xref: /linux/net/core/skbuff.c (revision 7f356166aebb0d956d367dfe55e19d7783277d09)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71 #include <net/mptcp.h>
72 
73 #include <linux/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76 #include <linux/capability.h>
77 #include <linux/user_namespace.h>
78 #include <linux/indirect_call_wrapper.h>
79 
80 #include "datagram.h"
81 
82 struct kmem_cache *skbuff_head_cache __ro_after_init;
83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
84 #ifdef CONFIG_SKB_EXTENSIONS
85 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
86 #endif
87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
88 EXPORT_SYMBOL(sysctl_max_skb_frags);
89 
90 /**
91  *	skb_panic - private function for out-of-line support
92  *	@skb:	buffer
93  *	@sz:	size
94  *	@addr:	address
95  *	@msg:	skb_over_panic or skb_under_panic
96  *
97  *	Out-of-line support for skb_put() and skb_push().
98  *	Called via the wrapper skb_over_panic() or skb_under_panic().
99  *	Keep out of line to prevent kernel bloat.
100  *	__builtin_return_address is not used because it is not always reliable.
101  */
102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
103 		      const char msg[])
104 {
105 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
106 		 msg, addr, skb->len, sz, skb->head, skb->data,
107 		 (unsigned long)skb->tail, (unsigned long)skb->end,
108 		 skb->dev ? skb->dev->name : "<NULL>");
109 	BUG();
110 }
111 
112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
118 {
119 	skb_panic(skb, sz, addr, __func__);
120 }
121 
122 /*
123  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
124  * the caller if emergency pfmemalloc reserves are being used. If it is and
125  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
126  * may be used. Otherwise, the packet data may be discarded until enough
127  * memory is free
128  */
129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
130 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
131 
132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
133 			       unsigned long ip, bool *pfmemalloc)
134 {
135 	void *obj;
136 	bool ret_pfmemalloc = false;
137 
138 	/*
139 	 * Try a regular allocation, when that fails and we're not entitled
140 	 * to the reserves, fail.
141 	 */
142 	obj = kmalloc_node_track_caller(size,
143 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
144 					node);
145 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
146 		goto out;
147 
148 	/* Try again but now we are using pfmemalloc reserves */
149 	ret_pfmemalloc = true;
150 	obj = kmalloc_node_track_caller(size, flags, node);
151 
152 out:
153 	if (pfmemalloc)
154 		*pfmemalloc = ret_pfmemalloc;
155 
156 	return obj;
157 }
158 
159 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
160  *	'private' fields and also do memory statistics to find all the
161  *	[BEEP] leaks.
162  *
163  */
164 
165 /**
166  *	__alloc_skb	-	allocate a network buffer
167  *	@size: size to allocate
168  *	@gfp_mask: allocation mask
169  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
170  *		instead of head cache and allocate a cloned (child) skb.
171  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
172  *		allocations in case the data is required for writeback
173  *	@node: numa node to allocate memory on
174  *
175  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
176  *	tail room of at least size bytes. The object has a reference count
177  *	of one. The return is the buffer. On a failure the return is %NULL.
178  *
179  *	Buffers may only be allocated from interrupts using a @gfp_mask of
180  *	%GFP_ATOMIC.
181  */
182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
183 			    int flags, int node)
184 {
185 	struct kmem_cache *cache;
186 	struct skb_shared_info *shinfo;
187 	struct sk_buff *skb;
188 	u8 *data;
189 	bool pfmemalloc;
190 
191 	cache = (flags & SKB_ALLOC_FCLONE)
192 		? skbuff_fclone_cache : skbuff_head_cache;
193 
194 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
195 		gfp_mask |= __GFP_MEMALLOC;
196 
197 	/* Get the HEAD */
198 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
199 	if (!skb)
200 		goto out;
201 	prefetchw(skb);
202 
203 	/* We do our best to align skb_shared_info on a separate cache
204 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
205 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
206 	 * Both skb->head and skb_shared_info are cache line aligned.
207 	 */
208 	size = SKB_DATA_ALIGN(size);
209 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
210 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
211 	if (!data)
212 		goto nodata;
213 	/* kmalloc(size) might give us more room than requested.
214 	 * Put skb_shared_info exactly at the end of allocated zone,
215 	 * to allow max possible filling before reallocation.
216 	 */
217 	size = SKB_WITH_OVERHEAD(ksize(data));
218 	prefetchw(data + size);
219 
220 	/*
221 	 * Only clear those fields we need to clear, not those that we will
222 	 * actually initialise below. Hence, don't put any more fields after
223 	 * the tail pointer in struct sk_buff!
224 	 */
225 	memset(skb, 0, offsetof(struct sk_buff, tail));
226 	/* Account for allocated memory : skb + skb->head */
227 	skb->truesize = SKB_TRUESIZE(size);
228 	skb->pfmemalloc = pfmemalloc;
229 	refcount_set(&skb->users, 1);
230 	skb->head = data;
231 	skb->data = data;
232 	skb_reset_tail_pointer(skb);
233 	skb->end = skb->tail + size;
234 	skb->mac_header = (typeof(skb->mac_header))~0U;
235 	skb->transport_header = (typeof(skb->transport_header))~0U;
236 
237 	/* make sure we initialize shinfo sequentially */
238 	shinfo = skb_shinfo(skb);
239 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
240 	atomic_set(&shinfo->dataref, 1);
241 
242 	if (flags & SKB_ALLOC_FCLONE) {
243 		struct sk_buff_fclones *fclones;
244 
245 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
246 
247 		skb->fclone = SKB_FCLONE_ORIG;
248 		refcount_set(&fclones->fclone_ref, 1);
249 
250 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
251 	}
252 
253 	skb_set_kcov_handle(skb, kcov_common_handle());
254 
255 out:
256 	return skb;
257 nodata:
258 	kmem_cache_free(cache, skb);
259 	skb = NULL;
260 	goto out;
261 }
262 EXPORT_SYMBOL(__alloc_skb);
263 
264 /* Caller must provide SKB that is memset cleared */
265 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
266 					  void *data, unsigned int frag_size)
267 {
268 	struct skb_shared_info *shinfo;
269 	unsigned int size = frag_size ? : ksize(data);
270 
271 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
272 
273 	/* Assumes caller memset cleared SKB */
274 	skb->truesize = SKB_TRUESIZE(size);
275 	refcount_set(&skb->users, 1);
276 	skb->head = data;
277 	skb->data = data;
278 	skb_reset_tail_pointer(skb);
279 	skb->end = skb->tail + size;
280 	skb->mac_header = (typeof(skb->mac_header))~0U;
281 	skb->transport_header = (typeof(skb->transport_header))~0U;
282 
283 	/* make sure we initialize shinfo sequentially */
284 	shinfo = skb_shinfo(skb);
285 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
286 	atomic_set(&shinfo->dataref, 1);
287 
288 	skb_set_kcov_handle(skb, kcov_common_handle());
289 
290 	return skb;
291 }
292 
293 /**
294  * __build_skb - build a network buffer
295  * @data: data buffer provided by caller
296  * @frag_size: size of data, or 0 if head was kmalloced
297  *
298  * Allocate a new &sk_buff. Caller provides space holding head and
299  * skb_shared_info. @data must have been allocated by kmalloc() only if
300  * @frag_size is 0, otherwise data should come from the page allocator
301  *  or vmalloc()
302  * The return is the new skb buffer.
303  * On a failure the return is %NULL, and @data is not freed.
304  * Notes :
305  *  Before IO, driver allocates only data buffer where NIC put incoming frame
306  *  Driver should add room at head (NET_SKB_PAD) and
307  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
308  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
309  *  before giving packet to stack.
310  *  RX rings only contains data buffers, not full skbs.
311  */
312 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
313 {
314 	struct sk_buff *skb;
315 
316 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
317 	if (unlikely(!skb))
318 		return NULL;
319 
320 	memset(skb, 0, offsetof(struct sk_buff, tail));
321 
322 	return __build_skb_around(skb, data, frag_size);
323 }
324 
325 /* build_skb() is wrapper over __build_skb(), that specifically
326  * takes care of skb->head and skb->pfmemalloc
327  * This means that if @frag_size is not zero, then @data must be backed
328  * by a page fragment, not kmalloc() or vmalloc()
329  */
330 struct sk_buff *build_skb(void *data, unsigned int frag_size)
331 {
332 	struct sk_buff *skb = __build_skb(data, frag_size);
333 
334 	if (skb && frag_size) {
335 		skb->head_frag = 1;
336 		if (page_is_pfmemalloc(virt_to_head_page(data)))
337 			skb->pfmemalloc = 1;
338 	}
339 	return skb;
340 }
341 EXPORT_SYMBOL(build_skb);
342 
343 /**
344  * build_skb_around - build a network buffer around provided skb
345  * @skb: sk_buff provide by caller, must be memset cleared
346  * @data: data buffer provided by caller
347  * @frag_size: size of data, or 0 if head was kmalloced
348  */
349 struct sk_buff *build_skb_around(struct sk_buff *skb,
350 				 void *data, unsigned int frag_size)
351 {
352 	if (unlikely(!skb))
353 		return NULL;
354 
355 	skb = __build_skb_around(skb, data, frag_size);
356 
357 	if (skb && frag_size) {
358 		skb->head_frag = 1;
359 		if (page_is_pfmemalloc(virt_to_head_page(data)))
360 			skb->pfmemalloc = 1;
361 	}
362 	return skb;
363 }
364 EXPORT_SYMBOL(build_skb_around);
365 
366 #define NAPI_SKB_CACHE_SIZE	64
367 
368 struct napi_alloc_cache {
369 	struct page_frag_cache page;
370 	unsigned int skb_count;
371 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
372 };
373 
374 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
375 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
376 
377 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
378 {
379 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
380 
381 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
382 }
383 
384 void *napi_alloc_frag(unsigned int fragsz)
385 {
386 	fragsz = SKB_DATA_ALIGN(fragsz);
387 
388 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
389 }
390 EXPORT_SYMBOL(napi_alloc_frag);
391 
392 /**
393  * netdev_alloc_frag - allocate a page fragment
394  * @fragsz: fragment size
395  *
396  * Allocates a frag from a page for receive buffer.
397  * Uses GFP_ATOMIC allocations.
398  */
399 void *netdev_alloc_frag(unsigned int fragsz)
400 {
401 	struct page_frag_cache *nc;
402 	void *data;
403 
404 	fragsz = SKB_DATA_ALIGN(fragsz);
405 	if (in_irq() || irqs_disabled()) {
406 		nc = this_cpu_ptr(&netdev_alloc_cache);
407 		data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
408 	} else {
409 		local_bh_disable();
410 		data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
411 		local_bh_enable();
412 	}
413 	return data;
414 }
415 EXPORT_SYMBOL(netdev_alloc_frag);
416 
417 /**
418  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
419  *	@dev: network device to receive on
420  *	@len: length to allocate
421  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
422  *
423  *	Allocate a new &sk_buff and assign it a usage count of one. The
424  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
425  *	the headroom they think they need without accounting for the
426  *	built in space. The built in space is used for optimisations.
427  *
428  *	%NULL is returned if there is no free memory.
429  */
430 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
431 				   gfp_t gfp_mask)
432 {
433 	struct page_frag_cache *nc;
434 	struct sk_buff *skb;
435 	bool pfmemalloc;
436 	void *data;
437 
438 	len += NET_SKB_PAD;
439 
440 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
441 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
442 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
443 		if (!skb)
444 			goto skb_fail;
445 		goto skb_success;
446 	}
447 
448 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
449 	len = SKB_DATA_ALIGN(len);
450 
451 	if (sk_memalloc_socks())
452 		gfp_mask |= __GFP_MEMALLOC;
453 
454 	if (in_irq() || irqs_disabled()) {
455 		nc = this_cpu_ptr(&netdev_alloc_cache);
456 		data = page_frag_alloc(nc, len, gfp_mask);
457 		pfmemalloc = nc->pfmemalloc;
458 	} else {
459 		local_bh_disable();
460 		nc = this_cpu_ptr(&napi_alloc_cache.page);
461 		data = page_frag_alloc(nc, len, gfp_mask);
462 		pfmemalloc = nc->pfmemalloc;
463 		local_bh_enable();
464 	}
465 
466 	if (unlikely(!data))
467 		return NULL;
468 
469 	skb = __build_skb(data, len);
470 	if (unlikely(!skb)) {
471 		skb_free_frag(data);
472 		return NULL;
473 	}
474 
475 	if (pfmemalloc)
476 		skb->pfmemalloc = 1;
477 	skb->head_frag = 1;
478 
479 skb_success:
480 	skb_reserve(skb, NET_SKB_PAD);
481 	skb->dev = dev;
482 
483 skb_fail:
484 	return skb;
485 }
486 EXPORT_SYMBOL(__netdev_alloc_skb);
487 
488 /**
489  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
490  *	@napi: napi instance this buffer was allocated for
491  *	@len: length to allocate
492  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
493  *
494  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
495  *	attempt to allocate the head from a special reserved region used
496  *	only for NAPI Rx allocation.  By doing this we can save several
497  *	CPU cycles by avoiding having to disable and re-enable IRQs.
498  *
499  *	%NULL is returned if there is no free memory.
500  */
501 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
502 				 gfp_t gfp_mask)
503 {
504 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
505 	struct sk_buff *skb;
506 	void *data;
507 
508 	len += NET_SKB_PAD + NET_IP_ALIGN;
509 
510 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
511 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
512 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
513 		if (!skb)
514 			goto skb_fail;
515 		goto skb_success;
516 	}
517 
518 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
519 	len = SKB_DATA_ALIGN(len);
520 
521 	if (sk_memalloc_socks())
522 		gfp_mask |= __GFP_MEMALLOC;
523 
524 	data = page_frag_alloc(&nc->page, len, gfp_mask);
525 	if (unlikely(!data))
526 		return NULL;
527 
528 	skb = __build_skb(data, len);
529 	if (unlikely(!skb)) {
530 		skb_free_frag(data);
531 		return NULL;
532 	}
533 
534 	if (nc->page.pfmemalloc)
535 		skb->pfmemalloc = 1;
536 	skb->head_frag = 1;
537 
538 skb_success:
539 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
540 	skb->dev = napi->dev;
541 
542 skb_fail:
543 	return skb;
544 }
545 EXPORT_SYMBOL(__napi_alloc_skb);
546 
547 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
548 		     int size, unsigned int truesize)
549 {
550 	skb_fill_page_desc(skb, i, page, off, size);
551 	skb->len += size;
552 	skb->data_len += size;
553 	skb->truesize += truesize;
554 }
555 EXPORT_SYMBOL(skb_add_rx_frag);
556 
557 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
558 			  unsigned int truesize)
559 {
560 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
561 
562 	skb_frag_size_add(frag, size);
563 	skb->len += size;
564 	skb->data_len += size;
565 	skb->truesize += truesize;
566 }
567 EXPORT_SYMBOL(skb_coalesce_rx_frag);
568 
569 static void skb_drop_list(struct sk_buff **listp)
570 {
571 	kfree_skb_list(*listp);
572 	*listp = NULL;
573 }
574 
575 static inline void skb_drop_fraglist(struct sk_buff *skb)
576 {
577 	skb_drop_list(&skb_shinfo(skb)->frag_list);
578 }
579 
580 static void skb_clone_fraglist(struct sk_buff *skb)
581 {
582 	struct sk_buff *list;
583 
584 	skb_walk_frags(skb, list)
585 		skb_get(list);
586 }
587 
588 static void skb_free_head(struct sk_buff *skb)
589 {
590 	unsigned char *head = skb->head;
591 
592 	if (skb->head_frag)
593 		skb_free_frag(head);
594 	else
595 		kfree(head);
596 }
597 
598 static void skb_release_data(struct sk_buff *skb)
599 {
600 	struct skb_shared_info *shinfo = skb_shinfo(skb);
601 	int i;
602 
603 	if (skb->cloned &&
604 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
605 			      &shinfo->dataref))
606 		return;
607 
608 	for (i = 0; i < shinfo->nr_frags; i++)
609 		__skb_frag_unref(&shinfo->frags[i]);
610 
611 	if (shinfo->frag_list)
612 		kfree_skb_list(shinfo->frag_list);
613 
614 	skb_zcopy_clear(skb, true);
615 	skb_free_head(skb);
616 }
617 
618 /*
619  *	Free an skbuff by memory without cleaning the state.
620  */
621 static void kfree_skbmem(struct sk_buff *skb)
622 {
623 	struct sk_buff_fclones *fclones;
624 
625 	switch (skb->fclone) {
626 	case SKB_FCLONE_UNAVAILABLE:
627 		kmem_cache_free(skbuff_head_cache, skb);
628 		return;
629 
630 	case SKB_FCLONE_ORIG:
631 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
632 
633 		/* We usually free the clone (TX completion) before original skb
634 		 * This test would have no chance to be true for the clone,
635 		 * while here, branch prediction will be good.
636 		 */
637 		if (refcount_read(&fclones->fclone_ref) == 1)
638 			goto fastpath;
639 		break;
640 
641 	default: /* SKB_FCLONE_CLONE */
642 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
643 		break;
644 	}
645 	if (!refcount_dec_and_test(&fclones->fclone_ref))
646 		return;
647 fastpath:
648 	kmem_cache_free(skbuff_fclone_cache, fclones);
649 }
650 
651 void skb_release_head_state(struct sk_buff *skb)
652 {
653 	skb_dst_drop(skb);
654 	if (skb->destructor) {
655 		WARN_ON(in_irq());
656 		skb->destructor(skb);
657 	}
658 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
659 	nf_conntrack_put(skb_nfct(skb));
660 #endif
661 	skb_ext_put(skb);
662 }
663 
664 /* Free everything but the sk_buff shell. */
665 static void skb_release_all(struct sk_buff *skb)
666 {
667 	skb_release_head_state(skb);
668 	if (likely(skb->head))
669 		skb_release_data(skb);
670 }
671 
672 /**
673  *	__kfree_skb - private function
674  *	@skb: buffer
675  *
676  *	Free an sk_buff. Release anything attached to the buffer.
677  *	Clean the state. This is an internal helper function. Users should
678  *	always call kfree_skb
679  */
680 
681 void __kfree_skb(struct sk_buff *skb)
682 {
683 	skb_release_all(skb);
684 	kfree_skbmem(skb);
685 }
686 EXPORT_SYMBOL(__kfree_skb);
687 
688 /**
689  *	kfree_skb - free an sk_buff
690  *	@skb: buffer to free
691  *
692  *	Drop a reference to the buffer and free it if the usage count has
693  *	hit zero.
694  */
695 void kfree_skb(struct sk_buff *skb)
696 {
697 	if (!skb_unref(skb))
698 		return;
699 
700 	trace_kfree_skb(skb, __builtin_return_address(0));
701 	__kfree_skb(skb);
702 }
703 EXPORT_SYMBOL(kfree_skb);
704 
705 void kfree_skb_list(struct sk_buff *segs)
706 {
707 	while (segs) {
708 		struct sk_buff *next = segs->next;
709 
710 		kfree_skb(segs);
711 		segs = next;
712 	}
713 }
714 EXPORT_SYMBOL(kfree_skb_list);
715 
716 /* Dump skb information and contents.
717  *
718  * Must only be called from net_ratelimit()-ed paths.
719  *
720  * Dumps whole packets if full_pkt, only headers otherwise.
721  */
722 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
723 {
724 	struct skb_shared_info *sh = skb_shinfo(skb);
725 	struct net_device *dev = skb->dev;
726 	struct sock *sk = skb->sk;
727 	struct sk_buff *list_skb;
728 	bool has_mac, has_trans;
729 	int headroom, tailroom;
730 	int i, len, seg_len;
731 
732 	if (full_pkt)
733 		len = skb->len;
734 	else
735 		len = min_t(int, skb->len, MAX_HEADER + 128);
736 
737 	headroom = skb_headroom(skb);
738 	tailroom = skb_tailroom(skb);
739 
740 	has_mac = skb_mac_header_was_set(skb);
741 	has_trans = skb_transport_header_was_set(skb);
742 
743 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
744 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
745 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
746 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
747 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
748 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
749 	       has_mac ? skb->mac_header : -1,
750 	       has_mac ? skb_mac_header_len(skb) : -1,
751 	       skb->network_header,
752 	       has_trans ? skb_network_header_len(skb) : -1,
753 	       has_trans ? skb->transport_header : -1,
754 	       sh->tx_flags, sh->nr_frags,
755 	       sh->gso_size, sh->gso_type, sh->gso_segs,
756 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
757 	       skb->csum_valid, skb->csum_level,
758 	       skb->hash, skb->sw_hash, skb->l4_hash,
759 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
760 
761 	if (dev)
762 		printk("%sdev name=%s feat=0x%pNF\n",
763 		       level, dev->name, &dev->features);
764 	if (sk)
765 		printk("%ssk family=%hu type=%u proto=%u\n",
766 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
767 
768 	if (full_pkt && headroom)
769 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
770 			       16, 1, skb->head, headroom, false);
771 
772 	seg_len = min_t(int, skb_headlen(skb), len);
773 	if (seg_len)
774 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
775 			       16, 1, skb->data, seg_len, false);
776 	len -= seg_len;
777 
778 	if (full_pkt && tailroom)
779 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
780 			       16, 1, skb_tail_pointer(skb), tailroom, false);
781 
782 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
783 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
784 		u32 p_off, p_len, copied;
785 		struct page *p;
786 		u8 *vaddr;
787 
788 		skb_frag_foreach_page(frag, skb_frag_off(frag),
789 				      skb_frag_size(frag), p, p_off, p_len,
790 				      copied) {
791 			seg_len = min_t(int, p_len, len);
792 			vaddr = kmap_atomic(p);
793 			print_hex_dump(level, "skb frag:     ",
794 				       DUMP_PREFIX_OFFSET,
795 				       16, 1, vaddr + p_off, seg_len, false);
796 			kunmap_atomic(vaddr);
797 			len -= seg_len;
798 			if (!len)
799 				break;
800 		}
801 	}
802 
803 	if (full_pkt && skb_has_frag_list(skb)) {
804 		printk("skb fraglist:\n");
805 		skb_walk_frags(skb, list_skb)
806 			skb_dump(level, list_skb, true);
807 	}
808 }
809 EXPORT_SYMBOL(skb_dump);
810 
811 /**
812  *	skb_tx_error - report an sk_buff xmit error
813  *	@skb: buffer that triggered an error
814  *
815  *	Report xmit error if a device callback is tracking this skb.
816  *	skb must be freed afterwards.
817  */
818 void skb_tx_error(struct sk_buff *skb)
819 {
820 	skb_zcopy_clear(skb, true);
821 }
822 EXPORT_SYMBOL(skb_tx_error);
823 
824 #ifdef CONFIG_TRACEPOINTS
825 /**
826  *	consume_skb - free an skbuff
827  *	@skb: buffer to free
828  *
829  *	Drop a ref to the buffer and free it if the usage count has hit zero
830  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
831  *	is being dropped after a failure and notes that
832  */
833 void consume_skb(struct sk_buff *skb)
834 {
835 	if (!skb_unref(skb))
836 		return;
837 
838 	trace_consume_skb(skb);
839 	__kfree_skb(skb);
840 }
841 EXPORT_SYMBOL(consume_skb);
842 #endif
843 
844 /**
845  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
846  *	@skb: buffer to free
847  *
848  *	Alike consume_skb(), but this variant assumes that this is the last
849  *	skb reference and all the head states have been already dropped
850  */
851 void __consume_stateless_skb(struct sk_buff *skb)
852 {
853 	trace_consume_skb(skb);
854 	skb_release_data(skb);
855 	kfree_skbmem(skb);
856 }
857 
858 void __kfree_skb_flush(void)
859 {
860 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
861 
862 	/* flush skb_cache if containing objects */
863 	if (nc->skb_count) {
864 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
865 				     nc->skb_cache);
866 		nc->skb_count = 0;
867 	}
868 }
869 
870 static inline void _kfree_skb_defer(struct sk_buff *skb)
871 {
872 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
873 
874 	/* drop skb->head and call any destructors for packet */
875 	skb_release_all(skb);
876 
877 	/* record skb to CPU local list */
878 	nc->skb_cache[nc->skb_count++] = skb;
879 
880 #ifdef CONFIG_SLUB
881 	/* SLUB writes into objects when freeing */
882 	prefetchw(skb);
883 #endif
884 
885 	/* flush skb_cache if it is filled */
886 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
887 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
888 				     nc->skb_cache);
889 		nc->skb_count = 0;
890 	}
891 }
892 void __kfree_skb_defer(struct sk_buff *skb)
893 {
894 	_kfree_skb_defer(skb);
895 }
896 
897 void napi_consume_skb(struct sk_buff *skb, int budget)
898 {
899 	/* Zero budget indicate non-NAPI context called us, like netpoll */
900 	if (unlikely(!budget)) {
901 		dev_consume_skb_any(skb);
902 		return;
903 	}
904 
905 	lockdep_assert_in_softirq();
906 
907 	if (!skb_unref(skb))
908 		return;
909 
910 	/* if reaching here SKB is ready to free */
911 	trace_consume_skb(skb);
912 
913 	/* if SKB is a clone, don't handle this case */
914 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
915 		__kfree_skb(skb);
916 		return;
917 	}
918 
919 	_kfree_skb_defer(skb);
920 }
921 EXPORT_SYMBOL(napi_consume_skb);
922 
923 /* Make sure a field is enclosed inside headers_start/headers_end section */
924 #define CHECK_SKB_FIELD(field) \
925 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
926 		     offsetof(struct sk_buff, headers_start));	\
927 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
928 		     offsetof(struct sk_buff, headers_end));	\
929 
930 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
931 {
932 	new->tstamp		= old->tstamp;
933 	/* We do not copy old->sk */
934 	new->dev		= old->dev;
935 	memcpy(new->cb, old->cb, sizeof(old->cb));
936 	skb_dst_copy(new, old);
937 	__skb_ext_copy(new, old);
938 	__nf_copy(new, old, false);
939 
940 	/* Note : this field could be in headers_start/headers_end section
941 	 * It is not yet because we do not want to have a 16 bit hole
942 	 */
943 	new->queue_mapping = old->queue_mapping;
944 
945 	memcpy(&new->headers_start, &old->headers_start,
946 	       offsetof(struct sk_buff, headers_end) -
947 	       offsetof(struct sk_buff, headers_start));
948 	CHECK_SKB_FIELD(protocol);
949 	CHECK_SKB_FIELD(csum);
950 	CHECK_SKB_FIELD(hash);
951 	CHECK_SKB_FIELD(priority);
952 	CHECK_SKB_FIELD(skb_iif);
953 	CHECK_SKB_FIELD(vlan_proto);
954 	CHECK_SKB_FIELD(vlan_tci);
955 	CHECK_SKB_FIELD(transport_header);
956 	CHECK_SKB_FIELD(network_header);
957 	CHECK_SKB_FIELD(mac_header);
958 	CHECK_SKB_FIELD(inner_protocol);
959 	CHECK_SKB_FIELD(inner_transport_header);
960 	CHECK_SKB_FIELD(inner_network_header);
961 	CHECK_SKB_FIELD(inner_mac_header);
962 	CHECK_SKB_FIELD(mark);
963 #ifdef CONFIG_NETWORK_SECMARK
964 	CHECK_SKB_FIELD(secmark);
965 #endif
966 #ifdef CONFIG_NET_RX_BUSY_POLL
967 	CHECK_SKB_FIELD(napi_id);
968 #endif
969 #ifdef CONFIG_XPS
970 	CHECK_SKB_FIELD(sender_cpu);
971 #endif
972 #ifdef CONFIG_NET_SCHED
973 	CHECK_SKB_FIELD(tc_index);
974 #endif
975 
976 }
977 
978 /*
979  * You should not add any new code to this function.  Add it to
980  * __copy_skb_header above instead.
981  */
982 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
983 {
984 #define C(x) n->x = skb->x
985 
986 	n->next = n->prev = NULL;
987 	n->sk = NULL;
988 	__copy_skb_header(n, skb);
989 
990 	C(len);
991 	C(data_len);
992 	C(mac_len);
993 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
994 	n->cloned = 1;
995 	n->nohdr = 0;
996 	n->peeked = 0;
997 	C(pfmemalloc);
998 	n->destructor = NULL;
999 	C(tail);
1000 	C(end);
1001 	C(head);
1002 	C(head_frag);
1003 	C(data);
1004 	C(truesize);
1005 	refcount_set(&n->users, 1);
1006 
1007 	atomic_inc(&(skb_shinfo(skb)->dataref));
1008 	skb->cloned = 1;
1009 
1010 	return n;
1011 #undef C
1012 }
1013 
1014 /**
1015  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1016  * @first: first sk_buff of the msg
1017  */
1018 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1019 {
1020 	struct sk_buff *n;
1021 
1022 	n = alloc_skb(0, GFP_ATOMIC);
1023 	if (!n)
1024 		return NULL;
1025 
1026 	n->len = first->len;
1027 	n->data_len = first->len;
1028 	n->truesize = first->truesize;
1029 
1030 	skb_shinfo(n)->frag_list = first;
1031 
1032 	__copy_skb_header(n, first);
1033 	n->destructor = NULL;
1034 
1035 	return n;
1036 }
1037 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1038 
1039 /**
1040  *	skb_morph	-	morph one skb into another
1041  *	@dst: the skb to receive the contents
1042  *	@src: the skb to supply the contents
1043  *
1044  *	This is identical to skb_clone except that the target skb is
1045  *	supplied by the user.
1046  *
1047  *	The target skb is returned upon exit.
1048  */
1049 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1050 {
1051 	skb_release_all(dst);
1052 	return __skb_clone(dst, src);
1053 }
1054 EXPORT_SYMBOL_GPL(skb_morph);
1055 
1056 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1057 {
1058 	unsigned long max_pg, num_pg, new_pg, old_pg;
1059 	struct user_struct *user;
1060 
1061 	if (capable(CAP_IPC_LOCK) || !size)
1062 		return 0;
1063 
1064 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1065 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1066 	user = mmp->user ? : current_user();
1067 
1068 	do {
1069 		old_pg = atomic_long_read(&user->locked_vm);
1070 		new_pg = old_pg + num_pg;
1071 		if (new_pg > max_pg)
1072 			return -ENOBUFS;
1073 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1074 		 old_pg);
1075 
1076 	if (!mmp->user) {
1077 		mmp->user = get_uid(user);
1078 		mmp->num_pg = num_pg;
1079 	} else {
1080 		mmp->num_pg += num_pg;
1081 	}
1082 
1083 	return 0;
1084 }
1085 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1086 
1087 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1088 {
1089 	if (mmp->user) {
1090 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1091 		free_uid(mmp->user);
1092 	}
1093 }
1094 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1095 
1096 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1097 {
1098 	struct ubuf_info *uarg;
1099 	struct sk_buff *skb;
1100 
1101 	WARN_ON_ONCE(!in_task());
1102 
1103 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1104 	if (!skb)
1105 		return NULL;
1106 
1107 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1108 	uarg = (void *)skb->cb;
1109 	uarg->mmp.user = NULL;
1110 
1111 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1112 		kfree_skb(skb);
1113 		return NULL;
1114 	}
1115 
1116 	uarg->callback = sock_zerocopy_callback;
1117 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1118 	uarg->len = 1;
1119 	uarg->bytelen = size;
1120 	uarg->zerocopy = 1;
1121 	refcount_set(&uarg->refcnt, 1);
1122 	sock_hold(sk);
1123 
1124 	return uarg;
1125 }
1126 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1127 
1128 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1129 {
1130 	return container_of((void *)uarg, struct sk_buff, cb);
1131 }
1132 
1133 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1134 					struct ubuf_info *uarg)
1135 {
1136 	if (uarg) {
1137 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1138 		u32 bytelen, next;
1139 
1140 		/* realloc only when socket is locked (TCP, UDP cork),
1141 		 * so uarg->len and sk_zckey access is serialized
1142 		 */
1143 		if (!sock_owned_by_user(sk)) {
1144 			WARN_ON_ONCE(1);
1145 			return NULL;
1146 		}
1147 
1148 		bytelen = uarg->bytelen + size;
1149 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1150 			/* TCP can create new skb to attach new uarg */
1151 			if (sk->sk_type == SOCK_STREAM)
1152 				goto new_alloc;
1153 			return NULL;
1154 		}
1155 
1156 		next = (u32)atomic_read(&sk->sk_zckey);
1157 		if ((u32)(uarg->id + uarg->len) == next) {
1158 			if (mm_account_pinned_pages(&uarg->mmp, size))
1159 				return NULL;
1160 			uarg->len++;
1161 			uarg->bytelen = bytelen;
1162 			atomic_set(&sk->sk_zckey, ++next);
1163 
1164 			/* no extra ref when appending to datagram (MSG_MORE) */
1165 			if (sk->sk_type == SOCK_STREAM)
1166 				sock_zerocopy_get(uarg);
1167 
1168 			return uarg;
1169 		}
1170 	}
1171 
1172 new_alloc:
1173 	return sock_zerocopy_alloc(sk, size);
1174 }
1175 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1176 
1177 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1178 {
1179 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1180 	u32 old_lo, old_hi;
1181 	u64 sum_len;
1182 
1183 	old_lo = serr->ee.ee_info;
1184 	old_hi = serr->ee.ee_data;
1185 	sum_len = old_hi - old_lo + 1ULL + len;
1186 
1187 	if (sum_len >= (1ULL << 32))
1188 		return false;
1189 
1190 	if (lo != old_hi + 1)
1191 		return false;
1192 
1193 	serr->ee.ee_data += len;
1194 	return true;
1195 }
1196 
1197 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1198 {
1199 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1200 	struct sock_exterr_skb *serr;
1201 	struct sock *sk = skb->sk;
1202 	struct sk_buff_head *q;
1203 	unsigned long flags;
1204 	u32 lo, hi;
1205 	u16 len;
1206 
1207 	mm_unaccount_pinned_pages(&uarg->mmp);
1208 
1209 	/* if !len, there was only 1 call, and it was aborted
1210 	 * so do not queue a completion notification
1211 	 */
1212 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1213 		goto release;
1214 
1215 	len = uarg->len;
1216 	lo = uarg->id;
1217 	hi = uarg->id + len - 1;
1218 
1219 	serr = SKB_EXT_ERR(skb);
1220 	memset(serr, 0, sizeof(*serr));
1221 	serr->ee.ee_errno = 0;
1222 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1223 	serr->ee.ee_data = hi;
1224 	serr->ee.ee_info = lo;
1225 	if (!success)
1226 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1227 
1228 	q = &sk->sk_error_queue;
1229 	spin_lock_irqsave(&q->lock, flags);
1230 	tail = skb_peek_tail(q);
1231 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1232 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1233 		__skb_queue_tail(q, skb);
1234 		skb = NULL;
1235 	}
1236 	spin_unlock_irqrestore(&q->lock, flags);
1237 
1238 	sk->sk_error_report(sk);
1239 
1240 release:
1241 	consume_skb(skb);
1242 	sock_put(sk);
1243 }
1244 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1245 
1246 void sock_zerocopy_put(struct ubuf_info *uarg)
1247 {
1248 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1249 		if (uarg->callback)
1250 			uarg->callback(uarg, uarg->zerocopy);
1251 		else
1252 			consume_skb(skb_from_uarg(uarg));
1253 	}
1254 }
1255 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1256 
1257 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1258 {
1259 	if (uarg) {
1260 		struct sock *sk = skb_from_uarg(uarg)->sk;
1261 
1262 		atomic_dec(&sk->sk_zckey);
1263 		uarg->len--;
1264 
1265 		if (have_uref)
1266 			sock_zerocopy_put(uarg);
1267 	}
1268 }
1269 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1270 
1271 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1272 {
1273 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1274 }
1275 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1276 
1277 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1278 			     struct msghdr *msg, int len,
1279 			     struct ubuf_info *uarg)
1280 {
1281 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1282 	struct iov_iter orig_iter = msg->msg_iter;
1283 	int err, orig_len = skb->len;
1284 
1285 	/* An skb can only point to one uarg. This edge case happens when
1286 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1287 	 */
1288 	if (orig_uarg && uarg != orig_uarg)
1289 		return -EEXIST;
1290 
1291 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1292 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1293 		struct sock *save_sk = skb->sk;
1294 
1295 		/* Streams do not free skb on error. Reset to prev state. */
1296 		msg->msg_iter = orig_iter;
1297 		skb->sk = sk;
1298 		___pskb_trim(skb, orig_len);
1299 		skb->sk = save_sk;
1300 		return err;
1301 	}
1302 
1303 	skb_zcopy_set(skb, uarg, NULL);
1304 	return skb->len - orig_len;
1305 }
1306 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1307 
1308 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1309 			      gfp_t gfp_mask)
1310 {
1311 	if (skb_zcopy(orig)) {
1312 		if (skb_zcopy(nskb)) {
1313 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1314 			if (!gfp_mask) {
1315 				WARN_ON_ONCE(1);
1316 				return -ENOMEM;
1317 			}
1318 			if (skb_uarg(nskb) == skb_uarg(orig))
1319 				return 0;
1320 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1321 				return -EIO;
1322 		}
1323 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1324 	}
1325 	return 0;
1326 }
1327 
1328 /**
1329  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1330  *	@skb: the skb to modify
1331  *	@gfp_mask: allocation priority
1332  *
1333  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1334  *	It will copy all frags into kernel and drop the reference
1335  *	to userspace pages.
1336  *
1337  *	If this function is called from an interrupt gfp_mask() must be
1338  *	%GFP_ATOMIC.
1339  *
1340  *	Returns 0 on success or a negative error code on failure
1341  *	to allocate kernel memory to copy to.
1342  */
1343 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1344 {
1345 	int num_frags = skb_shinfo(skb)->nr_frags;
1346 	struct page *page, *head = NULL;
1347 	int i, new_frags;
1348 	u32 d_off;
1349 
1350 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1351 		return -EINVAL;
1352 
1353 	if (!num_frags)
1354 		goto release;
1355 
1356 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1357 	for (i = 0; i < new_frags; i++) {
1358 		page = alloc_page(gfp_mask);
1359 		if (!page) {
1360 			while (head) {
1361 				struct page *next = (struct page *)page_private(head);
1362 				put_page(head);
1363 				head = next;
1364 			}
1365 			return -ENOMEM;
1366 		}
1367 		set_page_private(page, (unsigned long)head);
1368 		head = page;
1369 	}
1370 
1371 	page = head;
1372 	d_off = 0;
1373 	for (i = 0; i < num_frags; i++) {
1374 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1375 		u32 p_off, p_len, copied;
1376 		struct page *p;
1377 		u8 *vaddr;
1378 
1379 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1380 				      p, p_off, p_len, copied) {
1381 			u32 copy, done = 0;
1382 			vaddr = kmap_atomic(p);
1383 
1384 			while (done < p_len) {
1385 				if (d_off == PAGE_SIZE) {
1386 					d_off = 0;
1387 					page = (struct page *)page_private(page);
1388 				}
1389 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1390 				memcpy(page_address(page) + d_off,
1391 				       vaddr + p_off + done, copy);
1392 				done += copy;
1393 				d_off += copy;
1394 			}
1395 			kunmap_atomic(vaddr);
1396 		}
1397 	}
1398 
1399 	/* skb frags release userspace buffers */
1400 	for (i = 0; i < num_frags; i++)
1401 		skb_frag_unref(skb, i);
1402 
1403 	/* skb frags point to kernel buffers */
1404 	for (i = 0; i < new_frags - 1; i++) {
1405 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1406 		head = (struct page *)page_private(head);
1407 	}
1408 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1409 	skb_shinfo(skb)->nr_frags = new_frags;
1410 
1411 release:
1412 	skb_zcopy_clear(skb, false);
1413 	return 0;
1414 }
1415 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1416 
1417 /**
1418  *	skb_clone	-	duplicate an sk_buff
1419  *	@skb: buffer to clone
1420  *	@gfp_mask: allocation priority
1421  *
1422  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1423  *	copies share the same packet data but not structure. The new
1424  *	buffer has a reference count of 1. If the allocation fails the
1425  *	function returns %NULL otherwise the new buffer is returned.
1426  *
1427  *	If this function is called from an interrupt gfp_mask() must be
1428  *	%GFP_ATOMIC.
1429  */
1430 
1431 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1432 {
1433 	struct sk_buff_fclones *fclones = container_of(skb,
1434 						       struct sk_buff_fclones,
1435 						       skb1);
1436 	struct sk_buff *n;
1437 
1438 	if (skb_orphan_frags(skb, gfp_mask))
1439 		return NULL;
1440 
1441 	if (skb->fclone == SKB_FCLONE_ORIG &&
1442 	    refcount_read(&fclones->fclone_ref) == 1) {
1443 		n = &fclones->skb2;
1444 		refcount_set(&fclones->fclone_ref, 2);
1445 	} else {
1446 		if (skb_pfmemalloc(skb))
1447 			gfp_mask |= __GFP_MEMALLOC;
1448 
1449 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1450 		if (!n)
1451 			return NULL;
1452 
1453 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1454 	}
1455 
1456 	return __skb_clone(n, skb);
1457 }
1458 EXPORT_SYMBOL(skb_clone);
1459 
1460 void skb_headers_offset_update(struct sk_buff *skb, int off)
1461 {
1462 	/* Only adjust this if it actually is csum_start rather than csum */
1463 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1464 		skb->csum_start += off;
1465 	/* {transport,network,mac}_header and tail are relative to skb->head */
1466 	skb->transport_header += off;
1467 	skb->network_header   += off;
1468 	if (skb_mac_header_was_set(skb))
1469 		skb->mac_header += off;
1470 	skb->inner_transport_header += off;
1471 	skb->inner_network_header += off;
1472 	skb->inner_mac_header += off;
1473 }
1474 EXPORT_SYMBOL(skb_headers_offset_update);
1475 
1476 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1477 {
1478 	__copy_skb_header(new, old);
1479 
1480 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1481 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1482 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1483 }
1484 EXPORT_SYMBOL(skb_copy_header);
1485 
1486 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1487 {
1488 	if (skb_pfmemalloc(skb))
1489 		return SKB_ALLOC_RX;
1490 	return 0;
1491 }
1492 
1493 /**
1494  *	skb_copy	-	create private copy of an sk_buff
1495  *	@skb: buffer to copy
1496  *	@gfp_mask: allocation priority
1497  *
1498  *	Make a copy of both an &sk_buff and its data. This is used when the
1499  *	caller wishes to modify the data and needs a private copy of the
1500  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1501  *	on success. The returned buffer has a reference count of 1.
1502  *
1503  *	As by-product this function converts non-linear &sk_buff to linear
1504  *	one, so that &sk_buff becomes completely private and caller is allowed
1505  *	to modify all the data of returned buffer. This means that this
1506  *	function is not recommended for use in circumstances when only
1507  *	header is going to be modified. Use pskb_copy() instead.
1508  */
1509 
1510 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1511 {
1512 	int headerlen = skb_headroom(skb);
1513 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1514 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1515 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1516 
1517 	if (!n)
1518 		return NULL;
1519 
1520 	/* Set the data pointer */
1521 	skb_reserve(n, headerlen);
1522 	/* Set the tail pointer and length */
1523 	skb_put(n, skb->len);
1524 
1525 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1526 
1527 	skb_copy_header(n, skb);
1528 	return n;
1529 }
1530 EXPORT_SYMBOL(skb_copy);
1531 
1532 /**
1533  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1534  *	@skb: buffer to copy
1535  *	@headroom: headroom of new skb
1536  *	@gfp_mask: allocation priority
1537  *	@fclone: if true allocate the copy of the skb from the fclone
1538  *	cache instead of the head cache; it is recommended to set this
1539  *	to true for the cases where the copy will likely be cloned
1540  *
1541  *	Make a copy of both an &sk_buff and part of its data, located
1542  *	in header. Fragmented data remain shared. This is used when
1543  *	the caller wishes to modify only header of &sk_buff and needs
1544  *	private copy of the header to alter. Returns %NULL on failure
1545  *	or the pointer to the buffer on success.
1546  *	The returned buffer has a reference count of 1.
1547  */
1548 
1549 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1550 				   gfp_t gfp_mask, bool fclone)
1551 {
1552 	unsigned int size = skb_headlen(skb) + headroom;
1553 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1554 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1555 
1556 	if (!n)
1557 		goto out;
1558 
1559 	/* Set the data pointer */
1560 	skb_reserve(n, headroom);
1561 	/* Set the tail pointer and length */
1562 	skb_put(n, skb_headlen(skb));
1563 	/* Copy the bytes */
1564 	skb_copy_from_linear_data(skb, n->data, n->len);
1565 
1566 	n->truesize += skb->data_len;
1567 	n->data_len  = skb->data_len;
1568 	n->len	     = skb->len;
1569 
1570 	if (skb_shinfo(skb)->nr_frags) {
1571 		int i;
1572 
1573 		if (skb_orphan_frags(skb, gfp_mask) ||
1574 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1575 			kfree_skb(n);
1576 			n = NULL;
1577 			goto out;
1578 		}
1579 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1580 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1581 			skb_frag_ref(skb, i);
1582 		}
1583 		skb_shinfo(n)->nr_frags = i;
1584 	}
1585 
1586 	if (skb_has_frag_list(skb)) {
1587 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1588 		skb_clone_fraglist(n);
1589 	}
1590 
1591 	skb_copy_header(n, skb);
1592 out:
1593 	return n;
1594 }
1595 EXPORT_SYMBOL(__pskb_copy_fclone);
1596 
1597 /**
1598  *	pskb_expand_head - reallocate header of &sk_buff
1599  *	@skb: buffer to reallocate
1600  *	@nhead: room to add at head
1601  *	@ntail: room to add at tail
1602  *	@gfp_mask: allocation priority
1603  *
1604  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1605  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1606  *	reference count of 1. Returns zero in the case of success or error,
1607  *	if expansion failed. In the last case, &sk_buff is not changed.
1608  *
1609  *	All the pointers pointing into skb header may change and must be
1610  *	reloaded after call to this function.
1611  */
1612 
1613 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1614 		     gfp_t gfp_mask)
1615 {
1616 	int i, osize = skb_end_offset(skb);
1617 	int size = osize + nhead + ntail;
1618 	long off;
1619 	u8 *data;
1620 
1621 	BUG_ON(nhead < 0);
1622 
1623 	BUG_ON(skb_shared(skb));
1624 
1625 	size = SKB_DATA_ALIGN(size);
1626 
1627 	if (skb_pfmemalloc(skb))
1628 		gfp_mask |= __GFP_MEMALLOC;
1629 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1630 			       gfp_mask, NUMA_NO_NODE, NULL);
1631 	if (!data)
1632 		goto nodata;
1633 	size = SKB_WITH_OVERHEAD(ksize(data));
1634 
1635 	/* Copy only real data... and, alas, header. This should be
1636 	 * optimized for the cases when header is void.
1637 	 */
1638 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1639 
1640 	memcpy((struct skb_shared_info *)(data + size),
1641 	       skb_shinfo(skb),
1642 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1643 
1644 	/*
1645 	 * if shinfo is shared we must drop the old head gracefully, but if it
1646 	 * is not we can just drop the old head and let the existing refcount
1647 	 * be since all we did is relocate the values
1648 	 */
1649 	if (skb_cloned(skb)) {
1650 		if (skb_orphan_frags(skb, gfp_mask))
1651 			goto nofrags;
1652 		if (skb_zcopy(skb))
1653 			refcount_inc(&skb_uarg(skb)->refcnt);
1654 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1655 			skb_frag_ref(skb, i);
1656 
1657 		if (skb_has_frag_list(skb))
1658 			skb_clone_fraglist(skb);
1659 
1660 		skb_release_data(skb);
1661 	} else {
1662 		skb_free_head(skb);
1663 	}
1664 	off = (data + nhead) - skb->head;
1665 
1666 	skb->head     = data;
1667 	skb->head_frag = 0;
1668 	skb->data    += off;
1669 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1670 	skb->end      = size;
1671 	off           = nhead;
1672 #else
1673 	skb->end      = skb->head + size;
1674 #endif
1675 	skb->tail	      += off;
1676 	skb_headers_offset_update(skb, nhead);
1677 	skb->cloned   = 0;
1678 	skb->hdr_len  = 0;
1679 	skb->nohdr    = 0;
1680 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1681 
1682 	skb_metadata_clear(skb);
1683 
1684 	/* It is not generally safe to change skb->truesize.
1685 	 * For the moment, we really care of rx path, or
1686 	 * when skb is orphaned (not attached to a socket).
1687 	 */
1688 	if (!skb->sk || skb->destructor == sock_edemux)
1689 		skb->truesize += size - osize;
1690 
1691 	return 0;
1692 
1693 nofrags:
1694 	kfree(data);
1695 nodata:
1696 	return -ENOMEM;
1697 }
1698 EXPORT_SYMBOL(pskb_expand_head);
1699 
1700 /* Make private copy of skb with writable head and some headroom */
1701 
1702 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1703 {
1704 	struct sk_buff *skb2;
1705 	int delta = headroom - skb_headroom(skb);
1706 
1707 	if (delta <= 0)
1708 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1709 	else {
1710 		skb2 = skb_clone(skb, GFP_ATOMIC);
1711 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1712 					     GFP_ATOMIC)) {
1713 			kfree_skb(skb2);
1714 			skb2 = NULL;
1715 		}
1716 	}
1717 	return skb2;
1718 }
1719 EXPORT_SYMBOL(skb_realloc_headroom);
1720 
1721 /**
1722  *	skb_copy_expand	-	copy and expand sk_buff
1723  *	@skb: buffer to copy
1724  *	@newheadroom: new free bytes at head
1725  *	@newtailroom: new free bytes at tail
1726  *	@gfp_mask: allocation priority
1727  *
1728  *	Make a copy of both an &sk_buff and its data and while doing so
1729  *	allocate additional space.
1730  *
1731  *	This is used when the caller wishes to modify the data and needs a
1732  *	private copy of the data to alter as well as more space for new fields.
1733  *	Returns %NULL on failure or the pointer to the buffer
1734  *	on success. The returned buffer has a reference count of 1.
1735  *
1736  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1737  *	is called from an interrupt.
1738  */
1739 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1740 				int newheadroom, int newtailroom,
1741 				gfp_t gfp_mask)
1742 {
1743 	/*
1744 	 *	Allocate the copy buffer
1745 	 */
1746 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1747 					gfp_mask, skb_alloc_rx_flag(skb),
1748 					NUMA_NO_NODE);
1749 	int oldheadroom = skb_headroom(skb);
1750 	int head_copy_len, head_copy_off;
1751 
1752 	if (!n)
1753 		return NULL;
1754 
1755 	skb_reserve(n, newheadroom);
1756 
1757 	/* Set the tail pointer and length */
1758 	skb_put(n, skb->len);
1759 
1760 	head_copy_len = oldheadroom;
1761 	head_copy_off = 0;
1762 	if (newheadroom <= head_copy_len)
1763 		head_copy_len = newheadroom;
1764 	else
1765 		head_copy_off = newheadroom - head_copy_len;
1766 
1767 	/* Copy the linear header and data. */
1768 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1769 			     skb->len + head_copy_len));
1770 
1771 	skb_copy_header(n, skb);
1772 
1773 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1774 
1775 	return n;
1776 }
1777 EXPORT_SYMBOL(skb_copy_expand);
1778 
1779 /**
1780  *	__skb_pad		-	zero pad the tail of an skb
1781  *	@skb: buffer to pad
1782  *	@pad: space to pad
1783  *	@free_on_error: free buffer on error
1784  *
1785  *	Ensure that a buffer is followed by a padding area that is zero
1786  *	filled. Used by network drivers which may DMA or transfer data
1787  *	beyond the buffer end onto the wire.
1788  *
1789  *	May return error in out of memory cases. The skb is freed on error
1790  *	if @free_on_error is true.
1791  */
1792 
1793 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1794 {
1795 	int err;
1796 	int ntail;
1797 
1798 	/* If the skbuff is non linear tailroom is always zero.. */
1799 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1800 		memset(skb->data+skb->len, 0, pad);
1801 		return 0;
1802 	}
1803 
1804 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1805 	if (likely(skb_cloned(skb) || ntail > 0)) {
1806 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1807 		if (unlikely(err))
1808 			goto free_skb;
1809 	}
1810 
1811 	/* FIXME: The use of this function with non-linear skb's really needs
1812 	 * to be audited.
1813 	 */
1814 	err = skb_linearize(skb);
1815 	if (unlikely(err))
1816 		goto free_skb;
1817 
1818 	memset(skb->data + skb->len, 0, pad);
1819 	return 0;
1820 
1821 free_skb:
1822 	if (free_on_error)
1823 		kfree_skb(skb);
1824 	return err;
1825 }
1826 EXPORT_SYMBOL(__skb_pad);
1827 
1828 /**
1829  *	pskb_put - add data to the tail of a potentially fragmented buffer
1830  *	@skb: start of the buffer to use
1831  *	@tail: tail fragment of the buffer to use
1832  *	@len: amount of data to add
1833  *
1834  *	This function extends the used data area of the potentially
1835  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1836  *	@skb itself. If this would exceed the total buffer size the kernel
1837  *	will panic. A pointer to the first byte of the extra data is
1838  *	returned.
1839  */
1840 
1841 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1842 {
1843 	if (tail != skb) {
1844 		skb->data_len += len;
1845 		skb->len += len;
1846 	}
1847 	return skb_put(tail, len);
1848 }
1849 EXPORT_SYMBOL_GPL(pskb_put);
1850 
1851 /**
1852  *	skb_put - add data to a buffer
1853  *	@skb: buffer to use
1854  *	@len: amount of data to add
1855  *
1856  *	This function extends the used data area of the buffer. If this would
1857  *	exceed the total buffer size the kernel will panic. A pointer to the
1858  *	first byte of the extra data is returned.
1859  */
1860 void *skb_put(struct sk_buff *skb, unsigned int len)
1861 {
1862 	void *tmp = skb_tail_pointer(skb);
1863 	SKB_LINEAR_ASSERT(skb);
1864 	skb->tail += len;
1865 	skb->len  += len;
1866 	if (unlikely(skb->tail > skb->end))
1867 		skb_over_panic(skb, len, __builtin_return_address(0));
1868 	return tmp;
1869 }
1870 EXPORT_SYMBOL(skb_put);
1871 
1872 /**
1873  *	skb_push - add data to the start of a buffer
1874  *	@skb: buffer to use
1875  *	@len: amount of data to add
1876  *
1877  *	This function extends the used data area of the buffer at the buffer
1878  *	start. If this would exceed the total buffer headroom the kernel will
1879  *	panic. A pointer to the first byte of the extra data is returned.
1880  */
1881 void *skb_push(struct sk_buff *skb, unsigned int len)
1882 {
1883 	skb->data -= len;
1884 	skb->len  += len;
1885 	if (unlikely(skb->data < skb->head))
1886 		skb_under_panic(skb, len, __builtin_return_address(0));
1887 	return skb->data;
1888 }
1889 EXPORT_SYMBOL(skb_push);
1890 
1891 /**
1892  *	skb_pull - remove data from the start of a buffer
1893  *	@skb: buffer to use
1894  *	@len: amount of data to remove
1895  *
1896  *	This function removes data from the start of a buffer, returning
1897  *	the memory to the headroom. A pointer to the next data in the buffer
1898  *	is returned. Once the data has been pulled future pushes will overwrite
1899  *	the old data.
1900  */
1901 void *skb_pull(struct sk_buff *skb, unsigned int len)
1902 {
1903 	return skb_pull_inline(skb, len);
1904 }
1905 EXPORT_SYMBOL(skb_pull);
1906 
1907 /**
1908  *	skb_trim - remove end from a buffer
1909  *	@skb: buffer to alter
1910  *	@len: new length
1911  *
1912  *	Cut the length of a buffer down by removing data from the tail. If
1913  *	the buffer is already under the length specified it is not modified.
1914  *	The skb must be linear.
1915  */
1916 void skb_trim(struct sk_buff *skb, unsigned int len)
1917 {
1918 	if (skb->len > len)
1919 		__skb_trim(skb, len);
1920 }
1921 EXPORT_SYMBOL(skb_trim);
1922 
1923 /* Trims skb to length len. It can change skb pointers.
1924  */
1925 
1926 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1927 {
1928 	struct sk_buff **fragp;
1929 	struct sk_buff *frag;
1930 	int offset = skb_headlen(skb);
1931 	int nfrags = skb_shinfo(skb)->nr_frags;
1932 	int i;
1933 	int err;
1934 
1935 	if (skb_cloned(skb) &&
1936 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1937 		return err;
1938 
1939 	i = 0;
1940 	if (offset >= len)
1941 		goto drop_pages;
1942 
1943 	for (; i < nfrags; i++) {
1944 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1945 
1946 		if (end < len) {
1947 			offset = end;
1948 			continue;
1949 		}
1950 
1951 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1952 
1953 drop_pages:
1954 		skb_shinfo(skb)->nr_frags = i;
1955 
1956 		for (; i < nfrags; i++)
1957 			skb_frag_unref(skb, i);
1958 
1959 		if (skb_has_frag_list(skb))
1960 			skb_drop_fraglist(skb);
1961 		goto done;
1962 	}
1963 
1964 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1965 	     fragp = &frag->next) {
1966 		int end = offset + frag->len;
1967 
1968 		if (skb_shared(frag)) {
1969 			struct sk_buff *nfrag;
1970 
1971 			nfrag = skb_clone(frag, GFP_ATOMIC);
1972 			if (unlikely(!nfrag))
1973 				return -ENOMEM;
1974 
1975 			nfrag->next = frag->next;
1976 			consume_skb(frag);
1977 			frag = nfrag;
1978 			*fragp = frag;
1979 		}
1980 
1981 		if (end < len) {
1982 			offset = end;
1983 			continue;
1984 		}
1985 
1986 		if (end > len &&
1987 		    unlikely((err = pskb_trim(frag, len - offset))))
1988 			return err;
1989 
1990 		if (frag->next)
1991 			skb_drop_list(&frag->next);
1992 		break;
1993 	}
1994 
1995 done:
1996 	if (len > skb_headlen(skb)) {
1997 		skb->data_len -= skb->len - len;
1998 		skb->len       = len;
1999 	} else {
2000 		skb->len       = len;
2001 		skb->data_len  = 0;
2002 		skb_set_tail_pointer(skb, len);
2003 	}
2004 
2005 	if (!skb->sk || skb->destructor == sock_edemux)
2006 		skb_condense(skb);
2007 	return 0;
2008 }
2009 EXPORT_SYMBOL(___pskb_trim);
2010 
2011 /* Note : use pskb_trim_rcsum() instead of calling this directly
2012  */
2013 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2014 {
2015 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2016 		int delta = skb->len - len;
2017 
2018 		skb->csum = csum_block_sub(skb->csum,
2019 					   skb_checksum(skb, len, delta, 0),
2020 					   len);
2021 	}
2022 	return __pskb_trim(skb, len);
2023 }
2024 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2025 
2026 /**
2027  *	__pskb_pull_tail - advance tail of skb header
2028  *	@skb: buffer to reallocate
2029  *	@delta: number of bytes to advance tail
2030  *
2031  *	The function makes a sense only on a fragmented &sk_buff,
2032  *	it expands header moving its tail forward and copying necessary
2033  *	data from fragmented part.
2034  *
2035  *	&sk_buff MUST have reference count of 1.
2036  *
2037  *	Returns %NULL (and &sk_buff does not change) if pull failed
2038  *	or value of new tail of skb in the case of success.
2039  *
2040  *	All the pointers pointing into skb header may change and must be
2041  *	reloaded after call to this function.
2042  */
2043 
2044 /* Moves tail of skb head forward, copying data from fragmented part,
2045  * when it is necessary.
2046  * 1. It may fail due to malloc failure.
2047  * 2. It may change skb pointers.
2048  *
2049  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2050  */
2051 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2052 {
2053 	/* If skb has not enough free space at tail, get new one
2054 	 * plus 128 bytes for future expansions. If we have enough
2055 	 * room at tail, reallocate without expansion only if skb is cloned.
2056 	 */
2057 	int i, k, eat = (skb->tail + delta) - skb->end;
2058 
2059 	if (eat > 0 || skb_cloned(skb)) {
2060 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2061 				     GFP_ATOMIC))
2062 			return NULL;
2063 	}
2064 
2065 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2066 			     skb_tail_pointer(skb), delta));
2067 
2068 	/* Optimization: no fragments, no reasons to preestimate
2069 	 * size of pulled pages. Superb.
2070 	 */
2071 	if (!skb_has_frag_list(skb))
2072 		goto pull_pages;
2073 
2074 	/* Estimate size of pulled pages. */
2075 	eat = delta;
2076 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2077 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2078 
2079 		if (size >= eat)
2080 			goto pull_pages;
2081 		eat -= size;
2082 	}
2083 
2084 	/* If we need update frag list, we are in troubles.
2085 	 * Certainly, it is possible to add an offset to skb data,
2086 	 * but taking into account that pulling is expected to
2087 	 * be very rare operation, it is worth to fight against
2088 	 * further bloating skb head and crucify ourselves here instead.
2089 	 * Pure masohism, indeed. 8)8)
2090 	 */
2091 	if (eat) {
2092 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2093 		struct sk_buff *clone = NULL;
2094 		struct sk_buff *insp = NULL;
2095 
2096 		do {
2097 			if (list->len <= eat) {
2098 				/* Eaten as whole. */
2099 				eat -= list->len;
2100 				list = list->next;
2101 				insp = list;
2102 			} else {
2103 				/* Eaten partially. */
2104 
2105 				if (skb_shared(list)) {
2106 					/* Sucks! We need to fork list. :-( */
2107 					clone = skb_clone(list, GFP_ATOMIC);
2108 					if (!clone)
2109 						return NULL;
2110 					insp = list->next;
2111 					list = clone;
2112 				} else {
2113 					/* This may be pulled without
2114 					 * problems. */
2115 					insp = list;
2116 				}
2117 				if (!pskb_pull(list, eat)) {
2118 					kfree_skb(clone);
2119 					return NULL;
2120 				}
2121 				break;
2122 			}
2123 		} while (eat);
2124 
2125 		/* Free pulled out fragments. */
2126 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2127 			skb_shinfo(skb)->frag_list = list->next;
2128 			kfree_skb(list);
2129 		}
2130 		/* And insert new clone at head. */
2131 		if (clone) {
2132 			clone->next = list;
2133 			skb_shinfo(skb)->frag_list = clone;
2134 		}
2135 	}
2136 	/* Success! Now we may commit changes to skb data. */
2137 
2138 pull_pages:
2139 	eat = delta;
2140 	k = 0;
2141 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2142 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2143 
2144 		if (size <= eat) {
2145 			skb_frag_unref(skb, i);
2146 			eat -= size;
2147 		} else {
2148 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2149 
2150 			*frag = skb_shinfo(skb)->frags[i];
2151 			if (eat) {
2152 				skb_frag_off_add(frag, eat);
2153 				skb_frag_size_sub(frag, eat);
2154 				if (!i)
2155 					goto end;
2156 				eat = 0;
2157 			}
2158 			k++;
2159 		}
2160 	}
2161 	skb_shinfo(skb)->nr_frags = k;
2162 
2163 end:
2164 	skb->tail     += delta;
2165 	skb->data_len -= delta;
2166 
2167 	if (!skb->data_len)
2168 		skb_zcopy_clear(skb, false);
2169 
2170 	return skb_tail_pointer(skb);
2171 }
2172 EXPORT_SYMBOL(__pskb_pull_tail);
2173 
2174 /**
2175  *	skb_copy_bits - copy bits from skb to kernel buffer
2176  *	@skb: source skb
2177  *	@offset: offset in source
2178  *	@to: destination buffer
2179  *	@len: number of bytes to copy
2180  *
2181  *	Copy the specified number of bytes from the source skb to the
2182  *	destination buffer.
2183  *
2184  *	CAUTION ! :
2185  *		If its prototype is ever changed,
2186  *		check arch/{*}/net/{*}.S files,
2187  *		since it is called from BPF assembly code.
2188  */
2189 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2190 {
2191 	int start = skb_headlen(skb);
2192 	struct sk_buff *frag_iter;
2193 	int i, copy;
2194 
2195 	if (offset > (int)skb->len - len)
2196 		goto fault;
2197 
2198 	/* Copy header. */
2199 	if ((copy = start - offset) > 0) {
2200 		if (copy > len)
2201 			copy = len;
2202 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2203 		if ((len -= copy) == 0)
2204 			return 0;
2205 		offset += copy;
2206 		to     += copy;
2207 	}
2208 
2209 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2210 		int end;
2211 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2212 
2213 		WARN_ON(start > offset + len);
2214 
2215 		end = start + skb_frag_size(f);
2216 		if ((copy = end - offset) > 0) {
2217 			u32 p_off, p_len, copied;
2218 			struct page *p;
2219 			u8 *vaddr;
2220 
2221 			if (copy > len)
2222 				copy = len;
2223 
2224 			skb_frag_foreach_page(f,
2225 					      skb_frag_off(f) + offset - start,
2226 					      copy, p, p_off, p_len, copied) {
2227 				vaddr = kmap_atomic(p);
2228 				memcpy(to + copied, vaddr + p_off, p_len);
2229 				kunmap_atomic(vaddr);
2230 			}
2231 
2232 			if ((len -= copy) == 0)
2233 				return 0;
2234 			offset += copy;
2235 			to     += copy;
2236 		}
2237 		start = end;
2238 	}
2239 
2240 	skb_walk_frags(skb, frag_iter) {
2241 		int end;
2242 
2243 		WARN_ON(start > offset + len);
2244 
2245 		end = start + frag_iter->len;
2246 		if ((copy = end - offset) > 0) {
2247 			if (copy > len)
2248 				copy = len;
2249 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2250 				goto fault;
2251 			if ((len -= copy) == 0)
2252 				return 0;
2253 			offset += copy;
2254 			to     += copy;
2255 		}
2256 		start = end;
2257 	}
2258 
2259 	if (!len)
2260 		return 0;
2261 
2262 fault:
2263 	return -EFAULT;
2264 }
2265 EXPORT_SYMBOL(skb_copy_bits);
2266 
2267 /*
2268  * Callback from splice_to_pipe(), if we need to release some pages
2269  * at the end of the spd in case we error'ed out in filling the pipe.
2270  */
2271 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2272 {
2273 	put_page(spd->pages[i]);
2274 }
2275 
2276 static struct page *linear_to_page(struct page *page, unsigned int *len,
2277 				   unsigned int *offset,
2278 				   struct sock *sk)
2279 {
2280 	struct page_frag *pfrag = sk_page_frag(sk);
2281 
2282 	if (!sk_page_frag_refill(sk, pfrag))
2283 		return NULL;
2284 
2285 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2286 
2287 	memcpy(page_address(pfrag->page) + pfrag->offset,
2288 	       page_address(page) + *offset, *len);
2289 	*offset = pfrag->offset;
2290 	pfrag->offset += *len;
2291 
2292 	return pfrag->page;
2293 }
2294 
2295 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2296 			     struct page *page,
2297 			     unsigned int offset)
2298 {
2299 	return	spd->nr_pages &&
2300 		spd->pages[spd->nr_pages - 1] == page &&
2301 		(spd->partial[spd->nr_pages - 1].offset +
2302 		 spd->partial[spd->nr_pages - 1].len == offset);
2303 }
2304 
2305 /*
2306  * Fill page/offset/length into spd, if it can hold more pages.
2307  */
2308 static bool spd_fill_page(struct splice_pipe_desc *spd,
2309 			  struct pipe_inode_info *pipe, struct page *page,
2310 			  unsigned int *len, unsigned int offset,
2311 			  bool linear,
2312 			  struct sock *sk)
2313 {
2314 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2315 		return true;
2316 
2317 	if (linear) {
2318 		page = linear_to_page(page, len, &offset, sk);
2319 		if (!page)
2320 			return true;
2321 	}
2322 	if (spd_can_coalesce(spd, page, offset)) {
2323 		spd->partial[spd->nr_pages - 1].len += *len;
2324 		return false;
2325 	}
2326 	get_page(page);
2327 	spd->pages[spd->nr_pages] = page;
2328 	spd->partial[spd->nr_pages].len = *len;
2329 	spd->partial[spd->nr_pages].offset = offset;
2330 	spd->nr_pages++;
2331 
2332 	return false;
2333 }
2334 
2335 static bool __splice_segment(struct page *page, unsigned int poff,
2336 			     unsigned int plen, unsigned int *off,
2337 			     unsigned int *len,
2338 			     struct splice_pipe_desc *spd, bool linear,
2339 			     struct sock *sk,
2340 			     struct pipe_inode_info *pipe)
2341 {
2342 	if (!*len)
2343 		return true;
2344 
2345 	/* skip this segment if already processed */
2346 	if (*off >= plen) {
2347 		*off -= plen;
2348 		return false;
2349 	}
2350 
2351 	/* ignore any bits we already processed */
2352 	poff += *off;
2353 	plen -= *off;
2354 	*off = 0;
2355 
2356 	do {
2357 		unsigned int flen = min(*len, plen);
2358 
2359 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2360 				  linear, sk))
2361 			return true;
2362 		poff += flen;
2363 		plen -= flen;
2364 		*len -= flen;
2365 	} while (*len && plen);
2366 
2367 	return false;
2368 }
2369 
2370 /*
2371  * Map linear and fragment data from the skb to spd. It reports true if the
2372  * pipe is full or if we already spliced the requested length.
2373  */
2374 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2375 			      unsigned int *offset, unsigned int *len,
2376 			      struct splice_pipe_desc *spd, struct sock *sk)
2377 {
2378 	int seg;
2379 	struct sk_buff *iter;
2380 
2381 	/* map the linear part :
2382 	 * If skb->head_frag is set, this 'linear' part is backed by a
2383 	 * fragment, and if the head is not shared with any clones then
2384 	 * we can avoid a copy since we own the head portion of this page.
2385 	 */
2386 	if (__splice_segment(virt_to_page(skb->data),
2387 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2388 			     skb_headlen(skb),
2389 			     offset, len, spd,
2390 			     skb_head_is_locked(skb),
2391 			     sk, pipe))
2392 		return true;
2393 
2394 	/*
2395 	 * then map the fragments
2396 	 */
2397 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2398 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2399 
2400 		if (__splice_segment(skb_frag_page(f),
2401 				     skb_frag_off(f), skb_frag_size(f),
2402 				     offset, len, spd, false, sk, pipe))
2403 			return true;
2404 	}
2405 
2406 	skb_walk_frags(skb, iter) {
2407 		if (*offset >= iter->len) {
2408 			*offset -= iter->len;
2409 			continue;
2410 		}
2411 		/* __skb_splice_bits() only fails if the output has no room
2412 		 * left, so no point in going over the frag_list for the error
2413 		 * case.
2414 		 */
2415 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2416 			return true;
2417 	}
2418 
2419 	return false;
2420 }
2421 
2422 /*
2423  * Map data from the skb to a pipe. Should handle both the linear part,
2424  * the fragments, and the frag list.
2425  */
2426 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2427 		    struct pipe_inode_info *pipe, unsigned int tlen,
2428 		    unsigned int flags)
2429 {
2430 	struct partial_page partial[MAX_SKB_FRAGS];
2431 	struct page *pages[MAX_SKB_FRAGS];
2432 	struct splice_pipe_desc spd = {
2433 		.pages = pages,
2434 		.partial = partial,
2435 		.nr_pages_max = MAX_SKB_FRAGS,
2436 		.ops = &nosteal_pipe_buf_ops,
2437 		.spd_release = sock_spd_release,
2438 	};
2439 	int ret = 0;
2440 
2441 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2442 
2443 	if (spd.nr_pages)
2444 		ret = splice_to_pipe(pipe, &spd);
2445 
2446 	return ret;
2447 }
2448 EXPORT_SYMBOL_GPL(skb_splice_bits);
2449 
2450 /* Send skb data on a socket. Socket must be locked. */
2451 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2452 			 int len)
2453 {
2454 	unsigned int orig_len = len;
2455 	struct sk_buff *head = skb;
2456 	unsigned short fragidx;
2457 	int slen, ret;
2458 
2459 do_frag_list:
2460 
2461 	/* Deal with head data */
2462 	while (offset < skb_headlen(skb) && len) {
2463 		struct kvec kv;
2464 		struct msghdr msg;
2465 
2466 		slen = min_t(int, len, skb_headlen(skb) - offset);
2467 		kv.iov_base = skb->data + offset;
2468 		kv.iov_len = slen;
2469 		memset(&msg, 0, sizeof(msg));
2470 		msg.msg_flags = MSG_DONTWAIT;
2471 
2472 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2473 		if (ret <= 0)
2474 			goto error;
2475 
2476 		offset += ret;
2477 		len -= ret;
2478 	}
2479 
2480 	/* All the data was skb head? */
2481 	if (!len)
2482 		goto out;
2483 
2484 	/* Make offset relative to start of frags */
2485 	offset -= skb_headlen(skb);
2486 
2487 	/* Find where we are in frag list */
2488 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2489 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2490 
2491 		if (offset < skb_frag_size(frag))
2492 			break;
2493 
2494 		offset -= skb_frag_size(frag);
2495 	}
2496 
2497 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2498 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2499 
2500 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2501 
2502 		while (slen) {
2503 			ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2504 						     skb_frag_off(frag) + offset,
2505 						     slen, MSG_DONTWAIT);
2506 			if (ret <= 0)
2507 				goto error;
2508 
2509 			len -= ret;
2510 			offset += ret;
2511 			slen -= ret;
2512 		}
2513 
2514 		offset = 0;
2515 	}
2516 
2517 	if (len) {
2518 		/* Process any frag lists */
2519 
2520 		if (skb == head) {
2521 			if (skb_has_frag_list(skb)) {
2522 				skb = skb_shinfo(skb)->frag_list;
2523 				goto do_frag_list;
2524 			}
2525 		} else if (skb->next) {
2526 			skb = skb->next;
2527 			goto do_frag_list;
2528 		}
2529 	}
2530 
2531 out:
2532 	return orig_len - len;
2533 
2534 error:
2535 	return orig_len == len ? ret : orig_len - len;
2536 }
2537 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2538 
2539 /**
2540  *	skb_store_bits - store bits from kernel buffer to skb
2541  *	@skb: destination buffer
2542  *	@offset: offset in destination
2543  *	@from: source buffer
2544  *	@len: number of bytes to copy
2545  *
2546  *	Copy the specified number of bytes from the source buffer to the
2547  *	destination skb.  This function handles all the messy bits of
2548  *	traversing fragment lists and such.
2549  */
2550 
2551 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2552 {
2553 	int start = skb_headlen(skb);
2554 	struct sk_buff *frag_iter;
2555 	int i, copy;
2556 
2557 	if (offset > (int)skb->len - len)
2558 		goto fault;
2559 
2560 	if ((copy = start - offset) > 0) {
2561 		if (copy > len)
2562 			copy = len;
2563 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2564 		if ((len -= copy) == 0)
2565 			return 0;
2566 		offset += copy;
2567 		from += copy;
2568 	}
2569 
2570 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2571 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2572 		int end;
2573 
2574 		WARN_ON(start > offset + len);
2575 
2576 		end = start + skb_frag_size(frag);
2577 		if ((copy = end - offset) > 0) {
2578 			u32 p_off, p_len, copied;
2579 			struct page *p;
2580 			u8 *vaddr;
2581 
2582 			if (copy > len)
2583 				copy = len;
2584 
2585 			skb_frag_foreach_page(frag,
2586 					      skb_frag_off(frag) + offset - start,
2587 					      copy, p, p_off, p_len, copied) {
2588 				vaddr = kmap_atomic(p);
2589 				memcpy(vaddr + p_off, from + copied, p_len);
2590 				kunmap_atomic(vaddr);
2591 			}
2592 
2593 			if ((len -= copy) == 0)
2594 				return 0;
2595 			offset += copy;
2596 			from += copy;
2597 		}
2598 		start = end;
2599 	}
2600 
2601 	skb_walk_frags(skb, frag_iter) {
2602 		int end;
2603 
2604 		WARN_ON(start > offset + len);
2605 
2606 		end = start + frag_iter->len;
2607 		if ((copy = end - offset) > 0) {
2608 			if (copy > len)
2609 				copy = len;
2610 			if (skb_store_bits(frag_iter, offset - start,
2611 					   from, copy))
2612 				goto fault;
2613 			if ((len -= copy) == 0)
2614 				return 0;
2615 			offset += copy;
2616 			from += copy;
2617 		}
2618 		start = end;
2619 	}
2620 	if (!len)
2621 		return 0;
2622 
2623 fault:
2624 	return -EFAULT;
2625 }
2626 EXPORT_SYMBOL(skb_store_bits);
2627 
2628 /* Checksum skb data. */
2629 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2630 		      __wsum csum, const struct skb_checksum_ops *ops)
2631 {
2632 	int start = skb_headlen(skb);
2633 	int i, copy = start - offset;
2634 	struct sk_buff *frag_iter;
2635 	int pos = 0;
2636 
2637 	/* Checksum header. */
2638 	if (copy > 0) {
2639 		if (copy > len)
2640 			copy = len;
2641 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2642 				       skb->data + offset, copy, csum);
2643 		if ((len -= copy) == 0)
2644 			return csum;
2645 		offset += copy;
2646 		pos	= copy;
2647 	}
2648 
2649 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2650 		int end;
2651 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2652 
2653 		WARN_ON(start > offset + len);
2654 
2655 		end = start + skb_frag_size(frag);
2656 		if ((copy = end - offset) > 0) {
2657 			u32 p_off, p_len, copied;
2658 			struct page *p;
2659 			__wsum csum2;
2660 			u8 *vaddr;
2661 
2662 			if (copy > len)
2663 				copy = len;
2664 
2665 			skb_frag_foreach_page(frag,
2666 					      skb_frag_off(frag) + offset - start,
2667 					      copy, p, p_off, p_len, copied) {
2668 				vaddr = kmap_atomic(p);
2669 				csum2 = INDIRECT_CALL_1(ops->update,
2670 							csum_partial_ext,
2671 							vaddr + p_off, p_len, 0);
2672 				kunmap_atomic(vaddr);
2673 				csum = INDIRECT_CALL_1(ops->combine,
2674 						       csum_block_add_ext, csum,
2675 						       csum2, pos, p_len);
2676 				pos += p_len;
2677 			}
2678 
2679 			if (!(len -= copy))
2680 				return csum;
2681 			offset += copy;
2682 		}
2683 		start = end;
2684 	}
2685 
2686 	skb_walk_frags(skb, frag_iter) {
2687 		int end;
2688 
2689 		WARN_ON(start > offset + len);
2690 
2691 		end = start + frag_iter->len;
2692 		if ((copy = end - offset) > 0) {
2693 			__wsum csum2;
2694 			if (copy > len)
2695 				copy = len;
2696 			csum2 = __skb_checksum(frag_iter, offset - start,
2697 					       copy, 0, ops);
2698 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2699 					       csum, csum2, pos, copy);
2700 			if ((len -= copy) == 0)
2701 				return csum;
2702 			offset += copy;
2703 			pos    += copy;
2704 		}
2705 		start = end;
2706 	}
2707 	BUG_ON(len);
2708 
2709 	return csum;
2710 }
2711 EXPORT_SYMBOL(__skb_checksum);
2712 
2713 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2714 		    int len, __wsum csum)
2715 {
2716 	const struct skb_checksum_ops ops = {
2717 		.update  = csum_partial_ext,
2718 		.combine = csum_block_add_ext,
2719 	};
2720 
2721 	return __skb_checksum(skb, offset, len, csum, &ops);
2722 }
2723 EXPORT_SYMBOL(skb_checksum);
2724 
2725 /* Both of above in one bottle. */
2726 
2727 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2728 				    u8 *to, int len)
2729 {
2730 	int start = skb_headlen(skb);
2731 	int i, copy = start - offset;
2732 	struct sk_buff *frag_iter;
2733 	int pos = 0;
2734 	__wsum csum = 0;
2735 
2736 	/* Copy header. */
2737 	if (copy > 0) {
2738 		if (copy > len)
2739 			copy = len;
2740 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2741 						 copy);
2742 		if ((len -= copy) == 0)
2743 			return csum;
2744 		offset += copy;
2745 		to     += copy;
2746 		pos	= copy;
2747 	}
2748 
2749 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2750 		int end;
2751 
2752 		WARN_ON(start > offset + len);
2753 
2754 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2755 		if ((copy = end - offset) > 0) {
2756 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2757 			u32 p_off, p_len, copied;
2758 			struct page *p;
2759 			__wsum csum2;
2760 			u8 *vaddr;
2761 
2762 			if (copy > len)
2763 				copy = len;
2764 
2765 			skb_frag_foreach_page(frag,
2766 					      skb_frag_off(frag) + offset - start,
2767 					      copy, p, p_off, p_len, copied) {
2768 				vaddr = kmap_atomic(p);
2769 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2770 								  to + copied,
2771 								  p_len);
2772 				kunmap_atomic(vaddr);
2773 				csum = csum_block_add(csum, csum2, pos);
2774 				pos += p_len;
2775 			}
2776 
2777 			if (!(len -= copy))
2778 				return csum;
2779 			offset += copy;
2780 			to     += copy;
2781 		}
2782 		start = end;
2783 	}
2784 
2785 	skb_walk_frags(skb, frag_iter) {
2786 		__wsum csum2;
2787 		int end;
2788 
2789 		WARN_ON(start > offset + len);
2790 
2791 		end = start + frag_iter->len;
2792 		if ((copy = end - offset) > 0) {
2793 			if (copy > len)
2794 				copy = len;
2795 			csum2 = skb_copy_and_csum_bits(frag_iter,
2796 						       offset - start,
2797 						       to, copy);
2798 			csum = csum_block_add(csum, csum2, pos);
2799 			if ((len -= copy) == 0)
2800 				return csum;
2801 			offset += copy;
2802 			to     += copy;
2803 			pos    += copy;
2804 		}
2805 		start = end;
2806 	}
2807 	BUG_ON(len);
2808 	return csum;
2809 }
2810 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2811 
2812 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2813 {
2814 	__sum16 sum;
2815 
2816 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2817 	/* See comments in __skb_checksum_complete(). */
2818 	if (likely(!sum)) {
2819 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2820 		    !skb->csum_complete_sw)
2821 			netdev_rx_csum_fault(skb->dev, skb);
2822 	}
2823 	if (!skb_shared(skb))
2824 		skb->csum_valid = !sum;
2825 	return sum;
2826 }
2827 EXPORT_SYMBOL(__skb_checksum_complete_head);
2828 
2829 /* This function assumes skb->csum already holds pseudo header's checksum,
2830  * which has been changed from the hardware checksum, for example, by
2831  * __skb_checksum_validate_complete(). And, the original skb->csum must
2832  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2833  *
2834  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2835  * zero. The new checksum is stored back into skb->csum unless the skb is
2836  * shared.
2837  */
2838 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2839 {
2840 	__wsum csum;
2841 	__sum16 sum;
2842 
2843 	csum = skb_checksum(skb, 0, skb->len, 0);
2844 
2845 	sum = csum_fold(csum_add(skb->csum, csum));
2846 	/* This check is inverted, because we already knew the hardware
2847 	 * checksum is invalid before calling this function. So, if the
2848 	 * re-computed checksum is valid instead, then we have a mismatch
2849 	 * between the original skb->csum and skb_checksum(). This means either
2850 	 * the original hardware checksum is incorrect or we screw up skb->csum
2851 	 * when moving skb->data around.
2852 	 */
2853 	if (likely(!sum)) {
2854 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2855 		    !skb->csum_complete_sw)
2856 			netdev_rx_csum_fault(skb->dev, skb);
2857 	}
2858 
2859 	if (!skb_shared(skb)) {
2860 		/* Save full packet checksum */
2861 		skb->csum = csum;
2862 		skb->ip_summed = CHECKSUM_COMPLETE;
2863 		skb->csum_complete_sw = 1;
2864 		skb->csum_valid = !sum;
2865 	}
2866 
2867 	return sum;
2868 }
2869 EXPORT_SYMBOL(__skb_checksum_complete);
2870 
2871 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2872 {
2873 	net_warn_ratelimited(
2874 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2875 		__func__);
2876 	return 0;
2877 }
2878 
2879 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2880 				       int offset, int len)
2881 {
2882 	net_warn_ratelimited(
2883 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2884 		__func__);
2885 	return 0;
2886 }
2887 
2888 static const struct skb_checksum_ops default_crc32c_ops = {
2889 	.update  = warn_crc32c_csum_update,
2890 	.combine = warn_crc32c_csum_combine,
2891 };
2892 
2893 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2894 	&default_crc32c_ops;
2895 EXPORT_SYMBOL(crc32c_csum_stub);
2896 
2897  /**
2898  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2899  *	@from: source buffer
2900  *
2901  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2902  *	into skb_zerocopy().
2903  */
2904 unsigned int
2905 skb_zerocopy_headlen(const struct sk_buff *from)
2906 {
2907 	unsigned int hlen = 0;
2908 
2909 	if (!from->head_frag ||
2910 	    skb_headlen(from) < L1_CACHE_BYTES ||
2911 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2912 		hlen = skb_headlen(from);
2913 
2914 	if (skb_has_frag_list(from))
2915 		hlen = from->len;
2916 
2917 	return hlen;
2918 }
2919 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2920 
2921 /**
2922  *	skb_zerocopy - Zero copy skb to skb
2923  *	@to: destination buffer
2924  *	@from: source buffer
2925  *	@len: number of bytes to copy from source buffer
2926  *	@hlen: size of linear headroom in destination buffer
2927  *
2928  *	Copies up to `len` bytes from `from` to `to` by creating references
2929  *	to the frags in the source buffer.
2930  *
2931  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2932  *	headroom in the `to` buffer.
2933  *
2934  *	Return value:
2935  *	0: everything is OK
2936  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2937  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2938  */
2939 int
2940 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2941 {
2942 	int i, j = 0;
2943 	int plen = 0; /* length of skb->head fragment */
2944 	int ret;
2945 	struct page *page;
2946 	unsigned int offset;
2947 
2948 	BUG_ON(!from->head_frag && !hlen);
2949 
2950 	/* dont bother with small payloads */
2951 	if (len <= skb_tailroom(to))
2952 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2953 
2954 	if (hlen) {
2955 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2956 		if (unlikely(ret))
2957 			return ret;
2958 		len -= hlen;
2959 	} else {
2960 		plen = min_t(int, skb_headlen(from), len);
2961 		if (plen) {
2962 			page = virt_to_head_page(from->head);
2963 			offset = from->data - (unsigned char *)page_address(page);
2964 			__skb_fill_page_desc(to, 0, page, offset, plen);
2965 			get_page(page);
2966 			j = 1;
2967 			len -= plen;
2968 		}
2969 	}
2970 
2971 	to->truesize += len + plen;
2972 	to->len += len + plen;
2973 	to->data_len += len + plen;
2974 
2975 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2976 		skb_tx_error(from);
2977 		return -ENOMEM;
2978 	}
2979 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2980 
2981 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2982 		int size;
2983 
2984 		if (!len)
2985 			break;
2986 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2987 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
2988 					len);
2989 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
2990 		len -= size;
2991 		skb_frag_ref(to, j);
2992 		j++;
2993 	}
2994 	skb_shinfo(to)->nr_frags = j;
2995 
2996 	return 0;
2997 }
2998 EXPORT_SYMBOL_GPL(skb_zerocopy);
2999 
3000 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3001 {
3002 	__wsum csum;
3003 	long csstart;
3004 
3005 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3006 		csstart = skb_checksum_start_offset(skb);
3007 	else
3008 		csstart = skb_headlen(skb);
3009 
3010 	BUG_ON(csstart > skb_headlen(skb));
3011 
3012 	skb_copy_from_linear_data(skb, to, csstart);
3013 
3014 	csum = 0;
3015 	if (csstart != skb->len)
3016 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3017 					      skb->len - csstart);
3018 
3019 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3020 		long csstuff = csstart + skb->csum_offset;
3021 
3022 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3023 	}
3024 }
3025 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3026 
3027 /**
3028  *	skb_dequeue - remove from the head of the queue
3029  *	@list: list to dequeue from
3030  *
3031  *	Remove the head of the list. The list lock is taken so the function
3032  *	may be used safely with other locking list functions. The head item is
3033  *	returned or %NULL if the list is empty.
3034  */
3035 
3036 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3037 {
3038 	unsigned long flags;
3039 	struct sk_buff *result;
3040 
3041 	spin_lock_irqsave(&list->lock, flags);
3042 	result = __skb_dequeue(list);
3043 	spin_unlock_irqrestore(&list->lock, flags);
3044 	return result;
3045 }
3046 EXPORT_SYMBOL(skb_dequeue);
3047 
3048 /**
3049  *	skb_dequeue_tail - remove from the tail of the queue
3050  *	@list: list to dequeue from
3051  *
3052  *	Remove the tail of the list. The list lock is taken so the function
3053  *	may be used safely with other locking list functions. The tail item is
3054  *	returned or %NULL if the list is empty.
3055  */
3056 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3057 {
3058 	unsigned long flags;
3059 	struct sk_buff *result;
3060 
3061 	spin_lock_irqsave(&list->lock, flags);
3062 	result = __skb_dequeue_tail(list);
3063 	spin_unlock_irqrestore(&list->lock, flags);
3064 	return result;
3065 }
3066 EXPORT_SYMBOL(skb_dequeue_tail);
3067 
3068 /**
3069  *	skb_queue_purge - empty a list
3070  *	@list: list to empty
3071  *
3072  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3073  *	the list and one reference dropped. This function takes the list
3074  *	lock and is atomic with respect to other list locking functions.
3075  */
3076 void skb_queue_purge(struct sk_buff_head *list)
3077 {
3078 	struct sk_buff *skb;
3079 	while ((skb = skb_dequeue(list)) != NULL)
3080 		kfree_skb(skb);
3081 }
3082 EXPORT_SYMBOL(skb_queue_purge);
3083 
3084 /**
3085  *	skb_rbtree_purge - empty a skb rbtree
3086  *	@root: root of the rbtree to empty
3087  *	Return value: the sum of truesizes of all purged skbs.
3088  *
3089  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3090  *	the list and one reference dropped. This function does not take
3091  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3092  *	out-of-order queue is protected by the socket lock).
3093  */
3094 unsigned int skb_rbtree_purge(struct rb_root *root)
3095 {
3096 	struct rb_node *p = rb_first(root);
3097 	unsigned int sum = 0;
3098 
3099 	while (p) {
3100 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3101 
3102 		p = rb_next(p);
3103 		rb_erase(&skb->rbnode, root);
3104 		sum += skb->truesize;
3105 		kfree_skb(skb);
3106 	}
3107 	return sum;
3108 }
3109 
3110 /**
3111  *	skb_queue_head - queue a buffer at the list head
3112  *	@list: list to use
3113  *	@newsk: buffer to queue
3114  *
3115  *	Queue a buffer at the start of the list. This function takes the
3116  *	list lock and can be used safely with other locking &sk_buff functions
3117  *	safely.
3118  *
3119  *	A buffer cannot be placed on two lists at the same time.
3120  */
3121 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3122 {
3123 	unsigned long flags;
3124 
3125 	spin_lock_irqsave(&list->lock, flags);
3126 	__skb_queue_head(list, newsk);
3127 	spin_unlock_irqrestore(&list->lock, flags);
3128 }
3129 EXPORT_SYMBOL(skb_queue_head);
3130 
3131 /**
3132  *	skb_queue_tail - queue a buffer at the list tail
3133  *	@list: list to use
3134  *	@newsk: buffer to queue
3135  *
3136  *	Queue a buffer at the tail of the list. This function takes the
3137  *	list lock and can be used safely with other locking &sk_buff functions
3138  *	safely.
3139  *
3140  *	A buffer cannot be placed on two lists at the same time.
3141  */
3142 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3143 {
3144 	unsigned long flags;
3145 
3146 	spin_lock_irqsave(&list->lock, flags);
3147 	__skb_queue_tail(list, newsk);
3148 	spin_unlock_irqrestore(&list->lock, flags);
3149 }
3150 EXPORT_SYMBOL(skb_queue_tail);
3151 
3152 /**
3153  *	skb_unlink	-	remove a buffer from a list
3154  *	@skb: buffer to remove
3155  *	@list: list to use
3156  *
3157  *	Remove a packet from a list. The list locks are taken and this
3158  *	function is atomic with respect to other list locked calls
3159  *
3160  *	You must know what list the SKB is on.
3161  */
3162 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3163 {
3164 	unsigned long flags;
3165 
3166 	spin_lock_irqsave(&list->lock, flags);
3167 	__skb_unlink(skb, list);
3168 	spin_unlock_irqrestore(&list->lock, flags);
3169 }
3170 EXPORT_SYMBOL(skb_unlink);
3171 
3172 /**
3173  *	skb_append	-	append a buffer
3174  *	@old: buffer to insert after
3175  *	@newsk: buffer to insert
3176  *	@list: list to use
3177  *
3178  *	Place a packet after a given packet in a list. The list locks are taken
3179  *	and this function is atomic with respect to other list locked calls.
3180  *	A buffer cannot be placed on two lists at the same time.
3181  */
3182 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3183 {
3184 	unsigned long flags;
3185 
3186 	spin_lock_irqsave(&list->lock, flags);
3187 	__skb_queue_after(list, old, newsk);
3188 	spin_unlock_irqrestore(&list->lock, flags);
3189 }
3190 EXPORT_SYMBOL(skb_append);
3191 
3192 static inline void skb_split_inside_header(struct sk_buff *skb,
3193 					   struct sk_buff* skb1,
3194 					   const u32 len, const int pos)
3195 {
3196 	int i;
3197 
3198 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3199 					 pos - len);
3200 	/* And move data appendix as is. */
3201 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3202 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3203 
3204 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3205 	skb_shinfo(skb)->nr_frags  = 0;
3206 	skb1->data_len		   = skb->data_len;
3207 	skb1->len		   += skb1->data_len;
3208 	skb->data_len		   = 0;
3209 	skb->len		   = len;
3210 	skb_set_tail_pointer(skb, len);
3211 }
3212 
3213 static inline void skb_split_no_header(struct sk_buff *skb,
3214 				       struct sk_buff* skb1,
3215 				       const u32 len, int pos)
3216 {
3217 	int i, k = 0;
3218 	const int nfrags = skb_shinfo(skb)->nr_frags;
3219 
3220 	skb_shinfo(skb)->nr_frags = 0;
3221 	skb1->len		  = skb1->data_len = skb->len - len;
3222 	skb->len		  = len;
3223 	skb->data_len		  = len - pos;
3224 
3225 	for (i = 0; i < nfrags; i++) {
3226 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3227 
3228 		if (pos + size > len) {
3229 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3230 
3231 			if (pos < len) {
3232 				/* Split frag.
3233 				 * We have two variants in this case:
3234 				 * 1. Move all the frag to the second
3235 				 *    part, if it is possible. F.e.
3236 				 *    this approach is mandatory for TUX,
3237 				 *    where splitting is expensive.
3238 				 * 2. Split is accurately. We make this.
3239 				 */
3240 				skb_frag_ref(skb, i);
3241 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3242 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3243 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3244 				skb_shinfo(skb)->nr_frags++;
3245 			}
3246 			k++;
3247 		} else
3248 			skb_shinfo(skb)->nr_frags++;
3249 		pos += size;
3250 	}
3251 	skb_shinfo(skb1)->nr_frags = k;
3252 }
3253 
3254 /**
3255  * skb_split - Split fragmented skb to two parts at length len.
3256  * @skb: the buffer to split
3257  * @skb1: the buffer to receive the second part
3258  * @len: new length for skb
3259  */
3260 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3261 {
3262 	int pos = skb_headlen(skb);
3263 
3264 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3265 				      SKBTX_SHARED_FRAG;
3266 	skb_zerocopy_clone(skb1, skb, 0);
3267 	if (len < pos)	/* Split line is inside header. */
3268 		skb_split_inside_header(skb, skb1, len, pos);
3269 	else		/* Second chunk has no header, nothing to copy. */
3270 		skb_split_no_header(skb, skb1, len, pos);
3271 }
3272 EXPORT_SYMBOL(skb_split);
3273 
3274 /* Shifting from/to a cloned skb is a no-go.
3275  *
3276  * Caller cannot keep skb_shinfo related pointers past calling here!
3277  */
3278 static int skb_prepare_for_shift(struct sk_buff *skb)
3279 {
3280 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3281 }
3282 
3283 /**
3284  * skb_shift - Shifts paged data partially from skb to another
3285  * @tgt: buffer into which tail data gets added
3286  * @skb: buffer from which the paged data comes from
3287  * @shiftlen: shift up to this many bytes
3288  *
3289  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3290  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3291  * It's up to caller to free skb if everything was shifted.
3292  *
3293  * If @tgt runs out of frags, the whole operation is aborted.
3294  *
3295  * Skb cannot include anything else but paged data while tgt is allowed
3296  * to have non-paged data as well.
3297  *
3298  * TODO: full sized shift could be optimized but that would need
3299  * specialized skb free'er to handle frags without up-to-date nr_frags.
3300  */
3301 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3302 {
3303 	int from, to, merge, todo;
3304 	skb_frag_t *fragfrom, *fragto;
3305 
3306 	BUG_ON(shiftlen > skb->len);
3307 
3308 	if (skb_headlen(skb))
3309 		return 0;
3310 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3311 		return 0;
3312 
3313 	todo = shiftlen;
3314 	from = 0;
3315 	to = skb_shinfo(tgt)->nr_frags;
3316 	fragfrom = &skb_shinfo(skb)->frags[from];
3317 
3318 	/* Actual merge is delayed until the point when we know we can
3319 	 * commit all, so that we don't have to undo partial changes
3320 	 */
3321 	if (!to ||
3322 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3323 			      skb_frag_off(fragfrom))) {
3324 		merge = -1;
3325 	} else {
3326 		merge = to - 1;
3327 
3328 		todo -= skb_frag_size(fragfrom);
3329 		if (todo < 0) {
3330 			if (skb_prepare_for_shift(skb) ||
3331 			    skb_prepare_for_shift(tgt))
3332 				return 0;
3333 
3334 			/* All previous frag pointers might be stale! */
3335 			fragfrom = &skb_shinfo(skb)->frags[from];
3336 			fragto = &skb_shinfo(tgt)->frags[merge];
3337 
3338 			skb_frag_size_add(fragto, shiftlen);
3339 			skb_frag_size_sub(fragfrom, shiftlen);
3340 			skb_frag_off_add(fragfrom, shiftlen);
3341 
3342 			goto onlymerged;
3343 		}
3344 
3345 		from++;
3346 	}
3347 
3348 	/* Skip full, not-fitting skb to avoid expensive operations */
3349 	if ((shiftlen == skb->len) &&
3350 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3351 		return 0;
3352 
3353 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3354 		return 0;
3355 
3356 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3357 		if (to == MAX_SKB_FRAGS)
3358 			return 0;
3359 
3360 		fragfrom = &skb_shinfo(skb)->frags[from];
3361 		fragto = &skb_shinfo(tgt)->frags[to];
3362 
3363 		if (todo >= skb_frag_size(fragfrom)) {
3364 			*fragto = *fragfrom;
3365 			todo -= skb_frag_size(fragfrom);
3366 			from++;
3367 			to++;
3368 
3369 		} else {
3370 			__skb_frag_ref(fragfrom);
3371 			skb_frag_page_copy(fragto, fragfrom);
3372 			skb_frag_off_copy(fragto, fragfrom);
3373 			skb_frag_size_set(fragto, todo);
3374 
3375 			skb_frag_off_add(fragfrom, todo);
3376 			skb_frag_size_sub(fragfrom, todo);
3377 			todo = 0;
3378 
3379 			to++;
3380 			break;
3381 		}
3382 	}
3383 
3384 	/* Ready to "commit" this state change to tgt */
3385 	skb_shinfo(tgt)->nr_frags = to;
3386 
3387 	if (merge >= 0) {
3388 		fragfrom = &skb_shinfo(skb)->frags[0];
3389 		fragto = &skb_shinfo(tgt)->frags[merge];
3390 
3391 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3392 		__skb_frag_unref(fragfrom);
3393 	}
3394 
3395 	/* Reposition in the original skb */
3396 	to = 0;
3397 	while (from < skb_shinfo(skb)->nr_frags)
3398 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3399 	skb_shinfo(skb)->nr_frags = to;
3400 
3401 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3402 
3403 onlymerged:
3404 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3405 	 * the other hand might need it if it needs to be resent
3406 	 */
3407 	tgt->ip_summed = CHECKSUM_PARTIAL;
3408 	skb->ip_summed = CHECKSUM_PARTIAL;
3409 
3410 	/* Yak, is it really working this way? Some helper please? */
3411 	skb->len -= shiftlen;
3412 	skb->data_len -= shiftlen;
3413 	skb->truesize -= shiftlen;
3414 	tgt->len += shiftlen;
3415 	tgt->data_len += shiftlen;
3416 	tgt->truesize += shiftlen;
3417 
3418 	return shiftlen;
3419 }
3420 
3421 /**
3422  * skb_prepare_seq_read - Prepare a sequential read of skb data
3423  * @skb: the buffer to read
3424  * @from: lower offset of data to be read
3425  * @to: upper offset of data to be read
3426  * @st: state variable
3427  *
3428  * Initializes the specified state variable. Must be called before
3429  * invoking skb_seq_read() for the first time.
3430  */
3431 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3432 			  unsigned int to, struct skb_seq_state *st)
3433 {
3434 	st->lower_offset = from;
3435 	st->upper_offset = to;
3436 	st->root_skb = st->cur_skb = skb;
3437 	st->frag_idx = st->stepped_offset = 0;
3438 	st->frag_data = NULL;
3439 }
3440 EXPORT_SYMBOL(skb_prepare_seq_read);
3441 
3442 /**
3443  * skb_seq_read - Sequentially read skb data
3444  * @consumed: number of bytes consumed by the caller so far
3445  * @data: destination pointer for data to be returned
3446  * @st: state variable
3447  *
3448  * Reads a block of skb data at @consumed relative to the
3449  * lower offset specified to skb_prepare_seq_read(). Assigns
3450  * the head of the data block to @data and returns the length
3451  * of the block or 0 if the end of the skb data or the upper
3452  * offset has been reached.
3453  *
3454  * The caller is not required to consume all of the data
3455  * returned, i.e. @consumed is typically set to the number
3456  * of bytes already consumed and the next call to
3457  * skb_seq_read() will return the remaining part of the block.
3458  *
3459  * Note 1: The size of each block of data returned can be arbitrary,
3460  *       this limitation is the cost for zerocopy sequential
3461  *       reads of potentially non linear data.
3462  *
3463  * Note 2: Fragment lists within fragments are not implemented
3464  *       at the moment, state->root_skb could be replaced with
3465  *       a stack for this purpose.
3466  */
3467 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3468 			  struct skb_seq_state *st)
3469 {
3470 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3471 	skb_frag_t *frag;
3472 
3473 	if (unlikely(abs_offset >= st->upper_offset)) {
3474 		if (st->frag_data) {
3475 			kunmap_atomic(st->frag_data);
3476 			st->frag_data = NULL;
3477 		}
3478 		return 0;
3479 	}
3480 
3481 next_skb:
3482 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3483 
3484 	if (abs_offset < block_limit && !st->frag_data) {
3485 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3486 		return block_limit - abs_offset;
3487 	}
3488 
3489 	if (st->frag_idx == 0 && !st->frag_data)
3490 		st->stepped_offset += skb_headlen(st->cur_skb);
3491 
3492 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3493 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3494 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3495 
3496 		if (abs_offset < block_limit) {
3497 			if (!st->frag_data)
3498 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3499 
3500 			*data = (u8 *) st->frag_data + skb_frag_off(frag) +
3501 				(abs_offset - st->stepped_offset);
3502 
3503 			return block_limit - abs_offset;
3504 		}
3505 
3506 		if (st->frag_data) {
3507 			kunmap_atomic(st->frag_data);
3508 			st->frag_data = NULL;
3509 		}
3510 
3511 		st->frag_idx++;
3512 		st->stepped_offset += skb_frag_size(frag);
3513 	}
3514 
3515 	if (st->frag_data) {
3516 		kunmap_atomic(st->frag_data);
3517 		st->frag_data = NULL;
3518 	}
3519 
3520 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3521 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3522 		st->frag_idx = 0;
3523 		goto next_skb;
3524 	} else if (st->cur_skb->next) {
3525 		st->cur_skb = st->cur_skb->next;
3526 		st->frag_idx = 0;
3527 		goto next_skb;
3528 	}
3529 
3530 	return 0;
3531 }
3532 EXPORT_SYMBOL(skb_seq_read);
3533 
3534 /**
3535  * skb_abort_seq_read - Abort a sequential read of skb data
3536  * @st: state variable
3537  *
3538  * Must be called if skb_seq_read() was not called until it
3539  * returned 0.
3540  */
3541 void skb_abort_seq_read(struct skb_seq_state *st)
3542 {
3543 	if (st->frag_data)
3544 		kunmap_atomic(st->frag_data);
3545 }
3546 EXPORT_SYMBOL(skb_abort_seq_read);
3547 
3548 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3549 
3550 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3551 					  struct ts_config *conf,
3552 					  struct ts_state *state)
3553 {
3554 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3555 }
3556 
3557 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3558 {
3559 	skb_abort_seq_read(TS_SKB_CB(state));
3560 }
3561 
3562 /**
3563  * skb_find_text - Find a text pattern in skb data
3564  * @skb: the buffer to look in
3565  * @from: search offset
3566  * @to: search limit
3567  * @config: textsearch configuration
3568  *
3569  * Finds a pattern in the skb data according to the specified
3570  * textsearch configuration. Use textsearch_next() to retrieve
3571  * subsequent occurrences of the pattern. Returns the offset
3572  * to the first occurrence or UINT_MAX if no match was found.
3573  */
3574 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3575 			   unsigned int to, struct ts_config *config)
3576 {
3577 	struct ts_state state;
3578 	unsigned int ret;
3579 
3580 	config->get_next_block = skb_ts_get_next_block;
3581 	config->finish = skb_ts_finish;
3582 
3583 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3584 
3585 	ret = textsearch_find(config, &state);
3586 	return (ret <= to - from ? ret : UINT_MAX);
3587 }
3588 EXPORT_SYMBOL(skb_find_text);
3589 
3590 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3591 			 int offset, size_t size)
3592 {
3593 	int i = skb_shinfo(skb)->nr_frags;
3594 
3595 	if (skb_can_coalesce(skb, i, page, offset)) {
3596 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3597 	} else if (i < MAX_SKB_FRAGS) {
3598 		get_page(page);
3599 		skb_fill_page_desc(skb, i, page, offset, size);
3600 	} else {
3601 		return -EMSGSIZE;
3602 	}
3603 
3604 	return 0;
3605 }
3606 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3607 
3608 /**
3609  *	skb_pull_rcsum - pull skb and update receive checksum
3610  *	@skb: buffer to update
3611  *	@len: length of data pulled
3612  *
3613  *	This function performs an skb_pull on the packet and updates
3614  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3615  *	receive path processing instead of skb_pull unless you know
3616  *	that the checksum difference is zero (e.g., a valid IP header)
3617  *	or you are setting ip_summed to CHECKSUM_NONE.
3618  */
3619 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3620 {
3621 	unsigned char *data = skb->data;
3622 
3623 	BUG_ON(len > skb->len);
3624 	__skb_pull(skb, len);
3625 	skb_postpull_rcsum(skb, data, len);
3626 	return skb->data;
3627 }
3628 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3629 
3630 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3631 {
3632 	skb_frag_t head_frag;
3633 	struct page *page;
3634 
3635 	page = virt_to_head_page(frag_skb->head);
3636 	__skb_frag_set_page(&head_frag, page);
3637 	skb_frag_off_set(&head_frag, frag_skb->data -
3638 			 (unsigned char *)page_address(page));
3639 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3640 	return head_frag;
3641 }
3642 
3643 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3644 				 netdev_features_t features,
3645 				 unsigned int offset)
3646 {
3647 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3648 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3649 	unsigned int delta_truesize = 0;
3650 	unsigned int delta_len = 0;
3651 	struct sk_buff *tail = NULL;
3652 	struct sk_buff *nskb;
3653 
3654 	skb_push(skb, -skb_network_offset(skb) + offset);
3655 
3656 	skb_shinfo(skb)->frag_list = NULL;
3657 
3658 	do {
3659 		nskb = list_skb;
3660 		list_skb = list_skb->next;
3661 
3662 		if (!tail)
3663 			skb->next = nskb;
3664 		else
3665 			tail->next = nskb;
3666 
3667 		tail = nskb;
3668 
3669 		delta_len += nskb->len;
3670 		delta_truesize += nskb->truesize;
3671 
3672 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3673 
3674 		skb_release_head_state(nskb);
3675 		 __copy_skb_header(nskb, skb);
3676 
3677 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3678 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3679 						 nskb->data - tnl_hlen,
3680 						 offset + tnl_hlen);
3681 
3682 		if (skb_needs_linearize(nskb, features) &&
3683 		    __skb_linearize(nskb))
3684 			goto err_linearize;
3685 
3686 	} while (list_skb);
3687 
3688 	skb->truesize = skb->truesize - delta_truesize;
3689 	skb->data_len = skb->data_len - delta_len;
3690 	skb->len = skb->len - delta_len;
3691 
3692 	skb_gso_reset(skb);
3693 
3694 	skb->prev = tail;
3695 
3696 	if (skb_needs_linearize(skb, features) &&
3697 	    __skb_linearize(skb))
3698 		goto err_linearize;
3699 
3700 	skb_get(skb);
3701 
3702 	return skb;
3703 
3704 err_linearize:
3705 	kfree_skb_list(skb->next);
3706 	skb->next = NULL;
3707 	return ERR_PTR(-ENOMEM);
3708 }
3709 EXPORT_SYMBOL_GPL(skb_segment_list);
3710 
3711 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3712 {
3713 	if (unlikely(p->len + skb->len >= 65536))
3714 		return -E2BIG;
3715 
3716 	if (NAPI_GRO_CB(p)->last == p)
3717 		skb_shinfo(p)->frag_list = skb;
3718 	else
3719 		NAPI_GRO_CB(p)->last->next = skb;
3720 
3721 	skb_pull(skb, skb_gro_offset(skb));
3722 
3723 	NAPI_GRO_CB(p)->last = skb;
3724 	NAPI_GRO_CB(p)->count++;
3725 	p->data_len += skb->len;
3726 	p->truesize += skb->truesize;
3727 	p->len += skb->len;
3728 
3729 	NAPI_GRO_CB(skb)->same_flow = 1;
3730 
3731 	return 0;
3732 }
3733 
3734 /**
3735  *	skb_segment - Perform protocol segmentation on skb.
3736  *	@head_skb: buffer to segment
3737  *	@features: features for the output path (see dev->features)
3738  *
3739  *	This function performs segmentation on the given skb.  It returns
3740  *	a pointer to the first in a list of new skbs for the segments.
3741  *	In case of error it returns ERR_PTR(err).
3742  */
3743 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3744 			    netdev_features_t features)
3745 {
3746 	struct sk_buff *segs = NULL;
3747 	struct sk_buff *tail = NULL;
3748 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3749 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3750 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3751 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3752 	struct sk_buff *frag_skb = head_skb;
3753 	unsigned int offset = doffset;
3754 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3755 	unsigned int partial_segs = 0;
3756 	unsigned int headroom;
3757 	unsigned int len = head_skb->len;
3758 	__be16 proto;
3759 	bool csum, sg;
3760 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3761 	int err = -ENOMEM;
3762 	int i = 0;
3763 	int pos;
3764 
3765 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3766 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3767 		/* gso_size is untrusted, and we have a frag_list with a linear
3768 		 * non head_frag head.
3769 		 *
3770 		 * (we assume checking the first list_skb member suffices;
3771 		 * i.e if either of the list_skb members have non head_frag
3772 		 * head, then the first one has too).
3773 		 *
3774 		 * If head_skb's headlen does not fit requested gso_size, it
3775 		 * means that the frag_list members do NOT terminate on exact
3776 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3777 		 * sharing. Therefore we must fallback to copying the frag_list
3778 		 * skbs; we do so by disabling SG.
3779 		 */
3780 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3781 			features &= ~NETIF_F_SG;
3782 	}
3783 
3784 	__skb_push(head_skb, doffset);
3785 	proto = skb_network_protocol(head_skb, NULL);
3786 	if (unlikely(!proto))
3787 		return ERR_PTR(-EINVAL);
3788 
3789 	sg = !!(features & NETIF_F_SG);
3790 	csum = !!can_checksum_protocol(features, proto);
3791 
3792 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3793 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3794 			struct sk_buff *iter;
3795 			unsigned int frag_len;
3796 
3797 			if (!list_skb ||
3798 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3799 				goto normal;
3800 
3801 			/* If we get here then all the required
3802 			 * GSO features except frag_list are supported.
3803 			 * Try to split the SKB to multiple GSO SKBs
3804 			 * with no frag_list.
3805 			 * Currently we can do that only when the buffers don't
3806 			 * have a linear part and all the buffers except
3807 			 * the last are of the same length.
3808 			 */
3809 			frag_len = list_skb->len;
3810 			skb_walk_frags(head_skb, iter) {
3811 				if (frag_len != iter->len && iter->next)
3812 					goto normal;
3813 				if (skb_headlen(iter) && !iter->head_frag)
3814 					goto normal;
3815 
3816 				len -= iter->len;
3817 			}
3818 
3819 			if (len != frag_len)
3820 				goto normal;
3821 		}
3822 
3823 		/* GSO partial only requires that we trim off any excess that
3824 		 * doesn't fit into an MSS sized block, so take care of that
3825 		 * now.
3826 		 */
3827 		partial_segs = len / mss;
3828 		if (partial_segs > 1)
3829 			mss *= partial_segs;
3830 		else
3831 			partial_segs = 0;
3832 	}
3833 
3834 normal:
3835 	headroom = skb_headroom(head_skb);
3836 	pos = skb_headlen(head_skb);
3837 
3838 	do {
3839 		struct sk_buff *nskb;
3840 		skb_frag_t *nskb_frag;
3841 		int hsize;
3842 		int size;
3843 
3844 		if (unlikely(mss == GSO_BY_FRAGS)) {
3845 			len = list_skb->len;
3846 		} else {
3847 			len = head_skb->len - offset;
3848 			if (len > mss)
3849 				len = mss;
3850 		}
3851 
3852 		hsize = skb_headlen(head_skb) - offset;
3853 		if (hsize < 0)
3854 			hsize = 0;
3855 		if (hsize > len || !sg)
3856 			hsize = len;
3857 
3858 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3859 		    (skb_headlen(list_skb) == len || sg)) {
3860 			BUG_ON(skb_headlen(list_skb) > len);
3861 
3862 			i = 0;
3863 			nfrags = skb_shinfo(list_skb)->nr_frags;
3864 			frag = skb_shinfo(list_skb)->frags;
3865 			frag_skb = list_skb;
3866 			pos += skb_headlen(list_skb);
3867 
3868 			while (pos < offset + len) {
3869 				BUG_ON(i >= nfrags);
3870 
3871 				size = skb_frag_size(frag);
3872 				if (pos + size > offset + len)
3873 					break;
3874 
3875 				i++;
3876 				pos += size;
3877 				frag++;
3878 			}
3879 
3880 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3881 			list_skb = list_skb->next;
3882 
3883 			if (unlikely(!nskb))
3884 				goto err;
3885 
3886 			if (unlikely(pskb_trim(nskb, len))) {
3887 				kfree_skb(nskb);
3888 				goto err;
3889 			}
3890 
3891 			hsize = skb_end_offset(nskb);
3892 			if (skb_cow_head(nskb, doffset + headroom)) {
3893 				kfree_skb(nskb);
3894 				goto err;
3895 			}
3896 
3897 			nskb->truesize += skb_end_offset(nskb) - hsize;
3898 			skb_release_head_state(nskb);
3899 			__skb_push(nskb, doffset);
3900 		} else {
3901 			nskb = __alloc_skb(hsize + doffset + headroom,
3902 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3903 					   NUMA_NO_NODE);
3904 
3905 			if (unlikely(!nskb))
3906 				goto err;
3907 
3908 			skb_reserve(nskb, headroom);
3909 			__skb_put(nskb, doffset);
3910 		}
3911 
3912 		if (segs)
3913 			tail->next = nskb;
3914 		else
3915 			segs = nskb;
3916 		tail = nskb;
3917 
3918 		__copy_skb_header(nskb, head_skb);
3919 
3920 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3921 		skb_reset_mac_len(nskb);
3922 
3923 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3924 						 nskb->data - tnl_hlen,
3925 						 doffset + tnl_hlen);
3926 
3927 		if (nskb->len == len + doffset)
3928 			goto perform_csum_check;
3929 
3930 		if (!sg) {
3931 			if (!csum) {
3932 				if (!nskb->remcsum_offload)
3933 					nskb->ip_summed = CHECKSUM_NONE;
3934 				SKB_GSO_CB(nskb)->csum =
3935 					skb_copy_and_csum_bits(head_skb, offset,
3936 							       skb_put(nskb,
3937 								       len),
3938 							       len);
3939 				SKB_GSO_CB(nskb)->csum_start =
3940 					skb_headroom(nskb) + doffset;
3941 			} else {
3942 				skb_copy_bits(head_skb, offset,
3943 					      skb_put(nskb, len),
3944 					      len);
3945 			}
3946 			continue;
3947 		}
3948 
3949 		nskb_frag = skb_shinfo(nskb)->frags;
3950 
3951 		skb_copy_from_linear_data_offset(head_skb, offset,
3952 						 skb_put(nskb, hsize), hsize);
3953 
3954 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3955 					      SKBTX_SHARED_FRAG;
3956 
3957 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3958 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3959 			goto err;
3960 
3961 		while (pos < offset + len) {
3962 			if (i >= nfrags) {
3963 				i = 0;
3964 				nfrags = skb_shinfo(list_skb)->nr_frags;
3965 				frag = skb_shinfo(list_skb)->frags;
3966 				frag_skb = list_skb;
3967 				if (!skb_headlen(list_skb)) {
3968 					BUG_ON(!nfrags);
3969 				} else {
3970 					BUG_ON(!list_skb->head_frag);
3971 
3972 					/* to make room for head_frag. */
3973 					i--;
3974 					frag--;
3975 				}
3976 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3977 				    skb_zerocopy_clone(nskb, frag_skb,
3978 						       GFP_ATOMIC))
3979 					goto err;
3980 
3981 				list_skb = list_skb->next;
3982 			}
3983 
3984 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3985 				     MAX_SKB_FRAGS)) {
3986 				net_warn_ratelimited(
3987 					"skb_segment: too many frags: %u %u\n",
3988 					pos, mss);
3989 				err = -EINVAL;
3990 				goto err;
3991 			}
3992 
3993 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3994 			__skb_frag_ref(nskb_frag);
3995 			size = skb_frag_size(nskb_frag);
3996 
3997 			if (pos < offset) {
3998 				skb_frag_off_add(nskb_frag, offset - pos);
3999 				skb_frag_size_sub(nskb_frag, offset - pos);
4000 			}
4001 
4002 			skb_shinfo(nskb)->nr_frags++;
4003 
4004 			if (pos + size <= offset + len) {
4005 				i++;
4006 				frag++;
4007 				pos += size;
4008 			} else {
4009 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4010 				goto skip_fraglist;
4011 			}
4012 
4013 			nskb_frag++;
4014 		}
4015 
4016 skip_fraglist:
4017 		nskb->data_len = len - hsize;
4018 		nskb->len += nskb->data_len;
4019 		nskb->truesize += nskb->data_len;
4020 
4021 perform_csum_check:
4022 		if (!csum) {
4023 			if (skb_has_shared_frag(nskb) &&
4024 			    __skb_linearize(nskb))
4025 				goto err;
4026 
4027 			if (!nskb->remcsum_offload)
4028 				nskb->ip_summed = CHECKSUM_NONE;
4029 			SKB_GSO_CB(nskb)->csum =
4030 				skb_checksum(nskb, doffset,
4031 					     nskb->len - doffset, 0);
4032 			SKB_GSO_CB(nskb)->csum_start =
4033 				skb_headroom(nskb) + doffset;
4034 		}
4035 	} while ((offset += len) < head_skb->len);
4036 
4037 	/* Some callers want to get the end of the list.
4038 	 * Put it in segs->prev to avoid walking the list.
4039 	 * (see validate_xmit_skb_list() for example)
4040 	 */
4041 	segs->prev = tail;
4042 
4043 	if (partial_segs) {
4044 		struct sk_buff *iter;
4045 		int type = skb_shinfo(head_skb)->gso_type;
4046 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4047 
4048 		/* Update type to add partial and then remove dodgy if set */
4049 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4050 		type &= ~SKB_GSO_DODGY;
4051 
4052 		/* Update GSO info and prepare to start updating headers on
4053 		 * our way back down the stack of protocols.
4054 		 */
4055 		for (iter = segs; iter; iter = iter->next) {
4056 			skb_shinfo(iter)->gso_size = gso_size;
4057 			skb_shinfo(iter)->gso_segs = partial_segs;
4058 			skb_shinfo(iter)->gso_type = type;
4059 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4060 		}
4061 
4062 		if (tail->len - doffset <= gso_size)
4063 			skb_shinfo(tail)->gso_size = 0;
4064 		else if (tail != segs)
4065 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4066 	}
4067 
4068 	/* Following permits correct backpressure, for protocols
4069 	 * using skb_set_owner_w().
4070 	 * Idea is to tranfert ownership from head_skb to last segment.
4071 	 */
4072 	if (head_skb->destructor == sock_wfree) {
4073 		swap(tail->truesize, head_skb->truesize);
4074 		swap(tail->destructor, head_skb->destructor);
4075 		swap(tail->sk, head_skb->sk);
4076 	}
4077 	return segs;
4078 
4079 err:
4080 	kfree_skb_list(segs);
4081 	return ERR_PTR(err);
4082 }
4083 EXPORT_SYMBOL_GPL(skb_segment);
4084 
4085 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4086 {
4087 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4088 	unsigned int offset = skb_gro_offset(skb);
4089 	unsigned int headlen = skb_headlen(skb);
4090 	unsigned int len = skb_gro_len(skb);
4091 	unsigned int delta_truesize;
4092 	struct sk_buff *lp;
4093 
4094 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4095 		return -E2BIG;
4096 
4097 	lp = NAPI_GRO_CB(p)->last;
4098 	pinfo = skb_shinfo(lp);
4099 
4100 	if (headlen <= offset) {
4101 		skb_frag_t *frag;
4102 		skb_frag_t *frag2;
4103 		int i = skbinfo->nr_frags;
4104 		int nr_frags = pinfo->nr_frags + i;
4105 
4106 		if (nr_frags > MAX_SKB_FRAGS)
4107 			goto merge;
4108 
4109 		offset -= headlen;
4110 		pinfo->nr_frags = nr_frags;
4111 		skbinfo->nr_frags = 0;
4112 
4113 		frag = pinfo->frags + nr_frags;
4114 		frag2 = skbinfo->frags + i;
4115 		do {
4116 			*--frag = *--frag2;
4117 		} while (--i);
4118 
4119 		skb_frag_off_add(frag, offset);
4120 		skb_frag_size_sub(frag, offset);
4121 
4122 		/* all fragments truesize : remove (head size + sk_buff) */
4123 		delta_truesize = skb->truesize -
4124 				 SKB_TRUESIZE(skb_end_offset(skb));
4125 
4126 		skb->truesize -= skb->data_len;
4127 		skb->len -= skb->data_len;
4128 		skb->data_len = 0;
4129 
4130 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4131 		goto done;
4132 	} else if (skb->head_frag) {
4133 		int nr_frags = pinfo->nr_frags;
4134 		skb_frag_t *frag = pinfo->frags + nr_frags;
4135 		struct page *page = virt_to_head_page(skb->head);
4136 		unsigned int first_size = headlen - offset;
4137 		unsigned int first_offset;
4138 
4139 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4140 			goto merge;
4141 
4142 		first_offset = skb->data -
4143 			       (unsigned char *)page_address(page) +
4144 			       offset;
4145 
4146 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4147 
4148 		__skb_frag_set_page(frag, page);
4149 		skb_frag_off_set(frag, first_offset);
4150 		skb_frag_size_set(frag, first_size);
4151 
4152 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4153 		/* We dont need to clear skbinfo->nr_frags here */
4154 
4155 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4156 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4157 		goto done;
4158 	}
4159 
4160 merge:
4161 	delta_truesize = skb->truesize;
4162 	if (offset > headlen) {
4163 		unsigned int eat = offset - headlen;
4164 
4165 		skb_frag_off_add(&skbinfo->frags[0], eat);
4166 		skb_frag_size_sub(&skbinfo->frags[0], eat);
4167 		skb->data_len -= eat;
4168 		skb->len -= eat;
4169 		offset = headlen;
4170 	}
4171 
4172 	__skb_pull(skb, offset);
4173 
4174 	if (NAPI_GRO_CB(p)->last == p)
4175 		skb_shinfo(p)->frag_list = skb;
4176 	else
4177 		NAPI_GRO_CB(p)->last->next = skb;
4178 	NAPI_GRO_CB(p)->last = skb;
4179 	__skb_header_release(skb);
4180 	lp = p;
4181 
4182 done:
4183 	NAPI_GRO_CB(p)->count++;
4184 	p->data_len += len;
4185 	p->truesize += delta_truesize;
4186 	p->len += len;
4187 	if (lp != p) {
4188 		lp->data_len += len;
4189 		lp->truesize += delta_truesize;
4190 		lp->len += len;
4191 	}
4192 	NAPI_GRO_CB(skb)->same_flow = 1;
4193 	return 0;
4194 }
4195 
4196 #ifdef CONFIG_SKB_EXTENSIONS
4197 #define SKB_EXT_ALIGN_VALUE	8
4198 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4199 
4200 static const u8 skb_ext_type_len[] = {
4201 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4202 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4203 #endif
4204 #ifdef CONFIG_XFRM
4205 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4206 #endif
4207 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4208 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4209 #endif
4210 #if IS_ENABLED(CONFIG_MPTCP)
4211 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4212 #endif
4213 };
4214 
4215 static __always_inline unsigned int skb_ext_total_length(void)
4216 {
4217 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4218 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4219 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4220 #endif
4221 #ifdef CONFIG_XFRM
4222 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4223 #endif
4224 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4225 		skb_ext_type_len[TC_SKB_EXT] +
4226 #endif
4227 #if IS_ENABLED(CONFIG_MPTCP)
4228 		skb_ext_type_len[SKB_EXT_MPTCP] +
4229 #endif
4230 		0;
4231 }
4232 
4233 static void skb_extensions_init(void)
4234 {
4235 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4236 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4237 
4238 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4239 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4240 					     0,
4241 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4242 					     NULL);
4243 }
4244 #else
4245 static void skb_extensions_init(void) {}
4246 #endif
4247 
4248 void __init skb_init(void)
4249 {
4250 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4251 					      sizeof(struct sk_buff),
4252 					      0,
4253 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4254 					      offsetof(struct sk_buff, cb),
4255 					      sizeof_field(struct sk_buff, cb),
4256 					      NULL);
4257 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4258 						sizeof(struct sk_buff_fclones),
4259 						0,
4260 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4261 						NULL);
4262 	skb_extensions_init();
4263 }
4264 
4265 static int
4266 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4267 	       unsigned int recursion_level)
4268 {
4269 	int start = skb_headlen(skb);
4270 	int i, copy = start - offset;
4271 	struct sk_buff *frag_iter;
4272 	int elt = 0;
4273 
4274 	if (unlikely(recursion_level >= 24))
4275 		return -EMSGSIZE;
4276 
4277 	if (copy > 0) {
4278 		if (copy > len)
4279 			copy = len;
4280 		sg_set_buf(sg, skb->data + offset, copy);
4281 		elt++;
4282 		if ((len -= copy) == 0)
4283 			return elt;
4284 		offset += copy;
4285 	}
4286 
4287 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4288 		int end;
4289 
4290 		WARN_ON(start > offset + len);
4291 
4292 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4293 		if ((copy = end - offset) > 0) {
4294 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4295 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4296 				return -EMSGSIZE;
4297 
4298 			if (copy > len)
4299 				copy = len;
4300 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4301 				    skb_frag_off(frag) + offset - start);
4302 			elt++;
4303 			if (!(len -= copy))
4304 				return elt;
4305 			offset += copy;
4306 		}
4307 		start = end;
4308 	}
4309 
4310 	skb_walk_frags(skb, frag_iter) {
4311 		int end, ret;
4312 
4313 		WARN_ON(start > offset + len);
4314 
4315 		end = start + frag_iter->len;
4316 		if ((copy = end - offset) > 0) {
4317 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4318 				return -EMSGSIZE;
4319 
4320 			if (copy > len)
4321 				copy = len;
4322 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4323 					      copy, recursion_level + 1);
4324 			if (unlikely(ret < 0))
4325 				return ret;
4326 			elt += ret;
4327 			if ((len -= copy) == 0)
4328 				return elt;
4329 			offset += copy;
4330 		}
4331 		start = end;
4332 	}
4333 	BUG_ON(len);
4334 	return elt;
4335 }
4336 
4337 /**
4338  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4339  *	@skb: Socket buffer containing the buffers to be mapped
4340  *	@sg: The scatter-gather list to map into
4341  *	@offset: The offset into the buffer's contents to start mapping
4342  *	@len: Length of buffer space to be mapped
4343  *
4344  *	Fill the specified scatter-gather list with mappings/pointers into a
4345  *	region of the buffer space attached to a socket buffer. Returns either
4346  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4347  *	could not fit.
4348  */
4349 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4350 {
4351 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4352 
4353 	if (nsg <= 0)
4354 		return nsg;
4355 
4356 	sg_mark_end(&sg[nsg - 1]);
4357 
4358 	return nsg;
4359 }
4360 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4361 
4362 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4363  * sglist without mark the sg which contain last skb data as the end.
4364  * So the caller can mannipulate sg list as will when padding new data after
4365  * the first call without calling sg_unmark_end to expend sg list.
4366  *
4367  * Scenario to use skb_to_sgvec_nomark:
4368  * 1. sg_init_table
4369  * 2. skb_to_sgvec_nomark(payload1)
4370  * 3. skb_to_sgvec_nomark(payload2)
4371  *
4372  * This is equivalent to:
4373  * 1. sg_init_table
4374  * 2. skb_to_sgvec(payload1)
4375  * 3. sg_unmark_end
4376  * 4. skb_to_sgvec(payload2)
4377  *
4378  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4379  * is more preferable.
4380  */
4381 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4382 			int offset, int len)
4383 {
4384 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4385 }
4386 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4387 
4388 
4389 
4390 /**
4391  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4392  *	@skb: The socket buffer to check.
4393  *	@tailbits: Amount of trailing space to be added
4394  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4395  *
4396  *	Make sure that the data buffers attached to a socket buffer are
4397  *	writable. If they are not, private copies are made of the data buffers
4398  *	and the socket buffer is set to use these instead.
4399  *
4400  *	If @tailbits is given, make sure that there is space to write @tailbits
4401  *	bytes of data beyond current end of socket buffer.  @trailer will be
4402  *	set to point to the skb in which this space begins.
4403  *
4404  *	The number of scatterlist elements required to completely map the
4405  *	COW'd and extended socket buffer will be returned.
4406  */
4407 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4408 {
4409 	int copyflag;
4410 	int elt;
4411 	struct sk_buff *skb1, **skb_p;
4412 
4413 	/* If skb is cloned or its head is paged, reallocate
4414 	 * head pulling out all the pages (pages are considered not writable
4415 	 * at the moment even if they are anonymous).
4416 	 */
4417 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4418 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4419 		return -ENOMEM;
4420 
4421 	/* Easy case. Most of packets will go this way. */
4422 	if (!skb_has_frag_list(skb)) {
4423 		/* A little of trouble, not enough of space for trailer.
4424 		 * This should not happen, when stack is tuned to generate
4425 		 * good frames. OK, on miss we reallocate and reserve even more
4426 		 * space, 128 bytes is fair. */
4427 
4428 		if (skb_tailroom(skb) < tailbits &&
4429 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4430 			return -ENOMEM;
4431 
4432 		/* Voila! */
4433 		*trailer = skb;
4434 		return 1;
4435 	}
4436 
4437 	/* Misery. We are in troubles, going to mincer fragments... */
4438 
4439 	elt = 1;
4440 	skb_p = &skb_shinfo(skb)->frag_list;
4441 	copyflag = 0;
4442 
4443 	while ((skb1 = *skb_p) != NULL) {
4444 		int ntail = 0;
4445 
4446 		/* The fragment is partially pulled by someone,
4447 		 * this can happen on input. Copy it and everything
4448 		 * after it. */
4449 
4450 		if (skb_shared(skb1))
4451 			copyflag = 1;
4452 
4453 		/* If the skb is the last, worry about trailer. */
4454 
4455 		if (skb1->next == NULL && tailbits) {
4456 			if (skb_shinfo(skb1)->nr_frags ||
4457 			    skb_has_frag_list(skb1) ||
4458 			    skb_tailroom(skb1) < tailbits)
4459 				ntail = tailbits + 128;
4460 		}
4461 
4462 		if (copyflag ||
4463 		    skb_cloned(skb1) ||
4464 		    ntail ||
4465 		    skb_shinfo(skb1)->nr_frags ||
4466 		    skb_has_frag_list(skb1)) {
4467 			struct sk_buff *skb2;
4468 
4469 			/* Fuck, we are miserable poor guys... */
4470 			if (ntail == 0)
4471 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4472 			else
4473 				skb2 = skb_copy_expand(skb1,
4474 						       skb_headroom(skb1),
4475 						       ntail,
4476 						       GFP_ATOMIC);
4477 			if (unlikely(skb2 == NULL))
4478 				return -ENOMEM;
4479 
4480 			if (skb1->sk)
4481 				skb_set_owner_w(skb2, skb1->sk);
4482 
4483 			/* Looking around. Are we still alive?
4484 			 * OK, link new skb, drop old one */
4485 
4486 			skb2->next = skb1->next;
4487 			*skb_p = skb2;
4488 			kfree_skb(skb1);
4489 			skb1 = skb2;
4490 		}
4491 		elt++;
4492 		*trailer = skb1;
4493 		skb_p = &skb1->next;
4494 	}
4495 
4496 	return elt;
4497 }
4498 EXPORT_SYMBOL_GPL(skb_cow_data);
4499 
4500 static void sock_rmem_free(struct sk_buff *skb)
4501 {
4502 	struct sock *sk = skb->sk;
4503 
4504 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4505 }
4506 
4507 static void skb_set_err_queue(struct sk_buff *skb)
4508 {
4509 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4510 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4511 	 */
4512 	skb->pkt_type = PACKET_OUTGOING;
4513 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4514 }
4515 
4516 /*
4517  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4518  */
4519 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4520 {
4521 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4522 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4523 		return -ENOMEM;
4524 
4525 	skb_orphan(skb);
4526 	skb->sk = sk;
4527 	skb->destructor = sock_rmem_free;
4528 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4529 	skb_set_err_queue(skb);
4530 
4531 	/* before exiting rcu section, make sure dst is refcounted */
4532 	skb_dst_force(skb);
4533 
4534 	skb_queue_tail(&sk->sk_error_queue, skb);
4535 	if (!sock_flag(sk, SOCK_DEAD))
4536 		sk->sk_error_report(sk);
4537 	return 0;
4538 }
4539 EXPORT_SYMBOL(sock_queue_err_skb);
4540 
4541 static bool is_icmp_err_skb(const struct sk_buff *skb)
4542 {
4543 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4544 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4545 }
4546 
4547 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4548 {
4549 	struct sk_buff_head *q = &sk->sk_error_queue;
4550 	struct sk_buff *skb, *skb_next = NULL;
4551 	bool icmp_next = false;
4552 	unsigned long flags;
4553 
4554 	spin_lock_irqsave(&q->lock, flags);
4555 	skb = __skb_dequeue(q);
4556 	if (skb && (skb_next = skb_peek(q))) {
4557 		icmp_next = is_icmp_err_skb(skb_next);
4558 		if (icmp_next)
4559 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4560 	}
4561 	spin_unlock_irqrestore(&q->lock, flags);
4562 
4563 	if (is_icmp_err_skb(skb) && !icmp_next)
4564 		sk->sk_err = 0;
4565 
4566 	if (skb_next)
4567 		sk->sk_error_report(sk);
4568 
4569 	return skb;
4570 }
4571 EXPORT_SYMBOL(sock_dequeue_err_skb);
4572 
4573 /**
4574  * skb_clone_sk - create clone of skb, and take reference to socket
4575  * @skb: the skb to clone
4576  *
4577  * This function creates a clone of a buffer that holds a reference on
4578  * sk_refcnt.  Buffers created via this function are meant to be
4579  * returned using sock_queue_err_skb, or free via kfree_skb.
4580  *
4581  * When passing buffers allocated with this function to sock_queue_err_skb
4582  * it is necessary to wrap the call with sock_hold/sock_put in order to
4583  * prevent the socket from being released prior to being enqueued on
4584  * the sk_error_queue.
4585  */
4586 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4587 {
4588 	struct sock *sk = skb->sk;
4589 	struct sk_buff *clone;
4590 
4591 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4592 		return NULL;
4593 
4594 	clone = skb_clone(skb, GFP_ATOMIC);
4595 	if (!clone) {
4596 		sock_put(sk);
4597 		return NULL;
4598 	}
4599 
4600 	clone->sk = sk;
4601 	clone->destructor = sock_efree;
4602 
4603 	return clone;
4604 }
4605 EXPORT_SYMBOL(skb_clone_sk);
4606 
4607 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4608 					struct sock *sk,
4609 					int tstype,
4610 					bool opt_stats)
4611 {
4612 	struct sock_exterr_skb *serr;
4613 	int err;
4614 
4615 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4616 
4617 	serr = SKB_EXT_ERR(skb);
4618 	memset(serr, 0, sizeof(*serr));
4619 	serr->ee.ee_errno = ENOMSG;
4620 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4621 	serr->ee.ee_info = tstype;
4622 	serr->opt_stats = opt_stats;
4623 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4624 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4625 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4626 		if (sk->sk_protocol == IPPROTO_TCP &&
4627 		    sk->sk_type == SOCK_STREAM)
4628 			serr->ee.ee_data -= sk->sk_tskey;
4629 	}
4630 
4631 	err = sock_queue_err_skb(sk, skb);
4632 
4633 	if (err)
4634 		kfree_skb(skb);
4635 }
4636 
4637 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4638 {
4639 	bool ret;
4640 
4641 	if (likely(sysctl_tstamp_allow_data || tsonly))
4642 		return true;
4643 
4644 	read_lock_bh(&sk->sk_callback_lock);
4645 	ret = sk->sk_socket && sk->sk_socket->file &&
4646 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4647 	read_unlock_bh(&sk->sk_callback_lock);
4648 	return ret;
4649 }
4650 
4651 void skb_complete_tx_timestamp(struct sk_buff *skb,
4652 			       struct skb_shared_hwtstamps *hwtstamps)
4653 {
4654 	struct sock *sk = skb->sk;
4655 
4656 	if (!skb_may_tx_timestamp(sk, false))
4657 		goto err;
4658 
4659 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4660 	 * but only if the socket refcount is not zero.
4661 	 */
4662 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4663 		*skb_hwtstamps(skb) = *hwtstamps;
4664 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4665 		sock_put(sk);
4666 		return;
4667 	}
4668 
4669 err:
4670 	kfree_skb(skb);
4671 }
4672 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4673 
4674 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4675 		     struct skb_shared_hwtstamps *hwtstamps,
4676 		     struct sock *sk, int tstype)
4677 {
4678 	struct sk_buff *skb;
4679 	bool tsonly, opt_stats = false;
4680 
4681 	if (!sk)
4682 		return;
4683 
4684 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4685 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4686 		return;
4687 
4688 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4689 	if (!skb_may_tx_timestamp(sk, tsonly))
4690 		return;
4691 
4692 	if (tsonly) {
4693 #ifdef CONFIG_INET
4694 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4695 		    sk->sk_protocol == IPPROTO_TCP &&
4696 		    sk->sk_type == SOCK_STREAM) {
4697 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb);
4698 			opt_stats = true;
4699 		} else
4700 #endif
4701 			skb = alloc_skb(0, GFP_ATOMIC);
4702 	} else {
4703 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4704 	}
4705 	if (!skb)
4706 		return;
4707 
4708 	if (tsonly) {
4709 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4710 					     SKBTX_ANY_TSTAMP;
4711 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4712 	}
4713 
4714 	if (hwtstamps)
4715 		*skb_hwtstamps(skb) = *hwtstamps;
4716 	else
4717 		skb->tstamp = ktime_get_real();
4718 
4719 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4720 }
4721 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4722 
4723 void skb_tstamp_tx(struct sk_buff *orig_skb,
4724 		   struct skb_shared_hwtstamps *hwtstamps)
4725 {
4726 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4727 			       SCM_TSTAMP_SND);
4728 }
4729 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4730 
4731 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4732 {
4733 	struct sock *sk = skb->sk;
4734 	struct sock_exterr_skb *serr;
4735 	int err = 1;
4736 
4737 	skb->wifi_acked_valid = 1;
4738 	skb->wifi_acked = acked;
4739 
4740 	serr = SKB_EXT_ERR(skb);
4741 	memset(serr, 0, sizeof(*serr));
4742 	serr->ee.ee_errno = ENOMSG;
4743 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4744 
4745 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4746 	 * but only if the socket refcount is not zero.
4747 	 */
4748 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4749 		err = sock_queue_err_skb(sk, skb);
4750 		sock_put(sk);
4751 	}
4752 	if (err)
4753 		kfree_skb(skb);
4754 }
4755 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4756 
4757 /**
4758  * skb_partial_csum_set - set up and verify partial csum values for packet
4759  * @skb: the skb to set
4760  * @start: the number of bytes after skb->data to start checksumming.
4761  * @off: the offset from start to place the checksum.
4762  *
4763  * For untrusted partially-checksummed packets, we need to make sure the values
4764  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4765  *
4766  * This function checks and sets those values and skb->ip_summed: if this
4767  * returns false you should drop the packet.
4768  */
4769 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4770 {
4771 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4772 	u32 csum_start = skb_headroom(skb) + (u32)start;
4773 
4774 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4775 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4776 				     start, off, skb_headroom(skb), skb_headlen(skb));
4777 		return false;
4778 	}
4779 	skb->ip_summed = CHECKSUM_PARTIAL;
4780 	skb->csum_start = csum_start;
4781 	skb->csum_offset = off;
4782 	skb_set_transport_header(skb, start);
4783 	return true;
4784 }
4785 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4786 
4787 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4788 			       unsigned int max)
4789 {
4790 	if (skb_headlen(skb) >= len)
4791 		return 0;
4792 
4793 	/* If we need to pullup then pullup to the max, so we
4794 	 * won't need to do it again.
4795 	 */
4796 	if (max > skb->len)
4797 		max = skb->len;
4798 
4799 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4800 		return -ENOMEM;
4801 
4802 	if (skb_headlen(skb) < len)
4803 		return -EPROTO;
4804 
4805 	return 0;
4806 }
4807 
4808 #define MAX_TCP_HDR_LEN (15 * 4)
4809 
4810 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4811 				      typeof(IPPROTO_IP) proto,
4812 				      unsigned int off)
4813 {
4814 	int err;
4815 
4816 	switch (proto) {
4817 	case IPPROTO_TCP:
4818 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4819 					  off + MAX_TCP_HDR_LEN);
4820 		if (!err && !skb_partial_csum_set(skb, off,
4821 						  offsetof(struct tcphdr,
4822 							   check)))
4823 			err = -EPROTO;
4824 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4825 
4826 	case IPPROTO_UDP:
4827 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4828 					  off + sizeof(struct udphdr));
4829 		if (!err && !skb_partial_csum_set(skb, off,
4830 						  offsetof(struct udphdr,
4831 							   check)))
4832 			err = -EPROTO;
4833 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4834 	}
4835 
4836 	return ERR_PTR(-EPROTO);
4837 }
4838 
4839 /* This value should be large enough to cover a tagged ethernet header plus
4840  * maximally sized IP and TCP or UDP headers.
4841  */
4842 #define MAX_IP_HDR_LEN 128
4843 
4844 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4845 {
4846 	unsigned int off;
4847 	bool fragment;
4848 	__sum16 *csum;
4849 	int err;
4850 
4851 	fragment = false;
4852 
4853 	err = skb_maybe_pull_tail(skb,
4854 				  sizeof(struct iphdr),
4855 				  MAX_IP_HDR_LEN);
4856 	if (err < 0)
4857 		goto out;
4858 
4859 	if (ip_is_fragment(ip_hdr(skb)))
4860 		fragment = true;
4861 
4862 	off = ip_hdrlen(skb);
4863 
4864 	err = -EPROTO;
4865 
4866 	if (fragment)
4867 		goto out;
4868 
4869 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4870 	if (IS_ERR(csum))
4871 		return PTR_ERR(csum);
4872 
4873 	if (recalculate)
4874 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4875 					   ip_hdr(skb)->daddr,
4876 					   skb->len - off,
4877 					   ip_hdr(skb)->protocol, 0);
4878 	err = 0;
4879 
4880 out:
4881 	return err;
4882 }
4883 
4884 /* This value should be large enough to cover a tagged ethernet header plus
4885  * an IPv6 header, all options, and a maximal TCP or UDP header.
4886  */
4887 #define MAX_IPV6_HDR_LEN 256
4888 
4889 #define OPT_HDR(type, skb, off) \
4890 	(type *)(skb_network_header(skb) + (off))
4891 
4892 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4893 {
4894 	int err;
4895 	u8 nexthdr;
4896 	unsigned int off;
4897 	unsigned int len;
4898 	bool fragment;
4899 	bool done;
4900 	__sum16 *csum;
4901 
4902 	fragment = false;
4903 	done = false;
4904 
4905 	off = sizeof(struct ipv6hdr);
4906 
4907 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4908 	if (err < 0)
4909 		goto out;
4910 
4911 	nexthdr = ipv6_hdr(skb)->nexthdr;
4912 
4913 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4914 	while (off <= len && !done) {
4915 		switch (nexthdr) {
4916 		case IPPROTO_DSTOPTS:
4917 		case IPPROTO_HOPOPTS:
4918 		case IPPROTO_ROUTING: {
4919 			struct ipv6_opt_hdr *hp;
4920 
4921 			err = skb_maybe_pull_tail(skb,
4922 						  off +
4923 						  sizeof(struct ipv6_opt_hdr),
4924 						  MAX_IPV6_HDR_LEN);
4925 			if (err < 0)
4926 				goto out;
4927 
4928 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4929 			nexthdr = hp->nexthdr;
4930 			off += ipv6_optlen(hp);
4931 			break;
4932 		}
4933 		case IPPROTO_AH: {
4934 			struct ip_auth_hdr *hp;
4935 
4936 			err = skb_maybe_pull_tail(skb,
4937 						  off +
4938 						  sizeof(struct ip_auth_hdr),
4939 						  MAX_IPV6_HDR_LEN);
4940 			if (err < 0)
4941 				goto out;
4942 
4943 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4944 			nexthdr = hp->nexthdr;
4945 			off += ipv6_authlen(hp);
4946 			break;
4947 		}
4948 		case IPPROTO_FRAGMENT: {
4949 			struct frag_hdr *hp;
4950 
4951 			err = skb_maybe_pull_tail(skb,
4952 						  off +
4953 						  sizeof(struct frag_hdr),
4954 						  MAX_IPV6_HDR_LEN);
4955 			if (err < 0)
4956 				goto out;
4957 
4958 			hp = OPT_HDR(struct frag_hdr, skb, off);
4959 
4960 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4961 				fragment = true;
4962 
4963 			nexthdr = hp->nexthdr;
4964 			off += sizeof(struct frag_hdr);
4965 			break;
4966 		}
4967 		default:
4968 			done = true;
4969 			break;
4970 		}
4971 	}
4972 
4973 	err = -EPROTO;
4974 
4975 	if (!done || fragment)
4976 		goto out;
4977 
4978 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4979 	if (IS_ERR(csum))
4980 		return PTR_ERR(csum);
4981 
4982 	if (recalculate)
4983 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4984 					 &ipv6_hdr(skb)->daddr,
4985 					 skb->len - off, nexthdr, 0);
4986 	err = 0;
4987 
4988 out:
4989 	return err;
4990 }
4991 
4992 /**
4993  * skb_checksum_setup - set up partial checksum offset
4994  * @skb: the skb to set up
4995  * @recalculate: if true the pseudo-header checksum will be recalculated
4996  */
4997 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4998 {
4999 	int err;
5000 
5001 	switch (skb->protocol) {
5002 	case htons(ETH_P_IP):
5003 		err = skb_checksum_setup_ipv4(skb, recalculate);
5004 		break;
5005 
5006 	case htons(ETH_P_IPV6):
5007 		err = skb_checksum_setup_ipv6(skb, recalculate);
5008 		break;
5009 
5010 	default:
5011 		err = -EPROTO;
5012 		break;
5013 	}
5014 
5015 	return err;
5016 }
5017 EXPORT_SYMBOL(skb_checksum_setup);
5018 
5019 /**
5020  * skb_checksum_maybe_trim - maybe trims the given skb
5021  * @skb: the skb to check
5022  * @transport_len: the data length beyond the network header
5023  *
5024  * Checks whether the given skb has data beyond the given transport length.
5025  * If so, returns a cloned skb trimmed to this transport length.
5026  * Otherwise returns the provided skb. Returns NULL in error cases
5027  * (e.g. transport_len exceeds skb length or out-of-memory).
5028  *
5029  * Caller needs to set the skb transport header and free any returned skb if it
5030  * differs from the provided skb.
5031  */
5032 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5033 					       unsigned int transport_len)
5034 {
5035 	struct sk_buff *skb_chk;
5036 	unsigned int len = skb_transport_offset(skb) + transport_len;
5037 	int ret;
5038 
5039 	if (skb->len < len)
5040 		return NULL;
5041 	else if (skb->len == len)
5042 		return skb;
5043 
5044 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5045 	if (!skb_chk)
5046 		return NULL;
5047 
5048 	ret = pskb_trim_rcsum(skb_chk, len);
5049 	if (ret) {
5050 		kfree_skb(skb_chk);
5051 		return NULL;
5052 	}
5053 
5054 	return skb_chk;
5055 }
5056 
5057 /**
5058  * skb_checksum_trimmed - validate checksum of an skb
5059  * @skb: the skb to check
5060  * @transport_len: the data length beyond the network header
5061  * @skb_chkf: checksum function to use
5062  *
5063  * Applies the given checksum function skb_chkf to the provided skb.
5064  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5065  *
5066  * If the skb has data beyond the given transport length, then a
5067  * trimmed & cloned skb is checked and returned.
5068  *
5069  * Caller needs to set the skb transport header and free any returned skb if it
5070  * differs from the provided skb.
5071  */
5072 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5073 				     unsigned int transport_len,
5074 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5075 {
5076 	struct sk_buff *skb_chk;
5077 	unsigned int offset = skb_transport_offset(skb);
5078 	__sum16 ret;
5079 
5080 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5081 	if (!skb_chk)
5082 		goto err;
5083 
5084 	if (!pskb_may_pull(skb_chk, offset))
5085 		goto err;
5086 
5087 	skb_pull_rcsum(skb_chk, offset);
5088 	ret = skb_chkf(skb_chk);
5089 	skb_push_rcsum(skb_chk, offset);
5090 
5091 	if (ret)
5092 		goto err;
5093 
5094 	return skb_chk;
5095 
5096 err:
5097 	if (skb_chk && skb_chk != skb)
5098 		kfree_skb(skb_chk);
5099 
5100 	return NULL;
5101 
5102 }
5103 EXPORT_SYMBOL(skb_checksum_trimmed);
5104 
5105 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5106 {
5107 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5108 			     skb->dev->name);
5109 }
5110 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5111 
5112 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5113 {
5114 	if (head_stolen) {
5115 		skb_release_head_state(skb);
5116 		kmem_cache_free(skbuff_head_cache, skb);
5117 	} else {
5118 		__kfree_skb(skb);
5119 	}
5120 }
5121 EXPORT_SYMBOL(kfree_skb_partial);
5122 
5123 /**
5124  * skb_try_coalesce - try to merge skb to prior one
5125  * @to: prior buffer
5126  * @from: buffer to add
5127  * @fragstolen: pointer to boolean
5128  * @delta_truesize: how much more was allocated than was requested
5129  */
5130 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5131 		      bool *fragstolen, int *delta_truesize)
5132 {
5133 	struct skb_shared_info *to_shinfo, *from_shinfo;
5134 	int i, delta, len = from->len;
5135 
5136 	*fragstolen = false;
5137 
5138 	if (skb_cloned(to))
5139 		return false;
5140 
5141 	if (len <= skb_tailroom(to)) {
5142 		if (len)
5143 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5144 		*delta_truesize = 0;
5145 		return true;
5146 	}
5147 
5148 	to_shinfo = skb_shinfo(to);
5149 	from_shinfo = skb_shinfo(from);
5150 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5151 		return false;
5152 	if (skb_zcopy(to) || skb_zcopy(from))
5153 		return false;
5154 
5155 	if (skb_headlen(from) != 0) {
5156 		struct page *page;
5157 		unsigned int offset;
5158 
5159 		if (to_shinfo->nr_frags +
5160 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5161 			return false;
5162 
5163 		if (skb_head_is_locked(from))
5164 			return false;
5165 
5166 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5167 
5168 		page = virt_to_head_page(from->head);
5169 		offset = from->data - (unsigned char *)page_address(page);
5170 
5171 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5172 				   page, offset, skb_headlen(from));
5173 		*fragstolen = true;
5174 	} else {
5175 		if (to_shinfo->nr_frags +
5176 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5177 			return false;
5178 
5179 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5180 	}
5181 
5182 	WARN_ON_ONCE(delta < len);
5183 
5184 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5185 	       from_shinfo->frags,
5186 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5187 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5188 
5189 	if (!skb_cloned(from))
5190 		from_shinfo->nr_frags = 0;
5191 
5192 	/* if the skb is not cloned this does nothing
5193 	 * since we set nr_frags to 0.
5194 	 */
5195 	for (i = 0; i < from_shinfo->nr_frags; i++)
5196 		__skb_frag_ref(&from_shinfo->frags[i]);
5197 
5198 	to->truesize += delta;
5199 	to->len += len;
5200 	to->data_len += len;
5201 
5202 	*delta_truesize = delta;
5203 	return true;
5204 }
5205 EXPORT_SYMBOL(skb_try_coalesce);
5206 
5207 /**
5208  * skb_scrub_packet - scrub an skb
5209  *
5210  * @skb: buffer to clean
5211  * @xnet: packet is crossing netns
5212  *
5213  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5214  * into/from a tunnel. Some information have to be cleared during these
5215  * operations.
5216  * skb_scrub_packet can also be used to clean a skb before injecting it in
5217  * another namespace (@xnet == true). We have to clear all information in the
5218  * skb that could impact namespace isolation.
5219  */
5220 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5221 {
5222 	skb->pkt_type = PACKET_HOST;
5223 	skb->skb_iif = 0;
5224 	skb->ignore_df = 0;
5225 	skb_dst_drop(skb);
5226 	skb_ext_reset(skb);
5227 	nf_reset_ct(skb);
5228 	nf_reset_trace(skb);
5229 
5230 #ifdef CONFIG_NET_SWITCHDEV
5231 	skb->offload_fwd_mark = 0;
5232 	skb->offload_l3_fwd_mark = 0;
5233 #endif
5234 
5235 	if (!xnet)
5236 		return;
5237 
5238 	ipvs_reset(skb);
5239 	skb->mark = 0;
5240 	skb->tstamp = 0;
5241 }
5242 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5243 
5244 /**
5245  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5246  *
5247  * @skb: GSO skb
5248  *
5249  * skb_gso_transport_seglen is used to determine the real size of the
5250  * individual segments, including Layer4 headers (TCP/UDP).
5251  *
5252  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5253  */
5254 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5255 {
5256 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5257 	unsigned int thlen = 0;
5258 
5259 	if (skb->encapsulation) {
5260 		thlen = skb_inner_transport_header(skb) -
5261 			skb_transport_header(skb);
5262 
5263 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5264 			thlen += inner_tcp_hdrlen(skb);
5265 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5266 		thlen = tcp_hdrlen(skb);
5267 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5268 		thlen = sizeof(struct sctphdr);
5269 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5270 		thlen = sizeof(struct udphdr);
5271 	}
5272 	/* UFO sets gso_size to the size of the fragmentation
5273 	 * payload, i.e. the size of the L4 (UDP) header is already
5274 	 * accounted for.
5275 	 */
5276 	return thlen + shinfo->gso_size;
5277 }
5278 
5279 /**
5280  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5281  *
5282  * @skb: GSO skb
5283  *
5284  * skb_gso_network_seglen is used to determine the real size of the
5285  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5286  *
5287  * The MAC/L2 header is not accounted for.
5288  */
5289 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5290 {
5291 	unsigned int hdr_len = skb_transport_header(skb) -
5292 			       skb_network_header(skb);
5293 
5294 	return hdr_len + skb_gso_transport_seglen(skb);
5295 }
5296 
5297 /**
5298  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5299  *
5300  * @skb: GSO skb
5301  *
5302  * skb_gso_mac_seglen is used to determine the real size of the
5303  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5304  * headers (TCP/UDP).
5305  */
5306 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5307 {
5308 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5309 
5310 	return hdr_len + skb_gso_transport_seglen(skb);
5311 }
5312 
5313 /**
5314  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5315  *
5316  * There are a couple of instances where we have a GSO skb, and we
5317  * want to determine what size it would be after it is segmented.
5318  *
5319  * We might want to check:
5320  * -    L3+L4+payload size (e.g. IP forwarding)
5321  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5322  *
5323  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5324  *
5325  * @skb: GSO skb
5326  *
5327  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5328  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5329  *
5330  * @max_len: The maximum permissible length.
5331  *
5332  * Returns true if the segmented length <= max length.
5333  */
5334 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5335 				      unsigned int seg_len,
5336 				      unsigned int max_len) {
5337 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5338 	const struct sk_buff *iter;
5339 
5340 	if (shinfo->gso_size != GSO_BY_FRAGS)
5341 		return seg_len <= max_len;
5342 
5343 	/* Undo this so we can re-use header sizes */
5344 	seg_len -= GSO_BY_FRAGS;
5345 
5346 	skb_walk_frags(skb, iter) {
5347 		if (seg_len + skb_headlen(iter) > max_len)
5348 			return false;
5349 	}
5350 
5351 	return true;
5352 }
5353 
5354 /**
5355  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5356  *
5357  * @skb: GSO skb
5358  * @mtu: MTU to validate against
5359  *
5360  * skb_gso_validate_network_len validates if a given skb will fit a
5361  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5362  * payload.
5363  */
5364 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5365 {
5366 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5367 }
5368 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5369 
5370 /**
5371  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5372  *
5373  * @skb: GSO skb
5374  * @len: length to validate against
5375  *
5376  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5377  * length once split, including L2, L3 and L4 headers and the payload.
5378  */
5379 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5380 {
5381 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5382 }
5383 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5384 
5385 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5386 {
5387 	int mac_len, meta_len;
5388 	void *meta;
5389 
5390 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5391 		kfree_skb(skb);
5392 		return NULL;
5393 	}
5394 
5395 	mac_len = skb->data - skb_mac_header(skb);
5396 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5397 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5398 			mac_len - VLAN_HLEN - ETH_TLEN);
5399 	}
5400 
5401 	meta_len = skb_metadata_len(skb);
5402 	if (meta_len) {
5403 		meta = skb_metadata_end(skb) - meta_len;
5404 		memmove(meta + VLAN_HLEN, meta, meta_len);
5405 	}
5406 
5407 	skb->mac_header += VLAN_HLEN;
5408 	return skb;
5409 }
5410 
5411 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5412 {
5413 	struct vlan_hdr *vhdr;
5414 	u16 vlan_tci;
5415 
5416 	if (unlikely(skb_vlan_tag_present(skb))) {
5417 		/* vlan_tci is already set-up so leave this for another time */
5418 		return skb;
5419 	}
5420 
5421 	skb = skb_share_check(skb, GFP_ATOMIC);
5422 	if (unlikely(!skb))
5423 		goto err_free;
5424 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5425 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5426 		goto err_free;
5427 
5428 	vhdr = (struct vlan_hdr *)skb->data;
5429 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5430 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5431 
5432 	skb_pull_rcsum(skb, VLAN_HLEN);
5433 	vlan_set_encap_proto(skb, vhdr);
5434 
5435 	skb = skb_reorder_vlan_header(skb);
5436 	if (unlikely(!skb))
5437 		goto err_free;
5438 
5439 	skb_reset_network_header(skb);
5440 	if (!skb_transport_header_was_set(skb))
5441 		skb_reset_transport_header(skb);
5442 	skb_reset_mac_len(skb);
5443 
5444 	return skb;
5445 
5446 err_free:
5447 	kfree_skb(skb);
5448 	return NULL;
5449 }
5450 EXPORT_SYMBOL(skb_vlan_untag);
5451 
5452 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5453 {
5454 	if (!pskb_may_pull(skb, write_len))
5455 		return -ENOMEM;
5456 
5457 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5458 		return 0;
5459 
5460 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5461 }
5462 EXPORT_SYMBOL(skb_ensure_writable);
5463 
5464 /* remove VLAN header from packet and update csum accordingly.
5465  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5466  */
5467 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5468 {
5469 	struct vlan_hdr *vhdr;
5470 	int offset = skb->data - skb_mac_header(skb);
5471 	int err;
5472 
5473 	if (WARN_ONCE(offset,
5474 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5475 		      offset)) {
5476 		return -EINVAL;
5477 	}
5478 
5479 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5480 	if (unlikely(err))
5481 		return err;
5482 
5483 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5484 
5485 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5486 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5487 
5488 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5489 	__skb_pull(skb, VLAN_HLEN);
5490 
5491 	vlan_set_encap_proto(skb, vhdr);
5492 	skb->mac_header += VLAN_HLEN;
5493 
5494 	if (skb_network_offset(skb) < ETH_HLEN)
5495 		skb_set_network_header(skb, ETH_HLEN);
5496 
5497 	skb_reset_mac_len(skb);
5498 
5499 	return err;
5500 }
5501 EXPORT_SYMBOL(__skb_vlan_pop);
5502 
5503 /* Pop a vlan tag either from hwaccel or from payload.
5504  * Expects skb->data at mac header.
5505  */
5506 int skb_vlan_pop(struct sk_buff *skb)
5507 {
5508 	u16 vlan_tci;
5509 	__be16 vlan_proto;
5510 	int err;
5511 
5512 	if (likely(skb_vlan_tag_present(skb))) {
5513 		__vlan_hwaccel_clear_tag(skb);
5514 	} else {
5515 		if (unlikely(!eth_type_vlan(skb->protocol)))
5516 			return 0;
5517 
5518 		err = __skb_vlan_pop(skb, &vlan_tci);
5519 		if (err)
5520 			return err;
5521 	}
5522 	/* move next vlan tag to hw accel tag */
5523 	if (likely(!eth_type_vlan(skb->protocol)))
5524 		return 0;
5525 
5526 	vlan_proto = skb->protocol;
5527 	err = __skb_vlan_pop(skb, &vlan_tci);
5528 	if (unlikely(err))
5529 		return err;
5530 
5531 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5532 	return 0;
5533 }
5534 EXPORT_SYMBOL(skb_vlan_pop);
5535 
5536 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5537  * Expects skb->data at mac header.
5538  */
5539 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5540 {
5541 	if (skb_vlan_tag_present(skb)) {
5542 		int offset = skb->data - skb_mac_header(skb);
5543 		int err;
5544 
5545 		if (WARN_ONCE(offset,
5546 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5547 			      offset)) {
5548 			return -EINVAL;
5549 		}
5550 
5551 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5552 					skb_vlan_tag_get(skb));
5553 		if (err)
5554 			return err;
5555 
5556 		skb->protocol = skb->vlan_proto;
5557 		skb->mac_len += VLAN_HLEN;
5558 
5559 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5560 	}
5561 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5562 	return 0;
5563 }
5564 EXPORT_SYMBOL(skb_vlan_push);
5565 
5566 /**
5567  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5568  *
5569  * @skb: Socket buffer to modify
5570  *
5571  * Drop the Ethernet header of @skb.
5572  *
5573  * Expects that skb->data points to the mac header and that no VLAN tags are
5574  * present.
5575  *
5576  * Returns 0 on success, -errno otherwise.
5577  */
5578 int skb_eth_pop(struct sk_buff *skb)
5579 {
5580 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5581 	    skb_network_offset(skb) < ETH_HLEN)
5582 		return -EPROTO;
5583 
5584 	skb_pull_rcsum(skb, ETH_HLEN);
5585 	skb_reset_mac_header(skb);
5586 	skb_reset_mac_len(skb);
5587 
5588 	return 0;
5589 }
5590 EXPORT_SYMBOL(skb_eth_pop);
5591 
5592 /**
5593  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5594  *
5595  * @skb: Socket buffer to modify
5596  * @dst: Destination MAC address of the new header
5597  * @src: Source MAC address of the new header
5598  *
5599  * Prepend @skb with a new Ethernet header.
5600  *
5601  * Expects that skb->data points to the mac header, which must be empty.
5602  *
5603  * Returns 0 on success, -errno otherwise.
5604  */
5605 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5606 		 const unsigned char *src)
5607 {
5608 	struct ethhdr *eth;
5609 	int err;
5610 
5611 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5612 		return -EPROTO;
5613 
5614 	err = skb_cow_head(skb, sizeof(*eth));
5615 	if (err < 0)
5616 		return err;
5617 
5618 	skb_push(skb, sizeof(*eth));
5619 	skb_reset_mac_header(skb);
5620 	skb_reset_mac_len(skb);
5621 
5622 	eth = eth_hdr(skb);
5623 	ether_addr_copy(eth->h_dest, dst);
5624 	ether_addr_copy(eth->h_source, src);
5625 	eth->h_proto = skb->protocol;
5626 
5627 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5628 
5629 	return 0;
5630 }
5631 EXPORT_SYMBOL(skb_eth_push);
5632 
5633 /* Update the ethertype of hdr and the skb csum value if required. */
5634 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5635 			     __be16 ethertype)
5636 {
5637 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5638 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5639 
5640 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5641 	}
5642 
5643 	hdr->h_proto = ethertype;
5644 }
5645 
5646 /**
5647  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5648  *                   the packet
5649  *
5650  * @skb: buffer
5651  * @mpls_lse: MPLS label stack entry to push
5652  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5653  * @mac_len: length of the MAC header
5654  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5655  *            ethernet
5656  *
5657  * Expects skb->data at mac header.
5658  *
5659  * Returns 0 on success, -errno otherwise.
5660  */
5661 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5662 		  int mac_len, bool ethernet)
5663 {
5664 	struct mpls_shim_hdr *lse;
5665 	int err;
5666 
5667 	if (unlikely(!eth_p_mpls(mpls_proto)))
5668 		return -EINVAL;
5669 
5670 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5671 	if (skb->encapsulation)
5672 		return -EINVAL;
5673 
5674 	err = skb_cow_head(skb, MPLS_HLEN);
5675 	if (unlikely(err))
5676 		return err;
5677 
5678 	if (!skb->inner_protocol) {
5679 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5680 		skb_set_inner_protocol(skb, skb->protocol);
5681 	}
5682 
5683 	skb_push(skb, MPLS_HLEN);
5684 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5685 		mac_len);
5686 	skb_reset_mac_header(skb);
5687 	skb_set_network_header(skb, mac_len);
5688 	skb_reset_mac_len(skb);
5689 
5690 	lse = mpls_hdr(skb);
5691 	lse->label_stack_entry = mpls_lse;
5692 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5693 
5694 	if (ethernet && mac_len >= ETH_HLEN)
5695 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5696 	skb->protocol = mpls_proto;
5697 
5698 	return 0;
5699 }
5700 EXPORT_SYMBOL_GPL(skb_mpls_push);
5701 
5702 /**
5703  * skb_mpls_pop() - pop the outermost MPLS header
5704  *
5705  * @skb: buffer
5706  * @next_proto: ethertype of header after popped MPLS header
5707  * @mac_len: length of the MAC header
5708  * @ethernet: flag to indicate if the packet is ethernet
5709  *
5710  * Expects skb->data at mac header.
5711  *
5712  * Returns 0 on success, -errno otherwise.
5713  */
5714 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5715 		 bool ethernet)
5716 {
5717 	int err;
5718 
5719 	if (unlikely(!eth_p_mpls(skb->protocol)))
5720 		return 0;
5721 
5722 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5723 	if (unlikely(err))
5724 		return err;
5725 
5726 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5727 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5728 		mac_len);
5729 
5730 	__skb_pull(skb, MPLS_HLEN);
5731 	skb_reset_mac_header(skb);
5732 	skb_set_network_header(skb, mac_len);
5733 
5734 	if (ethernet && mac_len >= ETH_HLEN) {
5735 		struct ethhdr *hdr;
5736 
5737 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5738 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5739 		skb_mod_eth_type(skb, hdr, next_proto);
5740 	}
5741 	skb->protocol = next_proto;
5742 
5743 	return 0;
5744 }
5745 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5746 
5747 /**
5748  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5749  *
5750  * @skb: buffer
5751  * @mpls_lse: new MPLS label stack entry to update to
5752  *
5753  * Expects skb->data at mac header.
5754  *
5755  * Returns 0 on success, -errno otherwise.
5756  */
5757 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5758 {
5759 	int err;
5760 
5761 	if (unlikely(!eth_p_mpls(skb->protocol)))
5762 		return -EINVAL;
5763 
5764 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5765 	if (unlikely(err))
5766 		return err;
5767 
5768 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5769 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5770 
5771 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5772 	}
5773 
5774 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5775 
5776 	return 0;
5777 }
5778 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5779 
5780 /**
5781  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5782  *
5783  * @skb: buffer
5784  *
5785  * Expects skb->data at mac header.
5786  *
5787  * Returns 0 on success, -errno otherwise.
5788  */
5789 int skb_mpls_dec_ttl(struct sk_buff *skb)
5790 {
5791 	u32 lse;
5792 	u8 ttl;
5793 
5794 	if (unlikely(!eth_p_mpls(skb->protocol)))
5795 		return -EINVAL;
5796 
5797 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5798 		return -ENOMEM;
5799 
5800 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5801 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5802 	if (!--ttl)
5803 		return -EINVAL;
5804 
5805 	lse &= ~MPLS_LS_TTL_MASK;
5806 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5807 
5808 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5809 }
5810 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5811 
5812 /**
5813  * alloc_skb_with_frags - allocate skb with page frags
5814  *
5815  * @header_len: size of linear part
5816  * @data_len: needed length in frags
5817  * @max_page_order: max page order desired.
5818  * @errcode: pointer to error code if any
5819  * @gfp_mask: allocation mask
5820  *
5821  * This can be used to allocate a paged skb, given a maximal order for frags.
5822  */
5823 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5824 				     unsigned long data_len,
5825 				     int max_page_order,
5826 				     int *errcode,
5827 				     gfp_t gfp_mask)
5828 {
5829 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5830 	unsigned long chunk;
5831 	struct sk_buff *skb;
5832 	struct page *page;
5833 	int i;
5834 
5835 	*errcode = -EMSGSIZE;
5836 	/* Note this test could be relaxed, if we succeed to allocate
5837 	 * high order pages...
5838 	 */
5839 	if (npages > MAX_SKB_FRAGS)
5840 		return NULL;
5841 
5842 	*errcode = -ENOBUFS;
5843 	skb = alloc_skb(header_len, gfp_mask);
5844 	if (!skb)
5845 		return NULL;
5846 
5847 	skb->truesize += npages << PAGE_SHIFT;
5848 
5849 	for (i = 0; npages > 0; i++) {
5850 		int order = max_page_order;
5851 
5852 		while (order) {
5853 			if (npages >= 1 << order) {
5854 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5855 						   __GFP_COMP |
5856 						   __GFP_NOWARN,
5857 						   order);
5858 				if (page)
5859 					goto fill_page;
5860 				/* Do not retry other high order allocations */
5861 				order = 1;
5862 				max_page_order = 0;
5863 			}
5864 			order--;
5865 		}
5866 		page = alloc_page(gfp_mask);
5867 		if (!page)
5868 			goto failure;
5869 fill_page:
5870 		chunk = min_t(unsigned long, data_len,
5871 			      PAGE_SIZE << order);
5872 		skb_fill_page_desc(skb, i, page, 0, chunk);
5873 		data_len -= chunk;
5874 		npages -= 1 << order;
5875 	}
5876 	return skb;
5877 
5878 failure:
5879 	kfree_skb(skb);
5880 	return NULL;
5881 }
5882 EXPORT_SYMBOL(alloc_skb_with_frags);
5883 
5884 /* carve out the first off bytes from skb when off < headlen */
5885 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5886 				    const int headlen, gfp_t gfp_mask)
5887 {
5888 	int i;
5889 	int size = skb_end_offset(skb);
5890 	int new_hlen = headlen - off;
5891 	u8 *data;
5892 
5893 	size = SKB_DATA_ALIGN(size);
5894 
5895 	if (skb_pfmemalloc(skb))
5896 		gfp_mask |= __GFP_MEMALLOC;
5897 	data = kmalloc_reserve(size +
5898 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5899 			       gfp_mask, NUMA_NO_NODE, NULL);
5900 	if (!data)
5901 		return -ENOMEM;
5902 
5903 	size = SKB_WITH_OVERHEAD(ksize(data));
5904 
5905 	/* Copy real data, and all frags */
5906 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5907 	skb->len -= off;
5908 
5909 	memcpy((struct skb_shared_info *)(data + size),
5910 	       skb_shinfo(skb),
5911 	       offsetof(struct skb_shared_info,
5912 			frags[skb_shinfo(skb)->nr_frags]));
5913 	if (skb_cloned(skb)) {
5914 		/* drop the old head gracefully */
5915 		if (skb_orphan_frags(skb, gfp_mask)) {
5916 			kfree(data);
5917 			return -ENOMEM;
5918 		}
5919 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5920 			skb_frag_ref(skb, i);
5921 		if (skb_has_frag_list(skb))
5922 			skb_clone_fraglist(skb);
5923 		skb_release_data(skb);
5924 	} else {
5925 		/* we can reuse existing recount- all we did was
5926 		 * relocate values
5927 		 */
5928 		skb_free_head(skb);
5929 	}
5930 
5931 	skb->head = data;
5932 	skb->data = data;
5933 	skb->head_frag = 0;
5934 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5935 	skb->end = size;
5936 #else
5937 	skb->end = skb->head + size;
5938 #endif
5939 	skb_set_tail_pointer(skb, skb_headlen(skb));
5940 	skb_headers_offset_update(skb, 0);
5941 	skb->cloned = 0;
5942 	skb->hdr_len = 0;
5943 	skb->nohdr = 0;
5944 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5945 
5946 	return 0;
5947 }
5948 
5949 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5950 
5951 /* carve out the first eat bytes from skb's frag_list. May recurse into
5952  * pskb_carve()
5953  */
5954 static int pskb_carve_frag_list(struct sk_buff *skb,
5955 				struct skb_shared_info *shinfo, int eat,
5956 				gfp_t gfp_mask)
5957 {
5958 	struct sk_buff *list = shinfo->frag_list;
5959 	struct sk_buff *clone = NULL;
5960 	struct sk_buff *insp = NULL;
5961 
5962 	do {
5963 		if (!list) {
5964 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5965 			return -EFAULT;
5966 		}
5967 		if (list->len <= eat) {
5968 			/* Eaten as whole. */
5969 			eat -= list->len;
5970 			list = list->next;
5971 			insp = list;
5972 		} else {
5973 			/* Eaten partially. */
5974 			if (skb_shared(list)) {
5975 				clone = skb_clone(list, gfp_mask);
5976 				if (!clone)
5977 					return -ENOMEM;
5978 				insp = list->next;
5979 				list = clone;
5980 			} else {
5981 				/* This may be pulled without problems. */
5982 				insp = list;
5983 			}
5984 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5985 				kfree_skb(clone);
5986 				return -ENOMEM;
5987 			}
5988 			break;
5989 		}
5990 	} while (eat);
5991 
5992 	/* Free pulled out fragments. */
5993 	while ((list = shinfo->frag_list) != insp) {
5994 		shinfo->frag_list = list->next;
5995 		kfree_skb(list);
5996 	}
5997 	/* And insert new clone at head. */
5998 	if (clone) {
5999 		clone->next = list;
6000 		shinfo->frag_list = clone;
6001 	}
6002 	return 0;
6003 }
6004 
6005 /* carve off first len bytes from skb. Split line (off) is in the
6006  * non-linear part of skb
6007  */
6008 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6009 				       int pos, gfp_t gfp_mask)
6010 {
6011 	int i, k = 0;
6012 	int size = skb_end_offset(skb);
6013 	u8 *data;
6014 	const int nfrags = skb_shinfo(skb)->nr_frags;
6015 	struct skb_shared_info *shinfo;
6016 
6017 	size = SKB_DATA_ALIGN(size);
6018 
6019 	if (skb_pfmemalloc(skb))
6020 		gfp_mask |= __GFP_MEMALLOC;
6021 	data = kmalloc_reserve(size +
6022 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6023 			       gfp_mask, NUMA_NO_NODE, NULL);
6024 	if (!data)
6025 		return -ENOMEM;
6026 
6027 	size = SKB_WITH_OVERHEAD(ksize(data));
6028 
6029 	memcpy((struct skb_shared_info *)(data + size),
6030 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6031 	if (skb_orphan_frags(skb, gfp_mask)) {
6032 		kfree(data);
6033 		return -ENOMEM;
6034 	}
6035 	shinfo = (struct skb_shared_info *)(data + size);
6036 	for (i = 0; i < nfrags; i++) {
6037 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6038 
6039 		if (pos + fsize > off) {
6040 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6041 
6042 			if (pos < off) {
6043 				/* Split frag.
6044 				 * We have two variants in this case:
6045 				 * 1. Move all the frag to the second
6046 				 *    part, if it is possible. F.e.
6047 				 *    this approach is mandatory for TUX,
6048 				 *    where splitting is expensive.
6049 				 * 2. Split is accurately. We make this.
6050 				 */
6051 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6052 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6053 			}
6054 			skb_frag_ref(skb, i);
6055 			k++;
6056 		}
6057 		pos += fsize;
6058 	}
6059 	shinfo->nr_frags = k;
6060 	if (skb_has_frag_list(skb))
6061 		skb_clone_fraglist(skb);
6062 
6063 	/* split line is in frag list */
6064 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6065 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6066 		if (skb_has_frag_list(skb))
6067 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6068 		kfree(data);
6069 		return -ENOMEM;
6070 	}
6071 	skb_release_data(skb);
6072 
6073 	skb->head = data;
6074 	skb->head_frag = 0;
6075 	skb->data = data;
6076 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6077 	skb->end = size;
6078 #else
6079 	skb->end = skb->head + size;
6080 #endif
6081 	skb_reset_tail_pointer(skb);
6082 	skb_headers_offset_update(skb, 0);
6083 	skb->cloned   = 0;
6084 	skb->hdr_len  = 0;
6085 	skb->nohdr    = 0;
6086 	skb->len -= off;
6087 	skb->data_len = skb->len;
6088 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6089 	return 0;
6090 }
6091 
6092 /* remove len bytes from the beginning of the skb */
6093 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6094 {
6095 	int headlen = skb_headlen(skb);
6096 
6097 	if (len < headlen)
6098 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6099 	else
6100 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6101 }
6102 
6103 /* Extract to_copy bytes starting at off from skb, and return this in
6104  * a new skb
6105  */
6106 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6107 			     int to_copy, gfp_t gfp)
6108 {
6109 	struct sk_buff  *clone = skb_clone(skb, gfp);
6110 
6111 	if (!clone)
6112 		return NULL;
6113 
6114 	if (pskb_carve(clone, off, gfp) < 0 ||
6115 	    pskb_trim(clone, to_copy)) {
6116 		kfree_skb(clone);
6117 		return NULL;
6118 	}
6119 	return clone;
6120 }
6121 EXPORT_SYMBOL(pskb_extract);
6122 
6123 /**
6124  * skb_condense - try to get rid of fragments/frag_list if possible
6125  * @skb: buffer
6126  *
6127  * Can be used to save memory before skb is added to a busy queue.
6128  * If packet has bytes in frags and enough tail room in skb->head,
6129  * pull all of them, so that we can free the frags right now and adjust
6130  * truesize.
6131  * Notes:
6132  *	We do not reallocate skb->head thus can not fail.
6133  *	Caller must re-evaluate skb->truesize if needed.
6134  */
6135 void skb_condense(struct sk_buff *skb)
6136 {
6137 	if (skb->data_len) {
6138 		if (skb->data_len > skb->end - skb->tail ||
6139 		    skb_cloned(skb))
6140 			return;
6141 
6142 		/* Nice, we can free page frag(s) right now */
6143 		__pskb_pull_tail(skb, skb->data_len);
6144 	}
6145 	/* At this point, skb->truesize might be over estimated,
6146 	 * because skb had a fragment, and fragments do not tell
6147 	 * their truesize.
6148 	 * When we pulled its content into skb->head, fragment
6149 	 * was freed, but __pskb_pull_tail() could not possibly
6150 	 * adjust skb->truesize, not knowing the frag truesize.
6151 	 */
6152 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6153 }
6154 
6155 #ifdef CONFIG_SKB_EXTENSIONS
6156 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6157 {
6158 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6159 }
6160 
6161 /**
6162  * __skb_ext_alloc - allocate a new skb extensions storage
6163  *
6164  * @flags: See kmalloc().
6165  *
6166  * Returns the newly allocated pointer. The pointer can later attached to a
6167  * skb via __skb_ext_set().
6168  * Note: caller must handle the skb_ext as an opaque data.
6169  */
6170 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6171 {
6172 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6173 
6174 	if (new) {
6175 		memset(new->offset, 0, sizeof(new->offset));
6176 		refcount_set(&new->refcnt, 1);
6177 	}
6178 
6179 	return new;
6180 }
6181 
6182 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6183 					 unsigned int old_active)
6184 {
6185 	struct skb_ext *new;
6186 
6187 	if (refcount_read(&old->refcnt) == 1)
6188 		return old;
6189 
6190 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6191 	if (!new)
6192 		return NULL;
6193 
6194 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6195 	refcount_set(&new->refcnt, 1);
6196 
6197 #ifdef CONFIG_XFRM
6198 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6199 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6200 		unsigned int i;
6201 
6202 		for (i = 0; i < sp->len; i++)
6203 			xfrm_state_hold(sp->xvec[i]);
6204 	}
6205 #endif
6206 	__skb_ext_put(old);
6207 	return new;
6208 }
6209 
6210 /**
6211  * __skb_ext_set - attach the specified extension storage to this skb
6212  * @skb: buffer
6213  * @id: extension id
6214  * @ext: extension storage previously allocated via __skb_ext_alloc()
6215  *
6216  * Existing extensions, if any, are cleared.
6217  *
6218  * Returns the pointer to the extension.
6219  */
6220 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6221 		    struct skb_ext *ext)
6222 {
6223 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6224 
6225 	skb_ext_put(skb);
6226 	newlen = newoff + skb_ext_type_len[id];
6227 	ext->chunks = newlen;
6228 	ext->offset[id] = newoff;
6229 	skb->extensions = ext;
6230 	skb->active_extensions = 1 << id;
6231 	return skb_ext_get_ptr(ext, id);
6232 }
6233 
6234 /**
6235  * skb_ext_add - allocate space for given extension, COW if needed
6236  * @skb: buffer
6237  * @id: extension to allocate space for
6238  *
6239  * Allocates enough space for the given extension.
6240  * If the extension is already present, a pointer to that extension
6241  * is returned.
6242  *
6243  * If the skb was cloned, COW applies and the returned memory can be
6244  * modified without changing the extension space of clones buffers.
6245  *
6246  * Returns pointer to the extension or NULL on allocation failure.
6247  */
6248 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6249 {
6250 	struct skb_ext *new, *old = NULL;
6251 	unsigned int newlen, newoff;
6252 
6253 	if (skb->active_extensions) {
6254 		old = skb->extensions;
6255 
6256 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6257 		if (!new)
6258 			return NULL;
6259 
6260 		if (__skb_ext_exist(new, id))
6261 			goto set_active;
6262 
6263 		newoff = new->chunks;
6264 	} else {
6265 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6266 
6267 		new = __skb_ext_alloc(GFP_ATOMIC);
6268 		if (!new)
6269 			return NULL;
6270 	}
6271 
6272 	newlen = newoff + skb_ext_type_len[id];
6273 	new->chunks = newlen;
6274 	new->offset[id] = newoff;
6275 set_active:
6276 	skb->extensions = new;
6277 	skb->active_extensions |= 1 << id;
6278 	return skb_ext_get_ptr(new, id);
6279 }
6280 EXPORT_SYMBOL(skb_ext_add);
6281 
6282 #ifdef CONFIG_XFRM
6283 static void skb_ext_put_sp(struct sec_path *sp)
6284 {
6285 	unsigned int i;
6286 
6287 	for (i = 0; i < sp->len; i++)
6288 		xfrm_state_put(sp->xvec[i]);
6289 }
6290 #endif
6291 
6292 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6293 {
6294 	struct skb_ext *ext = skb->extensions;
6295 
6296 	skb->active_extensions &= ~(1 << id);
6297 	if (skb->active_extensions == 0) {
6298 		skb->extensions = NULL;
6299 		__skb_ext_put(ext);
6300 #ifdef CONFIG_XFRM
6301 	} else if (id == SKB_EXT_SEC_PATH &&
6302 		   refcount_read(&ext->refcnt) == 1) {
6303 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6304 
6305 		skb_ext_put_sp(sp);
6306 		sp->len = 0;
6307 #endif
6308 	}
6309 }
6310 EXPORT_SYMBOL(__skb_ext_del);
6311 
6312 void __skb_ext_put(struct skb_ext *ext)
6313 {
6314 	/* If this is last clone, nothing can increment
6315 	 * it after check passes.  Avoids one atomic op.
6316 	 */
6317 	if (refcount_read(&ext->refcnt) == 1)
6318 		goto free_now;
6319 
6320 	if (!refcount_dec_and_test(&ext->refcnt))
6321 		return;
6322 free_now:
6323 #ifdef CONFIG_XFRM
6324 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6325 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6326 #endif
6327 
6328 	kmem_cache_free(skbuff_ext_cache, ext);
6329 }
6330 EXPORT_SYMBOL(__skb_ext_put);
6331 #endif /* CONFIG_SKB_EXTENSIONS */
6332