1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/mm.h> 45 #include <linux/interrupt.h> 46 #include <linux/in.h> 47 #include <linux/inet.h> 48 #include <linux/slab.h> 49 #include <linux/tcp.h> 50 #include <linux/udp.h> 51 #include <linux/sctp.h> 52 #include <linux/netdevice.h> 53 #ifdef CONFIG_NET_CLS_ACT 54 #include <net/pkt_sched.h> 55 #endif 56 #include <linux/string.h> 57 #include <linux/skbuff.h> 58 #include <linux/splice.h> 59 #include <linux/cache.h> 60 #include <linux/rtnetlink.h> 61 #include <linux/init.h> 62 #include <linux/scatterlist.h> 63 #include <linux/errqueue.h> 64 #include <linux/prefetch.h> 65 #include <linux/if_vlan.h> 66 67 #include <net/protocol.h> 68 #include <net/dst.h> 69 #include <net/sock.h> 70 #include <net/checksum.h> 71 #include <net/ip6_checksum.h> 72 #include <net/xfrm.h> 73 74 #include <linux/uaccess.h> 75 #include <trace/events/skb.h> 76 #include <linux/highmem.h> 77 #include <linux/capability.h> 78 #include <linux/user_namespace.h> 79 80 struct kmem_cache *skbuff_head_cache __ro_after_init; 81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 83 EXPORT_SYMBOL(sysctl_max_skb_frags); 84 85 /** 86 * skb_panic - private function for out-of-line support 87 * @skb: buffer 88 * @sz: size 89 * @addr: address 90 * @msg: skb_over_panic or skb_under_panic 91 * 92 * Out-of-line support for skb_put() and skb_push(). 93 * Called via the wrapper skb_over_panic() or skb_under_panic(). 94 * Keep out of line to prevent kernel bloat. 95 * __builtin_return_address is not used because it is not always reliable. 96 */ 97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 98 const char msg[]) 99 { 100 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 101 msg, addr, skb->len, sz, skb->head, skb->data, 102 (unsigned long)skb->tail, (unsigned long)skb->end, 103 skb->dev ? skb->dev->name : "<NULL>"); 104 BUG(); 105 } 106 107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 108 { 109 skb_panic(skb, sz, addr, __func__); 110 } 111 112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 113 { 114 skb_panic(skb, sz, addr, __func__); 115 } 116 117 /* 118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 119 * the caller if emergency pfmemalloc reserves are being used. If it is and 120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 121 * may be used. Otherwise, the packet data may be discarded until enough 122 * memory is free 123 */ 124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 125 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 126 127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 128 unsigned long ip, bool *pfmemalloc) 129 { 130 void *obj; 131 bool ret_pfmemalloc = false; 132 133 /* 134 * Try a regular allocation, when that fails and we're not entitled 135 * to the reserves, fail. 136 */ 137 obj = kmalloc_node_track_caller(size, 138 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 139 node); 140 if (obj || !(gfp_pfmemalloc_allowed(flags))) 141 goto out; 142 143 /* Try again but now we are using pfmemalloc reserves */ 144 ret_pfmemalloc = true; 145 obj = kmalloc_node_track_caller(size, flags, node); 146 147 out: 148 if (pfmemalloc) 149 *pfmemalloc = ret_pfmemalloc; 150 151 return obj; 152 } 153 154 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 155 * 'private' fields and also do memory statistics to find all the 156 * [BEEP] leaks. 157 * 158 */ 159 160 /** 161 * __alloc_skb - allocate a network buffer 162 * @size: size to allocate 163 * @gfp_mask: allocation mask 164 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 165 * instead of head cache and allocate a cloned (child) skb. 166 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 167 * allocations in case the data is required for writeback 168 * @node: numa node to allocate memory on 169 * 170 * Allocate a new &sk_buff. The returned buffer has no headroom and a 171 * tail room of at least size bytes. The object has a reference count 172 * of one. The return is the buffer. On a failure the return is %NULL. 173 * 174 * Buffers may only be allocated from interrupts using a @gfp_mask of 175 * %GFP_ATOMIC. 176 */ 177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 178 int flags, int node) 179 { 180 struct kmem_cache *cache; 181 struct skb_shared_info *shinfo; 182 struct sk_buff *skb; 183 u8 *data; 184 bool pfmemalloc; 185 186 cache = (flags & SKB_ALLOC_FCLONE) 187 ? skbuff_fclone_cache : skbuff_head_cache; 188 189 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 190 gfp_mask |= __GFP_MEMALLOC; 191 192 /* Get the HEAD */ 193 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 194 if (!skb) 195 goto out; 196 prefetchw(skb); 197 198 /* We do our best to align skb_shared_info on a separate cache 199 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 200 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 201 * Both skb->head and skb_shared_info are cache line aligned. 202 */ 203 size = SKB_DATA_ALIGN(size); 204 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 205 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 206 if (!data) 207 goto nodata; 208 /* kmalloc(size) might give us more room than requested. 209 * Put skb_shared_info exactly at the end of allocated zone, 210 * to allow max possible filling before reallocation. 211 */ 212 size = SKB_WITH_OVERHEAD(ksize(data)); 213 prefetchw(data + size); 214 215 /* 216 * Only clear those fields we need to clear, not those that we will 217 * actually initialise below. Hence, don't put any more fields after 218 * the tail pointer in struct sk_buff! 219 */ 220 memset(skb, 0, offsetof(struct sk_buff, tail)); 221 /* Account for allocated memory : skb + skb->head */ 222 skb->truesize = SKB_TRUESIZE(size); 223 skb->pfmemalloc = pfmemalloc; 224 refcount_set(&skb->users, 1); 225 skb->head = data; 226 skb->data = data; 227 skb_reset_tail_pointer(skb); 228 skb->end = skb->tail + size; 229 skb->mac_header = (typeof(skb->mac_header))~0U; 230 skb->transport_header = (typeof(skb->transport_header))~0U; 231 232 /* make sure we initialize shinfo sequentially */ 233 shinfo = skb_shinfo(skb); 234 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 235 atomic_set(&shinfo->dataref, 1); 236 237 if (flags & SKB_ALLOC_FCLONE) { 238 struct sk_buff_fclones *fclones; 239 240 fclones = container_of(skb, struct sk_buff_fclones, skb1); 241 242 skb->fclone = SKB_FCLONE_ORIG; 243 refcount_set(&fclones->fclone_ref, 1); 244 245 fclones->skb2.fclone = SKB_FCLONE_CLONE; 246 } 247 out: 248 return skb; 249 nodata: 250 kmem_cache_free(cache, skb); 251 skb = NULL; 252 goto out; 253 } 254 EXPORT_SYMBOL(__alloc_skb); 255 256 /** 257 * __build_skb - build a network buffer 258 * @data: data buffer provided by caller 259 * @frag_size: size of data, or 0 if head was kmalloced 260 * 261 * Allocate a new &sk_buff. Caller provides space holding head and 262 * skb_shared_info. @data must have been allocated by kmalloc() only if 263 * @frag_size is 0, otherwise data should come from the page allocator 264 * or vmalloc() 265 * The return is the new skb buffer. 266 * On a failure the return is %NULL, and @data is not freed. 267 * Notes : 268 * Before IO, driver allocates only data buffer where NIC put incoming frame 269 * Driver should add room at head (NET_SKB_PAD) and 270 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 271 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 272 * before giving packet to stack. 273 * RX rings only contains data buffers, not full skbs. 274 */ 275 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 276 { 277 struct skb_shared_info *shinfo; 278 struct sk_buff *skb; 279 unsigned int size = frag_size ? : ksize(data); 280 281 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 282 if (!skb) 283 return NULL; 284 285 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 286 287 memset(skb, 0, offsetof(struct sk_buff, tail)); 288 skb->truesize = SKB_TRUESIZE(size); 289 refcount_set(&skb->users, 1); 290 skb->head = data; 291 skb->data = data; 292 skb_reset_tail_pointer(skb); 293 skb->end = skb->tail + size; 294 skb->mac_header = (typeof(skb->mac_header))~0U; 295 skb->transport_header = (typeof(skb->transport_header))~0U; 296 297 /* make sure we initialize shinfo sequentially */ 298 shinfo = skb_shinfo(skb); 299 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 300 atomic_set(&shinfo->dataref, 1); 301 302 return skb; 303 } 304 305 /* build_skb() is wrapper over __build_skb(), that specifically 306 * takes care of skb->head and skb->pfmemalloc 307 * This means that if @frag_size is not zero, then @data must be backed 308 * by a page fragment, not kmalloc() or vmalloc() 309 */ 310 struct sk_buff *build_skb(void *data, unsigned int frag_size) 311 { 312 struct sk_buff *skb = __build_skb(data, frag_size); 313 314 if (skb && frag_size) { 315 skb->head_frag = 1; 316 if (page_is_pfmemalloc(virt_to_head_page(data))) 317 skb->pfmemalloc = 1; 318 } 319 return skb; 320 } 321 EXPORT_SYMBOL(build_skb); 322 323 #define NAPI_SKB_CACHE_SIZE 64 324 325 struct napi_alloc_cache { 326 struct page_frag_cache page; 327 unsigned int skb_count; 328 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 329 }; 330 331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 333 334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 335 { 336 struct page_frag_cache *nc; 337 unsigned long flags; 338 void *data; 339 340 local_irq_save(flags); 341 nc = this_cpu_ptr(&netdev_alloc_cache); 342 data = page_frag_alloc(nc, fragsz, gfp_mask); 343 local_irq_restore(flags); 344 return data; 345 } 346 347 /** 348 * netdev_alloc_frag - allocate a page fragment 349 * @fragsz: fragment size 350 * 351 * Allocates a frag from a page for receive buffer. 352 * Uses GFP_ATOMIC allocations. 353 */ 354 void *netdev_alloc_frag(unsigned int fragsz) 355 { 356 return __netdev_alloc_frag(fragsz, GFP_ATOMIC); 357 } 358 EXPORT_SYMBOL(netdev_alloc_frag); 359 360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 361 { 362 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 363 364 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 365 } 366 367 void *napi_alloc_frag(unsigned int fragsz) 368 { 369 return __napi_alloc_frag(fragsz, GFP_ATOMIC); 370 } 371 EXPORT_SYMBOL(napi_alloc_frag); 372 373 /** 374 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 375 * @dev: network device to receive on 376 * @len: length to allocate 377 * @gfp_mask: get_free_pages mask, passed to alloc_skb 378 * 379 * Allocate a new &sk_buff and assign it a usage count of one. The 380 * buffer has NET_SKB_PAD headroom built in. Users should allocate 381 * the headroom they think they need without accounting for the 382 * built in space. The built in space is used for optimisations. 383 * 384 * %NULL is returned if there is no free memory. 385 */ 386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 387 gfp_t gfp_mask) 388 { 389 struct page_frag_cache *nc; 390 unsigned long flags; 391 struct sk_buff *skb; 392 bool pfmemalloc; 393 void *data; 394 395 len += NET_SKB_PAD; 396 397 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 398 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 399 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 400 if (!skb) 401 goto skb_fail; 402 goto skb_success; 403 } 404 405 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 406 len = SKB_DATA_ALIGN(len); 407 408 if (sk_memalloc_socks()) 409 gfp_mask |= __GFP_MEMALLOC; 410 411 local_irq_save(flags); 412 413 nc = this_cpu_ptr(&netdev_alloc_cache); 414 data = page_frag_alloc(nc, len, gfp_mask); 415 pfmemalloc = nc->pfmemalloc; 416 417 local_irq_restore(flags); 418 419 if (unlikely(!data)) 420 return NULL; 421 422 skb = __build_skb(data, len); 423 if (unlikely(!skb)) { 424 skb_free_frag(data); 425 return NULL; 426 } 427 428 /* use OR instead of assignment to avoid clearing of bits in mask */ 429 if (pfmemalloc) 430 skb->pfmemalloc = 1; 431 skb->head_frag = 1; 432 433 skb_success: 434 skb_reserve(skb, NET_SKB_PAD); 435 skb->dev = dev; 436 437 skb_fail: 438 return skb; 439 } 440 EXPORT_SYMBOL(__netdev_alloc_skb); 441 442 /** 443 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 444 * @napi: napi instance this buffer was allocated for 445 * @len: length to allocate 446 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 447 * 448 * Allocate a new sk_buff for use in NAPI receive. This buffer will 449 * attempt to allocate the head from a special reserved region used 450 * only for NAPI Rx allocation. By doing this we can save several 451 * CPU cycles by avoiding having to disable and re-enable IRQs. 452 * 453 * %NULL is returned if there is no free memory. 454 */ 455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 456 gfp_t gfp_mask) 457 { 458 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 459 struct sk_buff *skb; 460 void *data; 461 462 len += NET_SKB_PAD + NET_IP_ALIGN; 463 464 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 465 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 466 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 467 if (!skb) 468 goto skb_fail; 469 goto skb_success; 470 } 471 472 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 473 len = SKB_DATA_ALIGN(len); 474 475 if (sk_memalloc_socks()) 476 gfp_mask |= __GFP_MEMALLOC; 477 478 data = page_frag_alloc(&nc->page, len, gfp_mask); 479 if (unlikely(!data)) 480 return NULL; 481 482 skb = __build_skb(data, len); 483 if (unlikely(!skb)) { 484 skb_free_frag(data); 485 return NULL; 486 } 487 488 /* use OR instead of assignment to avoid clearing of bits in mask */ 489 if (nc->page.pfmemalloc) 490 skb->pfmemalloc = 1; 491 skb->head_frag = 1; 492 493 skb_success: 494 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 495 skb->dev = napi->dev; 496 497 skb_fail: 498 return skb; 499 } 500 EXPORT_SYMBOL(__napi_alloc_skb); 501 502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 503 int size, unsigned int truesize) 504 { 505 skb_fill_page_desc(skb, i, page, off, size); 506 skb->len += size; 507 skb->data_len += size; 508 skb->truesize += truesize; 509 } 510 EXPORT_SYMBOL(skb_add_rx_frag); 511 512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 513 unsigned int truesize) 514 { 515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 516 517 skb_frag_size_add(frag, size); 518 skb->len += size; 519 skb->data_len += size; 520 skb->truesize += truesize; 521 } 522 EXPORT_SYMBOL(skb_coalesce_rx_frag); 523 524 static void skb_drop_list(struct sk_buff **listp) 525 { 526 kfree_skb_list(*listp); 527 *listp = NULL; 528 } 529 530 static inline void skb_drop_fraglist(struct sk_buff *skb) 531 { 532 skb_drop_list(&skb_shinfo(skb)->frag_list); 533 } 534 535 static void skb_clone_fraglist(struct sk_buff *skb) 536 { 537 struct sk_buff *list; 538 539 skb_walk_frags(skb, list) 540 skb_get(list); 541 } 542 543 static void skb_free_head(struct sk_buff *skb) 544 { 545 unsigned char *head = skb->head; 546 547 if (skb->head_frag) 548 skb_free_frag(head); 549 else 550 kfree(head); 551 } 552 553 static void skb_release_data(struct sk_buff *skb) 554 { 555 struct skb_shared_info *shinfo = skb_shinfo(skb); 556 int i; 557 558 if (skb->cloned && 559 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 560 &shinfo->dataref)) 561 return; 562 563 for (i = 0; i < shinfo->nr_frags; i++) 564 __skb_frag_unref(&shinfo->frags[i]); 565 566 if (shinfo->frag_list) 567 kfree_skb_list(shinfo->frag_list); 568 569 skb_zcopy_clear(skb, true); 570 skb_free_head(skb); 571 } 572 573 /* 574 * Free an skbuff by memory without cleaning the state. 575 */ 576 static void kfree_skbmem(struct sk_buff *skb) 577 { 578 struct sk_buff_fclones *fclones; 579 580 switch (skb->fclone) { 581 case SKB_FCLONE_UNAVAILABLE: 582 kmem_cache_free(skbuff_head_cache, skb); 583 return; 584 585 case SKB_FCLONE_ORIG: 586 fclones = container_of(skb, struct sk_buff_fclones, skb1); 587 588 /* We usually free the clone (TX completion) before original skb 589 * This test would have no chance to be true for the clone, 590 * while here, branch prediction will be good. 591 */ 592 if (refcount_read(&fclones->fclone_ref) == 1) 593 goto fastpath; 594 break; 595 596 default: /* SKB_FCLONE_CLONE */ 597 fclones = container_of(skb, struct sk_buff_fclones, skb2); 598 break; 599 } 600 if (!refcount_dec_and_test(&fclones->fclone_ref)) 601 return; 602 fastpath: 603 kmem_cache_free(skbuff_fclone_cache, fclones); 604 } 605 606 void skb_release_head_state(struct sk_buff *skb) 607 { 608 skb_dst_drop(skb); 609 secpath_reset(skb); 610 if (skb->destructor) { 611 WARN_ON(in_irq()); 612 skb->destructor(skb); 613 } 614 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 615 nf_conntrack_put(skb_nfct(skb)); 616 #endif 617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 618 nf_bridge_put(skb->nf_bridge); 619 #endif 620 } 621 622 /* Free everything but the sk_buff shell. */ 623 static void skb_release_all(struct sk_buff *skb) 624 { 625 skb_release_head_state(skb); 626 if (likely(skb->head)) 627 skb_release_data(skb); 628 } 629 630 /** 631 * __kfree_skb - private function 632 * @skb: buffer 633 * 634 * Free an sk_buff. Release anything attached to the buffer. 635 * Clean the state. This is an internal helper function. Users should 636 * always call kfree_skb 637 */ 638 639 void __kfree_skb(struct sk_buff *skb) 640 { 641 skb_release_all(skb); 642 kfree_skbmem(skb); 643 } 644 EXPORT_SYMBOL(__kfree_skb); 645 646 /** 647 * kfree_skb - free an sk_buff 648 * @skb: buffer to free 649 * 650 * Drop a reference to the buffer and free it if the usage count has 651 * hit zero. 652 */ 653 void kfree_skb(struct sk_buff *skb) 654 { 655 if (!skb_unref(skb)) 656 return; 657 658 trace_kfree_skb(skb, __builtin_return_address(0)); 659 __kfree_skb(skb); 660 } 661 EXPORT_SYMBOL(kfree_skb); 662 663 void kfree_skb_list(struct sk_buff *segs) 664 { 665 while (segs) { 666 struct sk_buff *next = segs->next; 667 668 kfree_skb(segs); 669 segs = next; 670 } 671 } 672 EXPORT_SYMBOL(kfree_skb_list); 673 674 /** 675 * skb_tx_error - report an sk_buff xmit error 676 * @skb: buffer that triggered an error 677 * 678 * Report xmit error if a device callback is tracking this skb. 679 * skb must be freed afterwards. 680 */ 681 void skb_tx_error(struct sk_buff *skb) 682 { 683 skb_zcopy_clear(skb, true); 684 } 685 EXPORT_SYMBOL(skb_tx_error); 686 687 /** 688 * consume_skb - free an skbuff 689 * @skb: buffer to free 690 * 691 * Drop a ref to the buffer and free it if the usage count has hit zero 692 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 693 * is being dropped after a failure and notes that 694 */ 695 void consume_skb(struct sk_buff *skb) 696 { 697 if (!skb_unref(skb)) 698 return; 699 700 trace_consume_skb(skb); 701 __kfree_skb(skb); 702 } 703 EXPORT_SYMBOL(consume_skb); 704 705 /** 706 * consume_stateless_skb - free an skbuff, assuming it is stateless 707 * @skb: buffer to free 708 * 709 * Alike consume_skb(), but this variant assumes that this is the last 710 * skb reference and all the head states have been already dropped 711 */ 712 void __consume_stateless_skb(struct sk_buff *skb) 713 { 714 trace_consume_skb(skb); 715 skb_release_data(skb); 716 kfree_skbmem(skb); 717 } 718 719 void __kfree_skb_flush(void) 720 { 721 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 722 723 /* flush skb_cache if containing objects */ 724 if (nc->skb_count) { 725 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 726 nc->skb_cache); 727 nc->skb_count = 0; 728 } 729 } 730 731 static inline void _kfree_skb_defer(struct sk_buff *skb) 732 { 733 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 734 735 /* drop skb->head and call any destructors for packet */ 736 skb_release_all(skb); 737 738 /* record skb to CPU local list */ 739 nc->skb_cache[nc->skb_count++] = skb; 740 741 #ifdef CONFIG_SLUB 742 /* SLUB writes into objects when freeing */ 743 prefetchw(skb); 744 #endif 745 746 /* flush skb_cache if it is filled */ 747 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 748 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 749 nc->skb_cache); 750 nc->skb_count = 0; 751 } 752 } 753 void __kfree_skb_defer(struct sk_buff *skb) 754 { 755 _kfree_skb_defer(skb); 756 } 757 758 void napi_consume_skb(struct sk_buff *skb, int budget) 759 { 760 if (unlikely(!skb)) 761 return; 762 763 /* Zero budget indicate non-NAPI context called us, like netpoll */ 764 if (unlikely(!budget)) { 765 dev_consume_skb_any(skb); 766 return; 767 } 768 769 if (!skb_unref(skb)) 770 return; 771 772 /* if reaching here SKB is ready to free */ 773 trace_consume_skb(skb); 774 775 /* if SKB is a clone, don't handle this case */ 776 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 777 __kfree_skb(skb); 778 return; 779 } 780 781 _kfree_skb_defer(skb); 782 } 783 EXPORT_SYMBOL(napi_consume_skb); 784 785 /* Make sure a field is enclosed inside headers_start/headers_end section */ 786 #define CHECK_SKB_FIELD(field) \ 787 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 788 offsetof(struct sk_buff, headers_start)); \ 789 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 790 offsetof(struct sk_buff, headers_end)); \ 791 792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 793 { 794 new->tstamp = old->tstamp; 795 /* We do not copy old->sk */ 796 new->dev = old->dev; 797 memcpy(new->cb, old->cb, sizeof(old->cb)); 798 skb_dst_copy(new, old); 799 #ifdef CONFIG_XFRM 800 new->sp = secpath_get(old->sp); 801 #endif 802 __nf_copy(new, old, false); 803 804 /* Note : this field could be in headers_start/headers_end section 805 * It is not yet because we do not want to have a 16 bit hole 806 */ 807 new->queue_mapping = old->queue_mapping; 808 809 memcpy(&new->headers_start, &old->headers_start, 810 offsetof(struct sk_buff, headers_end) - 811 offsetof(struct sk_buff, headers_start)); 812 CHECK_SKB_FIELD(protocol); 813 CHECK_SKB_FIELD(csum); 814 CHECK_SKB_FIELD(hash); 815 CHECK_SKB_FIELD(priority); 816 CHECK_SKB_FIELD(skb_iif); 817 CHECK_SKB_FIELD(vlan_proto); 818 CHECK_SKB_FIELD(vlan_tci); 819 CHECK_SKB_FIELD(transport_header); 820 CHECK_SKB_FIELD(network_header); 821 CHECK_SKB_FIELD(mac_header); 822 CHECK_SKB_FIELD(inner_protocol); 823 CHECK_SKB_FIELD(inner_transport_header); 824 CHECK_SKB_FIELD(inner_network_header); 825 CHECK_SKB_FIELD(inner_mac_header); 826 CHECK_SKB_FIELD(mark); 827 #ifdef CONFIG_NETWORK_SECMARK 828 CHECK_SKB_FIELD(secmark); 829 #endif 830 #ifdef CONFIG_NET_RX_BUSY_POLL 831 CHECK_SKB_FIELD(napi_id); 832 #endif 833 #ifdef CONFIG_XPS 834 CHECK_SKB_FIELD(sender_cpu); 835 #endif 836 #ifdef CONFIG_NET_SCHED 837 CHECK_SKB_FIELD(tc_index); 838 #endif 839 840 } 841 842 /* 843 * You should not add any new code to this function. Add it to 844 * __copy_skb_header above instead. 845 */ 846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 847 { 848 #define C(x) n->x = skb->x 849 850 n->next = n->prev = NULL; 851 n->sk = NULL; 852 __copy_skb_header(n, skb); 853 854 C(len); 855 C(data_len); 856 C(mac_len); 857 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 858 n->cloned = 1; 859 n->nohdr = 0; 860 n->peeked = 0; 861 n->destructor = NULL; 862 C(tail); 863 C(end); 864 C(head); 865 C(head_frag); 866 C(data); 867 C(truesize); 868 refcount_set(&n->users, 1); 869 870 atomic_inc(&(skb_shinfo(skb)->dataref)); 871 skb->cloned = 1; 872 873 return n; 874 #undef C 875 } 876 877 /** 878 * skb_morph - morph one skb into another 879 * @dst: the skb to receive the contents 880 * @src: the skb to supply the contents 881 * 882 * This is identical to skb_clone except that the target skb is 883 * supplied by the user. 884 * 885 * The target skb is returned upon exit. 886 */ 887 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 888 { 889 skb_release_all(dst); 890 return __skb_clone(dst, src); 891 } 892 EXPORT_SYMBOL_GPL(skb_morph); 893 894 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 895 { 896 unsigned long max_pg, num_pg, new_pg, old_pg; 897 struct user_struct *user; 898 899 if (capable(CAP_IPC_LOCK) || !size) 900 return 0; 901 902 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 903 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 904 user = mmp->user ? : current_user(); 905 906 do { 907 old_pg = atomic_long_read(&user->locked_vm); 908 new_pg = old_pg + num_pg; 909 if (new_pg > max_pg) 910 return -ENOBUFS; 911 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 912 old_pg); 913 914 if (!mmp->user) { 915 mmp->user = get_uid(user); 916 mmp->num_pg = num_pg; 917 } else { 918 mmp->num_pg += num_pg; 919 } 920 921 return 0; 922 } 923 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 924 925 void mm_unaccount_pinned_pages(struct mmpin *mmp) 926 { 927 if (mmp->user) { 928 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 929 free_uid(mmp->user); 930 } 931 } 932 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 933 934 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 935 { 936 struct ubuf_info *uarg; 937 struct sk_buff *skb; 938 939 WARN_ON_ONCE(!in_task()); 940 941 if (!sock_flag(sk, SOCK_ZEROCOPY)) 942 return NULL; 943 944 skb = sock_omalloc(sk, 0, GFP_KERNEL); 945 if (!skb) 946 return NULL; 947 948 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 949 uarg = (void *)skb->cb; 950 uarg->mmp.user = NULL; 951 952 if (mm_account_pinned_pages(&uarg->mmp, size)) { 953 kfree_skb(skb); 954 return NULL; 955 } 956 957 uarg->callback = sock_zerocopy_callback; 958 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 959 uarg->len = 1; 960 uarg->bytelen = size; 961 uarg->zerocopy = 1; 962 refcount_set(&uarg->refcnt, 1); 963 sock_hold(sk); 964 965 return uarg; 966 } 967 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 968 969 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 970 { 971 return container_of((void *)uarg, struct sk_buff, cb); 972 } 973 974 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 975 struct ubuf_info *uarg) 976 { 977 if (uarg) { 978 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 979 u32 bytelen, next; 980 981 /* realloc only when socket is locked (TCP, UDP cork), 982 * so uarg->len and sk_zckey access is serialized 983 */ 984 if (!sock_owned_by_user(sk)) { 985 WARN_ON_ONCE(1); 986 return NULL; 987 } 988 989 bytelen = uarg->bytelen + size; 990 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 991 /* TCP can create new skb to attach new uarg */ 992 if (sk->sk_type == SOCK_STREAM) 993 goto new_alloc; 994 return NULL; 995 } 996 997 next = (u32)atomic_read(&sk->sk_zckey); 998 if ((u32)(uarg->id + uarg->len) == next) { 999 if (mm_account_pinned_pages(&uarg->mmp, size)) 1000 return NULL; 1001 uarg->len++; 1002 uarg->bytelen = bytelen; 1003 atomic_set(&sk->sk_zckey, ++next); 1004 sock_zerocopy_get(uarg); 1005 return uarg; 1006 } 1007 } 1008 1009 new_alloc: 1010 return sock_zerocopy_alloc(sk, size); 1011 } 1012 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1013 1014 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1015 { 1016 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1017 u32 old_lo, old_hi; 1018 u64 sum_len; 1019 1020 old_lo = serr->ee.ee_info; 1021 old_hi = serr->ee.ee_data; 1022 sum_len = old_hi - old_lo + 1ULL + len; 1023 1024 if (sum_len >= (1ULL << 32)) 1025 return false; 1026 1027 if (lo != old_hi + 1) 1028 return false; 1029 1030 serr->ee.ee_data += len; 1031 return true; 1032 } 1033 1034 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1035 { 1036 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1037 struct sock_exterr_skb *serr; 1038 struct sock *sk = skb->sk; 1039 struct sk_buff_head *q; 1040 unsigned long flags; 1041 u32 lo, hi; 1042 u16 len; 1043 1044 mm_unaccount_pinned_pages(&uarg->mmp); 1045 1046 /* if !len, there was only 1 call, and it was aborted 1047 * so do not queue a completion notification 1048 */ 1049 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1050 goto release; 1051 1052 len = uarg->len; 1053 lo = uarg->id; 1054 hi = uarg->id + len - 1; 1055 1056 serr = SKB_EXT_ERR(skb); 1057 memset(serr, 0, sizeof(*serr)); 1058 serr->ee.ee_errno = 0; 1059 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1060 serr->ee.ee_data = hi; 1061 serr->ee.ee_info = lo; 1062 if (!success) 1063 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1064 1065 q = &sk->sk_error_queue; 1066 spin_lock_irqsave(&q->lock, flags); 1067 tail = skb_peek_tail(q); 1068 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1069 !skb_zerocopy_notify_extend(tail, lo, len)) { 1070 __skb_queue_tail(q, skb); 1071 skb = NULL; 1072 } 1073 spin_unlock_irqrestore(&q->lock, flags); 1074 1075 sk->sk_error_report(sk); 1076 1077 release: 1078 consume_skb(skb); 1079 sock_put(sk); 1080 } 1081 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1082 1083 void sock_zerocopy_put(struct ubuf_info *uarg) 1084 { 1085 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1086 if (uarg->callback) 1087 uarg->callback(uarg, uarg->zerocopy); 1088 else 1089 consume_skb(skb_from_uarg(uarg)); 1090 } 1091 } 1092 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1093 1094 void sock_zerocopy_put_abort(struct ubuf_info *uarg) 1095 { 1096 if (uarg) { 1097 struct sock *sk = skb_from_uarg(uarg)->sk; 1098 1099 atomic_dec(&sk->sk_zckey); 1100 uarg->len--; 1101 1102 sock_zerocopy_put(uarg); 1103 } 1104 } 1105 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1106 1107 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb, 1108 struct iov_iter *from, size_t length); 1109 1110 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1111 struct msghdr *msg, int len, 1112 struct ubuf_info *uarg) 1113 { 1114 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1115 struct iov_iter orig_iter = msg->msg_iter; 1116 int err, orig_len = skb->len; 1117 1118 /* An skb can only point to one uarg. This edge case happens when 1119 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1120 */ 1121 if (orig_uarg && uarg != orig_uarg) 1122 return -EEXIST; 1123 1124 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1125 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1126 struct sock *save_sk = skb->sk; 1127 1128 /* Streams do not free skb on error. Reset to prev state. */ 1129 msg->msg_iter = orig_iter; 1130 skb->sk = sk; 1131 ___pskb_trim(skb, orig_len); 1132 skb->sk = save_sk; 1133 return err; 1134 } 1135 1136 skb_zcopy_set(skb, uarg); 1137 return skb->len - orig_len; 1138 } 1139 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1140 1141 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1142 gfp_t gfp_mask) 1143 { 1144 if (skb_zcopy(orig)) { 1145 if (skb_zcopy(nskb)) { 1146 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1147 if (!gfp_mask) { 1148 WARN_ON_ONCE(1); 1149 return -ENOMEM; 1150 } 1151 if (skb_uarg(nskb) == skb_uarg(orig)) 1152 return 0; 1153 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1154 return -EIO; 1155 } 1156 skb_zcopy_set(nskb, skb_uarg(orig)); 1157 } 1158 return 0; 1159 } 1160 1161 /** 1162 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1163 * @skb: the skb to modify 1164 * @gfp_mask: allocation priority 1165 * 1166 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1167 * It will copy all frags into kernel and drop the reference 1168 * to userspace pages. 1169 * 1170 * If this function is called from an interrupt gfp_mask() must be 1171 * %GFP_ATOMIC. 1172 * 1173 * Returns 0 on success or a negative error code on failure 1174 * to allocate kernel memory to copy to. 1175 */ 1176 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1177 { 1178 int num_frags = skb_shinfo(skb)->nr_frags; 1179 struct page *page, *head = NULL; 1180 int i, new_frags; 1181 u32 d_off; 1182 1183 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1184 return -EINVAL; 1185 1186 if (!num_frags) 1187 goto release; 1188 1189 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1190 for (i = 0; i < new_frags; i++) { 1191 page = alloc_page(gfp_mask); 1192 if (!page) { 1193 while (head) { 1194 struct page *next = (struct page *)page_private(head); 1195 put_page(head); 1196 head = next; 1197 } 1198 return -ENOMEM; 1199 } 1200 set_page_private(page, (unsigned long)head); 1201 head = page; 1202 } 1203 1204 page = head; 1205 d_off = 0; 1206 for (i = 0; i < num_frags; i++) { 1207 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1208 u32 p_off, p_len, copied; 1209 struct page *p; 1210 u8 *vaddr; 1211 1212 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f), 1213 p, p_off, p_len, copied) { 1214 u32 copy, done = 0; 1215 vaddr = kmap_atomic(p); 1216 1217 while (done < p_len) { 1218 if (d_off == PAGE_SIZE) { 1219 d_off = 0; 1220 page = (struct page *)page_private(page); 1221 } 1222 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1223 memcpy(page_address(page) + d_off, 1224 vaddr + p_off + done, copy); 1225 done += copy; 1226 d_off += copy; 1227 } 1228 kunmap_atomic(vaddr); 1229 } 1230 } 1231 1232 /* skb frags release userspace buffers */ 1233 for (i = 0; i < num_frags; i++) 1234 skb_frag_unref(skb, i); 1235 1236 /* skb frags point to kernel buffers */ 1237 for (i = 0; i < new_frags - 1; i++) { 1238 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1239 head = (struct page *)page_private(head); 1240 } 1241 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1242 skb_shinfo(skb)->nr_frags = new_frags; 1243 1244 release: 1245 skb_zcopy_clear(skb, false); 1246 return 0; 1247 } 1248 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1249 1250 /** 1251 * skb_clone - duplicate an sk_buff 1252 * @skb: buffer to clone 1253 * @gfp_mask: allocation priority 1254 * 1255 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1256 * copies share the same packet data but not structure. The new 1257 * buffer has a reference count of 1. If the allocation fails the 1258 * function returns %NULL otherwise the new buffer is returned. 1259 * 1260 * If this function is called from an interrupt gfp_mask() must be 1261 * %GFP_ATOMIC. 1262 */ 1263 1264 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1265 { 1266 struct sk_buff_fclones *fclones = container_of(skb, 1267 struct sk_buff_fclones, 1268 skb1); 1269 struct sk_buff *n; 1270 1271 if (skb_orphan_frags(skb, gfp_mask)) 1272 return NULL; 1273 1274 if (skb->fclone == SKB_FCLONE_ORIG && 1275 refcount_read(&fclones->fclone_ref) == 1) { 1276 n = &fclones->skb2; 1277 refcount_set(&fclones->fclone_ref, 2); 1278 } else { 1279 if (skb_pfmemalloc(skb)) 1280 gfp_mask |= __GFP_MEMALLOC; 1281 1282 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1283 if (!n) 1284 return NULL; 1285 1286 n->fclone = SKB_FCLONE_UNAVAILABLE; 1287 } 1288 1289 return __skb_clone(n, skb); 1290 } 1291 EXPORT_SYMBOL(skb_clone); 1292 1293 static void skb_headers_offset_update(struct sk_buff *skb, int off) 1294 { 1295 /* Only adjust this if it actually is csum_start rather than csum */ 1296 if (skb->ip_summed == CHECKSUM_PARTIAL) 1297 skb->csum_start += off; 1298 /* {transport,network,mac}_header and tail are relative to skb->head */ 1299 skb->transport_header += off; 1300 skb->network_header += off; 1301 if (skb_mac_header_was_set(skb)) 1302 skb->mac_header += off; 1303 skb->inner_transport_header += off; 1304 skb->inner_network_header += off; 1305 skb->inner_mac_header += off; 1306 } 1307 1308 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1309 { 1310 __copy_skb_header(new, old); 1311 1312 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1313 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1314 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1315 } 1316 EXPORT_SYMBOL(skb_copy_header); 1317 1318 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1319 { 1320 if (skb_pfmemalloc(skb)) 1321 return SKB_ALLOC_RX; 1322 return 0; 1323 } 1324 1325 /** 1326 * skb_copy - create private copy of an sk_buff 1327 * @skb: buffer to copy 1328 * @gfp_mask: allocation priority 1329 * 1330 * Make a copy of both an &sk_buff and its data. This is used when the 1331 * caller wishes to modify the data and needs a private copy of the 1332 * data to alter. Returns %NULL on failure or the pointer to the buffer 1333 * on success. The returned buffer has a reference count of 1. 1334 * 1335 * As by-product this function converts non-linear &sk_buff to linear 1336 * one, so that &sk_buff becomes completely private and caller is allowed 1337 * to modify all the data of returned buffer. This means that this 1338 * function is not recommended for use in circumstances when only 1339 * header is going to be modified. Use pskb_copy() instead. 1340 */ 1341 1342 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1343 { 1344 int headerlen = skb_headroom(skb); 1345 unsigned int size = skb_end_offset(skb) + skb->data_len; 1346 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1347 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1348 1349 if (!n) 1350 return NULL; 1351 1352 /* Set the data pointer */ 1353 skb_reserve(n, headerlen); 1354 /* Set the tail pointer and length */ 1355 skb_put(n, skb->len); 1356 1357 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1358 1359 skb_copy_header(n, skb); 1360 return n; 1361 } 1362 EXPORT_SYMBOL(skb_copy); 1363 1364 /** 1365 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1366 * @skb: buffer to copy 1367 * @headroom: headroom of new skb 1368 * @gfp_mask: allocation priority 1369 * @fclone: if true allocate the copy of the skb from the fclone 1370 * cache instead of the head cache; it is recommended to set this 1371 * to true for the cases where the copy will likely be cloned 1372 * 1373 * Make a copy of both an &sk_buff and part of its data, located 1374 * in header. Fragmented data remain shared. This is used when 1375 * the caller wishes to modify only header of &sk_buff and needs 1376 * private copy of the header to alter. Returns %NULL on failure 1377 * or the pointer to the buffer on success. 1378 * The returned buffer has a reference count of 1. 1379 */ 1380 1381 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1382 gfp_t gfp_mask, bool fclone) 1383 { 1384 unsigned int size = skb_headlen(skb) + headroom; 1385 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1386 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1387 1388 if (!n) 1389 goto out; 1390 1391 /* Set the data pointer */ 1392 skb_reserve(n, headroom); 1393 /* Set the tail pointer and length */ 1394 skb_put(n, skb_headlen(skb)); 1395 /* Copy the bytes */ 1396 skb_copy_from_linear_data(skb, n->data, n->len); 1397 1398 n->truesize += skb->data_len; 1399 n->data_len = skb->data_len; 1400 n->len = skb->len; 1401 1402 if (skb_shinfo(skb)->nr_frags) { 1403 int i; 1404 1405 if (skb_orphan_frags(skb, gfp_mask) || 1406 skb_zerocopy_clone(n, skb, gfp_mask)) { 1407 kfree_skb(n); 1408 n = NULL; 1409 goto out; 1410 } 1411 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1412 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1413 skb_frag_ref(skb, i); 1414 } 1415 skb_shinfo(n)->nr_frags = i; 1416 } 1417 1418 if (skb_has_frag_list(skb)) { 1419 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1420 skb_clone_fraglist(n); 1421 } 1422 1423 skb_copy_header(n, skb); 1424 out: 1425 return n; 1426 } 1427 EXPORT_SYMBOL(__pskb_copy_fclone); 1428 1429 /** 1430 * pskb_expand_head - reallocate header of &sk_buff 1431 * @skb: buffer to reallocate 1432 * @nhead: room to add at head 1433 * @ntail: room to add at tail 1434 * @gfp_mask: allocation priority 1435 * 1436 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1437 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1438 * reference count of 1. Returns zero in the case of success or error, 1439 * if expansion failed. In the last case, &sk_buff is not changed. 1440 * 1441 * All the pointers pointing into skb header may change and must be 1442 * reloaded after call to this function. 1443 */ 1444 1445 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1446 gfp_t gfp_mask) 1447 { 1448 int i, osize = skb_end_offset(skb); 1449 int size = osize + nhead + ntail; 1450 long off; 1451 u8 *data; 1452 1453 BUG_ON(nhead < 0); 1454 1455 BUG_ON(skb_shared(skb)); 1456 1457 size = SKB_DATA_ALIGN(size); 1458 1459 if (skb_pfmemalloc(skb)) 1460 gfp_mask |= __GFP_MEMALLOC; 1461 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1462 gfp_mask, NUMA_NO_NODE, NULL); 1463 if (!data) 1464 goto nodata; 1465 size = SKB_WITH_OVERHEAD(ksize(data)); 1466 1467 /* Copy only real data... and, alas, header. This should be 1468 * optimized for the cases when header is void. 1469 */ 1470 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1471 1472 memcpy((struct skb_shared_info *)(data + size), 1473 skb_shinfo(skb), 1474 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1475 1476 /* 1477 * if shinfo is shared we must drop the old head gracefully, but if it 1478 * is not we can just drop the old head and let the existing refcount 1479 * be since all we did is relocate the values 1480 */ 1481 if (skb_cloned(skb)) { 1482 if (skb_orphan_frags(skb, gfp_mask)) 1483 goto nofrags; 1484 if (skb_zcopy(skb)) 1485 refcount_inc(&skb_uarg(skb)->refcnt); 1486 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1487 skb_frag_ref(skb, i); 1488 1489 if (skb_has_frag_list(skb)) 1490 skb_clone_fraglist(skb); 1491 1492 skb_release_data(skb); 1493 } else { 1494 skb_free_head(skb); 1495 } 1496 off = (data + nhead) - skb->head; 1497 1498 skb->head = data; 1499 skb->head_frag = 0; 1500 skb->data += off; 1501 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1502 skb->end = size; 1503 off = nhead; 1504 #else 1505 skb->end = skb->head + size; 1506 #endif 1507 skb->tail += off; 1508 skb_headers_offset_update(skb, nhead); 1509 skb->cloned = 0; 1510 skb->hdr_len = 0; 1511 skb->nohdr = 0; 1512 atomic_set(&skb_shinfo(skb)->dataref, 1); 1513 1514 skb_metadata_clear(skb); 1515 1516 /* It is not generally safe to change skb->truesize. 1517 * For the moment, we really care of rx path, or 1518 * when skb is orphaned (not attached to a socket). 1519 */ 1520 if (!skb->sk || skb->destructor == sock_edemux) 1521 skb->truesize += size - osize; 1522 1523 return 0; 1524 1525 nofrags: 1526 kfree(data); 1527 nodata: 1528 return -ENOMEM; 1529 } 1530 EXPORT_SYMBOL(pskb_expand_head); 1531 1532 /* Make private copy of skb with writable head and some headroom */ 1533 1534 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1535 { 1536 struct sk_buff *skb2; 1537 int delta = headroom - skb_headroom(skb); 1538 1539 if (delta <= 0) 1540 skb2 = pskb_copy(skb, GFP_ATOMIC); 1541 else { 1542 skb2 = skb_clone(skb, GFP_ATOMIC); 1543 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1544 GFP_ATOMIC)) { 1545 kfree_skb(skb2); 1546 skb2 = NULL; 1547 } 1548 } 1549 return skb2; 1550 } 1551 EXPORT_SYMBOL(skb_realloc_headroom); 1552 1553 /** 1554 * skb_copy_expand - copy and expand sk_buff 1555 * @skb: buffer to copy 1556 * @newheadroom: new free bytes at head 1557 * @newtailroom: new free bytes at tail 1558 * @gfp_mask: allocation priority 1559 * 1560 * Make a copy of both an &sk_buff and its data and while doing so 1561 * allocate additional space. 1562 * 1563 * This is used when the caller wishes to modify the data and needs a 1564 * private copy of the data to alter as well as more space for new fields. 1565 * Returns %NULL on failure or the pointer to the buffer 1566 * on success. The returned buffer has a reference count of 1. 1567 * 1568 * You must pass %GFP_ATOMIC as the allocation priority if this function 1569 * is called from an interrupt. 1570 */ 1571 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1572 int newheadroom, int newtailroom, 1573 gfp_t gfp_mask) 1574 { 1575 /* 1576 * Allocate the copy buffer 1577 */ 1578 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1579 gfp_mask, skb_alloc_rx_flag(skb), 1580 NUMA_NO_NODE); 1581 int oldheadroom = skb_headroom(skb); 1582 int head_copy_len, head_copy_off; 1583 1584 if (!n) 1585 return NULL; 1586 1587 skb_reserve(n, newheadroom); 1588 1589 /* Set the tail pointer and length */ 1590 skb_put(n, skb->len); 1591 1592 head_copy_len = oldheadroom; 1593 head_copy_off = 0; 1594 if (newheadroom <= head_copy_len) 1595 head_copy_len = newheadroom; 1596 else 1597 head_copy_off = newheadroom - head_copy_len; 1598 1599 /* Copy the linear header and data. */ 1600 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1601 skb->len + head_copy_len)); 1602 1603 skb_copy_header(n, skb); 1604 1605 skb_headers_offset_update(n, newheadroom - oldheadroom); 1606 1607 return n; 1608 } 1609 EXPORT_SYMBOL(skb_copy_expand); 1610 1611 /** 1612 * __skb_pad - zero pad the tail of an skb 1613 * @skb: buffer to pad 1614 * @pad: space to pad 1615 * @free_on_error: free buffer on error 1616 * 1617 * Ensure that a buffer is followed by a padding area that is zero 1618 * filled. Used by network drivers which may DMA or transfer data 1619 * beyond the buffer end onto the wire. 1620 * 1621 * May return error in out of memory cases. The skb is freed on error 1622 * if @free_on_error is true. 1623 */ 1624 1625 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1626 { 1627 int err; 1628 int ntail; 1629 1630 /* If the skbuff is non linear tailroom is always zero.. */ 1631 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1632 memset(skb->data+skb->len, 0, pad); 1633 return 0; 1634 } 1635 1636 ntail = skb->data_len + pad - (skb->end - skb->tail); 1637 if (likely(skb_cloned(skb) || ntail > 0)) { 1638 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1639 if (unlikely(err)) 1640 goto free_skb; 1641 } 1642 1643 /* FIXME: The use of this function with non-linear skb's really needs 1644 * to be audited. 1645 */ 1646 err = skb_linearize(skb); 1647 if (unlikely(err)) 1648 goto free_skb; 1649 1650 memset(skb->data + skb->len, 0, pad); 1651 return 0; 1652 1653 free_skb: 1654 if (free_on_error) 1655 kfree_skb(skb); 1656 return err; 1657 } 1658 EXPORT_SYMBOL(__skb_pad); 1659 1660 /** 1661 * pskb_put - add data to the tail of a potentially fragmented buffer 1662 * @skb: start of the buffer to use 1663 * @tail: tail fragment of the buffer to use 1664 * @len: amount of data to add 1665 * 1666 * This function extends the used data area of the potentially 1667 * fragmented buffer. @tail must be the last fragment of @skb -- or 1668 * @skb itself. If this would exceed the total buffer size the kernel 1669 * will panic. A pointer to the first byte of the extra data is 1670 * returned. 1671 */ 1672 1673 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1674 { 1675 if (tail != skb) { 1676 skb->data_len += len; 1677 skb->len += len; 1678 } 1679 return skb_put(tail, len); 1680 } 1681 EXPORT_SYMBOL_GPL(pskb_put); 1682 1683 /** 1684 * skb_put - add data to a buffer 1685 * @skb: buffer to use 1686 * @len: amount of data to add 1687 * 1688 * This function extends the used data area of the buffer. If this would 1689 * exceed the total buffer size the kernel will panic. A pointer to the 1690 * first byte of the extra data is returned. 1691 */ 1692 void *skb_put(struct sk_buff *skb, unsigned int len) 1693 { 1694 void *tmp = skb_tail_pointer(skb); 1695 SKB_LINEAR_ASSERT(skb); 1696 skb->tail += len; 1697 skb->len += len; 1698 if (unlikely(skb->tail > skb->end)) 1699 skb_over_panic(skb, len, __builtin_return_address(0)); 1700 return tmp; 1701 } 1702 EXPORT_SYMBOL(skb_put); 1703 1704 /** 1705 * skb_push - add data to the start of a buffer 1706 * @skb: buffer to use 1707 * @len: amount of data to add 1708 * 1709 * This function extends the used data area of the buffer at the buffer 1710 * start. If this would exceed the total buffer headroom the kernel will 1711 * panic. A pointer to the first byte of the extra data is returned. 1712 */ 1713 void *skb_push(struct sk_buff *skb, unsigned int len) 1714 { 1715 skb->data -= len; 1716 skb->len += len; 1717 if (unlikely(skb->data<skb->head)) 1718 skb_under_panic(skb, len, __builtin_return_address(0)); 1719 return skb->data; 1720 } 1721 EXPORT_SYMBOL(skb_push); 1722 1723 /** 1724 * skb_pull - remove data from the start of a buffer 1725 * @skb: buffer to use 1726 * @len: amount of data to remove 1727 * 1728 * This function removes data from the start of a buffer, returning 1729 * the memory to the headroom. A pointer to the next data in the buffer 1730 * is returned. Once the data has been pulled future pushes will overwrite 1731 * the old data. 1732 */ 1733 void *skb_pull(struct sk_buff *skb, unsigned int len) 1734 { 1735 return skb_pull_inline(skb, len); 1736 } 1737 EXPORT_SYMBOL(skb_pull); 1738 1739 /** 1740 * skb_trim - remove end from a buffer 1741 * @skb: buffer to alter 1742 * @len: new length 1743 * 1744 * Cut the length of a buffer down by removing data from the tail. If 1745 * the buffer is already under the length specified it is not modified. 1746 * The skb must be linear. 1747 */ 1748 void skb_trim(struct sk_buff *skb, unsigned int len) 1749 { 1750 if (skb->len > len) 1751 __skb_trim(skb, len); 1752 } 1753 EXPORT_SYMBOL(skb_trim); 1754 1755 /* Trims skb to length len. It can change skb pointers. 1756 */ 1757 1758 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1759 { 1760 struct sk_buff **fragp; 1761 struct sk_buff *frag; 1762 int offset = skb_headlen(skb); 1763 int nfrags = skb_shinfo(skb)->nr_frags; 1764 int i; 1765 int err; 1766 1767 if (skb_cloned(skb) && 1768 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1769 return err; 1770 1771 i = 0; 1772 if (offset >= len) 1773 goto drop_pages; 1774 1775 for (; i < nfrags; i++) { 1776 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1777 1778 if (end < len) { 1779 offset = end; 1780 continue; 1781 } 1782 1783 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1784 1785 drop_pages: 1786 skb_shinfo(skb)->nr_frags = i; 1787 1788 for (; i < nfrags; i++) 1789 skb_frag_unref(skb, i); 1790 1791 if (skb_has_frag_list(skb)) 1792 skb_drop_fraglist(skb); 1793 goto done; 1794 } 1795 1796 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1797 fragp = &frag->next) { 1798 int end = offset + frag->len; 1799 1800 if (skb_shared(frag)) { 1801 struct sk_buff *nfrag; 1802 1803 nfrag = skb_clone(frag, GFP_ATOMIC); 1804 if (unlikely(!nfrag)) 1805 return -ENOMEM; 1806 1807 nfrag->next = frag->next; 1808 consume_skb(frag); 1809 frag = nfrag; 1810 *fragp = frag; 1811 } 1812 1813 if (end < len) { 1814 offset = end; 1815 continue; 1816 } 1817 1818 if (end > len && 1819 unlikely((err = pskb_trim(frag, len - offset)))) 1820 return err; 1821 1822 if (frag->next) 1823 skb_drop_list(&frag->next); 1824 break; 1825 } 1826 1827 done: 1828 if (len > skb_headlen(skb)) { 1829 skb->data_len -= skb->len - len; 1830 skb->len = len; 1831 } else { 1832 skb->len = len; 1833 skb->data_len = 0; 1834 skb_set_tail_pointer(skb, len); 1835 } 1836 1837 if (!skb->sk || skb->destructor == sock_edemux) 1838 skb_condense(skb); 1839 return 0; 1840 } 1841 EXPORT_SYMBOL(___pskb_trim); 1842 1843 /* Note : use pskb_trim_rcsum() instead of calling this directly 1844 */ 1845 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 1846 { 1847 if (skb->ip_summed == CHECKSUM_COMPLETE) { 1848 int delta = skb->len - len; 1849 1850 skb->csum = csum_sub(skb->csum, 1851 skb_checksum(skb, len, delta, 0)); 1852 } 1853 return __pskb_trim(skb, len); 1854 } 1855 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 1856 1857 /** 1858 * __pskb_pull_tail - advance tail of skb header 1859 * @skb: buffer to reallocate 1860 * @delta: number of bytes to advance tail 1861 * 1862 * The function makes a sense only on a fragmented &sk_buff, 1863 * it expands header moving its tail forward and copying necessary 1864 * data from fragmented part. 1865 * 1866 * &sk_buff MUST have reference count of 1. 1867 * 1868 * Returns %NULL (and &sk_buff does not change) if pull failed 1869 * or value of new tail of skb in the case of success. 1870 * 1871 * All the pointers pointing into skb header may change and must be 1872 * reloaded after call to this function. 1873 */ 1874 1875 /* Moves tail of skb head forward, copying data from fragmented part, 1876 * when it is necessary. 1877 * 1. It may fail due to malloc failure. 1878 * 2. It may change skb pointers. 1879 * 1880 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1881 */ 1882 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 1883 { 1884 /* If skb has not enough free space at tail, get new one 1885 * plus 128 bytes for future expansions. If we have enough 1886 * room at tail, reallocate without expansion only if skb is cloned. 1887 */ 1888 int i, k, eat = (skb->tail + delta) - skb->end; 1889 1890 if (eat > 0 || skb_cloned(skb)) { 1891 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1892 GFP_ATOMIC)) 1893 return NULL; 1894 } 1895 1896 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 1897 skb_tail_pointer(skb), delta)); 1898 1899 /* Optimization: no fragments, no reasons to preestimate 1900 * size of pulled pages. Superb. 1901 */ 1902 if (!skb_has_frag_list(skb)) 1903 goto pull_pages; 1904 1905 /* Estimate size of pulled pages. */ 1906 eat = delta; 1907 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1908 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1909 1910 if (size >= eat) 1911 goto pull_pages; 1912 eat -= size; 1913 } 1914 1915 /* If we need update frag list, we are in troubles. 1916 * Certainly, it is possible to add an offset to skb data, 1917 * but taking into account that pulling is expected to 1918 * be very rare operation, it is worth to fight against 1919 * further bloating skb head and crucify ourselves here instead. 1920 * Pure masohism, indeed. 8)8) 1921 */ 1922 if (eat) { 1923 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1924 struct sk_buff *clone = NULL; 1925 struct sk_buff *insp = NULL; 1926 1927 do { 1928 BUG_ON(!list); 1929 1930 if (list->len <= eat) { 1931 /* Eaten as whole. */ 1932 eat -= list->len; 1933 list = list->next; 1934 insp = list; 1935 } else { 1936 /* Eaten partially. */ 1937 1938 if (skb_shared(list)) { 1939 /* Sucks! We need to fork list. :-( */ 1940 clone = skb_clone(list, GFP_ATOMIC); 1941 if (!clone) 1942 return NULL; 1943 insp = list->next; 1944 list = clone; 1945 } else { 1946 /* This may be pulled without 1947 * problems. */ 1948 insp = list; 1949 } 1950 if (!pskb_pull(list, eat)) { 1951 kfree_skb(clone); 1952 return NULL; 1953 } 1954 break; 1955 } 1956 } while (eat); 1957 1958 /* Free pulled out fragments. */ 1959 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1960 skb_shinfo(skb)->frag_list = list->next; 1961 kfree_skb(list); 1962 } 1963 /* And insert new clone at head. */ 1964 if (clone) { 1965 clone->next = list; 1966 skb_shinfo(skb)->frag_list = clone; 1967 } 1968 } 1969 /* Success! Now we may commit changes to skb data. */ 1970 1971 pull_pages: 1972 eat = delta; 1973 k = 0; 1974 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1975 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1976 1977 if (size <= eat) { 1978 skb_frag_unref(skb, i); 1979 eat -= size; 1980 } else { 1981 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1982 if (eat) { 1983 skb_shinfo(skb)->frags[k].page_offset += eat; 1984 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1985 if (!i) 1986 goto end; 1987 eat = 0; 1988 } 1989 k++; 1990 } 1991 } 1992 skb_shinfo(skb)->nr_frags = k; 1993 1994 end: 1995 skb->tail += delta; 1996 skb->data_len -= delta; 1997 1998 if (!skb->data_len) 1999 skb_zcopy_clear(skb, false); 2000 2001 return skb_tail_pointer(skb); 2002 } 2003 EXPORT_SYMBOL(__pskb_pull_tail); 2004 2005 /** 2006 * skb_copy_bits - copy bits from skb to kernel buffer 2007 * @skb: source skb 2008 * @offset: offset in source 2009 * @to: destination buffer 2010 * @len: number of bytes to copy 2011 * 2012 * Copy the specified number of bytes from the source skb to the 2013 * destination buffer. 2014 * 2015 * CAUTION ! : 2016 * If its prototype is ever changed, 2017 * check arch/{*}/net/{*}.S files, 2018 * since it is called from BPF assembly code. 2019 */ 2020 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2021 { 2022 int start = skb_headlen(skb); 2023 struct sk_buff *frag_iter; 2024 int i, copy; 2025 2026 if (offset > (int)skb->len - len) 2027 goto fault; 2028 2029 /* Copy header. */ 2030 if ((copy = start - offset) > 0) { 2031 if (copy > len) 2032 copy = len; 2033 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2034 if ((len -= copy) == 0) 2035 return 0; 2036 offset += copy; 2037 to += copy; 2038 } 2039 2040 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2041 int end; 2042 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2043 2044 WARN_ON(start > offset + len); 2045 2046 end = start + skb_frag_size(f); 2047 if ((copy = end - offset) > 0) { 2048 u32 p_off, p_len, copied; 2049 struct page *p; 2050 u8 *vaddr; 2051 2052 if (copy > len) 2053 copy = len; 2054 2055 skb_frag_foreach_page(f, 2056 f->page_offset + offset - start, 2057 copy, p, p_off, p_len, copied) { 2058 vaddr = kmap_atomic(p); 2059 memcpy(to + copied, vaddr + p_off, p_len); 2060 kunmap_atomic(vaddr); 2061 } 2062 2063 if ((len -= copy) == 0) 2064 return 0; 2065 offset += copy; 2066 to += copy; 2067 } 2068 start = end; 2069 } 2070 2071 skb_walk_frags(skb, frag_iter) { 2072 int end; 2073 2074 WARN_ON(start > offset + len); 2075 2076 end = start + frag_iter->len; 2077 if ((copy = end - offset) > 0) { 2078 if (copy > len) 2079 copy = len; 2080 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2081 goto fault; 2082 if ((len -= copy) == 0) 2083 return 0; 2084 offset += copy; 2085 to += copy; 2086 } 2087 start = end; 2088 } 2089 2090 if (!len) 2091 return 0; 2092 2093 fault: 2094 return -EFAULT; 2095 } 2096 EXPORT_SYMBOL(skb_copy_bits); 2097 2098 /* 2099 * Callback from splice_to_pipe(), if we need to release some pages 2100 * at the end of the spd in case we error'ed out in filling the pipe. 2101 */ 2102 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2103 { 2104 put_page(spd->pages[i]); 2105 } 2106 2107 static struct page *linear_to_page(struct page *page, unsigned int *len, 2108 unsigned int *offset, 2109 struct sock *sk) 2110 { 2111 struct page_frag *pfrag = sk_page_frag(sk); 2112 2113 if (!sk_page_frag_refill(sk, pfrag)) 2114 return NULL; 2115 2116 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2117 2118 memcpy(page_address(pfrag->page) + pfrag->offset, 2119 page_address(page) + *offset, *len); 2120 *offset = pfrag->offset; 2121 pfrag->offset += *len; 2122 2123 return pfrag->page; 2124 } 2125 2126 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2127 struct page *page, 2128 unsigned int offset) 2129 { 2130 return spd->nr_pages && 2131 spd->pages[spd->nr_pages - 1] == page && 2132 (spd->partial[spd->nr_pages - 1].offset + 2133 spd->partial[spd->nr_pages - 1].len == offset); 2134 } 2135 2136 /* 2137 * Fill page/offset/length into spd, if it can hold more pages. 2138 */ 2139 static bool spd_fill_page(struct splice_pipe_desc *spd, 2140 struct pipe_inode_info *pipe, struct page *page, 2141 unsigned int *len, unsigned int offset, 2142 bool linear, 2143 struct sock *sk) 2144 { 2145 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2146 return true; 2147 2148 if (linear) { 2149 page = linear_to_page(page, len, &offset, sk); 2150 if (!page) 2151 return true; 2152 } 2153 if (spd_can_coalesce(spd, page, offset)) { 2154 spd->partial[spd->nr_pages - 1].len += *len; 2155 return false; 2156 } 2157 get_page(page); 2158 spd->pages[spd->nr_pages] = page; 2159 spd->partial[spd->nr_pages].len = *len; 2160 spd->partial[spd->nr_pages].offset = offset; 2161 spd->nr_pages++; 2162 2163 return false; 2164 } 2165 2166 static bool __splice_segment(struct page *page, unsigned int poff, 2167 unsigned int plen, unsigned int *off, 2168 unsigned int *len, 2169 struct splice_pipe_desc *spd, bool linear, 2170 struct sock *sk, 2171 struct pipe_inode_info *pipe) 2172 { 2173 if (!*len) 2174 return true; 2175 2176 /* skip this segment if already processed */ 2177 if (*off >= plen) { 2178 *off -= plen; 2179 return false; 2180 } 2181 2182 /* ignore any bits we already processed */ 2183 poff += *off; 2184 plen -= *off; 2185 *off = 0; 2186 2187 do { 2188 unsigned int flen = min(*len, plen); 2189 2190 if (spd_fill_page(spd, pipe, page, &flen, poff, 2191 linear, sk)) 2192 return true; 2193 poff += flen; 2194 plen -= flen; 2195 *len -= flen; 2196 } while (*len && plen); 2197 2198 return false; 2199 } 2200 2201 /* 2202 * Map linear and fragment data from the skb to spd. It reports true if the 2203 * pipe is full or if we already spliced the requested length. 2204 */ 2205 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2206 unsigned int *offset, unsigned int *len, 2207 struct splice_pipe_desc *spd, struct sock *sk) 2208 { 2209 int seg; 2210 struct sk_buff *iter; 2211 2212 /* map the linear part : 2213 * If skb->head_frag is set, this 'linear' part is backed by a 2214 * fragment, and if the head is not shared with any clones then 2215 * we can avoid a copy since we own the head portion of this page. 2216 */ 2217 if (__splice_segment(virt_to_page(skb->data), 2218 (unsigned long) skb->data & (PAGE_SIZE - 1), 2219 skb_headlen(skb), 2220 offset, len, spd, 2221 skb_head_is_locked(skb), 2222 sk, pipe)) 2223 return true; 2224 2225 /* 2226 * then map the fragments 2227 */ 2228 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2229 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2230 2231 if (__splice_segment(skb_frag_page(f), 2232 f->page_offset, skb_frag_size(f), 2233 offset, len, spd, false, sk, pipe)) 2234 return true; 2235 } 2236 2237 skb_walk_frags(skb, iter) { 2238 if (*offset >= iter->len) { 2239 *offset -= iter->len; 2240 continue; 2241 } 2242 /* __skb_splice_bits() only fails if the output has no room 2243 * left, so no point in going over the frag_list for the error 2244 * case. 2245 */ 2246 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2247 return true; 2248 } 2249 2250 return false; 2251 } 2252 2253 /* 2254 * Map data from the skb to a pipe. Should handle both the linear part, 2255 * the fragments, and the frag list. 2256 */ 2257 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2258 struct pipe_inode_info *pipe, unsigned int tlen, 2259 unsigned int flags) 2260 { 2261 struct partial_page partial[MAX_SKB_FRAGS]; 2262 struct page *pages[MAX_SKB_FRAGS]; 2263 struct splice_pipe_desc spd = { 2264 .pages = pages, 2265 .partial = partial, 2266 .nr_pages_max = MAX_SKB_FRAGS, 2267 .ops = &nosteal_pipe_buf_ops, 2268 .spd_release = sock_spd_release, 2269 }; 2270 int ret = 0; 2271 2272 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2273 2274 if (spd.nr_pages) 2275 ret = splice_to_pipe(pipe, &spd); 2276 2277 return ret; 2278 } 2279 EXPORT_SYMBOL_GPL(skb_splice_bits); 2280 2281 /* Send skb data on a socket. Socket must be locked. */ 2282 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2283 int len) 2284 { 2285 unsigned int orig_len = len; 2286 struct sk_buff *head = skb; 2287 unsigned short fragidx; 2288 int slen, ret; 2289 2290 do_frag_list: 2291 2292 /* Deal with head data */ 2293 while (offset < skb_headlen(skb) && len) { 2294 struct kvec kv; 2295 struct msghdr msg; 2296 2297 slen = min_t(int, len, skb_headlen(skb) - offset); 2298 kv.iov_base = skb->data + offset; 2299 kv.iov_len = slen; 2300 memset(&msg, 0, sizeof(msg)); 2301 2302 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2303 if (ret <= 0) 2304 goto error; 2305 2306 offset += ret; 2307 len -= ret; 2308 } 2309 2310 /* All the data was skb head? */ 2311 if (!len) 2312 goto out; 2313 2314 /* Make offset relative to start of frags */ 2315 offset -= skb_headlen(skb); 2316 2317 /* Find where we are in frag list */ 2318 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2319 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2320 2321 if (offset < frag->size) 2322 break; 2323 2324 offset -= frag->size; 2325 } 2326 2327 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2328 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2329 2330 slen = min_t(size_t, len, frag->size - offset); 2331 2332 while (slen) { 2333 ret = kernel_sendpage_locked(sk, frag->page.p, 2334 frag->page_offset + offset, 2335 slen, MSG_DONTWAIT); 2336 if (ret <= 0) 2337 goto error; 2338 2339 len -= ret; 2340 offset += ret; 2341 slen -= ret; 2342 } 2343 2344 offset = 0; 2345 } 2346 2347 if (len) { 2348 /* Process any frag lists */ 2349 2350 if (skb == head) { 2351 if (skb_has_frag_list(skb)) { 2352 skb = skb_shinfo(skb)->frag_list; 2353 goto do_frag_list; 2354 } 2355 } else if (skb->next) { 2356 skb = skb->next; 2357 goto do_frag_list; 2358 } 2359 } 2360 2361 out: 2362 return orig_len - len; 2363 2364 error: 2365 return orig_len == len ? ret : orig_len - len; 2366 } 2367 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2368 2369 /* Send skb data on a socket. */ 2370 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2371 { 2372 int ret = 0; 2373 2374 lock_sock(sk); 2375 ret = skb_send_sock_locked(sk, skb, offset, len); 2376 release_sock(sk); 2377 2378 return ret; 2379 } 2380 EXPORT_SYMBOL_GPL(skb_send_sock); 2381 2382 /** 2383 * skb_store_bits - store bits from kernel buffer to skb 2384 * @skb: destination buffer 2385 * @offset: offset in destination 2386 * @from: source buffer 2387 * @len: number of bytes to copy 2388 * 2389 * Copy the specified number of bytes from the source buffer to the 2390 * destination skb. This function handles all the messy bits of 2391 * traversing fragment lists and such. 2392 */ 2393 2394 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2395 { 2396 int start = skb_headlen(skb); 2397 struct sk_buff *frag_iter; 2398 int i, copy; 2399 2400 if (offset > (int)skb->len - len) 2401 goto fault; 2402 2403 if ((copy = start - offset) > 0) { 2404 if (copy > len) 2405 copy = len; 2406 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2407 if ((len -= copy) == 0) 2408 return 0; 2409 offset += copy; 2410 from += copy; 2411 } 2412 2413 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2414 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2415 int end; 2416 2417 WARN_ON(start > offset + len); 2418 2419 end = start + skb_frag_size(frag); 2420 if ((copy = end - offset) > 0) { 2421 u32 p_off, p_len, copied; 2422 struct page *p; 2423 u8 *vaddr; 2424 2425 if (copy > len) 2426 copy = len; 2427 2428 skb_frag_foreach_page(frag, 2429 frag->page_offset + offset - start, 2430 copy, p, p_off, p_len, copied) { 2431 vaddr = kmap_atomic(p); 2432 memcpy(vaddr + p_off, from + copied, p_len); 2433 kunmap_atomic(vaddr); 2434 } 2435 2436 if ((len -= copy) == 0) 2437 return 0; 2438 offset += copy; 2439 from += copy; 2440 } 2441 start = end; 2442 } 2443 2444 skb_walk_frags(skb, frag_iter) { 2445 int end; 2446 2447 WARN_ON(start > offset + len); 2448 2449 end = start + frag_iter->len; 2450 if ((copy = end - offset) > 0) { 2451 if (copy > len) 2452 copy = len; 2453 if (skb_store_bits(frag_iter, offset - start, 2454 from, copy)) 2455 goto fault; 2456 if ((len -= copy) == 0) 2457 return 0; 2458 offset += copy; 2459 from += copy; 2460 } 2461 start = end; 2462 } 2463 if (!len) 2464 return 0; 2465 2466 fault: 2467 return -EFAULT; 2468 } 2469 EXPORT_SYMBOL(skb_store_bits); 2470 2471 /* Checksum skb data. */ 2472 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2473 __wsum csum, const struct skb_checksum_ops *ops) 2474 { 2475 int start = skb_headlen(skb); 2476 int i, copy = start - offset; 2477 struct sk_buff *frag_iter; 2478 int pos = 0; 2479 2480 /* Checksum header. */ 2481 if (copy > 0) { 2482 if (copy > len) 2483 copy = len; 2484 csum = ops->update(skb->data + offset, copy, csum); 2485 if ((len -= copy) == 0) 2486 return csum; 2487 offset += copy; 2488 pos = copy; 2489 } 2490 2491 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2492 int end; 2493 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2494 2495 WARN_ON(start > offset + len); 2496 2497 end = start + skb_frag_size(frag); 2498 if ((copy = end - offset) > 0) { 2499 u32 p_off, p_len, copied; 2500 struct page *p; 2501 __wsum csum2; 2502 u8 *vaddr; 2503 2504 if (copy > len) 2505 copy = len; 2506 2507 skb_frag_foreach_page(frag, 2508 frag->page_offset + offset - start, 2509 copy, p, p_off, p_len, copied) { 2510 vaddr = kmap_atomic(p); 2511 csum2 = ops->update(vaddr + p_off, p_len, 0); 2512 kunmap_atomic(vaddr); 2513 csum = ops->combine(csum, csum2, pos, p_len); 2514 pos += p_len; 2515 } 2516 2517 if (!(len -= copy)) 2518 return csum; 2519 offset += copy; 2520 } 2521 start = end; 2522 } 2523 2524 skb_walk_frags(skb, frag_iter) { 2525 int end; 2526 2527 WARN_ON(start > offset + len); 2528 2529 end = start + frag_iter->len; 2530 if ((copy = end - offset) > 0) { 2531 __wsum csum2; 2532 if (copy > len) 2533 copy = len; 2534 csum2 = __skb_checksum(frag_iter, offset - start, 2535 copy, 0, ops); 2536 csum = ops->combine(csum, csum2, pos, copy); 2537 if ((len -= copy) == 0) 2538 return csum; 2539 offset += copy; 2540 pos += copy; 2541 } 2542 start = end; 2543 } 2544 BUG_ON(len); 2545 2546 return csum; 2547 } 2548 EXPORT_SYMBOL(__skb_checksum); 2549 2550 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2551 int len, __wsum csum) 2552 { 2553 const struct skb_checksum_ops ops = { 2554 .update = csum_partial_ext, 2555 .combine = csum_block_add_ext, 2556 }; 2557 2558 return __skb_checksum(skb, offset, len, csum, &ops); 2559 } 2560 EXPORT_SYMBOL(skb_checksum); 2561 2562 /* Both of above in one bottle. */ 2563 2564 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2565 u8 *to, int len, __wsum csum) 2566 { 2567 int start = skb_headlen(skb); 2568 int i, copy = start - offset; 2569 struct sk_buff *frag_iter; 2570 int pos = 0; 2571 2572 /* Copy header. */ 2573 if (copy > 0) { 2574 if (copy > len) 2575 copy = len; 2576 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2577 copy, csum); 2578 if ((len -= copy) == 0) 2579 return csum; 2580 offset += copy; 2581 to += copy; 2582 pos = copy; 2583 } 2584 2585 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2586 int end; 2587 2588 WARN_ON(start > offset + len); 2589 2590 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2591 if ((copy = end - offset) > 0) { 2592 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2593 u32 p_off, p_len, copied; 2594 struct page *p; 2595 __wsum csum2; 2596 u8 *vaddr; 2597 2598 if (copy > len) 2599 copy = len; 2600 2601 skb_frag_foreach_page(frag, 2602 frag->page_offset + offset - start, 2603 copy, p, p_off, p_len, copied) { 2604 vaddr = kmap_atomic(p); 2605 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2606 to + copied, 2607 p_len, 0); 2608 kunmap_atomic(vaddr); 2609 csum = csum_block_add(csum, csum2, pos); 2610 pos += p_len; 2611 } 2612 2613 if (!(len -= copy)) 2614 return csum; 2615 offset += copy; 2616 to += copy; 2617 } 2618 start = end; 2619 } 2620 2621 skb_walk_frags(skb, frag_iter) { 2622 __wsum csum2; 2623 int end; 2624 2625 WARN_ON(start > offset + len); 2626 2627 end = start + frag_iter->len; 2628 if ((copy = end - offset) > 0) { 2629 if (copy > len) 2630 copy = len; 2631 csum2 = skb_copy_and_csum_bits(frag_iter, 2632 offset - start, 2633 to, copy, 0); 2634 csum = csum_block_add(csum, csum2, pos); 2635 if ((len -= copy) == 0) 2636 return csum; 2637 offset += copy; 2638 to += copy; 2639 pos += copy; 2640 } 2641 start = end; 2642 } 2643 BUG_ON(len); 2644 return csum; 2645 } 2646 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2647 2648 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2649 { 2650 net_warn_ratelimited( 2651 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2652 __func__); 2653 return 0; 2654 } 2655 2656 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2657 int offset, int len) 2658 { 2659 net_warn_ratelimited( 2660 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2661 __func__); 2662 return 0; 2663 } 2664 2665 static const struct skb_checksum_ops default_crc32c_ops = { 2666 .update = warn_crc32c_csum_update, 2667 .combine = warn_crc32c_csum_combine, 2668 }; 2669 2670 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2671 &default_crc32c_ops; 2672 EXPORT_SYMBOL(crc32c_csum_stub); 2673 2674 /** 2675 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2676 * @from: source buffer 2677 * 2678 * Calculates the amount of linear headroom needed in the 'to' skb passed 2679 * into skb_zerocopy(). 2680 */ 2681 unsigned int 2682 skb_zerocopy_headlen(const struct sk_buff *from) 2683 { 2684 unsigned int hlen = 0; 2685 2686 if (!from->head_frag || 2687 skb_headlen(from) < L1_CACHE_BYTES || 2688 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2689 hlen = skb_headlen(from); 2690 2691 if (skb_has_frag_list(from)) 2692 hlen = from->len; 2693 2694 return hlen; 2695 } 2696 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2697 2698 /** 2699 * skb_zerocopy - Zero copy skb to skb 2700 * @to: destination buffer 2701 * @from: source buffer 2702 * @len: number of bytes to copy from source buffer 2703 * @hlen: size of linear headroom in destination buffer 2704 * 2705 * Copies up to `len` bytes from `from` to `to` by creating references 2706 * to the frags in the source buffer. 2707 * 2708 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2709 * headroom in the `to` buffer. 2710 * 2711 * Return value: 2712 * 0: everything is OK 2713 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2714 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2715 */ 2716 int 2717 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2718 { 2719 int i, j = 0; 2720 int plen = 0; /* length of skb->head fragment */ 2721 int ret; 2722 struct page *page; 2723 unsigned int offset; 2724 2725 BUG_ON(!from->head_frag && !hlen); 2726 2727 /* dont bother with small payloads */ 2728 if (len <= skb_tailroom(to)) 2729 return skb_copy_bits(from, 0, skb_put(to, len), len); 2730 2731 if (hlen) { 2732 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2733 if (unlikely(ret)) 2734 return ret; 2735 len -= hlen; 2736 } else { 2737 plen = min_t(int, skb_headlen(from), len); 2738 if (plen) { 2739 page = virt_to_head_page(from->head); 2740 offset = from->data - (unsigned char *)page_address(page); 2741 __skb_fill_page_desc(to, 0, page, offset, plen); 2742 get_page(page); 2743 j = 1; 2744 len -= plen; 2745 } 2746 } 2747 2748 to->truesize += len + plen; 2749 to->len += len + plen; 2750 to->data_len += len + plen; 2751 2752 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2753 skb_tx_error(from); 2754 return -ENOMEM; 2755 } 2756 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2757 2758 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2759 if (!len) 2760 break; 2761 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2762 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2763 len -= skb_shinfo(to)->frags[j].size; 2764 skb_frag_ref(to, j); 2765 j++; 2766 } 2767 skb_shinfo(to)->nr_frags = j; 2768 2769 return 0; 2770 } 2771 EXPORT_SYMBOL_GPL(skb_zerocopy); 2772 2773 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2774 { 2775 __wsum csum; 2776 long csstart; 2777 2778 if (skb->ip_summed == CHECKSUM_PARTIAL) 2779 csstart = skb_checksum_start_offset(skb); 2780 else 2781 csstart = skb_headlen(skb); 2782 2783 BUG_ON(csstart > skb_headlen(skb)); 2784 2785 skb_copy_from_linear_data(skb, to, csstart); 2786 2787 csum = 0; 2788 if (csstart != skb->len) 2789 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2790 skb->len - csstart, 0); 2791 2792 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2793 long csstuff = csstart + skb->csum_offset; 2794 2795 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2796 } 2797 } 2798 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2799 2800 /** 2801 * skb_dequeue - remove from the head of the queue 2802 * @list: list to dequeue from 2803 * 2804 * Remove the head of the list. The list lock is taken so the function 2805 * may be used safely with other locking list functions. The head item is 2806 * returned or %NULL if the list is empty. 2807 */ 2808 2809 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2810 { 2811 unsigned long flags; 2812 struct sk_buff *result; 2813 2814 spin_lock_irqsave(&list->lock, flags); 2815 result = __skb_dequeue(list); 2816 spin_unlock_irqrestore(&list->lock, flags); 2817 return result; 2818 } 2819 EXPORT_SYMBOL(skb_dequeue); 2820 2821 /** 2822 * skb_dequeue_tail - remove from the tail of the queue 2823 * @list: list to dequeue from 2824 * 2825 * Remove the tail of the list. The list lock is taken so the function 2826 * may be used safely with other locking list functions. The tail item is 2827 * returned or %NULL if the list is empty. 2828 */ 2829 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2830 { 2831 unsigned long flags; 2832 struct sk_buff *result; 2833 2834 spin_lock_irqsave(&list->lock, flags); 2835 result = __skb_dequeue_tail(list); 2836 spin_unlock_irqrestore(&list->lock, flags); 2837 return result; 2838 } 2839 EXPORT_SYMBOL(skb_dequeue_tail); 2840 2841 /** 2842 * skb_queue_purge - empty a list 2843 * @list: list to empty 2844 * 2845 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2846 * the list and one reference dropped. This function takes the list 2847 * lock and is atomic with respect to other list locking functions. 2848 */ 2849 void skb_queue_purge(struct sk_buff_head *list) 2850 { 2851 struct sk_buff *skb; 2852 while ((skb = skb_dequeue(list)) != NULL) 2853 kfree_skb(skb); 2854 } 2855 EXPORT_SYMBOL(skb_queue_purge); 2856 2857 /** 2858 * skb_rbtree_purge - empty a skb rbtree 2859 * @root: root of the rbtree to empty 2860 * 2861 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 2862 * the list and one reference dropped. This function does not take 2863 * any lock. Synchronization should be handled by the caller (e.g., TCP 2864 * out-of-order queue is protected by the socket lock). 2865 */ 2866 void skb_rbtree_purge(struct rb_root *root) 2867 { 2868 struct rb_node *p = rb_first(root); 2869 2870 while (p) { 2871 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 2872 2873 p = rb_next(p); 2874 rb_erase(&skb->rbnode, root); 2875 kfree_skb(skb); 2876 } 2877 } 2878 2879 /** 2880 * skb_queue_head - queue a buffer at the list head 2881 * @list: list to use 2882 * @newsk: buffer to queue 2883 * 2884 * Queue a buffer at the start of the list. This function takes the 2885 * list lock and can be used safely with other locking &sk_buff functions 2886 * safely. 2887 * 2888 * A buffer cannot be placed on two lists at the same time. 2889 */ 2890 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2891 { 2892 unsigned long flags; 2893 2894 spin_lock_irqsave(&list->lock, flags); 2895 __skb_queue_head(list, newsk); 2896 spin_unlock_irqrestore(&list->lock, flags); 2897 } 2898 EXPORT_SYMBOL(skb_queue_head); 2899 2900 /** 2901 * skb_queue_tail - queue a buffer at the list tail 2902 * @list: list to use 2903 * @newsk: buffer to queue 2904 * 2905 * Queue a buffer at the tail of the list. This function takes the 2906 * list lock and can be used safely with other locking &sk_buff functions 2907 * safely. 2908 * 2909 * A buffer cannot be placed on two lists at the same time. 2910 */ 2911 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2912 { 2913 unsigned long flags; 2914 2915 spin_lock_irqsave(&list->lock, flags); 2916 __skb_queue_tail(list, newsk); 2917 spin_unlock_irqrestore(&list->lock, flags); 2918 } 2919 EXPORT_SYMBOL(skb_queue_tail); 2920 2921 /** 2922 * skb_unlink - remove a buffer from a list 2923 * @skb: buffer to remove 2924 * @list: list to use 2925 * 2926 * Remove a packet from a list. The list locks are taken and this 2927 * function is atomic with respect to other list locked calls 2928 * 2929 * You must know what list the SKB is on. 2930 */ 2931 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2932 { 2933 unsigned long flags; 2934 2935 spin_lock_irqsave(&list->lock, flags); 2936 __skb_unlink(skb, list); 2937 spin_unlock_irqrestore(&list->lock, flags); 2938 } 2939 EXPORT_SYMBOL(skb_unlink); 2940 2941 /** 2942 * skb_append - append a buffer 2943 * @old: buffer to insert after 2944 * @newsk: buffer to insert 2945 * @list: list to use 2946 * 2947 * Place a packet after a given packet in a list. The list locks are taken 2948 * and this function is atomic with respect to other list locked calls. 2949 * A buffer cannot be placed on two lists at the same time. 2950 */ 2951 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2952 { 2953 unsigned long flags; 2954 2955 spin_lock_irqsave(&list->lock, flags); 2956 __skb_queue_after(list, old, newsk); 2957 spin_unlock_irqrestore(&list->lock, flags); 2958 } 2959 EXPORT_SYMBOL(skb_append); 2960 2961 /** 2962 * skb_insert - insert a buffer 2963 * @old: buffer to insert before 2964 * @newsk: buffer to insert 2965 * @list: list to use 2966 * 2967 * Place a packet before a given packet in a list. The list locks are 2968 * taken and this function is atomic with respect to other list locked 2969 * calls. 2970 * 2971 * A buffer cannot be placed on two lists at the same time. 2972 */ 2973 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2974 { 2975 unsigned long flags; 2976 2977 spin_lock_irqsave(&list->lock, flags); 2978 __skb_insert(newsk, old->prev, old, list); 2979 spin_unlock_irqrestore(&list->lock, flags); 2980 } 2981 EXPORT_SYMBOL(skb_insert); 2982 2983 static inline void skb_split_inside_header(struct sk_buff *skb, 2984 struct sk_buff* skb1, 2985 const u32 len, const int pos) 2986 { 2987 int i; 2988 2989 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2990 pos - len); 2991 /* And move data appendix as is. */ 2992 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2993 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2994 2995 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2996 skb_shinfo(skb)->nr_frags = 0; 2997 skb1->data_len = skb->data_len; 2998 skb1->len += skb1->data_len; 2999 skb->data_len = 0; 3000 skb->len = len; 3001 skb_set_tail_pointer(skb, len); 3002 } 3003 3004 static inline void skb_split_no_header(struct sk_buff *skb, 3005 struct sk_buff* skb1, 3006 const u32 len, int pos) 3007 { 3008 int i, k = 0; 3009 const int nfrags = skb_shinfo(skb)->nr_frags; 3010 3011 skb_shinfo(skb)->nr_frags = 0; 3012 skb1->len = skb1->data_len = skb->len - len; 3013 skb->len = len; 3014 skb->data_len = len - pos; 3015 3016 for (i = 0; i < nfrags; i++) { 3017 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3018 3019 if (pos + size > len) { 3020 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3021 3022 if (pos < len) { 3023 /* Split frag. 3024 * We have two variants in this case: 3025 * 1. Move all the frag to the second 3026 * part, if it is possible. F.e. 3027 * this approach is mandatory for TUX, 3028 * where splitting is expensive. 3029 * 2. Split is accurately. We make this. 3030 */ 3031 skb_frag_ref(skb, i); 3032 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 3033 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3034 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3035 skb_shinfo(skb)->nr_frags++; 3036 } 3037 k++; 3038 } else 3039 skb_shinfo(skb)->nr_frags++; 3040 pos += size; 3041 } 3042 skb_shinfo(skb1)->nr_frags = k; 3043 } 3044 3045 /** 3046 * skb_split - Split fragmented skb to two parts at length len. 3047 * @skb: the buffer to split 3048 * @skb1: the buffer to receive the second part 3049 * @len: new length for skb 3050 */ 3051 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3052 { 3053 int pos = skb_headlen(skb); 3054 3055 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3056 SKBTX_SHARED_FRAG; 3057 skb_zerocopy_clone(skb1, skb, 0); 3058 if (len < pos) /* Split line is inside header. */ 3059 skb_split_inside_header(skb, skb1, len, pos); 3060 else /* Second chunk has no header, nothing to copy. */ 3061 skb_split_no_header(skb, skb1, len, pos); 3062 } 3063 EXPORT_SYMBOL(skb_split); 3064 3065 /* Shifting from/to a cloned skb is a no-go. 3066 * 3067 * Caller cannot keep skb_shinfo related pointers past calling here! 3068 */ 3069 static int skb_prepare_for_shift(struct sk_buff *skb) 3070 { 3071 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3072 } 3073 3074 /** 3075 * skb_shift - Shifts paged data partially from skb to another 3076 * @tgt: buffer into which tail data gets added 3077 * @skb: buffer from which the paged data comes from 3078 * @shiftlen: shift up to this many bytes 3079 * 3080 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3081 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3082 * It's up to caller to free skb if everything was shifted. 3083 * 3084 * If @tgt runs out of frags, the whole operation is aborted. 3085 * 3086 * Skb cannot include anything else but paged data while tgt is allowed 3087 * to have non-paged data as well. 3088 * 3089 * TODO: full sized shift could be optimized but that would need 3090 * specialized skb free'er to handle frags without up-to-date nr_frags. 3091 */ 3092 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3093 { 3094 int from, to, merge, todo; 3095 struct skb_frag_struct *fragfrom, *fragto; 3096 3097 BUG_ON(shiftlen > skb->len); 3098 3099 if (skb_headlen(skb)) 3100 return 0; 3101 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3102 return 0; 3103 3104 todo = shiftlen; 3105 from = 0; 3106 to = skb_shinfo(tgt)->nr_frags; 3107 fragfrom = &skb_shinfo(skb)->frags[from]; 3108 3109 /* Actual merge is delayed until the point when we know we can 3110 * commit all, so that we don't have to undo partial changes 3111 */ 3112 if (!to || 3113 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3114 fragfrom->page_offset)) { 3115 merge = -1; 3116 } else { 3117 merge = to - 1; 3118 3119 todo -= skb_frag_size(fragfrom); 3120 if (todo < 0) { 3121 if (skb_prepare_for_shift(skb) || 3122 skb_prepare_for_shift(tgt)) 3123 return 0; 3124 3125 /* All previous frag pointers might be stale! */ 3126 fragfrom = &skb_shinfo(skb)->frags[from]; 3127 fragto = &skb_shinfo(tgt)->frags[merge]; 3128 3129 skb_frag_size_add(fragto, shiftlen); 3130 skb_frag_size_sub(fragfrom, shiftlen); 3131 fragfrom->page_offset += shiftlen; 3132 3133 goto onlymerged; 3134 } 3135 3136 from++; 3137 } 3138 3139 /* Skip full, not-fitting skb to avoid expensive operations */ 3140 if ((shiftlen == skb->len) && 3141 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3142 return 0; 3143 3144 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3145 return 0; 3146 3147 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3148 if (to == MAX_SKB_FRAGS) 3149 return 0; 3150 3151 fragfrom = &skb_shinfo(skb)->frags[from]; 3152 fragto = &skb_shinfo(tgt)->frags[to]; 3153 3154 if (todo >= skb_frag_size(fragfrom)) { 3155 *fragto = *fragfrom; 3156 todo -= skb_frag_size(fragfrom); 3157 from++; 3158 to++; 3159 3160 } else { 3161 __skb_frag_ref(fragfrom); 3162 fragto->page = fragfrom->page; 3163 fragto->page_offset = fragfrom->page_offset; 3164 skb_frag_size_set(fragto, todo); 3165 3166 fragfrom->page_offset += todo; 3167 skb_frag_size_sub(fragfrom, todo); 3168 todo = 0; 3169 3170 to++; 3171 break; 3172 } 3173 } 3174 3175 /* Ready to "commit" this state change to tgt */ 3176 skb_shinfo(tgt)->nr_frags = to; 3177 3178 if (merge >= 0) { 3179 fragfrom = &skb_shinfo(skb)->frags[0]; 3180 fragto = &skb_shinfo(tgt)->frags[merge]; 3181 3182 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3183 __skb_frag_unref(fragfrom); 3184 } 3185 3186 /* Reposition in the original skb */ 3187 to = 0; 3188 while (from < skb_shinfo(skb)->nr_frags) 3189 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3190 skb_shinfo(skb)->nr_frags = to; 3191 3192 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3193 3194 onlymerged: 3195 /* Most likely the tgt won't ever need its checksum anymore, skb on 3196 * the other hand might need it if it needs to be resent 3197 */ 3198 tgt->ip_summed = CHECKSUM_PARTIAL; 3199 skb->ip_summed = CHECKSUM_PARTIAL; 3200 3201 /* Yak, is it really working this way? Some helper please? */ 3202 skb->len -= shiftlen; 3203 skb->data_len -= shiftlen; 3204 skb->truesize -= shiftlen; 3205 tgt->len += shiftlen; 3206 tgt->data_len += shiftlen; 3207 tgt->truesize += shiftlen; 3208 3209 return shiftlen; 3210 } 3211 3212 /** 3213 * skb_prepare_seq_read - Prepare a sequential read of skb data 3214 * @skb: the buffer to read 3215 * @from: lower offset of data to be read 3216 * @to: upper offset of data to be read 3217 * @st: state variable 3218 * 3219 * Initializes the specified state variable. Must be called before 3220 * invoking skb_seq_read() for the first time. 3221 */ 3222 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3223 unsigned int to, struct skb_seq_state *st) 3224 { 3225 st->lower_offset = from; 3226 st->upper_offset = to; 3227 st->root_skb = st->cur_skb = skb; 3228 st->frag_idx = st->stepped_offset = 0; 3229 st->frag_data = NULL; 3230 } 3231 EXPORT_SYMBOL(skb_prepare_seq_read); 3232 3233 /** 3234 * skb_seq_read - Sequentially read skb data 3235 * @consumed: number of bytes consumed by the caller so far 3236 * @data: destination pointer for data to be returned 3237 * @st: state variable 3238 * 3239 * Reads a block of skb data at @consumed relative to the 3240 * lower offset specified to skb_prepare_seq_read(). Assigns 3241 * the head of the data block to @data and returns the length 3242 * of the block or 0 if the end of the skb data or the upper 3243 * offset has been reached. 3244 * 3245 * The caller is not required to consume all of the data 3246 * returned, i.e. @consumed is typically set to the number 3247 * of bytes already consumed and the next call to 3248 * skb_seq_read() will return the remaining part of the block. 3249 * 3250 * Note 1: The size of each block of data returned can be arbitrary, 3251 * this limitation is the cost for zerocopy sequential 3252 * reads of potentially non linear data. 3253 * 3254 * Note 2: Fragment lists within fragments are not implemented 3255 * at the moment, state->root_skb could be replaced with 3256 * a stack for this purpose. 3257 */ 3258 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3259 struct skb_seq_state *st) 3260 { 3261 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3262 skb_frag_t *frag; 3263 3264 if (unlikely(abs_offset >= st->upper_offset)) { 3265 if (st->frag_data) { 3266 kunmap_atomic(st->frag_data); 3267 st->frag_data = NULL; 3268 } 3269 return 0; 3270 } 3271 3272 next_skb: 3273 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3274 3275 if (abs_offset < block_limit && !st->frag_data) { 3276 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3277 return block_limit - abs_offset; 3278 } 3279 3280 if (st->frag_idx == 0 && !st->frag_data) 3281 st->stepped_offset += skb_headlen(st->cur_skb); 3282 3283 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3284 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3285 block_limit = skb_frag_size(frag) + st->stepped_offset; 3286 3287 if (abs_offset < block_limit) { 3288 if (!st->frag_data) 3289 st->frag_data = kmap_atomic(skb_frag_page(frag)); 3290 3291 *data = (u8 *) st->frag_data + frag->page_offset + 3292 (abs_offset - st->stepped_offset); 3293 3294 return block_limit - abs_offset; 3295 } 3296 3297 if (st->frag_data) { 3298 kunmap_atomic(st->frag_data); 3299 st->frag_data = NULL; 3300 } 3301 3302 st->frag_idx++; 3303 st->stepped_offset += skb_frag_size(frag); 3304 } 3305 3306 if (st->frag_data) { 3307 kunmap_atomic(st->frag_data); 3308 st->frag_data = NULL; 3309 } 3310 3311 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3312 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3313 st->frag_idx = 0; 3314 goto next_skb; 3315 } else if (st->cur_skb->next) { 3316 st->cur_skb = st->cur_skb->next; 3317 st->frag_idx = 0; 3318 goto next_skb; 3319 } 3320 3321 return 0; 3322 } 3323 EXPORT_SYMBOL(skb_seq_read); 3324 3325 /** 3326 * skb_abort_seq_read - Abort a sequential read of skb data 3327 * @st: state variable 3328 * 3329 * Must be called if skb_seq_read() was not called until it 3330 * returned 0. 3331 */ 3332 void skb_abort_seq_read(struct skb_seq_state *st) 3333 { 3334 if (st->frag_data) 3335 kunmap_atomic(st->frag_data); 3336 } 3337 EXPORT_SYMBOL(skb_abort_seq_read); 3338 3339 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3340 3341 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3342 struct ts_config *conf, 3343 struct ts_state *state) 3344 { 3345 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3346 } 3347 3348 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3349 { 3350 skb_abort_seq_read(TS_SKB_CB(state)); 3351 } 3352 3353 /** 3354 * skb_find_text - Find a text pattern in skb data 3355 * @skb: the buffer to look in 3356 * @from: search offset 3357 * @to: search limit 3358 * @config: textsearch configuration 3359 * 3360 * Finds a pattern in the skb data according to the specified 3361 * textsearch configuration. Use textsearch_next() to retrieve 3362 * subsequent occurrences of the pattern. Returns the offset 3363 * to the first occurrence or UINT_MAX if no match was found. 3364 */ 3365 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3366 unsigned int to, struct ts_config *config) 3367 { 3368 struct ts_state state; 3369 unsigned int ret; 3370 3371 config->get_next_block = skb_ts_get_next_block; 3372 config->finish = skb_ts_finish; 3373 3374 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3375 3376 ret = textsearch_find(config, &state); 3377 return (ret <= to - from ? ret : UINT_MAX); 3378 } 3379 EXPORT_SYMBOL(skb_find_text); 3380 3381 /** 3382 * skb_append_datato_frags - append the user data to a skb 3383 * @sk: sock structure 3384 * @skb: skb structure to be appended with user data. 3385 * @getfrag: call back function to be used for getting the user data 3386 * @from: pointer to user message iov 3387 * @length: length of the iov message 3388 * 3389 * Description: This procedure append the user data in the fragment part 3390 * of the skb if any page alloc fails user this procedure returns -ENOMEM 3391 */ 3392 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 3393 int (*getfrag)(void *from, char *to, int offset, 3394 int len, int odd, struct sk_buff *skb), 3395 void *from, int length) 3396 { 3397 int frg_cnt = skb_shinfo(skb)->nr_frags; 3398 int copy; 3399 int offset = 0; 3400 int ret; 3401 struct page_frag *pfrag = ¤t->task_frag; 3402 3403 do { 3404 /* Return error if we don't have space for new frag */ 3405 if (frg_cnt >= MAX_SKB_FRAGS) 3406 return -EMSGSIZE; 3407 3408 if (!sk_page_frag_refill(sk, pfrag)) 3409 return -ENOMEM; 3410 3411 /* copy the user data to page */ 3412 copy = min_t(int, length, pfrag->size - pfrag->offset); 3413 3414 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, 3415 offset, copy, 0, skb); 3416 if (ret < 0) 3417 return -EFAULT; 3418 3419 /* copy was successful so update the size parameters */ 3420 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, 3421 copy); 3422 frg_cnt++; 3423 pfrag->offset += copy; 3424 get_page(pfrag->page); 3425 3426 skb->truesize += copy; 3427 refcount_add(copy, &sk->sk_wmem_alloc); 3428 skb->len += copy; 3429 skb->data_len += copy; 3430 offset += copy; 3431 length -= copy; 3432 3433 } while (length > 0); 3434 3435 return 0; 3436 } 3437 EXPORT_SYMBOL(skb_append_datato_frags); 3438 3439 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3440 int offset, size_t size) 3441 { 3442 int i = skb_shinfo(skb)->nr_frags; 3443 3444 if (skb_can_coalesce(skb, i, page, offset)) { 3445 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3446 } else if (i < MAX_SKB_FRAGS) { 3447 get_page(page); 3448 skb_fill_page_desc(skb, i, page, offset, size); 3449 } else { 3450 return -EMSGSIZE; 3451 } 3452 3453 return 0; 3454 } 3455 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3456 3457 /** 3458 * skb_pull_rcsum - pull skb and update receive checksum 3459 * @skb: buffer to update 3460 * @len: length of data pulled 3461 * 3462 * This function performs an skb_pull on the packet and updates 3463 * the CHECKSUM_COMPLETE checksum. It should be used on 3464 * receive path processing instead of skb_pull unless you know 3465 * that the checksum difference is zero (e.g., a valid IP header) 3466 * or you are setting ip_summed to CHECKSUM_NONE. 3467 */ 3468 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3469 { 3470 unsigned char *data = skb->data; 3471 3472 BUG_ON(len > skb->len); 3473 __skb_pull(skb, len); 3474 skb_postpull_rcsum(skb, data, len); 3475 return skb->data; 3476 } 3477 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3478 3479 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3480 { 3481 skb_frag_t head_frag; 3482 struct page *page; 3483 3484 page = virt_to_head_page(frag_skb->head); 3485 head_frag.page.p = page; 3486 head_frag.page_offset = frag_skb->data - 3487 (unsigned char *)page_address(page); 3488 head_frag.size = skb_headlen(frag_skb); 3489 return head_frag; 3490 } 3491 3492 /** 3493 * skb_segment - Perform protocol segmentation on skb. 3494 * @head_skb: buffer to segment 3495 * @features: features for the output path (see dev->features) 3496 * 3497 * This function performs segmentation on the given skb. It returns 3498 * a pointer to the first in a list of new skbs for the segments. 3499 * In case of error it returns ERR_PTR(err). 3500 */ 3501 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3502 netdev_features_t features) 3503 { 3504 struct sk_buff *segs = NULL; 3505 struct sk_buff *tail = NULL; 3506 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3507 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3508 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3509 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3510 struct sk_buff *frag_skb = head_skb; 3511 unsigned int offset = doffset; 3512 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3513 unsigned int partial_segs = 0; 3514 unsigned int headroom; 3515 unsigned int len = head_skb->len; 3516 __be16 proto; 3517 bool csum, sg; 3518 int nfrags = skb_shinfo(head_skb)->nr_frags; 3519 int err = -ENOMEM; 3520 int i = 0; 3521 int pos; 3522 int dummy; 3523 3524 __skb_push(head_skb, doffset); 3525 proto = skb_network_protocol(head_skb, &dummy); 3526 if (unlikely(!proto)) 3527 return ERR_PTR(-EINVAL); 3528 3529 sg = !!(features & NETIF_F_SG); 3530 csum = !!can_checksum_protocol(features, proto); 3531 3532 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3533 if (!(features & NETIF_F_GSO_PARTIAL)) { 3534 struct sk_buff *iter; 3535 unsigned int frag_len; 3536 3537 if (!list_skb || 3538 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3539 goto normal; 3540 3541 /* If we get here then all the required 3542 * GSO features except frag_list are supported. 3543 * Try to split the SKB to multiple GSO SKBs 3544 * with no frag_list. 3545 * Currently we can do that only when the buffers don't 3546 * have a linear part and all the buffers except 3547 * the last are of the same length. 3548 */ 3549 frag_len = list_skb->len; 3550 skb_walk_frags(head_skb, iter) { 3551 if (frag_len != iter->len && iter->next) 3552 goto normal; 3553 if (skb_headlen(iter) && !iter->head_frag) 3554 goto normal; 3555 3556 len -= iter->len; 3557 } 3558 3559 if (len != frag_len) 3560 goto normal; 3561 } 3562 3563 /* GSO partial only requires that we trim off any excess that 3564 * doesn't fit into an MSS sized block, so take care of that 3565 * now. 3566 */ 3567 partial_segs = len / mss; 3568 if (partial_segs > 1) 3569 mss *= partial_segs; 3570 else 3571 partial_segs = 0; 3572 } 3573 3574 normal: 3575 headroom = skb_headroom(head_skb); 3576 pos = skb_headlen(head_skb); 3577 3578 do { 3579 struct sk_buff *nskb; 3580 skb_frag_t *nskb_frag; 3581 int hsize; 3582 int size; 3583 3584 if (unlikely(mss == GSO_BY_FRAGS)) { 3585 len = list_skb->len; 3586 } else { 3587 len = head_skb->len - offset; 3588 if (len > mss) 3589 len = mss; 3590 } 3591 3592 hsize = skb_headlen(head_skb) - offset; 3593 if (hsize < 0) 3594 hsize = 0; 3595 if (hsize > len || !sg) 3596 hsize = len; 3597 3598 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3599 (skb_headlen(list_skb) == len || sg)) { 3600 BUG_ON(skb_headlen(list_skb) > len); 3601 3602 i = 0; 3603 nfrags = skb_shinfo(list_skb)->nr_frags; 3604 frag = skb_shinfo(list_skb)->frags; 3605 frag_skb = list_skb; 3606 pos += skb_headlen(list_skb); 3607 3608 while (pos < offset + len) { 3609 BUG_ON(i >= nfrags); 3610 3611 size = skb_frag_size(frag); 3612 if (pos + size > offset + len) 3613 break; 3614 3615 i++; 3616 pos += size; 3617 frag++; 3618 } 3619 3620 nskb = skb_clone(list_skb, GFP_ATOMIC); 3621 list_skb = list_skb->next; 3622 3623 if (unlikely(!nskb)) 3624 goto err; 3625 3626 if (unlikely(pskb_trim(nskb, len))) { 3627 kfree_skb(nskb); 3628 goto err; 3629 } 3630 3631 hsize = skb_end_offset(nskb); 3632 if (skb_cow_head(nskb, doffset + headroom)) { 3633 kfree_skb(nskb); 3634 goto err; 3635 } 3636 3637 nskb->truesize += skb_end_offset(nskb) - hsize; 3638 skb_release_head_state(nskb); 3639 __skb_push(nskb, doffset); 3640 } else { 3641 nskb = __alloc_skb(hsize + doffset + headroom, 3642 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3643 NUMA_NO_NODE); 3644 3645 if (unlikely(!nskb)) 3646 goto err; 3647 3648 skb_reserve(nskb, headroom); 3649 __skb_put(nskb, doffset); 3650 } 3651 3652 if (segs) 3653 tail->next = nskb; 3654 else 3655 segs = nskb; 3656 tail = nskb; 3657 3658 __copy_skb_header(nskb, head_skb); 3659 3660 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3661 skb_reset_mac_len(nskb); 3662 3663 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3664 nskb->data - tnl_hlen, 3665 doffset + tnl_hlen); 3666 3667 if (nskb->len == len + doffset) 3668 goto perform_csum_check; 3669 3670 if (!sg) { 3671 if (!nskb->remcsum_offload) 3672 nskb->ip_summed = CHECKSUM_NONE; 3673 SKB_GSO_CB(nskb)->csum = 3674 skb_copy_and_csum_bits(head_skb, offset, 3675 skb_put(nskb, len), 3676 len, 0); 3677 SKB_GSO_CB(nskb)->csum_start = 3678 skb_headroom(nskb) + doffset; 3679 continue; 3680 } 3681 3682 nskb_frag = skb_shinfo(nskb)->frags; 3683 3684 skb_copy_from_linear_data_offset(head_skb, offset, 3685 skb_put(nskb, hsize), hsize); 3686 3687 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 3688 SKBTX_SHARED_FRAG; 3689 3690 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3691 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 3692 goto err; 3693 3694 while (pos < offset + len) { 3695 if (i >= nfrags) { 3696 i = 0; 3697 nfrags = skb_shinfo(list_skb)->nr_frags; 3698 frag = skb_shinfo(list_skb)->frags; 3699 frag_skb = list_skb; 3700 if (!skb_headlen(list_skb)) { 3701 BUG_ON(!nfrags); 3702 } else { 3703 BUG_ON(!list_skb->head_frag); 3704 3705 /* to make room for head_frag. */ 3706 i--; 3707 frag--; 3708 } 3709 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3710 skb_zerocopy_clone(nskb, frag_skb, 3711 GFP_ATOMIC)) 3712 goto err; 3713 3714 list_skb = list_skb->next; 3715 } 3716 3717 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3718 MAX_SKB_FRAGS)) { 3719 net_warn_ratelimited( 3720 "skb_segment: too many frags: %u %u\n", 3721 pos, mss); 3722 goto err; 3723 } 3724 3725 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 3726 __skb_frag_ref(nskb_frag); 3727 size = skb_frag_size(nskb_frag); 3728 3729 if (pos < offset) { 3730 nskb_frag->page_offset += offset - pos; 3731 skb_frag_size_sub(nskb_frag, offset - pos); 3732 } 3733 3734 skb_shinfo(nskb)->nr_frags++; 3735 3736 if (pos + size <= offset + len) { 3737 i++; 3738 frag++; 3739 pos += size; 3740 } else { 3741 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3742 goto skip_fraglist; 3743 } 3744 3745 nskb_frag++; 3746 } 3747 3748 skip_fraglist: 3749 nskb->data_len = len - hsize; 3750 nskb->len += nskb->data_len; 3751 nskb->truesize += nskb->data_len; 3752 3753 perform_csum_check: 3754 if (!csum) { 3755 if (skb_has_shared_frag(nskb)) { 3756 err = __skb_linearize(nskb); 3757 if (err) 3758 goto err; 3759 } 3760 if (!nskb->remcsum_offload) 3761 nskb->ip_summed = CHECKSUM_NONE; 3762 SKB_GSO_CB(nskb)->csum = 3763 skb_checksum(nskb, doffset, 3764 nskb->len - doffset, 0); 3765 SKB_GSO_CB(nskb)->csum_start = 3766 skb_headroom(nskb) + doffset; 3767 } 3768 } while ((offset += len) < head_skb->len); 3769 3770 /* Some callers want to get the end of the list. 3771 * Put it in segs->prev to avoid walking the list. 3772 * (see validate_xmit_skb_list() for example) 3773 */ 3774 segs->prev = tail; 3775 3776 if (partial_segs) { 3777 struct sk_buff *iter; 3778 int type = skb_shinfo(head_skb)->gso_type; 3779 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 3780 3781 /* Update type to add partial and then remove dodgy if set */ 3782 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 3783 type &= ~SKB_GSO_DODGY; 3784 3785 /* Update GSO info and prepare to start updating headers on 3786 * our way back down the stack of protocols. 3787 */ 3788 for (iter = segs; iter; iter = iter->next) { 3789 skb_shinfo(iter)->gso_size = gso_size; 3790 skb_shinfo(iter)->gso_segs = partial_segs; 3791 skb_shinfo(iter)->gso_type = type; 3792 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 3793 } 3794 3795 if (tail->len - doffset <= gso_size) 3796 skb_shinfo(tail)->gso_size = 0; 3797 else if (tail != segs) 3798 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 3799 } 3800 3801 /* Following permits correct backpressure, for protocols 3802 * using skb_set_owner_w(). 3803 * Idea is to tranfert ownership from head_skb to last segment. 3804 */ 3805 if (head_skb->destructor == sock_wfree) { 3806 swap(tail->truesize, head_skb->truesize); 3807 swap(tail->destructor, head_skb->destructor); 3808 swap(tail->sk, head_skb->sk); 3809 } 3810 return segs; 3811 3812 err: 3813 kfree_skb_list(segs); 3814 return ERR_PTR(err); 3815 } 3816 EXPORT_SYMBOL_GPL(skb_segment); 3817 3818 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 3819 { 3820 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3821 unsigned int offset = skb_gro_offset(skb); 3822 unsigned int headlen = skb_headlen(skb); 3823 unsigned int len = skb_gro_len(skb); 3824 struct sk_buff *lp, *p = *head; 3825 unsigned int delta_truesize; 3826 3827 if (unlikely(p->len + len >= 65536)) 3828 return -E2BIG; 3829 3830 lp = NAPI_GRO_CB(p)->last; 3831 pinfo = skb_shinfo(lp); 3832 3833 if (headlen <= offset) { 3834 skb_frag_t *frag; 3835 skb_frag_t *frag2; 3836 int i = skbinfo->nr_frags; 3837 int nr_frags = pinfo->nr_frags + i; 3838 3839 if (nr_frags > MAX_SKB_FRAGS) 3840 goto merge; 3841 3842 offset -= headlen; 3843 pinfo->nr_frags = nr_frags; 3844 skbinfo->nr_frags = 0; 3845 3846 frag = pinfo->frags + nr_frags; 3847 frag2 = skbinfo->frags + i; 3848 do { 3849 *--frag = *--frag2; 3850 } while (--i); 3851 3852 frag->page_offset += offset; 3853 skb_frag_size_sub(frag, offset); 3854 3855 /* all fragments truesize : remove (head size + sk_buff) */ 3856 delta_truesize = skb->truesize - 3857 SKB_TRUESIZE(skb_end_offset(skb)); 3858 3859 skb->truesize -= skb->data_len; 3860 skb->len -= skb->data_len; 3861 skb->data_len = 0; 3862 3863 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3864 goto done; 3865 } else if (skb->head_frag) { 3866 int nr_frags = pinfo->nr_frags; 3867 skb_frag_t *frag = pinfo->frags + nr_frags; 3868 struct page *page = virt_to_head_page(skb->head); 3869 unsigned int first_size = headlen - offset; 3870 unsigned int first_offset; 3871 3872 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3873 goto merge; 3874 3875 first_offset = skb->data - 3876 (unsigned char *)page_address(page) + 3877 offset; 3878 3879 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3880 3881 frag->page.p = page; 3882 frag->page_offset = first_offset; 3883 skb_frag_size_set(frag, first_size); 3884 3885 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3886 /* We dont need to clear skbinfo->nr_frags here */ 3887 3888 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3889 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3890 goto done; 3891 } 3892 3893 merge: 3894 delta_truesize = skb->truesize; 3895 if (offset > headlen) { 3896 unsigned int eat = offset - headlen; 3897 3898 skbinfo->frags[0].page_offset += eat; 3899 skb_frag_size_sub(&skbinfo->frags[0], eat); 3900 skb->data_len -= eat; 3901 skb->len -= eat; 3902 offset = headlen; 3903 } 3904 3905 __skb_pull(skb, offset); 3906 3907 if (NAPI_GRO_CB(p)->last == p) 3908 skb_shinfo(p)->frag_list = skb; 3909 else 3910 NAPI_GRO_CB(p)->last->next = skb; 3911 NAPI_GRO_CB(p)->last = skb; 3912 __skb_header_release(skb); 3913 lp = p; 3914 3915 done: 3916 NAPI_GRO_CB(p)->count++; 3917 p->data_len += len; 3918 p->truesize += delta_truesize; 3919 p->len += len; 3920 if (lp != p) { 3921 lp->data_len += len; 3922 lp->truesize += delta_truesize; 3923 lp->len += len; 3924 } 3925 NAPI_GRO_CB(skb)->same_flow = 1; 3926 return 0; 3927 } 3928 EXPORT_SYMBOL_GPL(skb_gro_receive); 3929 3930 void __init skb_init(void) 3931 { 3932 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 3933 sizeof(struct sk_buff), 3934 0, 3935 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3936 offsetof(struct sk_buff, cb), 3937 sizeof_field(struct sk_buff, cb), 3938 NULL); 3939 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3940 sizeof(struct sk_buff_fclones), 3941 0, 3942 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3943 NULL); 3944 } 3945 3946 static int 3947 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 3948 unsigned int recursion_level) 3949 { 3950 int start = skb_headlen(skb); 3951 int i, copy = start - offset; 3952 struct sk_buff *frag_iter; 3953 int elt = 0; 3954 3955 if (unlikely(recursion_level >= 24)) 3956 return -EMSGSIZE; 3957 3958 if (copy > 0) { 3959 if (copy > len) 3960 copy = len; 3961 sg_set_buf(sg, skb->data + offset, copy); 3962 elt++; 3963 if ((len -= copy) == 0) 3964 return elt; 3965 offset += copy; 3966 } 3967 3968 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3969 int end; 3970 3971 WARN_ON(start > offset + len); 3972 3973 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3974 if ((copy = end - offset) > 0) { 3975 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3976 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3977 return -EMSGSIZE; 3978 3979 if (copy > len) 3980 copy = len; 3981 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3982 frag->page_offset+offset-start); 3983 elt++; 3984 if (!(len -= copy)) 3985 return elt; 3986 offset += copy; 3987 } 3988 start = end; 3989 } 3990 3991 skb_walk_frags(skb, frag_iter) { 3992 int end, ret; 3993 3994 WARN_ON(start > offset + len); 3995 3996 end = start + frag_iter->len; 3997 if ((copy = end - offset) > 0) { 3998 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3999 return -EMSGSIZE; 4000 4001 if (copy > len) 4002 copy = len; 4003 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4004 copy, recursion_level + 1); 4005 if (unlikely(ret < 0)) 4006 return ret; 4007 elt += ret; 4008 if ((len -= copy) == 0) 4009 return elt; 4010 offset += copy; 4011 } 4012 start = end; 4013 } 4014 BUG_ON(len); 4015 return elt; 4016 } 4017 4018 /** 4019 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4020 * @skb: Socket buffer containing the buffers to be mapped 4021 * @sg: The scatter-gather list to map into 4022 * @offset: The offset into the buffer's contents to start mapping 4023 * @len: Length of buffer space to be mapped 4024 * 4025 * Fill the specified scatter-gather list with mappings/pointers into a 4026 * region of the buffer space attached to a socket buffer. Returns either 4027 * the number of scatterlist items used, or -EMSGSIZE if the contents 4028 * could not fit. 4029 */ 4030 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4031 { 4032 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4033 4034 if (nsg <= 0) 4035 return nsg; 4036 4037 sg_mark_end(&sg[nsg - 1]); 4038 4039 return nsg; 4040 } 4041 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4042 4043 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4044 * sglist without mark the sg which contain last skb data as the end. 4045 * So the caller can mannipulate sg list as will when padding new data after 4046 * the first call without calling sg_unmark_end to expend sg list. 4047 * 4048 * Scenario to use skb_to_sgvec_nomark: 4049 * 1. sg_init_table 4050 * 2. skb_to_sgvec_nomark(payload1) 4051 * 3. skb_to_sgvec_nomark(payload2) 4052 * 4053 * This is equivalent to: 4054 * 1. sg_init_table 4055 * 2. skb_to_sgvec(payload1) 4056 * 3. sg_unmark_end 4057 * 4. skb_to_sgvec(payload2) 4058 * 4059 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4060 * is more preferable. 4061 */ 4062 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4063 int offset, int len) 4064 { 4065 return __skb_to_sgvec(skb, sg, offset, len, 0); 4066 } 4067 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4068 4069 4070 4071 /** 4072 * skb_cow_data - Check that a socket buffer's data buffers are writable 4073 * @skb: The socket buffer to check. 4074 * @tailbits: Amount of trailing space to be added 4075 * @trailer: Returned pointer to the skb where the @tailbits space begins 4076 * 4077 * Make sure that the data buffers attached to a socket buffer are 4078 * writable. If they are not, private copies are made of the data buffers 4079 * and the socket buffer is set to use these instead. 4080 * 4081 * If @tailbits is given, make sure that there is space to write @tailbits 4082 * bytes of data beyond current end of socket buffer. @trailer will be 4083 * set to point to the skb in which this space begins. 4084 * 4085 * The number of scatterlist elements required to completely map the 4086 * COW'd and extended socket buffer will be returned. 4087 */ 4088 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4089 { 4090 int copyflag; 4091 int elt; 4092 struct sk_buff *skb1, **skb_p; 4093 4094 /* If skb is cloned or its head is paged, reallocate 4095 * head pulling out all the pages (pages are considered not writable 4096 * at the moment even if they are anonymous). 4097 */ 4098 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4099 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 4100 return -ENOMEM; 4101 4102 /* Easy case. Most of packets will go this way. */ 4103 if (!skb_has_frag_list(skb)) { 4104 /* A little of trouble, not enough of space for trailer. 4105 * This should not happen, when stack is tuned to generate 4106 * good frames. OK, on miss we reallocate and reserve even more 4107 * space, 128 bytes is fair. */ 4108 4109 if (skb_tailroom(skb) < tailbits && 4110 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4111 return -ENOMEM; 4112 4113 /* Voila! */ 4114 *trailer = skb; 4115 return 1; 4116 } 4117 4118 /* Misery. We are in troubles, going to mincer fragments... */ 4119 4120 elt = 1; 4121 skb_p = &skb_shinfo(skb)->frag_list; 4122 copyflag = 0; 4123 4124 while ((skb1 = *skb_p) != NULL) { 4125 int ntail = 0; 4126 4127 /* The fragment is partially pulled by someone, 4128 * this can happen on input. Copy it and everything 4129 * after it. */ 4130 4131 if (skb_shared(skb1)) 4132 copyflag = 1; 4133 4134 /* If the skb is the last, worry about trailer. */ 4135 4136 if (skb1->next == NULL && tailbits) { 4137 if (skb_shinfo(skb1)->nr_frags || 4138 skb_has_frag_list(skb1) || 4139 skb_tailroom(skb1) < tailbits) 4140 ntail = tailbits + 128; 4141 } 4142 4143 if (copyflag || 4144 skb_cloned(skb1) || 4145 ntail || 4146 skb_shinfo(skb1)->nr_frags || 4147 skb_has_frag_list(skb1)) { 4148 struct sk_buff *skb2; 4149 4150 /* Fuck, we are miserable poor guys... */ 4151 if (ntail == 0) 4152 skb2 = skb_copy(skb1, GFP_ATOMIC); 4153 else 4154 skb2 = skb_copy_expand(skb1, 4155 skb_headroom(skb1), 4156 ntail, 4157 GFP_ATOMIC); 4158 if (unlikely(skb2 == NULL)) 4159 return -ENOMEM; 4160 4161 if (skb1->sk) 4162 skb_set_owner_w(skb2, skb1->sk); 4163 4164 /* Looking around. Are we still alive? 4165 * OK, link new skb, drop old one */ 4166 4167 skb2->next = skb1->next; 4168 *skb_p = skb2; 4169 kfree_skb(skb1); 4170 skb1 = skb2; 4171 } 4172 elt++; 4173 *trailer = skb1; 4174 skb_p = &skb1->next; 4175 } 4176 4177 return elt; 4178 } 4179 EXPORT_SYMBOL_GPL(skb_cow_data); 4180 4181 static void sock_rmem_free(struct sk_buff *skb) 4182 { 4183 struct sock *sk = skb->sk; 4184 4185 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4186 } 4187 4188 static void skb_set_err_queue(struct sk_buff *skb) 4189 { 4190 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4191 * So, it is safe to (mis)use it to mark skbs on the error queue. 4192 */ 4193 skb->pkt_type = PACKET_OUTGOING; 4194 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4195 } 4196 4197 /* 4198 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4199 */ 4200 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4201 { 4202 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4203 (unsigned int)sk->sk_rcvbuf) 4204 return -ENOMEM; 4205 4206 skb_orphan(skb); 4207 skb->sk = sk; 4208 skb->destructor = sock_rmem_free; 4209 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4210 skb_set_err_queue(skb); 4211 4212 /* before exiting rcu section, make sure dst is refcounted */ 4213 skb_dst_force(skb); 4214 4215 skb_queue_tail(&sk->sk_error_queue, skb); 4216 if (!sock_flag(sk, SOCK_DEAD)) 4217 sk->sk_error_report(sk); 4218 return 0; 4219 } 4220 EXPORT_SYMBOL(sock_queue_err_skb); 4221 4222 static bool is_icmp_err_skb(const struct sk_buff *skb) 4223 { 4224 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4225 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4226 } 4227 4228 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4229 { 4230 struct sk_buff_head *q = &sk->sk_error_queue; 4231 struct sk_buff *skb, *skb_next = NULL; 4232 bool icmp_next = false; 4233 unsigned long flags; 4234 4235 spin_lock_irqsave(&q->lock, flags); 4236 skb = __skb_dequeue(q); 4237 if (skb && (skb_next = skb_peek(q))) { 4238 icmp_next = is_icmp_err_skb(skb_next); 4239 if (icmp_next) 4240 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin; 4241 } 4242 spin_unlock_irqrestore(&q->lock, flags); 4243 4244 if (is_icmp_err_skb(skb) && !icmp_next) 4245 sk->sk_err = 0; 4246 4247 if (skb_next) 4248 sk->sk_error_report(sk); 4249 4250 return skb; 4251 } 4252 EXPORT_SYMBOL(sock_dequeue_err_skb); 4253 4254 /** 4255 * skb_clone_sk - create clone of skb, and take reference to socket 4256 * @skb: the skb to clone 4257 * 4258 * This function creates a clone of a buffer that holds a reference on 4259 * sk_refcnt. Buffers created via this function are meant to be 4260 * returned using sock_queue_err_skb, or free via kfree_skb. 4261 * 4262 * When passing buffers allocated with this function to sock_queue_err_skb 4263 * it is necessary to wrap the call with sock_hold/sock_put in order to 4264 * prevent the socket from being released prior to being enqueued on 4265 * the sk_error_queue. 4266 */ 4267 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4268 { 4269 struct sock *sk = skb->sk; 4270 struct sk_buff *clone; 4271 4272 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4273 return NULL; 4274 4275 clone = skb_clone(skb, GFP_ATOMIC); 4276 if (!clone) { 4277 sock_put(sk); 4278 return NULL; 4279 } 4280 4281 clone->sk = sk; 4282 clone->destructor = sock_efree; 4283 4284 return clone; 4285 } 4286 EXPORT_SYMBOL(skb_clone_sk); 4287 4288 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4289 struct sock *sk, 4290 int tstype, 4291 bool opt_stats) 4292 { 4293 struct sock_exterr_skb *serr; 4294 int err; 4295 4296 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4297 4298 serr = SKB_EXT_ERR(skb); 4299 memset(serr, 0, sizeof(*serr)); 4300 serr->ee.ee_errno = ENOMSG; 4301 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4302 serr->ee.ee_info = tstype; 4303 serr->opt_stats = opt_stats; 4304 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4305 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4306 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4307 if (sk->sk_protocol == IPPROTO_TCP && 4308 sk->sk_type == SOCK_STREAM) 4309 serr->ee.ee_data -= sk->sk_tskey; 4310 } 4311 4312 err = sock_queue_err_skb(sk, skb); 4313 4314 if (err) 4315 kfree_skb(skb); 4316 } 4317 4318 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4319 { 4320 bool ret; 4321 4322 if (likely(sysctl_tstamp_allow_data || tsonly)) 4323 return true; 4324 4325 read_lock_bh(&sk->sk_callback_lock); 4326 ret = sk->sk_socket && sk->sk_socket->file && 4327 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4328 read_unlock_bh(&sk->sk_callback_lock); 4329 return ret; 4330 } 4331 4332 void skb_complete_tx_timestamp(struct sk_buff *skb, 4333 struct skb_shared_hwtstamps *hwtstamps) 4334 { 4335 struct sock *sk = skb->sk; 4336 4337 if (!skb_may_tx_timestamp(sk, false)) 4338 goto err; 4339 4340 /* Take a reference to prevent skb_orphan() from freeing the socket, 4341 * but only if the socket refcount is not zero. 4342 */ 4343 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4344 *skb_hwtstamps(skb) = *hwtstamps; 4345 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4346 sock_put(sk); 4347 return; 4348 } 4349 4350 err: 4351 kfree_skb(skb); 4352 } 4353 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4354 4355 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4356 struct skb_shared_hwtstamps *hwtstamps, 4357 struct sock *sk, int tstype) 4358 { 4359 struct sk_buff *skb; 4360 bool tsonly, opt_stats = false; 4361 4362 if (!sk) 4363 return; 4364 4365 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4366 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4367 return; 4368 4369 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4370 if (!skb_may_tx_timestamp(sk, tsonly)) 4371 return; 4372 4373 if (tsonly) { 4374 #ifdef CONFIG_INET 4375 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4376 sk->sk_protocol == IPPROTO_TCP && 4377 sk->sk_type == SOCK_STREAM) { 4378 skb = tcp_get_timestamping_opt_stats(sk); 4379 opt_stats = true; 4380 } else 4381 #endif 4382 skb = alloc_skb(0, GFP_ATOMIC); 4383 } else { 4384 skb = skb_clone(orig_skb, GFP_ATOMIC); 4385 } 4386 if (!skb) 4387 return; 4388 4389 if (tsonly) { 4390 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4391 SKBTX_ANY_TSTAMP; 4392 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4393 } 4394 4395 if (hwtstamps) 4396 *skb_hwtstamps(skb) = *hwtstamps; 4397 else 4398 skb->tstamp = ktime_get_real(); 4399 4400 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4401 } 4402 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4403 4404 void skb_tstamp_tx(struct sk_buff *orig_skb, 4405 struct skb_shared_hwtstamps *hwtstamps) 4406 { 4407 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4408 SCM_TSTAMP_SND); 4409 } 4410 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4411 4412 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4413 { 4414 struct sock *sk = skb->sk; 4415 struct sock_exterr_skb *serr; 4416 int err = 1; 4417 4418 skb->wifi_acked_valid = 1; 4419 skb->wifi_acked = acked; 4420 4421 serr = SKB_EXT_ERR(skb); 4422 memset(serr, 0, sizeof(*serr)); 4423 serr->ee.ee_errno = ENOMSG; 4424 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4425 4426 /* Take a reference to prevent skb_orphan() from freeing the socket, 4427 * but only if the socket refcount is not zero. 4428 */ 4429 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4430 err = sock_queue_err_skb(sk, skb); 4431 sock_put(sk); 4432 } 4433 if (err) 4434 kfree_skb(skb); 4435 } 4436 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4437 4438 /** 4439 * skb_partial_csum_set - set up and verify partial csum values for packet 4440 * @skb: the skb to set 4441 * @start: the number of bytes after skb->data to start checksumming. 4442 * @off: the offset from start to place the checksum. 4443 * 4444 * For untrusted partially-checksummed packets, we need to make sure the values 4445 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4446 * 4447 * This function checks and sets those values and skb->ip_summed: if this 4448 * returns false you should drop the packet. 4449 */ 4450 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4451 { 4452 if (unlikely(start > skb_headlen(skb)) || 4453 unlikely((int)start + off > skb_headlen(skb) - 2)) { 4454 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 4455 start, off, skb_headlen(skb)); 4456 return false; 4457 } 4458 skb->ip_summed = CHECKSUM_PARTIAL; 4459 skb->csum_start = skb_headroom(skb) + start; 4460 skb->csum_offset = off; 4461 skb_set_transport_header(skb, start); 4462 return true; 4463 } 4464 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4465 4466 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4467 unsigned int max) 4468 { 4469 if (skb_headlen(skb) >= len) 4470 return 0; 4471 4472 /* If we need to pullup then pullup to the max, so we 4473 * won't need to do it again. 4474 */ 4475 if (max > skb->len) 4476 max = skb->len; 4477 4478 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4479 return -ENOMEM; 4480 4481 if (skb_headlen(skb) < len) 4482 return -EPROTO; 4483 4484 return 0; 4485 } 4486 4487 #define MAX_TCP_HDR_LEN (15 * 4) 4488 4489 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4490 typeof(IPPROTO_IP) proto, 4491 unsigned int off) 4492 { 4493 switch (proto) { 4494 int err; 4495 4496 case IPPROTO_TCP: 4497 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4498 off + MAX_TCP_HDR_LEN); 4499 if (!err && !skb_partial_csum_set(skb, off, 4500 offsetof(struct tcphdr, 4501 check))) 4502 err = -EPROTO; 4503 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4504 4505 case IPPROTO_UDP: 4506 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4507 off + sizeof(struct udphdr)); 4508 if (!err && !skb_partial_csum_set(skb, off, 4509 offsetof(struct udphdr, 4510 check))) 4511 err = -EPROTO; 4512 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4513 } 4514 4515 return ERR_PTR(-EPROTO); 4516 } 4517 4518 /* This value should be large enough to cover a tagged ethernet header plus 4519 * maximally sized IP and TCP or UDP headers. 4520 */ 4521 #define MAX_IP_HDR_LEN 128 4522 4523 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4524 { 4525 unsigned int off; 4526 bool fragment; 4527 __sum16 *csum; 4528 int err; 4529 4530 fragment = false; 4531 4532 err = skb_maybe_pull_tail(skb, 4533 sizeof(struct iphdr), 4534 MAX_IP_HDR_LEN); 4535 if (err < 0) 4536 goto out; 4537 4538 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 4539 fragment = true; 4540 4541 off = ip_hdrlen(skb); 4542 4543 err = -EPROTO; 4544 4545 if (fragment) 4546 goto out; 4547 4548 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4549 if (IS_ERR(csum)) 4550 return PTR_ERR(csum); 4551 4552 if (recalculate) 4553 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4554 ip_hdr(skb)->daddr, 4555 skb->len - off, 4556 ip_hdr(skb)->protocol, 0); 4557 err = 0; 4558 4559 out: 4560 return err; 4561 } 4562 4563 /* This value should be large enough to cover a tagged ethernet header plus 4564 * an IPv6 header, all options, and a maximal TCP or UDP header. 4565 */ 4566 #define MAX_IPV6_HDR_LEN 256 4567 4568 #define OPT_HDR(type, skb, off) \ 4569 (type *)(skb_network_header(skb) + (off)) 4570 4571 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4572 { 4573 int err; 4574 u8 nexthdr; 4575 unsigned int off; 4576 unsigned int len; 4577 bool fragment; 4578 bool done; 4579 __sum16 *csum; 4580 4581 fragment = false; 4582 done = false; 4583 4584 off = sizeof(struct ipv6hdr); 4585 4586 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4587 if (err < 0) 4588 goto out; 4589 4590 nexthdr = ipv6_hdr(skb)->nexthdr; 4591 4592 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4593 while (off <= len && !done) { 4594 switch (nexthdr) { 4595 case IPPROTO_DSTOPTS: 4596 case IPPROTO_HOPOPTS: 4597 case IPPROTO_ROUTING: { 4598 struct ipv6_opt_hdr *hp; 4599 4600 err = skb_maybe_pull_tail(skb, 4601 off + 4602 sizeof(struct ipv6_opt_hdr), 4603 MAX_IPV6_HDR_LEN); 4604 if (err < 0) 4605 goto out; 4606 4607 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4608 nexthdr = hp->nexthdr; 4609 off += ipv6_optlen(hp); 4610 break; 4611 } 4612 case IPPROTO_AH: { 4613 struct ip_auth_hdr *hp; 4614 4615 err = skb_maybe_pull_tail(skb, 4616 off + 4617 sizeof(struct ip_auth_hdr), 4618 MAX_IPV6_HDR_LEN); 4619 if (err < 0) 4620 goto out; 4621 4622 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4623 nexthdr = hp->nexthdr; 4624 off += ipv6_authlen(hp); 4625 break; 4626 } 4627 case IPPROTO_FRAGMENT: { 4628 struct frag_hdr *hp; 4629 4630 err = skb_maybe_pull_tail(skb, 4631 off + 4632 sizeof(struct frag_hdr), 4633 MAX_IPV6_HDR_LEN); 4634 if (err < 0) 4635 goto out; 4636 4637 hp = OPT_HDR(struct frag_hdr, skb, off); 4638 4639 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4640 fragment = true; 4641 4642 nexthdr = hp->nexthdr; 4643 off += sizeof(struct frag_hdr); 4644 break; 4645 } 4646 default: 4647 done = true; 4648 break; 4649 } 4650 } 4651 4652 err = -EPROTO; 4653 4654 if (!done || fragment) 4655 goto out; 4656 4657 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4658 if (IS_ERR(csum)) 4659 return PTR_ERR(csum); 4660 4661 if (recalculate) 4662 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4663 &ipv6_hdr(skb)->daddr, 4664 skb->len - off, nexthdr, 0); 4665 err = 0; 4666 4667 out: 4668 return err; 4669 } 4670 4671 /** 4672 * skb_checksum_setup - set up partial checksum offset 4673 * @skb: the skb to set up 4674 * @recalculate: if true the pseudo-header checksum will be recalculated 4675 */ 4676 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 4677 { 4678 int err; 4679 4680 switch (skb->protocol) { 4681 case htons(ETH_P_IP): 4682 err = skb_checksum_setup_ipv4(skb, recalculate); 4683 break; 4684 4685 case htons(ETH_P_IPV6): 4686 err = skb_checksum_setup_ipv6(skb, recalculate); 4687 break; 4688 4689 default: 4690 err = -EPROTO; 4691 break; 4692 } 4693 4694 return err; 4695 } 4696 EXPORT_SYMBOL(skb_checksum_setup); 4697 4698 /** 4699 * skb_checksum_maybe_trim - maybe trims the given skb 4700 * @skb: the skb to check 4701 * @transport_len: the data length beyond the network header 4702 * 4703 * Checks whether the given skb has data beyond the given transport length. 4704 * If so, returns a cloned skb trimmed to this transport length. 4705 * Otherwise returns the provided skb. Returns NULL in error cases 4706 * (e.g. transport_len exceeds skb length or out-of-memory). 4707 * 4708 * Caller needs to set the skb transport header and free any returned skb if it 4709 * differs from the provided skb. 4710 */ 4711 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 4712 unsigned int transport_len) 4713 { 4714 struct sk_buff *skb_chk; 4715 unsigned int len = skb_transport_offset(skb) + transport_len; 4716 int ret; 4717 4718 if (skb->len < len) 4719 return NULL; 4720 else if (skb->len == len) 4721 return skb; 4722 4723 skb_chk = skb_clone(skb, GFP_ATOMIC); 4724 if (!skb_chk) 4725 return NULL; 4726 4727 ret = pskb_trim_rcsum(skb_chk, len); 4728 if (ret) { 4729 kfree_skb(skb_chk); 4730 return NULL; 4731 } 4732 4733 return skb_chk; 4734 } 4735 4736 /** 4737 * skb_checksum_trimmed - validate checksum of an skb 4738 * @skb: the skb to check 4739 * @transport_len: the data length beyond the network header 4740 * @skb_chkf: checksum function to use 4741 * 4742 * Applies the given checksum function skb_chkf to the provided skb. 4743 * Returns a checked and maybe trimmed skb. Returns NULL on error. 4744 * 4745 * If the skb has data beyond the given transport length, then a 4746 * trimmed & cloned skb is checked and returned. 4747 * 4748 * Caller needs to set the skb transport header and free any returned skb if it 4749 * differs from the provided skb. 4750 */ 4751 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4752 unsigned int transport_len, 4753 __sum16(*skb_chkf)(struct sk_buff *skb)) 4754 { 4755 struct sk_buff *skb_chk; 4756 unsigned int offset = skb_transport_offset(skb); 4757 __sum16 ret; 4758 4759 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 4760 if (!skb_chk) 4761 goto err; 4762 4763 if (!pskb_may_pull(skb_chk, offset)) 4764 goto err; 4765 4766 skb_pull_rcsum(skb_chk, offset); 4767 ret = skb_chkf(skb_chk); 4768 skb_push_rcsum(skb_chk, offset); 4769 4770 if (ret) 4771 goto err; 4772 4773 return skb_chk; 4774 4775 err: 4776 if (skb_chk && skb_chk != skb) 4777 kfree_skb(skb_chk); 4778 4779 return NULL; 4780 4781 } 4782 EXPORT_SYMBOL(skb_checksum_trimmed); 4783 4784 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 4785 { 4786 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 4787 skb->dev->name); 4788 } 4789 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 4790 4791 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 4792 { 4793 if (head_stolen) { 4794 skb_release_head_state(skb); 4795 kmem_cache_free(skbuff_head_cache, skb); 4796 } else { 4797 __kfree_skb(skb); 4798 } 4799 } 4800 EXPORT_SYMBOL(kfree_skb_partial); 4801 4802 /** 4803 * skb_try_coalesce - try to merge skb to prior one 4804 * @to: prior buffer 4805 * @from: buffer to add 4806 * @fragstolen: pointer to boolean 4807 * @delta_truesize: how much more was allocated than was requested 4808 */ 4809 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 4810 bool *fragstolen, int *delta_truesize) 4811 { 4812 struct skb_shared_info *to_shinfo, *from_shinfo; 4813 int i, delta, len = from->len; 4814 4815 *fragstolen = false; 4816 4817 if (skb_cloned(to)) 4818 return false; 4819 4820 if (len <= skb_tailroom(to)) { 4821 if (len) 4822 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 4823 *delta_truesize = 0; 4824 return true; 4825 } 4826 4827 to_shinfo = skb_shinfo(to); 4828 from_shinfo = skb_shinfo(from); 4829 if (to_shinfo->frag_list || from_shinfo->frag_list) 4830 return false; 4831 if (skb_zcopy(to) || skb_zcopy(from)) 4832 return false; 4833 4834 if (skb_headlen(from) != 0) { 4835 struct page *page; 4836 unsigned int offset; 4837 4838 if (to_shinfo->nr_frags + 4839 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 4840 return false; 4841 4842 if (skb_head_is_locked(from)) 4843 return false; 4844 4845 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4846 4847 page = virt_to_head_page(from->head); 4848 offset = from->data - (unsigned char *)page_address(page); 4849 4850 skb_fill_page_desc(to, to_shinfo->nr_frags, 4851 page, offset, skb_headlen(from)); 4852 *fragstolen = true; 4853 } else { 4854 if (to_shinfo->nr_frags + 4855 from_shinfo->nr_frags > MAX_SKB_FRAGS) 4856 return false; 4857 4858 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 4859 } 4860 4861 WARN_ON_ONCE(delta < len); 4862 4863 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 4864 from_shinfo->frags, 4865 from_shinfo->nr_frags * sizeof(skb_frag_t)); 4866 to_shinfo->nr_frags += from_shinfo->nr_frags; 4867 4868 if (!skb_cloned(from)) 4869 from_shinfo->nr_frags = 0; 4870 4871 /* if the skb is not cloned this does nothing 4872 * since we set nr_frags to 0. 4873 */ 4874 for (i = 0; i < from_shinfo->nr_frags; i++) 4875 __skb_frag_ref(&from_shinfo->frags[i]); 4876 4877 to->truesize += delta; 4878 to->len += len; 4879 to->data_len += len; 4880 4881 *delta_truesize = delta; 4882 return true; 4883 } 4884 EXPORT_SYMBOL(skb_try_coalesce); 4885 4886 /** 4887 * skb_scrub_packet - scrub an skb 4888 * 4889 * @skb: buffer to clean 4890 * @xnet: packet is crossing netns 4891 * 4892 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 4893 * into/from a tunnel. Some information have to be cleared during these 4894 * operations. 4895 * skb_scrub_packet can also be used to clean a skb before injecting it in 4896 * another namespace (@xnet == true). We have to clear all information in the 4897 * skb that could impact namespace isolation. 4898 */ 4899 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 4900 { 4901 skb->tstamp = 0; 4902 skb->pkt_type = PACKET_HOST; 4903 skb->skb_iif = 0; 4904 skb->ignore_df = 0; 4905 skb_dst_drop(skb); 4906 secpath_reset(skb); 4907 nf_reset(skb); 4908 nf_reset_trace(skb); 4909 4910 if (!xnet) 4911 return; 4912 4913 ipvs_reset(skb); 4914 skb_orphan(skb); 4915 skb->mark = 0; 4916 } 4917 EXPORT_SYMBOL_GPL(skb_scrub_packet); 4918 4919 /** 4920 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 4921 * 4922 * @skb: GSO skb 4923 * 4924 * skb_gso_transport_seglen is used to determine the real size of the 4925 * individual segments, including Layer4 headers (TCP/UDP). 4926 * 4927 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 4928 */ 4929 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 4930 { 4931 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4932 unsigned int thlen = 0; 4933 4934 if (skb->encapsulation) { 4935 thlen = skb_inner_transport_header(skb) - 4936 skb_transport_header(skb); 4937 4938 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 4939 thlen += inner_tcp_hdrlen(skb); 4940 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4941 thlen = tcp_hdrlen(skb); 4942 } else if (unlikely(skb_is_gso_sctp(skb))) { 4943 thlen = sizeof(struct sctphdr); 4944 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4945 thlen = sizeof(struct udphdr); 4946 } 4947 /* UFO sets gso_size to the size of the fragmentation 4948 * payload, i.e. the size of the L4 (UDP) header is already 4949 * accounted for. 4950 */ 4951 return thlen + shinfo->gso_size; 4952 } 4953 4954 /** 4955 * skb_gso_network_seglen - Return length of individual segments of a gso packet 4956 * 4957 * @skb: GSO skb 4958 * 4959 * skb_gso_network_seglen is used to determine the real size of the 4960 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 4961 * 4962 * The MAC/L2 header is not accounted for. 4963 */ 4964 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 4965 { 4966 unsigned int hdr_len = skb_transport_header(skb) - 4967 skb_network_header(skb); 4968 4969 return hdr_len + skb_gso_transport_seglen(skb); 4970 } 4971 4972 /** 4973 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 4974 * 4975 * @skb: GSO skb 4976 * 4977 * skb_gso_mac_seglen is used to determine the real size of the 4978 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 4979 * headers (TCP/UDP). 4980 */ 4981 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 4982 { 4983 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 4984 4985 return hdr_len + skb_gso_transport_seglen(skb); 4986 } 4987 4988 /** 4989 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 4990 * 4991 * There are a couple of instances where we have a GSO skb, and we 4992 * want to determine what size it would be after it is segmented. 4993 * 4994 * We might want to check: 4995 * - L3+L4+payload size (e.g. IP forwarding) 4996 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 4997 * 4998 * This is a helper to do that correctly considering GSO_BY_FRAGS. 4999 * 5000 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5001 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5002 * 5003 * @max_len: The maximum permissible length. 5004 * 5005 * Returns true if the segmented length <= max length. 5006 */ 5007 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5008 unsigned int seg_len, 5009 unsigned int max_len) { 5010 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5011 const struct sk_buff *iter; 5012 5013 if (shinfo->gso_size != GSO_BY_FRAGS) 5014 return seg_len <= max_len; 5015 5016 /* Undo this so we can re-use header sizes */ 5017 seg_len -= GSO_BY_FRAGS; 5018 5019 skb_walk_frags(skb, iter) { 5020 if (seg_len + skb_headlen(iter) > max_len) 5021 return false; 5022 } 5023 5024 return true; 5025 } 5026 5027 /** 5028 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5029 * 5030 * @skb: GSO skb 5031 * @mtu: MTU to validate against 5032 * 5033 * skb_gso_validate_network_len validates if a given skb will fit a 5034 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5035 * payload. 5036 */ 5037 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5038 { 5039 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5040 } 5041 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5042 5043 /** 5044 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5045 * 5046 * @skb: GSO skb 5047 * @len: length to validate against 5048 * 5049 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5050 * length once split, including L2, L3 and L4 headers and the payload. 5051 */ 5052 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5053 { 5054 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5055 } 5056 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5057 5058 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5059 { 5060 int mac_len; 5061 5062 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5063 kfree_skb(skb); 5064 return NULL; 5065 } 5066 5067 mac_len = skb->data - skb_mac_header(skb); 5068 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5069 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5070 mac_len - VLAN_HLEN - ETH_TLEN); 5071 } 5072 skb->mac_header += VLAN_HLEN; 5073 return skb; 5074 } 5075 5076 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5077 { 5078 struct vlan_hdr *vhdr; 5079 u16 vlan_tci; 5080 5081 if (unlikely(skb_vlan_tag_present(skb))) { 5082 /* vlan_tci is already set-up so leave this for another time */ 5083 return skb; 5084 } 5085 5086 skb = skb_share_check(skb, GFP_ATOMIC); 5087 if (unlikely(!skb)) 5088 goto err_free; 5089 5090 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 5091 goto err_free; 5092 5093 vhdr = (struct vlan_hdr *)skb->data; 5094 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5095 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5096 5097 skb_pull_rcsum(skb, VLAN_HLEN); 5098 vlan_set_encap_proto(skb, vhdr); 5099 5100 skb = skb_reorder_vlan_header(skb); 5101 if (unlikely(!skb)) 5102 goto err_free; 5103 5104 skb_reset_network_header(skb); 5105 skb_reset_transport_header(skb); 5106 skb_reset_mac_len(skb); 5107 5108 return skb; 5109 5110 err_free: 5111 kfree_skb(skb); 5112 return NULL; 5113 } 5114 EXPORT_SYMBOL(skb_vlan_untag); 5115 5116 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5117 { 5118 if (!pskb_may_pull(skb, write_len)) 5119 return -ENOMEM; 5120 5121 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5122 return 0; 5123 5124 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5125 } 5126 EXPORT_SYMBOL(skb_ensure_writable); 5127 5128 /* remove VLAN header from packet and update csum accordingly. 5129 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5130 */ 5131 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5132 { 5133 struct vlan_hdr *vhdr; 5134 int offset = skb->data - skb_mac_header(skb); 5135 int err; 5136 5137 if (WARN_ONCE(offset, 5138 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5139 offset)) { 5140 return -EINVAL; 5141 } 5142 5143 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5144 if (unlikely(err)) 5145 return err; 5146 5147 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5148 5149 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5150 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5151 5152 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5153 __skb_pull(skb, VLAN_HLEN); 5154 5155 vlan_set_encap_proto(skb, vhdr); 5156 skb->mac_header += VLAN_HLEN; 5157 5158 if (skb_network_offset(skb) < ETH_HLEN) 5159 skb_set_network_header(skb, ETH_HLEN); 5160 5161 skb_reset_mac_len(skb); 5162 5163 return err; 5164 } 5165 EXPORT_SYMBOL(__skb_vlan_pop); 5166 5167 /* Pop a vlan tag either from hwaccel or from payload. 5168 * Expects skb->data at mac header. 5169 */ 5170 int skb_vlan_pop(struct sk_buff *skb) 5171 { 5172 u16 vlan_tci; 5173 __be16 vlan_proto; 5174 int err; 5175 5176 if (likely(skb_vlan_tag_present(skb))) { 5177 skb->vlan_tci = 0; 5178 } else { 5179 if (unlikely(!eth_type_vlan(skb->protocol))) 5180 return 0; 5181 5182 err = __skb_vlan_pop(skb, &vlan_tci); 5183 if (err) 5184 return err; 5185 } 5186 /* move next vlan tag to hw accel tag */ 5187 if (likely(!eth_type_vlan(skb->protocol))) 5188 return 0; 5189 5190 vlan_proto = skb->protocol; 5191 err = __skb_vlan_pop(skb, &vlan_tci); 5192 if (unlikely(err)) 5193 return err; 5194 5195 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5196 return 0; 5197 } 5198 EXPORT_SYMBOL(skb_vlan_pop); 5199 5200 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5201 * Expects skb->data at mac header. 5202 */ 5203 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5204 { 5205 if (skb_vlan_tag_present(skb)) { 5206 int offset = skb->data - skb_mac_header(skb); 5207 int err; 5208 5209 if (WARN_ONCE(offset, 5210 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5211 offset)) { 5212 return -EINVAL; 5213 } 5214 5215 err = __vlan_insert_tag(skb, skb->vlan_proto, 5216 skb_vlan_tag_get(skb)); 5217 if (err) 5218 return err; 5219 5220 skb->protocol = skb->vlan_proto; 5221 skb->mac_len += VLAN_HLEN; 5222 5223 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5224 } 5225 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5226 return 0; 5227 } 5228 EXPORT_SYMBOL(skb_vlan_push); 5229 5230 /** 5231 * alloc_skb_with_frags - allocate skb with page frags 5232 * 5233 * @header_len: size of linear part 5234 * @data_len: needed length in frags 5235 * @max_page_order: max page order desired. 5236 * @errcode: pointer to error code if any 5237 * @gfp_mask: allocation mask 5238 * 5239 * This can be used to allocate a paged skb, given a maximal order for frags. 5240 */ 5241 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5242 unsigned long data_len, 5243 int max_page_order, 5244 int *errcode, 5245 gfp_t gfp_mask) 5246 { 5247 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5248 unsigned long chunk; 5249 struct sk_buff *skb; 5250 struct page *page; 5251 gfp_t gfp_head; 5252 int i; 5253 5254 *errcode = -EMSGSIZE; 5255 /* Note this test could be relaxed, if we succeed to allocate 5256 * high order pages... 5257 */ 5258 if (npages > MAX_SKB_FRAGS) 5259 return NULL; 5260 5261 gfp_head = gfp_mask; 5262 if (gfp_head & __GFP_DIRECT_RECLAIM) 5263 gfp_head |= __GFP_RETRY_MAYFAIL; 5264 5265 *errcode = -ENOBUFS; 5266 skb = alloc_skb(header_len, gfp_head); 5267 if (!skb) 5268 return NULL; 5269 5270 skb->truesize += npages << PAGE_SHIFT; 5271 5272 for (i = 0; npages > 0; i++) { 5273 int order = max_page_order; 5274 5275 while (order) { 5276 if (npages >= 1 << order) { 5277 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5278 __GFP_COMP | 5279 __GFP_NOWARN | 5280 __GFP_NORETRY, 5281 order); 5282 if (page) 5283 goto fill_page; 5284 /* Do not retry other high order allocations */ 5285 order = 1; 5286 max_page_order = 0; 5287 } 5288 order--; 5289 } 5290 page = alloc_page(gfp_mask); 5291 if (!page) 5292 goto failure; 5293 fill_page: 5294 chunk = min_t(unsigned long, data_len, 5295 PAGE_SIZE << order); 5296 skb_fill_page_desc(skb, i, page, 0, chunk); 5297 data_len -= chunk; 5298 npages -= 1 << order; 5299 } 5300 return skb; 5301 5302 failure: 5303 kfree_skb(skb); 5304 return NULL; 5305 } 5306 EXPORT_SYMBOL(alloc_skb_with_frags); 5307 5308 /* carve out the first off bytes from skb when off < headlen */ 5309 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5310 const int headlen, gfp_t gfp_mask) 5311 { 5312 int i; 5313 int size = skb_end_offset(skb); 5314 int new_hlen = headlen - off; 5315 u8 *data; 5316 5317 size = SKB_DATA_ALIGN(size); 5318 5319 if (skb_pfmemalloc(skb)) 5320 gfp_mask |= __GFP_MEMALLOC; 5321 data = kmalloc_reserve(size + 5322 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5323 gfp_mask, NUMA_NO_NODE, NULL); 5324 if (!data) 5325 return -ENOMEM; 5326 5327 size = SKB_WITH_OVERHEAD(ksize(data)); 5328 5329 /* Copy real data, and all frags */ 5330 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5331 skb->len -= off; 5332 5333 memcpy((struct skb_shared_info *)(data + size), 5334 skb_shinfo(skb), 5335 offsetof(struct skb_shared_info, 5336 frags[skb_shinfo(skb)->nr_frags])); 5337 if (skb_cloned(skb)) { 5338 /* drop the old head gracefully */ 5339 if (skb_orphan_frags(skb, gfp_mask)) { 5340 kfree(data); 5341 return -ENOMEM; 5342 } 5343 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5344 skb_frag_ref(skb, i); 5345 if (skb_has_frag_list(skb)) 5346 skb_clone_fraglist(skb); 5347 skb_release_data(skb); 5348 } else { 5349 /* we can reuse existing recount- all we did was 5350 * relocate values 5351 */ 5352 skb_free_head(skb); 5353 } 5354 5355 skb->head = data; 5356 skb->data = data; 5357 skb->head_frag = 0; 5358 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5359 skb->end = size; 5360 #else 5361 skb->end = skb->head + size; 5362 #endif 5363 skb_set_tail_pointer(skb, skb_headlen(skb)); 5364 skb_headers_offset_update(skb, 0); 5365 skb->cloned = 0; 5366 skb->hdr_len = 0; 5367 skb->nohdr = 0; 5368 atomic_set(&skb_shinfo(skb)->dataref, 1); 5369 5370 return 0; 5371 } 5372 5373 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 5374 5375 /* carve out the first eat bytes from skb's frag_list. May recurse into 5376 * pskb_carve() 5377 */ 5378 static int pskb_carve_frag_list(struct sk_buff *skb, 5379 struct skb_shared_info *shinfo, int eat, 5380 gfp_t gfp_mask) 5381 { 5382 struct sk_buff *list = shinfo->frag_list; 5383 struct sk_buff *clone = NULL; 5384 struct sk_buff *insp = NULL; 5385 5386 do { 5387 if (!list) { 5388 pr_err("Not enough bytes to eat. Want %d\n", eat); 5389 return -EFAULT; 5390 } 5391 if (list->len <= eat) { 5392 /* Eaten as whole. */ 5393 eat -= list->len; 5394 list = list->next; 5395 insp = list; 5396 } else { 5397 /* Eaten partially. */ 5398 if (skb_shared(list)) { 5399 clone = skb_clone(list, gfp_mask); 5400 if (!clone) 5401 return -ENOMEM; 5402 insp = list->next; 5403 list = clone; 5404 } else { 5405 /* This may be pulled without problems. */ 5406 insp = list; 5407 } 5408 if (pskb_carve(list, eat, gfp_mask) < 0) { 5409 kfree_skb(clone); 5410 return -ENOMEM; 5411 } 5412 break; 5413 } 5414 } while (eat); 5415 5416 /* Free pulled out fragments. */ 5417 while ((list = shinfo->frag_list) != insp) { 5418 shinfo->frag_list = list->next; 5419 kfree_skb(list); 5420 } 5421 /* And insert new clone at head. */ 5422 if (clone) { 5423 clone->next = list; 5424 shinfo->frag_list = clone; 5425 } 5426 return 0; 5427 } 5428 5429 /* carve off first len bytes from skb. Split line (off) is in the 5430 * non-linear part of skb 5431 */ 5432 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 5433 int pos, gfp_t gfp_mask) 5434 { 5435 int i, k = 0; 5436 int size = skb_end_offset(skb); 5437 u8 *data; 5438 const int nfrags = skb_shinfo(skb)->nr_frags; 5439 struct skb_shared_info *shinfo; 5440 5441 size = SKB_DATA_ALIGN(size); 5442 5443 if (skb_pfmemalloc(skb)) 5444 gfp_mask |= __GFP_MEMALLOC; 5445 data = kmalloc_reserve(size + 5446 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5447 gfp_mask, NUMA_NO_NODE, NULL); 5448 if (!data) 5449 return -ENOMEM; 5450 5451 size = SKB_WITH_OVERHEAD(ksize(data)); 5452 5453 memcpy((struct skb_shared_info *)(data + size), 5454 skb_shinfo(skb), offsetof(struct skb_shared_info, 5455 frags[skb_shinfo(skb)->nr_frags])); 5456 if (skb_orphan_frags(skb, gfp_mask)) { 5457 kfree(data); 5458 return -ENOMEM; 5459 } 5460 shinfo = (struct skb_shared_info *)(data + size); 5461 for (i = 0; i < nfrags; i++) { 5462 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 5463 5464 if (pos + fsize > off) { 5465 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 5466 5467 if (pos < off) { 5468 /* Split frag. 5469 * We have two variants in this case: 5470 * 1. Move all the frag to the second 5471 * part, if it is possible. F.e. 5472 * this approach is mandatory for TUX, 5473 * where splitting is expensive. 5474 * 2. Split is accurately. We make this. 5475 */ 5476 shinfo->frags[0].page_offset += off - pos; 5477 skb_frag_size_sub(&shinfo->frags[0], off - pos); 5478 } 5479 skb_frag_ref(skb, i); 5480 k++; 5481 } 5482 pos += fsize; 5483 } 5484 shinfo->nr_frags = k; 5485 if (skb_has_frag_list(skb)) 5486 skb_clone_fraglist(skb); 5487 5488 if (k == 0) { 5489 /* split line is in frag list */ 5490 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask); 5491 } 5492 skb_release_data(skb); 5493 5494 skb->head = data; 5495 skb->head_frag = 0; 5496 skb->data = data; 5497 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5498 skb->end = size; 5499 #else 5500 skb->end = skb->head + size; 5501 #endif 5502 skb_reset_tail_pointer(skb); 5503 skb_headers_offset_update(skb, 0); 5504 skb->cloned = 0; 5505 skb->hdr_len = 0; 5506 skb->nohdr = 0; 5507 skb->len -= off; 5508 skb->data_len = skb->len; 5509 atomic_set(&skb_shinfo(skb)->dataref, 1); 5510 return 0; 5511 } 5512 5513 /* remove len bytes from the beginning of the skb */ 5514 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 5515 { 5516 int headlen = skb_headlen(skb); 5517 5518 if (len < headlen) 5519 return pskb_carve_inside_header(skb, len, headlen, gfp); 5520 else 5521 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 5522 } 5523 5524 /* Extract to_copy bytes starting at off from skb, and return this in 5525 * a new skb 5526 */ 5527 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 5528 int to_copy, gfp_t gfp) 5529 { 5530 struct sk_buff *clone = skb_clone(skb, gfp); 5531 5532 if (!clone) 5533 return NULL; 5534 5535 if (pskb_carve(clone, off, gfp) < 0 || 5536 pskb_trim(clone, to_copy)) { 5537 kfree_skb(clone); 5538 return NULL; 5539 } 5540 return clone; 5541 } 5542 EXPORT_SYMBOL(pskb_extract); 5543 5544 /** 5545 * skb_condense - try to get rid of fragments/frag_list if possible 5546 * @skb: buffer 5547 * 5548 * Can be used to save memory before skb is added to a busy queue. 5549 * If packet has bytes in frags and enough tail room in skb->head, 5550 * pull all of them, so that we can free the frags right now and adjust 5551 * truesize. 5552 * Notes: 5553 * We do not reallocate skb->head thus can not fail. 5554 * Caller must re-evaluate skb->truesize if needed. 5555 */ 5556 void skb_condense(struct sk_buff *skb) 5557 { 5558 if (skb->data_len) { 5559 if (skb->data_len > skb->end - skb->tail || 5560 skb_cloned(skb)) 5561 return; 5562 5563 /* Nice, we can free page frag(s) right now */ 5564 __pskb_pull_tail(skb, skb->data_len); 5565 } 5566 /* At this point, skb->truesize might be over estimated, 5567 * because skb had a fragment, and fragments do not tell 5568 * their truesize. 5569 * When we pulled its content into skb->head, fragment 5570 * was freed, but __pskb_pull_tail() could not possibly 5571 * adjust skb->truesize, not knowing the frag truesize. 5572 */ 5573 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5574 } 5575