xref: /linux/net/core/skbuff.c (revision 846d479224537185768276dd4a84c1bda2bbcd4e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/mctp.h>
74 #include <net/page_pool.h>
75 
76 #include <linux/uaccess.h>
77 #include <trace/events/skb.h>
78 #include <linux/highmem.h>
79 #include <linux/capability.h>
80 #include <linux/user_namespace.h>
81 #include <linux/indirect_call_wrapper.h>
82 
83 #include "dev.h"
84 #include "sock_destructor.h"
85 
86 struct kmem_cache *skbuff_head_cache __ro_after_init;
87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88 #ifdef CONFIG_SKB_EXTENSIONS
89 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90 #endif
91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92 EXPORT_SYMBOL(sysctl_max_skb_frags);
93 
94 #undef FN
95 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
96 const char * const drop_reasons[] = {
97 	DEFINE_DROP_REASON(FN, FN)
98 };
99 EXPORT_SYMBOL(drop_reasons);
100 
101 /**
102  *	skb_panic - private function for out-of-line support
103  *	@skb:	buffer
104  *	@sz:	size
105  *	@addr:	address
106  *	@msg:	skb_over_panic or skb_under_panic
107  *
108  *	Out-of-line support for skb_put() and skb_push().
109  *	Called via the wrapper skb_over_panic() or skb_under_panic().
110  *	Keep out of line to prevent kernel bloat.
111  *	__builtin_return_address is not used because it is not always reliable.
112  */
113 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
114 		      const char msg[])
115 {
116 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
117 		 msg, addr, skb->len, sz, skb->head, skb->data,
118 		 (unsigned long)skb->tail, (unsigned long)skb->end,
119 		 skb->dev ? skb->dev->name : "<NULL>");
120 	BUG();
121 }
122 
123 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
124 {
125 	skb_panic(skb, sz, addr, __func__);
126 }
127 
128 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
129 {
130 	skb_panic(skb, sz, addr, __func__);
131 }
132 
133 #define NAPI_SKB_CACHE_SIZE	64
134 #define NAPI_SKB_CACHE_BULK	16
135 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
136 
137 #if PAGE_SIZE == SZ_4K
138 
139 #define NAPI_HAS_SMALL_PAGE_FRAG	1
140 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
141 
142 /* specialized page frag allocator using a single order 0 page
143  * and slicing it into 1K sized fragment. Constrained to systems
144  * with a very limited amount of 1K fragments fitting a single
145  * page - to avoid excessive truesize underestimation
146  */
147 
148 struct page_frag_1k {
149 	void *va;
150 	u16 offset;
151 	bool pfmemalloc;
152 };
153 
154 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
155 {
156 	struct page *page;
157 	int offset;
158 
159 	offset = nc->offset - SZ_1K;
160 	if (likely(offset >= 0))
161 		goto use_frag;
162 
163 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
164 	if (!page)
165 		return NULL;
166 
167 	nc->va = page_address(page);
168 	nc->pfmemalloc = page_is_pfmemalloc(page);
169 	offset = PAGE_SIZE - SZ_1K;
170 	page_ref_add(page, offset / SZ_1K);
171 
172 use_frag:
173 	nc->offset = offset;
174 	return nc->va + offset;
175 }
176 #else
177 
178 /* the small page is actually unused in this build; add dummy helpers
179  * to please the compiler and avoid later preprocessor's conditionals
180  */
181 #define NAPI_HAS_SMALL_PAGE_FRAG	0
182 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
183 
184 struct page_frag_1k {
185 };
186 
187 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
188 {
189 	return NULL;
190 }
191 
192 #endif
193 
194 struct napi_alloc_cache {
195 	struct page_frag_cache page;
196 	struct page_frag_1k page_small;
197 	unsigned int skb_count;
198 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
199 };
200 
201 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
202 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
203 
204 /* Double check that napi_get_frags() allocates skbs with
205  * skb->head being backed by slab, not a page fragment.
206  * This is to make sure bug fixed in 3226b158e67c
207  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
208  * does not accidentally come back.
209  */
210 void napi_get_frags_check(struct napi_struct *napi)
211 {
212 	struct sk_buff *skb;
213 
214 	local_bh_disable();
215 	skb = napi_get_frags(napi);
216 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
217 	napi_free_frags(napi);
218 	local_bh_enable();
219 }
220 
221 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
222 {
223 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
224 
225 	fragsz = SKB_DATA_ALIGN(fragsz);
226 
227 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
228 }
229 EXPORT_SYMBOL(__napi_alloc_frag_align);
230 
231 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
232 {
233 	void *data;
234 
235 	fragsz = SKB_DATA_ALIGN(fragsz);
236 	if (in_hardirq() || irqs_disabled()) {
237 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
238 
239 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
240 	} else {
241 		struct napi_alloc_cache *nc;
242 
243 		local_bh_disable();
244 		nc = this_cpu_ptr(&napi_alloc_cache);
245 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
246 		local_bh_enable();
247 	}
248 	return data;
249 }
250 EXPORT_SYMBOL(__netdev_alloc_frag_align);
251 
252 static struct sk_buff *napi_skb_cache_get(void)
253 {
254 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
255 	struct sk_buff *skb;
256 
257 	if (unlikely(!nc->skb_count)) {
258 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
259 						      GFP_ATOMIC,
260 						      NAPI_SKB_CACHE_BULK,
261 						      nc->skb_cache);
262 		if (unlikely(!nc->skb_count))
263 			return NULL;
264 	}
265 
266 	skb = nc->skb_cache[--nc->skb_count];
267 	kasan_unpoison_object_data(skbuff_head_cache, skb);
268 
269 	return skb;
270 }
271 
272 /* Caller must provide SKB that is memset cleared */
273 static void __build_skb_around(struct sk_buff *skb, void *data,
274 			       unsigned int frag_size)
275 {
276 	struct skb_shared_info *shinfo;
277 	unsigned int size = frag_size ? : ksize(data);
278 
279 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
280 
281 	/* Assumes caller memset cleared SKB */
282 	skb->truesize = SKB_TRUESIZE(size);
283 	refcount_set(&skb->users, 1);
284 	skb->head = data;
285 	skb->data = data;
286 	skb_reset_tail_pointer(skb);
287 	skb_set_end_offset(skb, size);
288 	skb->mac_header = (typeof(skb->mac_header))~0U;
289 	skb->transport_header = (typeof(skb->transport_header))~0U;
290 	skb->alloc_cpu = raw_smp_processor_id();
291 	/* make sure we initialize shinfo sequentially */
292 	shinfo = skb_shinfo(skb);
293 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
294 	atomic_set(&shinfo->dataref, 1);
295 
296 	skb_set_kcov_handle(skb, kcov_common_handle());
297 }
298 
299 /**
300  * __build_skb - build a network buffer
301  * @data: data buffer provided by caller
302  * @frag_size: size of data, or 0 if head was kmalloced
303  *
304  * Allocate a new &sk_buff. Caller provides space holding head and
305  * skb_shared_info. @data must have been allocated by kmalloc() only if
306  * @frag_size is 0, otherwise data should come from the page allocator
307  *  or vmalloc()
308  * The return is the new skb buffer.
309  * On a failure the return is %NULL, and @data is not freed.
310  * Notes :
311  *  Before IO, driver allocates only data buffer where NIC put incoming frame
312  *  Driver should add room at head (NET_SKB_PAD) and
313  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
314  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
315  *  before giving packet to stack.
316  *  RX rings only contains data buffers, not full skbs.
317  */
318 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
319 {
320 	struct sk_buff *skb;
321 
322 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
323 	if (unlikely(!skb))
324 		return NULL;
325 
326 	memset(skb, 0, offsetof(struct sk_buff, tail));
327 	__build_skb_around(skb, data, frag_size);
328 
329 	return skb;
330 }
331 
332 /* build_skb() is wrapper over __build_skb(), that specifically
333  * takes care of skb->head and skb->pfmemalloc
334  * This means that if @frag_size is not zero, then @data must be backed
335  * by a page fragment, not kmalloc() or vmalloc()
336  */
337 struct sk_buff *build_skb(void *data, unsigned int frag_size)
338 {
339 	struct sk_buff *skb = __build_skb(data, frag_size);
340 
341 	if (skb && frag_size) {
342 		skb->head_frag = 1;
343 		if (page_is_pfmemalloc(virt_to_head_page(data)))
344 			skb->pfmemalloc = 1;
345 	}
346 	return skb;
347 }
348 EXPORT_SYMBOL(build_skb);
349 
350 /**
351  * build_skb_around - build a network buffer around provided skb
352  * @skb: sk_buff provide by caller, must be memset cleared
353  * @data: data buffer provided by caller
354  * @frag_size: size of data, or 0 if head was kmalloced
355  */
356 struct sk_buff *build_skb_around(struct sk_buff *skb,
357 				 void *data, unsigned int frag_size)
358 {
359 	if (unlikely(!skb))
360 		return NULL;
361 
362 	__build_skb_around(skb, data, frag_size);
363 
364 	if (frag_size) {
365 		skb->head_frag = 1;
366 		if (page_is_pfmemalloc(virt_to_head_page(data)))
367 			skb->pfmemalloc = 1;
368 	}
369 	return skb;
370 }
371 EXPORT_SYMBOL(build_skb_around);
372 
373 /**
374  * __napi_build_skb - build a network buffer
375  * @data: data buffer provided by caller
376  * @frag_size: size of data, or 0 if head was kmalloced
377  *
378  * Version of __build_skb() that uses NAPI percpu caches to obtain
379  * skbuff_head instead of inplace allocation.
380  *
381  * Returns a new &sk_buff on success, %NULL on allocation failure.
382  */
383 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
384 {
385 	struct sk_buff *skb;
386 
387 	skb = napi_skb_cache_get();
388 	if (unlikely(!skb))
389 		return NULL;
390 
391 	memset(skb, 0, offsetof(struct sk_buff, tail));
392 	__build_skb_around(skb, data, frag_size);
393 
394 	return skb;
395 }
396 
397 /**
398  * napi_build_skb - build a network buffer
399  * @data: data buffer provided by caller
400  * @frag_size: size of data, or 0 if head was kmalloced
401  *
402  * Version of __napi_build_skb() that takes care of skb->head_frag
403  * and skb->pfmemalloc when the data is a page or page fragment.
404  *
405  * Returns a new &sk_buff on success, %NULL on allocation failure.
406  */
407 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
408 {
409 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
410 
411 	if (likely(skb) && frag_size) {
412 		skb->head_frag = 1;
413 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
414 	}
415 
416 	return skb;
417 }
418 EXPORT_SYMBOL(napi_build_skb);
419 
420 /*
421  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
422  * the caller if emergency pfmemalloc reserves are being used. If it is and
423  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
424  * may be used. Otherwise, the packet data may be discarded until enough
425  * memory is free
426  */
427 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
428 			     bool *pfmemalloc)
429 {
430 	void *obj;
431 	bool ret_pfmemalloc = false;
432 
433 	/*
434 	 * Try a regular allocation, when that fails and we're not entitled
435 	 * to the reserves, fail.
436 	 */
437 	obj = kmalloc_node_track_caller(size,
438 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
439 					node);
440 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
441 		goto out;
442 
443 	/* Try again but now we are using pfmemalloc reserves */
444 	ret_pfmemalloc = true;
445 	obj = kmalloc_node_track_caller(size, flags, node);
446 
447 out:
448 	if (pfmemalloc)
449 		*pfmemalloc = ret_pfmemalloc;
450 
451 	return obj;
452 }
453 
454 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
455  *	'private' fields and also do memory statistics to find all the
456  *	[BEEP] leaks.
457  *
458  */
459 
460 /**
461  *	__alloc_skb	-	allocate a network buffer
462  *	@size: size to allocate
463  *	@gfp_mask: allocation mask
464  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
465  *		instead of head cache and allocate a cloned (child) skb.
466  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
467  *		allocations in case the data is required for writeback
468  *	@node: numa node to allocate memory on
469  *
470  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
471  *	tail room of at least size bytes. The object has a reference count
472  *	of one. The return is the buffer. On a failure the return is %NULL.
473  *
474  *	Buffers may only be allocated from interrupts using a @gfp_mask of
475  *	%GFP_ATOMIC.
476  */
477 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
478 			    int flags, int node)
479 {
480 	struct kmem_cache *cache;
481 	struct sk_buff *skb;
482 	unsigned int osize;
483 	bool pfmemalloc;
484 	u8 *data;
485 
486 	cache = (flags & SKB_ALLOC_FCLONE)
487 		? skbuff_fclone_cache : skbuff_head_cache;
488 
489 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
490 		gfp_mask |= __GFP_MEMALLOC;
491 
492 	/* Get the HEAD */
493 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
494 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
495 		skb = napi_skb_cache_get();
496 	else
497 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
498 	if (unlikely(!skb))
499 		return NULL;
500 	prefetchw(skb);
501 
502 	/* We do our best to align skb_shared_info on a separate cache
503 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
504 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
505 	 * Both skb->head and skb_shared_info are cache line aligned.
506 	 */
507 	size = SKB_DATA_ALIGN(size);
508 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
509 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
510 	if (unlikely(!data))
511 		goto nodata;
512 	/* kmalloc(size) might give us more room than requested.
513 	 * Put skb_shared_info exactly at the end of allocated zone,
514 	 * to allow max possible filling before reallocation.
515 	 */
516 	osize = ksize(data);
517 	size = SKB_WITH_OVERHEAD(osize);
518 	prefetchw(data + size);
519 
520 	/*
521 	 * Only clear those fields we need to clear, not those that we will
522 	 * actually initialise below. Hence, don't put any more fields after
523 	 * the tail pointer in struct sk_buff!
524 	 */
525 	memset(skb, 0, offsetof(struct sk_buff, tail));
526 	__build_skb_around(skb, data, osize);
527 	skb->pfmemalloc = pfmemalloc;
528 
529 	if (flags & SKB_ALLOC_FCLONE) {
530 		struct sk_buff_fclones *fclones;
531 
532 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
533 
534 		skb->fclone = SKB_FCLONE_ORIG;
535 		refcount_set(&fclones->fclone_ref, 1);
536 	}
537 
538 	return skb;
539 
540 nodata:
541 	kmem_cache_free(cache, skb);
542 	return NULL;
543 }
544 EXPORT_SYMBOL(__alloc_skb);
545 
546 /**
547  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
548  *	@dev: network device to receive on
549  *	@len: length to allocate
550  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
551  *
552  *	Allocate a new &sk_buff and assign it a usage count of one. The
553  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
554  *	the headroom they think they need without accounting for the
555  *	built in space. The built in space is used for optimisations.
556  *
557  *	%NULL is returned if there is no free memory.
558  */
559 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
560 				   gfp_t gfp_mask)
561 {
562 	struct page_frag_cache *nc;
563 	struct sk_buff *skb;
564 	bool pfmemalloc;
565 	void *data;
566 
567 	len += NET_SKB_PAD;
568 
569 	/* If requested length is either too small or too big,
570 	 * we use kmalloc() for skb->head allocation.
571 	 */
572 	if (len <= SKB_WITH_OVERHEAD(1024) ||
573 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
574 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
575 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
576 		if (!skb)
577 			goto skb_fail;
578 		goto skb_success;
579 	}
580 
581 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
582 	len = SKB_DATA_ALIGN(len);
583 
584 	if (sk_memalloc_socks())
585 		gfp_mask |= __GFP_MEMALLOC;
586 
587 	if (in_hardirq() || irqs_disabled()) {
588 		nc = this_cpu_ptr(&netdev_alloc_cache);
589 		data = page_frag_alloc(nc, len, gfp_mask);
590 		pfmemalloc = nc->pfmemalloc;
591 	} else {
592 		local_bh_disable();
593 		nc = this_cpu_ptr(&napi_alloc_cache.page);
594 		data = page_frag_alloc(nc, len, gfp_mask);
595 		pfmemalloc = nc->pfmemalloc;
596 		local_bh_enable();
597 	}
598 
599 	if (unlikely(!data))
600 		return NULL;
601 
602 	skb = __build_skb(data, len);
603 	if (unlikely(!skb)) {
604 		skb_free_frag(data);
605 		return NULL;
606 	}
607 
608 	if (pfmemalloc)
609 		skb->pfmemalloc = 1;
610 	skb->head_frag = 1;
611 
612 skb_success:
613 	skb_reserve(skb, NET_SKB_PAD);
614 	skb->dev = dev;
615 
616 skb_fail:
617 	return skb;
618 }
619 EXPORT_SYMBOL(__netdev_alloc_skb);
620 
621 /**
622  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
623  *	@napi: napi instance this buffer was allocated for
624  *	@len: length to allocate
625  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
626  *
627  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
628  *	attempt to allocate the head from a special reserved region used
629  *	only for NAPI Rx allocation.  By doing this we can save several
630  *	CPU cycles by avoiding having to disable and re-enable IRQs.
631  *
632  *	%NULL is returned if there is no free memory.
633  */
634 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
635 				 gfp_t gfp_mask)
636 {
637 	struct napi_alloc_cache *nc;
638 	struct sk_buff *skb;
639 	bool pfmemalloc;
640 	void *data;
641 
642 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
643 	len += NET_SKB_PAD + NET_IP_ALIGN;
644 
645 	/* If requested length is either too small or too big,
646 	 * we use kmalloc() for skb->head allocation.
647 	 * When the small frag allocator is available, prefer it over kmalloc
648 	 * for small fragments
649 	 */
650 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
651 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
652 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
653 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
654 				  NUMA_NO_NODE);
655 		if (!skb)
656 			goto skb_fail;
657 		goto skb_success;
658 	}
659 
660 	nc = this_cpu_ptr(&napi_alloc_cache);
661 
662 	if (sk_memalloc_socks())
663 		gfp_mask |= __GFP_MEMALLOC;
664 
665 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
666 		/* we are artificially inflating the allocation size, but
667 		 * that is not as bad as it may look like, as:
668 		 * - 'len' less than GRO_MAX_HEAD makes little sense
669 		 * - On most systems, larger 'len' values lead to fragment
670 		 *   size above 512 bytes
671 		 * - kmalloc would use the kmalloc-1k slab for such values
672 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
673 		 *   little networking, as that implies no WiFi and no
674 		 *   tunnels support, and 32 bits arches.
675 		 */
676 		len = SZ_1K;
677 
678 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
679 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
680 	} else {
681 		len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
682 		len = SKB_DATA_ALIGN(len);
683 
684 		data = page_frag_alloc(&nc->page, len, gfp_mask);
685 		pfmemalloc = nc->page.pfmemalloc;
686 	}
687 
688 	if (unlikely(!data))
689 		return NULL;
690 
691 	skb = __napi_build_skb(data, len);
692 	if (unlikely(!skb)) {
693 		skb_free_frag(data);
694 		return NULL;
695 	}
696 
697 	if (pfmemalloc)
698 		skb->pfmemalloc = 1;
699 	skb->head_frag = 1;
700 
701 skb_success:
702 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
703 	skb->dev = napi->dev;
704 
705 skb_fail:
706 	return skb;
707 }
708 EXPORT_SYMBOL(__napi_alloc_skb);
709 
710 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
711 		     int size, unsigned int truesize)
712 {
713 	skb_fill_page_desc(skb, i, page, off, size);
714 	skb->len += size;
715 	skb->data_len += size;
716 	skb->truesize += truesize;
717 }
718 EXPORT_SYMBOL(skb_add_rx_frag);
719 
720 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
721 			  unsigned int truesize)
722 {
723 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
724 
725 	skb_frag_size_add(frag, size);
726 	skb->len += size;
727 	skb->data_len += size;
728 	skb->truesize += truesize;
729 }
730 EXPORT_SYMBOL(skb_coalesce_rx_frag);
731 
732 static void skb_drop_list(struct sk_buff **listp)
733 {
734 	kfree_skb_list(*listp);
735 	*listp = NULL;
736 }
737 
738 static inline void skb_drop_fraglist(struct sk_buff *skb)
739 {
740 	skb_drop_list(&skb_shinfo(skb)->frag_list);
741 }
742 
743 static void skb_clone_fraglist(struct sk_buff *skb)
744 {
745 	struct sk_buff *list;
746 
747 	skb_walk_frags(skb, list)
748 		skb_get(list);
749 }
750 
751 static void skb_free_head(struct sk_buff *skb)
752 {
753 	unsigned char *head = skb->head;
754 
755 	if (skb->head_frag) {
756 		if (skb_pp_recycle(skb, head))
757 			return;
758 		skb_free_frag(head);
759 	} else {
760 		kfree(head);
761 	}
762 }
763 
764 static void skb_release_data(struct sk_buff *skb)
765 {
766 	struct skb_shared_info *shinfo = skb_shinfo(skb);
767 	int i;
768 
769 	if (skb->cloned &&
770 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
771 			      &shinfo->dataref))
772 		goto exit;
773 
774 	if (skb_zcopy(skb)) {
775 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
776 
777 		skb_zcopy_clear(skb, true);
778 		if (skip_unref)
779 			goto free_head;
780 	}
781 
782 	for (i = 0; i < shinfo->nr_frags; i++)
783 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
784 
785 free_head:
786 	if (shinfo->frag_list)
787 		kfree_skb_list(shinfo->frag_list);
788 
789 	skb_free_head(skb);
790 exit:
791 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
792 	 * bit is only set on the head though, so in order to avoid races
793 	 * while trying to recycle fragments on __skb_frag_unref() we need
794 	 * to make one SKB responsible for triggering the recycle path.
795 	 * So disable the recycling bit if an SKB is cloned and we have
796 	 * additional references to the fragmented part of the SKB.
797 	 * Eventually the last SKB will have the recycling bit set and it's
798 	 * dataref set to 0, which will trigger the recycling
799 	 */
800 	skb->pp_recycle = 0;
801 }
802 
803 /*
804  *	Free an skbuff by memory without cleaning the state.
805  */
806 static void kfree_skbmem(struct sk_buff *skb)
807 {
808 	struct sk_buff_fclones *fclones;
809 
810 	switch (skb->fclone) {
811 	case SKB_FCLONE_UNAVAILABLE:
812 		kmem_cache_free(skbuff_head_cache, skb);
813 		return;
814 
815 	case SKB_FCLONE_ORIG:
816 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
817 
818 		/* We usually free the clone (TX completion) before original skb
819 		 * This test would have no chance to be true for the clone,
820 		 * while here, branch prediction will be good.
821 		 */
822 		if (refcount_read(&fclones->fclone_ref) == 1)
823 			goto fastpath;
824 		break;
825 
826 	default: /* SKB_FCLONE_CLONE */
827 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
828 		break;
829 	}
830 	if (!refcount_dec_and_test(&fclones->fclone_ref))
831 		return;
832 fastpath:
833 	kmem_cache_free(skbuff_fclone_cache, fclones);
834 }
835 
836 void skb_release_head_state(struct sk_buff *skb)
837 {
838 	skb_dst_drop(skb);
839 	if (skb->destructor) {
840 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
841 		skb->destructor(skb);
842 	}
843 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
844 	nf_conntrack_put(skb_nfct(skb));
845 #endif
846 	skb_ext_put(skb);
847 }
848 
849 /* Free everything but the sk_buff shell. */
850 static void skb_release_all(struct sk_buff *skb)
851 {
852 	skb_release_head_state(skb);
853 	if (likely(skb->head))
854 		skb_release_data(skb);
855 }
856 
857 /**
858  *	__kfree_skb - private function
859  *	@skb: buffer
860  *
861  *	Free an sk_buff. Release anything attached to the buffer.
862  *	Clean the state. This is an internal helper function. Users should
863  *	always call kfree_skb
864  */
865 
866 void __kfree_skb(struct sk_buff *skb)
867 {
868 	skb_release_all(skb);
869 	kfree_skbmem(skb);
870 }
871 EXPORT_SYMBOL(__kfree_skb);
872 
873 /**
874  *	kfree_skb_reason - free an sk_buff with special reason
875  *	@skb: buffer to free
876  *	@reason: reason why this skb is dropped
877  *
878  *	Drop a reference to the buffer and free it if the usage count has
879  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
880  *	tracepoint.
881  */
882 void __fix_address
883 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
884 {
885 	if (unlikely(!skb_unref(skb)))
886 		return;
887 
888 	DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX);
889 
890 	trace_kfree_skb(skb, __builtin_return_address(0), reason);
891 	__kfree_skb(skb);
892 }
893 EXPORT_SYMBOL(kfree_skb_reason);
894 
895 void kfree_skb_list_reason(struct sk_buff *segs,
896 			   enum skb_drop_reason reason)
897 {
898 	while (segs) {
899 		struct sk_buff *next = segs->next;
900 
901 		kfree_skb_reason(segs, reason);
902 		segs = next;
903 	}
904 }
905 EXPORT_SYMBOL(kfree_skb_list_reason);
906 
907 /* Dump skb information and contents.
908  *
909  * Must only be called from net_ratelimit()-ed paths.
910  *
911  * Dumps whole packets if full_pkt, only headers otherwise.
912  */
913 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
914 {
915 	struct skb_shared_info *sh = skb_shinfo(skb);
916 	struct net_device *dev = skb->dev;
917 	struct sock *sk = skb->sk;
918 	struct sk_buff *list_skb;
919 	bool has_mac, has_trans;
920 	int headroom, tailroom;
921 	int i, len, seg_len;
922 
923 	if (full_pkt)
924 		len = skb->len;
925 	else
926 		len = min_t(int, skb->len, MAX_HEADER + 128);
927 
928 	headroom = skb_headroom(skb);
929 	tailroom = skb_tailroom(skb);
930 
931 	has_mac = skb_mac_header_was_set(skb);
932 	has_trans = skb_transport_header_was_set(skb);
933 
934 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
935 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
936 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
937 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
938 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
939 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
940 	       has_mac ? skb->mac_header : -1,
941 	       has_mac ? skb_mac_header_len(skb) : -1,
942 	       skb->network_header,
943 	       has_trans ? skb_network_header_len(skb) : -1,
944 	       has_trans ? skb->transport_header : -1,
945 	       sh->tx_flags, sh->nr_frags,
946 	       sh->gso_size, sh->gso_type, sh->gso_segs,
947 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
948 	       skb->csum_valid, skb->csum_level,
949 	       skb->hash, skb->sw_hash, skb->l4_hash,
950 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
951 
952 	if (dev)
953 		printk("%sdev name=%s feat=%pNF\n",
954 		       level, dev->name, &dev->features);
955 	if (sk)
956 		printk("%ssk family=%hu type=%u proto=%u\n",
957 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
958 
959 	if (full_pkt && headroom)
960 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
961 			       16, 1, skb->head, headroom, false);
962 
963 	seg_len = min_t(int, skb_headlen(skb), len);
964 	if (seg_len)
965 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
966 			       16, 1, skb->data, seg_len, false);
967 	len -= seg_len;
968 
969 	if (full_pkt && tailroom)
970 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
971 			       16, 1, skb_tail_pointer(skb), tailroom, false);
972 
973 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
974 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
975 		u32 p_off, p_len, copied;
976 		struct page *p;
977 		u8 *vaddr;
978 
979 		skb_frag_foreach_page(frag, skb_frag_off(frag),
980 				      skb_frag_size(frag), p, p_off, p_len,
981 				      copied) {
982 			seg_len = min_t(int, p_len, len);
983 			vaddr = kmap_atomic(p);
984 			print_hex_dump(level, "skb frag:     ",
985 				       DUMP_PREFIX_OFFSET,
986 				       16, 1, vaddr + p_off, seg_len, false);
987 			kunmap_atomic(vaddr);
988 			len -= seg_len;
989 			if (!len)
990 				break;
991 		}
992 	}
993 
994 	if (full_pkt && skb_has_frag_list(skb)) {
995 		printk("skb fraglist:\n");
996 		skb_walk_frags(skb, list_skb)
997 			skb_dump(level, list_skb, true);
998 	}
999 }
1000 EXPORT_SYMBOL(skb_dump);
1001 
1002 /**
1003  *	skb_tx_error - report an sk_buff xmit error
1004  *	@skb: buffer that triggered an error
1005  *
1006  *	Report xmit error if a device callback is tracking this skb.
1007  *	skb must be freed afterwards.
1008  */
1009 void skb_tx_error(struct sk_buff *skb)
1010 {
1011 	if (skb) {
1012 		skb_zcopy_downgrade_managed(skb);
1013 		skb_zcopy_clear(skb, true);
1014 	}
1015 }
1016 EXPORT_SYMBOL(skb_tx_error);
1017 
1018 #ifdef CONFIG_TRACEPOINTS
1019 /**
1020  *	consume_skb - free an skbuff
1021  *	@skb: buffer to free
1022  *
1023  *	Drop a ref to the buffer and free it if the usage count has hit zero
1024  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1025  *	is being dropped after a failure and notes that
1026  */
1027 void consume_skb(struct sk_buff *skb)
1028 {
1029 	if (!skb_unref(skb))
1030 		return;
1031 
1032 	trace_consume_skb(skb);
1033 	__kfree_skb(skb);
1034 }
1035 EXPORT_SYMBOL(consume_skb);
1036 #endif
1037 
1038 /**
1039  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1040  *	@skb: buffer to free
1041  *
1042  *	Alike consume_skb(), but this variant assumes that this is the last
1043  *	skb reference and all the head states have been already dropped
1044  */
1045 void __consume_stateless_skb(struct sk_buff *skb)
1046 {
1047 	trace_consume_skb(skb);
1048 	skb_release_data(skb);
1049 	kfree_skbmem(skb);
1050 }
1051 
1052 static void napi_skb_cache_put(struct sk_buff *skb)
1053 {
1054 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1055 	u32 i;
1056 
1057 	kasan_poison_object_data(skbuff_head_cache, skb);
1058 	nc->skb_cache[nc->skb_count++] = skb;
1059 
1060 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1061 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1062 			kasan_unpoison_object_data(skbuff_head_cache,
1063 						   nc->skb_cache[i]);
1064 
1065 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
1066 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1067 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1068 	}
1069 }
1070 
1071 void __kfree_skb_defer(struct sk_buff *skb)
1072 {
1073 	skb_release_all(skb);
1074 	napi_skb_cache_put(skb);
1075 }
1076 
1077 void napi_skb_free_stolen_head(struct sk_buff *skb)
1078 {
1079 	if (unlikely(skb->slow_gro)) {
1080 		nf_reset_ct(skb);
1081 		skb_dst_drop(skb);
1082 		skb_ext_put(skb);
1083 		skb_orphan(skb);
1084 		skb->slow_gro = 0;
1085 	}
1086 	napi_skb_cache_put(skb);
1087 }
1088 
1089 void napi_consume_skb(struct sk_buff *skb, int budget)
1090 {
1091 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1092 	if (unlikely(!budget)) {
1093 		dev_consume_skb_any(skb);
1094 		return;
1095 	}
1096 
1097 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1098 
1099 	if (!skb_unref(skb))
1100 		return;
1101 
1102 	/* if reaching here SKB is ready to free */
1103 	trace_consume_skb(skb);
1104 
1105 	/* if SKB is a clone, don't handle this case */
1106 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1107 		__kfree_skb(skb);
1108 		return;
1109 	}
1110 
1111 	skb_release_all(skb);
1112 	napi_skb_cache_put(skb);
1113 }
1114 EXPORT_SYMBOL(napi_consume_skb);
1115 
1116 /* Make sure a field is contained by headers group */
1117 #define CHECK_SKB_FIELD(field) \
1118 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1119 		     offsetof(struct sk_buff, headers.field));	\
1120 
1121 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1122 {
1123 	new->tstamp		= old->tstamp;
1124 	/* We do not copy old->sk */
1125 	new->dev		= old->dev;
1126 	memcpy(new->cb, old->cb, sizeof(old->cb));
1127 	skb_dst_copy(new, old);
1128 	__skb_ext_copy(new, old);
1129 	__nf_copy(new, old, false);
1130 
1131 	/* Note : this field could be in the headers group.
1132 	 * It is not yet because we do not want to have a 16 bit hole
1133 	 */
1134 	new->queue_mapping = old->queue_mapping;
1135 
1136 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1137 	CHECK_SKB_FIELD(protocol);
1138 	CHECK_SKB_FIELD(csum);
1139 	CHECK_SKB_FIELD(hash);
1140 	CHECK_SKB_FIELD(priority);
1141 	CHECK_SKB_FIELD(skb_iif);
1142 	CHECK_SKB_FIELD(vlan_proto);
1143 	CHECK_SKB_FIELD(vlan_tci);
1144 	CHECK_SKB_FIELD(transport_header);
1145 	CHECK_SKB_FIELD(network_header);
1146 	CHECK_SKB_FIELD(mac_header);
1147 	CHECK_SKB_FIELD(inner_protocol);
1148 	CHECK_SKB_FIELD(inner_transport_header);
1149 	CHECK_SKB_FIELD(inner_network_header);
1150 	CHECK_SKB_FIELD(inner_mac_header);
1151 	CHECK_SKB_FIELD(mark);
1152 #ifdef CONFIG_NETWORK_SECMARK
1153 	CHECK_SKB_FIELD(secmark);
1154 #endif
1155 #ifdef CONFIG_NET_RX_BUSY_POLL
1156 	CHECK_SKB_FIELD(napi_id);
1157 #endif
1158 	CHECK_SKB_FIELD(alloc_cpu);
1159 #ifdef CONFIG_XPS
1160 	CHECK_SKB_FIELD(sender_cpu);
1161 #endif
1162 #ifdef CONFIG_NET_SCHED
1163 	CHECK_SKB_FIELD(tc_index);
1164 #endif
1165 
1166 }
1167 
1168 /*
1169  * You should not add any new code to this function.  Add it to
1170  * __copy_skb_header above instead.
1171  */
1172 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1173 {
1174 #define C(x) n->x = skb->x
1175 
1176 	n->next = n->prev = NULL;
1177 	n->sk = NULL;
1178 	__copy_skb_header(n, skb);
1179 
1180 	C(len);
1181 	C(data_len);
1182 	C(mac_len);
1183 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1184 	n->cloned = 1;
1185 	n->nohdr = 0;
1186 	n->peeked = 0;
1187 	C(pfmemalloc);
1188 	C(pp_recycle);
1189 	n->destructor = NULL;
1190 	C(tail);
1191 	C(end);
1192 	C(head);
1193 	C(head_frag);
1194 	C(data);
1195 	C(truesize);
1196 	refcount_set(&n->users, 1);
1197 
1198 	atomic_inc(&(skb_shinfo(skb)->dataref));
1199 	skb->cloned = 1;
1200 
1201 	return n;
1202 #undef C
1203 }
1204 
1205 /**
1206  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1207  * @first: first sk_buff of the msg
1208  */
1209 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1210 {
1211 	struct sk_buff *n;
1212 
1213 	n = alloc_skb(0, GFP_ATOMIC);
1214 	if (!n)
1215 		return NULL;
1216 
1217 	n->len = first->len;
1218 	n->data_len = first->len;
1219 	n->truesize = first->truesize;
1220 
1221 	skb_shinfo(n)->frag_list = first;
1222 
1223 	__copy_skb_header(n, first);
1224 	n->destructor = NULL;
1225 
1226 	return n;
1227 }
1228 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1229 
1230 /**
1231  *	skb_morph	-	morph one skb into another
1232  *	@dst: the skb to receive the contents
1233  *	@src: the skb to supply the contents
1234  *
1235  *	This is identical to skb_clone except that the target skb is
1236  *	supplied by the user.
1237  *
1238  *	The target skb is returned upon exit.
1239  */
1240 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1241 {
1242 	skb_release_all(dst);
1243 	return __skb_clone(dst, src);
1244 }
1245 EXPORT_SYMBOL_GPL(skb_morph);
1246 
1247 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1248 {
1249 	unsigned long max_pg, num_pg, new_pg, old_pg;
1250 	struct user_struct *user;
1251 
1252 	if (capable(CAP_IPC_LOCK) || !size)
1253 		return 0;
1254 
1255 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1256 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1257 	user = mmp->user ? : current_user();
1258 
1259 	do {
1260 		old_pg = atomic_long_read(&user->locked_vm);
1261 		new_pg = old_pg + num_pg;
1262 		if (new_pg > max_pg)
1263 			return -ENOBUFS;
1264 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1265 		 old_pg);
1266 
1267 	if (!mmp->user) {
1268 		mmp->user = get_uid(user);
1269 		mmp->num_pg = num_pg;
1270 	} else {
1271 		mmp->num_pg += num_pg;
1272 	}
1273 
1274 	return 0;
1275 }
1276 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1277 
1278 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1279 {
1280 	if (mmp->user) {
1281 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1282 		free_uid(mmp->user);
1283 	}
1284 }
1285 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1286 
1287 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1288 {
1289 	struct ubuf_info_msgzc *uarg;
1290 	struct sk_buff *skb;
1291 
1292 	WARN_ON_ONCE(!in_task());
1293 
1294 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1295 	if (!skb)
1296 		return NULL;
1297 
1298 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1299 	uarg = (void *)skb->cb;
1300 	uarg->mmp.user = NULL;
1301 
1302 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1303 		kfree_skb(skb);
1304 		return NULL;
1305 	}
1306 
1307 	uarg->ubuf.callback = msg_zerocopy_callback;
1308 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1309 	uarg->len = 1;
1310 	uarg->bytelen = size;
1311 	uarg->zerocopy = 1;
1312 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1313 	refcount_set(&uarg->ubuf.refcnt, 1);
1314 	sock_hold(sk);
1315 
1316 	return &uarg->ubuf;
1317 }
1318 
1319 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1320 {
1321 	return container_of((void *)uarg, struct sk_buff, cb);
1322 }
1323 
1324 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1325 				       struct ubuf_info *uarg)
1326 {
1327 	if (uarg) {
1328 		struct ubuf_info_msgzc *uarg_zc;
1329 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1330 		u32 bytelen, next;
1331 
1332 		/* there might be non MSG_ZEROCOPY users */
1333 		if (uarg->callback != msg_zerocopy_callback)
1334 			return NULL;
1335 
1336 		/* realloc only when socket is locked (TCP, UDP cork),
1337 		 * so uarg->len and sk_zckey access is serialized
1338 		 */
1339 		if (!sock_owned_by_user(sk)) {
1340 			WARN_ON_ONCE(1);
1341 			return NULL;
1342 		}
1343 
1344 		uarg_zc = uarg_to_msgzc(uarg);
1345 		bytelen = uarg_zc->bytelen + size;
1346 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1347 			/* TCP can create new skb to attach new uarg */
1348 			if (sk->sk_type == SOCK_STREAM)
1349 				goto new_alloc;
1350 			return NULL;
1351 		}
1352 
1353 		next = (u32)atomic_read(&sk->sk_zckey);
1354 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1355 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1356 				return NULL;
1357 			uarg_zc->len++;
1358 			uarg_zc->bytelen = bytelen;
1359 			atomic_set(&sk->sk_zckey, ++next);
1360 
1361 			/* no extra ref when appending to datagram (MSG_MORE) */
1362 			if (sk->sk_type == SOCK_STREAM)
1363 				net_zcopy_get(uarg);
1364 
1365 			return uarg;
1366 		}
1367 	}
1368 
1369 new_alloc:
1370 	return msg_zerocopy_alloc(sk, size);
1371 }
1372 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1373 
1374 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1375 {
1376 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1377 	u32 old_lo, old_hi;
1378 	u64 sum_len;
1379 
1380 	old_lo = serr->ee.ee_info;
1381 	old_hi = serr->ee.ee_data;
1382 	sum_len = old_hi - old_lo + 1ULL + len;
1383 
1384 	if (sum_len >= (1ULL << 32))
1385 		return false;
1386 
1387 	if (lo != old_hi + 1)
1388 		return false;
1389 
1390 	serr->ee.ee_data += len;
1391 	return true;
1392 }
1393 
1394 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1395 {
1396 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1397 	struct sock_exterr_skb *serr;
1398 	struct sock *sk = skb->sk;
1399 	struct sk_buff_head *q;
1400 	unsigned long flags;
1401 	bool is_zerocopy;
1402 	u32 lo, hi;
1403 	u16 len;
1404 
1405 	mm_unaccount_pinned_pages(&uarg->mmp);
1406 
1407 	/* if !len, there was only 1 call, and it was aborted
1408 	 * so do not queue a completion notification
1409 	 */
1410 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1411 		goto release;
1412 
1413 	len = uarg->len;
1414 	lo = uarg->id;
1415 	hi = uarg->id + len - 1;
1416 	is_zerocopy = uarg->zerocopy;
1417 
1418 	serr = SKB_EXT_ERR(skb);
1419 	memset(serr, 0, sizeof(*serr));
1420 	serr->ee.ee_errno = 0;
1421 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1422 	serr->ee.ee_data = hi;
1423 	serr->ee.ee_info = lo;
1424 	if (!is_zerocopy)
1425 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1426 
1427 	q = &sk->sk_error_queue;
1428 	spin_lock_irqsave(&q->lock, flags);
1429 	tail = skb_peek_tail(q);
1430 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1431 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1432 		__skb_queue_tail(q, skb);
1433 		skb = NULL;
1434 	}
1435 	spin_unlock_irqrestore(&q->lock, flags);
1436 
1437 	sk_error_report(sk);
1438 
1439 release:
1440 	consume_skb(skb);
1441 	sock_put(sk);
1442 }
1443 
1444 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1445 			   bool success)
1446 {
1447 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1448 
1449 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1450 
1451 	if (refcount_dec_and_test(&uarg->refcnt))
1452 		__msg_zerocopy_callback(uarg_zc);
1453 }
1454 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1455 
1456 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1457 {
1458 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1459 
1460 	atomic_dec(&sk->sk_zckey);
1461 	uarg_to_msgzc(uarg)->len--;
1462 
1463 	if (have_uref)
1464 		msg_zerocopy_callback(NULL, uarg, true);
1465 }
1466 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1467 
1468 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1469 			     struct msghdr *msg, int len,
1470 			     struct ubuf_info *uarg)
1471 {
1472 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1473 	int err, orig_len = skb->len;
1474 
1475 	/* An skb can only point to one uarg. This edge case happens when
1476 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1477 	 */
1478 	if (orig_uarg && uarg != orig_uarg)
1479 		return -EEXIST;
1480 
1481 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1482 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1483 		struct sock *save_sk = skb->sk;
1484 
1485 		/* Streams do not free skb on error. Reset to prev state. */
1486 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1487 		skb->sk = sk;
1488 		___pskb_trim(skb, orig_len);
1489 		skb->sk = save_sk;
1490 		return err;
1491 	}
1492 
1493 	skb_zcopy_set(skb, uarg, NULL);
1494 	return skb->len - orig_len;
1495 }
1496 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1497 
1498 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1499 {
1500 	int i;
1501 
1502 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1503 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1504 		skb_frag_ref(skb, i);
1505 }
1506 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1507 
1508 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1509 			      gfp_t gfp_mask)
1510 {
1511 	if (skb_zcopy(orig)) {
1512 		if (skb_zcopy(nskb)) {
1513 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1514 			if (!gfp_mask) {
1515 				WARN_ON_ONCE(1);
1516 				return -ENOMEM;
1517 			}
1518 			if (skb_uarg(nskb) == skb_uarg(orig))
1519 				return 0;
1520 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1521 				return -EIO;
1522 		}
1523 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1524 	}
1525 	return 0;
1526 }
1527 
1528 /**
1529  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1530  *	@skb: the skb to modify
1531  *	@gfp_mask: allocation priority
1532  *
1533  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1534  *	It will copy all frags into kernel and drop the reference
1535  *	to userspace pages.
1536  *
1537  *	If this function is called from an interrupt gfp_mask() must be
1538  *	%GFP_ATOMIC.
1539  *
1540  *	Returns 0 on success or a negative error code on failure
1541  *	to allocate kernel memory to copy to.
1542  */
1543 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1544 {
1545 	int num_frags = skb_shinfo(skb)->nr_frags;
1546 	struct page *page, *head = NULL;
1547 	int i, new_frags;
1548 	u32 d_off;
1549 
1550 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1551 		return -EINVAL;
1552 
1553 	if (!num_frags)
1554 		goto release;
1555 
1556 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1557 	for (i = 0; i < new_frags; i++) {
1558 		page = alloc_page(gfp_mask);
1559 		if (!page) {
1560 			while (head) {
1561 				struct page *next = (struct page *)page_private(head);
1562 				put_page(head);
1563 				head = next;
1564 			}
1565 			return -ENOMEM;
1566 		}
1567 		set_page_private(page, (unsigned long)head);
1568 		head = page;
1569 	}
1570 
1571 	page = head;
1572 	d_off = 0;
1573 	for (i = 0; i < num_frags; i++) {
1574 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1575 		u32 p_off, p_len, copied;
1576 		struct page *p;
1577 		u8 *vaddr;
1578 
1579 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1580 				      p, p_off, p_len, copied) {
1581 			u32 copy, done = 0;
1582 			vaddr = kmap_atomic(p);
1583 
1584 			while (done < p_len) {
1585 				if (d_off == PAGE_SIZE) {
1586 					d_off = 0;
1587 					page = (struct page *)page_private(page);
1588 				}
1589 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1590 				memcpy(page_address(page) + d_off,
1591 				       vaddr + p_off + done, copy);
1592 				done += copy;
1593 				d_off += copy;
1594 			}
1595 			kunmap_atomic(vaddr);
1596 		}
1597 	}
1598 
1599 	/* skb frags release userspace buffers */
1600 	for (i = 0; i < num_frags; i++)
1601 		skb_frag_unref(skb, i);
1602 
1603 	/* skb frags point to kernel buffers */
1604 	for (i = 0; i < new_frags - 1; i++) {
1605 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1606 		head = (struct page *)page_private(head);
1607 	}
1608 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1609 	skb_shinfo(skb)->nr_frags = new_frags;
1610 
1611 release:
1612 	skb_zcopy_clear(skb, false);
1613 	return 0;
1614 }
1615 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1616 
1617 /**
1618  *	skb_clone	-	duplicate an sk_buff
1619  *	@skb: buffer to clone
1620  *	@gfp_mask: allocation priority
1621  *
1622  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1623  *	copies share the same packet data but not structure. The new
1624  *	buffer has a reference count of 1. If the allocation fails the
1625  *	function returns %NULL otherwise the new buffer is returned.
1626  *
1627  *	If this function is called from an interrupt gfp_mask() must be
1628  *	%GFP_ATOMIC.
1629  */
1630 
1631 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1632 {
1633 	struct sk_buff_fclones *fclones = container_of(skb,
1634 						       struct sk_buff_fclones,
1635 						       skb1);
1636 	struct sk_buff *n;
1637 
1638 	if (skb_orphan_frags(skb, gfp_mask))
1639 		return NULL;
1640 
1641 	if (skb->fclone == SKB_FCLONE_ORIG &&
1642 	    refcount_read(&fclones->fclone_ref) == 1) {
1643 		n = &fclones->skb2;
1644 		refcount_set(&fclones->fclone_ref, 2);
1645 		n->fclone = SKB_FCLONE_CLONE;
1646 	} else {
1647 		if (skb_pfmemalloc(skb))
1648 			gfp_mask |= __GFP_MEMALLOC;
1649 
1650 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1651 		if (!n)
1652 			return NULL;
1653 
1654 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1655 	}
1656 
1657 	return __skb_clone(n, skb);
1658 }
1659 EXPORT_SYMBOL(skb_clone);
1660 
1661 void skb_headers_offset_update(struct sk_buff *skb, int off)
1662 {
1663 	/* Only adjust this if it actually is csum_start rather than csum */
1664 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1665 		skb->csum_start += off;
1666 	/* {transport,network,mac}_header and tail are relative to skb->head */
1667 	skb->transport_header += off;
1668 	skb->network_header   += off;
1669 	if (skb_mac_header_was_set(skb))
1670 		skb->mac_header += off;
1671 	skb->inner_transport_header += off;
1672 	skb->inner_network_header += off;
1673 	skb->inner_mac_header += off;
1674 }
1675 EXPORT_SYMBOL(skb_headers_offset_update);
1676 
1677 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1678 {
1679 	__copy_skb_header(new, old);
1680 
1681 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1682 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1683 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1684 }
1685 EXPORT_SYMBOL(skb_copy_header);
1686 
1687 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1688 {
1689 	if (skb_pfmemalloc(skb))
1690 		return SKB_ALLOC_RX;
1691 	return 0;
1692 }
1693 
1694 /**
1695  *	skb_copy	-	create private copy of an sk_buff
1696  *	@skb: buffer to copy
1697  *	@gfp_mask: allocation priority
1698  *
1699  *	Make a copy of both an &sk_buff and its data. This is used when the
1700  *	caller wishes to modify the data and needs a private copy of the
1701  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1702  *	on success. The returned buffer has a reference count of 1.
1703  *
1704  *	As by-product this function converts non-linear &sk_buff to linear
1705  *	one, so that &sk_buff becomes completely private and caller is allowed
1706  *	to modify all the data of returned buffer. This means that this
1707  *	function is not recommended for use in circumstances when only
1708  *	header is going to be modified. Use pskb_copy() instead.
1709  */
1710 
1711 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1712 {
1713 	int headerlen = skb_headroom(skb);
1714 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1715 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1716 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1717 
1718 	if (!n)
1719 		return NULL;
1720 
1721 	/* Set the data pointer */
1722 	skb_reserve(n, headerlen);
1723 	/* Set the tail pointer and length */
1724 	skb_put(n, skb->len);
1725 
1726 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1727 
1728 	skb_copy_header(n, skb);
1729 	return n;
1730 }
1731 EXPORT_SYMBOL(skb_copy);
1732 
1733 /**
1734  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1735  *	@skb: buffer to copy
1736  *	@headroom: headroom of new skb
1737  *	@gfp_mask: allocation priority
1738  *	@fclone: if true allocate the copy of the skb from the fclone
1739  *	cache instead of the head cache; it is recommended to set this
1740  *	to true for the cases where the copy will likely be cloned
1741  *
1742  *	Make a copy of both an &sk_buff and part of its data, located
1743  *	in header. Fragmented data remain shared. This is used when
1744  *	the caller wishes to modify only header of &sk_buff and needs
1745  *	private copy of the header to alter. Returns %NULL on failure
1746  *	or the pointer to the buffer on success.
1747  *	The returned buffer has a reference count of 1.
1748  */
1749 
1750 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1751 				   gfp_t gfp_mask, bool fclone)
1752 {
1753 	unsigned int size = skb_headlen(skb) + headroom;
1754 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1755 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1756 
1757 	if (!n)
1758 		goto out;
1759 
1760 	/* Set the data pointer */
1761 	skb_reserve(n, headroom);
1762 	/* Set the tail pointer and length */
1763 	skb_put(n, skb_headlen(skb));
1764 	/* Copy the bytes */
1765 	skb_copy_from_linear_data(skb, n->data, n->len);
1766 
1767 	n->truesize += skb->data_len;
1768 	n->data_len  = skb->data_len;
1769 	n->len	     = skb->len;
1770 
1771 	if (skb_shinfo(skb)->nr_frags) {
1772 		int i;
1773 
1774 		if (skb_orphan_frags(skb, gfp_mask) ||
1775 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1776 			kfree_skb(n);
1777 			n = NULL;
1778 			goto out;
1779 		}
1780 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1781 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1782 			skb_frag_ref(skb, i);
1783 		}
1784 		skb_shinfo(n)->nr_frags = i;
1785 	}
1786 
1787 	if (skb_has_frag_list(skb)) {
1788 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1789 		skb_clone_fraglist(n);
1790 	}
1791 
1792 	skb_copy_header(n, skb);
1793 out:
1794 	return n;
1795 }
1796 EXPORT_SYMBOL(__pskb_copy_fclone);
1797 
1798 /**
1799  *	pskb_expand_head - reallocate header of &sk_buff
1800  *	@skb: buffer to reallocate
1801  *	@nhead: room to add at head
1802  *	@ntail: room to add at tail
1803  *	@gfp_mask: allocation priority
1804  *
1805  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1806  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1807  *	reference count of 1. Returns zero in the case of success or error,
1808  *	if expansion failed. In the last case, &sk_buff is not changed.
1809  *
1810  *	All the pointers pointing into skb header may change and must be
1811  *	reloaded after call to this function.
1812  */
1813 
1814 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1815 		     gfp_t gfp_mask)
1816 {
1817 	int i, osize = skb_end_offset(skb);
1818 	int size = osize + nhead + ntail;
1819 	long off;
1820 	u8 *data;
1821 
1822 	BUG_ON(nhead < 0);
1823 
1824 	BUG_ON(skb_shared(skb));
1825 
1826 	skb_zcopy_downgrade_managed(skb);
1827 
1828 	size = SKB_DATA_ALIGN(size);
1829 
1830 	if (skb_pfmemalloc(skb))
1831 		gfp_mask |= __GFP_MEMALLOC;
1832 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1833 			       gfp_mask, NUMA_NO_NODE, NULL);
1834 	if (!data)
1835 		goto nodata;
1836 	size = SKB_WITH_OVERHEAD(ksize(data));
1837 
1838 	/* Copy only real data... and, alas, header. This should be
1839 	 * optimized for the cases when header is void.
1840 	 */
1841 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1842 
1843 	memcpy((struct skb_shared_info *)(data + size),
1844 	       skb_shinfo(skb),
1845 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1846 
1847 	/*
1848 	 * if shinfo is shared we must drop the old head gracefully, but if it
1849 	 * is not we can just drop the old head and let the existing refcount
1850 	 * be since all we did is relocate the values
1851 	 */
1852 	if (skb_cloned(skb)) {
1853 		if (skb_orphan_frags(skb, gfp_mask))
1854 			goto nofrags;
1855 		if (skb_zcopy(skb))
1856 			refcount_inc(&skb_uarg(skb)->refcnt);
1857 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1858 			skb_frag_ref(skb, i);
1859 
1860 		if (skb_has_frag_list(skb))
1861 			skb_clone_fraglist(skb);
1862 
1863 		skb_release_data(skb);
1864 	} else {
1865 		skb_free_head(skb);
1866 	}
1867 	off = (data + nhead) - skb->head;
1868 
1869 	skb->head     = data;
1870 	skb->head_frag = 0;
1871 	skb->data    += off;
1872 
1873 	skb_set_end_offset(skb, size);
1874 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1875 	off           = nhead;
1876 #endif
1877 	skb->tail	      += off;
1878 	skb_headers_offset_update(skb, nhead);
1879 	skb->cloned   = 0;
1880 	skb->hdr_len  = 0;
1881 	skb->nohdr    = 0;
1882 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1883 
1884 	skb_metadata_clear(skb);
1885 
1886 	/* It is not generally safe to change skb->truesize.
1887 	 * For the moment, we really care of rx path, or
1888 	 * when skb is orphaned (not attached to a socket).
1889 	 */
1890 	if (!skb->sk || skb->destructor == sock_edemux)
1891 		skb->truesize += size - osize;
1892 
1893 	return 0;
1894 
1895 nofrags:
1896 	kfree(data);
1897 nodata:
1898 	return -ENOMEM;
1899 }
1900 EXPORT_SYMBOL(pskb_expand_head);
1901 
1902 /* Make private copy of skb with writable head and some headroom */
1903 
1904 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1905 {
1906 	struct sk_buff *skb2;
1907 	int delta = headroom - skb_headroom(skb);
1908 
1909 	if (delta <= 0)
1910 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1911 	else {
1912 		skb2 = skb_clone(skb, GFP_ATOMIC);
1913 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1914 					     GFP_ATOMIC)) {
1915 			kfree_skb(skb2);
1916 			skb2 = NULL;
1917 		}
1918 	}
1919 	return skb2;
1920 }
1921 EXPORT_SYMBOL(skb_realloc_headroom);
1922 
1923 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1924 {
1925 	unsigned int saved_end_offset, saved_truesize;
1926 	struct skb_shared_info *shinfo;
1927 	int res;
1928 
1929 	saved_end_offset = skb_end_offset(skb);
1930 	saved_truesize = skb->truesize;
1931 
1932 	res = pskb_expand_head(skb, 0, 0, pri);
1933 	if (res)
1934 		return res;
1935 
1936 	skb->truesize = saved_truesize;
1937 
1938 	if (likely(skb_end_offset(skb) == saved_end_offset))
1939 		return 0;
1940 
1941 	shinfo = skb_shinfo(skb);
1942 
1943 	/* We are about to change back skb->end,
1944 	 * we need to move skb_shinfo() to its new location.
1945 	 */
1946 	memmove(skb->head + saved_end_offset,
1947 		shinfo,
1948 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
1949 
1950 	skb_set_end_offset(skb, saved_end_offset);
1951 
1952 	return 0;
1953 }
1954 
1955 /**
1956  *	skb_expand_head - reallocate header of &sk_buff
1957  *	@skb: buffer to reallocate
1958  *	@headroom: needed headroom
1959  *
1960  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
1961  *	if possible; copies skb->sk to new skb as needed
1962  *	and frees original skb in case of failures.
1963  *
1964  *	It expect increased headroom and generates warning otherwise.
1965  */
1966 
1967 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1968 {
1969 	int delta = headroom - skb_headroom(skb);
1970 	int osize = skb_end_offset(skb);
1971 	struct sock *sk = skb->sk;
1972 
1973 	if (WARN_ONCE(delta <= 0,
1974 		      "%s is expecting an increase in the headroom", __func__))
1975 		return skb;
1976 
1977 	delta = SKB_DATA_ALIGN(delta);
1978 	/* pskb_expand_head() might crash, if skb is shared. */
1979 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
1980 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1981 
1982 		if (unlikely(!nskb))
1983 			goto fail;
1984 
1985 		if (sk)
1986 			skb_set_owner_w(nskb, sk);
1987 		consume_skb(skb);
1988 		skb = nskb;
1989 	}
1990 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
1991 		goto fail;
1992 
1993 	if (sk && is_skb_wmem(skb)) {
1994 		delta = skb_end_offset(skb) - osize;
1995 		refcount_add(delta, &sk->sk_wmem_alloc);
1996 		skb->truesize += delta;
1997 	}
1998 	return skb;
1999 
2000 fail:
2001 	kfree_skb(skb);
2002 	return NULL;
2003 }
2004 EXPORT_SYMBOL(skb_expand_head);
2005 
2006 /**
2007  *	skb_copy_expand	-	copy and expand sk_buff
2008  *	@skb: buffer to copy
2009  *	@newheadroom: new free bytes at head
2010  *	@newtailroom: new free bytes at tail
2011  *	@gfp_mask: allocation priority
2012  *
2013  *	Make a copy of both an &sk_buff and its data and while doing so
2014  *	allocate additional space.
2015  *
2016  *	This is used when the caller wishes to modify the data and needs a
2017  *	private copy of the data to alter as well as more space for new fields.
2018  *	Returns %NULL on failure or the pointer to the buffer
2019  *	on success. The returned buffer has a reference count of 1.
2020  *
2021  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2022  *	is called from an interrupt.
2023  */
2024 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2025 				int newheadroom, int newtailroom,
2026 				gfp_t gfp_mask)
2027 {
2028 	/*
2029 	 *	Allocate the copy buffer
2030 	 */
2031 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2032 					gfp_mask, skb_alloc_rx_flag(skb),
2033 					NUMA_NO_NODE);
2034 	int oldheadroom = skb_headroom(skb);
2035 	int head_copy_len, head_copy_off;
2036 
2037 	if (!n)
2038 		return NULL;
2039 
2040 	skb_reserve(n, newheadroom);
2041 
2042 	/* Set the tail pointer and length */
2043 	skb_put(n, skb->len);
2044 
2045 	head_copy_len = oldheadroom;
2046 	head_copy_off = 0;
2047 	if (newheadroom <= head_copy_len)
2048 		head_copy_len = newheadroom;
2049 	else
2050 		head_copy_off = newheadroom - head_copy_len;
2051 
2052 	/* Copy the linear header and data. */
2053 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2054 			     skb->len + head_copy_len));
2055 
2056 	skb_copy_header(n, skb);
2057 
2058 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2059 
2060 	return n;
2061 }
2062 EXPORT_SYMBOL(skb_copy_expand);
2063 
2064 /**
2065  *	__skb_pad		-	zero pad the tail of an skb
2066  *	@skb: buffer to pad
2067  *	@pad: space to pad
2068  *	@free_on_error: free buffer on error
2069  *
2070  *	Ensure that a buffer is followed by a padding area that is zero
2071  *	filled. Used by network drivers which may DMA or transfer data
2072  *	beyond the buffer end onto the wire.
2073  *
2074  *	May return error in out of memory cases. The skb is freed on error
2075  *	if @free_on_error is true.
2076  */
2077 
2078 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2079 {
2080 	int err;
2081 	int ntail;
2082 
2083 	/* If the skbuff is non linear tailroom is always zero.. */
2084 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2085 		memset(skb->data+skb->len, 0, pad);
2086 		return 0;
2087 	}
2088 
2089 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2090 	if (likely(skb_cloned(skb) || ntail > 0)) {
2091 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2092 		if (unlikely(err))
2093 			goto free_skb;
2094 	}
2095 
2096 	/* FIXME: The use of this function with non-linear skb's really needs
2097 	 * to be audited.
2098 	 */
2099 	err = skb_linearize(skb);
2100 	if (unlikely(err))
2101 		goto free_skb;
2102 
2103 	memset(skb->data + skb->len, 0, pad);
2104 	return 0;
2105 
2106 free_skb:
2107 	if (free_on_error)
2108 		kfree_skb(skb);
2109 	return err;
2110 }
2111 EXPORT_SYMBOL(__skb_pad);
2112 
2113 /**
2114  *	pskb_put - add data to the tail of a potentially fragmented buffer
2115  *	@skb: start of the buffer to use
2116  *	@tail: tail fragment of the buffer to use
2117  *	@len: amount of data to add
2118  *
2119  *	This function extends the used data area of the potentially
2120  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2121  *	@skb itself. If this would exceed the total buffer size the kernel
2122  *	will panic. A pointer to the first byte of the extra data is
2123  *	returned.
2124  */
2125 
2126 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2127 {
2128 	if (tail != skb) {
2129 		skb->data_len += len;
2130 		skb->len += len;
2131 	}
2132 	return skb_put(tail, len);
2133 }
2134 EXPORT_SYMBOL_GPL(pskb_put);
2135 
2136 /**
2137  *	skb_put - add data to a buffer
2138  *	@skb: buffer to use
2139  *	@len: amount of data to add
2140  *
2141  *	This function extends the used data area of the buffer. If this would
2142  *	exceed the total buffer size the kernel will panic. A pointer to the
2143  *	first byte of the extra data is returned.
2144  */
2145 void *skb_put(struct sk_buff *skb, unsigned int len)
2146 {
2147 	void *tmp = skb_tail_pointer(skb);
2148 	SKB_LINEAR_ASSERT(skb);
2149 	skb->tail += len;
2150 	skb->len  += len;
2151 	if (unlikely(skb->tail > skb->end))
2152 		skb_over_panic(skb, len, __builtin_return_address(0));
2153 	return tmp;
2154 }
2155 EXPORT_SYMBOL(skb_put);
2156 
2157 /**
2158  *	skb_push - add data to the start of a buffer
2159  *	@skb: buffer to use
2160  *	@len: amount of data to add
2161  *
2162  *	This function extends the used data area of the buffer at the buffer
2163  *	start. If this would exceed the total buffer headroom the kernel will
2164  *	panic. A pointer to the first byte of the extra data is returned.
2165  */
2166 void *skb_push(struct sk_buff *skb, unsigned int len)
2167 {
2168 	skb->data -= len;
2169 	skb->len  += len;
2170 	if (unlikely(skb->data < skb->head))
2171 		skb_under_panic(skb, len, __builtin_return_address(0));
2172 	return skb->data;
2173 }
2174 EXPORT_SYMBOL(skb_push);
2175 
2176 /**
2177  *	skb_pull - remove data from the start of a buffer
2178  *	@skb: buffer to use
2179  *	@len: amount of data to remove
2180  *
2181  *	This function removes data from the start of a buffer, returning
2182  *	the memory to the headroom. A pointer to the next data in the buffer
2183  *	is returned. Once the data has been pulled future pushes will overwrite
2184  *	the old data.
2185  */
2186 void *skb_pull(struct sk_buff *skb, unsigned int len)
2187 {
2188 	return skb_pull_inline(skb, len);
2189 }
2190 EXPORT_SYMBOL(skb_pull);
2191 
2192 /**
2193  *	skb_pull_data - remove data from the start of a buffer returning its
2194  *	original position.
2195  *	@skb: buffer to use
2196  *	@len: amount of data to remove
2197  *
2198  *	This function removes data from the start of a buffer, returning
2199  *	the memory to the headroom. A pointer to the original data in the buffer
2200  *	is returned after checking if there is enough data to pull. Once the
2201  *	data has been pulled future pushes will overwrite the old data.
2202  */
2203 void *skb_pull_data(struct sk_buff *skb, size_t len)
2204 {
2205 	void *data = skb->data;
2206 
2207 	if (skb->len < len)
2208 		return NULL;
2209 
2210 	skb_pull(skb, len);
2211 
2212 	return data;
2213 }
2214 EXPORT_SYMBOL(skb_pull_data);
2215 
2216 /**
2217  *	skb_trim - remove end from a buffer
2218  *	@skb: buffer to alter
2219  *	@len: new length
2220  *
2221  *	Cut the length of a buffer down by removing data from the tail. If
2222  *	the buffer is already under the length specified it is not modified.
2223  *	The skb must be linear.
2224  */
2225 void skb_trim(struct sk_buff *skb, unsigned int len)
2226 {
2227 	if (skb->len > len)
2228 		__skb_trim(skb, len);
2229 }
2230 EXPORT_SYMBOL(skb_trim);
2231 
2232 /* Trims skb to length len. It can change skb pointers.
2233  */
2234 
2235 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2236 {
2237 	struct sk_buff **fragp;
2238 	struct sk_buff *frag;
2239 	int offset = skb_headlen(skb);
2240 	int nfrags = skb_shinfo(skb)->nr_frags;
2241 	int i;
2242 	int err;
2243 
2244 	if (skb_cloned(skb) &&
2245 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2246 		return err;
2247 
2248 	i = 0;
2249 	if (offset >= len)
2250 		goto drop_pages;
2251 
2252 	for (; i < nfrags; i++) {
2253 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2254 
2255 		if (end < len) {
2256 			offset = end;
2257 			continue;
2258 		}
2259 
2260 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2261 
2262 drop_pages:
2263 		skb_shinfo(skb)->nr_frags = i;
2264 
2265 		for (; i < nfrags; i++)
2266 			skb_frag_unref(skb, i);
2267 
2268 		if (skb_has_frag_list(skb))
2269 			skb_drop_fraglist(skb);
2270 		goto done;
2271 	}
2272 
2273 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2274 	     fragp = &frag->next) {
2275 		int end = offset + frag->len;
2276 
2277 		if (skb_shared(frag)) {
2278 			struct sk_buff *nfrag;
2279 
2280 			nfrag = skb_clone(frag, GFP_ATOMIC);
2281 			if (unlikely(!nfrag))
2282 				return -ENOMEM;
2283 
2284 			nfrag->next = frag->next;
2285 			consume_skb(frag);
2286 			frag = nfrag;
2287 			*fragp = frag;
2288 		}
2289 
2290 		if (end < len) {
2291 			offset = end;
2292 			continue;
2293 		}
2294 
2295 		if (end > len &&
2296 		    unlikely((err = pskb_trim(frag, len - offset))))
2297 			return err;
2298 
2299 		if (frag->next)
2300 			skb_drop_list(&frag->next);
2301 		break;
2302 	}
2303 
2304 done:
2305 	if (len > skb_headlen(skb)) {
2306 		skb->data_len -= skb->len - len;
2307 		skb->len       = len;
2308 	} else {
2309 		skb->len       = len;
2310 		skb->data_len  = 0;
2311 		skb_set_tail_pointer(skb, len);
2312 	}
2313 
2314 	if (!skb->sk || skb->destructor == sock_edemux)
2315 		skb_condense(skb);
2316 	return 0;
2317 }
2318 EXPORT_SYMBOL(___pskb_trim);
2319 
2320 /* Note : use pskb_trim_rcsum() instead of calling this directly
2321  */
2322 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2323 {
2324 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2325 		int delta = skb->len - len;
2326 
2327 		skb->csum = csum_block_sub(skb->csum,
2328 					   skb_checksum(skb, len, delta, 0),
2329 					   len);
2330 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2331 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2332 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2333 
2334 		if (offset + sizeof(__sum16) > hdlen)
2335 			return -EINVAL;
2336 	}
2337 	return __pskb_trim(skb, len);
2338 }
2339 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2340 
2341 /**
2342  *	__pskb_pull_tail - advance tail of skb header
2343  *	@skb: buffer to reallocate
2344  *	@delta: number of bytes to advance tail
2345  *
2346  *	The function makes a sense only on a fragmented &sk_buff,
2347  *	it expands header moving its tail forward and copying necessary
2348  *	data from fragmented part.
2349  *
2350  *	&sk_buff MUST have reference count of 1.
2351  *
2352  *	Returns %NULL (and &sk_buff does not change) if pull failed
2353  *	or value of new tail of skb in the case of success.
2354  *
2355  *	All the pointers pointing into skb header may change and must be
2356  *	reloaded after call to this function.
2357  */
2358 
2359 /* Moves tail of skb head forward, copying data from fragmented part,
2360  * when it is necessary.
2361  * 1. It may fail due to malloc failure.
2362  * 2. It may change skb pointers.
2363  *
2364  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2365  */
2366 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2367 {
2368 	/* If skb has not enough free space at tail, get new one
2369 	 * plus 128 bytes for future expansions. If we have enough
2370 	 * room at tail, reallocate without expansion only if skb is cloned.
2371 	 */
2372 	int i, k, eat = (skb->tail + delta) - skb->end;
2373 
2374 	if (eat > 0 || skb_cloned(skb)) {
2375 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2376 				     GFP_ATOMIC))
2377 			return NULL;
2378 	}
2379 
2380 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2381 			     skb_tail_pointer(skb), delta));
2382 
2383 	/* Optimization: no fragments, no reasons to preestimate
2384 	 * size of pulled pages. Superb.
2385 	 */
2386 	if (!skb_has_frag_list(skb))
2387 		goto pull_pages;
2388 
2389 	/* Estimate size of pulled pages. */
2390 	eat = delta;
2391 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2392 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2393 
2394 		if (size >= eat)
2395 			goto pull_pages;
2396 		eat -= size;
2397 	}
2398 
2399 	/* If we need update frag list, we are in troubles.
2400 	 * Certainly, it is possible to add an offset to skb data,
2401 	 * but taking into account that pulling is expected to
2402 	 * be very rare operation, it is worth to fight against
2403 	 * further bloating skb head and crucify ourselves here instead.
2404 	 * Pure masohism, indeed. 8)8)
2405 	 */
2406 	if (eat) {
2407 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2408 		struct sk_buff *clone = NULL;
2409 		struct sk_buff *insp = NULL;
2410 
2411 		do {
2412 			if (list->len <= eat) {
2413 				/* Eaten as whole. */
2414 				eat -= list->len;
2415 				list = list->next;
2416 				insp = list;
2417 			} else {
2418 				/* Eaten partially. */
2419 
2420 				if (skb_shared(list)) {
2421 					/* Sucks! We need to fork list. :-( */
2422 					clone = skb_clone(list, GFP_ATOMIC);
2423 					if (!clone)
2424 						return NULL;
2425 					insp = list->next;
2426 					list = clone;
2427 				} else {
2428 					/* This may be pulled without
2429 					 * problems. */
2430 					insp = list;
2431 				}
2432 				if (!pskb_pull(list, eat)) {
2433 					kfree_skb(clone);
2434 					return NULL;
2435 				}
2436 				break;
2437 			}
2438 		} while (eat);
2439 
2440 		/* Free pulled out fragments. */
2441 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2442 			skb_shinfo(skb)->frag_list = list->next;
2443 			consume_skb(list);
2444 		}
2445 		/* And insert new clone at head. */
2446 		if (clone) {
2447 			clone->next = list;
2448 			skb_shinfo(skb)->frag_list = clone;
2449 		}
2450 	}
2451 	/* Success! Now we may commit changes to skb data. */
2452 
2453 pull_pages:
2454 	eat = delta;
2455 	k = 0;
2456 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2457 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2458 
2459 		if (size <= eat) {
2460 			skb_frag_unref(skb, i);
2461 			eat -= size;
2462 		} else {
2463 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2464 
2465 			*frag = skb_shinfo(skb)->frags[i];
2466 			if (eat) {
2467 				skb_frag_off_add(frag, eat);
2468 				skb_frag_size_sub(frag, eat);
2469 				if (!i)
2470 					goto end;
2471 				eat = 0;
2472 			}
2473 			k++;
2474 		}
2475 	}
2476 	skb_shinfo(skb)->nr_frags = k;
2477 
2478 end:
2479 	skb->tail     += delta;
2480 	skb->data_len -= delta;
2481 
2482 	if (!skb->data_len)
2483 		skb_zcopy_clear(skb, false);
2484 
2485 	return skb_tail_pointer(skb);
2486 }
2487 EXPORT_SYMBOL(__pskb_pull_tail);
2488 
2489 /**
2490  *	skb_copy_bits - copy bits from skb to kernel buffer
2491  *	@skb: source skb
2492  *	@offset: offset in source
2493  *	@to: destination buffer
2494  *	@len: number of bytes to copy
2495  *
2496  *	Copy the specified number of bytes from the source skb to the
2497  *	destination buffer.
2498  *
2499  *	CAUTION ! :
2500  *		If its prototype is ever changed,
2501  *		check arch/{*}/net/{*}.S files,
2502  *		since it is called from BPF assembly code.
2503  */
2504 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2505 {
2506 	int start = skb_headlen(skb);
2507 	struct sk_buff *frag_iter;
2508 	int i, copy;
2509 
2510 	if (offset > (int)skb->len - len)
2511 		goto fault;
2512 
2513 	/* Copy header. */
2514 	if ((copy = start - offset) > 0) {
2515 		if (copy > len)
2516 			copy = len;
2517 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2518 		if ((len -= copy) == 0)
2519 			return 0;
2520 		offset += copy;
2521 		to     += copy;
2522 	}
2523 
2524 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2525 		int end;
2526 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2527 
2528 		WARN_ON(start > offset + len);
2529 
2530 		end = start + skb_frag_size(f);
2531 		if ((copy = end - offset) > 0) {
2532 			u32 p_off, p_len, copied;
2533 			struct page *p;
2534 			u8 *vaddr;
2535 
2536 			if (copy > len)
2537 				copy = len;
2538 
2539 			skb_frag_foreach_page(f,
2540 					      skb_frag_off(f) + offset - start,
2541 					      copy, p, p_off, p_len, copied) {
2542 				vaddr = kmap_atomic(p);
2543 				memcpy(to + copied, vaddr + p_off, p_len);
2544 				kunmap_atomic(vaddr);
2545 			}
2546 
2547 			if ((len -= copy) == 0)
2548 				return 0;
2549 			offset += copy;
2550 			to     += copy;
2551 		}
2552 		start = end;
2553 	}
2554 
2555 	skb_walk_frags(skb, frag_iter) {
2556 		int end;
2557 
2558 		WARN_ON(start > offset + len);
2559 
2560 		end = start + frag_iter->len;
2561 		if ((copy = end - offset) > 0) {
2562 			if (copy > len)
2563 				copy = len;
2564 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2565 				goto fault;
2566 			if ((len -= copy) == 0)
2567 				return 0;
2568 			offset += copy;
2569 			to     += copy;
2570 		}
2571 		start = end;
2572 	}
2573 
2574 	if (!len)
2575 		return 0;
2576 
2577 fault:
2578 	return -EFAULT;
2579 }
2580 EXPORT_SYMBOL(skb_copy_bits);
2581 
2582 /*
2583  * Callback from splice_to_pipe(), if we need to release some pages
2584  * at the end of the spd in case we error'ed out in filling the pipe.
2585  */
2586 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2587 {
2588 	put_page(spd->pages[i]);
2589 }
2590 
2591 static struct page *linear_to_page(struct page *page, unsigned int *len,
2592 				   unsigned int *offset,
2593 				   struct sock *sk)
2594 {
2595 	struct page_frag *pfrag = sk_page_frag(sk);
2596 
2597 	if (!sk_page_frag_refill(sk, pfrag))
2598 		return NULL;
2599 
2600 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2601 
2602 	memcpy(page_address(pfrag->page) + pfrag->offset,
2603 	       page_address(page) + *offset, *len);
2604 	*offset = pfrag->offset;
2605 	pfrag->offset += *len;
2606 
2607 	return pfrag->page;
2608 }
2609 
2610 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2611 			     struct page *page,
2612 			     unsigned int offset)
2613 {
2614 	return	spd->nr_pages &&
2615 		spd->pages[spd->nr_pages - 1] == page &&
2616 		(spd->partial[spd->nr_pages - 1].offset +
2617 		 spd->partial[spd->nr_pages - 1].len == offset);
2618 }
2619 
2620 /*
2621  * Fill page/offset/length into spd, if it can hold more pages.
2622  */
2623 static bool spd_fill_page(struct splice_pipe_desc *spd,
2624 			  struct pipe_inode_info *pipe, struct page *page,
2625 			  unsigned int *len, unsigned int offset,
2626 			  bool linear,
2627 			  struct sock *sk)
2628 {
2629 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2630 		return true;
2631 
2632 	if (linear) {
2633 		page = linear_to_page(page, len, &offset, sk);
2634 		if (!page)
2635 			return true;
2636 	}
2637 	if (spd_can_coalesce(spd, page, offset)) {
2638 		spd->partial[spd->nr_pages - 1].len += *len;
2639 		return false;
2640 	}
2641 	get_page(page);
2642 	spd->pages[spd->nr_pages] = page;
2643 	spd->partial[spd->nr_pages].len = *len;
2644 	spd->partial[spd->nr_pages].offset = offset;
2645 	spd->nr_pages++;
2646 
2647 	return false;
2648 }
2649 
2650 static bool __splice_segment(struct page *page, unsigned int poff,
2651 			     unsigned int plen, unsigned int *off,
2652 			     unsigned int *len,
2653 			     struct splice_pipe_desc *spd, bool linear,
2654 			     struct sock *sk,
2655 			     struct pipe_inode_info *pipe)
2656 {
2657 	if (!*len)
2658 		return true;
2659 
2660 	/* skip this segment if already processed */
2661 	if (*off >= plen) {
2662 		*off -= plen;
2663 		return false;
2664 	}
2665 
2666 	/* ignore any bits we already processed */
2667 	poff += *off;
2668 	plen -= *off;
2669 	*off = 0;
2670 
2671 	do {
2672 		unsigned int flen = min(*len, plen);
2673 
2674 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2675 				  linear, sk))
2676 			return true;
2677 		poff += flen;
2678 		plen -= flen;
2679 		*len -= flen;
2680 	} while (*len && plen);
2681 
2682 	return false;
2683 }
2684 
2685 /*
2686  * Map linear and fragment data from the skb to spd. It reports true if the
2687  * pipe is full or if we already spliced the requested length.
2688  */
2689 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2690 			      unsigned int *offset, unsigned int *len,
2691 			      struct splice_pipe_desc *spd, struct sock *sk)
2692 {
2693 	int seg;
2694 	struct sk_buff *iter;
2695 
2696 	/* map the linear part :
2697 	 * If skb->head_frag is set, this 'linear' part is backed by a
2698 	 * fragment, and if the head is not shared with any clones then
2699 	 * we can avoid a copy since we own the head portion of this page.
2700 	 */
2701 	if (__splice_segment(virt_to_page(skb->data),
2702 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2703 			     skb_headlen(skb),
2704 			     offset, len, spd,
2705 			     skb_head_is_locked(skb),
2706 			     sk, pipe))
2707 		return true;
2708 
2709 	/*
2710 	 * then map the fragments
2711 	 */
2712 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2713 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2714 
2715 		if (__splice_segment(skb_frag_page(f),
2716 				     skb_frag_off(f), skb_frag_size(f),
2717 				     offset, len, spd, false, sk, pipe))
2718 			return true;
2719 	}
2720 
2721 	skb_walk_frags(skb, iter) {
2722 		if (*offset >= iter->len) {
2723 			*offset -= iter->len;
2724 			continue;
2725 		}
2726 		/* __skb_splice_bits() only fails if the output has no room
2727 		 * left, so no point in going over the frag_list for the error
2728 		 * case.
2729 		 */
2730 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2731 			return true;
2732 	}
2733 
2734 	return false;
2735 }
2736 
2737 /*
2738  * Map data from the skb to a pipe. Should handle both the linear part,
2739  * the fragments, and the frag list.
2740  */
2741 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2742 		    struct pipe_inode_info *pipe, unsigned int tlen,
2743 		    unsigned int flags)
2744 {
2745 	struct partial_page partial[MAX_SKB_FRAGS];
2746 	struct page *pages[MAX_SKB_FRAGS];
2747 	struct splice_pipe_desc spd = {
2748 		.pages = pages,
2749 		.partial = partial,
2750 		.nr_pages_max = MAX_SKB_FRAGS,
2751 		.ops = &nosteal_pipe_buf_ops,
2752 		.spd_release = sock_spd_release,
2753 	};
2754 	int ret = 0;
2755 
2756 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2757 
2758 	if (spd.nr_pages)
2759 		ret = splice_to_pipe(pipe, &spd);
2760 
2761 	return ret;
2762 }
2763 EXPORT_SYMBOL_GPL(skb_splice_bits);
2764 
2765 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2766 			    struct kvec *vec, size_t num, size_t size)
2767 {
2768 	struct socket *sock = sk->sk_socket;
2769 
2770 	if (!sock)
2771 		return -EINVAL;
2772 	return kernel_sendmsg(sock, msg, vec, num, size);
2773 }
2774 
2775 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2776 			     size_t size, int flags)
2777 {
2778 	struct socket *sock = sk->sk_socket;
2779 
2780 	if (!sock)
2781 		return -EINVAL;
2782 	return kernel_sendpage(sock, page, offset, size, flags);
2783 }
2784 
2785 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2786 			    struct kvec *vec, size_t num, size_t size);
2787 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2788 			     size_t size, int flags);
2789 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2790 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2791 {
2792 	unsigned int orig_len = len;
2793 	struct sk_buff *head = skb;
2794 	unsigned short fragidx;
2795 	int slen, ret;
2796 
2797 do_frag_list:
2798 
2799 	/* Deal with head data */
2800 	while (offset < skb_headlen(skb) && len) {
2801 		struct kvec kv;
2802 		struct msghdr msg;
2803 
2804 		slen = min_t(int, len, skb_headlen(skb) - offset);
2805 		kv.iov_base = skb->data + offset;
2806 		kv.iov_len = slen;
2807 		memset(&msg, 0, sizeof(msg));
2808 		msg.msg_flags = MSG_DONTWAIT;
2809 
2810 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2811 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2812 		if (ret <= 0)
2813 			goto error;
2814 
2815 		offset += ret;
2816 		len -= ret;
2817 	}
2818 
2819 	/* All the data was skb head? */
2820 	if (!len)
2821 		goto out;
2822 
2823 	/* Make offset relative to start of frags */
2824 	offset -= skb_headlen(skb);
2825 
2826 	/* Find where we are in frag list */
2827 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2828 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2829 
2830 		if (offset < skb_frag_size(frag))
2831 			break;
2832 
2833 		offset -= skb_frag_size(frag);
2834 	}
2835 
2836 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2837 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2838 
2839 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2840 
2841 		while (slen) {
2842 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2843 					      sendpage_unlocked, sk,
2844 					      skb_frag_page(frag),
2845 					      skb_frag_off(frag) + offset,
2846 					      slen, MSG_DONTWAIT);
2847 			if (ret <= 0)
2848 				goto error;
2849 
2850 			len -= ret;
2851 			offset += ret;
2852 			slen -= ret;
2853 		}
2854 
2855 		offset = 0;
2856 	}
2857 
2858 	if (len) {
2859 		/* Process any frag lists */
2860 
2861 		if (skb == head) {
2862 			if (skb_has_frag_list(skb)) {
2863 				skb = skb_shinfo(skb)->frag_list;
2864 				goto do_frag_list;
2865 			}
2866 		} else if (skb->next) {
2867 			skb = skb->next;
2868 			goto do_frag_list;
2869 		}
2870 	}
2871 
2872 out:
2873 	return orig_len - len;
2874 
2875 error:
2876 	return orig_len == len ? ret : orig_len - len;
2877 }
2878 
2879 /* Send skb data on a socket. Socket must be locked. */
2880 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2881 			 int len)
2882 {
2883 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2884 			       kernel_sendpage_locked);
2885 }
2886 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2887 
2888 /* Send skb data on a socket. Socket must be unlocked. */
2889 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2890 {
2891 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2892 			       sendpage_unlocked);
2893 }
2894 
2895 /**
2896  *	skb_store_bits - store bits from kernel buffer to skb
2897  *	@skb: destination buffer
2898  *	@offset: offset in destination
2899  *	@from: source buffer
2900  *	@len: number of bytes to copy
2901  *
2902  *	Copy the specified number of bytes from the source buffer to the
2903  *	destination skb.  This function handles all the messy bits of
2904  *	traversing fragment lists and such.
2905  */
2906 
2907 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2908 {
2909 	int start = skb_headlen(skb);
2910 	struct sk_buff *frag_iter;
2911 	int i, copy;
2912 
2913 	if (offset > (int)skb->len - len)
2914 		goto fault;
2915 
2916 	if ((copy = start - offset) > 0) {
2917 		if (copy > len)
2918 			copy = len;
2919 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2920 		if ((len -= copy) == 0)
2921 			return 0;
2922 		offset += copy;
2923 		from += copy;
2924 	}
2925 
2926 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2927 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2928 		int end;
2929 
2930 		WARN_ON(start > offset + len);
2931 
2932 		end = start + skb_frag_size(frag);
2933 		if ((copy = end - offset) > 0) {
2934 			u32 p_off, p_len, copied;
2935 			struct page *p;
2936 			u8 *vaddr;
2937 
2938 			if (copy > len)
2939 				copy = len;
2940 
2941 			skb_frag_foreach_page(frag,
2942 					      skb_frag_off(frag) + offset - start,
2943 					      copy, p, p_off, p_len, copied) {
2944 				vaddr = kmap_atomic(p);
2945 				memcpy(vaddr + p_off, from + copied, p_len);
2946 				kunmap_atomic(vaddr);
2947 			}
2948 
2949 			if ((len -= copy) == 0)
2950 				return 0;
2951 			offset += copy;
2952 			from += copy;
2953 		}
2954 		start = end;
2955 	}
2956 
2957 	skb_walk_frags(skb, frag_iter) {
2958 		int end;
2959 
2960 		WARN_ON(start > offset + len);
2961 
2962 		end = start + frag_iter->len;
2963 		if ((copy = end - offset) > 0) {
2964 			if (copy > len)
2965 				copy = len;
2966 			if (skb_store_bits(frag_iter, offset - start,
2967 					   from, copy))
2968 				goto fault;
2969 			if ((len -= copy) == 0)
2970 				return 0;
2971 			offset += copy;
2972 			from += copy;
2973 		}
2974 		start = end;
2975 	}
2976 	if (!len)
2977 		return 0;
2978 
2979 fault:
2980 	return -EFAULT;
2981 }
2982 EXPORT_SYMBOL(skb_store_bits);
2983 
2984 /* Checksum skb data. */
2985 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2986 		      __wsum csum, const struct skb_checksum_ops *ops)
2987 {
2988 	int start = skb_headlen(skb);
2989 	int i, copy = start - offset;
2990 	struct sk_buff *frag_iter;
2991 	int pos = 0;
2992 
2993 	/* Checksum header. */
2994 	if (copy > 0) {
2995 		if (copy > len)
2996 			copy = len;
2997 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2998 				       skb->data + offset, copy, csum);
2999 		if ((len -= copy) == 0)
3000 			return csum;
3001 		offset += copy;
3002 		pos	= copy;
3003 	}
3004 
3005 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3006 		int end;
3007 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3008 
3009 		WARN_ON(start > offset + len);
3010 
3011 		end = start + skb_frag_size(frag);
3012 		if ((copy = end - offset) > 0) {
3013 			u32 p_off, p_len, copied;
3014 			struct page *p;
3015 			__wsum csum2;
3016 			u8 *vaddr;
3017 
3018 			if (copy > len)
3019 				copy = len;
3020 
3021 			skb_frag_foreach_page(frag,
3022 					      skb_frag_off(frag) + offset - start,
3023 					      copy, p, p_off, p_len, copied) {
3024 				vaddr = kmap_atomic(p);
3025 				csum2 = INDIRECT_CALL_1(ops->update,
3026 							csum_partial_ext,
3027 							vaddr + p_off, p_len, 0);
3028 				kunmap_atomic(vaddr);
3029 				csum = INDIRECT_CALL_1(ops->combine,
3030 						       csum_block_add_ext, csum,
3031 						       csum2, pos, p_len);
3032 				pos += p_len;
3033 			}
3034 
3035 			if (!(len -= copy))
3036 				return csum;
3037 			offset += copy;
3038 		}
3039 		start = end;
3040 	}
3041 
3042 	skb_walk_frags(skb, frag_iter) {
3043 		int end;
3044 
3045 		WARN_ON(start > offset + len);
3046 
3047 		end = start + frag_iter->len;
3048 		if ((copy = end - offset) > 0) {
3049 			__wsum csum2;
3050 			if (copy > len)
3051 				copy = len;
3052 			csum2 = __skb_checksum(frag_iter, offset - start,
3053 					       copy, 0, ops);
3054 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3055 					       csum, csum2, pos, copy);
3056 			if ((len -= copy) == 0)
3057 				return csum;
3058 			offset += copy;
3059 			pos    += copy;
3060 		}
3061 		start = end;
3062 	}
3063 	BUG_ON(len);
3064 
3065 	return csum;
3066 }
3067 EXPORT_SYMBOL(__skb_checksum);
3068 
3069 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3070 		    int len, __wsum csum)
3071 {
3072 	const struct skb_checksum_ops ops = {
3073 		.update  = csum_partial_ext,
3074 		.combine = csum_block_add_ext,
3075 	};
3076 
3077 	return __skb_checksum(skb, offset, len, csum, &ops);
3078 }
3079 EXPORT_SYMBOL(skb_checksum);
3080 
3081 /* Both of above in one bottle. */
3082 
3083 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3084 				    u8 *to, int len)
3085 {
3086 	int start = skb_headlen(skb);
3087 	int i, copy = start - offset;
3088 	struct sk_buff *frag_iter;
3089 	int pos = 0;
3090 	__wsum csum = 0;
3091 
3092 	/* Copy header. */
3093 	if (copy > 0) {
3094 		if (copy > len)
3095 			copy = len;
3096 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3097 						 copy);
3098 		if ((len -= copy) == 0)
3099 			return csum;
3100 		offset += copy;
3101 		to     += copy;
3102 		pos	= copy;
3103 	}
3104 
3105 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3106 		int end;
3107 
3108 		WARN_ON(start > offset + len);
3109 
3110 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3111 		if ((copy = end - offset) > 0) {
3112 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3113 			u32 p_off, p_len, copied;
3114 			struct page *p;
3115 			__wsum csum2;
3116 			u8 *vaddr;
3117 
3118 			if (copy > len)
3119 				copy = len;
3120 
3121 			skb_frag_foreach_page(frag,
3122 					      skb_frag_off(frag) + offset - start,
3123 					      copy, p, p_off, p_len, copied) {
3124 				vaddr = kmap_atomic(p);
3125 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3126 								  to + copied,
3127 								  p_len);
3128 				kunmap_atomic(vaddr);
3129 				csum = csum_block_add(csum, csum2, pos);
3130 				pos += p_len;
3131 			}
3132 
3133 			if (!(len -= copy))
3134 				return csum;
3135 			offset += copy;
3136 			to     += copy;
3137 		}
3138 		start = end;
3139 	}
3140 
3141 	skb_walk_frags(skb, frag_iter) {
3142 		__wsum csum2;
3143 		int end;
3144 
3145 		WARN_ON(start > offset + len);
3146 
3147 		end = start + frag_iter->len;
3148 		if ((copy = end - offset) > 0) {
3149 			if (copy > len)
3150 				copy = len;
3151 			csum2 = skb_copy_and_csum_bits(frag_iter,
3152 						       offset - start,
3153 						       to, copy);
3154 			csum = csum_block_add(csum, csum2, pos);
3155 			if ((len -= copy) == 0)
3156 				return csum;
3157 			offset += copy;
3158 			to     += copy;
3159 			pos    += copy;
3160 		}
3161 		start = end;
3162 	}
3163 	BUG_ON(len);
3164 	return csum;
3165 }
3166 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3167 
3168 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3169 {
3170 	__sum16 sum;
3171 
3172 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3173 	/* See comments in __skb_checksum_complete(). */
3174 	if (likely(!sum)) {
3175 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3176 		    !skb->csum_complete_sw)
3177 			netdev_rx_csum_fault(skb->dev, skb);
3178 	}
3179 	if (!skb_shared(skb))
3180 		skb->csum_valid = !sum;
3181 	return sum;
3182 }
3183 EXPORT_SYMBOL(__skb_checksum_complete_head);
3184 
3185 /* This function assumes skb->csum already holds pseudo header's checksum,
3186  * which has been changed from the hardware checksum, for example, by
3187  * __skb_checksum_validate_complete(). And, the original skb->csum must
3188  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3189  *
3190  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3191  * zero. The new checksum is stored back into skb->csum unless the skb is
3192  * shared.
3193  */
3194 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3195 {
3196 	__wsum csum;
3197 	__sum16 sum;
3198 
3199 	csum = skb_checksum(skb, 0, skb->len, 0);
3200 
3201 	sum = csum_fold(csum_add(skb->csum, csum));
3202 	/* This check is inverted, because we already knew the hardware
3203 	 * checksum is invalid before calling this function. So, if the
3204 	 * re-computed checksum is valid instead, then we have a mismatch
3205 	 * between the original skb->csum and skb_checksum(). This means either
3206 	 * the original hardware checksum is incorrect or we screw up skb->csum
3207 	 * when moving skb->data around.
3208 	 */
3209 	if (likely(!sum)) {
3210 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3211 		    !skb->csum_complete_sw)
3212 			netdev_rx_csum_fault(skb->dev, skb);
3213 	}
3214 
3215 	if (!skb_shared(skb)) {
3216 		/* Save full packet checksum */
3217 		skb->csum = csum;
3218 		skb->ip_summed = CHECKSUM_COMPLETE;
3219 		skb->csum_complete_sw = 1;
3220 		skb->csum_valid = !sum;
3221 	}
3222 
3223 	return sum;
3224 }
3225 EXPORT_SYMBOL(__skb_checksum_complete);
3226 
3227 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3228 {
3229 	net_warn_ratelimited(
3230 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3231 		__func__);
3232 	return 0;
3233 }
3234 
3235 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3236 				       int offset, int len)
3237 {
3238 	net_warn_ratelimited(
3239 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3240 		__func__);
3241 	return 0;
3242 }
3243 
3244 static const struct skb_checksum_ops default_crc32c_ops = {
3245 	.update  = warn_crc32c_csum_update,
3246 	.combine = warn_crc32c_csum_combine,
3247 };
3248 
3249 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3250 	&default_crc32c_ops;
3251 EXPORT_SYMBOL(crc32c_csum_stub);
3252 
3253  /**
3254  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3255  *	@from: source buffer
3256  *
3257  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3258  *	into skb_zerocopy().
3259  */
3260 unsigned int
3261 skb_zerocopy_headlen(const struct sk_buff *from)
3262 {
3263 	unsigned int hlen = 0;
3264 
3265 	if (!from->head_frag ||
3266 	    skb_headlen(from) < L1_CACHE_BYTES ||
3267 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3268 		hlen = skb_headlen(from);
3269 		if (!hlen)
3270 			hlen = from->len;
3271 	}
3272 
3273 	if (skb_has_frag_list(from))
3274 		hlen = from->len;
3275 
3276 	return hlen;
3277 }
3278 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3279 
3280 /**
3281  *	skb_zerocopy - Zero copy skb to skb
3282  *	@to: destination buffer
3283  *	@from: source buffer
3284  *	@len: number of bytes to copy from source buffer
3285  *	@hlen: size of linear headroom in destination buffer
3286  *
3287  *	Copies up to `len` bytes from `from` to `to` by creating references
3288  *	to the frags in the source buffer.
3289  *
3290  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3291  *	headroom in the `to` buffer.
3292  *
3293  *	Return value:
3294  *	0: everything is OK
3295  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3296  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3297  */
3298 int
3299 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3300 {
3301 	int i, j = 0;
3302 	int plen = 0; /* length of skb->head fragment */
3303 	int ret;
3304 	struct page *page;
3305 	unsigned int offset;
3306 
3307 	BUG_ON(!from->head_frag && !hlen);
3308 
3309 	/* dont bother with small payloads */
3310 	if (len <= skb_tailroom(to))
3311 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3312 
3313 	if (hlen) {
3314 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3315 		if (unlikely(ret))
3316 			return ret;
3317 		len -= hlen;
3318 	} else {
3319 		plen = min_t(int, skb_headlen(from), len);
3320 		if (plen) {
3321 			page = virt_to_head_page(from->head);
3322 			offset = from->data - (unsigned char *)page_address(page);
3323 			__skb_fill_page_desc(to, 0, page, offset, plen);
3324 			get_page(page);
3325 			j = 1;
3326 			len -= plen;
3327 		}
3328 	}
3329 
3330 	skb_len_add(to, len + plen);
3331 
3332 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3333 		skb_tx_error(from);
3334 		return -ENOMEM;
3335 	}
3336 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3337 
3338 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3339 		int size;
3340 
3341 		if (!len)
3342 			break;
3343 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3344 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3345 					len);
3346 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3347 		len -= size;
3348 		skb_frag_ref(to, j);
3349 		j++;
3350 	}
3351 	skb_shinfo(to)->nr_frags = j;
3352 
3353 	return 0;
3354 }
3355 EXPORT_SYMBOL_GPL(skb_zerocopy);
3356 
3357 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3358 {
3359 	__wsum csum;
3360 	long csstart;
3361 
3362 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3363 		csstart = skb_checksum_start_offset(skb);
3364 	else
3365 		csstart = skb_headlen(skb);
3366 
3367 	BUG_ON(csstart > skb_headlen(skb));
3368 
3369 	skb_copy_from_linear_data(skb, to, csstart);
3370 
3371 	csum = 0;
3372 	if (csstart != skb->len)
3373 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3374 					      skb->len - csstart);
3375 
3376 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3377 		long csstuff = csstart + skb->csum_offset;
3378 
3379 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3380 	}
3381 }
3382 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3383 
3384 /**
3385  *	skb_dequeue - remove from the head of the queue
3386  *	@list: list to dequeue from
3387  *
3388  *	Remove the head of the list. The list lock is taken so the function
3389  *	may be used safely with other locking list functions. The head item is
3390  *	returned or %NULL if the list is empty.
3391  */
3392 
3393 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3394 {
3395 	unsigned long flags;
3396 	struct sk_buff *result;
3397 
3398 	spin_lock_irqsave(&list->lock, flags);
3399 	result = __skb_dequeue(list);
3400 	spin_unlock_irqrestore(&list->lock, flags);
3401 	return result;
3402 }
3403 EXPORT_SYMBOL(skb_dequeue);
3404 
3405 /**
3406  *	skb_dequeue_tail - remove from the tail of the queue
3407  *	@list: list to dequeue from
3408  *
3409  *	Remove the tail of the list. The list lock is taken so the function
3410  *	may be used safely with other locking list functions. The tail item is
3411  *	returned or %NULL if the list is empty.
3412  */
3413 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3414 {
3415 	unsigned long flags;
3416 	struct sk_buff *result;
3417 
3418 	spin_lock_irqsave(&list->lock, flags);
3419 	result = __skb_dequeue_tail(list);
3420 	spin_unlock_irqrestore(&list->lock, flags);
3421 	return result;
3422 }
3423 EXPORT_SYMBOL(skb_dequeue_tail);
3424 
3425 /**
3426  *	skb_queue_purge - empty a list
3427  *	@list: list to empty
3428  *
3429  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3430  *	the list and one reference dropped. This function takes the list
3431  *	lock and is atomic with respect to other list locking functions.
3432  */
3433 void skb_queue_purge(struct sk_buff_head *list)
3434 {
3435 	struct sk_buff *skb;
3436 	while ((skb = skb_dequeue(list)) != NULL)
3437 		kfree_skb(skb);
3438 }
3439 EXPORT_SYMBOL(skb_queue_purge);
3440 
3441 /**
3442  *	skb_rbtree_purge - empty a skb rbtree
3443  *	@root: root of the rbtree to empty
3444  *	Return value: the sum of truesizes of all purged skbs.
3445  *
3446  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3447  *	the list and one reference dropped. This function does not take
3448  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3449  *	out-of-order queue is protected by the socket lock).
3450  */
3451 unsigned int skb_rbtree_purge(struct rb_root *root)
3452 {
3453 	struct rb_node *p = rb_first(root);
3454 	unsigned int sum = 0;
3455 
3456 	while (p) {
3457 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3458 
3459 		p = rb_next(p);
3460 		rb_erase(&skb->rbnode, root);
3461 		sum += skb->truesize;
3462 		kfree_skb(skb);
3463 	}
3464 	return sum;
3465 }
3466 
3467 /**
3468  *	skb_queue_head - queue a buffer at the list head
3469  *	@list: list to use
3470  *	@newsk: buffer to queue
3471  *
3472  *	Queue a buffer at the start of the list. This function takes the
3473  *	list lock and can be used safely with other locking &sk_buff functions
3474  *	safely.
3475  *
3476  *	A buffer cannot be placed on two lists at the same time.
3477  */
3478 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3479 {
3480 	unsigned long flags;
3481 
3482 	spin_lock_irqsave(&list->lock, flags);
3483 	__skb_queue_head(list, newsk);
3484 	spin_unlock_irqrestore(&list->lock, flags);
3485 }
3486 EXPORT_SYMBOL(skb_queue_head);
3487 
3488 /**
3489  *	skb_queue_tail - queue a buffer at the list tail
3490  *	@list: list to use
3491  *	@newsk: buffer to queue
3492  *
3493  *	Queue a buffer at the tail of the list. This function takes the
3494  *	list lock and can be used safely with other locking &sk_buff functions
3495  *	safely.
3496  *
3497  *	A buffer cannot be placed on two lists at the same time.
3498  */
3499 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3500 {
3501 	unsigned long flags;
3502 
3503 	spin_lock_irqsave(&list->lock, flags);
3504 	__skb_queue_tail(list, newsk);
3505 	spin_unlock_irqrestore(&list->lock, flags);
3506 }
3507 EXPORT_SYMBOL(skb_queue_tail);
3508 
3509 /**
3510  *	skb_unlink	-	remove a buffer from a list
3511  *	@skb: buffer to remove
3512  *	@list: list to use
3513  *
3514  *	Remove a packet from a list. The list locks are taken and this
3515  *	function is atomic with respect to other list locked calls
3516  *
3517  *	You must know what list the SKB is on.
3518  */
3519 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3520 {
3521 	unsigned long flags;
3522 
3523 	spin_lock_irqsave(&list->lock, flags);
3524 	__skb_unlink(skb, list);
3525 	spin_unlock_irqrestore(&list->lock, flags);
3526 }
3527 EXPORT_SYMBOL(skb_unlink);
3528 
3529 /**
3530  *	skb_append	-	append a buffer
3531  *	@old: buffer to insert after
3532  *	@newsk: buffer to insert
3533  *	@list: list to use
3534  *
3535  *	Place a packet after a given packet in a list. The list locks are taken
3536  *	and this function is atomic with respect to other list locked calls.
3537  *	A buffer cannot be placed on two lists at the same time.
3538  */
3539 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3540 {
3541 	unsigned long flags;
3542 
3543 	spin_lock_irqsave(&list->lock, flags);
3544 	__skb_queue_after(list, old, newsk);
3545 	spin_unlock_irqrestore(&list->lock, flags);
3546 }
3547 EXPORT_SYMBOL(skb_append);
3548 
3549 static inline void skb_split_inside_header(struct sk_buff *skb,
3550 					   struct sk_buff* skb1,
3551 					   const u32 len, const int pos)
3552 {
3553 	int i;
3554 
3555 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3556 					 pos - len);
3557 	/* And move data appendix as is. */
3558 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3559 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3560 
3561 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3562 	skb_shinfo(skb)->nr_frags  = 0;
3563 	skb1->data_len		   = skb->data_len;
3564 	skb1->len		   += skb1->data_len;
3565 	skb->data_len		   = 0;
3566 	skb->len		   = len;
3567 	skb_set_tail_pointer(skb, len);
3568 }
3569 
3570 static inline void skb_split_no_header(struct sk_buff *skb,
3571 				       struct sk_buff* skb1,
3572 				       const u32 len, int pos)
3573 {
3574 	int i, k = 0;
3575 	const int nfrags = skb_shinfo(skb)->nr_frags;
3576 
3577 	skb_shinfo(skb)->nr_frags = 0;
3578 	skb1->len		  = skb1->data_len = skb->len - len;
3579 	skb->len		  = len;
3580 	skb->data_len		  = len - pos;
3581 
3582 	for (i = 0; i < nfrags; i++) {
3583 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3584 
3585 		if (pos + size > len) {
3586 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3587 
3588 			if (pos < len) {
3589 				/* Split frag.
3590 				 * We have two variants in this case:
3591 				 * 1. Move all the frag to the second
3592 				 *    part, if it is possible. F.e.
3593 				 *    this approach is mandatory for TUX,
3594 				 *    where splitting is expensive.
3595 				 * 2. Split is accurately. We make this.
3596 				 */
3597 				skb_frag_ref(skb, i);
3598 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3599 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3600 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3601 				skb_shinfo(skb)->nr_frags++;
3602 			}
3603 			k++;
3604 		} else
3605 			skb_shinfo(skb)->nr_frags++;
3606 		pos += size;
3607 	}
3608 	skb_shinfo(skb1)->nr_frags = k;
3609 }
3610 
3611 /**
3612  * skb_split - Split fragmented skb to two parts at length len.
3613  * @skb: the buffer to split
3614  * @skb1: the buffer to receive the second part
3615  * @len: new length for skb
3616  */
3617 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3618 {
3619 	int pos = skb_headlen(skb);
3620 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3621 
3622 	skb_zcopy_downgrade_managed(skb);
3623 
3624 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3625 	skb_zerocopy_clone(skb1, skb, 0);
3626 	if (len < pos)	/* Split line is inside header. */
3627 		skb_split_inside_header(skb, skb1, len, pos);
3628 	else		/* Second chunk has no header, nothing to copy. */
3629 		skb_split_no_header(skb, skb1, len, pos);
3630 }
3631 EXPORT_SYMBOL(skb_split);
3632 
3633 /* Shifting from/to a cloned skb is a no-go.
3634  *
3635  * Caller cannot keep skb_shinfo related pointers past calling here!
3636  */
3637 static int skb_prepare_for_shift(struct sk_buff *skb)
3638 {
3639 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3640 }
3641 
3642 /**
3643  * skb_shift - Shifts paged data partially from skb to another
3644  * @tgt: buffer into which tail data gets added
3645  * @skb: buffer from which the paged data comes from
3646  * @shiftlen: shift up to this many bytes
3647  *
3648  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3649  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3650  * It's up to caller to free skb if everything was shifted.
3651  *
3652  * If @tgt runs out of frags, the whole operation is aborted.
3653  *
3654  * Skb cannot include anything else but paged data while tgt is allowed
3655  * to have non-paged data as well.
3656  *
3657  * TODO: full sized shift could be optimized but that would need
3658  * specialized skb free'er to handle frags without up-to-date nr_frags.
3659  */
3660 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3661 {
3662 	int from, to, merge, todo;
3663 	skb_frag_t *fragfrom, *fragto;
3664 
3665 	BUG_ON(shiftlen > skb->len);
3666 
3667 	if (skb_headlen(skb))
3668 		return 0;
3669 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3670 		return 0;
3671 
3672 	todo = shiftlen;
3673 	from = 0;
3674 	to = skb_shinfo(tgt)->nr_frags;
3675 	fragfrom = &skb_shinfo(skb)->frags[from];
3676 
3677 	/* Actual merge is delayed until the point when we know we can
3678 	 * commit all, so that we don't have to undo partial changes
3679 	 */
3680 	if (!to ||
3681 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3682 			      skb_frag_off(fragfrom))) {
3683 		merge = -1;
3684 	} else {
3685 		merge = to - 1;
3686 
3687 		todo -= skb_frag_size(fragfrom);
3688 		if (todo < 0) {
3689 			if (skb_prepare_for_shift(skb) ||
3690 			    skb_prepare_for_shift(tgt))
3691 				return 0;
3692 
3693 			/* All previous frag pointers might be stale! */
3694 			fragfrom = &skb_shinfo(skb)->frags[from];
3695 			fragto = &skb_shinfo(tgt)->frags[merge];
3696 
3697 			skb_frag_size_add(fragto, shiftlen);
3698 			skb_frag_size_sub(fragfrom, shiftlen);
3699 			skb_frag_off_add(fragfrom, shiftlen);
3700 
3701 			goto onlymerged;
3702 		}
3703 
3704 		from++;
3705 	}
3706 
3707 	/* Skip full, not-fitting skb to avoid expensive operations */
3708 	if ((shiftlen == skb->len) &&
3709 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3710 		return 0;
3711 
3712 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3713 		return 0;
3714 
3715 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3716 		if (to == MAX_SKB_FRAGS)
3717 			return 0;
3718 
3719 		fragfrom = &skb_shinfo(skb)->frags[from];
3720 		fragto = &skb_shinfo(tgt)->frags[to];
3721 
3722 		if (todo >= skb_frag_size(fragfrom)) {
3723 			*fragto = *fragfrom;
3724 			todo -= skb_frag_size(fragfrom);
3725 			from++;
3726 			to++;
3727 
3728 		} else {
3729 			__skb_frag_ref(fragfrom);
3730 			skb_frag_page_copy(fragto, fragfrom);
3731 			skb_frag_off_copy(fragto, fragfrom);
3732 			skb_frag_size_set(fragto, todo);
3733 
3734 			skb_frag_off_add(fragfrom, todo);
3735 			skb_frag_size_sub(fragfrom, todo);
3736 			todo = 0;
3737 
3738 			to++;
3739 			break;
3740 		}
3741 	}
3742 
3743 	/* Ready to "commit" this state change to tgt */
3744 	skb_shinfo(tgt)->nr_frags = to;
3745 
3746 	if (merge >= 0) {
3747 		fragfrom = &skb_shinfo(skb)->frags[0];
3748 		fragto = &skb_shinfo(tgt)->frags[merge];
3749 
3750 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3751 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3752 	}
3753 
3754 	/* Reposition in the original skb */
3755 	to = 0;
3756 	while (from < skb_shinfo(skb)->nr_frags)
3757 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3758 	skb_shinfo(skb)->nr_frags = to;
3759 
3760 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3761 
3762 onlymerged:
3763 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3764 	 * the other hand might need it if it needs to be resent
3765 	 */
3766 	tgt->ip_summed = CHECKSUM_PARTIAL;
3767 	skb->ip_summed = CHECKSUM_PARTIAL;
3768 
3769 	skb_len_add(skb, -shiftlen);
3770 	skb_len_add(tgt, shiftlen);
3771 
3772 	return shiftlen;
3773 }
3774 
3775 /**
3776  * skb_prepare_seq_read - Prepare a sequential read of skb data
3777  * @skb: the buffer to read
3778  * @from: lower offset of data to be read
3779  * @to: upper offset of data to be read
3780  * @st: state variable
3781  *
3782  * Initializes the specified state variable. Must be called before
3783  * invoking skb_seq_read() for the first time.
3784  */
3785 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3786 			  unsigned int to, struct skb_seq_state *st)
3787 {
3788 	st->lower_offset = from;
3789 	st->upper_offset = to;
3790 	st->root_skb = st->cur_skb = skb;
3791 	st->frag_idx = st->stepped_offset = 0;
3792 	st->frag_data = NULL;
3793 	st->frag_off = 0;
3794 }
3795 EXPORT_SYMBOL(skb_prepare_seq_read);
3796 
3797 /**
3798  * skb_seq_read - Sequentially read skb data
3799  * @consumed: number of bytes consumed by the caller so far
3800  * @data: destination pointer for data to be returned
3801  * @st: state variable
3802  *
3803  * Reads a block of skb data at @consumed relative to the
3804  * lower offset specified to skb_prepare_seq_read(). Assigns
3805  * the head of the data block to @data and returns the length
3806  * of the block or 0 if the end of the skb data or the upper
3807  * offset has been reached.
3808  *
3809  * The caller is not required to consume all of the data
3810  * returned, i.e. @consumed is typically set to the number
3811  * of bytes already consumed and the next call to
3812  * skb_seq_read() will return the remaining part of the block.
3813  *
3814  * Note 1: The size of each block of data returned can be arbitrary,
3815  *       this limitation is the cost for zerocopy sequential
3816  *       reads of potentially non linear data.
3817  *
3818  * Note 2: Fragment lists within fragments are not implemented
3819  *       at the moment, state->root_skb could be replaced with
3820  *       a stack for this purpose.
3821  */
3822 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3823 			  struct skb_seq_state *st)
3824 {
3825 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3826 	skb_frag_t *frag;
3827 
3828 	if (unlikely(abs_offset >= st->upper_offset)) {
3829 		if (st->frag_data) {
3830 			kunmap_atomic(st->frag_data);
3831 			st->frag_data = NULL;
3832 		}
3833 		return 0;
3834 	}
3835 
3836 next_skb:
3837 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3838 
3839 	if (abs_offset < block_limit && !st->frag_data) {
3840 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3841 		return block_limit - abs_offset;
3842 	}
3843 
3844 	if (st->frag_idx == 0 && !st->frag_data)
3845 		st->stepped_offset += skb_headlen(st->cur_skb);
3846 
3847 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3848 		unsigned int pg_idx, pg_off, pg_sz;
3849 
3850 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3851 
3852 		pg_idx = 0;
3853 		pg_off = skb_frag_off(frag);
3854 		pg_sz = skb_frag_size(frag);
3855 
3856 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3857 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3858 			pg_off = offset_in_page(pg_off + st->frag_off);
3859 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3860 						    PAGE_SIZE - pg_off);
3861 		}
3862 
3863 		block_limit = pg_sz + st->stepped_offset;
3864 		if (abs_offset < block_limit) {
3865 			if (!st->frag_data)
3866 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3867 
3868 			*data = (u8 *)st->frag_data + pg_off +
3869 				(abs_offset - st->stepped_offset);
3870 
3871 			return block_limit - abs_offset;
3872 		}
3873 
3874 		if (st->frag_data) {
3875 			kunmap_atomic(st->frag_data);
3876 			st->frag_data = NULL;
3877 		}
3878 
3879 		st->stepped_offset += pg_sz;
3880 		st->frag_off += pg_sz;
3881 		if (st->frag_off == skb_frag_size(frag)) {
3882 			st->frag_off = 0;
3883 			st->frag_idx++;
3884 		}
3885 	}
3886 
3887 	if (st->frag_data) {
3888 		kunmap_atomic(st->frag_data);
3889 		st->frag_data = NULL;
3890 	}
3891 
3892 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3893 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3894 		st->frag_idx = 0;
3895 		goto next_skb;
3896 	} else if (st->cur_skb->next) {
3897 		st->cur_skb = st->cur_skb->next;
3898 		st->frag_idx = 0;
3899 		goto next_skb;
3900 	}
3901 
3902 	return 0;
3903 }
3904 EXPORT_SYMBOL(skb_seq_read);
3905 
3906 /**
3907  * skb_abort_seq_read - Abort a sequential read of skb data
3908  * @st: state variable
3909  *
3910  * Must be called if skb_seq_read() was not called until it
3911  * returned 0.
3912  */
3913 void skb_abort_seq_read(struct skb_seq_state *st)
3914 {
3915 	if (st->frag_data)
3916 		kunmap_atomic(st->frag_data);
3917 }
3918 EXPORT_SYMBOL(skb_abort_seq_read);
3919 
3920 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3921 
3922 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3923 					  struct ts_config *conf,
3924 					  struct ts_state *state)
3925 {
3926 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3927 }
3928 
3929 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3930 {
3931 	skb_abort_seq_read(TS_SKB_CB(state));
3932 }
3933 
3934 /**
3935  * skb_find_text - Find a text pattern in skb data
3936  * @skb: the buffer to look in
3937  * @from: search offset
3938  * @to: search limit
3939  * @config: textsearch configuration
3940  *
3941  * Finds a pattern in the skb data according to the specified
3942  * textsearch configuration. Use textsearch_next() to retrieve
3943  * subsequent occurrences of the pattern. Returns the offset
3944  * to the first occurrence or UINT_MAX if no match was found.
3945  */
3946 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3947 			   unsigned int to, struct ts_config *config)
3948 {
3949 	struct ts_state state;
3950 	unsigned int ret;
3951 
3952 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3953 
3954 	config->get_next_block = skb_ts_get_next_block;
3955 	config->finish = skb_ts_finish;
3956 
3957 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3958 
3959 	ret = textsearch_find(config, &state);
3960 	return (ret <= to - from ? ret : UINT_MAX);
3961 }
3962 EXPORT_SYMBOL(skb_find_text);
3963 
3964 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3965 			 int offset, size_t size)
3966 {
3967 	int i = skb_shinfo(skb)->nr_frags;
3968 
3969 	if (skb_can_coalesce(skb, i, page, offset)) {
3970 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3971 	} else if (i < MAX_SKB_FRAGS) {
3972 		skb_zcopy_downgrade_managed(skb);
3973 		get_page(page);
3974 		skb_fill_page_desc(skb, i, page, offset, size);
3975 	} else {
3976 		return -EMSGSIZE;
3977 	}
3978 
3979 	return 0;
3980 }
3981 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3982 
3983 /**
3984  *	skb_pull_rcsum - pull skb and update receive checksum
3985  *	@skb: buffer to update
3986  *	@len: length of data pulled
3987  *
3988  *	This function performs an skb_pull on the packet and updates
3989  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3990  *	receive path processing instead of skb_pull unless you know
3991  *	that the checksum difference is zero (e.g., a valid IP header)
3992  *	or you are setting ip_summed to CHECKSUM_NONE.
3993  */
3994 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3995 {
3996 	unsigned char *data = skb->data;
3997 
3998 	BUG_ON(len > skb->len);
3999 	__skb_pull(skb, len);
4000 	skb_postpull_rcsum(skb, data, len);
4001 	return skb->data;
4002 }
4003 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4004 
4005 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4006 {
4007 	skb_frag_t head_frag;
4008 	struct page *page;
4009 
4010 	page = virt_to_head_page(frag_skb->head);
4011 	__skb_frag_set_page(&head_frag, page);
4012 	skb_frag_off_set(&head_frag, frag_skb->data -
4013 			 (unsigned char *)page_address(page));
4014 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
4015 	return head_frag;
4016 }
4017 
4018 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4019 				 netdev_features_t features,
4020 				 unsigned int offset)
4021 {
4022 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4023 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4024 	unsigned int delta_truesize = 0;
4025 	unsigned int delta_len = 0;
4026 	struct sk_buff *tail = NULL;
4027 	struct sk_buff *nskb, *tmp;
4028 	int len_diff, err;
4029 
4030 	skb_push(skb, -skb_network_offset(skb) + offset);
4031 
4032 	skb_shinfo(skb)->frag_list = NULL;
4033 
4034 	do {
4035 		nskb = list_skb;
4036 		list_skb = list_skb->next;
4037 
4038 		err = 0;
4039 		delta_truesize += nskb->truesize;
4040 		if (skb_shared(nskb)) {
4041 			tmp = skb_clone(nskb, GFP_ATOMIC);
4042 			if (tmp) {
4043 				consume_skb(nskb);
4044 				nskb = tmp;
4045 				err = skb_unclone(nskb, GFP_ATOMIC);
4046 			} else {
4047 				err = -ENOMEM;
4048 			}
4049 		}
4050 
4051 		if (!tail)
4052 			skb->next = nskb;
4053 		else
4054 			tail->next = nskb;
4055 
4056 		if (unlikely(err)) {
4057 			nskb->next = list_skb;
4058 			goto err_linearize;
4059 		}
4060 
4061 		tail = nskb;
4062 
4063 		delta_len += nskb->len;
4064 
4065 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4066 
4067 		skb_release_head_state(nskb);
4068 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4069 		__copy_skb_header(nskb, skb);
4070 
4071 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4072 		nskb->transport_header += len_diff;
4073 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4074 						 nskb->data - tnl_hlen,
4075 						 offset + tnl_hlen);
4076 
4077 		if (skb_needs_linearize(nskb, features) &&
4078 		    __skb_linearize(nskb))
4079 			goto err_linearize;
4080 
4081 	} while (list_skb);
4082 
4083 	skb->truesize = skb->truesize - delta_truesize;
4084 	skb->data_len = skb->data_len - delta_len;
4085 	skb->len = skb->len - delta_len;
4086 
4087 	skb_gso_reset(skb);
4088 
4089 	skb->prev = tail;
4090 
4091 	if (skb_needs_linearize(skb, features) &&
4092 	    __skb_linearize(skb))
4093 		goto err_linearize;
4094 
4095 	skb_get(skb);
4096 
4097 	return skb;
4098 
4099 err_linearize:
4100 	kfree_skb_list(skb->next);
4101 	skb->next = NULL;
4102 	return ERR_PTR(-ENOMEM);
4103 }
4104 EXPORT_SYMBOL_GPL(skb_segment_list);
4105 
4106 /**
4107  *	skb_segment - Perform protocol segmentation on skb.
4108  *	@head_skb: buffer to segment
4109  *	@features: features for the output path (see dev->features)
4110  *
4111  *	This function performs segmentation on the given skb.  It returns
4112  *	a pointer to the first in a list of new skbs for the segments.
4113  *	In case of error it returns ERR_PTR(err).
4114  */
4115 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4116 			    netdev_features_t features)
4117 {
4118 	struct sk_buff *segs = NULL;
4119 	struct sk_buff *tail = NULL;
4120 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4121 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
4122 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4123 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4124 	struct sk_buff *frag_skb = head_skb;
4125 	unsigned int offset = doffset;
4126 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4127 	unsigned int partial_segs = 0;
4128 	unsigned int headroom;
4129 	unsigned int len = head_skb->len;
4130 	__be16 proto;
4131 	bool csum, sg;
4132 	int nfrags = skb_shinfo(head_skb)->nr_frags;
4133 	int err = -ENOMEM;
4134 	int i = 0;
4135 	int pos;
4136 
4137 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
4138 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
4139 		/* gso_size is untrusted, and we have a frag_list with a linear
4140 		 * non head_frag head.
4141 		 *
4142 		 * (we assume checking the first list_skb member suffices;
4143 		 * i.e if either of the list_skb members have non head_frag
4144 		 * head, then the first one has too).
4145 		 *
4146 		 * If head_skb's headlen does not fit requested gso_size, it
4147 		 * means that the frag_list members do NOT terminate on exact
4148 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
4149 		 * sharing. Therefore we must fallback to copying the frag_list
4150 		 * skbs; we do so by disabling SG.
4151 		 */
4152 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
4153 			features &= ~NETIF_F_SG;
4154 	}
4155 
4156 	__skb_push(head_skb, doffset);
4157 	proto = skb_network_protocol(head_skb, NULL);
4158 	if (unlikely(!proto))
4159 		return ERR_PTR(-EINVAL);
4160 
4161 	sg = !!(features & NETIF_F_SG);
4162 	csum = !!can_checksum_protocol(features, proto);
4163 
4164 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4165 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4166 			struct sk_buff *iter;
4167 			unsigned int frag_len;
4168 
4169 			if (!list_skb ||
4170 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4171 				goto normal;
4172 
4173 			/* If we get here then all the required
4174 			 * GSO features except frag_list are supported.
4175 			 * Try to split the SKB to multiple GSO SKBs
4176 			 * with no frag_list.
4177 			 * Currently we can do that only when the buffers don't
4178 			 * have a linear part and all the buffers except
4179 			 * the last are of the same length.
4180 			 */
4181 			frag_len = list_skb->len;
4182 			skb_walk_frags(head_skb, iter) {
4183 				if (frag_len != iter->len && iter->next)
4184 					goto normal;
4185 				if (skb_headlen(iter) && !iter->head_frag)
4186 					goto normal;
4187 
4188 				len -= iter->len;
4189 			}
4190 
4191 			if (len != frag_len)
4192 				goto normal;
4193 		}
4194 
4195 		/* GSO partial only requires that we trim off any excess that
4196 		 * doesn't fit into an MSS sized block, so take care of that
4197 		 * now.
4198 		 */
4199 		partial_segs = len / mss;
4200 		if (partial_segs > 1)
4201 			mss *= partial_segs;
4202 		else
4203 			partial_segs = 0;
4204 	}
4205 
4206 normal:
4207 	headroom = skb_headroom(head_skb);
4208 	pos = skb_headlen(head_skb);
4209 
4210 	do {
4211 		struct sk_buff *nskb;
4212 		skb_frag_t *nskb_frag;
4213 		int hsize;
4214 		int size;
4215 
4216 		if (unlikely(mss == GSO_BY_FRAGS)) {
4217 			len = list_skb->len;
4218 		} else {
4219 			len = head_skb->len - offset;
4220 			if (len > mss)
4221 				len = mss;
4222 		}
4223 
4224 		hsize = skb_headlen(head_skb) - offset;
4225 
4226 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4227 		    (skb_headlen(list_skb) == len || sg)) {
4228 			BUG_ON(skb_headlen(list_skb) > len);
4229 
4230 			i = 0;
4231 			nfrags = skb_shinfo(list_skb)->nr_frags;
4232 			frag = skb_shinfo(list_skb)->frags;
4233 			frag_skb = list_skb;
4234 			pos += skb_headlen(list_skb);
4235 
4236 			while (pos < offset + len) {
4237 				BUG_ON(i >= nfrags);
4238 
4239 				size = skb_frag_size(frag);
4240 				if (pos + size > offset + len)
4241 					break;
4242 
4243 				i++;
4244 				pos += size;
4245 				frag++;
4246 			}
4247 
4248 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4249 			list_skb = list_skb->next;
4250 
4251 			if (unlikely(!nskb))
4252 				goto err;
4253 
4254 			if (unlikely(pskb_trim(nskb, len))) {
4255 				kfree_skb(nskb);
4256 				goto err;
4257 			}
4258 
4259 			hsize = skb_end_offset(nskb);
4260 			if (skb_cow_head(nskb, doffset + headroom)) {
4261 				kfree_skb(nskb);
4262 				goto err;
4263 			}
4264 
4265 			nskb->truesize += skb_end_offset(nskb) - hsize;
4266 			skb_release_head_state(nskb);
4267 			__skb_push(nskb, doffset);
4268 		} else {
4269 			if (hsize < 0)
4270 				hsize = 0;
4271 			if (hsize > len || !sg)
4272 				hsize = len;
4273 
4274 			nskb = __alloc_skb(hsize + doffset + headroom,
4275 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4276 					   NUMA_NO_NODE);
4277 
4278 			if (unlikely(!nskb))
4279 				goto err;
4280 
4281 			skb_reserve(nskb, headroom);
4282 			__skb_put(nskb, doffset);
4283 		}
4284 
4285 		if (segs)
4286 			tail->next = nskb;
4287 		else
4288 			segs = nskb;
4289 		tail = nskb;
4290 
4291 		__copy_skb_header(nskb, head_skb);
4292 
4293 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4294 		skb_reset_mac_len(nskb);
4295 
4296 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4297 						 nskb->data - tnl_hlen,
4298 						 doffset + tnl_hlen);
4299 
4300 		if (nskb->len == len + doffset)
4301 			goto perform_csum_check;
4302 
4303 		if (!sg) {
4304 			if (!csum) {
4305 				if (!nskb->remcsum_offload)
4306 					nskb->ip_summed = CHECKSUM_NONE;
4307 				SKB_GSO_CB(nskb)->csum =
4308 					skb_copy_and_csum_bits(head_skb, offset,
4309 							       skb_put(nskb,
4310 								       len),
4311 							       len);
4312 				SKB_GSO_CB(nskb)->csum_start =
4313 					skb_headroom(nskb) + doffset;
4314 			} else {
4315 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4316 					goto err;
4317 			}
4318 			continue;
4319 		}
4320 
4321 		nskb_frag = skb_shinfo(nskb)->frags;
4322 
4323 		skb_copy_from_linear_data_offset(head_skb, offset,
4324 						 skb_put(nskb, hsize), hsize);
4325 
4326 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4327 					   SKBFL_SHARED_FRAG;
4328 
4329 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4330 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4331 			goto err;
4332 
4333 		while (pos < offset + len) {
4334 			if (i >= nfrags) {
4335 				i = 0;
4336 				nfrags = skb_shinfo(list_skb)->nr_frags;
4337 				frag = skb_shinfo(list_skb)->frags;
4338 				frag_skb = list_skb;
4339 				if (!skb_headlen(list_skb)) {
4340 					BUG_ON(!nfrags);
4341 				} else {
4342 					BUG_ON(!list_skb->head_frag);
4343 
4344 					/* to make room for head_frag. */
4345 					i--;
4346 					frag--;
4347 				}
4348 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4349 				    skb_zerocopy_clone(nskb, frag_skb,
4350 						       GFP_ATOMIC))
4351 					goto err;
4352 
4353 				list_skb = list_skb->next;
4354 			}
4355 
4356 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4357 				     MAX_SKB_FRAGS)) {
4358 				net_warn_ratelimited(
4359 					"skb_segment: too many frags: %u %u\n",
4360 					pos, mss);
4361 				err = -EINVAL;
4362 				goto err;
4363 			}
4364 
4365 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4366 			__skb_frag_ref(nskb_frag);
4367 			size = skb_frag_size(nskb_frag);
4368 
4369 			if (pos < offset) {
4370 				skb_frag_off_add(nskb_frag, offset - pos);
4371 				skb_frag_size_sub(nskb_frag, offset - pos);
4372 			}
4373 
4374 			skb_shinfo(nskb)->nr_frags++;
4375 
4376 			if (pos + size <= offset + len) {
4377 				i++;
4378 				frag++;
4379 				pos += size;
4380 			} else {
4381 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4382 				goto skip_fraglist;
4383 			}
4384 
4385 			nskb_frag++;
4386 		}
4387 
4388 skip_fraglist:
4389 		nskb->data_len = len - hsize;
4390 		nskb->len += nskb->data_len;
4391 		nskb->truesize += nskb->data_len;
4392 
4393 perform_csum_check:
4394 		if (!csum) {
4395 			if (skb_has_shared_frag(nskb) &&
4396 			    __skb_linearize(nskb))
4397 				goto err;
4398 
4399 			if (!nskb->remcsum_offload)
4400 				nskb->ip_summed = CHECKSUM_NONE;
4401 			SKB_GSO_CB(nskb)->csum =
4402 				skb_checksum(nskb, doffset,
4403 					     nskb->len - doffset, 0);
4404 			SKB_GSO_CB(nskb)->csum_start =
4405 				skb_headroom(nskb) + doffset;
4406 		}
4407 	} while ((offset += len) < head_skb->len);
4408 
4409 	/* Some callers want to get the end of the list.
4410 	 * Put it in segs->prev to avoid walking the list.
4411 	 * (see validate_xmit_skb_list() for example)
4412 	 */
4413 	segs->prev = tail;
4414 
4415 	if (partial_segs) {
4416 		struct sk_buff *iter;
4417 		int type = skb_shinfo(head_skb)->gso_type;
4418 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4419 
4420 		/* Update type to add partial and then remove dodgy if set */
4421 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4422 		type &= ~SKB_GSO_DODGY;
4423 
4424 		/* Update GSO info and prepare to start updating headers on
4425 		 * our way back down the stack of protocols.
4426 		 */
4427 		for (iter = segs; iter; iter = iter->next) {
4428 			skb_shinfo(iter)->gso_size = gso_size;
4429 			skb_shinfo(iter)->gso_segs = partial_segs;
4430 			skb_shinfo(iter)->gso_type = type;
4431 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4432 		}
4433 
4434 		if (tail->len - doffset <= gso_size)
4435 			skb_shinfo(tail)->gso_size = 0;
4436 		else if (tail != segs)
4437 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4438 	}
4439 
4440 	/* Following permits correct backpressure, for protocols
4441 	 * using skb_set_owner_w().
4442 	 * Idea is to tranfert ownership from head_skb to last segment.
4443 	 */
4444 	if (head_skb->destructor == sock_wfree) {
4445 		swap(tail->truesize, head_skb->truesize);
4446 		swap(tail->destructor, head_skb->destructor);
4447 		swap(tail->sk, head_skb->sk);
4448 	}
4449 	return segs;
4450 
4451 err:
4452 	kfree_skb_list(segs);
4453 	return ERR_PTR(err);
4454 }
4455 EXPORT_SYMBOL_GPL(skb_segment);
4456 
4457 #ifdef CONFIG_SKB_EXTENSIONS
4458 #define SKB_EXT_ALIGN_VALUE	8
4459 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4460 
4461 static const u8 skb_ext_type_len[] = {
4462 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4463 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4464 #endif
4465 #ifdef CONFIG_XFRM
4466 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4467 #endif
4468 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4469 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4470 #endif
4471 #if IS_ENABLED(CONFIG_MPTCP)
4472 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4473 #endif
4474 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4475 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4476 #endif
4477 };
4478 
4479 static __always_inline unsigned int skb_ext_total_length(void)
4480 {
4481 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4482 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4483 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4484 #endif
4485 #ifdef CONFIG_XFRM
4486 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4487 #endif
4488 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4489 		skb_ext_type_len[TC_SKB_EXT] +
4490 #endif
4491 #if IS_ENABLED(CONFIG_MPTCP)
4492 		skb_ext_type_len[SKB_EXT_MPTCP] +
4493 #endif
4494 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4495 		skb_ext_type_len[SKB_EXT_MCTP] +
4496 #endif
4497 		0;
4498 }
4499 
4500 static void skb_extensions_init(void)
4501 {
4502 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4503 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4504 
4505 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4506 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4507 					     0,
4508 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4509 					     NULL);
4510 }
4511 #else
4512 static void skb_extensions_init(void) {}
4513 #endif
4514 
4515 void __init skb_init(void)
4516 {
4517 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4518 					      sizeof(struct sk_buff),
4519 					      0,
4520 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4521 					      offsetof(struct sk_buff, cb),
4522 					      sizeof_field(struct sk_buff, cb),
4523 					      NULL);
4524 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4525 						sizeof(struct sk_buff_fclones),
4526 						0,
4527 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4528 						NULL);
4529 	skb_extensions_init();
4530 }
4531 
4532 static int
4533 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4534 	       unsigned int recursion_level)
4535 {
4536 	int start = skb_headlen(skb);
4537 	int i, copy = start - offset;
4538 	struct sk_buff *frag_iter;
4539 	int elt = 0;
4540 
4541 	if (unlikely(recursion_level >= 24))
4542 		return -EMSGSIZE;
4543 
4544 	if (copy > 0) {
4545 		if (copy > len)
4546 			copy = len;
4547 		sg_set_buf(sg, skb->data + offset, copy);
4548 		elt++;
4549 		if ((len -= copy) == 0)
4550 			return elt;
4551 		offset += copy;
4552 	}
4553 
4554 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4555 		int end;
4556 
4557 		WARN_ON(start > offset + len);
4558 
4559 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4560 		if ((copy = end - offset) > 0) {
4561 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4562 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4563 				return -EMSGSIZE;
4564 
4565 			if (copy > len)
4566 				copy = len;
4567 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4568 				    skb_frag_off(frag) + offset - start);
4569 			elt++;
4570 			if (!(len -= copy))
4571 				return elt;
4572 			offset += copy;
4573 		}
4574 		start = end;
4575 	}
4576 
4577 	skb_walk_frags(skb, frag_iter) {
4578 		int end, ret;
4579 
4580 		WARN_ON(start > offset + len);
4581 
4582 		end = start + frag_iter->len;
4583 		if ((copy = end - offset) > 0) {
4584 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4585 				return -EMSGSIZE;
4586 
4587 			if (copy > len)
4588 				copy = len;
4589 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4590 					      copy, recursion_level + 1);
4591 			if (unlikely(ret < 0))
4592 				return ret;
4593 			elt += ret;
4594 			if ((len -= copy) == 0)
4595 				return elt;
4596 			offset += copy;
4597 		}
4598 		start = end;
4599 	}
4600 	BUG_ON(len);
4601 	return elt;
4602 }
4603 
4604 /**
4605  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4606  *	@skb: Socket buffer containing the buffers to be mapped
4607  *	@sg: The scatter-gather list to map into
4608  *	@offset: The offset into the buffer's contents to start mapping
4609  *	@len: Length of buffer space to be mapped
4610  *
4611  *	Fill the specified scatter-gather list with mappings/pointers into a
4612  *	region of the buffer space attached to a socket buffer. Returns either
4613  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4614  *	could not fit.
4615  */
4616 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4617 {
4618 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4619 
4620 	if (nsg <= 0)
4621 		return nsg;
4622 
4623 	sg_mark_end(&sg[nsg - 1]);
4624 
4625 	return nsg;
4626 }
4627 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4628 
4629 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4630  * sglist without mark the sg which contain last skb data as the end.
4631  * So the caller can mannipulate sg list as will when padding new data after
4632  * the first call without calling sg_unmark_end to expend sg list.
4633  *
4634  * Scenario to use skb_to_sgvec_nomark:
4635  * 1. sg_init_table
4636  * 2. skb_to_sgvec_nomark(payload1)
4637  * 3. skb_to_sgvec_nomark(payload2)
4638  *
4639  * This is equivalent to:
4640  * 1. sg_init_table
4641  * 2. skb_to_sgvec(payload1)
4642  * 3. sg_unmark_end
4643  * 4. skb_to_sgvec(payload2)
4644  *
4645  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4646  * is more preferable.
4647  */
4648 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4649 			int offset, int len)
4650 {
4651 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4652 }
4653 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4654 
4655 
4656 
4657 /**
4658  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4659  *	@skb: The socket buffer to check.
4660  *	@tailbits: Amount of trailing space to be added
4661  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4662  *
4663  *	Make sure that the data buffers attached to a socket buffer are
4664  *	writable. If they are not, private copies are made of the data buffers
4665  *	and the socket buffer is set to use these instead.
4666  *
4667  *	If @tailbits is given, make sure that there is space to write @tailbits
4668  *	bytes of data beyond current end of socket buffer.  @trailer will be
4669  *	set to point to the skb in which this space begins.
4670  *
4671  *	The number of scatterlist elements required to completely map the
4672  *	COW'd and extended socket buffer will be returned.
4673  */
4674 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4675 {
4676 	int copyflag;
4677 	int elt;
4678 	struct sk_buff *skb1, **skb_p;
4679 
4680 	/* If skb is cloned or its head is paged, reallocate
4681 	 * head pulling out all the pages (pages are considered not writable
4682 	 * at the moment even if they are anonymous).
4683 	 */
4684 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4685 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4686 		return -ENOMEM;
4687 
4688 	/* Easy case. Most of packets will go this way. */
4689 	if (!skb_has_frag_list(skb)) {
4690 		/* A little of trouble, not enough of space for trailer.
4691 		 * This should not happen, when stack is tuned to generate
4692 		 * good frames. OK, on miss we reallocate and reserve even more
4693 		 * space, 128 bytes is fair. */
4694 
4695 		if (skb_tailroom(skb) < tailbits &&
4696 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4697 			return -ENOMEM;
4698 
4699 		/* Voila! */
4700 		*trailer = skb;
4701 		return 1;
4702 	}
4703 
4704 	/* Misery. We are in troubles, going to mincer fragments... */
4705 
4706 	elt = 1;
4707 	skb_p = &skb_shinfo(skb)->frag_list;
4708 	copyflag = 0;
4709 
4710 	while ((skb1 = *skb_p) != NULL) {
4711 		int ntail = 0;
4712 
4713 		/* The fragment is partially pulled by someone,
4714 		 * this can happen on input. Copy it and everything
4715 		 * after it. */
4716 
4717 		if (skb_shared(skb1))
4718 			copyflag = 1;
4719 
4720 		/* If the skb is the last, worry about trailer. */
4721 
4722 		if (skb1->next == NULL && tailbits) {
4723 			if (skb_shinfo(skb1)->nr_frags ||
4724 			    skb_has_frag_list(skb1) ||
4725 			    skb_tailroom(skb1) < tailbits)
4726 				ntail = tailbits + 128;
4727 		}
4728 
4729 		if (copyflag ||
4730 		    skb_cloned(skb1) ||
4731 		    ntail ||
4732 		    skb_shinfo(skb1)->nr_frags ||
4733 		    skb_has_frag_list(skb1)) {
4734 			struct sk_buff *skb2;
4735 
4736 			/* Fuck, we are miserable poor guys... */
4737 			if (ntail == 0)
4738 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4739 			else
4740 				skb2 = skb_copy_expand(skb1,
4741 						       skb_headroom(skb1),
4742 						       ntail,
4743 						       GFP_ATOMIC);
4744 			if (unlikely(skb2 == NULL))
4745 				return -ENOMEM;
4746 
4747 			if (skb1->sk)
4748 				skb_set_owner_w(skb2, skb1->sk);
4749 
4750 			/* Looking around. Are we still alive?
4751 			 * OK, link new skb, drop old one */
4752 
4753 			skb2->next = skb1->next;
4754 			*skb_p = skb2;
4755 			kfree_skb(skb1);
4756 			skb1 = skb2;
4757 		}
4758 		elt++;
4759 		*trailer = skb1;
4760 		skb_p = &skb1->next;
4761 	}
4762 
4763 	return elt;
4764 }
4765 EXPORT_SYMBOL_GPL(skb_cow_data);
4766 
4767 static void sock_rmem_free(struct sk_buff *skb)
4768 {
4769 	struct sock *sk = skb->sk;
4770 
4771 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4772 }
4773 
4774 static void skb_set_err_queue(struct sk_buff *skb)
4775 {
4776 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4777 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4778 	 */
4779 	skb->pkt_type = PACKET_OUTGOING;
4780 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4781 }
4782 
4783 /*
4784  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4785  */
4786 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4787 {
4788 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4789 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4790 		return -ENOMEM;
4791 
4792 	skb_orphan(skb);
4793 	skb->sk = sk;
4794 	skb->destructor = sock_rmem_free;
4795 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4796 	skb_set_err_queue(skb);
4797 
4798 	/* before exiting rcu section, make sure dst is refcounted */
4799 	skb_dst_force(skb);
4800 
4801 	skb_queue_tail(&sk->sk_error_queue, skb);
4802 	if (!sock_flag(sk, SOCK_DEAD))
4803 		sk_error_report(sk);
4804 	return 0;
4805 }
4806 EXPORT_SYMBOL(sock_queue_err_skb);
4807 
4808 static bool is_icmp_err_skb(const struct sk_buff *skb)
4809 {
4810 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4811 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4812 }
4813 
4814 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4815 {
4816 	struct sk_buff_head *q = &sk->sk_error_queue;
4817 	struct sk_buff *skb, *skb_next = NULL;
4818 	bool icmp_next = false;
4819 	unsigned long flags;
4820 
4821 	spin_lock_irqsave(&q->lock, flags);
4822 	skb = __skb_dequeue(q);
4823 	if (skb && (skb_next = skb_peek(q))) {
4824 		icmp_next = is_icmp_err_skb(skb_next);
4825 		if (icmp_next)
4826 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4827 	}
4828 	spin_unlock_irqrestore(&q->lock, flags);
4829 
4830 	if (is_icmp_err_skb(skb) && !icmp_next)
4831 		sk->sk_err = 0;
4832 
4833 	if (skb_next)
4834 		sk_error_report(sk);
4835 
4836 	return skb;
4837 }
4838 EXPORT_SYMBOL(sock_dequeue_err_skb);
4839 
4840 /**
4841  * skb_clone_sk - create clone of skb, and take reference to socket
4842  * @skb: the skb to clone
4843  *
4844  * This function creates a clone of a buffer that holds a reference on
4845  * sk_refcnt.  Buffers created via this function are meant to be
4846  * returned using sock_queue_err_skb, or free via kfree_skb.
4847  *
4848  * When passing buffers allocated with this function to sock_queue_err_skb
4849  * it is necessary to wrap the call with sock_hold/sock_put in order to
4850  * prevent the socket from being released prior to being enqueued on
4851  * the sk_error_queue.
4852  */
4853 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4854 {
4855 	struct sock *sk = skb->sk;
4856 	struct sk_buff *clone;
4857 
4858 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4859 		return NULL;
4860 
4861 	clone = skb_clone(skb, GFP_ATOMIC);
4862 	if (!clone) {
4863 		sock_put(sk);
4864 		return NULL;
4865 	}
4866 
4867 	clone->sk = sk;
4868 	clone->destructor = sock_efree;
4869 
4870 	return clone;
4871 }
4872 EXPORT_SYMBOL(skb_clone_sk);
4873 
4874 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4875 					struct sock *sk,
4876 					int tstype,
4877 					bool opt_stats)
4878 {
4879 	struct sock_exterr_skb *serr;
4880 	int err;
4881 
4882 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4883 
4884 	serr = SKB_EXT_ERR(skb);
4885 	memset(serr, 0, sizeof(*serr));
4886 	serr->ee.ee_errno = ENOMSG;
4887 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4888 	serr->ee.ee_info = tstype;
4889 	serr->opt_stats = opt_stats;
4890 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4891 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4892 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4893 		if (sk_is_tcp(sk))
4894 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
4895 	}
4896 
4897 	err = sock_queue_err_skb(sk, skb);
4898 
4899 	if (err)
4900 		kfree_skb(skb);
4901 }
4902 
4903 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4904 {
4905 	bool ret;
4906 
4907 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
4908 		return true;
4909 
4910 	read_lock_bh(&sk->sk_callback_lock);
4911 	ret = sk->sk_socket && sk->sk_socket->file &&
4912 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4913 	read_unlock_bh(&sk->sk_callback_lock);
4914 	return ret;
4915 }
4916 
4917 void skb_complete_tx_timestamp(struct sk_buff *skb,
4918 			       struct skb_shared_hwtstamps *hwtstamps)
4919 {
4920 	struct sock *sk = skb->sk;
4921 
4922 	if (!skb_may_tx_timestamp(sk, false))
4923 		goto err;
4924 
4925 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4926 	 * but only if the socket refcount is not zero.
4927 	 */
4928 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4929 		*skb_hwtstamps(skb) = *hwtstamps;
4930 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4931 		sock_put(sk);
4932 		return;
4933 	}
4934 
4935 err:
4936 	kfree_skb(skb);
4937 }
4938 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4939 
4940 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4941 		     const struct sk_buff *ack_skb,
4942 		     struct skb_shared_hwtstamps *hwtstamps,
4943 		     struct sock *sk, int tstype)
4944 {
4945 	struct sk_buff *skb;
4946 	bool tsonly, opt_stats = false;
4947 
4948 	if (!sk)
4949 		return;
4950 
4951 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4952 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4953 		return;
4954 
4955 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4956 	if (!skb_may_tx_timestamp(sk, tsonly))
4957 		return;
4958 
4959 	if (tsonly) {
4960 #ifdef CONFIG_INET
4961 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4962 		    sk_is_tcp(sk)) {
4963 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4964 							     ack_skb);
4965 			opt_stats = true;
4966 		} else
4967 #endif
4968 			skb = alloc_skb(0, GFP_ATOMIC);
4969 	} else {
4970 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4971 	}
4972 	if (!skb)
4973 		return;
4974 
4975 	if (tsonly) {
4976 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4977 					     SKBTX_ANY_TSTAMP;
4978 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4979 	}
4980 
4981 	if (hwtstamps)
4982 		*skb_hwtstamps(skb) = *hwtstamps;
4983 	else
4984 		__net_timestamp(skb);
4985 
4986 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4987 }
4988 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4989 
4990 void skb_tstamp_tx(struct sk_buff *orig_skb,
4991 		   struct skb_shared_hwtstamps *hwtstamps)
4992 {
4993 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4994 			       SCM_TSTAMP_SND);
4995 }
4996 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4997 
4998 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4999 {
5000 	struct sock *sk = skb->sk;
5001 	struct sock_exterr_skb *serr;
5002 	int err = 1;
5003 
5004 	skb->wifi_acked_valid = 1;
5005 	skb->wifi_acked = acked;
5006 
5007 	serr = SKB_EXT_ERR(skb);
5008 	memset(serr, 0, sizeof(*serr));
5009 	serr->ee.ee_errno = ENOMSG;
5010 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5011 
5012 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5013 	 * but only if the socket refcount is not zero.
5014 	 */
5015 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5016 		err = sock_queue_err_skb(sk, skb);
5017 		sock_put(sk);
5018 	}
5019 	if (err)
5020 		kfree_skb(skb);
5021 }
5022 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5023 
5024 /**
5025  * skb_partial_csum_set - set up and verify partial csum values for packet
5026  * @skb: the skb to set
5027  * @start: the number of bytes after skb->data to start checksumming.
5028  * @off: the offset from start to place the checksum.
5029  *
5030  * For untrusted partially-checksummed packets, we need to make sure the values
5031  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5032  *
5033  * This function checks and sets those values and skb->ip_summed: if this
5034  * returns false you should drop the packet.
5035  */
5036 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5037 {
5038 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5039 	u32 csum_start = skb_headroom(skb) + (u32)start;
5040 
5041 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
5042 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5043 				     start, off, skb_headroom(skb), skb_headlen(skb));
5044 		return false;
5045 	}
5046 	skb->ip_summed = CHECKSUM_PARTIAL;
5047 	skb->csum_start = csum_start;
5048 	skb->csum_offset = off;
5049 	skb_set_transport_header(skb, start);
5050 	return true;
5051 }
5052 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5053 
5054 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5055 			       unsigned int max)
5056 {
5057 	if (skb_headlen(skb) >= len)
5058 		return 0;
5059 
5060 	/* If we need to pullup then pullup to the max, so we
5061 	 * won't need to do it again.
5062 	 */
5063 	if (max > skb->len)
5064 		max = skb->len;
5065 
5066 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5067 		return -ENOMEM;
5068 
5069 	if (skb_headlen(skb) < len)
5070 		return -EPROTO;
5071 
5072 	return 0;
5073 }
5074 
5075 #define MAX_TCP_HDR_LEN (15 * 4)
5076 
5077 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5078 				      typeof(IPPROTO_IP) proto,
5079 				      unsigned int off)
5080 {
5081 	int err;
5082 
5083 	switch (proto) {
5084 	case IPPROTO_TCP:
5085 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5086 					  off + MAX_TCP_HDR_LEN);
5087 		if (!err && !skb_partial_csum_set(skb, off,
5088 						  offsetof(struct tcphdr,
5089 							   check)))
5090 			err = -EPROTO;
5091 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5092 
5093 	case IPPROTO_UDP:
5094 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5095 					  off + sizeof(struct udphdr));
5096 		if (!err && !skb_partial_csum_set(skb, off,
5097 						  offsetof(struct udphdr,
5098 							   check)))
5099 			err = -EPROTO;
5100 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5101 	}
5102 
5103 	return ERR_PTR(-EPROTO);
5104 }
5105 
5106 /* This value should be large enough to cover a tagged ethernet header plus
5107  * maximally sized IP and TCP or UDP headers.
5108  */
5109 #define MAX_IP_HDR_LEN 128
5110 
5111 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5112 {
5113 	unsigned int off;
5114 	bool fragment;
5115 	__sum16 *csum;
5116 	int err;
5117 
5118 	fragment = false;
5119 
5120 	err = skb_maybe_pull_tail(skb,
5121 				  sizeof(struct iphdr),
5122 				  MAX_IP_HDR_LEN);
5123 	if (err < 0)
5124 		goto out;
5125 
5126 	if (ip_is_fragment(ip_hdr(skb)))
5127 		fragment = true;
5128 
5129 	off = ip_hdrlen(skb);
5130 
5131 	err = -EPROTO;
5132 
5133 	if (fragment)
5134 		goto out;
5135 
5136 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5137 	if (IS_ERR(csum))
5138 		return PTR_ERR(csum);
5139 
5140 	if (recalculate)
5141 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5142 					   ip_hdr(skb)->daddr,
5143 					   skb->len - off,
5144 					   ip_hdr(skb)->protocol, 0);
5145 	err = 0;
5146 
5147 out:
5148 	return err;
5149 }
5150 
5151 /* This value should be large enough to cover a tagged ethernet header plus
5152  * an IPv6 header, all options, and a maximal TCP or UDP header.
5153  */
5154 #define MAX_IPV6_HDR_LEN 256
5155 
5156 #define OPT_HDR(type, skb, off) \
5157 	(type *)(skb_network_header(skb) + (off))
5158 
5159 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5160 {
5161 	int err;
5162 	u8 nexthdr;
5163 	unsigned int off;
5164 	unsigned int len;
5165 	bool fragment;
5166 	bool done;
5167 	__sum16 *csum;
5168 
5169 	fragment = false;
5170 	done = false;
5171 
5172 	off = sizeof(struct ipv6hdr);
5173 
5174 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5175 	if (err < 0)
5176 		goto out;
5177 
5178 	nexthdr = ipv6_hdr(skb)->nexthdr;
5179 
5180 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5181 	while (off <= len && !done) {
5182 		switch (nexthdr) {
5183 		case IPPROTO_DSTOPTS:
5184 		case IPPROTO_HOPOPTS:
5185 		case IPPROTO_ROUTING: {
5186 			struct ipv6_opt_hdr *hp;
5187 
5188 			err = skb_maybe_pull_tail(skb,
5189 						  off +
5190 						  sizeof(struct ipv6_opt_hdr),
5191 						  MAX_IPV6_HDR_LEN);
5192 			if (err < 0)
5193 				goto out;
5194 
5195 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5196 			nexthdr = hp->nexthdr;
5197 			off += ipv6_optlen(hp);
5198 			break;
5199 		}
5200 		case IPPROTO_AH: {
5201 			struct ip_auth_hdr *hp;
5202 
5203 			err = skb_maybe_pull_tail(skb,
5204 						  off +
5205 						  sizeof(struct ip_auth_hdr),
5206 						  MAX_IPV6_HDR_LEN);
5207 			if (err < 0)
5208 				goto out;
5209 
5210 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5211 			nexthdr = hp->nexthdr;
5212 			off += ipv6_authlen(hp);
5213 			break;
5214 		}
5215 		case IPPROTO_FRAGMENT: {
5216 			struct frag_hdr *hp;
5217 
5218 			err = skb_maybe_pull_tail(skb,
5219 						  off +
5220 						  sizeof(struct frag_hdr),
5221 						  MAX_IPV6_HDR_LEN);
5222 			if (err < 0)
5223 				goto out;
5224 
5225 			hp = OPT_HDR(struct frag_hdr, skb, off);
5226 
5227 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5228 				fragment = true;
5229 
5230 			nexthdr = hp->nexthdr;
5231 			off += sizeof(struct frag_hdr);
5232 			break;
5233 		}
5234 		default:
5235 			done = true;
5236 			break;
5237 		}
5238 	}
5239 
5240 	err = -EPROTO;
5241 
5242 	if (!done || fragment)
5243 		goto out;
5244 
5245 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5246 	if (IS_ERR(csum))
5247 		return PTR_ERR(csum);
5248 
5249 	if (recalculate)
5250 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5251 					 &ipv6_hdr(skb)->daddr,
5252 					 skb->len - off, nexthdr, 0);
5253 	err = 0;
5254 
5255 out:
5256 	return err;
5257 }
5258 
5259 /**
5260  * skb_checksum_setup - set up partial checksum offset
5261  * @skb: the skb to set up
5262  * @recalculate: if true the pseudo-header checksum will be recalculated
5263  */
5264 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5265 {
5266 	int err;
5267 
5268 	switch (skb->protocol) {
5269 	case htons(ETH_P_IP):
5270 		err = skb_checksum_setup_ipv4(skb, recalculate);
5271 		break;
5272 
5273 	case htons(ETH_P_IPV6):
5274 		err = skb_checksum_setup_ipv6(skb, recalculate);
5275 		break;
5276 
5277 	default:
5278 		err = -EPROTO;
5279 		break;
5280 	}
5281 
5282 	return err;
5283 }
5284 EXPORT_SYMBOL(skb_checksum_setup);
5285 
5286 /**
5287  * skb_checksum_maybe_trim - maybe trims the given skb
5288  * @skb: the skb to check
5289  * @transport_len: the data length beyond the network header
5290  *
5291  * Checks whether the given skb has data beyond the given transport length.
5292  * If so, returns a cloned skb trimmed to this transport length.
5293  * Otherwise returns the provided skb. Returns NULL in error cases
5294  * (e.g. transport_len exceeds skb length or out-of-memory).
5295  *
5296  * Caller needs to set the skb transport header and free any returned skb if it
5297  * differs from the provided skb.
5298  */
5299 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5300 					       unsigned int transport_len)
5301 {
5302 	struct sk_buff *skb_chk;
5303 	unsigned int len = skb_transport_offset(skb) + transport_len;
5304 	int ret;
5305 
5306 	if (skb->len < len)
5307 		return NULL;
5308 	else if (skb->len == len)
5309 		return skb;
5310 
5311 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5312 	if (!skb_chk)
5313 		return NULL;
5314 
5315 	ret = pskb_trim_rcsum(skb_chk, len);
5316 	if (ret) {
5317 		kfree_skb(skb_chk);
5318 		return NULL;
5319 	}
5320 
5321 	return skb_chk;
5322 }
5323 
5324 /**
5325  * skb_checksum_trimmed - validate checksum of an skb
5326  * @skb: the skb to check
5327  * @transport_len: the data length beyond the network header
5328  * @skb_chkf: checksum function to use
5329  *
5330  * Applies the given checksum function skb_chkf to the provided skb.
5331  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5332  *
5333  * If the skb has data beyond the given transport length, then a
5334  * trimmed & cloned skb is checked and returned.
5335  *
5336  * Caller needs to set the skb transport header and free any returned skb if it
5337  * differs from the provided skb.
5338  */
5339 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5340 				     unsigned int transport_len,
5341 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5342 {
5343 	struct sk_buff *skb_chk;
5344 	unsigned int offset = skb_transport_offset(skb);
5345 	__sum16 ret;
5346 
5347 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5348 	if (!skb_chk)
5349 		goto err;
5350 
5351 	if (!pskb_may_pull(skb_chk, offset))
5352 		goto err;
5353 
5354 	skb_pull_rcsum(skb_chk, offset);
5355 	ret = skb_chkf(skb_chk);
5356 	skb_push_rcsum(skb_chk, offset);
5357 
5358 	if (ret)
5359 		goto err;
5360 
5361 	return skb_chk;
5362 
5363 err:
5364 	if (skb_chk && skb_chk != skb)
5365 		kfree_skb(skb_chk);
5366 
5367 	return NULL;
5368 
5369 }
5370 EXPORT_SYMBOL(skb_checksum_trimmed);
5371 
5372 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5373 {
5374 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5375 			     skb->dev->name);
5376 }
5377 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5378 
5379 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5380 {
5381 	if (head_stolen) {
5382 		skb_release_head_state(skb);
5383 		kmem_cache_free(skbuff_head_cache, skb);
5384 	} else {
5385 		__kfree_skb(skb);
5386 	}
5387 }
5388 EXPORT_SYMBOL(kfree_skb_partial);
5389 
5390 /**
5391  * skb_try_coalesce - try to merge skb to prior one
5392  * @to: prior buffer
5393  * @from: buffer to add
5394  * @fragstolen: pointer to boolean
5395  * @delta_truesize: how much more was allocated than was requested
5396  */
5397 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5398 		      bool *fragstolen, int *delta_truesize)
5399 {
5400 	struct skb_shared_info *to_shinfo, *from_shinfo;
5401 	int i, delta, len = from->len;
5402 
5403 	*fragstolen = false;
5404 
5405 	if (skb_cloned(to))
5406 		return false;
5407 
5408 	/* In general, avoid mixing slab allocated and page_pool allocated
5409 	 * pages within the same SKB. However when @to is not pp_recycle and
5410 	 * @from is cloned, we can transition frag pages from page_pool to
5411 	 * reference counted.
5412 	 *
5413 	 * On the other hand, don't allow coalescing two pp_recycle SKBs if
5414 	 * @from is cloned, in case the SKB is using page_pool fragment
5415 	 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5416 	 * references for cloned SKBs at the moment that would result in
5417 	 * inconsistent reference counts.
5418 	 */
5419 	if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from)))
5420 		return false;
5421 
5422 	if (len <= skb_tailroom(to)) {
5423 		if (len)
5424 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5425 		*delta_truesize = 0;
5426 		return true;
5427 	}
5428 
5429 	to_shinfo = skb_shinfo(to);
5430 	from_shinfo = skb_shinfo(from);
5431 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5432 		return false;
5433 	if (skb_zcopy(to) || skb_zcopy(from))
5434 		return false;
5435 
5436 	if (skb_headlen(from) != 0) {
5437 		struct page *page;
5438 		unsigned int offset;
5439 
5440 		if (to_shinfo->nr_frags +
5441 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5442 			return false;
5443 
5444 		if (skb_head_is_locked(from))
5445 			return false;
5446 
5447 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5448 
5449 		page = virt_to_head_page(from->head);
5450 		offset = from->data - (unsigned char *)page_address(page);
5451 
5452 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5453 				   page, offset, skb_headlen(from));
5454 		*fragstolen = true;
5455 	} else {
5456 		if (to_shinfo->nr_frags +
5457 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5458 			return false;
5459 
5460 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5461 	}
5462 
5463 	WARN_ON_ONCE(delta < len);
5464 
5465 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5466 	       from_shinfo->frags,
5467 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5468 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5469 
5470 	if (!skb_cloned(from))
5471 		from_shinfo->nr_frags = 0;
5472 
5473 	/* if the skb is not cloned this does nothing
5474 	 * since we set nr_frags to 0.
5475 	 */
5476 	for (i = 0; i < from_shinfo->nr_frags; i++)
5477 		__skb_frag_ref(&from_shinfo->frags[i]);
5478 
5479 	to->truesize += delta;
5480 	to->len += len;
5481 	to->data_len += len;
5482 
5483 	*delta_truesize = delta;
5484 	return true;
5485 }
5486 EXPORT_SYMBOL(skb_try_coalesce);
5487 
5488 /**
5489  * skb_scrub_packet - scrub an skb
5490  *
5491  * @skb: buffer to clean
5492  * @xnet: packet is crossing netns
5493  *
5494  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5495  * into/from a tunnel. Some information have to be cleared during these
5496  * operations.
5497  * skb_scrub_packet can also be used to clean a skb before injecting it in
5498  * another namespace (@xnet == true). We have to clear all information in the
5499  * skb that could impact namespace isolation.
5500  */
5501 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5502 {
5503 	skb->pkt_type = PACKET_HOST;
5504 	skb->skb_iif = 0;
5505 	skb->ignore_df = 0;
5506 	skb_dst_drop(skb);
5507 	skb_ext_reset(skb);
5508 	nf_reset_ct(skb);
5509 	nf_reset_trace(skb);
5510 
5511 #ifdef CONFIG_NET_SWITCHDEV
5512 	skb->offload_fwd_mark = 0;
5513 	skb->offload_l3_fwd_mark = 0;
5514 #endif
5515 
5516 	if (!xnet)
5517 		return;
5518 
5519 	ipvs_reset(skb);
5520 	skb->mark = 0;
5521 	skb_clear_tstamp(skb);
5522 }
5523 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5524 
5525 /**
5526  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5527  *
5528  * @skb: GSO skb
5529  *
5530  * skb_gso_transport_seglen is used to determine the real size of the
5531  * individual segments, including Layer4 headers (TCP/UDP).
5532  *
5533  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5534  */
5535 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5536 {
5537 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5538 	unsigned int thlen = 0;
5539 
5540 	if (skb->encapsulation) {
5541 		thlen = skb_inner_transport_header(skb) -
5542 			skb_transport_header(skb);
5543 
5544 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5545 			thlen += inner_tcp_hdrlen(skb);
5546 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5547 		thlen = tcp_hdrlen(skb);
5548 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5549 		thlen = sizeof(struct sctphdr);
5550 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5551 		thlen = sizeof(struct udphdr);
5552 	}
5553 	/* UFO sets gso_size to the size of the fragmentation
5554 	 * payload, i.e. the size of the L4 (UDP) header is already
5555 	 * accounted for.
5556 	 */
5557 	return thlen + shinfo->gso_size;
5558 }
5559 
5560 /**
5561  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5562  *
5563  * @skb: GSO skb
5564  *
5565  * skb_gso_network_seglen is used to determine the real size of the
5566  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5567  *
5568  * The MAC/L2 header is not accounted for.
5569  */
5570 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5571 {
5572 	unsigned int hdr_len = skb_transport_header(skb) -
5573 			       skb_network_header(skb);
5574 
5575 	return hdr_len + skb_gso_transport_seglen(skb);
5576 }
5577 
5578 /**
5579  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5580  *
5581  * @skb: GSO skb
5582  *
5583  * skb_gso_mac_seglen is used to determine the real size of the
5584  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5585  * headers (TCP/UDP).
5586  */
5587 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5588 {
5589 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5590 
5591 	return hdr_len + skb_gso_transport_seglen(skb);
5592 }
5593 
5594 /**
5595  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5596  *
5597  * There are a couple of instances where we have a GSO skb, and we
5598  * want to determine what size it would be after it is segmented.
5599  *
5600  * We might want to check:
5601  * -    L3+L4+payload size (e.g. IP forwarding)
5602  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5603  *
5604  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5605  *
5606  * @skb: GSO skb
5607  *
5608  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5609  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5610  *
5611  * @max_len: The maximum permissible length.
5612  *
5613  * Returns true if the segmented length <= max length.
5614  */
5615 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5616 				      unsigned int seg_len,
5617 				      unsigned int max_len) {
5618 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5619 	const struct sk_buff *iter;
5620 
5621 	if (shinfo->gso_size != GSO_BY_FRAGS)
5622 		return seg_len <= max_len;
5623 
5624 	/* Undo this so we can re-use header sizes */
5625 	seg_len -= GSO_BY_FRAGS;
5626 
5627 	skb_walk_frags(skb, iter) {
5628 		if (seg_len + skb_headlen(iter) > max_len)
5629 			return false;
5630 	}
5631 
5632 	return true;
5633 }
5634 
5635 /**
5636  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5637  *
5638  * @skb: GSO skb
5639  * @mtu: MTU to validate against
5640  *
5641  * skb_gso_validate_network_len validates if a given skb will fit a
5642  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5643  * payload.
5644  */
5645 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5646 {
5647 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5648 }
5649 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5650 
5651 /**
5652  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5653  *
5654  * @skb: GSO skb
5655  * @len: length to validate against
5656  *
5657  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5658  * length once split, including L2, L3 and L4 headers and the payload.
5659  */
5660 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5661 {
5662 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5663 }
5664 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5665 
5666 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5667 {
5668 	int mac_len, meta_len;
5669 	void *meta;
5670 
5671 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5672 		kfree_skb(skb);
5673 		return NULL;
5674 	}
5675 
5676 	mac_len = skb->data - skb_mac_header(skb);
5677 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5678 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5679 			mac_len - VLAN_HLEN - ETH_TLEN);
5680 	}
5681 
5682 	meta_len = skb_metadata_len(skb);
5683 	if (meta_len) {
5684 		meta = skb_metadata_end(skb) - meta_len;
5685 		memmove(meta + VLAN_HLEN, meta, meta_len);
5686 	}
5687 
5688 	skb->mac_header += VLAN_HLEN;
5689 	return skb;
5690 }
5691 
5692 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5693 {
5694 	struct vlan_hdr *vhdr;
5695 	u16 vlan_tci;
5696 
5697 	if (unlikely(skb_vlan_tag_present(skb))) {
5698 		/* vlan_tci is already set-up so leave this for another time */
5699 		return skb;
5700 	}
5701 
5702 	skb = skb_share_check(skb, GFP_ATOMIC);
5703 	if (unlikely(!skb))
5704 		goto err_free;
5705 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5706 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5707 		goto err_free;
5708 
5709 	vhdr = (struct vlan_hdr *)skb->data;
5710 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5711 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5712 
5713 	skb_pull_rcsum(skb, VLAN_HLEN);
5714 	vlan_set_encap_proto(skb, vhdr);
5715 
5716 	skb = skb_reorder_vlan_header(skb);
5717 	if (unlikely(!skb))
5718 		goto err_free;
5719 
5720 	skb_reset_network_header(skb);
5721 	if (!skb_transport_header_was_set(skb))
5722 		skb_reset_transport_header(skb);
5723 	skb_reset_mac_len(skb);
5724 
5725 	return skb;
5726 
5727 err_free:
5728 	kfree_skb(skb);
5729 	return NULL;
5730 }
5731 EXPORT_SYMBOL(skb_vlan_untag);
5732 
5733 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5734 {
5735 	if (!pskb_may_pull(skb, write_len))
5736 		return -ENOMEM;
5737 
5738 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5739 		return 0;
5740 
5741 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5742 }
5743 EXPORT_SYMBOL(skb_ensure_writable);
5744 
5745 /* remove VLAN header from packet and update csum accordingly.
5746  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5747  */
5748 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5749 {
5750 	struct vlan_hdr *vhdr;
5751 	int offset = skb->data - skb_mac_header(skb);
5752 	int err;
5753 
5754 	if (WARN_ONCE(offset,
5755 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5756 		      offset)) {
5757 		return -EINVAL;
5758 	}
5759 
5760 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5761 	if (unlikely(err))
5762 		return err;
5763 
5764 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5765 
5766 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5767 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5768 
5769 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5770 	__skb_pull(skb, VLAN_HLEN);
5771 
5772 	vlan_set_encap_proto(skb, vhdr);
5773 	skb->mac_header += VLAN_HLEN;
5774 
5775 	if (skb_network_offset(skb) < ETH_HLEN)
5776 		skb_set_network_header(skb, ETH_HLEN);
5777 
5778 	skb_reset_mac_len(skb);
5779 
5780 	return err;
5781 }
5782 EXPORT_SYMBOL(__skb_vlan_pop);
5783 
5784 /* Pop a vlan tag either from hwaccel or from payload.
5785  * Expects skb->data at mac header.
5786  */
5787 int skb_vlan_pop(struct sk_buff *skb)
5788 {
5789 	u16 vlan_tci;
5790 	__be16 vlan_proto;
5791 	int err;
5792 
5793 	if (likely(skb_vlan_tag_present(skb))) {
5794 		__vlan_hwaccel_clear_tag(skb);
5795 	} else {
5796 		if (unlikely(!eth_type_vlan(skb->protocol)))
5797 			return 0;
5798 
5799 		err = __skb_vlan_pop(skb, &vlan_tci);
5800 		if (err)
5801 			return err;
5802 	}
5803 	/* move next vlan tag to hw accel tag */
5804 	if (likely(!eth_type_vlan(skb->protocol)))
5805 		return 0;
5806 
5807 	vlan_proto = skb->protocol;
5808 	err = __skb_vlan_pop(skb, &vlan_tci);
5809 	if (unlikely(err))
5810 		return err;
5811 
5812 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5813 	return 0;
5814 }
5815 EXPORT_SYMBOL(skb_vlan_pop);
5816 
5817 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5818  * Expects skb->data at mac header.
5819  */
5820 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5821 {
5822 	if (skb_vlan_tag_present(skb)) {
5823 		int offset = skb->data - skb_mac_header(skb);
5824 		int err;
5825 
5826 		if (WARN_ONCE(offset,
5827 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5828 			      offset)) {
5829 			return -EINVAL;
5830 		}
5831 
5832 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5833 					skb_vlan_tag_get(skb));
5834 		if (err)
5835 			return err;
5836 
5837 		skb->protocol = skb->vlan_proto;
5838 		skb->mac_len += VLAN_HLEN;
5839 
5840 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5841 	}
5842 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5843 	return 0;
5844 }
5845 EXPORT_SYMBOL(skb_vlan_push);
5846 
5847 /**
5848  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5849  *
5850  * @skb: Socket buffer to modify
5851  *
5852  * Drop the Ethernet header of @skb.
5853  *
5854  * Expects that skb->data points to the mac header and that no VLAN tags are
5855  * present.
5856  *
5857  * Returns 0 on success, -errno otherwise.
5858  */
5859 int skb_eth_pop(struct sk_buff *skb)
5860 {
5861 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5862 	    skb_network_offset(skb) < ETH_HLEN)
5863 		return -EPROTO;
5864 
5865 	skb_pull_rcsum(skb, ETH_HLEN);
5866 	skb_reset_mac_header(skb);
5867 	skb_reset_mac_len(skb);
5868 
5869 	return 0;
5870 }
5871 EXPORT_SYMBOL(skb_eth_pop);
5872 
5873 /**
5874  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5875  *
5876  * @skb: Socket buffer to modify
5877  * @dst: Destination MAC address of the new header
5878  * @src: Source MAC address of the new header
5879  *
5880  * Prepend @skb with a new Ethernet header.
5881  *
5882  * Expects that skb->data points to the mac header, which must be empty.
5883  *
5884  * Returns 0 on success, -errno otherwise.
5885  */
5886 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5887 		 const unsigned char *src)
5888 {
5889 	struct ethhdr *eth;
5890 	int err;
5891 
5892 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5893 		return -EPROTO;
5894 
5895 	err = skb_cow_head(skb, sizeof(*eth));
5896 	if (err < 0)
5897 		return err;
5898 
5899 	skb_push(skb, sizeof(*eth));
5900 	skb_reset_mac_header(skb);
5901 	skb_reset_mac_len(skb);
5902 
5903 	eth = eth_hdr(skb);
5904 	ether_addr_copy(eth->h_dest, dst);
5905 	ether_addr_copy(eth->h_source, src);
5906 	eth->h_proto = skb->protocol;
5907 
5908 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5909 
5910 	return 0;
5911 }
5912 EXPORT_SYMBOL(skb_eth_push);
5913 
5914 /* Update the ethertype of hdr and the skb csum value if required. */
5915 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5916 			     __be16 ethertype)
5917 {
5918 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5919 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5920 
5921 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5922 	}
5923 
5924 	hdr->h_proto = ethertype;
5925 }
5926 
5927 /**
5928  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5929  *                   the packet
5930  *
5931  * @skb: buffer
5932  * @mpls_lse: MPLS label stack entry to push
5933  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5934  * @mac_len: length of the MAC header
5935  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5936  *            ethernet
5937  *
5938  * Expects skb->data at mac header.
5939  *
5940  * Returns 0 on success, -errno otherwise.
5941  */
5942 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5943 		  int mac_len, bool ethernet)
5944 {
5945 	struct mpls_shim_hdr *lse;
5946 	int err;
5947 
5948 	if (unlikely(!eth_p_mpls(mpls_proto)))
5949 		return -EINVAL;
5950 
5951 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5952 	if (skb->encapsulation)
5953 		return -EINVAL;
5954 
5955 	err = skb_cow_head(skb, MPLS_HLEN);
5956 	if (unlikely(err))
5957 		return err;
5958 
5959 	if (!skb->inner_protocol) {
5960 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5961 		skb_set_inner_protocol(skb, skb->protocol);
5962 	}
5963 
5964 	skb_push(skb, MPLS_HLEN);
5965 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5966 		mac_len);
5967 	skb_reset_mac_header(skb);
5968 	skb_set_network_header(skb, mac_len);
5969 	skb_reset_mac_len(skb);
5970 
5971 	lse = mpls_hdr(skb);
5972 	lse->label_stack_entry = mpls_lse;
5973 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5974 
5975 	if (ethernet && mac_len >= ETH_HLEN)
5976 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5977 	skb->protocol = mpls_proto;
5978 
5979 	return 0;
5980 }
5981 EXPORT_SYMBOL_GPL(skb_mpls_push);
5982 
5983 /**
5984  * skb_mpls_pop() - pop the outermost MPLS header
5985  *
5986  * @skb: buffer
5987  * @next_proto: ethertype of header after popped MPLS header
5988  * @mac_len: length of the MAC header
5989  * @ethernet: flag to indicate if the packet is ethernet
5990  *
5991  * Expects skb->data at mac header.
5992  *
5993  * Returns 0 on success, -errno otherwise.
5994  */
5995 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5996 		 bool ethernet)
5997 {
5998 	int err;
5999 
6000 	if (unlikely(!eth_p_mpls(skb->protocol)))
6001 		return 0;
6002 
6003 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6004 	if (unlikely(err))
6005 		return err;
6006 
6007 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6008 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6009 		mac_len);
6010 
6011 	__skb_pull(skb, MPLS_HLEN);
6012 	skb_reset_mac_header(skb);
6013 	skb_set_network_header(skb, mac_len);
6014 
6015 	if (ethernet && mac_len >= ETH_HLEN) {
6016 		struct ethhdr *hdr;
6017 
6018 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6019 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6020 		skb_mod_eth_type(skb, hdr, next_proto);
6021 	}
6022 	skb->protocol = next_proto;
6023 
6024 	return 0;
6025 }
6026 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6027 
6028 /**
6029  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6030  *
6031  * @skb: buffer
6032  * @mpls_lse: new MPLS label stack entry to update to
6033  *
6034  * Expects skb->data at mac header.
6035  *
6036  * Returns 0 on success, -errno otherwise.
6037  */
6038 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6039 {
6040 	int err;
6041 
6042 	if (unlikely(!eth_p_mpls(skb->protocol)))
6043 		return -EINVAL;
6044 
6045 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6046 	if (unlikely(err))
6047 		return err;
6048 
6049 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6050 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6051 
6052 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6053 	}
6054 
6055 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6056 
6057 	return 0;
6058 }
6059 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6060 
6061 /**
6062  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6063  *
6064  * @skb: buffer
6065  *
6066  * Expects skb->data at mac header.
6067  *
6068  * Returns 0 on success, -errno otherwise.
6069  */
6070 int skb_mpls_dec_ttl(struct sk_buff *skb)
6071 {
6072 	u32 lse;
6073 	u8 ttl;
6074 
6075 	if (unlikely(!eth_p_mpls(skb->protocol)))
6076 		return -EINVAL;
6077 
6078 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6079 		return -ENOMEM;
6080 
6081 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6082 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6083 	if (!--ttl)
6084 		return -EINVAL;
6085 
6086 	lse &= ~MPLS_LS_TTL_MASK;
6087 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6088 
6089 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6090 }
6091 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6092 
6093 /**
6094  * alloc_skb_with_frags - allocate skb with page frags
6095  *
6096  * @header_len: size of linear part
6097  * @data_len: needed length in frags
6098  * @max_page_order: max page order desired.
6099  * @errcode: pointer to error code if any
6100  * @gfp_mask: allocation mask
6101  *
6102  * This can be used to allocate a paged skb, given a maximal order for frags.
6103  */
6104 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6105 				     unsigned long data_len,
6106 				     int max_page_order,
6107 				     int *errcode,
6108 				     gfp_t gfp_mask)
6109 {
6110 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6111 	unsigned long chunk;
6112 	struct sk_buff *skb;
6113 	struct page *page;
6114 	int i;
6115 
6116 	*errcode = -EMSGSIZE;
6117 	/* Note this test could be relaxed, if we succeed to allocate
6118 	 * high order pages...
6119 	 */
6120 	if (npages > MAX_SKB_FRAGS)
6121 		return NULL;
6122 
6123 	*errcode = -ENOBUFS;
6124 	skb = alloc_skb(header_len, gfp_mask);
6125 	if (!skb)
6126 		return NULL;
6127 
6128 	skb->truesize += npages << PAGE_SHIFT;
6129 
6130 	for (i = 0; npages > 0; i++) {
6131 		int order = max_page_order;
6132 
6133 		while (order) {
6134 			if (npages >= 1 << order) {
6135 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6136 						   __GFP_COMP |
6137 						   __GFP_NOWARN,
6138 						   order);
6139 				if (page)
6140 					goto fill_page;
6141 				/* Do not retry other high order allocations */
6142 				order = 1;
6143 				max_page_order = 0;
6144 			}
6145 			order--;
6146 		}
6147 		page = alloc_page(gfp_mask);
6148 		if (!page)
6149 			goto failure;
6150 fill_page:
6151 		chunk = min_t(unsigned long, data_len,
6152 			      PAGE_SIZE << order);
6153 		skb_fill_page_desc(skb, i, page, 0, chunk);
6154 		data_len -= chunk;
6155 		npages -= 1 << order;
6156 	}
6157 	return skb;
6158 
6159 failure:
6160 	kfree_skb(skb);
6161 	return NULL;
6162 }
6163 EXPORT_SYMBOL(alloc_skb_with_frags);
6164 
6165 /* carve out the first off bytes from skb when off < headlen */
6166 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6167 				    const int headlen, gfp_t gfp_mask)
6168 {
6169 	int i;
6170 	int size = skb_end_offset(skb);
6171 	int new_hlen = headlen - off;
6172 	u8 *data;
6173 
6174 	size = SKB_DATA_ALIGN(size);
6175 
6176 	if (skb_pfmemalloc(skb))
6177 		gfp_mask |= __GFP_MEMALLOC;
6178 	data = kmalloc_reserve(size +
6179 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6180 			       gfp_mask, NUMA_NO_NODE, NULL);
6181 	if (!data)
6182 		return -ENOMEM;
6183 
6184 	size = SKB_WITH_OVERHEAD(ksize(data));
6185 
6186 	/* Copy real data, and all frags */
6187 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6188 	skb->len -= off;
6189 
6190 	memcpy((struct skb_shared_info *)(data + size),
6191 	       skb_shinfo(skb),
6192 	       offsetof(struct skb_shared_info,
6193 			frags[skb_shinfo(skb)->nr_frags]));
6194 	if (skb_cloned(skb)) {
6195 		/* drop the old head gracefully */
6196 		if (skb_orphan_frags(skb, gfp_mask)) {
6197 			kfree(data);
6198 			return -ENOMEM;
6199 		}
6200 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6201 			skb_frag_ref(skb, i);
6202 		if (skb_has_frag_list(skb))
6203 			skb_clone_fraglist(skb);
6204 		skb_release_data(skb);
6205 	} else {
6206 		/* we can reuse existing recount- all we did was
6207 		 * relocate values
6208 		 */
6209 		skb_free_head(skb);
6210 	}
6211 
6212 	skb->head = data;
6213 	skb->data = data;
6214 	skb->head_frag = 0;
6215 	skb_set_end_offset(skb, size);
6216 	skb_set_tail_pointer(skb, skb_headlen(skb));
6217 	skb_headers_offset_update(skb, 0);
6218 	skb->cloned = 0;
6219 	skb->hdr_len = 0;
6220 	skb->nohdr = 0;
6221 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6222 
6223 	return 0;
6224 }
6225 
6226 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6227 
6228 /* carve out the first eat bytes from skb's frag_list. May recurse into
6229  * pskb_carve()
6230  */
6231 static int pskb_carve_frag_list(struct sk_buff *skb,
6232 				struct skb_shared_info *shinfo, int eat,
6233 				gfp_t gfp_mask)
6234 {
6235 	struct sk_buff *list = shinfo->frag_list;
6236 	struct sk_buff *clone = NULL;
6237 	struct sk_buff *insp = NULL;
6238 
6239 	do {
6240 		if (!list) {
6241 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6242 			return -EFAULT;
6243 		}
6244 		if (list->len <= eat) {
6245 			/* Eaten as whole. */
6246 			eat -= list->len;
6247 			list = list->next;
6248 			insp = list;
6249 		} else {
6250 			/* Eaten partially. */
6251 			if (skb_shared(list)) {
6252 				clone = skb_clone(list, gfp_mask);
6253 				if (!clone)
6254 					return -ENOMEM;
6255 				insp = list->next;
6256 				list = clone;
6257 			} else {
6258 				/* This may be pulled without problems. */
6259 				insp = list;
6260 			}
6261 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6262 				kfree_skb(clone);
6263 				return -ENOMEM;
6264 			}
6265 			break;
6266 		}
6267 	} while (eat);
6268 
6269 	/* Free pulled out fragments. */
6270 	while ((list = shinfo->frag_list) != insp) {
6271 		shinfo->frag_list = list->next;
6272 		consume_skb(list);
6273 	}
6274 	/* And insert new clone at head. */
6275 	if (clone) {
6276 		clone->next = list;
6277 		shinfo->frag_list = clone;
6278 	}
6279 	return 0;
6280 }
6281 
6282 /* carve off first len bytes from skb. Split line (off) is in the
6283  * non-linear part of skb
6284  */
6285 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6286 				       int pos, gfp_t gfp_mask)
6287 {
6288 	int i, k = 0;
6289 	int size = skb_end_offset(skb);
6290 	u8 *data;
6291 	const int nfrags = skb_shinfo(skb)->nr_frags;
6292 	struct skb_shared_info *shinfo;
6293 
6294 	size = SKB_DATA_ALIGN(size);
6295 
6296 	if (skb_pfmemalloc(skb))
6297 		gfp_mask |= __GFP_MEMALLOC;
6298 	data = kmalloc_reserve(size +
6299 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6300 			       gfp_mask, NUMA_NO_NODE, NULL);
6301 	if (!data)
6302 		return -ENOMEM;
6303 
6304 	size = SKB_WITH_OVERHEAD(ksize(data));
6305 
6306 	memcpy((struct skb_shared_info *)(data + size),
6307 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6308 	if (skb_orphan_frags(skb, gfp_mask)) {
6309 		kfree(data);
6310 		return -ENOMEM;
6311 	}
6312 	shinfo = (struct skb_shared_info *)(data + size);
6313 	for (i = 0; i < nfrags; i++) {
6314 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6315 
6316 		if (pos + fsize > off) {
6317 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6318 
6319 			if (pos < off) {
6320 				/* Split frag.
6321 				 * We have two variants in this case:
6322 				 * 1. Move all the frag to the second
6323 				 *    part, if it is possible. F.e.
6324 				 *    this approach is mandatory for TUX,
6325 				 *    where splitting is expensive.
6326 				 * 2. Split is accurately. We make this.
6327 				 */
6328 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6329 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6330 			}
6331 			skb_frag_ref(skb, i);
6332 			k++;
6333 		}
6334 		pos += fsize;
6335 	}
6336 	shinfo->nr_frags = k;
6337 	if (skb_has_frag_list(skb))
6338 		skb_clone_fraglist(skb);
6339 
6340 	/* split line is in frag list */
6341 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6342 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6343 		if (skb_has_frag_list(skb))
6344 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6345 		kfree(data);
6346 		return -ENOMEM;
6347 	}
6348 	skb_release_data(skb);
6349 
6350 	skb->head = data;
6351 	skb->head_frag = 0;
6352 	skb->data = data;
6353 	skb_set_end_offset(skb, size);
6354 	skb_reset_tail_pointer(skb);
6355 	skb_headers_offset_update(skb, 0);
6356 	skb->cloned   = 0;
6357 	skb->hdr_len  = 0;
6358 	skb->nohdr    = 0;
6359 	skb->len -= off;
6360 	skb->data_len = skb->len;
6361 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6362 	return 0;
6363 }
6364 
6365 /* remove len bytes from the beginning of the skb */
6366 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6367 {
6368 	int headlen = skb_headlen(skb);
6369 
6370 	if (len < headlen)
6371 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6372 	else
6373 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6374 }
6375 
6376 /* Extract to_copy bytes starting at off from skb, and return this in
6377  * a new skb
6378  */
6379 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6380 			     int to_copy, gfp_t gfp)
6381 {
6382 	struct sk_buff  *clone = skb_clone(skb, gfp);
6383 
6384 	if (!clone)
6385 		return NULL;
6386 
6387 	if (pskb_carve(clone, off, gfp) < 0 ||
6388 	    pskb_trim(clone, to_copy)) {
6389 		kfree_skb(clone);
6390 		return NULL;
6391 	}
6392 	return clone;
6393 }
6394 EXPORT_SYMBOL(pskb_extract);
6395 
6396 /**
6397  * skb_condense - try to get rid of fragments/frag_list if possible
6398  * @skb: buffer
6399  *
6400  * Can be used to save memory before skb is added to a busy queue.
6401  * If packet has bytes in frags and enough tail room in skb->head,
6402  * pull all of them, so that we can free the frags right now and adjust
6403  * truesize.
6404  * Notes:
6405  *	We do not reallocate skb->head thus can not fail.
6406  *	Caller must re-evaluate skb->truesize if needed.
6407  */
6408 void skb_condense(struct sk_buff *skb)
6409 {
6410 	if (skb->data_len) {
6411 		if (skb->data_len > skb->end - skb->tail ||
6412 		    skb_cloned(skb))
6413 			return;
6414 
6415 		/* Nice, we can free page frag(s) right now */
6416 		__pskb_pull_tail(skb, skb->data_len);
6417 	}
6418 	/* At this point, skb->truesize might be over estimated,
6419 	 * because skb had a fragment, and fragments do not tell
6420 	 * their truesize.
6421 	 * When we pulled its content into skb->head, fragment
6422 	 * was freed, but __pskb_pull_tail() could not possibly
6423 	 * adjust skb->truesize, not knowing the frag truesize.
6424 	 */
6425 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6426 }
6427 
6428 #ifdef CONFIG_SKB_EXTENSIONS
6429 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6430 {
6431 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6432 }
6433 
6434 /**
6435  * __skb_ext_alloc - allocate a new skb extensions storage
6436  *
6437  * @flags: See kmalloc().
6438  *
6439  * Returns the newly allocated pointer. The pointer can later attached to a
6440  * skb via __skb_ext_set().
6441  * Note: caller must handle the skb_ext as an opaque data.
6442  */
6443 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6444 {
6445 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6446 
6447 	if (new) {
6448 		memset(new->offset, 0, sizeof(new->offset));
6449 		refcount_set(&new->refcnt, 1);
6450 	}
6451 
6452 	return new;
6453 }
6454 
6455 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6456 					 unsigned int old_active)
6457 {
6458 	struct skb_ext *new;
6459 
6460 	if (refcount_read(&old->refcnt) == 1)
6461 		return old;
6462 
6463 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6464 	if (!new)
6465 		return NULL;
6466 
6467 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6468 	refcount_set(&new->refcnt, 1);
6469 
6470 #ifdef CONFIG_XFRM
6471 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6472 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6473 		unsigned int i;
6474 
6475 		for (i = 0; i < sp->len; i++)
6476 			xfrm_state_hold(sp->xvec[i]);
6477 	}
6478 #endif
6479 	__skb_ext_put(old);
6480 	return new;
6481 }
6482 
6483 /**
6484  * __skb_ext_set - attach the specified extension storage to this skb
6485  * @skb: buffer
6486  * @id: extension id
6487  * @ext: extension storage previously allocated via __skb_ext_alloc()
6488  *
6489  * Existing extensions, if any, are cleared.
6490  *
6491  * Returns the pointer to the extension.
6492  */
6493 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6494 		    struct skb_ext *ext)
6495 {
6496 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6497 
6498 	skb_ext_put(skb);
6499 	newlen = newoff + skb_ext_type_len[id];
6500 	ext->chunks = newlen;
6501 	ext->offset[id] = newoff;
6502 	skb->extensions = ext;
6503 	skb->active_extensions = 1 << id;
6504 	return skb_ext_get_ptr(ext, id);
6505 }
6506 
6507 /**
6508  * skb_ext_add - allocate space for given extension, COW if needed
6509  * @skb: buffer
6510  * @id: extension to allocate space for
6511  *
6512  * Allocates enough space for the given extension.
6513  * If the extension is already present, a pointer to that extension
6514  * is returned.
6515  *
6516  * If the skb was cloned, COW applies and the returned memory can be
6517  * modified without changing the extension space of clones buffers.
6518  *
6519  * Returns pointer to the extension or NULL on allocation failure.
6520  */
6521 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6522 {
6523 	struct skb_ext *new, *old = NULL;
6524 	unsigned int newlen, newoff;
6525 
6526 	if (skb->active_extensions) {
6527 		old = skb->extensions;
6528 
6529 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6530 		if (!new)
6531 			return NULL;
6532 
6533 		if (__skb_ext_exist(new, id))
6534 			goto set_active;
6535 
6536 		newoff = new->chunks;
6537 	} else {
6538 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6539 
6540 		new = __skb_ext_alloc(GFP_ATOMIC);
6541 		if (!new)
6542 			return NULL;
6543 	}
6544 
6545 	newlen = newoff + skb_ext_type_len[id];
6546 	new->chunks = newlen;
6547 	new->offset[id] = newoff;
6548 set_active:
6549 	skb->slow_gro = 1;
6550 	skb->extensions = new;
6551 	skb->active_extensions |= 1 << id;
6552 	return skb_ext_get_ptr(new, id);
6553 }
6554 EXPORT_SYMBOL(skb_ext_add);
6555 
6556 #ifdef CONFIG_XFRM
6557 static void skb_ext_put_sp(struct sec_path *sp)
6558 {
6559 	unsigned int i;
6560 
6561 	for (i = 0; i < sp->len; i++)
6562 		xfrm_state_put(sp->xvec[i]);
6563 }
6564 #endif
6565 
6566 #ifdef CONFIG_MCTP_FLOWS
6567 static void skb_ext_put_mctp(struct mctp_flow *flow)
6568 {
6569 	if (flow->key)
6570 		mctp_key_unref(flow->key);
6571 }
6572 #endif
6573 
6574 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6575 {
6576 	struct skb_ext *ext = skb->extensions;
6577 
6578 	skb->active_extensions &= ~(1 << id);
6579 	if (skb->active_extensions == 0) {
6580 		skb->extensions = NULL;
6581 		__skb_ext_put(ext);
6582 #ifdef CONFIG_XFRM
6583 	} else if (id == SKB_EXT_SEC_PATH &&
6584 		   refcount_read(&ext->refcnt) == 1) {
6585 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6586 
6587 		skb_ext_put_sp(sp);
6588 		sp->len = 0;
6589 #endif
6590 	}
6591 }
6592 EXPORT_SYMBOL(__skb_ext_del);
6593 
6594 void __skb_ext_put(struct skb_ext *ext)
6595 {
6596 	/* If this is last clone, nothing can increment
6597 	 * it after check passes.  Avoids one atomic op.
6598 	 */
6599 	if (refcount_read(&ext->refcnt) == 1)
6600 		goto free_now;
6601 
6602 	if (!refcount_dec_and_test(&ext->refcnt))
6603 		return;
6604 free_now:
6605 #ifdef CONFIG_XFRM
6606 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6607 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6608 #endif
6609 #ifdef CONFIG_MCTP_FLOWS
6610 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6611 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6612 #endif
6613 
6614 	kmem_cache_free(skbuff_ext_cache, ext);
6615 }
6616 EXPORT_SYMBOL(__skb_ext_put);
6617 #endif /* CONFIG_SKB_EXTENSIONS */
6618 
6619 /**
6620  * skb_attempt_defer_free - queue skb for remote freeing
6621  * @skb: buffer
6622  *
6623  * Put @skb in a per-cpu list, using the cpu which
6624  * allocated the skb/pages to reduce false sharing
6625  * and memory zone spinlock contention.
6626  */
6627 void skb_attempt_defer_free(struct sk_buff *skb)
6628 {
6629 	int cpu = skb->alloc_cpu;
6630 	struct softnet_data *sd;
6631 	unsigned long flags;
6632 	unsigned int defer_max;
6633 	bool kick;
6634 
6635 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6636 	    !cpu_online(cpu) ||
6637 	    cpu == raw_smp_processor_id()) {
6638 nodefer:	__kfree_skb(skb);
6639 		return;
6640 	}
6641 
6642 	sd = &per_cpu(softnet_data, cpu);
6643 	defer_max = READ_ONCE(sysctl_skb_defer_max);
6644 	if (READ_ONCE(sd->defer_count) >= defer_max)
6645 		goto nodefer;
6646 
6647 	spin_lock_irqsave(&sd->defer_lock, flags);
6648 	/* Send an IPI every time queue reaches half capacity. */
6649 	kick = sd->defer_count == (defer_max >> 1);
6650 	/* Paired with the READ_ONCE() few lines above */
6651 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6652 
6653 	skb->next = sd->defer_list;
6654 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
6655 	WRITE_ONCE(sd->defer_list, skb);
6656 	spin_unlock_irqrestore(&sd->defer_lock, flags);
6657 
6658 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6659 	 * if we are unlucky enough (this seems very unlikely).
6660 	 */
6661 	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6662 		smp_call_function_single_async(cpu, &sd->defer_csd);
6663 }
6664