xref: /linux/net/core/skbuff.c (revision 6e8331ac6973435b1e7604c30f2ad394035b46e1)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <iiitac@pyr.swan.ac.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Version:	$Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
8  *
9  *	Fixes:
10  *		Alan Cox	:	Fixed the worst of the load
11  *					balancer bugs.
12  *		Dave Platt	:	Interrupt stacking fix.
13  *	Richard Kooijman	:	Timestamp fixes.
14  *		Alan Cox	:	Changed buffer format.
15  *		Alan Cox	:	destructor hook for AF_UNIX etc.
16  *		Linus Torvalds	:	Better skb_clone.
17  *		Alan Cox	:	Added skb_copy.
18  *		Alan Cox	:	Added all the changed routines Linus
19  *					only put in the headers
20  *		Ray VanTassle	:	Fixed --skb->lock in free
21  *		Alan Cox	:	skb_copy copy arp field
22  *		Andi Kleen	:	slabified it.
23  *		Robert Olsson	:	Removed skb_head_pool
24  *
25  *	NOTE:
26  *		The __skb_ routines should be called with interrupts
27  *	disabled, or you better be *real* sure that the operation is atomic
28  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
29  *	or via disabling bottom half handlers, etc).
30  *
31  *	This program is free software; you can redistribute it and/or
32  *	modify it under the terms of the GNU General Public License
33  *	as published by the Free Software Foundation; either version
34  *	2 of the License, or (at your option) any later version.
35  */
36 
37 /*
38  *	The functions in this file will not compile correctly with gcc 2.4.x
39  */
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/sched.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/highmem.h>
60 
61 #include <net/protocol.h>
62 #include <net/dst.h>
63 #include <net/sock.h>
64 #include <net/checksum.h>
65 #include <net/xfrm.h>
66 
67 #include <asm/uaccess.h>
68 #include <asm/system.h>
69 
70 static kmem_cache_t *skbuff_head_cache __read_mostly;
71 static kmem_cache_t *skbuff_fclone_cache __read_mostly;
72 
73 /*
74  *	Keep out-of-line to prevent kernel bloat.
75  *	__builtin_return_address is not used because it is not always
76  *	reliable.
77  */
78 
79 /**
80  *	skb_over_panic	- 	private function
81  *	@skb: buffer
82  *	@sz: size
83  *	@here: address
84  *
85  *	Out of line support code for skb_put(). Not user callable.
86  */
87 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
88 {
89 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
90 	                  "data:%p tail:%p end:%p dev:%s\n",
91 	       here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
92 	       skb->dev ? skb->dev->name : "<NULL>");
93 	BUG();
94 }
95 
96 /**
97  *	skb_under_panic	- 	private function
98  *	@skb: buffer
99  *	@sz: size
100  *	@here: address
101  *
102  *	Out of line support code for skb_push(). Not user callable.
103  */
104 
105 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
106 {
107 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
108 	                  "data:%p tail:%p end:%p dev:%s\n",
109 	       here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
110 	       skb->dev ? skb->dev->name : "<NULL>");
111 	BUG();
112 }
113 
114 void skb_truesize_bug(struct sk_buff *skb)
115 {
116 	printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
117 	       "len=%u, sizeof(sk_buff)=%Zd\n",
118 	       skb->truesize, skb->len, sizeof(struct sk_buff));
119 }
120 EXPORT_SYMBOL(skb_truesize_bug);
121 
122 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
123  *	'private' fields and also do memory statistics to find all the
124  *	[BEEP] leaks.
125  *
126  */
127 
128 /**
129  *	__alloc_skb	-	allocate a network buffer
130  *	@size: size to allocate
131  *	@gfp_mask: allocation mask
132  *	@fclone: allocate from fclone cache instead of head cache
133  *		and allocate a cloned (child) skb
134  *
135  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
136  *	tail room of size bytes. The object has a reference count of one.
137  *	The return is the buffer. On a failure the return is %NULL.
138  *
139  *	Buffers may only be allocated from interrupts using a @gfp_mask of
140  *	%GFP_ATOMIC.
141  */
142 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
143 			    int fclone)
144 {
145 	kmem_cache_t *cache;
146 	struct skb_shared_info *shinfo;
147 	struct sk_buff *skb;
148 	u8 *data;
149 
150 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
151 
152 	/* Get the HEAD */
153 	skb = kmem_cache_alloc(cache, gfp_mask & ~__GFP_DMA);
154 	if (!skb)
155 		goto out;
156 
157 	/* Get the DATA. Size must match skb_add_mtu(). */
158 	size = SKB_DATA_ALIGN(size);
159 	data = ____kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
160 	if (!data)
161 		goto nodata;
162 
163 	memset(skb, 0, offsetof(struct sk_buff, truesize));
164 	skb->truesize = size + sizeof(struct sk_buff);
165 	atomic_set(&skb->users, 1);
166 	skb->head = data;
167 	skb->data = data;
168 	skb->tail = data;
169 	skb->end  = data + size;
170 	/* make sure we initialize shinfo sequentially */
171 	shinfo = skb_shinfo(skb);
172 	atomic_set(&shinfo->dataref, 1);
173 	shinfo->nr_frags  = 0;
174 	shinfo->gso_size = 0;
175 	shinfo->gso_segs = 0;
176 	shinfo->gso_type = 0;
177 	shinfo->ip6_frag_id = 0;
178 	shinfo->frag_list = NULL;
179 
180 	if (fclone) {
181 		struct sk_buff *child = skb + 1;
182 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
183 
184 		skb->fclone = SKB_FCLONE_ORIG;
185 		atomic_set(fclone_ref, 1);
186 
187 		child->fclone = SKB_FCLONE_UNAVAILABLE;
188 	}
189 out:
190 	return skb;
191 nodata:
192 	kmem_cache_free(cache, skb);
193 	skb = NULL;
194 	goto out;
195 }
196 
197 /**
198  *	alloc_skb_from_cache	-	allocate a network buffer
199  *	@cp: kmem_cache from which to allocate the data area
200  *           (object size must be big enough for @size bytes + skb overheads)
201  *	@size: size to allocate
202  *	@gfp_mask: allocation mask
203  *
204  *	Allocate a new &sk_buff. The returned buffer has no headroom and
205  *	tail room of size bytes. The object has a reference count of one.
206  *	The return is the buffer. On a failure the return is %NULL.
207  *
208  *	Buffers may only be allocated from interrupts using a @gfp_mask of
209  *	%GFP_ATOMIC.
210  */
211 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
212 				     unsigned int size,
213 				     gfp_t gfp_mask)
214 {
215 	struct sk_buff *skb;
216 	u8 *data;
217 
218 	/* Get the HEAD */
219 	skb = kmem_cache_alloc(skbuff_head_cache,
220 			       gfp_mask & ~__GFP_DMA);
221 	if (!skb)
222 		goto out;
223 
224 	/* Get the DATA. */
225 	size = SKB_DATA_ALIGN(size);
226 	data = kmem_cache_alloc(cp, gfp_mask);
227 	if (!data)
228 		goto nodata;
229 
230 	memset(skb, 0, offsetof(struct sk_buff, truesize));
231 	skb->truesize = size + sizeof(struct sk_buff);
232 	atomic_set(&skb->users, 1);
233 	skb->head = data;
234 	skb->data = data;
235 	skb->tail = data;
236 	skb->end  = data + size;
237 
238 	atomic_set(&(skb_shinfo(skb)->dataref), 1);
239 	skb_shinfo(skb)->nr_frags  = 0;
240 	skb_shinfo(skb)->gso_size = 0;
241 	skb_shinfo(skb)->gso_segs = 0;
242 	skb_shinfo(skb)->gso_type = 0;
243 	skb_shinfo(skb)->frag_list = NULL;
244 out:
245 	return skb;
246 nodata:
247 	kmem_cache_free(skbuff_head_cache, skb);
248 	skb = NULL;
249 	goto out;
250 }
251 
252 /**
253  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
254  *	@dev: network device to receive on
255  *	@length: length to allocate
256  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
257  *
258  *	Allocate a new &sk_buff and assign it a usage count of one. The
259  *	buffer has unspecified headroom built in. Users should allocate
260  *	the headroom they think they need without accounting for the
261  *	built in space. The built in space is used for optimisations.
262  *
263  *	%NULL is returned if there is no free memory.
264  */
265 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
266 		unsigned int length, gfp_t gfp_mask)
267 {
268 	struct sk_buff *skb;
269 
270 	skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
271 	if (likely(skb))
272 		skb_reserve(skb, NET_SKB_PAD);
273 	return skb;
274 }
275 
276 static void skb_drop_list(struct sk_buff **listp)
277 {
278 	struct sk_buff *list = *listp;
279 
280 	*listp = NULL;
281 
282 	do {
283 		struct sk_buff *this = list;
284 		list = list->next;
285 		kfree_skb(this);
286 	} while (list);
287 }
288 
289 static inline void skb_drop_fraglist(struct sk_buff *skb)
290 {
291 	skb_drop_list(&skb_shinfo(skb)->frag_list);
292 }
293 
294 static void skb_clone_fraglist(struct sk_buff *skb)
295 {
296 	struct sk_buff *list;
297 
298 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
299 		skb_get(list);
300 }
301 
302 static void skb_release_data(struct sk_buff *skb)
303 {
304 	if (!skb->cloned ||
305 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
306 			       &skb_shinfo(skb)->dataref)) {
307 		if (skb_shinfo(skb)->nr_frags) {
308 			int i;
309 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
310 				put_page(skb_shinfo(skb)->frags[i].page);
311 		}
312 
313 		if (skb_shinfo(skb)->frag_list)
314 			skb_drop_fraglist(skb);
315 
316 		kfree(skb->head);
317 	}
318 }
319 
320 /*
321  *	Free an skbuff by memory without cleaning the state.
322  */
323 void kfree_skbmem(struct sk_buff *skb)
324 {
325 	struct sk_buff *other;
326 	atomic_t *fclone_ref;
327 
328 	skb_release_data(skb);
329 	switch (skb->fclone) {
330 	case SKB_FCLONE_UNAVAILABLE:
331 		kmem_cache_free(skbuff_head_cache, skb);
332 		break;
333 
334 	case SKB_FCLONE_ORIG:
335 		fclone_ref = (atomic_t *) (skb + 2);
336 		if (atomic_dec_and_test(fclone_ref))
337 			kmem_cache_free(skbuff_fclone_cache, skb);
338 		break;
339 
340 	case SKB_FCLONE_CLONE:
341 		fclone_ref = (atomic_t *) (skb + 1);
342 		other = skb - 1;
343 
344 		/* The clone portion is available for
345 		 * fast-cloning again.
346 		 */
347 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
348 
349 		if (atomic_dec_and_test(fclone_ref))
350 			kmem_cache_free(skbuff_fclone_cache, other);
351 		break;
352 	};
353 }
354 
355 /**
356  *	__kfree_skb - private function
357  *	@skb: buffer
358  *
359  *	Free an sk_buff. Release anything attached to the buffer.
360  *	Clean the state. This is an internal helper function. Users should
361  *	always call kfree_skb
362  */
363 
364 void __kfree_skb(struct sk_buff *skb)
365 {
366 	dst_release(skb->dst);
367 #ifdef CONFIG_XFRM
368 	secpath_put(skb->sp);
369 #endif
370 	if (skb->destructor) {
371 		WARN_ON(in_irq());
372 		skb->destructor(skb);
373 	}
374 #ifdef CONFIG_NETFILTER
375 	nf_conntrack_put(skb->nfct);
376 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
377 	nf_conntrack_put_reasm(skb->nfct_reasm);
378 #endif
379 #ifdef CONFIG_BRIDGE_NETFILTER
380 	nf_bridge_put(skb->nf_bridge);
381 #endif
382 #endif
383 /* XXX: IS this still necessary? - JHS */
384 #ifdef CONFIG_NET_SCHED
385 	skb->tc_index = 0;
386 #ifdef CONFIG_NET_CLS_ACT
387 	skb->tc_verd = 0;
388 #endif
389 #endif
390 
391 	kfree_skbmem(skb);
392 }
393 
394 /**
395  *	kfree_skb - free an sk_buff
396  *	@skb: buffer to free
397  *
398  *	Drop a reference to the buffer and free it if the usage count has
399  *	hit zero.
400  */
401 void kfree_skb(struct sk_buff *skb)
402 {
403 	if (unlikely(!skb))
404 		return;
405 	if (likely(atomic_read(&skb->users) == 1))
406 		smp_rmb();
407 	else if (likely(!atomic_dec_and_test(&skb->users)))
408 		return;
409 	__kfree_skb(skb);
410 }
411 
412 /**
413  *	skb_clone	-	duplicate an sk_buff
414  *	@skb: buffer to clone
415  *	@gfp_mask: allocation priority
416  *
417  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
418  *	copies share the same packet data but not structure. The new
419  *	buffer has a reference count of 1. If the allocation fails the
420  *	function returns %NULL otherwise the new buffer is returned.
421  *
422  *	If this function is called from an interrupt gfp_mask() must be
423  *	%GFP_ATOMIC.
424  */
425 
426 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
427 {
428 	struct sk_buff *n;
429 
430 	n = skb + 1;
431 	if (skb->fclone == SKB_FCLONE_ORIG &&
432 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
433 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
434 		n->fclone = SKB_FCLONE_CLONE;
435 		atomic_inc(fclone_ref);
436 	} else {
437 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
438 		if (!n)
439 			return NULL;
440 		n->fclone = SKB_FCLONE_UNAVAILABLE;
441 	}
442 
443 #define C(x) n->x = skb->x
444 
445 	n->next = n->prev = NULL;
446 	n->sk = NULL;
447 	C(tstamp);
448 	C(dev);
449 	C(h);
450 	C(nh);
451 	C(mac);
452 	C(dst);
453 	dst_clone(skb->dst);
454 	C(sp);
455 #ifdef CONFIG_INET
456 	secpath_get(skb->sp);
457 #endif
458 	memcpy(n->cb, skb->cb, sizeof(skb->cb));
459 	C(len);
460 	C(data_len);
461 	C(csum);
462 	C(local_df);
463 	n->cloned = 1;
464 	n->nohdr = 0;
465 	C(pkt_type);
466 	C(ip_summed);
467 	C(priority);
468 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
469 	C(ipvs_property);
470 #endif
471 	C(protocol);
472 	n->destructor = NULL;
473 #ifdef CONFIG_NETFILTER
474 	C(nfmark);
475 	C(nfct);
476 	nf_conntrack_get(skb->nfct);
477 	C(nfctinfo);
478 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
479 	C(nfct_reasm);
480 	nf_conntrack_get_reasm(skb->nfct_reasm);
481 #endif
482 #ifdef CONFIG_BRIDGE_NETFILTER
483 	C(nf_bridge);
484 	nf_bridge_get(skb->nf_bridge);
485 #endif
486 #endif /*CONFIG_NETFILTER*/
487 #ifdef CONFIG_NET_SCHED
488 	C(tc_index);
489 #ifdef CONFIG_NET_CLS_ACT
490 	n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
491 	n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
492 	n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
493 	C(input_dev);
494 #endif
495 	skb_copy_secmark(n, skb);
496 #endif
497 	C(truesize);
498 	atomic_set(&n->users, 1);
499 	C(head);
500 	C(data);
501 	C(tail);
502 	C(end);
503 
504 	atomic_inc(&(skb_shinfo(skb)->dataref));
505 	skb->cloned = 1;
506 
507 	return n;
508 }
509 
510 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
511 {
512 	/*
513 	 *	Shift between the two data areas in bytes
514 	 */
515 	unsigned long offset = new->data - old->data;
516 
517 	new->sk		= NULL;
518 	new->dev	= old->dev;
519 	new->priority	= old->priority;
520 	new->protocol	= old->protocol;
521 	new->dst	= dst_clone(old->dst);
522 #ifdef CONFIG_INET
523 	new->sp		= secpath_get(old->sp);
524 #endif
525 	new->h.raw	= old->h.raw + offset;
526 	new->nh.raw	= old->nh.raw + offset;
527 	new->mac.raw	= old->mac.raw + offset;
528 	memcpy(new->cb, old->cb, sizeof(old->cb));
529 	new->local_df	= old->local_df;
530 	new->fclone	= SKB_FCLONE_UNAVAILABLE;
531 	new->pkt_type	= old->pkt_type;
532 	new->tstamp	= old->tstamp;
533 	new->destructor = NULL;
534 #ifdef CONFIG_NETFILTER
535 	new->nfmark	= old->nfmark;
536 	new->nfct	= old->nfct;
537 	nf_conntrack_get(old->nfct);
538 	new->nfctinfo	= old->nfctinfo;
539 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
540 	new->nfct_reasm = old->nfct_reasm;
541 	nf_conntrack_get_reasm(old->nfct_reasm);
542 #endif
543 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
544 	new->ipvs_property = old->ipvs_property;
545 #endif
546 #ifdef CONFIG_BRIDGE_NETFILTER
547 	new->nf_bridge	= old->nf_bridge;
548 	nf_bridge_get(old->nf_bridge);
549 #endif
550 #endif
551 #ifdef CONFIG_NET_SCHED
552 #ifdef CONFIG_NET_CLS_ACT
553 	new->tc_verd = old->tc_verd;
554 #endif
555 	new->tc_index	= old->tc_index;
556 #endif
557 	skb_copy_secmark(new, old);
558 	atomic_set(&new->users, 1);
559 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
560 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
561 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
562 }
563 
564 /**
565  *	skb_copy	-	create private copy of an sk_buff
566  *	@skb: buffer to copy
567  *	@gfp_mask: allocation priority
568  *
569  *	Make a copy of both an &sk_buff and its data. This is used when the
570  *	caller wishes to modify the data and needs a private copy of the
571  *	data to alter. Returns %NULL on failure or the pointer to the buffer
572  *	on success. The returned buffer has a reference count of 1.
573  *
574  *	As by-product this function converts non-linear &sk_buff to linear
575  *	one, so that &sk_buff becomes completely private and caller is allowed
576  *	to modify all the data of returned buffer. This means that this
577  *	function is not recommended for use in circumstances when only
578  *	header is going to be modified. Use pskb_copy() instead.
579  */
580 
581 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
582 {
583 	int headerlen = skb->data - skb->head;
584 	/*
585 	 *	Allocate the copy buffer
586 	 */
587 	struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
588 				      gfp_mask);
589 	if (!n)
590 		return NULL;
591 
592 	/* Set the data pointer */
593 	skb_reserve(n, headerlen);
594 	/* Set the tail pointer and length */
595 	skb_put(n, skb->len);
596 	n->csum	     = skb->csum;
597 	n->ip_summed = skb->ip_summed;
598 
599 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
600 		BUG();
601 
602 	copy_skb_header(n, skb);
603 	return n;
604 }
605 
606 
607 /**
608  *	pskb_copy	-	create copy of an sk_buff with private head.
609  *	@skb: buffer to copy
610  *	@gfp_mask: allocation priority
611  *
612  *	Make a copy of both an &sk_buff and part of its data, located
613  *	in header. Fragmented data remain shared. This is used when
614  *	the caller wishes to modify only header of &sk_buff and needs
615  *	private copy of the header to alter. Returns %NULL on failure
616  *	or the pointer to the buffer on success.
617  *	The returned buffer has a reference count of 1.
618  */
619 
620 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
621 {
622 	/*
623 	 *	Allocate the copy buffer
624 	 */
625 	struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
626 
627 	if (!n)
628 		goto out;
629 
630 	/* Set the data pointer */
631 	skb_reserve(n, skb->data - skb->head);
632 	/* Set the tail pointer and length */
633 	skb_put(n, skb_headlen(skb));
634 	/* Copy the bytes */
635 	memcpy(n->data, skb->data, n->len);
636 	n->csum	     = skb->csum;
637 	n->ip_summed = skb->ip_summed;
638 
639 	n->data_len  = skb->data_len;
640 	n->len	     = skb->len;
641 
642 	if (skb_shinfo(skb)->nr_frags) {
643 		int i;
644 
645 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
646 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
647 			get_page(skb_shinfo(n)->frags[i].page);
648 		}
649 		skb_shinfo(n)->nr_frags = i;
650 	}
651 
652 	if (skb_shinfo(skb)->frag_list) {
653 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
654 		skb_clone_fraglist(n);
655 	}
656 
657 	copy_skb_header(n, skb);
658 out:
659 	return n;
660 }
661 
662 /**
663  *	pskb_expand_head - reallocate header of &sk_buff
664  *	@skb: buffer to reallocate
665  *	@nhead: room to add at head
666  *	@ntail: room to add at tail
667  *	@gfp_mask: allocation priority
668  *
669  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
670  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
671  *	reference count of 1. Returns zero in the case of success or error,
672  *	if expansion failed. In the last case, &sk_buff is not changed.
673  *
674  *	All the pointers pointing into skb header may change and must be
675  *	reloaded after call to this function.
676  */
677 
678 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
679 		     gfp_t gfp_mask)
680 {
681 	int i;
682 	u8 *data;
683 	int size = nhead + (skb->end - skb->head) + ntail;
684 	long off;
685 
686 	if (skb_shared(skb))
687 		BUG();
688 
689 	size = SKB_DATA_ALIGN(size);
690 
691 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
692 	if (!data)
693 		goto nodata;
694 
695 	/* Copy only real data... and, alas, header. This should be
696 	 * optimized for the cases when header is void. */
697 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
698 	memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
699 
700 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
701 		get_page(skb_shinfo(skb)->frags[i].page);
702 
703 	if (skb_shinfo(skb)->frag_list)
704 		skb_clone_fraglist(skb);
705 
706 	skb_release_data(skb);
707 
708 	off = (data + nhead) - skb->head;
709 
710 	skb->head     = data;
711 	skb->end      = data + size;
712 	skb->data    += off;
713 	skb->tail    += off;
714 	skb->mac.raw += off;
715 	skb->h.raw   += off;
716 	skb->nh.raw  += off;
717 	skb->cloned   = 0;
718 	skb->nohdr    = 0;
719 	atomic_set(&skb_shinfo(skb)->dataref, 1);
720 	return 0;
721 
722 nodata:
723 	return -ENOMEM;
724 }
725 
726 /* Make private copy of skb with writable head and some headroom */
727 
728 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
729 {
730 	struct sk_buff *skb2;
731 	int delta = headroom - skb_headroom(skb);
732 
733 	if (delta <= 0)
734 		skb2 = pskb_copy(skb, GFP_ATOMIC);
735 	else {
736 		skb2 = skb_clone(skb, GFP_ATOMIC);
737 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
738 					     GFP_ATOMIC)) {
739 			kfree_skb(skb2);
740 			skb2 = NULL;
741 		}
742 	}
743 	return skb2;
744 }
745 
746 
747 /**
748  *	skb_copy_expand	-	copy and expand sk_buff
749  *	@skb: buffer to copy
750  *	@newheadroom: new free bytes at head
751  *	@newtailroom: new free bytes at tail
752  *	@gfp_mask: allocation priority
753  *
754  *	Make a copy of both an &sk_buff and its data and while doing so
755  *	allocate additional space.
756  *
757  *	This is used when the caller wishes to modify the data and needs a
758  *	private copy of the data to alter as well as more space for new fields.
759  *	Returns %NULL on failure or the pointer to the buffer
760  *	on success. The returned buffer has a reference count of 1.
761  *
762  *	You must pass %GFP_ATOMIC as the allocation priority if this function
763  *	is called from an interrupt.
764  *
765  *	BUG ALERT: ip_summed is not copied. Why does this work? Is it used
766  *	only by netfilter in the cases when checksum is recalculated? --ANK
767  */
768 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
769 				int newheadroom, int newtailroom,
770 				gfp_t gfp_mask)
771 {
772 	/*
773 	 *	Allocate the copy buffer
774 	 */
775 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
776 				      gfp_mask);
777 	int head_copy_len, head_copy_off;
778 
779 	if (!n)
780 		return NULL;
781 
782 	skb_reserve(n, newheadroom);
783 
784 	/* Set the tail pointer and length */
785 	skb_put(n, skb->len);
786 
787 	head_copy_len = skb_headroom(skb);
788 	head_copy_off = 0;
789 	if (newheadroom <= head_copy_len)
790 		head_copy_len = newheadroom;
791 	else
792 		head_copy_off = newheadroom - head_copy_len;
793 
794 	/* Copy the linear header and data. */
795 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
796 			  skb->len + head_copy_len))
797 		BUG();
798 
799 	copy_skb_header(n, skb);
800 
801 	return n;
802 }
803 
804 /**
805  *	skb_pad			-	zero pad the tail of an skb
806  *	@skb: buffer to pad
807  *	@pad: space to pad
808  *
809  *	Ensure that a buffer is followed by a padding area that is zero
810  *	filled. Used by network drivers which may DMA or transfer data
811  *	beyond the buffer end onto the wire.
812  *
813  *	May return error in out of memory cases. The skb is freed on error.
814  */
815 
816 int skb_pad(struct sk_buff *skb, int pad)
817 {
818 	int err;
819 	int ntail;
820 
821 	/* If the skbuff is non linear tailroom is always zero.. */
822 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
823 		memset(skb->data+skb->len, 0, pad);
824 		return 0;
825 	}
826 
827 	ntail = skb->data_len + pad - (skb->end - skb->tail);
828 	if (likely(skb_cloned(skb) || ntail > 0)) {
829 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
830 		if (unlikely(err))
831 			goto free_skb;
832 	}
833 
834 	/* FIXME: The use of this function with non-linear skb's really needs
835 	 * to be audited.
836 	 */
837 	err = skb_linearize(skb);
838 	if (unlikely(err))
839 		goto free_skb;
840 
841 	memset(skb->data + skb->len, 0, pad);
842 	return 0;
843 
844 free_skb:
845 	kfree_skb(skb);
846 	return err;
847 }
848 
849 /* Trims skb to length len. It can change skb pointers.
850  */
851 
852 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
853 {
854 	struct sk_buff **fragp;
855 	struct sk_buff *frag;
856 	int offset = skb_headlen(skb);
857 	int nfrags = skb_shinfo(skb)->nr_frags;
858 	int i;
859 	int err;
860 
861 	if (skb_cloned(skb) &&
862 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
863 		return err;
864 
865 	i = 0;
866 	if (offset >= len)
867 		goto drop_pages;
868 
869 	for (; i < nfrags; i++) {
870 		int end = offset + skb_shinfo(skb)->frags[i].size;
871 
872 		if (end < len) {
873 			offset = end;
874 			continue;
875 		}
876 
877 		skb_shinfo(skb)->frags[i++].size = len - offset;
878 
879 drop_pages:
880 		skb_shinfo(skb)->nr_frags = i;
881 
882 		for (; i < nfrags; i++)
883 			put_page(skb_shinfo(skb)->frags[i].page);
884 
885 		if (skb_shinfo(skb)->frag_list)
886 			skb_drop_fraglist(skb);
887 		goto done;
888 	}
889 
890 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
891 	     fragp = &frag->next) {
892 		int end = offset + frag->len;
893 
894 		if (skb_shared(frag)) {
895 			struct sk_buff *nfrag;
896 
897 			nfrag = skb_clone(frag, GFP_ATOMIC);
898 			if (unlikely(!nfrag))
899 				return -ENOMEM;
900 
901 			nfrag->next = frag->next;
902 			kfree_skb(frag);
903 			frag = nfrag;
904 			*fragp = frag;
905 		}
906 
907 		if (end < len) {
908 			offset = end;
909 			continue;
910 		}
911 
912 		if (end > len &&
913 		    unlikely((err = pskb_trim(frag, len - offset))))
914 			return err;
915 
916 		if (frag->next)
917 			skb_drop_list(&frag->next);
918 		break;
919 	}
920 
921 done:
922 	if (len > skb_headlen(skb)) {
923 		skb->data_len -= skb->len - len;
924 		skb->len       = len;
925 	} else {
926 		skb->len       = len;
927 		skb->data_len  = 0;
928 		skb->tail      = skb->data + len;
929 	}
930 
931 	return 0;
932 }
933 
934 /**
935  *	__pskb_pull_tail - advance tail of skb header
936  *	@skb: buffer to reallocate
937  *	@delta: number of bytes to advance tail
938  *
939  *	The function makes a sense only on a fragmented &sk_buff,
940  *	it expands header moving its tail forward and copying necessary
941  *	data from fragmented part.
942  *
943  *	&sk_buff MUST have reference count of 1.
944  *
945  *	Returns %NULL (and &sk_buff does not change) if pull failed
946  *	or value of new tail of skb in the case of success.
947  *
948  *	All the pointers pointing into skb header may change and must be
949  *	reloaded after call to this function.
950  */
951 
952 /* Moves tail of skb head forward, copying data from fragmented part,
953  * when it is necessary.
954  * 1. It may fail due to malloc failure.
955  * 2. It may change skb pointers.
956  *
957  * It is pretty complicated. Luckily, it is called only in exceptional cases.
958  */
959 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
960 {
961 	/* If skb has not enough free space at tail, get new one
962 	 * plus 128 bytes for future expansions. If we have enough
963 	 * room at tail, reallocate without expansion only if skb is cloned.
964 	 */
965 	int i, k, eat = (skb->tail + delta) - skb->end;
966 
967 	if (eat > 0 || skb_cloned(skb)) {
968 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
969 				     GFP_ATOMIC))
970 			return NULL;
971 	}
972 
973 	if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
974 		BUG();
975 
976 	/* Optimization: no fragments, no reasons to preestimate
977 	 * size of pulled pages. Superb.
978 	 */
979 	if (!skb_shinfo(skb)->frag_list)
980 		goto pull_pages;
981 
982 	/* Estimate size of pulled pages. */
983 	eat = delta;
984 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
985 		if (skb_shinfo(skb)->frags[i].size >= eat)
986 			goto pull_pages;
987 		eat -= skb_shinfo(skb)->frags[i].size;
988 	}
989 
990 	/* If we need update frag list, we are in troubles.
991 	 * Certainly, it possible to add an offset to skb data,
992 	 * but taking into account that pulling is expected to
993 	 * be very rare operation, it is worth to fight against
994 	 * further bloating skb head and crucify ourselves here instead.
995 	 * Pure masohism, indeed. 8)8)
996 	 */
997 	if (eat) {
998 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
999 		struct sk_buff *clone = NULL;
1000 		struct sk_buff *insp = NULL;
1001 
1002 		do {
1003 			BUG_ON(!list);
1004 
1005 			if (list->len <= eat) {
1006 				/* Eaten as whole. */
1007 				eat -= list->len;
1008 				list = list->next;
1009 				insp = list;
1010 			} else {
1011 				/* Eaten partially. */
1012 
1013 				if (skb_shared(list)) {
1014 					/* Sucks! We need to fork list. :-( */
1015 					clone = skb_clone(list, GFP_ATOMIC);
1016 					if (!clone)
1017 						return NULL;
1018 					insp = list->next;
1019 					list = clone;
1020 				} else {
1021 					/* This may be pulled without
1022 					 * problems. */
1023 					insp = list;
1024 				}
1025 				if (!pskb_pull(list, eat)) {
1026 					if (clone)
1027 						kfree_skb(clone);
1028 					return NULL;
1029 				}
1030 				break;
1031 			}
1032 		} while (eat);
1033 
1034 		/* Free pulled out fragments. */
1035 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1036 			skb_shinfo(skb)->frag_list = list->next;
1037 			kfree_skb(list);
1038 		}
1039 		/* And insert new clone at head. */
1040 		if (clone) {
1041 			clone->next = list;
1042 			skb_shinfo(skb)->frag_list = clone;
1043 		}
1044 	}
1045 	/* Success! Now we may commit changes to skb data. */
1046 
1047 pull_pages:
1048 	eat = delta;
1049 	k = 0;
1050 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1051 		if (skb_shinfo(skb)->frags[i].size <= eat) {
1052 			put_page(skb_shinfo(skb)->frags[i].page);
1053 			eat -= skb_shinfo(skb)->frags[i].size;
1054 		} else {
1055 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1056 			if (eat) {
1057 				skb_shinfo(skb)->frags[k].page_offset += eat;
1058 				skb_shinfo(skb)->frags[k].size -= eat;
1059 				eat = 0;
1060 			}
1061 			k++;
1062 		}
1063 	}
1064 	skb_shinfo(skb)->nr_frags = k;
1065 
1066 	skb->tail     += delta;
1067 	skb->data_len -= delta;
1068 
1069 	return skb->tail;
1070 }
1071 
1072 /* Copy some data bits from skb to kernel buffer. */
1073 
1074 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1075 {
1076 	int i, copy;
1077 	int start = skb_headlen(skb);
1078 
1079 	if (offset > (int)skb->len - len)
1080 		goto fault;
1081 
1082 	/* Copy header. */
1083 	if ((copy = start - offset) > 0) {
1084 		if (copy > len)
1085 			copy = len;
1086 		memcpy(to, skb->data + offset, copy);
1087 		if ((len -= copy) == 0)
1088 			return 0;
1089 		offset += copy;
1090 		to     += copy;
1091 	}
1092 
1093 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1094 		int end;
1095 
1096 		BUG_TRAP(start <= offset + len);
1097 
1098 		end = start + skb_shinfo(skb)->frags[i].size;
1099 		if ((copy = end - offset) > 0) {
1100 			u8 *vaddr;
1101 
1102 			if (copy > len)
1103 				copy = len;
1104 
1105 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1106 			memcpy(to,
1107 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1108 			       offset - start, copy);
1109 			kunmap_skb_frag(vaddr);
1110 
1111 			if ((len -= copy) == 0)
1112 				return 0;
1113 			offset += copy;
1114 			to     += copy;
1115 		}
1116 		start = end;
1117 	}
1118 
1119 	if (skb_shinfo(skb)->frag_list) {
1120 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1121 
1122 		for (; list; list = list->next) {
1123 			int end;
1124 
1125 			BUG_TRAP(start <= offset + len);
1126 
1127 			end = start + list->len;
1128 			if ((copy = end - offset) > 0) {
1129 				if (copy > len)
1130 					copy = len;
1131 				if (skb_copy_bits(list, offset - start,
1132 						  to, copy))
1133 					goto fault;
1134 				if ((len -= copy) == 0)
1135 					return 0;
1136 				offset += copy;
1137 				to     += copy;
1138 			}
1139 			start = end;
1140 		}
1141 	}
1142 	if (!len)
1143 		return 0;
1144 
1145 fault:
1146 	return -EFAULT;
1147 }
1148 
1149 /**
1150  *	skb_store_bits - store bits from kernel buffer to skb
1151  *	@skb: destination buffer
1152  *	@offset: offset in destination
1153  *	@from: source buffer
1154  *	@len: number of bytes to copy
1155  *
1156  *	Copy the specified number of bytes from the source buffer to the
1157  *	destination skb.  This function handles all the messy bits of
1158  *	traversing fragment lists and such.
1159  */
1160 
1161 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
1162 {
1163 	int i, copy;
1164 	int start = skb_headlen(skb);
1165 
1166 	if (offset > (int)skb->len - len)
1167 		goto fault;
1168 
1169 	if ((copy = start - offset) > 0) {
1170 		if (copy > len)
1171 			copy = len;
1172 		memcpy(skb->data + offset, from, copy);
1173 		if ((len -= copy) == 0)
1174 			return 0;
1175 		offset += copy;
1176 		from += copy;
1177 	}
1178 
1179 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1180 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1181 		int end;
1182 
1183 		BUG_TRAP(start <= offset + len);
1184 
1185 		end = start + frag->size;
1186 		if ((copy = end - offset) > 0) {
1187 			u8 *vaddr;
1188 
1189 			if (copy > len)
1190 				copy = len;
1191 
1192 			vaddr = kmap_skb_frag(frag);
1193 			memcpy(vaddr + frag->page_offset + offset - start,
1194 			       from, copy);
1195 			kunmap_skb_frag(vaddr);
1196 
1197 			if ((len -= copy) == 0)
1198 				return 0;
1199 			offset += copy;
1200 			from += copy;
1201 		}
1202 		start = end;
1203 	}
1204 
1205 	if (skb_shinfo(skb)->frag_list) {
1206 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1207 
1208 		for (; list; list = list->next) {
1209 			int end;
1210 
1211 			BUG_TRAP(start <= offset + len);
1212 
1213 			end = start + list->len;
1214 			if ((copy = end - offset) > 0) {
1215 				if (copy > len)
1216 					copy = len;
1217 				if (skb_store_bits(list, offset - start,
1218 						   from, copy))
1219 					goto fault;
1220 				if ((len -= copy) == 0)
1221 					return 0;
1222 				offset += copy;
1223 				from += copy;
1224 			}
1225 			start = end;
1226 		}
1227 	}
1228 	if (!len)
1229 		return 0;
1230 
1231 fault:
1232 	return -EFAULT;
1233 }
1234 
1235 EXPORT_SYMBOL(skb_store_bits);
1236 
1237 /* Checksum skb data. */
1238 
1239 unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1240 			  int len, unsigned int csum)
1241 {
1242 	int start = skb_headlen(skb);
1243 	int i, copy = start - offset;
1244 	int pos = 0;
1245 
1246 	/* Checksum header. */
1247 	if (copy > 0) {
1248 		if (copy > len)
1249 			copy = len;
1250 		csum = csum_partial(skb->data + offset, copy, csum);
1251 		if ((len -= copy) == 0)
1252 			return csum;
1253 		offset += copy;
1254 		pos	= copy;
1255 	}
1256 
1257 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1258 		int end;
1259 
1260 		BUG_TRAP(start <= offset + len);
1261 
1262 		end = start + skb_shinfo(skb)->frags[i].size;
1263 		if ((copy = end - offset) > 0) {
1264 			unsigned int csum2;
1265 			u8 *vaddr;
1266 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1267 
1268 			if (copy > len)
1269 				copy = len;
1270 			vaddr = kmap_skb_frag(frag);
1271 			csum2 = csum_partial(vaddr + frag->page_offset +
1272 					     offset - start, copy, 0);
1273 			kunmap_skb_frag(vaddr);
1274 			csum = csum_block_add(csum, csum2, pos);
1275 			if (!(len -= copy))
1276 				return csum;
1277 			offset += copy;
1278 			pos    += copy;
1279 		}
1280 		start = end;
1281 	}
1282 
1283 	if (skb_shinfo(skb)->frag_list) {
1284 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1285 
1286 		for (; list; list = list->next) {
1287 			int end;
1288 
1289 			BUG_TRAP(start <= offset + len);
1290 
1291 			end = start + list->len;
1292 			if ((copy = end - offset) > 0) {
1293 				unsigned int csum2;
1294 				if (copy > len)
1295 					copy = len;
1296 				csum2 = skb_checksum(list, offset - start,
1297 						     copy, 0);
1298 				csum = csum_block_add(csum, csum2, pos);
1299 				if ((len -= copy) == 0)
1300 					return csum;
1301 				offset += copy;
1302 				pos    += copy;
1303 			}
1304 			start = end;
1305 		}
1306 	}
1307 	BUG_ON(len);
1308 
1309 	return csum;
1310 }
1311 
1312 /* Both of above in one bottle. */
1313 
1314 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1315 				    u8 *to, int len, unsigned int csum)
1316 {
1317 	int start = skb_headlen(skb);
1318 	int i, copy = start - offset;
1319 	int pos = 0;
1320 
1321 	/* Copy header. */
1322 	if (copy > 0) {
1323 		if (copy > len)
1324 			copy = len;
1325 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1326 						 copy, csum);
1327 		if ((len -= copy) == 0)
1328 			return csum;
1329 		offset += copy;
1330 		to     += copy;
1331 		pos	= copy;
1332 	}
1333 
1334 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1335 		int end;
1336 
1337 		BUG_TRAP(start <= offset + len);
1338 
1339 		end = start + skb_shinfo(skb)->frags[i].size;
1340 		if ((copy = end - offset) > 0) {
1341 			unsigned int csum2;
1342 			u8 *vaddr;
1343 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1344 
1345 			if (copy > len)
1346 				copy = len;
1347 			vaddr = kmap_skb_frag(frag);
1348 			csum2 = csum_partial_copy_nocheck(vaddr +
1349 							  frag->page_offset +
1350 							  offset - start, to,
1351 							  copy, 0);
1352 			kunmap_skb_frag(vaddr);
1353 			csum = csum_block_add(csum, csum2, pos);
1354 			if (!(len -= copy))
1355 				return csum;
1356 			offset += copy;
1357 			to     += copy;
1358 			pos    += copy;
1359 		}
1360 		start = end;
1361 	}
1362 
1363 	if (skb_shinfo(skb)->frag_list) {
1364 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1365 
1366 		for (; list; list = list->next) {
1367 			unsigned int csum2;
1368 			int end;
1369 
1370 			BUG_TRAP(start <= offset + len);
1371 
1372 			end = start + list->len;
1373 			if ((copy = end - offset) > 0) {
1374 				if (copy > len)
1375 					copy = len;
1376 				csum2 = skb_copy_and_csum_bits(list,
1377 							       offset - start,
1378 							       to, copy, 0);
1379 				csum = csum_block_add(csum, csum2, pos);
1380 				if ((len -= copy) == 0)
1381 					return csum;
1382 				offset += copy;
1383 				to     += copy;
1384 				pos    += copy;
1385 			}
1386 			start = end;
1387 		}
1388 	}
1389 	BUG_ON(len);
1390 	return csum;
1391 }
1392 
1393 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1394 {
1395 	unsigned int csum;
1396 	long csstart;
1397 
1398 	if (skb->ip_summed == CHECKSUM_HW)
1399 		csstart = skb->h.raw - skb->data;
1400 	else
1401 		csstart = skb_headlen(skb);
1402 
1403 	BUG_ON(csstart > skb_headlen(skb));
1404 
1405 	memcpy(to, skb->data, csstart);
1406 
1407 	csum = 0;
1408 	if (csstart != skb->len)
1409 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1410 					      skb->len - csstart, 0);
1411 
1412 	if (skb->ip_summed == CHECKSUM_HW) {
1413 		long csstuff = csstart + skb->csum;
1414 
1415 		*((unsigned short *)(to + csstuff)) = csum_fold(csum);
1416 	}
1417 }
1418 
1419 /**
1420  *	skb_dequeue - remove from the head of the queue
1421  *	@list: list to dequeue from
1422  *
1423  *	Remove the head of the list. The list lock is taken so the function
1424  *	may be used safely with other locking list functions. The head item is
1425  *	returned or %NULL if the list is empty.
1426  */
1427 
1428 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1429 {
1430 	unsigned long flags;
1431 	struct sk_buff *result;
1432 
1433 	spin_lock_irqsave(&list->lock, flags);
1434 	result = __skb_dequeue(list);
1435 	spin_unlock_irqrestore(&list->lock, flags);
1436 	return result;
1437 }
1438 
1439 /**
1440  *	skb_dequeue_tail - remove from the tail of the queue
1441  *	@list: list to dequeue from
1442  *
1443  *	Remove the tail of the list. The list lock is taken so the function
1444  *	may be used safely with other locking list functions. The tail item is
1445  *	returned or %NULL if the list is empty.
1446  */
1447 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1448 {
1449 	unsigned long flags;
1450 	struct sk_buff *result;
1451 
1452 	spin_lock_irqsave(&list->lock, flags);
1453 	result = __skb_dequeue_tail(list);
1454 	spin_unlock_irqrestore(&list->lock, flags);
1455 	return result;
1456 }
1457 
1458 /**
1459  *	skb_queue_purge - empty a list
1460  *	@list: list to empty
1461  *
1462  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1463  *	the list and one reference dropped. This function takes the list
1464  *	lock and is atomic with respect to other list locking functions.
1465  */
1466 void skb_queue_purge(struct sk_buff_head *list)
1467 {
1468 	struct sk_buff *skb;
1469 	while ((skb = skb_dequeue(list)) != NULL)
1470 		kfree_skb(skb);
1471 }
1472 
1473 /**
1474  *	skb_queue_head - queue a buffer at the list head
1475  *	@list: list to use
1476  *	@newsk: buffer to queue
1477  *
1478  *	Queue a buffer at the start of the list. This function takes the
1479  *	list lock and can be used safely with other locking &sk_buff functions
1480  *	safely.
1481  *
1482  *	A buffer cannot be placed on two lists at the same time.
1483  */
1484 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1485 {
1486 	unsigned long flags;
1487 
1488 	spin_lock_irqsave(&list->lock, flags);
1489 	__skb_queue_head(list, newsk);
1490 	spin_unlock_irqrestore(&list->lock, flags);
1491 }
1492 
1493 /**
1494  *	skb_queue_tail - queue a buffer at the list tail
1495  *	@list: list to use
1496  *	@newsk: buffer to queue
1497  *
1498  *	Queue a buffer at the tail of the list. This function takes the
1499  *	list lock and can be used safely with other locking &sk_buff functions
1500  *	safely.
1501  *
1502  *	A buffer cannot be placed on two lists at the same time.
1503  */
1504 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1505 {
1506 	unsigned long flags;
1507 
1508 	spin_lock_irqsave(&list->lock, flags);
1509 	__skb_queue_tail(list, newsk);
1510 	spin_unlock_irqrestore(&list->lock, flags);
1511 }
1512 
1513 /**
1514  *	skb_unlink	-	remove a buffer from a list
1515  *	@skb: buffer to remove
1516  *	@list: list to use
1517  *
1518  *	Remove a packet from a list. The list locks are taken and this
1519  *	function is atomic with respect to other list locked calls
1520  *
1521  *	You must know what list the SKB is on.
1522  */
1523 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1524 {
1525 	unsigned long flags;
1526 
1527 	spin_lock_irqsave(&list->lock, flags);
1528 	__skb_unlink(skb, list);
1529 	spin_unlock_irqrestore(&list->lock, flags);
1530 }
1531 
1532 /**
1533  *	skb_append	-	append a buffer
1534  *	@old: buffer to insert after
1535  *	@newsk: buffer to insert
1536  *	@list: list to use
1537  *
1538  *	Place a packet after a given packet in a list. The list locks are taken
1539  *	and this function is atomic with respect to other list locked calls.
1540  *	A buffer cannot be placed on two lists at the same time.
1541  */
1542 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1543 {
1544 	unsigned long flags;
1545 
1546 	spin_lock_irqsave(&list->lock, flags);
1547 	__skb_append(old, newsk, list);
1548 	spin_unlock_irqrestore(&list->lock, flags);
1549 }
1550 
1551 
1552 /**
1553  *	skb_insert	-	insert a buffer
1554  *	@old: buffer to insert before
1555  *	@newsk: buffer to insert
1556  *	@list: list to use
1557  *
1558  *	Place a packet before a given packet in a list. The list locks are
1559  * 	taken and this function is atomic with respect to other list locked
1560  *	calls.
1561  *
1562  *	A buffer cannot be placed on two lists at the same time.
1563  */
1564 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1565 {
1566 	unsigned long flags;
1567 
1568 	spin_lock_irqsave(&list->lock, flags);
1569 	__skb_insert(newsk, old->prev, old, list);
1570 	spin_unlock_irqrestore(&list->lock, flags);
1571 }
1572 
1573 #if 0
1574 /*
1575  * 	Tune the memory allocator for a new MTU size.
1576  */
1577 void skb_add_mtu(int mtu)
1578 {
1579 	/* Must match allocation in alloc_skb */
1580 	mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1581 
1582 	kmem_add_cache_size(mtu);
1583 }
1584 #endif
1585 
1586 static inline void skb_split_inside_header(struct sk_buff *skb,
1587 					   struct sk_buff* skb1,
1588 					   const u32 len, const int pos)
1589 {
1590 	int i;
1591 
1592 	memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1593 
1594 	/* And move data appendix as is. */
1595 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1596 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1597 
1598 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1599 	skb_shinfo(skb)->nr_frags  = 0;
1600 	skb1->data_len		   = skb->data_len;
1601 	skb1->len		   += skb1->data_len;
1602 	skb->data_len		   = 0;
1603 	skb->len		   = len;
1604 	skb->tail		   = skb->data + len;
1605 }
1606 
1607 static inline void skb_split_no_header(struct sk_buff *skb,
1608 				       struct sk_buff* skb1,
1609 				       const u32 len, int pos)
1610 {
1611 	int i, k = 0;
1612 	const int nfrags = skb_shinfo(skb)->nr_frags;
1613 
1614 	skb_shinfo(skb)->nr_frags = 0;
1615 	skb1->len		  = skb1->data_len = skb->len - len;
1616 	skb->len		  = len;
1617 	skb->data_len		  = len - pos;
1618 
1619 	for (i = 0; i < nfrags; i++) {
1620 		int size = skb_shinfo(skb)->frags[i].size;
1621 
1622 		if (pos + size > len) {
1623 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1624 
1625 			if (pos < len) {
1626 				/* Split frag.
1627 				 * We have two variants in this case:
1628 				 * 1. Move all the frag to the second
1629 				 *    part, if it is possible. F.e.
1630 				 *    this approach is mandatory for TUX,
1631 				 *    where splitting is expensive.
1632 				 * 2. Split is accurately. We make this.
1633 				 */
1634 				get_page(skb_shinfo(skb)->frags[i].page);
1635 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1636 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1637 				skb_shinfo(skb)->frags[i].size	= len - pos;
1638 				skb_shinfo(skb)->nr_frags++;
1639 			}
1640 			k++;
1641 		} else
1642 			skb_shinfo(skb)->nr_frags++;
1643 		pos += size;
1644 	}
1645 	skb_shinfo(skb1)->nr_frags = k;
1646 }
1647 
1648 /**
1649  * skb_split - Split fragmented skb to two parts at length len.
1650  * @skb: the buffer to split
1651  * @skb1: the buffer to receive the second part
1652  * @len: new length for skb
1653  */
1654 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1655 {
1656 	int pos = skb_headlen(skb);
1657 
1658 	if (len < pos)	/* Split line is inside header. */
1659 		skb_split_inside_header(skb, skb1, len, pos);
1660 	else		/* Second chunk has no header, nothing to copy. */
1661 		skb_split_no_header(skb, skb1, len, pos);
1662 }
1663 
1664 /**
1665  * skb_prepare_seq_read - Prepare a sequential read of skb data
1666  * @skb: the buffer to read
1667  * @from: lower offset of data to be read
1668  * @to: upper offset of data to be read
1669  * @st: state variable
1670  *
1671  * Initializes the specified state variable. Must be called before
1672  * invoking skb_seq_read() for the first time.
1673  */
1674 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1675 			  unsigned int to, struct skb_seq_state *st)
1676 {
1677 	st->lower_offset = from;
1678 	st->upper_offset = to;
1679 	st->root_skb = st->cur_skb = skb;
1680 	st->frag_idx = st->stepped_offset = 0;
1681 	st->frag_data = NULL;
1682 }
1683 
1684 /**
1685  * skb_seq_read - Sequentially read skb data
1686  * @consumed: number of bytes consumed by the caller so far
1687  * @data: destination pointer for data to be returned
1688  * @st: state variable
1689  *
1690  * Reads a block of skb data at &consumed relative to the
1691  * lower offset specified to skb_prepare_seq_read(). Assigns
1692  * the head of the data block to &data and returns the length
1693  * of the block or 0 if the end of the skb data or the upper
1694  * offset has been reached.
1695  *
1696  * The caller is not required to consume all of the data
1697  * returned, i.e. &consumed is typically set to the number
1698  * of bytes already consumed and the next call to
1699  * skb_seq_read() will return the remaining part of the block.
1700  *
1701  * Note: The size of each block of data returned can be arbitary,
1702  *       this limitation is the cost for zerocopy seqeuental
1703  *       reads of potentially non linear data.
1704  *
1705  * Note: Fragment lists within fragments are not implemented
1706  *       at the moment, state->root_skb could be replaced with
1707  *       a stack for this purpose.
1708  */
1709 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1710 			  struct skb_seq_state *st)
1711 {
1712 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1713 	skb_frag_t *frag;
1714 
1715 	if (unlikely(abs_offset >= st->upper_offset))
1716 		return 0;
1717 
1718 next_skb:
1719 	block_limit = skb_headlen(st->cur_skb);
1720 
1721 	if (abs_offset < block_limit) {
1722 		*data = st->cur_skb->data + abs_offset;
1723 		return block_limit - abs_offset;
1724 	}
1725 
1726 	if (st->frag_idx == 0 && !st->frag_data)
1727 		st->stepped_offset += skb_headlen(st->cur_skb);
1728 
1729 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1730 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1731 		block_limit = frag->size + st->stepped_offset;
1732 
1733 		if (abs_offset < block_limit) {
1734 			if (!st->frag_data)
1735 				st->frag_data = kmap_skb_frag(frag);
1736 
1737 			*data = (u8 *) st->frag_data + frag->page_offset +
1738 				(abs_offset - st->stepped_offset);
1739 
1740 			return block_limit - abs_offset;
1741 		}
1742 
1743 		if (st->frag_data) {
1744 			kunmap_skb_frag(st->frag_data);
1745 			st->frag_data = NULL;
1746 		}
1747 
1748 		st->frag_idx++;
1749 		st->stepped_offset += frag->size;
1750 	}
1751 
1752 	if (st->cur_skb->next) {
1753 		st->cur_skb = st->cur_skb->next;
1754 		st->frag_idx = 0;
1755 		goto next_skb;
1756 	} else if (st->root_skb == st->cur_skb &&
1757 		   skb_shinfo(st->root_skb)->frag_list) {
1758 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1759 		goto next_skb;
1760 	}
1761 
1762 	return 0;
1763 }
1764 
1765 /**
1766  * skb_abort_seq_read - Abort a sequential read of skb data
1767  * @st: state variable
1768  *
1769  * Must be called if skb_seq_read() was not called until it
1770  * returned 0.
1771  */
1772 void skb_abort_seq_read(struct skb_seq_state *st)
1773 {
1774 	if (st->frag_data)
1775 		kunmap_skb_frag(st->frag_data);
1776 }
1777 
1778 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
1779 
1780 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1781 					  struct ts_config *conf,
1782 					  struct ts_state *state)
1783 {
1784 	return skb_seq_read(offset, text, TS_SKB_CB(state));
1785 }
1786 
1787 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1788 {
1789 	skb_abort_seq_read(TS_SKB_CB(state));
1790 }
1791 
1792 /**
1793  * skb_find_text - Find a text pattern in skb data
1794  * @skb: the buffer to look in
1795  * @from: search offset
1796  * @to: search limit
1797  * @config: textsearch configuration
1798  * @state: uninitialized textsearch state variable
1799  *
1800  * Finds a pattern in the skb data according to the specified
1801  * textsearch configuration. Use textsearch_next() to retrieve
1802  * subsequent occurrences of the pattern. Returns the offset
1803  * to the first occurrence or UINT_MAX if no match was found.
1804  */
1805 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1806 			   unsigned int to, struct ts_config *config,
1807 			   struct ts_state *state)
1808 {
1809 	unsigned int ret;
1810 
1811 	config->get_next_block = skb_ts_get_next_block;
1812 	config->finish = skb_ts_finish;
1813 
1814 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1815 
1816 	ret = textsearch_find(config, state);
1817 	return (ret <= to - from ? ret : UINT_MAX);
1818 }
1819 
1820 /**
1821  * skb_append_datato_frags: - append the user data to a skb
1822  * @sk: sock  structure
1823  * @skb: skb structure to be appened with user data.
1824  * @getfrag: call back function to be used for getting the user data
1825  * @from: pointer to user message iov
1826  * @length: length of the iov message
1827  *
1828  * Description: This procedure append the user data in the fragment part
1829  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
1830  */
1831 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1832 			int (*getfrag)(void *from, char *to, int offset,
1833 					int len, int odd, struct sk_buff *skb),
1834 			void *from, int length)
1835 {
1836 	int frg_cnt = 0;
1837 	skb_frag_t *frag = NULL;
1838 	struct page *page = NULL;
1839 	int copy, left;
1840 	int offset = 0;
1841 	int ret;
1842 
1843 	do {
1844 		/* Return error if we don't have space for new frag */
1845 		frg_cnt = skb_shinfo(skb)->nr_frags;
1846 		if (frg_cnt >= MAX_SKB_FRAGS)
1847 			return -EFAULT;
1848 
1849 		/* allocate a new page for next frag */
1850 		page = alloc_pages(sk->sk_allocation, 0);
1851 
1852 		/* If alloc_page fails just return failure and caller will
1853 		 * free previous allocated pages by doing kfree_skb()
1854 		 */
1855 		if (page == NULL)
1856 			return -ENOMEM;
1857 
1858 		/* initialize the next frag */
1859 		sk->sk_sndmsg_page = page;
1860 		sk->sk_sndmsg_off = 0;
1861 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1862 		skb->truesize += PAGE_SIZE;
1863 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1864 
1865 		/* get the new initialized frag */
1866 		frg_cnt = skb_shinfo(skb)->nr_frags;
1867 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1868 
1869 		/* copy the user data to page */
1870 		left = PAGE_SIZE - frag->page_offset;
1871 		copy = (length > left)? left : length;
1872 
1873 		ret = getfrag(from, (page_address(frag->page) +
1874 			    frag->page_offset + frag->size),
1875 			    offset, copy, 0, skb);
1876 		if (ret < 0)
1877 			return -EFAULT;
1878 
1879 		/* copy was successful so update the size parameters */
1880 		sk->sk_sndmsg_off += copy;
1881 		frag->size += copy;
1882 		skb->len += copy;
1883 		skb->data_len += copy;
1884 		offset += copy;
1885 		length -= copy;
1886 
1887 	} while (length > 0);
1888 
1889 	return 0;
1890 }
1891 
1892 /**
1893  *	skb_pull_rcsum - pull skb and update receive checksum
1894  *	@skb: buffer to update
1895  *	@start: start of data before pull
1896  *	@len: length of data pulled
1897  *
1898  *	This function performs an skb_pull on the packet and updates
1899  *	update the CHECKSUM_HW checksum.  It should be used on receive
1900  *	path processing instead of skb_pull unless you know that the
1901  *	checksum difference is zero (e.g., a valid IP header) or you
1902  *	are setting ip_summed to CHECKSUM_NONE.
1903  */
1904 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
1905 {
1906 	BUG_ON(len > skb->len);
1907 	skb->len -= len;
1908 	BUG_ON(skb->len < skb->data_len);
1909 	skb_postpull_rcsum(skb, skb->data, len);
1910 	return skb->data += len;
1911 }
1912 
1913 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
1914 
1915 /**
1916  *	skb_segment - Perform protocol segmentation on skb.
1917  *	@skb: buffer to segment
1918  *	@features: features for the output path (see dev->features)
1919  *
1920  *	This function performs segmentation on the given skb.  It returns
1921  *	the segment at the given position.  It returns NULL if there are
1922  *	no more segments to generate, or when an error is encountered.
1923  */
1924 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
1925 {
1926 	struct sk_buff *segs = NULL;
1927 	struct sk_buff *tail = NULL;
1928 	unsigned int mss = skb_shinfo(skb)->gso_size;
1929 	unsigned int doffset = skb->data - skb->mac.raw;
1930 	unsigned int offset = doffset;
1931 	unsigned int headroom;
1932 	unsigned int len;
1933 	int sg = features & NETIF_F_SG;
1934 	int nfrags = skb_shinfo(skb)->nr_frags;
1935 	int err = -ENOMEM;
1936 	int i = 0;
1937 	int pos;
1938 
1939 	__skb_push(skb, doffset);
1940 	headroom = skb_headroom(skb);
1941 	pos = skb_headlen(skb);
1942 
1943 	do {
1944 		struct sk_buff *nskb;
1945 		skb_frag_t *frag;
1946 		int hsize, nsize;
1947 		int k;
1948 		int size;
1949 
1950 		len = skb->len - offset;
1951 		if (len > mss)
1952 			len = mss;
1953 
1954 		hsize = skb_headlen(skb) - offset;
1955 		if (hsize < 0)
1956 			hsize = 0;
1957 		nsize = hsize + doffset;
1958 		if (nsize > len + doffset || !sg)
1959 			nsize = len + doffset;
1960 
1961 		nskb = alloc_skb(nsize + headroom, GFP_ATOMIC);
1962 		if (unlikely(!nskb))
1963 			goto err;
1964 
1965 		if (segs)
1966 			tail->next = nskb;
1967 		else
1968 			segs = nskb;
1969 		tail = nskb;
1970 
1971 		nskb->dev = skb->dev;
1972 		nskb->priority = skb->priority;
1973 		nskb->protocol = skb->protocol;
1974 		nskb->dst = dst_clone(skb->dst);
1975 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
1976 		nskb->pkt_type = skb->pkt_type;
1977 		nskb->mac_len = skb->mac_len;
1978 
1979 		skb_reserve(nskb, headroom);
1980 		nskb->mac.raw = nskb->data;
1981 		nskb->nh.raw = nskb->data + skb->mac_len;
1982 		nskb->h.raw = nskb->nh.raw + (skb->h.raw - skb->nh.raw);
1983 		memcpy(skb_put(nskb, doffset), skb->data, doffset);
1984 
1985 		if (!sg) {
1986 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
1987 							    skb_put(nskb, len),
1988 							    len, 0);
1989 			continue;
1990 		}
1991 
1992 		frag = skb_shinfo(nskb)->frags;
1993 		k = 0;
1994 
1995 		nskb->ip_summed = CHECKSUM_HW;
1996 		nskb->csum = skb->csum;
1997 		memcpy(skb_put(nskb, hsize), skb->data + offset, hsize);
1998 
1999 		while (pos < offset + len) {
2000 			BUG_ON(i >= nfrags);
2001 
2002 			*frag = skb_shinfo(skb)->frags[i];
2003 			get_page(frag->page);
2004 			size = frag->size;
2005 
2006 			if (pos < offset) {
2007 				frag->page_offset += offset - pos;
2008 				frag->size -= offset - pos;
2009 			}
2010 
2011 			k++;
2012 
2013 			if (pos + size <= offset + len) {
2014 				i++;
2015 				pos += size;
2016 			} else {
2017 				frag->size -= pos + size - (offset + len);
2018 				break;
2019 			}
2020 
2021 			frag++;
2022 		}
2023 
2024 		skb_shinfo(nskb)->nr_frags = k;
2025 		nskb->data_len = len - hsize;
2026 		nskb->len += nskb->data_len;
2027 		nskb->truesize += nskb->data_len;
2028 	} while ((offset += len) < skb->len);
2029 
2030 	return segs;
2031 
2032 err:
2033 	while ((skb = segs)) {
2034 		segs = skb->next;
2035 		kfree(skb);
2036 	}
2037 	return ERR_PTR(err);
2038 }
2039 
2040 EXPORT_SYMBOL_GPL(skb_segment);
2041 
2042 void __init skb_init(void)
2043 {
2044 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2045 					      sizeof(struct sk_buff),
2046 					      0,
2047 					      SLAB_HWCACHE_ALIGN,
2048 					      NULL, NULL);
2049 	if (!skbuff_head_cache)
2050 		panic("cannot create skbuff cache");
2051 
2052 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2053 						(2*sizeof(struct sk_buff)) +
2054 						sizeof(atomic_t),
2055 						0,
2056 						SLAB_HWCACHE_ALIGN,
2057 						NULL, NULL);
2058 	if (!skbuff_fclone_cache)
2059 		panic("cannot create skbuff cache");
2060 }
2061 
2062 EXPORT_SYMBOL(___pskb_trim);
2063 EXPORT_SYMBOL(__kfree_skb);
2064 EXPORT_SYMBOL(kfree_skb);
2065 EXPORT_SYMBOL(__pskb_pull_tail);
2066 EXPORT_SYMBOL(__alloc_skb);
2067 EXPORT_SYMBOL(__netdev_alloc_skb);
2068 EXPORT_SYMBOL(pskb_copy);
2069 EXPORT_SYMBOL(pskb_expand_head);
2070 EXPORT_SYMBOL(skb_checksum);
2071 EXPORT_SYMBOL(skb_clone);
2072 EXPORT_SYMBOL(skb_clone_fraglist);
2073 EXPORT_SYMBOL(skb_copy);
2074 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2075 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2076 EXPORT_SYMBOL(skb_copy_bits);
2077 EXPORT_SYMBOL(skb_copy_expand);
2078 EXPORT_SYMBOL(skb_over_panic);
2079 EXPORT_SYMBOL(skb_pad);
2080 EXPORT_SYMBOL(skb_realloc_headroom);
2081 EXPORT_SYMBOL(skb_under_panic);
2082 EXPORT_SYMBOL(skb_dequeue);
2083 EXPORT_SYMBOL(skb_dequeue_tail);
2084 EXPORT_SYMBOL(skb_insert);
2085 EXPORT_SYMBOL(skb_queue_purge);
2086 EXPORT_SYMBOL(skb_queue_head);
2087 EXPORT_SYMBOL(skb_queue_tail);
2088 EXPORT_SYMBOL(skb_unlink);
2089 EXPORT_SYMBOL(skb_append);
2090 EXPORT_SYMBOL(skb_split);
2091 EXPORT_SYMBOL(skb_prepare_seq_read);
2092 EXPORT_SYMBOL(skb_seq_read);
2093 EXPORT_SYMBOL(skb_abort_seq_read);
2094 EXPORT_SYMBOL(skb_find_text);
2095 EXPORT_SYMBOL(skb_append_datato_frags);
2096