xref: /linux/net/core/skbuff.c (revision 7ec7fb394298c212c30e063c57e0aa895efe9439)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/mm.h>
43 #include <linux/interrupt.h>
44 #include <linux/in.h>
45 #include <linux/inet.h>
46 #include <linux/slab.h>
47 #include <linux/netdevice.h>
48 #ifdef CONFIG_NET_CLS_ACT
49 #include <net/pkt_sched.h>
50 #endif
51 #include <linux/string.h>
52 #include <linux/skbuff.h>
53 #include <linux/splice.h>
54 #include <linux/cache.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/init.h>
57 #include <linux/scatterlist.h>
58 
59 #include <net/protocol.h>
60 #include <net/dst.h>
61 #include <net/sock.h>
62 #include <net/checksum.h>
63 #include <net/xfrm.h>
64 
65 #include <asm/uaccess.h>
66 #include <asm/system.h>
67 
68 #include "kmap_skb.h"
69 
70 static struct kmem_cache *skbuff_head_cache __read_mostly;
71 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
72 
73 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
74 				  struct pipe_buffer *buf)
75 {
76 	struct sk_buff *skb = (struct sk_buff *) buf->private;
77 
78 	kfree_skb(skb);
79 }
80 
81 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
82 				struct pipe_buffer *buf)
83 {
84 	struct sk_buff *skb = (struct sk_buff *) buf->private;
85 
86 	skb_get(skb);
87 }
88 
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 			       struct pipe_buffer *buf)
91 {
92 	return 1;
93 }
94 
95 
96 /* Pipe buffer operations for a socket. */
97 static struct pipe_buf_operations sock_pipe_buf_ops = {
98 	.can_merge = 0,
99 	.map = generic_pipe_buf_map,
100 	.unmap = generic_pipe_buf_unmap,
101 	.confirm = generic_pipe_buf_confirm,
102 	.release = sock_pipe_buf_release,
103 	.steal = sock_pipe_buf_steal,
104 	.get = sock_pipe_buf_get,
105 };
106 
107 /*
108  *	Keep out-of-line to prevent kernel bloat.
109  *	__builtin_return_address is not used because it is not always
110  *	reliable.
111  */
112 
113 /**
114  *	skb_over_panic	- 	private function
115  *	@skb: buffer
116  *	@sz: size
117  *	@here: address
118  *
119  *	Out of line support code for skb_put(). Not user callable.
120  */
121 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
122 {
123 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
124 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
125 	       here, skb->len, sz, skb->head, skb->data,
126 	       (unsigned long)skb->tail, (unsigned long)skb->end,
127 	       skb->dev ? skb->dev->name : "<NULL>");
128 	BUG();
129 }
130 
131 /**
132  *	skb_under_panic	- 	private function
133  *	@skb: buffer
134  *	@sz: size
135  *	@here: address
136  *
137  *	Out of line support code for skb_push(). Not user callable.
138  */
139 
140 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
141 {
142 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
143 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
144 	       here, skb->len, sz, skb->head, skb->data,
145 	       (unsigned long)skb->tail, (unsigned long)skb->end,
146 	       skb->dev ? skb->dev->name : "<NULL>");
147 	BUG();
148 }
149 
150 void skb_truesize_bug(struct sk_buff *skb)
151 {
152 	WARN(net_ratelimit(), KERN_ERR "SKB BUG: Invalid truesize (%u) "
153 	       "len=%u, sizeof(sk_buff)=%Zd\n",
154 	       skb->truesize, skb->len, sizeof(struct sk_buff));
155 }
156 EXPORT_SYMBOL(skb_truesize_bug);
157 
158 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
159  *	'private' fields and also do memory statistics to find all the
160  *	[BEEP] leaks.
161  *
162  */
163 
164 /**
165  *	__alloc_skb	-	allocate a network buffer
166  *	@size: size to allocate
167  *	@gfp_mask: allocation mask
168  *	@fclone: allocate from fclone cache instead of head cache
169  *		and allocate a cloned (child) skb
170  *	@node: numa node to allocate memory on
171  *
172  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
173  *	tail room of size bytes. The object has a reference count of one.
174  *	The return is the buffer. On a failure the return is %NULL.
175  *
176  *	Buffers may only be allocated from interrupts using a @gfp_mask of
177  *	%GFP_ATOMIC.
178  */
179 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
180 			    int fclone, int node)
181 {
182 	struct kmem_cache *cache;
183 	struct skb_shared_info *shinfo;
184 	struct sk_buff *skb;
185 	u8 *data;
186 
187 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
188 
189 	/* Get the HEAD */
190 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
191 	if (!skb)
192 		goto out;
193 
194 	size = SKB_DATA_ALIGN(size);
195 	data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
196 			gfp_mask, node);
197 	if (!data)
198 		goto nodata;
199 
200 	/*
201 	 * Only clear those fields we need to clear, not those that we will
202 	 * actually initialise below. Hence, don't put any more fields after
203 	 * the tail pointer in struct sk_buff!
204 	 */
205 	memset(skb, 0, offsetof(struct sk_buff, tail));
206 	skb->truesize = size + sizeof(struct sk_buff);
207 	atomic_set(&skb->users, 1);
208 	skb->head = data;
209 	skb->data = data;
210 	skb_reset_tail_pointer(skb);
211 	skb->end = skb->tail + size;
212 	/* make sure we initialize shinfo sequentially */
213 	shinfo = skb_shinfo(skb);
214 	atomic_set(&shinfo->dataref, 1);
215 	shinfo->nr_frags  = 0;
216 	shinfo->gso_size = 0;
217 	shinfo->gso_segs = 0;
218 	shinfo->gso_type = 0;
219 	shinfo->ip6_frag_id = 0;
220 	shinfo->frag_list = NULL;
221 
222 	if (fclone) {
223 		struct sk_buff *child = skb + 1;
224 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
225 
226 		skb->fclone = SKB_FCLONE_ORIG;
227 		atomic_set(fclone_ref, 1);
228 
229 		child->fclone = SKB_FCLONE_UNAVAILABLE;
230 	}
231 out:
232 	return skb;
233 nodata:
234 	kmem_cache_free(cache, skb);
235 	skb = NULL;
236 	goto out;
237 }
238 
239 /**
240  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
241  *	@dev: network device to receive on
242  *	@length: length to allocate
243  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
244  *
245  *	Allocate a new &sk_buff and assign it a usage count of one. The
246  *	buffer has unspecified headroom built in. Users should allocate
247  *	the headroom they think they need without accounting for the
248  *	built in space. The built in space is used for optimisations.
249  *
250  *	%NULL is returned if there is no free memory.
251  */
252 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
253 		unsigned int length, gfp_t gfp_mask)
254 {
255 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
256 	struct sk_buff *skb;
257 
258 	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
259 	if (likely(skb)) {
260 		skb_reserve(skb, NET_SKB_PAD);
261 		skb->dev = dev;
262 	}
263 	return skb;
264 }
265 
266 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
267 {
268 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
269 	struct page *page;
270 
271 	page = alloc_pages_node(node, gfp_mask, 0);
272 	return page;
273 }
274 EXPORT_SYMBOL(__netdev_alloc_page);
275 
276 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
277 		int size)
278 {
279 	skb_fill_page_desc(skb, i, page, off, size);
280 	skb->len += size;
281 	skb->data_len += size;
282 	skb->truesize += size;
283 }
284 EXPORT_SYMBOL(skb_add_rx_frag);
285 
286 /**
287  *	dev_alloc_skb - allocate an skbuff for receiving
288  *	@length: length to allocate
289  *
290  *	Allocate a new &sk_buff and assign it a usage count of one. The
291  *	buffer has unspecified headroom built in. Users should allocate
292  *	the headroom they think they need without accounting for the
293  *	built in space. The built in space is used for optimisations.
294  *
295  *	%NULL is returned if there is no free memory. Although this function
296  *	allocates memory it can be called from an interrupt.
297  */
298 struct sk_buff *dev_alloc_skb(unsigned int length)
299 {
300 	/*
301 	 * There is more code here than it seems:
302 	 * __dev_alloc_skb is an inline
303 	 */
304 	return __dev_alloc_skb(length, GFP_ATOMIC);
305 }
306 EXPORT_SYMBOL(dev_alloc_skb);
307 
308 static void skb_drop_list(struct sk_buff **listp)
309 {
310 	struct sk_buff *list = *listp;
311 
312 	*listp = NULL;
313 
314 	do {
315 		struct sk_buff *this = list;
316 		list = list->next;
317 		kfree_skb(this);
318 	} while (list);
319 }
320 
321 static inline void skb_drop_fraglist(struct sk_buff *skb)
322 {
323 	skb_drop_list(&skb_shinfo(skb)->frag_list);
324 }
325 
326 static void skb_clone_fraglist(struct sk_buff *skb)
327 {
328 	struct sk_buff *list;
329 
330 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
331 		skb_get(list);
332 }
333 
334 static void skb_release_data(struct sk_buff *skb)
335 {
336 	if (!skb->cloned ||
337 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
338 			       &skb_shinfo(skb)->dataref)) {
339 		if (skb_shinfo(skb)->nr_frags) {
340 			int i;
341 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
342 				put_page(skb_shinfo(skb)->frags[i].page);
343 		}
344 
345 		if (skb_shinfo(skb)->frag_list)
346 			skb_drop_fraglist(skb);
347 
348 		kfree(skb->head);
349 	}
350 }
351 
352 /*
353  *	Free an skbuff by memory without cleaning the state.
354  */
355 static void kfree_skbmem(struct sk_buff *skb)
356 {
357 	struct sk_buff *other;
358 	atomic_t *fclone_ref;
359 
360 	switch (skb->fclone) {
361 	case SKB_FCLONE_UNAVAILABLE:
362 		kmem_cache_free(skbuff_head_cache, skb);
363 		break;
364 
365 	case SKB_FCLONE_ORIG:
366 		fclone_ref = (atomic_t *) (skb + 2);
367 		if (atomic_dec_and_test(fclone_ref))
368 			kmem_cache_free(skbuff_fclone_cache, skb);
369 		break;
370 
371 	case SKB_FCLONE_CLONE:
372 		fclone_ref = (atomic_t *) (skb + 1);
373 		other = skb - 1;
374 
375 		/* The clone portion is available for
376 		 * fast-cloning again.
377 		 */
378 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
379 
380 		if (atomic_dec_and_test(fclone_ref))
381 			kmem_cache_free(skbuff_fclone_cache, other);
382 		break;
383 	}
384 }
385 
386 static void skb_release_head_state(struct sk_buff *skb)
387 {
388 	dst_release(skb->dst);
389 #ifdef CONFIG_XFRM
390 	secpath_put(skb->sp);
391 #endif
392 	if (skb->destructor) {
393 		WARN_ON(in_irq());
394 		skb->destructor(skb);
395 	}
396 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
397 	nf_conntrack_put(skb->nfct);
398 	nf_conntrack_put_reasm(skb->nfct_reasm);
399 #endif
400 #ifdef CONFIG_BRIDGE_NETFILTER
401 	nf_bridge_put(skb->nf_bridge);
402 #endif
403 /* XXX: IS this still necessary? - JHS */
404 #ifdef CONFIG_NET_SCHED
405 	skb->tc_index = 0;
406 #ifdef CONFIG_NET_CLS_ACT
407 	skb->tc_verd = 0;
408 #endif
409 #endif
410 }
411 
412 /* Free everything but the sk_buff shell. */
413 static void skb_release_all(struct sk_buff *skb)
414 {
415 	skb_release_head_state(skb);
416 	skb_release_data(skb);
417 }
418 
419 /**
420  *	__kfree_skb - private function
421  *	@skb: buffer
422  *
423  *	Free an sk_buff. Release anything attached to the buffer.
424  *	Clean the state. This is an internal helper function. Users should
425  *	always call kfree_skb
426  */
427 
428 void __kfree_skb(struct sk_buff *skb)
429 {
430 	skb_release_all(skb);
431 	kfree_skbmem(skb);
432 }
433 
434 /**
435  *	kfree_skb - free an sk_buff
436  *	@skb: buffer to free
437  *
438  *	Drop a reference to the buffer and free it if the usage count has
439  *	hit zero.
440  */
441 void kfree_skb(struct sk_buff *skb)
442 {
443 	if (unlikely(!skb))
444 		return;
445 	if (likely(atomic_read(&skb->users) == 1))
446 		smp_rmb();
447 	else if (likely(!atomic_dec_and_test(&skb->users)))
448 		return;
449 	__kfree_skb(skb);
450 }
451 
452 /**
453  *	skb_recycle_check - check if skb can be reused for receive
454  *	@skb: buffer
455  *	@skb_size: minimum receive buffer size
456  *
457  *	Checks that the skb passed in is not shared or cloned, and
458  *	that it is linear and its head portion at least as large as
459  *	skb_size so that it can be recycled as a receive buffer.
460  *	If these conditions are met, this function does any necessary
461  *	reference count dropping and cleans up the skbuff as if it
462  *	just came from __alloc_skb().
463  */
464 int skb_recycle_check(struct sk_buff *skb, int skb_size)
465 {
466 	struct skb_shared_info *shinfo;
467 
468 	if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
469 		return 0;
470 
471 	skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
472 	if (skb_end_pointer(skb) - skb->head < skb_size)
473 		return 0;
474 
475 	if (skb_shared(skb) || skb_cloned(skb))
476 		return 0;
477 
478 	skb_release_head_state(skb);
479 	shinfo = skb_shinfo(skb);
480 	atomic_set(&shinfo->dataref, 1);
481 	shinfo->nr_frags = 0;
482 	shinfo->gso_size = 0;
483 	shinfo->gso_segs = 0;
484 	shinfo->gso_type = 0;
485 	shinfo->ip6_frag_id = 0;
486 	shinfo->frag_list = NULL;
487 
488 	memset(skb, 0, offsetof(struct sk_buff, tail));
489 	skb->data = skb->head + NET_SKB_PAD;
490 	skb_reset_tail_pointer(skb);
491 
492 	return 1;
493 }
494 EXPORT_SYMBOL(skb_recycle_check);
495 
496 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
497 {
498 	new->tstamp		= old->tstamp;
499 	new->dev		= old->dev;
500 	new->transport_header	= old->transport_header;
501 	new->network_header	= old->network_header;
502 	new->mac_header		= old->mac_header;
503 	new->dst		= dst_clone(old->dst);
504 #ifdef CONFIG_XFRM
505 	new->sp			= secpath_get(old->sp);
506 #endif
507 	memcpy(new->cb, old->cb, sizeof(old->cb));
508 	new->csum_start		= old->csum_start;
509 	new->csum_offset	= old->csum_offset;
510 	new->local_df		= old->local_df;
511 	new->pkt_type		= old->pkt_type;
512 	new->ip_summed		= old->ip_summed;
513 	skb_copy_queue_mapping(new, old);
514 	new->priority		= old->priority;
515 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
516 	new->ipvs_property	= old->ipvs_property;
517 #endif
518 	new->protocol		= old->protocol;
519 	new->mark		= old->mark;
520 	__nf_copy(new, old);
521 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
522     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
523 	new->nf_trace		= old->nf_trace;
524 #endif
525 #ifdef CONFIG_NET_SCHED
526 	new->tc_index		= old->tc_index;
527 #ifdef CONFIG_NET_CLS_ACT
528 	new->tc_verd		= old->tc_verd;
529 #endif
530 #endif
531 	new->vlan_tci		= old->vlan_tci;
532 
533 	skb_copy_secmark(new, old);
534 }
535 
536 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
537 {
538 #define C(x) n->x = skb->x
539 
540 	n->next = n->prev = NULL;
541 	n->sk = NULL;
542 	__copy_skb_header(n, skb);
543 
544 	C(len);
545 	C(data_len);
546 	C(mac_len);
547 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
548 	n->cloned = 1;
549 	n->nohdr = 0;
550 	n->destructor = NULL;
551 	C(iif);
552 	C(tail);
553 	C(end);
554 	C(head);
555 	C(data);
556 	C(truesize);
557 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
558 	C(do_not_encrypt);
559 	C(requeue);
560 #endif
561 	atomic_set(&n->users, 1);
562 
563 	atomic_inc(&(skb_shinfo(skb)->dataref));
564 	skb->cloned = 1;
565 
566 	return n;
567 #undef C
568 }
569 
570 /**
571  *	skb_morph	-	morph one skb into another
572  *	@dst: the skb to receive the contents
573  *	@src: the skb to supply the contents
574  *
575  *	This is identical to skb_clone except that the target skb is
576  *	supplied by the user.
577  *
578  *	The target skb is returned upon exit.
579  */
580 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
581 {
582 	skb_release_all(dst);
583 	return __skb_clone(dst, src);
584 }
585 EXPORT_SYMBOL_GPL(skb_morph);
586 
587 /**
588  *	skb_clone	-	duplicate an sk_buff
589  *	@skb: buffer to clone
590  *	@gfp_mask: allocation priority
591  *
592  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
593  *	copies share the same packet data but not structure. The new
594  *	buffer has a reference count of 1. If the allocation fails the
595  *	function returns %NULL otherwise the new buffer is returned.
596  *
597  *	If this function is called from an interrupt gfp_mask() must be
598  *	%GFP_ATOMIC.
599  */
600 
601 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
602 {
603 	struct sk_buff *n;
604 
605 	n = skb + 1;
606 	if (skb->fclone == SKB_FCLONE_ORIG &&
607 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
608 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
609 		n->fclone = SKB_FCLONE_CLONE;
610 		atomic_inc(fclone_ref);
611 	} else {
612 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
613 		if (!n)
614 			return NULL;
615 		n->fclone = SKB_FCLONE_UNAVAILABLE;
616 	}
617 
618 	return __skb_clone(n, skb);
619 }
620 
621 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
622 {
623 #ifndef NET_SKBUFF_DATA_USES_OFFSET
624 	/*
625 	 *	Shift between the two data areas in bytes
626 	 */
627 	unsigned long offset = new->data - old->data;
628 #endif
629 
630 	__copy_skb_header(new, old);
631 
632 #ifndef NET_SKBUFF_DATA_USES_OFFSET
633 	/* {transport,network,mac}_header are relative to skb->head */
634 	new->transport_header += offset;
635 	new->network_header   += offset;
636 	new->mac_header	      += offset;
637 #endif
638 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
639 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
640 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
641 }
642 
643 /**
644  *	skb_copy	-	create private copy of an sk_buff
645  *	@skb: buffer to copy
646  *	@gfp_mask: allocation priority
647  *
648  *	Make a copy of both an &sk_buff and its data. This is used when the
649  *	caller wishes to modify the data and needs a private copy of the
650  *	data to alter. Returns %NULL on failure or the pointer to the buffer
651  *	on success. The returned buffer has a reference count of 1.
652  *
653  *	As by-product this function converts non-linear &sk_buff to linear
654  *	one, so that &sk_buff becomes completely private and caller is allowed
655  *	to modify all the data of returned buffer. This means that this
656  *	function is not recommended for use in circumstances when only
657  *	header is going to be modified. Use pskb_copy() instead.
658  */
659 
660 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
661 {
662 	int headerlen = skb->data - skb->head;
663 	/*
664 	 *	Allocate the copy buffer
665 	 */
666 	struct sk_buff *n;
667 #ifdef NET_SKBUFF_DATA_USES_OFFSET
668 	n = alloc_skb(skb->end + skb->data_len, gfp_mask);
669 #else
670 	n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
671 #endif
672 	if (!n)
673 		return NULL;
674 
675 	/* Set the data pointer */
676 	skb_reserve(n, headerlen);
677 	/* Set the tail pointer and length */
678 	skb_put(n, skb->len);
679 
680 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
681 		BUG();
682 
683 	copy_skb_header(n, skb);
684 	return n;
685 }
686 
687 
688 /**
689  *	pskb_copy	-	create copy of an sk_buff with private head.
690  *	@skb: buffer to copy
691  *	@gfp_mask: allocation priority
692  *
693  *	Make a copy of both an &sk_buff and part of its data, located
694  *	in header. Fragmented data remain shared. This is used when
695  *	the caller wishes to modify only header of &sk_buff and needs
696  *	private copy of the header to alter. Returns %NULL on failure
697  *	or the pointer to the buffer on success.
698  *	The returned buffer has a reference count of 1.
699  */
700 
701 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
702 {
703 	/*
704 	 *	Allocate the copy buffer
705 	 */
706 	struct sk_buff *n;
707 #ifdef NET_SKBUFF_DATA_USES_OFFSET
708 	n = alloc_skb(skb->end, gfp_mask);
709 #else
710 	n = alloc_skb(skb->end - skb->head, gfp_mask);
711 #endif
712 	if (!n)
713 		goto out;
714 
715 	/* Set the data pointer */
716 	skb_reserve(n, skb->data - skb->head);
717 	/* Set the tail pointer and length */
718 	skb_put(n, skb_headlen(skb));
719 	/* Copy the bytes */
720 	skb_copy_from_linear_data(skb, n->data, n->len);
721 
722 	n->truesize += skb->data_len;
723 	n->data_len  = skb->data_len;
724 	n->len	     = skb->len;
725 
726 	if (skb_shinfo(skb)->nr_frags) {
727 		int i;
728 
729 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
730 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
731 			get_page(skb_shinfo(n)->frags[i].page);
732 		}
733 		skb_shinfo(n)->nr_frags = i;
734 	}
735 
736 	if (skb_shinfo(skb)->frag_list) {
737 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
738 		skb_clone_fraglist(n);
739 	}
740 
741 	copy_skb_header(n, skb);
742 out:
743 	return n;
744 }
745 
746 /**
747  *	pskb_expand_head - reallocate header of &sk_buff
748  *	@skb: buffer to reallocate
749  *	@nhead: room to add at head
750  *	@ntail: room to add at tail
751  *	@gfp_mask: allocation priority
752  *
753  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
754  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
755  *	reference count of 1. Returns zero in the case of success or error,
756  *	if expansion failed. In the last case, &sk_buff is not changed.
757  *
758  *	All the pointers pointing into skb header may change and must be
759  *	reloaded after call to this function.
760  */
761 
762 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
763 		     gfp_t gfp_mask)
764 {
765 	int i;
766 	u8 *data;
767 #ifdef NET_SKBUFF_DATA_USES_OFFSET
768 	int size = nhead + skb->end + ntail;
769 #else
770 	int size = nhead + (skb->end - skb->head) + ntail;
771 #endif
772 	long off;
773 
774 	BUG_ON(nhead < 0);
775 
776 	if (skb_shared(skb))
777 		BUG();
778 
779 	size = SKB_DATA_ALIGN(size);
780 
781 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
782 	if (!data)
783 		goto nodata;
784 
785 	/* Copy only real data... and, alas, header. This should be
786 	 * optimized for the cases when header is void. */
787 #ifdef NET_SKBUFF_DATA_USES_OFFSET
788 	memcpy(data + nhead, skb->head, skb->tail);
789 #else
790 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
791 #endif
792 	memcpy(data + size, skb_end_pointer(skb),
793 	       sizeof(struct skb_shared_info));
794 
795 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
796 		get_page(skb_shinfo(skb)->frags[i].page);
797 
798 	if (skb_shinfo(skb)->frag_list)
799 		skb_clone_fraglist(skb);
800 
801 	skb_release_data(skb);
802 
803 	off = (data + nhead) - skb->head;
804 
805 	skb->head     = data;
806 	skb->data    += off;
807 #ifdef NET_SKBUFF_DATA_USES_OFFSET
808 	skb->end      = size;
809 	off           = nhead;
810 #else
811 	skb->end      = skb->head + size;
812 #endif
813 	/* {transport,network,mac}_header and tail are relative to skb->head */
814 	skb->tail	      += off;
815 	skb->transport_header += off;
816 	skb->network_header   += off;
817 	skb->mac_header	      += off;
818 	skb->csum_start       += nhead;
819 	skb->cloned   = 0;
820 	skb->hdr_len  = 0;
821 	skb->nohdr    = 0;
822 	atomic_set(&skb_shinfo(skb)->dataref, 1);
823 	return 0;
824 
825 nodata:
826 	return -ENOMEM;
827 }
828 
829 /* Make private copy of skb with writable head and some headroom */
830 
831 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
832 {
833 	struct sk_buff *skb2;
834 	int delta = headroom - skb_headroom(skb);
835 
836 	if (delta <= 0)
837 		skb2 = pskb_copy(skb, GFP_ATOMIC);
838 	else {
839 		skb2 = skb_clone(skb, GFP_ATOMIC);
840 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
841 					     GFP_ATOMIC)) {
842 			kfree_skb(skb2);
843 			skb2 = NULL;
844 		}
845 	}
846 	return skb2;
847 }
848 
849 
850 /**
851  *	skb_copy_expand	-	copy and expand sk_buff
852  *	@skb: buffer to copy
853  *	@newheadroom: new free bytes at head
854  *	@newtailroom: new free bytes at tail
855  *	@gfp_mask: allocation priority
856  *
857  *	Make a copy of both an &sk_buff and its data and while doing so
858  *	allocate additional space.
859  *
860  *	This is used when the caller wishes to modify the data and needs a
861  *	private copy of the data to alter as well as more space for new fields.
862  *	Returns %NULL on failure or the pointer to the buffer
863  *	on success. The returned buffer has a reference count of 1.
864  *
865  *	You must pass %GFP_ATOMIC as the allocation priority if this function
866  *	is called from an interrupt.
867  */
868 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
869 				int newheadroom, int newtailroom,
870 				gfp_t gfp_mask)
871 {
872 	/*
873 	 *	Allocate the copy buffer
874 	 */
875 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
876 				      gfp_mask);
877 	int oldheadroom = skb_headroom(skb);
878 	int head_copy_len, head_copy_off;
879 	int off;
880 
881 	if (!n)
882 		return NULL;
883 
884 	skb_reserve(n, newheadroom);
885 
886 	/* Set the tail pointer and length */
887 	skb_put(n, skb->len);
888 
889 	head_copy_len = oldheadroom;
890 	head_copy_off = 0;
891 	if (newheadroom <= head_copy_len)
892 		head_copy_len = newheadroom;
893 	else
894 		head_copy_off = newheadroom - head_copy_len;
895 
896 	/* Copy the linear header and data. */
897 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
898 			  skb->len + head_copy_len))
899 		BUG();
900 
901 	copy_skb_header(n, skb);
902 
903 	off                  = newheadroom - oldheadroom;
904 	n->csum_start       += off;
905 #ifdef NET_SKBUFF_DATA_USES_OFFSET
906 	n->transport_header += off;
907 	n->network_header   += off;
908 	n->mac_header	    += off;
909 #endif
910 
911 	return n;
912 }
913 
914 /**
915  *	skb_pad			-	zero pad the tail of an skb
916  *	@skb: buffer to pad
917  *	@pad: space to pad
918  *
919  *	Ensure that a buffer is followed by a padding area that is zero
920  *	filled. Used by network drivers which may DMA or transfer data
921  *	beyond the buffer end onto the wire.
922  *
923  *	May return error in out of memory cases. The skb is freed on error.
924  */
925 
926 int skb_pad(struct sk_buff *skb, int pad)
927 {
928 	int err;
929 	int ntail;
930 
931 	/* If the skbuff is non linear tailroom is always zero.. */
932 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
933 		memset(skb->data+skb->len, 0, pad);
934 		return 0;
935 	}
936 
937 	ntail = skb->data_len + pad - (skb->end - skb->tail);
938 	if (likely(skb_cloned(skb) || ntail > 0)) {
939 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
940 		if (unlikely(err))
941 			goto free_skb;
942 	}
943 
944 	/* FIXME: The use of this function with non-linear skb's really needs
945 	 * to be audited.
946 	 */
947 	err = skb_linearize(skb);
948 	if (unlikely(err))
949 		goto free_skb;
950 
951 	memset(skb->data + skb->len, 0, pad);
952 	return 0;
953 
954 free_skb:
955 	kfree_skb(skb);
956 	return err;
957 }
958 
959 /**
960  *	skb_put - add data to a buffer
961  *	@skb: buffer to use
962  *	@len: amount of data to add
963  *
964  *	This function extends the used data area of the buffer. If this would
965  *	exceed the total buffer size the kernel will panic. A pointer to the
966  *	first byte of the extra data is returned.
967  */
968 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
969 {
970 	unsigned char *tmp = skb_tail_pointer(skb);
971 	SKB_LINEAR_ASSERT(skb);
972 	skb->tail += len;
973 	skb->len  += len;
974 	if (unlikely(skb->tail > skb->end))
975 		skb_over_panic(skb, len, __builtin_return_address(0));
976 	return tmp;
977 }
978 EXPORT_SYMBOL(skb_put);
979 
980 /**
981  *	skb_push - add data to the start of a buffer
982  *	@skb: buffer to use
983  *	@len: amount of data to add
984  *
985  *	This function extends the used data area of the buffer at the buffer
986  *	start. If this would exceed the total buffer headroom the kernel will
987  *	panic. A pointer to the first byte of the extra data is returned.
988  */
989 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
990 {
991 	skb->data -= len;
992 	skb->len  += len;
993 	if (unlikely(skb->data<skb->head))
994 		skb_under_panic(skb, len, __builtin_return_address(0));
995 	return skb->data;
996 }
997 EXPORT_SYMBOL(skb_push);
998 
999 /**
1000  *	skb_pull - remove data from the start of a buffer
1001  *	@skb: buffer to use
1002  *	@len: amount of data to remove
1003  *
1004  *	This function removes data from the start of a buffer, returning
1005  *	the memory to the headroom. A pointer to the next data in the buffer
1006  *	is returned. Once the data has been pulled future pushes will overwrite
1007  *	the old data.
1008  */
1009 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1010 {
1011 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1012 }
1013 EXPORT_SYMBOL(skb_pull);
1014 
1015 /**
1016  *	skb_trim - remove end from a buffer
1017  *	@skb: buffer to alter
1018  *	@len: new length
1019  *
1020  *	Cut the length of a buffer down by removing data from the tail. If
1021  *	the buffer is already under the length specified it is not modified.
1022  *	The skb must be linear.
1023  */
1024 void skb_trim(struct sk_buff *skb, unsigned int len)
1025 {
1026 	if (skb->len > len)
1027 		__skb_trim(skb, len);
1028 }
1029 EXPORT_SYMBOL(skb_trim);
1030 
1031 /* Trims skb to length len. It can change skb pointers.
1032  */
1033 
1034 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1035 {
1036 	struct sk_buff **fragp;
1037 	struct sk_buff *frag;
1038 	int offset = skb_headlen(skb);
1039 	int nfrags = skb_shinfo(skb)->nr_frags;
1040 	int i;
1041 	int err;
1042 
1043 	if (skb_cloned(skb) &&
1044 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1045 		return err;
1046 
1047 	i = 0;
1048 	if (offset >= len)
1049 		goto drop_pages;
1050 
1051 	for (; i < nfrags; i++) {
1052 		int end = offset + skb_shinfo(skb)->frags[i].size;
1053 
1054 		if (end < len) {
1055 			offset = end;
1056 			continue;
1057 		}
1058 
1059 		skb_shinfo(skb)->frags[i++].size = len - offset;
1060 
1061 drop_pages:
1062 		skb_shinfo(skb)->nr_frags = i;
1063 
1064 		for (; i < nfrags; i++)
1065 			put_page(skb_shinfo(skb)->frags[i].page);
1066 
1067 		if (skb_shinfo(skb)->frag_list)
1068 			skb_drop_fraglist(skb);
1069 		goto done;
1070 	}
1071 
1072 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1073 	     fragp = &frag->next) {
1074 		int end = offset + frag->len;
1075 
1076 		if (skb_shared(frag)) {
1077 			struct sk_buff *nfrag;
1078 
1079 			nfrag = skb_clone(frag, GFP_ATOMIC);
1080 			if (unlikely(!nfrag))
1081 				return -ENOMEM;
1082 
1083 			nfrag->next = frag->next;
1084 			kfree_skb(frag);
1085 			frag = nfrag;
1086 			*fragp = frag;
1087 		}
1088 
1089 		if (end < len) {
1090 			offset = end;
1091 			continue;
1092 		}
1093 
1094 		if (end > len &&
1095 		    unlikely((err = pskb_trim(frag, len - offset))))
1096 			return err;
1097 
1098 		if (frag->next)
1099 			skb_drop_list(&frag->next);
1100 		break;
1101 	}
1102 
1103 done:
1104 	if (len > skb_headlen(skb)) {
1105 		skb->data_len -= skb->len - len;
1106 		skb->len       = len;
1107 	} else {
1108 		skb->len       = len;
1109 		skb->data_len  = 0;
1110 		skb_set_tail_pointer(skb, len);
1111 	}
1112 
1113 	return 0;
1114 }
1115 
1116 /**
1117  *	__pskb_pull_tail - advance tail of skb header
1118  *	@skb: buffer to reallocate
1119  *	@delta: number of bytes to advance tail
1120  *
1121  *	The function makes a sense only on a fragmented &sk_buff,
1122  *	it expands header moving its tail forward and copying necessary
1123  *	data from fragmented part.
1124  *
1125  *	&sk_buff MUST have reference count of 1.
1126  *
1127  *	Returns %NULL (and &sk_buff does not change) if pull failed
1128  *	or value of new tail of skb in the case of success.
1129  *
1130  *	All the pointers pointing into skb header may change and must be
1131  *	reloaded after call to this function.
1132  */
1133 
1134 /* Moves tail of skb head forward, copying data from fragmented part,
1135  * when it is necessary.
1136  * 1. It may fail due to malloc failure.
1137  * 2. It may change skb pointers.
1138  *
1139  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1140  */
1141 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1142 {
1143 	/* If skb has not enough free space at tail, get new one
1144 	 * plus 128 bytes for future expansions. If we have enough
1145 	 * room at tail, reallocate without expansion only if skb is cloned.
1146 	 */
1147 	int i, k, eat = (skb->tail + delta) - skb->end;
1148 
1149 	if (eat > 0 || skb_cloned(skb)) {
1150 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1151 				     GFP_ATOMIC))
1152 			return NULL;
1153 	}
1154 
1155 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1156 		BUG();
1157 
1158 	/* Optimization: no fragments, no reasons to preestimate
1159 	 * size of pulled pages. Superb.
1160 	 */
1161 	if (!skb_shinfo(skb)->frag_list)
1162 		goto pull_pages;
1163 
1164 	/* Estimate size of pulled pages. */
1165 	eat = delta;
1166 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1167 		if (skb_shinfo(skb)->frags[i].size >= eat)
1168 			goto pull_pages;
1169 		eat -= skb_shinfo(skb)->frags[i].size;
1170 	}
1171 
1172 	/* If we need update frag list, we are in troubles.
1173 	 * Certainly, it possible to add an offset to skb data,
1174 	 * but taking into account that pulling is expected to
1175 	 * be very rare operation, it is worth to fight against
1176 	 * further bloating skb head and crucify ourselves here instead.
1177 	 * Pure masohism, indeed. 8)8)
1178 	 */
1179 	if (eat) {
1180 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1181 		struct sk_buff *clone = NULL;
1182 		struct sk_buff *insp = NULL;
1183 
1184 		do {
1185 			BUG_ON(!list);
1186 
1187 			if (list->len <= eat) {
1188 				/* Eaten as whole. */
1189 				eat -= list->len;
1190 				list = list->next;
1191 				insp = list;
1192 			} else {
1193 				/* Eaten partially. */
1194 
1195 				if (skb_shared(list)) {
1196 					/* Sucks! We need to fork list. :-( */
1197 					clone = skb_clone(list, GFP_ATOMIC);
1198 					if (!clone)
1199 						return NULL;
1200 					insp = list->next;
1201 					list = clone;
1202 				} else {
1203 					/* This may be pulled without
1204 					 * problems. */
1205 					insp = list;
1206 				}
1207 				if (!pskb_pull(list, eat)) {
1208 					if (clone)
1209 						kfree_skb(clone);
1210 					return NULL;
1211 				}
1212 				break;
1213 			}
1214 		} while (eat);
1215 
1216 		/* Free pulled out fragments. */
1217 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1218 			skb_shinfo(skb)->frag_list = list->next;
1219 			kfree_skb(list);
1220 		}
1221 		/* And insert new clone at head. */
1222 		if (clone) {
1223 			clone->next = list;
1224 			skb_shinfo(skb)->frag_list = clone;
1225 		}
1226 	}
1227 	/* Success! Now we may commit changes to skb data. */
1228 
1229 pull_pages:
1230 	eat = delta;
1231 	k = 0;
1232 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1233 		if (skb_shinfo(skb)->frags[i].size <= eat) {
1234 			put_page(skb_shinfo(skb)->frags[i].page);
1235 			eat -= skb_shinfo(skb)->frags[i].size;
1236 		} else {
1237 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1238 			if (eat) {
1239 				skb_shinfo(skb)->frags[k].page_offset += eat;
1240 				skb_shinfo(skb)->frags[k].size -= eat;
1241 				eat = 0;
1242 			}
1243 			k++;
1244 		}
1245 	}
1246 	skb_shinfo(skb)->nr_frags = k;
1247 
1248 	skb->tail     += delta;
1249 	skb->data_len -= delta;
1250 
1251 	return skb_tail_pointer(skb);
1252 }
1253 
1254 /* Copy some data bits from skb to kernel buffer. */
1255 
1256 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1257 {
1258 	int i, copy;
1259 	int start = skb_headlen(skb);
1260 
1261 	if (offset > (int)skb->len - len)
1262 		goto fault;
1263 
1264 	/* Copy header. */
1265 	if ((copy = start - offset) > 0) {
1266 		if (copy > len)
1267 			copy = len;
1268 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1269 		if ((len -= copy) == 0)
1270 			return 0;
1271 		offset += copy;
1272 		to     += copy;
1273 	}
1274 
1275 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1276 		int end;
1277 
1278 		WARN_ON(start > offset + len);
1279 
1280 		end = start + skb_shinfo(skb)->frags[i].size;
1281 		if ((copy = end - offset) > 0) {
1282 			u8 *vaddr;
1283 
1284 			if (copy > len)
1285 				copy = len;
1286 
1287 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1288 			memcpy(to,
1289 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1290 			       offset - start, copy);
1291 			kunmap_skb_frag(vaddr);
1292 
1293 			if ((len -= copy) == 0)
1294 				return 0;
1295 			offset += copy;
1296 			to     += copy;
1297 		}
1298 		start = end;
1299 	}
1300 
1301 	if (skb_shinfo(skb)->frag_list) {
1302 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1303 
1304 		for (; list; list = list->next) {
1305 			int end;
1306 
1307 			WARN_ON(start > offset + len);
1308 
1309 			end = start + list->len;
1310 			if ((copy = end - offset) > 0) {
1311 				if (copy > len)
1312 					copy = len;
1313 				if (skb_copy_bits(list, offset - start,
1314 						  to, copy))
1315 					goto fault;
1316 				if ((len -= copy) == 0)
1317 					return 0;
1318 				offset += copy;
1319 				to     += copy;
1320 			}
1321 			start = end;
1322 		}
1323 	}
1324 	if (!len)
1325 		return 0;
1326 
1327 fault:
1328 	return -EFAULT;
1329 }
1330 
1331 /*
1332  * Callback from splice_to_pipe(), if we need to release some pages
1333  * at the end of the spd in case we error'ed out in filling the pipe.
1334  */
1335 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1336 {
1337 	struct sk_buff *skb = (struct sk_buff *) spd->partial[i].private;
1338 
1339 	kfree_skb(skb);
1340 }
1341 
1342 /*
1343  * Fill page/offset/length into spd, if it can hold more pages.
1344  */
1345 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1346 				unsigned int len, unsigned int offset,
1347 				struct sk_buff *skb)
1348 {
1349 	if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1350 		return 1;
1351 
1352 	spd->pages[spd->nr_pages] = page;
1353 	spd->partial[spd->nr_pages].len = len;
1354 	spd->partial[spd->nr_pages].offset = offset;
1355 	spd->partial[spd->nr_pages].private = (unsigned long) skb_get(skb);
1356 	spd->nr_pages++;
1357 	return 0;
1358 }
1359 
1360 static inline void __segment_seek(struct page **page, unsigned int *poff,
1361 				  unsigned int *plen, unsigned int off)
1362 {
1363 	*poff += off;
1364 	*page += *poff / PAGE_SIZE;
1365 	*poff = *poff % PAGE_SIZE;
1366 	*plen -= off;
1367 }
1368 
1369 static inline int __splice_segment(struct page *page, unsigned int poff,
1370 				   unsigned int plen, unsigned int *off,
1371 				   unsigned int *len, struct sk_buff *skb,
1372 				   struct splice_pipe_desc *spd)
1373 {
1374 	if (!*len)
1375 		return 1;
1376 
1377 	/* skip this segment if already processed */
1378 	if (*off >= plen) {
1379 		*off -= plen;
1380 		return 0;
1381 	}
1382 
1383 	/* ignore any bits we already processed */
1384 	if (*off) {
1385 		__segment_seek(&page, &poff, &plen, *off);
1386 		*off = 0;
1387 	}
1388 
1389 	do {
1390 		unsigned int flen = min(*len, plen);
1391 
1392 		/* the linear region may spread across several pages  */
1393 		flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1394 
1395 		if (spd_fill_page(spd, page, flen, poff, skb))
1396 			return 1;
1397 
1398 		__segment_seek(&page, &poff, &plen, flen);
1399 		*len -= flen;
1400 
1401 	} while (*len && plen);
1402 
1403 	return 0;
1404 }
1405 
1406 /*
1407  * Map linear and fragment data from the skb to spd. It reports failure if the
1408  * pipe is full or if we already spliced the requested length.
1409  */
1410 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1411 		      unsigned int *len,
1412 		      struct splice_pipe_desc *spd)
1413 {
1414 	int seg;
1415 
1416 	/*
1417 	 * map the linear part
1418 	 */
1419 	if (__splice_segment(virt_to_page(skb->data),
1420 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1421 			     skb_headlen(skb),
1422 			     offset, len, skb, spd))
1423 		return 1;
1424 
1425 	/*
1426 	 * then map the fragments
1427 	 */
1428 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1429 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1430 
1431 		if (__splice_segment(f->page, f->page_offset, f->size,
1432 				     offset, len, skb, spd))
1433 			return 1;
1434 	}
1435 
1436 	return 0;
1437 }
1438 
1439 /*
1440  * Map data from the skb to a pipe. Should handle both the linear part,
1441  * the fragments, and the frag list. It does NOT handle frag lists within
1442  * the frag list, if such a thing exists. We'd probably need to recurse to
1443  * handle that cleanly.
1444  */
1445 int skb_splice_bits(struct sk_buff *__skb, unsigned int offset,
1446 		    struct pipe_inode_info *pipe, unsigned int tlen,
1447 		    unsigned int flags)
1448 {
1449 	struct partial_page partial[PIPE_BUFFERS];
1450 	struct page *pages[PIPE_BUFFERS];
1451 	struct splice_pipe_desc spd = {
1452 		.pages = pages,
1453 		.partial = partial,
1454 		.flags = flags,
1455 		.ops = &sock_pipe_buf_ops,
1456 		.spd_release = sock_spd_release,
1457 	};
1458 	struct sk_buff *skb;
1459 
1460 	/*
1461 	 * I'd love to avoid the clone here, but tcp_read_sock()
1462 	 * ignores reference counts and unconditonally kills the sk_buff
1463 	 * on return from the actor.
1464 	 */
1465 	skb = skb_clone(__skb, GFP_KERNEL);
1466 	if (unlikely(!skb))
1467 		return -ENOMEM;
1468 
1469 	/*
1470 	 * __skb_splice_bits() only fails if the output has no room left,
1471 	 * so no point in going over the frag_list for the error case.
1472 	 */
1473 	if (__skb_splice_bits(skb, &offset, &tlen, &spd))
1474 		goto done;
1475 	else if (!tlen)
1476 		goto done;
1477 
1478 	/*
1479 	 * now see if we have a frag_list to map
1480 	 */
1481 	if (skb_shinfo(skb)->frag_list) {
1482 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1483 
1484 		for (; list && tlen; list = list->next) {
1485 			if (__skb_splice_bits(list, &offset, &tlen, &spd))
1486 				break;
1487 		}
1488 	}
1489 
1490 done:
1491 	/*
1492 	 * drop our reference to the clone, the pipe consumption will
1493 	 * drop the rest.
1494 	 */
1495 	kfree_skb(skb);
1496 
1497 	if (spd.nr_pages) {
1498 		int ret;
1499 		struct sock *sk = __skb->sk;
1500 
1501 		/*
1502 		 * Drop the socket lock, otherwise we have reverse
1503 		 * locking dependencies between sk_lock and i_mutex
1504 		 * here as compared to sendfile(). We enter here
1505 		 * with the socket lock held, and splice_to_pipe() will
1506 		 * grab the pipe inode lock. For sendfile() emulation,
1507 		 * we call into ->sendpage() with the i_mutex lock held
1508 		 * and networking will grab the socket lock.
1509 		 */
1510 		release_sock(sk);
1511 		ret = splice_to_pipe(pipe, &spd);
1512 		lock_sock(sk);
1513 		return ret;
1514 	}
1515 
1516 	return 0;
1517 }
1518 
1519 /**
1520  *	skb_store_bits - store bits from kernel buffer to skb
1521  *	@skb: destination buffer
1522  *	@offset: offset in destination
1523  *	@from: source buffer
1524  *	@len: number of bytes to copy
1525  *
1526  *	Copy the specified number of bytes from the source buffer to the
1527  *	destination skb.  This function handles all the messy bits of
1528  *	traversing fragment lists and such.
1529  */
1530 
1531 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1532 {
1533 	int i, copy;
1534 	int start = skb_headlen(skb);
1535 
1536 	if (offset > (int)skb->len - len)
1537 		goto fault;
1538 
1539 	if ((copy = start - offset) > 0) {
1540 		if (copy > len)
1541 			copy = len;
1542 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1543 		if ((len -= copy) == 0)
1544 			return 0;
1545 		offset += copy;
1546 		from += copy;
1547 	}
1548 
1549 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1550 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1551 		int end;
1552 
1553 		WARN_ON(start > offset + len);
1554 
1555 		end = start + frag->size;
1556 		if ((copy = end - offset) > 0) {
1557 			u8 *vaddr;
1558 
1559 			if (copy > len)
1560 				copy = len;
1561 
1562 			vaddr = kmap_skb_frag(frag);
1563 			memcpy(vaddr + frag->page_offset + offset - start,
1564 			       from, copy);
1565 			kunmap_skb_frag(vaddr);
1566 
1567 			if ((len -= copy) == 0)
1568 				return 0;
1569 			offset += copy;
1570 			from += copy;
1571 		}
1572 		start = end;
1573 	}
1574 
1575 	if (skb_shinfo(skb)->frag_list) {
1576 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1577 
1578 		for (; list; list = list->next) {
1579 			int end;
1580 
1581 			WARN_ON(start > offset + len);
1582 
1583 			end = start + list->len;
1584 			if ((copy = end - offset) > 0) {
1585 				if (copy > len)
1586 					copy = len;
1587 				if (skb_store_bits(list, offset - start,
1588 						   from, copy))
1589 					goto fault;
1590 				if ((len -= copy) == 0)
1591 					return 0;
1592 				offset += copy;
1593 				from += copy;
1594 			}
1595 			start = end;
1596 		}
1597 	}
1598 	if (!len)
1599 		return 0;
1600 
1601 fault:
1602 	return -EFAULT;
1603 }
1604 
1605 EXPORT_SYMBOL(skb_store_bits);
1606 
1607 /* Checksum skb data. */
1608 
1609 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1610 			  int len, __wsum csum)
1611 {
1612 	int start = skb_headlen(skb);
1613 	int i, copy = start - offset;
1614 	int pos = 0;
1615 
1616 	/* Checksum header. */
1617 	if (copy > 0) {
1618 		if (copy > len)
1619 			copy = len;
1620 		csum = csum_partial(skb->data + offset, copy, csum);
1621 		if ((len -= copy) == 0)
1622 			return csum;
1623 		offset += copy;
1624 		pos	= copy;
1625 	}
1626 
1627 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1628 		int end;
1629 
1630 		WARN_ON(start > offset + len);
1631 
1632 		end = start + skb_shinfo(skb)->frags[i].size;
1633 		if ((copy = end - offset) > 0) {
1634 			__wsum csum2;
1635 			u8 *vaddr;
1636 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1637 
1638 			if (copy > len)
1639 				copy = len;
1640 			vaddr = kmap_skb_frag(frag);
1641 			csum2 = csum_partial(vaddr + frag->page_offset +
1642 					     offset - start, copy, 0);
1643 			kunmap_skb_frag(vaddr);
1644 			csum = csum_block_add(csum, csum2, pos);
1645 			if (!(len -= copy))
1646 				return csum;
1647 			offset += copy;
1648 			pos    += copy;
1649 		}
1650 		start = end;
1651 	}
1652 
1653 	if (skb_shinfo(skb)->frag_list) {
1654 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1655 
1656 		for (; list; list = list->next) {
1657 			int end;
1658 
1659 			WARN_ON(start > offset + len);
1660 
1661 			end = start + list->len;
1662 			if ((copy = end - offset) > 0) {
1663 				__wsum csum2;
1664 				if (copy > len)
1665 					copy = len;
1666 				csum2 = skb_checksum(list, offset - start,
1667 						     copy, 0);
1668 				csum = csum_block_add(csum, csum2, pos);
1669 				if ((len -= copy) == 0)
1670 					return csum;
1671 				offset += copy;
1672 				pos    += copy;
1673 			}
1674 			start = end;
1675 		}
1676 	}
1677 	BUG_ON(len);
1678 
1679 	return csum;
1680 }
1681 
1682 /* Both of above in one bottle. */
1683 
1684 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1685 				    u8 *to, int len, __wsum csum)
1686 {
1687 	int start = skb_headlen(skb);
1688 	int i, copy = start - offset;
1689 	int pos = 0;
1690 
1691 	/* Copy header. */
1692 	if (copy > 0) {
1693 		if (copy > len)
1694 			copy = len;
1695 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1696 						 copy, csum);
1697 		if ((len -= copy) == 0)
1698 			return csum;
1699 		offset += copy;
1700 		to     += copy;
1701 		pos	= copy;
1702 	}
1703 
1704 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1705 		int end;
1706 
1707 		WARN_ON(start > offset + len);
1708 
1709 		end = start + skb_shinfo(skb)->frags[i].size;
1710 		if ((copy = end - offset) > 0) {
1711 			__wsum csum2;
1712 			u8 *vaddr;
1713 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1714 
1715 			if (copy > len)
1716 				copy = len;
1717 			vaddr = kmap_skb_frag(frag);
1718 			csum2 = csum_partial_copy_nocheck(vaddr +
1719 							  frag->page_offset +
1720 							  offset - start, to,
1721 							  copy, 0);
1722 			kunmap_skb_frag(vaddr);
1723 			csum = csum_block_add(csum, csum2, pos);
1724 			if (!(len -= copy))
1725 				return csum;
1726 			offset += copy;
1727 			to     += copy;
1728 			pos    += copy;
1729 		}
1730 		start = end;
1731 	}
1732 
1733 	if (skb_shinfo(skb)->frag_list) {
1734 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1735 
1736 		for (; list; list = list->next) {
1737 			__wsum csum2;
1738 			int end;
1739 
1740 			WARN_ON(start > offset + len);
1741 
1742 			end = start + list->len;
1743 			if ((copy = end - offset) > 0) {
1744 				if (copy > len)
1745 					copy = len;
1746 				csum2 = skb_copy_and_csum_bits(list,
1747 							       offset - start,
1748 							       to, copy, 0);
1749 				csum = csum_block_add(csum, csum2, pos);
1750 				if ((len -= copy) == 0)
1751 					return csum;
1752 				offset += copy;
1753 				to     += copy;
1754 				pos    += copy;
1755 			}
1756 			start = end;
1757 		}
1758 	}
1759 	BUG_ON(len);
1760 	return csum;
1761 }
1762 
1763 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1764 {
1765 	__wsum csum;
1766 	long csstart;
1767 
1768 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1769 		csstart = skb->csum_start - skb_headroom(skb);
1770 	else
1771 		csstart = skb_headlen(skb);
1772 
1773 	BUG_ON(csstart > skb_headlen(skb));
1774 
1775 	skb_copy_from_linear_data(skb, to, csstart);
1776 
1777 	csum = 0;
1778 	if (csstart != skb->len)
1779 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1780 					      skb->len - csstart, 0);
1781 
1782 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1783 		long csstuff = csstart + skb->csum_offset;
1784 
1785 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
1786 	}
1787 }
1788 
1789 /**
1790  *	skb_dequeue - remove from the head of the queue
1791  *	@list: list to dequeue from
1792  *
1793  *	Remove the head of the list. The list lock is taken so the function
1794  *	may be used safely with other locking list functions. The head item is
1795  *	returned or %NULL if the list is empty.
1796  */
1797 
1798 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1799 {
1800 	unsigned long flags;
1801 	struct sk_buff *result;
1802 
1803 	spin_lock_irqsave(&list->lock, flags);
1804 	result = __skb_dequeue(list);
1805 	spin_unlock_irqrestore(&list->lock, flags);
1806 	return result;
1807 }
1808 
1809 /**
1810  *	skb_dequeue_tail - remove from the tail of the queue
1811  *	@list: list to dequeue from
1812  *
1813  *	Remove the tail of the list. The list lock is taken so the function
1814  *	may be used safely with other locking list functions. The tail item is
1815  *	returned or %NULL if the list is empty.
1816  */
1817 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1818 {
1819 	unsigned long flags;
1820 	struct sk_buff *result;
1821 
1822 	spin_lock_irqsave(&list->lock, flags);
1823 	result = __skb_dequeue_tail(list);
1824 	spin_unlock_irqrestore(&list->lock, flags);
1825 	return result;
1826 }
1827 
1828 /**
1829  *	skb_queue_purge - empty a list
1830  *	@list: list to empty
1831  *
1832  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1833  *	the list and one reference dropped. This function takes the list
1834  *	lock and is atomic with respect to other list locking functions.
1835  */
1836 void skb_queue_purge(struct sk_buff_head *list)
1837 {
1838 	struct sk_buff *skb;
1839 	while ((skb = skb_dequeue(list)) != NULL)
1840 		kfree_skb(skb);
1841 }
1842 
1843 /**
1844  *	skb_queue_head - queue a buffer at the list head
1845  *	@list: list to use
1846  *	@newsk: buffer to queue
1847  *
1848  *	Queue a buffer at the start of the list. This function takes the
1849  *	list lock and can be used safely with other locking &sk_buff functions
1850  *	safely.
1851  *
1852  *	A buffer cannot be placed on two lists at the same time.
1853  */
1854 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1855 {
1856 	unsigned long flags;
1857 
1858 	spin_lock_irqsave(&list->lock, flags);
1859 	__skb_queue_head(list, newsk);
1860 	spin_unlock_irqrestore(&list->lock, flags);
1861 }
1862 
1863 /**
1864  *	skb_queue_tail - queue a buffer at the list tail
1865  *	@list: list to use
1866  *	@newsk: buffer to queue
1867  *
1868  *	Queue a buffer at the tail of the list. This function takes the
1869  *	list lock and can be used safely with other locking &sk_buff functions
1870  *	safely.
1871  *
1872  *	A buffer cannot be placed on two lists at the same time.
1873  */
1874 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1875 {
1876 	unsigned long flags;
1877 
1878 	spin_lock_irqsave(&list->lock, flags);
1879 	__skb_queue_tail(list, newsk);
1880 	spin_unlock_irqrestore(&list->lock, flags);
1881 }
1882 
1883 /**
1884  *	skb_unlink	-	remove a buffer from a list
1885  *	@skb: buffer to remove
1886  *	@list: list to use
1887  *
1888  *	Remove a packet from a list. The list locks are taken and this
1889  *	function is atomic with respect to other list locked calls
1890  *
1891  *	You must know what list the SKB is on.
1892  */
1893 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1894 {
1895 	unsigned long flags;
1896 
1897 	spin_lock_irqsave(&list->lock, flags);
1898 	__skb_unlink(skb, list);
1899 	spin_unlock_irqrestore(&list->lock, flags);
1900 }
1901 
1902 /**
1903  *	skb_append	-	append a buffer
1904  *	@old: buffer to insert after
1905  *	@newsk: buffer to insert
1906  *	@list: list to use
1907  *
1908  *	Place a packet after a given packet in a list. The list locks are taken
1909  *	and this function is atomic with respect to other list locked calls.
1910  *	A buffer cannot be placed on two lists at the same time.
1911  */
1912 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1913 {
1914 	unsigned long flags;
1915 
1916 	spin_lock_irqsave(&list->lock, flags);
1917 	__skb_queue_after(list, old, newsk);
1918 	spin_unlock_irqrestore(&list->lock, flags);
1919 }
1920 
1921 
1922 /**
1923  *	skb_insert	-	insert a buffer
1924  *	@old: buffer to insert before
1925  *	@newsk: buffer to insert
1926  *	@list: list to use
1927  *
1928  *	Place a packet before a given packet in a list. The list locks are
1929  * 	taken and this function is atomic with respect to other list locked
1930  *	calls.
1931  *
1932  *	A buffer cannot be placed on two lists at the same time.
1933  */
1934 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1935 {
1936 	unsigned long flags;
1937 
1938 	spin_lock_irqsave(&list->lock, flags);
1939 	__skb_insert(newsk, old->prev, old, list);
1940 	spin_unlock_irqrestore(&list->lock, flags);
1941 }
1942 
1943 static inline void skb_split_inside_header(struct sk_buff *skb,
1944 					   struct sk_buff* skb1,
1945 					   const u32 len, const int pos)
1946 {
1947 	int i;
1948 
1949 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1950 					 pos - len);
1951 	/* And move data appendix as is. */
1952 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1953 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1954 
1955 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1956 	skb_shinfo(skb)->nr_frags  = 0;
1957 	skb1->data_len		   = skb->data_len;
1958 	skb1->len		   += skb1->data_len;
1959 	skb->data_len		   = 0;
1960 	skb->len		   = len;
1961 	skb_set_tail_pointer(skb, len);
1962 }
1963 
1964 static inline void skb_split_no_header(struct sk_buff *skb,
1965 				       struct sk_buff* skb1,
1966 				       const u32 len, int pos)
1967 {
1968 	int i, k = 0;
1969 	const int nfrags = skb_shinfo(skb)->nr_frags;
1970 
1971 	skb_shinfo(skb)->nr_frags = 0;
1972 	skb1->len		  = skb1->data_len = skb->len - len;
1973 	skb->len		  = len;
1974 	skb->data_len		  = len - pos;
1975 
1976 	for (i = 0; i < nfrags; i++) {
1977 		int size = skb_shinfo(skb)->frags[i].size;
1978 
1979 		if (pos + size > len) {
1980 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1981 
1982 			if (pos < len) {
1983 				/* Split frag.
1984 				 * We have two variants in this case:
1985 				 * 1. Move all the frag to the second
1986 				 *    part, if it is possible. F.e.
1987 				 *    this approach is mandatory for TUX,
1988 				 *    where splitting is expensive.
1989 				 * 2. Split is accurately. We make this.
1990 				 */
1991 				get_page(skb_shinfo(skb)->frags[i].page);
1992 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1993 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1994 				skb_shinfo(skb)->frags[i].size	= len - pos;
1995 				skb_shinfo(skb)->nr_frags++;
1996 			}
1997 			k++;
1998 		} else
1999 			skb_shinfo(skb)->nr_frags++;
2000 		pos += size;
2001 	}
2002 	skb_shinfo(skb1)->nr_frags = k;
2003 }
2004 
2005 /**
2006  * skb_split - Split fragmented skb to two parts at length len.
2007  * @skb: the buffer to split
2008  * @skb1: the buffer to receive the second part
2009  * @len: new length for skb
2010  */
2011 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2012 {
2013 	int pos = skb_headlen(skb);
2014 
2015 	if (len < pos)	/* Split line is inside header. */
2016 		skb_split_inside_header(skb, skb1, len, pos);
2017 	else		/* Second chunk has no header, nothing to copy. */
2018 		skb_split_no_header(skb, skb1, len, pos);
2019 }
2020 
2021 /* Shifting from/to a cloned skb is a no-go.
2022  *
2023  * Caller cannot keep skb_shinfo related pointers past calling here!
2024  */
2025 static int skb_prepare_for_shift(struct sk_buff *skb)
2026 {
2027 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2028 }
2029 
2030 /**
2031  * skb_shift - Shifts paged data partially from skb to another
2032  * @tgt: buffer into which tail data gets added
2033  * @skb: buffer from which the paged data comes from
2034  * @shiftlen: shift up to this many bytes
2035  *
2036  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2037  * the length of the skb, from tgt to skb. Returns number bytes shifted.
2038  * It's up to caller to free skb if everything was shifted.
2039  *
2040  * If @tgt runs out of frags, the whole operation is aborted.
2041  *
2042  * Skb cannot include anything else but paged data while tgt is allowed
2043  * to have non-paged data as well.
2044  *
2045  * TODO: full sized shift could be optimized but that would need
2046  * specialized skb free'er to handle frags without up-to-date nr_frags.
2047  */
2048 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2049 {
2050 	int from, to, merge, todo;
2051 	struct skb_frag_struct *fragfrom, *fragto;
2052 
2053 	BUG_ON(shiftlen > skb->len);
2054 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2055 
2056 	todo = shiftlen;
2057 	from = 0;
2058 	to = skb_shinfo(tgt)->nr_frags;
2059 	fragfrom = &skb_shinfo(skb)->frags[from];
2060 
2061 	/* Actual merge is delayed until the point when we know we can
2062 	 * commit all, so that we don't have to undo partial changes
2063 	 */
2064 	if (!to ||
2065 	    !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2066 		merge = -1;
2067 	} else {
2068 		merge = to - 1;
2069 
2070 		todo -= fragfrom->size;
2071 		if (todo < 0) {
2072 			if (skb_prepare_for_shift(skb) ||
2073 			    skb_prepare_for_shift(tgt))
2074 				return 0;
2075 
2076 			/* All previous frag pointers might be stale! */
2077 			fragfrom = &skb_shinfo(skb)->frags[from];
2078 			fragto = &skb_shinfo(tgt)->frags[merge];
2079 
2080 			fragto->size += shiftlen;
2081 			fragfrom->size -= shiftlen;
2082 			fragfrom->page_offset += shiftlen;
2083 
2084 			goto onlymerged;
2085 		}
2086 
2087 		from++;
2088 	}
2089 
2090 	/* Skip full, not-fitting skb to avoid expensive operations */
2091 	if ((shiftlen == skb->len) &&
2092 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2093 		return 0;
2094 
2095 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2096 		return 0;
2097 
2098 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2099 		if (to == MAX_SKB_FRAGS)
2100 			return 0;
2101 
2102 		fragfrom = &skb_shinfo(skb)->frags[from];
2103 		fragto = &skb_shinfo(tgt)->frags[to];
2104 
2105 		if (todo >= fragfrom->size) {
2106 			*fragto = *fragfrom;
2107 			todo -= fragfrom->size;
2108 			from++;
2109 			to++;
2110 
2111 		} else {
2112 			get_page(fragfrom->page);
2113 			fragto->page = fragfrom->page;
2114 			fragto->page_offset = fragfrom->page_offset;
2115 			fragto->size = todo;
2116 
2117 			fragfrom->page_offset += todo;
2118 			fragfrom->size -= todo;
2119 			todo = 0;
2120 
2121 			to++;
2122 			break;
2123 		}
2124 	}
2125 
2126 	/* Ready to "commit" this state change to tgt */
2127 	skb_shinfo(tgt)->nr_frags = to;
2128 
2129 	if (merge >= 0) {
2130 		fragfrom = &skb_shinfo(skb)->frags[0];
2131 		fragto = &skb_shinfo(tgt)->frags[merge];
2132 
2133 		fragto->size += fragfrom->size;
2134 		put_page(fragfrom->page);
2135 	}
2136 
2137 	/* Reposition in the original skb */
2138 	to = 0;
2139 	while (from < skb_shinfo(skb)->nr_frags)
2140 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2141 	skb_shinfo(skb)->nr_frags = to;
2142 
2143 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2144 
2145 onlymerged:
2146 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2147 	 * the other hand might need it if it needs to be resent
2148 	 */
2149 	tgt->ip_summed = CHECKSUM_PARTIAL;
2150 	skb->ip_summed = CHECKSUM_PARTIAL;
2151 
2152 	/* Yak, is it really working this way? Some helper please? */
2153 	skb->len -= shiftlen;
2154 	skb->data_len -= shiftlen;
2155 	skb->truesize -= shiftlen;
2156 	tgt->len += shiftlen;
2157 	tgt->data_len += shiftlen;
2158 	tgt->truesize += shiftlen;
2159 
2160 	return shiftlen;
2161 }
2162 
2163 /**
2164  * skb_prepare_seq_read - Prepare a sequential read of skb data
2165  * @skb: the buffer to read
2166  * @from: lower offset of data to be read
2167  * @to: upper offset of data to be read
2168  * @st: state variable
2169  *
2170  * Initializes the specified state variable. Must be called before
2171  * invoking skb_seq_read() for the first time.
2172  */
2173 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2174 			  unsigned int to, struct skb_seq_state *st)
2175 {
2176 	st->lower_offset = from;
2177 	st->upper_offset = to;
2178 	st->root_skb = st->cur_skb = skb;
2179 	st->frag_idx = st->stepped_offset = 0;
2180 	st->frag_data = NULL;
2181 }
2182 
2183 /**
2184  * skb_seq_read - Sequentially read skb data
2185  * @consumed: number of bytes consumed by the caller so far
2186  * @data: destination pointer for data to be returned
2187  * @st: state variable
2188  *
2189  * Reads a block of skb data at &consumed relative to the
2190  * lower offset specified to skb_prepare_seq_read(). Assigns
2191  * the head of the data block to &data and returns the length
2192  * of the block or 0 if the end of the skb data or the upper
2193  * offset has been reached.
2194  *
2195  * The caller is not required to consume all of the data
2196  * returned, i.e. &consumed is typically set to the number
2197  * of bytes already consumed and the next call to
2198  * skb_seq_read() will return the remaining part of the block.
2199  *
2200  * Note 1: The size of each block of data returned can be arbitary,
2201  *       this limitation is the cost for zerocopy seqeuental
2202  *       reads of potentially non linear data.
2203  *
2204  * Note 2: Fragment lists within fragments are not implemented
2205  *       at the moment, state->root_skb could be replaced with
2206  *       a stack for this purpose.
2207  */
2208 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2209 			  struct skb_seq_state *st)
2210 {
2211 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2212 	skb_frag_t *frag;
2213 
2214 	if (unlikely(abs_offset >= st->upper_offset))
2215 		return 0;
2216 
2217 next_skb:
2218 	block_limit = skb_headlen(st->cur_skb);
2219 
2220 	if (abs_offset < block_limit) {
2221 		*data = st->cur_skb->data + abs_offset;
2222 		return block_limit - abs_offset;
2223 	}
2224 
2225 	if (st->frag_idx == 0 && !st->frag_data)
2226 		st->stepped_offset += skb_headlen(st->cur_skb);
2227 
2228 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2229 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2230 		block_limit = frag->size + st->stepped_offset;
2231 
2232 		if (abs_offset < block_limit) {
2233 			if (!st->frag_data)
2234 				st->frag_data = kmap_skb_frag(frag);
2235 
2236 			*data = (u8 *) st->frag_data + frag->page_offset +
2237 				(abs_offset - st->stepped_offset);
2238 
2239 			return block_limit - abs_offset;
2240 		}
2241 
2242 		if (st->frag_data) {
2243 			kunmap_skb_frag(st->frag_data);
2244 			st->frag_data = NULL;
2245 		}
2246 
2247 		st->frag_idx++;
2248 		st->stepped_offset += frag->size;
2249 	}
2250 
2251 	if (st->frag_data) {
2252 		kunmap_skb_frag(st->frag_data);
2253 		st->frag_data = NULL;
2254 	}
2255 
2256 	if (st->cur_skb->next) {
2257 		st->cur_skb = st->cur_skb->next;
2258 		st->frag_idx = 0;
2259 		goto next_skb;
2260 	} else if (st->root_skb == st->cur_skb &&
2261 		   skb_shinfo(st->root_skb)->frag_list) {
2262 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2263 		goto next_skb;
2264 	}
2265 
2266 	return 0;
2267 }
2268 
2269 /**
2270  * skb_abort_seq_read - Abort a sequential read of skb data
2271  * @st: state variable
2272  *
2273  * Must be called if skb_seq_read() was not called until it
2274  * returned 0.
2275  */
2276 void skb_abort_seq_read(struct skb_seq_state *st)
2277 {
2278 	if (st->frag_data)
2279 		kunmap_skb_frag(st->frag_data);
2280 }
2281 
2282 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2283 
2284 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2285 					  struct ts_config *conf,
2286 					  struct ts_state *state)
2287 {
2288 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2289 }
2290 
2291 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2292 {
2293 	skb_abort_seq_read(TS_SKB_CB(state));
2294 }
2295 
2296 /**
2297  * skb_find_text - Find a text pattern in skb data
2298  * @skb: the buffer to look in
2299  * @from: search offset
2300  * @to: search limit
2301  * @config: textsearch configuration
2302  * @state: uninitialized textsearch state variable
2303  *
2304  * Finds a pattern in the skb data according to the specified
2305  * textsearch configuration. Use textsearch_next() to retrieve
2306  * subsequent occurrences of the pattern. Returns the offset
2307  * to the first occurrence or UINT_MAX if no match was found.
2308  */
2309 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2310 			   unsigned int to, struct ts_config *config,
2311 			   struct ts_state *state)
2312 {
2313 	unsigned int ret;
2314 
2315 	config->get_next_block = skb_ts_get_next_block;
2316 	config->finish = skb_ts_finish;
2317 
2318 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2319 
2320 	ret = textsearch_find(config, state);
2321 	return (ret <= to - from ? ret : UINT_MAX);
2322 }
2323 
2324 /**
2325  * skb_append_datato_frags: - append the user data to a skb
2326  * @sk: sock  structure
2327  * @skb: skb structure to be appened with user data.
2328  * @getfrag: call back function to be used for getting the user data
2329  * @from: pointer to user message iov
2330  * @length: length of the iov message
2331  *
2332  * Description: This procedure append the user data in the fragment part
2333  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2334  */
2335 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2336 			int (*getfrag)(void *from, char *to, int offset,
2337 					int len, int odd, struct sk_buff *skb),
2338 			void *from, int length)
2339 {
2340 	int frg_cnt = 0;
2341 	skb_frag_t *frag = NULL;
2342 	struct page *page = NULL;
2343 	int copy, left;
2344 	int offset = 0;
2345 	int ret;
2346 
2347 	do {
2348 		/* Return error if we don't have space for new frag */
2349 		frg_cnt = skb_shinfo(skb)->nr_frags;
2350 		if (frg_cnt >= MAX_SKB_FRAGS)
2351 			return -EFAULT;
2352 
2353 		/* allocate a new page for next frag */
2354 		page = alloc_pages(sk->sk_allocation, 0);
2355 
2356 		/* If alloc_page fails just return failure and caller will
2357 		 * free previous allocated pages by doing kfree_skb()
2358 		 */
2359 		if (page == NULL)
2360 			return -ENOMEM;
2361 
2362 		/* initialize the next frag */
2363 		sk->sk_sndmsg_page = page;
2364 		sk->sk_sndmsg_off = 0;
2365 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2366 		skb->truesize += PAGE_SIZE;
2367 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2368 
2369 		/* get the new initialized frag */
2370 		frg_cnt = skb_shinfo(skb)->nr_frags;
2371 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2372 
2373 		/* copy the user data to page */
2374 		left = PAGE_SIZE - frag->page_offset;
2375 		copy = (length > left)? left : length;
2376 
2377 		ret = getfrag(from, (page_address(frag->page) +
2378 			    frag->page_offset + frag->size),
2379 			    offset, copy, 0, skb);
2380 		if (ret < 0)
2381 			return -EFAULT;
2382 
2383 		/* copy was successful so update the size parameters */
2384 		sk->sk_sndmsg_off += copy;
2385 		frag->size += copy;
2386 		skb->len += copy;
2387 		skb->data_len += copy;
2388 		offset += copy;
2389 		length -= copy;
2390 
2391 	} while (length > 0);
2392 
2393 	return 0;
2394 }
2395 
2396 /**
2397  *	skb_pull_rcsum - pull skb and update receive checksum
2398  *	@skb: buffer to update
2399  *	@len: length of data pulled
2400  *
2401  *	This function performs an skb_pull on the packet and updates
2402  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2403  *	receive path processing instead of skb_pull unless you know
2404  *	that the checksum difference is zero (e.g., a valid IP header)
2405  *	or you are setting ip_summed to CHECKSUM_NONE.
2406  */
2407 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2408 {
2409 	BUG_ON(len > skb->len);
2410 	skb->len -= len;
2411 	BUG_ON(skb->len < skb->data_len);
2412 	skb_postpull_rcsum(skb, skb->data, len);
2413 	return skb->data += len;
2414 }
2415 
2416 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2417 
2418 /**
2419  *	skb_segment - Perform protocol segmentation on skb.
2420  *	@skb: buffer to segment
2421  *	@features: features for the output path (see dev->features)
2422  *
2423  *	This function performs segmentation on the given skb.  It returns
2424  *	a pointer to the first in a list of new skbs for the segments.
2425  *	In case of error it returns ERR_PTR(err).
2426  */
2427 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2428 {
2429 	struct sk_buff *segs = NULL;
2430 	struct sk_buff *tail = NULL;
2431 	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2432 	unsigned int mss = skb_shinfo(skb)->gso_size;
2433 	unsigned int doffset = skb->data - skb_mac_header(skb);
2434 	unsigned int offset = doffset;
2435 	unsigned int headroom;
2436 	unsigned int len;
2437 	int sg = features & NETIF_F_SG;
2438 	int nfrags = skb_shinfo(skb)->nr_frags;
2439 	int err = -ENOMEM;
2440 	int i = 0;
2441 	int pos;
2442 
2443 	__skb_push(skb, doffset);
2444 	headroom = skb_headroom(skb);
2445 	pos = skb_headlen(skb);
2446 
2447 	do {
2448 		struct sk_buff *nskb;
2449 		skb_frag_t *frag;
2450 		int hsize;
2451 		int size;
2452 
2453 		len = skb->len - offset;
2454 		if (len > mss)
2455 			len = mss;
2456 
2457 		hsize = skb_headlen(skb) - offset;
2458 		if (hsize < 0)
2459 			hsize = 0;
2460 		if (hsize > len || !sg)
2461 			hsize = len;
2462 
2463 		if (!hsize && i >= nfrags) {
2464 			BUG_ON(fskb->len != len);
2465 
2466 			pos += len;
2467 			nskb = skb_clone(fskb, GFP_ATOMIC);
2468 			fskb = fskb->next;
2469 
2470 			if (unlikely(!nskb))
2471 				goto err;
2472 
2473 			hsize = skb_end_pointer(nskb) - nskb->head;
2474 			if (skb_cow_head(nskb, doffset + headroom)) {
2475 				kfree_skb(nskb);
2476 				goto err;
2477 			}
2478 
2479 			nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2480 					  hsize;
2481 			skb_release_head_state(nskb);
2482 			__skb_push(nskb, doffset);
2483 		} else {
2484 			nskb = alloc_skb(hsize + doffset + headroom,
2485 					 GFP_ATOMIC);
2486 
2487 			if (unlikely(!nskb))
2488 				goto err;
2489 
2490 			skb_reserve(nskb, headroom);
2491 			__skb_put(nskb, doffset);
2492 		}
2493 
2494 		if (segs)
2495 			tail->next = nskb;
2496 		else
2497 			segs = nskb;
2498 		tail = nskb;
2499 
2500 		__copy_skb_header(nskb, skb);
2501 		nskb->mac_len = skb->mac_len;
2502 
2503 		skb_reset_mac_header(nskb);
2504 		skb_set_network_header(nskb, skb->mac_len);
2505 		nskb->transport_header = (nskb->network_header +
2506 					  skb_network_header_len(skb));
2507 		skb_copy_from_linear_data(skb, nskb->data, doffset);
2508 
2509 		if (pos >= offset + len)
2510 			continue;
2511 
2512 		if (!sg) {
2513 			nskb->ip_summed = CHECKSUM_NONE;
2514 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2515 							    skb_put(nskb, len),
2516 							    len, 0);
2517 			continue;
2518 		}
2519 
2520 		frag = skb_shinfo(nskb)->frags;
2521 
2522 		skb_copy_from_linear_data_offset(skb, offset,
2523 						 skb_put(nskb, hsize), hsize);
2524 
2525 		while (pos < offset + len && i < nfrags) {
2526 			*frag = skb_shinfo(skb)->frags[i];
2527 			get_page(frag->page);
2528 			size = frag->size;
2529 
2530 			if (pos < offset) {
2531 				frag->page_offset += offset - pos;
2532 				frag->size -= offset - pos;
2533 			}
2534 
2535 			skb_shinfo(nskb)->nr_frags++;
2536 
2537 			if (pos + size <= offset + len) {
2538 				i++;
2539 				pos += size;
2540 			} else {
2541 				frag->size -= pos + size - (offset + len);
2542 				goto skip_fraglist;
2543 			}
2544 
2545 			frag++;
2546 		}
2547 
2548 		if (pos < offset + len) {
2549 			struct sk_buff *fskb2 = fskb;
2550 
2551 			BUG_ON(pos + fskb->len != offset + len);
2552 
2553 			pos += fskb->len;
2554 			fskb = fskb->next;
2555 
2556 			if (fskb2->next) {
2557 				fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2558 				if (!fskb2)
2559 					goto err;
2560 			} else
2561 				skb_get(fskb2);
2562 
2563 			BUG_ON(skb_shinfo(nskb)->frag_list);
2564 			skb_shinfo(nskb)->frag_list = fskb2;
2565 		}
2566 
2567 skip_fraglist:
2568 		nskb->data_len = len - hsize;
2569 		nskb->len += nskb->data_len;
2570 		nskb->truesize += nskb->data_len;
2571 	} while ((offset += len) < skb->len);
2572 
2573 	return segs;
2574 
2575 err:
2576 	while ((skb = segs)) {
2577 		segs = skb->next;
2578 		kfree_skb(skb);
2579 	}
2580 	return ERR_PTR(err);
2581 }
2582 
2583 EXPORT_SYMBOL_GPL(skb_segment);
2584 
2585 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2586 {
2587 	struct sk_buff *p = *head;
2588 	struct sk_buff *nskb;
2589 	unsigned int headroom;
2590 	unsigned int hlen = p->data - skb_mac_header(p);
2591 
2592 	if (hlen + p->len + skb->len >= 65536)
2593 		return -E2BIG;
2594 
2595 	if (skb_shinfo(p)->frag_list)
2596 		goto merge;
2597 	else if (!skb_headlen(p) && !skb_headlen(skb) &&
2598 		 skb_shinfo(p)->nr_frags + skb_shinfo(skb)->nr_frags <
2599 		 MAX_SKB_FRAGS) {
2600 		memcpy(skb_shinfo(p)->frags + skb_shinfo(p)->nr_frags,
2601 		       skb_shinfo(skb)->frags,
2602 		       skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
2603 
2604 		skb_shinfo(p)->nr_frags += skb_shinfo(skb)->nr_frags;
2605 		NAPI_GRO_CB(skb)->free = 1;
2606 		goto done;
2607 	}
2608 
2609 	headroom = skb_headroom(p);
2610 	nskb = netdev_alloc_skb(p->dev, headroom);
2611 	if (unlikely(!nskb))
2612 		return -ENOMEM;
2613 
2614 	__copy_skb_header(nskb, p);
2615 	nskb->mac_len = p->mac_len;
2616 
2617 	skb_reserve(nskb, headroom);
2618 
2619 	skb_set_mac_header(nskb, -hlen);
2620 	skb_set_network_header(nskb, skb_network_offset(p));
2621 	skb_set_transport_header(nskb, skb_transport_offset(p));
2622 
2623 	memcpy(skb_mac_header(nskb), skb_mac_header(p), hlen);
2624 
2625 	*NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2626 	skb_shinfo(nskb)->frag_list = p;
2627 	skb_shinfo(nskb)->gso_size = skb_shinfo(p)->gso_size;
2628 	skb_header_release(p);
2629 	nskb->prev = p;
2630 
2631 	nskb->data_len += p->len;
2632 	nskb->truesize += p->len;
2633 	nskb->len += p->len;
2634 
2635 	*head = nskb;
2636 	nskb->next = p->next;
2637 	p->next = NULL;
2638 
2639 	p = nskb;
2640 
2641 merge:
2642 	p->prev->next = skb;
2643 	p->prev = skb;
2644 	skb_header_release(skb);
2645 
2646 done:
2647 	NAPI_GRO_CB(p)->count++;
2648 	p->data_len += skb->len;
2649 	p->truesize += skb->len;
2650 	p->len += skb->len;
2651 
2652 	NAPI_GRO_CB(skb)->same_flow = 1;
2653 	return 0;
2654 }
2655 EXPORT_SYMBOL_GPL(skb_gro_receive);
2656 
2657 void __init skb_init(void)
2658 {
2659 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2660 					      sizeof(struct sk_buff),
2661 					      0,
2662 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2663 					      NULL);
2664 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2665 						(2*sizeof(struct sk_buff)) +
2666 						sizeof(atomic_t),
2667 						0,
2668 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2669 						NULL);
2670 }
2671 
2672 /**
2673  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2674  *	@skb: Socket buffer containing the buffers to be mapped
2675  *	@sg: The scatter-gather list to map into
2676  *	@offset: The offset into the buffer's contents to start mapping
2677  *	@len: Length of buffer space to be mapped
2678  *
2679  *	Fill the specified scatter-gather list with mappings/pointers into a
2680  *	region of the buffer space attached to a socket buffer.
2681  */
2682 static int
2683 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2684 {
2685 	int start = skb_headlen(skb);
2686 	int i, copy = start - offset;
2687 	int elt = 0;
2688 
2689 	if (copy > 0) {
2690 		if (copy > len)
2691 			copy = len;
2692 		sg_set_buf(sg, skb->data + offset, copy);
2693 		elt++;
2694 		if ((len -= copy) == 0)
2695 			return elt;
2696 		offset += copy;
2697 	}
2698 
2699 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2700 		int end;
2701 
2702 		WARN_ON(start > offset + len);
2703 
2704 		end = start + skb_shinfo(skb)->frags[i].size;
2705 		if ((copy = end - offset) > 0) {
2706 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2707 
2708 			if (copy > len)
2709 				copy = len;
2710 			sg_set_page(&sg[elt], frag->page, copy,
2711 					frag->page_offset+offset-start);
2712 			elt++;
2713 			if (!(len -= copy))
2714 				return elt;
2715 			offset += copy;
2716 		}
2717 		start = end;
2718 	}
2719 
2720 	if (skb_shinfo(skb)->frag_list) {
2721 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2722 
2723 		for (; list; list = list->next) {
2724 			int end;
2725 
2726 			WARN_ON(start > offset + len);
2727 
2728 			end = start + list->len;
2729 			if ((copy = end - offset) > 0) {
2730 				if (copy > len)
2731 					copy = len;
2732 				elt += __skb_to_sgvec(list, sg+elt, offset - start,
2733 						      copy);
2734 				if ((len -= copy) == 0)
2735 					return elt;
2736 				offset += copy;
2737 			}
2738 			start = end;
2739 		}
2740 	}
2741 	BUG_ON(len);
2742 	return elt;
2743 }
2744 
2745 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2746 {
2747 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
2748 
2749 	sg_mark_end(&sg[nsg - 1]);
2750 
2751 	return nsg;
2752 }
2753 
2754 /**
2755  *	skb_cow_data - Check that a socket buffer's data buffers are writable
2756  *	@skb: The socket buffer to check.
2757  *	@tailbits: Amount of trailing space to be added
2758  *	@trailer: Returned pointer to the skb where the @tailbits space begins
2759  *
2760  *	Make sure that the data buffers attached to a socket buffer are
2761  *	writable. If they are not, private copies are made of the data buffers
2762  *	and the socket buffer is set to use these instead.
2763  *
2764  *	If @tailbits is given, make sure that there is space to write @tailbits
2765  *	bytes of data beyond current end of socket buffer.  @trailer will be
2766  *	set to point to the skb in which this space begins.
2767  *
2768  *	The number of scatterlist elements required to completely map the
2769  *	COW'd and extended socket buffer will be returned.
2770  */
2771 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2772 {
2773 	int copyflag;
2774 	int elt;
2775 	struct sk_buff *skb1, **skb_p;
2776 
2777 	/* If skb is cloned or its head is paged, reallocate
2778 	 * head pulling out all the pages (pages are considered not writable
2779 	 * at the moment even if they are anonymous).
2780 	 */
2781 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2782 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2783 		return -ENOMEM;
2784 
2785 	/* Easy case. Most of packets will go this way. */
2786 	if (!skb_shinfo(skb)->frag_list) {
2787 		/* A little of trouble, not enough of space for trailer.
2788 		 * This should not happen, when stack is tuned to generate
2789 		 * good frames. OK, on miss we reallocate and reserve even more
2790 		 * space, 128 bytes is fair. */
2791 
2792 		if (skb_tailroom(skb) < tailbits &&
2793 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2794 			return -ENOMEM;
2795 
2796 		/* Voila! */
2797 		*trailer = skb;
2798 		return 1;
2799 	}
2800 
2801 	/* Misery. We are in troubles, going to mincer fragments... */
2802 
2803 	elt = 1;
2804 	skb_p = &skb_shinfo(skb)->frag_list;
2805 	copyflag = 0;
2806 
2807 	while ((skb1 = *skb_p) != NULL) {
2808 		int ntail = 0;
2809 
2810 		/* The fragment is partially pulled by someone,
2811 		 * this can happen on input. Copy it and everything
2812 		 * after it. */
2813 
2814 		if (skb_shared(skb1))
2815 			copyflag = 1;
2816 
2817 		/* If the skb is the last, worry about trailer. */
2818 
2819 		if (skb1->next == NULL && tailbits) {
2820 			if (skb_shinfo(skb1)->nr_frags ||
2821 			    skb_shinfo(skb1)->frag_list ||
2822 			    skb_tailroom(skb1) < tailbits)
2823 				ntail = tailbits + 128;
2824 		}
2825 
2826 		if (copyflag ||
2827 		    skb_cloned(skb1) ||
2828 		    ntail ||
2829 		    skb_shinfo(skb1)->nr_frags ||
2830 		    skb_shinfo(skb1)->frag_list) {
2831 			struct sk_buff *skb2;
2832 
2833 			/* Fuck, we are miserable poor guys... */
2834 			if (ntail == 0)
2835 				skb2 = skb_copy(skb1, GFP_ATOMIC);
2836 			else
2837 				skb2 = skb_copy_expand(skb1,
2838 						       skb_headroom(skb1),
2839 						       ntail,
2840 						       GFP_ATOMIC);
2841 			if (unlikely(skb2 == NULL))
2842 				return -ENOMEM;
2843 
2844 			if (skb1->sk)
2845 				skb_set_owner_w(skb2, skb1->sk);
2846 
2847 			/* Looking around. Are we still alive?
2848 			 * OK, link new skb, drop old one */
2849 
2850 			skb2->next = skb1->next;
2851 			*skb_p = skb2;
2852 			kfree_skb(skb1);
2853 			skb1 = skb2;
2854 		}
2855 		elt++;
2856 		*trailer = skb1;
2857 		skb_p = &skb1->next;
2858 	}
2859 
2860 	return elt;
2861 }
2862 
2863 /**
2864  * skb_partial_csum_set - set up and verify partial csum values for packet
2865  * @skb: the skb to set
2866  * @start: the number of bytes after skb->data to start checksumming.
2867  * @off: the offset from start to place the checksum.
2868  *
2869  * For untrusted partially-checksummed packets, we need to make sure the values
2870  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
2871  *
2872  * This function checks and sets those values and skb->ip_summed: if this
2873  * returns false you should drop the packet.
2874  */
2875 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
2876 {
2877 	if (unlikely(start > skb->len - 2) ||
2878 	    unlikely((int)start + off > skb->len - 2)) {
2879 		if (net_ratelimit())
2880 			printk(KERN_WARNING
2881 			       "bad partial csum: csum=%u/%u len=%u\n",
2882 			       start, off, skb->len);
2883 		return false;
2884 	}
2885 	skb->ip_summed = CHECKSUM_PARTIAL;
2886 	skb->csum_start = skb_headroom(skb) + start;
2887 	skb->csum_offset = off;
2888 	return true;
2889 }
2890 
2891 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
2892 {
2893 	if (net_ratelimit())
2894 		pr_warning("%s: received packets cannot be forwarded"
2895 			   " while LRO is enabled\n", skb->dev->name);
2896 }
2897 
2898 EXPORT_SYMBOL(___pskb_trim);
2899 EXPORT_SYMBOL(__kfree_skb);
2900 EXPORT_SYMBOL(kfree_skb);
2901 EXPORT_SYMBOL(__pskb_pull_tail);
2902 EXPORT_SYMBOL(__alloc_skb);
2903 EXPORT_SYMBOL(__netdev_alloc_skb);
2904 EXPORT_SYMBOL(pskb_copy);
2905 EXPORT_SYMBOL(pskb_expand_head);
2906 EXPORT_SYMBOL(skb_checksum);
2907 EXPORT_SYMBOL(skb_clone);
2908 EXPORT_SYMBOL(skb_copy);
2909 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2910 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2911 EXPORT_SYMBOL(skb_copy_bits);
2912 EXPORT_SYMBOL(skb_copy_expand);
2913 EXPORT_SYMBOL(skb_over_panic);
2914 EXPORT_SYMBOL(skb_pad);
2915 EXPORT_SYMBOL(skb_realloc_headroom);
2916 EXPORT_SYMBOL(skb_under_panic);
2917 EXPORT_SYMBOL(skb_dequeue);
2918 EXPORT_SYMBOL(skb_dequeue_tail);
2919 EXPORT_SYMBOL(skb_insert);
2920 EXPORT_SYMBOL(skb_queue_purge);
2921 EXPORT_SYMBOL(skb_queue_head);
2922 EXPORT_SYMBOL(skb_queue_tail);
2923 EXPORT_SYMBOL(skb_unlink);
2924 EXPORT_SYMBOL(skb_append);
2925 EXPORT_SYMBOL(skb_split);
2926 EXPORT_SYMBOL(skb_prepare_seq_read);
2927 EXPORT_SYMBOL(skb_seq_read);
2928 EXPORT_SYMBOL(skb_abort_seq_read);
2929 EXPORT_SYMBOL(skb_find_text);
2930 EXPORT_SYMBOL(skb_append_datato_frags);
2931 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
2932 
2933 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2934 EXPORT_SYMBOL_GPL(skb_cow_data);
2935 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
2936