1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $ 8 * 9 * Fixes: 10 * Alan Cox : Fixed the worst of the load 11 * balancer bugs. 12 * Dave Platt : Interrupt stacking fix. 13 * Richard Kooijman : Timestamp fixes. 14 * Alan Cox : Changed buffer format. 15 * Alan Cox : destructor hook for AF_UNIX etc. 16 * Linus Torvalds : Better skb_clone. 17 * Alan Cox : Added skb_copy. 18 * Alan Cox : Added all the changed routines Linus 19 * only put in the headers 20 * Ray VanTassle : Fixed --skb->lock in free 21 * Alan Cox : skb_copy copy arp field 22 * Andi Kleen : slabified it. 23 * Robert Olsson : Removed skb_head_pool 24 * 25 * NOTE: 26 * The __skb_ routines should be called with interrupts 27 * disabled, or you better be *real* sure that the operation is atomic 28 * with respect to whatever list is being frobbed (e.g. via lock_sock() 29 * or via disabling bottom half handlers, etc). 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License 33 * as published by the Free Software Foundation; either version 34 * 2 of the License, or (at your option) any later version. 35 */ 36 37 /* 38 * The functions in this file will not compile correctly with gcc 2.4.x 39 */ 40 41 #include <linux/config.h> 42 #include <linux/module.h> 43 #include <linux/types.h> 44 #include <linux/kernel.h> 45 #include <linux/sched.h> 46 #include <linux/mm.h> 47 #include <linux/interrupt.h> 48 #include <linux/in.h> 49 #include <linux/inet.h> 50 #include <linux/slab.h> 51 #include <linux/netdevice.h> 52 #ifdef CONFIG_NET_CLS_ACT 53 #include <net/pkt_sched.h> 54 #endif 55 #include <linux/string.h> 56 #include <linux/skbuff.h> 57 #include <linux/cache.h> 58 #include <linux/rtnetlink.h> 59 #include <linux/init.h> 60 #include <linux/highmem.h> 61 62 #include <net/protocol.h> 63 #include <net/dst.h> 64 #include <net/sock.h> 65 #include <net/checksum.h> 66 #include <net/xfrm.h> 67 68 #include <asm/uaccess.h> 69 #include <asm/system.h> 70 71 static kmem_cache_t *skbuff_head_cache __read_mostly; 72 static kmem_cache_t *skbuff_fclone_cache __read_mostly; 73 74 /* 75 * Keep out-of-line to prevent kernel bloat. 76 * __builtin_return_address is not used because it is not always 77 * reliable. 78 */ 79 80 /** 81 * skb_over_panic - private function 82 * @skb: buffer 83 * @sz: size 84 * @here: address 85 * 86 * Out of line support code for skb_put(). Not user callable. 87 */ 88 void skb_over_panic(struct sk_buff *skb, int sz, void *here) 89 { 90 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 91 "data:%p tail:%p end:%p dev:%s\n", 92 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end, 93 skb->dev ? skb->dev->name : "<NULL>"); 94 BUG(); 95 } 96 97 /** 98 * skb_under_panic - private function 99 * @skb: buffer 100 * @sz: size 101 * @here: address 102 * 103 * Out of line support code for skb_push(). Not user callable. 104 */ 105 106 void skb_under_panic(struct sk_buff *skb, int sz, void *here) 107 { 108 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 109 "data:%p tail:%p end:%p dev:%s\n", 110 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end, 111 skb->dev ? skb->dev->name : "<NULL>"); 112 BUG(); 113 } 114 115 void skb_truesize_bug(struct sk_buff *skb) 116 { 117 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) " 118 "len=%u, sizeof(sk_buff)=%Zd\n", 119 skb->truesize, skb->len, sizeof(struct sk_buff)); 120 } 121 EXPORT_SYMBOL(skb_truesize_bug); 122 123 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 124 * 'private' fields and also do memory statistics to find all the 125 * [BEEP] leaks. 126 * 127 */ 128 129 /** 130 * __alloc_skb - allocate a network buffer 131 * @size: size to allocate 132 * @gfp_mask: allocation mask 133 * @fclone: allocate from fclone cache instead of head cache 134 * and allocate a cloned (child) skb 135 * 136 * Allocate a new &sk_buff. The returned buffer has no headroom and a 137 * tail room of size bytes. The object has a reference count of one. 138 * The return is the buffer. On a failure the return is %NULL. 139 * 140 * Buffers may only be allocated from interrupts using a @gfp_mask of 141 * %GFP_ATOMIC. 142 */ 143 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 144 int fclone) 145 { 146 kmem_cache_t *cache; 147 struct skb_shared_info *shinfo; 148 struct sk_buff *skb; 149 u8 *data; 150 151 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 152 153 /* Get the HEAD */ 154 skb = kmem_cache_alloc(cache, gfp_mask & ~__GFP_DMA); 155 if (!skb) 156 goto out; 157 158 /* Get the DATA. Size must match skb_add_mtu(). */ 159 size = SKB_DATA_ALIGN(size); 160 data = ____kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 161 if (!data) 162 goto nodata; 163 164 memset(skb, 0, offsetof(struct sk_buff, truesize)); 165 skb->truesize = size + sizeof(struct sk_buff); 166 atomic_set(&skb->users, 1); 167 skb->head = data; 168 skb->data = data; 169 skb->tail = data; 170 skb->end = data + size; 171 /* make sure we initialize shinfo sequentially */ 172 shinfo = skb_shinfo(skb); 173 atomic_set(&shinfo->dataref, 1); 174 shinfo->nr_frags = 0; 175 shinfo->tso_size = 0; 176 shinfo->tso_segs = 0; 177 shinfo->ufo_size = 0; 178 shinfo->ip6_frag_id = 0; 179 shinfo->frag_list = NULL; 180 181 if (fclone) { 182 struct sk_buff *child = skb + 1; 183 atomic_t *fclone_ref = (atomic_t *) (child + 1); 184 185 skb->fclone = SKB_FCLONE_ORIG; 186 atomic_set(fclone_ref, 1); 187 188 child->fclone = SKB_FCLONE_UNAVAILABLE; 189 } 190 out: 191 return skb; 192 nodata: 193 kmem_cache_free(cache, skb); 194 skb = NULL; 195 goto out; 196 } 197 198 /** 199 * alloc_skb_from_cache - allocate a network buffer 200 * @cp: kmem_cache from which to allocate the data area 201 * (object size must be big enough for @size bytes + skb overheads) 202 * @size: size to allocate 203 * @gfp_mask: allocation mask 204 * 205 * Allocate a new &sk_buff. The returned buffer has no headroom and 206 * tail room of size bytes. The object has a reference count of one. 207 * The return is the buffer. On a failure the return is %NULL. 208 * 209 * Buffers may only be allocated from interrupts using a @gfp_mask of 210 * %GFP_ATOMIC. 211 */ 212 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp, 213 unsigned int size, 214 gfp_t gfp_mask) 215 { 216 struct sk_buff *skb; 217 u8 *data; 218 219 /* Get the HEAD */ 220 skb = kmem_cache_alloc(skbuff_head_cache, 221 gfp_mask & ~__GFP_DMA); 222 if (!skb) 223 goto out; 224 225 /* Get the DATA. */ 226 size = SKB_DATA_ALIGN(size); 227 data = kmem_cache_alloc(cp, gfp_mask); 228 if (!data) 229 goto nodata; 230 231 memset(skb, 0, offsetof(struct sk_buff, truesize)); 232 skb->truesize = size + sizeof(struct sk_buff); 233 atomic_set(&skb->users, 1); 234 skb->head = data; 235 skb->data = data; 236 skb->tail = data; 237 skb->end = data + size; 238 239 atomic_set(&(skb_shinfo(skb)->dataref), 1); 240 skb_shinfo(skb)->nr_frags = 0; 241 skb_shinfo(skb)->tso_size = 0; 242 skb_shinfo(skb)->tso_segs = 0; 243 skb_shinfo(skb)->frag_list = NULL; 244 out: 245 return skb; 246 nodata: 247 kmem_cache_free(skbuff_head_cache, skb); 248 skb = NULL; 249 goto out; 250 } 251 252 253 static void skb_drop_fraglist(struct sk_buff *skb) 254 { 255 struct sk_buff *list = skb_shinfo(skb)->frag_list; 256 257 skb_shinfo(skb)->frag_list = NULL; 258 259 do { 260 struct sk_buff *this = list; 261 list = list->next; 262 kfree_skb(this); 263 } while (list); 264 } 265 266 static void skb_clone_fraglist(struct sk_buff *skb) 267 { 268 struct sk_buff *list; 269 270 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) 271 skb_get(list); 272 } 273 274 void skb_release_data(struct sk_buff *skb) 275 { 276 if (!skb->cloned || 277 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 278 &skb_shinfo(skb)->dataref)) { 279 if (skb_shinfo(skb)->nr_frags) { 280 int i; 281 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 282 put_page(skb_shinfo(skb)->frags[i].page); 283 } 284 285 if (skb_shinfo(skb)->frag_list) 286 skb_drop_fraglist(skb); 287 288 kfree(skb->head); 289 } 290 } 291 292 /* 293 * Free an skbuff by memory without cleaning the state. 294 */ 295 void kfree_skbmem(struct sk_buff *skb) 296 { 297 struct sk_buff *other; 298 atomic_t *fclone_ref; 299 300 skb_release_data(skb); 301 switch (skb->fclone) { 302 case SKB_FCLONE_UNAVAILABLE: 303 kmem_cache_free(skbuff_head_cache, skb); 304 break; 305 306 case SKB_FCLONE_ORIG: 307 fclone_ref = (atomic_t *) (skb + 2); 308 if (atomic_dec_and_test(fclone_ref)) 309 kmem_cache_free(skbuff_fclone_cache, skb); 310 break; 311 312 case SKB_FCLONE_CLONE: 313 fclone_ref = (atomic_t *) (skb + 1); 314 other = skb - 1; 315 316 /* The clone portion is available for 317 * fast-cloning again. 318 */ 319 skb->fclone = SKB_FCLONE_UNAVAILABLE; 320 321 if (atomic_dec_and_test(fclone_ref)) 322 kmem_cache_free(skbuff_fclone_cache, other); 323 break; 324 }; 325 } 326 327 /** 328 * __kfree_skb - private function 329 * @skb: buffer 330 * 331 * Free an sk_buff. Release anything attached to the buffer. 332 * Clean the state. This is an internal helper function. Users should 333 * always call kfree_skb 334 */ 335 336 void __kfree_skb(struct sk_buff *skb) 337 { 338 dst_release(skb->dst); 339 #ifdef CONFIG_XFRM 340 secpath_put(skb->sp); 341 #endif 342 if (skb->destructor) { 343 WARN_ON(in_irq()); 344 skb->destructor(skb); 345 } 346 #ifdef CONFIG_NETFILTER 347 nf_conntrack_put(skb->nfct); 348 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 349 nf_conntrack_put_reasm(skb->nfct_reasm); 350 #endif 351 #ifdef CONFIG_BRIDGE_NETFILTER 352 nf_bridge_put(skb->nf_bridge); 353 #endif 354 #endif 355 /* XXX: IS this still necessary? - JHS */ 356 #ifdef CONFIG_NET_SCHED 357 skb->tc_index = 0; 358 #ifdef CONFIG_NET_CLS_ACT 359 skb->tc_verd = 0; 360 #endif 361 #endif 362 363 kfree_skbmem(skb); 364 } 365 366 /** 367 * kfree_skb - free an sk_buff 368 * @skb: buffer to free 369 * 370 * Drop a reference to the buffer and free it if the usage count has 371 * hit zero. 372 */ 373 void kfree_skb(struct sk_buff *skb) 374 { 375 if (unlikely(!skb)) 376 return; 377 if (likely(atomic_read(&skb->users) == 1)) 378 smp_rmb(); 379 else if (likely(!atomic_dec_and_test(&skb->users))) 380 return; 381 __kfree_skb(skb); 382 } 383 384 /** 385 * skb_clone - duplicate an sk_buff 386 * @skb: buffer to clone 387 * @gfp_mask: allocation priority 388 * 389 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 390 * copies share the same packet data but not structure. The new 391 * buffer has a reference count of 1. If the allocation fails the 392 * function returns %NULL otherwise the new buffer is returned. 393 * 394 * If this function is called from an interrupt gfp_mask() must be 395 * %GFP_ATOMIC. 396 */ 397 398 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 399 { 400 struct sk_buff *n; 401 402 n = skb + 1; 403 if (skb->fclone == SKB_FCLONE_ORIG && 404 n->fclone == SKB_FCLONE_UNAVAILABLE) { 405 atomic_t *fclone_ref = (atomic_t *) (n + 1); 406 n->fclone = SKB_FCLONE_CLONE; 407 atomic_inc(fclone_ref); 408 } else { 409 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 410 if (!n) 411 return NULL; 412 n->fclone = SKB_FCLONE_UNAVAILABLE; 413 } 414 415 #define C(x) n->x = skb->x 416 417 n->next = n->prev = NULL; 418 n->sk = NULL; 419 C(tstamp); 420 C(dev); 421 C(h); 422 C(nh); 423 C(mac); 424 C(dst); 425 dst_clone(skb->dst); 426 C(sp); 427 #ifdef CONFIG_INET 428 secpath_get(skb->sp); 429 #endif 430 memcpy(n->cb, skb->cb, sizeof(skb->cb)); 431 C(len); 432 C(data_len); 433 C(csum); 434 C(local_df); 435 n->cloned = 1; 436 n->nohdr = 0; 437 C(pkt_type); 438 C(ip_summed); 439 C(priority); 440 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 441 C(ipvs_property); 442 #endif 443 C(protocol); 444 n->destructor = NULL; 445 #ifdef CONFIG_NETFILTER 446 C(nfmark); 447 C(nfct); 448 nf_conntrack_get(skb->nfct); 449 C(nfctinfo); 450 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 451 C(nfct_reasm); 452 nf_conntrack_get_reasm(skb->nfct_reasm); 453 #endif 454 #ifdef CONFIG_BRIDGE_NETFILTER 455 C(nf_bridge); 456 nf_bridge_get(skb->nf_bridge); 457 #endif 458 #endif /*CONFIG_NETFILTER*/ 459 #ifdef CONFIG_NET_SCHED 460 C(tc_index); 461 #ifdef CONFIG_NET_CLS_ACT 462 n->tc_verd = SET_TC_VERD(skb->tc_verd,0); 463 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd); 464 n->tc_verd = CLR_TC_MUNGED(n->tc_verd); 465 C(input_dev); 466 #endif 467 468 #endif 469 C(truesize); 470 atomic_set(&n->users, 1); 471 C(head); 472 C(data); 473 C(tail); 474 C(end); 475 476 atomic_inc(&(skb_shinfo(skb)->dataref)); 477 skb->cloned = 1; 478 479 return n; 480 } 481 482 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 483 { 484 /* 485 * Shift between the two data areas in bytes 486 */ 487 unsigned long offset = new->data - old->data; 488 489 new->sk = NULL; 490 new->dev = old->dev; 491 new->priority = old->priority; 492 new->protocol = old->protocol; 493 new->dst = dst_clone(old->dst); 494 #ifdef CONFIG_INET 495 new->sp = secpath_get(old->sp); 496 #endif 497 new->h.raw = old->h.raw + offset; 498 new->nh.raw = old->nh.raw + offset; 499 new->mac.raw = old->mac.raw + offset; 500 memcpy(new->cb, old->cb, sizeof(old->cb)); 501 new->local_df = old->local_df; 502 new->fclone = SKB_FCLONE_UNAVAILABLE; 503 new->pkt_type = old->pkt_type; 504 new->tstamp = old->tstamp; 505 new->destructor = NULL; 506 #ifdef CONFIG_NETFILTER 507 new->nfmark = old->nfmark; 508 new->nfct = old->nfct; 509 nf_conntrack_get(old->nfct); 510 new->nfctinfo = old->nfctinfo; 511 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 512 new->nfct_reasm = old->nfct_reasm; 513 nf_conntrack_get_reasm(old->nfct_reasm); 514 #endif 515 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 516 new->ipvs_property = old->ipvs_property; 517 #endif 518 #ifdef CONFIG_BRIDGE_NETFILTER 519 new->nf_bridge = old->nf_bridge; 520 nf_bridge_get(old->nf_bridge); 521 #endif 522 #endif 523 #ifdef CONFIG_NET_SCHED 524 #ifdef CONFIG_NET_CLS_ACT 525 new->tc_verd = old->tc_verd; 526 #endif 527 new->tc_index = old->tc_index; 528 #endif 529 atomic_set(&new->users, 1); 530 skb_shinfo(new)->tso_size = skb_shinfo(old)->tso_size; 531 skb_shinfo(new)->tso_segs = skb_shinfo(old)->tso_segs; 532 } 533 534 /** 535 * skb_copy - create private copy of an sk_buff 536 * @skb: buffer to copy 537 * @gfp_mask: allocation priority 538 * 539 * Make a copy of both an &sk_buff and its data. This is used when the 540 * caller wishes to modify the data and needs a private copy of the 541 * data to alter. Returns %NULL on failure or the pointer to the buffer 542 * on success. The returned buffer has a reference count of 1. 543 * 544 * As by-product this function converts non-linear &sk_buff to linear 545 * one, so that &sk_buff becomes completely private and caller is allowed 546 * to modify all the data of returned buffer. This means that this 547 * function is not recommended for use in circumstances when only 548 * header is going to be modified. Use pskb_copy() instead. 549 */ 550 551 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 552 { 553 int headerlen = skb->data - skb->head; 554 /* 555 * Allocate the copy buffer 556 */ 557 struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len, 558 gfp_mask); 559 if (!n) 560 return NULL; 561 562 /* Set the data pointer */ 563 skb_reserve(n, headerlen); 564 /* Set the tail pointer and length */ 565 skb_put(n, skb->len); 566 n->csum = skb->csum; 567 n->ip_summed = skb->ip_summed; 568 569 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 570 BUG(); 571 572 copy_skb_header(n, skb); 573 return n; 574 } 575 576 577 /** 578 * pskb_copy - create copy of an sk_buff with private head. 579 * @skb: buffer to copy 580 * @gfp_mask: allocation priority 581 * 582 * Make a copy of both an &sk_buff and part of its data, located 583 * in header. Fragmented data remain shared. This is used when 584 * the caller wishes to modify only header of &sk_buff and needs 585 * private copy of the header to alter. Returns %NULL on failure 586 * or the pointer to the buffer on success. 587 * The returned buffer has a reference count of 1. 588 */ 589 590 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 591 { 592 /* 593 * Allocate the copy buffer 594 */ 595 struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask); 596 597 if (!n) 598 goto out; 599 600 /* Set the data pointer */ 601 skb_reserve(n, skb->data - skb->head); 602 /* Set the tail pointer and length */ 603 skb_put(n, skb_headlen(skb)); 604 /* Copy the bytes */ 605 memcpy(n->data, skb->data, n->len); 606 n->csum = skb->csum; 607 n->ip_summed = skb->ip_summed; 608 609 n->data_len = skb->data_len; 610 n->len = skb->len; 611 612 if (skb_shinfo(skb)->nr_frags) { 613 int i; 614 615 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 616 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 617 get_page(skb_shinfo(n)->frags[i].page); 618 } 619 skb_shinfo(n)->nr_frags = i; 620 } 621 622 if (skb_shinfo(skb)->frag_list) { 623 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 624 skb_clone_fraglist(n); 625 } 626 627 copy_skb_header(n, skb); 628 out: 629 return n; 630 } 631 632 /** 633 * pskb_expand_head - reallocate header of &sk_buff 634 * @skb: buffer to reallocate 635 * @nhead: room to add at head 636 * @ntail: room to add at tail 637 * @gfp_mask: allocation priority 638 * 639 * Expands (or creates identical copy, if &nhead and &ntail are zero) 640 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 641 * reference count of 1. Returns zero in the case of success or error, 642 * if expansion failed. In the last case, &sk_buff is not changed. 643 * 644 * All the pointers pointing into skb header may change and must be 645 * reloaded after call to this function. 646 */ 647 648 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 649 gfp_t gfp_mask) 650 { 651 int i; 652 u8 *data; 653 int size = nhead + (skb->end - skb->head) + ntail; 654 long off; 655 656 if (skb_shared(skb)) 657 BUG(); 658 659 size = SKB_DATA_ALIGN(size); 660 661 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 662 if (!data) 663 goto nodata; 664 665 /* Copy only real data... and, alas, header. This should be 666 * optimized for the cases when header is void. */ 667 memcpy(data + nhead, skb->head, skb->tail - skb->head); 668 memcpy(data + size, skb->end, sizeof(struct skb_shared_info)); 669 670 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 671 get_page(skb_shinfo(skb)->frags[i].page); 672 673 if (skb_shinfo(skb)->frag_list) 674 skb_clone_fraglist(skb); 675 676 skb_release_data(skb); 677 678 off = (data + nhead) - skb->head; 679 680 skb->head = data; 681 skb->end = data + size; 682 skb->data += off; 683 skb->tail += off; 684 skb->mac.raw += off; 685 skb->h.raw += off; 686 skb->nh.raw += off; 687 skb->cloned = 0; 688 skb->nohdr = 0; 689 atomic_set(&skb_shinfo(skb)->dataref, 1); 690 return 0; 691 692 nodata: 693 return -ENOMEM; 694 } 695 696 /* Make private copy of skb with writable head and some headroom */ 697 698 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 699 { 700 struct sk_buff *skb2; 701 int delta = headroom - skb_headroom(skb); 702 703 if (delta <= 0) 704 skb2 = pskb_copy(skb, GFP_ATOMIC); 705 else { 706 skb2 = skb_clone(skb, GFP_ATOMIC); 707 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 708 GFP_ATOMIC)) { 709 kfree_skb(skb2); 710 skb2 = NULL; 711 } 712 } 713 return skb2; 714 } 715 716 717 /** 718 * skb_copy_expand - copy and expand sk_buff 719 * @skb: buffer to copy 720 * @newheadroom: new free bytes at head 721 * @newtailroom: new free bytes at tail 722 * @gfp_mask: allocation priority 723 * 724 * Make a copy of both an &sk_buff and its data and while doing so 725 * allocate additional space. 726 * 727 * This is used when the caller wishes to modify the data and needs a 728 * private copy of the data to alter as well as more space for new fields. 729 * Returns %NULL on failure or the pointer to the buffer 730 * on success. The returned buffer has a reference count of 1. 731 * 732 * You must pass %GFP_ATOMIC as the allocation priority if this function 733 * is called from an interrupt. 734 * 735 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used 736 * only by netfilter in the cases when checksum is recalculated? --ANK 737 */ 738 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 739 int newheadroom, int newtailroom, 740 gfp_t gfp_mask) 741 { 742 /* 743 * Allocate the copy buffer 744 */ 745 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 746 gfp_mask); 747 int head_copy_len, head_copy_off; 748 749 if (!n) 750 return NULL; 751 752 skb_reserve(n, newheadroom); 753 754 /* Set the tail pointer and length */ 755 skb_put(n, skb->len); 756 757 head_copy_len = skb_headroom(skb); 758 head_copy_off = 0; 759 if (newheadroom <= head_copy_len) 760 head_copy_len = newheadroom; 761 else 762 head_copy_off = newheadroom - head_copy_len; 763 764 /* Copy the linear header and data. */ 765 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 766 skb->len + head_copy_len)) 767 BUG(); 768 769 copy_skb_header(n, skb); 770 771 return n; 772 } 773 774 /** 775 * skb_pad - zero pad the tail of an skb 776 * @skb: buffer to pad 777 * @pad: space to pad 778 * 779 * Ensure that a buffer is followed by a padding area that is zero 780 * filled. Used by network drivers which may DMA or transfer data 781 * beyond the buffer end onto the wire. 782 * 783 * May return NULL in out of memory cases. 784 */ 785 786 struct sk_buff *skb_pad(struct sk_buff *skb, int pad) 787 { 788 struct sk_buff *nskb; 789 790 /* If the skbuff is non linear tailroom is always zero.. */ 791 if (skb_tailroom(skb) >= pad) { 792 memset(skb->data+skb->len, 0, pad); 793 return skb; 794 } 795 796 nskb = skb_copy_expand(skb, skb_headroom(skb), skb_tailroom(skb) + pad, GFP_ATOMIC); 797 kfree_skb(skb); 798 if (nskb) 799 memset(nskb->data+nskb->len, 0, pad); 800 return nskb; 801 } 802 803 /* Trims skb to length len. It can change skb pointers, if "realloc" is 1. 804 * If realloc==0 and trimming is impossible without change of data, 805 * it is BUG(). 806 */ 807 808 int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc) 809 { 810 int offset = skb_headlen(skb); 811 int nfrags = skb_shinfo(skb)->nr_frags; 812 int i; 813 814 for (i = 0; i < nfrags; i++) { 815 int end = offset + skb_shinfo(skb)->frags[i].size; 816 if (end > len) { 817 if (skb_cloned(skb)) { 818 BUG_ON(!realloc); 819 if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 820 return -ENOMEM; 821 } 822 if (len <= offset) { 823 put_page(skb_shinfo(skb)->frags[i].page); 824 skb_shinfo(skb)->nr_frags--; 825 } else { 826 skb_shinfo(skb)->frags[i].size = len - offset; 827 } 828 } 829 offset = end; 830 } 831 832 if (offset < len) { 833 skb->data_len -= skb->len - len; 834 skb->len = len; 835 } else { 836 if (len <= skb_headlen(skb)) { 837 skb->len = len; 838 skb->data_len = 0; 839 skb->tail = skb->data + len; 840 if (skb_shinfo(skb)->frag_list && !skb_cloned(skb)) 841 skb_drop_fraglist(skb); 842 } else { 843 skb->data_len -= skb->len - len; 844 skb->len = len; 845 } 846 } 847 848 return 0; 849 } 850 851 /** 852 * __pskb_pull_tail - advance tail of skb header 853 * @skb: buffer to reallocate 854 * @delta: number of bytes to advance tail 855 * 856 * The function makes a sense only on a fragmented &sk_buff, 857 * it expands header moving its tail forward and copying necessary 858 * data from fragmented part. 859 * 860 * &sk_buff MUST have reference count of 1. 861 * 862 * Returns %NULL (and &sk_buff does not change) if pull failed 863 * or value of new tail of skb in the case of success. 864 * 865 * All the pointers pointing into skb header may change and must be 866 * reloaded after call to this function. 867 */ 868 869 /* Moves tail of skb head forward, copying data from fragmented part, 870 * when it is necessary. 871 * 1. It may fail due to malloc failure. 872 * 2. It may change skb pointers. 873 * 874 * It is pretty complicated. Luckily, it is called only in exceptional cases. 875 */ 876 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 877 { 878 /* If skb has not enough free space at tail, get new one 879 * plus 128 bytes for future expansions. If we have enough 880 * room at tail, reallocate without expansion only if skb is cloned. 881 */ 882 int i, k, eat = (skb->tail + delta) - skb->end; 883 884 if (eat > 0 || skb_cloned(skb)) { 885 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 886 GFP_ATOMIC)) 887 return NULL; 888 } 889 890 if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta)) 891 BUG(); 892 893 /* Optimization: no fragments, no reasons to preestimate 894 * size of pulled pages. Superb. 895 */ 896 if (!skb_shinfo(skb)->frag_list) 897 goto pull_pages; 898 899 /* Estimate size of pulled pages. */ 900 eat = delta; 901 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 902 if (skb_shinfo(skb)->frags[i].size >= eat) 903 goto pull_pages; 904 eat -= skb_shinfo(skb)->frags[i].size; 905 } 906 907 /* If we need update frag list, we are in troubles. 908 * Certainly, it possible to add an offset to skb data, 909 * but taking into account that pulling is expected to 910 * be very rare operation, it is worth to fight against 911 * further bloating skb head and crucify ourselves here instead. 912 * Pure masohism, indeed. 8)8) 913 */ 914 if (eat) { 915 struct sk_buff *list = skb_shinfo(skb)->frag_list; 916 struct sk_buff *clone = NULL; 917 struct sk_buff *insp = NULL; 918 919 do { 920 BUG_ON(!list); 921 922 if (list->len <= eat) { 923 /* Eaten as whole. */ 924 eat -= list->len; 925 list = list->next; 926 insp = list; 927 } else { 928 /* Eaten partially. */ 929 930 if (skb_shared(list)) { 931 /* Sucks! We need to fork list. :-( */ 932 clone = skb_clone(list, GFP_ATOMIC); 933 if (!clone) 934 return NULL; 935 insp = list->next; 936 list = clone; 937 } else { 938 /* This may be pulled without 939 * problems. */ 940 insp = list; 941 } 942 if (!pskb_pull(list, eat)) { 943 if (clone) 944 kfree_skb(clone); 945 return NULL; 946 } 947 break; 948 } 949 } while (eat); 950 951 /* Free pulled out fragments. */ 952 while ((list = skb_shinfo(skb)->frag_list) != insp) { 953 skb_shinfo(skb)->frag_list = list->next; 954 kfree_skb(list); 955 } 956 /* And insert new clone at head. */ 957 if (clone) { 958 clone->next = list; 959 skb_shinfo(skb)->frag_list = clone; 960 } 961 } 962 /* Success! Now we may commit changes to skb data. */ 963 964 pull_pages: 965 eat = delta; 966 k = 0; 967 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 968 if (skb_shinfo(skb)->frags[i].size <= eat) { 969 put_page(skb_shinfo(skb)->frags[i].page); 970 eat -= skb_shinfo(skb)->frags[i].size; 971 } else { 972 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 973 if (eat) { 974 skb_shinfo(skb)->frags[k].page_offset += eat; 975 skb_shinfo(skb)->frags[k].size -= eat; 976 eat = 0; 977 } 978 k++; 979 } 980 } 981 skb_shinfo(skb)->nr_frags = k; 982 983 skb->tail += delta; 984 skb->data_len -= delta; 985 986 return skb->tail; 987 } 988 989 /* Copy some data bits from skb to kernel buffer. */ 990 991 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 992 { 993 int i, copy; 994 int start = skb_headlen(skb); 995 996 if (offset > (int)skb->len - len) 997 goto fault; 998 999 /* Copy header. */ 1000 if ((copy = start - offset) > 0) { 1001 if (copy > len) 1002 copy = len; 1003 memcpy(to, skb->data + offset, copy); 1004 if ((len -= copy) == 0) 1005 return 0; 1006 offset += copy; 1007 to += copy; 1008 } 1009 1010 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1011 int end; 1012 1013 BUG_TRAP(start <= offset + len); 1014 1015 end = start + skb_shinfo(skb)->frags[i].size; 1016 if ((copy = end - offset) > 0) { 1017 u8 *vaddr; 1018 1019 if (copy > len) 1020 copy = len; 1021 1022 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1023 memcpy(to, 1024 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1025 offset - start, copy); 1026 kunmap_skb_frag(vaddr); 1027 1028 if ((len -= copy) == 0) 1029 return 0; 1030 offset += copy; 1031 to += copy; 1032 } 1033 start = end; 1034 } 1035 1036 if (skb_shinfo(skb)->frag_list) { 1037 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1038 1039 for (; list; list = list->next) { 1040 int end; 1041 1042 BUG_TRAP(start <= offset + len); 1043 1044 end = start + list->len; 1045 if ((copy = end - offset) > 0) { 1046 if (copy > len) 1047 copy = len; 1048 if (skb_copy_bits(list, offset - start, 1049 to, copy)) 1050 goto fault; 1051 if ((len -= copy) == 0) 1052 return 0; 1053 offset += copy; 1054 to += copy; 1055 } 1056 start = end; 1057 } 1058 } 1059 if (!len) 1060 return 0; 1061 1062 fault: 1063 return -EFAULT; 1064 } 1065 1066 /** 1067 * skb_store_bits - store bits from kernel buffer to skb 1068 * @skb: destination buffer 1069 * @offset: offset in destination 1070 * @from: source buffer 1071 * @len: number of bytes to copy 1072 * 1073 * Copy the specified number of bytes from the source buffer to the 1074 * destination skb. This function handles all the messy bits of 1075 * traversing fragment lists and such. 1076 */ 1077 1078 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len) 1079 { 1080 int i, copy; 1081 int start = skb_headlen(skb); 1082 1083 if (offset > (int)skb->len - len) 1084 goto fault; 1085 1086 if ((copy = start - offset) > 0) { 1087 if (copy > len) 1088 copy = len; 1089 memcpy(skb->data + offset, from, copy); 1090 if ((len -= copy) == 0) 1091 return 0; 1092 offset += copy; 1093 from += copy; 1094 } 1095 1096 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1097 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1098 int end; 1099 1100 BUG_TRAP(start <= offset + len); 1101 1102 end = start + frag->size; 1103 if ((copy = end - offset) > 0) { 1104 u8 *vaddr; 1105 1106 if (copy > len) 1107 copy = len; 1108 1109 vaddr = kmap_skb_frag(frag); 1110 memcpy(vaddr + frag->page_offset + offset - start, 1111 from, copy); 1112 kunmap_skb_frag(vaddr); 1113 1114 if ((len -= copy) == 0) 1115 return 0; 1116 offset += copy; 1117 from += copy; 1118 } 1119 start = end; 1120 } 1121 1122 if (skb_shinfo(skb)->frag_list) { 1123 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1124 1125 for (; list; list = list->next) { 1126 int end; 1127 1128 BUG_TRAP(start <= offset + len); 1129 1130 end = start + list->len; 1131 if ((copy = end - offset) > 0) { 1132 if (copy > len) 1133 copy = len; 1134 if (skb_store_bits(list, offset - start, 1135 from, copy)) 1136 goto fault; 1137 if ((len -= copy) == 0) 1138 return 0; 1139 offset += copy; 1140 from += copy; 1141 } 1142 start = end; 1143 } 1144 } 1145 if (!len) 1146 return 0; 1147 1148 fault: 1149 return -EFAULT; 1150 } 1151 1152 EXPORT_SYMBOL(skb_store_bits); 1153 1154 /* Checksum skb data. */ 1155 1156 unsigned int skb_checksum(const struct sk_buff *skb, int offset, 1157 int len, unsigned int csum) 1158 { 1159 int start = skb_headlen(skb); 1160 int i, copy = start - offset; 1161 int pos = 0; 1162 1163 /* Checksum header. */ 1164 if (copy > 0) { 1165 if (copy > len) 1166 copy = len; 1167 csum = csum_partial(skb->data + offset, copy, csum); 1168 if ((len -= copy) == 0) 1169 return csum; 1170 offset += copy; 1171 pos = copy; 1172 } 1173 1174 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1175 int end; 1176 1177 BUG_TRAP(start <= offset + len); 1178 1179 end = start + skb_shinfo(skb)->frags[i].size; 1180 if ((copy = end - offset) > 0) { 1181 unsigned int csum2; 1182 u8 *vaddr; 1183 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1184 1185 if (copy > len) 1186 copy = len; 1187 vaddr = kmap_skb_frag(frag); 1188 csum2 = csum_partial(vaddr + frag->page_offset + 1189 offset - start, copy, 0); 1190 kunmap_skb_frag(vaddr); 1191 csum = csum_block_add(csum, csum2, pos); 1192 if (!(len -= copy)) 1193 return csum; 1194 offset += copy; 1195 pos += copy; 1196 } 1197 start = end; 1198 } 1199 1200 if (skb_shinfo(skb)->frag_list) { 1201 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1202 1203 for (; list; list = list->next) { 1204 int end; 1205 1206 BUG_TRAP(start <= offset + len); 1207 1208 end = start + list->len; 1209 if ((copy = end - offset) > 0) { 1210 unsigned int csum2; 1211 if (copy > len) 1212 copy = len; 1213 csum2 = skb_checksum(list, offset - start, 1214 copy, 0); 1215 csum = csum_block_add(csum, csum2, pos); 1216 if ((len -= copy) == 0) 1217 return csum; 1218 offset += copy; 1219 pos += copy; 1220 } 1221 start = end; 1222 } 1223 } 1224 BUG_ON(len); 1225 1226 return csum; 1227 } 1228 1229 /* Both of above in one bottle. */ 1230 1231 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1232 u8 *to, int len, unsigned int csum) 1233 { 1234 int start = skb_headlen(skb); 1235 int i, copy = start - offset; 1236 int pos = 0; 1237 1238 /* Copy header. */ 1239 if (copy > 0) { 1240 if (copy > len) 1241 copy = len; 1242 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1243 copy, csum); 1244 if ((len -= copy) == 0) 1245 return csum; 1246 offset += copy; 1247 to += copy; 1248 pos = copy; 1249 } 1250 1251 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1252 int end; 1253 1254 BUG_TRAP(start <= offset + len); 1255 1256 end = start + skb_shinfo(skb)->frags[i].size; 1257 if ((copy = end - offset) > 0) { 1258 unsigned int csum2; 1259 u8 *vaddr; 1260 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1261 1262 if (copy > len) 1263 copy = len; 1264 vaddr = kmap_skb_frag(frag); 1265 csum2 = csum_partial_copy_nocheck(vaddr + 1266 frag->page_offset + 1267 offset - start, to, 1268 copy, 0); 1269 kunmap_skb_frag(vaddr); 1270 csum = csum_block_add(csum, csum2, pos); 1271 if (!(len -= copy)) 1272 return csum; 1273 offset += copy; 1274 to += copy; 1275 pos += copy; 1276 } 1277 start = end; 1278 } 1279 1280 if (skb_shinfo(skb)->frag_list) { 1281 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1282 1283 for (; list; list = list->next) { 1284 unsigned int csum2; 1285 int end; 1286 1287 BUG_TRAP(start <= offset + len); 1288 1289 end = start + list->len; 1290 if ((copy = end - offset) > 0) { 1291 if (copy > len) 1292 copy = len; 1293 csum2 = skb_copy_and_csum_bits(list, 1294 offset - start, 1295 to, copy, 0); 1296 csum = csum_block_add(csum, csum2, pos); 1297 if ((len -= copy) == 0) 1298 return csum; 1299 offset += copy; 1300 to += copy; 1301 pos += copy; 1302 } 1303 start = end; 1304 } 1305 } 1306 BUG_ON(len); 1307 return csum; 1308 } 1309 1310 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1311 { 1312 unsigned int csum; 1313 long csstart; 1314 1315 if (skb->ip_summed == CHECKSUM_HW) 1316 csstart = skb->h.raw - skb->data; 1317 else 1318 csstart = skb_headlen(skb); 1319 1320 BUG_ON(csstart > skb_headlen(skb)); 1321 1322 memcpy(to, skb->data, csstart); 1323 1324 csum = 0; 1325 if (csstart != skb->len) 1326 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1327 skb->len - csstart, 0); 1328 1329 if (skb->ip_summed == CHECKSUM_HW) { 1330 long csstuff = csstart + skb->csum; 1331 1332 *((unsigned short *)(to + csstuff)) = csum_fold(csum); 1333 } 1334 } 1335 1336 /** 1337 * skb_dequeue - remove from the head of the queue 1338 * @list: list to dequeue from 1339 * 1340 * Remove the head of the list. The list lock is taken so the function 1341 * may be used safely with other locking list functions. The head item is 1342 * returned or %NULL if the list is empty. 1343 */ 1344 1345 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1346 { 1347 unsigned long flags; 1348 struct sk_buff *result; 1349 1350 spin_lock_irqsave(&list->lock, flags); 1351 result = __skb_dequeue(list); 1352 spin_unlock_irqrestore(&list->lock, flags); 1353 return result; 1354 } 1355 1356 /** 1357 * skb_dequeue_tail - remove from the tail of the queue 1358 * @list: list to dequeue from 1359 * 1360 * Remove the tail of the list. The list lock is taken so the function 1361 * may be used safely with other locking list functions. The tail item is 1362 * returned or %NULL if the list is empty. 1363 */ 1364 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1365 { 1366 unsigned long flags; 1367 struct sk_buff *result; 1368 1369 spin_lock_irqsave(&list->lock, flags); 1370 result = __skb_dequeue_tail(list); 1371 spin_unlock_irqrestore(&list->lock, flags); 1372 return result; 1373 } 1374 1375 /** 1376 * skb_queue_purge - empty a list 1377 * @list: list to empty 1378 * 1379 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1380 * the list and one reference dropped. This function takes the list 1381 * lock and is atomic with respect to other list locking functions. 1382 */ 1383 void skb_queue_purge(struct sk_buff_head *list) 1384 { 1385 struct sk_buff *skb; 1386 while ((skb = skb_dequeue(list)) != NULL) 1387 kfree_skb(skb); 1388 } 1389 1390 /** 1391 * skb_queue_head - queue a buffer at the list head 1392 * @list: list to use 1393 * @newsk: buffer to queue 1394 * 1395 * Queue a buffer at the start of the list. This function takes the 1396 * list lock and can be used safely with other locking &sk_buff functions 1397 * safely. 1398 * 1399 * A buffer cannot be placed on two lists at the same time. 1400 */ 1401 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1402 { 1403 unsigned long flags; 1404 1405 spin_lock_irqsave(&list->lock, flags); 1406 __skb_queue_head(list, newsk); 1407 spin_unlock_irqrestore(&list->lock, flags); 1408 } 1409 1410 /** 1411 * skb_queue_tail - queue a buffer at the list tail 1412 * @list: list to use 1413 * @newsk: buffer to queue 1414 * 1415 * Queue a buffer at the tail of the list. This function takes the 1416 * list lock and can be used safely with other locking &sk_buff functions 1417 * safely. 1418 * 1419 * A buffer cannot be placed on two lists at the same time. 1420 */ 1421 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1422 { 1423 unsigned long flags; 1424 1425 spin_lock_irqsave(&list->lock, flags); 1426 __skb_queue_tail(list, newsk); 1427 spin_unlock_irqrestore(&list->lock, flags); 1428 } 1429 1430 /** 1431 * skb_unlink - remove a buffer from a list 1432 * @skb: buffer to remove 1433 * @list: list to use 1434 * 1435 * Remove a packet from a list. The list locks are taken and this 1436 * function is atomic with respect to other list locked calls 1437 * 1438 * You must know what list the SKB is on. 1439 */ 1440 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1441 { 1442 unsigned long flags; 1443 1444 spin_lock_irqsave(&list->lock, flags); 1445 __skb_unlink(skb, list); 1446 spin_unlock_irqrestore(&list->lock, flags); 1447 } 1448 1449 /** 1450 * skb_append - append a buffer 1451 * @old: buffer to insert after 1452 * @newsk: buffer to insert 1453 * @list: list to use 1454 * 1455 * Place a packet after a given packet in a list. The list locks are taken 1456 * and this function is atomic with respect to other list locked calls. 1457 * A buffer cannot be placed on two lists at the same time. 1458 */ 1459 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1460 { 1461 unsigned long flags; 1462 1463 spin_lock_irqsave(&list->lock, flags); 1464 __skb_append(old, newsk, list); 1465 spin_unlock_irqrestore(&list->lock, flags); 1466 } 1467 1468 1469 /** 1470 * skb_insert - insert a buffer 1471 * @old: buffer to insert before 1472 * @newsk: buffer to insert 1473 * @list: list to use 1474 * 1475 * Place a packet before a given packet in a list. The list locks are 1476 * taken and this function is atomic with respect to other list locked 1477 * calls. 1478 * 1479 * A buffer cannot be placed on two lists at the same time. 1480 */ 1481 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1482 { 1483 unsigned long flags; 1484 1485 spin_lock_irqsave(&list->lock, flags); 1486 __skb_insert(newsk, old->prev, old, list); 1487 spin_unlock_irqrestore(&list->lock, flags); 1488 } 1489 1490 #if 0 1491 /* 1492 * Tune the memory allocator for a new MTU size. 1493 */ 1494 void skb_add_mtu(int mtu) 1495 { 1496 /* Must match allocation in alloc_skb */ 1497 mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info); 1498 1499 kmem_add_cache_size(mtu); 1500 } 1501 #endif 1502 1503 static inline void skb_split_inside_header(struct sk_buff *skb, 1504 struct sk_buff* skb1, 1505 const u32 len, const int pos) 1506 { 1507 int i; 1508 1509 memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len); 1510 1511 /* And move data appendix as is. */ 1512 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1513 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 1514 1515 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 1516 skb_shinfo(skb)->nr_frags = 0; 1517 skb1->data_len = skb->data_len; 1518 skb1->len += skb1->data_len; 1519 skb->data_len = 0; 1520 skb->len = len; 1521 skb->tail = skb->data + len; 1522 } 1523 1524 static inline void skb_split_no_header(struct sk_buff *skb, 1525 struct sk_buff* skb1, 1526 const u32 len, int pos) 1527 { 1528 int i, k = 0; 1529 const int nfrags = skb_shinfo(skb)->nr_frags; 1530 1531 skb_shinfo(skb)->nr_frags = 0; 1532 skb1->len = skb1->data_len = skb->len - len; 1533 skb->len = len; 1534 skb->data_len = len - pos; 1535 1536 for (i = 0; i < nfrags; i++) { 1537 int size = skb_shinfo(skb)->frags[i].size; 1538 1539 if (pos + size > len) { 1540 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 1541 1542 if (pos < len) { 1543 /* Split frag. 1544 * We have two variants in this case: 1545 * 1. Move all the frag to the second 1546 * part, if it is possible. F.e. 1547 * this approach is mandatory for TUX, 1548 * where splitting is expensive. 1549 * 2. Split is accurately. We make this. 1550 */ 1551 get_page(skb_shinfo(skb)->frags[i].page); 1552 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 1553 skb_shinfo(skb1)->frags[0].size -= len - pos; 1554 skb_shinfo(skb)->frags[i].size = len - pos; 1555 skb_shinfo(skb)->nr_frags++; 1556 } 1557 k++; 1558 } else 1559 skb_shinfo(skb)->nr_frags++; 1560 pos += size; 1561 } 1562 skb_shinfo(skb1)->nr_frags = k; 1563 } 1564 1565 /** 1566 * skb_split - Split fragmented skb to two parts at length len. 1567 * @skb: the buffer to split 1568 * @skb1: the buffer to receive the second part 1569 * @len: new length for skb 1570 */ 1571 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 1572 { 1573 int pos = skb_headlen(skb); 1574 1575 if (len < pos) /* Split line is inside header. */ 1576 skb_split_inside_header(skb, skb1, len, pos); 1577 else /* Second chunk has no header, nothing to copy. */ 1578 skb_split_no_header(skb, skb1, len, pos); 1579 } 1580 1581 /** 1582 * skb_prepare_seq_read - Prepare a sequential read of skb data 1583 * @skb: the buffer to read 1584 * @from: lower offset of data to be read 1585 * @to: upper offset of data to be read 1586 * @st: state variable 1587 * 1588 * Initializes the specified state variable. Must be called before 1589 * invoking skb_seq_read() for the first time. 1590 */ 1591 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1592 unsigned int to, struct skb_seq_state *st) 1593 { 1594 st->lower_offset = from; 1595 st->upper_offset = to; 1596 st->root_skb = st->cur_skb = skb; 1597 st->frag_idx = st->stepped_offset = 0; 1598 st->frag_data = NULL; 1599 } 1600 1601 /** 1602 * skb_seq_read - Sequentially read skb data 1603 * @consumed: number of bytes consumed by the caller so far 1604 * @data: destination pointer for data to be returned 1605 * @st: state variable 1606 * 1607 * Reads a block of skb data at &consumed relative to the 1608 * lower offset specified to skb_prepare_seq_read(). Assigns 1609 * the head of the data block to &data and returns the length 1610 * of the block or 0 if the end of the skb data or the upper 1611 * offset has been reached. 1612 * 1613 * The caller is not required to consume all of the data 1614 * returned, i.e. &consumed is typically set to the number 1615 * of bytes already consumed and the next call to 1616 * skb_seq_read() will return the remaining part of the block. 1617 * 1618 * Note: The size of each block of data returned can be arbitary, 1619 * this limitation is the cost for zerocopy seqeuental 1620 * reads of potentially non linear data. 1621 * 1622 * Note: Fragment lists within fragments are not implemented 1623 * at the moment, state->root_skb could be replaced with 1624 * a stack for this purpose. 1625 */ 1626 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1627 struct skb_seq_state *st) 1628 { 1629 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 1630 skb_frag_t *frag; 1631 1632 if (unlikely(abs_offset >= st->upper_offset)) 1633 return 0; 1634 1635 next_skb: 1636 block_limit = skb_headlen(st->cur_skb); 1637 1638 if (abs_offset < block_limit) { 1639 *data = st->cur_skb->data + abs_offset; 1640 return block_limit - abs_offset; 1641 } 1642 1643 if (st->frag_idx == 0 && !st->frag_data) 1644 st->stepped_offset += skb_headlen(st->cur_skb); 1645 1646 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 1647 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 1648 block_limit = frag->size + st->stepped_offset; 1649 1650 if (abs_offset < block_limit) { 1651 if (!st->frag_data) 1652 st->frag_data = kmap_skb_frag(frag); 1653 1654 *data = (u8 *) st->frag_data + frag->page_offset + 1655 (abs_offset - st->stepped_offset); 1656 1657 return block_limit - abs_offset; 1658 } 1659 1660 if (st->frag_data) { 1661 kunmap_skb_frag(st->frag_data); 1662 st->frag_data = NULL; 1663 } 1664 1665 st->frag_idx++; 1666 st->stepped_offset += frag->size; 1667 } 1668 1669 if (st->cur_skb->next) { 1670 st->cur_skb = st->cur_skb->next; 1671 st->frag_idx = 0; 1672 goto next_skb; 1673 } else if (st->root_skb == st->cur_skb && 1674 skb_shinfo(st->root_skb)->frag_list) { 1675 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 1676 goto next_skb; 1677 } 1678 1679 return 0; 1680 } 1681 1682 /** 1683 * skb_abort_seq_read - Abort a sequential read of skb data 1684 * @st: state variable 1685 * 1686 * Must be called if skb_seq_read() was not called until it 1687 * returned 0. 1688 */ 1689 void skb_abort_seq_read(struct skb_seq_state *st) 1690 { 1691 if (st->frag_data) 1692 kunmap_skb_frag(st->frag_data); 1693 } 1694 1695 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 1696 1697 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 1698 struct ts_config *conf, 1699 struct ts_state *state) 1700 { 1701 return skb_seq_read(offset, text, TS_SKB_CB(state)); 1702 } 1703 1704 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 1705 { 1706 skb_abort_seq_read(TS_SKB_CB(state)); 1707 } 1708 1709 /** 1710 * skb_find_text - Find a text pattern in skb data 1711 * @skb: the buffer to look in 1712 * @from: search offset 1713 * @to: search limit 1714 * @config: textsearch configuration 1715 * @state: uninitialized textsearch state variable 1716 * 1717 * Finds a pattern in the skb data according to the specified 1718 * textsearch configuration. Use textsearch_next() to retrieve 1719 * subsequent occurrences of the pattern. Returns the offset 1720 * to the first occurrence or UINT_MAX if no match was found. 1721 */ 1722 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1723 unsigned int to, struct ts_config *config, 1724 struct ts_state *state) 1725 { 1726 config->get_next_block = skb_ts_get_next_block; 1727 config->finish = skb_ts_finish; 1728 1729 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 1730 1731 return textsearch_find(config, state); 1732 } 1733 1734 /** 1735 * skb_append_datato_frags: - append the user data to a skb 1736 * @sk: sock structure 1737 * @skb: skb structure to be appened with user data. 1738 * @getfrag: call back function to be used for getting the user data 1739 * @from: pointer to user message iov 1740 * @length: length of the iov message 1741 * 1742 * Description: This procedure append the user data in the fragment part 1743 * of the skb if any page alloc fails user this procedure returns -ENOMEM 1744 */ 1745 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 1746 int (*getfrag)(void *from, char *to, int offset, 1747 int len, int odd, struct sk_buff *skb), 1748 void *from, int length) 1749 { 1750 int frg_cnt = 0; 1751 skb_frag_t *frag = NULL; 1752 struct page *page = NULL; 1753 int copy, left; 1754 int offset = 0; 1755 int ret; 1756 1757 do { 1758 /* Return error if we don't have space for new frag */ 1759 frg_cnt = skb_shinfo(skb)->nr_frags; 1760 if (frg_cnt >= MAX_SKB_FRAGS) 1761 return -EFAULT; 1762 1763 /* allocate a new page for next frag */ 1764 page = alloc_pages(sk->sk_allocation, 0); 1765 1766 /* If alloc_page fails just return failure and caller will 1767 * free previous allocated pages by doing kfree_skb() 1768 */ 1769 if (page == NULL) 1770 return -ENOMEM; 1771 1772 /* initialize the next frag */ 1773 sk->sk_sndmsg_page = page; 1774 sk->sk_sndmsg_off = 0; 1775 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 1776 skb->truesize += PAGE_SIZE; 1777 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 1778 1779 /* get the new initialized frag */ 1780 frg_cnt = skb_shinfo(skb)->nr_frags; 1781 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 1782 1783 /* copy the user data to page */ 1784 left = PAGE_SIZE - frag->page_offset; 1785 copy = (length > left)? left : length; 1786 1787 ret = getfrag(from, (page_address(frag->page) + 1788 frag->page_offset + frag->size), 1789 offset, copy, 0, skb); 1790 if (ret < 0) 1791 return -EFAULT; 1792 1793 /* copy was successful so update the size parameters */ 1794 sk->sk_sndmsg_off += copy; 1795 frag->size += copy; 1796 skb->len += copy; 1797 skb->data_len += copy; 1798 offset += copy; 1799 length -= copy; 1800 1801 } while (length > 0); 1802 1803 return 0; 1804 } 1805 1806 /** 1807 * skb_pull_rcsum - pull skb and update receive checksum 1808 * @skb: buffer to update 1809 * @start: start of data before pull 1810 * @len: length of data pulled 1811 * 1812 * This function performs an skb_pull on the packet and updates 1813 * update the CHECKSUM_HW checksum. It should be used on receive 1814 * path processing instead of skb_pull unless you know that the 1815 * checksum difference is zero (e.g., a valid IP header) or you 1816 * are setting ip_summed to CHECKSUM_NONE. 1817 */ 1818 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 1819 { 1820 BUG_ON(len > skb->len); 1821 skb->len -= len; 1822 BUG_ON(skb->len < skb->data_len); 1823 skb_postpull_rcsum(skb, skb->data, len); 1824 return skb->data += len; 1825 } 1826 1827 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 1828 1829 void __init skb_init(void) 1830 { 1831 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 1832 sizeof(struct sk_buff), 1833 0, 1834 SLAB_HWCACHE_ALIGN, 1835 NULL, NULL); 1836 if (!skbuff_head_cache) 1837 panic("cannot create skbuff cache"); 1838 1839 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 1840 (2*sizeof(struct sk_buff)) + 1841 sizeof(atomic_t), 1842 0, 1843 SLAB_HWCACHE_ALIGN, 1844 NULL, NULL); 1845 if (!skbuff_fclone_cache) 1846 panic("cannot create skbuff cache"); 1847 } 1848 1849 EXPORT_SYMBOL(___pskb_trim); 1850 EXPORT_SYMBOL(__kfree_skb); 1851 EXPORT_SYMBOL(kfree_skb); 1852 EXPORT_SYMBOL(__pskb_pull_tail); 1853 EXPORT_SYMBOL(__alloc_skb); 1854 EXPORT_SYMBOL(pskb_copy); 1855 EXPORT_SYMBOL(pskb_expand_head); 1856 EXPORT_SYMBOL(skb_checksum); 1857 EXPORT_SYMBOL(skb_clone); 1858 EXPORT_SYMBOL(skb_clone_fraglist); 1859 EXPORT_SYMBOL(skb_copy); 1860 EXPORT_SYMBOL(skb_copy_and_csum_bits); 1861 EXPORT_SYMBOL(skb_copy_and_csum_dev); 1862 EXPORT_SYMBOL(skb_copy_bits); 1863 EXPORT_SYMBOL(skb_copy_expand); 1864 EXPORT_SYMBOL(skb_over_panic); 1865 EXPORT_SYMBOL(skb_pad); 1866 EXPORT_SYMBOL(skb_realloc_headroom); 1867 EXPORT_SYMBOL(skb_under_panic); 1868 EXPORT_SYMBOL(skb_dequeue); 1869 EXPORT_SYMBOL(skb_dequeue_tail); 1870 EXPORT_SYMBOL(skb_insert); 1871 EXPORT_SYMBOL(skb_queue_purge); 1872 EXPORT_SYMBOL(skb_queue_head); 1873 EXPORT_SYMBOL(skb_queue_tail); 1874 EXPORT_SYMBOL(skb_unlink); 1875 EXPORT_SYMBOL(skb_append); 1876 EXPORT_SYMBOL(skb_split); 1877 EXPORT_SYMBOL(skb_prepare_seq_read); 1878 EXPORT_SYMBOL(skb_seq_read); 1879 EXPORT_SYMBOL(skb_abort_seq_read); 1880 EXPORT_SYMBOL(skb_find_text); 1881 EXPORT_SYMBOL(skb_append_datato_frags); 1882