xref: /linux/net/core/skbuff.c (revision 860a9bed265146b10311bcadbbcef59c3af4454d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/skbuff_ref.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
60 #include <linux/errqueue.h>
61 #include <linux/prefetch.h>
62 #include <linux/bitfield.h>
63 #include <linux/if_vlan.h>
64 #include <linux/mpls.h>
65 #include <linux/kcov.h>
66 #include <linux/iov_iter.h>
67 
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/gso.h>
73 #include <net/hotdata.h>
74 #include <net/ip6_checksum.h>
75 #include <net/xfrm.h>
76 #include <net/mpls.h>
77 #include <net/mptcp.h>
78 #include <net/mctp.h>
79 #include <net/page_pool/helpers.h>
80 #include <net/dropreason.h>
81 
82 #include <linux/uaccess.h>
83 #include <trace/events/skb.h>
84 #include <linux/highmem.h>
85 #include <linux/capability.h>
86 #include <linux/user_namespace.h>
87 #include <linux/indirect_call_wrapper.h>
88 #include <linux/textsearch.h>
89 
90 #include "dev.h"
91 #include "sock_destructor.h"
92 
93 #ifdef CONFIG_SKB_EXTENSIONS
94 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
95 #endif
96 
97 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
98 
99 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
100  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
101  * size, and we can differentiate heads from skb_small_head_cache
102  * vs system slabs by looking at their size (skb_end_offset()).
103  */
104 #define SKB_SMALL_HEAD_CACHE_SIZE					\
105 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
106 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
107 		SKB_SMALL_HEAD_SIZE)
108 
109 #define SKB_SMALL_HEAD_HEADROOM						\
110 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
111 
112 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
113 EXPORT_SYMBOL(sysctl_max_skb_frags);
114 
115 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
116  * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
117  * netmem is a page.
118  */
119 static_assert(offsetof(struct bio_vec, bv_page) ==
120 	      offsetof(skb_frag_t, netmem));
121 static_assert(sizeof_field(struct bio_vec, bv_page) ==
122 	      sizeof_field(skb_frag_t, netmem));
123 
124 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
125 static_assert(sizeof_field(struct bio_vec, bv_len) ==
126 	      sizeof_field(skb_frag_t, len));
127 
128 static_assert(offsetof(struct bio_vec, bv_offset) ==
129 	      offsetof(skb_frag_t, offset));
130 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
131 	      sizeof_field(skb_frag_t, offset));
132 
133 #undef FN
134 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
135 static const char * const drop_reasons[] = {
136 	[SKB_CONSUMED] = "CONSUMED",
137 	DEFINE_DROP_REASON(FN, FN)
138 };
139 
140 static const struct drop_reason_list drop_reasons_core = {
141 	.reasons = drop_reasons,
142 	.n_reasons = ARRAY_SIZE(drop_reasons),
143 };
144 
145 const struct drop_reason_list __rcu *
146 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
147 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
148 };
149 EXPORT_SYMBOL(drop_reasons_by_subsys);
150 
151 /**
152  * drop_reasons_register_subsys - register another drop reason subsystem
153  * @subsys: the subsystem to register, must not be the core
154  * @list: the list of drop reasons within the subsystem, must point to
155  *	a statically initialized list
156  */
157 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
158 				  const struct drop_reason_list *list)
159 {
160 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
161 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
162 		 "invalid subsystem %d\n", subsys))
163 		return;
164 
165 	/* must point to statically allocated memory, so INIT is OK */
166 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
167 }
168 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
169 
170 /**
171  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
172  * @subsys: the subsystem to remove, must not be the core
173  *
174  * Note: This will synchronize_rcu() to ensure no users when it returns.
175  */
176 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
177 {
178 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
179 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
180 		 "invalid subsystem %d\n", subsys))
181 		return;
182 
183 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
184 
185 	synchronize_rcu();
186 }
187 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
188 
189 /**
190  *	skb_panic - private function for out-of-line support
191  *	@skb:	buffer
192  *	@sz:	size
193  *	@addr:	address
194  *	@msg:	skb_over_panic or skb_under_panic
195  *
196  *	Out-of-line support for skb_put() and skb_push().
197  *	Called via the wrapper skb_over_panic() or skb_under_panic().
198  *	Keep out of line to prevent kernel bloat.
199  *	__builtin_return_address is not used because it is not always reliable.
200  */
201 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
202 		      const char msg[])
203 {
204 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
205 		 msg, addr, skb->len, sz, skb->head, skb->data,
206 		 (unsigned long)skb->tail, (unsigned long)skb->end,
207 		 skb->dev ? skb->dev->name : "<NULL>");
208 	BUG();
209 }
210 
211 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
212 {
213 	skb_panic(skb, sz, addr, __func__);
214 }
215 
216 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
217 {
218 	skb_panic(skb, sz, addr, __func__);
219 }
220 
221 #define NAPI_SKB_CACHE_SIZE	64
222 #define NAPI_SKB_CACHE_BULK	16
223 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
224 
225 #if PAGE_SIZE == SZ_4K
226 
227 #define NAPI_HAS_SMALL_PAGE_FRAG	1
228 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
229 
230 /* specialized page frag allocator using a single order 0 page
231  * and slicing it into 1K sized fragment. Constrained to systems
232  * with a very limited amount of 1K fragments fitting a single
233  * page - to avoid excessive truesize underestimation
234  */
235 
236 struct page_frag_1k {
237 	void *va;
238 	u16 offset;
239 	bool pfmemalloc;
240 };
241 
242 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
243 {
244 	struct page *page;
245 	int offset;
246 
247 	offset = nc->offset - SZ_1K;
248 	if (likely(offset >= 0))
249 		goto use_frag;
250 
251 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
252 	if (!page)
253 		return NULL;
254 
255 	nc->va = page_address(page);
256 	nc->pfmemalloc = page_is_pfmemalloc(page);
257 	offset = PAGE_SIZE - SZ_1K;
258 	page_ref_add(page, offset / SZ_1K);
259 
260 use_frag:
261 	nc->offset = offset;
262 	return nc->va + offset;
263 }
264 #else
265 
266 /* the small page is actually unused in this build; add dummy helpers
267  * to please the compiler and avoid later preprocessor's conditionals
268  */
269 #define NAPI_HAS_SMALL_PAGE_FRAG	0
270 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
271 
272 struct page_frag_1k {
273 };
274 
275 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
276 {
277 	return NULL;
278 }
279 
280 #endif
281 
282 struct napi_alloc_cache {
283 	struct page_frag_cache page;
284 	struct page_frag_1k page_small;
285 	unsigned int skb_count;
286 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
287 };
288 
289 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
290 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
291 
292 /* Double check that napi_get_frags() allocates skbs with
293  * skb->head being backed by slab, not a page fragment.
294  * This is to make sure bug fixed in 3226b158e67c
295  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
296  * does not accidentally come back.
297  */
298 void napi_get_frags_check(struct napi_struct *napi)
299 {
300 	struct sk_buff *skb;
301 
302 	local_bh_disable();
303 	skb = napi_get_frags(napi);
304 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
305 	napi_free_frags(napi);
306 	local_bh_enable();
307 }
308 
309 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
310 {
311 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
312 
313 	fragsz = SKB_DATA_ALIGN(fragsz);
314 
315 	return __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
316 				       align_mask);
317 }
318 EXPORT_SYMBOL(__napi_alloc_frag_align);
319 
320 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
321 {
322 	void *data;
323 
324 	fragsz = SKB_DATA_ALIGN(fragsz);
325 	if (in_hardirq() || irqs_disabled()) {
326 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
327 
328 		data = __page_frag_alloc_align(nc, fragsz, GFP_ATOMIC,
329 					       align_mask);
330 	} else {
331 		struct napi_alloc_cache *nc;
332 
333 		local_bh_disable();
334 		nc = this_cpu_ptr(&napi_alloc_cache);
335 		data = __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
336 					       align_mask);
337 		local_bh_enable();
338 	}
339 	return data;
340 }
341 EXPORT_SYMBOL(__netdev_alloc_frag_align);
342 
343 static struct sk_buff *napi_skb_cache_get(void)
344 {
345 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
346 	struct sk_buff *skb;
347 
348 	if (unlikely(!nc->skb_count)) {
349 		nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
350 						      GFP_ATOMIC,
351 						      NAPI_SKB_CACHE_BULK,
352 						      nc->skb_cache);
353 		if (unlikely(!nc->skb_count))
354 			return NULL;
355 	}
356 
357 	skb = nc->skb_cache[--nc->skb_count];
358 	kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
359 
360 	return skb;
361 }
362 
363 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
364 					 unsigned int size)
365 {
366 	struct skb_shared_info *shinfo;
367 
368 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
369 
370 	/* Assumes caller memset cleared SKB */
371 	skb->truesize = SKB_TRUESIZE(size);
372 	refcount_set(&skb->users, 1);
373 	skb->head = data;
374 	skb->data = data;
375 	skb_reset_tail_pointer(skb);
376 	skb_set_end_offset(skb, size);
377 	skb->mac_header = (typeof(skb->mac_header))~0U;
378 	skb->transport_header = (typeof(skb->transport_header))~0U;
379 	skb->alloc_cpu = raw_smp_processor_id();
380 	/* make sure we initialize shinfo sequentially */
381 	shinfo = skb_shinfo(skb);
382 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
383 	atomic_set(&shinfo->dataref, 1);
384 
385 	skb_set_kcov_handle(skb, kcov_common_handle());
386 }
387 
388 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
389 				     unsigned int *size)
390 {
391 	void *resized;
392 
393 	/* Must find the allocation size (and grow it to match). */
394 	*size = ksize(data);
395 	/* krealloc() will immediately return "data" when
396 	 * "ksize(data)" is requested: it is the existing upper
397 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
398 	 * that this "new" pointer needs to be passed back to the
399 	 * caller for use so the __alloc_size hinting will be
400 	 * tracked correctly.
401 	 */
402 	resized = krealloc(data, *size, GFP_ATOMIC);
403 	WARN_ON_ONCE(resized != data);
404 	return resized;
405 }
406 
407 /* build_skb() variant which can operate on slab buffers.
408  * Note that this should be used sparingly as slab buffers
409  * cannot be combined efficiently by GRO!
410  */
411 struct sk_buff *slab_build_skb(void *data)
412 {
413 	struct sk_buff *skb;
414 	unsigned int size;
415 
416 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
417 	if (unlikely(!skb))
418 		return NULL;
419 
420 	memset(skb, 0, offsetof(struct sk_buff, tail));
421 	data = __slab_build_skb(skb, data, &size);
422 	__finalize_skb_around(skb, data, size);
423 
424 	return skb;
425 }
426 EXPORT_SYMBOL(slab_build_skb);
427 
428 /* Caller must provide SKB that is memset cleared */
429 static void __build_skb_around(struct sk_buff *skb, void *data,
430 			       unsigned int frag_size)
431 {
432 	unsigned int size = frag_size;
433 
434 	/* frag_size == 0 is considered deprecated now. Callers
435 	 * using slab buffer should use slab_build_skb() instead.
436 	 */
437 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
438 		data = __slab_build_skb(skb, data, &size);
439 
440 	__finalize_skb_around(skb, data, size);
441 }
442 
443 /**
444  * __build_skb - build a network buffer
445  * @data: data buffer provided by caller
446  * @frag_size: size of data (must not be 0)
447  *
448  * Allocate a new &sk_buff. Caller provides space holding head and
449  * skb_shared_info. @data must have been allocated from the page
450  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
451  * allocation is deprecated, and callers should use slab_build_skb()
452  * instead.)
453  * The return is the new skb buffer.
454  * On a failure the return is %NULL, and @data is not freed.
455  * Notes :
456  *  Before IO, driver allocates only data buffer where NIC put incoming frame
457  *  Driver should add room at head (NET_SKB_PAD) and
458  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
459  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
460  *  before giving packet to stack.
461  *  RX rings only contains data buffers, not full skbs.
462  */
463 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
464 {
465 	struct sk_buff *skb;
466 
467 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
468 	if (unlikely(!skb))
469 		return NULL;
470 
471 	memset(skb, 0, offsetof(struct sk_buff, tail));
472 	__build_skb_around(skb, data, frag_size);
473 
474 	return skb;
475 }
476 
477 /* build_skb() is wrapper over __build_skb(), that specifically
478  * takes care of skb->head and skb->pfmemalloc
479  */
480 struct sk_buff *build_skb(void *data, unsigned int frag_size)
481 {
482 	struct sk_buff *skb = __build_skb(data, frag_size);
483 
484 	if (likely(skb && frag_size)) {
485 		skb->head_frag = 1;
486 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
487 	}
488 	return skb;
489 }
490 EXPORT_SYMBOL(build_skb);
491 
492 /**
493  * build_skb_around - build a network buffer around provided skb
494  * @skb: sk_buff provide by caller, must be memset cleared
495  * @data: data buffer provided by caller
496  * @frag_size: size of data
497  */
498 struct sk_buff *build_skb_around(struct sk_buff *skb,
499 				 void *data, unsigned int frag_size)
500 {
501 	if (unlikely(!skb))
502 		return NULL;
503 
504 	__build_skb_around(skb, data, frag_size);
505 
506 	if (frag_size) {
507 		skb->head_frag = 1;
508 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
509 	}
510 	return skb;
511 }
512 EXPORT_SYMBOL(build_skb_around);
513 
514 /**
515  * __napi_build_skb - build a network buffer
516  * @data: data buffer provided by caller
517  * @frag_size: size of data
518  *
519  * Version of __build_skb() that uses NAPI percpu caches to obtain
520  * skbuff_head instead of inplace allocation.
521  *
522  * Returns a new &sk_buff on success, %NULL on allocation failure.
523  */
524 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
525 {
526 	struct sk_buff *skb;
527 
528 	skb = napi_skb_cache_get();
529 	if (unlikely(!skb))
530 		return NULL;
531 
532 	memset(skb, 0, offsetof(struct sk_buff, tail));
533 	__build_skb_around(skb, data, frag_size);
534 
535 	return skb;
536 }
537 
538 /**
539  * napi_build_skb - build a network buffer
540  * @data: data buffer provided by caller
541  * @frag_size: size of data
542  *
543  * Version of __napi_build_skb() that takes care of skb->head_frag
544  * and skb->pfmemalloc when the data is a page or page fragment.
545  *
546  * Returns a new &sk_buff on success, %NULL on allocation failure.
547  */
548 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
549 {
550 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
551 
552 	if (likely(skb) && frag_size) {
553 		skb->head_frag = 1;
554 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
555 	}
556 
557 	return skb;
558 }
559 EXPORT_SYMBOL(napi_build_skb);
560 
561 /*
562  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
563  * the caller if emergency pfmemalloc reserves are being used. If it is and
564  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
565  * may be used. Otherwise, the packet data may be discarded until enough
566  * memory is free
567  */
568 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
569 			     bool *pfmemalloc)
570 {
571 	bool ret_pfmemalloc = false;
572 	size_t obj_size;
573 	void *obj;
574 
575 	obj_size = SKB_HEAD_ALIGN(*size);
576 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
577 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
578 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
579 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
580 				node);
581 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
582 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
583 			goto out;
584 		/* Try again but now we are using pfmemalloc reserves */
585 		ret_pfmemalloc = true;
586 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
587 		goto out;
588 	}
589 
590 	obj_size = kmalloc_size_roundup(obj_size);
591 	/* The following cast might truncate high-order bits of obj_size, this
592 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
593 	 */
594 	*size = (unsigned int)obj_size;
595 
596 	/*
597 	 * Try a regular allocation, when that fails and we're not entitled
598 	 * to the reserves, fail.
599 	 */
600 	obj = kmalloc_node_track_caller(obj_size,
601 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
602 					node);
603 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
604 		goto out;
605 
606 	/* Try again but now we are using pfmemalloc reserves */
607 	ret_pfmemalloc = true;
608 	obj = kmalloc_node_track_caller(obj_size, flags, node);
609 
610 out:
611 	if (pfmemalloc)
612 		*pfmemalloc = ret_pfmemalloc;
613 
614 	return obj;
615 }
616 
617 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
618  *	'private' fields and also do memory statistics to find all the
619  *	[BEEP] leaks.
620  *
621  */
622 
623 /**
624  *	__alloc_skb	-	allocate a network buffer
625  *	@size: size to allocate
626  *	@gfp_mask: allocation mask
627  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
628  *		instead of head cache and allocate a cloned (child) skb.
629  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
630  *		allocations in case the data is required for writeback
631  *	@node: numa node to allocate memory on
632  *
633  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
634  *	tail room of at least size bytes. The object has a reference count
635  *	of one. The return is the buffer. On a failure the return is %NULL.
636  *
637  *	Buffers may only be allocated from interrupts using a @gfp_mask of
638  *	%GFP_ATOMIC.
639  */
640 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
641 			    int flags, int node)
642 {
643 	struct kmem_cache *cache;
644 	struct sk_buff *skb;
645 	bool pfmemalloc;
646 	u8 *data;
647 
648 	cache = (flags & SKB_ALLOC_FCLONE)
649 		? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
650 
651 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
652 		gfp_mask |= __GFP_MEMALLOC;
653 
654 	/* Get the HEAD */
655 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
656 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
657 		skb = napi_skb_cache_get();
658 	else
659 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
660 	if (unlikely(!skb))
661 		return NULL;
662 	prefetchw(skb);
663 
664 	/* We do our best to align skb_shared_info on a separate cache
665 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
666 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
667 	 * Both skb->head and skb_shared_info are cache line aligned.
668 	 */
669 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
670 	if (unlikely(!data))
671 		goto nodata;
672 	/* kmalloc_size_roundup() might give us more room than requested.
673 	 * Put skb_shared_info exactly at the end of allocated zone,
674 	 * to allow max possible filling before reallocation.
675 	 */
676 	prefetchw(data + SKB_WITH_OVERHEAD(size));
677 
678 	/*
679 	 * Only clear those fields we need to clear, not those that we will
680 	 * actually initialise below. Hence, don't put any more fields after
681 	 * the tail pointer in struct sk_buff!
682 	 */
683 	memset(skb, 0, offsetof(struct sk_buff, tail));
684 	__build_skb_around(skb, data, size);
685 	skb->pfmemalloc = pfmemalloc;
686 
687 	if (flags & SKB_ALLOC_FCLONE) {
688 		struct sk_buff_fclones *fclones;
689 
690 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
691 
692 		skb->fclone = SKB_FCLONE_ORIG;
693 		refcount_set(&fclones->fclone_ref, 1);
694 	}
695 
696 	return skb;
697 
698 nodata:
699 	kmem_cache_free(cache, skb);
700 	return NULL;
701 }
702 EXPORT_SYMBOL(__alloc_skb);
703 
704 /**
705  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
706  *	@dev: network device to receive on
707  *	@len: length to allocate
708  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
709  *
710  *	Allocate a new &sk_buff and assign it a usage count of one. The
711  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
712  *	the headroom they think they need without accounting for the
713  *	built in space. The built in space is used for optimisations.
714  *
715  *	%NULL is returned if there is no free memory.
716  */
717 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
718 				   gfp_t gfp_mask)
719 {
720 	struct page_frag_cache *nc;
721 	struct sk_buff *skb;
722 	bool pfmemalloc;
723 	void *data;
724 
725 	len += NET_SKB_PAD;
726 
727 	/* If requested length is either too small or too big,
728 	 * we use kmalloc() for skb->head allocation.
729 	 */
730 	if (len <= SKB_WITH_OVERHEAD(1024) ||
731 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
732 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
733 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
734 		if (!skb)
735 			goto skb_fail;
736 		goto skb_success;
737 	}
738 
739 	len = SKB_HEAD_ALIGN(len);
740 
741 	if (sk_memalloc_socks())
742 		gfp_mask |= __GFP_MEMALLOC;
743 
744 	if (in_hardirq() || irqs_disabled()) {
745 		nc = this_cpu_ptr(&netdev_alloc_cache);
746 		data = page_frag_alloc(nc, len, gfp_mask);
747 		pfmemalloc = nc->pfmemalloc;
748 	} else {
749 		local_bh_disable();
750 		nc = this_cpu_ptr(&napi_alloc_cache.page);
751 		data = page_frag_alloc(nc, len, gfp_mask);
752 		pfmemalloc = nc->pfmemalloc;
753 		local_bh_enable();
754 	}
755 
756 	if (unlikely(!data))
757 		return NULL;
758 
759 	skb = __build_skb(data, len);
760 	if (unlikely(!skb)) {
761 		skb_free_frag(data);
762 		return NULL;
763 	}
764 
765 	if (pfmemalloc)
766 		skb->pfmemalloc = 1;
767 	skb->head_frag = 1;
768 
769 skb_success:
770 	skb_reserve(skb, NET_SKB_PAD);
771 	skb->dev = dev;
772 
773 skb_fail:
774 	return skb;
775 }
776 EXPORT_SYMBOL(__netdev_alloc_skb);
777 
778 /**
779  *	napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
780  *	@napi: napi instance this buffer was allocated for
781  *	@len: length to allocate
782  *
783  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
784  *	attempt to allocate the head from a special reserved region used
785  *	only for NAPI Rx allocation.  By doing this we can save several
786  *	CPU cycles by avoiding having to disable and re-enable IRQs.
787  *
788  *	%NULL is returned if there is no free memory.
789  */
790 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
791 {
792 	gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
793 	struct napi_alloc_cache *nc;
794 	struct sk_buff *skb;
795 	bool pfmemalloc;
796 	void *data;
797 
798 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
799 	len += NET_SKB_PAD + NET_IP_ALIGN;
800 
801 	/* If requested length is either too small or too big,
802 	 * we use kmalloc() for skb->head allocation.
803 	 * When the small frag allocator is available, prefer it over kmalloc
804 	 * for small fragments
805 	 */
806 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
807 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
808 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
809 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
810 				  NUMA_NO_NODE);
811 		if (!skb)
812 			goto skb_fail;
813 		goto skb_success;
814 	}
815 
816 	nc = this_cpu_ptr(&napi_alloc_cache);
817 
818 	if (sk_memalloc_socks())
819 		gfp_mask |= __GFP_MEMALLOC;
820 
821 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
822 		/* we are artificially inflating the allocation size, but
823 		 * that is not as bad as it may look like, as:
824 		 * - 'len' less than GRO_MAX_HEAD makes little sense
825 		 * - On most systems, larger 'len' values lead to fragment
826 		 *   size above 512 bytes
827 		 * - kmalloc would use the kmalloc-1k slab for such values
828 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
829 		 *   little networking, as that implies no WiFi and no
830 		 *   tunnels support, and 32 bits arches.
831 		 */
832 		len = SZ_1K;
833 
834 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
835 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
836 	} else {
837 		len = SKB_HEAD_ALIGN(len);
838 
839 		data = page_frag_alloc(&nc->page, len, gfp_mask);
840 		pfmemalloc = nc->page.pfmemalloc;
841 	}
842 
843 	if (unlikely(!data))
844 		return NULL;
845 
846 	skb = __napi_build_skb(data, len);
847 	if (unlikely(!skb)) {
848 		skb_free_frag(data);
849 		return NULL;
850 	}
851 
852 	if (pfmemalloc)
853 		skb->pfmemalloc = 1;
854 	skb->head_frag = 1;
855 
856 skb_success:
857 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
858 	skb->dev = napi->dev;
859 
860 skb_fail:
861 	return skb;
862 }
863 EXPORT_SYMBOL(napi_alloc_skb);
864 
865 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
866 			    int off, int size, unsigned int truesize)
867 {
868 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
869 
870 	skb_fill_netmem_desc(skb, i, netmem, off, size);
871 	skb->len += size;
872 	skb->data_len += size;
873 	skb->truesize += truesize;
874 }
875 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
876 
877 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
878 			  unsigned int truesize)
879 {
880 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
881 
882 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
883 
884 	skb_frag_size_add(frag, size);
885 	skb->len += size;
886 	skb->data_len += size;
887 	skb->truesize += truesize;
888 }
889 EXPORT_SYMBOL(skb_coalesce_rx_frag);
890 
891 static void skb_drop_list(struct sk_buff **listp)
892 {
893 	kfree_skb_list(*listp);
894 	*listp = NULL;
895 }
896 
897 static inline void skb_drop_fraglist(struct sk_buff *skb)
898 {
899 	skb_drop_list(&skb_shinfo(skb)->frag_list);
900 }
901 
902 static void skb_clone_fraglist(struct sk_buff *skb)
903 {
904 	struct sk_buff *list;
905 
906 	skb_walk_frags(skb, list)
907 		skb_get(list);
908 }
909 
910 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
911 		    unsigned int headroom)
912 {
913 #if IS_ENABLED(CONFIG_PAGE_POOL)
914 	u32 size, truesize, len, max_head_size, off;
915 	struct sk_buff *skb = *pskb, *nskb;
916 	int err, i, head_off;
917 	void *data;
918 
919 	/* XDP does not support fraglist so we need to linearize
920 	 * the skb.
921 	 */
922 	if (skb_has_frag_list(skb))
923 		return -EOPNOTSUPP;
924 
925 	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
926 	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
927 		return -ENOMEM;
928 
929 	size = min_t(u32, skb->len, max_head_size);
930 	truesize = SKB_HEAD_ALIGN(size) + headroom;
931 	data = page_pool_dev_alloc_va(pool, &truesize);
932 	if (!data)
933 		return -ENOMEM;
934 
935 	nskb = napi_build_skb(data, truesize);
936 	if (!nskb) {
937 		page_pool_free_va(pool, data, true);
938 		return -ENOMEM;
939 	}
940 
941 	skb_reserve(nskb, headroom);
942 	skb_copy_header(nskb, skb);
943 	skb_mark_for_recycle(nskb);
944 
945 	err = skb_copy_bits(skb, 0, nskb->data, size);
946 	if (err) {
947 		consume_skb(nskb);
948 		return err;
949 	}
950 	skb_put(nskb, size);
951 
952 	head_off = skb_headroom(nskb) - skb_headroom(skb);
953 	skb_headers_offset_update(nskb, head_off);
954 
955 	off = size;
956 	len = skb->len - off;
957 	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
958 		struct page *page;
959 		u32 page_off;
960 
961 		size = min_t(u32, len, PAGE_SIZE);
962 		truesize = size;
963 
964 		page = page_pool_dev_alloc(pool, &page_off, &truesize);
965 		if (!page) {
966 			consume_skb(nskb);
967 			return -ENOMEM;
968 		}
969 
970 		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
971 		err = skb_copy_bits(skb, off, page_address(page) + page_off,
972 				    size);
973 		if (err) {
974 			consume_skb(nskb);
975 			return err;
976 		}
977 
978 		len -= size;
979 		off += size;
980 	}
981 
982 	consume_skb(skb);
983 	*pskb = nskb;
984 
985 	return 0;
986 #else
987 	return -EOPNOTSUPP;
988 #endif
989 }
990 EXPORT_SYMBOL(skb_pp_cow_data);
991 
992 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
993 			 struct bpf_prog *prog)
994 {
995 	if (!prog->aux->xdp_has_frags)
996 		return -EINVAL;
997 
998 	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
999 }
1000 EXPORT_SYMBOL(skb_cow_data_for_xdp);
1001 
1002 #if IS_ENABLED(CONFIG_PAGE_POOL)
1003 bool napi_pp_put_page(struct page *page)
1004 {
1005 	page = compound_head(page);
1006 
1007 	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
1008 	 * in order to preserve any existing bits, such as bit 0 for the
1009 	 * head page of compound page and bit 1 for pfmemalloc page, so
1010 	 * mask those bits for freeing side when doing below checking,
1011 	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
1012 	 * to avoid recycling the pfmemalloc page.
1013 	 */
1014 	if (unlikely(!is_pp_page(page)))
1015 		return false;
1016 
1017 	page_pool_put_full_page(page->pp, page, false);
1018 
1019 	return true;
1020 }
1021 EXPORT_SYMBOL(napi_pp_put_page);
1022 #endif
1023 
1024 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
1025 {
1026 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1027 		return false;
1028 	return napi_pp_put_page(virt_to_page(data));
1029 }
1030 
1031 static void skb_kfree_head(void *head, unsigned int end_offset)
1032 {
1033 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1034 		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1035 	else
1036 		kfree(head);
1037 }
1038 
1039 static void skb_free_head(struct sk_buff *skb)
1040 {
1041 	unsigned char *head = skb->head;
1042 
1043 	if (skb->head_frag) {
1044 		if (skb_pp_recycle(skb, head))
1045 			return;
1046 		skb_free_frag(head);
1047 	} else {
1048 		skb_kfree_head(head, skb_end_offset(skb));
1049 	}
1050 }
1051 
1052 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1053 {
1054 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1055 	int i;
1056 
1057 	if (!skb_data_unref(skb, shinfo))
1058 		goto exit;
1059 
1060 	if (skb_zcopy(skb)) {
1061 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1062 
1063 		skb_zcopy_clear(skb, true);
1064 		if (skip_unref)
1065 			goto free_head;
1066 	}
1067 
1068 	for (i = 0; i < shinfo->nr_frags; i++)
1069 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1070 
1071 free_head:
1072 	if (shinfo->frag_list)
1073 		kfree_skb_list_reason(shinfo->frag_list, reason);
1074 
1075 	skb_free_head(skb);
1076 exit:
1077 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1078 	 * bit is only set on the head though, so in order to avoid races
1079 	 * while trying to recycle fragments on __skb_frag_unref() we need
1080 	 * to make one SKB responsible for triggering the recycle path.
1081 	 * So disable the recycling bit if an SKB is cloned and we have
1082 	 * additional references to the fragmented part of the SKB.
1083 	 * Eventually the last SKB will have the recycling bit set and it's
1084 	 * dataref set to 0, which will trigger the recycling
1085 	 */
1086 	skb->pp_recycle = 0;
1087 }
1088 
1089 /*
1090  *	Free an skbuff by memory without cleaning the state.
1091  */
1092 static void kfree_skbmem(struct sk_buff *skb)
1093 {
1094 	struct sk_buff_fclones *fclones;
1095 
1096 	switch (skb->fclone) {
1097 	case SKB_FCLONE_UNAVAILABLE:
1098 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1099 		return;
1100 
1101 	case SKB_FCLONE_ORIG:
1102 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1103 
1104 		/* We usually free the clone (TX completion) before original skb
1105 		 * This test would have no chance to be true for the clone,
1106 		 * while here, branch prediction will be good.
1107 		 */
1108 		if (refcount_read(&fclones->fclone_ref) == 1)
1109 			goto fastpath;
1110 		break;
1111 
1112 	default: /* SKB_FCLONE_CLONE */
1113 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1114 		break;
1115 	}
1116 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1117 		return;
1118 fastpath:
1119 	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1120 }
1121 
1122 void skb_release_head_state(struct sk_buff *skb)
1123 {
1124 	skb_dst_drop(skb);
1125 	if (skb->destructor) {
1126 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1127 		skb->destructor(skb);
1128 	}
1129 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1130 	nf_conntrack_put(skb_nfct(skb));
1131 #endif
1132 	skb_ext_put(skb);
1133 }
1134 
1135 /* Free everything but the sk_buff shell. */
1136 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1137 {
1138 	skb_release_head_state(skb);
1139 	if (likely(skb->head))
1140 		skb_release_data(skb, reason);
1141 }
1142 
1143 /**
1144  *	__kfree_skb - private function
1145  *	@skb: buffer
1146  *
1147  *	Free an sk_buff. Release anything attached to the buffer.
1148  *	Clean the state. This is an internal helper function. Users should
1149  *	always call kfree_skb
1150  */
1151 
1152 void __kfree_skb(struct sk_buff *skb)
1153 {
1154 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1155 	kfree_skbmem(skb);
1156 }
1157 EXPORT_SYMBOL(__kfree_skb);
1158 
1159 static __always_inline
1160 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1161 {
1162 	if (unlikely(!skb_unref(skb)))
1163 		return false;
1164 
1165 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1166 			       u32_get_bits(reason,
1167 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1168 				SKB_DROP_REASON_SUBSYS_NUM);
1169 
1170 	if (reason == SKB_CONSUMED)
1171 		trace_consume_skb(skb, __builtin_return_address(0));
1172 	else
1173 		trace_kfree_skb(skb, __builtin_return_address(0), reason);
1174 	return true;
1175 }
1176 
1177 /**
1178  *	kfree_skb_reason - free an sk_buff with special reason
1179  *	@skb: buffer to free
1180  *	@reason: reason why this skb is dropped
1181  *
1182  *	Drop a reference to the buffer and free it if the usage count has
1183  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1184  *	tracepoint.
1185  */
1186 void __fix_address
1187 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1188 {
1189 	if (__kfree_skb_reason(skb, reason))
1190 		__kfree_skb(skb);
1191 }
1192 EXPORT_SYMBOL(kfree_skb_reason);
1193 
1194 #define KFREE_SKB_BULK_SIZE	16
1195 
1196 struct skb_free_array {
1197 	unsigned int skb_count;
1198 	void *skb_array[KFREE_SKB_BULK_SIZE];
1199 };
1200 
1201 static void kfree_skb_add_bulk(struct sk_buff *skb,
1202 			       struct skb_free_array *sa,
1203 			       enum skb_drop_reason reason)
1204 {
1205 	/* if SKB is a clone, don't handle this case */
1206 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1207 		__kfree_skb(skb);
1208 		return;
1209 	}
1210 
1211 	skb_release_all(skb, reason);
1212 	sa->skb_array[sa->skb_count++] = skb;
1213 
1214 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1215 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1216 				     sa->skb_array);
1217 		sa->skb_count = 0;
1218 	}
1219 }
1220 
1221 void __fix_address
1222 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1223 {
1224 	struct skb_free_array sa;
1225 
1226 	sa.skb_count = 0;
1227 
1228 	while (segs) {
1229 		struct sk_buff *next = segs->next;
1230 
1231 		if (__kfree_skb_reason(segs, reason)) {
1232 			skb_poison_list(segs);
1233 			kfree_skb_add_bulk(segs, &sa, reason);
1234 		}
1235 
1236 		segs = next;
1237 	}
1238 
1239 	if (sa.skb_count)
1240 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1241 }
1242 EXPORT_SYMBOL(kfree_skb_list_reason);
1243 
1244 /* Dump skb information and contents.
1245  *
1246  * Must only be called from net_ratelimit()-ed paths.
1247  *
1248  * Dumps whole packets if full_pkt, only headers otherwise.
1249  */
1250 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1251 {
1252 	struct skb_shared_info *sh = skb_shinfo(skb);
1253 	struct net_device *dev = skb->dev;
1254 	struct sock *sk = skb->sk;
1255 	struct sk_buff *list_skb;
1256 	bool has_mac, has_trans;
1257 	int headroom, tailroom;
1258 	int i, len, seg_len;
1259 
1260 	if (full_pkt)
1261 		len = skb->len;
1262 	else
1263 		len = min_t(int, skb->len, MAX_HEADER + 128);
1264 
1265 	headroom = skb_headroom(skb);
1266 	tailroom = skb_tailroom(skb);
1267 
1268 	has_mac = skb_mac_header_was_set(skb);
1269 	has_trans = skb_transport_header_was_set(skb);
1270 
1271 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1272 	       "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n"
1273 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1274 	       "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1275 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n"
1276 	       "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n"
1277 	       "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n",
1278 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1279 	       has_mac ? skb->mac_header : -1,
1280 	       has_mac ? skb_mac_header_len(skb) : -1,
1281 	       skb->mac_len,
1282 	       skb->network_header,
1283 	       has_trans ? skb_network_header_len(skb) : -1,
1284 	       has_trans ? skb->transport_header : -1,
1285 	       sh->tx_flags, sh->nr_frags,
1286 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1287 	       skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed,
1288 	       skb->csum_complete_sw, skb->csum_valid, skb->csum_level,
1289 	       skb->hash, skb->sw_hash, skb->l4_hash,
1290 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif,
1291 	       skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all,
1292 	       skb->encapsulation, skb->inner_protocol, skb->inner_mac_header,
1293 	       skb->inner_network_header, skb->inner_transport_header);
1294 
1295 	if (dev)
1296 		printk("%sdev name=%s feat=%pNF\n",
1297 		       level, dev->name, &dev->features);
1298 	if (sk)
1299 		printk("%ssk family=%hu type=%u proto=%u\n",
1300 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1301 
1302 	if (full_pkt && headroom)
1303 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1304 			       16, 1, skb->head, headroom, false);
1305 
1306 	seg_len = min_t(int, skb_headlen(skb), len);
1307 	if (seg_len)
1308 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1309 			       16, 1, skb->data, seg_len, false);
1310 	len -= seg_len;
1311 
1312 	if (full_pkt && tailroom)
1313 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1314 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1315 
1316 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1317 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1318 		u32 p_off, p_len, copied;
1319 		struct page *p;
1320 		u8 *vaddr;
1321 
1322 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1323 				      skb_frag_size(frag), p, p_off, p_len,
1324 				      copied) {
1325 			seg_len = min_t(int, p_len, len);
1326 			vaddr = kmap_atomic(p);
1327 			print_hex_dump(level, "skb frag:     ",
1328 				       DUMP_PREFIX_OFFSET,
1329 				       16, 1, vaddr + p_off, seg_len, false);
1330 			kunmap_atomic(vaddr);
1331 			len -= seg_len;
1332 			if (!len)
1333 				break;
1334 		}
1335 	}
1336 
1337 	if (full_pkt && skb_has_frag_list(skb)) {
1338 		printk("skb fraglist:\n");
1339 		skb_walk_frags(skb, list_skb)
1340 			skb_dump(level, list_skb, true);
1341 	}
1342 }
1343 EXPORT_SYMBOL(skb_dump);
1344 
1345 /**
1346  *	skb_tx_error - report an sk_buff xmit error
1347  *	@skb: buffer that triggered an error
1348  *
1349  *	Report xmit error if a device callback is tracking this skb.
1350  *	skb must be freed afterwards.
1351  */
1352 void skb_tx_error(struct sk_buff *skb)
1353 {
1354 	if (skb) {
1355 		skb_zcopy_downgrade_managed(skb);
1356 		skb_zcopy_clear(skb, true);
1357 	}
1358 }
1359 EXPORT_SYMBOL(skb_tx_error);
1360 
1361 #ifdef CONFIG_TRACEPOINTS
1362 /**
1363  *	consume_skb - free an skbuff
1364  *	@skb: buffer to free
1365  *
1366  *	Drop a ref to the buffer and free it if the usage count has hit zero
1367  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1368  *	is being dropped after a failure and notes that
1369  */
1370 void consume_skb(struct sk_buff *skb)
1371 {
1372 	if (!skb_unref(skb))
1373 		return;
1374 
1375 	trace_consume_skb(skb, __builtin_return_address(0));
1376 	__kfree_skb(skb);
1377 }
1378 EXPORT_SYMBOL(consume_skb);
1379 #endif
1380 
1381 /**
1382  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1383  *	@skb: buffer to free
1384  *
1385  *	Alike consume_skb(), but this variant assumes that this is the last
1386  *	skb reference and all the head states have been already dropped
1387  */
1388 void __consume_stateless_skb(struct sk_buff *skb)
1389 {
1390 	trace_consume_skb(skb, __builtin_return_address(0));
1391 	skb_release_data(skb, SKB_CONSUMED);
1392 	kfree_skbmem(skb);
1393 }
1394 
1395 static void napi_skb_cache_put(struct sk_buff *skb)
1396 {
1397 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1398 	u32 i;
1399 
1400 	if (!kasan_mempool_poison_object(skb))
1401 		return;
1402 
1403 	nc->skb_cache[nc->skb_count++] = skb;
1404 
1405 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1406 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1407 			kasan_mempool_unpoison_object(nc->skb_cache[i],
1408 						kmem_cache_size(net_hotdata.skbuff_cache));
1409 
1410 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1411 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1412 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1413 	}
1414 }
1415 
1416 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1417 {
1418 	skb_release_all(skb, reason);
1419 	napi_skb_cache_put(skb);
1420 }
1421 
1422 void napi_skb_free_stolen_head(struct sk_buff *skb)
1423 {
1424 	if (unlikely(skb->slow_gro)) {
1425 		nf_reset_ct(skb);
1426 		skb_dst_drop(skb);
1427 		skb_ext_put(skb);
1428 		skb_orphan(skb);
1429 		skb->slow_gro = 0;
1430 	}
1431 	napi_skb_cache_put(skb);
1432 }
1433 
1434 void napi_consume_skb(struct sk_buff *skb, int budget)
1435 {
1436 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1437 	if (unlikely(!budget)) {
1438 		dev_consume_skb_any(skb);
1439 		return;
1440 	}
1441 
1442 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1443 
1444 	if (!skb_unref(skb))
1445 		return;
1446 
1447 	/* if reaching here SKB is ready to free */
1448 	trace_consume_skb(skb, __builtin_return_address(0));
1449 
1450 	/* if SKB is a clone, don't handle this case */
1451 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1452 		__kfree_skb(skb);
1453 		return;
1454 	}
1455 
1456 	skb_release_all(skb, SKB_CONSUMED);
1457 	napi_skb_cache_put(skb);
1458 }
1459 EXPORT_SYMBOL(napi_consume_skb);
1460 
1461 /* Make sure a field is contained by headers group */
1462 #define CHECK_SKB_FIELD(field) \
1463 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1464 		     offsetof(struct sk_buff, headers.field));	\
1465 
1466 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1467 {
1468 	new->tstamp		= old->tstamp;
1469 	/* We do not copy old->sk */
1470 	new->dev		= old->dev;
1471 	memcpy(new->cb, old->cb, sizeof(old->cb));
1472 	skb_dst_copy(new, old);
1473 	__skb_ext_copy(new, old);
1474 	__nf_copy(new, old, false);
1475 
1476 	/* Note : this field could be in the headers group.
1477 	 * It is not yet because we do not want to have a 16 bit hole
1478 	 */
1479 	new->queue_mapping = old->queue_mapping;
1480 
1481 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1482 	CHECK_SKB_FIELD(protocol);
1483 	CHECK_SKB_FIELD(csum);
1484 	CHECK_SKB_FIELD(hash);
1485 	CHECK_SKB_FIELD(priority);
1486 	CHECK_SKB_FIELD(skb_iif);
1487 	CHECK_SKB_FIELD(vlan_proto);
1488 	CHECK_SKB_FIELD(vlan_tci);
1489 	CHECK_SKB_FIELD(transport_header);
1490 	CHECK_SKB_FIELD(network_header);
1491 	CHECK_SKB_FIELD(mac_header);
1492 	CHECK_SKB_FIELD(inner_protocol);
1493 	CHECK_SKB_FIELD(inner_transport_header);
1494 	CHECK_SKB_FIELD(inner_network_header);
1495 	CHECK_SKB_FIELD(inner_mac_header);
1496 	CHECK_SKB_FIELD(mark);
1497 #ifdef CONFIG_NETWORK_SECMARK
1498 	CHECK_SKB_FIELD(secmark);
1499 #endif
1500 #ifdef CONFIG_NET_RX_BUSY_POLL
1501 	CHECK_SKB_FIELD(napi_id);
1502 #endif
1503 	CHECK_SKB_FIELD(alloc_cpu);
1504 #ifdef CONFIG_XPS
1505 	CHECK_SKB_FIELD(sender_cpu);
1506 #endif
1507 #ifdef CONFIG_NET_SCHED
1508 	CHECK_SKB_FIELD(tc_index);
1509 #endif
1510 
1511 }
1512 
1513 /*
1514  * You should not add any new code to this function.  Add it to
1515  * __copy_skb_header above instead.
1516  */
1517 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1518 {
1519 #define C(x) n->x = skb->x
1520 
1521 	n->next = n->prev = NULL;
1522 	n->sk = NULL;
1523 	__copy_skb_header(n, skb);
1524 
1525 	C(len);
1526 	C(data_len);
1527 	C(mac_len);
1528 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1529 	n->cloned = 1;
1530 	n->nohdr = 0;
1531 	n->peeked = 0;
1532 	C(pfmemalloc);
1533 	C(pp_recycle);
1534 	n->destructor = NULL;
1535 	C(tail);
1536 	C(end);
1537 	C(head);
1538 	C(head_frag);
1539 	C(data);
1540 	C(truesize);
1541 	refcount_set(&n->users, 1);
1542 
1543 	atomic_inc(&(skb_shinfo(skb)->dataref));
1544 	skb->cloned = 1;
1545 
1546 	return n;
1547 #undef C
1548 }
1549 
1550 /**
1551  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1552  * @first: first sk_buff of the msg
1553  */
1554 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1555 {
1556 	struct sk_buff *n;
1557 
1558 	n = alloc_skb(0, GFP_ATOMIC);
1559 	if (!n)
1560 		return NULL;
1561 
1562 	n->len = first->len;
1563 	n->data_len = first->len;
1564 	n->truesize = first->truesize;
1565 
1566 	skb_shinfo(n)->frag_list = first;
1567 
1568 	__copy_skb_header(n, first);
1569 	n->destructor = NULL;
1570 
1571 	return n;
1572 }
1573 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1574 
1575 /**
1576  *	skb_morph	-	morph one skb into another
1577  *	@dst: the skb to receive the contents
1578  *	@src: the skb to supply the contents
1579  *
1580  *	This is identical to skb_clone except that the target skb is
1581  *	supplied by the user.
1582  *
1583  *	The target skb is returned upon exit.
1584  */
1585 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1586 {
1587 	skb_release_all(dst, SKB_CONSUMED);
1588 	return __skb_clone(dst, src);
1589 }
1590 EXPORT_SYMBOL_GPL(skb_morph);
1591 
1592 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1593 {
1594 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1595 	struct user_struct *user;
1596 
1597 	if (capable(CAP_IPC_LOCK) || !size)
1598 		return 0;
1599 
1600 	rlim = rlimit(RLIMIT_MEMLOCK);
1601 	if (rlim == RLIM_INFINITY)
1602 		return 0;
1603 
1604 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1605 	max_pg = rlim >> PAGE_SHIFT;
1606 	user = mmp->user ? : current_user();
1607 
1608 	old_pg = atomic_long_read(&user->locked_vm);
1609 	do {
1610 		new_pg = old_pg + num_pg;
1611 		if (new_pg > max_pg)
1612 			return -ENOBUFS;
1613 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1614 
1615 	if (!mmp->user) {
1616 		mmp->user = get_uid(user);
1617 		mmp->num_pg = num_pg;
1618 	} else {
1619 		mmp->num_pg += num_pg;
1620 	}
1621 
1622 	return 0;
1623 }
1624 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1625 
1626 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1627 {
1628 	if (mmp->user) {
1629 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1630 		free_uid(mmp->user);
1631 	}
1632 }
1633 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1634 
1635 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1636 {
1637 	struct ubuf_info_msgzc *uarg;
1638 	struct sk_buff *skb;
1639 
1640 	WARN_ON_ONCE(!in_task());
1641 
1642 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1643 	if (!skb)
1644 		return NULL;
1645 
1646 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1647 	uarg = (void *)skb->cb;
1648 	uarg->mmp.user = NULL;
1649 
1650 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1651 		kfree_skb(skb);
1652 		return NULL;
1653 	}
1654 
1655 	uarg->ubuf.callback = msg_zerocopy_callback;
1656 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1657 	uarg->len = 1;
1658 	uarg->bytelen = size;
1659 	uarg->zerocopy = 1;
1660 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1661 	refcount_set(&uarg->ubuf.refcnt, 1);
1662 	sock_hold(sk);
1663 
1664 	return &uarg->ubuf;
1665 }
1666 
1667 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1668 {
1669 	return container_of((void *)uarg, struct sk_buff, cb);
1670 }
1671 
1672 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1673 				       struct ubuf_info *uarg)
1674 {
1675 	if (uarg) {
1676 		struct ubuf_info_msgzc *uarg_zc;
1677 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1678 		u32 bytelen, next;
1679 
1680 		/* there might be non MSG_ZEROCOPY users */
1681 		if (uarg->callback != msg_zerocopy_callback)
1682 			return NULL;
1683 
1684 		/* realloc only when socket is locked (TCP, UDP cork),
1685 		 * so uarg->len and sk_zckey access is serialized
1686 		 */
1687 		if (!sock_owned_by_user(sk)) {
1688 			WARN_ON_ONCE(1);
1689 			return NULL;
1690 		}
1691 
1692 		uarg_zc = uarg_to_msgzc(uarg);
1693 		bytelen = uarg_zc->bytelen + size;
1694 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1695 			/* TCP can create new skb to attach new uarg */
1696 			if (sk->sk_type == SOCK_STREAM)
1697 				goto new_alloc;
1698 			return NULL;
1699 		}
1700 
1701 		next = (u32)atomic_read(&sk->sk_zckey);
1702 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1703 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1704 				return NULL;
1705 			uarg_zc->len++;
1706 			uarg_zc->bytelen = bytelen;
1707 			atomic_set(&sk->sk_zckey, ++next);
1708 
1709 			/* no extra ref when appending to datagram (MSG_MORE) */
1710 			if (sk->sk_type == SOCK_STREAM)
1711 				net_zcopy_get(uarg);
1712 
1713 			return uarg;
1714 		}
1715 	}
1716 
1717 new_alloc:
1718 	return msg_zerocopy_alloc(sk, size);
1719 }
1720 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1721 
1722 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1723 {
1724 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1725 	u32 old_lo, old_hi;
1726 	u64 sum_len;
1727 
1728 	old_lo = serr->ee.ee_info;
1729 	old_hi = serr->ee.ee_data;
1730 	sum_len = old_hi - old_lo + 1ULL + len;
1731 
1732 	if (sum_len >= (1ULL << 32))
1733 		return false;
1734 
1735 	if (lo != old_hi + 1)
1736 		return false;
1737 
1738 	serr->ee.ee_data += len;
1739 	return true;
1740 }
1741 
1742 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1743 {
1744 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1745 	struct sock_exterr_skb *serr;
1746 	struct sock *sk = skb->sk;
1747 	struct sk_buff_head *q;
1748 	unsigned long flags;
1749 	bool is_zerocopy;
1750 	u32 lo, hi;
1751 	u16 len;
1752 
1753 	mm_unaccount_pinned_pages(&uarg->mmp);
1754 
1755 	/* if !len, there was only 1 call, and it was aborted
1756 	 * so do not queue a completion notification
1757 	 */
1758 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1759 		goto release;
1760 
1761 	len = uarg->len;
1762 	lo = uarg->id;
1763 	hi = uarg->id + len - 1;
1764 	is_zerocopy = uarg->zerocopy;
1765 
1766 	serr = SKB_EXT_ERR(skb);
1767 	memset(serr, 0, sizeof(*serr));
1768 	serr->ee.ee_errno = 0;
1769 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1770 	serr->ee.ee_data = hi;
1771 	serr->ee.ee_info = lo;
1772 	if (!is_zerocopy)
1773 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1774 
1775 	q = &sk->sk_error_queue;
1776 	spin_lock_irqsave(&q->lock, flags);
1777 	tail = skb_peek_tail(q);
1778 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1779 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1780 		__skb_queue_tail(q, skb);
1781 		skb = NULL;
1782 	}
1783 	spin_unlock_irqrestore(&q->lock, flags);
1784 
1785 	sk_error_report(sk);
1786 
1787 release:
1788 	consume_skb(skb);
1789 	sock_put(sk);
1790 }
1791 
1792 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1793 			   bool success)
1794 {
1795 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1796 
1797 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1798 
1799 	if (refcount_dec_and_test(&uarg->refcnt))
1800 		__msg_zerocopy_callback(uarg_zc);
1801 }
1802 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1803 
1804 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1805 {
1806 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1807 
1808 	atomic_dec(&sk->sk_zckey);
1809 	uarg_to_msgzc(uarg)->len--;
1810 
1811 	if (have_uref)
1812 		msg_zerocopy_callback(NULL, uarg, true);
1813 }
1814 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1815 
1816 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1817 			     struct msghdr *msg, int len,
1818 			     struct ubuf_info *uarg)
1819 {
1820 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1821 	int err, orig_len = skb->len;
1822 
1823 	/* An skb can only point to one uarg. This edge case happens when
1824 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1825 	 */
1826 	if (orig_uarg && uarg != orig_uarg)
1827 		return -EEXIST;
1828 
1829 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1830 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1831 		struct sock *save_sk = skb->sk;
1832 
1833 		/* Streams do not free skb on error. Reset to prev state. */
1834 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1835 		skb->sk = sk;
1836 		___pskb_trim(skb, orig_len);
1837 		skb->sk = save_sk;
1838 		return err;
1839 	}
1840 
1841 	skb_zcopy_set(skb, uarg, NULL);
1842 	return skb->len - orig_len;
1843 }
1844 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1845 
1846 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1847 {
1848 	int i;
1849 
1850 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1851 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1852 		skb_frag_ref(skb, i);
1853 }
1854 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1855 
1856 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1857 			      gfp_t gfp_mask)
1858 {
1859 	if (skb_zcopy(orig)) {
1860 		if (skb_zcopy(nskb)) {
1861 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1862 			if (!gfp_mask) {
1863 				WARN_ON_ONCE(1);
1864 				return -ENOMEM;
1865 			}
1866 			if (skb_uarg(nskb) == skb_uarg(orig))
1867 				return 0;
1868 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1869 				return -EIO;
1870 		}
1871 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1872 	}
1873 	return 0;
1874 }
1875 
1876 /**
1877  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1878  *	@skb: the skb to modify
1879  *	@gfp_mask: allocation priority
1880  *
1881  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1882  *	It will copy all frags into kernel and drop the reference
1883  *	to userspace pages.
1884  *
1885  *	If this function is called from an interrupt gfp_mask() must be
1886  *	%GFP_ATOMIC.
1887  *
1888  *	Returns 0 on success or a negative error code on failure
1889  *	to allocate kernel memory to copy to.
1890  */
1891 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1892 {
1893 	int num_frags = skb_shinfo(skb)->nr_frags;
1894 	struct page *page, *head = NULL;
1895 	int i, order, psize, new_frags;
1896 	u32 d_off;
1897 
1898 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1899 		return -EINVAL;
1900 
1901 	if (!num_frags)
1902 		goto release;
1903 
1904 	/* We might have to allocate high order pages, so compute what minimum
1905 	 * page order is needed.
1906 	 */
1907 	order = 0;
1908 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1909 		order++;
1910 	psize = (PAGE_SIZE << order);
1911 
1912 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1913 	for (i = 0; i < new_frags; i++) {
1914 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1915 		if (!page) {
1916 			while (head) {
1917 				struct page *next = (struct page *)page_private(head);
1918 				put_page(head);
1919 				head = next;
1920 			}
1921 			return -ENOMEM;
1922 		}
1923 		set_page_private(page, (unsigned long)head);
1924 		head = page;
1925 	}
1926 
1927 	page = head;
1928 	d_off = 0;
1929 	for (i = 0; i < num_frags; i++) {
1930 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1931 		u32 p_off, p_len, copied;
1932 		struct page *p;
1933 		u8 *vaddr;
1934 
1935 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1936 				      p, p_off, p_len, copied) {
1937 			u32 copy, done = 0;
1938 			vaddr = kmap_atomic(p);
1939 
1940 			while (done < p_len) {
1941 				if (d_off == psize) {
1942 					d_off = 0;
1943 					page = (struct page *)page_private(page);
1944 				}
1945 				copy = min_t(u32, psize - d_off, p_len - done);
1946 				memcpy(page_address(page) + d_off,
1947 				       vaddr + p_off + done, copy);
1948 				done += copy;
1949 				d_off += copy;
1950 			}
1951 			kunmap_atomic(vaddr);
1952 		}
1953 	}
1954 
1955 	/* skb frags release userspace buffers */
1956 	for (i = 0; i < num_frags; i++)
1957 		skb_frag_unref(skb, i);
1958 
1959 	/* skb frags point to kernel buffers */
1960 	for (i = 0; i < new_frags - 1; i++) {
1961 		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
1962 		head = (struct page *)page_private(head);
1963 	}
1964 	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
1965 			       d_off);
1966 	skb_shinfo(skb)->nr_frags = new_frags;
1967 
1968 release:
1969 	skb_zcopy_clear(skb, false);
1970 	return 0;
1971 }
1972 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1973 
1974 /**
1975  *	skb_clone	-	duplicate an sk_buff
1976  *	@skb: buffer to clone
1977  *	@gfp_mask: allocation priority
1978  *
1979  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1980  *	copies share the same packet data but not structure. The new
1981  *	buffer has a reference count of 1. If the allocation fails the
1982  *	function returns %NULL otherwise the new buffer is returned.
1983  *
1984  *	If this function is called from an interrupt gfp_mask() must be
1985  *	%GFP_ATOMIC.
1986  */
1987 
1988 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1989 {
1990 	struct sk_buff_fclones *fclones = container_of(skb,
1991 						       struct sk_buff_fclones,
1992 						       skb1);
1993 	struct sk_buff *n;
1994 
1995 	if (skb_orphan_frags(skb, gfp_mask))
1996 		return NULL;
1997 
1998 	if (skb->fclone == SKB_FCLONE_ORIG &&
1999 	    refcount_read(&fclones->fclone_ref) == 1) {
2000 		n = &fclones->skb2;
2001 		refcount_set(&fclones->fclone_ref, 2);
2002 		n->fclone = SKB_FCLONE_CLONE;
2003 	} else {
2004 		if (skb_pfmemalloc(skb))
2005 			gfp_mask |= __GFP_MEMALLOC;
2006 
2007 		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2008 		if (!n)
2009 			return NULL;
2010 
2011 		n->fclone = SKB_FCLONE_UNAVAILABLE;
2012 	}
2013 
2014 	return __skb_clone(n, skb);
2015 }
2016 EXPORT_SYMBOL(skb_clone);
2017 
2018 void skb_headers_offset_update(struct sk_buff *skb, int off)
2019 {
2020 	/* Only adjust this if it actually is csum_start rather than csum */
2021 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2022 		skb->csum_start += off;
2023 	/* {transport,network,mac}_header and tail are relative to skb->head */
2024 	skb->transport_header += off;
2025 	skb->network_header   += off;
2026 	if (skb_mac_header_was_set(skb))
2027 		skb->mac_header += off;
2028 	skb->inner_transport_header += off;
2029 	skb->inner_network_header += off;
2030 	skb->inner_mac_header += off;
2031 }
2032 EXPORT_SYMBOL(skb_headers_offset_update);
2033 
2034 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2035 {
2036 	__copy_skb_header(new, old);
2037 
2038 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2039 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2040 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2041 }
2042 EXPORT_SYMBOL(skb_copy_header);
2043 
2044 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2045 {
2046 	if (skb_pfmemalloc(skb))
2047 		return SKB_ALLOC_RX;
2048 	return 0;
2049 }
2050 
2051 /**
2052  *	skb_copy	-	create private copy of an sk_buff
2053  *	@skb: buffer to copy
2054  *	@gfp_mask: allocation priority
2055  *
2056  *	Make a copy of both an &sk_buff and its data. This is used when the
2057  *	caller wishes to modify the data and needs a private copy of the
2058  *	data to alter. Returns %NULL on failure or the pointer to the buffer
2059  *	on success. The returned buffer has a reference count of 1.
2060  *
2061  *	As by-product this function converts non-linear &sk_buff to linear
2062  *	one, so that &sk_buff becomes completely private and caller is allowed
2063  *	to modify all the data of returned buffer. This means that this
2064  *	function is not recommended for use in circumstances when only
2065  *	header is going to be modified. Use pskb_copy() instead.
2066  */
2067 
2068 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2069 {
2070 	int headerlen = skb_headroom(skb);
2071 	unsigned int size = skb_end_offset(skb) + skb->data_len;
2072 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
2073 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2074 
2075 	if (!n)
2076 		return NULL;
2077 
2078 	/* Set the data pointer */
2079 	skb_reserve(n, headerlen);
2080 	/* Set the tail pointer and length */
2081 	skb_put(n, skb->len);
2082 
2083 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2084 
2085 	skb_copy_header(n, skb);
2086 	return n;
2087 }
2088 EXPORT_SYMBOL(skb_copy);
2089 
2090 /**
2091  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2092  *	@skb: buffer to copy
2093  *	@headroom: headroom of new skb
2094  *	@gfp_mask: allocation priority
2095  *	@fclone: if true allocate the copy of the skb from the fclone
2096  *	cache instead of the head cache; it is recommended to set this
2097  *	to true for the cases where the copy will likely be cloned
2098  *
2099  *	Make a copy of both an &sk_buff and part of its data, located
2100  *	in header. Fragmented data remain shared. This is used when
2101  *	the caller wishes to modify only header of &sk_buff and needs
2102  *	private copy of the header to alter. Returns %NULL on failure
2103  *	or the pointer to the buffer on success.
2104  *	The returned buffer has a reference count of 1.
2105  */
2106 
2107 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2108 				   gfp_t gfp_mask, bool fclone)
2109 {
2110 	unsigned int size = skb_headlen(skb) + headroom;
2111 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2112 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2113 
2114 	if (!n)
2115 		goto out;
2116 
2117 	/* Set the data pointer */
2118 	skb_reserve(n, headroom);
2119 	/* Set the tail pointer and length */
2120 	skb_put(n, skb_headlen(skb));
2121 	/* Copy the bytes */
2122 	skb_copy_from_linear_data(skb, n->data, n->len);
2123 
2124 	n->truesize += skb->data_len;
2125 	n->data_len  = skb->data_len;
2126 	n->len	     = skb->len;
2127 
2128 	if (skb_shinfo(skb)->nr_frags) {
2129 		int i;
2130 
2131 		if (skb_orphan_frags(skb, gfp_mask) ||
2132 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2133 			kfree_skb(n);
2134 			n = NULL;
2135 			goto out;
2136 		}
2137 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2138 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2139 			skb_frag_ref(skb, i);
2140 		}
2141 		skb_shinfo(n)->nr_frags = i;
2142 	}
2143 
2144 	if (skb_has_frag_list(skb)) {
2145 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2146 		skb_clone_fraglist(n);
2147 	}
2148 
2149 	skb_copy_header(n, skb);
2150 out:
2151 	return n;
2152 }
2153 EXPORT_SYMBOL(__pskb_copy_fclone);
2154 
2155 /**
2156  *	pskb_expand_head - reallocate header of &sk_buff
2157  *	@skb: buffer to reallocate
2158  *	@nhead: room to add at head
2159  *	@ntail: room to add at tail
2160  *	@gfp_mask: allocation priority
2161  *
2162  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2163  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2164  *	reference count of 1. Returns zero in the case of success or error,
2165  *	if expansion failed. In the last case, &sk_buff is not changed.
2166  *
2167  *	All the pointers pointing into skb header may change and must be
2168  *	reloaded after call to this function.
2169  */
2170 
2171 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2172 		     gfp_t gfp_mask)
2173 {
2174 	unsigned int osize = skb_end_offset(skb);
2175 	unsigned int size = osize + nhead + ntail;
2176 	long off;
2177 	u8 *data;
2178 	int i;
2179 
2180 	BUG_ON(nhead < 0);
2181 
2182 	BUG_ON(skb_shared(skb));
2183 
2184 	skb_zcopy_downgrade_managed(skb);
2185 
2186 	if (skb_pfmemalloc(skb))
2187 		gfp_mask |= __GFP_MEMALLOC;
2188 
2189 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2190 	if (!data)
2191 		goto nodata;
2192 	size = SKB_WITH_OVERHEAD(size);
2193 
2194 	/* Copy only real data... and, alas, header. This should be
2195 	 * optimized for the cases when header is void.
2196 	 */
2197 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2198 
2199 	memcpy((struct skb_shared_info *)(data + size),
2200 	       skb_shinfo(skb),
2201 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2202 
2203 	/*
2204 	 * if shinfo is shared we must drop the old head gracefully, but if it
2205 	 * is not we can just drop the old head and let the existing refcount
2206 	 * be since all we did is relocate the values
2207 	 */
2208 	if (skb_cloned(skb)) {
2209 		if (skb_orphan_frags(skb, gfp_mask))
2210 			goto nofrags;
2211 		if (skb_zcopy(skb))
2212 			refcount_inc(&skb_uarg(skb)->refcnt);
2213 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2214 			skb_frag_ref(skb, i);
2215 
2216 		if (skb_has_frag_list(skb))
2217 			skb_clone_fraglist(skb);
2218 
2219 		skb_release_data(skb, SKB_CONSUMED);
2220 	} else {
2221 		skb_free_head(skb);
2222 	}
2223 	off = (data + nhead) - skb->head;
2224 
2225 	skb->head     = data;
2226 	skb->head_frag = 0;
2227 	skb->data    += off;
2228 
2229 	skb_set_end_offset(skb, size);
2230 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2231 	off           = nhead;
2232 #endif
2233 	skb->tail	      += off;
2234 	skb_headers_offset_update(skb, nhead);
2235 	skb->cloned   = 0;
2236 	skb->hdr_len  = 0;
2237 	skb->nohdr    = 0;
2238 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2239 
2240 	skb_metadata_clear(skb);
2241 
2242 	/* It is not generally safe to change skb->truesize.
2243 	 * For the moment, we really care of rx path, or
2244 	 * when skb is orphaned (not attached to a socket).
2245 	 */
2246 	if (!skb->sk || skb->destructor == sock_edemux)
2247 		skb->truesize += size - osize;
2248 
2249 	return 0;
2250 
2251 nofrags:
2252 	skb_kfree_head(data, size);
2253 nodata:
2254 	return -ENOMEM;
2255 }
2256 EXPORT_SYMBOL(pskb_expand_head);
2257 
2258 /* Make private copy of skb with writable head and some headroom */
2259 
2260 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2261 {
2262 	struct sk_buff *skb2;
2263 	int delta = headroom - skb_headroom(skb);
2264 
2265 	if (delta <= 0)
2266 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2267 	else {
2268 		skb2 = skb_clone(skb, GFP_ATOMIC);
2269 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2270 					     GFP_ATOMIC)) {
2271 			kfree_skb(skb2);
2272 			skb2 = NULL;
2273 		}
2274 	}
2275 	return skb2;
2276 }
2277 EXPORT_SYMBOL(skb_realloc_headroom);
2278 
2279 /* Note: We plan to rework this in linux-6.4 */
2280 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2281 {
2282 	unsigned int saved_end_offset, saved_truesize;
2283 	struct skb_shared_info *shinfo;
2284 	int res;
2285 
2286 	saved_end_offset = skb_end_offset(skb);
2287 	saved_truesize = skb->truesize;
2288 
2289 	res = pskb_expand_head(skb, 0, 0, pri);
2290 	if (res)
2291 		return res;
2292 
2293 	skb->truesize = saved_truesize;
2294 
2295 	if (likely(skb_end_offset(skb) == saved_end_offset))
2296 		return 0;
2297 
2298 	/* We can not change skb->end if the original or new value
2299 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2300 	 */
2301 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2302 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2303 		/* We think this path should not be taken.
2304 		 * Add a temporary trace to warn us just in case.
2305 		 */
2306 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2307 			    saved_end_offset, skb_end_offset(skb));
2308 		WARN_ON_ONCE(1);
2309 		return 0;
2310 	}
2311 
2312 	shinfo = skb_shinfo(skb);
2313 
2314 	/* We are about to change back skb->end,
2315 	 * we need to move skb_shinfo() to its new location.
2316 	 */
2317 	memmove(skb->head + saved_end_offset,
2318 		shinfo,
2319 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2320 
2321 	skb_set_end_offset(skb, saved_end_offset);
2322 
2323 	return 0;
2324 }
2325 
2326 /**
2327  *	skb_expand_head - reallocate header of &sk_buff
2328  *	@skb: buffer to reallocate
2329  *	@headroom: needed headroom
2330  *
2331  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2332  *	if possible; copies skb->sk to new skb as needed
2333  *	and frees original skb in case of failures.
2334  *
2335  *	It expect increased headroom and generates warning otherwise.
2336  */
2337 
2338 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2339 {
2340 	int delta = headroom - skb_headroom(skb);
2341 	int osize = skb_end_offset(skb);
2342 	struct sock *sk = skb->sk;
2343 
2344 	if (WARN_ONCE(delta <= 0,
2345 		      "%s is expecting an increase in the headroom", __func__))
2346 		return skb;
2347 
2348 	delta = SKB_DATA_ALIGN(delta);
2349 	/* pskb_expand_head() might crash, if skb is shared. */
2350 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2351 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2352 
2353 		if (unlikely(!nskb))
2354 			goto fail;
2355 
2356 		if (sk)
2357 			skb_set_owner_w(nskb, sk);
2358 		consume_skb(skb);
2359 		skb = nskb;
2360 	}
2361 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2362 		goto fail;
2363 
2364 	if (sk && is_skb_wmem(skb)) {
2365 		delta = skb_end_offset(skb) - osize;
2366 		refcount_add(delta, &sk->sk_wmem_alloc);
2367 		skb->truesize += delta;
2368 	}
2369 	return skb;
2370 
2371 fail:
2372 	kfree_skb(skb);
2373 	return NULL;
2374 }
2375 EXPORT_SYMBOL(skb_expand_head);
2376 
2377 /**
2378  *	skb_copy_expand	-	copy and expand sk_buff
2379  *	@skb: buffer to copy
2380  *	@newheadroom: new free bytes at head
2381  *	@newtailroom: new free bytes at tail
2382  *	@gfp_mask: allocation priority
2383  *
2384  *	Make a copy of both an &sk_buff and its data and while doing so
2385  *	allocate additional space.
2386  *
2387  *	This is used when the caller wishes to modify the data and needs a
2388  *	private copy of the data to alter as well as more space for new fields.
2389  *	Returns %NULL on failure or the pointer to the buffer
2390  *	on success. The returned buffer has a reference count of 1.
2391  *
2392  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2393  *	is called from an interrupt.
2394  */
2395 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2396 				int newheadroom, int newtailroom,
2397 				gfp_t gfp_mask)
2398 {
2399 	/*
2400 	 *	Allocate the copy buffer
2401 	 */
2402 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2403 					gfp_mask, skb_alloc_rx_flag(skb),
2404 					NUMA_NO_NODE);
2405 	int oldheadroom = skb_headroom(skb);
2406 	int head_copy_len, head_copy_off;
2407 
2408 	if (!n)
2409 		return NULL;
2410 
2411 	skb_reserve(n, newheadroom);
2412 
2413 	/* Set the tail pointer and length */
2414 	skb_put(n, skb->len);
2415 
2416 	head_copy_len = oldheadroom;
2417 	head_copy_off = 0;
2418 	if (newheadroom <= head_copy_len)
2419 		head_copy_len = newheadroom;
2420 	else
2421 		head_copy_off = newheadroom - head_copy_len;
2422 
2423 	/* Copy the linear header and data. */
2424 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2425 			     skb->len + head_copy_len));
2426 
2427 	skb_copy_header(n, skb);
2428 
2429 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2430 
2431 	return n;
2432 }
2433 EXPORT_SYMBOL(skb_copy_expand);
2434 
2435 /**
2436  *	__skb_pad		-	zero pad the tail of an skb
2437  *	@skb: buffer to pad
2438  *	@pad: space to pad
2439  *	@free_on_error: free buffer on error
2440  *
2441  *	Ensure that a buffer is followed by a padding area that is zero
2442  *	filled. Used by network drivers which may DMA or transfer data
2443  *	beyond the buffer end onto the wire.
2444  *
2445  *	May return error in out of memory cases. The skb is freed on error
2446  *	if @free_on_error is true.
2447  */
2448 
2449 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2450 {
2451 	int err;
2452 	int ntail;
2453 
2454 	/* If the skbuff is non linear tailroom is always zero.. */
2455 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2456 		memset(skb->data+skb->len, 0, pad);
2457 		return 0;
2458 	}
2459 
2460 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2461 	if (likely(skb_cloned(skb) || ntail > 0)) {
2462 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2463 		if (unlikely(err))
2464 			goto free_skb;
2465 	}
2466 
2467 	/* FIXME: The use of this function with non-linear skb's really needs
2468 	 * to be audited.
2469 	 */
2470 	err = skb_linearize(skb);
2471 	if (unlikely(err))
2472 		goto free_skb;
2473 
2474 	memset(skb->data + skb->len, 0, pad);
2475 	return 0;
2476 
2477 free_skb:
2478 	if (free_on_error)
2479 		kfree_skb(skb);
2480 	return err;
2481 }
2482 EXPORT_SYMBOL(__skb_pad);
2483 
2484 /**
2485  *	pskb_put - add data to the tail of a potentially fragmented buffer
2486  *	@skb: start of the buffer to use
2487  *	@tail: tail fragment of the buffer to use
2488  *	@len: amount of data to add
2489  *
2490  *	This function extends the used data area of the potentially
2491  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2492  *	@skb itself. If this would exceed the total buffer size the kernel
2493  *	will panic. A pointer to the first byte of the extra data is
2494  *	returned.
2495  */
2496 
2497 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2498 {
2499 	if (tail != skb) {
2500 		skb->data_len += len;
2501 		skb->len += len;
2502 	}
2503 	return skb_put(tail, len);
2504 }
2505 EXPORT_SYMBOL_GPL(pskb_put);
2506 
2507 /**
2508  *	skb_put - add data to a buffer
2509  *	@skb: buffer to use
2510  *	@len: amount of data to add
2511  *
2512  *	This function extends the used data area of the buffer. If this would
2513  *	exceed the total buffer size the kernel will panic. A pointer to the
2514  *	first byte of the extra data is returned.
2515  */
2516 void *skb_put(struct sk_buff *skb, unsigned int len)
2517 {
2518 	void *tmp = skb_tail_pointer(skb);
2519 	SKB_LINEAR_ASSERT(skb);
2520 	skb->tail += len;
2521 	skb->len  += len;
2522 	if (unlikely(skb->tail > skb->end))
2523 		skb_over_panic(skb, len, __builtin_return_address(0));
2524 	return tmp;
2525 }
2526 EXPORT_SYMBOL(skb_put);
2527 
2528 /**
2529  *	skb_push - add data to the start of a buffer
2530  *	@skb: buffer to use
2531  *	@len: amount of data to add
2532  *
2533  *	This function extends the used data area of the buffer at the buffer
2534  *	start. If this would exceed the total buffer headroom the kernel will
2535  *	panic. A pointer to the first byte of the extra data is returned.
2536  */
2537 void *skb_push(struct sk_buff *skb, unsigned int len)
2538 {
2539 	skb->data -= len;
2540 	skb->len  += len;
2541 	if (unlikely(skb->data < skb->head))
2542 		skb_under_panic(skb, len, __builtin_return_address(0));
2543 	return skb->data;
2544 }
2545 EXPORT_SYMBOL(skb_push);
2546 
2547 /**
2548  *	skb_pull - remove data from the start of a buffer
2549  *	@skb: buffer to use
2550  *	@len: amount of data to remove
2551  *
2552  *	This function removes data from the start of a buffer, returning
2553  *	the memory to the headroom. A pointer to the next data in the buffer
2554  *	is returned. Once the data has been pulled future pushes will overwrite
2555  *	the old data.
2556  */
2557 void *skb_pull(struct sk_buff *skb, unsigned int len)
2558 {
2559 	return skb_pull_inline(skb, len);
2560 }
2561 EXPORT_SYMBOL(skb_pull);
2562 
2563 /**
2564  *	skb_pull_data - remove data from the start of a buffer returning its
2565  *	original position.
2566  *	@skb: buffer to use
2567  *	@len: amount of data to remove
2568  *
2569  *	This function removes data from the start of a buffer, returning
2570  *	the memory to the headroom. A pointer to the original data in the buffer
2571  *	is returned after checking if there is enough data to pull. Once the
2572  *	data has been pulled future pushes will overwrite the old data.
2573  */
2574 void *skb_pull_data(struct sk_buff *skb, size_t len)
2575 {
2576 	void *data = skb->data;
2577 
2578 	if (skb->len < len)
2579 		return NULL;
2580 
2581 	skb_pull(skb, len);
2582 
2583 	return data;
2584 }
2585 EXPORT_SYMBOL(skb_pull_data);
2586 
2587 /**
2588  *	skb_trim - remove end from a buffer
2589  *	@skb: buffer to alter
2590  *	@len: new length
2591  *
2592  *	Cut the length of a buffer down by removing data from the tail. If
2593  *	the buffer is already under the length specified it is not modified.
2594  *	The skb must be linear.
2595  */
2596 void skb_trim(struct sk_buff *skb, unsigned int len)
2597 {
2598 	if (skb->len > len)
2599 		__skb_trim(skb, len);
2600 }
2601 EXPORT_SYMBOL(skb_trim);
2602 
2603 /* Trims skb to length len. It can change skb pointers.
2604  */
2605 
2606 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2607 {
2608 	struct sk_buff **fragp;
2609 	struct sk_buff *frag;
2610 	int offset = skb_headlen(skb);
2611 	int nfrags = skb_shinfo(skb)->nr_frags;
2612 	int i;
2613 	int err;
2614 
2615 	if (skb_cloned(skb) &&
2616 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2617 		return err;
2618 
2619 	i = 0;
2620 	if (offset >= len)
2621 		goto drop_pages;
2622 
2623 	for (; i < nfrags; i++) {
2624 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2625 
2626 		if (end < len) {
2627 			offset = end;
2628 			continue;
2629 		}
2630 
2631 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2632 
2633 drop_pages:
2634 		skb_shinfo(skb)->nr_frags = i;
2635 
2636 		for (; i < nfrags; i++)
2637 			skb_frag_unref(skb, i);
2638 
2639 		if (skb_has_frag_list(skb))
2640 			skb_drop_fraglist(skb);
2641 		goto done;
2642 	}
2643 
2644 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2645 	     fragp = &frag->next) {
2646 		int end = offset + frag->len;
2647 
2648 		if (skb_shared(frag)) {
2649 			struct sk_buff *nfrag;
2650 
2651 			nfrag = skb_clone(frag, GFP_ATOMIC);
2652 			if (unlikely(!nfrag))
2653 				return -ENOMEM;
2654 
2655 			nfrag->next = frag->next;
2656 			consume_skb(frag);
2657 			frag = nfrag;
2658 			*fragp = frag;
2659 		}
2660 
2661 		if (end < len) {
2662 			offset = end;
2663 			continue;
2664 		}
2665 
2666 		if (end > len &&
2667 		    unlikely((err = pskb_trim(frag, len - offset))))
2668 			return err;
2669 
2670 		if (frag->next)
2671 			skb_drop_list(&frag->next);
2672 		break;
2673 	}
2674 
2675 done:
2676 	if (len > skb_headlen(skb)) {
2677 		skb->data_len -= skb->len - len;
2678 		skb->len       = len;
2679 	} else {
2680 		skb->len       = len;
2681 		skb->data_len  = 0;
2682 		skb_set_tail_pointer(skb, len);
2683 	}
2684 
2685 	if (!skb->sk || skb->destructor == sock_edemux)
2686 		skb_condense(skb);
2687 	return 0;
2688 }
2689 EXPORT_SYMBOL(___pskb_trim);
2690 
2691 /* Note : use pskb_trim_rcsum() instead of calling this directly
2692  */
2693 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2694 {
2695 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2696 		int delta = skb->len - len;
2697 
2698 		skb->csum = csum_block_sub(skb->csum,
2699 					   skb_checksum(skb, len, delta, 0),
2700 					   len);
2701 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2702 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2703 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2704 
2705 		if (offset + sizeof(__sum16) > hdlen)
2706 			return -EINVAL;
2707 	}
2708 	return __pskb_trim(skb, len);
2709 }
2710 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2711 
2712 /**
2713  *	__pskb_pull_tail - advance tail of skb header
2714  *	@skb: buffer to reallocate
2715  *	@delta: number of bytes to advance tail
2716  *
2717  *	The function makes a sense only on a fragmented &sk_buff,
2718  *	it expands header moving its tail forward and copying necessary
2719  *	data from fragmented part.
2720  *
2721  *	&sk_buff MUST have reference count of 1.
2722  *
2723  *	Returns %NULL (and &sk_buff does not change) if pull failed
2724  *	or value of new tail of skb in the case of success.
2725  *
2726  *	All the pointers pointing into skb header may change and must be
2727  *	reloaded after call to this function.
2728  */
2729 
2730 /* Moves tail of skb head forward, copying data from fragmented part,
2731  * when it is necessary.
2732  * 1. It may fail due to malloc failure.
2733  * 2. It may change skb pointers.
2734  *
2735  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2736  */
2737 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2738 {
2739 	/* If skb has not enough free space at tail, get new one
2740 	 * plus 128 bytes for future expansions. If we have enough
2741 	 * room at tail, reallocate without expansion only if skb is cloned.
2742 	 */
2743 	int i, k, eat = (skb->tail + delta) - skb->end;
2744 
2745 	if (eat > 0 || skb_cloned(skb)) {
2746 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2747 				     GFP_ATOMIC))
2748 			return NULL;
2749 	}
2750 
2751 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2752 			     skb_tail_pointer(skb), delta));
2753 
2754 	/* Optimization: no fragments, no reasons to preestimate
2755 	 * size of pulled pages. Superb.
2756 	 */
2757 	if (!skb_has_frag_list(skb))
2758 		goto pull_pages;
2759 
2760 	/* Estimate size of pulled pages. */
2761 	eat = delta;
2762 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2763 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2764 
2765 		if (size >= eat)
2766 			goto pull_pages;
2767 		eat -= size;
2768 	}
2769 
2770 	/* If we need update frag list, we are in troubles.
2771 	 * Certainly, it is possible to add an offset to skb data,
2772 	 * but taking into account that pulling is expected to
2773 	 * be very rare operation, it is worth to fight against
2774 	 * further bloating skb head and crucify ourselves here instead.
2775 	 * Pure masohism, indeed. 8)8)
2776 	 */
2777 	if (eat) {
2778 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2779 		struct sk_buff *clone = NULL;
2780 		struct sk_buff *insp = NULL;
2781 
2782 		do {
2783 			if (list->len <= eat) {
2784 				/* Eaten as whole. */
2785 				eat -= list->len;
2786 				list = list->next;
2787 				insp = list;
2788 			} else {
2789 				/* Eaten partially. */
2790 				if (skb_is_gso(skb) && !list->head_frag &&
2791 				    skb_headlen(list))
2792 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2793 
2794 				if (skb_shared(list)) {
2795 					/* Sucks! We need to fork list. :-( */
2796 					clone = skb_clone(list, GFP_ATOMIC);
2797 					if (!clone)
2798 						return NULL;
2799 					insp = list->next;
2800 					list = clone;
2801 				} else {
2802 					/* This may be pulled without
2803 					 * problems. */
2804 					insp = list;
2805 				}
2806 				if (!pskb_pull(list, eat)) {
2807 					kfree_skb(clone);
2808 					return NULL;
2809 				}
2810 				break;
2811 			}
2812 		} while (eat);
2813 
2814 		/* Free pulled out fragments. */
2815 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2816 			skb_shinfo(skb)->frag_list = list->next;
2817 			consume_skb(list);
2818 		}
2819 		/* And insert new clone at head. */
2820 		if (clone) {
2821 			clone->next = list;
2822 			skb_shinfo(skb)->frag_list = clone;
2823 		}
2824 	}
2825 	/* Success! Now we may commit changes to skb data. */
2826 
2827 pull_pages:
2828 	eat = delta;
2829 	k = 0;
2830 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2831 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2832 
2833 		if (size <= eat) {
2834 			skb_frag_unref(skb, i);
2835 			eat -= size;
2836 		} else {
2837 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2838 
2839 			*frag = skb_shinfo(skb)->frags[i];
2840 			if (eat) {
2841 				skb_frag_off_add(frag, eat);
2842 				skb_frag_size_sub(frag, eat);
2843 				if (!i)
2844 					goto end;
2845 				eat = 0;
2846 			}
2847 			k++;
2848 		}
2849 	}
2850 	skb_shinfo(skb)->nr_frags = k;
2851 
2852 end:
2853 	skb->tail     += delta;
2854 	skb->data_len -= delta;
2855 
2856 	if (!skb->data_len)
2857 		skb_zcopy_clear(skb, false);
2858 
2859 	return skb_tail_pointer(skb);
2860 }
2861 EXPORT_SYMBOL(__pskb_pull_tail);
2862 
2863 /**
2864  *	skb_copy_bits - copy bits from skb to kernel buffer
2865  *	@skb: source skb
2866  *	@offset: offset in source
2867  *	@to: destination buffer
2868  *	@len: number of bytes to copy
2869  *
2870  *	Copy the specified number of bytes from the source skb to the
2871  *	destination buffer.
2872  *
2873  *	CAUTION ! :
2874  *		If its prototype is ever changed,
2875  *		check arch/{*}/net/{*}.S files,
2876  *		since it is called from BPF assembly code.
2877  */
2878 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2879 {
2880 	int start = skb_headlen(skb);
2881 	struct sk_buff *frag_iter;
2882 	int i, copy;
2883 
2884 	if (offset > (int)skb->len - len)
2885 		goto fault;
2886 
2887 	/* Copy header. */
2888 	if ((copy = start - offset) > 0) {
2889 		if (copy > len)
2890 			copy = len;
2891 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2892 		if ((len -= copy) == 0)
2893 			return 0;
2894 		offset += copy;
2895 		to     += copy;
2896 	}
2897 
2898 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2899 		int end;
2900 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2901 
2902 		WARN_ON(start > offset + len);
2903 
2904 		end = start + skb_frag_size(f);
2905 		if ((copy = end - offset) > 0) {
2906 			u32 p_off, p_len, copied;
2907 			struct page *p;
2908 			u8 *vaddr;
2909 
2910 			if (copy > len)
2911 				copy = len;
2912 
2913 			skb_frag_foreach_page(f,
2914 					      skb_frag_off(f) + offset - start,
2915 					      copy, p, p_off, p_len, copied) {
2916 				vaddr = kmap_atomic(p);
2917 				memcpy(to + copied, vaddr + p_off, p_len);
2918 				kunmap_atomic(vaddr);
2919 			}
2920 
2921 			if ((len -= copy) == 0)
2922 				return 0;
2923 			offset += copy;
2924 			to     += copy;
2925 		}
2926 		start = end;
2927 	}
2928 
2929 	skb_walk_frags(skb, frag_iter) {
2930 		int end;
2931 
2932 		WARN_ON(start > offset + len);
2933 
2934 		end = start + frag_iter->len;
2935 		if ((copy = end - offset) > 0) {
2936 			if (copy > len)
2937 				copy = len;
2938 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2939 				goto fault;
2940 			if ((len -= copy) == 0)
2941 				return 0;
2942 			offset += copy;
2943 			to     += copy;
2944 		}
2945 		start = end;
2946 	}
2947 
2948 	if (!len)
2949 		return 0;
2950 
2951 fault:
2952 	return -EFAULT;
2953 }
2954 EXPORT_SYMBOL(skb_copy_bits);
2955 
2956 /*
2957  * Callback from splice_to_pipe(), if we need to release some pages
2958  * at the end of the spd in case we error'ed out in filling the pipe.
2959  */
2960 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2961 {
2962 	put_page(spd->pages[i]);
2963 }
2964 
2965 static struct page *linear_to_page(struct page *page, unsigned int *len,
2966 				   unsigned int *offset,
2967 				   struct sock *sk)
2968 {
2969 	struct page_frag *pfrag = sk_page_frag(sk);
2970 
2971 	if (!sk_page_frag_refill(sk, pfrag))
2972 		return NULL;
2973 
2974 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2975 
2976 	memcpy(page_address(pfrag->page) + pfrag->offset,
2977 	       page_address(page) + *offset, *len);
2978 	*offset = pfrag->offset;
2979 	pfrag->offset += *len;
2980 
2981 	return pfrag->page;
2982 }
2983 
2984 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2985 			     struct page *page,
2986 			     unsigned int offset)
2987 {
2988 	return	spd->nr_pages &&
2989 		spd->pages[spd->nr_pages - 1] == page &&
2990 		(spd->partial[spd->nr_pages - 1].offset +
2991 		 spd->partial[spd->nr_pages - 1].len == offset);
2992 }
2993 
2994 /*
2995  * Fill page/offset/length into spd, if it can hold more pages.
2996  */
2997 static bool spd_fill_page(struct splice_pipe_desc *spd,
2998 			  struct pipe_inode_info *pipe, struct page *page,
2999 			  unsigned int *len, unsigned int offset,
3000 			  bool linear,
3001 			  struct sock *sk)
3002 {
3003 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3004 		return true;
3005 
3006 	if (linear) {
3007 		page = linear_to_page(page, len, &offset, sk);
3008 		if (!page)
3009 			return true;
3010 	}
3011 	if (spd_can_coalesce(spd, page, offset)) {
3012 		spd->partial[spd->nr_pages - 1].len += *len;
3013 		return false;
3014 	}
3015 	get_page(page);
3016 	spd->pages[spd->nr_pages] = page;
3017 	spd->partial[spd->nr_pages].len = *len;
3018 	spd->partial[spd->nr_pages].offset = offset;
3019 	spd->nr_pages++;
3020 
3021 	return false;
3022 }
3023 
3024 static bool __splice_segment(struct page *page, unsigned int poff,
3025 			     unsigned int plen, unsigned int *off,
3026 			     unsigned int *len,
3027 			     struct splice_pipe_desc *spd, bool linear,
3028 			     struct sock *sk,
3029 			     struct pipe_inode_info *pipe)
3030 {
3031 	if (!*len)
3032 		return true;
3033 
3034 	/* skip this segment if already processed */
3035 	if (*off >= plen) {
3036 		*off -= plen;
3037 		return false;
3038 	}
3039 
3040 	/* ignore any bits we already processed */
3041 	poff += *off;
3042 	plen -= *off;
3043 	*off = 0;
3044 
3045 	do {
3046 		unsigned int flen = min(*len, plen);
3047 
3048 		if (spd_fill_page(spd, pipe, page, &flen, poff,
3049 				  linear, sk))
3050 			return true;
3051 		poff += flen;
3052 		plen -= flen;
3053 		*len -= flen;
3054 	} while (*len && plen);
3055 
3056 	return false;
3057 }
3058 
3059 /*
3060  * Map linear and fragment data from the skb to spd. It reports true if the
3061  * pipe is full or if we already spliced the requested length.
3062  */
3063 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3064 			      unsigned int *offset, unsigned int *len,
3065 			      struct splice_pipe_desc *spd, struct sock *sk)
3066 {
3067 	int seg;
3068 	struct sk_buff *iter;
3069 
3070 	/* map the linear part :
3071 	 * If skb->head_frag is set, this 'linear' part is backed by a
3072 	 * fragment, and if the head is not shared with any clones then
3073 	 * we can avoid a copy since we own the head portion of this page.
3074 	 */
3075 	if (__splice_segment(virt_to_page(skb->data),
3076 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3077 			     skb_headlen(skb),
3078 			     offset, len, spd,
3079 			     skb_head_is_locked(skb),
3080 			     sk, pipe))
3081 		return true;
3082 
3083 	/*
3084 	 * then map the fragments
3085 	 */
3086 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3087 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3088 
3089 		if (__splice_segment(skb_frag_page(f),
3090 				     skb_frag_off(f), skb_frag_size(f),
3091 				     offset, len, spd, false, sk, pipe))
3092 			return true;
3093 	}
3094 
3095 	skb_walk_frags(skb, iter) {
3096 		if (*offset >= iter->len) {
3097 			*offset -= iter->len;
3098 			continue;
3099 		}
3100 		/* __skb_splice_bits() only fails if the output has no room
3101 		 * left, so no point in going over the frag_list for the error
3102 		 * case.
3103 		 */
3104 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3105 			return true;
3106 	}
3107 
3108 	return false;
3109 }
3110 
3111 /*
3112  * Map data from the skb to a pipe. Should handle both the linear part,
3113  * the fragments, and the frag list.
3114  */
3115 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3116 		    struct pipe_inode_info *pipe, unsigned int tlen,
3117 		    unsigned int flags)
3118 {
3119 	struct partial_page partial[MAX_SKB_FRAGS];
3120 	struct page *pages[MAX_SKB_FRAGS];
3121 	struct splice_pipe_desc spd = {
3122 		.pages = pages,
3123 		.partial = partial,
3124 		.nr_pages_max = MAX_SKB_FRAGS,
3125 		.ops = &nosteal_pipe_buf_ops,
3126 		.spd_release = sock_spd_release,
3127 	};
3128 	int ret = 0;
3129 
3130 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3131 
3132 	if (spd.nr_pages)
3133 		ret = splice_to_pipe(pipe, &spd);
3134 
3135 	return ret;
3136 }
3137 EXPORT_SYMBOL_GPL(skb_splice_bits);
3138 
3139 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3140 {
3141 	struct socket *sock = sk->sk_socket;
3142 	size_t size = msg_data_left(msg);
3143 
3144 	if (!sock)
3145 		return -EINVAL;
3146 
3147 	if (!sock->ops->sendmsg_locked)
3148 		return sock_no_sendmsg_locked(sk, msg, size);
3149 
3150 	return sock->ops->sendmsg_locked(sk, msg, size);
3151 }
3152 
3153 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3154 {
3155 	struct socket *sock = sk->sk_socket;
3156 
3157 	if (!sock)
3158 		return -EINVAL;
3159 	return sock_sendmsg(sock, msg);
3160 }
3161 
3162 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3163 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3164 			   int len, sendmsg_func sendmsg)
3165 {
3166 	unsigned int orig_len = len;
3167 	struct sk_buff *head = skb;
3168 	unsigned short fragidx;
3169 	int slen, ret;
3170 
3171 do_frag_list:
3172 
3173 	/* Deal with head data */
3174 	while (offset < skb_headlen(skb) && len) {
3175 		struct kvec kv;
3176 		struct msghdr msg;
3177 
3178 		slen = min_t(int, len, skb_headlen(skb) - offset);
3179 		kv.iov_base = skb->data + offset;
3180 		kv.iov_len = slen;
3181 		memset(&msg, 0, sizeof(msg));
3182 		msg.msg_flags = MSG_DONTWAIT;
3183 
3184 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3185 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3186 				      sendmsg_unlocked, sk, &msg);
3187 		if (ret <= 0)
3188 			goto error;
3189 
3190 		offset += ret;
3191 		len -= ret;
3192 	}
3193 
3194 	/* All the data was skb head? */
3195 	if (!len)
3196 		goto out;
3197 
3198 	/* Make offset relative to start of frags */
3199 	offset -= skb_headlen(skb);
3200 
3201 	/* Find where we are in frag list */
3202 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3203 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3204 
3205 		if (offset < skb_frag_size(frag))
3206 			break;
3207 
3208 		offset -= skb_frag_size(frag);
3209 	}
3210 
3211 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3212 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3213 
3214 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3215 
3216 		while (slen) {
3217 			struct bio_vec bvec;
3218 			struct msghdr msg = {
3219 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3220 			};
3221 
3222 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3223 				      skb_frag_off(frag) + offset);
3224 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3225 				      slen);
3226 
3227 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3228 					      sendmsg_unlocked, sk, &msg);
3229 			if (ret <= 0)
3230 				goto error;
3231 
3232 			len -= ret;
3233 			offset += ret;
3234 			slen -= ret;
3235 		}
3236 
3237 		offset = 0;
3238 	}
3239 
3240 	if (len) {
3241 		/* Process any frag lists */
3242 
3243 		if (skb == head) {
3244 			if (skb_has_frag_list(skb)) {
3245 				skb = skb_shinfo(skb)->frag_list;
3246 				goto do_frag_list;
3247 			}
3248 		} else if (skb->next) {
3249 			skb = skb->next;
3250 			goto do_frag_list;
3251 		}
3252 	}
3253 
3254 out:
3255 	return orig_len - len;
3256 
3257 error:
3258 	return orig_len == len ? ret : orig_len - len;
3259 }
3260 
3261 /* Send skb data on a socket. Socket must be locked. */
3262 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3263 			 int len)
3264 {
3265 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3266 }
3267 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3268 
3269 /* Send skb data on a socket. Socket must be unlocked. */
3270 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3271 {
3272 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3273 }
3274 
3275 /**
3276  *	skb_store_bits - store bits from kernel buffer to skb
3277  *	@skb: destination buffer
3278  *	@offset: offset in destination
3279  *	@from: source buffer
3280  *	@len: number of bytes to copy
3281  *
3282  *	Copy the specified number of bytes from the source buffer to the
3283  *	destination skb.  This function handles all the messy bits of
3284  *	traversing fragment lists and such.
3285  */
3286 
3287 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3288 {
3289 	int start = skb_headlen(skb);
3290 	struct sk_buff *frag_iter;
3291 	int i, copy;
3292 
3293 	if (offset > (int)skb->len - len)
3294 		goto fault;
3295 
3296 	if ((copy = start - offset) > 0) {
3297 		if (copy > len)
3298 			copy = len;
3299 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3300 		if ((len -= copy) == 0)
3301 			return 0;
3302 		offset += copy;
3303 		from += copy;
3304 	}
3305 
3306 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3307 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3308 		int end;
3309 
3310 		WARN_ON(start > offset + len);
3311 
3312 		end = start + skb_frag_size(frag);
3313 		if ((copy = end - offset) > 0) {
3314 			u32 p_off, p_len, copied;
3315 			struct page *p;
3316 			u8 *vaddr;
3317 
3318 			if (copy > len)
3319 				copy = len;
3320 
3321 			skb_frag_foreach_page(frag,
3322 					      skb_frag_off(frag) + offset - start,
3323 					      copy, p, p_off, p_len, copied) {
3324 				vaddr = kmap_atomic(p);
3325 				memcpy(vaddr + p_off, from + copied, p_len);
3326 				kunmap_atomic(vaddr);
3327 			}
3328 
3329 			if ((len -= copy) == 0)
3330 				return 0;
3331 			offset += copy;
3332 			from += copy;
3333 		}
3334 		start = end;
3335 	}
3336 
3337 	skb_walk_frags(skb, frag_iter) {
3338 		int end;
3339 
3340 		WARN_ON(start > offset + len);
3341 
3342 		end = start + frag_iter->len;
3343 		if ((copy = end - offset) > 0) {
3344 			if (copy > len)
3345 				copy = len;
3346 			if (skb_store_bits(frag_iter, offset - start,
3347 					   from, copy))
3348 				goto fault;
3349 			if ((len -= copy) == 0)
3350 				return 0;
3351 			offset += copy;
3352 			from += copy;
3353 		}
3354 		start = end;
3355 	}
3356 	if (!len)
3357 		return 0;
3358 
3359 fault:
3360 	return -EFAULT;
3361 }
3362 EXPORT_SYMBOL(skb_store_bits);
3363 
3364 /* Checksum skb data. */
3365 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3366 		      __wsum csum, const struct skb_checksum_ops *ops)
3367 {
3368 	int start = skb_headlen(skb);
3369 	int i, copy = start - offset;
3370 	struct sk_buff *frag_iter;
3371 	int pos = 0;
3372 
3373 	/* Checksum header. */
3374 	if (copy > 0) {
3375 		if (copy > len)
3376 			copy = len;
3377 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3378 				       skb->data + offset, copy, csum);
3379 		if ((len -= copy) == 0)
3380 			return csum;
3381 		offset += copy;
3382 		pos	= copy;
3383 	}
3384 
3385 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3386 		int end;
3387 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3388 
3389 		WARN_ON(start > offset + len);
3390 
3391 		end = start + skb_frag_size(frag);
3392 		if ((copy = end - offset) > 0) {
3393 			u32 p_off, p_len, copied;
3394 			struct page *p;
3395 			__wsum csum2;
3396 			u8 *vaddr;
3397 
3398 			if (copy > len)
3399 				copy = len;
3400 
3401 			skb_frag_foreach_page(frag,
3402 					      skb_frag_off(frag) + offset - start,
3403 					      copy, p, p_off, p_len, copied) {
3404 				vaddr = kmap_atomic(p);
3405 				csum2 = INDIRECT_CALL_1(ops->update,
3406 							csum_partial_ext,
3407 							vaddr + p_off, p_len, 0);
3408 				kunmap_atomic(vaddr);
3409 				csum = INDIRECT_CALL_1(ops->combine,
3410 						       csum_block_add_ext, csum,
3411 						       csum2, pos, p_len);
3412 				pos += p_len;
3413 			}
3414 
3415 			if (!(len -= copy))
3416 				return csum;
3417 			offset += copy;
3418 		}
3419 		start = end;
3420 	}
3421 
3422 	skb_walk_frags(skb, frag_iter) {
3423 		int end;
3424 
3425 		WARN_ON(start > offset + len);
3426 
3427 		end = start + frag_iter->len;
3428 		if ((copy = end - offset) > 0) {
3429 			__wsum csum2;
3430 			if (copy > len)
3431 				copy = len;
3432 			csum2 = __skb_checksum(frag_iter, offset - start,
3433 					       copy, 0, ops);
3434 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3435 					       csum, csum2, pos, copy);
3436 			if ((len -= copy) == 0)
3437 				return csum;
3438 			offset += copy;
3439 			pos    += copy;
3440 		}
3441 		start = end;
3442 	}
3443 	BUG_ON(len);
3444 
3445 	return csum;
3446 }
3447 EXPORT_SYMBOL(__skb_checksum);
3448 
3449 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3450 		    int len, __wsum csum)
3451 {
3452 	const struct skb_checksum_ops ops = {
3453 		.update  = csum_partial_ext,
3454 		.combine = csum_block_add_ext,
3455 	};
3456 
3457 	return __skb_checksum(skb, offset, len, csum, &ops);
3458 }
3459 EXPORT_SYMBOL(skb_checksum);
3460 
3461 /* Both of above in one bottle. */
3462 
3463 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3464 				    u8 *to, int len)
3465 {
3466 	int start = skb_headlen(skb);
3467 	int i, copy = start - offset;
3468 	struct sk_buff *frag_iter;
3469 	int pos = 0;
3470 	__wsum csum = 0;
3471 
3472 	/* Copy header. */
3473 	if (copy > 0) {
3474 		if (copy > len)
3475 			copy = len;
3476 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3477 						 copy);
3478 		if ((len -= copy) == 0)
3479 			return csum;
3480 		offset += copy;
3481 		to     += copy;
3482 		pos	= copy;
3483 	}
3484 
3485 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3486 		int end;
3487 
3488 		WARN_ON(start > offset + len);
3489 
3490 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3491 		if ((copy = end - offset) > 0) {
3492 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3493 			u32 p_off, p_len, copied;
3494 			struct page *p;
3495 			__wsum csum2;
3496 			u8 *vaddr;
3497 
3498 			if (copy > len)
3499 				copy = len;
3500 
3501 			skb_frag_foreach_page(frag,
3502 					      skb_frag_off(frag) + offset - start,
3503 					      copy, p, p_off, p_len, copied) {
3504 				vaddr = kmap_atomic(p);
3505 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3506 								  to + copied,
3507 								  p_len);
3508 				kunmap_atomic(vaddr);
3509 				csum = csum_block_add(csum, csum2, pos);
3510 				pos += p_len;
3511 			}
3512 
3513 			if (!(len -= copy))
3514 				return csum;
3515 			offset += copy;
3516 			to     += copy;
3517 		}
3518 		start = end;
3519 	}
3520 
3521 	skb_walk_frags(skb, frag_iter) {
3522 		__wsum csum2;
3523 		int end;
3524 
3525 		WARN_ON(start > offset + len);
3526 
3527 		end = start + frag_iter->len;
3528 		if ((copy = end - offset) > 0) {
3529 			if (copy > len)
3530 				copy = len;
3531 			csum2 = skb_copy_and_csum_bits(frag_iter,
3532 						       offset - start,
3533 						       to, copy);
3534 			csum = csum_block_add(csum, csum2, pos);
3535 			if ((len -= copy) == 0)
3536 				return csum;
3537 			offset += copy;
3538 			to     += copy;
3539 			pos    += copy;
3540 		}
3541 		start = end;
3542 	}
3543 	BUG_ON(len);
3544 	return csum;
3545 }
3546 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3547 
3548 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3549 {
3550 	__sum16 sum;
3551 
3552 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3553 	/* See comments in __skb_checksum_complete(). */
3554 	if (likely(!sum)) {
3555 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3556 		    !skb->csum_complete_sw)
3557 			netdev_rx_csum_fault(skb->dev, skb);
3558 	}
3559 	if (!skb_shared(skb))
3560 		skb->csum_valid = !sum;
3561 	return sum;
3562 }
3563 EXPORT_SYMBOL(__skb_checksum_complete_head);
3564 
3565 /* This function assumes skb->csum already holds pseudo header's checksum,
3566  * which has been changed from the hardware checksum, for example, by
3567  * __skb_checksum_validate_complete(). And, the original skb->csum must
3568  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3569  *
3570  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3571  * zero. The new checksum is stored back into skb->csum unless the skb is
3572  * shared.
3573  */
3574 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3575 {
3576 	__wsum csum;
3577 	__sum16 sum;
3578 
3579 	csum = skb_checksum(skb, 0, skb->len, 0);
3580 
3581 	sum = csum_fold(csum_add(skb->csum, csum));
3582 	/* This check is inverted, because we already knew the hardware
3583 	 * checksum is invalid before calling this function. So, if the
3584 	 * re-computed checksum is valid instead, then we have a mismatch
3585 	 * between the original skb->csum and skb_checksum(). This means either
3586 	 * the original hardware checksum is incorrect or we screw up skb->csum
3587 	 * when moving skb->data around.
3588 	 */
3589 	if (likely(!sum)) {
3590 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3591 		    !skb->csum_complete_sw)
3592 			netdev_rx_csum_fault(skb->dev, skb);
3593 	}
3594 
3595 	if (!skb_shared(skb)) {
3596 		/* Save full packet checksum */
3597 		skb->csum = csum;
3598 		skb->ip_summed = CHECKSUM_COMPLETE;
3599 		skb->csum_complete_sw = 1;
3600 		skb->csum_valid = !sum;
3601 	}
3602 
3603 	return sum;
3604 }
3605 EXPORT_SYMBOL(__skb_checksum_complete);
3606 
3607 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3608 {
3609 	net_warn_ratelimited(
3610 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3611 		__func__);
3612 	return 0;
3613 }
3614 
3615 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3616 				       int offset, int len)
3617 {
3618 	net_warn_ratelimited(
3619 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3620 		__func__);
3621 	return 0;
3622 }
3623 
3624 static const struct skb_checksum_ops default_crc32c_ops = {
3625 	.update  = warn_crc32c_csum_update,
3626 	.combine = warn_crc32c_csum_combine,
3627 };
3628 
3629 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3630 	&default_crc32c_ops;
3631 EXPORT_SYMBOL(crc32c_csum_stub);
3632 
3633  /**
3634  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3635  *	@from: source buffer
3636  *
3637  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3638  *	into skb_zerocopy().
3639  */
3640 unsigned int
3641 skb_zerocopy_headlen(const struct sk_buff *from)
3642 {
3643 	unsigned int hlen = 0;
3644 
3645 	if (!from->head_frag ||
3646 	    skb_headlen(from) < L1_CACHE_BYTES ||
3647 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3648 		hlen = skb_headlen(from);
3649 		if (!hlen)
3650 			hlen = from->len;
3651 	}
3652 
3653 	if (skb_has_frag_list(from))
3654 		hlen = from->len;
3655 
3656 	return hlen;
3657 }
3658 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3659 
3660 /**
3661  *	skb_zerocopy - Zero copy skb to skb
3662  *	@to: destination buffer
3663  *	@from: source buffer
3664  *	@len: number of bytes to copy from source buffer
3665  *	@hlen: size of linear headroom in destination buffer
3666  *
3667  *	Copies up to `len` bytes from `from` to `to` by creating references
3668  *	to the frags in the source buffer.
3669  *
3670  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3671  *	headroom in the `to` buffer.
3672  *
3673  *	Return value:
3674  *	0: everything is OK
3675  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3676  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3677  */
3678 int
3679 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3680 {
3681 	int i, j = 0;
3682 	int plen = 0; /* length of skb->head fragment */
3683 	int ret;
3684 	struct page *page;
3685 	unsigned int offset;
3686 
3687 	BUG_ON(!from->head_frag && !hlen);
3688 
3689 	/* dont bother with small payloads */
3690 	if (len <= skb_tailroom(to))
3691 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3692 
3693 	if (hlen) {
3694 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3695 		if (unlikely(ret))
3696 			return ret;
3697 		len -= hlen;
3698 	} else {
3699 		plen = min_t(int, skb_headlen(from), len);
3700 		if (plen) {
3701 			page = virt_to_head_page(from->head);
3702 			offset = from->data - (unsigned char *)page_address(page);
3703 			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3704 					       offset, plen);
3705 			get_page(page);
3706 			j = 1;
3707 			len -= plen;
3708 		}
3709 	}
3710 
3711 	skb_len_add(to, len + plen);
3712 
3713 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3714 		skb_tx_error(from);
3715 		return -ENOMEM;
3716 	}
3717 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3718 
3719 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3720 		int size;
3721 
3722 		if (!len)
3723 			break;
3724 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3725 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3726 					len);
3727 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3728 		len -= size;
3729 		skb_frag_ref(to, j);
3730 		j++;
3731 	}
3732 	skb_shinfo(to)->nr_frags = j;
3733 
3734 	return 0;
3735 }
3736 EXPORT_SYMBOL_GPL(skb_zerocopy);
3737 
3738 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3739 {
3740 	__wsum csum;
3741 	long csstart;
3742 
3743 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3744 		csstart = skb_checksum_start_offset(skb);
3745 	else
3746 		csstart = skb_headlen(skb);
3747 
3748 	BUG_ON(csstart > skb_headlen(skb));
3749 
3750 	skb_copy_from_linear_data(skb, to, csstart);
3751 
3752 	csum = 0;
3753 	if (csstart != skb->len)
3754 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3755 					      skb->len - csstart);
3756 
3757 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3758 		long csstuff = csstart + skb->csum_offset;
3759 
3760 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3761 	}
3762 }
3763 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3764 
3765 /**
3766  *	skb_dequeue - remove from the head of the queue
3767  *	@list: list to dequeue from
3768  *
3769  *	Remove the head of the list. The list lock is taken so the function
3770  *	may be used safely with other locking list functions. The head item is
3771  *	returned or %NULL if the list is empty.
3772  */
3773 
3774 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3775 {
3776 	unsigned long flags;
3777 	struct sk_buff *result;
3778 
3779 	spin_lock_irqsave(&list->lock, flags);
3780 	result = __skb_dequeue(list);
3781 	spin_unlock_irqrestore(&list->lock, flags);
3782 	return result;
3783 }
3784 EXPORT_SYMBOL(skb_dequeue);
3785 
3786 /**
3787  *	skb_dequeue_tail - remove from the tail of the queue
3788  *	@list: list to dequeue from
3789  *
3790  *	Remove the tail of the list. The list lock is taken so the function
3791  *	may be used safely with other locking list functions. The tail item is
3792  *	returned or %NULL if the list is empty.
3793  */
3794 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3795 {
3796 	unsigned long flags;
3797 	struct sk_buff *result;
3798 
3799 	spin_lock_irqsave(&list->lock, flags);
3800 	result = __skb_dequeue_tail(list);
3801 	spin_unlock_irqrestore(&list->lock, flags);
3802 	return result;
3803 }
3804 EXPORT_SYMBOL(skb_dequeue_tail);
3805 
3806 /**
3807  *	skb_queue_purge_reason - empty a list
3808  *	@list: list to empty
3809  *	@reason: drop reason
3810  *
3811  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3812  *	the list and one reference dropped. This function takes the list
3813  *	lock and is atomic with respect to other list locking functions.
3814  */
3815 void skb_queue_purge_reason(struct sk_buff_head *list,
3816 			    enum skb_drop_reason reason)
3817 {
3818 	struct sk_buff_head tmp;
3819 	unsigned long flags;
3820 
3821 	if (skb_queue_empty_lockless(list))
3822 		return;
3823 
3824 	__skb_queue_head_init(&tmp);
3825 
3826 	spin_lock_irqsave(&list->lock, flags);
3827 	skb_queue_splice_init(list, &tmp);
3828 	spin_unlock_irqrestore(&list->lock, flags);
3829 
3830 	__skb_queue_purge_reason(&tmp, reason);
3831 }
3832 EXPORT_SYMBOL(skb_queue_purge_reason);
3833 
3834 /**
3835  *	skb_rbtree_purge - empty a skb rbtree
3836  *	@root: root of the rbtree to empty
3837  *	Return value: the sum of truesizes of all purged skbs.
3838  *
3839  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3840  *	the list and one reference dropped. This function does not take
3841  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3842  *	out-of-order queue is protected by the socket lock).
3843  */
3844 unsigned int skb_rbtree_purge(struct rb_root *root)
3845 {
3846 	struct rb_node *p = rb_first(root);
3847 	unsigned int sum = 0;
3848 
3849 	while (p) {
3850 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3851 
3852 		p = rb_next(p);
3853 		rb_erase(&skb->rbnode, root);
3854 		sum += skb->truesize;
3855 		kfree_skb(skb);
3856 	}
3857 	return sum;
3858 }
3859 
3860 void skb_errqueue_purge(struct sk_buff_head *list)
3861 {
3862 	struct sk_buff *skb, *next;
3863 	struct sk_buff_head kill;
3864 	unsigned long flags;
3865 
3866 	__skb_queue_head_init(&kill);
3867 
3868 	spin_lock_irqsave(&list->lock, flags);
3869 	skb_queue_walk_safe(list, skb, next) {
3870 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3871 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3872 			continue;
3873 		__skb_unlink(skb, list);
3874 		__skb_queue_tail(&kill, skb);
3875 	}
3876 	spin_unlock_irqrestore(&list->lock, flags);
3877 	__skb_queue_purge(&kill);
3878 }
3879 EXPORT_SYMBOL(skb_errqueue_purge);
3880 
3881 /**
3882  *	skb_queue_head - queue a buffer at the list head
3883  *	@list: list to use
3884  *	@newsk: buffer to queue
3885  *
3886  *	Queue a buffer at the start of the list. This function takes the
3887  *	list lock and can be used safely with other locking &sk_buff functions
3888  *	safely.
3889  *
3890  *	A buffer cannot be placed on two lists at the same time.
3891  */
3892 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3893 {
3894 	unsigned long flags;
3895 
3896 	spin_lock_irqsave(&list->lock, flags);
3897 	__skb_queue_head(list, newsk);
3898 	spin_unlock_irqrestore(&list->lock, flags);
3899 }
3900 EXPORT_SYMBOL(skb_queue_head);
3901 
3902 /**
3903  *	skb_queue_tail - queue a buffer at the list tail
3904  *	@list: list to use
3905  *	@newsk: buffer to queue
3906  *
3907  *	Queue a buffer at the tail of the list. This function takes the
3908  *	list lock and can be used safely with other locking &sk_buff functions
3909  *	safely.
3910  *
3911  *	A buffer cannot be placed on two lists at the same time.
3912  */
3913 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3914 {
3915 	unsigned long flags;
3916 
3917 	spin_lock_irqsave(&list->lock, flags);
3918 	__skb_queue_tail(list, newsk);
3919 	spin_unlock_irqrestore(&list->lock, flags);
3920 }
3921 EXPORT_SYMBOL(skb_queue_tail);
3922 
3923 /**
3924  *	skb_unlink	-	remove a buffer from a list
3925  *	@skb: buffer to remove
3926  *	@list: list to use
3927  *
3928  *	Remove a packet from a list. The list locks are taken and this
3929  *	function is atomic with respect to other list locked calls
3930  *
3931  *	You must know what list the SKB is on.
3932  */
3933 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3934 {
3935 	unsigned long flags;
3936 
3937 	spin_lock_irqsave(&list->lock, flags);
3938 	__skb_unlink(skb, list);
3939 	spin_unlock_irqrestore(&list->lock, flags);
3940 }
3941 EXPORT_SYMBOL(skb_unlink);
3942 
3943 /**
3944  *	skb_append	-	append a buffer
3945  *	@old: buffer to insert after
3946  *	@newsk: buffer to insert
3947  *	@list: list to use
3948  *
3949  *	Place a packet after a given packet in a list. The list locks are taken
3950  *	and this function is atomic with respect to other list locked calls.
3951  *	A buffer cannot be placed on two lists at the same time.
3952  */
3953 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3954 {
3955 	unsigned long flags;
3956 
3957 	spin_lock_irqsave(&list->lock, flags);
3958 	__skb_queue_after(list, old, newsk);
3959 	spin_unlock_irqrestore(&list->lock, flags);
3960 }
3961 EXPORT_SYMBOL(skb_append);
3962 
3963 static inline void skb_split_inside_header(struct sk_buff *skb,
3964 					   struct sk_buff* skb1,
3965 					   const u32 len, const int pos)
3966 {
3967 	int i;
3968 
3969 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3970 					 pos - len);
3971 	/* And move data appendix as is. */
3972 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3973 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3974 
3975 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3976 	skb_shinfo(skb)->nr_frags  = 0;
3977 	skb1->data_len		   = skb->data_len;
3978 	skb1->len		   += skb1->data_len;
3979 	skb->data_len		   = 0;
3980 	skb->len		   = len;
3981 	skb_set_tail_pointer(skb, len);
3982 }
3983 
3984 static inline void skb_split_no_header(struct sk_buff *skb,
3985 				       struct sk_buff* skb1,
3986 				       const u32 len, int pos)
3987 {
3988 	int i, k = 0;
3989 	const int nfrags = skb_shinfo(skb)->nr_frags;
3990 
3991 	skb_shinfo(skb)->nr_frags = 0;
3992 	skb1->len		  = skb1->data_len = skb->len - len;
3993 	skb->len		  = len;
3994 	skb->data_len		  = len - pos;
3995 
3996 	for (i = 0; i < nfrags; i++) {
3997 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3998 
3999 		if (pos + size > len) {
4000 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4001 
4002 			if (pos < len) {
4003 				/* Split frag.
4004 				 * We have two variants in this case:
4005 				 * 1. Move all the frag to the second
4006 				 *    part, if it is possible. F.e.
4007 				 *    this approach is mandatory for TUX,
4008 				 *    where splitting is expensive.
4009 				 * 2. Split is accurately. We make this.
4010 				 */
4011 				skb_frag_ref(skb, i);
4012 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4013 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4014 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4015 				skb_shinfo(skb)->nr_frags++;
4016 			}
4017 			k++;
4018 		} else
4019 			skb_shinfo(skb)->nr_frags++;
4020 		pos += size;
4021 	}
4022 	skb_shinfo(skb1)->nr_frags = k;
4023 }
4024 
4025 /**
4026  * skb_split - Split fragmented skb to two parts at length len.
4027  * @skb: the buffer to split
4028  * @skb1: the buffer to receive the second part
4029  * @len: new length for skb
4030  */
4031 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4032 {
4033 	int pos = skb_headlen(skb);
4034 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4035 
4036 	skb_zcopy_downgrade_managed(skb);
4037 
4038 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4039 	skb_zerocopy_clone(skb1, skb, 0);
4040 	if (len < pos)	/* Split line is inside header. */
4041 		skb_split_inside_header(skb, skb1, len, pos);
4042 	else		/* Second chunk has no header, nothing to copy. */
4043 		skb_split_no_header(skb, skb1, len, pos);
4044 }
4045 EXPORT_SYMBOL(skb_split);
4046 
4047 /* Shifting from/to a cloned skb is a no-go.
4048  *
4049  * Caller cannot keep skb_shinfo related pointers past calling here!
4050  */
4051 static int skb_prepare_for_shift(struct sk_buff *skb)
4052 {
4053 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4054 }
4055 
4056 /**
4057  * skb_shift - Shifts paged data partially from skb to another
4058  * @tgt: buffer into which tail data gets added
4059  * @skb: buffer from which the paged data comes from
4060  * @shiftlen: shift up to this many bytes
4061  *
4062  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4063  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4064  * It's up to caller to free skb if everything was shifted.
4065  *
4066  * If @tgt runs out of frags, the whole operation is aborted.
4067  *
4068  * Skb cannot include anything else but paged data while tgt is allowed
4069  * to have non-paged data as well.
4070  *
4071  * TODO: full sized shift could be optimized but that would need
4072  * specialized skb free'er to handle frags without up-to-date nr_frags.
4073  */
4074 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4075 {
4076 	int from, to, merge, todo;
4077 	skb_frag_t *fragfrom, *fragto;
4078 
4079 	BUG_ON(shiftlen > skb->len);
4080 
4081 	if (skb_headlen(skb))
4082 		return 0;
4083 	if (skb_zcopy(tgt) || skb_zcopy(skb))
4084 		return 0;
4085 
4086 	todo = shiftlen;
4087 	from = 0;
4088 	to = skb_shinfo(tgt)->nr_frags;
4089 	fragfrom = &skb_shinfo(skb)->frags[from];
4090 
4091 	/* Actual merge is delayed until the point when we know we can
4092 	 * commit all, so that we don't have to undo partial changes
4093 	 */
4094 	if (!to ||
4095 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4096 			      skb_frag_off(fragfrom))) {
4097 		merge = -1;
4098 	} else {
4099 		merge = to - 1;
4100 
4101 		todo -= skb_frag_size(fragfrom);
4102 		if (todo < 0) {
4103 			if (skb_prepare_for_shift(skb) ||
4104 			    skb_prepare_for_shift(tgt))
4105 				return 0;
4106 
4107 			/* All previous frag pointers might be stale! */
4108 			fragfrom = &skb_shinfo(skb)->frags[from];
4109 			fragto = &skb_shinfo(tgt)->frags[merge];
4110 
4111 			skb_frag_size_add(fragto, shiftlen);
4112 			skb_frag_size_sub(fragfrom, shiftlen);
4113 			skb_frag_off_add(fragfrom, shiftlen);
4114 
4115 			goto onlymerged;
4116 		}
4117 
4118 		from++;
4119 	}
4120 
4121 	/* Skip full, not-fitting skb to avoid expensive operations */
4122 	if ((shiftlen == skb->len) &&
4123 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4124 		return 0;
4125 
4126 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4127 		return 0;
4128 
4129 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4130 		if (to == MAX_SKB_FRAGS)
4131 			return 0;
4132 
4133 		fragfrom = &skb_shinfo(skb)->frags[from];
4134 		fragto = &skb_shinfo(tgt)->frags[to];
4135 
4136 		if (todo >= skb_frag_size(fragfrom)) {
4137 			*fragto = *fragfrom;
4138 			todo -= skb_frag_size(fragfrom);
4139 			from++;
4140 			to++;
4141 
4142 		} else {
4143 			__skb_frag_ref(fragfrom, skb->pp_recycle);
4144 			skb_frag_page_copy(fragto, fragfrom);
4145 			skb_frag_off_copy(fragto, fragfrom);
4146 			skb_frag_size_set(fragto, todo);
4147 
4148 			skb_frag_off_add(fragfrom, todo);
4149 			skb_frag_size_sub(fragfrom, todo);
4150 			todo = 0;
4151 
4152 			to++;
4153 			break;
4154 		}
4155 	}
4156 
4157 	/* Ready to "commit" this state change to tgt */
4158 	skb_shinfo(tgt)->nr_frags = to;
4159 
4160 	if (merge >= 0) {
4161 		fragfrom = &skb_shinfo(skb)->frags[0];
4162 		fragto = &skb_shinfo(tgt)->frags[merge];
4163 
4164 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4165 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4166 	}
4167 
4168 	/* Reposition in the original skb */
4169 	to = 0;
4170 	while (from < skb_shinfo(skb)->nr_frags)
4171 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4172 	skb_shinfo(skb)->nr_frags = to;
4173 
4174 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4175 
4176 onlymerged:
4177 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4178 	 * the other hand might need it if it needs to be resent
4179 	 */
4180 	tgt->ip_summed = CHECKSUM_PARTIAL;
4181 	skb->ip_summed = CHECKSUM_PARTIAL;
4182 
4183 	skb_len_add(skb, -shiftlen);
4184 	skb_len_add(tgt, shiftlen);
4185 
4186 	return shiftlen;
4187 }
4188 
4189 /**
4190  * skb_prepare_seq_read - Prepare a sequential read of skb data
4191  * @skb: the buffer to read
4192  * @from: lower offset of data to be read
4193  * @to: upper offset of data to be read
4194  * @st: state variable
4195  *
4196  * Initializes the specified state variable. Must be called before
4197  * invoking skb_seq_read() for the first time.
4198  */
4199 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4200 			  unsigned int to, struct skb_seq_state *st)
4201 {
4202 	st->lower_offset = from;
4203 	st->upper_offset = to;
4204 	st->root_skb = st->cur_skb = skb;
4205 	st->frag_idx = st->stepped_offset = 0;
4206 	st->frag_data = NULL;
4207 	st->frag_off = 0;
4208 }
4209 EXPORT_SYMBOL(skb_prepare_seq_read);
4210 
4211 /**
4212  * skb_seq_read - Sequentially read skb data
4213  * @consumed: number of bytes consumed by the caller so far
4214  * @data: destination pointer for data to be returned
4215  * @st: state variable
4216  *
4217  * Reads a block of skb data at @consumed relative to the
4218  * lower offset specified to skb_prepare_seq_read(). Assigns
4219  * the head of the data block to @data and returns the length
4220  * of the block or 0 if the end of the skb data or the upper
4221  * offset has been reached.
4222  *
4223  * The caller is not required to consume all of the data
4224  * returned, i.e. @consumed is typically set to the number
4225  * of bytes already consumed and the next call to
4226  * skb_seq_read() will return the remaining part of the block.
4227  *
4228  * Note 1: The size of each block of data returned can be arbitrary,
4229  *       this limitation is the cost for zerocopy sequential
4230  *       reads of potentially non linear data.
4231  *
4232  * Note 2: Fragment lists within fragments are not implemented
4233  *       at the moment, state->root_skb could be replaced with
4234  *       a stack for this purpose.
4235  */
4236 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4237 			  struct skb_seq_state *st)
4238 {
4239 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4240 	skb_frag_t *frag;
4241 
4242 	if (unlikely(abs_offset >= st->upper_offset)) {
4243 		if (st->frag_data) {
4244 			kunmap_atomic(st->frag_data);
4245 			st->frag_data = NULL;
4246 		}
4247 		return 0;
4248 	}
4249 
4250 next_skb:
4251 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4252 
4253 	if (abs_offset < block_limit && !st->frag_data) {
4254 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4255 		return block_limit - abs_offset;
4256 	}
4257 
4258 	if (st->frag_idx == 0 && !st->frag_data)
4259 		st->stepped_offset += skb_headlen(st->cur_skb);
4260 
4261 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4262 		unsigned int pg_idx, pg_off, pg_sz;
4263 
4264 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4265 
4266 		pg_idx = 0;
4267 		pg_off = skb_frag_off(frag);
4268 		pg_sz = skb_frag_size(frag);
4269 
4270 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4271 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4272 			pg_off = offset_in_page(pg_off + st->frag_off);
4273 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4274 						    PAGE_SIZE - pg_off);
4275 		}
4276 
4277 		block_limit = pg_sz + st->stepped_offset;
4278 		if (abs_offset < block_limit) {
4279 			if (!st->frag_data)
4280 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4281 
4282 			*data = (u8 *)st->frag_data + pg_off +
4283 				(abs_offset - st->stepped_offset);
4284 
4285 			return block_limit - abs_offset;
4286 		}
4287 
4288 		if (st->frag_data) {
4289 			kunmap_atomic(st->frag_data);
4290 			st->frag_data = NULL;
4291 		}
4292 
4293 		st->stepped_offset += pg_sz;
4294 		st->frag_off += pg_sz;
4295 		if (st->frag_off == skb_frag_size(frag)) {
4296 			st->frag_off = 0;
4297 			st->frag_idx++;
4298 		}
4299 	}
4300 
4301 	if (st->frag_data) {
4302 		kunmap_atomic(st->frag_data);
4303 		st->frag_data = NULL;
4304 	}
4305 
4306 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4307 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4308 		st->frag_idx = 0;
4309 		goto next_skb;
4310 	} else if (st->cur_skb->next) {
4311 		st->cur_skb = st->cur_skb->next;
4312 		st->frag_idx = 0;
4313 		goto next_skb;
4314 	}
4315 
4316 	return 0;
4317 }
4318 EXPORT_SYMBOL(skb_seq_read);
4319 
4320 /**
4321  * skb_abort_seq_read - Abort a sequential read of skb data
4322  * @st: state variable
4323  *
4324  * Must be called if skb_seq_read() was not called until it
4325  * returned 0.
4326  */
4327 void skb_abort_seq_read(struct skb_seq_state *st)
4328 {
4329 	if (st->frag_data)
4330 		kunmap_atomic(st->frag_data);
4331 }
4332 EXPORT_SYMBOL(skb_abort_seq_read);
4333 
4334 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4335 
4336 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4337 					  struct ts_config *conf,
4338 					  struct ts_state *state)
4339 {
4340 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4341 }
4342 
4343 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4344 {
4345 	skb_abort_seq_read(TS_SKB_CB(state));
4346 }
4347 
4348 /**
4349  * skb_find_text - Find a text pattern in skb data
4350  * @skb: the buffer to look in
4351  * @from: search offset
4352  * @to: search limit
4353  * @config: textsearch configuration
4354  *
4355  * Finds a pattern in the skb data according to the specified
4356  * textsearch configuration. Use textsearch_next() to retrieve
4357  * subsequent occurrences of the pattern. Returns the offset
4358  * to the first occurrence or UINT_MAX if no match was found.
4359  */
4360 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4361 			   unsigned int to, struct ts_config *config)
4362 {
4363 	unsigned int patlen = config->ops->get_pattern_len(config);
4364 	struct ts_state state;
4365 	unsigned int ret;
4366 
4367 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4368 
4369 	config->get_next_block = skb_ts_get_next_block;
4370 	config->finish = skb_ts_finish;
4371 
4372 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4373 
4374 	ret = textsearch_find(config, &state);
4375 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4376 }
4377 EXPORT_SYMBOL(skb_find_text);
4378 
4379 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4380 			 int offset, size_t size, size_t max_frags)
4381 {
4382 	int i = skb_shinfo(skb)->nr_frags;
4383 
4384 	if (skb_can_coalesce(skb, i, page, offset)) {
4385 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4386 	} else if (i < max_frags) {
4387 		skb_zcopy_downgrade_managed(skb);
4388 		get_page(page);
4389 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4390 	} else {
4391 		return -EMSGSIZE;
4392 	}
4393 
4394 	return 0;
4395 }
4396 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4397 
4398 /**
4399  *	skb_pull_rcsum - pull skb and update receive checksum
4400  *	@skb: buffer to update
4401  *	@len: length of data pulled
4402  *
4403  *	This function performs an skb_pull on the packet and updates
4404  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4405  *	receive path processing instead of skb_pull unless you know
4406  *	that the checksum difference is zero (e.g., a valid IP header)
4407  *	or you are setting ip_summed to CHECKSUM_NONE.
4408  */
4409 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4410 {
4411 	unsigned char *data = skb->data;
4412 
4413 	BUG_ON(len > skb->len);
4414 	__skb_pull(skb, len);
4415 	skb_postpull_rcsum(skb, data, len);
4416 	return skb->data;
4417 }
4418 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4419 
4420 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4421 {
4422 	skb_frag_t head_frag;
4423 	struct page *page;
4424 
4425 	page = virt_to_head_page(frag_skb->head);
4426 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4427 				(unsigned char *)page_address(page),
4428 				skb_headlen(frag_skb));
4429 	return head_frag;
4430 }
4431 
4432 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4433 				 netdev_features_t features,
4434 				 unsigned int offset)
4435 {
4436 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4437 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4438 	unsigned int delta_truesize = 0;
4439 	unsigned int delta_len = 0;
4440 	struct sk_buff *tail = NULL;
4441 	struct sk_buff *nskb, *tmp;
4442 	int len_diff, err;
4443 
4444 	skb_push(skb, -skb_network_offset(skb) + offset);
4445 
4446 	/* Ensure the head is writeable before touching the shared info */
4447 	err = skb_unclone(skb, GFP_ATOMIC);
4448 	if (err)
4449 		goto err_linearize;
4450 
4451 	skb_shinfo(skb)->frag_list = NULL;
4452 
4453 	while (list_skb) {
4454 		nskb = list_skb;
4455 		list_skb = list_skb->next;
4456 
4457 		err = 0;
4458 		delta_truesize += nskb->truesize;
4459 		if (skb_shared(nskb)) {
4460 			tmp = skb_clone(nskb, GFP_ATOMIC);
4461 			if (tmp) {
4462 				consume_skb(nskb);
4463 				nskb = tmp;
4464 				err = skb_unclone(nskb, GFP_ATOMIC);
4465 			} else {
4466 				err = -ENOMEM;
4467 			}
4468 		}
4469 
4470 		if (!tail)
4471 			skb->next = nskb;
4472 		else
4473 			tail->next = nskb;
4474 
4475 		if (unlikely(err)) {
4476 			nskb->next = list_skb;
4477 			goto err_linearize;
4478 		}
4479 
4480 		tail = nskb;
4481 
4482 		delta_len += nskb->len;
4483 
4484 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4485 
4486 		skb_release_head_state(nskb);
4487 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4488 		__copy_skb_header(nskb, skb);
4489 
4490 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4491 		nskb->transport_header += len_diff;
4492 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4493 						 nskb->data - tnl_hlen,
4494 						 offset + tnl_hlen);
4495 
4496 		if (skb_needs_linearize(nskb, features) &&
4497 		    __skb_linearize(nskb))
4498 			goto err_linearize;
4499 	}
4500 
4501 	skb->truesize = skb->truesize - delta_truesize;
4502 	skb->data_len = skb->data_len - delta_len;
4503 	skb->len = skb->len - delta_len;
4504 
4505 	skb_gso_reset(skb);
4506 
4507 	skb->prev = tail;
4508 
4509 	if (skb_needs_linearize(skb, features) &&
4510 	    __skb_linearize(skb))
4511 		goto err_linearize;
4512 
4513 	skb_get(skb);
4514 
4515 	return skb;
4516 
4517 err_linearize:
4518 	kfree_skb_list(skb->next);
4519 	skb->next = NULL;
4520 	return ERR_PTR(-ENOMEM);
4521 }
4522 EXPORT_SYMBOL_GPL(skb_segment_list);
4523 
4524 /**
4525  *	skb_segment - Perform protocol segmentation on skb.
4526  *	@head_skb: buffer to segment
4527  *	@features: features for the output path (see dev->features)
4528  *
4529  *	This function performs segmentation on the given skb.  It returns
4530  *	a pointer to the first in a list of new skbs for the segments.
4531  *	In case of error it returns ERR_PTR(err).
4532  */
4533 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4534 			    netdev_features_t features)
4535 {
4536 	struct sk_buff *segs = NULL;
4537 	struct sk_buff *tail = NULL;
4538 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4539 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4540 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4541 	unsigned int offset = doffset;
4542 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4543 	unsigned int partial_segs = 0;
4544 	unsigned int headroom;
4545 	unsigned int len = head_skb->len;
4546 	struct sk_buff *frag_skb;
4547 	skb_frag_t *frag;
4548 	__be16 proto;
4549 	bool csum, sg;
4550 	int err = -ENOMEM;
4551 	int i = 0;
4552 	int nfrags, pos;
4553 
4554 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4555 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4556 		struct sk_buff *check_skb;
4557 
4558 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4559 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4560 				/* gso_size is untrusted, and we have a frag_list with
4561 				 * a linear non head_frag item.
4562 				 *
4563 				 * If head_skb's headlen does not fit requested gso_size,
4564 				 * it means that the frag_list members do NOT terminate
4565 				 * on exact gso_size boundaries. Hence we cannot perform
4566 				 * skb_frag_t page sharing. Therefore we must fallback to
4567 				 * copying the frag_list skbs; we do so by disabling SG.
4568 				 */
4569 				features &= ~NETIF_F_SG;
4570 				break;
4571 			}
4572 		}
4573 	}
4574 
4575 	__skb_push(head_skb, doffset);
4576 	proto = skb_network_protocol(head_skb, NULL);
4577 	if (unlikely(!proto))
4578 		return ERR_PTR(-EINVAL);
4579 
4580 	sg = !!(features & NETIF_F_SG);
4581 	csum = !!can_checksum_protocol(features, proto);
4582 
4583 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4584 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4585 			struct sk_buff *iter;
4586 			unsigned int frag_len;
4587 
4588 			if (!list_skb ||
4589 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4590 				goto normal;
4591 
4592 			/* If we get here then all the required
4593 			 * GSO features except frag_list are supported.
4594 			 * Try to split the SKB to multiple GSO SKBs
4595 			 * with no frag_list.
4596 			 * Currently we can do that only when the buffers don't
4597 			 * have a linear part and all the buffers except
4598 			 * the last are of the same length.
4599 			 */
4600 			frag_len = list_skb->len;
4601 			skb_walk_frags(head_skb, iter) {
4602 				if (frag_len != iter->len && iter->next)
4603 					goto normal;
4604 				if (skb_headlen(iter) && !iter->head_frag)
4605 					goto normal;
4606 
4607 				len -= iter->len;
4608 			}
4609 
4610 			if (len != frag_len)
4611 				goto normal;
4612 		}
4613 
4614 		/* GSO partial only requires that we trim off any excess that
4615 		 * doesn't fit into an MSS sized block, so take care of that
4616 		 * now.
4617 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4618 		 */
4619 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4620 		if (partial_segs > 1)
4621 			mss *= partial_segs;
4622 		else
4623 			partial_segs = 0;
4624 	}
4625 
4626 normal:
4627 	headroom = skb_headroom(head_skb);
4628 	pos = skb_headlen(head_skb);
4629 
4630 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4631 		return ERR_PTR(-ENOMEM);
4632 
4633 	nfrags = skb_shinfo(head_skb)->nr_frags;
4634 	frag = skb_shinfo(head_skb)->frags;
4635 	frag_skb = head_skb;
4636 
4637 	do {
4638 		struct sk_buff *nskb;
4639 		skb_frag_t *nskb_frag;
4640 		int hsize;
4641 		int size;
4642 
4643 		if (unlikely(mss == GSO_BY_FRAGS)) {
4644 			len = list_skb->len;
4645 		} else {
4646 			len = head_skb->len - offset;
4647 			if (len > mss)
4648 				len = mss;
4649 		}
4650 
4651 		hsize = skb_headlen(head_skb) - offset;
4652 
4653 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4654 		    (skb_headlen(list_skb) == len || sg)) {
4655 			BUG_ON(skb_headlen(list_skb) > len);
4656 
4657 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4658 			if (unlikely(!nskb))
4659 				goto err;
4660 
4661 			i = 0;
4662 			nfrags = skb_shinfo(list_skb)->nr_frags;
4663 			frag = skb_shinfo(list_skb)->frags;
4664 			frag_skb = list_skb;
4665 			pos += skb_headlen(list_skb);
4666 
4667 			while (pos < offset + len) {
4668 				BUG_ON(i >= nfrags);
4669 
4670 				size = skb_frag_size(frag);
4671 				if (pos + size > offset + len)
4672 					break;
4673 
4674 				i++;
4675 				pos += size;
4676 				frag++;
4677 			}
4678 
4679 			list_skb = list_skb->next;
4680 
4681 			if (unlikely(pskb_trim(nskb, len))) {
4682 				kfree_skb(nskb);
4683 				goto err;
4684 			}
4685 
4686 			hsize = skb_end_offset(nskb);
4687 			if (skb_cow_head(nskb, doffset + headroom)) {
4688 				kfree_skb(nskb);
4689 				goto err;
4690 			}
4691 
4692 			nskb->truesize += skb_end_offset(nskb) - hsize;
4693 			skb_release_head_state(nskb);
4694 			__skb_push(nskb, doffset);
4695 		} else {
4696 			if (hsize < 0)
4697 				hsize = 0;
4698 			if (hsize > len || !sg)
4699 				hsize = len;
4700 
4701 			nskb = __alloc_skb(hsize + doffset + headroom,
4702 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4703 					   NUMA_NO_NODE);
4704 
4705 			if (unlikely(!nskb))
4706 				goto err;
4707 
4708 			skb_reserve(nskb, headroom);
4709 			__skb_put(nskb, doffset);
4710 		}
4711 
4712 		if (segs)
4713 			tail->next = nskb;
4714 		else
4715 			segs = nskb;
4716 		tail = nskb;
4717 
4718 		__copy_skb_header(nskb, head_skb);
4719 
4720 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4721 		skb_reset_mac_len(nskb);
4722 
4723 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4724 						 nskb->data - tnl_hlen,
4725 						 doffset + tnl_hlen);
4726 
4727 		if (nskb->len == len + doffset)
4728 			goto perform_csum_check;
4729 
4730 		if (!sg) {
4731 			if (!csum) {
4732 				if (!nskb->remcsum_offload)
4733 					nskb->ip_summed = CHECKSUM_NONE;
4734 				SKB_GSO_CB(nskb)->csum =
4735 					skb_copy_and_csum_bits(head_skb, offset,
4736 							       skb_put(nskb,
4737 								       len),
4738 							       len);
4739 				SKB_GSO_CB(nskb)->csum_start =
4740 					skb_headroom(nskb) + doffset;
4741 			} else {
4742 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4743 					goto err;
4744 			}
4745 			continue;
4746 		}
4747 
4748 		nskb_frag = skb_shinfo(nskb)->frags;
4749 
4750 		skb_copy_from_linear_data_offset(head_skb, offset,
4751 						 skb_put(nskb, hsize), hsize);
4752 
4753 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4754 					   SKBFL_SHARED_FRAG;
4755 
4756 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4757 			goto err;
4758 
4759 		while (pos < offset + len) {
4760 			if (i >= nfrags) {
4761 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4762 				    skb_zerocopy_clone(nskb, list_skb,
4763 						       GFP_ATOMIC))
4764 					goto err;
4765 
4766 				i = 0;
4767 				nfrags = skb_shinfo(list_skb)->nr_frags;
4768 				frag = skb_shinfo(list_skb)->frags;
4769 				frag_skb = list_skb;
4770 				if (!skb_headlen(list_skb)) {
4771 					BUG_ON(!nfrags);
4772 				} else {
4773 					BUG_ON(!list_skb->head_frag);
4774 
4775 					/* to make room for head_frag. */
4776 					i--;
4777 					frag--;
4778 				}
4779 
4780 				list_skb = list_skb->next;
4781 			}
4782 
4783 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4784 				     MAX_SKB_FRAGS)) {
4785 				net_warn_ratelimited(
4786 					"skb_segment: too many frags: %u %u\n",
4787 					pos, mss);
4788 				err = -EINVAL;
4789 				goto err;
4790 			}
4791 
4792 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4793 			__skb_frag_ref(nskb_frag, nskb->pp_recycle);
4794 			size = skb_frag_size(nskb_frag);
4795 
4796 			if (pos < offset) {
4797 				skb_frag_off_add(nskb_frag, offset - pos);
4798 				skb_frag_size_sub(nskb_frag, offset - pos);
4799 			}
4800 
4801 			skb_shinfo(nskb)->nr_frags++;
4802 
4803 			if (pos + size <= offset + len) {
4804 				i++;
4805 				frag++;
4806 				pos += size;
4807 			} else {
4808 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4809 				goto skip_fraglist;
4810 			}
4811 
4812 			nskb_frag++;
4813 		}
4814 
4815 skip_fraglist:
4816 		nskb->data_len = len - hsize;
4817 		nskb->len += nskb->data_len;
4818 		nskb->truesize += nskb->data_len;
4819 
4820 perform_csum_check:
4821 		if (!csum) {
4822 			if (skb_has_shared_frag(nskb) &&
4823 			    __skb_linearize(nskb))
4824 				goto err;
4825 
4826 			if (!nskb->remcsum_offload)
4827 				nskb->ip_summed = CHECKSUM_NONE;
4828 			SKB_GSO_CB(nskb)->csum =
4829 				skb_checksum(nskb, doffset,
4830 					     nskb->len - doffset, 0);
4831 			SKB_GSO_CB(nskb)->csum_start =
4832 				skb_headroom(nskb) + doffset;
4833 		}
4834 	} while ((offset += len) < head_skb->len);
4835 
4836 	/* Some callers want to get the end of the list.
4837 	 * Put it in segs->prev to avoid walking the list.
4838 	 * (see validate_xmit_skb_list() for example)
4839 	 */
4840 	segs->prev = tail;
4841 
4842 	if (partial_segs) {
4843 		struct sk_buff *iter;
4844 		int type = skb_shinfo(head_skb)->gso_type;
4845 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4846 
4847 		/* Update type to add partial and then remove dodgy if set */
4848 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4849 		type &= ~SKB_GSO_DODGY;
4850 
4851 		/* Update GSO info and prepare to start updating headers on
4852 		 * our way back down the stack of protocols.
4853 		 */
4854 		for (iter = segs; iter; iter = iter->next) {
4855 			skb_shinfo(iter)->gso_size = gso_size;
4856 			skb_shinfo(iter)->gso_segs = partial_segs;
4857 			skb_shinfo(iter)->gso_type = type;
4858 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4859 		}
4860 
4861 		if (tail->len - doffset <= gso_size)
4862 			skb_shinfo(tail)->gso_size = 0;
4863 		else if (tail != segs)
4864 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4865 	}
4866 
4867 	/* Following permits correct backpressure, for protocols
4868 	 * using skb_set_owner_w().
4869 	 * Idea is to tranfert ownership from head_skb to last segment.
4870 	 */
4871 	if (head_skb->destructor == sock_wfree) {
4872 		swap(tail->truesize, head_skb->truesize);
4873 		swap(tail->destructor, head_skb->destructor);
4874 		swap(tail->sk, head_skb->sk);
4875 	}
4876 	return segs;
4877 
4878 err:
4879 	kfree_skb_list(segs);
4880 	return ERR_PTR(err);
4881 }
4882 EXPORT_SYMBOL_GPL(skb_segment);
4883 
4884 #ifdef CONFIG_SKB_EXTENSIONS
4885 #define SKB_EXT_ALIGN_VALUE	8
4886 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4887 
4888 static const u8 skb_ext_type_len[] = {
4889 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4890 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4891 #endif
4892 #ifdef CONFIG_XFRM
4893 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4894 #endif
4895 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4896 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4897 #endif
4898 #if IS_ENABLED(CONFIG_MPTCP)
4899 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4900 #endif
4901 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4902 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4903 #endif
4904 };
4905 
4906 static __always_inline unsigned int skb_ext_total_length(void)
4907 {
4908 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4909 	int i;
4910 
4911 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4912 		l += skb_ext_type_len[i];
4913 
4914 	return l;
4915 }
4916 
4917 static void skb_extensions_init(void)
4918 {
4919 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4920 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4921 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4922 #endif
4923 
4924 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4925 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4926 					     0,
4927 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4928 					     NULL);
4929 }
4930 #else
4931 static void skb_extensions_init(void) {}
4932 #endif
4933 
4934 /* The SKB kmem_cache slab is critical for network performance.  Never
4935  * merge/alias the slab with similar sized objects.  This avoids fragmentation
4936  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
4937  */
4938 #ifndef CONFIG_SLUB_TINY
4939 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
4940 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
4941 #define FLAG_SKB_NO_MERGE	0
4942 #endif
4943 
4944 void __init skb_init(void)
4945 {
4946 	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4947 					      sizeof(struct sk_buff),
4948 					      0,
4949 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
4950 						FLAG_SKB_NO_MERGE,
4951 					      offsetof(struct sk_buff, cb),
4952 					      sizeof_field(struct sk_buff, cb),
4953 					      NULL);
4954 	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4955 						sizeof(struct sk_buff_fclones),
4956 						0,
4957 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4958 						NULL);
4959 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
4960 	 * struct skb_shared_info is located at the end of skb->head,
4961 	 * and should not be copied to/from user.
4962 	 */
4963 	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
4964 						SKB_SMALL_HEAD_CACHE_SIZE,
4965 						0,
4966 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
4967 						0,
4968 						SKB_SMALL_HEAD_HEADROOM,
4969 						NULL);
4970 	skb_extensions_init();
4971 }
4972 
4973 static int
4974 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4975 	       unsigned int recursion_level)
4976 {
4977 	int start = skb_headlen(skb);
4978 	int i, copy = start - offset;
4979 	struct sk_buff *frag_iter;
4980 	int elt = 0;
4981 
4982 	if (unlikely(recursion_level >= 24))
4983 		return -EMSGSIZE;
4984 
4985 	if (copy > 0) {
4986 		if (copy > len)
4987 			copy = len;
4988 		sg_set_buf(sg, skb->data + offset, copy);
4989 		elt++;
4990 		if ((len -= copy) == 0)
4991 			return elt;
4992 		offset += copy;
4993 	}
4994 
4995 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4996 		int end;
4997 
4998 		WARN_ON(start > offset + len);
4999 
5000 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5001 		if ((copy = end - offset) > 0) {
5002 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5003 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5004 				return -EMSGSIZE;
5005 
5006 			if (copy > len)
5007 				copy = len;
5008 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5009 				    skb_frag_off(frag) + offset - start);
5010 			elt++;
5011 			if (!(len -= copy))
5012 				return elt;
5013 			offset += copy;
5014 		}
5015 		start = end;
5016 	}
5017 
5018 	skb_walk_frags(skb, frag_iter) {
5019 		int end, ret;
5020 
5021 		WARN_ON(start > offset + len);
5022 
5023 		end = start + frag_iter->len;
5024 		if ((copy = end - offset) > 0) {
5025 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5026 				return -EMSGSIZE;
5027 
5028 			if (copy > len)
5029 				copy = len;
5030 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5031 					      copy, recursion_level + 1);
5032 			if (unlikely(ret < 0))
5033 				return ret;
5034 			elt += ret;
5035 			if ((len -= copy) == 0)
5036 				return elt;
5037 			offset += copy;
5038 		}
5039 		start = end;
5040 	}
5041 	BUG_ON(len);
5042 	return elt;
5043 }
5044 
5045 /**
5046  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5047  *	@skb: Socket buffer containing the buffers to be mapped
5048  *	@sg: The scatter-gather list to map into
5049  *	@offset: The offset into the buffer's contents to start mapping
5050  *	@len: Length of buffer space to be mapped
5051  *
5052  *	Fill the specified scatter-gather list with mappings/pointers into a
5053  *	region of the buffer space attached to a socket buffer. Returns either
5054  *	the number of scatterlist items used, or -EMSGSIZE if the contents
5055  *	could not fit.
5056  */
5057 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5058 {
5059 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5060 
5061 	if (nsg <= 0)
5062 		return nsg;
5063 
5064 	sg_mark_end(&sg[nsg - 1]);
5065 
5066 	return nsg;
5067 }
5068 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5069 
5070 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5071  * sglist without mark the sg which contain last skb data as the end.
5072  * So the caller can mannipulate sg list as will when padding new data after
5073  * the first call without calling sg_unmark_end to expend sg list.
5074  *
5075  * Scenario to use skb_to_sgvec_nomark:
5076  * 1. sg_init_table
5077  * 2. skb_to_sgvec_nomark(payload1)
5078  * 3. skb_to_sgvec_nomark(payload2)
5079  *
5080  * This is equivalent to:
5081  * 1. sg_init_table
5082  * 2. skb_to_sgvec(payload1)
5083  * 3. sg_unmark_end
5084  * 4. skb_to_sgvec(payload2)
5085  *
5086  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
5087  * is more preferable.
5088  */
5089 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5090 			int offset, int len)
5091 {
5092 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5093 }
5094 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5095 
5096 
5097 
5098 /**
5099  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5100  *	@skb: The socket buffer to check.
5101  *	@tailbits: Amount of trailing space to be added
5102  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5103  *
5104  *	Make sure that the data buffers attached to a socket buffer are
5105  *	writable. If they are not, private copies are made of the data buffers
5106  *	and the socket buffer is set to use these instead.
5107  *
5108  *	If @tailbits is given, make sure that there is space to write @tailbits
5109  *	bytes of data beyond current end of socket buffer.  @trailer will be
5110  *	set to point to the skb in which this space begins.
5111  *
5112  *	The number of scatterlist elements required to completely map the
5113  *	COW'd and extended socket buffer will be returned.
5114  */
5115 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5116 {
5117 	int copyflag;
5118 	int elt;
5119 	struct sk_buff *skb1, **skb_p;
5120 
5121 	/* If skb is cloned or its head is paged, reallocate
5122 	 * head pulling out all the pages (pages are considered not writable
5123 	 * at the moment even if they are anonymous).
5124 	 */
5125 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5126 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5127 		return -ENOMEM;
5128 
5129 	/* Easy case. Most of packets will go this way. */
5130 	if (!skb_has_frag_list(skb)) {
5131 		/* A little of trouble, not enough of space for trailer.
5132 		 * This should not happen, when stack is tuned to generate
5133 		 * good frames. OK, on miss we reallocate and reserve even more
5134 		 * space, 128 bytes is fair. */
5135 
5136 		if (skb_tailroom(skb) < tailbits &&
5137 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5138 			return -ENOMEM;
5139 
5140 		/* Voila! */
5141 		*trailer = skb;
5142 		return 1;
5143 	}
5144 
5145 	/* Misery. We are in troubles, going to mincer fragments... */
5146 
5147 	elt = 1;
5148 	skb_p = &skb_shinfo(skb)->frag_list;
5149 	copyflag = 0;
5150 
5151 	while ((skb1 = *skb_p) != NULL) {
5152 		int ntail = 0;
5153 
5154 		/* The fragment is partially pulled by someone,
5155 		 * this can happen on input. Copy it and everything
5156 		 * after it. */
5157 
5158 		if (skb_shared(skb1))
5159 			copyflag = 1;
5160 
5161 		/* If the skb is the last, worry about trailer. */
5162 
5163 		if (skb1->next == NULL && tailbits) {
5164 			if (skb_shinfo(skb1)->nr_frags ||
5165 			    skb_has_frag_list(skb1) ||
5166 			    skb_tailroom(skb1) < tailbits)
5167 				ntail = tailbits + 128;
5168 		}
5169 
5170 		if (copyflag ||
5171 		    skb_cloned(skb1) ||
5172 		    ntail ||
5173 		    skb_shinfo(skb1)->nr_frags ||
5174 		    skb_has_frag_list(skb1)) {
5175 			struct sk_buff *skb2;
5176 
5177 			/* Fuck, we are miserable poor guys... */
5178 			if (ntail == 0)
5179 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5180 			else
5181 				skb2 = skb_copy_expand(skb1,
5182 						       skb_headroom(skb1),
5183 						       ntail,
5184 						       GFP_ATOMIC);
5185 			if (unlikely(skb2 == NULL))
5186 				return -ENOMEM;
5187 
5188 			if (skb1->sk)
5189 				skb_set_owner_w(skb2, skb1->sk);
5190 
5191 			/* Looking around. Are we still alive?
5192 			 * OK, link new skb, drop old one */
5193 
5194 			skb2->next = skb1->next;
5195 			*skb_p = skb2;
5196 			kfree_skb(skb1);
5197 			skb1 = skb2;
5198 		}
5199 		elt++;
5200 		*trailer = skb1;
5201 		skb_p = &skb1->next;
5202 	}
5203 
5204 	return elt;
5205 }
5206 EXPORT_SYMBOL_GPL(skb_cow_data);
5207 
5208 static void sock_rmem_free(struct sk_buff *skb)
5209 {
5210 	struct sock *sk = skb->sk;
5211 
5212 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5213 }
5214 
5215 static void skb_set_err_queue(struct sk_buff *skb)
5216 {
5217 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5218 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5219 	 */
5220 	skb->pkt_type = PACKET_OUTGOING;
5221 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5222 }
5223 
5224 /*
5225  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5226  */
5227 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5228 {
5229 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5230 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5231 		return -ENOMEM;
5232 
5233 	skb_orphan(skb);
5234 	skb->sk = sk;
5235 	skb->destructor = sock_rmem_free;
5236 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5237 	skb_set_err_queue(skb);
5238 
5239 	/* before exiting rcu section, make sure dst is refcounted */
5240 	skb_dst_force(skb);
5241 
5242 	skb_queue_tail(&sk->sk_error_queue, skb);
5243 	if (!sock_flag(sk, SOCK_DEAD))
5244 		sk_error_report(sk);
5245 	return 0;
5246 }
5247 EXPORT_SYMBOL(sock_queue_err_skb);
5248 
5249 static bool is_icmp_err_skb(const struct sk_buff *skb)
5250 {
5251 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5252 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5253 }
5254 
5255 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5256 {
5257 	struct sk_buff_head *q = &sk->sk_error_queue;
5258 	struct sk_buff *skb, *skb_next = NULL;
5259 	bool icmp_next = false;
5260 	unsigned long flags;
5261 
5262 	if (skb_queue_empty_lockless(q))
5263 		return NULL;
5264 
5265 	spin_lock_irqsave(&q->lock, flags);
5266 	skb = __skb_dequeue(q);
5267 	if (skb && (skb_next = skb_peek(q))) {
5268 		icmp_next = is_icmp_err_skb(skb_next);
5269 		if (icmp_next)
5270 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5271 	}
5272 	spin_unlock_irqrestore(&q->lock, flags);
5273 
5274 	if (is_icmp_err_skb(skb) && !icmp_next)
5275 		sk->sk_err = 0;
5276 
5277 	if (skb_next)
5278 		sk_error_report(sk);
5279 
5280 	return skb;
5281 }
5282 EXPORT_SYMBOL(sock_dequeue_err_skb);
5283 
5284 /**
5285  * skb_clone_sk - create clone of skb, and take reference to socket
5286  * @skb: the skb to clone
5287  *
5288  * This function creates a clone of a buffer that holds a reference on
5289  * sk_refcnt.  Buffers created via this function are meant to be
5290  * returned using sock_queue_err_skb, or free via kfree_skb.
5291  *
5292  * When passing buffers allocated with this function to sock_queue_err_skb
5293  * it is necessary to wrap the call with sock_hold/sock_put in order to
5294  * prevent the socket from being released prior to being enqueued on
5295  * the sk_error_queue.
5296  */
5297 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5298 {
5299 	struct sock *sk = skb->sk;
5300 	struct sk_buff *clone;
5301 
5302 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5303 		return NULL;
5304 
5305 	clone = skb_clone(skb, GFP_ATOMIC);
5306 	if (!clone) {
5307 		sock_put(sk);
5308 		return NULL;
5309 	}
5310 
5311 	clone->sk = sk;
5312 	clone->destructor = sock_efree;
5313 
5314 	return clone;
5315 }
5316 EXPORT_SYMBOL(skb_clone_sk);
5317 
5318 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5319 					struct sock *sk,
5320 					int tstype,
5321 					bool opt_stats)
5322 {
5323 	struct sock_exterr_skb *serr;
5324 	int err;
5325 
5326 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5327 
5328 	serr = SKB_EXT_ERR(skb);
5329 	memset(serr, 0, sizeof(*serr));
5330 	serr->ee.ee_errno = ENOMSG;
5331 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5332 	serr->ee.ee_info = tstype;
5333 	serr->opt_stats = opt_stats;
5334 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5335 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5336 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5337 		if (sk_is_tcp(sk))
5338 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5339 	}
5340 
5341 	err = sock_queue_err_skb(sk, skb);
5342 
5343 	if (err)
5344 		kfree_skb(skb);
5345 }
5346 
5347 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5348 {
5349 	bool ret;
5350 
5351 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5352 		return true;
5353 
5354 	read_lock_bh(&sk->sk_callback_lock);
5355 	ret = sk->sk_socket && sk->sk_socket->file &&
5356 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5357 	read_unlock_bh(&sk->sk_callback_lock);
5358 	return ret;
5359 }
5360 
5361 void skb_complete_tx_timestamp(struct sk_buff *skb,
5362 			       struct skb_shared_hwtstamps *hwtstamps)
5363 {
5364 	struct sock *sk = skb->sk;
5365 
5366 	if (!skb_may_tx_timestamp(sk, false))
5367 		goto err;
5368 
5369 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5370 	 * but only if the socket refcount is not zero.
5371 	 */
5372 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5373 		*skb_hwtstamps(skb) = *hwtstamps;
5374 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5375 		sock_put(sk);
5376 		return;
5377 	}
5378 
5379 err:
5380 	kfree_skb(skb);
5381 }
5382 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5383 
5384 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5385 		     const struct sk_buff *ack_skb,
5386 		     struct skb_shared_hwtstamps *hwtstamps,
5387 		     struct sock *sk, int tstype)
5388 {
5389 	struct sk_buff *skb;
5390 	bool tsonly, opt_stats = false;
5391 	u32 tsflags;
5392 
5393 	if (!sk)
5394 		return;
5395 
5396 	tsflags = READ_ONCE(sk->sk_tsflags);
5397 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5398 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5399 		return;
5400 
5401 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5402 	if (!skb_may_tx_timestamp(sk, tsonly))
5403 		return;
5404 
5405 	if (tsonly) {
5406 #ifdef CONFIG_INET
5407 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5408 		    sk_is_tcp(sk)) {
5409 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5410 							     ack_skb);
5411 			opt_stats = true;
5412 		} else
5413 #endif
5414 			skb = alloc_skb(0, GFP_ATOMIC);
5415 	} else {
5416 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5417 
5418 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5419 			kfree_skb(skb);
5420 			return;
5421 		}
5422 	}
5423 	if (!skb)
5424 		return;
5425 
5426 	if (tsonly) {
5427 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5428 					     SKBTX_ANY_TSTAMP;
5429 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5430 	}
5431 
5432 	if (hwtstamps)
5433 		*skb_hwtstamps(skb) = *hwtstamps;
5434 	else
5435 		__net_timestamp(skb);
5436 
5437 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5438 }
5439 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5440 
5441 void skb_tstamp_tx(struct sk_buff *orig_skb,
5442 		   struct skb_shared_hwtstamps *hwtstamps)
5443 {
5444 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5445 			       SCM_TSTAMP_SND);
5446 }
5447 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5448 
5449 #ifdef CONFIG_WIRELESS
5450 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5451 {
5452 	struct sock *sk = skb->sk;
5453 	struct sock_exterr_skb *serr;
5454 	int err = 1;
5455 
5456 	skb->wifi_acked_valid = 1;
5457 	skb->wifi_acked = acked;
5458 
5459 	serr = SKB_EXT_ERR(skb);
5460 	memset(serr, 0, sizeof(*serr));
5461 	serr->ee.ee_errno = ENOMSG;
5462 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5463 
5464 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5465 	 * but only if the socket refcount is not zero.
5466 	 */
5467 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5468 		err = sock_queue_err_skb(sk, skb);
5469 		sock_put(sk);
5470 	}
5471 	if (err)
5472 		kfree_skb(skb);
5473 }
5474 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5475 #endif /* CONFIG_WIRELESS */
5476 
5477 /**
5478  * skb_partial_csum_set - set up and verify partial csum values for packet
5479  * @skb: the skb to set
5480  * @start: the number of bytes after skb->data to start checksumming.
5481  * @off: the offset from start to place the checksum.
5482  *
5483  * For untrusted partially-checksummed packets, we need to make sure the values
5484  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5485  *
5486  * This function checks and sets those values and skb->ip_summed: if this
5487  * returns false you should drop the packet.
5488  */
5489 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5490 {
5491 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5492 	u32 csum_start = skb_headroom(skb) + (u32)start;
5493 
5494 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5495 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5496 				     start, off, skb_headroom(skb), skb_headlen(skb));
5497 		return false;
5498 	}
5499 	skb->ip_summed = CHECKSUM_PARTIAL;
5500 	skb->csum_start = csum_start;
5501 	skb->csum_offset = off;
5502 	skb->transport_header = csum_start;
5503 	return true;
5504 }
5505 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5506 
5507 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5508 			       unsigned int max)
5509 {
5510 	if (skb_headlen(skb) >= len)
5511 		return 0;
5512 
5513 	/* If we need to pullup then pullup to the max, so we
5514 	 * won't need to do it again.
5515 	 */
5516 	if (max > skb->len)
5517 		max = skb->len;
5518 
5519 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5520 		return -ENOMEM;
5521 
5522 	if (skb_headlen(skb) < len)
5523 		return -EPROTO;
5524 
5525 	return 0;
5526 }
5527 
5528 #define MAX_TCP_HDR_LEN (15 * 4)
5529 
5530 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5531 				      typeof(IPPROTO_IP) proto,
5532 				      unsigned int off)
5533 {
5534 	int err;
5535 
5536 	switch (proto) {
5537 	case IPPROTO_TCP:
5538 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5539 					  off + MAX_TCP_HDR_LEN);
5540 		if (!err && !skb_partial_csum_set(skb, off,
5541 						  offsetof(struct tcphdr,
5542 							   check)))
5543 			err = -EPROTO;
5544 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5545 
5546 	case IPPROTO_UDP:
5547 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5548 					  off + sizeof(struct udphdr));
5549 		if (!err && !skb_partial_csum_set(skb, off,
5550 						  offsetof(struct udphdr,
5551 							   check)))
5552 			err = -EPROTO;
5553 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5554 	}
5555 
5556 	return ERR_PTR(-EPROTO);
5557 }
5558 
5559 /* This value should be large enough to cover a tagged ethernet header plus
5560  * maximally sized IP and TCP or UDP headers.
5561  */
5562 #define MAX_IP_HDR_LEN 128
5563 
5564 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5565 {
5566 	unsigned int off;
5567 	bool fragment;
5568 	__sum16 *csum;
5569 	int err;
5570 
5571 	fragment = false;
5572 
5573 	err = skb_maybe_pull_tail(skb,
5574 				  sizeof(struct iphdr),
5575 				  MAX_IP_HDR_LEN);
5576 	if (err < 0)
5577 		goto out;
5578 
5579 	if (ip_is_fragment(ip_hdr(skb)))
5580 		fragment = true;
5581 
5582 	off = ip_hdrlen(skb);
5583 
5584 	err = -EPROTO;
5585 
5586 	if (fragment)
5587 		goto out;
5588 
5589 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5590 	if (IS_ERR(csum))
5591 		return PTR_ERR(csum);
5592 
5593 	if (recalculate)
5594 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5595 					   ip_hdr(skb)->daddr,
5596 					   skb->len - off,
5597 					   ip_hdr(skb)->protocol, 0);
5598 	err = 0;
5599 
5600 out:
5601 	return err;
5602 }
5603 
5604 /* This value should be large enough to cover a tagged ethernet header plus
5605  * an IPv6 header, all options, and a maximal TCP or UDP header.
5606  */
5607 #define MAX_IPV6_HDR_LEN 256
5608 
5609 #define OPT_HDR(type, skb, off) \
5610 	(type *)(skb_network_header(skb) + (off))
5611 
5612 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5613 {
5614 	int err;
5615 	u8 nexthdr;
5616 	unsigned int off;
5617 	unsigned int len;
5618 	bool fragment;
5619 	bool done;
5620 	__sum16 *csum;
5621 
5622 	fragment = false;
5623 	done = false;
5624 
5625 	off = sizeof(struct ipv6hdr);
5626 
5627 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5628 	if (err < 0)
5629 		goto out;
5630 
5631 	nexthdr = ipv6_hdr(skb)->nexthdr;
5632 
5633 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5634 	while (off <= len && !done) {
5635 		switch (nexthdr) {
5636 		case IPPROTO_DSTOPTS:
5637 		case IPPROTO_HOPOPTS:
5638 		case IPPROTO_ROUTING: {
5639 			struct ipv6_opt_hdr *hp;
5640 
5641 			err = skb_maybe_pull_tail(skb,
5642 						  off +
5643 						  sizeof(struct ipv6_opt_hdr),
5644 						  MAX_IPV6_HDR_LEN);
5645 			if (err < 0)
5646 				goto out;
5647 
5648 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5649 			nexthdr = hp->nexthdr;
5650 			off += ipv6_optlen(hp);
5651 			break;
5652 		}
5653 		case IPPROTO_AH: {
5654 			struct ip_auth_hdr *hp;
5655 
5656 			err = skb_maybe_pull_tail(skb,
5657 						  off +
5658 						  sizeof(struct ip_auth_hdr),
5659 						  MAX_IPV6_HDR_LEN);
5660 			if (err < 0)
5661 				goto out;
5662 
5663 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5664 			nexthdr = hp->nexthdr;
5665 			off += ipv6_authlen(hp);
5666 			break;
5667 		}
5668 		case IPPROTO_FRAGMENT: {
5669 			struct frag_hdr *hp;
5670 
5671 			err = skb_maybe_pull_tail(skb,
5672 						  off +
5673 						  sizeof(struct frag_hdr),
5674 						  MAX_IPV6_HDR_LEN);
5675 			if (err < 0)
5676 				goto out;
5677 
5678 			hp = OPT_HDR(struct frag_hdr, skb, off);
5679 
5680 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5681 				fragment = true;
5682 
5683 			nexthdr = hp->nexthdr;
5684 			off += sizeof(struct frag_hdr);
5685 			break;
5686 		}
5687 		default:
5688 			done = true;
5689 			break;
5690 		}
5691 	}
5692 
5693 	err = -EPROTO;
5694 
5695 	if (!done || fragment)
5696 		goto out;
5697 
5698 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5699 	if (IS_ERR(csum))
5700 		return PTR_ERR(csum);
5701 
5702 	if (recalculate)
5703 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5704 					 &ipv6_hdr(skb)->daddr,
5705 					 skb->len - off, nexthdr, 0);
5706 	err = 0;
5707 
5708 out:
5709 	return err;
5710 }
5711 
5712 /**
5713  * skb_checksum_setup - set up partial checksum offset
5714  * @skb: the skb to set up
5715  * @recalculate: if true the pseudo-header checksum will be recalculated
5716  */
5717 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5718 {
5719 	int err;
5720 
5721 	switch (skb->protocol) {
5722 	case htons(ETH_P_IP):
5723 		err = skb_checksum_setup_ipv4(skb, recalculate);
5724 		break;
5725 
5726 	case htons(ETH_P_IPV6):
5727 		err = skb_checksum_setup_ipv6(skb, recalculate);
5728 		break;
5729 
5730 	default:
5731 		err = -EPROTO;
5732 		break;
5733 	}
5734 
5735 	return err;
5736 }
5737 EXPORT_SYMBOL(skb_checksum_setup);
5738 
5739 /**
5740  * skb_checksum_maybe_trim - maybe trims the given skb
5741  * @skb: the skb to check
5742  * @transport_len: the data length beyond the network header
5743  *
5744  * Checks whether the given skb has data beyond the given transport length.
5745  * If so, returns a cloned skb trimmed to this transport length.
5746  * Otherwise returns the provided skb. Returns NULL in error cases
5747  * (e.g. transport_len exceeds skb length or out-of-memory).
5748  *
5749  * Caller needs to set the skb transport header and free any returned skb if it
5750  * differs from the provided skb.
5751  */
5752 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5753 					       unsigned int transport_len)
5754 {
5755 	struct sk_buff *skb_chk;
5756 	unsigned int len = skb_transport_offset(skb) + transport_len;
5757 	int ret;
5758 
5759 	if (skb->len < len)
5760 		return NULL;
5761 	else if (skb->len == len)
5762 		return skb;
5763 
5764 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5765 	if (!skb_chk)
5766 		return NULL;
5767 
5768 	ret = pskb_trim_rcsum(skb_chk, len);
5769 	if (ret) {
5770 		kfree_skb(skb_chk);
5771 		return NULL;
5772 	}
5773 
5774 	return skb_chk;
5775 }
5776 
5777 /**
5778  * skb_checksum_trimmed - validate checksum of an skb
5779  * @skb: the skb to check
5780  * @transport_len: the data length beyond the network header
5781  * @skb_chkf: checksum function to use
5782  *
5783  * Applies the given checksum function skb_chkf to the provided skb.
5784  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5785  *
5786  * If the skb has data beyond the given transport length, then a
5787  * trimmed & cloned skb is checked and returned.
5788  *
5789  * Caller needs to set the skb transport header and free any returned skb if it
5790  * differs from the provided skb.
5791  */
5792 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5793 				     unsigned int transport_len,
5794 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5795 {
5796 	struct sk_buff *skb_chk;
5797 	unsigned int offset = skb_transport_offset(skb);
5798 	__sum16 ret;
5799 
5800 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5801 	if (!skb_chk)
5802 		goto err;
5803 
5804 	if (!pskb_may_pull(skb_chk, offset))
5805 		goto err;
5806 
5807 	skb_pull_rcsum(skb_chk, offset);
5808 	ret = skb_chkf(skb_chk);
5809 	skb_push_rcsum(skb_chk, offset);
5810 
5811 	if (ret)
5812 		goto err;
5813 
5814 	return skb_chk;
5815 
5816 err:
5817 	if (skb_chk && skb_chk != skb)
5818 		kfree_skb(skb_chk);
5819 
5820 	return NULL;
5821 
5822 }
5823 EXPORT_SYMBOL(skb_checksum_trimmed);
5824 
5825 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5826 {
5827 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5828 			     skb->dev->name);
5829 }
5830 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5831 
5832 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5833 {
5834 	if (head_stolen) {
5835 		skb_release_head_state(skb);
5836 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
5837 	} else {
5838 		__kfree_skb(skb);
5839 	}
5840 }
5841 EXPORT_SYMBOL(kfree_skb_partial);
5842 
5843 /**
5844  * skb_try_coalesce - try to merge skb to prior one
5845  * @to: prior buffer
5846  * @from: buffer to add
5847  * @fragstolen: pointer to boolean
5848  * @delta_truesize: how much more was allocated than was requested
5849  */
5850 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5851 		      bool *fragstolen, int *delta_truesize)
5852 {
5853 	struct skb_shared_info *to_shinfo, *from_shinfo;
5854 	int i, delta, len = from->len;
5855 
5856 	*fragstolen = false;
5857 
5858 	if (skb_cloned(to))
5859 		return false;
5860 
5861 	/* In general, avoid mixing page_pool and non-page_pool allocated
5862 	 * pages within the same SKB. In theory we could take full
5863 	 * references if @from is cloned and !@to->pp_recycle but its
5864 	 * tricky (due to potential race with the clone disappearing) and
5865 	 * rare, so not worth dealing with.
5866 	 */
5867 	if (to->pp_recycle != from->pp_recycle)
5868 		return false;
5869 
5870 	if (len <= skb_tailroom(to)) {
5871 		if (len)
5872 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5873 		*delta_truesize = 0;
5874 		return true;
5875 	}
5876 
5877 	to_shinfo = skb_shinfo(to);
5878 	from_shinfo = skb_shinfo(from);
5879 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5880 		return false;
5881 	if (skb_zcopy(to) || skb_zcopy(from))
5882 		return false;
5883 
5884 	if (skb_headlen(from) != 0) {
5885 		struct page *page;
5886 		unsigned int offset;
5887 
5888 		if (to_shinfo->nr_frags +
5889 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5890 			return false;
5891 
5892 		if (skb_head_is_locked(from))
5893 			return false;
5894 
5895 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5896 
5897 		page = virt_to_head_page(from->head);
5898 		offset = from->data - (unsigned char *)page_address(page);
5899 
5900 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5901 				   page, offset, skb_headlen(from));
5902 		*fragstolen = true;
5903 	} else {
5904 		if (to_shinfo->nr_frags +
5905 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5906 			return false;
5907 
5908 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5909 	}
5910 
5911 	WARN_ON_ONCE(delta < len);
5912 
5913 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5914 	       from_shinfo->frags,
5915 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5916 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5917 
5918 	if (!skb_cloned(from))
5919 		from_shinfo->nr_frags = 0;
5920 
5921 	/* if the skb is not cloned this does nothing
5922 	 * since we set nr_frags to 0.
5923 	 */
5924 	for (i = 0; i < from_shinfo->nr_frags; i++)
5925 		__skb_frag_ref(&from_shinfo->frags[i], from->pp_recycle);
5926 
5927 	to->truesize += delta;
5928 	to->len += len;
5929 	to->data_len += len;
5930 
5931 	*delta_truesize = delta;
5932 	return true;
5933 }
5934 EXPORT_SYMBOL(skb_try_coalesce);
5935 
5936 /**
5937  * skb_scrub_packet - scrub an skb
5938  *
5939  * @skb: buffer to clean
5940  * @xnet: packet is crossing netns
5941  *
5942  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5943  * into/from a tunnel. Some information have to be cleared during these
5944  * operations.
5945  * skb_scrub_packet can also be used to clean a skb before injecting it in
5946  * another namespace (@xnet == true). We have to clear all information in the
5947  * skb that could impact namespace isolation.
5948  */
5949 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5950 {
5951 	skb->pkt_type = PACKET_HOST;
5952 	skb->skb_iif = 0;
5953 	skb->ignore_df = 0;
5954 	skb_dst_drop(skb);
5955 	skb_ext_reset(skb);
5956 	nf_reset_ct(skb);
5957 	nf_reset_trace(skb);
5958 
5959 #ifdef CONFIG_NET_SWITCHDEV
5960 	skb->offload_fwd_mark = 0;
5961 	skb->offload_l3_fwd_mark = 0;
5962 #endif
5963 
5964 	if (!xnet)
5965 		return;
5966 
5967 	ipvs_reset(skb);
5968 	skb->mark = 0;
5969 	skb_clear_tstamp(skb);
5970 }
5971 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5972 
5973 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5974 {
5975 	int mac_len, meta_len;
5976 	void *meta;
5977 
5978 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5979 		kfree_skb(skb);
5980 		return NULL;
5981 	}
5982 
5983 	mac_len = skb->data - skb_mac_header(skb);
5984 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5985 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5986 			mac_len - VLAN_HLEN - ETH_TLEN);
5987 	}
5988 
5989 	meta_len = skb_metadata_len(skb);
5990 	if (meta_len) {
5991 		meta = skb_metadata_end(skb) - meta_len;
5992 		memmove(meta + VLAN_HLEN, meta, meta_len);
5993 	}
5994 
5995 	skb->mac_header += VLAN_HLEN;
5996 	return skb;
5997 }
5998 
5999 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6000 {
6001 	struct vlan_hdr *vhdr;
6002 	u16 vlan_tci;
6003 
6004 	if (unlikely(skb_vlan_tag_present(skb))) {
6005 		/* vlan_tci is already set-up so leave this for another time */
6006 		return skb;
6007 	}
6008 
6009 	skb = skb_share_check(skb, GFP_ATOMIC);
6010 	if (unlikely(!skb))
6011 		goto err_free;
6012 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6013 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6014 		goto err_free;
6015 
6016 	vhdr = (struct vlan_hdr *)skb->data;
6017 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6018 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6019 
6020 	skb_pull_rcsum(skb, VLAN_HLEN);
6021 	vlan_set_encap_proto(skb, vhdr);
6022 
6023 	skb = skb_reorder_vlan_header(skb);
6024 	if (unlikely(!skb))
6025 		goto err_free;
6026 
6027 	skb_reset_network_header(skb);
6028 	if (!skb_transport_header_was_set(skb))
6029 		skb_reset_transport_header(skb);
6030 	skb_reset_mac_len(skb);
6031 
6032 	return skb;
6033 
6034 err_free:
6035 	kfree_skb(skb);
6036 	return NULL;
6037 }
6038 EXPORT_SYMBOL(skb_vlan_untag);
6039 
6040 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6041 {
6042 	if (!pskb_may_pull(skb, write_len))
6043 		return -ENOMEM;
6044 
6045 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6046 		return 0;
6047 
6048 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6049 }
6050 EXPORT_SYMBOL(skb_ensure_writable);
6051 
6052 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6053 {
6054 	int needed_headroom = dev->needed_headroom;
6055 	int needed_tailroom = dev->needed_tailroom;
6056 
6057 	/* For tail taggers, we need to pad short frames ourselves, to ensure
6058 	 * that the tail tag does not fail at its role of being at the end of
6059 	 * the packet, once the conduit interface pads the frame. Account for
6060 	 * that pad length here, and pad later.
6061 	 */
6062 	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6063 		needed_tailroom += ETH_ZLEN - skb->len;
6064 	/* skb_headroom() returns unsigned int... */
6065 	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6066 	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6067 
6068 	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6069 		/* No reallocation needed, yay! */
6070 		return 0;
6071 
6072 	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6073 				GFP_ATOMIC);
6074 }
6075 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6076 
6077 /* remove VLAN header from packet and update csum accordingly.
6078  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6079  */
6080 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6081 {
6082 	int offset = skb->data - skb_mac_header(skb);
6083 	int err;
6084 
6085 	if (WARN_ONCE(offset,
6086 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6087 		      offset)) {
6088 		return -EINVAL;
6089 	}
6090 
6091 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6092 	if (unlikely(err))
6093 		return err;
6094 
6095 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6096 
6097 	vlan_remove_tag(skb, vlan_tci);
6098 
6099 	skb->mac_header += VLAN_HLEN;
6100 
6101 	if (skb_network_offset(skb) < ETH_HLEN)
6102 		skb_set_network_header(skb, ETH_HLEN);
6103 
6104 	skb_reset_mac_len(skb);
6105 
6106 	return err;
6107 }
6108 EXPORT_SYMBOL(__skb_vlan_pop);
6109 
6110 /* Pop a vlan tag either from hwaccel or from payload.
6111  * Expects skb->data at mac header.
6112  */
6113 int skb_vlan_pop(struct sk_buff *skb)
6114 {
6115 	u16 vlan_tci;
6116 	__be16 vlan_proto;
6117 	int err;
6118 
6119 	if (likely(skb_vlan_tag_present(skb))) {
6120 		__vlan_hwaccel_clear_tag(skb);
6121 	} else {
6122 		if (unlikely(!eth_type_vlan(skb->protocol)))
6123 			return 0;
6124 
6125 		err = __skb_vlan_pop(skb, &vlan_tci);
6126 		if (err)
6127 			return err;
6128 	}
6129 	/* move next vlan tag to hw accel tag */
6130 	if (likely(!eth_type_vlan(skb->protocol)))
6131 		return 0;
6132 
6133 	vlan_proto = skb->protocol;
6134 	err = __skb_vlan_pop(skb, &vlan_tci);
6135 	if (unlikely(err))
6136 		return err;
6137 
6138 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6139 	return 0;
6140 }
6141 EXPORT_SYMBOL(skb_vlan_pop);
6142 
6143 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6144  * Expects skb->data at mac header.
6145  */
6146 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6147 {
6148 	if (skb_vlan_tag_present(skb)) {
6149 		int offset = skb->data - skb_mac_header(skb);
6150 		int err;
6151 
6152 		if (WARN_ONCE(offset,
6153 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6154 			      offset)) {
6155 			return -EINVAL;
6156 		}
6157 
6158 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6159 					skb_vlan_tag_get(skb));
6160 		if (err)
6161 			return err;
6162 
6163 		skb->protocol = skb->vlan_proto;
6164 		skb->mac_len += VLAN_HLEN;
6165 
6166 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6167 	}
6168 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6169 	return 0;
6170 }
6171 EXPORT_SYMBOL(skb_vlan_push);
6172 
6173 /**
6174  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6175  *
6176  * @skb: Socket buffer to modify
6177  *
6178  * Drop the Ethernet header of @skb.
6179  *
6180  * Expects that skb->data points to the mac header and that no VLAN tags are
6181  * present.
6182  *
6183  * Returns 0 on success, -errno otherwise.
6184  */
6185 int skb_eth_pop(struct sk_buff *skb)
6186 {
6187 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6188 	    skb_network_offset(skb) < ETH_HLEN)
6189 		return -EPROTO;
6190 
6191 	skb_pull_rcsum(skb, ETH_HLEN);
6192 	skb_reset_mac_header(skb);
6193 	skb_reset_mac_len(skb);
6194 
6195 	return 0;
6196 }
6197 EXPORT_SYMBOL(skb_eth_pop);
6198 
6199 /**
6200  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6201  *
6202  * @skb: Socket buffer to modify
6203  * @dst: Destination MAC address of the new header
6204  * @src: Source MAC address of the new header
6205  *
6206  * Prepend @skb with a new Ethernet header.
6207  *
6208  * Expects that skb->data points to the mac header, which must be empty.
6209  *
6210  * Returns 0 on success, -errno otherwise.
6211  */
6212 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6213 		 const unsigned char *src)
6214 {
6215 	struct ethhdr *eth;
6216 	int err;
6217 
6218 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6219 		return -EPROTO;
6220 
6221 	err = skb_cow_head(skb, sizeof(*eth));
6222 	if (err < 0)
6223 		return err;
6224 
6225 	skb_push(skb, sizeof(*eth));
6226 	skb_reset_mac_header(skb);
6227 	skb_reset_mac_len(skb);
6228 
6229 	eth = eth_hdr(skb);
6230 	ether_addr_copy(eth->h_dest, dst);
6231 	ether_addr_copy(eth->h_source, src);
6232 	eth->h_proto = skb->protocol;
6233 
6234 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6235 
6236 	return 0;
6237 }
6238 EXPORT_SYMBOL(skb_eth_push);
6239 
6240 /* Update the ethertype of hdr and the skb csum value if required. */
6241 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6242 			     __be16 ethertype)
6243 {
6244 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6245 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6246 
6247 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6248 	}
6249 
6250 	hdr->h_proto = ethertype;
6251 }
6252 
6253 /**
6254  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6255  *                   the packet
6256  *
6257  * @skb: buffer
6258  * @mpls_lse: MPLS label stack entry to push
6259  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6260  * @mac_len: length of the MAC header
6261  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6262  *            ethernet
6263  *
6264  * Expects skb->data at mac header.
6265  *
6266  * Returns 0 on success, -errno otherwise.
6267  */
6268 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6269 		  int mac_len, bool ethernet)
6270 {
6271 	struct mpls_shim_hdr *lse;
6272 	int err;
6273 
6274 	if (unlikely(!eth_p_mpls(mpls_proto)))
6275 		return -EINVAL;
6276 
6277 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6278 	if (skb->encapsulation)
6279 		return -EINVAL;
6280 
6281 	err = skb_cow_head(skb, MPLS_HLEN);
6282 	if (unlikely(err))
6283 		return err;
6284 
6285 	if (!skb->inner_protocol) {
6286 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6287 		skb_set_inner_protocol(skb, skb->protocol);
6288 	}
6289 
6290 	skb_push(skb, MPLS_HLEN);
6291 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6292 		mac_len);
6293 	skb_reset_mac_header(skb);
6294 	skb_set_network_header(skb, mac_len);
6295 	skb_reset_mac_len(skb);
6296 
6297 	lse = mpls_hdr(skb);
6298 	lse->label_stack_entry = mpls_lse;
6299 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6300 
6301 	if (ethernet && mac_len >= ETH_HLEN)
6302 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6303 	skb->protocol = mpls_proto;
6304 
6305 	return 0;
6306 }
6307 EXPORT_SYMBOL_GPL(skb_mpls_push);
6308 
6309 /**
6310  * skb_mpls_pop() - pop the outermost MPLS header
6311  *
6312  * @skb: buffer
6313  * @next_proto: ethertype of header after popped MPLS header
6314  * @mac_len: length of the MAC header
6315  * @ethernet: flag to indicate if the packet is ethernet
6316  *
6317  * Expects skb->data at mac header.
6318  *
6319  * Returns 0 on success, -errno otherwise.
6320  */
6321 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6322 		 bool ethernet)
6323 {
6324 	int err;
6325 
6326 	if (unlikely(!eth_p_mpls(skb->protocol)))
6327 		return 0;
6328 
6329 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6330 	if (unlikely(err))
6331 		return err;
6332 
6333 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6334 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6335 		mac_len);
6336 
6337 	__skb_pull(skb, MPLS_HLEN);
6338 	skb_reset_mac_header(skb);
6339 	skb_set_network_header(skb, mac_len);
6340 
6341 	if (ethernet && mac_len >= ETH_HLEN) {
6342 		struct ethhdr *hdr;
6343 
6344 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6345 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6346 		skb_mod_eth_type(skb, hdr, next_proto);
6347 	}
6348 	skb->protocol = next_proto;
6349 
6350 	return 0;
6351 }
6352 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6353 
6354 /**
6355  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6356  *
6357  * @skb: buffer
6358  * @mpls_lse: new MPLS label stack entry to update to
6359  *
6360  * Expects skb->data at mac header.
6361  *
6362  * Returns 0 on success, -errno otherwise.
6363  */
6364 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6365 {
6366 	int err;
6367 
6368 	if (unlikely(!eth_p_mpls(skb->protocol)))
6369 		return -EINVAL;
6370 
6371 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6372 	if (unlikely(err))
6373 		return err;
6374 
6375 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6376 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6377 
6378 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6379 	}
6380 
6381 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6382 
6383 	return 0;
6384 }
6385 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6386 
6387 /**
6388  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6389  *
6390  * @skb: buffer
6391  *
6392  * Expects skb->data at mac header.
6393  *
6394  * Returns 0 on success, -errno otherwise.
6395  */
6396 int skb_mpls_dec_ttl(struct sk_buff *skb)
6397 {
6398 	u32 lse;
6399 	u8 ttl;
6400 
6401 	if (unlikely(!eth_p_mpls(skb->protocol)))
6402 		return -EINVAL;
6403 
6404 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6405 		return -ENOMEM;
6406 
6407 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6408 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6409 	if (!--ttl)
6410 		return -EINVAL;
6411 
6412 	lse &= ~MPLS_LS_TTL_MASK;
6413 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6414 
6415 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6416 }
6417 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6418 
6419 /**
6420  * alloc_skb_with_frags - allocate skb with page frags
6421  *
6422  * @header_len: size of linear part
6423  * @data_len: needed length in frags
6424  * @order: max page order desired.
6425  * @errcode: pointer to error code if any
6426  * @gfp_mask: allocation mask
6427  *
6428  * This can be used to allocate a paged skb, given a maximal order for frags.
6429  */
6430 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6431 				     unsigned long data_len,
6432 				     int order,
6433 				     int *errcode,
6434 				     gfp_t gfp_mask)
6435 {
6436 	unsigned long chunk;
6437 	struct sk_buff *skb;
6438 	struct page *page;
6439 	int nr_frags = 0;
6440 
6441 	*errcode = -EMSGSIZE;
6442 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6443 		return NULL;
6444 
6445 	*errcode = -ENOBUFS;
6446 	skb = alloc_skb(header_len, gfp_mask);
6447 	if (!skb)
6448 		return NULL;
6449 
6450 	while (data_len) {
6451 		if (nr_frags == MAX_SKB_FRAGS - 1)
6452 			goto failure;
6453 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6454 			order--;
6455 
6456 		if (order) {
6457 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6458 					   __GFP_COMP |
6459 					   __GFP_NOWARN,
6460 					   order);
6461 			if (!page) {
6462 				order--;
6463 				continue;
6464 			}
6465 		} else {
6466 			page = alloc_page(gfp_mask);
6467 			if (!page)
6468 				goto failure;
6469 		}
6470 		chunk = min_t(unsigned long, data_len,
6471 			      PAGE_SIZE << order);
6472 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6473 		nr_frags++;
6474 		skb->truesize += (PAGE_SIZE << order);
6475 		data_len -= chunk;
6476 	}
6477 	return skb;
6478 
6479 failure:
6480 	kfree_skb(skb);
6481 	return NULL;
6482 }
6483 EXPORT_SYMBOL(alloc_skb_with_frags);
6484 
6485 /* carve out the first off bytes from skb when off < headlen */
6486 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6487 				    const int headlen, gfp_t gfp_mask)
6488 {
6489 	int i;
6490 	unsigned int size = skb_end_offset(skb);
6491 	int new_hlen = headlen - off;
6492 	u8 *data;
6493 
6494 	if (skb_pfmemalloc(skb))
6495 		gfp_mask |= __GFP_MEMALLOC;
6496 
6497 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6498 	if (!data)
6499 		return -ENOMEM;
6500 	size = SKB_WITH_OVERHEAD(size);
6501 
6502 	/* Copy real data, and all frags */
6503 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6504 	skb->len -= off;
6505 
6506 	memcpy((struct skb_shared_info *)(data + size),
6507 	       skb_shinfo(skb),
6508 	       offsetof(struct skb_shared_info,
6509 			frags[skb_shinfo(skb)->nr_frags]));
6510 	if (skb_cloned(skb)) {
6511 		/* drop the old head gracefully */
6512 		if (skb_orphan_frags(skb, gfp_mask)) {
6513 			skb_kfree_head(data, size);
6514 			return -ENOMEM;
6515 		}
6516 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6517 			skb_frag_ref(skb, i);
6518 		if (skb_has_frag_list(skb))
6519 			skb_clone_fraglist(skb);
6520 		skb_release_data(skb, SKB_CONSUMED);
6521 	} else {
6522 		/* we can reuse existing recount- all we did was
6523 		 * relocate values
6524 		 */
6525 		skb_free_head(skb);
6526 	}
6527 
6528 	skb->head = data;
6529 	skb->data = data;
6530 	skb->head_frag = 0;
6531 	skb_set_end_offset(skb, size);
6532 	skb_set_tail_pointer(skb, skb_headlen(skb));
6533 	skb_headers_offset_update(skb, 0);
6534 	skb->cloned = 0;
6535 	skb->hdr_len = 0;
6536 	skb->nohdr = 0;
6537 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6538 
6539 	return 0;
6540 }
6541 
6542 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6543 
6544 /* carve out the first eat bytes from skb's frag_list. May recurse into
6545  * pskb_carve()
6546  */
6547 static int pskb_carve_frag_list(struct sk_buff *skb,
6548 				struct skb_shared_info *shinfo, int eat,
6549 				gfp_t gfp_mask)
6550 {
6551 	struct sk_buff *list = shinfo->frag_list;
6552 	struct sk_buff *clone = NULL;
6553 	struct sk_buff *insp = NULL;
6554 
6555 	do {
6556 		if (!list) {
6557 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6558 			return -EFAULT;
6559 		}
6560 		if (list->len <= eat) {
6561 			/* Eaten as whole. */
6562 			eat -= list->len;
6563 			list = list->next;
6564 			insp = list;
6565 		} else {
6566 			/* Eaten partially. */
6567 			if (skb_shared(list)) {
6568 				clone = skb_clone(list, gfp_mask);
6569 				if (!clone)
6570 					return -ENOMEM;
6571 				insp = list->next;
6572 				list = clone;
6573 			} else {
6574 				/* This may be pulled without problems. */
6575 				insp = list;
6576 			}
6577 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6578 				kfree_skb(clone);
6579 				return -ENOMEM;
6580 			}
6581 			break;
6582 		}
6583 	} while (eat);
6584 
6585 	/* Free pulled out fragments. */
6586 	while ((list = shinfo->frag_list) != insp) {
6587 		shinfo->frag_list = list->next;
6588 		consume_skb(list);
6589 	}
6590 	/* And insert new clone at head. */
6591 	if (clone) {
6592 		clone->next = list;
6593 		shinfo->frag_list = clone;
6594 	}
6595 	return 0;
6596 }
6597 
6598 /* carve off first len bytes from skb. Split line (off) is in the
6599  * non-linear part of skb
6600  */
6601 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6602 				       int pos, gfp_t gfp_mask)
6603 {
6604 	int i, k = 0;
6605 	unsigned int size = skb_end_offset(skb);
6606 	u8 *data;
6607 	const int nfrags = skb_shinfo(skb)->nr_frags;
6608 	struct skb_shared_info *shinfo;
6609 
6610 	if (skb_pfmemalloc(skb))
6611 		gfp_mask |= __GFP_MEMALLOC;
6612 
6613 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6614 	if (!data)
6615 		return -ENOMEM;
6616 	size = SKB_WITH_OVERHEAD(size);
6617 
6618 	memcpy((struct skb_shared_info *)(data + size),
6619 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6620 	if (skb_orphan_frags(skb, gfp_mask)) {
6621 		skb_kfree_head(data, size);
6622 		return -ENOMEM;
6623 	}
6624 	shinfo = (struct skb_shared_info *)(data + size);
6625 	for (i = 0; i < nfrags; i++) {
6626 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6627 
6628 		if (pos + fsize > off) {
6629 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6630 
6631 			if (pos < off) {
6632 				/* Split frag.
6633 				 * We have two variants in this case:
6634 				 * 1. Move all the frag to the second
6635 				 *    part, if it is possible. F.e.
6636 				 *    this approach is mandatory for TUX,
6637 				 *    where splitting is expensive.
6638 				 * 2. Split is accurately. We make this.
6639 				 */
6640 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6641 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6642 			}
6643 			skb_frag_ref(skb, i);
6644 			k++;
6645 		}
6646 		pos += fsize;
6647 	}
6648 	shinfo->nr_frags = k;
6649 	if (skb_has_frag_list(skb))
6650 		skb_clone_fraglist(skb);
6651 
6652 	/* split line is in frag list */
6653 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6654 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6655 		if (skb_has_frag_list(skb))
6656 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6657 		skb_kfree_head(data, size);
6658 		return -ENOMEM;
6659 	}
6660 	skb_release_data(skb, SKB_CONSUMED);
6661 
6662 	skb->head = data;
6663 	skb->head_frag = 0;
6664 	skb->data = data;
6665 	skb_set_end_offset(skb, size);
6666 	skb_reset_tail_pointer(skb);
6667 	skb_headers_offset_update(skb, 0);
6668 	skb->cloned   = 0;
6669 	skb->hdr_len  = 0;
6670 	skb->nohdr    = 0;
6671 	skb->len -= off;
6672 	skb->data_len = skb->len;
6673 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6674 	return 0;
6675 }
6676 
6677 /* remove len bytes from the beginning of the skb */
6678 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6679 {
6680 	int headlen = skb_headlen(skb);
6681 
6682 	if (len < headlen)
6683 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6684 	else
6685 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6686 }
6687 
6688 /* Extract to_copy bytes starting at off from skb, and return this in
6689  * a new skb
6690  */
6691 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6692 			     int to_copy, gfp_t gfp)
6693 {
6694 	struct sk_buff  *clone = skb_clone(skb, gfp);
6695 
6696 	if (!clone)
6697 		return NULL;
6698 
6699 	if (pskb_carve(clone, off, gfp) < 0 ||
6700 	    pskb_trim(clone, to_copy)) {
6701 		kfree_skb(clone);
6702 		return NULL;
6703 	}
6704 	return clone;
6705 }
6706 EXPORT_SYMBOL(pskb_extract);
6707 
6708 /**
6709  * skb_condense - try to get rid of fragments/frag_list if possible
6710  * @skb: buffer
6711  *
6712  * Can be used to save memory before skb is added to a busy queue.
6713  * If packet has bytes in frags and enough tail room in skb->head,
6714  * pull all of them, so that we can free the frags right now and adjust
6715  * truesize.
6716  * Notes:
6717  *	We do not reallocate skb->head thus can not fail.
6718  *	Caller must re-evaluate skb->truesize if needed.
6719  */
6720 void skb_condense(struct sk_buff *skb)
6721 {
6722 	if (skb->data_len) {
6723 		if (skb->data_len > skb->end - skb->tail ||
6724 		    skb_cloned(skb))
6725 			return;
6726 
6727 		/* Nice, we can free page frag(s) right now */
6728 		__pskb_pull_tail(skb, skb->data_len);
6729 	}
6730 	/* At this point, skb->truesize might be over estimated,
6731 	 * because skb had a fragment, and fragments do not tell
6732 	 * their truesize.
6733 	 * When we pulled its content into skb->head, fragment
6734 	 * was freed, but __pskb_pull_tail() could not possibly
6735 	 * adjust skb->truesize, not knowing the frag truesize.
6736 	 */
6737 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6738 }
6739 EXPORT_SYMBOL(skb_condense);
6740 
6741 #ifdef CONFIG_SKB_EXTENSIONS
6742 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6743 {
6744 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6745 }
6746 
6747 /**
6748  * __skb_ext_alloc - allocate a new skb extensions storage
6749  *
6750  * @flags: See kmalloc().
6751  *
6752  * Returns the newly allocated pointer. The pointer can later attached to a
6753  * skb via __skb_ext_set().
6754  * Note: caller must handle the skb_ext as an opaque data.
6755  */
6756 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6757 {
6758 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6759 
6760 	if (new) {
6761 		memset(new->offset, 0, sizeof(new->offset));
6762 		refcount_set(&new->refcnt, 1);
6763 	}
6764 
6765 	return new;
6766 }
6767 
6768 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6769 					 unsigned int old_active)
6770 {
6771 	struct skb_ext *new;
6772 
6773 	if (refcount_read(&old->refcnt) == 1)
6774 		return old;
6775 
6776 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6777 	if (!new)
6778 		return NULL;
6779 
6780 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6781 	refcount_set(&new->refcnt, 1);
6782 
6783 #ifdef CONFIG_XFRM
6784 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6785 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6786 		unsigned int i;
6787 
6788 		for (i = 0; i < sp->len; i++)
6789 			xfrm_state_hold(sp->xvec[i]);
6790 	}
6791 #endif
6792 #ifdef CONFIG_MCTP_FLOWS
6793 	if (old_active & (1 << SKB_EXT_MCTP)) {
6794 		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6795 
6796 		if (flow->key)
6797 			refcount_inc(&flow->key->refs);
6798 	}
6799 #endif
6800 	__skb_ext_put(old);
6801 	return new;
6802 }
6803 
6804 /**
6805  * __skb_ext_set - attach the specified extension storage to this skb
6806  * @skb: buffer
6807  * @id: extension id
6808  * @ext: extension storage previously allocated via __skb_ext_alloc()
6809  *
6810  * Existing extensions, if any, are cleared.
6811  *
6812  * Returns the pointer to the extension.
6813  */
6814 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6815 		    struct skb_ext *ext)
6816 {
6817 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6818 
6819 	skb_ext_put(skb);
6820 	newlen = newoff + skb_ext_type_len[id];
6821 	ext->chunks = newlen;
6822 	ext->offset[id] = newoff;
6823 	skb->extensions = ext;
6824 	skb->active_extensions = 1 << id;
6825 	return skb_ext_get_ptr(ext, id);
6826 }
6827 
6828 /**
6829  * skb_ext_add - allocate space for given extension, COW if needed
6830  * @skb: buffer
6831  * @id: extension to allocate space for
6832  *
6833  * Allocates enough space for the given extension.
6834  * If the extension is already present, a pointer to that extension
6835  * is returned.
6836  *
6837  * If the skb was cloned, COW applies and the returned memory can be
6838  * modified without changing the extension space of clones buffers.
6839  *
6840  * Returns pointer to the extension or NULL on allocation failure.
6841  */
6842 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6843 {
6844 	struct skb_ext *new, *old = NULL;
6845 	unsigned int newlen, newoff;
6846 
6847 	if (skb->active_extensions) {
6848 		old = skb->extensions;
6849 
6850 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6851 		if (!new)
6852 			return NULL;
6853 
6854 		if (__skb_ext_exist(new, id))
6855 			goto set_active;
6856 
6857 		newoff = new->chunks;
6858 	} else {
6859 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6860 
6861 		new = __skb_ext_alloc(GFP_ATOMIC);
6862 		if (!new)
6863 			return NULL;
6864 	}
6865 
6866 	newlen = newoff + skb_ext_type_len[id];
6867 	new->chunks = newlen;
6868 	new->offset[id] = newoff;
6869 set_active:
6870 	skb->slow_gro = 1;
6871 	skb->extensions = new;
6872 	skb->active_extensions |= 1 << id;
6873 	return skb_ext_get_ptr(new, id);
6874 }
6875 EXPORT_SYMBOL(skb_ext_add);
6876 
6877 #ifdef CONFIG_XFRM
6878 static void skb_ext_put_sp(struct sec_path *sp)
6879 {
6880 	unsigned int i;
6881 
6882 	for (i = 0; i < sp->len; i++)
6883 		xfrm_state_put(sp->xvec[i]);
6884 }
6885 #endif
6886 
6887 #ifdef CONFIG_MCTP_FLOWS
6888 static void skb_ext_put_mctp(struct mctp_flow *flow)
6889 {
6890 	if (flow->key)
6891 		mctp_key_unref(flow->key);
6892 }
6893 #endif
6894 
6895 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6896 {
6897 	struct skb_ext *ext = skb->extensions;
6898 
6899 	skb->active_extensions &= ~(1 << id);
6900 	if (skb->active_extensions == 0) {
6901 		skb->extensions = NULL;
6902 		__skb_ext_put(ext);
6903 #ifdef CONFIG_XFRM
6904 	} else if (id == SKB_EXT_SEC_PATH &&
6905 		   refcount_read(&ext->refcnt) == 1) {
6906 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6907 
6908 		skb_ext_put_sp(sp);
6909 		sp->len = 0;
6910 #endif
6911 	}
6912 }
6913 EXPORT_SYMBOL(__skb_ext_del);
6914 
6915 void __skb_ext_put(struct skb_ext *ext)
6916 {
6917 	/* If this is last clone, nothing can increment
6918 	 * it after check passes.  Avoids one atomic op.
6919 	 */
6920 	if (refcount_read(&ext->refcnt) == 1)
6921 		goto free_now;
6922 
6923 	if (!refcount_dec_and_test(&ext->refcnt))
6924 		return;
6925 free_now:
6926 #ifdef CONFIG_XFRM
6927 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6928 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6929 #endif
6930 #ifdef CONFIG_MCTP_FLOWS
6931 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6932 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6933 #endif
6934 
6935 	kmem_cache_free(skbuff_ext_cache, ext);
6936 }
6937 EXPORT_SYMBOL(__skb_ext_put);
6938 #endif /* CONFIG_SKB_EXTENSIONS */
6939 
6940 static void kfree_skb_napi_cache(struct sk_buff *skb)
6941 {
6942 	/* if SKB is a clone, don't handle this case */
6943 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
6944 		__kfree_skb(skb);
6945 		return;
6946 	}
6947 
6948 	local_bh_disable();
6949 	__napi_kfree_skb(skb, SKB_CONSUMED);
6950 	local_bh_enable();
6951 }
6952 
6953 /**
6954  * skb_attempt_defer_free - queue skb for remote freeing
6955  * @skb: buffer
6956  *
6957  * Put @skb in a per-cpu list, using the cpu which
6958  * allocated the skb/pages to reduce false sharing
6959  * and memory zone spinlock contention.
6960  */
6961 void skb_attempt_defer_free(struct sk_buff *skb)
6962 {
6963 	int cpu = skb->alloc_cpu;
6964 	struct softnet_data *sd;
6965 	unsigned int defer_max;
6966 	bool kick;
6967 
6968 	if (cpu == raw_smp_processor_id() ||
6969 	    WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6970 	    !cpu_online(cpu)) {
6971 nodefer:	kfree_skb_napi_cache(skb);
6972 		return;
6973 	}
6974 
6975 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
6976 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
6977 
6978 	sd = &per_cpu(softnet_data, cpu);
6979 	defer_max = READ_ONCE(sysctl_skb_defer_max);
6980 	if (READ_ONCE(sd->defer_count) >= defer_max)
6981 		goto nodefer;
6982 
6983 	spin_lock_bh(&sd->defer_lock);
6984 	/* Send an IPI every time queue reaches half capacity. */
6985 	kick = sd->defer_count == (defer_max >> 1);
6986 	/* Paired with the READ_ONCE() few lines above */
6987 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6988 
6989 	skb->next = sd->defer_list;
6990 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
6991 	WRITE_ONCE(sd->defer_list, skb);
6992 	spin_unlock_bh(&sd->defer_lock);
6993 
6994 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6995 	 * if we are unlucky enough (this seems very unlikely).
6996 	 */
6997 	if (unlikely(kick))
6998 		kick_defer_list_purge(sd, cpu);
6999 }
7000 
7001 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7002 				 size_t offset, size_t len)
7003 {
7004 	const char *kaddr;
7005 	__wsum csum;
7006 
7007 	kaddr = kmap_local_page(page);
7008 	csum = csum_partial(kaddr + offset, len, 0);
7009 	kunmap_local(kaddr);
7010 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7011 }
7012 
7013 /**
7014  * skb_splice_from_iter - Splice (or copy) pages to skbuff
7015  * @skb: The buffer to add pages to
7016  * @iter: Iterator representing the pages to be added
7017  * @maxsize: Maximum amount of pages to be added
7018  * @gfp: Allocation flags
7019  *
7020  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7021  * extracts pages from an iterator and adds them to the socket buffer if
7022  * possible, copying them to fragments if not possible (such as if they're slab
7023  * pages).
7024  *
7025  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7026  * insufficient space in the buffer to transfer anything.
7027  */
7028 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7029 			     ssize_t maxsize, gfp_t gfp)
7030 {
7031 	size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
7032 	struct page *pages[8], **ppages = pages;
7033 	ssize_t spliced = 0, ret = 0;
7034 	unsigned int i;
7035 
7036 	while (iter->count > 0) {
7037 		ssize_t space, nr, len;
7038 		size_t off;
7039 
7040 		ret = -EMSGSIZE;
7041 		space = frag_limit - skb_shinfo(skb)->nr_frags;
7042 		if (space < 0)
7043 			break;
7044 
7045 		/* We might be able to coalesce without increasing nr_frags */
7046 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7047 
7048 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7049 		if (len <= 0) {
7050 			ret = len ?: -EIO;
7051 			break;
7052 		}
7053 
7054 		i = 0;
7055 		do {
7056 			struct page *page = pages[i++];
7057 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7058 
7059 			ret = -EIO;
7060 			if (WARN_ON_ONCE(!sendpage_ok(page)))
7061 				goto out;
7062 
7063 			ret = skb_append_pagefrags(skb, page, off, part,
7064 						   frag_limit);
7065 			if (ret < 0) {
7066 				iov_iter_revert(iter, len);
7067 				goto out;
7068 			}
7069 
7070 			if (skb->ip_summed == CHECKSUM_NONE)
7071 				skb_splice_csum_page(skb, page, off, part);
7072 
7073 			off = 0;
7074 			spliced += part;
7075 			maxsize -= part;
7076 			len -= part;
7077 		} while (len > 0);
7078 
7079 		if (maxsize <= 0)
7080 			break;
7081 	}
7082 
7083 out:
7084 	skb_len_add(skb, spliced);
7085 	return spliced ?: ret;
7086 }
7087 EXPORT_SYMBOL(skb_splice_from_iter);
7088 
7089 static __always_inline
7090 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7091 			     size_t len, void *to, void *priv2)
7092 {
7093 	__wsum *csum = priv2;
7094 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7095 
7096 	*csum = csum_block_add(*csum, next, progress);
7097 	return 0;
7098 }
7099 
7100 static __always_inline
7101 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7102 				size_t len, void *to, void *priv2)
7103 {
7104 	__wsum next, *csum = priv2;
7105 
7106 	next = csum_and_copy_from_user(iter_from, to + progress, len);
7107 	*csum = csum_block_add(*csum, next, progress);
7108 	return next ? 0 : len;
7109 }
7110 
7111 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7112 				  __wsum *csum, struct iov_iter *i)
7113 {
7114 	size_t copied;
7115 
7116 	if (WARN_ON_ONCE(!i->data_source))
7117 		return false;
7118 	copied = iterate_and_advance2(i, bytes, addr, csum,
7119 				      copy_from_user_iter_csum,
7120 				      memcpy_from_iter_csum);
7121 	if (likely(copied == bytes))
7122 		return true;
7123 	iov_iter_revert(i, copied);
7124 	return false;
7125 }
7126 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7127