1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/bitfield.h> 62 #include <linux/if_vlan.h> 63 #include <linux/mpls.h> 64 #include <linux/kcov.h> 65 #include <linux/iov_iter.h> 66 67 #include <net/protocol.h> 68 #include <net/dst.h> 69 #include <net/sock.h> 70 #include <net/checksum.h> 71 #include <net/gso.h> 72 #include <net/hotdata.h> 73 #include <net/ip6_checksum.h> 74 #include <net/xfrm.h> 75 #include <net/mpls.h> 76 #include <net/mptcp.h> 77 #include <net/mctp.h> 78 #include <net/page_pool/helpers.h> 79 #include <net/dropreason.h> 80 81 #include <linux/uaccess.h> 82 #include <trace/events/skb.h> 83 #include <linux/highmem.h> 84 #include <linux/capability.h> 85 #include <linux/user_namespace.h> 86 #include <linux/indirect_call_wrapper.h> 87 #include <linux/textsearch.h> 88 89 #include "dev.h" 90 #include "sock_destructor.h" 91 92 #ifdef CONFIG_SKB_EXTENSIONS 93 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 94 #endif 95 96 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER) 97 98 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 99 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 100 * size, and we can differentiate heads from skb_small_head_cache 101 * vs system slabs by looking at their size (skb_end_offset()). 102 */ 103 #define SKB_SMALL_HEAD_CACHE_SIZE \ 104 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 105 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 106 SKB_SMALL_HEAD_SIZE) 107 108 #define SKB_SMALL_HEAD_HEADROOM \ 109 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 110 111 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 112 EXPORT_SYMBOL(sysctl_max_skb_frags); 113 114 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use 115 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the 116 * netmem is a page. 117 */ 118 static_assert(offsetof(struct bio_vec, bv_page) == 119 offsetof(skb_frag_t, netmem)); 120 static_assert(sizeof_field(struct bio_vec, bv_page) == 121 sizeof_field(skb_frag_t, netmem)); 122 123 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len)); 124 static_assert(sizeof_field(struct bio_vec, bv_len) == 125 sizeof_field(skb_frag_t, len)); 126 127 static_assert(offsetof(struct bio_vec, bv_offset) == 128 offsetof(skb_frag_t, offset)); 129 static_assert(sizeof_field(struct bio_vec, bv_offset) == 130 sizeof_field(skb_frag_t, offset)); 131 132 #undef FN 133 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 134 static const char * const drop_reasons[] = { 135 [SKB_CONSUMED] = "CONSUMED", 136 DEFINE_DROP_REASON(FN, FN) 137 }; 138 139 static const struct drop_reason_list drop_reasons_core = { 140 .reasons = drop_reasons, 141 .n_reasons = ARRAY_SIZE(drop_reasons), 142 }; 143 144 const struct drop_reason_list __rcu * 145 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 146 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 147 }; 148 EXPORT_SYMBOL(drop_reasons_by_subsys); 149 150 /** 151 * drop_reasons_register_subsys - register another drop reason subsystem 152 * @subsys: the subsystem to register, must not be the core 153 * @list: the list of drop reasons within the subsystem, must point to 154 * a statically initialized list 155 */ 156 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 157 const struct drop_reason_list *list) 158 { 159 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 160 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 161 "invalid subsystem %d\n", subsys)) 162 return; 163 164 /* must point to statically allocated memory, so INIT is OK */ 165 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 166 } 167 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 168 169 /** 170 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 171 * @subsys: the subsystem to remove, must not be the core 172 * 173 * Note: This will synchronize_rcu() to ensure no users when it returns. 174 */ 175 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 176 { 177 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 178 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 179 "invalid subsystem %d\n", subsys)) 180 return; 181 182 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 183 184 synchronize_rcu(); 185 } 186 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 187 188 /** 189 * skb_panic - private function for out-of-line support 190 * @skb: buffer 191 * @sz: size 192 * @addr: address 193 * @msg: skb_over_panic or skb_under_panic 194 * 195 * Out-of-line support for skb_put() and skb_push(). 196 * Called via the wrapper skb_over_panic() or skb_under_panic(). 197 * Keep out of line to prevent kernel bloat. 198 * __builtin_return_address is not used because it is not always reliable. 199 */ 200 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 201 const char msg[]) 202 { 203 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 204 msg, addr, skb->len, sz, skb->head, skb->data, 205 (unsigned long)skb->tail, (unsigned long)skb->end, 206 skb->dev ? skb->dev->name : "<NULL>"); 207 BUG(); 208 } 209 210 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 211 { 212 skb_panic(skb, sz, addr, __func__); 213 } 214 215 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 216 { 217 skb_panic(skb, sz, addr, __func__); 218 } 219 220 #define NAPI_SKB_CACHE_SIZE 64 221 #define NAPI_SKB_CACHE_BULK 16 222 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 223 224 #if PAGE_SIZE == SZ_4K 225 226 #define NAPI_HAS_SMALL_PAGE_FRAG 1 227 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc) 228 229 /* specialized page frag allocator using a single order 0 page 230 * and slicing it into 1K sized fragment. Constrained to systems 231 * with a very limited amount of 1K fragments fitting a single 232 * page - to avoid excessive truesize underestimation 233 */ 234 235 struct page_frag_1k { 236 void *va; 237 u16 offset; 238 bool pfmemalloc; 239 }; 240 241 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp) 242 { 243 struct page *page; 244 int offset; 245 246 offset = nc->offset - SZ_1K; 247 if (likely(offset >= 0)) 248 goto use_frag; 249 250 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 251 if (!page) 252 return NULL; 253 254 nc->va = page_address(page); 255 nc->pfmemalloc = page_is_pfmemalloc(page); 256 offset = PAGE_SIZE - SZ_1K; 257 page_ref_add(page, offset / SZ_1K); 258 259 use_frag: 260 nc->offset = offset; 261 return nc->va + offset; 262 } 263 #else 264 265 /* the small page is actually unused in this build; add dummy helpers 266 * to please the compiler and avoid later preprocessor's conditionals 267 */ 268 #define NAPI_HAS_SMALL_PAGE_FRAG 0 269 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false 270 271 struct page_frag_1k { 272 }; 273 274 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask) 275 { 276 return NULL; 277 } 278 279 #endif 280 281 struct napi_alloc_cache { 282 struct page_frag_cache page; 283 struct page_frag_1k page_small; 284 unsigned int skb_count; 285 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 286 }; 287 288 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 289 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 290 291 /* Double check that napi_get_frags() allocates skbs with 292 * skb->head being backed by slab, not a page fragment. 293 * This is to make sure bug fixed in 3226b158e67c 294 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 295 * does not accidentally come back. 296 */ 297 void napi_get_frags_check(struct napi_struct *napi) 298 { 299 struct sk_buff *skb; 300 301 local_bh_disable(); 302 skb = napi_get_frags(napi); 303 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag); 304 napi_free_frags(napi); 305 local_bh_enable(); 306 } 307 308 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 309 { 310 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 311 312 fragsz = SKB_DATA_ALIGN(fragsz); 313 314 return __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, 315 align_mask); 316 } 317 EXPORT_SYMBOL(__napi_alloc_frag_align); 318 319 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 320 { 321 void *data; 322 323 fragsz = SKB_DATA_ALIGN(fragsz); 324 if (in_hardirq() || irqs_disabled()) { 325 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 326 327 data = __page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, 328 align_mask); 329 } else { 330 struct napi_alloc_cache *nc; 331 332 local_bh_disable(); 333 nc = this_cpu_ptr(&napi_alloc_cache); 334 data = __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, 335 align_mask); 336 local_bh_enable(); 337 } 338 return data; 339 } 340 EXPORT_SYMBOL(__netdev_alloc_frag_align); 341 342 static struct sk_buff *napi_skb_cache_get(void) 343 { 344 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 345 struct sk_buff *skb; 346 347 if (unlikely(!nc->skb_count)) { 348 nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 349 GFP_ATOMIC, 350 NAPI_SKB_CACHE_BULK, 351 nc->skb_cache); 352 if (unlikely(!nc->skb_count)) 353 return NULL; 354 } 355 356 skb = nc->skb_cache[--nc->skb_count]; 357 kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache)); 358 359 return skb; 360 } 361 362 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 363 unsigned int size) 364 { 365 struct skb_shared_info *shinfo; 366 367 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 368 369 /* Assumes caller memset cleared SKB */ 370 skb->truesize = SKB_TRUESIZE(size); 371 refcount_set(&skb->users, 1); 372 skb->head = data; 373 skb->data = data; 374 skb_reset_tail_pointer(skb); 375 skb_set_end_offset(skb, size); 376 skb->mac_header = (typeof(skb->mac_header))~0U; 377 skb->transport_header = (typeof(skb->transport_header))~0U; 378 skb->alloc_cpu = raw_smp_processor_id(); 379 /* make sure we initialize shinfo sequentially */ 380 shinfo = skb_shinfo(skb); 381 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 382 atomic_set(&shinfo->dataref, 1); 383 384 skb_set_kcov_handle(skb, kcov_common_handle()); 385 } 386 387 static inline void *__slab_build_skb(struct sk_buff *skb, void *data, 388 unsigned int *size) 389 { 390 void *resized; 391 392 /* Must find the allocation size (and grow it to match). */ 393 *size = ksize(data); 394 /* krealloc() will immediately return "data" when 395 * "ksize(data)" is requested: it is the existing upper 396 * bounds. As a result, GFP_ATOMIC will be ignored. Note 397 * that this "new" pointer needs to be passed back to the 398 * caller for use so the __alloc_size hinting will be 399 * tracked correctly. 400 */ 401 resized = krealloc(data, *size, GFP_ATOMIC); 402 WARN_ON_ONCE(resized != data); 403 return resized; 404 } 405 406 /* build_skb() variant which can operate on slab buffers. 407 * Note that this should be used sparingly as slab buffers 408 * cannot be combined efficiently by GRO! 409 */ 410 struct sk_buff *slab_build_skb(void *data) 411 { 412 struct sk_buff *skb; 413 unsigned int size; 414 415 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC); 416 if (unlikely(!skb)) 417 return NULL; 418 419 memset(skb, 0, offsetof(struct sk_buff, tail)); 420 data = __slab_build_skb(skb, data, &size); 421 __finalize_skb_around(skb, data, size); 422 423 return skb; 424 } 425 EXPORT_SYMBOL(slab_build_skb); 426 427 /* Caller must provide SKB that is memset cleared */ 428 static void __build_skb_around(struct sk_buff *skb, void *data, 429 unsigned int frag_size) 430 { 431 unsigned int size = frag_size; 432 433 /* frag_size == 0 is considered deprecated now. Callers 434 * using slab buffer should use slab_build_skb() instead. 435 */ 436 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 437 data = __slab_build_skb(skb, data, &size); 438 439 __finalize_skb_around(skb, data, size); 440 } 441 442 /** 443 * __build_skb - build a network buffer 444 * @data: data buffer provided by caller 445 * @frag_size: size of data (must not be 0) 446 * 447 * Allocate a new &sk_buff. Caller provides space holding head and 448 * skb_shared_info. @data must have been allocated from the page 449 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 450 * allocation is deprecated, and callers should use slab_build_skb() 451 * instead.) 452 * The return is the new skb buffer. 453 * On a failure the return is %NULL, and @data is not freed. 454 * Notes : 455 * Before IO, driver allocates only data buffer where NIC put incoming frame 456 * Driver should add room at head (NET_SKB_PAD) and 457 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 458 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 459 * before giving packet to stack. 460 * RX rings only contains data buffers, not full skbs. 461 */ 462 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 463 { 464 struct sk_buff *skb; 465 466 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC); 467 if (unlikely(!skb)) 468 return NULL; 469 470 memset(skb, 0, offsetof(struct sk_buff, tail)); 471 __build_skb_around(skb, data, frag_size); 472 473 return skb; 474 } 475 476 /* build_skb() is wrapper over __build_skb(), that specifically 477 * takes care of skb->head and skb->pfmemalloc 478 */ 479 struct sk_buff *build_skb(void *data, unsigned int frag_size) 480 { 481 struct sk_buff *skb = __build_skb(data, frag_size); 482 483 if (likely(skb && frag_size)) { 484 skb->head_frag = 1; 485 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 486 } 487 return skb; 488 } 489 EXPORT_SYMBOL(build_skb); 490 491 /** 492 * build_skb_around - build a network buffer around provided skb 493 * @skb: sk_buff provide by caller, must be memset cleared 494 * @data: data buffer provided by caller 495 * @frag_size: size of data 496 */ 497 struct sk_buff *build_skb_around(struct sk_buff *skb, 498 void *data, unsigned int frag_size) 499 { 500 if (unlikely(!skb)) 501 return NULL; 502 503 __build_skb_around(skb, data, frag_size); 504 505 if (frag_size) { 506 skb->head_frag = 1; 507 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 508 } 509 return skb; 510 } 511 EXPORT_SYMBOL(build_skb_around); 512 513 /** 514 * __napi_build_skb - build a network buffer 515 * @data: data buffer provided by caller 516 * @frag_size: size of data 517 * 518 * Version of __build_skb() that uses NAPI percpu caches to obtain 519 * skbuff_head instead of inplace allocation. 520 * 521 * Returns a new &sk_buff on success, %NULL on allocation failure. 522 */ 523 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 524 { 525 struct sk_buff *skb; 526 527 skb = napi_skb_cache_get(); 528 if (unlikely(!skb)) 529 return NULL; 530 531 memset(skb, 0, offsetof(struct sk_buff, tail)); 532 __build_skb_around(skb, data, frag_size); 533 534 return skb; 535 } 536 537 /** 538 * napi_build_skb - build a network buffer 539 * @data: data buffer provided by caller 540 * @frag_size: size of data 541 * 542 * Version of __napi_build_skb() that takes care of skb->head_frag 543 * and skb->pfmemalloc when the data is a page or page fragment. 544 * 545 * Returns a new &sk_buff on success, %NULL on allocation failure. 546 */ 547 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 548 { 549 struct sk_buff *skb = __napi_build_skb(data, frag_size); 550 551 if (likely(skb) && frag_size) { 552 skb->head_frag = 1; 553 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 554 } 555 556 return skb; 557 } 558 EXPORT_SYMBOL(napi_build_skb); 559 560 /* 561 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 562 * the caller if emergency pfmemalloc reserves are being used. If it is and 563 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 564 * may be used. Otherwise, the packet data may be discarded until enough 565 * memory is free 566 */ 567 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 568 bool *pfmemalloc) 569 { 570 bool ret_pfmemalloc = false; 571 size_t obj_size; 572 void *obj; 573 574 obj_size = SKB_HEAD_ALIGN(*size); 575 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 576 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 577 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, 578 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 579 node); 580 *size = SKB_SMALL_HEAD_CACHE_SIZE; 581 if (obj || !(gfp_pfmemalloc_allowed(flags))) 582 goto out; 583 /* Try again but now we are using pfmemalloc reserves */ 584 ret_pfmemalloc = true; 585 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node); 586 goto out; 587 } 588 589 obj_size = kmalloc_size_roundup(obj_size); 590 /* The following cast might truncate high-order bits of obj_size, this 591 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. 592 */ 593 *size = (unsigned int)obj_size; 594 595 /* 596 * Try a regular allocation, when that fails and we're not entitled 597 * to the reserves, fail. 598 */ 599 obj = kmalloc_node_track_caller(obj_size, 600 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 601 node); 602 if (obj || !(gfp_pfmemalloc_allowed(flags))) 603 goto out; 604 605 /* Try again but now we are using pfmemalloc reserves */ 606 ret_pfmemalloc = true; 607 obj = kmalloc_node_track_caller(obj_size, flags, node); 608 609 out: 610 if (pfmemalloc) 611 *pfmemalloc = ret_pfmemalloc; 612 613 return obj; 614 } 615 616 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 617 * 'private' fields and also do memory statistics to find all the 618 * [BEEP] leaks. 619 * 620 */ 621 622 /** 623 * __alloc_skb - allocate a network buffer 624 * @size: size to allocate 625 * @gfp_mask: allocation mask 626 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 627 * instead of head cache and allocate a cloned (child) skb. 628 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 629 * allocations in case the data is required for writeback 630 * @node: numa node to allocate memory on 631 * 632 * Allocate a new &sk_buff. The returned buffer has no headroom and a 633 * tail room of at least size bytes. The object has a reference count 634 * of one. The return is the buffer. On a failure the return is %NULL. 635 * 636 * Buffers may only be allocated from interrupts using a @gfp_mask of 637 * %GFP_ATOMIC. 638 */ 639 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 640 int flags, int node) 641 { 642 struct kmem_cache *cache; 643 struct sk_buff *skb; 644 bool pfmemalloc; 645 u8 *data; 646 647 cache = (flags & SKB_ALLOC_FCLONE) 648 ? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache; 649 650 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 651 gfp_mask |= __GFP_MEMALLOC; 652 653 /* Get the HEAD */ 654 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 655 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 656 skb = napi_skb_cache_get(); 657 else 658 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 659 if (unlikely(!skb)) 660 return NULL; 661 prefetchw(skb); 662 663 /* We do our best to align skb_shared_info on a separate cache 664 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 665 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 666 * Both skb->head and skb_shared_info are cache line aligned. 667 */ 668 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 669 if (unlikely(!data)) 670 goto nodata; 671 /* kmalloc_size_roundup() might give us more room than requested. 672 * Put skb_shared_info exactly at the end of allocated zone, 673 * to allow max possible filling before reallocation. 674 */ 675 prefetchw(data + SKB_WITH_OVERHEAD(size)); 676 677 /* 678 * Only clear those fields we need to clear, not those that we will 679 * actually initialise below. Hence, don't put any more fields after 680 * the tail pointer in struct sk_buff! 681 */ 682 memset(skb, 0, offsetof(struct sk_buff, tail)); 683 __build_skb_around(skb, data, size); 684 skb->pfmemalloc = pfmemalloc; 685 686 if (flags & SKB_ALLOC_FCLONE) { 687 struct sk_buff_fclones *fclones; 688 689 fclones = container_of(skb, struct sk_buff_fclones, skb1); 690 691 skb->fclone = SKB_FCLONE_ORIG; 692 refcount_set(&fclones->fclone_ref, 1); 693 } 694 695 return skb; 696 697 nodata: 698 kmem_cache_free(cache, skb); 699 return NULL; 700 } 701 EXPORT_SYMBOL(__alloc_skb); 702 703 /** 704 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 705 * @dev: network device to receive on 706 * @len: length to allocate 707 * @gfp_mask: get_free_pages mask, passed to alloc_skb 708 * 709 * Allocate a new &sk_buff and assign it a usage count of one. The 710 * buffer has NET_SKB_PAD headroom built in. Users should allocate 711 * the headroom they think they need without accounting for the 712 * built in space. The built in space is used for optimisations. 713 * 714 * %NULL is returned if there is no free memory. 715 */ 716 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 717 gfp_t gfp_mask) 718 { 719 struct page_frag_cache *nc; 720 struct sk_buff *skb; 721 bool pfmemalloc; 722 void *data; 723 724 len += NET_SKB_PAD; 725 726 /* If requested length is either too small or too big, 727 * we use kmalloc() for skb->head allocation. 728 */ 729 if (len <= SKB_WITH_OVERHEAD(1024) || 730 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 731 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 732 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 733 if (!skb) 734 goto skb_fail; 735 goto skb_success; 736 } 737 738 len = SKB_HEAD_ALIGN(len); 739 740 if (sk_memalloc_socks()) 741 gfp_mask |= __GFP_MEMALLOC; 742 743 if (in_hardirq() || irqs_disabled()) { 744 nc = this_cpu_ptr(&netdev_alloc_cache); 745 data = page_frag_alloc(nc, len, gfp_mask); 746 pfmemalloc = nc->pfmemalloc; 747 } else { 748 local_bh_disable(); 749 nc = this_cpu_ptr(&napi_alloc_cache.page); 750 data = page_frag_alloc(nc, len, gfp_mask); 751 pfmemalloc = nc->pfmemalloc; 752 local_bh_enable(); 753 } 754 755 if (unlikely(!data)) 756 return NULL; 757 758 skb = __build_skb(data, len); 759 if (unlikely(!skb)) { 760 skb_free_frag(data); 761 return NULL; 762 } 763 764 if (pfmemalloc) 765 skb->pfmemalloc = 1; 766 skb->head_frag = 1; 767 768 skb_success: 769 skb_reserve(skb, NET_SKB_PAD); 770 skb->dev = dev; 771 772 skb_fail: 773 return skb; 774 } 775 EXPORT_SYMBOL(__netdev_alloc_skb); 776 777 /** 778 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 779 * @napi: napi instance this buffer was allocated for 780 * @len: length to allocate 781 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 782 * 783 * Allocate a new sk_buff for use in NAPI receive. This buffer will 784 * attempt to allocate the head from a special reserved region used 785 * only for NAPI Rx allocation. By doing this we can save several 786 * CPU cycles by avoiding having to disable and re-enable IRQs. 787 * 788 * %NULL is returned if there is no free memory. 789 */ 790 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 791 gfp_t gfp_mask) 792 { 793 struct napi_alloc_cache *nc; 794 struct sk_buff *skb; 795 bool pfmemalloc; 796 void *data; 797 798 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 799 len += NET_SKB_PAD + NET_IP_ALIGN; 800 801 /* If requested length is either too small or too big, 802 * we use kmalloc() for skb->head allocation. 803 * When the small frag allocator is available, prefer it over kmalloc 804 * for small fragments 805 */ 806 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) || 807 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 808 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 809 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 810 NUMA_NO_NODE); 811 if (!skb) 812 goto skb_fail; 813 goto skb_success; 814 } 815 816 nc = this_cpu_ptr(&napi_alloc_cache); 817 818 if (sk_memalloc_socks()) 819 gfp_mask |= __GFP_MEMALLOC; 820 821 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) { 822 /* we are artificially inflating the allocation size, but 823 * that is not as bad as it may look like, as: 824 * - 'len' less than GRO_MAX_HEAD makes little sense 825 * - On most systems, larger 'len' values lead to fragment 826 * size above 512 bytes 827 * - kmalloc would use the kmalloc-1k slab for such values 828 * - Builds with smaller GRO_MAX_HEAD will very likely do 829 * little networking, as that implies no WiFi and no 830 * tunnels support, and 32 bits arches. 831 */ 832 len = SZ_1K; 833 834 data = page_frag_alloc_1k(&nc->page_small, gfp_mask); 835 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small); 836 } else { 837 len = SKB_HEAD_ALIGN(len); 838 839 data = page_frag_alloc(&nc->page, len, gfp_mask); 840 pfmemalloc = nc->page.pfmemalloc; 841 } 842 843 if (unlikely(!data)) 844 return NULL; 845 846 skb = __napi_build_skb(data, len); 847 if (unlikely(!skb)) { 848 skb_free_frag(data); 849 return NULL; 850 } 851 852 if (pfmemalloc) 853 skb->pfmemalloc = 1; 854 skb->head_frag = 1; 855 856 skb_success: 857 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 858 skb->dev = napi->dev; 859 860 skb_fail: 861 return skb; 862 } 863 EXPORT_SYMBOL(__napi_alloc_skb); 864 865 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 866 int off, int size, unsigned int truesize) 867 { 868 DEBUG_NET_WARN_ON_ONCE(size > truesize); 869 870 skb_fill_netmem_desc(skb, i, netmem, off, size); 871 skb->len += size; 872 skb->data_len += size; 873 skb->truesize += truesize; 874 } 875 EXPORT_SYMBOL(skb_add_rx_frag_netmem); 876 877 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 878 unsigned int truesize) 879 { 880 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 881 882 DEBUG_NET_WARN_ON_ONCE(size > truesize); 883 884 skb_frag_size_add(frag, size); 885 skb->len += size; 886 skb->data_len += size; 887 skb->truesize += truesize; 888 } 889 EXPORT_SYMBOL(skb_coalesce_rx_frag); 890 891 static void skb_drop_list(struct sk_buff **listp) 892 { 893 kfree_skb_list(*listp); 894 *listp = NULL; 895 } 896 897 static inline void skb_drop_fraglist(struct sk_buff *skb) 898 { 899 skb_drop_list(&skb_shinfo(skb)->frag_list); 900 } 901 902 static void skb_clone_fraglist(struct sk_buff *skb) 903 { 904 struct sk_buff *list; 905 906 skb_walk_frags(skb, list) 907 skb_get(list); 908 } 909 910 static bool is_pp_page(struct page *page) 911 { 912 return (page->pp_magic & ~0x3UL) == PP_SIGNATURE; 913 } 914 915 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 916 unsigned int headroom) 917 { 918 #if IS_ENABLED(CONFIG_PAGE_POOL) 919 u32 size, truesize, len, max_head_size, off; 920 struct sk_buff *skb = *pskb, *nskb; 921 int err, i, head_off; 922 void *data; 923 924 /* XDP does not support fraglist so we need to linearize 925 * the skb. 926 */ 927 if (skb_has_frag_list(skb)) 928 return -EOPNOTSUPP; 929 930 max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom); 931 if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE) 932 return -ENOMEM; 933 934 size = min_t(u32, skb->len, max_head_size); 935 truesize = SKB_HEAD_ALIGN(size) + headroom; 936 data = page_pool_dev_alloc_va(pool, &truesize); 937 if (!data) 938 return -ENOMEM; 939 940 nskb = napi_build_skb(data, truesize); 941 if (!nskb) { 942 page_pool_free_va(pool, data, true); 943 return -ENOMEM; 944 } 945 946 skb_reserve(nskb, headroom); 947 skb_copy_header(nskb, skb); 948 skb_mark_for_recycle(nskb); 949 950 err = skb_copy_bits(skb, 0, nskb->data, size); 951 if (err) { 952 consume_skb(nskb); 953 return err; 954 } 955 skb_put(nskb, size); 956 957 head_off = skb_headroom(nskb) - skb_headroom(skb); 958 skb_headers_offset_update(nskb, head_off); 959 960 off = size; 961 len = skb->len - off; 962 for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) { 963 struct page *page; 964 u32 page_off; 965 966 size = min_t(u32, len, PAGE_SIZE); 967 truesize = size; 968 969 page = page_pool_dev_alloc(pool, &page_off, &truesize); 970 if (!page) { 971 consume_skb(nskb); 972 return -ENOMEM; 973 } 974 975 skb_add_rx_frag(nskb, i, page, page_off, size, truesize); 976 err = skb_copy_bits(skb, off, page_address(page) + page_off, 977 size); 978 if (err) { 979 consume_skb(nskb); 980 return err; 981 } 982 983 len -= size; 984 off += size; 985 } 986 987 consume_skb(skb); 988 *pskb = nskb; 989 990 return 0; 991 #else 992 return -EOPNOTSUPP; 993 #endif 994 } 995 EXPORT_SYMBOL(skb_pp_cow_data); 996 997 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 998 struct bpf_prog *prog) 999 { 1000 if (!prog->aux->xdp_has_frags) 1001 return -EINVAL; 1002 1003 return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM); 1004 } 1005 EXPORT_SYMBOL(skb_cow_data_for_xdp); 1006 1007 #if IS_ENABLED(CONFIG_PAGE_POOL) 1008 bool napi_pp_put_page(struct page *page, bool napi_safe) 1009 { 1010 bool allow_direct = false; 1011 struct page_pool *pp; 1012 1013 page = compound_head(page); 1014 1015 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation 1016 * in order to preserve any existing bits, such as bit 0 for the 1017 * head page of compound page and bit 1 for pfmemalloc page, so 1018 * mask those bits for freeing side when doing below checking, 1019 * and page_is_pfmemalloc() is checked in __page_pool_put_page() 1020 * to avoid recycling the pfmemalloc page. 1021 */ 1022 if (unlikely(!is_pp_page(page))) 1023 return false; 1024 1025 pp = page->pp; 1026 1027 /* Allow direct recycle if we have reasons to believe that we are 1028 * in the same context as the consumer would run, so there's 1029 * no possible race. 1030 * __page_pool_put_page() makes sure we're not in hardirq context 1031 * and interrupts are enabled prior to accessing the cache. 1032 */ 1033 if (napi_safe || in_softirq()) { 1034 const struct napi_struct *napi = READ_ONCE(pp->p.napi); 1035 unsigned int cpuid = smp_processor_id(); 1036 1037 allow_direct = napi && READ_ONCE(napi->list_owner) == cpuid; 1038 allow_direct |= READ_ONCE(pp->cpuid) == cpuid; 1039 } 1040 1041 /* Driver set this to memory recycling info. Reset it on recycle. 1042 * This will *not* work for NIC using a split-page memory model. 1043 * The page will be returned to the pool here regardless of the 1044 * 'flipped' fragment being in use or not. 1045 */ 1046 page_pool_put_full_page(pp, page, allow_direct); 1047 1048 return true; 1049 } 1050 EXPORT_SYMBOL(napi_pp_put_page); 1051 #endif 1052 1053 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe) 1054 { 1055 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 1056 return false; 1057 return napi_pp_put_page(virt_to_page(data), napi_safe); 1058 } 1059 1060 /** 1061 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb 1062 * @skb: page pool aware skb 1063 * 1064 * Increase the fragment reference count (pp_ref_count) of a skb. This is 1065 * intended to gain fragment references only for page pool aware skbs, 1066 * i.e. when skb->pp_recycle is true, and not for fragments in a 1067 * non-pp-recycling skb. It has a fallback to increase references on normal 1068 * pages, as page pool aware skbs may also have normal page fragments. 1069 */ 1070 static int skb_pp_frag_ref(struct sk_buff *skb) 1071 { 1072 struct skb_shared_info *shinfo; 1073 struct page *head_page; 1074 int i; 1075 1076 if (!skb->pp_recycle) 1077 return -EINVAL; 1078 1079 shinfo = skb_shinfo(skb); 1080 1081 for (i = 0; i < shinfo->nr_frags; i++) { 1082 head_page = compound_head(skb_frag_page(&shinfo->frags[i])); 1083 if (likely(is_pp_page(head_page))) 1084 page_pool_ref_page(head_page); 1085 else 1086 page_ref_inc(head_page); 1087 } 1088 return 0; 1089 } 1090 1091 static void skb_kfree_head(void *head, unsigned int end_offset) 1092 { 1093 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 1094 kmem_cache_free(net_hotdata.skb_small_head_cache, head); 1095 else 1096 kfree(head); 1097 } 1098 1099 static void skb_free_head(struct sk_buff *skb, bool napi_safe) 1100 { 1101 unsigned char *head = skb->head; 1102 1103 if (skb->head_frag) { 1104 if (skb_pp_recycle(skb, head, napi_safe)) 1105 return; 1106 skb_free_frag(head); 1107 } else { 1108 skb_kfree_head(head, skb_end_offset(skb)); 1109 } 1110 } 1111 1112 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason, 1113 bool napi_safe) 1114 { 1115 struct skb_shared_info *shinfo = skb_shinfo(skb); 1116 int i; 1117 1118 if (!skb_data_unref(skb, shinfo)) 1119 goto exit; 1120 1121 if (skb_zcopy(skb)) { 1122 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 1123 1124 skb_zcopy_clear(skb, true); 1125 if (skip_unref) 1126 goto free_head; 1127 } 1128 1129 for (i = 0; i < shinfo->nr_frags; i++) 1130 napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe); 1131 1132 free_head: 1133 if (shinfo->frag_list) 1134 kfree_skb_list_reason(shinfo->frag_list, reason); 1135 1136 skb_free_head(skb, napi_safe); 1137 exit: 1138 /* When we clone an SKB we copy the reycling bit. The pp_recycle 1139 * bit is only set on the head though, so in order to avoid races 1140 * while trying to recycle fragments on __skb_frag_unref() we need 1141 * to make one SKB responsible for triggering the recycle path. 1142 * So disable the recycling bit if an SKB is cloned and we have 1143 * additional references to the fragmented part of the SKB. 1144 * Eventually the last SKB will have the recycling bit set and it's 1145 * dataref set to 0, which will trigger the recycling 1146 */ 1147 skb->pp_recycle = 0; 1148 } 1149 1150 /* 1151 * Free an skbuff by memory without cleaning the state. 1152 */ 1153 static void kfree_skbmem(struct sk_buff *skb) 1154 { 1155 struct sk_buff_fclones *fclones; 1156 1157 switch (skb->fclone) { 1158 case SKB_FCLONE_UNAVAILABLE: 1159 kmem_cache_free(net_hotdata.skbuff_cache, skb); 1160 return; 1161 1162 case SKB_FCLONE_ORIG: 1163 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1164 1165 /* We usually free the clone (TX completion) before original skb 1166 * This test would have no chance to be true for the clone, 1167 * while here, branch prediction will be good. 1168 */ 1169 if (refcount_read(&fclones->fclone_ref) == 1) 1170 goto fastpath; 1171 break; 1172 1173 default: /* SKB_FCLONE_CLONE */ 1174 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1175 break; 1176 } 1177 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1178 return; 1179 fastpath: 1180 kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones); 1181 } 1182 1183 void skb_release_head_state(struct sk_buff *skb) 1184 { 1185 skb_dst_drop(skb); 1186 if (skb->destructor) { 1187 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1188 skb->destructor(skb); 1189 } 1190 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 1191 nf_conntrack_put(skb_nfct(skb)); 1192 #endif 1193 skb_ext_put(skb); 1194 } 1195 1196 /* Free everything but the sk_buff shell. */ 1197 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason, 1198 bool napi_safe) 1199 { 1200 skb_release_head_state(skb); 1201 if (likely(skb->head)) 1202 skb_release_data(skb, reason, napi_safe); 1203 } 1204 1205 /** 1206 * __kfree_skb - private function 1207 * @skb: buffer 1208 * 1209 * Free an sk_buff. Release anything attached to the buffer. 1210 * Clean the state. This is an internal helper function. Users should 1211 * always call kfree_skb 1212 */ 1213 1214 void __kfree_skb(struct sk_buff *skb) 1215 { 1216 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false); 1217 kfree_skbmem(skb); 1218 } 1219 EXPORT_SYMBOL(__kfree_skb); 1220 1221 static __always_inline 1222 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1223 { 1224 if (unlikely(!skb_unref(skb))) 1225 return false; 1226 1227 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1228 u32_get_bits(reason, 1229 SKB_DROP_REASON_SUBSYS_MASK) >= 1230 SKB_DROP_REASON_SUBSYS_NUM); 1231 1232 if (reason == SKB_CONSUMED) 1233 trace_consume_skb(skb, __builtin_return_address(0)); 1234 else 1235 trace_kfree_skb(skb, __builtin_return_address(0), reason); 1236 return true; 1237 } 1238 1239 /** 1240 * kfree_skb_reason - free an sk_buff with special reason 1241 * @skb: buffer to free 1242 * @reason: reason why this skb is dropped 1243 * 1244 * Drop a reference to the buffer and free it if the usage count has 1245 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 1246 * tracepoint. 1247 */ 1248 void __fix_address 1249 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1250 { 1251 if (__kfree_skb_reason(skb, reason)) 1252 __kfree_skb(skb); 1253 } 1254 EXPORT_SYMBOL(kfree_skb_reason); 1255 1256 #define KFREE_SKB_BULK_SIZE 16 1257 1258 struct skb_free_array { 1259 unsigned int skb_count; 1260 void *skb_array[KFREE_SKB_BULK_SIZE]; 1261 }; 1262 1263 static void kfree_skb_add_bulk(struct sk_buff *skb, 1264 struct skb_free_array *sa, 1265 enum skb_drop_reason reason) 1266 { 1267 /* if SKB is a clone, don't handle this case */ 1268 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1269 __kfree_skb(skb); 1270 return; 1271 } 1272 1273 skb_release_all(skb, reason, false); 1274 sa->skb_array[sa->skb_count++] = skb; 1275 1276 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1277 kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE, 1278 sa->skb_array); 1279 sa->skb_count = 0; 1280 } 1281 } 1282 1283 void __fix_address 1284 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1285 { 1286 struct skb_free_array sa; 1287 1288 sa.skb_count = 0; 1289 1290 while (segs) { 1291 struct sk_buff *next = segs->next; 1292 1293 if (__kfree_skb_reason(segs, reason)) { 1294 skb_poison_list(segs); 1295 kfree_skb_add_bulk(segs, &sa, reason); 1296 } 1297 1298 segs = next; 1299 } 1300 1301 if (sa.skb_count) 1302 kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array); 1303 } 1304 EXPORT_SYMBOL(kfree_skb_list_reason); 1305 1306 /* Dump skb information and contents. 1307 * 1308 * Must only be called from net_ratelimit()-ed paths. 1309 * 1310 * Dumps whole packets if full_pkt, only headers otherwise. 1311 */ 1312 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1313 { 1314 struct skb_shared_info *sh = skb_shinfo(skb); 1315 struct net_device *dev = skb->dev; 1316 struct sock *sk = skb->sk; 1317 struct sk_buff *list_skb; 1318 bool has_mac, has_trans; 1319 int headroom, tailroom; 1320 int i, len, seg_len; 1321 1322 if (full_pkt) 1323 len = skb->len; 1324 else 1325 len = min_t(int, skb->len, MAX_HEADER + 128); 1326 1327 headroom = skb_headroom(skb); 1328 tailroom = skb_tailroom(skb); 1329 1330 has_mac = skb_mac_header_was_set(skb); 1331 has_trans = skb_transport_header_was_set(skb); 1332 1333 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1334 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 1335 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1336 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1337 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 1338 level, skb->len, headroom, skb_headlen(skb), tailroom, 1339 has_mac ? skb->mac_header : -1, 1340 has_mac ? skb_mac_header_len(skb) : -1, 1341 skb->network_header, 1342 has_trans ? skb_network_header_len(skb) : -1, 1343 has_trans ? skb->transport_header : -1, 1344 sh->tx_flags, sh->nr_frags, 1345 sh->gso_size, sh->gso_type, sh->gso_segs, 1346 skb->csum, skb->ip_summed, skb->csum_complete_sw, 1347 skb->csum_valid, skb->csum_level, 1348 skb->hash, skb->sw_hash, skb->l4_hash, 1349 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 1350 1351 if (dev) 1352 printk("%sdev name=%s feat=%pNF\n", 1353 level, dev->name, &dev->features); 1354 if (sk) 1355 printk("%ssk family=%hu type=%u proto=%u\n", 1356 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1357 1358 if (full_pkt && headroom) 1359 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1360 16, 1, skb->head, headroom, false); 1361 1362 seg_len = min_t(int, skb_headlen(skb), len); 1363 if (seg_len) 1364 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1365 16, 1, skb->data, seg_len, false); 1366 len -= seg_len; 1367 1368 if (full_pkt && tailroom) 1369 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1370 16, 1, skb_tail_pointer(skb), tailroom, false); 1371 1372 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1373 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1374 u32 p_off, p_len, copied; 1375 struct page *p; 1376 u8 *vaddr; 1377 1378 skb_frag_foreach_page(frag, skb_frag_off(frag), 1379 skb_frag_size(frag), p, p_off, p_len, 1380 copied) { 1381 seg_len = min_t(int, p_len, len); 1382 vaddr = kmap_atomic(p); 1383 print_hex_dump(level, "skb frag: ", 1384 DUMP_PREFIX_OFFSET, 1385 16, 1, vaddr + p_off, seg_len, false); 1386 kunmap_atomic(vaddr); 1387 len -= seg_len; 1388 if (!len) 1389 break; 1390 } 1391 } 1392 1393 if (full_pkt && skb_has_frag_list(skb)) { 1394 printk("skb fraglist:\n"); 1395 skb_walk_frags(skb, list_skb) 1396 skb_dump(level, list_skb, true); 1397 } 1398 } 1399 EXPORT_SYMBOL(skb_dump); 1400 1401 /** 1402 * skb_tx_error - report an sk_buff xmit error 1403 * @skb: buffer that triggered an error 1404 * 1405 * Report xmit error if a device callback is tracking this skb. 1406 * skb must be freed afterwards. 1407 */ 1408 void skb_tx_error(struct sk_buff *skb) 1409 { 1410 if (skb) { 1411 skb_zcopy_downgrade_managed(skb); 1412 skb_zcopy_clear(skb, true); 1413 } 1414 } 1415 EXPORT_SYMBOL(skb_tx_error); 1416 1417 #ifdef CONFIG_TRACEPOINTS 1418 /** 1419 * consume_skb - free an skbuff 1420 * @skb: buffer to free 1421 * 1422 * Drop a ref to the buffer and free it if the usage count has hit zero 1423 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1424 * is being dropped after a failure and notes that 1425 */ 1426 void consume_skb(struct sk_buff *skb) 1427 { 1428 if (!skb_unref(skb)) 1429 return; 1430 1431 trace_consume_skb(skb, __builtin_return_address(0)); 1432 __kfree_skb(skb); 1433 } 1434 EXPORT_SYMBOL(consume_skb); 1435 #endif 1436 1437 /** 1438 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1439 * @skb: buffer to free 1440 * 1441 * Alike consume_skb(), but this variant assumes that this is the last 1442 * skb reference and all the head states have been already dropped 1443 */ 1444 void __consume_stateless_skb(struct sk_buff *skb) 1445 { 1446 trace_consume_skb(skb, __builtin_return_address(0)); 1447 skb_release_data(skb, SKB_CONSUMED, false); 1448 kfree_skbmem(skb); 1449 } 1450 1451 static void napi_skb_cache_put(struct sk_buff *skb) 1452 { 1453 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1454 u32 i; 1455 1456 if (!kasan_mempool_poison_object(skb)) 1457 return; 1458 1459 nc->skb_cache[nc->skb_count++] = skb; 1460 1461 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1462 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1463 kasan_mempool_unpoison_object(nc->skb_cache[i], 1464 kmem_cache_size(net_hotdata.skbuff_cache)); 1465 1466 kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF, 1467 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1468 nc->skb_count = NAPI_SKB_CACHE_HALF; 1469 } 1470 } 1471 1472 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1473 { 1474 skb_release_all(skb, reason, true); 1475 napi_skb_cache_put(skb); 1476 } 1477 1478 void napi_skb_free_stolen_head(struct sk_buff *skb) 1479 { 1480 if (unlikely(skb->slow_gro)) { 1481 nf_reset_ct(skb); 1482 skb_dst_drop(skb); 1483 skb_ext_put(skb); 1484 skb_orphan(skb); 1485 skb->slow_gro = 0; 1486 } 1487 napi_skb_cache_put(skb); 1488 } 1489 1490 void napi_consume_skb(struct sk_buff *skb, int budget) 1491 { 1492 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1493 if (unlikely(!budget)) { 1494 dev_consume_skb_any(skb); 1495 return; 1496 } 1497 1498 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1499 1500 if (!skb_unref(skb)) 1501 return; 1502 1503 /* if reaching here SKB is ready to free */ 1504 trace_consume_skb(skb, __builtin_return_address(0)); 1505 1506 /* if SKB is a clone, don't handle this case */ 1507 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1508 __kfree_skb(skb); 1509 return; 1510 } 1511 1512 skb_release_all(skb, SKB_CONSUMED, !!budget); 1513 napi_skb_cache_put(skb); 1514 } 1515 EXPORT_SYMBOL(napi_consume_skb); 1516 1517 /* Make sure a field is contained by headers group */ 1518 #define CHECK_SKB_FIELD(field) \ 1519 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1520 offsetof(struct sk_buff, headers.field)); \ 1521 1522 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1523 { 1524 new->tstamp = old->tstamp; 1525 /* We do not copy old->sk */ 1526 new->dev = old->dev; 1527 memcpy(new->cb, old->cb, sizeof(old->cb)); 1528 skb_dst_copy(new, old); 1529 __skb_ext_copy(new, old); 1530 __nf_copy(new, old, false); 1531 1532 /* Note : this field could be in the headers group. 1533 * It is not yet because we do not want to have a 16 bit hole 1534 */ 1535 new->queue_mapping = old->queue_mapping; 1536 1537 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1538 CHECK_SKB_FIELD(protocol); 1539 CHECK_SKB_FIELD(csum); 1540 CHECK_SKB_FIELD(hash); 1541 CHECK_SKB_FIELD(priority); 1542 CHECK_SKB_FIELD(skb_iif); 1543 CHECK_SKB_FIELD(vlan_proto); 1544 CHECK_SKB_FIELD(vlan_tci); 1545 CHECK_SKB_FIELD(transport_header); 1546 CHECK_SKB_FIELD(network_header); 1547 CHECK_SKB_FIELD(mac_header); 1548 CHECK_SKB_FIELD(inner_protocol); 1549 CHECK_SKB_FIELD(inner_transport_header); 1550 CHECK_SKB_FIELD(inner_network_header); 1551 CHECK_SKB_FIELD(inner_mac_header); 1552 CHECK_SKB_FIELD(mark); 1553 #ifdef CONFIG_NETWORK_SECMARK 1554 CHECK_SKB_FIELD(secmark); 1555 #endif 1556 #ifdef CONFIG_NET_RX_BUSY_POLL 1557 CHECK_SKB_FIELD(napi_id); 1558 #endif 1559 CHECK_SKB_FIELD(alloc_cpu); 1560 #ifdef CONFIG_XPS 1561 CHECK_SKB_FIELD(sender_cpu); 1562 #endif 1563 #ifdef CONFIG_NET_SCHED 1564 CHECK_SKB_FIELD(tc_index); 1565 #endif 1566 1567 } 1568 1569 /* 1570 * You should not add any new code to this function. Add it to 1571 * __copy_skb_header above instead. 1572 */ 1573 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1574 { 1575 #define C(x) n->x = skb->x 1576 1577 n->next = n->prev = NULL; 1578 n->sk = NULL; 1579 __copy_skb_header(n, skb); 1580 1581 C(len); 1582 C(data_len); 1583 C(mac_len); 1584 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1585 n->cloned = 1; 1586 n->nohdr = 0; 1587 n->peeked = 0; 1588 C(pfmemalloc); 1589 C(pp_recycle); 1590 n->destructor = NULL; 1591 C(tail); 1592 C(end); 1593 C(head); 1594 C(head_frag); 1595 C(data); 1596 C(truesize); 1597 refcount_set(&n->users, 1); 1598 1599 atomic_inc(&(skb_shinfo(skb)->dataref)); 1600 skb->cloned = 1; 1601 1602 return n; 1603 #undef C 1604 } 1605 1606 /** 1607 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1608 * @first: first sk_buff of the msg 1609 */ 1610 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1611 { 1612 struct sk_buff *n; 1613 1614 n = alloc_skb(0, GFP_ATOMIC); 1615 if (!n) 1616 return NULL; 1617 1618 n->len = first->len; 1619 n->data_len = first->len; 1620 n->truesize = first->truesize; 1621 1622 skb_shinfo(n)->frag_list = first; 1623 1624 __copy_skb_header(n, first); 1625 n->destructor = NULL; 1626 1627 return n; 1628 } 1629 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1630 1631 /** 1632 * skb_morph - morph one skb into another 1633 * @dst: the skb to receive the contents 1634 * @src: the skb to supply the contents 1635 * 1636 * This is identical to skb_clone except that the target skb is 1637 * supplied by the user. 1638 * 1639 * The target skb is returned upon exit. 1640 */ 1641 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1642 { 1643 skb_release_all(dst, SKB_CONSUMED, false); 1644 return __skb_clone(dst, src); 1645 } 1646 EXPORT_SYMBOL_GPL(skb_morph); 1647 1648 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1649 { 1650 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1651 struct user_struct *user; 1652 1653 if (capable(CAP_IPC_LOCK) || !size) 1654 return 0; 1655 1656 rlim = rlimit(RLIMIT_MEMLOCK); 1657 if (rlim == RLIM_INFINITY) 1658 return 0; 1659 1660 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1661 max_pg = rlim >> PAGE_SHIFT; 1662 user = mmp->user ? : current_user(); 1663 1664 old_pg = atomic_long_read(&user->locked_vm); 1665 do { 1666 new_pg = old_pg + num_pg; 1667 if (new_pg > max_pg) 1668 return -ENOBUFS; 1669 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1670 1671 if (!mmp->user) { 1672 mmp->user = get_uid(user); 1673 mmp->num_pg = num_pg; 1674 } else { 1675 mmp->num_pg += num_pg; 1676 } 1677 1678 return 0; 1679 } 1680 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1681 1682 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1683 { 1684 if (mmp->user) { 1685 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1686 free_uid(mmp->user); 1687 } 1688 } 1689 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1690 1691 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1692 { 1693 struct ubuf_info_msgzc *uarg; 1694 struct sk_buff *skb; 1695 1696 WARN_ON_ONCE(!in_task()); 1697 1698 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1699 if (!skb) 1700 return NULL; 1701 1702 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1703 uarg = (void *)skb->cb; 1704 uarg->mmp.user = NULL; 1705 1706 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1707 kfree_skb(skb); 1708 return NULL; 1709 } 1710 1711 uarg->ubuf.ops = &msg_zerocopy_ubuf_ops; 1712 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1713 uarg->len = 1; 1714 uarg->bytelen = size; 1715 uarg->zerocopy = 1; 1716 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1717 refcount_set(&uarg->ubuf.refcnt, 1); 1718 sock_hold(sk); 1719 1720 return &uarg->ubuf; 1721 } 1722 1723 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1724 { 1725 return container_of((void *)uarg, struct sk_buff, cb); 1726 } 1727 1728 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1729 struct ubuf_info *uarg) 1730 { 1731 if (uarg) { 1732 struct ubuf_info_msgzc *uarg_zc; 1733 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1734 u32 bytelen, next; 1735 1736 /* there might be non MSG_ZEROCOPY users */ 1737 if (uarg->ops != &msg_zerocopy_ubuf_ops) 1738 return NULL; 1739 1740 /* realloc only when socket is locked (TCP, UDP cork), 1741 * so uarg->len and sk_zckey access is serialized 1742 */ 1743 if (!sock_owned_by_user(sk)) { 1744 WARN_ON_ONCE(1); 1745 return NULL; 1746 } 1747 1748 uarg_zc = uarg_to_msgzc(uarg); 1749 bytelen = uarg_zc->bytelen + size; 1750 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1751 /* TCP can create new skb to attach new uarg */ 1752 if (sk->sk_type == SOCK_STREAM) 1753 goto new_alloc; 1754 return NULL; 1755 } 1756 1757 next = (u32)atomic_read(&sk->sk_zckey); 1758 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1759 if (mm_account_pinned_pages(&uarg_zc->mmp, size)) 1760 return NULL; 1761 uarg_zc->len++; 1762 uarg_zc->bytelen = bytelen; 1763 atomic_set(&sk->sk_zckey, ++next); 1764 1765 /* no extra ref when appending to datagram (MSG_MORE) */ 1766 if (sk->sk_type == SOCK_STREAM) 1767 net_zcopy_get(uarg); 1768 1769 return uarg; 1770 } 1771 } 1772 1773 new_alloc: 1774 return msg_zerocopy_alloc(sk, size); 1775 } 1776 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1777 1778 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1779 { 1780 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1781 u32 old_lo, old_hi; 1782 u64 sum_len; 1783 1784 old_lo = serr->ee.ee_info; 1785 old_hi = serr->ee.ee_data; 1786 sum_len = old_hi - old_lo + 1ULL + len; 1787 1788 if (sum_len >= (1ULL << 32)) 1789 return false; 1790 1791 if (lo != old_hi + 1) 1792 return false; 1793 1794 serr->ee.ee_data += len; 1795 return true; 1796 } 1797 1798 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1799 { 1800 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1801 struct sock_exterr_skb *serr; 1802 struct sock *sk = skb->sk; 1803 struct sk_buff_head *q; 1804 unsigned long flags; 1805 bool is_zerocopy; 1806 u32 lo, hi; 1807 u16 len; 1808 1809 mm_unaccount_pinned_pages(&uarg->mmp); 1810 1811 /* if !len, there was only 1 call, and it was aborted 1812 * so do not queue a completion notification 1813 */ 1814 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1815 goto release; 1816 1817 len = uarg->len; 1818 lo = uarg->id; 1819 hi = uarg->id + len - 1; 1820 is_zerocopy = uarg->zerocopy; 1821 1822 serr = SKB_EXT_ERR(skb); 1823 memset(serr, 0, sizeof(*serr)); 1824 serr->ee.ee_errno = 0; 1825 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1826 serr->ee.ee_data = hi; 1827 serr->ee.ee_info = lo; 1828 if (!is_zerocopy) 1829 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1830 1831 q = &sk->sk_error_queue; 1832 spin_lock_irqsave(&q->lock, flags); 1833 tail = skb_peek_tail(q); 1834 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1835 !skb_zerocopy_notify_extend(tail, lo, len)) { 1836 __skb_queue_tail(q, skb); 1837 skb = NULL; 1838 } 1839 spin_unlock_irqrestore(&q->lock, flags); 1840 1841 sk_error_report(sk); 1842 1843 release: 1844 consume_skb(skb); 1845 sock_put(sk); 1846 } 1847 1848 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg, 1849 bool success) 1850 { 1851 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1852 1853 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1854 1855 if (refcount_dec_and_test(&uarg->refcnt)) 1856 __msg_zerocopy_callback(uarg_zc); 1857 } 1858 1859 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1860 { 1861 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1862 1863 atomic_dec(&sk->sk_zckey); 1864 uarg_to_msgzc(uarg)->len--; 1865 1866 if (have_uref) 1867 msg_zerocopy_complete(NULL, uarg, true); 1868 } 1869 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1870 1871 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = { 1872 .complete = msg_zerocopy_complete, 1873 }; 1874 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops); 1875 1876 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1877 struct msghdr *msg, int len, 1878 struct ubuf_info *uarg) 1879 { 1880 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1881 int err, orig_len = skb->len; 1882 1883 if (uarg->ops->link_skb) { 1884 err = uarg->ops->link_skb(skb, uarg); 1885 if (err) 1886 return err; 1887 } else { 1888 /* An skb can only point to one uarg. This edge case happens 1889 * when TCP appends to an skb, but zerocopy_realloc triggered 1890 * a new alloc. 1891 */ 1892 if (orig_uarg && uarg != orig_uarg) 1893 return -EEXIST; 1894 } 1895 1896 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1897 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1898 struct sock *save_sk = skb->sk; 1899 1900 /* Streams do not free skb on error. Reset to prev state. */ 1901 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1902 skb->sk = sk; 1903 ___pskb_trim(skb, orig_len); 1904 skb->sk = save_sk; 1905 return err; 1906 } 1907 1908 if (!uarg->ops->link_skb) 1909 skb_zcopy_set(skb, uarg, NULL); 1910 return skb->len - orig_len; 1911 } 1912 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1913 1914 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1915 { 1916 int i; 1917 1918 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1919 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1920 skb_frag_ref(skb, i); 1921 } 1922 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1923 1924 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1925 gfp_t gfp_mask) 1926 { 1927 if (skb_zcopy(orig)) { 1928 if (skb_zcopy(nskb)) { 1929 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1930 if (!gfp_mask) { 1931 WARN_ON_ONCE(1); 1932 return -ENOMEM; 1933 } 1934 if (skb_uarg(nskb) == skb_uarg(orig)) 1935 return 0; 1936 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1937 return -EIO; 1938 } 1939 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1940 } 1941 return 0; 1942 } 1943 1944 /** 1945 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1946 * @skb: the skb to modify 1947 * @gfp_mask: allocation priority 1948 * 1949 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1950 * It will copy all frags into kernel and drop the reference 1951 * to userspace pages. 1952 * 1953 * If this function is called from an interrupt gfp_mask() must be 1954 * %GFP_ATOMIC. 1955 * 1956 * Returns 0 on success or a negative error code on failure 1957 * to allocate kernel memory to copy to. 1958 */ 1959 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1960 { 1961 int num_frags = skb_shinfo(skb)->nr_frags; 1962 struct page *page, *head = NULL; 1963 int i, order, psize, new_frags; 1964 u32 d_off; 1965 1966 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1967 return -EINVAL; 1968 1969 if (!num_frags) 1970 goto release; 1971 1972 /* We might have to allocate high order pages, so compute what minimum 1973 * page order is needed. 1974 */ 1975 order = 0; 1976 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1977 order++; 1978 psize = (PAGE_SIZE << order); 1979 1980 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1981 for (i = 0; i < new_frags; i++) { 1982 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1983 if (!page) { 1984 while (head) { 1985 struct page *next = (struct page *)page_private(head); 1986 put_page(head); 1987 head = next; 1988 } 1989 return -ENOMEM; 1990 } 1991 set_page_private(page, (unsigned long)head); 1992 head = page; 1993 } 1994 1995 page = head; 1996 d_off = 0; 1997 for (i = 0; i < num_frags; i++) { 1998 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1999 u32 p_off, p_len, copied; 2000 struct page *p; 2001 u8 *vaddr; 2002 2003 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 2004 p, p_off, p_len, copied) { 2005 u32 copy, done = 0; 2006 vaddr = kmap_atomic(p); 2007 2008 while (done < p_len) { 2009 if (d_off == psize) { 2010 d_off = 0; 2011 page = (struct page *)page_private(page); 2012 } 2013 copy = min_t(u32, psize - d_off, p_len - done); 2014 memcpy(page_address(page) + d_off, 2015 vaddr + p_off + done, copy); 2016 done += copy; 2017 d_off += copy; 2018 } 2019 kunmap_atomic(vaddr); 2020 } 2021 } 2022 2023 /* skb frags release userspace buffers */ 2024 for (i = 0; i < num_frags; i++) 2025 skb_frag_unref(skb, i); 2026 2027 /* skb frags point to kernel buffers */ 2028 for (i = 0; i < new_frags - 1; i++) { 2029 __skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize); 2030 head = (struct page *)page_private(head); 2031 } 2032 __skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0, 2033 d_off); 2034 skb_shinfo(skb)->nr_frags = new_frags; 2035 2036 release: 2037 skb_zcopy_clear(skb, false); 2038 return 0; 2039 } 2040 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 2041 2042 /** 2043 * skb_clone - duplicate an sk_buff 2044 * @skb: buffer to clone 2045 * @gfp_mask: allocation priority 2046 * 2047 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 2048 * copies share the same packet data but not structure. The new 2049 * buffer has a reference count of 1. If the allocation fails the 2050 * function returns %NULL otherwise the new buffer is returned. 2051 * 2052 * If this function is called from an interrupt gfp_mask() must be 2053 * %GFP_ATOMIC. 2054 */ 2055 2056 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 2057 { 2058 struct sk_buff_fclones *fclones = container_of(skb, 2059 struct sk_buff_fclones, 2060 skb1); 2061 struct sk_buff *n; 2062 2063 if (skb_orphan_frags(skb, gfp_mask)) 2064 return NULL; 2065 2066 if (skb->fclone == SKB_FCLONE_ORIG && 2067 refcount_read(&fclones->fclone_ref) == 1) { 2068 n = &fclones->skb2; 2069 refcount_set(&fclones->fclone_ref, 2); 2070 n->fclone = SKB_FCLONE_CLONE; 2071 } else { 2072 if (skb_pfmemalloc(skb)) 2073 gfp_mask |= __GFP_MEMALLOC; 2074 2075 n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask); 2076 if (!n) 2077 return NULL; 2078 2079 n->fclone = SKB_FCLONE_UNAVAILABLE; 2080 } 2081 2082 return __skb_clone(n, skb); 2083 } 2084 EXPORT_SYMBOL(skb_clone); 2085 2086 void skb_headers_offset_update(struct sk_buff *skb, int off) 2087 { 2088 /* Only adjust this if it actually is csum_start rather than csum */ 2089 if (skb->ip_summed == CHECKSUM_PARTIAL) 2090 skb->csum_start += off; 2091 /* {transport,network,mac}_header and tail are relative to skb->head */ 2092 skb->transport_header += off; 2093 skb->network_header += off; 2094 if (skb_mac_header_was_set(skb)) 2095 skb->mac_header += off; 2096 skb->inner_transport_header += off; 2097 skb->inner_network_header += off; 2098 skb->inner_mac_header += off; 2099 } 2100 EXPORT_SYMBOL(skb_headers_offset_update); 2101 2102 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 2103 { 2104 __copy_skb_header(new, old); 2105 2106 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 2107 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 2108 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 2109 } 2110 EXPORT_SYMBOL(skb_copy_header); 2111 2112 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 2113 { 2114 if (skb_pfmemalloc(skb)) 2115 return SKB_ALLOC_RX; 2116 return 0; 2117 } 2118 2119 /** 2120 * skb_copy - create private copy of an sk_buff 2121 * @skb: buffer to copy 2122 * @gfp_mask: allocation priority 2123 * 2124 * Make a copy of both an &sk_buff and its data. This is used when the 2125 * caller wishes to modify the data and needs a private copy of the 2126 * data to alter. Returns %NULL on failure or the pointer to the buffer 2127 * on success. The returned buffer has a reference count of 1. 2128 * 2129 * As by-product this function converts non-linear &sk_buff to linear 2130 * one, so that &sk_buff becomes completely private and caller is allowed 2131 * to modify all the data of returned buffer. This means that this 2132 * function is not recommended for use in circumstances when only 2133 * header is going to be modified. Use pskb_copy() instead. 2134 */ 2135 2136 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 2137 { 2138 struct sk_buff *n; 2139 unsigned int size; 2140 int headerlen; 2141 2142 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2143 return NULL; 2144 2145 headerlen = skb_headroom(skb); 2146 size = skb_end_offset(skb) + skb->data_len; 2147 n = __alloc_skb(size, gfp_mask, 2148 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 2149 if (!n) 2150 return NULL; 2151 2152 /* Set the data pointer */ 2153 skb_reserve(n, headerlen); 2154 /* Set the tail pointer and length */ 2155 skb_put(n, skb->len); 2156 2157 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 2158 2159 skb_copy_header(n, skb); 2160 return n; 2161 } 2162 EXPORT_SYMBOL(skb_copy); 2163 2164 /** 2165 * __pskb_copy_fclone - create copy of an sk_buff with private head. 2166 * @skb: buffer to copy 2167 * @headroom: headroom of new skb 2168 * @gfp_mask: allocation priority 2169 * @fclone: if true allocate the copy of the skb from the fclone 2170 * cache instead of the head cache; it is recommended to set this 2171 * to true for the cases where the copy will likely be cloned 2172 * 2173 * Make a copy of both an &sk_buff and part of its data, located 2174 * in header. Fragmented data remain shared. This is used when 2175 * the caller wishes to modify only header of &sk_buff and needs 2176 * private copy of the header to alter. Returns %NULL on failure 2177 * or the pointer to the buffer on success. 2178 * The returned buffer has a reference count of 1. 2179 */ 2180 2181 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2182 gfp_t gfp_mask, bool fclone) 2183 { 2184 unsigned int size = skb_headlen(skb) + headroom; 2185 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2186 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2187 2188 if (!n) 2189 goto out; 2190 2191 /* Set the data pointer */ 2192 skb_reserve(n, headroom); 2193 /* Set the tail pointer and length */ 2194 skb_put(n, skb_headlen(skb)); 2195 /* Copy the bytes */ 2196 skb_copy_from_linear_data(skb, n->data, n->len); 2197 2198 n->truesize += skb->data_len; 2199 n->data_len = skb->data_len; 2200 n->len = skb->len; 2201 2202 if (skb_shinfo(skb)->nr_frags) { 2203 int i; 2204 2205 if (skb_orphan_frags(skb, gfp_mask) || 2206 skb_zerocopy_clone(n, skb, gfp_mask)) { 2207 kfree_skb(n); 2208 n = NULL; 2209 goto out; 2210 } 2211 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2212 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2213 skb_frag_ref(skb, i); 2214 } 2215 skb_shinfo(n)->nr_frags = i; 2216 } 2217 2218 if (skb_has_frag_list(skb)) { 2219 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2220 skb_clone_fraglist(n); 2221 } 2222 2223 skb_copy_header(n, skb); 2224 out: 2225 return n; 2226 } 2227 EXPORT_SYMBOL(__pskb_copy_fclone); 2228 2229 /** 2230 * pskb_expand_head - reallocate header of &sk_buff 2231 * @skb: buffer to reallocate 2232 * @nhead: room to add at head 2233 * @ntail: room to add at tail 2234 * @gfp_mask: allocation priority 2235 * 2236 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2237 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2238 * reference count of 1. Returns zero in the case of success or error, 2239 * if expansion failed. In the last case, &sk_buff is not changed. 2240 * 2241 * All the pointers pointing into skb header may change and must be 2242 * reloaded after call to this function. 2243 */ 2244 2245 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2246 gfp_t gfp_mask) 2247 { 2248 unsigned int osize = skb_end_offset(skb); 2249 unsigned int size = osize + nhead + ntail; 2250 long off; 2251 u8 *data; 2252 int i; 2253 2254 BUG_ON(nhead < 0); 2255 2256 BUG_ON(skb_shared(skb)); 2257 2258 skb_zcopy_downgrade_managed(skb); 2259 2260 if (skb_pfmemalloc(skb)) 2261 gfp_mask |= __GFP_MEMALLOC; 2262 2263 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2264 if (!data) 2265 goto nodata; 2266 size = SKB_WITH_OVERHEAD(size); 2267 2268 /* Copy only real data... and, alas, header. This should be 2269 * optimized for the cases when header is void. 2270 */ 2271 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2272 2273 memcpy((struct skb_shared_info *)(data + size), 2274 skb_shinfo(skb), 2275 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2276 2277 /* 2278 * if shinfo is shared we must drop the old head gracefully, but if it 2279 * is not we can just drop the old head and let the existing refcount 2280 * be since all we did is relocate the values 2281 */ 2282 if (skb_cloned(skb)) { 2283 if (skb_orphan_frags(skb, gfp_mask)) 2284 goto nofrags; 2285 if (skb_zcopy(skb)) 2286 refcount_inc(&skb_uarg(skb)->refcnt); 2287 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2288 skb_frag_ref(skb, i); 2289 2290 if (skb_has_frag_list(skb)) 2291 skb_clone_fraglist(skb); 2292 2293 skb_release_data(skb, SKB_CONSUMED, false); 2294 } else { 2295 skb_free_head(skb, false); 2296 } 2297 off = (data + nhead) - skb->head; 2298 2299 skb->head = data; 2300 skb->head_frag = 0; 2301 skb->data += off; 2302 2303 skb_set_end_offset(skb, size); 2304 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2305 off = nhead; 2306 #endif 2307 skb->tail += off; 2308 skb_headers_offset_update(skb, nhead); 2309 skb->cloned = 0; 2310 skb->hdr_len = 0; 2311 skb->nohdr = 0; 2312 atomic_set(&skb_shinfo(skb)->dataref, 1); 2313 2314 skb_metadata_clear(skb); 2315 2316 /* It is not generally safe to change skb->truesize. 2317 * For the moment, we really care of rx path, or 2318 * when skb is orphaned (not attached to a socket). 2319 */ 2320 if (!skb->sk || skb->destructor == sock_edemux) 2321 skb->truesize += size - osize; 2322 2323 return 0; 2324 2325 nofrags: 2326 skb_kfree_head(data, size); 2327 nodata: 2328 return -ENOMEM; 2329 } 2330 EXPORT_SYMBOL(pskb_expand_head); 2331 2332 /* Make private copy of skb with writable head and some headroom */ 2333 2334 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2335 { 2336 struct sk_buff *skb2; 2337 int delta = headroom - skb_headroom(skb); 2338 2339 if (delta <= 0) 2340 skb2 = pskb_copy(skb, GFP_ATOMIC); 2341 else { 2342 skb2 = skb_clone(skb, GFP_ATOMIC); 2343 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2344 GFP_ATOMIC)) { 2345 kfree_skb(skb2); 2346 skb2 = NULL; 2347 } 2348 } 2349 return skb2; 2350 } 2351 EXPORT_SYMBOL(skb_realloc_headroom); 2352 2353 /* Note: We plan to rework this in linux-6.4 */ 2354 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2355 { 2356 unsigned int saved_end_offset, saved_truesize; 2357 struct skb_shared_info *shinfo; 2358 int res; 2359 2360 saved_end_offset = skb_end_offset(skb); 2361 saved_truesize = skb->truesize; 2362 2363 res = pskb_expand_head(skb, 0, 0, pri); 2364 if (res) 2365 return res; 2366 2367 skb->truesize = saved_truesize; 2368 2369 if (likely(skb_end_offset(skb) == saved_end_offset)) 2370 return 0; 2371 2372 /* We can not change skb->end if the original or new value 2373 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2374 */ 2375 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2376 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2377 /* We think this path should not be taken. 2378 * Add a temporary trace to warn us just in case. 2379 */ 2380 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2381 saved_end_offset, skb_end_offset(skb)); 2382 WARN_ON_ONCE(1); 2383 return 0; 2384 } 2385 2386 shinfo = skb_shinfo(skb); 2387 2388 /* We are about to change back skb->end, 2389 * we need to move skb_shinfo() to its new location. 2390 */ 2391 memmove(skb->head + saved_end_offset, 2392 shinfo, 2393 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2394 2395 skb_set_end_offset(skb, saved_end_offset); 2396 2397 return 0; 2398 } 2399 2400 /** 2401 * skb_expand_head - reallocate header of &sk_buff 2402 * @skb: buffer to reallocate 2403 * @headroom: needed headroom 2404 * 2405 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2406 * if possible; copies skb->sk to new skb as needed 2407 * and frees original skb in case of failures. 2408 * 2409 * It expect increased headroom and generates warning otherwise. 2410 */ 2411 2412 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2413 { 2414 int delta = headroom - skb_headroom(skb); 2415 int osize = skb_end_offset(skb); 2416 struct sock *sk = skb->sk; 2417 2418 if (WARN_ONCE(delta <= 0, 2419 "%s is expecting an increase in the headroom", __func__)) 2420 return skb; 2421 2422 delta = SKB_DATA_ALIGN(delta); 2423 /* pskb_expand_head() might crash, if skb is shared. */ 2424 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2425 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2426 2427 if (unlikely(!nskb)) 2428 goto fail; 2429 2430 if (sk) 2431 skb_set_owner_w(nskb, sk); 2432 consume_skb(skb); 2433 skb = nskb; 2434 } 2435 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2436 goto fail; 2437 2438 if (sk && is_skb_wmem(skb)) { 2439 delta = skb_end_offset(skb) - osize; 2440 refcount_add(delta, &sk->sk_wmem_alloc); 2441 skb->truesize += delta; 2442 } 2443 return skb; 2444 2445 fail: 2446 kfree_skb(skb); 2447 return NULL; 2448 } 2449 EXPORT_SYMBOL(skb_expand_head); 2450 2451 /** 2452 * skb_copy_expand - copy and expand sk_buff 2453 * @skb: buffer to copy 2454 * @newheadroom: new free bytes at head 2455 * @newtailroom: new free bytes at tail 2456 * @gfp_mask: allocation priority 2457 * 2458 * Make a copy of both an &sk_buff and its data and while doing so 2459 * allocate additional space. 2460 * 2461 * This is used when the caller wishes to modify the data and needs a 2462 * private copy of the data to alter as well as more space for new fields. 2463 * Returns %NULL on failure or the pointer to the buffer 2464 * on success. The returned buffer has a reference count of 1. 2465 * 2466 * You must pass %GFP_ATOMIC as the allocation priority if this function 2467 * is called from an interrupt. 2468 */ 2469 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2470 int newheadroom, int newtailroom, 2471 gfp_t gfp_mask) 2472 { 2473 /* 2474 * Allocate the copy buffer 2475 */ 2476 int head_copy_len, head_copy_off; 2477 struct sk_buff *n; 2478 int oldheadroom; 2479 2480 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2481 return NULL; 2482 2483 oldheadroom = skb_headroom(skb); 2484 n = __alloc_skb(newheadroom + skb->len + newtailroom, 2485 gfp_mask, skb_alloc_rx_flag(skb), 2486 NUMA_NO_NODE); 2487 if (!n) 2488 return NULL; 2489 2490 skb_reserve(n, newheadroom); 2491 2492 /* Set the tail pointer and length */ 2493 skb_put(n, skb->len); 2494 2495 head_copy_len = oldheadroom; 2496 head_copy_off = 0; 2497 if (newheadroom <= head_copy_len) 2498 head_copy_len = newheadroom; 2499 else 2500 head_copy_off = newheadroom - head_copy_len; 2501 2502 /* Copy the linear header and data. */ 2503 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2504 skb->len + head_copy_len)); 2505 2506 skb_copy_header(n, skb); 2507 2508 skb_headers_offset_update(n, newheadroom - oldheadroom); 2509 2510 return n; 2511 } 2512 EXPORT_SYMBOL(skb_copy_expand); 2513 2514 /** 2515 * __skb_pad - zero pad the tail of an skb 2516 * @skb: buffer to pad 2517 * @pad: space to pad 2518 * @free_on_error: free buffer on error 2519 * 2520 * Ensure that a buffer is followed by a padding area that is zero 2521 * filled. Used by network drivers which may DMA or transfer data 2522 * beyond the buffer end onto the wire. 2523 * 2524 * May return error in out of memory cases. The skb is freed on error 2525 * if @free_on_error is true. 2526 */ 2527 2528 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2529 { 2530 int err; 2531 int ntail; 2532 2533 /* If the skbuff is non linear tailroom is always zero.. */ 2534 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2535 memset(skb->data+skb->len, 0, pad); 2536 return 0; 2537 } 2538 2539 ntail = skb->data_len + pad - (skb->end - skb->tail); 2540 if (likely(skb_cloned(skb) || ntail > 0)) { 2541 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2542 if (unlikely(err)) 2543 goto free_skb; 2544 } 2545 2546 /* FIXME: The use of this function with non-linear skb's really needs 2547 * to be audited. 2548 */ 2549 err = skb_linearize(skb); 2550 if (unlikely(err)) 2551 goto free_skb; 2552 2553 memset(skb->data + skb->len, 0, pad); 2554 return 0; 2555 2556 free_skb: 2557 if (free_on_error) 2558 kfree_skb(skb); 2559 return err; 2560 } 2561 EXPORT_SYMBOL(__skb_pad); 2562 2563 /** 2564 * pskb_put - add data to the tail of a potentially fragmented buffer 2565 * @skb: start of the buffer to use 2566 * @tail: tail fragment of the buffer to use 2567 * @len: amount of data to add 2568 * 2569 * This function extends the used data area of the potentially 2570 * fragmented buffer. @tail must be the last fragment of @skb -- or 2571 * @skb itself. If this would exceed the total buffer size the kernel 2572 * will panic. A pointer to the first byte of the extra data is 2573 * returned. 2574 */ 2575 2576 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2577 { 2578 if (tail != skb) { 2579 skb->data_len += len; 2580 skb->len += len; 2581 } 2582 return skb_put(tail, len); 2583 } 2584 EXPORT_SYMBOL_GPL(pskb_put); 2585 2586 /** 2587 * skb_put - add data to a buffer 2588 * @skb: buffer to use 2589 * @len: amount of data to add 2590 * 2591 * This function extends the used data area of the buffer. If this would 2592 * exceed the total buffer size the kernel will panic. A pointer to the 2593 * first byte of the extra data is returned. 2594 */ 2595 void *skb_put(struct sk_buff *skb, unsigned int len) 2596 { 2597 void *tmp = skb_tail_pointer(skb); 2598 SKB_LINEAR_ASSERT(skb); 2599 skb->tail += len; 2600 skb->len += len; 2601 if (unlikely(skb->tail > skb->end)) 2602 skb_over_panic(skb, len, __builtin_return_address(0)); 2603 return tmp; 2604 } 2605 EXPORT_SYMBOL(skb_put); 2606 2607 /** 2608 * skb_push - add data to the start of a buffer 2609 * @skb: buffer to use 2610 * @len: amount of data to add 2611 * 2612 * This function extends the used data area of the buffer at the buffer 2613 * start. If this would exceed the total buffer headroom the kernel will 2614 * panic. A pointer to the first byte of the extra data is returned. 2615 */ 2616 void *skb_push(struct sk_buff *skb, unsigned int len) 2617 { 2618 skb->data -= len; 2619 skb->len += len; 2620 if (unlikely(skb->data < skb->head)) 2621 skb_under_panic(skb, len, __builtin_return_address(0)); 2622 return skb->data; 2623 } 2624 EXPORT_SYMBOL(skb_push); 2625 2626 /** 2627 * skb_pull - remove data from the start of a buffer 2628 * @skb: buffer to use 2629 * @len: amount of data to remove 2630 * 2631 * This function removes data from the start of a buffer, returning 2632 * the memory to the headroom. A pointer to the next data in the buffer 2633 * is returned. Once the data has been pulled future pushes will overwrite 2634 * the old data. 2635 */ 2636 void *skb_pull(struct sk_buff *skb, unsigned int len) 2637 { 2638 return skb_pull_inline(skb, len); 2639 } 2640 EXPORT_SYMBOL(skb_pull); 2641 2642 /** 2643 * skb_pull_data - remove data from the start of a buffer returning its 2644 * original position. 2645 * @skb: buffer to use 2646 * @len: amount of data to remove 2647 * 2648 * This function removes data from the start of a buffer, returning 2649 * the memory to the headroom. A pointer to the original data in the buffer 2650 * is returned after checking if there is enough data to pull. Once the 2651 * data has been pulled future pushes will overwrite the old data. 2652 */ 2653 void *skb_pull_data(struct sk_buff *skb, size_t len) 2654 { 2655 void *data = skb->data; 2656 2657 if (skb->len < len) 2658 return NULL; 2659 2660 skb_pull(skb, len); 2661 2662 return data; 2663 } 2664 EXPORT_SYMBOL(skb_pull_data); 2665 2666 /** 2667 * skb_trim - remove end from a buffer 2668 * @skb: buffer to alter 2669 * @len: new length 2670 * 2671 * Cut the length of a buffer down by removing data from the tail. If 2672 * the buffer is already under the length specified it is not modified. 2673 * The skb must be linear. 2674 */ 2675 void skb_trim(struct sk_buff *skb, unsigned int len) 2676 { 2677 if (skb->len > len) 2678 __skb_trim(skb, len); 2679 } 2680 EXPORT_SYMBOL(skb_trim); 2681 2682 /* Trims skb to length len. It can change skb pointers. 2683 */ 2684 2685 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2686 { 2687 struct sk_buff **fragp; 2688 struct sk_buff *frag; 2689 int offset = skb_headlen(skb); 2690 int nfrags = skb_shinfo(skb)->nr_frags; 2691 int i; 2692 int err; 2693 2694 if (skb_cloned(skb) && 2695 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2696 return err; 2697 2698 i = 0; 2699 if (offset >= len) 2700 goto drop_pages; 2701 2702 for (; i < nfrags; i++) { 2703 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2704 2705 if (end < len) { 2706 offset = end; 2707 continue; 2708 } 2709 2710 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2711 2712 drop_pages: 2713 skb_shinfo(skb)->nr_frags = i; 2714 2715 for (; i < nfrags; i++) 2716 skb_frag_unref(skb, i); 2717 2718 if (skb_has_frag_list(skb)) 2719 skb_drop_fraglist(skb); 2720 goto done; 2721 } 2722 2723 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2724 fragp = &frag->next) { 2725 int end = offset + frag->len; 2726 2727 if (skb_shared(frag)) { 2728 struct sk_buff *nfrag; 2729 2730 nfrag = skb_clone(frag, GFP_ATOMIC); 2731 if (unlikely(!nfrag)) 2732 return -ENOMEM; 2733 2734 nfrag->next = frag->next; 2735 consume_skb(frag); 2736 frag = nfrag; 2737 *fragp = frag; 2738 } 2739 2740 if (end < len) { 2741 offset = end; 2742 continue; 2743 } 2744 2745 if (end > len && 2746 unlikely((err = pskb_trim(frag, len - offset)))) 2747 return err; 2748 2749 if (frag->next) 2750 skb_drop_list(&frag->next); 2751 break; 2752 } 2753 2754 done: 2755 if (len > skb_headlen(skb)) { 2756 skb->data_len -= skb->len - len; 2757 skb->len = len; 2758 } else { 2759 skb->len = len; 2760 skb->data_len = 0; 2761 skb_set_tail_pointer(skb, len); 2762 } 2763 2764 if (!skb->sk || skb->destructor == sock_edemux) 2765 skb_condense(skb); 2766 return 0; 2767 } 2768 EXPORT_SYMBOL(___pskb_trim); 2769 2770 /* Note : use pskb_trim_rcsum() instead of calling this directly 2771 */ 2772 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2773 { 2774 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2775 int delta = skb->len - len; 2776 2777 skb->csum = csum_block_sub(skb->csum, 2778 skb_checksum(skb, len, delta, 0), 2779 len); 2780 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2781 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2782 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2783 2784 if (offset + sizeof(__sum16) > hdlen) 2785 return -EINVAL; 2786 } 2787 return __pskb_trim(skb, len); 2788 } 2789 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2790 2791 /** 2792 * __pskb_pull_tail - advance tail of skb header 2793 * @skb: buffer to reallocate 2794 * @delta: number of bytes to advance tail 2795 * 2796 * The function makes a sense only on a fragmented &sk_buff, 2797 * it expands header moving its tail forward and copying necessary 2798 * data from fragmented part. 2799 * 2800 * &sk_buff MUST have reference count of 1. 2801 * 2802 * Returns %NULL (and &sk_buff does not change) if pull failed 2803 * or value of new tail of skb in the case of success. 2804 * 2805 * All the pointers pointing into skb header may change and must be 2806 * reloaded after call to this function. 2807 */ 2808 2809 /* Moves tail of skb head forward, copying data from fragmented part, 2810 * when it is necessary. 2811 * 1. It may fail due to malloc failure. 2812 * 2. It may change skb pointers. 2813 * 2814 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2815 */ 2816 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2817 { 2818 /* If skb has not enough free space at tail, get new one 2819 * plus 128 bytes for future expansions. If we have enough 2820 * room at tail, reallocate without expansion only if skb is cloned. 2821 */ 2822 int i, k, eat = (skb->tail + delta) - skb->end; 2823 2824 if (eat > 0 || skb_cloned(skb)) { 2825 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2826 GFP_ATOMIC)) 2827 return NULL; 2828 } 2829 2830 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2831 skb_tail_pointer(skb), delta)); 2832 2833 /* Optimization: no fragments, no reasons to preestimate 2834 * size of pulled pages. Superb. 2835 */ 2836 if (!skb_has_frag_list(skb)) 2837 goto pull_pages; 2838 2839 /* Estimate size of pulled pages. */ 2840 eat = delta; 2841 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2842 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2843 2844 if (size >= eat) 2845 goto pull_pages; 2846 eat -= size; 2847 } 2848 2849 /* If we need update frag list, we are in troubles. 2850 * Certainly, it is possible to add an offset to skb data, 2851 * but taking into account that pulling is expected to 2852 * be very rare operation, it is worth to fight against 2853 * further bloating skb head and crucify ourselves here instead. 2854 * Pure masohism, indeed. 8)8) 2855 */ 2856 if (eat) { 2857 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2858 struct sk_buff *clone = NULL; 2859 struct sk_buff *insp = NULL; 2860 2861 do { 2862 if (list->len <= eat) { 2863 /* Eaten as whole. */ 2864 eat -= list->len; 2865 list = list->next; 2866 insp = list; 2867 } else { 2868 /* Eaten partially. */ 2869 if (skb_is_gso(skb) && !list->head_frag && 2870 skb_headlen(list)) 2871 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2872 2873 if (skb_shared(list)) { 2874 /* Sucks! We need to fork list. :-( */ 2875 clone = skb_clone(list, GFP_ATOMIC); 2876 if (!clone) 2877 return NULL; 2878 insp = list->next; 2879 list = clone; 2880 } else { 2881 /* This may be pulled without 2882 * problems. */ 2883 insp = list; 2884 } 2885 if (!pskb_pull(list, eat)) { 2886 kfree_skb(clone); 2887 return NULL; 2888 } 2889 break; 2890 } 2891 } while (eat); 2892 2893 /* Free pulled out fragments. */ 2894 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2895 skb_shinfo(skb)->frag_list = list->next; 2896 consume_skb(list); 2897 } 2898 /* And insert new clone at head. */ 2899 if (clone) { 2900 clone->next = list; 2901 skb_shinfo(skb)->frag_list = clone; 2902 } 2903 } 2904 /* Success! Now we may commit changes to skb data. */ 2905 2906 pull_pages: 2907 eat = delta; 2908 k = 0; 2909 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2910 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2911 2912 if (size <= eat) { 2913 skb_frag_unref(skb, i); 2914 eat -= size; 2915 } else { 2916 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2917 2918 *frag = skb_shinfo(skb)->frags[i]; 2919 if (eat) { 2920 skb_frag_off_add(frag, eat); 2921 skb_frag_size_sub(frag, eat); 2922 if (!i) 2923 goto end; 2924 eat = 0; 2925 } 2926 k++; 2927 } 2928 } 2929 skb_shinfo(skb)->nr_frags = k; 2930 2931 end: 2932 skb->tail += delta; 2933 skb->data_len -= delta; 2934 2935 if (!skb->data_len) 2936 skb_zcopy_clear(skb, false); 2937 2938 return skb_tail_pointer(skb); 2939 } 2940 EXPORT_SYMBOL(__pskb_pull_tail); 2941 2942 /** 2943 * skb_copy_bits - copy bits from skb to kernel buffer 2944 * @skb: source skb 2945 * @offset: offset in source 2946 * @to: destination buffer 2947 * @len: number of bytes to copy 2948 * 2949 * Copy the specified number of bytes from the source skb to the 2950 * destination buffer. 2951 * 2952 * CAUTION ! : 2953 * If its prototype is ever changed, 2954 * check arch/{*}/net/{*}.S files, 2955 * since it is called from BPF assembly code. 2956 */ 2957 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2958 { 2959 int start = skb_headlen(skb); 2960 struct sk_buff *frag_iter; 2961 int i, copy; 2962 2963 if (offset > (int)skb->len - len) 2964 goto fault; 2965 2966 /* Copy header. */ 2967 if ((copy = start - offset) > 0) { 2968 if (copy > len) 2969 copy = len; 2970 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2971 if ((len -= copy) == 0) 2972 return 0; 2973 offset += copy; 2974 to += copy; 2975 } 2976 2977 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2978 int end; 2979 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2980 2981 WARN_ON(start > offset + len); 2982 2983 end = start + skb_frag_size(f); 2984 if ((copy = end - offset) > 0) { 2985 u32 p_off, p_len, copied; 2986 struct page *p; 2987 u8 *vaddr; 2988 2989 if (copy > len) 2990 copy = len; 2991 2992 skb_frag_foreach_page(f, 2993 skb_frag_off(f) + offset - start, 2994 copy, p, p_off, p_len, copied) { 2995 vaddr = kmap_atomic(p); 2996 memcpy(to + copied, vaddr + p_off, p_len); 2997 kunmap_atomic(vaddr); 2998 } 2999 3000 if ((len -= copy) == 0) 3001 return 0; 3002 offset += copy; 3003 to += copy; 3004 } 3005 start = end; 3006 } 3007 3008 skb_walk_frags(skb, frag_iter) { 3009 int end; 3010 3011 WARN_ON(start > offset + len); 3012 3013 end = start + frag_iter->len; 3014 if ((copy = end - offset) > 0) { 3015 if (copy > len) 3016 copy = len; 3017 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 3018 goto fault; 3019 if ((len -= copy) == 0) 3020 return 0; 3021 offset += copy; 3022 to += copy; 3023 } 3024 start = end; 3025 } 3026 3027 if (!len) 3028 return 0; 3029 3030 fault: 3031 return -EFAULT; 3032 } 3033 EXPORT_SYMBOL(skb_copy_bits); 3034 3035 /* 3036 * Callback from splice_to_pipe(), if we need to release some pages 3037 * at the end of the spd in case we error'ed out in filling the pipe. 3038 */ 3039 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 3040 { 3041 put_page(spd->pages[i]); 3042 } 3043 3044 static struct page *linear_to_page(struct page *page, unsigned int *len, 3045 unsigned int *offset, 3046 struct sock *sk) 3047 { 3048 struct page_frag *pfrag = sk_page_frag(sk); 3049 3050 if (!sk_page_frag_refill(sk, pfrag)) 3051 return NULL; 3052 3053 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 3054 3055 memcpy(page_address(pfrag->page) + pfrag->offset, 3056 page_address(page) + *offset, *len); 3057 *offset = pfrag->offset; 3058 pfrag->offset += *len; 3059 3060 return pfrag->page; 3061 } 3062 3063 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 3064 struct page *page, 3065 unsigned int offset) 3066 { 3067 return spd->nr_pages && 3068 spd->pages[spd->nr_pages - 1] == page && 3069 (spd->partial[spd->nr_pages - 1].offset + 3070 spd->partial[spd->nr_pages - 1].len == offset); 3071 } 3072 3073 /* 3074 * Fill page/offset/length into spd, if it can hold more pages. 3075 */ 3076 static bool spd_fill_page(struct splice_pipe_desc *spd, 3077 struct pipe_inode_info *pipe, struct page *page, 3078 unsigned int *len, unsigned int offset, 3079 bool linear, 3080 struct sock *sk) 3081 { 3082 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 3083 return true; 3084 3085 if (linear) { 3086 page = linear_to_page(page, len, &offset, sk); 3087 if (!page) 3088 return true; 3089 } 3090 if (spd_can_coalesce(spd, page, offset)) { 3091 spd->partial[spd->nr_pages - 1].len += *len; 3092 return false; 3093 } 3094 get_page(page); 3095 spd->pages[spd->nr_pages] = page; 3096 spd->partial[spd->nr_pages].len = *len; 3097 spd->partial[spd->nr_pages].offset = offset; 3098 spd->nr_pages++; 3099 3100 return false; 3101 } 3102 3103 static bool __splice_segment(struct page *page, unsigned int poff, 3104 unsigned int plen, unsigned int *off, 3105 unsigned int *len, 3106 struct splice_pipe_desc *spd, bool linear, 3107 struct sock *sk, 3108 struct pipe_inode_info *pipe) 3109 { 3110 if (!*len) 3111 return true; 3112 3113 /* skip this segment if already processed */ 3114 if (*off >= plen) { 3115 *off -= plen; 3116 return false; 3117 } 3118 3119 /* ignore any bits we already processed */ 3120 poff += *off; 3121 plen -= *off; 3122 *off = 0; 3123 3124 do { 3125 unsigned int flen = min(*len, plen); 3126 3127 if (spd_fill_page(spd, pipe, page, &flen, poff, 3128 linear, sk)) 3129 return true; 3130 poff += flen; 3131 plen -= flen; 3132 *len -= flen; 3133 } while (*len && plen); 3134 3135 return false; 3136 } 3137 3138 /* 3139 * Map linear and fragment data from the skb to spd. It reports true if the 3140 * pipe is full or if we already spliced the requested length. 3141 */ 3142 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 3143 unsigned int *offset, unsigned int *len, 3144 struct splice_pipe_desc *spd, struct sock *sk) 3145 { 3146 int seg; 3147 struct sk_buff *iter; 3148 3149 /* map the linear part : 3150 * If skb->head_frag is set, this 'linear' part is backed by a 3151 * fragment, and if the head is not shared with any clones then 3152 * we can avoid a copy since we own the head portion of this page. 3153 */ 3154 if (__splice_segment(virt_to_page(skb->data), 3155 (unsigned long) skb->data & (PAGE_SIZE - 1), 3156 skb_headlen(skb), 3157 offset, len, spd, 3158 skb_head_is_locked(skb), 3159 sk, pipe)) 3160 return true; 3161 3162 /* 3163 * then map the fragments 3164 */ 3165 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 3166 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 3167 3168 if (__splice_segment(skb_frag_page(f), 3169 skb_frag_off(f), skb_frag_size(f), 3170 offset, len, spd, false, sk, pipe)) 3171 return true; 3172 } 3173 3174 skb_walk_frags(skb, iter) { 3175 if (*offset >= iter->len) { 3176 *offset -= iter->len; 3177 continue; 3178 } 3179 /* __skb_splice_bits() only fails if the output has no room 3180 * left, so no point in going over the frag_list for the error 3181 * case. 3182 */ 3183 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 3184 return true; 3185 } 3186 3187 return false; 3188 } 3189 3190 /* 3191 * Map data from the skb to a pipe. Should handle both the linear part, 3192 * the fragments, and the frag list. 3193 */ 3194 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3195 struct pipe_inode_info *pipe, unsigned int tlen, 3196 unsigned int flags) 3197 { 3198 struct partial_page partial[MAX_SKB_FRAGS]; 3199 struct page *pages[MAX_SKB_FRAGS]; 3200 struct splice_pipe_desc spd = { 3201 .pages = pages, 3202 .partial = partial, 3203 .nr_pages_max = MAX_SKB_FRAGS, 3204 .ops = &nosteal_pipe_buf_ops, 3205 .spd_release = sock_spd_release, 3206 }; 3207 int ret = 0; 3208 3209 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3210 3211 if (spd.nr_pages) 3212 ret = splice_to_pipe(pipe, &spd); 3213 3214 return ret; 3215 } 3216 EXPORT_SYMBOL_GPL(skb_splice_bits); 3217 3218 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3219 { 3220 struct socket *sock = sk->sk_socket; 3221 size_t size = msg_data_left(msg); 3222 3223 if (!sock) 3224 return -EINVAL; 3225 3226 if (!sock->ops->sendmsg_locked) 3227 return sock_no_sendmsg_locked(sk, msg, size); 3228 3229 return sock->ops->sendmsg_locked(sk, msg, size); 3230 } 3231 3232 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3233 { 3234 struct socket *sock = sk->sk_socket; 3235 3236 if (!sock) 3237 return -EINVAL; 3238 return sock_sendmsg(sock, msg); 3239 } 3240 3241 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3242 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3243 int len, sendmsg_func sendmsg) 3244 { 3245 unsigned int orig_len = len; 3246 struct sk_buff *head = skb; 3247 unsigned short fragidx; 3248 int slen, ret; 3249 3250 do_frag_list: 3251 3252 /* Deal with head data */ 3253 while (offset < skb_headlen(skb) && len) { 3254 struct kvec kv; 3255 struct msghdr msg; 3256 3257 slen = min_t(int, len, skb_headlen(skb) - offset); 3258 kv.iov_base = skb->data + offset; 3259 kv.iov_len = slen; 3260 memset(&msg, 0, sizeof(msg)); 3261 msg.msg_flags = MSG_DONTWAIT; 3262 3263 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3264 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3265 sendmsg_unlocked, sk, &msg); 3266 if (ret <= 0) 3267 goto error; 3268 3269 offset += ret; 3270 len -= ret; 3271 } 3272 3273 /* All the data was skb head? */ 3274 if (!len) 3275 goto out; 3276 3277 /* Make offset relative to start of frags */ 3278 offset -= skb_headlen(skb); 3279 3280 /* Find where we are in frag list */ 3281 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3282 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3283 3284 if (offset < skb_frag_size(frag)) 3285 break; 3286 3287 offset -= skb_frag_size(frag); 3288 } 3289 3290 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3291 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3292 3293 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3294 3295 while (slen) { 3296 struct bio_vec bvec; 3297 struct msghdr msg = { 3298 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT, 3299 }; 3300 3301 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3302 skb_frag_off(frag) + offset); 3303 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3304 slen); 3305 3306 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3307 sendmsg_unlocked, sk, &msg); 3308 if (ret <= 0) 3309 goto error; 3310 3311 len -= ret; 3312 offset += ret; 3313 slen -= ret; 3314 } 3315 3316 offset = 0; 3317 } 3318 3319 if (len) { 3320 /* Process any frag lists */ 3321 3322 if (skb == head) { 3323 if (skb_has_frag_list(skb)) { 3324 skb = skb_shinfo(skb)->frag_list; 3325 goto do_frag_list; 3326 } 3327 } else if (skb->next) { 3328 skb = skb->next; 3329 goto do_frag_list; 3330 } 3331 } 3332 3333 out: 3334 return orig_len - len; 3335 3336 error: 3337 return orig_len == len ? ret : orig_len - len; 3338 } 3339 3340 /* Send skb data on a socket. Socket must be locked. */ 3341 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3342 int len) 3343 { 3344 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked); 3345 } 3346 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3347 3348 /* Send skb data on a socket. Socket must be unlocked. */ 3349 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3350 { 3351 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked); 3352 } 3353 3354 /** 3355 * skb_store_bits - store bits from kernel buffer to skb 3356 * @skb: destination buffer 3357 * @offset: offset in destination 3358 * @from: source buffer 3359 * @len: number of bytes to copy 3360 * 3361 * Copy the specified number of bytes from the source buffer to the 3362 * destination skb. This function handles all the messy bits of 3363 * traversing fragment lists and such. 3364 */ 3365 3366 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3367 { 3368 int start = skb_headlen(skb); 3369 struct sk_buff *frag_iter; 3370 int i, copy; 3371 3372 if (offset > (int)skb->len - len) 3373 goto fault; 3374 3375 if ((copy = start - offset) > 0) { 3376 if (copy > len) 3377 copy = len; 3378 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3379 if ((len -= copy) == 0) 3380 return 0; 3381 offset += copy; 3382 from += copy; 3383 } 3384 3385 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3386 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3387 int end; 3388 3389 WARN_ON(start > offset + len); 3390 3391 end = start + skb_frag_size(frag); 3392 if ((copy = end - offset) > 0) { 3393 u32 p_off, p_len, copied; 3394 struct page *p; 3395 u8 *vaddr; 3396 3397 if (copy > len) 3398 copy = len; 3399 3400 skb_frag_foreach_page(frag, 3401 skb_frag_off(frag) + offset - start, 3402 copy, p, p_off, p_len, copied) { 3403 vaddr = kmap_atomic(p); 3404 memcpy(vaddr + p_off, from + copied, p_len); 3405 kunmap_atomic(vaddr); 3406 } 3407 3408 if ((len -= copy) == 0) 3409 return 0; 3410 offset += copy; 3411 from += copy; 3412 } 3413 start = end; 3414 } 3415 3416 skb_walk_frags(skb, frag_iter) { 3417 int end; 3418 3419 WARN_ON(start > offset + len); 3420 3421 end = start + frag_iter->len; 3422 if ((copy = end - offset) > 0) { 3423 if (copy > len) 3424 copy = len; 3425 if (skb_store_bits(frag_iter, offset - start, 3426 from, copy)) 3427 goto fault; 3428 if ((len -= copy) == 0) 3429 return 0; 3430 offset += copy; 3431 from += copy; 3432 } 3433 start = end; 3434 } 3435 if (!len) 3436 return 0; 3437 3438 fault: 3439 return -EFAULT; 3440 } 3441 EXPORT_SYMBOL(skb_store_bits); 3442 3443 /* Checksum skb data. */ 3444 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3445 __wsum csum, const struct skb_checksum_ops *ops) 3446 { 3447 int start = skb_headlen(skb); 3448 int i, copy = start - offset; 3449 struct sk_buff *frag_iter; 3450 int pos = 0; 3451 3452 /* Checksum header. */ 3453 if (copy > 0) { 3454 if (copy > len) 3455 copy = len; 3456 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 3457 skb->data + offset, copy, csum); 3458 if ((len -= copy) == 0) 3459 return csum; 3460 offset += copy; 3461 pos = copy; 3462 } 3463 3464 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3465 int end; 3466 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3467 3468 WARN_ON(start > offset + len); 3469 3470 end = start + skb_frag_size(frag); 3471 if ((copy = end - offset) > 0) { 3472 u32 p_off, p_len, copied; 3473 struct page *p; 3474 __wsum csum2; 3475 u8 *vaddr; 3476 3477 if (copy > len) 3478 copy = len; 3479 3480 skb_frag_foreach_page(frag, 3481 skb_frag_off(frag) + offset - start, 3482 copy, p, p_off, p_len, copied) { 3483 vaddr = kmap_atomic(p); 3484 csum2 = INDIRECT_CALL_1(ops->update, 3485 csum_partial_ext, 3486 vaddr + p_off, p_len, 0); 3487 kunmap_atomic(vaddr); 3488 csum = INDIRECT_CALL_1(ops->combine, 3489 csum_block_add_ext, csum, 3490 csum2, pos, p_len); 3491 pos += p_len; 3492 } 3493 3494 if (!(len -= copy)) 3495 return csum; 3496 offset += copy; 3497 } 3498 start = end; 3499 } 3500 3501 skb_walk_frags(skb, frag_iter) { 3502 int end; 3503 3504 WARN_ON(start > offset + len); 3505 3506 end = start + frag_iter->len; 3507 if ((copy = end - offset) > 0) { 3508 __wsum csum2; 3509 if (copy > len) 3510 copy = len; 3511 csum2 = __skb_checksum(frag_iter, offset - start, 3512 copy, 0, ops); 3513 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 3514 csum, csum2, pos, copy); 3515 if ((len -= copy) == 0) 3516 return csum; 3517 offset += copy; 3518 pos += copy; 3519 } 3520 start = end; 3521 } 3522 BUG_ON(len); 3523 3524 return csum; 3525 } 3526 EXPORT_SYMBOL(__skb_checksum); 3527 3528 __wsum skb_checksum(const struct sk_buff *skb, int offset, 3529 int len, __wsum csum) 3530 { 3531 const struct skb_checksum_ops ops = { 3532 .update = csum_partial_ext, 3533 .combine = csum_block_add_ext, 3534 }; 3535 3536 return __skb_checksum(skb, offset, len, csum, &ops); 3537 } 3538 EXPORT_SYMBOL(skb_checksum); 3539 3540 /* Both of above in one bottle. */ 3541 3542 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3543 u8 *to, int len) 3544 { 3545 int start = skb_headlen(skb); 3546 int i, copy = start - offset; 3547 struct sk_buff *frag_iter; 3548 int pos = 0; 3549 __wsum csum = 0; 3550 3551 /* Copy header. */ 3552 if (copy > 0) { 3553 if (copy > len) 3554 copy = len; 3555 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3556 copy); 3557 if ((len -= copy) == 0) 3558 return csum; 3559 offset += copy; 3560 to += copy; 3561 pos = copy; 3562 } 3563 3564 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3565 int end; 3566 3567 WARN_ON(start > offset + len); 3568 3569 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3570 if ((copy = end - offset) > 0) { 3571 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3572 u32 p_off, p_len, copied; 3573 struct page *p; 3574 __wsum csum2; 3575 u8 *vaddr; 3576 3577 if (copy > len) 3578 copy = len; 3579 3580 skb_frag_foreach_page(frag, 3581 skb_frag_off(frag) + offset - start, 3582 copy, p, p_off, p_len, copied) { 3583 vaddr = kmap_atomic(p); 3584 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3585 to + copied, 3586 p_len); 3587 kunmap_atomic(vaddr); 3588 csum = csum_block_add(csum, csum2, pos); 3589 pos += p_len; 3590 } 3591 3592 if (!(len -= copy)) 3593 return csum; 3594 offset += copy; 3595 to += copy; 3596 } 3597 start = end; 3598 } 3599 3600 skb_walk_frags(skb, frag_iter) { 3601 __wsum csum2; 3602 int end; 3603 3604 WARN_ON(start > offset + len); 3605 3606 end = start + frag_iter->len; 3607 if ((copy = end - offset) > 0) { 3608 if (copy > len) 3609 copy = len; 3610 csum2 = skb_copy_and_csum_bits(frag_iter, 3611 offset - start, 3612 to, copy); 3613 csum = csum_block_add(csum, csum2, pos); 3614 if ((len -= copy) == 0) 3615 return csum; 3616 offset += copy; 3617 to += copy; 3618 pos += copy; 3619 } 3620 start = end; 3621 } 3622 BUG_ON(len); 3623 return csum; 3624 } 3625 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3626 3627 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3628 { 3629 __sum16 sum; 3630 3631 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3632 /* See comments in __skb_checksum_complete(). */ 3633 if (likely(!sum)) { 3634 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3635 !skb->csum_complete_sw) 3636 netdev_rx_csum_fault(skb->dev, skb); 3637 } 3638 if (!skb_shared(skb)) 3639 skb->csum_valid = !sum; 3640 return sum; 3641 } 3642 EXPORT_SYMBOL(__skb_checksum_complete_head); 3643 3644 /* This function assumes skb->csum already holds pseudo header's checksum, 3645 * which has been changed from the hardware checksum, for example, by 3646 * __skb_checksum_validate_complete(). And, the original skb->csum must 3647 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3648 * 3649 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3650 * zero. The new checksum is stored back into skb->csum unless the skb is 3651 * shared. 3652 */ 3653 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3654 { 3655 __wsum csum; 3656 __sum16 sum; 3657 3658 csum = skb_checksum(skb, 0, skb->len, 0); 3659 3660 sum = csum_fold(csum_add(skb->csum, csum)); 3661 /* This check is inverted, because we already knew the hardware 3662 * checksum is invalid before calling this function. So, if the 3663 * re-computed checksum is valid instead, then we have a mismatch 3664 * between the original skb->csum and skb_checksum(). This means either 3665 * the original hardware checksum is incorrect or we screw up skb->csum 3666 * when moving skb->data around. 3667 */ 3668 if (likely(!sum)) { 3669 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3670 !skb->csum_complete_sw) 3671 netdev_rx_csum_fault(skb->dev, skb); 3672 } 3673 3674 if (!skb_shared(skb)) { 3675 /* Save full packet checksum */ 3676 skb->csum = csum; 3677 skb->ip_summed = CHECKSUM_COMPLETE; 3678 skb->csum_complete_sw = 1; 3679 skb->csum_valid = !sum; 3680 } 3681 3682 return sum; 3683 } 3684 EXPORT_SYMBOL(__skb_checksum_complete); 3685 3686 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3687 { 3688 net_warn_ratelimited( 3689 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3690 __func__); 3691 return 0; 3692 } 3693 3694 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3695 int offset, int len) 3696 { 3697 net_warn_ratelimited( 3698 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3699 __func__); 3700 return 0; 3701 } 3702 3703 static const struct skb_checksum_ops default_crc32c_ops = { 3704 .update = warn_crc32c_csum_update, 3705 .combine = warn_crc32c_csum_combine, 3706 }; 3707 3708 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3709 &default_crc32c_ops; 3710 EXPORT_SYMBOL(crc32c_csum_stub); 3711 3712 /** 3713 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3714 * @from: source buffer 3715 * 3716 * Calculates the amount of linear headroom needed in the 'to' skb passed 3717 * into skb_zerocopy(). 3718 */ 3719 unsigned int 3720 skb_zerocopy_headlen(const struct sk_buff *from) 3721 { 3722 unsigned int hlen = 0; 3723 3724 if (!from->head_frag || 3725 skb_headlen(from) < L1_CACHE_BYTES || 3726 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3727 hlen = skb_headlen(from); 3728 if (!hlen) 3729 hlen = from->len; 3730 } 3731 3732 if (skb_has_frag_list(from)) 3733 hlen = from->len; 3734 3735 return hlen; 3736 } 3737 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3738 3739 /** 3740 * skb_zerocopy - Zero copy skb to skb 3741 * @to: destination buffer 3742 * @from: source buffer 3743 * @len: number of bytes to copy from source buffer 3744 * @hlen: size of linear headroom in destination buffer 3745 * 3746 * Copies up to `len` bytes from `from` to `to` by creating references 3747 * to the frags in the source buffer. 3748 * 3749 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3750 * headroom in the `to` buffer. 3751 * 3752 * Return value: 3753 * 0: everything is OK 3754 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3755 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3756 */ 3757 int 3758 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3759 { 3760 int i, j = 0; 3761 int plen = 0; /* length of skb->head fragment */ 3762 int ret; 3763 struct page *page; 3764 unsigned int offset; 3765 3766 BUG_ON(!from->head_frag && !hlen); 3767 3768 /* dont bother with small payloads */ 3769 if (len <= skb_tailroom(to)) 3770 return skb_copy_bits(from, 0, skb_put(to, len), len); 3771 3772 if (hlen) { 3773 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3774 if (unlikely(ret)) 3775 return ret; 3776 len -= hlen; 3777 } else { 3778 plen = min_t(int, skb_headlen(from), len); 3779 if (plen) { 3780 page = virt_to_head_page(from->head); 3781 offset = from->data - (unsigned char *)page_address(page); 3782 __skb_fill_netmem_desc(to, 0, page_to_netmem(page), 3783 offset, plen); 3784 get_page(page); 3785 j = 1; 3786 len -= plen; 3787 } 3788 } 3789 3790 skb_len_add(to, len + plen); 3791 3792 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3793 skb_tx_error(from); 3794 return -ENOMEM; 3795 } 3796 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3797 3798 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3799 int size; 3800 3801 if (!len) 3802 break; 3803 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3804 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3805 len); 3806 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3807 len -= size; 3808 skb_frag_ref(to, j); 3809 j++; 3810 } 3811 skb_shinfo(to)->nr_frags = j; 3812 3813 return 0; 3814 } 3815 EXPORT_SYMBOL_GPL(skb_zerocopy); 3816 3817 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3818 { 3819 __wsum csum; 3820 long csstart; 3821 3822 if (skb->ip_summed == CHECKSUM_PARTIAL) 3823 csstart = skb_checksum_start_offset(skb); 3824 else 3825 csstart = skb_headlen(skb); 3826 3827 BUG_ON(csstart > skb_headlen(skb)); 3828 3829 skb_copy_from_linear_data(skb, to, csstart); 3830 3831 csum = 0; 3832 if (csstart != skb->len) 3833 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3834 skb->len - csstart); 3835 3836 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3837 long csstuff = csstart + skb->csum_offset; 3838 3839 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3840 } 3841 } 3842 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3843 3844 /** 3845 * skb_dequeue - remove from the head of the queue 3846 * @list: list to dequeue from 3847 * 3848 * Remove the head of the list. The list lock is taken so the function 3849 * may be used safely with other locking list functions. The head item is 3850 * returned or %NULL if the list is empty. 3851 */ 3852 3853 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3854 { 3855 unsigned long flags; 3856 struct sk_buff *result; 3857 3858 spin_lock_irqsave(&list->lock, flags); 3859 result = __skb_dequeue(list); 3860 spin_unlock_irqrestore(&list->lock, flags); 3861 return result; 3862 } 3863 EXPORT_SYMBOL(skb_dequeue); 3864 3865 /** 3866 * skb_dequeue_tail - remove from the tail of the queue 3867 * @list: list to dequeue from 3868 * 3869 * Remove the tail of the list. The list lock is taken so the function 3870 * may be used safely with other locking list functions. The tail item is 3871 * returned or %NULL if the list is empty. 3872 */ 3873 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3874 { 3875 unsigned long flags; 3876 struct sk_buff *result; 3877 3878 spin_lock_irqsave(&list->lock, flags); 3879 result = __skb_dequeue_tail(list); 3880 spin_unlock_irqrestore(&list->lock, flags); 3881 return result; 3882 } 3883 EXPORT_SYMBOL(skb_dequeue_tail); 3884 3885 /** 3886 * skb_queue_purge_reason - empty a list 3887 * @list: list to empty 3888 * @reason: drop reason 3889 * 3890 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3891 * the list and one reference dropped. This function takes the list 3892 * lock and is atomic with respect to other list locking functions. 3893 */ 3894 void skb_queue_purge_reason(struct sk_buff_head *list, 3895 enum skb_drop_reason reason) 3896 { 3897 struct sk_buff_head tmp; 3898 unsigned long flags; 3899 3900 if (skb_queue_empty_lockless(list)) 3901 return; 3902 3903 __skb_queue_head_init(&tmp); 3904 3905 spin_lock_irqsave(&list->lock, flags); 3906 skb_queue_splice_init(list, &tmp); 3907 spin_unlock_irqrestore(&list->lock, flags); 3908 3909 __skb_queue_purge_reason(&tmp, reason); 3910 } 3911 EXPORT_SYMBOL(skb_queue_purge_reason); 3912 3913 /** 3914 * skb_rbtree_purge - empty a skb rbtree 3915 * @root: root of the rbtree to empty 3916 * Return value: the sum of truesizes of all purged skbs. 3917 * 3918 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3919 * the list and one reference dropped. This function does not take 3920 * any lock. Synchronization should be handled by the caller (e.g., TCP 3921 * out-of-order queue is protected by the socket lock). 3922 */ 3923 unsigned int skb_rbtree_purge(struct rb_root *root) 3924 { 3925 struct rb_node *p = rb_first(root); 3926 unsigned int sum = 0; 3927 3928 while (p) { 3929 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3930 3931 p = rb_next(p); 3932 rb_erase(&skb->rbnode, root); 3933 sum += skb->truesize; 3934 kfree_skb(skb); 3935 } 3936 return sum; 3937 } 3938 3939 void skb_errqueue_purge(struct sk_buff_head *list) 3940 { 3941 struct sk_buff *skb, *next; 3942 struct sk_buff_head kill; 3943 unsigned long flags; 3944 3945 __skb_queue_head_init(&kill); 3946 3947 spin_lock_irqsave(&list->lock, flags); 3948 skb_queue_walk_safe(list, skb, next) { 3949 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || 3950 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) 3951 continue; 3952 __skb_unlink(skb, list); 3953 __skb_queue_tail(&kill, skb); 3954 } 3955 spin_unlock_irqrestore(&list->lock, flags); 3956 __skb_queue_purge(&kill); 3957 } 3958 EXPORT_SYMBOL(skb_errqueue_purge); 3959 3960 /** 3961 * skb_queue_head - queue a buffer at the list head 3962 * @list: list to use 3963 * @newsk: buffer to queue 3964 * 3965 * Queue a buffer at the start of the list. This function takes the 3966 * list lock and can be used safely with other locking &sk_buff functions 3967 * safely. 3968 * 3969 * A buffer cannot be placed on two lists at the same time. 3970 */ 3971 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3972 { 3973 unsigned long flags; 3974 3975 spin_lock_irqsave(&list->lock, flags); 3976 __skb_queue_head(list, newsk); 3977 spin_unlock_irqrestore(&list->lock, flags); 3978 } 3979 EXPORT_SYMBOL(skb_queue_head); 3980 3981 /** 3982 * skb_queue_tail - queue a buffer at the list tail 3983 * @list: list to use 3984 * @newsk: buffer to queue 3985 * 3986 * Queue a buffer at the tail of the list. This function takes the 3987 * list lock and can be used safely with other locking &sk_buff functions 3988 * safely. 3989 * 3990 * A buffer cannot be placed on two lists at the same time. 3991 */ 3992 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3993 { 3994 unsigned long flags; 3995 3996 spin_lock_irqsave(&list->lock, flags); 3997 __skb_queue_tail(list, newsk); 3998 spin_unlock_irqrestore(&list->lock, flags); 3999 } 4000 EXPORT_SYMBOL(skb_queue_tail); 4001 4002 /** 4003 * skb_unlink - remove a buffer from a list 4004 * @skb: buffer to remove 4005 * @list: list to use 4006 * 4007 * Remove a packet from a list. The list locks are taken and this 4008 * function is atomic with respect to other list locked calls 4009 * 4010 * You must know what list the SKB is on. 4011 */ 4012 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 4013 { 4014 unsigned long flags; 4015 4016 spin_lock_irqsave(&list->lock, flags); 4017 __skb_unlink(skb, list); 4018 spin_unlock_irqrestore(&list->lock, flags); 4019 } 4020 EXPORT_SYMBOL(skb_unlink); 4021 4022 /** 4023 * skb_append - append a buffer 4024 * @old: buffer to insert after 4025 * @newsk: buffer to insert 4026 * @list: list to use 4027 * 4028 * Place a packet after a given packet in a list. The list locks are taken 4029 * and this function is atomic with respect to other list locked calls. 4030 * A buffer cannot be placed on two lists at the same time. 4031 */ 4032 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 4033 { 4034 unsigned long flags; 4035 4036 spin_lock_irqsave(&list->lock, flags); 4037 __skb_queue_after(list, old, newsk); 4038 spin_unlock_irqrestore(&list->lock, flags); 4039 } 4040 EXPORT_SYMBOL(skb_append); 4041 4042 static inline void skb_split_inside_header(struct sk_buff *skb, 4043 struct sk_buff* skb1, 4044 const u32 len, const int pos) 4045 { 4046 int i; 4047 4048 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 4049 pos - len); 4050 /* And move data appendix as is. */ 4051 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 4052 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 4053 4054 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 4055 skb_shinfo(skb)->nr_frags = 0; 4056 skb1->data_len = skb->data_len; 4057 skb1->len += skb1->data_len; 4058 skb->data_len = 0; 4059 skb->len = len; 4060 skb_set_tail_pointer(skb, len); 4061 } 4062 4063 static inline void skb_split_no_header(struct sk_buff *skb, 4064 struct sk_buff* skb1, 4065 const u32 len, int pos) 4066 { 4067 int i, k = 0; 4068 const int nfrags = skb_shinfo(skb)->nr_frags; 4069 4070 skb_shinfo(skb)->nr_frags = 0; 4071 skb1->len = skb1->data_len = skb->len - len; 4072 skb->len = len; 4073 skb->data_len = len - pos; 4074 4075 for (i = 0; i < nfrags; i++) { 4076 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 4077 4078 if (pos + size > len) { 4079 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 4080 4081 if (pos < len) { 4082 /* Split frag. 4083 * We have two variants in this case: 4084 * 1. Move all the frag to the second 4085 * part, if it is possible. F.e. 4086 * this approach is mandatory for TUX, 4087 * where splitting is expensive. 4088 * 2. Split is accurately. We make this. 4089 */ 4090 skb_frag_ref(skb, i); 4091 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 4092 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 4093 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 4094 skb_shinfo(skb)->nr_frags++; 4095 } 4096 k++; 4097 } else 4098 skb_shinfo(skb)->nr_frags++; 4099 pos += size; 4100 } 4101 skb_shinfo(skb1)->nr_frags = k; 4102 } 4103 4104 /** 4105 * skb_split - Split fragmented skb to two parts at length len. 4106 * @skb: the buffer to split 4107 * @skb1: the buffer to receive the second part 4108 * @len: new length for skb 4109 */ 4110 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 4111 { 4112 int pos = skb_headlen(skb); 4113 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 4114 4115 skb_zcopy_downgrade_managed(skb); 4116 4117 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 4118 skb_zerocopy_clone(skb1, skb, 0); 4119 if (len < pos) /* Split line is inside header. */ 4120 skb_split_inside_header(skb, skb1, len, pos); 4121 else /* Second chunk has no header, nothing to copy. */ 4122 skb_split_no_header(skb, skb1, len, pos); 4123 } 4124 EXPORT_SYMBOL(skb_split); 4125 4126 /* Shifting from/to a cloned skb is a no-go. 4127 * 4128 * Caller cannot keep skb_shinfo related pointers past calling here! 4129 */ 4130 static int skb_prepare_for_shift(struct sk_buff *skb) 4131 { 4132 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 4133 } 4134 4135 /** 4136 * skb_shift - Shifts paged data partially from skb to another 4137 * @tgt: buffer into which tail data gets added 4138 * @skb: buffer from which the paged data comes from 4139 * @shiftlen: shift up to this many bytes 4140 * 4141 * Attempts to shift up to shiftlen worth of bytes, which may be less than 4142 * the length of the skb, from skb to tgt. Returns number bytes shifted. 4143 * It's up to caller to free skb if everything was shifted. 4144 * 4145 * If @tgt runs out of frags, the whole operation is aborted. 4146 * 4147 * Skb cannot include anything else but paged data while tgt is allowed 4148 * to have non-paged data as well. 4149 * 4150 * TODO: full sized shift could be optimized but that would need 4151 * specialized skb free'er to handle frags without up-to-date nr_frags. 4152 */ 4153 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 4154 { 4155 int from, to, merge, todo; 4156 skb_frag_t *fragfrom, *fragto; 4157 4158 BUG_ON(shiftlen > skb->len); 4159 4160 if (skb_headlen(skb)) 4161 return 0; 4162 if (skb_zcopy(tgt) || skb_zcopy(skb)) 4163 return 0; 4164 4165 todo = shiftlen; 4166 from = 0; 4167 to = skb_shinfo(tgt)->nr_frags; 4168 fragfrom = &skb_shinfo(skb)->frags[from]; 4169 4170 /* Actual merge is delayed until the point when we know we can 4171 * commit all, so that we don't have to undo partial changes 4172 */ 4173 if (!to || 4174 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 4175 skb_frag_off(fragfrom))) { 4176 merge = -1; 4177 } else { 4178 merge = to - 1; 4179 4180 todo -= skb_frag_size(fragfrom); 4181 if (todo < 0) { 4182 if (skb_prepare_for_shift(skb) || 4183 skb_prepare_for_shift(tgt)) 4184 return 0; 4185 4186 /* All previous frag pointers might be stale! */ 4187 fragfrom = &skb_shinfo(skb)->frags[from]; 4188 fragto = &skb_shinfo(tgt)->frags[merge]; 4189 4190 skb_frag_size_add(fragto, shiftlen); 4191 skb_frag_size_sub(fragfrom, shiftlen); 4192 skb_frag_off_add(fragfrom, shiftlen); 4193 4194 goto onlymerged; 4195 } 4196 4197 from++; 4198 } 4199 4200 /* Skip full, not-fitting skb to avoid expensive operations */ 4201 if ((shiftlen == skb->len) && 4202 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 4203 return 0; 4204 4205 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 4206 return 0; 4207 4208 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 4209 if (to == MAX_SKB_FRAGS) 4210 return 0; 4211 4212 fragfrom = &skb_shinfo(skb)->frags[from]; 4213 fragto = &skb_shinfo(tgt)->frags[to]; 4214 4215 if (todo >= skb_frag_size(fragfrom)) { 4216 *fragto = *fragfrom; 4217 todo -= skb_frag_size(fragfrom); 4218 from++; 4219 to++; 4220 4221 } else { 4222 __skb_frag_ref(fragfrom); 4223 skb_frag_page_copy(fragto, fragfrom); 4224 skb_frag_off_copy(fragto, fragfrom); 4225 skb_frag_size_set(fragto, todo); 4226 4227 skb_frag_off_add(fragfrom, todo); 4228 skb_frag_size_sub(fragfrom, todo); 4229 todo = 0; 4230 4231 to++; 4232 break; 4233 } 4234 } 4235 4236 /* Ready to "commit" this state change to tgt */ 4237 skb_shinfo(tgt)->nr_frags = to; 4238 4239 if (merge >= 0) { 4240 fragfrom = &skb_shinfo(skb)->frags[0]; 4241 fragto = &skb_shinfo(tgt)->frags[merge]; 4242 4243 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4244 __skb_frag_unref(fragfrom, skb->pp_recycle); 4245 } 4246 4247 /* Reposition in the original skb */ 4248 to = 0; 4249 while (from < skb_shinfo(skb)->nr_frags) 4250 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4251 skb_shinfo(skb)->nr_frags = to; 4252 4253 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4254 4255 onlymerged: 4256 /* Most likely the tgt won't ever need its checksum anymore, skb on 4257 * the other hand might need it if it needs to be resent 4258 */ 4259 tgt->ip_summed = CHECKSUM_PARTIAL; 4260 skb->ip_summed = CHECKSUM_PARTIAL; 4261 4262 skb_len_add(skb, -shiftlen); 4263 skb_len_add(tgt, shiftlen); 4264 4265 return shiftlen; 4266 } 4267 4268 /** 4269 * skb_prepare_seq_read - Prepare a sequential read of skb data 4270 * @skb: the buffer to read 4271 * @from: lower offset of data to be read 4272 * @to: upper offset of data to be read 4273 * @st: state variable 4274 * 4275 * Initializes the specified state variable. Must be called before 4276 * invoking skb_seq_read() for the first time. 4277 */ 4278 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4279 unsigned int to, struct skb_seq_state *st) 4280 { 4281 st->lower_offset = from; 4282 st->upper_offset = to; 4283 st->root_skb = st->cur_skb = skb; 4284 st->frag_idx = st->stepped_offset = 0; 4285 st->frag_data = NULL; 4286 st->frag_off = 0; 4287 } 4288 EXPORT_SYMBOL(skb_prepare_seq_read); 4289 4290 /** 4291 * skb_seq_read - Sequentially read skb data 4292 * @consumed: number of bytes consumed by the caller so far 4293 * @data: destination pointer for data to be returned 4294 * @st: state variable 4295 * 4296 * Reads a block of skb data at @consumed relative to the 4297 * lower offset specified to skb_prepare_seq_read(). Assigns 4298 * the head of the data block to @data and returns the length 4299 * of the block or 0 if the end of the skb data or the upper 4300 * offset has been reached. 4301 * 4302 * The caller is not required to consume all of the data 4303 * returned, i.e. @consumed is typically set to the number 4304 * of bytes already consumed and the next call to 4305 * skb_seq_read() will return the remaining part of the block. 4306 * 4307 * Note 1: The size of each block of data returned can be arbitrary, 4308 * this limitation is the cost for zerocopy sequential 4309 * reads of potentially non linear data. 4310 * 4311 * Note 2: Fragment lists within fragments are not implemented 4312 * at the moment, state->root_skb could be replaced with 4313 * a stack for this purpose. 4314 */ 4315 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4316 struct skb_seq_state *st) 4317 { 4318 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4319 skb_frag_t *frag; 4320 4321 if (unlikely(abs_offset >= st->upper_offset)) { 4322 if (st->frag_data) { 4323 kunmap_atomic(st->frag_data); 4324 st->frag_data = NULL; 4325 } 4326 return 0; 4327 } 4328 4329 next_skb: 4330 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4331 4332 if (abs_offset < block_limit && !st->frag_data) { 4333 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4334 return block_limit - abs_offset; 4335 } 4336 4337 if (st->frag_idx == 0 && !st->frag_data) 4338 st->stepped_offset += skb_headlen(st->cur_skb); 4339 4340 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4341 unsigned int pg_idx, pg_off, pg_sz; 4342 4343 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4344 4345 pg_idx = 0; 4346 pg_off = skb_frag_off(frag); 4347 pg_sz = skb_frag_size(frag); 4348 4349 if (skb_frag_must_loop(skb_frag_page(frag))) { 4350 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4351 pg_off = offset_in_page(pg_off + st->frag_off); 4352 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4353 PAGE_SIZE - pg_off); 4354 } 4355 4356 block_limit = pg_sz + st->stepped_offset; 4357 if (abs_offset < block_limit) { 4358 if (!st->frag_data) 4359 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4360 4361 *data = (u8 *)st->frag_data + pg_off + 4362 (abs_offset - st->stepped_offset); 4363 4364 return block_limit - abs_offset; 4365 } 4366 4367 if (st->frag_data) { 4368 kunmap_atomic(st->frag_data); 4369 st->frag_data = NULL; 4370 } 4371 4372 st->stepped_offset += pg_sz; 4373 st->frag_off += pg_sz; 4374 if (st->frag_off == skb_frag_size(frag)) { 4375 st->frag_off = 0; 4376 st->frag_idx++; 4377 } 4378 } 4379 4380 if (st->frag_data) { 4381 kunmap_atomic(st->frag_data); 4382 st->frag_data = NULL; 4383 } 4384 4385 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4386 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4387 st->frag_idx = 0; 4388 goto next_skb; 4389 } else if (st->cur_skb->next) { 4390 st->cur_skb = st->cur_skb->next; 4391 st->frag_idx = 0; 4392 goto next_skb; 4393 } 4394 4395 return 0; 4396 } 4397 EXPORT_SYMBOL(skb_seq_read); 4398 4399 /** 4400 * skb_abort_seq_read - Abort a sequential read of skb data 4401 * @st: state variable 4402 * 4403 * Must be called if skb_seq_read() was not called until it 4404 * returned 0. 4405 */ 4406 void skb_abort_seq_read(struct skb_seq_state *st) 4407 { 4408 if (st->frag_data) 4409 kunmap_atomic(st->frag_data); 4410 } 4411 EXPORT_SYMBOL(skb_abort_seq_read); 4412 4413 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4414 4415 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4416 struct ts_config *conf, 4417 struct ts_state *state) 4418 { 4419 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4420 } 4421 4422 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4423 { 4424 skb_abort_seq_read(TS_SKB_CB(state)); 4425 } 4426 4427 /** 4428 * skb_find_text - Find a text pattern in skb data 4429 * @skb: the buffer to look in 4430 * @from: search offset 4431 * @to: search limit 4432 * @config: textsearch configuration 4433 * 4434 * Finds a pattern in the skb data according to the specified 4435 * textsearch configuration. Use textsearch_next() to retrieve 4436 * subsequent occurrences of the pattern. Returns the offset 4437 * to the first occurrence or UINT_MAX if no match was found. 4438 */ 4439 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4440 unsigned int to, struct ts_config *config) 4441 { 4442 unsigned int patlen = config->ops->get_pattern_len(config); 4443 struct ts_state state; 4444 unsigned int ret; 4445 4446 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4447 4448 config->get_next_block = skb_ts_get_next_block; 4449 config->finish = skb_ts_finish; 4450 4451 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4452 4453 ret = textsearch_find(config, &state); 4454 return (ret + patlen <= to - from ? ret : UINT_MAX); 4455 } 4456 EXPORT_SYMBOL(skb_find_text); 4457 4458 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4459 int offset, size_t size, size_t max_frags) 4460 { 4461 int i = skb_shinfo(skb)->nr_frags; 4462 4463 if (skb_can_coalesce(skb, i, page, offset)) { 4464 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4465 } else if (i < max_frags) { 4466 skb_zcopy_downgrade_managed(skb); 4467 get_page(page); 4468 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4469 } else { 4470 return -EMSGSIZE; 4471 } 4472 4473 return 0; 4474 } 4475 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4476 4477 /** 4478 * skb_pull_rcsum - pull skb and update receive checksum 4479 * @skb: buffer to update 4480 * @len: length of data pulled 4481 * 4482 * This function performs an skb_pull on the packet and updates 4483 * the CHECKSUM_COMPLETE checksum. It should be used on 4484 * receive path processing instead of skb_pull unless you know 4485 * that the checksum difference is zero (e.g., a valid IP header) 4486 * or you are setting ip_summed to CHECKSUM_NONE. 4487 */ 4488 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4489 { 4490 unsigned char *data = skb->data; 4491 4492 BUG_ON(len > skb->len); 4493 __skb_pull(skb, len); 4494 skb_postpull_rcsum(skb, data, len); 4495 return skb->data; 4496 } 4497 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4498 4499 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4500 { 4501 skb_frag_t head_frag; 4502 struct page *page; 4503 4504 page = virt_to_head_page(frag_skb->head); 4505 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4506 (unsigned char *)page_address(page), 4507 skb_headlen(frag_skb)); 4508 return head_frag; 4509 } 4510 4511 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4512 netdev_features_t features, 4513 unsigned int offset) 4514 { 4515 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4516 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4517 unsigned int delta_truesize = 0; 4518 unsigned int delta_len = 0; 4519 struct sk_buff *tail = NULL; 4520 struct sk_buff *nskb, *tmp; 4521 int len_diff, err; 4522 4523 skb_push(skb, -skb_network_offset(skb) + offset); 4524 4525 /* Ensure the head is writeable before touching the shared info */ 4526 err = skb_unclone(skb, GFP_ATOMIC); 4527 if (err) 4528 goto err_linearize; 4529 4530 skb_shinfo(skb)->frag_list = NULL; 4531 4532 while (list_skb) { 4533 nskb = list_skb; 4534 list_skb = list_skb->next; 4535 4536 err = 0; 4537 delta_truesize += nskb->truesize; 4538 if (skb_shared(nskb)) { 4539 tmp = skb_clone(nskb, GFP_ATOMIC); 4540 if (tmp) { 4541 consume_skb(nskb); 4542 nskb = tmp; 4543 err = skb_unclone(nskb, GFP_ATOMIC); 4544 } else { 4545 err = -ENOMEM; 4546 } 4547 } 4548 4549 if (!tail) 4550 skb->next = nskb; 4551 else 4552 tail->next = nskb; 4553 4554 if (unlikely(err)) { 4555 nskb->next = list_skb; 4556 goto err_linearize; 4557 } 4558 4559 tail = nskb; 4560 4561 delta_len += nskb->len; 4562 4563 skb_push(nskb, -skb_network_offset(nskb) + offset); 4564 4565 skb_release_head_state(nskb); 4566 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4567 __copy_skb_header(nskb, skb); 4568 4569 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4570 nskb->transport_header += len_diff; 4571 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4572 nskb->data - tnl_hlen, 4573 offset + tnl_hlen); 4574 4575 if (skb_needs_linearize(nskb, features) && 4576 __skb_linearize(nskb)) 4577 goto err_linearize; 4578 } 4579 4580 skb->truesize = skb->truesize - delta_truesize; 4581 skb->data_len = skb->data_len - delta_len; 4582 skb->len = skb->len - delta_len; 4583 4584 skb_gso_reset(skb); 4585 4586 skb->prev = tail; 4587 4588 if (skb_needs_linearize(skb, features) && 4589 __skb_linearize(skb)) 4590 goto err_linearize; 4591 4592 skb_get(skb); 4593 4594 return skb; 4595 4596 err_linearize: 4597 kfree_skb_list(skb->next); 4598 skb->next = NULL; 4599 return ERR_PTR(-ENOMEM); 4600 } 4601 EXPORT_SYMBOL_GPL(skb_segment_list); 4602 4603 /** 4604 * skb_segment - Perform protocol segmentation on skb. 4605 * @head_skb: buffer to segment 4606 * @features: features for the output path (see dev->features) 4607 * 4608 * This function performs segmentation on the given skb. It returns 4609 * a pointer to the first in a list of new skbs for the segments. 4610 * In case of error it returns ERR_PTR(err). 4611 */ 4612 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4613 netdev_features_t features) 4614 { 4615 struct sk_buff *segs = NULL; 4616 struct sk_buff *tail = NULL; 4617 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4618 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4619 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4620 unsigned int offset = doffset; 4621 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4622 unsigned int partial_segs = 0; 4623 unsigned int headroom; 4624 unsigned int len = head_skb->len; 4625 struct sk_buff *frag_skb; 4626 skb_frag_t *frag; 4627 __be16 proto; 4628 bool csum, sg; 4629 int err = -ENOMEM; 4630 int i = 0; 4631 int nfrags, pos; 4632 4633 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4634 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4635 struct sk_buff *check_skb; 4636 4637 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4638 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4639 /* gso_size is untrusted, and we have a frag_list with 4640 * a linear non head_frag item. 4641 * 4642 * If head_skb's headlen does not fit requested gso_size, 4643 * it means that the frag_list members do NOT terminate 4644 * on exact gso_size boundaries. Hence we cannot perform 4645 * skb_frag_t page sharing. Therefore we must fallback to 4646 * copying the frag_list skbs; we do so by disabling SG. 4647 */ 4648 features &= ~NETIF_F_SG; 4649 break; 4650 } 4651 } 4652 } 4653 4654 __skb_push(head_skb, doffset); 4655 proto = skb_network_protocol(head_skb, NULL); 4656 if (unlikely(!proto)) 4657 return ERR_PTR(-EINVAL); 4658 4659 sg = !!(features & NETIF_F_SG); 4660 csum = !!can_checksum_protocol(features, proto); 4661 4662 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4663 if (!(features & NETIF_F_GSO_PARTIAL)) { 4664 struct sk_buff *iter; 4665 unsigned int frag_len; 4666 4667 if (!list_skb || 4668 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4669 goto normal; 4670 4671 /* If we get here then all the required 4672 * GSO features except frag_list are supported. 4673 * Try to split the SKB to multiple GSO SKBs 4674 * with no frag_list. 4675 * Currently we can do that only when the buffers don't 4676 * have a linear part and all the buffers except 4677 * the last are of the same length. 4678 */ 4679 frag_len = list_skb->len; 4680 skb_walk_frags(head_skb, iter) { 4681 if (frag_len != iter->len && iter->next) 4682 goto normal; 4683 if (skb_headlen(iter) && !iter->head_frag) 4684 goto normal; 4685 4686 len -= iter->len; 4687 } 4688 4689 if (len != frag_len) 4690 goto normal; 4691 } 4692 4693 /* GSO partial only requires that we trim off any excess that 4694 * doesn't fit into an MSS sized block, so take care of that 4695 * now. 4696 * Cap len to not accidentally hit GSO_BY_FRAGS. 4697 */ 4698 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss; 4699 if (partial_segs > 1) 4700 mss *= partial_segs; 4701 else 4702 partial_segs = 0; 4703 } 4704 4705 normal: 4706 headroom = skb_headroom(head_skb); 4707 pos = skb_headlen(head_skb); 4708 4709 if (skb_orphan_frags(head_skb, GFP_ATOMIC)) 4710 return ERR_PTR(-ENOMEM); 4711 4712 nfrags = skb_shinfo(head_skb)->nr_frags; 4713 frag = skb_shinfo(head_skb)->frags; 4714 frag_skb = head_skb; 4715 4716 do { 4717 struct sk_buff *nskb; 4718 skb_frag_t *nskb_frag; 4719 int hsize; 4720 int size; 4721 4722 if (unlikely(mss == GSO_BY_FRAGS)) { 4723 len = list_skb->len; 4724 } else { 4725 len = head_skb->len - offset; 4726 if (len > mss) 4727 len = mss; 4728 } 4729 4730 hsize = skb_headlen(head_skb) - offset; 4731 4732 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4733 (skb_headlen(list_skb) == len || sg)) { 4734 BUG_ON(skb_headlen(list_skb) > len); 4735 4736 nskb = skb_clone(list_skb, GFP_ATOMIC); 4737 if (unlikely(!nskb)) 4738 goto err; 4739 4740 i = 0; 4741 nfrags = skb_shinfo(list_skb)->nr_frags; 4742 frag = skb_shinfo(list_skb)->frags; 4743 frag_skb = list_skb; 4744 pos += skb_headlen(list_skb); 4745 4746 while (pos < offset + len) { 4747 BUG_ON(i >= nfrags); 4748 4749 size = skb_frag_size(frag); 4750 if (pos + size > offset + len) 4751 break; 4752 4753 i++; 4754 pos += size; 4755 frag++; 4756 } 4757 4758 list_skb = list_skb->next; 4759 4760 if (unlikely(pskb_trim(nskb, len))) { 4761 kfree_skb(nskb); 4762 goto err; 4763 } 4764 4765 hsize = skb_end_offset(nskb); 4766 if (skb_cow_head(nskb, doffset + headroom)) { 4767 kfree_skb(nskb); 4768 goto err; 4769 } 4770 4771 nskb->truesize += skb_end_offset(nskb) - hsize; 4772 skb_release_head_state(nskb); 4773 __skb_push(nskb, doffset); 4774 } else { 4775 if (hsize < 0) 4776 hsize = 0; 4777 if (hsize > len || !sg) 4778 hsize = len; 4779 4780 nskb = __alloc_skb(hsize + doffset + headroom, 4781 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4782 NUMA_NO_NODE); 4783 4784 if (unlikely(!nskb)) 4785 goto err; 4786 4787 skb_reserve(nskb, headroom); 4788 __skb_put(nskb, doffset); 4789 } 4790 4791 if (segs) 4792 tail->next = nskb; 4793 else 4794 segs = nskb; 4795 tail = nskb; 4796 4797 __copy_skb_header(nskb, head_skb); 4798 4799 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4800 skb_reset_mac_len(nskb); 4801 4802 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4803 nskb->data - tnl_hlen, 4804 doffset + tnl_hlen); 4805 4806 if (nskb->len == len + doffset) 4807 goto perform_csum_check; 4808 4809 if (!sg) { 4810 if (!csum) { 4811 if (!nskb->remcsum_offload) 4812 nskb->ip_summed = CHECKSUM_NONE; 4813 SKB_GSO_CB(nskb)->csum = 4814 skb_copy_and_csum_bits(head_skb, offset, 4815 skb_put(nskb, 4816 len), 4817 len); 4818 SKB_GSO_CB(nskb)->csum_start = 4819 skb_headroom(nskb) + doffset; 4820 } else { 4821 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4822 goto err; 4823 } 4824 continue; 4825 } 4826 4827 nskb_frag = skb_shinfo(nskb)->frags; 4828 4829 skb_copy_from_linear_data_offset(head_skb, offset, 4830 skb_put(nskb, hsize), hsize); 4831 4832 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4833 SKBFL_SHARED_FRAG; 4834 4835 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4836 goto err; 4837 4838 while (pos < offset + len) { 4839 if (i >= nfrags) { 4840 if (skb_orphan_frags(list_skb, GFP_ATOMIC) || 4841 skb_zerocopy_clone(nskb, list_skb, 4842 GFP_ATOMIC)) 4843 goto err; 4844 4845 i = 0; 4846 nfrags = skb_shinfo(list_skb)->nr_frags; 4847 frag = skb_shinfo(list_skb)->frags; 4848 frag_skb = list_skb; 4849 if (!skb_headlen(list_skb)) { 4850 BUG_ON(!nfrags); 4851 } else { 4852 BUG_ON(!list_skb->head_frag); 4853 4854 /* to make room for head_frag. */ 4855 i--; 4856 frag--; 4857 } 4858 4859 list_skb = list_skb->next; 4860 } 4861 4862 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4863 MAX_SKB_FRAGS)) { 4864 net_warn_ratelimited( 4865 "skb_segment: too many frags: %u %u\n", 4866 pos, mss); 4867 err = -EINVAL; 4868 goto err; 4869 } 4870 4871 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4872 __skb_frag_ref(nskb_frag); 4873 size = skb_frag_size(nskb_frag); 4874 4875 if (pos < offset) { 4876 skb_frag_off_add(nskb_frag, offset - pos); 4877 skb_frag_size_sub(nskb_frag, offset - pos); 4878 } 4879 4880 skb_shinfo(nskb)->nr_frags++; 4881 4882 if (pos + size <= offset + len) { 4883 i++; 4884 frag++; 4885 pos += size; 4886 } else { 4887 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4888 goto skip_fraglist; 4889 } 4890 4891 nskb_frag++; 4892 } 4893 4894 skip_fraglist: 4895 nskb->data_len = len - hsize; 4896 nskb->len += nskb->data_len; 4897 nskb->truesize += nskb->data_len; 4898 4899 perform_csum_check: 4900 if (!csum) { 4901 if (skb_has_shared_frag(nskb) && 4902 __skb_linearize(nskb)) 4903 goto err; 4904 4905 if (!nskb->remcsum_offload) 4906 nskb->ip_summed = CHECKSUM_NONE; 4907 SKB_GSO_CB(nskb)->csum = 4908 skb_checksum(nskb, doffset, 4909 nskb->len - doffset, 0); 4910 SKB_GSO_CB(nskb)->csum_start = 4911 skb_headroom(nskb) + doffset; 4912 } 4913 } while ((offset += len) < head_skb->len); 4914 4915 /* Some callers want to get the end of the list. 4916 * Put it in segs->prev to avoid walking the list. 4917 * (see validate_xmit_skb_list() for example) 4918 */ 4919 segs->prev = tail; 4920 4921 if (partial_segs) { 4922 struct sk_buff *iter; 4923 int type = skb_shinfo(head_skb)->gso_type; 4924 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4925 4926 /* Update type to add partial and then remove dodgy if set */ 4927 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4928 type &= ~SKB_GSO_DODGY; 4929 4930 /* Update GSO info and prepare to start updating headers on 4931 * our way back down the stack of protocols. 4932 */ 4933 for (iter = segs; iter; iter = iter->next) { 4934 skb_shinfo(iter)->gso_size = gso_size; 4935 skb_shinfo(iter)->gso_segs = partial_segs; 4936 skb_shinfo(iter)->gso_type = type; 4937 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4938 } 4939 4940 if (tail->len - doffset <= gso_size) 4941 skb_shinfo(tail)->gso_size = 0; 4942 else if (tail != segs) 4943 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4944 } 4945 4946 /* Following permits correct backpressure, for protocols 4947 * using skb_set_owner_w(). 4948 * Idea is to tranfert ownership from head_skb to last segment. 4949 */ 4950 if (head_skb->destructor == sock_wfree) { 4951 swap(tail->truesize, head_skb->truesize); 4952 swap(tail->destructor, head_skb->destructor); 4953 swap(tail->sk, head_skb->sk); 4954 } 4955 return segs; 4956 4957 err: 4958 kfree_skb_list(segs); 4959 return ERR_PTR(err); 4960 } 4961 EXPORT_SYMBOL_GPL(skb_segment); 4962 4963 #ifdef CONFIG_SKB_EXTENSIONS 4964 #define SKB_EXT_ALIGN_VALUE 8 4965 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4966 4967 static const u8 skb_ext_type_len[] = { 4968 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4969 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4970 #endif 4971 #ifdef CONFIG_XFRM 4972 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4973 #endif 4974 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4975 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4976 #endif 4977 #if IS_ENABLED(CONFIG_MPTCP) 4978 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4979 #endif 4980 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4981 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4982 #endif 4983 }; 4984 4985 static __always_inline unsigned int skb_ext_total_length(void) 4986 { 4987 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); 4988 int i; 4989 4990 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) 4991 l += skb_ext_type_len[i]; 4992 4993 return l; 4994 } 4995 4996 static void skb_extensions_init(void) 4997 { 4998 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4999 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL) 5000 BUILD_BUG_ON(skb_ext_total_length() > 255); 5001 #endif 5002 5003 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 5004 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 5005 0, 5006 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5007 NULL); 5008 } 5009 #else 5010 static void skb_extensions_init(void) {} 5011 #endif 5012 5013 /* The SKB kmem_cache slab is critical for network performance. Never 5014 * merge/alias the slab with similar sized objects. This avoids fragmentation 5015 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. 5016 */ 5017 #ifndef CONFIG_SLUB_TINY 5018 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE 5019 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ 5020 #define FLAG_SKB_NO_MERGE 0 5021 #endif 5022 5023 void __init skb_init(void) 5024 { 5025 net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 5026 sizeof(struct sk_buff), 5027 0, 5028 SLAB_HWCACHE_ALIGN|SLAB_PANIC| 5029 FLAG_SKB_NO_MERGE, 5030 offsetof(struct sk_buff, cb), 5031 sizeof_field(struct sk_buff, cb), 5032 NULL); 5033 net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 5034 sizeof(struct sk_buff_fclones), 5035 0, 5036 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5037 NULL); 5038 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 5039 * struct skb_shared_info is located at the end of skb->head, 5040 * and should not be copied to/from user. 5041 */ 5042 net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 5043 SKB_SMALL_HEAD_CACHE_SIZE, 5044 0, 5045 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 5046 0, 5047 SKB_SMALL_HEAD_HEADROOM, 5048 NULL); 5049 skb_extensions_init(); 5050 } 5051 5052 static int 5053 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 5054 unsigned int recursion_level) 5055 { 5056 int start = skb_headlen(skb); 5057 int i, copy = start - offset; 5058 struct sk_buff *frag_iter; 5059 int elt = 0; 5060 5061 if (unlikely(recursion_level >= 24)) 5062 return -EMSGSIZE; 5063 5064 if (copy > 0) { 5065 if (copy > len) 5066 copy = len; 5067 sg_set_buf(sg, skb->data + offset, copy); 5068 elt++; 5069 if ((len -= copy) == 0) 5070 return elt; 5071 offset += copy; 5072 } 5073 5074 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 5075 int end; 5076 5077 WARN_ON(start > offset + len); 5078 5079 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 5080 if ((copy = end - offset) > 0) { 5081 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 5082 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5083 return -EMSGSIZE; 5084 5085 if (copy > len) 5086 copy = len; 5087 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 5088 skb_frag_off(frag) + offset - start); 5089 elt++; 5090 if (!(len -= copy)) 5091 return elt; 5092 offset += copy; 5093 } 5094 start = end; 5095 } 5096 5097 skb_walk_frags(skb, frag_iter) { 5098 int end, ret; 5099 5100 WARN_ON(start > offset + len); 5101 5102 end = start + frag_iter->len; 5103 if ((copy = end - offset) > 0) { 5104 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5105 return -EMSGSIZE; 5106 5107 if (copy > len) 5108 copy = len; 5109 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 5110 copy, recursion_level + 1); 5111 if (unlikely(ret < 0)) 5112 return ret; 5113 elt += ret; 5114 if ((len -= copy) == 0) 5115 return elt; 5116 offset += copy; 5117 } 5118 start = end; 5119 } 5120 BUG_ON(len); 5121 return elt; 5122 } 5123 5124 /** 5125 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 5126 * @skb: Socket buffer containing the buffers to be mapped 5127 * @sg: The scatter-gather list to map into 5128 * @offset: The offset into the buffer's contents to start mapping 5129 * @len: Length of buffer space to be mapped 5130 * 5131 * Fill the specified scatter-gather list with mappings/pointers into a 5132 * region of the buffer space attached to a socket buffer. Returns either 5133 * the number of scatterlist items used, or -EMSGSIZE if the contents 5134 * could not fit. 5135 */ 5136 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 5137 { 5138 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 5139 5140 if (nsg <= 0) 5141 return nsg; 5142 5143 sg_mark_end(&sg[nsg - 1]); 5144 5145 return nsg; 5146 } 5147 EXPORT_SYMBOL_GPL(skb_to_sgvec); 5148 5149 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 5150 * sglist without mark the sg which contain last skb data as the end. 5151 * So the caller can mannipulate sg list as will when padding new data after 5152 * the first call without calling sg_unmark_end to expend sg list. 5153 * 5154 * Scenario to use skb_to_sgvec_nomark: 5155 * 1. sg_init_table 5156 * 2. skb_to_sgvec_nomark(payload1) 5157 * 3. skb_to_sgvec_nomark(payload2) 5158 * 5159 * This is equivalent to: 5160 * 1. sg_init_table 5161 * 2. skb_to_sgvec(payload1) 5162 * 3. sg_unmark_end 5163 * 4. skb_to_sgvec(payload2) 5164 * 5165 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 5166 * is more preferable. 5167 */ 5168 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 5169 int offset, int len) 5170 { 5171 return __skb_to_sgvec(skb, sg, offset, len, 0); 5172 } 5173 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 5174 5175 5176 5177 /** 5178 * skb_cow_data - Check that a socket buffer's data buffers are writable 5179 * @skb: The socket buffer to check. 5180 * @tailbits: Amount of trailing space to be added 5181 * @trailer: Returned pointer to the skb where the @tailbits space begins 5182 * 5183 * Make sure that the data buffers attached to a socket buffer are 5184 * writable. If they are not, private copies are made of the data buffers 5185 * and the socket buffer is set to use these instead. 5186 * 5187 * If @tailbits is given, make sure that there is space to write @tailbits 5188 * bytes of data beyond current end of socket buffer. @trailer will be 5189 * set to point to the skb in which this space begins. 5190 * 5191 * The number of scatterlist elements required to completely map the 5192 * COW'd and extended socket buffer will be returned. 5193 */ 5194 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 5195 { 5196 int copyflag; 5197 int elt; 5198 struct sk_buff *skb1, **skb_p; 5199 5200 /* If skb is cloned or its head is paged, reallocate 5201 * head pulling out all the pages (pages are considered not writable 5202 * at the moment even if they are anonymous). 5203 */ 5204 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 5205 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 5206 return -ENOMEM; 5207 5208 /* Easy case. Most of packets will go this way. */ 5209 if (!skb_has_frag_list(skb)) { 5210 /* A little of trouble, not enough of space for trailer. 5211 * This should not happen, when stack is tuned to generate 5212 * good frames. OK, on miss we reallocate and reserve even more 5213 * space, 128 bytes is fair. */ 5214 5215 if (skb_tailroom(skb) < tailbits && 5216 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 5217 return -ENOMEM; 5218 5219 /* Voila! */ 5220 *trailer = skb; 5221 return 1; 5222 } 5223 5224 /* Misery. We are in troubles, going to mincer fragments... */ 5225 5226 elt = 1; 5227 skb_p = &skb_shinfo(skb)->frag_list; 5228 copyflag = 0; 5229 5230 while ((skb1 = *skb_p) != NULL) { 5231 int ntail = 0; 5232 5233 /* The fragment is partially pulled by someone, 5234 * this can happen on input. Copy it and everything 5235 * after it. */ 5236 5237 if (skb_shared(skb1)) 5238 copyflag = 1; 5239 5240 /* If the skb is the last, worry about trailer. */ 5241 5242 if (skb1->next == NULL && tailbits) { 5243 if (skb_shinfo(skb1)->nr_frags || 5244 skb_has_frag_list(skb1) || 5245 skb_tailroom(skb1) < tailbits) 5246 ntail = tailbits + 128; 5247 } 5248 5249 if (copyflag || 5250 skb_cloned(skb1) || 5251 ntail || 5252 skb_shinfo(skb1)->nr_frags || 5253 skb_has_frag_list(skb1)) { 5254 struct sk_buff *skb2; 5255 5256 /* Fuck, we are miserable poor guys... */ 5257 if (ntail == 0) 5258 skb2 = skb_copy(skb1, GFP_ATOMIC); 5259 else 5260 skb2 = skb_copy_expand(skb1, 5261 skb_headroom(skb1), 5262 ntail, 5263 GFP_ATOMIC); 5264 if (unlikely(skb2 == NULL)) 5265 return -ENOMEM; 5266 5267 if (skb1->sk) 5268 skb_set_owner_w(skb2, skb1->sk); 5269 5270 /* Looking around. Are we still alive? 5271 * OK, link new skb, drop old one */ 5272 5273 skb2->next = skb1->next; 5274 *skb_p = skb2; 5275 kfree_skb(skb1); 5276 skb1 = skb2; 5277 } 5278 elt++; 5279 *trailer = skb1; 5280 skb_p = &skb1->next; 5281 } 5282 5283 return elt; 5284 } 5285 EXPORT_SYMBOL_GPL(skb_cow_data); 5286 5287 static void sock_rmem_free(struct sk_buff *skb) 5288 { 5289 struct sock *sk = skb->sk; 5290 5291 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5292 } 5293 5294 static void skb_set_err_queue(struct sk_buff *skb) 5295 { 5296 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5297 * So, it is safe to (mis)use it to mark skbs on the error queue. 5298 */ 5299 skb->pkt_type = PACKET_OUTGOING; 5300 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5301 } 5302 5303 /* 5304 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5305 */ 5306 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5307 { 5308 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5309 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5310 return -ENOMEM; 5311 5312 skb_orphan(skb); 5313 skb->sk = sk; 5314 skb->destructor = sock_rmem_free; 5315 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5316 skb_set_err_queue(skb); 5317 5318 /* before exiting rcu section, make sure dst is refcounted */ 5319 skb_dst_force(skb); 5320 5321 skb_queue_tail(&sk->sk_error_queue, skb); 5322 if (!sock_flag(sk, SOCK_DEAD)) 5323 sk_error_report(sk); 5324 return 0; 5325 } 5326 EXPORT_SYMBOL(sock_queue_err_skb); 5327 5328 static bool is_icmp_err_skb(const struct sk_buff *skb) 5329 { 5330 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5331 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5332 } 5333 5334 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5335 { 5336 struct sk_buff_head *q = &sk->sk_error_queue; 5337 struct sk_buff *skb, *skb_next = NULL; 5338 bool icmp_next = false; 5339 unsigned long flags; 5340 5341 if (skb_queue_empty_lockless(q)) 5342 return NULL; 5343 5344 spin_lock_irqsave(&q->lock, flags); 5345 skb = __skb_dequeue(q); 5346 if (skb && (skb_next = skb_peek(q))) { 5347 icmp_next = is_icmp_err_skb(skb_next); 5348 if (icmp_next) 5349 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5350 } 5351 spin_unlock_irqrestore(&q->lock, flags); 5352 5353 if (is_icmp_err_skb(skb) && !icmp_next) 5354 sk->sk_err = 0; 5355 5356 if (skb_next) 5357 sk_error_report(sk); 5358 5359 return skb; 5360 } 5361 EXPORT_SYMBOL(sock_dequeue_err_skb); 5362 5363 /** 5364 * skb_clone_sk - create clone of skb, and take reference to socket 5365 * @skb: the skb to clone 5366 * 5367 * This function creates a clone of a buffer that holds a reference on 5368 * sk_refcnt. Buffers created via this function are meant to be 5369 * returned using sock_queue_err_skb, or free via kfree_skb. 5370 * 5371 * When passing buffers allocated with this function to sock_queue_err_skb 5372 * it is necessary to wrap the call with sock_hold/sock_put in order to 5373 * prevent the socket from being released prior to being enqueued on 5374 * the sk_error_queue. 5375 */ 5376 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5377 { 5378 struct sock *sk = skb->sk; 5379 struct sk_buff *clone; 5380 5381 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5382 return NULL; 5383 5384 clone = skb_clone(skb, GFP_ATOMIC); 5385 if (!clone) { 5386 sock_put(sk); 5387 return NULL; 5388 } 5389 5390 clone->sk = sk; 5391 clone->destructor = sock_efree; 5392 5393 return clone; 5394 } 5395 EXPORT_SYMBOL(skb_clone_sk); 5396 5397 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5398 struct sock *sk, 5399 int tstype, 5400 bool opt_stats) 5401 { 5402 struct sock_exterr_skb *serr; 5403 int err; 5404 5405 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5406 5407 serr = SKB_EXT_ERR(skb); 5408 memset(serr, 0, sizeof(*serr)); 5409 serr->ee.ee_errno = ENOMSG; 5410 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5411 serr->ee.ee_info = tstype; 5412 serr->opt_stats = opt_stats; 5413 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5414 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 5415 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5416 if (sk_is_tcp(sk)) 5417 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5418 } 5419 5420 err = sock_queue_err_skb(sk, skb); 5421 5422 if (err) 5423 kfree_skb(skb); 5424 } 5425 5426 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5427 { 5428 bool ret; 5429 5430 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 5431 return true; 5432 5433 read_lock_bh(&sk->sk_callback_lock); 5434 ret = sk->sk_socket && sk->sk_socket->file && 5435 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5436 read_unlock_bh(&sk->sk_callback_lock); 5437 return ret; 5438 } 5439 5440 void skb_complete_tx_timestamp(struct sk_buff *skb, 5441 struct skb_shared_hwtstamps *hwtstamps) 5442 { 5443 struct sock *sk = skb->sk; 5444 5445 if (!skb_may_tx_timestamp(sk, false)) 5446 goto err; 5447 5448 /* Take a reference to prevent skb_orphan() from freeing the socket, 5449 * but only if the socket refcount is not zero. 5450 */ 5451 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5452 *skb_hwtstamps(skb) = *hwtstamps; 5453 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5454 sock_put(sk); 5455 return; 5456 } 5457 5458 err: 5459 kfree_skb(skb); 5460 } 5461 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5462 5463 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5464 const struct sk_buff *ack_skb, 5465 struct skb_shared_hwtstamps *hwtstamps, 5466 struct sock *sk, int tstype) 5467 { 5468 struct sk_buff *skb; 5469 bool tsonly, opt_stats = false; 5470 u32 tsflags; 5471 5472 if (!sk) 5473 return; 5474 5475 tsflags = READ_ONCE(sk->sk_tsflags); 5476 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5477 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5478 return; 5479 5480 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5481 if (!skb_may_tx_timestamp(sk, tsonly)) 5482 return; 5483 5484 if (tsonly) { 5485 #ifdef CONFIG_INET 5486 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5487 sk_is_tcp(sk)) { 5488 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5489 ack_skb); 5490 opt_stats = true; 5491 } else 5492 #endif 5493 skb = alloc_skb(0, GFP_ATOMIC); 5494 } else { 5495 skb = skb_clone(orig_skb, GFP_ATOMIC); 5496 5497 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5498 kfree_skb(skb); 5499 return; 5500 } 5501 } 5502 if (!skb) 5503 return; 5504 5505 if (tsonly) { 5506 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5507 SKBTX_ANY_TSTAMP; 5508 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5509 } 5510 5511 if (hwtstamps) 5512 *skb_hwtstamps(skb) = *hwtstamps; 5513 else 5514 __net_timestamp(skb); 5515 5516 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5517 } 5518 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5519 5520 void skb_tstamp_tx(struct sk_buff *orig_skb, 5521 struct skb_shared_hwtstamps *hwtstamps) 5522 { 5523 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5524 SCM_TSTAMP_SND); 5525 } 5526 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5527 5528 #ifdef CONFIG_WIRELESS 5529 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5530 { 5531 struct sock *sk = skb->sk; 5532 struct sock_exterr_skb *serr; 5533 int err = 1; 5534 5535 skb->wifi_acked_valid = 1; 5536 skb->wifi_acked = acked; 5537 5538 serr = SKB_EXT_ERR(skb); 5539 memset(serr, 0, sizeof(*serr)); 5540 serr->ee.ee_errno = ENOMSG; 5541 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5542 5543 /* Take a reference to prevent skb_orphan() from freeing the socket, 5544 * but only if the socket refcount is not zero. 5545 */ 5546 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5547 err = sock_queue_err_skb(sk, skb); 5548 sock_put(sk); 5549 } 5550 if (err) 5551 kfree_skb(skb); 5552 } 5553 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5554 #endif /* CONFIG_WIRELESS */ 5555 5556 /** 5557 * skb_partial_csum_set - set up and verify partial csum values for packet 5558 * @skb: the skb to set 5559 * @start: the number of bytes after skb->data to start checksumming. 5560 * @off: the offset from start to place the checksum. 5561 * 5562 * For untrusted partially-checksummed packets, we need to make sure the values 5563 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5564 * 5565 * This function checks and sets those values and skb->ip_summed: if this 5566 * returns false you should drop the packet. 5567 */ 5568 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5569 { 5570 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5571 u32 csum_start = skb_headroom(skb) + (u32)start; 5572 5573 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5574 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5575 start, off, skb_headroom(skb), skb_headlen(skb)); 5576 return false; 5577 } 5578 skb->ip_summed = CHECKSUM_PARTIAL; 5579 skb->csum_start = csum_start; 5580 skb->csum_offset = off; 5581 skb->transport_header = csum_start; 5582 return true; 5583 } 5584 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5585 5586 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5587 unsigned int max) 5588 { 5589 if (skb_headlen(skb) >= len) 5590 return 0; 5591 5592 /* If we need to pullup then pullup to the max, so we 5593 * won't need to do it again. 5594 */ 5595 if (max > skb->len) 5596 max = skb->len; 5597 5598 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5599 return -ENOMEM; 5600 5601 if (skb_headlen(skb) < len) 5602 return -EPROTO; 5603 5604 return 0; 5605 } 5606 5607 #define MAX_TCP_HDR_LEN (15 * 4) 5608 5609 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5610 typeof(IPPROTO_IP) proto, 5611 unsigned int off) 5612 { 5613 int err; 5614 5615 switch (proto) { 5616 case IPPROTO_TCP: 5617 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5618 off + MAX_TCP_HDR_LEN); 5619 if (!err && !skb_partial_csum_set(skb, off, 5620 offsetof(struct tcphdr, 5621 check))) 5622 err = -EPROTO; 5623 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5624 5625 case IPPROTO_UDP: 5626 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5627 off + sizeof(struct udphdr)); 5628 if (!err && !skb_partial_csum_set(skb, off, 5629 offsetof(struct udphdr, 5630 check))) 5631 err = -EPROTO; 5632 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5633 } 5634 5635 return ERR_PTR(-EPROTO); 5636 } 5637 5638 /* This value should be large enough to cover a tagged ethernet header plus 5639 * maximally sized IP and TCP or UDP headers. 5640 */ 5641 #define MAX_IP_HDR_LEN 128 5642 5643 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5644 { 5645 unsigned int off; 5646 bool fragment; 5647 __sum16 *csum; 5648 int err; 5649 5650 fragment = false; 5651 5652 err = skb_maybe_pull_tail(skb, 5653 sizeof(struct iphdr), 5654 MAX_IP_HDR_LEN); 5655 if (err < 0) 5656 goto out; 5657 5658 if (ip_is_fragment(ip_hdr(skb))) 5659 fragment = true; 5660 5661 off = ip_hdrlen(skb); 5662 5663 err = -EPROTO; 5664 5665 if (fragment) 5666 goto out; 5667 5668 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5669 if (IS_ERR(csum)) 5670 return PTR_ERR(csum); 5671 5672 if (recalculate) 5673 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5674 ip_hdr(skb)->daddr, 5675 skb->len - off, 5676 ip_hdr(skb)->protocol, 0); 5677 err = 0; 5678 5679 out: 5680 return err; 5681 } 5682 5683 /* This value should be large enough to cover a tagged ethernet header plus 5684 * an IPv6 header, all options, and a maximal TCP or UDP header. 5685 */ 5686 #define MAX_IPV6_HDR_LEN 256 5687 5688 #define OPT_HDR(type, skb, off) \ 5689 (type *)(skb_network_header(skb) + (off)) 5690 5691 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5692 { 5693 int err; 5694 u8 nexthdr; 5695 unsigned int off; 5696 unsigned int len; 5697 bool fragment; 5698 bool done; 5699 __sum16 *csum; 5700 5701 fragment = false; 5702 done = false; 5703 5704 off = sizeof(struct ipv6hdr); 5705 5706 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5707 if (err < 0) 5708 goto out; 5709 5710 nexthdr = ipv6_hdr(skb)->nexthdr; 5711 5712 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5713 while (off <= len && !done) { 5714 switch (nexthdr) { 5715 case IPPROTO_DSTOPTS: 5716 case IPPROTO_HOPOPTS: 5717 case IPPROTO_ROUTING: { 5718 struct ipv6_opt_hdr *hp; 5719 5720 err = skb_maybe_pull_tail(skb, 5721 off + 5722 sizeof(struct ipv6_opt_hdr), 5723 MAX_IPV6_HDR_LEN); 5724 if (err < 0) 5725 goto out; 5726 5727 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5728 nexthdr = hp->nexthdr; 5729 off += ipv6_optlen(hp); 5730 break; 5731 } 5732 case IPPROTO_AH: { 5733 struct ip_auth_hdr *hp; 5734 5735 err = skb_maybe_pull_tail(skb, 5736 off + 5737 sizeof(struct ip_auth_hdr), 5738 MAX_IPV6_HDR_LEN); 5739 if (err < 0) 5740 goto out; 5741 5742 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5743 nexthdr = hp->nexthdr; 5744 off += ipv6_authlen(hp); 5745 break; 5746 } 5747 case IPPROTO_FRAGMENT: { 5748 struct frag_hdr *hp; 5749 5750 err = skb_maybe_pull_tail(skb, 5751 off + 5752 sizeof(struct frag_hdr), 5753 MAX_IPV6_HDR_LEN); 5754 if (err < 0) 5755 goto out; 5756 5757 hp = OPT_HDR(struct frag_hdr, skb, off); 5758 5759 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5760 fragment = true; 5761 5762 nexthdr = hp->nexthdr; 5763 off += sizeof(struct frag_hdr); 5764 break; 5765 } 5766 default: 5767 done = true; 5768 break; 5769 } 5770 } 5771 5772 err = -EPROTO; 5773 5774 if (!done || fragment) 5775 goto out; 5776 5777 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5778 if (IS_ERR(csum)) 5779 return PTR_ERR(csum); 5780 5781 if (recalculate) 5782 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5783 &ipv6_hdr(skb)->daddr, 5784 skb->len - off, nexthdr, 0); 5785 err = 0; 5786 5787 out: 5788 return err; 5789 } 5790 5791 /** 5792 * skb_checksum_setup - set up partial checksum offset 5793 * @skb: the skb to set up 5794 * @recalculate: if true the pseudo-header checksum will be recalculated 5795 */ 5796 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5797 { 5798 int err; 5799 5800 switch (skb->protocol) { 5801 case htons(ETH_P_IP): 5802 err = skb_checksum_setup_ipv4(skb, recalculate); 5803 break; 5804 5805 case htons(ETH_P_IPV6): 5806 err = skb_checksum_setup_ipv6(skb, recalculate); 5807 break; 5808 5809 default: 5810 err = -EPROTO; 5811 break; 5812 } 5813 5814 return err; 5815 } 5816 EXPORT_SYMBOL(skb_checksum_setup); 5817 5818 /** 5819 * skb_checksum_maybe_trim - maybe trims the given skb 5820 * @skb: the skb to check 5821 * @transport_len: the data length beyond the network header 5822 * 5823 * Checks whether the given skb has data beyond the given transport length. 5824 * If so, returns a cloned skb trimmed to this transport length. 5825 * Otherwise returns the provided skb. Returns NULL in error cases 5826 * (e.g. transport_len exceeds skb length or out-of-memory). 5827 * 5828 * Caller needs to set the skb transport header and free any returned skb if it 5829 * differs from the provided skb. 5830 */ 5831 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5832 unsigned int transport_len) 5833 { 5834 struct sk_buff *skb_chk; 5835 unsigned int len = skb_transport_offset(skb) + transport_len; 5836 int ret; 5837 5838 if (skb->len < len) 5839 return NULL; 5840 else if (skb->len == len) 5841 return skb; 5842 5843 skb_chk = skb_clone(skb, GFP_ATOMIC); 5844 if (!skb_chk) 5845 return NULL; 5846 5847 ret = pskb_trim_rcsum(skb_chk, len); 5848 if (ret) { 5849 kfree_skb(skb_chk); 5850 return NULL; 5851 } 5852 5853 return skb_chk; 5854 } 5855 5856 /** 5857 * skb_checksum_trimmed - validate checksum of an skb 5858 * @skb: the skb to check 5859 * @transport_len: the data length beyond the network header 5860 * @skb_chkf: checksum function to use 5861 * 5862 * Applies the given checksum function skb_chkf to the provided skb. 5863 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5864 * 5865 * If the skb has data beyond the given transport length, then a 5866 * trimmed & cloned skb is checked and returned. 5867 * 5868 * Caller needs to set the skb transport header and free any returned skb if it 5869 * differs from the provided skb. 5870 */ 5871 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5872 unsigned int transport_len, 5873 __sum16(*skb_chkf)(struct sk_buff *skb)) 5874 { 5875 struct sk_buff *skb_chk; 5876 unsigned int offset = skb_transport_offset(skb); 5877 __sum16 ret; 5878 5879 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5880 if (!skb_chk) 5881 goto err; 5882 5883 if (!pskb_may_pull(skb_chk, offset)) 5884 goto err; 5885 5886 skb_pull_rcsum(skb_chk, offset); 5887 ret = skb_chkf(skb_chk); 5888 skb_push_rcsum(skb_chk, offset); 5889 5890 if (ret) 5891 goto err; 5892 5893 return skb_chk; 5894 5895 err: 5896 if (skb_chk && skb_chk != skb) 5897 kfree_skb(skb_chk); 5898 5899 return NULL; 5900 5901 } 5902 EXPORT_SYMBOL(skb_checksum_trimmed); 5903 5904 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5905 { 5906 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5907 skb->dev->name); 5908 } 5909 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5910 5911 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5912 { 5913 if (head_stolen) { 5914 skb_release_head_state(skb); 5915 kmem_cache_free(net_hotdata.skbuff_cache, skb); 5916 } else { 5917 __kfree_skb(skb); 5918 } 5919 } 5920 EXPORT_SYMBOL(kfree_skb_partial); 5921 5922 /** 5923 * skb_try_coalesce - try to merge skb to prior one 5924 * @to: prior buffer 5925 * @from: buffer to add 5926 * @fragstolen: pointer to boolean 5927 * @delta_truesize: how much more was allocated than was requested 5928 */ 5929 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5930 bool *fragstolen, int *delta_truesize) 5931 { 5932 struct skb_shared_info *to_shinfo, *from_shinfo; 5933 int i, delta, len = from->len; 5934 5935 *fragstolen = false; 5936 5937 if (skb_cloned(to)) 5938 return false; 5939 5940 /* In general, avoid mixing page_pool and non-page_pool allocated 5941 * pages within the same SKB. In theory we could take full 5942 * references if @from is cloned and !@to->pp_recycle but its 5943 * tricky (due to potential race with the clone disappearing) and 5944 * rare, so not worth dealing with. 5945 */ 5946 if (to->pp_recycle != from->pp_recycle) 5947 return false; 5948 5949 if (len <= skb_tailroom(to)) { 5950 if (len) 5951 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5952 *delta_truesize = 0; 5953 return true; 5954 } 5955 5956 to_shinfo = skb_shinfo(to); 5957 from_shinfo = skb_shinfo(from); 5958 if (to_shinfo->frag_list || from_shinfo->frag_list) 5959 return false; 5960 if (skb_zcopy(to) || skb_zcopy(from)) 5961 return false; 5962 5963 if (skb_headlen(from) != 0) { 5964 struct page *page; 5965 unsigned int offset; 5966 5967 if (to_shinfo->nr_frags + 5968 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5969 return false; 5970 5971 if (skb_head_is_locked(from)) 5972 return false; 5973 5974 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5975 5976 page = virt_to_head_page(from->head); 5977 offset = from->data - (unsigned char *)page_address(page); 5978 5979 skb_fill_page_desc(to, to_shinfo->nr_frags, 5980 page, offset, skb_headlen(from)); 5981 *fragstolen = true; 5982 } else { 5983 if (to_shinfo->nr_frags + 5984 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5985 return false; 5986 5987 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5988 } 5989 5990 WARN_ON_ONCE(delta < len); 5991 5992 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5993 from_shinfo->frags, 5994 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5995 to_shinfo->nr_frags += from_shinfo->nr_frags; 5996 5997 if (!skb_cloned(from)) 5998 from_shinfo->nr_frags = 0; 5999 6000 /* if the skb is not cloned this does nothing 6001 * since we set nr_frags to 0. 6002 */ 6003 if (skb_pp_frag_ref(from)) { 6004 for (i = 0; i < from_shinfo->nr_frags; i++) 6005 __skb_frag_ref(&from_shinfo->frags[i]); 6006 } 6007 6008 to->truesize += delta; 6009 to->len += len; 6010 to->data_len += len; 6011 6012 *delta_truesize = delta; 6013 return true; 6014 } 6015 EXPORT_SYMBOL(skb_try_coalesce); 6016 6017 /** 6018 * skb_scrub_packet - scrub an skb 6019 * 6020 * @skb: buffer to clean 6021 * @xnet: packet is crossing netns 6022 * 6023 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 6024 * into/from a tunnel. Some information have to be cleared during these 6025 * operations. 6026 * skb_scrub_packet can also be used to clean a skb before injecting it in 6027 * another namespace (@xnet == true). We have to clear all information in the 6028 * skb that could impact namespace isolation. 6029 */ 6030 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 6031 { 6032 skb->pkt_type = PACKET_HOST; 6033 skb->skb_iif = 0; 6034 skb->ignore_df = 0; 6035 skb_dst_drop(skb); 6036 skb_ext_reset(skb); 6037 nf_reset_ct(skb); 6038 nf_reset_trace(skb); 6039 6040 #ifdef CONFIG_NET_SWITCHDEV 6041 skb->offload_fwd_mark = 0; 6042 skb->offload_l3_fwd_mark = 0; 6043 #endif 6044 6045 if (!xnet) 6046 return; 6047 6048 ipvs_reset(skb); 6049 skb->mark = 0; 6050 skb_clear_tstamp(skb); 6051 } 6052 EXPORT_SYMBOL_GPL(skb_scrub_packet); 6053 6054 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 6055 { 6056 int mac_len, meta_len; 6057 void *meta; 6058 6059 if (skb_cow(skb, skb_headroom(skb)) < 0) { 6060 kfree_skb(skb); 6061 return NULL; 6062 } 6063 6064 mac_len = skb->data - skb_mac_header(skb); 6065 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 6066 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 6067 mac_len - VLAN_HLEN - ETH_TLEN); 6068 } 6069 6070 meta_len = skb_metadata_len(skb); 6071 if (meta_len) { 6072 meta = skb_metadata_end(skb) - meta_len; 6073 memmove(meta + VLAN_HLEN, meta, meta_len); 6074 } 6075 6076 skb->mac_header += VLAN_HLEN; 6077 return skb; 6078 } 6079 6080 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 6081 { 6082 struct vlan_hdr *vhdr; 6083 u16 vlan_tci; 6084 6085 if (unlikely(skb_vlan_tag_present(skb))) { 6086 /* vlan_tci is already set-up so leave this for another time */ 6087 return skb; 6088 } 6089 6090 skb = skb_share_check(skb, GFP_ATOMIC); 6091 if (unlikely(!skb)) 6092 goto err_free; 6093 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 6094 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 6095 goto err_free; 6096 6097 vhdr = (struct vlan_hdr *)skb->data; 6098 vlan_tci = ntohs(vhdr->h_vlan_TCI); 6099 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 6100 6101 skb_pull_rcsum(skb, VLAN_HLEN); 6102 vlan_set_encap_proto(skb, vhdr); 6103 6104 skb = skb_reorder_vlan_header(skb); 6105 if (unlikely(!skb)) 6106 goto err_free; 6107 6108 skb_reset_network_header(skb); 6109 if (!skb_transport_header_was_set(skb)) 6110 skb_reset_transport_header(skb); 6111 skb_reset_mac_len(skb); 6112 6113 return skb; 6114 6115 err_free: 6116 kfree_skb(skb); 6117 return NULL; 6118 } 6119 EXPORT_SYMBOL(skb_vlan_untag); 6120 6121 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 6122 { 6123 if (!pskb_may_pull(skb, write_len)) 6124 return -ENOMEM; 6125 6126 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 6127 return 0; 6128 6129 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 6130 } 6131 EXPORT_SYMBOL(skb_ensure_writable); 6132 6133 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev) 6134 { 6135 int needed_headroom = dev->needed_headroom; 6136 int needed_tailroom = dev->needed_tailroom; 6137 6138 /* For tail taggers, we need to pad short frames ourselves, to ensure 6139 * that the tail tag does not fail at its role of being at the end of 6140 * the packet, once the conduit interface pads the frame. Account for 6141 * that pad length here, and pad later. 6142 */ 6143 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN)) 6144 needed_tailroom += ETH_ZLEN - skb->len; 6145 /* skb_headroom() returns unsigned int... */ 6146 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0); 6147 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0); 6148 6149 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb))) 6150 /* No reallocation needed, yay! */ 6151 return 0; 6152 6153 return pskb_expand_head(skb, needed_headroom, needed_tailroom, 6154 GFP_ATOMIC); 6155 } 6156 EXPORT_SYMBOL(skb_ensure_writable_head_tail); 6157 6158 /* remove VLAN header from packet and update csum accordingly. 6159 * expects a non skb_vlan_tag_present skb with a vlan tag payload 6160 */ 6161 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 6162 { 6163 int offset = skb->data - skb_mac_header(skb); 6164 int err; 6165 6166 if (WARN_ONCE(offset, 6167 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 6168 offset)) { 6169 return -EINVAL; 6170 } 6171 6172 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 6173 if (unlikely(err)) 6174 return err; 6175 6176 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6177 6178 vlan_remove_tag(skb, vlan_tci); 6179 6180 skb->mac_header += VLAN_HLEN; 6181 6182 if (skb_network_offset(skb) < ETH_HLEN) 6183 skb_set_network_header(skb, ETH_HLEN); 6184 6185 skb_reset_mac_len(skb); 6186 6187 return err; 6188 } 6189 EXPORT_SYMBOL(__skb_vlan_pop); 6190 6191 /* Pop a vlan tag either from hwaccel or from payload. 6192 * Expects skb->data at mac header. 6193 */ 6194 int skb_vlan_pop(struct sk_buff *skb) 6195 { 6196 u16 vlan_tci; 6197 __be16 vlan_proto; 6198 int err; 6199 6200 if (likely(skb_vlan_tag_present(skb))) { 6201 __vlan_hwaccel_clear_tag(skb); 6202 } else { 6203 if (unlikely(!eth_type_vlan(skb->protocol))) 6204 return 0; 6205 6206 err = __skb_vlan_pop(skb, &vlan_tci); 6207 if (err) 6208 return err; 6209 } 6210 /* move next vlan tag to hw accel tag */ 6211 if (likely(!eth_type_vlan(skb->protocol))) 6212 return 0; 6213 6214 vlan_proto = skb->protocol; 6215 err = __skb_vlan_pop(skb, &vlan_tci); 6216 if (unlikely(err)) 6217 return err; 6218 6219 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6220 return 0; 6221 } 6222 EXPORT_SYMBOL(skb_vlan_pop); 6223 6224 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 6225 * Expects skb->data at mac header. 6226 */ 6227 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6228 { 6229 if (skb_vlan_tag_present(skb)) { 6230 int offset = skb->data - skb_mac_header(skb); 6231 int err; 6232 6233 if (WARN_ONCE(offset, 6234 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6235 offset)) { 6236 return -EINVAL; 6237 } 6238 6239 err = __vlan_insert_tag(skb, skb->vlan_proto, 6240 skb_vlan_tag_get(skb)); 6241 if (err) 6242 return err; 6243 6244 skb->protocol = skb->vlan_proto; 6245 skb->mac_len += VLAN_HLEN; 6246 6247 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6248 } 6249 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6250 return 0; 6251 } 6252 EXPORT_SYMBOL(skb_vlan_push); 6253 6254 /** 6255 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6256 * 6257 * @skb: Socket buffer to modify 6258 * 6259 * Drop the Ethernet header of @skb. 6260 * 6261 * Expects that skb->data points to the mac header and that no VLAN tags are 6262 * present. 6263 * 6264 * Returns 0 on success, -errno otherwise. 6265 */ 6266 int skb_eth_pop(struct sk_buff *skb) 6267 { 6268 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6269 skb_network_offset(skb) < ETH_HLEN) 6270 return -EPROTO; 6271 6272 skb_pull_rcsum(skb, ETH_HLEN); 6273 skb_reset_mac_header(skb); 6274 skb_reset_mac_len(skb); 6275 6276 return 0; 6277 } 6278 EXPORT_SYMBOL(skb_eth_pop); 6279 6280 /** 6281 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6282 * 6283 * @skb: Socket buffer to modify 6284 * @dst: Destination MAC address of the new header 6285 * @src: Source MAC address of the new header 6286 * 6287 * Prepend @skb with a new Ethernet header. 6288 * 6289 * Expects that skb->data points to the mac header, which must be empty. 6290 * 6291 * Returns 0 on success, -errno otherwise. 6292 */ 6293 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6294 const unsigned char *src) 6295 { 6296 struct ethhdr *eth; 6297 int err; 6298 6299 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6300 return -EPROTO; 6301 6302 err = skb_cow_head(skb, sizeof(*eth)); 6303 if (err < 0) 6304 return err; 6305 6306 skb_push(skb, sizeof(*eth)); 6307 skb_reset_mac_header(skb); 6308 skb_reset_mac_len(skb); 6309 6310 eth = eth_hdr(skb); 6311 ether_addr_copy(eth->h_dest, dst); 6312 ether_addr_copy(eth->h_source, src); 6313 eth->h_proto = skb->protocol; 6314 6315 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6316 6317 return 0; 6318 } 6319 EXPORT_SYMBOL(skb_eth_push); 6320 6321 /* Update the ethertype of hdr and the skb csum value if required. */ 6322 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6323 __be16 ethertype) 6324 { 6325 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6326 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6327 6328 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6329 } 6330 6331 hdr->h_proto = ethertype; 6332 } 6333 6334 /** 6335 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6336 * the packet 6337 * 6338 * @skb: buffer 6339 * @mpls_lse: MPLS label stack entry to push 6340 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6341 * @mac_len: length of the MAC header 6342 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6343 * ethernet 6344 * 6345 * Expects skb->data at mac header. 6346 * 6347 * Returns 0 on success, -errno otherwise. 6348 */ 6349 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6350 int mac_len, bool ethernet) 6351 { 6352 struct mpls_shim_hdr *lse; 6353 int err; 6354 6355 if (unlikely(!eth_p_mpls(mpls_proto))) 6356 return -EINVAL; 6357 6358 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6359 if (skb->encapsulation) 6360 return -EINVAL; 6361 6362 err = skb_cow_head(skb, MPLS_HLEN); 6363 if (unlikely(err)) 6364 return err; 6365 6366 if (!skb->inner_protocol) { 6367 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6368 skb_set_inner_protocol(skb, skb->protocol); 6369 } 6370 6371 skb_push(skb, MPLS_HLEN); 6372 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6373 mac_len); 6374 skb_reset_mac_header(skb); 6375 skb_set_network_header(skb, mac_len); 6376 skb_reset_mac_len(skb); 6377 6378 lse = mpls_hdr(skb); 6379 lse->label_stack_entry = mpls_lse; 6380 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6381 6382 if (ethernet && mac_len >= ETH_HLEN) 6383 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6384 skb->protocol = mpls_proto; 6385 6386 return 0; 6387 } 6388 EXPORT_SYMBOL_GPL(skb_mpls_push); 6389 6390 /** 6391 * skb_mpls_pop() - pop the outermost MPLS header 6392 * 6393 * @skb: buffer 6394 * @next_proto: ethertype of header after popped MPLS header 6395 * @mac_len: length of the MAC header 6396 * @ethernet: flag to indicate if the packet is ethernet 6397 * 6398 * Expects skb->data at mac header. 6399 * 6400 * Returns 0 on success, -errno otherwise. 6401 */ 6402 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6403 bool ethernet) 6404 { 6405 int err; 6406 6407 if (unlikely(!eth_p_mpls(skb->protocol))) 6408 return 0; 6409 6410 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6411 if (unlikely(err)) 6412 return err; 6413 6414 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6415 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6416 mac_len); 6417 6418 __skb_pull(skb, MPLS_HLEN); 6419 skb_reset_mac_header(skb); 6420 skb_set_network_header(skb, mac_len); 6421 6422 if (ethernet && mac_len >= ETH_HLEN) { 6423 struct ethhdr *hdr; 6424 6425 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6426 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6427 skb_mod_eth_type(skb, hdr, next_proto); 6428 } 6429 skb->protocol = next_proto; 6430 6431 return 0; 6432 } 6433 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6434 6435 /** 6436 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6437 * 6438 * @skb: buffer 6439 * @mpls_lse: new MPLS label stack entry to update to 6440 * 6441 * Expects skb->data at mac header. 6442 * 6443 * Returns 0 on success, -errno otherwise. 6444 */ 6445 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6446 { 6447 int err; 6448 6449 if (unlikely(!eth_p_mpls(skb->protocol))) 6450 return -EINVAL; 6451 6452 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6453 if (unlikely(err)) 6454 return err; 6455 6456 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6457 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6458 6459 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6460 } 6461 6462 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6463 6464 return 0; 6465 } 6466 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6467 6468 /** 6469 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6470 * 6471 * @skb: buffer 6472 * 6473 * Expects skb->data at mac header. 6474 * 6475 * Returns 0 on success, -errno otherwise. 6476 */ 6477 int skb_mpls_dec_ttl(struct sk_buff *skb) 6478 { 6479 u32 lse; 6480 u8 ttl; 6481 6482 if (unlikely(!eth_p_mpls(skb->protocol))) 6483 return -EINVAL; 6484 6485 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6486 return -ENOMEM; 6487 6488 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6489 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6490 if (!--ttl) 6491 return -EINVAL; 6492 6493 lse &= ~MPLS_LS_TTL_MASK; 6494 lse |= ttl << MPLS_LS_TTL_SHIFT; 6495 6496 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6497 } 6498 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6499 6500 /** 6501 * alloc_skb_with_frags - allocate skb with page frags 6502 * 6503 * @header_len: size of linear part 6504 * @data_len: needed length in frags 6505 * @order: max page order desired. 6506 * @errcode: pointer to error code if any 6507 * @gfp_mask: allocation mask 6508 * 6509 * This can be used to allocate a paged skb, given a maximal order for frags. 6510 */ 6511 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6512 unsigned long data_len, 6513 int order, 6514 int *errcode, 6515 gfp_t gfp_mask) 6516 { 6517 unsigned long chunk; 6518 struct sk_buff *skb; 6519 struct page *page; 6520 int nr_frags = 0; 6521 6522 *errcode = -EMSGSIZE; 6523 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6524 return NULL; 6525 6526 *errcode = -ENOBUFS; 6527 skb = alloc_skb(header_len, gfp_mask); 6528 if (!skb) 6529 return NULL; 6530 6531 while (data_len) { 6532 if (nr_frags == MAX_SKB_FRAGS - 1) 6533 goto failure; 6534 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6535 order--; 6536 6537 if (order) { 6538 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6539 __GFP_COMP | 6540 __GFP_NOWARN, 6541 order); 6542 if (!page) { 6543 order--; 6544 continue; 6545 } 6546 } else { 6547 page = alloc_page(gfp_mask); 6548 if (!page) 6549 goto failure; 6550 } 6551 chunk = min_t(unsigned long, data_len, 6552 PAGE_SIZE << order); 6553 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6554 nr_frags++; 6555 skb->truesize += (PAGE_SIZE << order); 6556 data_len -= chunk; 6557 } 6558 return skb; 6559 6560 failure: 6561 kfree_skb(skb); 6562 return NULL; 6563 } 6564 EXPORT_SYMBOL(alloc_skb_with_frags); 6565 6566 /* carve out the first off bytes from skb when off < headlen */ 6567 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6568 const int headlen, gfp_t gfp_mask) 6569 { 6570 int i; 6571 unsigned int size = skb_end_offset(skb); 6572 int new_hlen = headlen - off; 6573 u8 *data; 6574 6575 if (skb_pfmemalloc(skb)) 6576 gfp_mask |= __GFP_MEMALLOC; 6577 6578 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6579 if (!data) 6580 return -ENOMEM; 6581 size = SKB_WITH_OVERHEAD(size); 6582 6583 /* Copy real data, and all frags */ 6584 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6585 skb->len -= off; 6586 6587 memcpy((struct skb_shared_info *)(data + size), 6588 skb_shinfo(skb), 6589 offsetof(struct skb_shared_info, 6590 frags[skb_shinfo(skb)->nr_frags])); 6591 if (skb_cloned(skb)) { 6592 /* drop the old head gracefully */ 6593 if (skb_orphan_frags(skb, gfp_mask)) { 6594 skb_kfree_head(data, size); 6595 return -ENOMEM; 6596 } 6597 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6598 skb_frag_ref(skb, i); 6599 if (skb_has_frag_list(skb)) 6600 skb_clone_fraglist(skb); 6601 skb_release_data(skb, SKB_CONSUMED, false); 6602 } else { 6603 /* we can reuse existing recount- all we did was 6604 * relocate values 6605 */ 6606 skb_free_head(skb, false); 6607 } 6608 6609 skb->head = data; 6610 skb->data = data; 6611 skb->head_frag = 0; 6612 skb_set_end_offset(skb, size); 6613 skb_set_tail_pointer(skb, skb_headlen(skb)); 6614 skb_headers_offset_update(skb, 0); 6615 skb->cloned = 0; 6616 skb->hdr_len = 0; 6617 skb->nohdr = 0; 6618 atomic_set(&skb_shinfo(skb)->dataref, 1); 6619 6620 return 0; 6621 } 6622 6623 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6624 6625 /* carve out the first eat bytes from skb's frag_list. May recurse into 6626 * pskb_carve() 6627 */ 6628 static int pskb_carve_frag_list(struct sk_buff *skb, 6629 struct skb_shared_info *shinfo, int eat, 6630 gfp_t gfp_mask) 6631 { 6632 struct sk_buff *list = shinfo->frag_list; 6633 struct sk_buff *clone = NULL; 6634 struct sk_buff *insp = NULL; 6635 6636 do { 6637 if (!list) { 6638 pr_err("Not enough bytes to eat. Want %d\n", eat); 6639 return -EFAULT; 6640 } 6641 if (list->len <= eat) { 6642 /* Eaten as whole. */ 6643 eat -= list->len; 6644 list = list->next; 6645 insp = list; 6646 } else { 6647 /* Eaten partially. */ 6648 if (skb_shared(list)) { 6649 clone = skb_clone(list, gfp_mask); 6650 if (!clone) 6651 return -ENOMEM; 6652 insp = list->next; 6653 list = clone; 6654 } else { 6655 /* This may be pulled without problems. */ 6656 insp = list; 6657 } 6658 if (pskb_carve(list, eat, gfp_mask) < 0) { 6659 kfree_skb(clone); 6660 return -ENOMEM; 6661 } 6662 break; 6663 } 6664 } while (eat); 6665 6666 /* Free pulled out fragments. */ 6667 while ((list = shinfo->frag_list) != insp) { 6668 shinfo->frag_list = list->next; 6669 consume_skb(list); 6670 } 6671 /* And insert new clone at head. */ 6672 if (clone) { 6673 clone->next = list; 6674 shinfo->frag_list = clone; 6675 } 6676 return 0; 6677 } 6678 6679 /* carve off first len bytes from skb. Split line (off) is in the 6680 * non-linear part of skb 6681 */ 6682 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6683 int pos, gfp_t gfp_mask) 6684 { 6685 int i, k = 0; 6686 unsigned int size = skb_end_offset(skb); 6687 u8 *data; 6688 const int nfrags = skb_shinfo(skb)->nr_frags; 6689 struct skb_shared_info *shinfo; 6690 6691 if (skb_pfmemalloc(skb)) 6692 gfp_mask |= __GFP_MEMALLOC; 6693 6694 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6695 if (!data) 6696 return -ENOMEM; 6697 size = SKB_WITH_OVERHEAD(size); 6698 6699 memcpy((struct skb_shared_info *)(data + size), 6700 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6701 if (skb_orphan_frags(skb, gfp_mask)) { 6702 skb_kfree_head(data, size); 6703 return -ENOMEM; 6704 } 6705 shinfo = (struct skb_shared_info *)(data + size); 6706 for (i = 0; i < nfrags; i++) { 6707 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6708 6709 if (pos + fsize > off) { 6710 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6711 6712 if (pos < off) { 6713 /* Split frag. 6714 * We have two variants in this case: 6715 * 1. Move all the frag to the second 6716 * part, if it is possible. F.e. 6717 * this approach is mandatory for TUX, 6718 * where splitting is expensive. 6719 * 2. Split is accurately. We make this. 6720 */ 6721 skb_frag_off_add(&shinfo->frags[0], off - pos); 6722 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6723 } 6724 skb_frag_ref(skb, i); 6725 k++; 6726 } 6727 pos += fsize; 6728 } 6729 shinfo->nr_frags = k; 6730 if (skb_has_frag_list(skb)) 6731 skb_clone_fraglist(skb); 6732 6733 /* split line is in frag list */ 6734 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6735 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6736 if (skb_has_frag_list(skb)) 6737 kfree_skb_list(skb_shinfo(skb)->frag_list); 6738 skb_kfree_head(data, size); 6739 return -ENOMEM; 6740 } 6741 skb_release_data(skb, SKB_CONSUMED, false); 6742 6743 skb->head = data; 6744 skb->head_frag = 0; 6745 skb->data = data; 6746 skb_set_end_offset(skb, size); 6747 skb_reset_tail_pointer(skb); 6748 skb_headers_offset_update(skb, 0); 6749 skb->cloned = 0; 6750 skb->hdr_len = 0; 6751 skb->nohdr = 0; 6752 skb->len -= off; 6753 skb->data_len = skb->len; 6754 atomic_set(&skb_shinfo(skb)->dataref, 1); 6755 return 0; 6756 } 6757 6758 /* remove len bytes from the beginning of the skb */ 6759 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6760 { 6761 int headlen = skb_headlen(skb); 6762 6763 if (len < headlen) 6764 return pskb_carve_inside_header(skb, len, headlen, gfp); 6765 else 6766 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6767 } 6768 6769 /* Extract to_copy bytes starting at off from skb, and return this in 6770 * a new skb 6771 */ 6772 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6773 int to_copy, gfp_t gfp) 6774 { 6775 struct sk_buff *clone = skb_clone(skb, gfp); 6776 6777 if (!clone) 6778 return NULL; 6779 6780 if (pskb_carve(clone, off, gfp) < 0 || 6781 pskb_trim(clone, to_copy)) { 6782 kfree_skb(clone); 6783 return NULL; 6784 } 6785 return clone; 6786 } 6787 EXPORT_SYMBOL(pskb_extract); 6788 6789 /** 6790 * skb_condense - try to get rid of fragments/frag_list if possible 6791 * @skb: buffer 6792 * 6793 * Can be used to save memory before skb is added to a busy queue. 6794 * If packet has bytes in frags and enough tail room in skb->head, 6795 * pull all of them, so that we can free the frags right now and adjust 6796 * truesize. 6797 * Notes: 6798 * We do not reallocate skb->head thus can not fail. 6799 * Caller must re-evaluate skb->truesize if needed. 6800 */ 6801 void skb_condense(struct sk_buff *skb) 6802 { 6803 if (skb->data_len) { 6804 if (skb->data_len > skb->end - skb->tail || 6805 skb_cloned(skb)) 6806 return; 6807 6808 /* Nice, we can free page frag(s) right now */ 6809 __pskb_pull_tail(skb, skb->data_len); 6810 } 6811 /* At this point, skb->truesize might be over estimated, 6812 * because skb had a fragment, and fragments do not tell 6813 * their truesize. 6814 * When we pulled its content into skb->head, fragment 6815 * was freed, but __pskb_pull_tail() could not possibly 6816 * adjust skb->truesize, not knowing the frag truesize. 6817 */ 6818 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6819 } 6820 EXPORT_SYMBOL(skb_condense); 6821 6822 #ifdef CONFIG_SKB_EXTENSIONS 6823 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6824 { 6825 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6826 } 6827 6828 /** 6829 * __skb_ext_alloc - allocate a new skb extensions storage 6830 * 6831 * @flags: See kmalloc(). 6832 * 6833 * Returns the newly allocated pointer. The pointer can later attached to a 6834 * skb via __skb_ext_set(). 6835 * Note: caller must handle the skb_ext as an opaque data. 6836 */ 6837 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6838 { 6839 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6840 6841 if (new) { 6842 memset(new->offset, 0, sizeof(new->offset)); 6843 refcount_set(&new->refcnt, 1); 6844 } 6845 6846 return new; 6847 } 6848 6849 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6850 unsigned int old_active) 6851 { 6852 struct skb_ext *new; 6853 6854 if (refcount_read(&old->refcnt) == 1) 6855 return old; 6856 6857 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6858 if (!new) 6859 return NULL; 6860 6861 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6862 refcount_set(&new->refcnt, 1); 6863 6864 #ifdef CONFIG_XFRM 6865 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6866 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6867 unsigned int i; 6868 6869 for (i = 0; i < sp->len; i++) 6870 xfrm_state_hold(sp->xvec[i]); 6871 } 6872 #endif 6873 #ifdef CONFIG_MCTP_FLOWS 6874 if (old_active & (1 << SKB_EXT_MCTP)) { 6875 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP); 6876 6877 if (flow->key) 6878 refcount_inc(&flow->key->refs); 6879 } 6880 #endif 6881 __skb_ext_put(old); 6882 return new; 6883 } 6884 6885 /** 6886 * __skb_ext_set - attach the specified extension storage to this skb 6887 * @skb: buffer 6888 * @id: extension id 6889 * @ext: extension storage previously allocated via __skb_ext_alloc() 6890 * 6891 * Existing extensions, if any, are cleared. 6892 * 6893 * Returns the pointer to the extension. 6894 */ 6895 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6896 struct skb_ext *ext) 6897 { 6898 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6899 6900 skb_ext_put(skb); 6901 newlen = newoff + skb_ext_type_len[id]; 6902 ext->chunks = newlen; 6903 ext->offset[id] = newoff; 6904 skb->extensions = ext; 6905 skb->active_extensions = 1 << id; 6906 return skb_ext_get_ptr(ext, id); 6907 } 6908 6909 /** 6910 * skb_ext_add - allocate space for given extension, COW if needed 6911 * @skb: buffer 6912 * @id: extension to allocate space for 6913 * 6914 * Allocates enough space for the given extension. 6915 * If the extension is already present, a pointer to that extension 6916 * is returned. 6917 * 6918 * If the skb was cloned, COW applies and the returned memory can be 6919 * modified without changing the extension space of clones buffers. 6920 * 6921 * Returns pointer to the extension or NULL on allocation failure. 6922 */ 6923 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6924 { 6925 struct skb_ext *new, *old = NULL; 6926 unsigned int newlen, newoff; 6927 6928 if (skb->active_extensions) { 6929 old = skb->extensions; 6930 6931 new = skb_ext_maybe_cow(old, skb->active_extensions); 6932 if (!new) 6933 return NULL; 6934 6935 if (__skb_ext_exist(new, id)) 6936 goto set_active; 6937 6938 newoff = new->chunks; 6939 } else { 6940 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6941 6942 new = __skb_ext_alloc(GFP_ATOMIC); 6943 if (!new) 6944 return NULL; 6945 } 6946 6947 newlen = newoff + skb_ext_type_len[id]; 6948 new->chunks = newlen; 6949 new->offset[id] = newoff; 6950 set_active: 6951 skb->slow_gro = 1; 6952 skb->extensions = new; 6953 skb->active_extensions |= 1 << id; 6954 return skb_ext_get_ptr(new, id); 6955 } 6956 EXPORT_SYMBOL(skb_ext_add); 6957 6958 #ifdef CONFIG_XFRM 6959 static void skb_ext_put_sp(struct sec_path *sp) 6960 { 6961 unsigned int i; 6962 6963 for (i = 0; i < sp->len; i++) 6964 xfrm_state_put(sp->xvec[i]); 6965 } 6966 #endif 6967 6968 #ifdef CONFIG_MCTP_FLOWS 6969 static void skb_ext_put_mctp(struct mctp_flow *flow) 6970 { 6971 if (flow->key) 6972 mctp_key_unref(flow->key); 6973 } 6974 #endif 6975 6976 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6977 { 6978 struct skb_ext *ext = skb->extensions; 6979 6980 skb->active_extensions &= ~(1 << id); 6981 if (skb->active_extensions == 0) { 6982 skb->extensions = NULL; 6983 __skb_ext_put(ext); 6984 #ifdef CONFIG_XFRM 6985 } else if (id == SKB_EXT_SEC_PATH && 6986 refcount_read(&ext->refcnt) == 1) { 6987 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6988 6989 skb_ext_put_sp(sp); 6990 sp->len = 0; 6991 #endif 6992 } 6993 } 6994 EXPORT_SYMBOL(__skb_ext_del); 6995 6996 void __skb_ext_put(struct skb_ext *ext) 6997 { 6998 /* If this is last clone, nothing can increment 6999 * it after check passes. Avoids one atomic op. 7000 */ 7001 if (refcount_read(&ext->refcnt) == 1) 7002 goto free_now; 7003 7004 if (!refcount_dec_and_test(&ext->refcnt)) 7005 return; 7006 free_now: 7007 #ifdef CONFIG_XFRM 7008 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 7009 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 7010 #endif 7011 #ifdef CONFIG_MCTP_FLOWS 7012 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 7013 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 7014 #endif 7015 7016 kmem_cache_free(skbuff_ext_cache, ext); 7017 } 7018 EXPORT_SYMBOL(__skb_ext_put); 7019 #endif /* CONFIG_SKB_EXTENSIONS */ 7020 7021 /** 7022 * skb_attempt_defer_free - queue skb for remote freeing 7023 * @skb: buffer 7024 * 7025 * Put @skb in a per-cpu list, using the cpu which 7026 * allocated the skb/pages to reduce false sharing 7027 * and memory zone spinlock contention. 7028 */ 7029 void skb_attempt_defer_free(struct sk_buff *skb) 7030 { 7031 int cpu = skb->alloc_cpu; 7032 struct softnet_data *sd; 7033 unsigned int defer_max; 7034 bool kick; 7035 7036 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 7037 !cpu_online(cpu) || 7038 cpu == raw_smp_processor_id()) { 7039 nodefer: __kfree_skb(skb); 7040 return; 7041 } 7042 7043 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 7044 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 7045 7046 sd = &per_cpu(softnet_data, cpu); 7047 defer_max = READ_ONCE(sysctl_skb_defer_max); 7048 if (READ_ONCE(sd->defer_count) >= defer_max) 7049 goto nodefer; 7050 7051 spin_lock_bh(&sd->defer_lock); 7052 /* Send an IPI every time queue reaches half capacity. */ 7053 kick = sd->defer_count == (defer_max >> 1); 7054 /* Paired with the READ_ONCE() few lines above */ 7055 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 7056 7057 skb->next = sd->defer_list; 7058 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 7059 WRITE_ONCE(sd->defer_list, skb); 7060 spin_unlock_bh(&sd->defer_lock); 7061 7062 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 7063 * if we are unlucky enough (this seems very unlikely). 7064 */ 7065 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) 7066 smp_call_function_single_async(cpu, &sd->defer_csd); 7067 } 7068 7069 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 7070 size_t offset, size_t len) 7071 { 7072 const char *kaddr; 7073 __wsum csum; 7074 7075 kaddr = kmap_local_page(page); 7076 csum = csum_partial(kaddr + offset, len, 0); 7077 kunmap_local(kaddr); 7078 skb->csum = csum_block_add(skb->csum, csum, skb->len); 7079 } 7080 7081 /** 7082 * skb_splice_from_iter - Splice (or copy) pages to skbuff 7083 * @skb: The buffer to add pages to 7084 * @iter: Iterator representing the pages to be added 7085 * @maxsize: Maximum amount of pages to be added 7086 * @gfp: Allocation flags 7087 * 7088 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 7089 * extracts pages from an iterator and adds them to the socket buffer if 7090 * possible, copying them to fragments if not possible (such as if they're slab 7091 * pages). 7092 * 7093 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 7094 * insufficient space in the buffer to transfer anything. 7095 */ 7096 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 7097 ssize_t maxsize, gfp_t gfp) 7098 { 7099 size_t frag_limit = READ_ONCE(sysctl_max_skb_frags); 7100 struct page *pages[8], **ppages = pages; 7101 ssize_t spliced = 0, ret = 0; 7102 unsigned int i; 7103 7104 while (iter->count > 0) { 7105 ssize_t space, nr, len; 7106 size_t off; 7107 7108 ret = -EMSGSIZE; 7109 space = frag_limit - skb_shinfo(skb)->nr_frags; 7110 if (space < 0) 7111 break; 7112 7113 /* We might be able to coalesce without increasing nr_frags */ 7114 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 7115 7116 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 7117 if (len <= 0) { 7118 ret = len ?: -EIO; 7119 break; 7120 } 7121 7122 i = 0; 7123 do { 7124 struct page *page = pages[i++]; 7125 size_t part = min_t(size_t, PAGE_SIZE - off, len); 7126 7127 ret = -EIO; 7128 if (WARN_ON_ONCE(!sendpage_ok(page))) 7129 goto out; 7130 7131 ret = skb_append_pagefrags(skb, page, off, part, 7132 frag_limit); 7133 if (ret < 0) { 7134 iov_iter_revert(iter, len); 7135 goto out; 7136 } 7137 7138 if (skb->ip_summed == CHECKSUM_NONE) 7139 skb_splice_csum_page(skb, page, off, part); 7140 7141 off = 0; 7142 spliced += part; 7143 maxsize -= part; 7144 len -= part; 7145 } while (len > 0); 7146 7147 if (maxsize <= 0) 7148 break; 7149 } 7150 7151 out: 7152 skb_len_add(skb, spliced); 7153 return spliced ?: ret; 7154 } 7155 EXPORT_SYMBOL(skb_splice_from_iter); 7156 7157 static __always_inline 7158 size_t memcpy_from_iter_csum(void *iter_from, size_t progress, 7159 size_t len, void *to, void *priv2) 7160 { 7161 __wsum *csum = priv2; 7162 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len); 7163 7164 *csum = csum_block_add(*csum, next, progress); 7165 return 0; 7166 } 7167 7168 static __always_inline 7169 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress, 7170 size_t len, void *to, void *priv2) 7171 { 7172 __wsum next, *csum = priv2; 7173 7174 next = csum_and_copy_from_user(iter_from, to + progress, len); 7175 *csum = csum_block_add(*csum, next, progress); 7176 return next ? 0 : len; 7177 } 7178 7179 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, 7180 __wsum *csum, struct iov_iter *i) 7181 { 7182 size_t copied; 7183 7184 if (WARN_ON_ONCE(!i->data_source)) 7185 return false; 7186 copied = iterate_and_advance2(i, bytes, addr, csum, 7187 copy_from_user_iter_csum, 7188 memcpy_from_iter_csum); 7189 if (likely(copied == bytes)) 7190 return true; 7191 iov_iter_revert(i, copied); 7192 return false; 7193 } 7194 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 7195