xref: /linux/net/core/skbuff.c (revision 776cfebb430c7b22c208b1b17add97f354d97cab)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <iiitac@pyr.swan.ac.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Version:	$Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
8  *
9  *	Fixes:
10  *		Alan Cox	:	Fixed the worst of the load
11  *					balancer bugs.
12  *		Dave Platt	:	Interrupt stacking fix.
13  *	Richard Kooijman	:	Timestamp fixes.
14  *		Alan Cox	:	Changed buffer format.
15  *		Alan Cox	:	destructor hook for AF_UNIX etc.
16  *		Linus Torvalds	:	Better skb_clone.
17  *		Alan Cox	:	Added skb_copy.
18  *		Alan Cox	:	Added all the changed routines Linus
19  *					only put in the headers
20  *		Ray VanTassle	:	Fixed --skb->lock in free
21  *		Alan Cox	:	skb_copy copy arp field
22  *		Andi Kleen	:	slabified it.
23  *		Robert Olsson	:	Removed skb_head_pool
24  *
25  *	NOTE:
26  *		The __skb_ routines should be called with interrupts
27  *	disabled, or you better be *real* sure that the operation is atomic
28  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
29  *	or via disabling bottom half handlers, etc).
30  *
31  *	This program is free software; you can redistribute it and/or
32  *	modify it under the terms of the GNU General Public License
33  *	as published by the Free Software Foundation; either version
34  *	2 of the License, or (at your option) any later version.
35  */
36 
37 /*
38  *	The functions in this file will not compile correctly with gcc 2.4.x
39  */
40 
41 #include <linux/config.h>
42 #include <linux/module.h>
43 #include <linux/types.h>
44 #include <linux/kernel.h>
45 #include <linux/sched.h>
46 #include <linux/mm.h>
47 #include <linux/interrupt.h>
48 #include <linux/in.h>
49 #include <linux/inet.h>
50 #include <linux/slab.h>
51 #include <linux/netdevice.h>
52 #ifdef CONFIG_NET_CLS_ACT
53 #include <net/pkt_sched.h>
54 #endif
55 #include <linux/string.h>
56 #include <linux/skbuff.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/highmem.h>
61 
62 #include <net/protocol.h>
63 #include <net/dst.h>
64 #include <net/sock.h>
65 #include <net/checksum.h>
66 #include <net/xfrm.h>
67 
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 
71 static kmem_cache_t *skbuff_head_cache;
72 
73 /*
74  *	Keep out-of-line to prevent kernel bloat.
75  *	__builtin_return_address is not used because it is not always
76  *	reliable.
77  */
78 
79 /**
80  *	skb_over_panic	- 	private function
81  *	@skb: buffer
82  *	@sz: size
83  *	@here: address
84  *
85  *	Out of line support code for skb_put(). Not user callable.
86  */
87 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
88 {
89 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
90 	                  "data:%p tail:%p end:%p dev:%s\n",
91 	       here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
92 	       skb->dev ? skb->dev->name : "<NULL>");
93 	BUG();
94 }
95 
96 /**
97  *	skb_under_panic	- 	private function
98  *	@skb: buffer
99  *	@sz: size
100  *	@here: address
101  *
102  *	Out of line support code for skb_push(). Not user callable.
103  */
104 
105 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
106 {
107 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
108 	                  "data:%p tail:%p end:%p dev:%s\n",
109 	       here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
110 	       skb->dev ? skb->dev->name : "<NULL>");
111 	BUG();
112 }
113 
114 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
115  *	'private' fields and also do memory statistics to find all the
116  *	[BEEP] leaks.
117  *
118  */
119 
120 /**
121  *	alloc_skb	-	allocate a network buffer
122  *	@size: size to allocate
123  *	@gfp_mask: allocation mask
124  *
125  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
126  *	tail room of size bytes. The object has a reference count of one.
127  *	The return is the buffer. On a failure the return is %NULL.
128  *
129  *	Buffers may only be allocated from interrupts using a @gfp_mask of
130  *	%GFP_ATOMIC.
131  */
132 struct sk_buff *alloc_skb(unsigned int size, int gfp_mask)
133 {
134 	struct sk_buff *skb;
135 	u8 *data;
136 
137 	/* Get the HEAD */
138 	skb = kmem_cache_alloc(skbuff_head_cache,
139 			       gfp_mask & ~__GFP_DMA);
140 	if (!skb)
141 		goto out;
142 
143 	/* Get the DATA. Size must match skb_add_mtu(). */
144 	size = SKB_DATA_ALIGN(size);
145 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
146 	if (!data)
147 		goto nodata;
148 
149 	memset(skb, 0, offsetof(struct sk_buff, truesize));
150 	skb->truesize = size + sizeof(struct sk_buff);
151 	atomic_set(&skb->users, 1);
152 	skb->head = data;
153 	skb->data = data;
154 	skb->tail = data;
155 	skb->end  = data + size;
156 
157 	atomic_set(&(skb_shinfo(skb)->dataref), 1);
158 	skb_shinfo(skb)->nr_frags  = 0;
159 	skb_shinfo(skb)->tso_size = 0;
160 	skb_shinfo(skb)->tso_segs = 0;
161 	skb_shinfo(skb)->frag_list = NULL;
162 out:
163 	return skb;
164 nodata:
165 	kmem_cache_free(skbuff_head_cache, skb);
166 	skb = NULL;
167 	goto out;
168 }
169 
170 /**
171  *	alloc_skb_from_cache	-	allocate a network buffer
172  *	@cp: kmem_cache from which to allocate the data area
173  *           (object size must be big enough for @size bytes + skb overheads)
174  *	@size: size to allocate
175  *	@gfp_mask: allocation mask
176  *
177  *	Allocate a new &sk_buff. The returned buffer has no headroom and
178  *	tail room of size bytes. The object has a reference count of one.
179  *	The return is the buffer. On a failure the return is %NULL.
180  *
181  *	Buffers may only be allocated from interrupts using a @gfp_mask of
182  *	%GFP_ATOMIC.
183  */
184 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
185 				     unsigned int size, int gfp_mask)
186 {
187 	struct sk_buff *skb;
188 	u8 *data;
189 
190 	/* Get the HEAD */
191 	skb = kmem_cache_alloc(skbuff_head_cache,
192 			       gfp_mask & ~__GFP_DMA);
193 	if (!skb)
194 		goto out;
195 
196 	/* Get the DATA. */
197 	size = SKB_DATA_ALIGN(size);
198 	data = kmem_cache_alloc(cp, gfp_mask);
199 	if (!data)
200 		goto nodata;
201 
202 	memset(skb, 0, offsetof(struct sk_buff, truesize));
203 	skb->truesize = size + sizeof(struct sk_buff);
204 	atomic_set(&skb->users, 1);
205 	skb->head = data;
206 	skb->data = data;
207 	skb->tail = data;
208 	skb->end  = data + size;
209 
210 	atomic_set(&(skb_shinfo(skb)->dataref), 1);
211 	skb_shinfo(skb)->nr_frags  = 0;
212 	skb_shinfo(skb)->tso_size = 0;
213 	skb_shinfo(skb)->tso_segs = 0;
214 	skb_shinfo(skb)->frag_list = NULL;
215 out:
216 	return skb;
217 nodata:
218 	kmem_cache_free(skbuff_head_cache, skb);
219 	skb = NULL;
220 	goto out;
221 }
222 
223 
224 static void skb_drop_fraglist(struct sk_buff *skb)
225 {
226 	struct sk_buff *list = skb_shinfo(skb)->frag_list;
227 
228 	skb_shinfo(skb)->frag_list = NULL;
229 
230 	do {
231 		struct sk_buff *this = list;
232 		list = list->next;
233 		kfree_skb(this);
234 	} while (list);
235 }
236 
237 static void skb_clone_fraglist(struct sk_buff *skb)
238 {
239 	struct sk_buff *list;
240 
241 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
242 		skb_get(list);
243 }
244 
245 void skb_release_data(struct sk_buff *skb)
246 {
247 	if (!skb->cloned ||
248 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
249 			       &skb_shinfo(skb)->dataref)) {
250 		if (skb_shinfo(skb)->nr_frags) {
251 			int i;
252 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
253 				put_page(skb_shinfo(skb)->frags[i].page);
254 		}
255 
256 		if (skb_shinfo(skb)->frag_list)
257 			skb_drop_fraglist(skb);
258 
259 		kfree(skb->head);
260 	}
261 }
262 
263 /*
264  *	Free an skbuff by memory without cleaning the state.
265  */
266 void kfree_skbmem(struct sk_buff *skb)
267 {
268 	skb_release_data(skb);
269 	kmem_cache_free(skbuff_head_cache, skb);
270 }
271 
272 /**
273  *	__kfree_skb - private function
274  *	@skb: buffer
275  *
276  *	Free an sk_buff. Release anything attached to the buffer.
277  *	Clean the state. This is an internal helper function. Users should
278  *	always call kfree_skb
279  */
280 
281 void __kfree_skb(struct sk_buff *skb)
282 {
283 	BUG_ON(skb->list != NULL);
284 
285 	dst_release(skb->dst);
286 #ifdef CONFIG_XFRM
287 	secpath_put(skb->sp);
288 #endif
289 	if (skb->destructor) {
290 		WARN_ON(in_irq());
291 		skb->destructor(skb);
292 	}
293 #ifdef CONFIG_NETFILTER
294 	nf_conntrack_put(skb->nfct);
295 #ifdef CONFIG_BRIDGE_NETFILTER
296 	nf_bridge_put(skb->nf_bridge);
297 #endif
298 #endif
299 /* XXX: IS this still necessary? - JHS */
300 #ifdef CONFIG_NET_SCHED
301 	skb->tc_index = 0;
302 #ifdef CONFIG_NET_CLS_ACT
303 	skb->tc_verd = 0;
304 	skb->tc_classid = 0;
305 #endif
306 #endif
307 
308 	kfree_skbmem(skb);
309 }
310 
311 /**
312  *	skb_clone	-	duplicate an sk_buff
313  *	@skb: buffer to clone
314  *	@gfp_mask: allocation priority
315  *
316  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
317  *	copies share the same packet data but not structure. The new
318  *	buffer has a reference count of 1. If the allocation fails the
319  *	function returns %NULL otherwise the new buffer is returned.
320  *
321  *	If this function is called from an interrupt gfp_mask() must be
322  *	%GFP_ATOMIC.
323  */
324 
325 struct sk_buff *skb_clone(struct sk_buff *skb, int gfp_mask)
326 {
327 	struct sk_buff *n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
328 
329 	if (!n)
330 		return NULL;
331 
332 #define C(x) n->x = skb->x
333 
334 	n->next = n->prev = NULL;
335 	n->list = NULL;
336 	n->sk = NULL;
337 	C(stamp);
338 	C(dev);
339 	C(real_dev);
340 	C(h);
341 	C(nh);
342 	C(mac);
343 	C(dst);
344 	dst_clone(skb->dst);
345 	C(sp);
346 #ifdef CONFIG_INET
347 	secpath_get(skb->sp);
348 #endif
349 	memcpy(n->cb, skb->cb, sizeof(skb->cb));
350 	C(len);
351 	C(data_len);
352 	C(csum);
353 	C(local_df);
354 	n->cloned = 1;
355 	n->nohdr = 0;
356 	C(pkt_type);
357 	C(ip_summed);
358 	C(priority);
359 	C(protocol);
360 	C(security);
361 	n->destructor = NULL;
362 #ifdef CONFIG_NETFILTER
363 	C(nfmark);
364 	C(nfcache);
365 	C(nfct);
366 	nf_conntrack_get(skb->nfct);
367 	C(nfctinfo);
368 #ifdef CONFIG_NETFILTER_DEBUG
369 	C(nf_debug);
370 #endif
371 #ifdef CONFIG_BRIDGE_NETFILTER
372 	C(nf_bridge);
373 	nf_bridge_get(skb->nf_bridge);
374 #endif
375 #endif /*CONFIG_NETFILTER*/
376 #if defined(CONFIG_HIPPI)
377 	C(private);
378 #endif
379 #ifdef CONFIG_NET_SCHED
380 	C(tc_index);
381 #ifdef CONFIG_NET_CLS_ACT
382 	n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
383 	n->tc_verd = CLR_TC_OK2MUNGE(skb->tc_verd);
384 	n->tc_verd = CLR_TC_MUNGED(skb->tc_verd);
385 	C(input_dev);
386 	C(tc_classid);
387 #endif
388 
389 #endif
390 	C(truesize);
391 	atomic_set(&n->users, 1);
392 	C(head);
393 	C(data);
394 	C(tail);
395 	C(end);
396 
397 	atomic_inc(&(skb_shinfo(skb)->dataref));
398 	skb->cloned = 1;
399 
400 	return n;
401 }
402 
403 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
404 {
405 	/*
406 	 *	Shift between the two data areas in bytes
407 	 */
408 	unsigned long offset = new->data - old->data;
409 
410 	new->list	= NULL;
411 	new->sk		= NULL;
412 	new->dev	= old->dev;
413 	new->real_dev	= old->real_dev;
414 	new->priority	= old->priority;
415 	new->protocol	= old->protocol;
416 	new->dst	= dst_clone(old->dst);
417 #ifdef CONFIG_INET
418 	new->sp		= secpath_get(old->sp);
419 #endif
420 	new->h.raw	= old->h.raw + offset;
421 	new->nh.raw	= old->nh.raw + offset;
422 	new->mac.raw	= old->mac.raw + offset;
423 	memcpy(new->cb, old->cb, sizeof(old->cb));
424 	new->local_df	= old->local_df;
425 	new->pkt_type	= old->pkt_type;
426 	new->stamp	= old->stamp;
427 	new->destructor = NULL;
428 	new->security	= old->security;
429 #ifdef CONFIG_NETFILTER
430 	new->nfmark	= old->nfmark;
431 	new->nfcache	= old->nfcache;
432 	new->nfct	= old->nfct;
433 	nf_conntrack_get(old->nfct);
434 	new->nfctinfo	= old->nfctinfo;
435 #ifdef CONFIG_NETFILTER_DEBUG
436 	new->nf_debug	= old->nf_debug;
437 #endif
438 #ifdef CONFIG_BRIDGE_NETFILTER
439 	new->nf_bridge	= old->nf_bridge;
440 	nf_bridge_get(old->nf_bridge);
441 #endif
442 #endif
443 #ifdef CONFIG_NET_SCHED
444 #ifdef CONFIG_NET_CLS_ACT
445 	new->tc_verd = old->tc_verd;
446 #endif
447 	new->tc_index	= old->tc_index;
448 #endif
449 	atomic_set(&new->users, 1);
450 	skb_shinfo(new)->tso_size = skb_shinfo(old)->tso_size;
451 	skb_shinfo(new)->tso_segs = skb_shinfo(old)->tso_segs;
452 }
453 
454 /**
455  *	skb_copy	-	create private copy of an sk_buff
456  *	@skb: buffer to copy
457  *	@gfp_mask: allocation priority
458  *
459  *	Make a copy of both an &sk_buff and its data. This is used when the
460  *	caller wishes to modify the data and needs a private copy of the
461  *	data to alter. Returns %NULL on failure or the pointer to the buffer
462  *	on success. The returned buffer has a reference count of 1.
463  *
464  *	As by-product this function converts non-linear &sk_buff to linear
465  *	one, so that &sk_buff becomes completely private and caller is allowed
466  *	to modify all the data of returned buffer. This means that this
467  *	function is not recommended for use in circumstances when only
468  *	header is going to be modified. Use pskb_copy() instead.
469  */
470 
471 struct sk_buff *skb_copy(const struct sk_buff *skb, int gfp_mask)
472 {
473 	int headerlen = skb->data - skb->head;
474 	/*
475 	 *	Allocate the copy buffer
476 	 */
477 	struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
478 				      gfp_mask);
479 	if (!n)
480 		return NULL;
481 
482 	/* Set the data pointer */
483 	skb_reserve(n, headerlen);
484 	/* Set the tail pointer and length */
485 	skb_put(n, skb->len);
486 	n->csum	     = skb->csum;
487 	n->ip_summed = skb->ip_summed;
488 
489 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
490 		BUG();
491 
492 	copy_skb_header(n, skb);
493 	return n;
494 }
495 
496 
497 /**
498  *	pskb_copy	-	create copy of an sk_buff with private head.
499  *	@skb: buffer to copy
500  *	@gfp_mask: allocation priority
501  *
502  *	Make a copy of both an &sk_buff and part of its data, located
503  *	in header. Fragmented data remain shared. This is used when
504  *	the caller wishes to modify only header of &sk_buff and needs
505  *	private copy of the header to alter. Returns %NULL on failure
506  *	or the pointer to the buffer on success.
507  *	The returned buffer has a reference count of 1.
508  */
509 
510 struct sk_buff *pskb_copy(struct sk_buff *skb, int gfp_mask)
511 {
512 	/*
513 	 *	Allocate the copy buffer
514 	 */
515 	struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
516 
517 	if (!n)
518 		goto out;
519 
520 	/* Set the data pointer */
521 	skb_reserve(n, skb->data - skb->head);
522 	/* Set the tail pointer and length */
523 	skb_put(n, skb_headlen(skb));
524 	/* Copy the bytes */
525 	memcpy(n->data, skb->data, n->len);
526 	n->csum	     = skb->csum;
527 	n->ip_summed = skb->ip_summed;
528 
529 	n->data_len  = skb->data_len;
530 	n->len	     = skb->len;
531 
532 	if (skb_shinfo(skb)->nr_frags) {
533 		int i;
534 
535 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
536 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
537 			get_page(skb_shinfo(n)->frags[i].page);
538 		}
539 		skb_shinfo(n)->nr_frags = i;
540 	}
541 
542 	if (skb_shinfo(skb)->frag_list) {
543 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
544 		skb_clone_fraglist(n);
545 	}
546 
547 	copy_skb_header(n, skb);
548 out:
549 	return n;
550 }
551 
552 /**
553  *	pskb_expand_head - reallocate header of &sk_buff
554  *	@skb: buffer to reallocate
555  *	@nhead: room to add at head
556  *	@ntail: room to add at tail
557  *	@gfp_mask: allocation priority
558  *
559  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
560  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
561  *	reference count of 1. Returns zero in the case of success or error,
562  *	if expansion failed. In the last case, &sk_buff is not changed.
563  *
564  *	All the pointers pointing into skb header may change and must be
565  *	reloaded after call to this function.
566  */
567 
568 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, int gfp_mask)
569 {
570 	int i;
571 	u8 *data;
572 	int size = nhead + (skb->end - skb->head) + ntail;
573 	long off;
574 
575 	if (skb_shared(skb))
576 		BUG();
577 
578 	size = SKB_DATA_ALIGN(size);
579 
580 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
581 	if (!data)
582 		goto nodata;
583 
584 	/* Copy only real data... and, alas, header. This should be
585 	 * optimized for the cases when header is void. */
586 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
587 	memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
588 
589 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
590 		get_page(skb_shinfo(skb)->frags[i].page);
591 
592 	if (skb_shinfo(skb)->frag_list)
593 		skb_clone_fraglist(skb);
594 
595 	skb_release_data(skb);
596 
597 	off = (data + nhead) - skb->head;
598 
599 	skb->head     = data;
600 	skb->end      = data + size;
601 	skb->data    += off;
602 	skb->tail    += off;
603 	skb->mac.raw += off;
604 	skb->h.raw   += off;
605 	skb->nh.raw  += off;
606 	skb->cloned   = 0;
607 	skb->nohdr    = 0;
608 	atomic_set(&skb_shinfo(skb)->dataref, 1);
609 	return 0;
610 
611 nodata:
612 	return -ENOMEM;
613 }
614 
615 /* Make private copy of skb with writable head and some headroom */
616 
617 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
618 {
619 	struct sk_buff *skb2;
620 	int delta = headroom - skb_headroom(skb);
621 
622 	if (delta <= 0)
623 		skb2 = pskb_copy(skb, GFP_ATOMIC);
624 	else {
625 		skb2 = skb_clone(skb, GFP_ATOMIC);
626 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
627 					     GFP_ATOMIC)) {
628 			kfree_skb(skb2);
629 			skb2 = NULL;
630 		}
631 	}
632 	return skb2;
633 }
634 
635 
636 /**
637  *	skb_copy_expand	-	copy and expand sk_buff
638  *	@skb: buffer to copy
639  *	@newheadroom: new free bytes at head
640  *	@newtailroom: new free bytes at tail
641  *	@gfp_mask: allocation priority
642  *
643  *	Make a copy of both an &sk_buff and its data and while doing so
644  *	allocate additional space.
645  *
646  *	This is used when the caller wishes to modify the data and needs a
647  *	private copy of the data to alter as well as more space for new fields.
648  *	Returns %NULL on failure or the pointer to the buffer
649  *	on success. The returned buffer has a reference count of 1.
650  *
651  *	You must pass %GFP_ATOMIC as the allocation priority if this function
652  *	is called from an interrupt.
653  *
654  *	BUG ALERT: ip_summed is not copied. Why does this work? Is it used
655  *	only by netfilter in the cases when checksum is recalculated? --ANK
656  */
657 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
658 				int newheadroom, int newtailroom, int gfp_mask)
659 {
660 	/*
661 	 *	Allocate the copy buffer
662 	 */
663 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
664 				      gfp_mask);
665 	int head_copy_len, head_copy_off;
666 
667 	if (!n)
668 		return NULL;
669 
670 	skb_reserve(n, newheadroom);
671 
672 	/* Set the tail pointer and length */
673 	skb_put(n, skb->len);
674 
675 	head_copy_len = skb_headroom(skb);
676 	head_copy_off = 0;
677 	if (newheadroom <= head_copy_len)
678 		head_copy_len = newheadroom;
679 	else
680 		head_copy_off = newheadroom - head_copy_len;
681 
682 	/* Copy the linear header and data. */
683 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
684 			  skb->len + head_copy_len))
685 		BUG();
686 
687 	copy_skb_header(n, skb);
688 
689 	return n;
690 }
691 
692 /**
693  *	skb_pad			-	zero pad the tail of an skb
694  *	@skb: buffer to pad
695  *	@pad: space to pad
696  *
697  *	Ensure that a buffer is followed by a padding area that is zero
698  *	filled. Used by network drivers which may DMA or transfer data
699  *	beyond the buffer end onto the wire.
700  *
701  *	May return NULL in out of memory cases.
702  */
703 
704 struct sk_buff *skb_pad(struct sk_buff *skb, int pad)
705 {
706 	struct sk_buff *nskb;
707 
708 	/* If the skbuff is non linear tailroom is always zero.. */
709 	if (skb_tailroom(skb) >= pad) {
710 		memset(skb->data+skb->len, 0, pad);
711 		return skb;
712 	}
713 
714 	nskb = skb_copy_expand(skb, skb_headroom(skb), skb_tailroom(skb) + pad, GFP_ATOMIC);
715 	kfree_skb(skb);
716 	if (nskb)
717 		memset(nskb->data+nskb->len, 0, pad);
718 	return nskb;
719 }
720 
721 /* Trims skb to length len. It can change skb pointers, if "realloc" is 1.
722  * If realloc==0 and trimming is impossible without change of data,
723  * it is BUG().
724  */
725 
726 int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc)
727 {
728 	int offset = skb_headlen(skb);
729 	int nfrags = skb_shinfo(skb)->nr_frags;
730 	int i;
731 
732 	for (i = 0; i < nfrags; i++) {
733 		int end = offset + skb_shinfo(skb)->frags[i].size;
734 		if (end > len) {
735 			if (skb_cloned(skb)) {
736 				if (!realloc)
737 					BUG();
738 				if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
739 					return -ENOMEM;
740 			}
741 			if (len <= offset) {
742 				put_page(skb_shinfo(skb)->frags[i].page);
743 				skb_shinfo(skb)->nr_frags--;
744 			} else {
745 				skb_shinfo(skb)->frags[i].size = len - offset;
746 			}
747 		}
748 		offset = end;
749 	}
750 
751 	if (offset < len) {
752 		skb->data_len -= skb->len - len;
753 		skb->len       = len;
754 	} else {
755 		if (len <= skb_headlen(skb)) {
756 			skb->len      = len;
757 			skb->data_len = 0;
758 			skb->tail     = skb->data + len;
759 			if (skb_shinfo(skb)->frag_list && !skb_cloned(skb))
760 				skb_drop_fraglist(skb);
761 		} else {
762 			skb->data_len -= skb->len - len;
763 			skb->len       = len;
764 		}
765 	}
766 
767 	return 0;
768 }
769 
770 /**
771  *	__pskb_pull_tail - advance tail of skb header
772  *	@skb: buffer to reallocate
773  *	@delta: number of bytes to advance tail
774  *
775  *	The function makes a sense only on a fragmented &sk_buff,
776  *	it expands header moving its tail forward and copying necessary
777  *	data from fragmented part.
778  *
779  *	&sk_buff MUST have reference count of 1.
780  *
781  *	Returns %NULL (and &sk_buff does not change) if pull failed
782  *	or value of new tail of skb in the case of success.
783  *
784  *	All the pointers pointing into skb header may change and must be
785  *	reloaded after call to this function.
786  */
787 
788 /* Moves tail of skb head forward, copying data from fragmented part,
789  * when it is necessary.
790  * 1. It may fail due to malloc failure.
791  * 2. It may change skb pointers.
792  *
793  * It is pretty complicated. Luckily, it is called only in exceptional cases.
794  */
795 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
796 {
797 	/* If skb has not enough free space at tail, get new one
798 	 * plus 128 bytes for future expansions. If we have enough
799 	 * room at tail, reallocate without expansion only if skb is cloned.
800 	 */
801 	int i, k, eat = (skb->tail + delta) - skb->end;
802 
803 	if (eat > 0 || skb_cloned(skb)) {
804 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
805 				     GFP_ATOMIC))
806 			return NULL;
807 	}
808 
809 	if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
810 		BUG();
811 
812 	/* Optimization: no fragments, no reasons to preestimate
813 	 * size of pulled pages. Superb.
814 	 */
815 	if (!skb_shinfo(skb)->frag_list)
816 		goto pull_pages;
817 
818 	/* Estimate size of pulled pages. */
819 	eat = delta;
820 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
821 		if (skb_shinfo(skb)->frags[i].size >= eat)
822 			goto pull_pages;
823 		eat -= skb_shinfo(skb)->frags[i].size;
824 	}
825 
826 	/* If we need update frag list, we are in troubles.
827 	 * Certainly, it possible to add an offset to skb data,
828 	 * but taking into account that pulling is expected to
829 	 * be very rare operation, it is worth to fight against
830 	 * further bloating skb head and crucify ourselves here instead.
831 	 * Pure masohism, indeed. 8)8)
832 	 */
833 	if (eat) {
834 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
835 		struct sk_buff *clone = NULL;
836 		struct sk_buff *insp = NULL;
837 
838 		do {
839 			if (!list)
840 				BUG();
841 
842 			if (list->len <= eat) {
843 				/* Eaten as whole. */
844 				eat -= list->len;
845 				list = list->next;
846 				insp = list;
847 			} else {
848 				/* Eaten partially. */
849 
850 				if (skb_shared(list)) {
851 					/* Sucks! We need to fork list. :-( */
852 					clone = skb_clone(list, GFP_ATOMIC);
853 					if (!clone)
854 						return NULL;
855 					insp = list->next;
856 					list = clone;
857 				} else {
858 					/* This may be pulled without
859 					 * problems. */
860 					insp = list;
861 				}
862 				if (!pskb_pull(list, eat)) {
863 					if (clone)
864 						kfree_skb(clone);
865 					return NULL;
866 				}
867 				break;
868 			}
869 		} while (eat);
870 
871 		/* Free pulled out fragments. */
872 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
873 			skb_shinfo(skb)->frag_list = list->next;
874 			kfree_skb(list);
875 		}
876 		/* And insert new clone at head. */
877 		if (clone) {
878 			clone->next = list;
879 			skb_shinfo(skb)->frag_list = clone;
880 		}
881 	}
882 	/* Success! Now we may commit changes to skb data. */
883 
884 pull_pages:
885 	eat = delta;
886 	k = 0;
887 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
888 		if (skb_shinfo(skb)->frags[i].size <= eat) {
889 			put_page(skb_shinfo(skb)->frags[i].page);
890 			eat -= skb_shinfo(skb)->frags[i].size;
891 		} else {
892 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
893 			if (eat) {
894 				skb_shinfo(skb)->frags[k].page_offset += eat;
895 				skb_shinfo(skb)->frags[k].size -= eat;
896 				eat = 0;
897 			}
898 			k++;
899 		}
900 	}
901 	skb_shinfo(skb)->nr_frags = k;
902 
903 	skb->tail     += delta;
904 	skb->data_len -= delta;
905 
906 	return skb->tail;
907 }
908 
909 /* Copy some data bits from skb to kernel buffer. */
910 
911 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
912 {
913 	int i, copy;
914 	int start = skb_headlen(skb);
915 
916 	if (offset > (int)skb->len - len)
917 		goto fault;
918 
919 	/* Copy header. */
920 	if ((copy = start - offset) > 0) {
921 		if (copy > len)
922 			copy = len;
923 		memcpy(to, skb->data + offset, copy);
924 		if ((len -= copy) == 0)
925 			return 0;
926 		offset += copy;
927 		to     += copy;
928 	}
929 
930 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
931 		int end;
932 
933 		BUG_TRAP(start <= offset + len);
934 
935 		end = start + skb_shinfo(skb)->frags[i].size;
936 		if ((copy = end - offset) > 0) {
937 			u8 *vaddr;
938 
939 			if (copy > len)
940 				copy = len;
941 
942 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
943 			memcpy(to,
944 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
945 			       offset - start, copy);
946 			kunmap_skb_frag(vaddr);
947 
948 			if ((len -= copy) == 0)
949 				return 0;
950 			offset += copy;
951 			to     += copy;
952 		}
953 		start = end;
954 	}
955 
956 	if (skb_shinfo(skb)->frag_list) {
957 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
958 
959 		for (; list; list = list->next) {
960 			int end;
961 
962 			BUG_TRAP(start <= offset + len);
963 
964 			end = start + list->len;
965 			if ((copy = end - offset) > 0) {
966 				if (copy > len)
967 					copy = len;
968 				if (skb_copy_bits(list, offset - start,
969 						  to, copy))
970 					goto fault;
971 				if ((len -= copy) == 0)
972 					return 0;
973 				offset += copy;
974 				to     += copy;
975 			}
976 			start = end;
977 		}
978 	}
979 	if (!len)
980 		return 0;
981 
982 fault:
983 	return -EFAULT;
984 }
985 
986 /**
987  *	skb_store_bits - store bits from kernel buffer to skb
988  *	@skb: destination buffer
989  *	@offset: offset in destination
990  *	@from: source buffer
991  *	@len: number of bytes to copy
992  *
993  *	Copy the specified number of bytes from the source buffer to the
994  *	destination skb.  This function handles all the messy bits of
995  *	traversing fragment lists and such.
996  */
997 
998 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
999 {
1000 	int i, copy;
1001 	int start = skb_headlen(skb);
1002 
1003 	if (offset > (int)skb->len - len)
1004 		goto fault;
1005 
1006 	if ((copy = start - offset) > 0) {
1007 		if (copy > len)
1008 			copy = len;
1009 		memcpy(skb->data + offset, from, copy);
1010 		if ((len -= copy) == 0)
1011 			return 0;
1012 		offset += copy;
1013 		from += copy;
1014 	}
1015 
1016 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1017 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1018 		int end;
1019 
1020 		BUG_TRAP(start <= offset + len);
1021 
1022 		end = start + frag->size;
1023 		if ((copy = end - offset) > 0) {
1024 			u8 *vaddr;
1025 
1026 			if (copy > len)
1027 				copy = len;
1028 
1029 			vaddr = kmap_skb_frag(frag);
1030 			memcpy(vaddr + frag->page_offset + offset - start,
1031 			       from, copy);
1032 			kunmap_skb_frag(vaddr);
1033 
1034 			if ((len -= copy) == 0)
1035 				return 0;
1036 			offset += copy;
1037 			from += copy;
1038 		}
1039 		start = end;
1040 	}
1041 
1042 	if (skb_shinfo(skb)->frag_list) {
1043 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1044 
1045 		for (; list; list = list->next) {
1046 			int end;
1047 
1048 			BUG_TRAP(start <= offset + len);
1049 
1050 			end = start + list->len;
1051 			if ((copy = end - offset) > 0) {
1052 				if (copy > len)
1053 					copy = len;
1054 				if (skb_store_bits(list, offset - start,
1055 						   from, copy))
1056 					goto fault;
1057 				if ((len -= copy) == 0)
1058 					return 0;
1059 				offset += copy;
1060 				from += copy;
1061 			}
1062 			start = end;
1063 		}
1064 	}
1065 	if (!len)
1066 		return 0;
1067 
1068 fault:
1069 	return -EFAULT;
1070 }
1071 
1072 EXPORT_SYMBOL(skb_store_bits);
1073 
1074 /* Checksum skb data. */
1075 
1076 unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1077 			  int len, unsigned int csum)
1078 {
1079 	int start = skb_headlen(skb);
1080 	int i, copy = start - offset;
1081 	int pos = 0;
1082 
1083 	/* Checksum header. */
1084 	if (copy > 0) {
1085 		if (copy > len)
1086 			copy = len;
1087 		csum = csum_partial(skb->data + offset, copy, csum);
1088 		if ((len -= copy) == 0)
1089 			return csum;
1090 		offset += copy;
1091 		pos	= copy;
1092 	}
1093 
1094 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1095 		int end;
1096 
1097 		BUG_TRAP(start <= offset + len);
1098 
1099 		end = start + skb_shinfo(skb)->frags[i].size;
1100 		if ((copy = end - offset) > 0) {
1101 			unsigned int csum2;
1102 			u8 *vaddr;
1103 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1104 
1105 			if (copy > len)
1106 				copy = len;
1107 			vaddr = kmap_skb_frag(frag);
1108 			csum2 = csum_partial(vaddr + frag->page_offset +
1109 					     offset - start, copy, 0);
1110 			kunmap_skb_frag(vaddr);
1111 			csum = csum_block_add(csum, csum2, pos);
1112 			if (!(len -= copy))
1113 				return csum;
1114 			offset += copy;
1115 			pos    += copy;
1116 		}
1117 		start = end;
1118 	}
1119 
1120 	if (skb_shinfo(skb)->frag_list) {
1121 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1122 
1123 		for (; list; list = list->next) {
1124 			int end;
1125 
1126 			BUG_TRAP(start <= offset + len);
1127 
1128 			end = start + list->len;
1129 			if ((copy = end - offset) > 0) {
1130 				unsigned int csum2;
1131 				if (copy > len)
1132 					copy = len;
1133 				csum2 = skb_checksum(list, offset - start,
1134 						     copy, 0);
1135 				csum = csum_block_add(csum, csum2, pos);
1136 				if ((len -= copy) == 0)
1137 					return csum;
1138 				offset += copy;
1139 				pos    += copy;
1140 			}
1141 			start = end;
1142 		}
1143 	}
1144 	if (len)
1145 		BUG();
1146 
1147 	return csum;
1148 }
1149 
1150 /* Both of above in one bottle. */
1151 
1152 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1153 				    u8 *to, int len, unsigned int csum)
1154 {
1155 	int start = skb_headlen(skb);
1156 	int i, copy = start - offset;
1157 	int pos = 0;
1158 
1159 	/* Copy header. */
1160 	if (copy > 0) {
1161 		if (copy > len)
1162 			copy = len;
1163 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1164 						 copy, csum);
1165 		if ((len -= copy) == 0)
1166 			return csum;
1167 		offset += copy;
1168 		to     += copy;
1169 		pos	= copy;
1170 	}
1171 
1172 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1173 		int end;
1174 
1175 		BUG_TRAP(start <= offset + len);
1176 
1177 		end = start + skb_shinfo(skb)->frags[i].size;
1178 		if ((copy = end - offset) > 0) {
1179 			unsigned int csum2;
1180 			u8 *vaddr;
1181 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1182 
1183 			if (copy > len)
1184 				copy = len;
1185 			vaddr = kmap_skb_frag(frag);
1186 			csum2 = csum_partial_copy_nocheck(vaddr +
1187 							  frag->page_offset +
1188 							  offset - start, to,
1189 							  copy, 0);
1190 			kunmap_skb_frag(vaddr);
1191 			csum = csum_block_add(csum, csum2, pos);
1192 			if (!(len -= copy))
1193 				return csum;
1194 			offset += copy;
1195 			to     += copy;
1196 			pos    += copy;
1197 		}
1198 		start = end;
1199 	}
1200 
1201 	if (skb_shinfo(skb)->frag_list) {
1202 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1203 
1204 		for (; list; list = list->next) {
1205 			unsigned int csum2;
1206 			int end;
1207 
1208 			BUG_TRAP(start <= offset + len);
1209 
1210 			end = start + list->len;
1211 			if ((copy = end - offset) > 0) {
1212 				if (copy > len)
1213 					copy = len;
1214 				csum2 = skb_copy_and_csum_bits(list,
1215 							       offset - start,
1216 							       to, copy, 0);
1217 				csum = csum_block_add(csum, csum2, pos);
1218 				if ((len -= copy) == 0)
1219 					return csum;
1220 				offset += copy;
1221 				to     += copy;
1222 				pos    += copy;
1223 			}
1224 			start = end;
1225 		}
1226 	}
1227 	if (len)
1228 		BUG();
1229 	return csum;
1230 }
1231 
1232 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1233 {
1234 	unsigned int csum;
1235 	long csstart;
1236 
1237 	if (skb->ip_summed == CHECKSUM_HW)
1238 		csstart = skb->h.raw - skb->data;
1239 	else
1240 		csstart = skb_headlen(skb);
1241 
1242 	if (csstart > skb_headlen(skb))
1243 		BUG();
1244 
1245 	memcpy(to, skb->data, csstart);
1246 
1247 	csum = 0;
1248 	if (csstart != skb->len)
1249 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1250 					      skb->len - csstart, 0);
1251 
1252 	if (skb->ip_summed == CHECKSUM_HW) {
1253 		long csstuff = csstart + skb->csum;
1254 
1255 		*((unsigned short *)(to + csstuff)) = csum_fold(csum);
1256 	}
1257 }
1258 
1259 /**
1260  *	skb_dequeue - remove from the head of the queue
1261  *	@list: list to dequeue from
1262  *
1263  *	Remove the head of the list. The list lock is taken so the function
1264  *	may be used safely with other locking list functions. The head item is
1265  *	returned or %NULL if the list is empty.
1266  */
1267 
1268 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1269 {
1270 	unsigned long flags;
1271 	struct sk_buff *result;
1272 
1273 	spin_lock_irqsave(&list->lock, flags);
1274 	result = __skb_dequeue(list);
1275 	spin_unlock_irqrestore(&list->lock, flags);
1276 	return result;
1277 }
1278 
1279 /**
1280  *	skb_dequeue_tail - remove from the tail of the queue
1281  *	@list: list to dequeue from
1282  *
1283  *	Remove the tail of the list. The list lock is taken so the function
1284  *	may be used safely with other locking list functions. The tail item is
1285  *	returned or %NULL if the list is empty.
1286  */
1287 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1288 {
1289 	unsigned long flags;
1290 	struct sk_buff *result;
1291 
1292 	spin_lock_irqsave(&list->lock, flags);
1293 	result = __skb_dequeue_tail(list);
1294 	spin_unlock_irqrestore(&list->lock, flags);
1295 	return result;
1296 }
1297 
1298 /**
1299  *	skb_queue_purge - empty a list
1300  *	@list: list to empty
1301  *
1302  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1303  *	the list and one reference dropped. This function takes the list
1304  *	lock and is atomic with respect to other list locking functions.
1305  */
1306 void skb_queue_purge(struct sk_buff_head *list)
1307 {
1308 	struct sk_buff *skb;
1309 	while ((skb = skb_dequeue(list)) != NULL)
1310 		kfree_skb(skb);
1311 }
1312 
1313 /**
1314  *	skb_queue_head - queue a buffer at the list head
1315  *	@list: list to use
1316  *	@newsk: buffer to queue
1317  *
1318  *	Queue a buffer at the start of the list. This function takes the
1319  *	list lock and can be used safely with other locking &sk_buff functions
1320  *	safely.
1321  *
1322  *	A buffer cannot be placed on two lists at the same time.
1323  */
1324 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1325 {
1326 	unsigned long flags;
1327 
1328 	spin_lock_irqsave(&list->lock, flags);
1329 	__skb_queue_head(list, newsk);
1330 	spin_unlock_irqrestore(&list->lock, flags);
1331 }
1332 
1333 /**
1334  *	skb_queue_tail - queue a buffer at the list tail
1335  *	@list: list to use
1336  *	@newsk: buffer to queue
1337  *
1338  *	Queue a buffer at the tail of the list. This function takes the
1339  *	list lock and can be used safely with other locking &sk_buff functions
1340  *	safely.
1341  *
1342  *	A buffer cannot be placed on two lists at the same time.
1343  */
1344 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1345 {
1346 	unsigned long flags;
1347 
1348 	spin_lock_irqsave(&list->lock, flags);
1349 	__skb_queue_tail(list, newsk);
1350 	spin_unlock_irqrestore(&list->lock, flags);
1351 }
1352 /**
1353  *	skb_unlink	-	remove a buffer from a list
1354  *	@skb: buffer to remove
1355  *
1356  *	Place a packet after a given packet in a list. The list locks are taken
1357  *	and this function is atomic with respect to other list locked calls
1358  *
1359  *	Works even without knowing the list it is sitting on, which can be
1360  *	handy at times. It also means that THE LIST MUST EXIST when you
1361  *	unlink. Thus a list must have its contents unlinked before it is
1362  *	destroyed.
1363  */
1364 void skb_unlink(struct sk_buff *skb)
1365 {
1366 	struct sk_buff_head *list = skb->list;
1367 
1368 	if (list) {
1369 		unsigned long flags;
1370 
1371 		spin_lock_irqsave(&list->lock, flags);
1372 		if (skb->list == list)
1373 			__skb_unlink(skb, skb->list);
1374 		spin_unlock_irqrestore(&list->lock, flags);
1375 	}
1376 }
1377 
1378 
1379 /**
1380  *	skb_append	-	append a buffer
1381  *	@old: buffer to insert after
1382  *	@newsk: buffer to insert
1383  *
1384  *	Place a packet after a given packet in a list. The list locks are taken
1385  *	and this function is atomic with respect to other list locked calls.
1386  *	A buffer cannot be placed on two lists at the same time.
1387  */
1388 
1389 void skb_append(struct sk_buff *old, struct sk_buff *newsk)
1390 {
1391 	unsigned long flags;
1392 
1393 	spin_lock_irqsave(&old->list->lock, flags);
1394 	__skb_append(old, newsk);
1395 	spin_unlock_irqrestore(&old->list->lock, flags);
1396 }
1397 
1398 
1399 /**
1400  *	skb_insert	-	insert a buffer
1401  *	@old: buffer to insert before
1402  *	@newsk: buffer to insert
1403  *
1404  *	Place a packet before a given packet in a list. The list locks are taken
1405  *	and this function is atomic with respect to other list locked calls
1406  *	A buffer cannot be placed on two lists at the same time.
1407  */
1408 
1409 void skb_insert(struct sk_buff *old, struct sk_buff *newsk)
1410 {
1411 	unsigned long flags;
1412 
1413 	spin_lock_irqsave(&old->list->lock, flags);
1414 	__skb_insert(newsk, old->prev, old, old->list);
1415 	spin_unlock_irqrestore(&old->list->lock, flags);
1416 }
1417 
1418 #if 0
1419 /*
1420  * 	Tune the memory allocator for a new MTU size.
1421  */
1422 void skb_add_mtu(int mtu)
1423 {
1424 	/* Must match allocation in alloc_skb */
1425 	mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1426 
1427 	kmem_add_cache_size(mtu);
1428 }
1429 #endif
1430 
1431 static inline void skb_split_inside_header(struct sk_buff *skb,
1432 					   struct sk_buff* skb1,
1433 					   const u32 len, const int pos)
1434 {
1435 	int i;
1436 
1437 	memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1438 
1439 	/* And move data appendix as is. */
1440 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1441 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1442 
1443 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1444 	skb_shinfo(skb)->nr_frags  = 0;
1445 	skb1->data_len		   = skb->data_len;
1446 	skb1->len		   += skb1->data_len;
1447 	skb->data_len		   = 0;
1448 	skb->len		   = len;
1449 	skb->tail		   = skb->data + len;
1450 }
1451 
1452 static inline void skb_split_no_header(struct sk_buff *skb,
1453 				       struct sk_buff* skb1,
1454 				       const u32 len, int pos)
1455 {
1456 	int i, k = 0;
1457 	const int nfrags = skb_shinfo(skb)->nr_frags;
1458 
1459 	skb_shinfo(skb)->nr_frags = 0;
1460 	skb1->len		  = skb1->data_len = skb->len - len;
1461 	skb->len		  = len;
1462 	skb->data_len		  = len - pos;
1463 
1464 	for (i = 0; i < nfrags; i++) {
1465 		int size = skb_shinfo(skb)->frags[i].size;
1466 
1467 		if (pos + size > len) {
1468 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1469 
1470 			if (pos < len) {
1471 				/* Split frag.
1472 				 * We have two variants in this case:
1473 				 * 1. Move all the frag to the second
1474 				 *    part, if it is possible. F.e.
1475 				 *    this approach is mandatory for TUX,
1476 				 *    where splitting is expensive.
1477 				 * 2. Split is accurately. We make this.
1478 				 */
1479 				get_page(skb_shinfo(skb)->frags[i].page);
1480 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1481 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1482 				skb_shinfo(skb)->frags[i].size	= len - pos;
1483 				skb_shinfo(skb)->nr_frags++;
1484 			}
1485 			k++;
1486 		} else
1487 			skb_shinfo(skb)->nr_frags++;
1488 		pos += size;
1489 	}
1490 	skb_shinfo(skb1)->nr_frags = k;
1491 }
1492 
1493 /**
1494  * skb_split - Split fragmented skb to two parts at length len.
1495  * @skb: the buffer to split
1496  * @skb1: the buffer to receive the second part
1497  * @len: new length for skb
1498  */
1499 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1500 {
1501 	int pos = skb_headlen(skb);
1502 
1503 	if (len < pos)	/* Split line is inside header. */
1504 		skb_split_inside_header(skb, skb1, len, pos);
1505 	else		/* Second chunk has no header, nothing to copy. */
1506 		skb_split_no_header(skb, skb1, len, pos);
1507 }
1508 
1509 void __init skb_init(void)
1510 {
1511 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
1512 					      sizeof(struct sk_buff),
1513 					      0,
1514 					      SLAB_HWCACHE_ALIGN,
1515 					      NULL, NULL);
1516 	if (!skbuff_head_cache)
1517 		panic("cannot create skbuff cache");
1518 }
1519 
1520 EXPORT_SYMBOL(___pskb_trim);
1521 EXPORT_SYMBOL(__kfree_skb);
1522 EXPORT_SYMBOL(__pskb_pull_tail);
1523 EXPORT_SYMBOL(alloc_skb);
1524 EXPORT_SYMBOL(pskb_copy);
1525 EXPORT_SYMBOL(pskb_expand_head);
1526 EXPORT_SYMBOL(skb_checksum);
1527 EXPORT_SYMBOL(skb_clone);
1528 EXPORT_SYMBOL(skb_clone_fraglist);
1529 EXPORT_SYMBOL(skb_copy);
1530 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1531 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1532 EXPORT_SYMBOL(skb_copy_bits);
1533 EXPORT_SYMBOL(skb_copy_expand);
1534 EXPORT_SYMBOL(skb_over_panic);
1535 EXPORT_SYMBOL(skb_pad);
1536 EXPORT_SYMBOL(skb_realloc_headroom);
1537 EXPORT_SYMBOL(skb_under_panic);
1538 EXPORT_SYMBOL(skb_dequeue);
1539 EXPORT_SYMBOL(skb_dequeue_tail);
1540 EXPORT_SYMBOL(skb_insert);
1541 EXPORT_SYMBOL(skb_queue_purge);
1542 EXPORT_SYMBOL(skb_queue_head);
1543 EXPORT_SYMBOL(skb_queue_tail);
1544 EXPORT_SYMBOL(skb_unlink);
1545 EXPORT_SYMBOL(skb_append);
1546 EXPORT_SYMBOL(skb_split);
1547