1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $ 8 * 9 * Fixes: 10 * Alan Cox : Fixed the worst of the load 11 * balancer bugs. 12 * Dave Platt : Interrupt stacking fix. 13 * Richard Kooijman : Timestamp fixes. 14 * Alan Cox : Changed buffer format. 15 * Alan Cox : destructor hook for AF_UNIX etc. 16 * Linus Torvalds : Better skb_clone. 17 * Alan Cox : Added skb_copy. 18 * Alan Cox : Added all the changed routines Linus 19 * only put in the headers 20 * Ray VanTassle : Fixed --skb->lock in free 21 * Alan Cox : skb_copy copy arp field 22 * Andi Kleen : slabified it. 23 * Robert Olsson : Removed skb_head_pool 24 * 25 * NOTE: 26 * The __skb_ routines should be called with interrupts 27 * disabled, or you better be *real* sure that the operation is atomic 28 * with respect to whatever list is being frobbed (e.g. via lock_sock() 29 * or via disabling bottom half handlers, etc). 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License 33 * as published by the Free Software Foundation; either version 34 * 2 of the License, or (at your option) any later version. 35 */ 36 37 /* 38 * The functions in this file will not compile correctly with gcc 2.4.x 39 */ 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/mm.h> 45 #include <linux/interrupt.h> 46 #include <linux/in.h> 47 #include <linux/inet.h> 48 #include <linux/slab.h> 49 #include <linux/netdevice.h> 50 #ifdef CONFIG_NET_CLS_ACT 51 #include <net/pkt_sched.h> 52 #endif 53 #include <linux/string.h> 54 #include <linux/skbuff.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 60 #include <net/protocol.h> 61 #include <net/dst.h> 62 #include <net/sock.h> 63 #include <net/checksum.h> 64 #include <net/xfrm.h> 65 66 #include <asm/uaccess.h> 67 #include <asm/system.h> 68 69 #include "kmap_skb.h" 70 71 static struct kmem_cache *skbuff_head_cache __read_mostly; 72 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 73 74 /* 75 * Keep out-of-line to prevent kernel bloat. 76 * __builtin_return_address is not used because it is not always 77 * reliable. 78 */ 79 80 /** 81 * skb_over_panic - private function 82 * @skb: buffer 83 * @sz: size 84 * @here: address 85 * 86 * Out of line support code for skb_put(). Not user callable. 87 */ 88 void skb_over_panic(struct sk_buff *skb, int sz, void *here) 89 { 90 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 91 "data:%p tail:%#lx end:%#lx dev:%s\n", 92 here, skb->len, sz, skb->head, skb->data, 93 (unsigned long)skb->tail, (unsigned long)skb->end, 94 skb->dev ? skb->dev->name : "<NULL>"); 95 BUG(); 96 } 97 98 /** 99 * skb_under_panic - private function 100 * @skb: buffer 101 * @sz: size 102 * @here: address 103 * 104 * Out of line support code for skb_push(). Not user callable. 105 */ 106 107 void skb_under_panic(struct sk_buff *skb, int sz, void *here) 108 { 109 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 110 "data:%p tail:%#lx end:%#lx dev:%s\n", 111 here, skb->len, sz, skb->head, skb->data, 112 (unsigned long)skb->tail, (unsigned long)skb->end, 113 skb->dev ? skb->dev->name : "<NULL>"); 114 BUG(); 115 } 116 117 void skb_truesize_bug(struct sk_buff *skb) 118 { 119 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) " 120 "len=%u, sizeof(sk_buff)=%Zd\n", 121 skb->truesize, skb->len, sizeof(struct sk_buff)); 122 } 123 EXPORT_SYMBOL(skb_truesize_bug); 124 125 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 126 * 'private' fields and also do memory statistics to find all the 127 * [BEEP] leaks. 128 * 129 */ 130 131 /** 132 * __alloc_skb - allocate a network buffer 133 * @size: size to allocate 134 * @gfp_mask: allocation mask 135 * @fclone: allocate from fclone cache instead of head cache 136 * and allocate a cloned (child) skb 137 * @node: numa node to allocate memory on 138 * 139 * Allocate a new &sk_buff. The returned buffer has no headroom and a 140 * tail room of size bytes. The object has a reference count of one. 141 * The return is the buffer. On a failure the return is %NULL. 142 * 143 * Buffers may only be allocated from interrupts using a @gfp_mask of 144 * %GFP_ATOMIC. 145 */ 146 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 147 int fclone, int node) 148 { 149 struct kmem_cache *cache; 150 struct skb_shared_info *shinfo; 151 struct sk_buff *skb; 152 u8 *data; 153 154 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 155 156 /* Get the HEAD */ 157 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 158 if (!skb) 159 goto out; 160 161 size = SKB_DATA_ALIGN(size); 162 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info), 163 gfp_mask, node); 164 if (!data) 165 goto nodata; 166 167 /* 168 * See comment in sk_buff definition, just before the 'tail' member 169 */ 170 memset(skb, 0, offsetof(struct sk_buff, tail)); 171 skb->truesize = size + sizeof(struct sk_buff); 172 atomic_set(&skb->users, 1); 173 skb->head = data; 174 skb->data = data; 175 skb_reset_tail_pointer(skb); 176 skb->end = skb->tail + size; 177 /* make sure we initialize shinfo sequentially */ 178 shinfo = skb_shinfo(skb); 179 atomic_set(&shinfo->dataref, 1); 180 shinfo->nr_frags = 0; 181 shinfo->gso_size = 0; 182 shinfo->gso_segs = 0; 183 shinfo->gso_type = 0; 184 shinfo->ip6_frag_id = 0; 185 shinfo->frag_list = NULL; 186 187 if (fclone) { 188 struct sk_buff *child = skb + 1; 189 atomic_t *fclone_ref = (atomic_t *) (child + 1); 190 191 skb->fclone = SKB_FCLONE_ORIG; 192 atomic_set(fclone_ref, 1); 193 194 child->fclone = SKB_FCLONE_UNAVAILABLE; 195 } 196 out: 197 return skb; 198 nodata: 199 kmem_cache_free(cache, skb); 200 skb = NULL; 201 goto out; 202 } 203 204 /** 205 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 206 * @dev: network device to receive on 207 * @length: length to allocate 208 * @gfp_mask: get_free_pages mask, passed to alloc_skb 209 * 210 * Allocate a new &sk_buff and assign it a usage count of one. The 211 * buffer has unspecified headroom built in. Users should allocate 212 * the headroom they think they need without accounting for the 213 * built in space. The built in space is used for optimisations. 214 * 215 * %NULL is returned if there is no free memory. 216 */ 217 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 218 unsigned int length, gfp_t gfp_mask) 219 { 220 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1; 221 struct sk_buff *skb; 222 223 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node); 224 if (likely(skb)) { 225 skb_reserve(skb, NET_SKB_PAD); 226 skb->dev = dev; 227 } 228 return skb; 229 } 230 231 static void skb_drop_list(struct sk_buff **listp) 232 { 233 struct sk_buff *list = *listp; 234 235 *listp = NULL; 236 237 do { 238 struct sk_buff *this = list; 239 list = list->next; 240 kfree_skb(this); 241 } while (list); 242 } 243 244 static inline void skb_drop_fraglist(struct sk_buff *skb) 245 { 246 skb_drop_list(&skb_shinfo(skb)->frag_list); 247 } 248 249 static void skb_clone_fraglist(struct sk_buff *skb) 250 { 251 struct sk_buff *list; 252 253 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) 254 skb_get(list); 255 } 256 257 static void skb_release_data(struct sk_buff *skb) 258 { 259 if (!skb->cloned || 260 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 261 &skb_shinfo(skb)->dataref)) { 262 if (skb_shinfo(skb)->nr_frags) { 263 int i; 264 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 265 put_page(skb_shinfo(skb)->frags[i].page); 266 } 267 268 if (skb_shinfo(skb)->frag_list) 269 skb_drop_fraglist(skb); 270 271 kfree(skb->head); 272 } 273 } 274 275 /* 276 * Free an skbuff by memory without cleaning the state. 277 */ 278 static void kfree_skbmem(struct sk_buff *skb) 279 { 280 struct sk_buff *other; 281 atomic_t *fclone_ref; 282 283 switch (skb->fclone) { 284 case SKB_FCLONE_UNAVAILABLE: 285 kmem_cache_free(skbuff_head_cache, skb); 286 break; 287 288 case SKB_FCLONE_ORIG: 289 fclone_ref = (atomic_t *) (skb + 2); 290 if (atomic_dec_and_test(fclone_ref)) 291 kmem_cache_free(skbuff_fclone_cache, skb); 292 break; 293 294 case SKB_FCLONE_CLONE: 295 fclone_ref = (atomic_t *) (skb + 1); 296 other = skb - 1; 297 298 /* The clone portion is available for 299 * fast-cloning again. 300 */ 301 skb->fclone = SKB_FCLONE_UNAVAILABLE; 302 303 if (atomic_dec_and_test(fclone_ref)) 304 kmem_cache_free(skbuff_fclone_cache, other); 305 break; 306 } 307 } 308 309 /* Free everything but the sk_buff shell. */ 310 static void skb_release_all(struct sk_buff *skb) 311 { 312 dst_release(skb->dst); 313 #ifdef CONFIG_XFRM 314 secpath_put(skb->sp); 315 #endif 316 if (skb->destructor) { 317 WARN_ON(in_irq()); 318 skb->destructor(skb); 319 } 320 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 321 nf_conntrack_put(skb->nfct); 322 nf_conntrack_put_reasm(skb->nfct_reasm); 323 #endif 324 #ifdef CONFIG_BRIDGE_NETFILTER 325 nf_bridge_put(skb->nf_bridge); 326 #endif 327 /* XXX: IS this still necessary? - JHS */ 328 #ifdef CONFIG_NET_SCHED 329 skb->tc_index = 0; 330 #ifdef CONFIG_NET_CLS_ACT 331 skb->tc_verd = 0; 332 #endif 333 #endif 334 skb_release_data(skb); 335 } 336 337 /** 338 * __kfree_skb - private function 339 * @skb: buffer 340 * 341 * Free an sk_buff. Release anything attached to the buffer. 342 * Clean the state. This is an internal helper function. Users should 343 * always call kfree_skb 344 */ 345 346 void __kfree_skb(struct sk_buff *skb) 347 { 348 skb_release_all(skb); 349 kfree_skbmem(skb); 350 } 351 352 /** 353 * kfree_skb - free an sk_buff 354 * @skb: buffer to free 355 * 356 * Drop a reference to the buffer and free it if the usage count has 357 * hit zero. 358 */ 359 void kfree_skb(struct sk_buff *skb) 360 { 361 if (unlikely(!skb)) 362 return; 363 if (likely(atomic_read(&skb->users) == 1)) 364 smp_rmb(); 365 else if (likely(!atomic_dec_and_test(&skb->users))) 366 return; 367 __kfree_skb(skb); 368 } 369 370 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 371 { 372 new->tstamp = old->tstamp; 373 new->dev = old->dev; 374 new->transport_header = old->transport_header; 375 new->network_header = old->network_header; 376 new->mac_header = old->mac_header; 377 new->dst = dst_clone(old->dst); 378 #ifdef CONFIG_INET 379 new->sp = secpath_get(old->sp); 380 #endif 381 memcpy(new->cb, old->cb, sizeof(old->cb)); 382 new->csum_start = old->csum_start; 383 new->csum_offset = old->csum_offset; 384 new->local_df = old->local_df; 385 new->pkt_type = old->pkt_type; 386 new->ip_summed = old->ip_summed; 387 skb_copy_queue_mapping(new, old); 388 new->priority = old->priority; 389 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 390 new->ipvs_property = old->ipvs_property; 391 #endif 392 new->protocol = old->protocol; 393 new->mark = old->mark; 394 __nf_copy(new, old); 395 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \ 396 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE) 397 new->nf_trace = old->nf_trace; 398 #endif 399 #ifdef CONFIG_NET_SCHED 400 new->tc_index = old->tc_index; 401 #ifdef CONFIG_NET_CLS_ACT 402 new->tc_verd = old->tc_verd; 403 #endif 404 #endif 405 skb_copy_secmark(new, old); 406 } 407 408 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 409 { 410 #define C(x) n->x = skb->x 411 412 n->next = n->prev = NULL; 413 n->sk = NULL; 414 __copy_skb_header(n, skb); 415 416 C(len); 417 C(data_len); 418 C(mac_len); 419 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 420 n->cloned = 1; 421 n->nohdr = 0; 422 n->destructor = NULL; 423 C(iif); 424 C(tail); 425 C(end); 426 C(head); 427 C(data); 428 C(truesize); 429 atomic_set(&n->users, 1); 430 431 atomic_inc(&(skb_shinfo(skb)->dataref)); 432 skb->cloned = 1; 433 434 return n; 435 #undef C 436 } 437 438 /** 439 * skb_morph - morph one skb into another 440 * @dst: the skb to receive the contents 441 * @src: the skb to supply the contents 442 * 443 * This is identical to skb_clone except that the target skb is 444 * supplied by the user. 445 * 446 * The target skb is returned upon exit. 447 */ 448 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 449 { 450 skb_release_all(dst); 451 return __skb_clone(dst, src); 452 } 453 EXPORT_SYMBOL_GPL(skb_morph); 454 455 /** 456 * skb_clone - duplicate an sk_buff 457 * @skb: buffer to clone 458 * @gfp_mask: allocation priority 459 * 460 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 461 * copies share the same packet data but not structure. The new 462 * buffer has a reference count of 1. If the allocation fails the 463 * function returns %NULL otherwise the new buffer is returned. 464 * 465 * If this function is called from an interrupt gfp_mask() must be 466 * %GFP_ATOMIC. 467 */ 468 469 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 470 { 471 struct sk_buff *n; 472 473 n = skb + 1; 474 if (skb->fclone == SKB_FCLONE_ORIG && 475 n->fclone == SKB_FCLONE_UNAVAILABLE) { 476 atomic_t *fclone_ref = (atomic_t *) (n + 1); 477 n->fclone = SKB_FCLONE_CLONE; 478 atomic_inc(fclone_ref); 479 } else { 480 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 481 if (!n) 482 return NULL; 483 n->fclone = SKB_FCLONE_UNAVAILABLE; 484 } 485 486 return __skb_clone(n, skb); 487 } 488 489 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 490 { 491 #ifndef NET_SKBUFF_DATA_USES_OFFSET 492 /* 493 * Shift between the two data areas in bytes 494 */ 495 unsigned long offset = new->data - old->data; 496 #endif 497 498 __copy_skb_header(new, old); 499 500 #ifndef NET_SKBUFF_DATA_USES_OFFSET 501 /* {transport,network,mac}_header are relative to skb->head */ 502 new->transport_header += offset; 503 new->network_header += offset; 504 new->mac_header += offset; 505 #endif 506 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 507 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 508 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 509 } 510 511 /** 512 * skb_copy - create private copy of an sk_buff 513 * @skb: buffer to copy 514 * @gfp_mask: allocation priority 515 * 516 * Make a copy of both an &sk_buff and its data. This is used when the 517 * caller wishes to modify the data and needs a private copy of the 518 * data to alter. Returns %NULL on failure or the pointer to the buffer 519 * on success. The returned buffer has a reference count of 1. 520 * 521 * As by-product this function converts non-linear &sk_buff to linear 522 * one, so that &sk_buff becomes completely private and caller is allowed 523 * to modify all the data of returned buffer. This means that this 524 * function is not recommended for use in circumstances when only 525 * header is going to be modified. Use pskb_copy() instead. 526 */ 527 528 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 529 { 530 int headerlen = skb->data - skb->head; 531 /* 532 * Allocate the copy buffer 533 */ 534 struct sk_buff *n; 535 #ifdef NET_SKBUFF_DATA_USES_OFFSET 536 n = alloc_skb(skb->end + skb->data_len, gfp_mask); 537 #else 538 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask); 539 #endif 540 if (!n) 541 return NULL; 542 543 /* Set the data pointer */ 544 skb_reserve(n, headerlen); 545 /* Set the tail pointer and length */ 546 skb_put(n, skb->len); 547 548 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 549 BUG(); 550 551 copy_skb_header(n, skb); 552 return n; 553 } 554 555 556 /** 557 * pskb_copy - create copy of an sk_buff with private head. 558 * @skb: buffer to copy 559 * @gfp_mask: allocation priority 560 * 561 * Make a copy of both an &sk_buff and part of its data, located 562 * in header. Fragmented data remain shared. This is used when 563 * the caller wishes to modify only header of &sk_buff and needs 564 * private copy of the header to alter. Returns %NULL on failure 565 * or the pointer to the buffer on success. 566 * The returned buffer has a reference count of 1. 567 */ 568 569 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 570 { 571 /* 572 * Allocate the copy buffer 573 */ 574 struct sk_buff *n; 575 #ifdef NET_SKBUFF_DATA_USES_OFFSET 576 n = alloc_skb(skb->end, gfp_mask); 577 #else 578 n = alloc_skb(skb->end - skb->head, gfp_mask); 579 #endif 580 if (!n) 581 goto out; 582 583 /* Set the data pointer */ 584 skb_reserve(n, skb->data - skb->head); 585 /* Set the tail pointer and length */ 586 skb_put(n, skb_headlen(skb)); 587 /* Copy the bytes */ 588 skb_copy_from_linear_data(skb, n->data, n->len); 589 590 n->truesize += skb->data_len; 591 n->data_len = skb->data_len; 592 n->len = skb->len; 593 594 if (skb_shinfo(skb)->nr_frags) { 595 int i; 596 597 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 598 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 599 get_page(skb_shinfo(n)->frags[i].page); 600 } 601 skb_shinfo(n)->nr_frags = i; 602 } 603 604 if (skb_shinfo(skb)->frag_list) { 605 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 606 skb_clone_fraglist(n); 607 } 608 609 copy_skb_header(n, skb); 610 out: 611 return n; 612 } 613 614 /** 615 * pskb_expand_head - reallocate header of &sk_buff 616 * @skb: buffer to reallocate 617 * @nhead: room to add at head 618 * @ntail: room to add at tail 619 * @gfp_mask: allocation priority 620 * 621 * Expands (or creates identical copy, if &nhead and &ntail are zero) 622 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 623 * reference count of 1. Returns zero in the case of success or error, 624 * if expansion failed. In the last case, &sk_buff is not changed. 625 * 626 * All the pointers pointing into skb header may change and must be 627 * reloaded after call to this function. 628 */ 629 630 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 631 gfp_t gfp_mask) 632 { 633 int i; 634 u8 *data; 635 #ifdef NET_SKBUFF_DATA_USES_OFFSET 636 int size = nhead + skb->end + ntail; 637 #else 638 int size = nhead + (skb->end - skb->head) + ntail; 639 #endif 640 long off; 641 642 if (skb_shared(skb)) 643 BUG(); 644 645 size = SKB_DATA_ALIGN(size); 646 647 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 648 if (!data) 649 goto nodata; 650 651 /* Copy only real data... and, alas, header. This should be 652 * optimized for the cases when header is void. */ 653 #ifdef NET_SKBUFF_DATA_USES_OFFSET 654 memcpy(data + nhead, skb->head, skb->tail); 655 #else 656 memcpy(data + nhead, skb->head, skb->tail - skb->head); 657 #endif 658 memcpy(data + size, skb_end_pointer(skb), 659 sizeof(struct skb_shared_info)); 660 661 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 662 get_page(skb_shinfo(skb)->frags[i].page); 663 664 if (skb_shinfo(skb)->frag_list) 665 skb_clone_fraglist(skb); 666 667 skb_release_data(skb); 668 669 off = (data + nhead) - skb->head; 670 671 skb->head = data; 672 skb->data += off; 673 #ifdef NET_SKBUFF_DATA_USES_OFFSET 674 skb->end = size; 675 off = nhead; 676 #else 677 skb->end = skb->head + size; 678 #endif 679 /* {transport,network,mac}_header and tail are relative to skb->head */ 680 skb->tail += off; 681 skb->transport_header += off; 682 skb->network_header += off; 683 skb->mac_header += off; 684 skb->csum_start += nhead; 685 skb->cloned = 0; 686 skb->hdr_len = 0; 687 skb->nohdr = 0; 688 atomic_set(&skb_shinfo(skb)->dataref, 1); 689 return 0; 690 691 nodata: 692 return -ENOMEM; 693 } 694 695 /* Make private copy of skb with writable head and some headroom */ 696 697 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 698 { 699 struct sk_buff *skb2; 700 int delta = headroom - skb_headroom(skb); 701 702 if (delta <= 0) 703 skb2 = pskb_copy(skb, GFP_ATOMIC); 704 else { 705 skb2 = skb_clone(skb, GFP_ATOMIC); 706 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 707 GFP_ATOMIC)) { 708 kfree_skb(skb2); 709 skb2 = NULL; 710 } 711 } 712 return skb2; 713 } 714 715 716 /** 717 * skb_copy_expand - copy and expand sk_buff 718 * @skb: buffer to copy 719 * @newheadroom: new free bytes at head 720 * @newtailroom: new free bytes at tail 721 * @gfp_mask: allocation priority 722 * 723 * Make a copy of both an &sk_buff and its data and while doing so 724 * allocate additional space. 725 * 726 * This is used when the caller wishes to modify the data and needs a 727 * private copy of the data to alter as well as more space for new fields. 728 * Returns %NULL on failure or the pointer to the buffer 729 * on success. The returned buffer has a reference count of 1. 730 * 731 * You must pass %GFP_ATOMIC as the allocation priority if this function 732 * is called from an interrupt. 733 */ 734 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 735 int newheadroom, int newtailroom, 736 gfp_t gfp_mask) 737 { 738 /* 739 * Allocate the copy buffer 740 */ 741 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 742 gfp_mask); 743 int oldheadroom = skb_headroom(skb); 744 int head_copy_len, head_copy_off; 745 int off; 746 747 if (!n) 748 return NULL; 749 750 skb_reserve(n, newheadroom); 751 752 /* Set the tail pointer and length */ 753 skb_put(n, skb->len); 754 755 head_copy_len = oldheadroom; 756 head_copy_off = 0; 757 if (newheadroom <= head_copy_len) 758 head_copy_len = newheadroom; 759 else 760 head_copy_off = newheadroom - head_copy_len; 761 762 /* Copy the linear header and data. */ 763 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 764 skb->len + head_copy_len)) 765 BUG(); 766 767 copy_skb_header(n, skb); 768 769 off = newheadroom - oldheadroom; 770 n->csum_start += off; 771 #ifdef NET_SKBUFF_DATA_USES_OFFSET 772 n->transport_header += off; 773 n->network_header += off; 774 n->mac_header += off; 775 #endif 776 777 return n; 778 } 779 780 /** 781 * skb_pad - zero pad the tail of an skb 782 * @skb: buffer to pad 783 * @pad: space to pad 784 * 785 * Ensure that a buffer is followed by a padding area that is zero 786 * filled. Used by network drivers which may DMA or transfer data 787 * beyond the buffer end onto the wire. 788 * 789 * May return error in out of memory cases. The skb is freed on error. 790 */ 791 792 int skb_pad(struct sk_buff *skb, int pad) 793 { 794 int err; 795 int ntail; 796 797 /* If the skbuff is non linear tailroom is always zero.. */ 798 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 799 memset(skb->data+skb->len, 0, pad); 800 return 0; 801 } 802 803 ntail = skb->data_len + pad - (skb->end - skb->tail); 804 if (likely(skb_cloned(skb) || ntail > 0)) { 805 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 806 if (unlikely(err)) 807 goto free_skb; 808 } 809 810 /* FIXME: The use of this function with non-linear skb's really needs 811 * to be audited. 812 */ 813 err = skb_linearize(skb); 814 if (unlikely(err)) 815 goto free_skb; 816 817 memset(skb->data + skb->len, 0, pad); 818 return 0; 819 820 free_skb: 821 kfree_skb(skb); 822 return err; 823 } 824 825 /* Trims skb to length len. It can change skb pointers. 826 */ 827 828 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 829 { 830 struct sk_buff **fragp; 831 struct sk_buff *frag; 832 int offset = skb_headlen(skb); 833 int nfrags = skb_shinfo(skb)->nr_frags; 834 int i; 835 int err; 836 837 if (skb_cloned(skb) && 838 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 839 return err; 840 841 i = 0; 842 if (offset >= len) 843 goto drop_pages; 844 845 for (; i < nfrags; i++) { 846 int end = offset + skb_shinfo(skb)->frags[i].size; 847 848 if (end < len) { 849 offset = end; 850 continue; 851 } 852 853 skb_shinfo(skb)->frags[i++].size = len - offset; 854 855 drop_pages: 856 skb_shinfo(skb)->nr_frags = i; 857 858 for (; i < nfrags; i++) 859 put_page(skb_shinfo(skb)->frags[i].page); 860 861 if (skb_shinfo(skb)->frag_list) 862 skb_drop_fraglist(skb); 863 goto done; 864 } 865 866 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 867 fragp = &frag->next) { 868 int end = offset + frag->len; 869 870 if (skb_shared(frag)) { 871 struct sk_buff *nfrag; 872 873 nfrag = skb_clone(frag, GFP_ATOMIC); 874 if (unlikely(!nfrag)) 875 return -ENOMEM; 876 877 nfrag->next = frag->next; 878 kfree_skb(frag); 879 frag = nfrag; 880 *fragp = frag; 881 } 882 883 if (end < len) { 884 offset = end; 885 continue; 886 } 887 888 if (end > len && 889 unlikely((err = pskb_trim(frag, len - offset)))) 890 return err; 891 892 if (frag->next) 893 skb_drop_list(&frag->next); 894 break; 895 } 896 897 done: 898 if (len > skb_headlen(skb)) { 899 skb->data_len -= skb->len - len; 900 skb->len = len; 901 } else { 902 skb->len = len; 903 skb->data_len = 0; 904 skb_set_tail_pointer(skb, len); 905 } 906 907 return 0; 908 } 909 910 /** 911 * __pskb_pull_tail - advance tail of skb header 912 * @skb: buffer to reallocate 913 * @delta: number of bytes to advance tail 914 * 915 * The function makes a sense only on a fragmented &sk_buff, 916 * it expands header moving its tail forward and copying necessary 917 * data from fragmented part. 918 * 919 * &sk_buff MUST have reference count of 1. 920 * 921 * Returns %NULL (and &sk_buff does not change) if pull failed 922 * or value of new tail of skb in the case of success. 923 * 924 * All the pointers pointing into skb header may change and must be 925 * reloaded after call to this function. 926 */ 927 928 /* Moves tail of skb head forward, copying data from fragmented part, 929 * when it is necessary. 930 * 1. It may fail due to malloc failure. 931 * 2. It may change skb pointers. 932 * 933 * It is pretty complicated. Luckily, it is called only in exceptional cases. 934 */ 935 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 936 { 937 /* If skb has not enough free space at tail, get new one 938 * plus 128 bytes for future expansions. If we have enough 939 * room at tail, reallocate without expansion only if skb is cloned. 940 */ 941 int i, k, eat = (skb->tail + delta) - skb->end; 942 943 if (eat > 0 || skb_cloned(skb)) { 944 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 945 GFP_ATOMIC)) 946 return NULL; 947 } 948 949 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 950 BUG(); 951 952 /* Optimization: no fragments, no reasons to preestimate 953 * size of pulled pages. Superb. 954 */ 955 if (!skb_shinfo(skb)->frag_list) 956 goto pull_pages; 957 958 /* Estimate size of pulled pages. */ 959 eat = delta; 960 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 961 if (skb_shinfo(skb)->frags[i].size >= eat) 962 goto pull_pages; 963 eat -= skb_shinfo(skb)->frags[i].size; 964 } 965 966 /* If we need update frag list, we are in troubles. 967 * Certainly, it possible to add an offset to skb data, 968 * but taking into account that pulling is expected to 969 * be very rare operation, it is worth to fight against 970 * further bloating skb head and crucify ourselves here instead. 971 * Pure masohism, indeed. 8)8) 972 */ 973 if (eat) { 974 struct sk_buff *list = skb_shinfo(skb)->frag_list; 975 struct sk_buff *clone = NULL; 976 struct sk_buff *insp = NULL; 977 978 do { 979 BUG_ON(!list); 980 981 if (list->len <= eat) { 982 /* Eaten as whole. */ 983 eat -= list->len; 984 list = list->next; 985 insp = list; 986 } else { 987 /* Eaten partially. */ 988 989 if (skb_shared(list)) { 990 /* Sucks! We need to fork list. :-( */ 991 clone = skb_clone(list, GFP_ATOMIC); 992 if (!clone) 993 return NULL; 994 insp = list->next; 995 list = clone; 996 } else { 997 /* This may be pulled without 998 * problems. */ 999 insp = list; 1000 } 1001 if (!pskb_pull(list, eat)) { 1002 if (clone) 1003 kfree_skb(clone); 1004 return NULL; 1005 } 1006 break; 1007 } 1008 } while (eat); 1009 1010 /* Free pulled out fragments. */ 1011 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1012 skb_shinfo(skb)->frag_list = list->next; 1013 kfree_skb(list); 1014 } 1015 /* And insert new clone at head. */ 1016 if (clone) { 1017 clone->next = list; 1018 skb_shinfo(skb)->frag_list = clone; 1019 } 1020 } 1021 /* Success! Now we may commit changes to skb data. */ 1022 1023 pull_pages: 1024 eat = delta; 1025 k = 0; 1026 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1027 if (skb_shinfo(skb)->frags[i].size <= eat) { 1028 put_page(skb_shinfo(skb)->frags[i].page); 1029 eat -= skb_shinfo(skb)->frags[i].size; 1030 } else { 1031 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1032 if (eat) { 1033 skb_shinfo(skb)->frags[k].page_offset += eat; 1034 skb_shinfo(skb)->frags[k].size -= eat; 1035 eat = 0; 1036 } 1037 k++; 1038 } 1039 } 1040 skb_shinfo(skb)->nr_frags = k; 1041 1042 skb->tail += delta; 1043 skb->data_len -= delta; 1044 1045 return skb_tail_pointer(skb); 1046 } 1047 1048 /* Copy some data bits from skb to kernel buffer. */ 1049 1050 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1051 { 1052 int i, copy; 1053 int start = skb_headlen(skb); 1054 1055 if (offset > (int)skb->len - len) 1056 goto fault; 1057 1058 /* Copy header. */ 1059 if ((copy = start - offset) > 0) { 1060 if (copy > len) 1061 copy = len; 1062 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1063 if ((len -= copy) == 0) 1064 return 0; 1065 offset += copy; 1066 to += copy; 1067 } 1068 1069 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1070 int end; 1071 1072 BUG_TRAP(start <= offset + len); 1073 1074 end = start + skb_shinfo(skb)->frags[i].size; 1075 if ((copy = end - offset) > 0) { 1076 u8 *vaddr; 1077 1078 if (copy > len) 1079 copy = len; 1080 1081 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1082 memcpy(to, 1083 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1084 offset - start, copy); 1085 kunmap_skb_frag(vaddr); 1086 1087 if ((len -= copy) == 0) 1088 return 0; 1089 offset += copy; 1090 to += copy; 1091 } 1092 start = end; 1093 } 1094 1095 if (skb_shinfo(skb)->frag_list) { 1096 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1097 1098 for (; list; list = list->next) { 1099 int end; 1100 1101 BUG_TRAP(start <= offset + len); 1102 1103 end = start + list->len; 1104 if ((copy = end - offset) > 0) { 1105 if (copy > len) 1106 copy = len; 1107 if (skb_copy_bits(list, offset - start, 1108 to, copy)) 1109 goto fault; 1110 if ((len -= copy) == 0) 1111 return 0; 1112 offset += copy; 1113 to += copy; 1114 } 1115 start = end; 1116 } 1117 } 1118 if (!len) 1119 return 0; 1120 1121 fault: 1122 return -EFAULT; 1123 } 1124 1125 /** 1126 * skb_store_bits - store bits from kernel buffer to skb 1127 * @skb: destination buffer 1128 * @offset: offset in destination 1129 * @from: source buffer 1130 * @len: number of bytes to copy 1131 * 1132 * Copy the specified number of bytes from the source buffer to the 1133 * destination skb. This function handles all the messy bits of 1134 * traversing fragment lists and such. 1135 */ 1136 1137 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1138 { 1139 int i, copy; 1140 int start = skb_headlen(skb); 1141 1142 if (offset > (int)skb->len - len) 1143 goto fault; 1144 1145 if ((copy = start - offset) > 0) { 1146 if (copy > len) 1147 copy = len; 1148 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1149 if ((len -= copy) == 0) 1150 return 0; 1151 offset += copy; 1152 from += copy; 1153 } 1154 1155 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1156 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1157 int end; 1158 1159 BUG_TRAP(start <= offset + len); 1160 1161 end = start + frag->size; 1162 if ((copy = end - offset) > 0) { 1163 u8 *vaddr; 1164 1165 if (copy > len) 1166 copy = len; 1167 1168 vaddr = kmap_skb_frag(frag); 1169 memcpy(vaddr + frag->page_offset + offset - start, 1170 from, copy); 1171 kunmap_skb_frag(vaddr); 1172 1173 if ((len -= copy) == 0) 1174 return 0; 1175 offset += copy; 1176 from += copy; 1177 } 1178 start = end; 1179 } 1180 1181 if (skb_shinfo(skb)->frag_list) { 1182 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1183 1184 for (; list; list = list->next) { 1185 int end; 1186 1187 BUG_TRAP(start <= offset + len); 1188 1189 end = start + list->len; 1190 if ((copy = end - offset) > 0) { 1191 if (copy > len) 1192 copy = len; 1193 if (skb_store_bits(list, offset - start, 1194 from, copy)) 1195 goto fault; 1196 if ((len -= copy) == 0) 1197 return 0; 1198 offset += copy; 1199 from += copy; 1200 } 1201 start = end; 1202 } 1203 } 1204 if (!len) 1205 return 0; 1206 1207 fault: 1208 return -EFAULT; 1209 } 1210 1211 EXPORT_SYMBOL(skb_store_bits); 1212 1213 /* Checksum skb data. */ 1214 1215 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1216 int len, __wsum csum) 1217 { 1218 int start = skb_headlen(skb); 1219 int i, copy = start - offset; 1220 int pos = 0; 1221 1222 /* Checksum header. */ 1223 if (copy > 0) { 1224 if (copy > len) 1225 copy = len; 1226 csum = csum_partial(skb->data + offset, copy, csum); 1227 if ((len -= copy) == 0) 1228 return csum; 1229 offset += copy; 1230 pos = copy; 1231 } 1232 1233 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1234 int end; 1235 1236 BUG_TRAP(start <= offset + len); 1237 1238 end = start + skb_shinfo(skb)->frags[i].size; 1239 if ((copy = end - offset) > 0) { 1240 __wsum csum2; 1241 u8 *vaddr; 1242 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1243 1244 if (copy > len) 1245 copy = len; 1246 vaddr = kmap_skb_frag(frag); 1247 csum2 = csum_partial(vaddr + frag->page_offset + 1248 offset - start, copy, 0); 1249 kunmap_skb_frag(vaddr); 1250 csum = csum_block_add(csum, csum2, pos); 1251 if (!(len -= copy)) 1252 return csum; 1253 offset += copy; 1254 pos += copy; 1255 } 1256 start = end; 1257 } 1258 1259 if (skb_shinfo(skb)->frag_list) { 1260 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1261 1262 for (; list; list = list->next) { 1263 int end; 1264 1265 BUG_TRAP(start <= offset + len); 1266 1267 end = start + list->len; 1268 if ((copy = end - offset) > 0) { 1269 __wsum csum2; 1270 if (copy > len) 1271 copy = len; 1272 csum2 = skb_checksum(list, offset - start, 1273 copy, 0); 1274 csum = csum_block_add(csum, csum2, pos); 1275 if ((len -= copy) == 0) 1276 return csum; 1277 offset += copy; 1278 pos += copy; 1279 } 1280 start = end; 1281 } 1282 } 1283 BUG_ON(len); 1284 1285 return csum; 1286 } 1287 1288 /* Both of above in one bottle. */ 1289 1290 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1291 u8 *to, int len, __wsum csum) 1292 { 1293 int start = skb_headlen(skb); 1294 int i, copy = start - offset; 1295 int pos = 0; 1296 1297 /* Copy header. */ 1298 if (copy > 0) { 1299 if (copy > len) 1300 copy = len; 1301 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1302 copy, csum); 1303 if ((len -= copy) == 0) 1304 return csum; 1305 offset += copy; 1306 to += copy; 1307 pos = copy; 1308 } 1309 1310 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1311 int end; 1312 1313 BUG_TRAP(start <= offset + len); 1314 1315 end = start + skb_shinfo(skb)->frags[i].size; 1316 if ((copy = end - offset) > 0) { 1317 __wsum csum2; 1318 u8 *vaddr; 1319 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1320 1321 if (copy > len) 1322 copy = len; 1323 vaddr = kmap_skb_frag(frag); 1324 csum2 = csum_partial_copy_nocheck(vaddr + 1325 frag->page_offset + 1326 offset - start, to, 1327 copy, 0); 1328 kunmap_skb_frag(vaddr); 1329 csum = csum_block_add(csum, csum2, pos); 1330 if (!(len -= copy)) 1331 return csum; 1332 offset += copy; 1333 to += copy; 1334 pos += copy; 1335 } 1336 start = end; 1337 } 1338 1339 if (skb_shinfo(skb)->frag_list) { 1340 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1341 1342 for (; list; list = list->next) { 1343 __wsum csum2; 1344 int end; 1345 1346 BUG_TRAP(start <= offset + len); 1347 1348 end = start + list->len; 1349 if ((copy = end - offset) > 0) { 1350 if (copy > len) 1351 copy = len; 1352 csum2 = skb_copy_and_csum_bits(list, 1353 offset - start, 1354 to, copy, 0); 1355 csum = csum_block_add(csum, csum2, pos); 1356 if ((len -= copy) == 0) 1357 return csum; 1358 offset += copy; 1359 to += copy; 1360 pos += copy; 1361 } 1362 start = end; 1363 } 1364 } 1365 BUG_ON(len); 1366 return csum; 1367 } 1368 1369 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1370 { 1371 __wsum csum; 1372 long csstart; 1373 1374 if (skb->ip_summed == CHECKSUM_PARTIAL) 1375 csstart = skb->csum_start - skb_headroom(skb); 1376 else 1377 csstart = skb_headlen(skb); 1378 1379 BUG_ON(csstart > skb_headlen(skb)); 1380 1381 skb_copy_from_linear_data(skb, to, csstart); 1382 1383 csum = 0; 1384 if (csstart != skb->len) 1385 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1386 skb->len - csstart, 0); 1387 1388 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1389 long csstuff = csstart + skb->csum_offset; 1390 1391 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 1392 } 1393 } 1394 1395 /** 1396 * skb_dequeue - remove from the head of the queue 1397 * @list: list to dequeue from 1398 * 1399 * Remove the head of the list. The list lock is taken so the function 1400 * may be used safely with other locking list functions. The head item is 1401 * returned or %NULL if the list is empty. 1402 */ 1403 1404 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1405 { 1406 unsigned long flags; 1407 struct sk_buff *result; 1408 1409 spin_lock_irqsave(&list->lock, flags); 1410 result = __skb_dequeue(list); 1411 spin_unlock_irqrestore(&list->lock, flags); 1412 return result; 1413 } 1414 1415 /** 1416 * skb_dequeue_tail - remove from the tail of the queue 1417 * @list: list to dequeue from 1418 * 1419 * Remove the tail of the list. The list lock is taken so the function 1420 * may be used safely with other locking list functions. The tail item is 1421 * returned or %NULL if the list is empty. 1422 */ 1423 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1424 { 1425 unsigned long flags; 1426 struct sk_buff *result; 1427 1428 spin_lock_irqsave(&list->lock, flags); 1429 result = __skb_dequeue_tail(list); 1430 spin_unlock_irqrestore(&list->lock, flags); 1431 return result; 1432 } 1433 1434 /** 1435 * skb_queue_purge - empty a list 1436 * @list: list to empty 1437 * 1438 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1439 * the list and one reference dropped. This function takes the list 1440 * lock and is atomic with respect to other list locking functions. 1441 */ 1442 void skb_queue_purge(struct sk_buff_head *list) 1443 { 1444 struct sk_buff *skb; 1445 while ((skb = skb_dequeue(list)) != NULL) 1446 kfree_skb(skb); 1447 } 1448 1449 /** 1450 * skb_queue_head - queue a buffer at the list head 1451 * @list: list to use 1452 * @newsk: buffer to queue 1453 * 1454 * Queue a buffer at the start of the list. This function takes the 1455 * list lock and can be used safely with other locking &sk_buff functions 1456 * safely. 1457 * 1458 * A buffer cannot be placed on two lists at the same time. 1459 */ 1460 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1461 { 1462 unsigned long flags; 1463 1464 spin_lock_irqsave(&list->lock, flags); 1465 __skb_queue_head(list, newsk); 1466 spin_unlock_irqrestore(&list->lock, flags); 1467 } 1468 1469 /** 1470 * skb_queue_tail - queue a buffer at the list tail 1471 * @list: list to use 1472 * @newsk: buffer to queue 1473 * 1474 * Queue a buffer at the tail of the list. This function takes the 1475 * list lock and can be used safely with other locking &sk_buff functions 1476 * safely. 1477 * 1478 * A buffer cannot be placed on two lists at the same time. 1479 */ 1480 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1481 { 1482 unsigned long flags; 1483 1484 spin_lock_irqsave(&list->lock, flags); 1485 __skb_queue_tail(list, newsk); 1486 spin_unlock_irqrestore(&list->lock, flags); 1487 } 1488 1489 /** 1490 * skb_unlink - remove a buffer from a list 1491 * @skb: buffer to remove 1492 * @list: list to use 1493 * 1494 * Remove a packet from a list. The list locks are taken and this 1495 * function is atomic with respect to other list locked calls 1496 * 1497 * You must know what list the SKB is on. 1498 */ 1499 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1500 { 1501 unsigned long flags; 1502 1503 spin_lock_irqsave(&list->lock, flags); 1504 __skb_unlink(skb, list); 1505 spin_unlock_irqrestore(&list->lock, flags); 1506 } 1507 1508 /** 1509 * skb_append - append a buffer 1510 * @old: buffer to insert after 1511 * @newsk: buffer to insert 1512 * @list: list to use 1513 * 1514 * Place a packet after a given packet in a list. The list locks are taken 1515 * and this function is atomic with respect to other list locked calls. 1516 * A buffer cannot be placed on two lists at the same time. 1517 */ 1518 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1519 { 1520 unsigned long flags; 1521 1522 spin_lock_irqsave(&list->lock, flags); 1523 __skb_append(old, newsk, list); 1524 spin_unlock_irqrestore(&list->lock, flags); 1525 } 1526 1527 1528 /** 1529 * skb_insert - insert a buffer 1530 * @old: buffer to insert before 1531 * @newsk: buffer to insert 1532 * @list: list to use 1533 * 1534 * Place a packet before a given packet in a list. The list locks are 1535 * taken and this function is atomic with respect to other list locked 1536 * calls. 1537 * 1538 * A buffer cannot be placed on two lists at the same time. 1539 */ 1540 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1541 { 1542 unsigned long flags; 1543 1544 spin_lock_irqsave(&list->lock, flags); 1545 __skb_insert(newsk, old->prev, old, list); 1546 spin_unlock_irqrestore(&list->lock, flags); 1547 } 1548 1549 static inline void skb_split_inside_header(struct sk_buff *skb, 1550 struct sk_buff* skb1, 1551 const u32 len, const int pos) 1552 { 1553 int i; 1554 1555 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 1556 pos - len); 1557 /* And move data appendix as is. */ 1558 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1559 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 1560 1561 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 1562 skb_shinfo(skb)->nr_frags = 0; 1563 skb1->data_len = skb->data_len; 1564 skb1->len += skb1->data_len; 1565 skb->data_len = 0; 1566 skb->len = len; 1567 skb_set_tail_pointer(skb, len); 1568 } 1569 1570 static inline void skb_split_no_header(struct sk_buff *skb, 1571 struct sk_buff* skb1, 1572 const u32 len, int pos) 1573 { 1574 int i, k = 0; 1575 const int nfrags = skb_shinfo(skb)->nr_frags; 1576 1577 skb_shinfo(skb)->nr_frags = 0; 1578 skb1->len = skb1->data_len = skb->len - len; 1579 skb->len = len; 1580 skb->data_len = len - pos; 1581 1582 for (i = 0; i < nfrags; i++) { 1583 int size = skb_shinfo(skb)->frags[i].size; 1584 1585 if (pos + size > len) { 1586 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 1587 1588 if (pos < len) { 1589 /* Split frag. 1590 * We have two variants in this case: 1591 * 1. Move all the frag to the second 1592 * part, if it is possible. F.e. 1593 * this approach is mandatory for TUX, 1594 * where splitting is expensive. 1595 * 2. Split is accurately. We make this. 1596 */ 1597 get_page(skb_shinfo(skb)->frags[i].page); 1598 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 1599 skb_shinfo(skb1)->frags[0].size -= len - pos; 1600 skb_shinfo(skb)->frags[i].size = len - pos; 1601 skb_shinfo(skb)->nr_frags++; 1602 } 1603 k++; 1604 } else 1605 skb_shinfo(skb)->nr_frags++; 1606 pos += size; 1607 } 1608 skb_shinfo(skb1)->nr_frags = k; 1609 } 1610 1611 /** 1612 * skb_split - Split fragmented skb to two parts at length len. 1613 * @skb: the buffer to split 1614 * @skb1: the buffer to receive the second part 1615 * @len: new length for skb 1616 */ 1617 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 1618 { 1619 int pos = skb_headlen(skb); 1620 1621 if (len < pos) /* Split line is inside header. */ 1622 skb_split_inside_header(skb, skb1, len, pos); 1623 else /* Second chunk has no header, nothing to copy. */ 1624 skb_split_no_header(skb, skb1, len, pos); 1625 } 1626 1627 /** 1628 * skb_prepare_seq_read - Prepare a sequential read of skb data 1629 * @skb: the buffer to read 1630 * @from: lower offset of data to be read 1631 * @to: upper offset of data to be read 1632 * @st: state variable 1633 * 1634 * Initializes the specified state variable. Must be called before 1635 * invoking skb_seq_read() for the first time. 1636 */ 1637 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1638 unsigned int to, struct skb_seq_state *st) 1639 { 1640 st->lower_offset = from; 1641 st->upper_offset = to; 1642 st->root_skb = st->cur_skb = skb; 1643 st->frag_idx = st->stepped_offset = 0; 1644 st->frag_data = NULL; 1645 } 1646 1647 /** 1648 * skb_seq_read - Sequentially read skb data 1649 * @consumed: number of bytes consumed by the caller so far 1650 * @data: destination pointer for data to be returned 1651 * @st: state variable 1652 * 1653 * Reads a block of skb data at &consumed relative to the 1654 * lower offset specified to skb_prepare_seq_read(). Assigns 1655 * the head of the data block to &data and returns the length 1656 * of the block or 0 if the end of the skb data or the upper 1657 * offset has been reached. 1658 * 1659 * The caller is not required to consume all of the data 1660 * returned, i.e. &consumed is typically set to the number 1661 * of bytes already consumed and the next call to 1662 * skb_seq_read() will return the remaining part of the block. 1663 * 1664 * Note: The size of each block of data returned can be arbitary, 1665 * this limitation is the cost for zerocopy seqeuental 1666 * reads of potentially non linear data. 1667 * 1668 * Note: Fragment lists within fragments are not implemented 1669 * at the moment, state->root_skb could be replaced with 1670 * a stack for this purpose. 1671 */ 1672 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1673 struct skb_seq_state *st) 1674 { 1675 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 1676 skb_frag_t *frag; 1677 1678 if (unlikely(abs_offset >= st->upper_offset)) 1679 return 0; 1680 1681 next_skb: 1682 block_limit = skb_headlen(st->cur_skb); 1683 1684 if (abs_offset < block_limit) { 1685 *data = st->cur_skb->data + abs_offset; 1686 return block_limit - abs_offset; 1687 } 1688 1689 if (st->frag_idx == 0 && !st->frag_data) 1690 st->stepped_offset += skb_headlen(st->cur_skb); 1691 1692 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 1693 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 1694 block_limit = frag->size + st->stepped_offset; 1695 1696 if (abs_offset < block_limit) { 1697 if (!st->frag_data) 1698 st->frag_data = kmap_skb_frag(frag); 1699 1700 *data = (u8 *) st->frag_data + frag->page_offset + 1701 (abs_offset - st->stepped_offset); 1702 1703 return block_limit - abs_offset; 1704 } 1705 1706 if (st->frag_data) { 1707 kunmap_skb_frag(st->frag_data); 1708 st->frag_data = NULL; 1709 } 1710 1711 st->frag_idx++; 1712 st->stepped_offset += frag->size; 1713 } 1714 1715 if (st->frag_data) { 1716 kunmap_skb_frag(st->frag_data); 1717 st->frag_data = NULL; 1718 } 1719 1720 if (st->cur_skb->next) { 1721 st->cur_skb = st->cur_skb->next; 1722 st->frag_idx = 0; 1723 goto next_skb; 1724 } else if (st->root_skb == st->cur_skb && 1725 skb_shinfo(st->root_skb)->frag_list) { 1726 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 1727 goto next_skb; 1728 } 1729 1730 return 0; 1731 } 1732 1733 /** 1734 * skb_abort_seq_read - Abort a sequential read of skb data 1735 * @st: state variable 1736 * 1737 * Must be called if skb_seq_read() was not called until it 1738 * returned 0. 1739 */ 1740 void skb_abort_seq_read(struct skb_seq_state *st) 1741 { 1742 if (st->frag_data) 1743 kunmap_skb_frag(st->frag_data); 1744 } 1745 1746 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 1747 1748 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 1749 struct ts_config *conf, 1750 struct ts_state *state) 1751 { 1752 return skb_seq_read(offset, text, TS_SKB_CB(state)); 1753 } 1754 1755 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 1756 { 1757 skb_abort_seq_read(TS_SKB_CB(state)); 1758 } 1759 1760 /** 1761 * skb_find_text - Find a text pattern in skb data 1762 * @skb: the buffer to look in 1763 * @from: search offset 1764 * @to: search limit 1765 * @config: textsearch configuration 1766 * @state: uninitialized textsearch state variable 1767 * 1768 * Finds a pattern in the skb data according to the specified 1769 * textsearch configuration. Use textsearch_next() to retrieve 1770 * subsequent occurrences of the pattern. Returns the offset 1771 * to the first occurrence or UINT_MAX if no match was found. 1772 */ 1773 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1774 unsigned int to, struct ts_config *config, 1775 struct ts_state *state) 1776 { 1777 unsigned int ret; 1778 1779 config->get_next_block = skb_ts_get_next_block; 1780 config->finish = skb_ts_finish; 1781 1782 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 1783 1784 ret = textsearch_find(config, state); 1785 return (ret <= to - from ? ret : UINT_MAX); 1786 } 1787 1788 /** 1789 * skb_append_datato_frags: - append the user data to a skb 1790 * @sk: sock structure 1791 * @skb: skb structure to be appened with user data. 1792 * @getfrag: call back function to be used for getting the user data 1793 * @from: pointer to user message iov 1794 * @length: length of the iov message 1795 * 1796 * Description: This procedure append the user data in the fragment part 1797 * of the skb if any page alloc fails user this procedure returns -ENOMEM 1798 */ 1799 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 1800 int (*getfrag)(void *from, char *to, int offset, 1801 int len, int odd, struct sk_buff *skb), 1802 void *from, int length) 1803 { 1804 int frg_cnt = 0; 1805 skb_frag_t *frag = NULL; 1806 struct page *page = NULL; 1807 int copy, left; 1808 int offset = 0; 1809 int ret; 1810 1811 do { 1812 /* Return error if we don't have space for new frag */ 1813 frg_cnt = skb_shinfo(skb)->nr_frags; 1814 if (frg_cnt >= MAX_SKB_FRAGS) 1815 return -EFAULT; 1816 1817 /* allocate a new page for next frag */ 1818 page = alloc_pages(sk->sk_allocation, 0); 1819 1820 /* If alloc_page fails just return failure and caller will 1821 * free previous allocated pages by doing kfree_skb() 1822 */ 1823 if (page == NULL) 1824 return -ENOMEM; 1825 1826 /* initialize the next frag */ 1827 sk->sk_sndmsg_page = page; 1828 sk->sk_sndmsg_off = 0; 1829 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 1830 skb->truesize += PAGE_SIZE; 1831 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 1832 1833 /* get the new initialized frag */ 1834 frg_cnt = skb_shinfo(skb)->nr_frags; 1835 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 1836 1837 /* copy the user data to page */ 1838 left = PAGE_SIZE - frag->page_offset; 1839 copy = (length > left)? left : length; 1840 1841 ret = getfrag(from, (page_address(frag->page) + 1842 frag->page_offset + frag->size), 1843 offset, copy, 0, skb); 1844 if (ret < 0) 1845 return -EFAULT; 1846 1847 /* copy was successful so update the size parameters */ 1848 sk->sk_sndmsg_off += copy; 1849 frag->size += copy; 1850 skb->len += copy; 1851 skb->data_len += copy; 1852 offset += copy; 1853 length -= copy; 1854 1855 } while (length > 0); 1856 1857 return 0; 1858 } 1859 1860 /** 1861 * skb_pull_rcsum - pull skb and update receive checksum 1862 * @skb: buffer to update 1863 * @start: start of data before pull 1864 * @len: length of data pulled 1865 * 1866 * This function performs an skb_pull on the packet and updates 1867 * update the CHECKSUM_COMPLETE checksum. It should be used on 1868 * receive path processing instead of skb_pull unless you know 1869 * that the checksum difference is zero (e.g., a valid IP header) 1870 * or you are setting ip_summed to CHECKSUM_NONE. 1871 */ 1872 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 1873 { 1874 BUG_ON(len > skb->len); 1875 skb->len -= len; 1876 BUG_ON(skb->len < skb->data_len); 1877 skb_postpull_rcsum(skb, skb->data, len); 1878 return skb->data += len; 1879 } 1880 1881 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 1882 1883 /** 1884 * skb_segment - Perform protocol segmentation on skb. 1885 * @skb: buffer to segment 1886 * @features: features for the output path (see dev->features) 1887 * 1888 * This function performs segmentation on the given skb. It returns 1889 * the segment at the given position. It returns NULL if there are 1890 * no more segments to generate, or when an error is encountered. 1891 */ 1892 struct sk_buff *skb_segment(struct sk_buff *skb, int features) 1893 { 1894 struct sk_buff *segs = NULL; 1895 struct sk_buff *tail = NULL; 1896 unsigned int mss = skb_shinfo(skb)->gso_size; 1897 unsigned int doffset = skb->data - skb_mac_header(skb); 1898 unsigned int offset = doffset; 1899 unsigned int headroom; 1900 unsigned int len; 1901 int sg = features & NETIF_F_SG; 1902 int nfrags = skb_shinfo(skb)->nr_frags; 1903 int err = -ENOMEM; 1904 int i = 0; 1905 int pos; 1906 1907 __skb_push(skb, doffset); 1908 headroom = skb_headroom(skb); 1909 pos = skb_headlen(skb); 1910 1911 do { 1912 struct sk_buff *nskb; 1913 skb_frag_t *frag; 1914 int hsize; 1915 int k; 1916 int size; 1917 1918 len = skb->len - offset; 1919 if (len > mss) 1920 len = mss; 1921 1922 hsize = skb_headlen(skb) - offset; 1923 if (hsize < 0) 1924 hsize = 0; 1925 if (hsize > len || !sg) 1926 hsize = len; 1927 1928 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC); 1929 if (unlikely(!nskb)) 1930 goto err; 1931 1932 if (segs) 1933 tail->next = nskb; 1934 else 1935 segs = nskb; 1936 tail = nskb; 1937 1938 nskb->dev = skb->dev; 1939 skb_copy_queue_mapping(nskb, skb); 1940 nskb->priority = skb->priority; 1941 nskb->protocol = skb->protocol; 1942 nskb->dst = dst_clone(skb->dst); 1943 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 1944 nskb->pkt_type = skb->pkt_type; 1945 nskb->mac_len = skb->mac_len; 1946 1947 skb_reserve(nskb, headroom); 1948 skb_reset_mac_header(nskb); 1949 skb_set_network_header(nskb, skb->mac_len); 1950 nskb->transport_header = (nskb->network_header + 1951 skb_network_header_len(skb)); 1952 skb_copy_from_linear_data(skb, skb_put(nskb, doffset), 1953 doffset); 1954 if (!sg) { 1955 nskb->csum = skb_copy_and_csum_bits(skb, offset, 1956 skb_put(nskb, len), 1957 len, 0); 1958 continue; 1959 } 1960 1961 frag = skb_shinfo(nskb)->frags; 1962 k = 0; 1963 1964 nskb->ip_summed = CHECKSUM_PARTIAL; 1965 nskb->csum = skb->csum; 1966 skb_copy_from_linear_data_offset(skb, offset, 1967 skb_put(nskb, hsize), hsize); 1968 1969 while (pos < offset + len) { 1970 BUG_ON(i >= nfrags); 1971 1972 *frag = skb_shinfo(skb)->frags[i]; 1973 get_page(frag->page); 1974 size = frag->size; 1975 1976 if (pos < offset) { 1977 frag->page_offset += offset - pos; 1978 frag->size -= offset - pos; 1979 } 1980 1981 k++; 1982 1983 if (pos + size <= offset + len) { 1984 i++; 1985 pos += size; 1986 } else { 1987 frag->size -= pos + size - (offset + len); 1988 break; 1989 } 1990 1991 frag++; 1992 } 1993 1994 skb_shinfo(nskb)->nr_frags = k; 1995 nskb->data_len = len - hsize; 1996 nskb->len += nskb->data_len; 1997 nskb->truesize += nskb->data_len; 1998 } while ((offset += len) < skb->len); 1999 2000 return segs; 2001 2002 err: 2003 while ((skb = segs)) { 2004 segs = skb->next; 2005 kfree_skb(skb); 2006 } 2007 return ERR_PTR(err); 2008 } 2009 2010 EXPORT_SYMBOL_GPL(skb_segment); 2011 2012 void __init skb_init(void) 2013 { 2014 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 2015 sizeof(struct sk_buff), 2016 0, 2017 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2018 NULL); 2019 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 2020 (2*sizeof(struct sk_buff)) + 2021 sizeof(atomic_t), 2022 0, 2023 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2024 NULL); 2025 } 2026 2027 /** 2028 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 2029 * @skb: Socket buffer containing the buffers to be mapped 2030 * @sg: The scatter-gather list to map into 2031 * @offset: The offset into the buffer's contents to start mapping 2032 * @len: Length of buffer space to be mapped 2033 * 2034 * Fill the specified scatter-gather list with mappings/pointers into a 2035 * region of the buffer space attached to a socket buffer. 2036 */ 2037 static int 2038 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2039 { 2040 int start = skb_headlen(skb); 2041 int i, copy = start - offset; 2042 int elt = 0; 2043 2044 if (copy > 0) { 2045 if (copy > len) 2046 copy = len; 2047 sg_set_buf(sg, skb->data + offset, copy); 2048 elt++; 2049 if ((len -= copy) == 0) 2050 return elt; 2051 offset += copy; 2052 } 2053 2054 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2055 int end; 2056 2057 BUG_TRAP(start <= offset + len); 2058 2059 end = start + skb_shinfo(skb)->frags[i].size; 2060 if ((copy = end - offset) > 0) { 2061 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2062 2063 if (copy > len) 2064 copy = len; 2065 sg_set_page(&sg[elt], frag->page, copy, 2066 frag->page_offset+offset-start); 2067 elt++; 2068 if (!(len -= copy)) 2069 return elt; 2070 offset += copy; 2071 } 2072 start = end; 2073 } 2074 2075 if (skb_shinfo(skb)->frag_list) { 2076 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2077 2078 for (; list; list = list->next) { 2079 int end; 2080 2081 BUG_TRAP(start <= offset + len); 2082 2083 end = start + list->len; 2084 if ((copy = end - offset) > 0) { 2085 if (copy > len) 2086 copy = len; 2087 elt += __skb_to_sgvec(list, sg+elt, offset - start, 2088 copy); 2089 if ((len -= copy) == 0) 2090 return elt; 2091 offset += copy; 2092 } 2093 start = end; 2094 } 2095 } 2096 BUG_ON(len); 2097 return elt; 2098 } 2099 2100 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2101 { 2102 int nsg = __skb_to_sgvec(skb, sg, offset, len); 2103 2104 sg_mark_end(&sg[nsg - 1]); 2105 2106 return nsg; 2107 } 2108 2109 /** 2110 * skb_cow_data - Check that a socket buffer's data buffers are writable 2111 * @skb: The socket buffer to check. 2112 * @tailbits: Amount of trailing space to be added 2113 * @trailer: Returned pointer to the skb where the @tailbits space begins 2114 * 2115 * Make sure that the data buffers attached to a socket buffer are 2116 * writable. If they are not, private copies are made of the data buffers 2117 * and the socket buffer is set to use these instead. 2118 * 2119 * If @tailbits is given, make sure that there is space to write @tailbits 2120 * bytes of data beyond current end of socket buffer. @trailer will be 2121 * set to point to the skb in which this space begins. 2122 * 2123 * The number of scatterlist elements required to completely map the 2124 * COW'd and extended socket buffer will be returned. 2125 */ 2126 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 2127 { 2128 int copyflag; 2129 int elt; 2130 struct sk_buff *skb1, **skb_p; 2131 2132 /* If skb is cloned or its head is paged, reallocate 2133 * head pulling out all the pages (pages are considered not writable 2134 * at the moment even if they are anonymous). 2135 */ 2136 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 2137 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 2138 return -ENOMEM; 2139 2140 /* Easy case. Most of packets will go this way. */ 2141 if (!skb_shinfo(skb)->frag_list) { 2142 /* A little of trouble, not enough of space for trailer. 2143 * This should not happen, when stack is tuned to generate 2144 * good frames. OK, on miss we reallocate and reserve even more 2145 * space, 128 bytes is fair. */ 2146 2147 if (skb_tailroom(skb) < tailbits && 2148 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 2149 return -ENOMEM; 2150 2151 /* Voila! */ 2152 *trailer = skb; 2153 return 1; 2154 } 2155 2156 /* Misery. We are in troubles, going to mincer fragments... */ 2157 2158 elt = 1; 2159 skb_p = &skb_shinfo(skb)->frag_list; 2160 copyflag = 0; 2161 2162 while ((skb1 = *skb_p) != NULL) { 2163 int ntail = 0; 2164 2165 /* The fragment is partially pulled by someone, 2166 * this can happen on input. Copy it and everything 2167 * after it. */ 2168 2169 if (skb_shared(skb1)) 2170 copyflag = 1; 2171 2172 /* If the skb is the last, worry about trailer. */ 2173 2174 if (skb1->next == NULL && tailbits) { 2175 if (skb_shinfo(skb1)->nr_frags || 2176 skb_shinfo(skb1)->frag_list || 2177 skb_tailroom(skb1) < tailbits) 2178 ntail = tailbits + 128; 2179 } 2180 2181 if (copyflag || 2182 skb_cloned(skb1) || 2183 ntail || 2184 skb_shinfo(skb1)->nr_frags || 2185 skb_shinfo(skb1)->frag_list) { 2186 struct sk_buff *skb2; 2187 2188 /* Fuck, we are miserable poor guys... */ 2189 if (ntail == 0) 2190 skb2 = skb_copy(skb1, GFP_ATOMIC); 2191 else 2192 skb2 = skb_copy_expand(skb1, 2193 skb_headroom(skb1), 2194 ntail, 2195 GFP_ATOMIC); 2196 if (unlikely(skb2 == NULL)) 2197 return -ENOMEM; 2198 2199 if (skb1->sk) 2200 skb_set_owner_w(skb2, skb1->sk); 2201 2202 /* Looking around. Are we still alive? 2203 * OK, link new skb, drop old one */ 2204 2205 skb2->next = skb1->next; 2206 *skb_p = skb2; 2207 kfree_skb(skb1); 2208 skb1 = skb2; 2209 } 2210 elt++; 2211 *trailer = skb1; 2212 skb_p = &skb1->next; 2213 } 2214 2215 return elt; 2216 } 2217 2218 EXPORT_SYMBOL(___pskb_trim); 2219 EXPORT_SYMBOL(__kfree_skb); 2220 EXPORT_SYMBOL(kfree_skb); 2221 EXPORT_SYMBOL(__pskb_pull_tail); 2222 EXPORT_SYMBOL(__alloc_skb); 2223 EXPORT_SYMBOL(__netdev_alloc_skb); 2224 EXPORT_SYMBOL(pskb_copy); 2225 EXPORT_SYMBOL(pskb_expand_head); 2226 EXPORT_SYMBOL(skb_checksum); 2227 EXPORT_SYMBOL(skb_clone); 2228 EXPORT_SYMBOL(skb_copy); 2229 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2230 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2231 EXPORT_SYMBOL(skb_copy_bits); 2232 EXPORT_SYMBOL(skb_copy_expand); 2233 EXPORT_SYMBOL(skb_over_panic); 2234 EXPORT_SYMBOL(skb_pad); 2235 EXPORT_SYMBOL(skb_realloc_headroom); 2236 EXPORT_SYMBOL(skb_under_panic); 2237 EXPORT_SYMBOL(skb_dequeue); 2238 EXPORT_SYMBOL(skb_dequeue_tail); 2239 EXPORT_SYMBOL(skb_insert); 2240 EXPORT_SYMBOL(skb_queue_purge); 2241 EXPORT_SYMBOL(skb_queue_head); 2242 EXPORT_SYMBOL(skb_queue_tail); 2243 EXPORT_SYMBOL(skb_unlink); 2244 EXPORT_SYMBOL(skb_append); 2245 EXPORT_SYMBOL(skb_split); 2246 EXPORT_SYMBOL(skb_prepare_seq_read); 2247 EXPORT_SYMBOL(skb_seq_read); 2248 EXPORT_SYMBOL(skb_abort_seq_read); 2249 EXPORT_SYMBOL(skb_find_text); 2250 EXPORT_SYMBOL(skb_append_datato_frags); 2251 2252 EXPORT_SYMBOL_GPL(skb_to_sgvec); 2253 EXPORT_SYMBOL_GPL(skb_cow_data); 2254