meta + VLAN_HLEN, meta, meta_len);
6074 	}
6075 
6076 	skb->mac_header += VLAN_HLEN;
6077 	return skb;
6078 }
6079 
6080 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6081 {
6082 	struct vlan_hdr *vhdr;
6083 	u16 vlan_tci;
6084 
6085 	if (unlikely(skb_vlan_tag_present(skb))) {
6086 		/* vlan_tci is already set-up so leave this for another time */
6087 		return skb;
6088 	}
6089 
6090 	skb = skb_share_check(skb, GFP_ATOMIC);
6091 	if (unlikely(!skb))
6092 		goto err_free;
6093 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6094 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6095 		goto err_free;
6096 
6097 	vhdr = (struct vlan_hdr *)skb->data;
6098 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6099 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6100 
6101 	skb_pull_rcsum(skb, VLAN_HLEN);
6102 	vlan_set_encap_proto(skb, vhdr);
6103 
6104 	skb = skb_reorder_vlan_header(skb);
6105 	if (unlikely(!skb))
6106 		goto err_free;
6107 
6108 	skb_reset_network_header(skb);
6109 	if (!skb_transport_header_was_set(skb))
6110 		skb_reset_transport_header(skb);
6111 	skb_reset_mac_len(skb);
6112 
6113 	return skb;
6114 
6115 err_free:
6116 	kfree_skb(skb);
6117 	return NULL;
6118 }
6119 EXPORT_SYMBOL(skb_vlan_untag);
6120 
6121 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6122 {
6123 	if (!pskb_may_pull(skb, write_len))
6124 		return -ENOMEM;
6125 
6126 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6127 		return 0;
6128 
6129 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6130 }
6131 EXPORT_SYMBOL(skb_ensure_writable);
6132 
6133 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6134 {
6135 	int needed_headroom = dev->needed_headroom;
6136 	int needed_tailroom = dev->needed_tailroom;
6137 
6138 	/* For tail taggers, we need to pad short frames ourselves, to ensure
6139 	 * that the tail tag does not fail at its role of being at the end of
6140 	 * the packet, once the conduit interface pads the frame. Account for
6141 	 * that pad length here, and pad later.
6142 	 */
6143 	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6144 		needed_tailroom += ETH_ZLEN - skb->len;
6145 	/* skb_headroom() returns unsigned int... */
6146 	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6147 	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6148 
6149 	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6150 		/* No reallocation needed, yay! */
6151 		return 0;
6152 
6153 	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6154 				GFP_ATOMIC);
6155 }
6156 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6157 
6158 /* remove VLAN header from packet and update csum accordingly.
6159  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6160  */
6161 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6162 {
6163 	int offset = skb->data - skb_mac_header(skb);
6164 	int err;
6165 
6166 	if (WARN_ONCE(offset,
6167 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6168 		      offset)) {
6169 		return -EINVAL;
6170 	}
6171 
6172 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6173 	if (unlikely(err))
6174 		return err;
6175 
6176 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6177 
6178 	vlan_remove_tag(skb, vlan_tci);
6179 
6180 	skb->mac_header += VLAN_HLEN;
6181 
6182 	if (skb_network_offset(skb) < ETH_HLEN)
6183 		skb_set_network_header(skb, ETH_HLEN);
6184 
6185 	skb_reset_mac_len(skb);
6186 
6187 	return err;
6188 }
6189 EXPORT_SYMBOL(__skb_vlan_pop);
6190 
6191 /* Pop a vlan tag either from hwaccel or from payload.
6192  * Expects skb->data at mac header.
6193  */
6194 int skb_vlan_pop(struct sk_buff *skb)
6195 {
6196 	u16 vlan_tci;
6197 	__be16 vlan_proto;
6198 	int err;
6199 
6200 	if (likely(skb_vlan_tag_present(skb))) {
6201 		__vlan_hwaccel_clear_tag(skb);
6202 	} else {
6203 		if (unlikely(!eth_type_vlan(skb->protocol)))
6204 			return 0;
6205 
6206 		err = __skb_vlan_pop(skb, &vlan_tci);
6207 		if (err)
6208 			return err;
6209 	}
6210 	/* move next vlan tag to hw accel tag */
6211 	if (likely(!eth_type_vlan(skb->protocol)))
6212 		return 0;
6213 
6214 	vlan_proto = skb->protocol;
6215 	err = __skb_vlan_pop(skb, &vlan_tci);
6216 	if (unlikely(err))
6217 		return err;
6218 
6219 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6220 	return 0;
6221 }
6222 EXPORT_SYMBOL(skb_vlan_pop);
6223 
6224 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6225  * Expects skb->data at mac header.
6226  */
6227 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6228 {
6229 	if (skb_vlan_tag_present(skb)) {
6230 		int offset = skb->data - skb_mac_header(skb);
6231 		int err;
6232 
6233 		if (WARN_ONCE(offset,
6234 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6235 			      offset)) {
6236 			return -EINVAL;
6237 		}
6238 
6239 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6240 					skb_vlan_tag_get(skb));
6241 		if (err)
6242 			return err;
6243 
6244 		skb->protocol = skb->vlan_proto;
6245 		skb->mac_len += VLAN_HLEN;
6246 
6247 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6248 	}
6249 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6250 	return 0;
6251 }
6252 EXPORT_SYMBOL(skb_vlan_push);
6253 
6254 /**
6255  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6256  *
6257  * @skb: Socket buffer to modify
6258  *
6259  * Drop the Ethernet header of @skb.
6260  *
6261  * Expects that skb->data points to the mac header and that no VLAN tags are
6262  * present.
6263  *
6264  * Returns 0 on success, -errno otherwise.
6265  */
6266 int skb_eth_pop(struct sk_buff *skb)
6267 {
6268 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6269 	    skb_network_offset(skb) < ETH_HLEN)
6270 		return -EPROTO;
6271 
6272 	skb_pull_rcsum(skb, ETH_HLEN);
6273 	skb_reset_mac_header(skb);
6274 	skb_reset_mac_len(skb);
6275 
6276 	return 0;
6277 }
6278 EXPORT_SYMBOL(skb_eth_pop);
6279 
6280 /**
6281  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6282  *
6283  * @skb: Socket buffer to modify
6284  * @dst: Destination MAC address of the new header
6285  * @src: Source MAC address of the new header
6286  *
6287  * Prepend @skb with a new Ethernet header.
6288  *
6289  * Expects that skb->data points to the mac header, which must be empty.
6290  *
6291  * Returns 0 on success, -errno otherwise.
6292  */
6293 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6294 		 const unsigned char *src)
6295 {
6296 	struct ethhdr *eth;
6297 	int err;
6298 
6299 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6300 		return -EPROTO;
6301 
6302 	err = skb_cow_head(skb, sizeof(*eth));
6303 	if (err < 0)
6304 		return err;
6305 
6306 	skb_push(skb, sizeof(*eth));
6307 	skb_reset_mac_header(skb);
6308 	skb_reset_mac_len(skb);
6309 
6310 	eth = eth_hdr(skb);
6311 	ether_addr_copy(eth->h_dest, dst);
6312 	ether_addr_copy(eth->h_source, src);
6313 	eth->h_proto = skb->protocol;
6314 
6315 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6316 
6317 	return 0;
6318 }
6319 EXPORT_SYMBOL(skb_eth_push);
6320 
6321 /* Update the ethertype of hdr and the skb csum value if required. */
6322 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6323 			     __be16 ethertype)
6324 {
6325 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6326 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6327 
6328 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6329 	}
6330 
6331 	hdr->h_proto = ethertype;
6332 }
6333 
6334 /**
6335  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6336  *                   the packet
6337  *
6338  * @skb: buffer
6339  * @mpls_lse: MPLS label stack entry to push
6340  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6341  * @mac_len: length of the MAC header
6342  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6343  *            ethernet
6344  *
6345  * Expects skb->data at mac header.
6346  *
6347  * Returns 0 on success, -errno otherwise.
6348  */
6349 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6350 		  int mac_len, bool ethernet)
6351 {
6352 	struct mpls_shim_hdr *lse;
6353 	int err;
6354 
6355 	if (unlikely(!eth_p_mpls(mpls_proto)))
6356 		return -EINVAL;
6357 
6358 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6359 	if (skb->encapsulation)
6360 		return -EINVAL;
6361 
6362 	err = skb_cow_head(skb, MPLS_HLEN);
6363 	if (unlikely(err))
6364 		return err;
6365 
6366 	if (!skb->inner_protocol) {
6367 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6368 		skb_set_inner_protocol(skb, skb->protocol);
6369 	}
6370 
6371 	skb_push(skb, MPLS_HLEN);
6372 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6373 		mac_len);
6374 	skb_reset_mac_header(skb);
6375 	skb_set_network_header(skb, mac_len);
6376 	skb_reset_mac_len(skb);
6377 
6378 	lse = mpls_hdr(skb);
6379 	lse->label_stack_entry = mpls_lse;
6380 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6381 
6382 	if (ethernet && mac_len >= ETH_HLEN)
6383 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6384 	skb->protocol = mpls_proto;
6385 
6386 	return 0;
6387 }
6388 EXPORT_SYMBOL_GPL(skb_mpls_push);
6389 
6390 /**
6391  * skb_mpls_pop() - pop the outermost MPLS header
6392  *
6393  * @skb: buffer
6394  * @next_proto: ethertype of header after popped MPLS header
6395  * @mac_len: length of the MAC header
6396  * @ethernet: flag to indicate if the packet is ethernet
6397  *
6398  * Expects skb->data at mac header.
6399  *
6400  * Returns 0 on success, -errno otherwise.
6401  */
6402 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6403 		 bool ethernet)
6404 {
6405 	int err;
6406 
6407 	if (unlikely(!eth_p_mpls(skb->protocol)))
6408 		return 0;
6409 
6410 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6411 	if (unlikely(err))
6412 		return err;
6413 
6414 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6415 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6416 		mac_len);
6417 
6418 	__skb_pull(skb, MPLS_HLEN);
6419 	skb_reset_mac_header(skb);
6420 	skb_set_network_header(skb, mac_len);
6421 
6422 	if (ethernet && mac_len >= ETH_HLEN) {
6423 		struct ethhdr *hdr;
6424 
6425 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6426 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6427 		skb_mod_eth_type(skb, hdr, next_proto);
6428 	}
6429 	skb->protocol = next_proto;
6430 
6431 	return 0;
6432 }
6433 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6434 
6435 /**
6436  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6437  *
6438  * @skb: buffer
6439  * @mpls_lse: new MPLS label stack entry to update to
6440  *
6441  * Expects skb->data at mac header.
6442  *
6443  * Returns 0 on success, -errno otherwise.
6444  */
6445 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6446 {
6447 	int err;
6448 
6449 	if (unlikely(!eth_p_mpls(skb->protocol)))
6450 		return -EINVAL;
6451 
6452 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6453 	if (unlikely(err))
6454 		return err;
6455 
6456 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6457 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6458 
6459 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6460 	}
6461 
6462 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6463 
6464 	return 0;
6465 }
6466 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6467 
6468 /**
6469  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6470  *
6471  * @skb: buffer
6472  *
6473  * Expects skb->data at mac header.
6474  *
6475  * Returns 0 on success, -errno otherwise.
6476  */
6477 int skb_mpls_dec_ttl(struct sk_buff *skb)
6478 {
6479 	u32 lse;
6480 	u8 ttl;
6481 
6482 	if (unlikely(!eth_p_mpls(skb->protocol)))
6483 		return -EINVAL;
6484 
6485 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6486 		return -ENOMEM;
6487 
6488 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6489 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6490 	if (!--ttl)
6491 		return -EINVAL;
6492 
6493 	lse &= ~MPLS_LS_TTL_MASK;
6494 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6495 
6496 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6497 }
6498 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6499 
6500 /**
6501  * alloc_skb_with_frags - allocate skb with page frags
6502  *
6503  * @header_len: size of linear part
6504  * @data_len: needed length in frags
6505  * @order: max page order desired.
6506  * @errcode: pointer to error code if any
6507  * @gfp_mask: allocation mask
6508  *
6509  * This can be used to allocate a paged skb, given a maximal order for frags.
6510  */
6511 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6512 				     unsigned long data_len,
6513 				     int order,
6514 				     int *errcode,
6515 				     gfp_t gfp_mask)
6516 {
6517 	unsigned long chunk;
6518 	struct sk_buff *skb;
6519 	struct page *page;
6520 	int nr_frags = 0;
6521 
6522 	*errcode = -EMSGSIZE;
6523 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6524 		return NULL;
6525 
6526 	*errcode = -ENOBUFS;
6527 	skb = alloc_skb(header_len, gfp_mask);
6528 	if (!skb)
6529 		return NULL;
6530 
6531 	while (data_len) {
6532 		if (nr_frags == MAX_SKB_FRAGS - 1)
6533 			goto failure;
6534 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6535 			order--;
6536 
6537 		if (order) {
6538 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6539 					   __GFP_COMP |
6540 					   __GFP_NOWARN,
6541 					   order);
6542 			if (!page) {
6543 				order--;
6544 				continue;
6545 			}
6546 		} else {
6547 			page = alloc_page(gfp_mask);
6548 			if (!page)
6549 				goto failure;
6550 		}
6551 		chunk = min_t(unsigned long, data_len,
6552 			      PAGE_SIZE << order);
6553 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6554 		nr_frags++;
6555 		skb->truesize += (PAGE_SIZE << order);
6556 		data_len -= chunk;
6557 	}
6558 	return skb;
6559 
6560 failure:
6561 	kfree_skb(skb);
6562 	return NULL;
6563 }
6564 EXPORT_SYMBOL(alloc_skb_with_frags);
6565 
6566 /* carve out the first off bytes from skb when off < headlen */
6567 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6568 				    const int headlen, gfp_t gfp_mask)
6569 {
6570 	int i;
6571 	unsigned int size = skb_end_offset(skb);
6572 	int new_hlen = headlen - off;
6573 	u8 *data;
6574 
6575 	if (skb_pfmemalloc(skb))
6576 		gfp_mask |= __GFP_MEMALLOC;
6577 
6578 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6579 	if (!data)
6580 		return -ENOMEM;
6581 	size = SKB_WITH_OVERHEAD(size);
6582 
6583 	/* Copy real data, and all frags */
6584 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6585 	skb->len -= off;
6586 
6587 	memcpy((struct skb_shared_info *)(data + size),
6588 	       skb_shinfo(skb),
6589 	       offsetof(struct skb_shared_info,
6590 			frags[skb_shinfo(skb)->nr_frags]));
6591 	if (skb_cloned(skb)) {
6592 		/* drop the old head gracefully */
6593 		if (skb_orphan_frags(skb, gfp_mask)) {
6594 			skb_kfree_head(data, size);
6595 			return -ENOMEM;
6596 		}
6597 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6598 			skb_frag_ref(skb, i);
6599 		if (skb_has_frag_list(skb))
6600 			skb_clone_fraglist(skb);
6601 		skb_release_data(skb, SKB_CONSUMED, false);
6602 	} else {
6603 		/* we can reuse existing recount- all we did was
6604 		 * relocate values
6605 		 */
6606 		skb_free_head(skb, false);
6607 	}
6608 
6609 	skb->head = data;
6610 	skb->data = data;
6611 	skb->head_frag = 0;
6612 	skb_set_end_offset(skb, size);
6613 	skb_set_tail_pointer(skb, skb_headlen(skb));
6614 	skb_headers_offset_update(skb, 0);
6615 	skb->cloned = 0;
6616 	skb->hdr_len = 0;
6617 	skb->nohdr = 0;
6618 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6619 
6620 	return 0;
6621 }
6622 
6623 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6624 
6625 /* carve out the first eat bytes from skb's frag_list. May recurse into
6626  * pskb_carve()
6627  */
6628 static int pskb_carve_frag_list(struct sk_buff *skb,
6629 				struct skb_shared_info *shinfo, int eat,
6630 				gfp_t gfp_mask)
6631 {
6632 	struct sk_buff *list = shinfo->frag_list;
6633 	struct sk_buff *clone = NULL;
6634 	struct sk_buff *insp = NULL;
6635 
6636 	do {
6637 		if (!list) {
6638 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6639 			return -EFAULT;
6640 		}
6641 		if (list->len <= eat) {
6642 			/* Eaten as whole. */
6643 			eat -= list->len;
6644 			list = list->next;
6645 			insp = list;
6646 		} else {
6647 			/* Eaten partially. */
6648 			if (skb_shared(list)) {
6649 				clone = skb_clone(list, gfp_mask);
6650 				if (!clone)
6651 					return -ENOMEM;
6652 				insp = list->next;
6653 				list = clone;
6654 			} else {
6655 				/* This may be pulled without problems. */
6656 				insp = list;
6657 			}
6658 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6659 				kfree_skb(clone);
6660 				return -ENOMEM;
6661 			}
6662 			break;
6663 		}
6664 	} while (eat);
6665 
6666 	/* Free pulled out fragments. */
6667 	while ((list = shinfo->frag_list) != insp) {
6668 		shinfo->frag_list = list->next;
6669 		consume_skb(list);
6670 	}
6671 	/* And insert new clone at head. */
6672 	if (clone) {
6673 		clone->next = list;
6674 		shinfo->frag_list = clone;
6675 	}
6676 	return 0;
6677 }
6678 
6679 /* carve off first len bytes from skb. Split line (off) is in the
6680  * non-linear part of skb
6681  */
6682 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6683 				       int pos, gfp_t gfp_mask)
6684 {
6685 	int i, k = 0;
6686 	unsigned int size = skb_end_offset(skb);
6687 	u8 *data;
6688 	const int nfrags = skb_shinfo(skb)->nr_frags;
6689 	struct skb_shared_info *shinfo;
6690 
6691 	if (skb_pfmemalloc(skb))
6692 		gfp_mask |= __GFP_MEMALLOC;
6693 
6694 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6695 	if (!data)
6696 		return -ENOMEM;
6697 	size = SKB_WITH_OVERHEAD(size);
6698 
6699 	memcpy((struct skb_shared_info *)(data + size),
6700 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6701 	if (skb_orphan_frags(skb, gfp_mask)) {
6702 		skb_kfree_head(data, size);
6703 		return -ENOMEM;
6704 	}
6705 	shinfo = (struct skb_shared_info *)(data + size);
6706 	for (i = 0; i < nfrags; i++) {
6707 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6708 
6709 		if (pos + fsize > off) {
6710 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6711 
6712 			if (pos < off) {
6713 				/* Split frag.
6714 				 * We have two variants in this case:
6715 				 * 1. Move all the frag to the second
6716 				 *    part, if it is possible. F.e.
6717 				 *    this approach is mandatory for TUX,
6718 				 *    where splitting is expensive.
6719 				 * 2. Split is accurately. We make this.
6720 				 */
6721 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6722 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6723 			}
6724 			skb_frag_ref(skb, i);
6725 			k++;
6726 		}
6727 		pos += fsize;
6728 	}
6729 	shinfo->nr_frags = k;
6730 	if (skb_has_frag_list(skb))
6731 		skb_clone_fraglist(skb);
6732 
6733 	/* split line is in frag list */
6734 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6735 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6736 		if (skb_has_frag_list(skb))
6737 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6738 		skb_kfree_head(data, size);
6739 		return -ENOMEM;
6740 	}
6741 	skb_release_data(skb, SKB_CONSUMED, false);
6742 
6743 	skb->head = data;
6744 	skb->head_frag = 0;
6745 	skb->data = data;
6746 	skb_set_end_offset(skb, size);
6747 	skb_reset_tail_pointer(skb);
6748 	skb_headers_offset_update(skb, 0);
6749 	skb->cloned   = 0;
6750 	skb->hdr_len  = 0;
6751 	skb->nohdr    = 0;
6752 	skb->len -= off;
6753 	skb->data_len = skb->len;
6754 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6755 	return 0;
6756 }
6757 
6758 /* remove len bytes from the beginning of the skb */
6759 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6760 {
6761 	int headlen = skb_headlen(skb);
6762 
6763 	if (len < headlen)
6764 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6765 	else
6766 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6767 }
6768 
6769 /* Extract to_copy bytes starting at off from skb, and return this in
6770  * a new skb
6771  */
6772 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6773 			     int to_copy, gfp_t gfp)
6774 {
6775 	struct sk_buff  *clone = skb_clone(skb, gfp);
6776 
6777 	if (!clone)
6778 		return NULL;
6779 
6780 	if (pskb_carve(clone, off, gfp) < 0 ||
6781 	    pskb_trim(clone, to_copy)) {
6782 		kfree_skb(clone);
6783 		return NULL;
6784 	}
6785 	return clone;
6786 }
6787 EXPORT_SYMBOL(pskb_extract);
6788 
6789 /**
6790  * skb_condense - try to get rid of fragments/frag_list if possible
6791  * @skb: buffer
6792  *
6793  * Can be used to save memory before skb is added to a busy queue.
6794  * If packet has bytes in frags and enough tail room in skb->head,
6795  * pull all of them, so that we can free the frags right now and adjust
6796  * truesize.
6797  * Notes:
6798  *	We do not reallocate skb->head thus can not fail.
6799  *	Caller must re-evaluate skb->truesize if needed.
6800  */
6801 void skb_condense(struct sk_buff *skb)
6802 {
6803 	if (skb->data_len) {
6804 		if (skb->data_len > skb->end - skb->tail ||
6805 		    skb_cloned(skb))
6806 			return;
6807 
6808 		/* Nice, we can free page frag(s) right now */
6809 		__pskb_pull_tail(skb, skb->data_len);
6810 	}
6811 	/* At this point, skb->truesize might be over estimated,
6812 	 * because skb had a fragment, and fragments do not tell
6813 	 * their truesize.
6814 	 * When we pulled its content into skb->head, fragment
6815 	 * was freed, but __pskb_pull_tail() could not possibly
6816 	 * adjust skb->truesize, not knowing the frag truesize.
6817 	 */
6818 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6819 }
6820 EXPORT_SYMBOL(skb_condense);
6821 
6822 #ifdef CONFIG_SKB_EXTENSIONS
6823 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6824 {
6825 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6826 }
6827 
6828 /**
6829  * __skb_ext_alloc - allocate a new skb extensions storage
6830  *
6831  * @flags: See kmalloc().
6832  *
6833  * Returns the newly allocated pointer. The pointer can later attached to a
6834  * skb via __skb_ext_set().
6835  * Note: caller must handle the skb_ext as an opaque data.
6836  */
6837 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6838 {
6839 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6840 
6841 	if (new) {
6842 		memset(new->offset, 0, sizeof(new->offset));
6843 		refcount_set(&new->refcnt, 1);
6844 	}
6845 
6846 	return new;
6847 }
6848 
6849 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6850 					 unsigned int old_active)
6851 {
6852 	struct skb_ext *new;
6853 
6854 	if (refcount_read(&old->refcnt) == 1)
6855 		return old;
6856 
6857 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6858 	if (!new)
6859 		return NULL;
6860 
6861 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6862 	refcount_set(&new->refcnt, 1);
6863 
6864 #ifdef CONFIG_XFRM
6865 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6866 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6867 		unsigned int i;
6868 
6869 		for (i = 0; i < sp->len; i++)
6870 			xfrm_state_hold(sp->xvec[i]);
6871 	}
6872 #endif
6873 #ifdef CONFIG_MCTP_FLOWS
6874 	if (old_active & (1 << SKB_EXT_MCTP)) {
6875 		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6876 
6877 		if (flow->key)
6878 			refcount_inc(&flow->key->refs);
6879 	}
6880 #endif
6881 	__skb_ext_put(old);
6882 	return new;
6883 }
6884 
6885 /**
6886  * __skb_ext_set - attach the specified extension storage to this skb
6887  * @skb: buffer
6888  * @id: extension id
6889  * @ext: extension storage previously allocated via __skb_ext_alloc()
6890  *
6891  * Existing extensions, if any, are cleared.
6892  *
6893  * Returns the pointer to the extension.
6894  */
6895 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6896 		    struct skb_ext *ext)
6897 {
6898 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6899 
6900 	skb_ext_put(skb);
6901 	newlen = newoff + skb_ext_type_len[id];
6902 	ext->chunks = newlen;
6903 	ext->offset[id] = newoff;
6904 	skb->extensions = ext;
6905 	skb->active_extensions = 1 << id;
6906 	return skb_ext_get_ptr(ext, id);
6907 }
6908 
6909 /**
6910  * skb_ext_add - allocate space for given extension, COW if needed
6911  * @skb: buffer
6912  * @id: extension to allocate space for
6913  *
6914  * Allocates enough space for the given extension.
6915  * If the extension is already present, a pointer to that extension
6916  * is returned.
6917  *
6918  * If the skb was cloned, COW applies and the returned memory can be
6919  * modified without changing the extension space of clones buffers.
6920  *
6921  * Returns pointer to the extension or NULL on allocation failure.
6922  */
6923 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6924 {
6925 	struct skb_ext *new, *old = NULL;
6926 	unsigned int newlen, newoff;
6927 
6928 	if (skb->active_extensions) {
6929 		old = skb->extensions;
6930 
6931 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6932 		if (!new)
6933 			return NULL;
6934 
6935 		if (__skb_ext_exist(new, id))
6936 			goto set_active;
6937 
6938 		newoff = new->chunks;
6939 	} else {
6940 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6941 
6942 		new = __skb_ext_alloc(GFP_ATOMIC);
6943 		if (!new)
6944 			return NULL;
6945 	}
6946 
6947 	newlen = newoff + skb_ext_type_len[id];
6948 	new->chunks = newlen;
6949 	new->offset[id] = newoff;
6950 set_active:
6951 	skb->slow_gro = 1;
6952 	skb->extensions = new;
6953 	skb->active_extensions |= 1 << id;
6954 	return skb_ext_get_ptr(new, id);
6955 }
6956 EXPORT_SYMBOL(skb_ext_add);
6957 
6958 #ifdef CONFIG_XFRM
6959 static void skb_ext_put_sp(struct sec_path *sp)
6960 {
6961 	unsigned int i;
6962 
6963 	for (i = 0; i < sp->len; i++)
6964 		xfrm_state_put(sp->xvec[i]);
6965 }
6966 #endif
6967 
6968 #ifdef CONFIG_MCTP_FLOWS
6969 static void skb_ext_put_mctp(struct mctp_flow *flow)
6970 {
6971 	if (flow->key)
6972 		mctp_key_unref(flow->key);
6973 }
6974 #endif
6975 
6976 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6977 {
6978 	struct skb_ext *ext = skb->extensions;
6979 
6980 	skb->active_extensions &= ~(1 << id);
6981 	if (skb->active_extensions == 0) {
6982 		skb->extensions = NULL;
6983 		__skb_ext_put(ext);
6984 #ifdef CONFIG_XFRM
6985 	} else if (id == SKB_EXT_SEC_PATH &&
6986 		   refcount_read(&ext->refcnt) == 1) {
6987 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6988 
6989 		skb_ext_put_sp(sp);
6990 		sp->len = 0;
6991 #endif
6992 	}
6993 }
6994 EXPORT_SYMBOL(__skb_ext_del);
6995 
6996 void __skb_ext_put(struct skb_ext *ext)
6997 {
6998 	/* If this is last clone, nothing can increment
6999 	 * it after check passes.  Avoids one atomic op.
7000 	 */
7001 	if (refcount_read(&ext->refcnt) == 1)
7002 		goto free_now;
7003 
7004 	if (!refcount_dec_and_test(&ext->refcnt))
7005 		return;
7006 free_now:
7007 #ifdef CONFIG_XFRM
7008 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
7009 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
7010 #endif
7011 #ifdef CONFIG_MCTP_FLOWS
7012 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
7013 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
7014 #endif
7015 
7016 	kmem_cache_free(skbuff_ext_cache, ext);
7017 }
7018 EXPORT_SYMBOL(__skb_ext_put);
7019 #endif /* CONFIG_SKB_EXTENSIONS */
7020 
7021 /**
7022  * skb_attempt_defer_free - queue skb for remote freeing
7023  * @skb: buffer
7024  *
7025  * Put @skb in a per-cpu list, using the cpu which
7026  * allocated the skb/pages to reduce false sharing
7027  * and memory zone spinlock contention.
7028  */
7029 void skb_attempt_defer_free(struct sk_buff *skb)
7030 {
7031 	int cpu = skb->alloc_cpu;
7032 	struct softnet_data *sd;
7033 	unsigned int defer_max;
7034 	bool kick;
7035 
7036 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7037 	    !cpu_online(cpu) ||
7038 	    cpu == raw_smp_processor_id()) {
7039 nodefer:	__kfree_skb(skb);
7040 		return;
7041 	}
7042 
7043 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7044 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7045 
7046 	sd = &per_cpu(softnet_data, cpu);
7047 	defer_max = READ_ONCE(sysctl_skb_defer_max);
7048 	if (READ_ONCE(sd->defer_count) >= defer_max)
7049 		goto nodefer;
7050 
7051 	spin_lock_bh(&sd->defer_lock);
7052 	/* Send an IPI every time queue reaches half capacity. */
7053 	kick = sd->defer_count == (defer_max >> 1);
7054 	/* Paired with the READ_ONCE() few lines above */
7055 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7056 
7057 	skb->next = sd->defer_list;
7058 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
7059 	WRITE_ONCE(sd->defer_list, skb);
7060 	spin_unlock_bh(&sd->defer_lock);
7061 
7062 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7063 	 * if we are unlucky enough (this seems very unlikely).
7064 	 */
7065 	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
7066 		smp_call_function_single_async(cpu, &sd->defer_csd);
7067 }
7068 
7069 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7070 				 size_t offset, size_t len)
7071 {
7072 	const char *kaddr;
7073 	__wsum csum;
7074 
7075 	kaddr = kmap_local_page(page);
7076 	csum = csum_partial(kaddr + offset, len, 0);
7077 	kunmap_local(kaddr);
7078 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7079 }
7080 
7081 /**
7082  * skb_splice_from_iter - Splice (or copy) pages to skbuff
7083  * @skb: The buffer to add pages to
7084  * @iter: Iterator representing the pages to be added
7085  * @maxsize: Maximum amount of pages to be added
7086  * @gfp: Allocation flags
7087  *
7088  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7089  * extracts pages from an iterator and adds them to the socket buffer if
7090  * possible, copying them to fragments if not possible (such as if they're slab
7091  * pages).
7092  *
7093  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7094  * insufficient space in the buffer to transfer anything.
7095  */
7096 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7097 			     ssize_t maxsize, gfp_t gfp)
7098 {
7099 	size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
7100 	struct page *pages[8], **ppages = pages;
7101 	ssize_t spliced = 0, ret = 0;
7102 	unsigned int i;
7103 
7104 	while (iter->count > 0) {
7105 		ssize_t space, nr, len;
7106 		size_t off;
7107 
7108 		ret = -EMSGSIZE;
7109 		space = frag_limit - skb_shinfo(skb)->nr_frags;
7110 		if (space < 0)
7111 			break;
7112 
7113 		/* We might be able to coalesce without increasing nr_frags */
7114 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7115 
7116 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7117 		if (len <= 0) {
7118 			ret = len ?: -EIO;
7119 			break;
7120 		}
7121 
7122 		i = 0;
7123 		do {
7124 			struct page *page = pages[i++];
7125 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7126 
7127 			ret = -EIO;
7128 			if (WARN_ON_ONCE(!sendpage_ok(page)))
7129 				goto out;
7130 
7131 			ret = skb_append_pagefrags(skb, page, off, part,
7132 						   frag_limit);
7133 			if (ret < 0) {
7134 				iov_iter_revert(iter, len);
7135 				goto out;
7136 			}
7137 
7138 			if (skb->ip_summed == CHECKSUM_NONE)
7139 				skb_splice_csum_page(skb, page, off, part);
7140 
7141 			off = 0;
7142 			spliced += part;
7143 			maxsize -= part;
7144 			len -= part;
7145 		} while (len > 0);
7146 
7147 		if (maxsize <= 0)
7148 			break;
7149 	}
7150 
7151 out:
7152 	skb_len_add(skb, spliced);
7153 	return spliced ?: ret;
7154 }
7155 EXPORT_SYMBOL(skb_splice_from_iter);
7156 
7157 static __always_inline
7158 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7159 			     size_t len, void *to, void *priv2)
7160 {
7161 	__wsum *csum = priv2;
7162 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7163 
7164 	*csum = csum_block_add(*csum, next, progress);
7165 	return 0;
7166 }
7167 
7168 static __always_inline
7169 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7170 				size_t len, void *to, void *priv2)
7171 {
7172 	__wsum next, *csum = priv2;
7173 
7174 	next = csum_and_copy_from_user(iter_from, to + progress, len);
7175 	*csum = csum_block_add(*csum, next, progress);
7176 	return next ? 0 : len;
7177 }
7178 
7179 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7180 				  __wsum *csum, struct iov_iter *i)
7181 {
7182 	size_t copied;
7183 
7184 	if (WARN_ON_ONCE(!i->data_source))
7185 		return false;
7186 	copied = iterate_and_advance2(i, bytes, addr, csum,
7187 				      copy_from_user_iter_csum,
7188 				      memcpy_from_iter_csum);
7189 	if (likely(copied == bytes))
7190 		return true;
7191 	iov_iter_revert(i, copied);
7192 	return false;
7193 }
7194 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7195