xref: /linux/net/core/skbuff.c (revision 7f3edee81fbd49114c28057512906f169caa0bed)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <iiitac@pyr.swan.ac.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Version:	$Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
8  *
9  *	Fixes:
10  *		Alan Cox	:	Fixed the worst of the load
11  *					balancer bugs.
12  *		Dave Platt	:	Interrupt stacking fix.
13  *	Richard Kooijman	:	Timestamp fixes.
14  *		Alan Cox	:	Changed buffer format.
15  *		Alan Cox	:	destructor hook for AF_UNIX etc.
16  *		Linus Torvalds	:	Better skb_clone.
17  *		Alan Cox	:	Added skb_copy.
18  *		Alan Cox	:	Added all the changed routines Linus
19  *					only put in the headers
20  *		Ray VanTassle	:	Fixed --skb->lock in free
21  *		Alan Cox	:	skb_copy copy arp field
22  *		Andi Kleen	:	slabified it.
23  *		Robert Olsson	:	Removed skb_head_pool
24  *
25  *	NOTE:
26  *		The __skb_ routines should be called with interrupts
27  *	disabled, or you better be *real* sure that the operation is atomic
28  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
29  *	or via disabling bottom half handlers, etc).
30  *
31  *	This program is free software; you can redistribute it and/or
32  *	modify it under the terms of the GNU General Public License
33  *	as published by the Free Software Foundation; either version
34  *	2 of the License, or (at your option) any later version.
35  */
36 
37 /*
38  *	The functions in this file will not compile correctly with gcc 2.4.x
39  */
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/netdevice.h>
50 #ifdef CONFIG_NET_CLS_ACT
51 #include <net/pkt_sched.h>
52 #endif
53 #include <linux/string.h>
54 #include <linux/skbuff.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 
60 #include <net/protocol.h>
61 #include <net/dst.h>
62 #include <net/sock.h>
63 #include <net/checksum.h>
64 #include <net/xfrm.h>
65 
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 
69 #include "kmap_skb.h"
70 
71 static struct kmem_cache *skbuff_head_cache __read_mostly;
72 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
73 
74 /*
75  *	Keep out-of-line to prevent kernel bloat.
76  *	__builtin_return_address is not used because it is not always
77  *	reliable.
78  */
79 
80 /**
81  *	skb_over_panic	- 	private function
82  *	@skb: buffer
83  *	@sz: size
84  *	@here: address
85  *
86  *	Out of line support code for skb_put(). Not user callable.
87  */
88 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
89 {
90 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
91 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
92 	       here, skb->len, sz, skb->head, skb->data,
93 	       (unsigned long)skb->tail, (unsigned long)skb->end,
94 	       skb->dev ? skb->dev->name : "<NULL>");
95 	BUG();
96 }
97 
98 /**
99  *	skb_under_panic	- 	private function
100  *	@skb: buffer
101  *	@sz: size
102  *	@here: address
103  *
104  *	Out of line support code for skb_push(). Not user callable.
105  */
106 
107 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
108 {
109 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
110 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
111 	       here, skb->len, sz, skb->head, skb->data,
112 	       (unsigned long)skb->tail, (unsigned long)skb->end,
113 	       skb->dev ? skb->dev->name : "<NULL>");
114 	BUG();
115 }
116 
117 void skb_truesize_bug(struct sk_buff *skb)
118 {
119 	printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
120 	       "len=%u, sizeof(sk_buff)=%Zd\n",
121 	       skb->truesize, skb->len, sizeof(struct sk_buff));
122 }
123 EXPORT_SYMBOL(skb_truesize_bug);
124 
125 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
126  *	'private' fields and also do memory statistics to find all the
127  *	[BEEP] leaks.
128  *
129  */
130 
131 /**
132  *	__alloc_skb	-	allocate a network buffer
133  *	@size: size to allocate
134  *	@gfp_mask: allocation mask
135  *	@fclone: allocate from fclone cache instead of head cache
136  *		and allocate a cloned (child) skb
137  *	@node: numa node to allocate memory on
138  *
139  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
140  *	tail room of size bytes. The object has a reference count of one.
141  *	The return is the buffer. On a failure the return is %NULL.
142  *
143  *	Buffers may only be allocated from interrupts using a @gfp_mask of
144  *	%GFP_ATOMIC.
145  */
146 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
147 			    int fclone, int node)
148 {
149 	struct kmem_cache *cache;
150 	struct skb_shared_info *shinfo;
151 	struct sk_buff *skb;
152 	u8 *data;
153 
154 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
155 
156 	/* Get the HEAD */
157 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
158 	if (!skb)
159 		goto out;
160 
161 	size = SKB_DATA_ALIGN(size);
162 	data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
163 			gfp_mask, node);
164 	if (!data)
165 		goto nodata;
166 
167 	/*
168 	 * See comment in sk_buff definition, just before the 'tail' member
169 	 */
170 	memset(skb, 0, offsetof(struct sk_buff, tail));
171 	skb->truesize = size + sizeof(struct sk_buff);
172 	atomic_set(&skb->users, 1);
173 	skb->head = data;
174 	skb->data = data;
175 	skb_reset_tail_pointer(skb);
176 	skb->end = skb->tail + size;
177 	/* make sure we initialize shinfo sequentially */
178 	shinfo = skb_shinfo(skb);
179 	atomic_set(&shinfo->dataref, 1);
180 	shinfo->nr_frags  = 0;
181 	shinfo->gso_size = 0;
182 	shinfo->gso_segs = 0;
183 	shinfo->gso_type = 0;
184 	shinfo->ip6_frag_id = 0;
185 	shinfo->frag_list = NULL;
186 
187 	if (fclone) {
188 		struct sk_buff *child = skb + 1;
189 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
190 
191 		skb->fclone = SKB_FCLONE_ORIG;
192 		atomic_set(fclone_ref, 1);
193 
194 		child->fclone = SKB_FCLONE_UNAVAILABLE;
195 	}
196 out:
197 	return skb;
198 nodata:
199 	kmem_cache_free(cache, skb);
200 	skb = NULL;
201 	goto out;
202 }
203 
204 /**
205  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
206  *	@dev: network device to receive on
207  *	@length: length to allocate
208  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
209  *
210  *	Allocate a new &sk_buff and assign it a usage count of one. The
211  *	buffer has unspecified headroom built in. Users should allocate
212  *	the headroom they think they need without accounting for the
213  *	built in space. The built in space is used for optimisations.
214  *
215  *	%NULL is returned if there is no free memory.
216  */
217 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
218 		unsigned int length, gfp_t gfp_mask)
219 {
220 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
221 	struct sk_buff *skb;
222 
223 	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
224 	if (likely(skb)) {
225 		skb_reserve(skb, NET_SKB_PAD);
226 		skb->dev = dev;
227 	}
228 	return skb;
229 }
230 
231 static void skb_drop_list(struct sk_buff **listp)
232 {
233 	struct sk_buff *list = *listp;
234 
235 	*listp = NULL;
236 
237 	do {
238 		struct sk_buff *this = list;
239 		list = list->next;
240 		kfree_skb(this);
241 	} while (list);
242 }
243 
244 static inline void skb_drop_fraglist(struct sk_buff *skb)
245 {
246 	skb_drop_list(&skb_shinfo(skb)->frag_list);
247 }
248 
249 static void skb_clone_fraglist(struct sk_buff *skb)
250 {
251 	struct sk_buff *list;
252 
253 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
254 		skb_get(list);
255 }
256 
257 static void skb_release_data(struct sk_buff *skb)
258 {
259 	if (!skb->cloned ||
260 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
261 			       &skb_shinfo(skb)->dataref)) {
262 		if (skb_shinfo(skb)->nr_frags) {
263 			int i;
264 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
265 				put_page(skb_shinfo(skb)->frags[i].page);
266 		}
267 
268 		if (skb_shinfo(skb)->frag_list)
269 			skb_drop_fraglist(skb);
270 
271 		kfree(skb->head);
272 	}
273 }
274 
275 /*
276  *	Free an skbuff by memory without cleaning the state.
277  */
278 static void kfree_skbmem(struct sk_buff *skb)
279 {
280 	struct sk_buff *other;
281 	atomic_t *fclone_ref;
282 
283 	switch (skb->fclone) {
284 	case SKB_FCLONE_UNAVAILABLE:
285 		kmem_cache_free(skbuff_head_cache, skb);
286 		break;
287 
288 	case SKB_FCLONE_ORIG:
289 		fclone_ref = (atomic_t *) (skb + 2);
290 		if (atomic_dec_and_test(fclone_ref))
291 			kmem_cache_free(skbuff_fclone_cache, skb);
292 		break;
293 
294 	case SKB_FCLONE_CLONE:
295 		fclone_ref = (atomic_t *) (skb + 1);
296 		other = skb - 1;
297 
298 		/* The clone portion is available for
299 		 * fast-cloning again.
300 		 */
301 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
302 
303 		if (atomic_dec_and_test(fclone_ref))
304 			kmem_cache_free(skbuff_fclone_cache, other);
305 		break;
306 	}
307 }
308 
309 /* Free everything but the sk_buff shell. */
310 static void skb_release_all(struct sk_buff *skb)
311 {
312 	dst_release(skb->dst);
313 #ifdef CONFIG_XFRM
314 	secpath_put(skb->sp);
315 #endif
316 	if (skb->destructor) {
317 		WARN_ON(in_irq());
318 		skb->destructor(skb);
319 	}
320 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
321 	nf_conntrack_put(skb->nfct);
322 	nf_conntrack_put_reasm(skb->nfct_reasm);
323 #endif
324 #ifdef CONFIG_BRIDGE_NETFILTER
325 	nf_bridge_put(skb->nf_bridge);
326 #endif
327 /* XXX: IS this still necessary? - JHS */
328 #ifdef CONFIG_NET_SCHED
329 	skb->tc_index = 0;
330 #ifdef CONFIG_NET_CLS_ACT
331 	skb->tc_verd = 0;
332 #endif
333 #endif
334 	skb_release_data(skb);
335 }
336 
337 /**
338  *	__kfree_skb - private function
339  *	@skb: buffer
340  *
341  *	Free an sk_buff. Release anything attached to the buffer.
342  *	Clean the state. This is an internal helper function. Users should
343  *	always call kfree_skb
344  */
345 
346 void __kfree_skb(struct sk_buff *skb)
347 {
348 	skb_release_all(skb);
349 	kfree_skbmem(skb);
350 }
351 
352 /**
353  *	kfree_skb - free an sk_buff
354  *	@skb: buffer to free
355  *
356  *	Drop a reference to the buffer and free it if the usage count has
357  *	hit zero.
358  */
359 void kfree_skb(struct sk_buff *skb)
360 {
361 	if (unlikely(!skb))
362 		return;
363 	if (likely(atomic_read(&skb->users) == 1))
364 		smp_rmb();
365 	else if (likely(!atomic_dec_and_test(&skb->users)))
366 		return;
367 	__kfree_skb(skb);
368 }
369 
370 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
371 {
372 	new->tstamp		= old->tstamp;
373 	new->dev		= old->dev;
374 	new->transport_header	= old->transport_header;
375 	new->network_header	= old->network_header;
376 	new->mac_header		= old->mac_header;
377 	new->dst		= dst_clone(old->dst);
378 #ifdef CONFIG_INET
379 	new->sp			= secpath_get(old->sp);
380 #endif
381 	memcpy(new->cb, old->cb, sizeof(old->cb));
382 	new->csum_start		= old->csum_start;
383 	new->csum_offset	= old->csum_offset;
384 	new->local_df		= old->local_df;
385 	new->pkt_type		= old->pkt_type;
386 	new->ip_summed		= old->ip_summed;
387 	skb_copy_queue_mapping(new, old);
388 	new->priority		= old->priority;
389 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
390 	new->ipvs_property	= old->ipvs_property;
391 #endif
392 	new->protocol		= old->protocol;
393 	new->mark		= old->mark;
394 	__nf_copy(new, old);
395 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
396     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
397 	new->nf_trace		= old->nf_trace;
398 #endif
399 #ifdef CONFIG_NET_SCHED
400 	new->tc_index		= old->tc_index;
401 #ifdef CONFIG_NET_CLS_ACT
402 	new->tc_verd		= old->tc_verd;
403 #endif
404 #endif
405 	skb_copy_secmark(new, old);
406 }
407 
408 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
409 {
410 #define C(x) n->x = skb->x
411 
412 	n->next = n->prev = NULL;
413 	n->sk = NULL;
414 	__copy_skb_header(n, skb);
415 
416 	C(len);
417 	C(data_len);
418 	C(mac_len);
419 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
420 	n->cloned = 1;
421 	n->nohdr = 0;
422 	n->destructor = NULL;
423 	C(iif);
424 	C(tail);
425 	C(end);
426 	C(head);
427 	C(data);
428 	C(truesize);
429 	atomic_set(&n->users, 1);
430 
431 	atomic_inc(&(skb_shinfo(skb)->dataref));
432 	skb->cloned = 1;
433 
434 	return n;
435 #undef C
436 }
437 
438 /**
439  *	skb_morph	-	morph one skb into another
440  *	@dst: the skb to receive the contents
441  *	@src: the skb to supply the contents
442  *
443  *	This is identical to skb_clone except that the target skb is
444  *	supplied by the user.
445  *
446  *	The target skb is returned upon exit.
447  */
448 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
449 {
450 	skb_release_all(dst);
451 	return __skb_clone(dst, src);
452 }
453 EXPORT_SYMBOL_GPL(skb_morph);
454 
455 /**
456  *	skb_clone	-	duplicate an sk_buff
457  *	@skb: buffer to clone
458  *	@gfp_mask: allocation priority
459  *
460  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
461  *	copies share the same packet data but not structure. The new
462  *	buffer has a reference count of 1. If the allocation fails the
463  *	function returns %NULL otherwise the new buffer is returned.
464  *
465  *	If this function is called from an interrupt gfp_mask() must be
466  *	%GFP_ATOMIC.
467  */
468 
469 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
470 {
471 	struct sk_buff *n;
472 
473 	n = skb + 1;
474 	if (skb->fclone == SKB_FCLONE_ORIG &&
475 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
476 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
477 		n->fclone = SKB_FCLONE_CLONE;
478 		atomic_inc(fclone_ref);
479 	} else {
480 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
481 		if (!n)
482 			return NULL;
483 		n->fclone = SKB_FCLONE_UNAVAILABLE;
484 	}
485 
486 	return __skb_clone(n, skb);
487 }
488 
489 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
490 {
491 #ifndef NET_SKBUFF_DATA_USES_OFFSET
492 	/*
493 	 *	Shift between the two data areas in bytes
494 	 */
495 	unsigned long offset = new->data - old->data;
496 #endif
497 
498 	__copy_skb_header(new, old);
499 
500 #ifndef NET_SKBUFF_DATA_USES_OFFSET
501 	/* {transport,network,mac}_header are relative to skb->head */
502 	new->transport_header += offset;
503 	new->network_header   += offset;
504 	new->mac_header	      += offset;
505 #endif
506 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
507 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
508 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
509 }
510 
511 /**
512  *	skb_copy	-	create private copy of an sk_buff
513  *	@skb: buffer to copy
514  *	@gfp_mask: allocation priority
515  *
516  *	Make a copy of both an &sk_buff and its data. This is used when the
517  *	caller wishes to modify the data and needs a private copy of the
518  *	data to alter. Returns %NULL on failure or the pointer to the buffer
519  *	on success. The returned buffer has a reference count of 1.
520  *
521  *	As by-product this function converts non-linear &sk_buff to linear
522  *	one, so that &sk_buff becomes completely private and caller is allowed
523  *	to modify all the data of returned buffer. This means that this
524  *	function is not recommended for use in circumstances when only
525  *	header is going to be modified. Use pskb_copy() instead.
526  */
527 
528 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
529 {
530 	int headerlen = skb->data - skb->head;
531 	/*
532 	 *	Allocate the copy buffer
533 	 */
534 	struct sk_buff *n;
535 #ifdef NET_SKBUFF_DATA_USES_OFFSET
536 	n = alloc_skb(skb->end + skb->data_len, gfp_mask);
537 #else
538 	n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
539 #endif
540 	if (!n)
541 		return NULL;
542 
543 	/* Set the data pointer */
544 	skb_reserve(n, headerlen);
545 	/* Set the tail pointer and length */
546 	skb_put(n, skb->len);
547 
548 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
549 		BUG();
550 
551 	copy_skb_header(n, skb);
552 	return n;
553 }
554 
555 
556 /**
557  *	pskb_copy	-	create copy of an sk_buff with private head.
558  *	@skb: buffer to copy
559  *	@gfp_mask: allocation priority
560  *
561  *	Make a copy of both an &sk_buff and part of its data, located
562  *	in header. Fragmented data remain shared. This is used when
563  *	the caller wishes to modify only header of &sk_buff and needs
564  *	private copy of the header to alter. Returns %NULL on failure
565  *	or the pointer to the buffer on success.
566  *	The returned buffer has a reference count of 1.
567  */
568 
569 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
570 {
571 	/*
572 	 *	Allocate the copy buffer
573 	 */
574 	struct sk_buff *n;
575 #ifdef NET_SKBUFF_DATA_USES_OFFSET
576 	n = alloc_skb(skb->end, gfp_mask);
577 #else
578 	n = alloc_skb(skb->end - skb->head, gfp_mask);
579 #endif
580 	if (!n)
581 		goto out;
582 
583 	/* Set the data pointer */
584 	skb_reserve(n, skb->data - skb->head);
585 	/* Set the tail pointer and length */
586 	skb_put(n, skb_headlen(skb));
587 	/* Copy the bytes */
588 	skb_copy_from_linear_data(skb, n->data, n->len);
589 
590 	n->truesize += skb->data_len;
591 	n->data_len  = skb->data_len;
592 	n->len	     = skb->len;
593 
594 	if (skb_shinfo(skb)->nr_frags) {
595 		int i;
596 
597 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
598 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
599 			get_page(skb_shinfo(n)->frags[i].page);
600 		}
601 		skb_shinfo(n)->nr_frags = i;
602 	}
603 
604 	if (skb_shinfo(skb)->frag_list) {
605 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
606 		skb_clone_fraglist(n);
607 	}
608 
609 	copy_skb_header(n, skb);
610 out:
611 	return n;
612 }
613 
614 /**
615  *	pskb_expand_head - reallocate header of &sk_buff
616  *	@skb: buffer to reallocate
617  *	@nhead: room to add at head
618  *	@ntail: room to add at tail
619  *	@gfp_mask: allocation priority
620  *
621  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
622  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
623  *	reference count of 1. Returns zero in the case of success or error,
624  *	if expansion failed. In the last case, &sk_buff is not changed.
625  *
626  *	All the pointers pointing into skb header may change and must be
627  *	reloaded after call to this function.
628  */
629 
630 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
631 		     gfp_t gfp_mask)
632 {
633 	int i;
634 	u8 *data;
635 #ifdef NET_SKBUFF_DATA_USES_OFFSET
636 	int size = nhead + skb->end + ntail;
637 #else
638 	int size = nhead + (skb->end - skb->head) + ntail;
639 #endif
640 	long off;
641 
642 	if (skb_shared(skb))
643 		BUG();
644 
645 	size = SKB_DATA_ALIGN(size);
646 
647 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
648 	if (!data)
649 		goto nodata;
650 
651 	/* Copy only real data... and, alas, header. This should be
652 	 * optimized for the cases when header is void. */
653 #ifdef NET_SKBUFF_DATA_USES_OFFSET
654 	memcpy(data + nhead, skb->head, skb->tail);
655 #else
656 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
657 #endif
658 	memcpy(data + size, skb_end_pointer(skb),
659 	       sizeof(struct skb_shared_info));
660 
661 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
662 		get_page(skb_shinfo(skb)->frags[i].page);
663 
664 	if (skb_shinfo(skb)->frag_list)
665 		skb_clone_fraglist(skb);
666 
667 	skb_release_data(skb);
668 
669 	off = (data + nhead) - skb->head;
670 
671 	skb->head     = data;
672 	skb->data    += off;
673 #ifdef NET_SKBUFF_DATA_USES_OFFSET
674 	skb->end      = size;
675 	off           = nhead;
676 #else
677 	skb->end      = skb->head + size;
678 #endif
679 	/* {transport,network,mac}_header and tail are relative to skb->head */
680 	skb->tail	      += off;
681 	skb->transport_header += off;
682 	skb->network_header   += off;
683 	skb->mac_header	      += off;
684 	skb->csum_start       += nhead;
685 	skb->cloned   = 0;
686 	skb->hdr_len  = 0;
687 	skb->nohdr    = 0;
688 	atomic_set(&skb_shinfo(skb)->dataref, 1);
689 	return 0;
690 
691 nodata:
692 	return -ENOMEM;
693 }
694 
695 /* Make private copy of skb with writable head and some headroom */
696 
697 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
698 {
699 	struct sk_buff *skb2;
700 	int delta = headroom - skb_headroom(skb);
701 
702 	if (delta <= 0)
703 		skb2 = pskb_copy(skb, GFP_ATOMIC);
704 	else {
705 		skb2 = skb_clone(skb, GFP_ATOMIC);
706 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
707 					     GFP_ATOMIC)) {
708 			kfree_skb(skb2);
709 			skb2 = NULL;
710 		}
711 	}
712 	return skb2;
713 }
714 
715 
716 /**
717  *	skb_copy_expand	-	copy and expand sk_buff
718  *	@skb: buffer to copy
719  *	@newheadroom: new free bytes at head
720  *	@newtailroom: new free bytes at tail
721  *	@gfp_mask: allocation priority
722  *
723  *	Make a copy of both an &sk_buff and its data and while doing so
724  *	allocate additional space.
725  *
726  *	This is used when the caller wishes to modify the data and needs a
727  *	private copy of the data to alter as well as more space for new fields.
728  *	Returns %NULL on failure or the pointer to the buffer
729  *	on success. The returned buffer has a reference count of 1.
730  *
731  *	You must pass %GFP_ATOMIC as the allocation priority if this function
732  *	is called from an interrupt.
733  */
734 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
735 				int newheadroom, int newtailroom,
736 				gfp_t gfp_mask)
737 {
738 	/*
739 	 *	Allocate the copy buffer
740 	 */
741 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
742 				      gfp_mask);
743 	int oldheadroom = skb_headroom(skb);
744 	int head_copy_len, head_copy_off;
745 	int off;
746 
747 	if (!n)
748 		return NULL;
749 
750 	skb_reserve(n, newheadroom);
751 
752 	/* Set the tail pointer and length */
753 	skb_put(n, skb->len);
754 
755 	head_copy_len = oldheadroom;
756 	head_copy_off = 0;
757 	if (newheadroom <= head_copy_len)
758 		head_copy_len = newheadroom;
759 	else
760 		head_copy_off = newheadroom - head_copy_len;
761 
762 	/* Copy the linear header and data. */
763 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
764 			  skb->len + head_copy_len))
765 		BUG();
766 
767 	copy_skb_header(n, skb);
768 
769 	off                  = newheadroom - oldheadroom;
770 	n->csum_start       += off;
771 #ifdef NET_SKBUFF_DATA_USES_OFFSET
772 	n->transport_header += off;
773 	n->network_header   += off;
774 	n->mac_header	    += off;
775 #endif
776 
777 	return n;
778 }
779 
780 /**
781  *	skb_pad			-	zero pad the tail of an skb
782  *	@skb: buffer to pad
783  *	@pad: space to pad
784  *
785  *	Ensure that a buffer is followed by a padding area that is zero
786  *	filled. Used by network drivers which may DMA or transfer data
787  *	beyond the buffer end onto the wire.
788  *
789  *	May return error in out of memory cases. The skb is freed on error.
790  */
791 
792 int skb_pad(struct sk_buff *skb, int pad)
793 {
794 	int err;
795 	int ntail;
796 
797 	/* If the skbuff is non linear tailroom is always zero.. */
798 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
799 		memset(skb->data+skb->len, 0, pad);
800 		return 0;
801 	}
802 
803 	ntail = skb->data_len + pad - (skb->end - skb->tail);
804 	if (likely(skb_cloned(skb) || ntail > 0)) {
805 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
806 		if (unlikely(err))
807 			goto free_skb;
808 	}
809 
810 	/* FIXME: The use of this function with non-linear skb's really needs
811 	 * to be audited.
812 	 */
813 	err = skb_linearize(skb);
814 	if (unlikely(err))
815 		goto free_skb;
816 
817 	memset(skb->data + skb->len, 0, pad);
818 	return 0;
819 
820 free_skb:
821 	kfree_skb(skb);
822 	return err;
823 }
824 
825 /* Trims skb to length len. It can change skb pointers.
826  */
827 
828 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
829 {
830 	struct sk_buff **fragp;
831 	struct sk_buff *frag;
832 	int offset = skb_headlen(skb);
833 	int nfrags = skb_shinfo(skb)->nr_frags;
834 	int i;
835 	int err;
836 
837 	if (skb_cloned(skb) &&
838 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
839 		return err;
840 
841 	i = 0;
842 	if (offset >= len)
843 		goto drop_pages;
844 
845 	for (; i < nfrags; i++) {
846 		int end = offset + skb_shinfo(skb)->frags[i].size;
847 
848 		if (end < len) {
849 			offset = end;
850 			continue;
851 		}
852 
853 		skb_shinfo(skb)->frags[i++].size = len - offset;
854 
855 drop_pages:
856 		skb_shinfo(skb)->nr_frags = i;
857 
858 		for (; i < nfrags; i++)
859 			put_page(skb_shinfo(skb)->frags[i].page);
860 
861 		if (skb_shinfo(skb)->frag_list)
862 			skb_drop_fraglist(skb);
863 		goto done;
864 	}
865 
866 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
867 	     fragp = &frag->next) {
868 		int end = offset + frag->len;
869 
870 		if (skb_shared(frag)) {
871 			struct sk_buff *nfrag;
872 
873 			nfrag = skb_clone(frag, GFP_ATOMIC);
874 			if (unlikely(!nfrag))
875 				return -ENOMEM;
876 
877 			nfrag->next = frag->next;
878 			kfree_skb(frag);
879 			frag = nfrag;
880 			*fragp = frag;
881 		}
882 
883 		if (end < len) {
884 			offset = end;
885 			continue;
886 		}
887 
888 		if (end > len &&
889 		    unlikely((err = pskb_trim(frag, len - offset))))
890 			return err;
891 
892 		if (frag->next)
893 			skb_drop_list(&frag->next);
894 		break;
895 	}
896 
897 done:
898 	if (len > skb_headlen(skb)) {
899 		skb->data_len -= skb->len - len;
900 		skb->len       = len;
901 	} else {
902 		skb->len       = len;
903 		skb->data_len  = 0;
904 		skb_set_tail_pointer(skb, len);
905 	}
906 
907 	return 0;
908 }
909 
910 /**
911  *	__pskb_pull_tail - advance tail of skb header
912  *	@skb: buffer to reallocate
913  *	@delta: number of bytes to advance tail
914  *
915  *	The function makes a sense only on a fragmented &sk_buff,
916  *	it expands header moving its tail forward and copying necessary
917  *	data from fragmented part.
918  *
919  *	&sk_buff MUST have reference count of 1.
920  *
921  *	Returns %NULL (and &sk_buff does not change) if pull failed
922  *	or value of new tail of skb in the case of success.
923  *
924  *	All the pointers pointing into skb header may change and must be
925  *	reloaded after call to this function.
926  */
927 
928 /* Moves tail of skb head forward, copying data from fragmented part,
929  * when it is necessary.
930  * 1. It may fail due to malloc failure.
931  * 2. It may change skb pointers.
932  *
933  * It is pretty complicated. Luckily, it is called only in exceptional cases.
934  */
935 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
936 {
937 	/* If skb has not enough free space at tail, get new one
938 	 * plus 128 bytes for future expansions. If we have enough
939 	 * room at tail, reallocate without expansion only if skb is cloned.
940 	 */
941 	int i, k, eat = (skb->tail + delta) - skb->end;
942 
943 	if (eat > 0 || skb_cloned(skb)) {
944 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
945 				     GFP_ATOMIC))
946 			return NULL;
947 	}
948 
949 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
950 		BUG();
951 
952 	/* Optimization: no fragments, no reasons to preestimate
953 	 * size of pulled pages. Superb.
954 	 */
955 	if (!skb_shinfo(skb)->frag_list)
956 		goto pull_pages;
957 
958 	/* Estimate size of pulled pages. */
959 	eat = delta;
960 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
961 		if (skb_shinfo(skb)->frags[i].size >= eat)
962 			goto pull_pages;
963 		eat -= skb_shinfo(skb)->frags[i].size;
964 	}
965 
966 	/* If we need update frag list, we are in troubles.
967 	 * Certainly, it possible to add an offset to skb data,
968 	 * but taking into account that pulling is expected to
969 	 * be very rare operation, it is worth to fight against
970 	 * further bloating skb head and crucify ourselves here instead.
971 	 * Pure masohism, indeed. 8)8)
972 	 */
973 	if (eat) {
974 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
975 		struct sk_buff *clone = NULL;
976 		struct sk_buff *insp = NULL;
977 
978 		do {
979 			BUG_ON(!list);
980 
981 			if (list->len <= eat) {
982 				/* Eaten as whole. */
983 				eat -= list->len;
984 				list = list->next;
985 				insp = list;
986 			} else {
987 				/* Eaten partially. */
988 
989 				if (skb_shared(list)) {
990 					/* Sucks! We need to fork list. :-( */
991 					clone = skb_clone(list, GFP_ATOMIC);
992 					if (!clone)
993 						return NULL;
994 					insp = list->next;
995 					list = clone;
996 				} else {
997 					/* This may be pulled without
998 					 * problems. */
999 					insp = list;
1000 				}
1001 				if (!pskb_pull(list, eat)) {
1002 					if (clone)
1003 						kfree_skb(clone);
1004 					return NULL;
1005 				}
1006 				break;
1007 			}
1008 		} while (eat);
1009 
1010 		/* Free pulled out fragments. */
1011 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1012 			skb_shinfo(skb)->frag_list = list->next;
1013 			kfree_skb(list);
1014 		}
1015 		/* And insert new clone at head. */
1016 		if (clone) {
1017 			clone->next = list;
1018 			skb_shinfo(skb)->frag_list = clone;
1019 		}
1020 	}
1021 	/* Success! Now we may commit changes to skb data. */
1022 
1023 pull_pages:
1024 	eat = delta;
1025 	k = 0;
1026 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1027 		if (skb_shinfo(skb)->frags[i].size <= eat) {
1028 			put_page(skb_shinfo(skb)->frags[i].page);
1029 			eat -= skb_shinfo(skb)->frags[i].size;
1030 		} else {
1031 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1032 			if (eat) {
1033 				skb_shinfo(skb)->frags[k].page_offset += eat;
1034 				skb_shinfo(skb)->frags[k].size -= eat;
1035 				eat = 0;
1036 			}
1037 			k++;
1038 		}
1039 	}
1040 	skb_shinfo(skb)->nr_frags = k;
1041 
1042 	skb->tail     += delta;
1043 	skb->data_len -= delta;
1044 
1045 	return skb_tail_pointer(skb);
1046 }
1047 
1048 /* Copy some data bits from skb to kernel buffer. */
1049 
1050 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1051 {
1052 	int i, copy;
1053 	int start = skb_headlen(skb);
1054 
1055 	if (offset > (int)skb->len - len)
1056 		goto fault;
1057 
1058 	/* Copy header. */
1059 	if ((copy = start - offset) > 0) {
1060 		if (copy > len)
1061 			copy = len;
1062 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1063 		if ((len -= copy) == 0)
1064 			return 0;
1065 		offset += copy;
1066 		to     += copy;
1067 	}
1068 
1069 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1070 		int end;
1071 
1072 		BUG_TRAP(start <= offset + len);
1073 
1074 		end = start + skb_shinfo(skb)->frags[i].size;
1075 		if ((copy = end - offset) > 0) {
1076 			u8 *vaddr;
1077 
1078 			if (copy > len)
1079 				copy = len;
1080 
1081 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1082 			memcpy(to,
1083 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1084 			       offset - start, copy);
1085 			kunmap_skb_frag(vaddr);
1086 
1087 			if ((len -= copy) == 0)
1088 				return 0;
1089 			offset += copy;
1090 			to     += copy;
1091 		}
1092 		start = end;
1093 	}
1094 
1095 	if (skb_shinfo(skb)->frag_list) {
1096 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1097 
1098 		for (; list; list = list->next) {
1099 			int end;
1100 
1101 			BUG_TRAP(start <= offset + len);
1102 
1103 			end = start + list->len;
1104 			if ((copy = end - offset) > 0) {
1105 				if (copy > len)
1106 					copy = len;
1107 				if (skb_copy_bits(list, offset - start,
1108 						  to, copy))
1109 					goto fault;
1110 				if ((len -= copy) == 0)
1111 					return 0;
1112 				offset += copy;
1113 				to     += copy;
1114 			}
1115 			start = end;
1116 		}
1117 	}
1118 	if (!len)
1119 		return 0;
1120 
1121 fault:
1122 	return -EFAULT;
1123 }
1124 
1125 /**
1126  *	skb_store_bits - store bits from kernel buffer to skb
1127  *	@skb: destination buffer
1128  *	@offset: offset in destination
1129  *	@from: source buffer
1130  *	@len: number of bytes to copy
1131  *
1132  *	Copy the specified number of bytes from the source buffer to the
1133  *	destination skb.  This function handles all the messy bits of
1134  *	traversing fragment lists and such.
1135  */
1136 
1137 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1138 {
1139 	int i, copy;
1140 	int start = skb_headlen(skb);
1141 
1142 	if (offset > (int)skb->len - len)
1143 		goto fault;
1144 
1145 	if ((copy = start - offset) > 0) {
1146 		if (copy > len)
1147 			copy = len;
1148 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1149 		if ((len -= copy) == 0)
1150 			return 0;
1151 		offset += copy;
1152 		from += copy;
1153 	}
1154 
1155 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1156 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1157 		int end;
1158 
1159 		BUG_TRAP(start <= offset + len);
1160 
1161 		end = start + frag->size;
1162 		if ((copy = end - offset) > 0) {
1163 			u8 *vaddr;
1164 
1165 			if (copy > len)
1166 				copy = len;
1167 
1168 			vaddr = kmap_skb_frag(frag);
1169 			memcpy(vaddr + frag->page_offset + offset - start,
1170 			       from, copy);
1171 			kunmap_skb_frag(vaddr);
1172 
1173 			if ((len -= copy) == 0)
1174 				return 0;
1175 			offset += copy;
1176 			from += copy;
1177 		}
1178 		start = end;
1179 	}
1180 
1181 	if (skb_shinfo(skb)->frag_list) {
1182 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1183 
1184 		for (; list; list = list->next) {
1185 			int end;
1186 
1187 			BUG_TRAP(start <= offset + len);
1188 
1189 			end = start + list->len;
1190 			if ((copy = end - offset) > 0) {
1191 				if (copy > len)
1192 					copy = len;
1193 				if (skb_store_bits(list, offset - start,
1194 						   from, copy))
1195 					goto fault;
1196 				if ((len -= copy) == 0)
1197 					return 0;
1198 				offset += copy;
1199 				from += copy;
1200 			}
1201 			start = end;
1202 		}
1203 	}
1204 	if (!len)
1205 		return 0;
1206 
1207 fault:
1208 	return -EFAULT;
1209 }
1210 
1211 EXPORT_SYMBOL(skb_store_bits);
1212 
1213 /* Checksum skb data. */
1214 
1215 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1216 			  int len, __wsum csum)
1217 {
1218 	int start = skb_headlen(skb);
1219 	int i, copy = start - offset;
1220 	int pos = 0;
1221 
1222 	/* Checksum header. */
1223 	if (copy > 0) {
1224 		if (copy > len)
1225 			copy = len;
1226 		csum = csum_partial(skb->data + offset, copy, csum);
1227 		if ((len -= copy) == 0)
1228 			return csum;
1229 		offset += copy;
1230 		pos	= copy;
1231 	}
1232 
1233 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1234 		int end;
1235 
1236 		BUG_TRAP(start <= offset + len);
1237 
1238 		end = start + skb_shinfo(skb)->frags[i].size;
1239 		if ((copy = end - offset) > 0) {
1240 			__wsum csum2;
1241 			u8 *vaddr;
1242 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1243 
1244 			if (copy > len)
1245 				copy = len;
1246 			vaddr = kmap_skb_frag(frag);
1247 			csum2 = csum_partial(vaddr + frag->page_offset +
1248 					     offset - start, copy, 0);
1249 			kunmap_skb_frag(vaddr);
1250 			csum = csum_block_add(csum, csum2, pos);
1251 			if (!(len -= copy))
1252 				return csum;
1253 			offset += copy;
1254 			pos    += copy;
1255 		}
1256 		start = end;
1257 	}
1258 
1259 	if (skb_shinfo(skb)->frag_list) {
1260 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1261 
1262 		for (; list; list = list->next) {
1263 			int end;
1264 
1265 			BUG_TRAP(start <= offset + len);
1266 
1267 			end = start + list->len;
1268 			if ((copy = end - offset) > 0) {
1269 				__wsum csum2;
1270 				if (copy > len)
1271 					copy = len;
1272 				csum2 = skb_checksum(list, offset - start,
1273 						     copy, 0);
1274 				csum = csum_block_add(csum, csum2, pos);
1275 				if ((len -= copy) == 0)
1276 					return csum;
1277 				offset += copy;
1278 				pos    += copy;
1279 			}
1280 			start = end;
1281 		}
1282 	}
1283 	BUG_ON(len);
1284 
1285 	return csum;
1286 }
1287 
1288 /* Both of above in one bottle. */
1289 
1290 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1291 				    u8 *to, int len, __wsum csum)
1292 {
1293 	int start = skb_headlen(skb);
1294 	int i, copy = start - offset;
1295 	int pos = 0;
1296 
1297 	/* Copy header. */
1298 	if (copy > 0) {
1299 		if (copy > len)
1300 			copy = len;
1301 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1302 						 copy, csum);
1303 		if ((len -= copy) == 0)
1304 			return csum;
1305 		offset += copy;
1306 		to     += copy;
1307 		pos	= copy;
1308 	}
1309 
1310 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1311 		int end;
1312 
1313 		BUG_TRAP(start <= offset + len);
1314 
1315 		end = start + skb_shinfo(skb)->frags[i].size;
1316 		if ((copy = end - offset) > 0) {
1317 			__wsum csum2;
1318 			u8 *vaddr;
1319 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1320 
1321 			if (copy > len)
1322 				copy = len;
1323 			vaddr = kmap_skb_frag(frag);
1324 			csum2 = csum_partial_copy_nocheck(vaddr +
1325 							  frag->page_offset +
1326 							  offset - start, to,
1327 							  copy, 0);
1328 			kunmap_skb_frag(vaddr);
1329 			csum = csum_block_add(csum, csum2, pos);
1330 			if (!(len -= copy))
1331 				return csum;
1332 			offset += copy;
1333 			to     += copy;
1334 			pos    += copy;
1335 		}
1336 		start = end;
1337 	}
1338 
1339 	if (skb_shinfo(skb)->frag_list) {
1340 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1341 
1342 		for (; list; list = list->next) {
1343 			__wsum csum2;
1344 			int end;
1345 
1346 			BUG_TRAP(start <= offset + len);
1347 
1348 			end = start + list->len;
1349 			if ((copy = end - offset) > 0) {
1350 				if (copy > len)
1351 					copy = len;
1352 				csum2 = skb_copy_and_csum_bits(list,
1353 							       offset - start,
1354 							       to, copy, 0);
1355 				csum = csum_block_add(csum, csum2, pos);
1356 				if ((len -= copy) == 0)
1357 					return csum;
1358 				offset += copy;
1359 				to     += copy;
1360 				pos    += copy;
1361 			}
1362 			start = end;
1363 		}
1364 	}
1365 	BUG_ON(len);
1366 	return csum;
1367 }
1368 
1369 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1370 {
1371 	__wsum csum;
1372 	long csstart;
1373 
1374 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1375 		csstart = skb->csum_start - skb_headroom(skb);
1376 	else
1377 		csstart = skb_headlen(skb);
1378 
1379 	BUG_ON(csstart > skb_headlen(skb));
1380 
1381 	skb_copy_from_linear_data(skb, to, csstart);
1382 
1383 	csum = 0;
1384 	if (csstart != skb->len)
1385 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1386 					      skb->len - csstart, 0);
1387 
1388 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1389 		long csstuff = csstart + skb->csum_offset;
1390 
1391 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
1392 	}
1393 }
1394 
1395 /**
1396  *	skb_dequeue - remove from the head of the queue
1397  *	@list: list to dequeue from
1398  *
1399  *	Remove the head of the list. The list lock is taken so the function
1400  *	may be used safely with other locking list functions. The head item is
1401  *	returned or %NULL if the list is empty.
1402  */
1403 
1404 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1405 {
1406 	unsigned long flags;
1407 	struct sk_buff *result;
1408 
1409 	spin_lock_irqsave(&list->lock, flags);
1410 	result = __skb_dequeue(list);
1411 	spin_unlock_irqrestore(&list->lock, flags);
1412 	return result;
1413 }
1414 
1415 /**
1416  *	skb_dequeue_tail - remove from the tail of the queue
1417  *	@list: list to dequeue from
1418  *
1419  *	Remove the tail of the list. The list lock is taken so the function
1420  *	may be used safely with other locking list functions. The tail item is
1421  *	returned or %NULL if the list is empty.
1422  */
1423 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1424 {
1425 	unsigned long flags;
1426 	struct sk_buff *result;
1427 
1428 	spin_lock_irqsave(&list->lock, flags);
1429 	result = __skb_dequeue_tail(list);
1430 	spin_unlock_irqrestore(&list->lock, flags);
1431 	return result;
1432 }
1433 
1434 /**
1435  *	skb_queue_purge - empty a list
1436  *	@list: list to empty
1437  *
1438  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1439  *	the list and one reference dropped. This function takes the list
1440  *	lock and is atomic with respect to other list locking functions.
1441  */
1442 void skb_queue_purge(struct sk_buff_head *list)
1443 {
1444 	struct sk_buff *skb;
1445 	while ((skb = skb_dequeue(list)) != NULL)
1446 		kfree_skb(skb);
1447 }
1448 
1449 /**
1450  *	skb_queue_head - queue a buffer at the list head
1451  *	@list: list to use
1452  *	@newsk: buffer to queue
1453  *
1454  *	Queue a buffer at the start of the list. This function takes the
1455  *	list lock and can be used safely with other locking &sk_buff functions
1456  *	safely.
1457  *
1458  *	A buffer cannot be placed on two lists at the same time.
1459  */
1460 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1461 {
1462 	unsigned long flags;
1463 
1464 	spin_lock_irqsave(&list->lock, flags);
1465 	__skb_queue_head(list, newsk);
1466 	spin_unlock_irqrestore(&list->lock, flags);
1467 }
1468 
1469 /**
1470  *	skb_queue_tail - queue a buffer at the list tail
1471  *	@list: list to use
1472  *	@newsk: buffer to queue
1473  *
1474  *	Queue a buffer at the tail of the list. This function takes the
1475  *	list lock and can be used safely with other locking &sk_buff functions
1476  *	safely.
1477  *
1478  *	A buffer cannot be placed on two lists at the same time.
1479  */
1480 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1481 {
1482 	unsigned long flags;
1483 
1484 	spin_lock_irqsave(&list->lock, flags);
1485 	__skb_queue_tail(list, newsk);
1486 	spin_unlock_irqrestore(&list->lock, flags);
1487 }
1488 
1489 /**
1490  *	skb_unlink	-	remove a buffer from a list
1491  *	@skb: buffer to remove
1492  *	@list: list to use
1493  *
1494  *	Remove a packet from a list. The list locks are taken and this
1495  *	function is atomic with respect to other list locked calls
1496  *
1497  *	You must know what list the SKB is on.
1498  */
1499 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1500 {
1501 	unsigned long flags;
1502 
1503 	spin_lock_irqsave(&list->lock, flags);
1504 	__skb_unlink(skb, list);
1505 	spin_unlock_irqrestore(&list->lock, flags);
1506 }
1507 
1508 /**
1509  *	skb_append	-	append a buffer
1510  *	@old: buffer to insert after
1511  *	@newsk: buffer to insert
1512  *	@list: list to use
1513  *
1514  *	Place a packet after a given packet in a list. The list locks are taken
1515  *	and this function is atomic with respect to other list locked calls.
1516  *	A buffer cannot be placed on two lists at the same time.
1517  */
1518 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1519 {
1520 	unsigned long flags;
1521 
1522 	spin_lock_irqsave(&list->lock, flags);
1523 	__skb_append(old, newsk, list);
1524 	spin_unlock_irqrestore(&list->lock, flags);
1525 }
1526 
1527 
1528 /**
1529  *	skb_insert	-	insert a buffer
1530  *	@old: buffer to insert before
1531  *	@newsk: buffer to insert
1532  *	@list: list to use
1533  *
1534  *	Place a packet before a given packet in a list. The list locks are
1535  * 	taken and this function is atomic with respect to other list locked
1536  *	calls.
1537  *
1538  *	A buffer cannot be placed on two lists at the same time.
1539  */
1540 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1541 {
1542 	unsigned long flags;
1543 
1544 	spin_lock_irqsave(&list->lock, flags);
1545 	__skb_insert(newsk, old->prev, old, list);
1546 	spin_unlock_irqrestore(&list->lock, flags);
1547 }
1548 
1549 static inline void skb_split_inside_header(struct sk_buff *skb,
1550 					   struct sk_buff* skb1,
1551 					   const u32 len, const int pos)
1552 {
1553 	int i;
1554 
1555 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1556 					 pos - len);
1557 	/* And move data appendix as is. */
1558 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1559 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1560 
1561 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1562 	skb_shinfo(skb)->nr_frags  = 0;
1563 	skb1->data_len		   = skb->data_len;
1564 	skb1->len		   += skb1->data_len;
1565 	skb->data_len		   = 0;
1566 	skb->len		   = len;
1567 	skb_set_tail_pointer(skb, len);
1568 }
1569 
1570 static inline void skb_split_no_header(struct sk_buff *skb,
1571 				       struct sk_buff* skb1,
1572 				       const u32 len, int pos)
1573 {
1574 	int i, k = 0;
1575 	const int nfrags = skb_shinfo(skb)->nr_frags;
1576 
1577 	skb_shinfo(skb)->nr_frags = 0;
1578 	skb1->len		  = skb1->data_len = skb->len - len;
1579 	skb->len		  = len;
1580 	skb->data_len		  = len - pos;
1581 
1582 	for (i = 0; i < nfrags; i++) {
1583 		int size = skb_shinfo(skb)->frags[i].size;
1584 
1585 		if (pos + size > len) {
1586 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1587 
1588 			if (pos < len) {
1589 				/* Split frag.
1590 				 * We have two variants in this case:
1591 				 * 1. Move all the frag to the second
1592 				 *    part, if it is possible. F.e.
1593 				 *    this approach is mandatory for TUX,
1594 				 *    where splitting is expensive.
1595 				 * 2. Split is accurately. We make this.
1596 				 */
1597 				get_page(skb_shinfo(skb)->frags[i].page);
1598 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1599 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1600 				skb_shinfo(skb)->frags[i].size	= len - pos;
1601 				skb_shinfo(skb)->nr_frags++;
1602 			}
1603 			k++;
1604 		} else
1605 			skb_shinfo(skb)->nr_frags++;
1606 		pos += size;
1607 	}
1608 	skb_shinfo(skb1)->nr_frags = k;
1609 }
1610 
1611 /**
1612  * skb_split - Split fragmented skb to two parts at length len.
1613  * @skb: the buffer to split
1614  * @skb1: the buffer to receive the second part
1615  * @len: new length for skb
1616  */
1617 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1618 {
1619 	int pos = skb_headlen(skb);
1620 
1621 	if (len < pos)	/* Split line is inside header. */
1622 		skb_split_inside_header(skb, skb1, len, pos);
1623 	else		/* Second chunk has no header, nothing to copy. */
1624 		skb_split_no_header(skb, skb1, len, pos);
1625 }
1626 
1627 /**
1628  * skb_prepare_seq_read - Prepare a sequential read of skb data
1629  * @skb: the buffer to read
1630  * @from: lower offset of data to be read
1631  * @to: upper offset of data to be read
1632  * @st: state variable
1633  *
1634  * Initializes the specified state variable. Must be called before
1635  * invoking skb_seq_read() for the first time.
1636  */
1637 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1638 			  unsigned int to, struct skb_seq_state *st)
1639 {
1640 	st->lower_offset = from;
1641 	st->upper_offset = to;
1642 	st->root_skb = st->cur_skb = skb;
1643 	st->frag_idx = st->stepped_offset = 0;
1644 	st->frag_data = NULL;
1645 }
1646 
1647 /**
1648  * skb_seq_read - Sequentially read skb data
1649  * @consumed: number of bytes consumed by the caller so far
1650  * @data: destination pointer for data to be returned
1651  * @st: state variable
1652  *
1653  * Reads a block of skb data at &consumed relative to the
1654  * lower offset specified to skb_prepare_seq_read(). Assigns
1655  * the head of the data block to &data and returns the length
1656  * of the block or 0 if the end of the skb data or the upper
1657  * offset has been reached.
1658  *
1659  * The caller is not required to consume all of the data
1660  * returned, i.e. &consumed is typically set to the number
1661  * of bytes already consumed and the next call to
1662  * skb_seq_read() will return the remaining part of the block.
1663  *
1664  * Note: The size of each block of data returned can be arbitary,
1665  *       this limitation is the cost for zerocopy seqeuental
1666  *       reads of potentially non linear data.
1667  *
1668  * Note: Fragment lists within fragments are not implemented
1669  *       at the moment, state->root_skb could be replaced with
1670  *       a stack for this purpose.
1671  */
1672 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1673 			  struct skb_seq_state *st)
1674 {
1675 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1676 	skb_frag_t *frag;
1677 
1678 	if (unlikely(abs_offset >= st->upper_offset))
1679 		return 0;
1680 
1681 next_skb:
1682 	block_limit = skb_headlen(st->cur_skb);
1683 
1684 	if (abs_offset < block_limit) {
1685 		*data = st->cur_skb->data + abs_offset;
1686 		return block_limit - abs_offset;
1687 	}
1688 
1689 	if (st->frag_idx == 0 && !st->frag_data)
1690 		st->stepped_offset += skb_headlen(st->cur_skb);
1691 
1692 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1693 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1694 		block_limit = frag->size + st->stepped_offset;
1695 
1696 		if (abs_offset < block_limit) {
1697 			if (!st->frag_data)
1698 				st->frag_data = kmap_skb_frag(frag);
1699 
1700 			*data = (u8 *) st->frag_data + frag->page_offset +
1701 				(abs_offset - st->stepped_offset);
1702 
1703 			return block_limit - abs_offset;
1704 		}
1705 
1706 		if (st->frag_data) {
1707 			kunmap_skb_frag(st->frag_data);
1708 			st->frag_data = NULL;
1709 		}
1710 
1711 		st->frag_idx++;
1712 		st->stepped_offset += frag->size;
1713 	}
1714 
1715 	if (st->frag_data) {
1716 		kunmap_skb_frag(st->frag_data);
1717 		st->frag_data = NULL;
1718 	}
1719 
1720 	if (st->cur_skb->next) {
1721 		st->cur_skb = st->cur_skb->next;
1722 		st->frag_idx = 0;
1723 		goto next_skb;
1724 	} else if (st->root_skb == st->cur_skb &&
1725 		   skb_shinfo(st->root_skb)->frag_list) {
1726 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1727 		goto next_skb;
1728 	}
1729 
1730 	return 0;
1731 }
1732 
1733 /**
1734  * skb_abort_seq_read - Abort a sequential read of skb data
1735  * @st: state variable
1736  *
1737  * Must be called if skb_seq_read() was not called until it
1738  * returned 0.
1739  */
1740 void skb_abort_seq_read(struct skb_seq_state *st)
1741 {
1742 	if (st->frag_data)
1743 		kunmap_skb_frag(st->frag_data);
1744 }
1745 
1746 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
1747 
1748 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1749 					  struct ts_config *conf,
1750 					  struct ts_state *state)
1751 {
1752 	return skb_seq_read(offset, text, TS_SKB_CB(state));
1753 }
1754 
1755 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1756 {
1757 	skb_abort_seq_read(TS_SKB_CB(state));
1758 }
1759 
1760 /**
1761  * skb_find_text - Find a text pattern in skb data
1762  * @skb: the buffer to look in
1763  * @from: search offset
1764  * @to: search limit
1765  * @config: textsearch configuration
1766  * @state: uninitialized textsearch state variable
1767  *
1768  * Finds a pattern in the skb data according to the specified
1769  * textsearch configuration. Use textsearch_next() to retrieve
1770  * subsequent occurrences of the pattern. Returns the offset
1771  * to the first occurrence or UINT_MAX if no match was found.
1772  */
1773 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1774 			   unsigned int to, struct ts_config *config,
1775 			   struct ts_state *state)
1776 {
1777 	unsigned int ret;
1778 
1779 	config->get_next_block = skb_ts_get_next_block;
1780 	config->finish = skb_ts_finish;
1781 
1782 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1783 
1784 	ret = textsearch_find(config, state);
1785 	return (ret <= to - from ? ret : UINT_MAX);
1786 }
1787 
1788 /**
1789  * skb_append_datato_frags: - append the user data to a skb
1790  * @sk: sock  structure
1791  * @skb: skb structure to be appened with user data.
1792  * @getfrag: call back function to be used for getting the user data
1793  * @from: pointer to user message iov
1794  * @length: length of the iov message
1795  *
1796  * Description: This procedure append the user data in the fragment part
1797  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
1798  */
1799 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1800 			int (*getfrag)(void *from, char *to, int offset,
1801 					int len, int odd, struct sk_buff *skb),
1802 			void *from, int length)
1803 {
1804 	int frg_cnt = 0;
1805 	skb_frag_t *frag = NULL;
1806 	struct page *page = NULL;
1807 	int copy, left;
1808 	int offset = 0;
1809 	int ret;
1810 
1811 	do {
1812 		/* Return error if we don't have space for new frag */
1813 		frg_cnt = skb_shinfo(skb)->nr_frags;
1814 		if (frg_cnt >= MAX_SKB_FRAGS)
1815 			return -EFAULT;
1816 
1817 		/* allocate a new page for next frag */
1818 		page = alloc_pages(sk->sk_allocation, 0);
1819 
1820 		/* If alloc_page fails just return failure and caller will
1821 		 * free previous allocated pages by doing kfree_skb()
1822 		 */
1823 		if (page == NULL)
1824 			return -ENOMEM;
1825 
1826 		/* initialize the next frag */
1827 		sk->sk_sndmsg_page = page;
1828 		sk->sk_sndmsg_off = 0;
1829 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1830 		skb->truesize += PAGE_SIZE;
1831 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1832 
1833 		/* get the new initialized frag */
1834 		frg_cnt = skb_shinfo(skb)->nr_frags;
1835 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1836 
1837 		/* copy the user data to page */
1838 		left = PAGE_SIZE - frag->page_offset;
1839 		copy = (length > left)? left : length;
1840 
1841 		ret = getfrag(from, (page_address(frag->page) +
1842 			    frag->page_offset + frag->size),
1843 			    offset, copy, 0, skb);
1844 		if (ret < 0)
1845 			return -EFAULT;
1846 
1847 		/* copy was successful so update the size parameters */
1848 		sk->sk_sndmsg_off += copy;
1849 		frag->size += copy;
1850 		skb->len += copy;
1851 		skb->data_len += copy;
1852 		offset += copy;
1853 		length -= copy;
1854 
1855 	} while (length > 0);
1856 
1857 	return 0;
1858 }
1859 
1860 /**
1861  *	skb_pull_rcsum - pull skb and update receive checksum
1862  *	@skb: buffer to update
1863  *	@start: start of data before pull
1864  *	@len: length of data pulled
1865  *
1866  *	This function performs an skb_pull on the packet and updates
1867  *	update the CHECKSUM_COMPLETE checksum.  It should be used on
1868  *	receive path processing instead of skb_pull unless you know
1869  *	that the checksum difference is zero (e.g., a valid IP header)
1870  *	or you are setting ip_summed to CHECKSUM_NONE.
1871  */
1872 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
1873 {
1874 	BUG_ON(len > skb->len);
1875 	skb->len -= len;
1876 	BUG_ON(skb->len < skb->data_len);
1877 	skb_postpull_rcsum(skb, skb->data, len);
1878 	return skb->data += len;
1879 }
1880 
1881 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
1882 
1883 /**
1884  *	skb_segment - Perform protocol segmentation on skb.
1885  *	@skb: buffer to segment
1886  *	@features: features for the output path (see dev->features)
1887  *
1888  *	This function performs segmentation on the given skb.  It returns
1889  *	the segment at the given position.  It returns NULL if there are
1890  *	no more segments to generate, or when an error is encountered.
1891  */
1892 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
1893 {
1894 	struct sk_buff *segs = NULL;
1895 	struct sk_buff *tail = NULL;
1896 	unsigned int mss = skb_shinfo(skb)->gso_size;
1897 	unsigned int doffset = skb->data - skb_mac_header(skb);
1898 	unsigned int offset = doffset;
1899 	unsigned int headroom;
1900 	unsigned int len;
1901 	int sg = features & NETIF_F_SG;
1902 	int nfrags = skb_shinfo(skb)->nr_frags;
1903 	int err = -ENOMEM;
1904 	int i = 0;
1905 	int pos;
1906 
1907 	__skb_push(skb, doffset);
1908 	headroom = skb_headroom(skb);
1909 	pos = skb_headlen(skb);
1910 
1911 	do {
1912 		struct sk_buff *nskb;
1913 		skb_frag_t *frag;
1914 		int hsize;
1915 		int k;
1916 		int size;
1917 
1918 		len = skb->len - offset;
1919 		if (len > mss)
1920 			len = mss;
1921 
1922 		hsize = skb_headlen(skb) - offset;
1923 		if (hsize < 0)
1924 			hsize = 0;
1925 		if (hsize > len || !sg)
1926 			hsize = len;
1927 
1928 		nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
1929 		if (unlikely(!nskb))
1930 			goto err;
1931 
1932 		if (segs)
1933 			tail->next = nskb;
1934 		else
1935 			segs = nskb;
1936 		tail = nskb;
1937 
1938 		nskb->dev = skb->dev;
1939 		skb_copy_queue_mapping(nskb, skb);
1940 		nskb->priority = skb->priority;
1941 		nskb->protocol = skb->protocol;
1942 		nskb->dst = dst_clone(skb->dst);
1943 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
1944 		nskb->pkt_type = skb->pkt_type;
1945 		nskb->mac_len = skb->mac_len;
1946 
1947 		skb_reserve(nskb, headroom);
1948 		skb_reset_mac_header(nskb);
1949 		skb_set_network_header(nskb, skb->mac_len);
1950 		nskb->transport_header = (nskb->network_header +
1951 					  skb_network_header_len(skb));
1952 		skb_copy_from_linear_data(skb, skb_put(nskb, doffset),
1953 					  doffset);
1954 		if (!sg) {
1955 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
1956 							    skb_put(nskb, len),
1957 							    len, 0);
1958 			continue;
1959 		}
1960 
1961 		frag = skb_shinfo(nskb)->frags;
1962 		k = 0;
1963 
1964 		nskb->ip_summed = CHECKSUM_PARTIAL;
1965 		nskb->csum = skb->csum;
1966 		skb_copy_from_linear_data_offset(skb, offset,
1967 						 skb_put(nskb, hsize), hsize);
1968 
1969 		while (pos < offset + len) {
1970 			BUG_ON(i >= nfrags);
1971 
1972 			*frag = skb_shinfo(skb)->frags[i];
1973 			get_page(frag->page);
1974 			size = frag->size;
1975 
1976 			if (pos < offset) {
1977 				frag->page_offset += offset - pos;
1978 				frag->size -= offset - pos;
1979 			}
1980 
1981 			k++;
1982 
1983 			if (pos + size <= offset + len) {
1984 				i++;
1985 				pos += size;
1986 			} else {
1987 				frag->size -= pos + size - (offset + len);
1988 				break;
1989 			}
1990 
1991 			frag++;
1992 		}
1993 
1994 		skb_shinfo(nskb)->nr_frags = k;
1995 		nskb->data_len = len - hsize;
1996 		nskb->len += nskb->data_len;
1997 		nskb->truesize += nskb->data_len;
1998 	} while ((offset += len) < skb->len);
1999 
2000 	return segs;
2001 
2002 err:
2003 	while ((skb = segs)) {
2004 		segs = skb->next;
2005 		kfree_skb(skb);
2006 	}
2007 	return ERR_PTR(err);
2008 }
2009 
2010 EXPORT_SYMBOL_GPL(skb_segment);
2011 
2012 void __init skb_init(void)
2013 {
2014 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2015 					      sizeof(struct sk_buff),
2016 					      0,
2017 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2018 					      NULL);
2019 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2020 						(2*sizeof(struct sk_buff)) +
2021 						sizeof(atomic_t),
2022 						0,
2023 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2024 						NULL);
2025 }
2026 
2027 /**
2028  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2029  *	@skb: Socket buffer containing the buffers to be mapped
2030  *	@sg: The scatter-gather list to map into
2031  *	@offset: The offset into the buffer's contents to start mapping
2032  *	@len: Length of buffer space to be mapped
2033  *
2034  *	Fill the specified scatter-gather list with mappings/pointers into a
2035  *	region of the buffer space attached to a socket buffer.
2036  */
2037 static int
2038 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2039 {
2040 	int start = skb_headlen(skb);
2041 	int i, copy = start - offset;
2042 	int elt = 0;
2043 
2044 	if (copy > 0) {
2045 		if (copy > len)
2046 			copy = len;
2047 		sg_set_buf(sg, skb->data + offset, copy);
2048 		elt++;
2049 		if ((len -= copy) == 0)
2050 			return elt;
2051 		offset += copy;
2052 	}
2053 
2054 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2055 		int end;
2056 
2057 		BUG_TRAP(start <= offset + len);
2058 
2059 		end = start + skb_shinfo(skb)->frags[i].size;
2060 		if ((copy = end - offset) > 0) {
2061 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2062 
2063 			if (copy > len)
2064 				copy = len;
2065 			sg_set_page(&sg[elt], frag->page, copy,
2066 					frag->page_offset+offset-start);
2067 			elt++;
2068 			if (!(len -= copy))
2069 				return elt;
2070 			offset += copy;
2071 		}
2072 		start = end;
2073 	}
2074 
2075 	if (skb_shinfo(skb)->frag_list) {
2076 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2077 
2078 		for (; list; list = list->next) {
2079 			int end;
2080 
2081 			BUG_TRAP(start <= offset + len);
2082 
2083 			end = start + list->len;
2084 			if ((copy = end - offset) > 0) {
2085 				if (copy > len)
2086 					copy = len;
2087 				elt += __skb_to_sgvec(list, sg+elt, offset - start,
2088 						      copy);
2089 				if ((len -= copy) == 0)
2090 					return elt;
2091 				offset += copy;
2092 			}
2093 			start = end;
2094 		}
2095 	}
2096 	BUG_ON(len);
2097 	return elt;
2098 }
2099 
2100 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2101 {
2102 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
2103 
2104 	sg_mark_end(&sg[nsg - 1]);
2105 
2106 	return nsg;
2107 }
2108 
2109 /**
2110  *	skb_cow_data - Check that a socket buffer's data buffers are writable
2111  *	@skb: The socket buffer to check.
2112  *	@tailbits: Amount of trailing space to be added
2113  *	@trailer: Returned pointer to the skb where the @tailbits space begins
2114  *
2115  *	Make sure that the data buffers attached to a socket buffer are
2116  *	writable. If they are not, private copies are made of the data buffers
2117  *	and the socket buffer is set to use these instead.
2118  *
2119  *	If @tailbits is given, make sure that there is space to write @tailbits
2120  *	bytes of data beyond current end of socket buffer.  @trailer will be
2121  *	set to point to the skb in which this space begins.
2122  *
2123  *	The number of scatterlist elements required to completely map the
2124  *	COW'd and extended socket buffer will be returned.
2125  */
2126 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2127 {
2128 	int copyflag;
2129 	int elt;
2130 	struct sk_buff *skb1, **skb_p;
2131 
2132 	/* If skb is cloned or its head is paged, reallocate
2133 	 * head pulling out all the pages (pages are considered not writable
2134 	 * at the moment even if they are anonymous).
2135 	 */
2136 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2137 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2138 		return -ENOMEM;
2139 
2140 	/* Easy case. Most of packets will go this way. */
2141 	if (!skb_shinfo(skb)->frag_list) {
2142 		/* A little of trouble, not enough of space for trailer.
2143 		 * This should not happen, when stack is tuned to generate
2144 		 * good frames. OK, on miss we reallocate and reserve even more
2145 		 * space, 128 bytes is fair. */
2146 
2147 		if (skb_tailroom(skb) < tailbits &&
2148 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2149 			return -ENOMEM;
2150 
2151 		/* Voila! */
2152 		*trailer = skb;
2153 		return 1;
2154 	}
2155 
2156 	/* Misery. We are in troubles, going to mincer fragments... */
2157 
2158 	elt = 1;
2159 	skb_p = &skb_shinfo(skb)->frag_list;
2160 	copyflag = 0;
2161 
2162 	while ((skb1 = *skb_p) != NULL) {
2163 		int ntail = 0;
2164 
2165 		/* The fragment is partially pulled by someone,
2166 		 * this can happen on input. Copy it and everything
2167 		 * after it. */
2168 
2169 		if (skb_shared(skb1))
2170 			copyflag = 1;
2171 
2172 		/* If the skb is the last, worry about trailer. */
2173 
2174 		if (skb1->next == NULL && tailbits) {
2175 			if (skb_shinfo(skb1)->nr_frags ||
2176 			    skb_shinfo(skb1)->frag_list ||
2177 			    skb_tailroom(skb1) < tailbits)
2178 				ntail = tailbits + 128;
2179 		}
2180 
2181 		if (copyflag ||
2182 		    skb_cloned(skb1) ||
2183 		    ntail ||
2184 		    skb_shinfo(skb1)->nr_frags ||
2185 		    skb_shinfo(skb1)->frag_list) {
2186 			struct sk_buff *skb2;
2187 
2188 			/* Fuck, we are miserable poor guys... */
2189 			if (ntail == 0)
2190 				skb2 = skb_copy(skb1, GFP_ATOMIC);
2191 			else
2192 				skb2 = skb_copy_expand(skb1,
2193 						       skb_headroom(skb1),
2194 						       ntail,
2195 						       GFP_ATOMIC);
2196 			if (unlikely(skb2 == NULL))
2197 				return -ENOMEM;
2198 
2199 			if (skb1->sk)
2200 				skb_set_owner_w(skb2, skb1->sk);
2201 
2202 			/* Looking around. Are we still alive?
2203 			 * OK, link new skb, drop old one */
2204 
2205 			skb2->next = skb1->next;
2206 			*skb_p = skb2;
2207 			kfree_skb(skb1);
2208 			skb1 = skb2;
2209 		}
2210 		elt++;
2211 		*trailer = skb1;
2212 		skb_p = &skb1->next;
2213 	}
2214 
2215 	return elt;
2216 }
2217 
2218 EXPORT_SYMBOL(___pskb_trim);
2219 EXPORT_SYMBOL(__kfree_skb);
2220 EXPORT_SYMBOL(kfree_skb);
2221 EXPORT_SYMBOL(__pskb_pull_tail);
2222 EXPORT_SYMBOL(__alloc_skb);
2223 EXPORT_SYMBOL(__netdev_alloc_skb);
2224 EXPORT_SYMBOL(pskb_copy);
2225 EXPORT_SYMBOL(pskb_expand_head);
2226 EXPORT_SYMBOL(skb_checksum);
2227 EXPORT_SYMBOL(skb_clone);
2228 EXPORT_SYMBOL(skb_copy);
2229 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2230 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2231 EXPORT_SYMBOL(skb_copy_bits);
2232 EXPORT_SYMBOL(skb_copy_expand);
2233 EXPORT_SYMBOL(skb_over_panic);
2234 EXPORT_SYMBOL(skb_pad);
2235 EXPORT_SYMBOL(skb_realloc_headroom);
2236 EXPORT_SYMBOL(skb_under_panic);
2237 EXPORT_SYMBOL(skb_dequeue);
2238 EXPORT_SYMBOL(skb_dequeue_tail);
2239 EXPORT_SYMBOL(skb_insert);
2240 EXPORT_SYMBOL(skb_queue_purge);
2241 EXPORT_SYMBOL(skb_queue_head);
2242 EXPORT_SYMBOL(skb_queue_tail);
2243 EXPORT_SYMBOL(skb_unlink);
2244 EXPORT_SYMBOL(skb_append);
2245 EXPORT_SYMBOL(skb_split);
2246 EXPORT_SYMBOL(skb_prepare_seq_read);
2247 EXPORT_SYMBOL(skb_seq_read);
2248 EXPORT_SYMBOL(skb_abort_seq_read);
2249 EXPORT_SYMBOL(skb_find_text);
2250 EXPORT_SYMBOL(skb_append_datato_frags);
2251 
2252 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2253 EXPORT_SYMBOL_GPL(skb_cow_data);
2254