1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/mm.h> 45 #include <linux/interrupt.h> 46 #include <linux/in.h> 47 #include <linux/inet.h> 48 #include <linux/slab.h> 49 #include <linux/tcp.h> 50 #include <linux/udp.h> 51 #include <linux/sctp.h> 52 #include <linux/netdevice.h> 53 #ifdef CONFIG_NET_CLS_ACT 54 #include <net/pkt_sched.h> 55 #endif 56 #include <linux/string.h> 57 #include <linux/skbuff.h> 58 #include <linux/splice.h> 59 #include <linux/cache.h> 60 #include <linux/rtnetlink.h> 61 #include <linux/init.h> 62 #include <linux/scatterlist.h> 63 #include <linux/errqueue.h> 64 #include <linux/prefetch.h> 65 #include <linux/if_vlan.h> 66 67 #include <net/protocol.h> 68 #include <net/dst.h> 69 #include <net/sock.h> 70 #include <net/checksum.h> 71 #include <net/ip6_checksum.h> 72 #include <net/xfrm.h> 73 74 #include <linux/uaccess.h> 75 #include <trace/events/skb.h> 76 #include <linux/highmem.h> 77 #include <linux/capability.h> 78 #include <linux/user_namespace.h> 79 80 struct kmem_cache *skbuff_head_cache __ro_after_init; 81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 83 EXPORT_SYMBOL(sysctl_max_skb_frags); 84 85 /** 86 * skb_panic - private function for out-of-line support 87 * @skb: buffer 88 * @sz: size 89 * @addr: address 90 * @msg: skb_over_panic or skb_under_panic 91 * 92 * Out-of-line support for skb_put() and skb_push(). 93 * Called via the wrapper skb_over_panic() or skb_under_panic(). 94 * Keep out of line to prevent kernel bloat. 95 * __builtin_return_address is not used because it is not always reliable. 96 */ 97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 98 const char msg[]) 99 { 100 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 101 msg, addr, skb->len, sz, skb->head, skb->data, 102 (unsigned long)skb->tail, (unsigned long)skb->end, 103 skb->dev ? skb->dev->name : "<NULL>"); 104 BUG(); 105 } 106 107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 108 { 109 skb_panic(skb, sz, addr, __func__); 110 } 111 112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 113 { 114 skb_panic(skb, sz, addr, __func__); 115 } 116 117 /* 118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 119 * the caller if emergency pfmemalloc reserves are being used. If it is and 120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 121 * may be used. Otherwise, the packet data may be discarded until enough 122 * memory is free 123 */ 124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 125 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 126 127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 128 unsigned long ip, bool *pfmemalloc) 129 { 130 void *obj; 131 bool ret_pfmemalloc = false; 132 133 /* 134 * Try a regular allocation, when that fails and we're not entitled 135 * to the reserves, fail. 136 */ 137 obj = kmalloc_node_track_caller(size, 138 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 139 node); 140 if (obj || !(gfp_pfmemalloc_allowed(flags))) 141 goto out; 142 143 /* Try again but now we are using pfmemalloc reserves */ 144 ret_pfmemalloc = true; 145 obj = kmalloc_node_track_caller(size, flags, node); 146 147 out: 148 if (pfmemalloc) 149 *pfmemalloc = ret_pfmemalloc; 150 151 return obj; 152 } 153 154 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 155 * 'private' fields and also do memory statistics to find all the 156 * [BEEP] leaks. 157 * 158 */ 159 160 /** 161 * __alloc_skb - allocate a network buffer 162 * @size: size to allocate 163 * @gfp_mask: allocation mask 164 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 165 * instead of head cache and allocate a cloned (child) skb. 166 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 167 * allocations in case the data is required for writeback 168 * @node: numa node to allocate memory on 169 * 170 * Allocate a new &sk_buff. The returned buffer has no headroom and a 171 * tail room of at least size bytes. The object has a reference count 172 * of one. The return is the buffer. On a failure the return is %NULL. 173 * 174 * Buffers may only be allocated from interrupts using a @gfp_mask of 175 * %GFP_ATOMIC. 176 */ 177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 178 int flags, int node) 179 { 180 struct kmem_cache *cache; 181 struct skb_shared_info *shinfo; 182 struct sk_buff *skb; 183 u8 *data; 184 bool pfmemalloc; 185 186 cache = (flags & SKB_ALLOC_FCLONE) 187 ? skbuff_fclone_cache : skbuff_head_cache; 188 189 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 190 gfp_mask |= __GFP_MEMALLOC; 191 192 /* Get the HEAD */ 193 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 194 if (!skb) 195 goto out; 196 prefetchw(skb); 197 198 /* We do our best to align skb_shared_info on a separate cache 199 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 200 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 201 * Both skb->head and skb_shared_info are cache line aligned. 202 */ 203 size = SKB_DATA_ALIGN(size); 204 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 205 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 206 if (!data) 207 goto nodata; 208 /* kmalloc(size) might give us more room than requested. 209 * Put skb_shared_info exactly at the end of allocated zone, 210 * to allow max possible filling before reallocation. 211 */ 212 size = SKB_WITH_OVERHEAD(ksize(data)); 213 prefetchw(data + size); 214 215 /* 216 * Only clear those fields we need to clear, not those that we will 217 * actually initialise below. Hence, don't put any more fields after 218 * the tail pointer in struct sk_buff! 219 */ 220 memset(skb, 0, offsetof(struct sk_buff, tail)); 221 /* Account for allocated memory : skb + skb->head */ 222 skb->truesize = SKB_TRUESIZE(size); 223 skb->pfmemalloc = pfmemalloc; 224 refcount_set(&skb->users, 1); 225 skb->head = data; 226 skb->data = data; 227 skb_reset_tail_pointer(skb); 228 skb->end = skb->tail + size; 229 skb->mac_header = (typeof(skb->mac_header))~0U; 230 skb->transport_header = (typeof(skb->transport_header))~0U; 231 232 /* make sure we initialize shinfo sequentially */ 233 shinfo = skb_shinfo(skb); 234 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 235 atomic_set(&shinfo->dataref, 1); 236 237 if (flags & SKB_ALLOC_FCLONE) { 238 struct sk_buff_fclones *fclones; 239 240 fclones = container_of(skb, struct sk_buff_fclones, skb1); 241 242 skb->fclone = SKB_FCLONE_ORIG; 243 refcount_set(&fclones->fclone_ref, 1); 244 245 fclones->skb2.fclone = SKB_FCLONE_CLONE; 246 } 247 out: 248 return skb; 249 nodata: 250 kmem_cache_free(cache, skb); 251 skb = NULL; 252 goto out; 253 } 254 EXPORT_SYMBOL(__alloc_skb); 255 256 /** 257 * __build_skb - build a network buffer 258 * @data: data buffer provided by caller 259 * @frag_size: size of data, or 0 if head was kmalloced 260 * 261 * Allocate a new &sk_buff. Caller provides space holding head and 262 * skb_shared_info. @data must have been allocated by kmalloc() only if 263 * @frag_size is 0, otherwise data should come from the page allocator 264 * or vmalloc() 265 * The return is the new skb buffer. 266 * On a failure the return is %NULL, and @data is not freed. 267 * Notes : 268 * Before IO, driver allocates only data buffer where NIC put incoming frame 269 * Driver should add room at head (NET_SKB_PAD) and 270 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 271 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 272 * before giving packet to stack. 273 * RX rings only contains data buffers, not full skbs. 274 */ 275 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 276 { 277 struct skb_shared_info *shinfo; 278 struct sk_buff *skb; 279 unsigned int size = frag_size ? : ksize(data); 280 281 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 282 if (!skb) 283 return NULL; 284 285 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 286 287 memset(skb, 0, offsetof(struct sk_buff, tail)); 288 skb->truesize = SKB_TRUESIZE(size); 289 refcount_set(&skb->users, 1); 290 skb->head = data; 291 skb->data = data; 292 skb_reset_tail_pointer(skb); 293 skb->end = skb->tail + size; 294 skb->mac_header = (typeof(skb->mac_header))~0U; 295 skb->transport_header = (typeof(skb->transport_header))~0U; 296 297 /* make sure we initialize shinfo sequentially */ 298 shinfo = skb_shinfo(skb); 299 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 300 atomic_set(&shinfo->dataref, 1); 301 302 return skb; 303 } 304 305 /* build_skb() is wrapper over __build_skb(), that specifically 306 * takes care of skb->head and skb->pfmemalloc 307 * This means that if @frag_size is not zero, then @data must be backed 308 * by a page fragment, not kmalloc() or vmalloc() 309 */ 310 struct sk_buff *build_skb(void *data, unsigned int frag_size) 311 { 312 struct sk_buff *skb = __build_skb(data, frag_size); 313 314 if (skb && frag_size) { 315 skb->head_frag = 1; 316 if (page_is_pfmemalloc(virt_to_head_page(data))) 317 skb->pfmemalloc = 1; 318 } 319 return skb; 320 } 321 EXPORT_SYMBOL(build_skb); 322 323 #define NAPI_SKB_CACHE_SIZE 64 324 325 struct napi_alloc_cache { 326 struct page_frag_cache page; 327 unsigned int skb_count; 328 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 329 }; 330 331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 333 334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 335 { 336 struct page_frag_cache *nc; 337 unsigned long flags; 338 void *data; 339 340 local_irq_save(flags); 341 nc = this_cpu_ptr(&netdev_alloc_cache); 342 data = page_frag_alloc(nc, fragsz, gfp_mask); 343 local_irq_restore(flags); 344 return data; 345 } 346 347 /** 348 * netdev_alloc_frag - allocate a page fragment 349 * @fragsz: fragment size 350 * 351 * Allocates a frag from a page for receive buffer. 352 * Uses GFP_ATOMIC allocations. 353 */ 354 void *netdev_alloc_frag(unsigned int fragsz) 355 { 356 return __netdev_alloc_frag(fragsz, GFP_ATOMIC); 357 } 358 EXPORT_SYMBOL(netdev_alloc_frag); 359 360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 361 { 362 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 363 364 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 365 } 366 367 void *napi_alloc_frag(unsigned int fragsz) 368 { 369 return __napi_alloc_frag(fragsz, GFP_ATOMIC); 370 } 371 EXPORT_SYMBOL(napi_alloc_frag); 372 373 /** 374 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 375 * @dev: network device to receive on 376 * @len: length to allocate 377 * @gfp_mask: get_free_pages mask, passed to alloc_skb 378 * 379 * Allocate a new &sk_buff and assign it a usage count of one. The 380 * buffer has NET_SKB_PAD headroom built in. Users should allocate 381 * the headroom they think they need without accounting for the 382 * built in space. The built in space is used for optimisations. 383 * 384 * %NULL is returned if there is no free memory. 385 */ 386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 387 gfp_t gfp_mask) 388 { 389 struct page_frag_cache *nc; 390 unsigned long flags; 391 struct sk_buff *skb; 392 bool pfmemalloc; 393 void *data; 394 395 len += NET_SKB_PAD; 396 397 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 398 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 399 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 400 if (!skb) 401 goto skb_fail; 402 goto skb_success; 403 } 404 405 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 406 len = SKB_DATA_ALIGN(len); 407 408 if (sk_memalloc_socks()) 409 gfp_mask |= __GFP_MEMALLOC; 410 411 local_irq_save(flags); 412 413 nc = this_cpu_ptr(&netdev_alloc_cache); 414 data = page_frag_alloc(nc, len, gfp_mask); 415 pfmemalloc = nc->pfmemalloc; 416 417 local_irq_restore(flags); 418 419 if (unlikely(!data)) 420 return NULL; 421 422 skb = __build_skb(data, len); 423 if (unlikely(!skb)) { 424 skb_free_frag(data); 425 return NULL; 426 } 427 428 /* use OR instead of assignment to avoid clearing of bits in mask */ 429 if (pfmemalloc) 430 skb->pfmemalloc = 1; 431 skb->head_frag = 1; 432 433 skb_success: 434 skb_reserve(skb, NET_SKB_PAD); 435 skb->dev = dev; 436 437 skb_fail: 438 return skb; 439 } 440 EXPORT_SYMBOL(__netdev_alloc_skb); 441 442 /** 443 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 444 * @napi: napi instance this buffer was allocated for 445 * @len: length to allocate 446 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 447 * 448 * Allocate a new sk_buff for use in NAPI receive. This buffer will 449 * attempt to allocate the head from a special reserved region used 450 * only for NAPI Rx allocation. By doing this we can save several 451 * CPU cycles by avoiding having to disable and re-enable IRQs. 452 * 453 * %NULL is returned if there is no free memory. 454 */ 455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 456 gfp_t gfp_mask) 457 { 458 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 459 struct sk_buff *skb; 460 void *data; 461 462 len += NET_SKB_PAD + NET_IP_ALIGN; 463 464 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 465 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 466 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 467 if (!skb) 468 goto skb_fail; 469 goto skb_success; 470 } 471 472 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 473 len = SKB_DATA_ALIGN(len); 474 475 if (sk_memalloc_socks()) 476 gfp_mask |= __GFP_MEMALLOC; 477 478 data = page_frag_alloc(&nc->page, len, gfp_mask); 479 if (unlikely(!data)) 480 return NULL; 481 482 skb = __build_skb(data, len); 483 if (unlikely(!skb)) { 484 skb_free_frag(data); 485 return NULL; 486 } 487 488 /* use OR instead of assignment to avoid clearing of bits in mask */ 489 if (nc->page.pfmemalloc) 490 skb->pfmemalloc = 1; 491 skb->head_frag = 1; 492 493 skb_success: 494 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 495 skb->dev = napi->dev; 496 497 skb_fail: 498 return skb; 499 } 500 EXPORT_SYMBOL(__napi_alloc_skb); 501 502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 503 int size, unsigned int truesize) 504 { 505 skb_fill_page_desc(skb, i, page, off, size); 506 skb->len += size; 507 skb->data_len += size; 508 skb->truesize += truesize; 509 } 510 EXPORT_SYMBOL(skb_add_rx_frag); 511 512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 513 unsigned int truesize) 514 { 515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 516 517 skb_frag_size_add(frag, size); 518 skb->len += size; 519 skb->data_len += size; 520 skb->truesize += truesize; 521 } 522 EXPORT_SYMBOL(skb_coalesce_rx_frag); 523 524 static void skb_drop_list(struct sk_buff **listp) 525 { 526 kfree_skb_list(*listp); 527 *listp = NULL; 528 } 529 530 static inline void skb_drop_fraglist(struct sk_buff *skb) 531 { 532 skb_drop_list(&skb_shinfo(skb)->frag_list); 533 } 534 535 static void skb_clone_fraglist(struct sk_buff *skb) 536 { 537 struct sk_buff *list; 538 539 skb_walk_frags(skb, list) 540 skb_get(list); 541 } 542 543 static void skb_free_head(struct sk_buff *skb) 544 { 545 unsigned char *head = skb->head; 546 547 if (skb->head_frag) 548 skb_free_frag(head); 549 else 550 kfree(head); 551 } 552 553 static void skb_release_data(struct sk_buff *skb) 554 { 555 struct skb_shared_info *shinfo = skb_shinfo(skb); 556 int i; 557 558 if (skb->cloned && 559 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 560 &shinfo->dataref)) 561 return; 562 563 for (i = 0; i < shinfo->nr_frags; i++) 564 __skb_frag_unref(&shinfo->frags[i]); 565 566 if (shinfo->frag_list) 567 kfree_skb_list(shinfo->frag_list); 568 569 skb_zcopy_clear(skb, true); 570 skb_free_head(skb); 571 } 572 573 /* 574 * Free an skbuff by memory without cleaning the state. 575 */ 576 static void kfree_skbmem(struct sk_buff *skb) 577 { 578 struct sk_buff_fclones *fclones; 579 580 switch (skb->fclone) { 581 case SKB_FCLONE_UNAVAILABLE: 582 kmem_cache_free(skbuff_head_cache, skb); 583 return; 584 585 case SKB_FCLONE_ORIG: 586 fclones = container_of(skb, struct sk_buff_fclones, skb1); 587 588 /* We usually free the clone (TX completion) before original skb 589 * This test would have no chance to be true for the clone, 590 * while here, branch prediction will be good. 591 */ 592 if (refcount_read(&fclones->fclone_ref) == 1) 593 goto fastpath; 594 break; 595 596 default: /* SKB_FCLONE_CLONE */ 597 fclones = container_of(skb, struct sk_buff_fclones, skb2); 598 break; 599 } 600 if (!refcount_dec_and_test(&fclones->fclone_ref)) 601 return; 602 fastpath: 603 kmem_cache_free(skbuff_fclone_cache, fclones); 604 } 605 606 void skb_release_head_state(struct sk_buff *skb) 607 { 608 skb_dst_drop(skb); 609 secpath_reset(skb); 610 if (skb->destructor) { 611 WARN_ON(in_irq()); 612 skb->destructor(skb); 613 } 614 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 615 nf_conntrack_put(skb_nfct(skb)); 616 #endif 617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 618 nf_bridge_put(skb->nf_bridge); 619 #endif 620 } 621 622 /* Free everything but the sk_buff shell. */ 623 static void skb_release_all(struct sk_buff *skb) 624 { 625 skb_release_head_state(skb); 626 if (likely(skb->head)) 627 skb_release_data(skb); 628 } 629 630 /** 631 * __kfree_skb - private function 632 * @skb: buffer 633 * 634 * Free an sk_buff. Release anything attached to the buffer. 635 * Clean the state. This is an internal helper function. Users should 636 * always call kfree_skb 637 */ 638 639 void __kfree_skb(struct sk_buff *skb) 640 { 641 skb_release_all(skb); 642 kfree_skbmem(skb); 643 } 644 EXPORT_SYMBOL(__kfree_skb); 645 646 /** 647 * kfree_skb - free an sk_buff 648 * @skb: buffer to free 649 * 650 * Drop a reference to the buffer and free it if the usage count has 651 * hit zero. 652 */ 653 void kfree_skb(struct sk_buff *skb) 654 { 655 if (!skb_unref(skb)) 656 return; 657 658 trace_kfree_skb(skb, __builtin_return_address(0)); 659 __kfree_skb(skb); 660 } 661 EXPORT_SYMBOL(kfree_skb); 662 663 void kfree_skb_list(struct sk_buff *segs) 664 { 665 while (segs) { 666 struct sk_buff *next = segs->next; 667 668 kfree_skb(segs); 669 segs = next; 670 } 671 } 672 EXPORT_SYMBOL(kfree_skb_list); 673 674 /** 675 * skb_tx_error - report an sk_buff xmit error 676 * @skb: buffer that triggered an error 677 * 678 * Report xmit error if a device callback is tracking this skb. 679 * skb must be freed afterwards. 680 */ 681 void skb_tx_error(struct sk_buff *skb) 682 { 683 skb_zcopy_clear(skb, true); 684 } 685 EXPORT_SYMBOL(skb_tx_error); 686 687 /** 688 * consume_skb - free an skbuff 689 * @skb: buffer to free 690 * 691 * Drop a ref to the buffer and free it if the usage count has hit zero 692 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 693 * is being dropped after a failure and notes that 694 */ 695 void consume_skb(struct sk_buff *skb) 696 { 697 if (!skb_unref(skb)) 698 return; 699 700 trace_consume_skb(skb); 701 __kfree_skb(skb); 702 } 703 EXPORT_SYMBOL(consume_skb); 704 705 /** 706 * consume_stateless_skb - free an skbuff, assuming it is stateless 707 * @skb: buffer to free 708 * 709 * Alike consume_skb(), but this variant assumes that this is the last 710 * skb reference and all the head states have been already dropped 711 */ 712 void __consume_stateless_skb(struct sk_buff *skb) 713 { 714 trace_consume_skb(skb); 715 skb_release_data(skb); 716 kfree_skbmem(skb); 717 } 718 719 void __kfree_skb_flush(void) 720 { 721 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 722 723 /* flush skb_cache if containing objects */ 724 if (nc->skb_count) { 725 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 726 nc->skb_cache); 727 nc->skb_count = 0; 728 } 729 } 730 731 static inline void _kfree_skb_defer(struct sk_buff *skb) 732 { 733 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 734 735 /* drop skb->head and call any destructors for packet */ 736 skb_release_all(skb); 737 738 /* record skb to CPU local list */ 739 nc->skb_cache[nc->skb_count++] = skb; 740 741 #ifdef CONFIG_SLUB 742 /* SLUB writes into objects when freeing */ 743 prefetchw(skb); 744 #endif 745 746 /* flush skb_cache if it is filled */ 747 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 748 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 749 nc->skb_cache); 750 nc->skb_count = 0; 751 } 752 } 753 void __kfree_skb_defer(struct sk_buff *skb) 754 { 755 _kfree_skb_defer(skb); 756 } 757 758 void napi_consume_skb(struct sk_buff *skb, int budget) 759 { 760 if (unlikely(!skb)) 761 return; 762 763 /* Zero budget indicate non-NAPI context called us, like netpoll */ 764 if (unlikely(!budget)) { 765 dev_consume_skb_any(skb); 766 return; 767 } 768 769 if (!skb_unref(skb)) 770 return; 771 772 /* if reaching here SKB is ready to free */ 773 trace_consume_skb(skb); 774 775 /* if SKB is a clone, don't handle this case */ 776 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 777 __kfree_skb(skb); 778 return; 779 } 780 781 _kfree_skb_defer(skb); 782 } 783 EXPORT_SYMBOL(napi_consume_skb); 784 785 /* Make sure a field is enclosed inside headers_start/headers_end section */ 786 #define CHECK_SKB_FIELD(field) \ 787 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 788 offsetof(struct sk_buff, headers_start)); \ 789 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 790 offsetof(struct sk_buff, headers_end)); \ 791 792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 793 { 794 new->tstamp = old->tstamp; 795 /* We do not copy old->sk */ 796 new->dev = old->dev; 797 memcpy(new->cb, old->cb, sizeof(old->cb)); 798 skb_dst_copy(new, old); 799 #ifdef CONFIG_XFRM 800 new->sp = secpath_get(old->sp); 801 #endif 802 __nf_copy(new, old, false); 803 804 /* Note : this field could be in headers_start/headers_end section 805 * It is not yet because we do not want to have a 16 bit hole 806 */ 807 new->queue_mapping = old->queue_mapping; 808 809 memcpy(&new->headers_start, &old->headers_start, 810 offsetof(struct sk_buff, headers_end) - 811 offsetof(struct sk_buff, headers_start)); 812 CHECK_SKB_FIELD(protocol); 813 CHECK_SKB_FIELD(csum); 814 CHECK_SKB_FIELD(hash); 815 CHECK_SKB_FIELD(priority); 816 CHECK_SKB_FIELD(skb_iif); 817 CHECK_SKB_FIELD(vlan_proto); 818 CHECK_SKB_FIELD(vlan_tci); 819 CHECK_SKB_FIELD(transport_header); 820 CHECK_SKB_FIELD(network_header); 821 CHECK_SKB_FIELD(mac_header); 822 CHECK_SKB_FIELD(inner_protocol); 823 CHECK_SKB_FIELD(inner_transport_header); 824 CHECK_SKB_FIELD(inner_network_header); 825 CHECK_SKB_FIELD(inner_mac_header); 826 CHECK_SKB_FIELD(mark); 827 #ifdef CONFIG_NETWORK_SECMARK 828 CHECK_SKB_FIELD(secmark); 829 #endif 830 #ifdef CONFIG_NET_RX_BUSY_POLL 831 CHECK_SKB_FIELD(napi_id); 832 #endif 833 #ifdef CONFIG_XPS 834 CHECK_SKB_FIELD(sender_cpu); 835 #endif 836 #ifdef CONFIG_NET_SCHED 837 CHECK_SKB_FIELD(tc_index); 838 #endif 839 840 } 841 842 /* 843 * You should not add any new code to this function. Add it to 844 * __copy_skb_header above instead. 845 */ 846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 847 { 848 #define C(x) n->x = skb->x 849 850 n->next = n->prev = NULL; 851 n->sk = NULL; 852 __copy_skb_header(n, skb); 853 854 C(len); 855 C(data_len); 856 C(mac_len); 857 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 858 n->cloned = 1; 859 n->nohdr = 0; 860 n->peeked = 0; 861 C(pfmemalloc); 862 n->destructor = NULL; 863 C(tail); 864 C(end); 865 C(head); 866 C(head_frag); 867 C(data); 868 C(truesize); 869 refcount_set(&n->users, 1); 870 871 atomic_inc(&(skb_shinfo(skb)->dataref)); 872 skb->cloned = 1; 873 874 return n; 875 #undef C 876 } 877 878 /** 879 * skb_morph - morph one skb into another 880 * @dst: the skb to receive the contents 881 * @src: the skb to supply the contents 882 * 883 * This is identical to skb_clone except that the target skb is 884 * supplied by the user. 885 * 886 * The target skb is returned upon exit. 887 */ 888 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 889 { 890 skb_release_all(dst); 891 return __skb_clone(dst, src); 892 } 893 EXPORT_SYMBOL_GPL(skb_morph); 894 895 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 896 { 897 unsigned long max_pg, num_pg, new_pg, old_pg; 898 struct user_struct *user; 899 900 if (capable(CAP_IPC_LOCK) || !size) 901 return 0; 902 903 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 904 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 905 user = mmp->user ? : current_user(); 906 907 do { 908 old_pg = atomic_long_read(&user->locked_vm); 909 new_pg = old_pg + num_pg; 910 if (new_pg > max_pg) 911 return -ENOBUFS; 912 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 913 old_pg); 914 915 if (!mmp->user) { 916 mmp->user = get_uid(user); 917 mmp->num_pg = num_pg; 918 } else { 919 mmp->num_pg += num_pg; 920 } 921 922 return 0; 923 } 924 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 925 926 void mm_unaccount_pinned_pages(struct mmpin *mmp) 927 { 928 if (mmp->user) { 929 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 930 free_uid(mmp->user); 931 } 932 } 933 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 934 935 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 936 { 937 struct ubuf_info *uarg; 938 struct sk_buff *skb; 939 940 WARN_ON_ONCE(!in_task()); 941 942 skb = sock_omalloc(sk, 0, GFP_KERNEL); 943 if (!skb) 944 return NULL; 945 946 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 947 uarg = (void *)skb->cb; 948 uarg->mmp.user = NULL; 949 950 if (mm_account_pinned_pages(&uarg->mmp, size)) { 951 kfree_skb(skb); 952 return NULL; 953 } 954 955 uarg->callback = sock_zerocopy_callback; 956 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 957 uarg->len = 1; 958 uarg->bytelen = size; 959 uarg->zerocopy = 1; 960 refcount_set(&uarg->refcnt, 1); 961 sock_hold(sk); 962 963 return uarg; 964 } 965 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 966 967 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 968 { 969 return container_of((void *)uarg, struct sk_buff, cb); 970 } 971 972 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 973 struct ubuf_info *uarg) 974 { 975 if (uarg) { 976 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 977 u32 bytelen, next; 978 979 /* realloc only when socket is locked (TCP, UDP cork), 980 * so uarg->len and sk_zckey access is serialized 981 */ 982 if (!sock_owned_by_user(sk)) { 983 WARN_ON_ONCE(1); 984 return NULL; 985 } 986 987 bytelen = uarg->bytelen + size; 988 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 989 /* TCP can create new skb to attach new uarg */ 990 if (sk->sk_type == SOCK_STREAM) 991 goto new_alloc; 992 return NULL; 993 } 994 995 next = (u32)atomic_read(&sk->sk_zckey); 996 if ((u32)(uarg->id + uarg->len) == next) { 997 if (mm_account_pinned_pages(&uarg->mmp, size)) 998 return NULL; 999 uarg->len++; 1000 uarg->bytelen = bytelen; 1001 atomic_set(&sk->sk_zckey, ++next); 1002 sock_zerocopy_get(uarg); 1003 return uarg; 1004 } 1005 } 1006 1007 new_alloc: 1008 return sock_zerocopy_alloc(sk, size); 1009 } 1010 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1011 1012 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1013 { 1014 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1015 u32 old_lo, old_hi; 1016 u64 sum_len; 1017 1018 old_lo = serr->ee.ee_info; 1019 old_hi = serr->ee.ee_data; 1020 sum_len = old_hi - old_lo + 1ULL + len; 1021 1022 if (sum_len >= (1ULL << 32)) 1023 return false; 1024 1025 if (lo != old_hi + 1) 1026 return false; 1027 1028 serr->ee.ee_data += len; 1029 return true; 1030 } 1031 1032 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1033 { 1034 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1035 struct sock_exterr_skb *serr; 1036 struct sock *sk = skb->sk; 1037 struct sk_buff_head *q; 1038 unsigned long flags; 1039 u32 lo, hi; 1040 u16 len; 1041 1042 mm_unaccount_pinned_pages(&uarg->mmp); 1043 1044 /* if !len, there was only 1 call, and it was aborted 1045 * so do not queue a completion notification 1046 */ 1047 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1048 goto release; 1049 1050 len = uarg->len; 1051 lo = uarg->id; 1052 hi = uarg->id + len - 1; 1053 1054 serr = SKB_EXT_ERR(skb); 1055 memset(serr, 0, sizeof(*serr)); 1056 serr->ee.ee_errno = 0; 1057 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1058 serr->ee.ee_data = hi; 1059 serr->ee.ee_info = lo; 1060 if (!success) 1061 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1062 1063 q = &sk->sk_error_queue; 1064 spin_lock_irqsave(&q->lock, flags); 1065 tail = skb_peek_tail(q); 1066 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1067 !skb_zerocopy_notify_extend(tail, lo, len)) { 1068 __skb_queue_tail(q, skb); 1069 skb = NULL; 1070 } 1071 spin_unlock_irqrestore(&q->lock, flags); 1072 1073 sk->sk_error_report(sk); 1074 1075 release: 1076 consume_skb(skb); 1077 sock_put(sk); 1078 } 1079 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1080 1081 void sock_zerocopy_put(struct ubuf_info *uarg) 1082 { 1083 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1084 if (uarg->callback) 1085 uarg->callback(uarg, uarg->zerocopy); 1086 else 1087 consume_skb(skb_from_uarg(uarg)); 1088 } 1089 } 1090 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1091 1092 void sock_zerocopy_put_abort(struct ubuf_info *uarg) 1093 { 1094 if (uarg) { 1095 struct sock *sk = skb_from_uarg(uarg)->sk; 1096 1097 atomic_dec(&sk->sk_zckey); 1098 uarg->len--; 1099 1100 sock_zerocopy_put(uarg); 1101 } 1102 } 1103 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1104 1105 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb, 1106 struct iov_iter *from, size_t length); 1107 1108 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1109 struct msghdr *msg, int len, 1110 struct ubuf_info *uarg) 1111 { 1112 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1113 struct iov_iter orig_iter = msg->msg_iter; 1114 int err, orig_len = skb->len; 1115 1116 /* An skb can only point to one uarg. This edge case happens when 1117 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1118 */ 1119 if (orig_uarg && uarg != orig_uarg) 1120 return -EEXIST; 1121 1122 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1123 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1124 struct sock *save_sk = skb->sk; 1125 1126 /* Streams do not free skb on error. Reset to prev state. */ 1127 msg->msg_iter = orig_iter; 1128 skb->sk = sk; 1129 ___pskb_trim(skb, orig_len); 1130 skb->sk = save_sk; 1131 return err; 1132 } 1133 1134 skb_zcopy_set(skb, uarg); 1135 return skb->len - orig_len; 1136 } 1137 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1138 1139 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1140 gfp_t gfp_mask) 1141 { 1142 if (skb_zcopy(orig)) { 1143 if (skb_zcopy(nskb)) { 1144 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1145 if (!gfp_mask) { 1146 WARN_ON_ONCE(1); 1147 return -ENOMEM; 1148 } 1149 if (skb_uarg(nskb) == skb_uarg(orig)) 1150 return 0; 1151 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1152 return -EIO; 1153 } 1154 skb_zcopy_set(nskb, skb_uarg(orig)); 1155 } 1156 return 0; 1157 } 1158 1159 /** 1160 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1161 * @skb: the skb to modify 1162 * @gfp_mask: allocation priority 1163 * 1164 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1165 * It will copy all frags into kernel and drop the reference 1166 * to userspace pages. 1167 * 1168 * If this function is called from an interrupt gfp_mask() must be 1169 * %GFP_ATOMIC. 1170 * 1171 * Returns 0 on success or a negative error code on failure 1172 * to allocate kernel memory to copy to. 1173 */ 1174 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1175 { 1176 int num_frags = skb_shinfo(skb)->nr_frags; 1177 struct page *page, *head = NULL; 1178 int i, new_frags; 1179 u32 d_off; 1180 1181 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1182 return -EINVAL; 1183 1184 if (!num_frags) 1185 goto release; 1186 1187 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1188 for (i = 0; i < new_frags; i++) { 1189 page = alloc_page(gfp_mask); 1190 if (!page) { 1191 while (head) { 1192 struct page *next = (struct page *)page_private(head); 1193 put_page(head); 1194 head = next; 1195 } 1196 return -ENOMEM; 1197 } 1198 set_page_private(page, (unsigned long)head); 1199 head = page; 1200 } 1201 1202 page = head; 1203 d_off = 0; 1204 for (i = 0; i < num_frags; i++) { 1205 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1206 u32 p_off, p_len, copied; 1207 struct page *p; 1208 u8 *vaddr; 1209 1210 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f), 1211 p, p_off, p_len, copied) { 1212 u32 copy, done = 0; 1213 vaddr = kmap_atomic(p); 1214 1215 while (done < p_len) { 1216 if (d_off == PAGE_SIZE) { 1217 d_off = 0; 1218 page = (struct page *)page_private(page); 1219 } 1220 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1221 memcpy(page_address(page) + d_off, 1222 vaddr + p_off + done, copy); 1223 done += copy; 1224 d_off += copy; 1225 } 1226 kunmap_atomic(vaddr); 1227 } 1228 } 1229 1230 /* skb frags release userspace buffers */ 1231 for (i = 0; i < num_frags; i++) 1232 skb_frag_unref(skb, i); 1233 1234 /* skb frags point to kernel buffers */ 1235 for (i = 0; i < new_frags - 1; i++) { 1236 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1237 head = (struct page *)page_private(head); 1238 } 1239 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1240 skb_shinfo(skb)->nr_frags = new_frags; 1241 1242 release: 1243 skb_zcopy_clear(skb, false); 1244 return 0; 1245 } 1246 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1247 1248 /** 1249 * skb_clone - duplicate an sk_buff 1250 * @skb: buffer to clone 1251 * @gfp_mask: allocation priority 1252 * 1253 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1254 * copies share the same packet data but not structure. The new 1255 * buffer has a reference count of 1. If the allocation fails the 1256 * function returns %NULL otherwise the new buffer is returned. 1257 * 1258 * If this function is called from an interrupt gfp_mask() must be 1259 * %GFP_ATOMIC. 1260 */ 1261 1262 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1263 { 1264 struct sk_buff_fclones *fclones = container_of(skb, 1265 struct sk_buff_fclones, 1266 skb1); 1267 struct sk_buff *n; 1268 1269 if (skb_orphan_frags(skb, gfp_mask)) 1270 return NULL; 1271 1272 if (skb->fclone == SKB_FCLONE_ORIG && 1273 refcount_read(&fclones->fclone_ref) == 1) { 1274 n = &fclones->skb2; 1275 refcount_set(&fclones->fclone_ref, 2); 1276 } else { 1277 if (skb_pfmemalloc(skb)) 1278 gfp_mask |= __GFP_MEMALLOC; 1279 1280 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1281 if (!n) 1282 return NULL; 1283 1284 n->fclone = SKB_FCLONE_UNAVAILABLE; 1285 } 1286 1287 return __skb_clone(n, skb); 1288 } 1289 EXPORT_SYMBOL(skb_clone); 1290 1291 void skb_headers_offset_update(struct sk_buff *skb, int off) 1292 { 1293 /* Only adjust this if it actually is csum_start rather than csum */ 1294 if (skb->ip_summed == CHECKSUM_PARTIAL) 1295 skb->csum_start += off; 1296 /* {transport,network,mac}_header and tail are relative to skb->head */ 1297 skb->transport_header += off; 1298 skb->network_header += off; 1299 if (skb_mac_header_was_set(skb)) 1300 skb->mac_header += off; 1301 skb->inner_transport_header += off; 1302 skb->inner_network_header += off; 1303 skb->inner_mac_header += off; 1304 } 1305 EXPORT_SYMBOL(skb_headers_offset_update); 1306 1307 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1308 { 1309 __copy_skb_header(new, old); 1310 1311 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1312 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1313 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1314 } 1315 EXPORT_SYMBOL(skb_copy_header); 1316 1317 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1318 { 1319 if (skb_pfmemalloc(skb)) 1320 return SKB_ALLOC_RX; 1321 return 0; 1322 } 1323 1324 /** 1325 * skb_copy - create private copy of an sk_buff 1326 * @skb: buffer to copy 1327 * @gfp_mask: allocation priority 1328 * 1329 * Make a copy of both an &sk_buff and its data. This is used when the 1330 * caller wishes to modify the data and needs a private copy of the 1331 * data to alter. Returns %NULL on failure or the pointer to the buffer 1332 * on success. The returned buffer has a reference count of 1. 1333 * 1334 * As by-product this function converts non-linear &sk_buff to linear 1335 * one, so that &sk_buff becomes completely private and caller is allowed 1336 * to modify all the data of returned buffer. This means that this 1337 * function is not recommended for use in circumstances when only 1338 * header is going to be modified. Use pskb_copy() instead. 1339 */ 1340 1341 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1342 { 1343 int headerlen = skb_headroom(skb); 1344 unsigned int size = skb_end_offset(skb) + skb->data_len; 1345 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1346 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1347 1348 if (!n) 1349 return NULL; 1350 1351 /* Set the data pointer */ 1352 skb_reserve(n, headerlen); 1353 /* Set the tail pointer and length */ 1354 skb_put(n, skb->len); 1355 1356 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1357 1358 skb_copy_header(n, skb); 1359 return n; 1360 } 1361 EXPORT_SYMBOL(skb_copy); 1362 1363 /** 1364 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1365 * @skb: buffer to copy 1366 * @headroom: headroom of new skb 1367 * @gfp_mask: allocation priority 1368 * @fclone: if true allocate the copy of the skb from the fclone 1369 * cache instead of the head cache; it is recommended to set this 1370 * to true for the cases where the copy will likely be cloned 1371 * 1372 * Make a copy of both an &sk_buff and part of its data, located 1373 * in header. Fragmented data remain shared. This is used when 1374 * the caller wishes to modify only header of &sk_buff and needs 1375 * private copy of the header to alter. Returns %NULL on failure 1376 * or the pointer to the buffer on success. 1377 * The returned buffer has a reference count of 1. 1378 */ 1379 1380 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1381 gfp_t gfp_mask, bool fclone) 1382 { 1383 unsigned int size = skb_headlen(skb) + headroom; 1384 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1385 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1386 1387 if (!n) 1388 goto out; 1389 1390 /* Set the data pointer */ 1391 skb_reserve(n, headroom); 1392 /* Set the tail pointer and length */ 1393 skb_put(n, skb_headlen(skb)); 1394 /* Copy the bytes */ 1395 skb_copy_from_linear_data(skb, n->data, n->len); 1396 1397 n->truesize += skb->data_len; 1398 n->data_len = skb->data_len; 1399 n->len = skb->len; 1400 1401 if (skb_shinfo(skb)->nr_frags) { 1402 int i; 1403 1404 if (skb_orphan_frags(skb, gfp_mask) || 1405 skb_zerocopy_clone(n, skb, gfp_mask)) { 1406 kfree_skb(n); 1407 n = NULL; 1408 goto out; 1409 } 1410 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1411 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1412 skb_frag_ref(skb, i); 1413 } 1414 skb_shinfo(n)->nr_frags = i; 1415 } 1416 1417 if (skb_has_frag_list(skb)) { 1418 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1419 skb_clone_fraglist(n); 1420 } 1421 1422 skb_copy_header(n, skb); 1423 out: 1424 return n; 1425 } 1426 EXPORT_SYMBOL(__pskb_copy_fclone); 1427 1428 /** 1429 * pskb_expand_head - reallocate header of &sk_buff 1430 * @skb: buffer to reallocate 1431 * @nhead: room to add at head 1432 * @ntail: room to add at tail 1433 * @gfp_mask: allocation priority 1434 * 1435 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1436 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1437 * reference count of 1. Returns zero in the case of success or error, 1438 * if expansion failed. In the last case, &sk_buff is not changed. 1439 * 1440 * All the pointers pointing into skb header may change and must be 1441 * reloaded after call to this function. 1442 */ 1443 1444 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1445 gfp_t gfp_mask) 1446 { 1447 int i, osize = skb_end_offset(skb); 1448 int size = osize + nhead + ntail; 1449 long off; 1450 u8 *data; 1451 1452 BUG_ON(nhead < 0); 1453 1454 BUG_ON(skb_shared(skb)); 1455 1456 size = SKB_DATA_ALIGN(size); 1457 1458 if (skb_pfmemalloc(skb)) 1459 gfp_mask |= __GFP_MEMALLOC; 1460 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1461 gfp_mask, NUMA_NO_NODE, NULL); 1462 if (!data) 1463 goto nodata; 1464 size = SKB_WITH_OVERHEAD(ksize(data)); 1465 1466 /* Copy only real data... and, alas, header. This should be 1467 * optimized for the cases when header is void. 1468 */ 1469 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1470 1471 memcpy((struct skb_shared_info *)(data + size), 1472 skb_shinfo(skb), 1473 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1474 1475 /* 1476 * if shinfo is shared we must drop the old head gracefully, but if it 1477 * is not we can just drop the old head and let the existing refcount 1478 * be since all we did is relocate the values 1479 */ 1480 if (skb_cloned(skb)) { 1481 if (skb_orphan_frags(skb, gfp_mask)) 1482 goto nofrags; 1483 if (skb_zcopy(skb)) 1484 refcount_inc(&skb_uarg(skb)->refcnt); 1485 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1486 skb_frag_ref(skb, i); 1487 1488 if (skb_has_frag_list(skb)) 1489 skb_clone_fraglist(skb); 1490 1491 skb_release_data(skb); 1492 } else { 1493 skb_free_head(skb); 1494 } 1495 off = (data + nhead) - skb->head; 1496 1497 skb->head = data; 1498 skb->head_frag = 0; 1499 skb->data += off; 1500 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1501 skb->end = size; 1502 off = nhead; 1503 #else 1504 skb->end = skb->head + size; 1505 #endif 1506 skb->tail += off; 1507 skb_headers_offset_update(skb, nhead); 1508 skb->cloned = 0; 1509 skb->hdr_len = 0; 1510 skb->nohdr = 0; 1511 atomic_set(&skb_shinfo(skb)->dataref, 1); 1512 1513 skb_metadata_clear(skb); 1514 1515 /* It is not generally safe to change skb->truesize. 1516 * For the moment, we really care of rx path, or 1517 * when skb is orphaned (not attached to a socket). 1518 */ 1519 if (!skb->sk || skb->destructor == sock_edemux) 1520 skb->truesize += size - osize; 1521 1522 return 0; 1523 1524 nofrags: 1525 kfree(data); 1526 nodata: 1527 return -ENOMEM; 1528 } 1529 EXPORT_SYMBOL(pskb_expand_head); 1530 1531 /* Make private copy of skb with writable head and some headroom */ 1532 1533 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1534 { 1535 struct sk_buff *skb2; 1536 int delta = headroom - skb_headroom(skb); 1537 1538 if (delta <= 0) 1539 skb2 = pskb_copy(skb, GFP_ATOMIC); 1540 else { 1541 skb2 = skb_clone(skb, GFP_ATOMIC); 1542 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1543 GFP_ATOMIC)) { 1544 kfree_skb(skb2); 1545 skb2 = NULL; 1546 } 1547 } 1548 return skb2; 1549 } 1550 EXPORT_SYMBOL(skb_realloc_headroom); 1551 1552 /** 1553 * skb_copy_expand - copy and expand sk_buff 1554 * @skb: buffer to copy 1555 * @newheadroom: new free bytes at head 1556 * @newtailroom: new free bytes at tail 1557 * @gfp_mask: allocation priority 1558 * 1559 * Make a copy of both an &sk_buff and its data and while doing so 1560 * allocate additional space. 1561 * 1562 * This is used when the caller wishes to modify the data and needs a 1563 * private copy of the data to alter as well as more space for new fields. 1564 * Returns %NULL on failure or the pointer to the buffer 1565 * on success. The returned buffer has a reference count of 1. 1566 * 1567 * You must pass %GFP_ATOMIC as the allocation priority if this function 1568 * is called from an interrupt. 1569 */ 1570 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1571 int newheadroom, int newtailroom, 1572 gfp_t gfp_mask) 1573 { 1574 /* 1575 * Allocate the copy buffer 1576 */ 1577 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1578 gfp_mask, skb_alloc_rx_flag(skb), 1579 NUMA_NO_NODE); 1580 int oldheadroom = skb_headroom(skb); 1581 int head_copy_len, head_copy_off; 1582 1583 if (!n) 1584 return NULL; 1585 1586 skb_reserve(n, newheadroom); 1587 1588 /* Set the tail pointer and length */ 1589 skb_put(n, skb->len); 1590 1591 head_copy_len = oldheadroom; 1592 head_copy_off = 0; 1593 if (newheadroom <= head_copy_len) 1594 head_copy_len = newheadroom; 1595 else 1596 head_copy_off = newheadroom - head_copy_len; 1597 1598 /* Copy the linear header and data. */ 1599 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1600 skb->len + head_copy_len)); 1601 1602 skb_copy_header(n, skb); 1603 1604 skb_headers_offset_update(n, newheadroom - oldheadroom); 1605 1606 return n; 1607 } 1608 EXPORT_SYMBOL(skb_copy_expand); 1609 1610 /** 1611 * __skb_pad - zero pad the tail of an skb 1612 * @skb: buffer to pad 1613 * @pad: space to pad 1614 * @free_on_error: free buffer on error 1615 * 1616 * Ensure that a buffer is followed by a padding area that is zero 1617 * filled. Used by network drivers which may DMA or transfer data 1618 * beyond the buffer end onto the wire. 1619 * 1620 * May return error in out of memory cases. The skb is freed on error 1621 * if @free_on_error is true. 1622 */ 1623 1624 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1625 { 1626 int err; 1627 int ntail; 1628 1629 /* If the skbuff is non linear tailroom is always zero.. */ 1630 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1631 memset(skb->data+skb->len, 0, pad); 1632 return 0; 1633 } 1634 1635 ntail = skb->data_len + pad - (skb->end - skb->tail); 1636 if (likely(skb_cloned(skb) || ntail > 0)) { 1637 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1638 if (unlikely(err)) 1639 goto free_skb; 1640 } 1641 1642 /* FIXME: The use of this function with non-linear skb's really needs 1643 * to be audited. 1644 */ 1645 err = skb_linearize(skb); 1646 if (unlikely(err)) 1647 goto free_skb; 1648 1649 memset(skb->data + skb->len, 0, pad); 1650 return 0; 1651 1652 free_skb: 1653 if (free_on_error) 1654 kfree_skb(skb); 1655 return err; 1656 } 1657 EXPORT_SYMBOL(__skb_pad); 1658 1659 /** 1660 * pskb_put - add data to the tail of a potentially fragmented buffer 1661 * @skb: start of the buffer to use 1662 * @tail: tail fragment of the buffer to use 1663 * @len: amount of data to add 1664 * 1665 * This function extends the used data area of the potentially 1666 * fragmented buffer. @tail must be the last fragment of @skb -- or 1667 * @skb itself. If this would exceed the total buffer size the kernel 1668 * will panic. A pointer to the first byte of the extra data is 1669 * returned. 1670 */ 1671 1672 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1673 { 1674 if (tail != skb) { 1675 skb->data_len += len; 1676 skb->len += len; 1677 } 1678 return skb_put(tail, len); 1679 } 1680 EXPORT_SYMBOL_GPL(pskb_put); 1681 1682 /** 1683 * skb_put - add data to a buffer 1684 * @skb: buffer to use 1685 * @len: amount of data to add 1686 * 1687 * This function extends the used data area of the buffer. If this would 1688 * exceed the total buffer size the kernel will panic. A pointer to the 1689 * first byte of the extra data is returned. 1690 */ 1691 void *skb_put(struct sk_buff *skb, unsigned int len) 1692 { 1693 void *tmp = skb_tail_pointer(skb); 1694 SKB_LINEAR_ASSERT(skb); 1695 skb->tail += len; 1696 skb->len += len; 1697 if (unlikely(skb->tail > skb->end)) 1698 skb_over_panic(skb, len, __builtin_return_address(0)); 1699 return tmp; 1700 } 1701 EXPORT_SYMBOL(skb_put); 1702 1703 /** 1704 * skb_push - add data to the start of a buffer 1705 * @skb: buffer to use 1706 * @len: amount of data to add 1707 * 1708 * This function extends the used data area of the buffer at the buffer 1709 * start. If this would exceed the total buffer headroom the kernel will 1710 * panic. A pointer to the first byte of the extra data is returned. 1711 */ 1712 void *skb_push(struct sk_buff *skb, unsigned int len) 1713 { 1714 skb->data -= len; 1715 skb->len += len; 1716 if (unlikely(skb->data < skb->head)) 1717 skb_under_panic(skb, len, __builtin_return_address(0)); 1718 return skb->data; 1719 } 1720 EXPORT_SYMBOL(skb_push); 1721 1722 /** 1723 * skb_pull - remove data from the start of a buffer 1724 * @skb: buffer to use 1725 * @len: amount of data to remove 1726 * 1727 * This function removes data from the start of a buffer, returning 1728 * the memory to the headroom. A pointer to the next data in the buffer 1729 * is returned. Once the data has been pulled future pushes will overwrite 1730 * the old data. 1731 */ 1732 void *skb_pull(struct sk_buff *skb, unsigned int len) 1733 { 1734 return skb_pull_inline(skb, len); 1735 } 1736 EXPORT_SYMBOL(skb_pull); 1737 1738 /** 1739 * skb_trim - remove end from a buffer 1740 * @skb: buffer to alter 1741 * @len: new length 1742 * 1743 * Cut the length of a buffer down by removing data from the tail. If 1744 * the buffer is already under the length specified it is not modified. 1745 * The skb must be linear. 1746 */ 1747 void skb_trim(struct sk_buff *skb, unsigned int len) 1748 { 1749 if (skb->len > len) 1750 __skb_trim(skb, len); 1751 } 1752 EXPORT_SYMBOL(skb_trim); 1753 1754 /* Trims skb to length len. It can change skb pointers. 1755 */ 1756 1757 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1758 { 1759 struct sk_buff **fragp; 1760 struct sk_buff *frag; 1761 int offset = skb_headlen(skb); 1762 int nfrags = skb_shinfo(skb)->nr_frags; 1763 int i; 1764 int err; 1765 1766 if (skb_cloned(skb) && 1767 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1768 return err; 1769 1770 i = 0; 1771 if (offset >= len) 1772 goto drop_pages; 1773 1774 for (; i < nfrags; i++) { 1775 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1776 1777 if (end < len) { 1778 offset = end; 1779 continue; 1780 } 1781 1782 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1783 1784 drop_pages: 1785 skb_shinfo(skb)->nr_frags = i; 1786 1787 for (; i < nfrags; i++) 1788 skb_frag_unref(skb, i); 1789 1790 if (skb_has_frag_list(skb)) 1791 skb_drop_fraglist(skb); 1792 goto done; 1793 } 1794 1795 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1796 fragp = &frag->next) { 1797 int end = offset + frag->len; 1798 1799 if (skb_shared(frag)) { 1800 struct sk_buff *nfrag; 1801 1802 nfrag = skb_clone(frag, GFP_ATOMIC); 1803 if (unlikely(!nfrag)) 1804 return -ENOMEM; 1805 1806 nfrag->next = frag->next; 1807 consume_skb(frag); 1808 frag = nfrag; 1809 *fragp = frag; 1810 } 1811 1812 if (end < len) { 1813 offset = end; 1814 continue; 1815 } 1816 1817 if (end > len && 1818 unlikely((err = pskb_trim(frag, len - offset)))) 1819 return err; 1820 1821 if (frag->next) 1822 skb_drop_list(&frag->next); 1823 break; 1824 } 1825 1826 done: 1827 if (len > skb_headlen(skb)) { 1828 skb->data_len -= skb->len - len; 1829 skb->len = len; 1830 } else { 1831 skb->len = len; 1832 skb->data_len = 0; 1833 skb_set_tail_pointer(skb, len); 1834 } 1835 1836 if (!skb->sk || skb->destructor == sock_edemux) 1837 skb_condense(skb); 1838 return 0; 1839 } 1840 EXPORT_SYMBOL(___pskb_trim); 1841 1842 /* Note : use pskb_trim_rcsum() instead of calling this directly 1843 */ 1844 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 1845 { 1846 if (skb->ip_summed == CHECKSUM_COMPLETE) { 1847 int delta = skb->len - len; 1848 1849 skb->csum = csum_block_sub(skb->csum, 1850 skb_checksum(skb, len, delta, 0), 1851 len); 1852 } 1853 return __pskb_trim(skb, len); 1854 } 1855 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 1856 1857 /** 1858 * __pskb_pull_tail - advance tail of skb header 1859 * @skb: buffer to reallocate 1860 * @delta: number of bytes to advance tail 1861 * 1862 * The function makes a sense only on a fragmented &sk_buff, 1863 * it expands header moving its tail forward and copying necessary 1864 * data from fragmented part. 1865 * 1866 * &sk_buff MUST have reference count of 1. 1867 * 1868 * Returns %NULL (and &sk_buff does not change) if pull failed 1869 * or value of new tail of skb in the case of success. 1870 * 1871 * All the pointers pointing into skb header may change and must be 1872 * reloaded after call to this function. 1873 */ 1874 1875 /* Moves tail of skb head forward, copying data from fragmented part, 1876 * when it is necessary. 1877 * 1. It may fail due to malloc failure. 1878 * 2. It may change skb pointers. 1879 * 1880 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1881 */ 1882 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 1883 { 1884 /* If skb has not enough free space at tail, get new one 1885 * plus 128 bytes for future expansions. If we have enough 1886 * room at tail, reallocate without expansion only if skb is cloned. 1887 */ 1888 int i, k, eat = (skb->tail + delta) - skb->end; 1889 1890 if (eat > 0 || skb_cloned(skb)) { 1891 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1892 GFP_ATOMIC)) 1893 return NULL; 1894 } 1895 1896 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 1897 skb_tail_pointer(skb), delta)); 1898 1899 /* Optimization: no fragments, no reasons to preestimate 1900 * size of pulled pages. Superb. 1901 */ 1902 if (!skb_has_frag_list(skb)) 1903 goto pull_pages; 1904 1905 /* Estimate size of pulled pages. */ 1906 eat = delta; 1907 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1908 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1909 1910 if (size >= eat) 1911 goto pull_pages; 1912 eat -= size; 1913 } 1914 1915 /* If we need update frag list, we are in troubles. 1916 * Certainly, it is possible to add an offset to skb data, 1917 * but taking into account that pulling is expected to 1918 * be very rare operation, it is worth to fight against 1919 * further bloating skb head and crucify ourselves here instead. 1920 * Pure masohism, indeed. 8)8) 1921 */ 1922 if (eat) { 1923 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1924 struct sk_buff *clone = NULL; 1925 struct sk_buff *insp = NULL; 1926 1927 do { 1928 if (list->len <= eat) { 1929 /* Eaten as whole. */ 1930 eat -= list->len; 1931 list = list->next; 1932 insp = list; 1933 } else { 1934 /* Eaten partially. */ 1935 1936 if (skb_shared(list)) { 1937 /* Sucks! We need to fork list. :-( */ 1938 clone = skb_clone(list, GFP_ATOMIC); 1939 if (!clone) 1940 return NULL; 1941 insp = list->next; 1942 list = clone; 1943 } else { 1944 /* This may be pulled without 1945 * problems. */ 1946 insp = list; 1947 } 1948 if (!pskb_pull(list, eat)) { 1949 kfree_skb(clone); 1950 return NULL; 1951 } 1952 break; 1953 } 1954 } while (eat); 1955 1956 /* Free pulled out fragments. */ 1957 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1958 skb_shinfo(skb)->frag_list = list->next; 1959 kfree_skb(list); 1960 } 1961 /* And insert new clone at head. */ 1962 if (clone) { 1963 clone->next = list; 1964 skb_shinfo(skb)->frag_list = clone; 1965 } 1966 } 1967 /* Success! Now we may commit changes to skb data. */ 1968 1969 pull_pages: 1970 eat = delta; 1971 k = 0; 1972 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1973 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1974 1975 if (size <= eat) { 1976 skb_frag_unref(skb, i); 1977 eat -= size; 1978 } else { 1979 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1980 if (eat) { 1981 skb_shinfo(skb)->frags[k].page_offset += eat; 1982 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1983 if (!i) 1984 goto end; 1985 eat = 0; 1986 } 1987 k++; 1988 } 1989 } 1990 skb_shinfo(skb)->nr_frags = k; 1991 1992 end: 1993 skb->tail += delta; 1994 skb->data_len -= delta; 1995 1996 if (!skb->data_len) 1997 skb_zcopy_clear(skb, false); 1998 1999 return skb_tail_pointer(skb); 2000 } 2001 EXPORT_SYMBOL(__pskb_pull_tail); 2002 2003 /** 2004 * skb_copy_bits - copy bits from skb to kernel buffer 2005 * @skb: source skb 2006 * @offset: offset in source 2007 * @to: destination buffer 2008 * @len: number of bytes to copy 2009 * 2010 * Copy the specified number of bytes from the source skb to the 2011 * destination buffer. 2012 * 2013 * CAUTION ! : 2014 * If its prototype is ever changed, 2015 * check arch/{*}/net/{*}.S files, 2016 * since it is called from BPF assembly code. 2017 */ 2018 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2019 { 2020 int start = skb_headlen(skb); 2021 struct sk_buff *frag_iter; 2022 int i, copy; 2023 2024 if (offset > (int)skb->len - len) 2025 goto fault; 2026 2027 /* Copy header. */ 2028 if ((copy = start - offset) > 0) { 2029 if (copy > len) 2030 copy = len; 2031 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2032 if ((len -= copy) == 0) 2033 return 0; 2034 offset += copy; 2035 to += copy; 2036 } 2037 2038 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2039 int end; 2040 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2041 2042 WARN_ON(start > offset + len); 2043 2044 end = start + skb_frag_size(f); 2045 if ((copy = end - offset) > 0) { 2046 u32 p_off, p_len, copied; 2047 struct page *p; 2048 u8 *vaddr; 2049 2050 if (copy > len) 2051 copy = len; 2052 2053 skb_frag_foreach_page(f, 2054 f->page_offset + offset - start, 2055 copy, p, p_off, p_len, copied) { 2056 vaddr = kmap_atomic(p); 2057 memcpy(to + copied, vaddr + p_off, p_len); 2058 kunmap_atomic(vaddr); 2059 } 2060 2061 if ((len -= copy) == 0) 2062 return 0; 2063 offset += copy; 2064 to += copy; 2065 } 2066 start = end; 2067 } 2068 2069 skb_walk_frags(skb, frag_iter) { 2070 int end; 2071 2072 WARN_ON(start > offset + len); 2073 2074 end = start + frag_iter->len; 2075 if ((copy = end - offset) > 0) { 2076 if (copy > len) 2077 copy = len; 2078 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2079 goto fault; 2080 if ((len -= copy) == 0) 2081 return 0; 2082 offset += copy; 2083 to += copy; 2084 } 2085 start = end; 2086 } 2087 2088 if (!len) 2089 return 0; 2090 2091 fault: 2092 return -EFAULT; 2093 } 2094 EXPORT_SYMBOL(skb_copy_bits); 2095 2096 /* 2097 * Callback from splice_to_pipe(), if we need to release some pages 2098 * at the end of the spd in case we error'ed out in filling the pipe. 2099 */ 2100 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2101 { 2102 put_page(spd->pages[i]); 2103 } 2104 2105 static struct page *linear_to_page(struct page *page, unsigned int *len, 2106 unsigned int *offset, 2107 struct sock *sk) 2108 { 2109 struct page_frag *pfrag = sk_page_frag(sk); 2110 2111 if (!sk_page_frag_refill(sk, pfrag)) 2112 return NULL; 2113 2114 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2115 2116 memcpy(page_address(pfrag->page) + pfrag->offset, 2117 page_address(page) + *offset, *len); 2118 *offset = pfrag->offset; 2119 pfrag->offset += *len; 2120 2121 return pfrag->page; 2122 } 2123 2124 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2125 struct page *page, 2126 unsigned int offset) 2127 { 2128 return spd->nr_pages && 2129 spd->pages[spd->nr_pages - 1] == page && 2130 (spd->partial[spd->nr_pages - 1].offset + 2131 spd->partial[spd->nr_pages - 1].len == offset); 2132 } 2133 2134 /* 2135 * Fill page/offset/length into spd, if it can hold more pages. 2136 */ 2137 static bool spd_fill_page(struct splice_pipe_desc *spd, 2138 struct pipe_inode_info *pipe, struct page *page, 2139 unsigned int *len, unsigned int offset, 2140 bool linear, 2141 struct sock *sk) 2142 { 2143 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2144 return true; 2145 2146 if (linear) { 2147 page = linear_to_page(page, len, &offset, sk); 2148 if (!page) 2149 return true; 2150 } 2151 if (spd_can_coalesce(spd, page, offset)) { 2152 spd->partial[spd->nr_pages - 1].len += *len; 2153 return false; 2154 } 2155 get_page(page); 2156 spd->pages[spd->nr_pages] = page; 2157 spd->partial[spd->nr_pages].len = *len; 2158 spd->partial[spd->nr_pages].offset = offset; 2159 spd->nr_pages++; 2160 2161 return false; 2162 } 2163 2164 static bool __splice_segment(struct page *page, unsigned int poff, 2165 unsigned int plen, unsigned int *off, 2166 unsigned int *len, 2167 struct splice_pipe_desc *spd, bool linear, 2168 struct sock *sk, 2169 struct pipe_inode_info *pipe) 2170 { 2171 if (!*len) 2172 return true; 2173 2174 /* skip this segment if already processed */ 2175 if (*off >= plen) { 2176 *off -= plen; 2177 return false; 2178 } 2179 2180 /* ignore any bits we already processed */ 2181 poff += *off; 2182 plen -= *off; 2183 *off = 0; 2184 2185 do { 2186 unsigned int flen = min(*len, plen); 2187 2188 if (spd_fill_page(spd, pipe, page, &flen, poff, 2189 linear, sk)) 2190 return true; 2191 poff += flen; 2192 plen -= flen; 2193 *len -= flen; 2194 } while (*len && plen); 2195 2196 return false; 2197 } 2198 2199 /* 2200 * Map linear and fragment data from the skb to spd. It reports true if the 2201 * pipe is full or if we already spliced the requested length. 2202 */ 2203 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2204 unsigned int *offset, unsigned int *len, 2205 struct splice_pipe_desc *spd, struct sock *sk) 2206 { 2207 int seg; 2208 struct sk_buff *iter; 2209 2210 /* map the linear part : 2211 * If skb->head_frag is set, this 'linear' part is backed by a 2212 * fragment, and if the head is not shared with any clones then 2213 * we can avoid a copy since we own the head portion of this page. 2214 */ 2215 if (__splice_segment(virt_to_page(skb->data), 2216 (unsigned long) skb->data & (PAGE_SIZE - 1), 2217 skb_headlen(skb), 2218 offset, len, spd, 2219 skb_head_is_locked(skb), 2220 sk, pipe)) 2221 return true; 2222 2223 /* 2224 * then map the fragments 2225 */ 2226 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2227 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2228 2229 if (__splice_segment(skb_frag_page(f), 2230 f->page_offset, skb_frag_size(f), 2231 offset, len, spd, false, sk, pipe)) 2232 return true; 2233 } 2234 2235 skb_walk_frags(skb, iter) { 2236 if (*offset >= iter->len) { 2237 *offset -= iter->len; 2238 continue; 2239 } 2240 /* __skb_splice_bits() only fails if the output has no room 2241 * left, so no point in going over the frag_list for the error 2242 * case. 2243 */ 2244 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2245 return true; 2246 } 2247 2248 return false; 2249 } 2250 2251 /* 2252 * Map data from the skb to a pipe. Should handle both the linear part, 2253 * the fragments, and the frag list. 2254 */ 2255 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2256 struct pipe_inode_info *pipe, unsigned int tlen, 2257 unsigned int flags) 2258 { 2259 struct partial_page partial[MAX_SKB_FRAGS]; 2260 struct page *pages[MAX_SKB_FRAGS]; 2261 struct splice_pipe_desc spd = { 2262 .pages = pages, 2263 .partial = partial, 2264 .nr_pages_max = MAX_SKB_FRAGS, 2265 .ops = &nosteal_pipe_buf_ops, 2266 .spd_release = sock_spd_release, 2267 }; 2268 int ret = 0; 2269 2270 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2271 2272 if (spd.nr_pages) 2273 ret = splice_to_pipe(pipe, &spd); 2274 2275 return ret; 2276 } 2277 EXPORT_SYMBOL_GPL(skb_splice_bits); 2278 2279 /* Send skb data on a socket. Socket must be locked. */ 2280 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2281 int len) 2282 { 2283 unsigned int orig_len = len; 2284 struct sk_buff *head = skb; 2285 unsigned short fragidx; 2286 int slen, ret; 2287 2288 do_frag_list: 2289 2290 /* Deal with head data */ 2291 while (offset < skb_headlen(skb) && len) { 2292 struct kvec kv; 2293 struct msghdr msg; 2294 2295 slen = min_t(int, len, skb_headlen(skb) - offset); 2296 kv.iov_base = skb->data + offset; 2297 kv.iov_len = slen; 2298 memset(&msg, 0, sizeof(msg)); 2299 2300 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2301 if (ret <= 0) 2302 goto error; 2303 2304 offset += ret; 2305 len -= ret; 2306 } 2307 2308 /* All the data was skb head? */ 2309 if (!len) 2310 goto out; 2311 2312 /* Make offset relative to start of frags */ 2313 offset -= skb_headlen(skb); 2314 2315 /* Find where we are in frag list */ 2316 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2317 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2318 2319 if (offset < frag->size) 2320 break; 2321 2322 offset -= frag->size; 2323 } 2324 2325 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2326 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2327 2328 slen = min_t(size_t, len, frag->size - offset); 2329 2330 while (slen) { 2331 ret = kernel_sendpage_locked(sk, frag->page.p, 2332 frag->page_offset + offset, 2333 slen, MSG_DONTWAIT); 2334 if (ret <= 0) 2335 goto error; 2336 2337 len -= ret; 2338 offset += ret; 2339 slen -= ret; 2340 } 2341 2342 offset = 0; 2343 } 2344 2345 if (len) { 2346 /* Process any frag lists */ 2347 2348 if (skb == head) { 2349 if (skb_has_frag_list(skb)) { 2350 skb = skb_shinfo(skb)->frag_list; 2351 goto do_frag_list; 2352 } 2353 } else if (skb->next) { 2354 skb = skb->next; 2355 goto do_frag_list; 2356 } 2357 } 2358 2359 out: 2360 return orig_len - len; 2361 2362 error: 2363 return orig_len == len ? ret : orig_len - len; 2364 } 2365 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2366 2367 /** 2368 * skb_store_bits - store bits from kernel buffer to skb 2369 * @skb: destination buffer 2370 * @offset: offset in destination 2371 * @from: source buffer 2372 * @len: number of bytes to copy 2373 * 2374 * Copy the specified number of bytes from the source buffer to the 2375 * destination skb. This function handles all the messy bits of 2376 * traversing fragment lists and such. 2377 */ 2378 2379 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2380 { 2381 int start = skb_headlen(skb); 2382 struct sk_buff *frag_iter; 2383 int i, copy; 2384 2385 if (offset > (int)skb->len - len) 2386 goto fault; 2387 2388 if ((copy = start - offset) > 0) { 2389 if (copy > len) 2390 copy = len; 2391 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2392 if ((len -= copy) == 0) 2393 return 0; 2394 offset += copy; 2395 from += copy; 2396 } 2397 2398 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2399 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2400 int end; 2401 2402 WARN_ON(start > offset + len); 2403 2404 end = start + skb_frag_size(frag); 2405 if ((copy = end - offset) > 0) { 2406 u32 p_off, p_len, copied; 2407 struct page *p; 2408 u8 *vaddr; 2409 2410 if (copy > len) 2411 copy = len; 2412 2413 skb_frag_foreach_page(frag, 2414 frag->page_offset + offset - start, 2415 copy, p, p_off, p_len, copied) { 2416 vaddr = kmap_atomic(p); 2417 memcpy(vaddr + p_off, from + copied, p_len); 2418 kunmap_atomic(vaddr); 2419 } 2420 2421 if ((len -= copy) == 0) 2422 return 0; 2423 offset += copy; 2424 from += copy; 2425 } 2426 start = end; 2427 } 2428 2429 skb_walk_frags(skb, frag_iter) { 2430 int end; 2431 2432 WARN_ON(start > offset + len); 2433 2434 end = start + frag_iter->len; 2435 if ((copy = end - offset) > 0) { 2436 if (copy > len) 2437 copy = len; 2438 if (skb_store_bits(frag_iter, offset - start, 2439 from, copy)) 2440 goto fault; 2441 if ((len -= copy) == 0) 2442 return 0; 2443 offset += copy; 2444 from += copy; 2445 } 2446 start = end; 2447 } 2448 if (!len) 2449 return 0; 2450 2451 fault: 2452 return -EFAULT; 2453 } 2454 EXPORT_SYMBOL(skb_store_bits); 2455 2456 /* Checksum skb data. */ 2457 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2458 __wsum csum, const struct skb_checksum_ops *ops) 2459 { 2460 int start = skb_headlen(skb); 2461 int i, copy = start - offset; 2462 struct sk_buff *frag_iter; 2463 int pos = 0; 2464 2465 /* Checksum header. */ 2466 if (copy > 0) { 2467 if (copy > len) 2468 copy = len; 2469 csum = ops->update(skb->data + offset, copy, csum); 2470 if ((len -= copy) == 0) 2471 return csum; 2472 offset += copy; 2473 pos = copy; 2474 } 2475 2476 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2477 int end; 2478 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2479 2480 WARN_ON(start > offset + len); 2481 2482 end = start + skb_frag_size(frag); 2483 if ((copy = end - offset) > 0) { 2484 u32 p_off, p_len, copied; 2485 struct page *p; 2486 __wsum csum2; 2487 u8 *vaddr; 2488 2489 if (copy > len) 2490 copy = len; 2491 2492 skb_frag_foreach_page(frag, 2493 frag->page_offset + offset - start, 2494 copy, p, p_off, p_len, copied) { 2495 vaddr = kmap_atomic(p); 2496 csum2 = ops->update(vaddr + p_off, p_len, 0); 2497 kunmap_atomic(vaddr); 2498 csum = ops->combine(csum, csum2, pos, p_len); 2499 pos += p_len; 2500 } 2501 2502 if (!(len -= copy)) 2503 return csum; 2504 offset += copy; 2505 } 2506 start = end; 2507 } 2508 2509 skb_walk_frags(skb, frag_iter) { 2510 int end; 2511 2512 WARN_ON(start > offset + len); 2513 2514 end = start + frag_iter->len; 2515 if ((copy = end - offset) > 0) { 2516 __wsum csum2; 2517 if (copy > len) 2518 copy = len; 2519 csum2 = __skb_checksum(frag_iter, offset - start, 2520 copy, 0, ops); 2521 csum = ops->combine(csum, csum2, pos, copy); 2522 if ((len -= copy) == 0) 2523 return csum; 2524 offset += copy; 2525 pos += copy; 2526 } 2527 start = end; 2528 } 2529 BUG_ON(len); 2530 2531 return csum; 2532 } 2533 EXPORT_SYMBOL(__skb_checksum); 2534 2535 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2536 int len, __wsum csum) 2537 { 2538 const struct skb_checksum_ops ops = { 2539 .update = csum_partial_ext, 2540 .combine = csum_block_add_ext, 2541 }; 2542 2543 return __skb_checksum(skb, offset, len, csum, &ops); 2544 } 2545 EXPORT_SYMBOL(skb_checksum); 2546 2547 /* Both of above in one bottle. */ 2548 2549 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2550 u8 *to, int len, __wsum csum) 2551 { 2552 int start = skb_headlen(skb); 2553 int i, copy = start - offset; 2554 struct sk_buff *frag_iter; 2555 int pos = 0; 2556 2557 /* Copy header. */ 2558 if (copy > 0) { 2559 if (copy > len) 2560 copy = len; 2561 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2562 copy, csum); 2563 if ((len -= copy) == 0) 2564 return csum; 2565 offset += copy; 2566 to += copy; 2567 pos = copy; 2568 } 2569 2570 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2571 int end; 2572 2573 WARN_ON(start > offset + len); 2574 2575 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2576 if ((copy = end - offset) > 0) { 2577 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2578 u32 p_off, p_len, copied; 2579 struct page *p; 2580 __wsum csum2; 2581 u8 *vaddr; 2582 2583 if (copy > len) 2584 copy = len; 2585 2586 skb_frag_foreach_page(frag, 2587 frag->page_offset + offset - start, 2588 copy, p, p_off, p_len, copied) { 2589 vaddr = kmap_atomic(p); 2590 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2591 to + copied, 2592 p_len, 0); 2593 kunmap_atomic(vaddr); 2594 csum = csum_block_add(csum, csum2, pos); 2595 pos += p_len; 2596 } 2597 2598 if (!(len -= copy)) 2599 return csum; 2600 offset += copy; 2601 to += copy; 2602 } 2603 start = end; 2604 } 2605 2606 skb_walk_frags(skb, frag_iter) { 2607 __wsum csum2; 2608 int end; 2609 2610 WARN_ON(start > offset + len); 2611 2612 end = start + frag_iter->len; 2613 if ((copy = end - offset) > 0) { 2614 if (copy > len) 2615 copy = len; 2616 csum2 = skb_copy_and_csum_bits(frag_iter, 2617 offset - start, 2618 to, copy, 0); 2619 csum = csum_block_add(csum, csum2, pos); 2620 if ((len -= copy) == 0) 2621 return csum; 2622 offset += copy; 2623 to += copy; 2624 pos += copy; 2625 } 2626 start = end; 2627 } 2628 BUG_ON(len); 2629 return csum; 2630 } 2631 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2632 2633 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2634 { 2635 __sum16 sum; 2636 2637 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2638 /* See comments in __skb_checksum_complete(). */ 2639 if (likely(!sum)) { 2640 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2641 !skb->csum_complete_sw) 2642 netdev_rx_csum_fault(skb->dev, skb); 2643 } 2644 if (!skb_shared(skb)) 2645 skb->csum_valid = !sum; 2646 return sum; 2647 } 2648 EXPORT_SYMBOL(__skb_checksum_complete_head); 2649 2650 /* This function assumes skb->csum already holds pseudo header's checksum, 2651 * which has been changed from the hardware checksum, for example, by 2652 * __skb_checksum_validate_complete(). And, the original skb->csum must 2653 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2654 * 2655 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2656 * zero. The new checksum is stored back into skb->csum unless the skb is 2657 * shared. 2658 */ 2659 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2660 { 2661 __wsum csum; 2662 __sum16 sum; 2663 2664 csum = skb_checksum(skb, 0, skb->len, 0); 2665 2666 sum = csum_fold(csum_add(skb->csum, csum)); 2667 /* This check is inverted, because we already knew the hardware 2668 * checksum is invalid before calling this function. So, if the 2669 * re-computed checksum is valid instead, then we have a mismatch 2670 * between the original skb->csum and skb_checksum(). This means either 2671 * the original hardware checksum is incorrect or we screw up skb->csum 2672 * when moving skb->data around. 2673 */ 2674 if (likely(!sum)) { 2675 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2676 !skb->csum_complete_sw) 2677 netdev_rx_csum_fault(skb->dev, skb); 2678 } 2679 2680 if (!skb_shared(skb)) { 2681 /* Save full packet checksum */ 2682 skb->csum = csum; 2683 skb->ip_summed = CHECKSUM_COMPLETE; 2684 skb->csum_complete_sw = 1; 2685 skb->csum_valid = !sum; 2686 } 2687 2688 return sum; 2689 } 2690 EXPORT_SYMBOL(__skb_checksum_complete); 2691 2692 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2693 { 2694 net_warn_ratelimited( 2695 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2696 __func__); 2697 return 0; 2698 } 2699 2700 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2701 int offset, int len) 2702 { 2703 net_warn_ratelimited( 2704 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2705 __func__); 2706 return 0; 2707 } 2708 2709 static const struct skb_checksum_ops default_crc32c_ops = { 2710 .update = warn_crc32c_csum_update, 2711 .combine = warn_crc32c_csum_combine, 2712 }; 2713 2714 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2715 &default_crc32c_ops; 2716 EXPORT_SYMBOL(crc32c_csum_stub); 2717 2718 /** 2719 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2720 * @from: source buffer 2721 * 2722 * Calculates the amount of linear headroom needed in the 'to' skb passed 2723 * into skb_zerocopy(). 2724 */ 2725 unsigned int 2726 skb_zerocopy_headlen(const struct sk_buff *from) 2727 { 2728 unsigned int hlen = 0; 2729 2730 if (!from->head_frag || 2731 skb_headlen(from) < L1_CACHE_BYTES || 2732 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2733 hlen = skb_headlen(from); 2734 2735 if (skb_has_frag_list(from)) 2736 hlen = from->len; 2737 2738 return hlen; 2739 } 2740 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2741 2742 /** 2743 * skb_zerocopy - Zero copy skb to skb 2744 * @to: destination buffer 2745 * @from: source buffer 2746 * @len: number of bytes to copy from source buffer 2747 * @hlen: size of linear headroom in destination buffer 2748 * 2749 * Copies up to `len` bytes from `from` to `to` by creating references 2750 * to the frags in the source buffer. 2751 * 2752 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2753 * headroom in the `to` buffer. 2754 * 2755 * Return value: 2756 * 0: everything is OK 2757 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2758 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2759 */ 2760 int 2761 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2762 { 2763 int i, j = 0; 2764 int plen = 0; /* length of skb->head fragment */ 2765 int ret; 2766 struct page *page; 2767 unsigned int offset; 2768 2769 BUG_ON(!from->head_frag && !hlen); 2770 2771 /* dont bother with small payloads */ 2772 if (len <= skb_tailroom(to)) 2773 return skb_copy_bits(from, 0, skb_put(to, len), len); 2774 2775 if (hlen) { 2776 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2777 if (unlikely(ret)) 2778 return ret; 2779 len -= hlen; 2780 } else { 2781 plen = min_t(int, skb_headlen(from), len); 2782 if (plen) { 2783 page = virt_to_head_page(from->head); 2784 offset = from->data - (unsigned char *)page_address(page); 2785 __skb_fill_page_desc(to, 0, page, offset, plen); 2786 get_page(page); 2787 j = 1; 2788 len -= plen; 2789 } 2790 } 2791 2792 to->truesize += len + plen; 2793 to->len += len + plen; 2794 to->data_len += len + plen; 2795 2796 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2797 skb_tx_error(from); 2798 return -ENOMEM; 2799 } 2800 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2801 2802 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2803 if (!len) 2804 break; 2805 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2806 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2807 len -= skb_shinfo(to)->frags[j].size; 2808 skb_frag_ref(to, j); 2809 j++; 2810 } 2811 skb_shinfo(to)->nr_frags = j; 2812 2813 return 0; 2814 } 2815 EXPORT_SYMBOL_GPL(skb_zerocopy); 2816 2817 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2818 { 2819 __wsum csum; 2820 long csstart; 2821 2822 if (skb->ip_summed == CHECKSUM_PARTIAL) 2823 csstart = skb_checksum_start_offset(skb); 2824 else 2825 csstart = skb_headlen(skb); 2826 2827 BUG_ON(csstart > skb_headlen(skb)); 2828 2829 skb_copy_from_linear_data(skb, to, csstart); 2830 2831 csum = 0; 2832 if (csstart != skb->len) 2833 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2834 skb->len - csstart, 0); 2835 2836 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2837 long csstuff = csstart + skb->csum_offset; 2838 2839 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2840 } 2841 } 2842 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2843 2844 /** 2845 * skb_dequeue - remove from the head of the queue 2846 * @list: list to dequeue from 2847 * 2848 * Remove the head of the list. The list lock is taken so the function 2849 * may be used safely with other locking list functions. The head item is 2850 * returned or %NULL if the list is empty. 2851 */ 2852 2853 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2854 { 2855 unsigned long flags; 2856 struct sk_buff *result; 2857 2858 spin_lock_irqsave(&list->lock, flags); 2859 result = __skb_dequeue(list); 2860 spin_unlock_irqrestore(&list->lock, flags); 2861 return result; 2862 } 2863 EXPORT_SYMBOL(skb_dequeue); 2864 2865 /** 2866 * skb_dequeue_tail - remove from the tail of the queue 2867 * @list: list to dequeue from 2868 * 2869 * Remove the tail of the list. The list lock is taken so the function 2870 * may be used safely with other locking list functions. The tail item is 2871 * returned or %NULL if the list is empty. 2872 */ 2873 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2874 { 2875 unsigned long flags; 2876 struct sk_buff *result; 2877 2878 spin_lock_irqsave(&list->lock, flags); 2879 result = __skb_dequeue_tail(list); 2880 spin_unlock_irqrestore(&list->lock, flags); 2881 return result; 2882 } 2883 EXPORT_SYMBOL(skb_dequeue_tail); 2884 2885 /** 2886 * skb_queue_purge - empty a list 2887 * @list: list to empty 2888 * 2889 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2890 * the list and one reference dropped. This function takes the list 2891 * lock and is atomic with respect to other list locking functions. 2892 */ 2893 void skb_queue_purge(struct sk_buff_head *list) 2894 { 2895 struct sk_buff *skb; 2896 while ((skb = skb_dequeue(list)) != NULL) 2897 kfree_skb(skb); 2898 } 2899 EXPORT_SYMBOL(skb_queue_purge); 2900 2901 /** 2902 * skb_rbtree_purge - empty a skb rbtree 2903 * @root: root of the rbtree to empty 2904 * Return value: the sum of truesizes of all purged skbs. 2905 * 2906 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 2907 * the list and one reference dropped. This function does not take 2908 * any lock. Synchronization should be handled by the caller (e.g., TCP 2909 * out-of-order queue is protected by the socket lock). 2910 */ 2911 unsigned int skb_rbtree_purge(struct rb_root *root) 2912 { 2913 struct rb_node *p = rb_first(root); 2914 unsigned int sum = 0; 2915 2916 while (p) { 2917 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 2918 2919 p = rb_next(p); 2920 rb_erase(&skb->rbnode, root); 2921 sum += skb->truesize; 2922 kfree_skb(skb); 2923 } 2924 return sum; 2925 } 2926 2927 /** 2928 * skb_queue_head - queue a buffer at the list head 2929 * @list: list to use 2930 * @newsk: buffer to queue 2931 * 2932 * Queue a buffer at the start of the list. This function takes the 2933 * list lock and can be used safely with other locking &sk_buff functions 2934 * safely. 2935 * 2936 * A buffer cannot be placed on two lists at the same time. 2937 */ 2938 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2939 { 2940 unsigned long flags; 2941 2942 spin_lock_irqsave(&list->lock, flags); 2943 __skb_queue_head(list, newsk); 2944 spin_unlock_irqrestore(&list->lock, flags); 2945 } 2946 EXPORT_SYMBOL(skb_queue_head); 2947 2948 /** 2949 * skb_queue_tail - queue a buffer at the list tail 2950 * @list: list to use 2951 * @newsk: buffer to queue 2952 * 2953 * Queue a buffer at the tail of the list. This function takes the 2954 * list lock and can be used safely with other locking &sk_buff functions 2955 * safely. 2956 * 2957 * A buffer cannot be placed on two lists at the same time. 2958 */ 2959 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2960 { 2961 unsigned long flags; 2962 2963 spin_lock_irqsave(&list->lock, flags); 2964 __skb_queue_tail(list, newsk); 2965 spin_unlock_irqrestore(&list->lock, flags); 2966 } 2967 EXPORT_SYMBOL(skb_queue_tail); 2968 2969 /** 2970 * skb_unlink - remove a buffer from a list 2971 * @skb: buffer to remove 2972 * @list: list to use 2973 * 2974 * Remove a packet from a list. The list locks are taken and this 2975 * function is atomic with respect to other list locked calls 2976 * 2977 * You must know what list the SKB is on. 2978 */ 2979 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2980 { 2981 unsigned long flags; 2982 2983 spin_lock_irqsave(&list->lock, flags); 2984 __skb_unlink(skb, list); 2985 spin_unlock_irqrestore(&list->lock, flags); 2986 } 2987 EXPORT_SYMBOL(skb_unlink); 2988 2989 /** 2990 * skb_append - append a buffer 2991 * @old: buffer to insert after 2992 * @newsk: buffer to insert 2993 * @list: list to use 2994 * 2995 * Place a packet after a given packet in a list. The list locks are taken 2996 * and this function is atomic with respect to other list locked calls. 2997 * A buffer cannot be placed on two lists at the same time. 2998 */ 2999 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3000 { 3001 unsigned long flags; 3002 3003 spin_lock_irqsave(&list->lock, flags); 3004 __skb_queue_after(list, old, newsk); 3005 spin_unlock_irqrestore(&list->lock, flags); 3006 } 3007 EXPORT_SYMBOL(skb_append); 3008 3009 static inline void skb_split_inside_header(struct sk_buff *skb, 3010 struct sk_buff* skb1, 3011 const u32 len, const int pos) 3012 { 3013 int i; 3014 3015 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3016 pos - len); 3017 /* And move data appendix as is. */ 3018 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3019 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3020 3021 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3022 skb_shinfo(skb)->nr_frags = 0; 3023 skb1->data_len = skb->data_len; 3024 skb1->len += skb1->data_len; 3025 skb->data_len = 0; 3026 skb->len = len; 3027 skb_set_tail_pointer(skb, len); 3028 } 3029 3030 static inline void skb_split_no_header(struct sk_buff *skb, 3031 struct sk_buff* skb1, 3032 const u32 len, int pos) 3033 { 3034 int i, k = 0; 3035 const int nfrags = skb_shinfo(skb)->nr_frags; 3036 3037 skb_shinfo(skb)->nr_frags = 0; 3038 skb1->len = skb1->data_len = skb->len - len; 3039 skb->len = len; 3040 skb->data_len = len - pos; 3041 3042 for (i = 0; i < nfrags; i++) { 3043 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3044 3045 if (pos + size > len) { 3046 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3047 3048 if (pos < len) { 3049 /* Split frag. 3050 * We have two variants in this case: 3051 * 1. Move all the frag to the second 3052 * part, if it is possible. F.e. 3053 * this approach is mandatory for TUX, 3054 * where splitting is expensive. 3055 * 2. Split is accurately. We make this. 3056 */ 3057 skb_frag_ref(skb, i); 3058 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 3059 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3060 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3061 skb_shinfo(skb)->nr_frags++; 3062 } 3063 k++; 3064 } else 3065 skb_shinfo(skb)->nr_frags++; 3066 pos += size; 3067 } 3068 skb_shinfo(skb1)->nr_frags = k; 3069 } 3070 3071 /** 3072 * skb_split - Split fragmented skb to two parts at length len. 3073 * @skb: the buffer to split 3074 * @skb1: the buffer to receive the second part 3075 * @len: new length for skb 3076 */ 3077 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3078 { 3079 int pos = skb_headlen(skb); 3080 3081 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3082 SKBTX_SHARED_FRAG; 3083 skb_zerocopy_clone(skb1, skb, 0); 3084 if (len < pos) /* Split line is inside header. */ 3085 skb_split_inside_header(skb, skb1, len, pos); 3086 else /* Second chunk has no header, nothing to copy. */ 3087 skb_split_no_header(skb, skb1, len, pos); 3088 } 3089 EXPORT_SYMBOL(skb_split); 3090 3091 /* Shifting from/to a cloned skb is a no-go. 3092 * 3093 * Caller cannot keep skb_shinfo related pointers past calling here! 3094 */ 3095 static int skb_prepare_for_shift(struct sk_buff *skb) 3096 { 3097 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3098 } 3099 3100 /** 3101 * skb_shift - Shifts paged data partially from skb to another 3102 * @tgt: buffer into which tail data gets added 3103 * @skb: buffer from which the paged data comes from 3104 * @shiftlen: shift up to this many bytes 3105 * 3106 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3107 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3108 * It's up to caller to free skb if everything was shifted. 3109 * 3110 * If @tgt runs out of frags, the whole operation is aborted. 3111 * 3112 * Skb cannot include anything else but paged data while tgt is allowed 3113 * to have non-paged data as well. 3114 * 3115 * TODO: full sized shift could be optimized but that would need 3116 * specialized skb free'er to handle frags without up-to-date nr_frags. 3117 */ 3118 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3119 { 3120 int from, to, merge, todo; 3121 struct skb_frag_struct *fragfrom, *fragto; 3122 3123 BUG_ON(shiftlen > skb->len); 3124 3125 if (skb_headlen(skb)) 3126 return 0; 3127 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3128 return 0; 3129 3130 todo = shiftlen; 3131 from = 0; 3132 to = skb_shinfo(tgt)->nr_frags; 3133 fragfrom = &skb_shinfo(skb)->frags[from]; 3134 3135 /* Actual merge is delayed until the point when we know we can 3136 * commit all, so that we don't have to undo partial changes 3137 */ 3138 if (!to || 3139 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3140 fragfrom->page_offset)) { 3141 merge = -1; 3142 } else { 3143 merge = to - 1; 3144 3145 todo -= skb_frag_size(fragfrom); 3146 if (todo < 0) { 3147 if (skb_prepare_for_shift(skb) || 3148 skb_prepare_for_shift(tgt)) 3149 return 0; 3150 3151 /* All previous frag pointers might be stale! */ 3152 fragfrom = &skb_shinfo(skb)->frags[from]; 3153 fragto = &skb_shinfo(tgt)->frags[merge]; 3154 3155 skb_frag_size_add(fragto, shiftlen); 3156 skb_frag_size_sub(fragfrom, shiftlen); 3157 fragfrom->page_offset += shiftlen; 3158 3159 goto onlymerged; 3160 } 3161 3162 from++; 3163 } 3164 3165 /* Skip full, not-fitting skb to avoid expensive operations */ 3166 if ((shiftlen == skb->len) && 3167 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3168 return 0; 3169 3170 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3171 return 0; 3172 3173 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3174 if (to == MAX_SKB_FRAGS) 3175 return 0; 3176 3177 fragfrom = &skb_shinfo(skb)->frags[from]; 3178 fragto = &skb_shinfo(tgt)->frags[to]; 3179 3180 if (todo >= skb_frag_size(fragfrom)) { 3181 *fragto = *fragfrom; 3182 todo -= skb_frag_size(fragfrom); 3183 from++; 3184 to++; 3185 3186 } else { 3187 __skb_frag_ref(fragfrom); 3188 fragto->page = fragfrom->page; 3189 fragto->page_offset = fragfrom->page_offset; 3190 skb_frag_size_set(fragto, todo); 3191 3192 fragfrom->page_offset += todo; 3193 skb_frag_size_sub(fragfrom, todo); 3194 todo = 0; 3195 3196 to++; 3197 break; 3198 } 3199 } 3200 3201 /* Ready to "commit" this state change to tgt */ 3202 skb_shinfo(tgt)->nr_frags = to; 3203 3204 if (merge >= 0) { 3205 fragfrom = &skb_shinfo(skb)->frags[0]; 3206 fragto = &skb_shinfo(tgt)->frags[merge]; 3207 3208 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3209 __skb_frag_unref(fragfrom); 3210 } 3211 3212 /* Reposition in the original skb */ 3213 to = 0; 3214 while (from < skb_shinfo(skb)->nr_frags) 3215 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3216 skb_shinfo(skb)->nr_frags = to; 3217 3218 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3219 3220 onlymerged: 3221 /* Most likely the tgt won't ever need its checksum anymore, skb on 3222 * the other hand might need it if it needs to be resent 3223 */ 3224 tgt->ip_summed = CHECKSUM_PARTIAL; 3225 skb->ip_summed = CHECKSUM_PARTIAL; 3226 3227 /* Yak, is it really working this way? Some helper please? */ 3228 skb->len -= shiftlen; 3229 skb->data_len -= shiftlen; 3230 skb->truesize -= shiftlen; 3231 tgt->len += shiftlen; 3232 tgt->data_len += shiftlen; 3233 tgt->truesize += shiftlen; 3234 3235 return shiftlen; 3236 } 3237 3238 /** 3239 * skb_prepare_seq_read - Prepare a sequential read of skb data 3240 * @skb: the buffer to read 3241 * @from: lower offset of data to be read 3242 * @to: upper offset of data to be read 3243 * @st: state variable 3244 * 3245 * Initializes the specified state variable. Must be called before 3246 * invoking skb_seq_read() for the first time. 3247 */ 3248 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3249 unsigned int to, struct skb_seq_state *st) 3250 { 3251 st->lower_offset = from; 3252 st->upper_offset = to; 3253 st->root_skb = st->cur_skb = skb; 3254 st->frag_idx = st->stepped_offset = 0; 3255 st->frag_data = NULL; 3256 } 3257 EXPORT_SYMBOL(skb_prepare_seq_read); 3258 3259 /** 3260 * skb_seq_read - Sequentially read skb data 3261 * @consumed: number of bytes consumed by the caller so far 3262 * @data: destination pointer for data to be returned 3263 * @st: state variable 3264 * 3265 * Reads a block of skb data at @consumed relative to the 3266 * lower offset specified to skb_prepare_seq_read(). Assigns 3267 * the head of the data block to @data and returns the length 3268 * of the block or 0 if the end of the skb data or the upper 3269 * offset has been reached. 3270 * 3271 * The caller is not required to consume all of the data 3272 * returned, i.e. @consumed is typically set to the number 3273 * of bytes already consumed and the next call to 3274 * skb_seq_read() will return the remaining part of the block. 3275 * 3276 * Note 1: The size of each block of data returned can be arbitrary, 3277 * this limitation is the cost for zerocopy sequential 3278 * reads of potentially non linear data. 3279 * 3280 * Note 2: Fragment lists within fragments are not implemented 3281 * at the moment, state->root_skb could be replaced with 3282 * a stack for this purpose. 3283 */ 3284 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3285 struct skb_seq_state *st) 3286 { 3287 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3288 skb_frag_t *frag; 3289 3290 if (unlikely(abs_offset >= st->upper_offset)) { 3291 if (st->frag_data) { 3292 kunmap_atomic(st->frag_data); 3293 st->frag_data = NULL; 3294 } 3295 return 0; 3296 } 3297 3298 next_skb: 3299 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3300 3301 if (abs_offset < block_limit && !st->frag_data) { 3302 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3303 return block_limit - abs_offset; 3304 } 3305 3306 if (st->frag_idx == 0 && !st->frag_data) 3307 st->stepped_offset += skb_headlen(st->cur_skb); 3308 3309 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3310 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3311 block_limit = skb_frag_size(frag) + st->stepped_offset; 3312 3313 if (abs_offset < block_limit) { 3314 if (!st->frag_data) 3315 st->frag_data = kmap_atomic(skb_frag_page(frag)); 3316 3317 *data = (u8 *) st->frag_data + frag->page_offset + 3318 (abs_offset - st->stepped_offset); 3319 3320 return block_limit - abs_offset; 3321 } 3322 3323 if (st->frag_data) { 3324 kunmap_atomic(st->frag_data); 3325 st->frag_data = NULL; 3326 } 3327 3328 st->frag_idx++; 3329 st->stepped_offset += skb_frag_size(frag); 3330 } 3331 3332 if (st->frag_data) { 3333 kunmap_atomic(st->frag_data); 3334 st->frag_data = NULL; 3335 } 3336 3337 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3338 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3339 st->frag_idx = 0; 3340 goto next_skb; 3341 } else if (st->cur_skb->next) { 3342 st->cur_skb = st->cur_skb->next; 3343 st->frag_idx = 0; 3344 goto next_skb; 3345 } 3346 3347 return 0; 3348 } 3349 EXPORT_SYMBOL(skb_seq_read); 3350 3351 /** 3352 * skb_abort_seq_read - Abort a sequential read of skb data 3353 * @st: state variable 3354 * 3355 * Must be called if skb_seq_read() was not called until it 3356 * returned 0. 3357 */ 3358 void skb_abort_seq_read(struct skb_seq_state *st) 3359 { 3360 if (st->frag_data) 3361 kunmap_atomic(st->frag_data); 3362 } 3363 EXPORT_SYMBOL(skb_abort_seq_read); 3364 3365 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3366 3367 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3368 struct ts_config *conf, 3369 struct ts_state *state) 3370 { 3371 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3372 } 3373 3374 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3375 { 3376 skb_abort_seq_read(TS_SKB_CB(state)); 3377 } 3378 3379 /** 3380 * skb_find_text - Find a text pattern in skb data 3381 * @skb: the buffer to look in 3382 * @from: search offset 3383 * @to: search limit 3384 * @config: textsearch configuration 3385 * 3386 * Finds a pattern in the skb data according to the specified 3387 * textsearch configuration. Use textsearch_next() to retrieve 3388 * subsequent occurrences of the pattern. Returns the offset 3389 * to the first occurrence or UINT_MAX if no match was found. 3390 */ 3391 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3392 unsigned int to, struct ts_config *config) 3393 { 3394 struct ts_state state; 3395 unsigned int ret; 3396 3397 config->get_next_block = skb_ts_get_next_block; 3398 config->finish = skb_ts_finish; 3399 3400 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3401 3402 ret = textsearch_find(config, &state); 3403 return (ret <= to - from ? ret : UINT_MAX); 3404 } 3405 EXPORT_SYMBOL(skb_find_text); 3406 3407 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3408 int offset, size_t size) 3409 { 3410 int i = skb_shinfo(skb)->nr_frags; 3411 3412 if (skb_can_coalesce(skb, i, page, offset)) { 3413 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3414 } else if (i < MAX_SKB_FRAGS) { 3415 get_page(page); 3416 skb_fill_page_desc(skb, i, page, offset, size); 3417 } else { 3418 return -EMSGSIZE; 3419 } 3420 3421 return 0; 3422 } 3423 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3424 3425 /** 3426 * skb_pull_rcsum - pull skb and update receive checksum 3427 * @skb: buffer to update 3428 * @len: length of data pulled 3429 * 3430 * This function performs an skb_pull on the packet and updates 3431 * the CHECKSUM_COMPLETE checksum. It should be used on 3432 * receive path processing instead of skb_pull unless you know 3433 * that the checksum difference is zero (e.g., a valid IP header) 3434 * or you are setting ip_summed to CHECKSUM_NONE. 3435 */ 3436 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3437 { 3438 unsigned char *data = skb->data; 3439 3440 BUG_ON(len > skb->len); 3441 __skb_pull(skb, len); 3442 skb_postpull_rcsum(skb, data, len); 3443 return skb->data; 3444 } 3445 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3446 3447 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3448 { 3449 skb_frag_t head_frag; 3450 struct page *page; 3451 3452 page = virt_to_head_page(frag_skb->head); 3453 head_frag.page.p = page; 3454 head_frag.page_offset = frag_skb->data - 3455 (unsigned char *)page_address(page); 3456 head_frag.size = skb_headlen(frag_skb); 3457 return head_frag; 3458 } 3459 3460 /** 3461 * skb_segment - Perform protocol segmentation on skb. 3462 * @head_skb: buffer to segment 3463 * @features: features for the output path (see dev->features) 3464 * 3465 * This function performs segmentation on the given skb. It returns 3466 * a pointer to the first in a list of new skbs for the segments. 3467 * In case of error it returns ERR_PTR(err). 3468 */ 3469 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3470 netdev_features_t features) 3471 { 3472 struct sk_buff *segs = NULL; 3473 struct sk_buff *tail = NULL; 3474 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3475 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3476 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3477 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3478 struct sk_buff *frag_skb = head_skb; 3479 unsigned int offset = doffset; 3480 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3481 unsigned int partial_segs = 0; 3482 unsigned int headroom; 3483 unsigned int len = head_skb->len; 3484 __be16 proto; 3485 bool csum, sg; 3486 int nfrags = skb_shinfo(head_skb)->nr_frags; 3487 int err = -ENOMEM; 3488 int i = 0; 3489 int pos; 3490 int dummy; 3491 3492 __skb_push(head_skb, doffset); 3493 proto = skb_network_protocol(head_skb, &dummy); 3494 if (unlikely(!proto)) 3495 return ERR_PTR(-EINVAL); 3496 3497 sg = !!(features & NETIF_F_SG); 3498 csum = !!can_checksum_protocol(features, proto); 3499 3500 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3501 if (!(features & NETIF_F_GSO_PARTIAL)) { 3502 struct sk_buff *iter; 3503 unsigned int frag_len; 3504 3505 if (!list_skb || 3506 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3507 goto normal; 3508 3509 /* If we get here then all the required 3510 * GSO features except frag_list are supported. 3511 * Try to split the SKB to multiple GSO SKBs 3512 * with no frag_list. 3513 * Currently we can do that only when the buffers don't 3514 * have a linear part and all the buffers except 3515 * the last are of the same length. 3516 */ 3517 frag_len = list_skb->len; 3518 skb_walk_frags(head_skb, iter) { 3519 if (frag_len != iter->len && iter->next) 3520 goto normal; 3521 if (skb_headlen(iter) && !iter->head_frag) 3522 goto normal; 3523 3524 len -= iter->len; 3525 } 3526 3527 if (len != frag_len) 3528 goto normal; 3529 } 3530 3531 /* GSO partial only requires that we trim off any excess that 3532 * doesn't fit into an MSS sized block, so take care of that 3533 * now. 3534 */ 3535 partial_segs = len / mss; 3536 if (partial_segs > 1) 3537 mss *= partial_segs; 3538 else 3539 partial_segs = 0; 3540 } 3541 3542 normal: 3543 headroom = skb_headroom(head_skb); 3544 pos = skb_headlen(head_skb); 3545 3546 do { 3547 struct sk_buff *nskb; 3548 skb_frag_t *nskb_frag; 3549 int hsize; 3550 int size; 3551 3552 if (unlikely(mss == GSO_BY_FRAGS)) { 3553 len = list_skb->len; 3554 } else { 3555 len = head_skb->len - offset; 3556 if (len > mss) 3557 len = mss; 3558 } 3559 3560 hsize = skb_headlen(head_skb) - offset; 3561 if (hsize < 0) 3562 hsize = 0; 3563 if (hsize > len || !sg) 3564 hsize = len; 3565 3566 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3567 (skb_headlen(list_skb) == len || sg)) { 3568 BUG_ON(skb_headlen(list_skb) > len); 3569 3570 i = 0; 3571 nfrags = skb_shinfo(list_skb)->nr_frags; 3572 frag = skb_shinfo(list_skb)->frags; 3573 frag_skb = list_skb; 3574 pos += skb_headlen(list_skb); 3575 3576 while (pos < offset + len) { 3577 BUG_ON(i >= nfrags); 3578 3579 size = skb_frag_size(frag); 3580 if (pos + size > offset + len) 3581 break; 3582 3583 i++; 3584 pos += size; 3585 frag++; 3586 } 3587 3588 nskb = skb_clone(list_skb, GFP_ATOMIC); 3589 list_skb = list_skb->next; 3590 3591 if (unlikely(!nskb)) 3592 goto err; 3593 3594 if (unlikely(pskb_trim(nskb, len))) { 3595 kfree_skb(nskb); 3596 goto err; 3597 } 3598 3599 hsize = skb_end_offset(nskb); 3600 if (skb_cow_head(nskb, doffset + headroom)) { 3601 kfree_skb(nskb); 3602 goto err; 3603 } 3604 3605 nskb->truesize += skb_end_offset(nskb) - hsize; 3606 skb_release_head_state(nskb); 3607 __skb_push(nskb, doffset); 3608 } else { 3609 nskb = __alloc_skb(hsize + doffset + headroom, 3610 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3611 NUMA_NO_NODE); 3612 3613 if (unlikely(!nskb)) 3614 goto err; 3615 3616 skb_reserve(nskb, headroom); 3617 __skb_put(nskb, doffset); 3618 } 3619 3620 if (segs) 3621 tail->next = nskb; 3622 else 3623 segs = nskb; 3624 tail = nskb; 3625 3626 __copy_skb_header(nskb, head_skb); 3627 3628 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3629 skb_reset_mac_len(nskb); 3630 3631 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3632 nskb->data - tnl_hlen, 3633 doffset + tnl_hlen); 3634 3635 if (nskb->len == len + doffset) 3636 goto perform_csum_check; 3637 3638 if (!sg) { 3639 if (!nskb->remcsum_offload) 3640 nskb->ip_summed = CHECKSUM_NONE; 3641 SKB_GSO_CB(nskb)->csum = 3642 skb_copy_and_csum_bits(head_skb, offset, 3643 skb_put(nskb, len), 3644 len, 0); 3645 SKB_GSO_CB(nskb)->csum_start = 3646 skb_headroom(nskb) + doffset; 3647 continue; 3648 } 3649 3650 nskb_frag = skb_shinfo(nskb)->frags; 3651 3652 skb_copy_from_linear_data_offset(head_skb, offset, 3653 skb_put(nskb, hsize), hsize); 3654 3655 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 3656 SKBTX_SHARED_FRAG; 3657 3658 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3659 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 3660 goto err; 3661 3662 while (pos < offset + len) { 3663 if (i >= nfrags) { 3664 i = 0; 3665 nfrags = skb_shinfo(list_skb)->nr_frags; 3666 frag = skb_shinfo(list_skb)->frags; 3667 frag_skb = list_skb; 3668 if (!skb_headlen(list_skb)) { 3669 BUG_ON(!nfrags); 3670 } else { 3671 BUG_ON(!list_skb->head_frag); 3672 3673 /* to make room for head_frag. */ 3674 i--; 3675 frag--; 3676 } 3677 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3678 skb_zerocopy_clone(nskb, frag_skb, 3679 GFP_ATOMIC)) 3680 goto err; 3681 3682 list_skb = list_skb->next; 3683 } 3684 3685 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3686 MAX_SKB_FRAGS)) { 3687 net_warn_ratelimited( 3688 "skb_segment: too many frags: %u %u\n", 3689 pos, mss); 3690 err = -EINVAL; 3691 goto err; 3692 } 3693 3694 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 3695 __skb_frag_ref(nskb_frag); 3696 size = skb_frag_size(nskb_frag); 3697 3698 if (pos < offset) { 3699 nskb_frag->page_offset += offset - pos; 3700 skb_frag_size_sub(nskb_frag, offset - pos); 3701 } 3702 3703 skb_shinfo(nskb)->nr_frags++; 3704 3705 if (pos + size <= offset + len) { 3706 i++; 3707 frag++; 3708 pos += size; 3709 } else { 3710 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3711 goto skip_fraglist; 3712 } 3713 3714 nskb_frag++; 3715 } 3716 3717 skip_fraglist: 3718 nskb->data_len = len - hsize; 3719 nskb->len += nskb->data_len; 3720 nskb->truesize += nskb->data_len; 3721 3722 perform_csum_check: 3723 if (!csum) { 3724 if (skb_has_shared_frag(nskb) && 3725 __skb_linearize(nskb)) 3726 goto err; 3727 3728 if (!nskb->remcsum_offload) 3729 nskb->ip_summed = CHECKSUM_NONE; 3730 SKB_GSO_CB(nskb)->csum = 3731 skb_checksum(nskb, doffset, 3732 nskb->len - doffset, 0); 3733 SKB_GSO_CB(nskb)->csum_start = 3734 skb_headroom(nskb) + doffset; 3735 } 3736 } while ((offset += len) < head_skb->len); 3737 3738 /* Some callers want to get the end of the list. 3739 * Put it in segs->prev to avoid walking the list. 3740 * (see validate_xmit_skb_list() for example) 3741 */ 3742 segs->prev = tail; 3743 3744 if (partial_segs) { 3745 struct sk_buff *iter; 3746 int type = skb_shinfo(head_skb)->gso_type; 3747 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 3748 3749 /* Update type to add partial and then remove dodgy if set */ 3750 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 3751 type &= ~SKB_GSO_DODGY; 3752 3753 /* Update GSO info and prepare to start updating headers on 3754 * our way back down the stack of protocols. 3755 */ 3756 for (iter = segs; iter; iter = iter->next) { 3757 skb_shinfo(iter)->gso_size = gso_size; 3758 skb_shinfo(iter)->gso_segs = partial_segs; 3759 skb_shinfo(iter)->gso_type = type; 3760 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 3761 } 3762 3763 if (tail->len - doffset <= gso_size) 3764 skb_shinfo(tail)->gso_size = 0; 3765 else if (tail != segs) 3766 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 3767 } 3768 3769 /* Following permits correct backpressure, for protocols 3770 * using skb_set_owner_w(). 3771 * Idea is to tranfert ownership from head_skb to last segment. 3772 */ 3773 if (head_skb->destructor == sock_wfree) { 3774 swap(tail->truesize, head_skb->truesize); 3775 swap(tail->destructor, head_skb->destructor); 3776 swap(tail->sk, head_skb->sk); 3777 } 3778 return segs; 3779 3780 err: 3781 kfree_skb_list(segs); 3782 return ERR_PTR(err); 3783 } 3784 EXPORT_SYMBOL_GPL(skb_segment); 3785 3786 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 3787 { 3788 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3789 unsigned int offset = skb_gro_offset(skb); 3790 unsigned int headlen = skb_headlen(skb); 3791 unsigned int len = skb_gro_len(skb); 3792 unsigned int delta_truesize; 3793 struct sk_buff *lp; 3794 3795 if (unlikely(p->len + len >= 65536)) 3796 return -E2BIG; 3797 3798 lp = NAPI_GRO_CB(p)->last; 3799 pinfo = skb_shinfo(lp); 3800 3801 if (headlen <= offset) { 3802 skb_frag_t *frag; 3803 skb_frag_t *frag2; 3804 int i = skbinfo->nr_frags; 3805 int nr_frags = pinfo->nr_frags + i; 3806 3807 if (nr_frags > MAX_SKB_FRAGS) 3808 goto merge; 3809 3810 offset -= headlen; 3811 pinfo->nr_frags = nr_frags; 3812 skbinfo->nr_frags = 0; 3813 3814 frag = pinfo->frags + nr_frags; 3815 frag2 = skbinfo->frags + i; 3816 do { 3817 *--frag = *--frag2; 3818 } while (--i); 3819 3820 frag->page_offset += offset; 3821 skb_frag_size_sub(frag, offset); 3822 3823 /* all fragments truesize : remove (head size + sk_buff) */ 3824 delta_truesize = skb->truesize - 3825 SKB_TRUESIZE(skb_end_offset(skb)); 3826 3827 skb->truesize -= skb->data_len; 3828 skb->len -= skb->data_len; 3829 skb->data_len = 0; 3830 3831 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3832 goto done; 3833 } else if (skb->head_frag) { 3834 int nr_frags = pinfo->nr_frags; 3835 skb_frag_t *frag = pinfo->frags + nr_frags; 3836 struct page *page = virt_to_head_page(skb->head); 3837 unsigned int first_size = headlen - offset; 3838 unsigned int first_offset; 3839 3840 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3841 goto merge; 3842 3843 first_offset = skb->data - 3844 (unsigned char *)page_address(page) + 3845 offset; 3846 3847 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3848 3849 frag->page.p = page; 3850 frag->page_offset = first_offset; 3851 skb_frag_size_set(frag, first_size); 3852 3853 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3854 /* We dont need to clear skbinfo->nr_frags here */ 3855 3856 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3857 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3858 goto done; 3859 } 3860 3861 merge: 3862 delta_truesize = skb->truesize; 3863 if (offset > headlen) { 3864 unsigned int eat = offset - headlen; 3865 3866 skbinfo->frags[0].page_offset += eat; 3867 skb_frag_size_sub(&skbinfo->frags[0], eat); 3868 skb->data_len -= eat; 3869 skb->len -= eat; 3870 offset = headlen; 3871 } 3872 3873 __skb_pull(skb, offset); 3874 3875 if (NAPI_GRO_CB(p)->last == p) 3876 skb_shinfo(p)->frag_list = skb; 3877 else 3878 NAPI_GRO_CB(p)->last->next = skb; 3879 NAPI_GRO_CB(p)->last = skb; 3880 __skb_header_release(skb); 3881 lp = p; 3882 3883 done: 3884 NAPI_GRO_CB(p)->count++; 3885 p->data_len += len; 3886 p->truesize += delta_truesize; 3887 p->len += len; 3888 if (lp != p) { 3889 lp->data_len += len; 3890 lp->truesize += delta_truesize; 3891 lp->len += len; 3892 } 3893 NAPI_GRO_CB(skb)->same_flow = 1; 3894 return 0; 3895 } 3896 EXPORT_SYMBOL_GPL(skb_gro_receive); 3897 3898 void __init skb_init(void) 3899 { 3900 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 3901 sizeof(struct sk_buff), 3902 0, 3903 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3904 offsetof(struct sk_buff, cb), 3905 sizeof_field(struct sk_buff, cb), 3906 NULL); 3907 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3908 sizeof(struct sk_buff_fclones), 3909 0, 3910 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3911 NULL); 3912 } 3913 3914 static int 3915 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 3916 unsigned int recursion_level) 3917 { 3918 int start = skb_headlen(skb); 3919 int i, copy = start - offset; 3920 struct sk_buff *frag_iter; 3921 int elt = 0; 3922 3923 if (unlikely(recursion_level >= 24)) 3924 return -EMSGSIZE; 3925 3926 if (copy > 0) { 3927 if (copy > len) 3928 copy = len; 3929 sg_set_buf(sg, skb->data + offset, copy); 3930 elt++; 3931 if ((len -= copy) == 0) 3932 return elt; 3933 offset += copy; 3934 } 3935 3936 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3937 int end; 3938 3939 WARN_ON(start > offset + len); 3940 3941 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3942 if ((copy = end - offset) > 0) { 3943 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3944 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3945 return -EMSGSIZE; 3946 3947 if (copy > len) 3948 copy = len; 3949 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3950 frag->page_offset+offset-start); 3951 elt++; 3952 if (!(len -= copy)) 3953 return elt; 3954 offset += copy; 3955 } 3956 start = end; 3957 } 3958 3959 skb_walk_frags(skb, frag_iter) { 3960 int end, ret; 3961 3962 WARN_ON(start > offset + len); 3963 3964 end = start + frag_iter->len; 3965 if ((copy = end - offset) > 0) { 3966 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3967 return -EMSGSIZE; 3968 3969 if (copy > len) 3970 copy = len; 3971 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 3972 copy, recursion_level + 1); 3973 if (unlikely(ret < 0)) 3974 return ret; 3975 elt += ret; 3976 if ((len -= copy) == 0) 3977 return elt; 3978 offset += copy; 3979 } 3980 start = end; 3981 } 3982 BUG_ON(len); 3983 return elt; 3984 } 3985 3986 /** 3987 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 3988 * @skb: Socket buffer containing the buffers to be mapped 3989 * @sg: The scatter-gather list to map into 3990 * @offset: The offset into the buffer's contents to start mapping 3991 * @len: Length of buffer space to be mapped 3992 * 3993 * Fill the specified scatter-gather list with mappings/pointers into a 3994 * region of the buffer space attached to a socket buffer. Returns either 3995 * the number of scatterlist items used, or -EMSGSIZE if the contents 3996 * could not fit. 3997 */ 3998 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3999 { 4000 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4001 4002 if (nsg <= 0) 4003 return nsg; 4004 4005 sg_mark_end(&sg[nsg - 1]); 4006 4007 return nsg; 4008 } 4009 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4010 4011 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4012 * sglist without mark the sg which contain last skb data as the end. 4013 * So the caller can mannipulate sg list as will when padding new data after 4014 * the first call without calling sg_unmark_end to expend sg list. 4015 * 4016 * Scenario to use skb_to_sgvec_nomark: 4017 * 1. sg_init_table 4018 * 2. skb_to_sgvec_nomark(payload1) 4019 * 3. skb_to_sgvec_nomark(payload2) 4020 * 4021 * This is equivalent to: 4022 * 1. sg_init_table 4023 * 2. skb_to_sgvec(payload1) 4024 * 3. sg_unmark_end 4025 * 4. skb_to_sgvec(payload2) 4026 * 4027 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4028 * is more preferable. 4029 */ 4030 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4031 int offset, int len) 4032 { 4033 return __skb_to_sgvec(skb, sg, offset, len, 0); 4034 } 4035 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4036 4037 4038 4039 /** 4040 * skb_cow_data - Check that a socket buffer's data buffers are writable 4041 * @skb: The socket buffer to check. 4042 * @tailbits: Amount of trailing space to be added 4043 * @trailer: Returned pointer to the skb where the @tailbits space begins 4044 * 4045 * Make sure that the data buffers attached to a socket buffer are 4046 * writable. If they are not, private copies are made of the data buffers 4047 * and the socket buffer is set to use these instead. 4048 * 4049 * If @tailbits is given, make sure that there is space to write @tailbits 4050 * bytes of data beyond current end of socket buffer. @trailer will be 4051 * set to point to the skb in which this space begins. 4052 * 4053 * The number of scatterlist elements required to completely map the 4054 * COW'd and extended socket buffer will be returned. 4055 */ 4056 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4057 { 4058 int copyflag; 4059 int elt; 4060 struct sk_buff *skb1, **skb_p; 4061 4062 /* If skb is cloned or its head is paged, reallocate 4063 * head pulling out all the pages (pages are considered not writable 4064 * at the moment even if they are anonymous). 4065 */ 4066 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4067 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 4068 return -ENOMEM; 4069 4070 /* Easy case. Most of packets will go this way. */ 4071 if (!skb_has_frag_list(skb)) { 4072 /* A little of trouble, not enough of space for trailer. 4073 * This should not happen, when stack is tuned to generate 4074 * good frames. OK, on miss we reallocate and reserve even more 4075 * space, 128 bytes is fair. */ 4076 4077 if (skb_tailroom(skb) < tailbits && 4078 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4079 return -ENOMEM; 4080 4081 /* Voila! */ 4082 *trailer = skb; 4083 return 1; 4084 } 4085 4086 /* Misery. We are in troubles, going to mincer fragments... */ 4087 4088 elt = 1; 4089 skb_p = &skb_shinfo(skb)->frag_list; 4090 copyflag = 0; 4091 4092 while ((skb1 = *skb_p) != NULL) { 4093 int ntail = 0; 4094 4095 /* The fragment is partially pulled by someone, 4096 * this can happen on input. Copy it and everything 4097 * after it. */ 4098 4099 if (skb_shared(skb1)) 4100 copyflag = 1; 4101 4102 /* If the skb is the last, worry about trailer. */ 4103 4104 if (skb1->next == NULL && tailbits) { 4105 if (skb_shinfo(skb1)->nr_frags || 4106 skb_has_frag_list(skb1) || 4107 skb_tailroom(skb1) < tailbits) 4108 ntail = tailbits + 128; 4109 } 4110 4111 if (copyflag || 4112 skb_cloned(skb1) || 4113 ntail || 4114 skb_shinfo(skb1)->nr_frags || 4115 skb_has_frag_list(skb1)) { 4116 struct sk_buff *skb2; 4117 4118 /* Fuck, we are miserable poor guys... */ 4119 if (ntail == 0) 4120 skb2 = skb_copy(skb1, GFP_ATOMIC); 4121 else 4122 skb2 = skb_copy_expand(skb1, 4123 skb_headroom(skb1), 4124 ntail, 4125 GFP_ATOMIC); 4126 if (unlikely(skb2 == NULL)) 4127 return -ENOMEM; 4128 4129 if (skb1->sk) 4130 skb_set_owner_w(skb2, skb1->sk); 4131 4132 /* Looking around. Are we still alive? 4133 * OK, link new skb, drop old one */ 4134 4135 skb2->next = skb1->next; 4136 *skb_p = skb2; 4137 kfree_skb(skb1); 4138 skb1 = skb2; 4139 } 4140 elt++; 4141 *trailer = skb1; 4142 skb_p = &skb1->next; 4143 } 4144 4145 return elt; 4146 } 4147 EXPORT_SYMBOL_GPL(skb_cow_data); 4148 4149 static void sock_rmem_free(struct sk_buff *skb) 4150 { 4151 struct sock *sk = skb->sk; 4152 4153 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4154 } 4155 4156 static void skb_set_err_queue(struct sk_buff *skb) 4157 { 4158 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4159 * So, it is safe to (mis)use it to mark skbs on the error queue. 4160 */ 4161 skb->pkt_type = PACKET_OUTGOING; 4162 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4163 } 4164 4165 /* 4166 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4167 */ 4168 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4169 { 4170 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4171 (unsigned int)sk->sk_rcvbuf) 4172 return -ENOMEM; 4173 4174 skb_orphan(skb); 4175 skb->sk = sk; 4176 skb->destructor = sock_rmem_free; 4177 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4178 skb_set_err_queue(skb); 4179 4180 /* before exiting rcu section, make sure dst is refcounted */ 4181 skb_dst_force(skb); 4182 4183 skb_queue_tail(&sk->sk_error_queue, skb); 4184 if (!sock_flag(sk, SOCK_DEAD)) 4185 sk->sk_error_report(sk); 4186 return 0; 4187 } 4188 EXPORT_SYMBOL(sock_queue_err_skb); 4189 4190 static bool is_icmp_err_skb(const struct sk_buff *skb) 4191 { 4192 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4193 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4194 } 4195 4196 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4197 { 4198 struct sk_buff_head *q = &sk->sk_error_queue; 4199 struct sk_buff *skb, *skb_next = NULL; 4200 bool icmp_next = false; 4201 unsigned long flags; 4202 4203 spin_lock_irqsave(&q->lock, flags); 4204 skb = __skb_dequeue(q); 4205 if (skb && (skb_next = skb_peek(q))) { 4206 icmp_next = is_icmp_err_skb(skb_next); 4207 if (icmp_next) 4208 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin; 4209 } 4210 spin_unlock_irqrestore(&q->lock, flags); 4211 4212 if (is_icmp_err_skb(skb) && !icmp_next) 4213 sk->sk_err = 0; 4214 4215 if (skb_next) 4216 sk->sk_error_report(sk); 4217 4218 return skb; 4219 } 4220 EXPORT_SYMBOL(sock_dequeue_err_skb); 4221 4222 /** 4223 * skb_clone_sk - create clone of skb, and take reference to socket 4224 * @skb: the skb to clone 4225 * 4226 * This function creates a clone of a buffer that holds a reference on 4227 * sk_refcnt. Buffers created via this function are meant to be 4228 * returned using sock_queue_err_skb, or free via kfree_skb. 4229 * 4230 * When passing buffers allocated with this function to sock_queue_err_skb 4231 * it is necessary to wrap the call with sock_hold/sock_put in order to 4232 * prevent the socket from being released prior to being enqueued on 4233 * the sk_error_queue. 4234 */ 4235 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4236 { 4237 struct sock *sk = skb->sk; 4238 struct sk_buff *clone; 4239 4240 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4241 return NULL; 4242 4243 clone = skb_clone(skb, GFP_ATOMIC); 4244 if (!clone) { 4245 sock_put(sk); 4246 return NULL; 4247 } 4248 4249 clone->sk = sk; 4250 clone->destructor = sock_efree; 4251 4252 return clone; 4253 } 4254 EXPORT_SYMBOL(skb_clone_sk); 4255 4256 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4257 struct sock *sk, 4258 int tstype, 4259 bool opt_stats) 4260 { 4261 struct sock_exterr_skb *serr; 4262 int err; 4263 4264 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4265 4266 serr = SKB_EXT_ERR(skb); 4267 memset(serr, 0, sizeof(*serr)); 4268 serr->ee.ee_errno = ENOMSG; 4269 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4270 serr->ee.ee_info = tstype; 4271 serr->opt_stats = opt_stats; 4272 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4273 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4274 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4275 if (sk->sk_protocol == IPPROTO_TCP && 4276 sk->sk_type == SOCK_STREAM) 4277 serr->ee.ee_data -= sk->sk_tskey; 4278 } 4279 4280 err = sock_queue_err_skb(sk, skb); 4281 4282 if (err) 4283 kfree_skb(skb); 4284 } 4285 4286 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4287 { 4288 bool ret; 4289 4290 if (likely(sysctl_tstamp_allow_data || tsonly)) 4291 return true; 4292 4293 read_lock_bh(&sk->sk_callback_lock); 4294 ret = sk->sk_socket && sk->sk_socket->file && 4295 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4296 read_unlock_bh(&sk->sk_callback_lock); 4297 return ret; 4298 } 4299 4300 void skb_complete_tx_timestamp(struct sk_buff *skb, 4301 struct skb_shared_hwtstamps *hwtstamps) 4302 { 4303 struct sock *sk = skb->sk; 4304 4305 if (!skb_may_tx_timestamp(sk, false)) 4306 goto err; 4307 4308 /* Take a reference to prevent skb_orphan() from freeing the socket, 4309 * but only if the socket refcount is not zero. 4310 */ 4311 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4312 *skb_hwtstamps(skb) = *hwtstamps; 4313 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4314 sock_put(sk); 4315 return; 4316 } 4317 4318 err: 4319 kfree_skb(skb); 4320 } 4321 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4322 4323 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4324 struct skb_shared_hwtstamps *hwtstamps, 4325 struct sock *sk, int tstype) 4326 { 4327 struct sk_buff *skb; 4328 bool tsonly, opt_stats = false; 4329 4330 if (!sk) 4331 return; 4332 4333 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4334 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4335 return; 4336 4337 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4338 if (!skb_may_tx_timestamp(sk, tsonly)) 4339 return; 4340 4341 if (tsonly) { 4342 #ifdef CONFIG_INET 4343 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4344 sk->sk_protocol == IPPROTO_TCP && 4345 sk->sk_type == SOCK_STREAM) { 4346 skb = tcp_get_timestamping_opt_stats(sk); 4347 opt_stats = true; 4348 } else 4349 #endif 4350 skb = alloc_skb(0, GFP_ATOMIC); 4351 } else { 4352 skb = skb_clone(orig_skb, GFP_ATOMIC); 4353 } 4354 if (!skb) 4355 return; 4356 4357 if (tsonly) { 4358 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4359 SKBTX_ANY_TSTAMP; 4360 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4361 } 4362 4363 if (hwtstamps) 4364 *skb_hwtstamps(skb) = *hwtstamps; 4365 else 4366 skb->tstamp = ktime_get_real(); 4367 4368 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4369 } 4370 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4371 4372 void skb_tstamp_tx(struct sk_buff *orig_skb, 4373 struct skb_shared_hwtstamps *hwtstamps) 4374 { 4375 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4376 SCM_TSTAMP_SND); 4377 } 4378 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4379 4380 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4381 { 4382 struct sock *sk = skb->sk; 4383 struct sock_exterr_skb *serr; 4384 int err = 1; 4385 4386 skb->wifi_acked_valid = 1; 4387 skb->wifi_acked = acked; 4388 4389 serr = SKB_EXT_ERR(skb); 4390 memset(serr, 0, sizeof(*serr)); 4391 serr->ee.ee_errno = ENOMSG; 4392 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4393 4394 /* Take a reference to prevent skb_orphan() from freeing the socket, 4395 * but only if the socket refcount is not zero. 4396 */ 4397 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4398 err = sock_queue_err_skb(sk, skb); 4399 sock_put(sk); 4400 } 4401 if (err) 4402 kfree_skb(skb); 4403 } 4404 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4405 4406 /** 4407 * skb_partial_csum_set - set up and verify partial csum values for packet 4408 * @skb: the skb to set 4409 * @start: the number of bytes after skb->data to start checksumming. 4410 * @off: the offset from start to place the checksum. 4411 * 4412 * For untrusted partially-checksummed packets, we need to make sure the values 4413 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4414 * 4415 * This function checks and sets those values and skb->ip_summed: if this 4416 * returns false you should drop the packet. 4417 */ 4418 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4419 { 4420 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4421 u32 csum_start = skb_headroom(skb) + (u32)start; 4422 4423 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4424 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4425 start, off, skb_headroom(skb), skb_headlen(skb)); 4426 return false; 4427 } 4428 skb->ip_summed = CHECKSUM_PARTIAL; 4429 skb->csum_start = csum_start; 4430 skb->csum_offset = off; 4431 skb_set_transport_header(skb, start); 4432 return true; 4433 } 4434 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4435 4436 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4437 unsigned int max) 4438 { 4439 if (skb_headlen(skb) >= len) 4440 return 0; 4441 4442 /* If we need to pullup then pullup to the max, so we 4443 * won't need to do it again. 4444 */ 4445 if (max > skb->len) 4446 max = skb->len; 4447 4448 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4449 return -ENOMEM; 4450 4451 if (skb_headlen(skb) < len) 4452 return -EPROTO; 4453 4454 return 0; 4455 } 4456 4457 #define MAX_TCP_HDR_LEN (15 * 4) 4458 4459 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4460 typeof(IPPROTO_IP) proto, 4461 unsigned int off) 4462 { 4463 switch (proto) { 4464 int err; 4465 4466 case IPPROTO_TCP: 4467 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4468 off + MAX_TCP_HDR_LEN); 4469 if (!err && !skb_partial_csum_set(skb, off, 4470 offsetof(struct tcphdr, 4471 check))) 4472 err = -EPROTO; 4473 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4474 4475 case IPPROTO_UDP: 4476 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4477 off + sizeof(struct udphdr)); 4478 if (!err && !skb_partial_csum_set(skb, off, 4479 offsetof(struct udphdr, 4480 check))) 4481 err = -EPROTO; 4482 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4483 } 4484 4485 return ERR_PTR(-EPROTO); 4486 } 4487 4488 /* This value should be large enough to cover a tagged ethernet header plus 4489 * maximally sized IP and TCP or UDP headers. 4490 */ 4491 #define MAX_IP_HDR_LEN 128 4492 4493 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4494 { 4495 unsigned int off; 4496 bool fragment; 4497 __sum16 *csum; 4498 int err; 4499 4500 fragment = false; 4501 4502 err = skb_maybe_pull_tail(skb, 4503 sizeof(struct iphdr), 4504 MAX_IP_HDR_LEN); 4505 if (err < 0) 4506 goto out; 4507 4508 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 4509 fragment = true; 4510 4511 off = ip_hdrlen(skb); 4512 4513 err = -EPROTO; 4514 4515 if (fragment) 4516 goto out; 4517 4518 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4519 if (IS_ERR(csum)) 4520 return PTR_ERR(csum); 4521 4522 if (recalculate) 4523 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4524 ip_hdr(skb)->daddr, 4525 skb->len - off, 4526 ip_hdr(skb)->protocol, 0); 4527 err = 0; 4528 4529 out: 4530 return err; 4531 } 4532 4533 /* This value should be large enough to cover a tagged ethernet header plus 4534 * an IPv6 header, all options, and a maximal TCP or UDP header. 4535 */ 4536 #define MAX_IPV6_HDR_LEN 256 4537 4538 #define OPT_HDR(type, skb, off) \ 4539 (type *)(skb_network_header(skb) + (off)) 4540 4541 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4542 { 4543 int err; 4544 u8 nexthdr; 4545 unsigned int off; 4546 unsigned int len; 4547 bool fragment; 4548 bool done; 4549 __sum16 *csum; 4550 4551 fragment = false; 4552 done = false; 4553 4554 off = sizeof(struct ipv6hdr); 4555 4556 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4557 if (err < 0) 4558 goto out; 4559 4560 nexthdr = ipv6_hdr(skb)->nexthdr; 4561 4562 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4563 while (off <= len && !done) { 4564 switch (nexthdr) { 4565 case IPPROTO_DSTOPTS: 4566 case IPPROTO_HOPOPTS: 4567 case IPPROTO_ROUTING: { 4568 struct ipv6_opt_hdr *hp; 4569 4570 err = skb_maybe_pull_tail(skb, 4571 off + 4572 sizeof(struct ipv6_opt_hdr), 4573 MAX_IPV6_HDR_LEN); 4574 if (err < 0) 4575 goto out; 4576 4577 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4578 nexthdr = hp->nexthdr; 4579 off += ipv6_optlen(hp); 4580 break; 4581 } 4582 case IPPROTO_AH: { 4583 struct ip_auth_hdr *hp; 4584 4585 err = skb_maybe_pull_tail(skb, 4586 off + 4587 sizeof(struct ip_auth_hdr), 4588 MAX_IPV6_HDR_LEN); 4589 if (err < 0) 4590 goto out; 4591 4592 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4593 nexthdr = hp->nexthdr; 4594 off += ipv6_authlen(hp); 4595 break; 4596 } 4597 case IPPROTO_FRAGMENT: { 4598 struct frag_hdr *hp; 4599 4600 err = skb_maybe_pull_tail(skb, 4601 off + 4602 sizeof(struct frag_hdr), 4603 MAX_IPV6_HDR_LEN); 4604 if (err < 0) 4605 goto out; 4606 4607 hp = OPT_HDR(struct frag_hdr, skb, off); 4608 4609 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4610 fragment = true; 4611 4612 nexthdr = hp->nexthdr; 4613 off += sizeof(struct frag_hdr); 4614 break; 4615 } 4616 default: 4617 done = true; 4618 break; 4619 } 4620 } 4621 4622 err = -EPROTO; 4623 4624 if (!done || fragment) 4625 goto out; 4626 4627 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4628 if (IS_ERR(csum)) 4629 return PTR_ERR(csum); 4630 4631 if (recalculate) 4632 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4633 &ipv6_hdr(skb)->daddr, 4634 skb->len - off, nexthdr, 0); 4635 err = 0; 4636 4637 out: 4638 return err; 4639 } 4640 4641 /** 4642 * skb_checksum_setup - set up partial checksum offset 4643 * @skb: the skb to set up 4644 * @recalculate: if true the pseudo-header checksum will be recalculated 4645 */ 4646 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 4647 { 4648 int err; 4649 4650 switch (skb->protocol) { 4651 case htons(ETH_P_IP): 4652 err = skb_checksum_setup_ipv4(skb, recalculate); 4653 break; 4654 4655 case htons(ETH_P_IPV6): 4656 err = skb_checksum_setup_ipv6(skb, recalculate); 4657 break; 4658 4659 default: 4660 err = -EPROTO; 4661 break; 4662 } 4663 4664 return err; 4665 } 4666 EXPORT_SYMBOL(skb_checksum_setup); 4667 4668 /** 4669 * skb_checksum_maybe_trim - maybe trims the given skb 4670 * @skb: the skb to check 4671 * @transport_len: the data length beyond the network header 4672 * 4673 * Checks whether the given skb has data beyond the given transport length. 4674 * If so, returns a cloned skb trimmed to this transport length. 4675 * Otherwise returns the provided skb. Returns NULL in error cases 4676 * (e.g. transport_len exceeds skb length or out-of-memory). 4677 * 4678 * Caller needs to set the skb transport header and free any returned skb if it 4679 * differs from the provided skb. 4680 */ 4681 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 4682 unsigned int transport_len) 4683 { 4684 struct sk_buff *skb_chk; 4685 unsigned int len = skb_transport_offset(skb) + transport_len; 4686 int ret; 4687 4688 if (skb->len < len) 4689 return NULL; 4690 else if (skb->len == len) 4691 return skb; 4692 4693 skb_chk = skb_clone(skb, GFP_ATOMIC); 4694 if (!skb_chk) 4695 return NULL; 4696 4697 ret = pskb_trim_rcsum(skb_chk, len); 4698 if (ret) { 4699 kfree_skb(skb_chk); 4700 return NULL; 4701 } 4702 4703 return skb_chk; 4704 } 4705 4706 /** 4707 * skb_checksum_trimmed - validate checksum of an skb 4708 * @skb: the skb to check 4709 * @transport_len: the data length beyond the network header 4710 * @skb_chkf: checksum function to use 4711 * 4712 * Applies the given checksum function skb_chkf to the provided skb. 4713 * Returns a checked and maybe trimmed skb. Returns NULL on error. 4714 * 4715 * If the skb has data beyond the given transport length, then a 4716 * trimmed & cloned skb is checked and returned. 4717 * 4718 * Caller needs to set the skb transport header and free any returned skb if it 4719 * differs from the provided skb. 4720 */ 4721 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4722 unsigned int transport_len, 4723 __sum16(*skb_chkf)(struct sk_buff *skb)) 4724 { 4725 struct sk_buff *skb_chk; 4726 unsigned int offset = skb_transport_offset(skb); 4727 __sum16 ret; 4728 4729 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 4730 if (!skb_chk) 4731 goto err; 4732 4733 if (!pskb_may_pull(skb_chk, offset)) 4734 goto err; 4735 4736 skb_pull_rcsum(skb_chk, offset); 4737 ret = skb_chkf(skb_chk); 4738 skb_push_rcsum(skb_chk, offset); 4739 4740 if (ret) 4741 goto err; 4742 4743 return skb_chk; 4744 4745 err: 4746 if (skb_chk && skb_chk != skb) 4747 kfree_skb(skb_chk); 4748 4749 return NULL; 4750 4751 } 4752 EXPORT_SYMBOL(skb_checksum_trimmed); 4753 4754 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 4755 { 4756 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 4757 skb->dev->name); 4758 } 4759 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 4760 4761 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 4762 { 4763 if (head_stolen) { 4764 skb_release_head_state(skb); 4765 kmem_cache_free(skbuff_head_cache, skb); 4766 } else { 4767 __kfree_skb(skb); 4768 } 4769 } 4770 EXPORT_SYMBOL(kfree_skb_partial); 4771 4772 /** 4773 * skb_try_coalesce - try to merge skb to prior one 4774 * @to: prior buffer 4775 * @from: buffer to add 4776 * @fragstolen: pointer to boolean 4777 * @delta_truesize: how much more was allocated than was requested 4778 */ 4779 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 4780 bool *fragstolen, int *delta_truesize) 4781 { 4782 struct skb_shared_info *to_shinfo, *from_shinfo; 4783 int i, delta, len = from->len; 4784 4785 *fragstolen = false; 4786 4787 if (skb_cloned(to)) 4788 return false; 4789 4790 if (len <= skb_tailroom(to)) { 4791 if (len) 4792 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 4793 *delta_truesize = 0; 4794 return true; 4795 } 4796 4797 to_shinfo = skb_shinfo(to); 4798 from_shinfo = skb_shinfo(from); 4799 if (to_shinfo->frag_list || from_shinfo->frag_list) 4800 return false; 4801 if (skb_zcopy(to) || skb_zcopy(from)) 4802 return false; 4803 4804 if (skb_headlen(from) != 0) { 4805 struct page *page; 4806 unsigned int offset; 4807 4808 if (to_shinfo->nr_frags + 4809 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 4810 return false; 4811 4812 if (skb_head_is_locked(from)) 4813 return false; 4814 4815 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4816 4817 page = virt_to_head_page(from->head); 4818 offset = from->data - (unsigned char *)page_address(page); 4819 4820 skb_fill_page_desc(to, to_shinfo->nr_frags, 4821 page, offset, skb_headlen(from)); 4822 *fragstolen = true; 4823 } else { 4824 if (to_shinfo->nr_frags + 4825 from_shinfo->nr_frags > MAX_SKB_FRAGS) 4826 return false; 4827 4828 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 4829 } 4830 4831 WARN_ON_ONCE(delta < len); 4832 4833 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 4834 from_shinfo->frags, 4835 from_shinfo->nr_frags * sizeof(skb_frag_t)); 4836 to_shinfo->nr_frags += from_shinfo->nr_frags; 4837 4838 if (!skb_cloned(from)) 4839 from_shinfo->nr_frags = 0; 4840 4841 /* if the skb is not cloned this does nothing 4842 * since we set nr_frags to 0. 4843 */ 4844 for (i = 0; i < from_shinfo->nr_frags; i++) 4845 __skb_frag_ref(&from_shinfo->frags[i]); 4846 4847 to->truesize += delta; 4848 to->len += len; 4849 to->data_len += len; 4850 4851 *delta_truesize = delta; 4852 return true; 4853 } 4854 EXPORT_SYMBOL(skb_try_coalesce); 4855 4856 /** 4857 * skb_scrub_packet - scrub an skb 4858 * 4859 * @skb: buffer to clean 4860 * @xnet: packet is crossing netns 4861 * 4862 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 4863 * into/from a tunnel. Some information have to be cleared during these 4864 * operations. 4865 * skb_scrub_packet can also be used to clean a skb before injecting it in 4866 * another namespace (@xnet == true). We have to clear all information in the 4867 * skb that could impact namespace isolation. 4868 */ 4869 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 4870 { 4871 skb->pkt_type = PACKET_HOST; 4872 skb->skb_iif = 0; 4873 skb->ignore_df = 0; 4874 skb_dst_drop(skb); 4875 secpath_reset(skb); 4876 nf_reset(skb); 4877 nf_reset_trace(skb); 4878 4879 #ifdef CONFIG_NET_SWITCHDEV 4880 skb->offload_fwd_mark = 0; 4881 skb->offload_mr_fwd_mark = 0; 4882 #endif 4883 4884 if (!xnet) 4885 return; 4886 4887 ipvs_reset(skb); 4888 skb->mark = 0; 4889 skb->tstamp = 0; 4890 } 4891 EXPORT_SYMBOL_GPL(skb_scrub_packet); 4892 4893 /** 4894 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 4895 * 4896 * @skb: GSO skb 4897 * 4898 * skb_gso_transport_seglen is used to determine the real size of the 4899 * individual segments, including Layer4 headers (TCP/UDP). 4900 * 4901 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 4902 */ 4903 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 4904 { 4905 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4906 unsigned int thlen = 0; 4907 4908 if (skb->encapsulation) { 4909 thlen = skb_inner_transport_header(skb) - 4910 skb_transport_header(skb); 4911 4912 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 4913 thlen += inner_tcp_hdrlen(skb); 4914 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4915 thlen = tcp_hdrlen(skb); 4916 } else if (unlikely(skb_is_gso_sctp(skb))) { 4917 thlen = sizeof(struct sctphdr); 4918 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4919 thlen = sizeof(struct udphdr); 4920 } 4921 /* UFO sets gso_size to the size of the fragmentation 4922 * payload, i.e. the size of the L4 (UDP) header is already 4923 * accounted for. 4924 */ 4925 return thlen + shinfo->gso_size; 4926 } 4927 4928 /** 4929 * skb_gso_network_seglen - Return length of individual segments of a gso packet 4930 * 4931 * @skb: GSO skb 4932 * 4933 * skb_gso_network_seglen is used to determine the real size of the 4934 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 4935 * 4936 * The MAC/L2 header is not accounted for. 4937 */ 4938 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 4939 { 4940 unsigned int hdr_len = skb_transport_header(skb) - 4941 skb_network_header(skb); 4942 4943 return hdr_len + skb_gso_transport_seglen(skb); 4944 } 4945 4946 /** 4947 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 4948 * 4949 * @skb: GSO skb 4950 * 4951 * skb_gso_mac_seglen is used to determine the real size of the 4952 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 4953 * headers (TCP/UDP). 4954 */ 4955 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 4956 { 4957 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 4958 4959 return hdr_len + skb_gso_transport_seglen(skb); 4960 } 4961 4962 /** 4963 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 4964 * 4965 * There are a couple of instances where we have a GSO skb, and we 4966 * want to determine what size it would be after it is segmented. 4967 * 4968 * We might want to check: 4969 * - L3+L4+payload size (e.g. IP forwarding) 4970 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 4971 * 4972 * This is a helper to do that correctly considering GSO_BY_FRAGS. 4973 * 4974 * @skb: GSO skb 4975 * 4976 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 4977 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 4978 * 4979 * @max_len: The maximum permissible length. 4980 * 4981 * Returns true if the segmented length <= max length. 4982 */ 4983 static inline bool skb_gso_size_check(const struct sk_buff *skb, 4984 unsigned int seg_len, 4985 unsigned int max_len) { 4986 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4987 const struct sk_buff *iter; 4988 4989 if (shinfo->gso_size != GSO_BY_FRAGS) 4990 return seg_len <= max_len; 4991 4992 /* Undo this so we can re-use header sizes */ 4993 seg_len -= GSO_BY_FRAGS; 4994 4995 skb_walk_frags(skb, iter) { 4996 if (seg_len + skb_headlen(iter) > max_len) 4997 return false; 4998 } 4999 5000 return true; 5001 } 5002 5003 /** 5004 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5005 * 5006 * @skb: GSO skb 5007 * @mtu: MTU to validate against 5008 * 5009 * skb_gso_validate_network_len validates if a given skb will fit a 5010 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5011 * payload. 5012 */ 5013 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5014 { 5015 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5016 } 5017 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5018 5019 /** 5020 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5021 * 5022 * @skb: GSO skb 5023 * @len: length to validate against 5024 * 5025 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5026 * length once split, including L2, L3 and L4 headers and the payload. 5027 */ 5028 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5029 { 5030 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5031 } 5032 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5033 5034 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5035 { 5036 int mac_len; 5037 5038 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5039 kfree_skb(skb); 5040 return NULL; 5041 } 5042 5043 mac_len = skb->data - skb_mac_header(skb); 5044 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5045 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5046 mac_len - VLAN_HLEN - ETH_TLEN); 5047 } 5048 skb->mac_header += VLAN_HLEN; 5049 return skb; 5050 } 5051 5052 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5053 { 5054 struct vlan_hdr *vhdr; 5055 u16 vlan_tci; 5056 5057 if (unlikely(skb_vlan_tag_present(skb))) { 5058 /* vlan_tci is already set-up so leave this for another time */ 5059 return skb; 5060 } 5061 5062 skb = skb_share_check(skb, GFP_ATOMIC); 5063 if (unlikely(!skb)) 5064 goto err_free; 5065 5066 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 5067 goto err_free; 5068 5069 vhdr = (struct vlan_hdr *)skb->data; 5070 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5071 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5072 5073 skb_pull_rcsum(skb, VLAN_HLEN); 5074 vlan_set_encap_proto(skb, vhdr); 5075 5076 skb = skb_reorder_vlan_header(skb); 5077 if (unlikely(!skb)) 5078 goto err_free; 5079 5080 skb_reset_network_header(skb); 5081 skb_reset_transport_header(skb); 5082 skb_reset_mac_len(skb); 5083 5084 return skb; 5085 5086 err_free: 5087 kfree_skb(skb); 5088 return NULL; 5089 } 5090 EXPORT_SYMBOL(skb_vlan_untag); 5091 5092 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5093 { 5094 if (!pskb_may_pull(skb, write_len)) 5095 return -ENOMEM; 5096 5097 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5098 return 0; 5099 5100 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5101 } 5102 EXPORT_SYMBOL(skb_ensure_writable); 5103 5104 /* remove VLAN header from packet and update csum accordingly. 5105 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5106 */ 5107 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5108 { 5109 struct vlan_hdr *vhdr; 5110 int offset = skb->data - skb_mac_header(skb); 5111 int err; 5112 5113 if (WARN_ONCE(offset, 5114 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5115 offset)) { 5116 return -EINVAL; 5117 } 5118 5119 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5120 if (unlikely(err)) 5121 return err; 5122 5123 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5124 5125 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5126 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5127 5128 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5129 __skb_pull(skb, VLAN_HLEN); 5130 5131 vlan_set_encap_proto(skb, vhdr); 5132 skb->mac_header += VLAN_HLEN; 5133 5134 if (skb_network_offset(skb) < ETH_HLEN) 5135 skb_set_network_header(skb, ETH_HLEN); 5136 5137 skb_reset_mac_len(skb); 5138 5139 return err; 5140 } 5141 EXPORT_SYMBOL(__skb_vlan_pop); 5142 5143 /* Pop a vlan tag either from hwaccel or from payload. 5144 * Expects skb->data at mac header. 5145 */ 5146 int skb_vlan_pop(struct sk_buff *skb) 5147 { 5148 u16 vlan_tci; 5149 __be16 vlan_proto; 5150 int err; 5151 5152 if (likely(skb_vlan_tag_present(skb))) { 5153 __vlan_hwaccel_clear_tag(skb); 5154 } else { 5155 if (unlikely(!eth_type_vlan(skb->protocol))) 5156 return 0; 5157 5158 err = __skb_vlan_pop(skb, &vlan_tci); 5159 if (err) 5160 return err; 5161 } 5162 /* move next vlan tag to hw accel tag */ 5163 if (likely(!eth_type_vlan(skb->protocol))) 5164 return 0; 5165 5166 vlan_proto = skb->protocol; 5167 err = __skb_vlan_pop(skb, &vlan_tci); 5168 if (unlikely(err)) 5169 return err; 5170 5171 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5172 return 0; 5173 } 5174 EXPORT_SYMBOL(skb_vlan_pop); 5175 5176 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5177 * Expects skb->data at mac header. 5178 */ 5179 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5180 { 5181 if (skb_vlan_tag_present(skb)) { 5182 int offset = skb->data - skb_mac_header(skb); 5183 int err; 5184 5185 if (WARN_ONCE(offset, 5186 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5187 offset)) { 5188 return -EINVAL; 5189 } 5190 5191 err = __vlan_insert_tag(skb, skb->vlan_proto, 5192 skb_vlan_tag_get(skb)); 5193 if (err) 5194 return err; 5195 5196 skb->protocol = skb->vlan_proto; 5197 skb->mac_len += VLAN_HLEN; 5198 5199 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5200 } 5201 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5202 return 0; 5203 } 5204 EXPORT_SYMBOL(skb_vlan_push); 5205 5206 /** 5207 * alloc_skb_with_frags - allocate skb with page frags 5208 * 5209 * @header_len: size of linear part 5210 * @data_len: needed length in frags 5211 * @max_page_order: max page order desired. 5212 * @errcode: pointer to error code if any 5213 * @gfp_mask: allocation mask 5214 * 5215 * This can be used to allocate a paged skb, given a maximal order for frags. 5216 */ 5217 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5218 unsigned long data_len, 5219 int max_page_order, 5220 int *errcode, 5221 gfp_t gfp_mask) 5222 { 5223 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5224 unsigned long chunk; 5225 struct sk_buff *skb; 5226 struct page *page; 5227 gfp_t gfp_head; 5228 int i; 5229 5230 *errcode = -EMSGSIZE; 5231 /* Note this test could be relaxed, if we succeed to allocate 5232 * high order pages... 5233 */ 5234 if (npages > MAX_SKB_FRAGS) 5235 return NULL; 5236 5237 gfp_head = gfp_mask; 5238 if (gfp_head & __GFP_DIRECT_RECLAIM) 5239 gfp_head |= __GFP_RETRY_MAYFAIL; 5240 5241 *errcode = -ENOBUFS; 5242 skb = alloc_skb(header_len, gfp_head); 5243 if (!skb) 5244 return NULL; 5245 5246 skb->truesize += npages << PAGE_SHIFT; 5247 5248 for (i = 0; npages > 0; i++) { 5249 int order = max_page_order; 5250 5251 while (order) { 5252 if (npages >= 1 << order) { 5253 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5254 __GFP_COMP | 5255 __GFP_NOWARN, 5256 order); 5257 if (page) 5258 goto fill_page; 5259 /* Do not retry other high order allocations */ 5260 order = 1; 5261 max_page_order = 0; 5262 } 5263 order--; 5264 } 5265 page = alloc_page(gfp_mask); 5266 if (!page) 5267 goto failure; 5268 fill_page: 5269 chunk = min_t(unsigned long, data_len, 5270 PAGE_SIZE << order); 5271 skb_fill_page_desc(skb, i, page, 0, chunk); 5272 data_len -= chunk; 5273 npages -= 1 << order; 5274 } 5275 return skb; 5276 5277 failure: 5278 kfree_skb(skb); 5279 return NULL; 5280 } 5281 EXPORT_SYMBOL(alloc_skb_with_frags); 5282 5283 /* carve out the first off bytes from skb when off < headlen */ 5284 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5285 const int headlen, gfp_t gfp_mask) 5286 { 5287 int i; 5288 int size = skb_end_offset(skb); 5289 int new_hlen = headlen - off; 5290 u8 *data; 5291 5292 size = SKB_DATA_ALIGN(size); 5293 5294 if (skb_pfmemalloc(skb)) 5295 gfp_mask |= __GFP_MEMALLOC; 5296 data = kmalloc_reserve(size + 5297 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5298 gfp_mask, NUMA_NO_NODE, NULL); 5299 if (!data) 5300 return -ENOMEM; 5301 5302 size = SKB_WITH_OVERHEAD(ksize(data)); 5303 5304 /* Copy real data, and all frags */ 5305 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5306 skb->len -= off; 5307 5308 memcpy((struct skb_shared_info *)(data + size), 5309 skb_shinfo(skb), 5310 offsetof(struct skb_shared_info, 5311 frags[skb_shinfo(skb)->nr_frags])); 5312 if (skb_cloned(skb)) { 5313 /* drop the old head gracefully */ 5314 if (skb_orphan_frags(skb, gfp_mask)) { 5315 kfree(data); 5316 return -ENOMEM; 5317 } 5318 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5319 skb_frag_ref(skb, i); 5320 if (skb_has_frag_list(skb)) 5321 skb_clone_fraglist(skb); 5322 skb_release_data(skb); 5323 } else { 5324 /* we can reuse existing recount- all we did was 5325 * relocate values 5326 */ 5327 skb_free_head(skb); 5328 } 5329 5330 skb->head = data; 5331 skb->data = data; 5332 skb->head_frag = 0; 5333 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5334 skb->end = size; 5335 #else 5336 skb->end = skb->head + size; 5337 #endif 5338 skb_set_tail_pointer(skb, skb_headlen(skb)); 5339 skb_headers_offset_update(skb, 0); 5340 skb->cloned = 0; 5341 skb->hdr_len = 0; 5342 skb->nohdr = 0; 5343 atomic_set(&skb_shinfo(skb)->dataref, 1); 5344 5345 return 0; 5346 } 5347 5348 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 5349 5350 /* carve out the first eat bytes from skb's frag_list. May recurse into 5351 * pskb_carve() 5352 */ 5353 static int pskb_carve_frag_list(struct sk_buff *skb, 5354 struct skb_shared_info *shinfo, int eat, 5355 gfp_t gfp_mask) 5356 { 5357 struct sk_buff *list = shinfo->frag_list; 5358 struct sk_buff *clone = NULL; 5359 struct sk_buff *insp = NULL; 5360 5361 do { 5362 if (!list) { 5363 pr_err("Not enough bytes to eat. Want %d\n", eat); 5364 return -EFAULT; 5365 } 5366 if (list->len <= eat) { 5367 /* Eaten as whole. */ 5368 eat -= list->len; 5369 list = list->next; 5370 insp = list; 5371 } else { 5372 /* Eaten partially. */ 5373 if (skb_shared(list)) { 5374 clone = skb_clone(list, gfp_mask); 5375 if (!clone) 5376 return -ENOMEM; 5377 insp = list->next; 5378 list = clone; 5379 } else { 5380 /* This may be pulled without problems. */ 5381 insp = list; 5382 } 5383 if (pskb_carve(list, eat, gfp_mask) < 0) { 5384 kfree_skb(clone); 5385 return -ENOMEM; 5386 } 5387 break; 5388 } 5389 } while (eat); 5390 5391 /* Free pulled out fragments. */ 5392 while ((list = shinfo->frag_list) != insp) { 5393 shinfo->frag_list = list->next; 5394 kfree_skb(list); 5395 } 5396 /* And insert new clone at head. */ 5397 if (clone) { 5398 clone->next = list; 5399 shinfo->frag_list = clone; 5400 } 5401 return 0; 5402 } 5403 5404 /* carve off first len bytes from skb. Split line (off) is in the 5405 * non-linear part of skb 5406 */ 5407 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 5408 int pos, gfp_t gfp_mask) 5409 { 5410 int i, k = 0; 5411 int size = skb_end_offset(skb); 5412 u8 *data; 5413 const int nfrags = skb_shinfo(skb)->nr_frags; 5414 struct skb_shared_info *shinfo; 5415 5416 size = SKB_DATA_ALIGN(size); 5417 5418 if (skb_pfmemalloc(skb)) 5419 gfp_mask |= __GFP_MEMALLOC; 5420 data = kmalloc_reserve(size + 5421 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5422 gfp_mask, NUMA_NO_NODE, NULL); 5423 if (!data) 5424 return -ENOMEM; 5425 5426 size = SKB_WITH_OVERHEAD(ksize(data)); 5427 5428 memcpy((struct skb_shared_info *)(data + size), 5429 skb_shinfo(skb), offsetof(struct skb_shared_info, 5430 frags[skb_shinfo(skb)->nr_frags])); 5431 if (skb_orphan_frags(skb, gfp_mask)) { 5432 kfree(data); 5433 return -ENOMEM; 5434 } 5435 shinfo = (struct skb_shared_info *)(data + size); 5436 for (i = 0; i < nfrags; i++) { 5437 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 5438 5439 if (pos + fsize > off) { 5440 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 5441 5442 if (pos < off) { 5443 /* Split frag. 5444 * We have two variants in this case: 5445 * 1. Move all the frag to the second 5446 * part, if it is possible. F.e. 5447 * this approach is mandatory for TUX, 5448 * where splitting is expensive. 5449 * 2. Split is accurately. We make this. 5450 */ 5451 shinfo->frags[0].page_offset += off - pos; 5452 skb_frag_size_sub(&shinfo->frags[0], off - pos); 5453 } 5454 skb_frag_ref(skb, i); 5455 k++; 5456 } 5457 pos += fsize; 5458 } 5459 shinfo->nr_frags = k; 5460 if (skb_has_frag_list(skb)) 5461 skb_clone_fraglist(skb); 5462 5463 if (k == 0) { 5464 /* split line is in frag list */ 5465 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask); 5466 } 5467 skb_release_data(skb); 5468 5469 skb->head = data; 5470 skb->head_frag = 0; 5471 skb->data = data; 5472 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5473 skb->end = size; 5474 #else 5475 skb->end = skb->head + size; 5476 #endif 5477 skb_reset_tail_pointer(skb); 5478 skb_headers_offset_update(skb, 0); 5479 skb->cloned = 0; 5480 skb->hdr_len = 0; 5481 skb->nohdr = 0; 5482 skb->len -= off; 5483 skb->data_len = skb->len; 5484 atomic_set(&skb_shinfo(skb)->dataref, 1); 5485 return 0; 5486 } 5487 5488 /* remove len bytes from the beginning of the skb */ 5489 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 5490 { 5491 int headlen = skb_headlen(skb); 5492 5493 if (len < headlen) 5494 return pskb_carve_inside_header(skb, len, headlen, gfp); 5495 else 5496 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 5497 } 5498 5499 /* Extract to_copy bytes starting at off from skb, and return this in 5500 * a new skb 5501 */ 5502 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 5503 int to_copy, gfp_t gfp) 5504 { 5505 struct sk_buff *clone = skb_clone(skb, gfp); 5506 5507 if (!clone) 5508 return NULL; 5509 5510 if (pskb_carve(clone, off, gfp) < 0 || 5511 pskb_trim(clone, to_copy)) { 5512 kfree_skb(clone); 5513 return NULL; 5514 } 5515 return clone; 5516 } 5517 EXPORT_SYMBOL(pskb_extract); 5518 5519 /** 5520 * skb_condense - try to get rid of fragments/frag_list if possible 5521 * @skb: buffer 5522 * 5523 * Can be used to save memory before skb is added to a busy queue. 5524 * If packet has bytes in frags and enough tail room in skb->head, 5525 * pull all of them, so that we can free the frags right now and adjust 5526 * truesize. 5527 * Notes: 5528 * We do not reallocate skb->head thus can not fail. 5529 * Caller must re-evaluate skb->truesize if needed. 5530 */ 5531 void skb_condense(struct sk_buff *skb) 5532 { 5533 if (skb->data_len) { 5534 if (skb->data_len > skb->end - skb->tail || 5535 skb_cloned(skb)) 5536 return; 5537 5538 /* Nice, we can free page frag(s) right now */ 5539 __pskb_pull_tail(skb, skb->data_len); 5540 } 5541 /* At this point, skb->truesize might be over estimated, 5542 * because skb had a fragment, and fragments do not tell 5543 * their truesize. 5544 * When we pulled its content into skb->head, fragment 5545 * was freed, but __pskb_pull_tail() could not possibly 5546 * adjust skb->truesize, not knowing the frag truesize. 5547 */ 5548 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5549 } 5550