1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $ 8 * 9 * Fixes: 10 * Alan Cox : Fixed the worst of the load 11 * balancer bugs. 12 * Dave Platt : Interrupt stacking fix. 13 * Richard Kooijman : Timestamp fixes. 14 * Alan Cox : Changed buffer format. 15 * Alan Cox : destructor hook for AF_UNIX etc. 16 * Linus Torvalds : Better skb_clone. 17 * Alan Cox : Added skb_copy. 18 * Alan Cox : Added all the changed routines Linus 19 * only put in the headers 20 * Ray VanTassle : Fixed --skb->lock in free 21 * Alan Cox : skb_copy copy arp field 22 * Andi Kleen : slabified it. 23 * Robert Olsson : Removed skb_head_pool 24 * 25 * NOTE: 26 * The __skb_ routines should be called with interrupts 27 * disabled, or you better be *real* sure that the operation is atomic 28 * with respect to whatever list is being frobbed (e.g. via lock_sock() 29 * or via disabling bottom half handlers, etc). 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License 33 * as published by the Free Software Foundation; either version 34 * 2 of the License, or (at your option) any later version. 35 */ 36 37 /* 38 * The functions in this file will not compile correctly with gcc 2.4.x 39 */ 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/sched.h> 45 #include <linux/mm.h> 46 #include <linux/interrupt.h> 47 #include <linux/in.h> 48 #include <linux/inet.h> 49 #include <linux/slab.h> 50 #include <linux/netdevice.h> 51 #ifdef CONFIG_NET_CLS_ACT 52 #include <net/pkt_sched.h> 53 #endif 54 #include <linux/string.h> 55 #include <linux/skbuff.h> 56 #include <linux/cache.h> 57 #include <linux/rtnetlink.h> 58 #include <linux/init.h> 59 #include <linux/highmem.h> 60 61 #include <net/protocol.h> 62 #include <net/dst.h> 63 #include <net/sock.h> 64 #include <net/checksum.h> 65 #include <net/xfrm.h> 66 67 #include <asm/uaccess.h> 68 #include <asm/system.h> 69 70 static kmem_cache_t *skbuff_head_cache __read_mostly; 71 static kmem_cache_t *skbuff_fclone_cache __read_mostly; 72 73 /* 74 * Keep out-of-line to prevent kernel bloat. 75 * __builtin_return_address is not used because it is not always 76 * reliable. 77 */ 78 79 /** 80 * skb_over_panic - private function 81 * @skb: buffer 82 * @sz: size 83 * @here: address 84 * 85 * Out of line support code for skb_put(). Not user callable. 86 */ 87 void skb_over_panic(struct sk_buff *skb, int sz, void *here) 88 { 89 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 90 "data:%p tail:%p end:%p dev:%s\n", 91 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end, 92 skb->dev ? skb->dev->name : "<NULL>"); 93 BUG(); 94 } 95 96 /** 97 * skb_under_panic - private function 98 * @skb: buffer 99 * @sz: size 100 * @here: address 101 * 102 * Out of line support code for skb_push(). Not user callable. 103 */ 104 105 void skb_under_panic(struct sk_buff *skb, int sz, void *here) 106 { 107 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 108 "data:%p tail:%p end:%p dev:%s\n", 109 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end, 110 skb->dev ? skb->dev->name : "<NULL>"); 111 BUG(); 112 } 113 114 void skb_truesize_bug(struct sk_buff *skb) 115 { 116 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) " 117 "len=%u, sizeof(sk_buff)=%Zd\n", 118 skb->truesize, skb->len, sizeof(struct sk_buff)); 119 } 120 EXPORT_SYMBOL(skb_truesize_bug); 121 122 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 123 * 'private' fields and also do memory statistics to find all the 124 * [BEEP] leaks. 125 * 126 */ 127 128 /** 129 * __alloc_skb - allocate a network buffer 130 * @size: size to allocate 131 * @gfp_mask: allocation mask 132 * @fclone: allocate from fclone cache instead of head cache 133 * and allocate a cloned (child) skb 134 * 135 * Allocate a new &sk_buff. The returned buffer has no headroom and a 136 * tail room of size bytes. The object has a reference count of one. 137 * The return is the buffer. On a failure the return is %NULL. 138 * 139 * Buffers may only be allocated from interrupts using a @gfp_mask of 140 * %GFP_ATOMIC. 141 */ 142 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 143 int fclone) 144 { 145 kmem_cache_t *cache; 146 struct skb_shared_info *shinfo; 147 struct sk_buff *skb; 148 u8 *data; 149 150 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 151 152 /* Get the HEAD */ 153 skb = kmem_cache_alloc(cache, gfp_mask & ~__GFP_DMA); 154 if (!skb) 155 goto out; 156 157 /* Get the DATA. Size must match skb_add_mtu(). */ 158 size = SKB_DATA_ALIGN(size); 159 data = ____kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 160 if (!data) 161 goto nodata; 162 163 memset(skb, 0, offsetof(struct sk_buff, truesize)); 164 skb->truesize = size + sizeof(struct sk_buff); 165 atomic_set(&skb->users, 1); 166 skb->head = data; 167 skb->data = data; 168 skb->tail = data; 169 skb->end = data + size; 170 /* make sure we initialize shinfo sequentially */ 171 shinfo = skb_shinfo(skb); 172 atomic_set(&shinfo->dataref, 1); 173 shinfo->nr_frags = 0; 174 shinfo->gso_size = 0; 175 shinfo->gso_segs = 0; 176 shinfo->gso_type = 0; 177 shinfo->ip6_frag_id = 0; 178 shinfo->frag_list = NULL; 179 180 if (fclone) { 181 struct sk_buff *child = skb + 1; 182 atomic_t *fclone_ref = (atomic_t *) (child + 1); 183 184 skb->fclone = SKB_FCLONE_ORIG; 185 atomic_set(fclone_ref, 1); 186 187 child->fclone = SKB_FCLONE_UNAVAILABLE; 188 } 189 out: 190 return skb; 191 nodata: 192 kmem_cache_free(cache, skb); 193 skb = NULL; 194 goto out; 195 } 196 197 /** 198 * alloc_skb_from_cache - allocate a network buffer 199 * @cp: kmem_cache from which to allocate the data area 200 * (object size must be big enough for @size bytes + skb overheads) 201 * @size: size to allocate 202 * @gfp_mask: allocation mask 203 * 204 * Allocate a new &sk_buff. The returned buffer has no headroom and 205 * tail room of size bytes. The object has a reference count of one. 206 * The return is the buffer. On a failure the return is %NULL. 207 * 208 * Buffers may only be allocated from interrupts using a @gfp_mask of 209 * %GFP_ATOMIC. 210 */ 211 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp, 212 unsigned int size, 213 gfp_t gfp_mask) 214 { 215 struct sk_buff *skb; 216 u8 *data; 217 218 /* Get the HEAD */ 219 skb = kmem_cache_alloc(skbuff_head_cache, 220 gfp_mask & ~__GFP_DMA); 221 if (!skb) 222 goto out; 223 224 /* Get the DATA. */ 225 size = SKB_DATA_ALIGN(size); 226 data = kmem_cache_alloc(cp, gfp_mask); 227 if (!data) 228 goto nodata; 229 230 memset(skb, 0, offsetof(struct sk_buff, truesize)); 231 skb->truesize = size + sizeof(struct sk_buff); 232 atomic_set(&skb->users, 1); 233 skb->head = data; 234 skb->data = data; 235 skb->tail = data; 236 skb->end = data + size; 237 238 atomic_set(&(skb_shinfo(skb)->dataref), 1); 239 skb_shinfo(skb)->nr_frags = 0; 240 skb_shinfo(skb)->gso_size = 0; 241 skb_shinfo(skb)->gso_segs = 0; 242 skb_shinfo(skb)->gso_type = 0; 243 skb_shinfo(skb)->frag_list = NULL; 244 out: 245 return skb; 246 nodata: 247 kmem_cache_free(skbuff_head_cache, skb); 248 skb = NULL; 249 goto out; 250 } 251 252 /** 253 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 254 * @dev: network device to receive on 255 * @length: length to allocate 256 * @gfp_mask: get_free_pages mask, passed to alloc_skb 257 * 258 * Allocate a new &sk_buff and assign it a usage count of one. The 259 * buffer has unspecified headroom built in. Users should allocate 260 * the headroom they think they need without accounting for the 261 * built in space. The built in space is used for optimisations. 262 * 263 * %NULL is returned if there is no free memory. 264 */ 265 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 266 unsigned int length, gfp_t gfp_mask) 267 { 268 struct sk_buff *skb; 269 270 skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 271 if (likely(skb)) 272 skb_reserve(skb, NET_SKB_PAD); 273 return skb; 274 } 275 276 static void skb_drop_list(struct sk_buff **listp) 277 { 278 struct sk_buff *list = *listp; 279 280 *listp = NULL; 281 282 do { 283 struct sk_buff *this = list; 284 list = list->next; 285 kfree_skb(this); 286 } while (list); 287 } 288 289 static inline void skb_drop_fraglist(struct sk_buff *skb) 290 { 291 skb_drop_list(&skb_shinfo(skb)->frag_list); 292 } 293 294 static void skb_clone_fraglist(struct sk_buff *skb) 295 { 296 struct sk_buff *list; 297 298 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) 299 skb_get(list); 300 } 301 302 static void skb_release_data(struct sk_buff *skb) 303 { 304 if (!skb->cloned || 305 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 306 &skb_shinfo(skb)->dataref)) { 307 if (skb_shinfo(skb)->nr_frags) { 308 int i; 309 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 310 put_page(skb_shinfo(skb)->frags[i].page); 311 } 312 313 if (skb_shinfo(skb)->frag_list) 314 skb_drop_fraglist(skb); 315 316 kfree(skb->head); 317 } 318 } 319 320 /* 321 * Free an skbuff by memory without cleaning the state. 322 */ 323 void kfree_skbmem(struct sk_buff *skb) 324 { 325 struct sk_buff *other; 326 atomic_t *fclone_ref; 327 328 skb_release_data(skb); 329 switch (skb->fclone) { 330 case SKB_FCLONE_UNAVAILABLE: 331 kmem_cache_free(skbuff_head_cache, skb); 332 break; 333 334 case SKB_FCLONE_ORIG: 335 fclone_ref = (atomic_t *) (skb + 2); 336 if (atomic_dec_and_test(fclone_ref)) 337 kmem_cache_free(skbuff_fclone_cache, skb); 338 break; 339 340 case SKB_FCLONE_CLONE: 341 fclone_ref = (atomic_t *) (skb + 1); 342 other = skb - 1; 343 344 /* The clone portion is available for 345 * fast-cloning again. 346 */ 347 skb->fclone = SKB_FCLONE_UNAVAILABLE; 348 349 if (atomic_dec_and_test(fclone_ref)) 350 kmem_cache_free(skbuff_fclone_cache, other); 351 break; 352 }; 353 } 354 355 /** 356 * __kfree_skb - private function 357 * @skb: buffer 358 * 359 * Free an sk_buff. Release anything attached to the buffer. 360 * Clean the state. This is an internal helper function. Users should 361 * always call kfree_skb 362 */ 363 364 void __kfree_skb(struct sk_buff *skb) 365 { 366 dst_release(skb->dst); 367 #ifdef CONFIG_XFRM 368 secpath_put(skb->sp); 369 #endif 370 if (skb->destructor) { 371 WARN_ON(in_irq()); 372 skb->destructor(skb); 373 } 374 #ifdef CONFIG_NETFILTER 375 nf_conntrack_put(skb->nfct); 376 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 377 nf_conntrack_put_reasm(skb->nfct_reasm); 378 #endif 379 #ifdef CONFIG_BRIDGE_NETFILTER 380 nf_bridge_put(skb->nf_bridge); 381 #endif 382 #endif 383 /* XXX: IS this still necessary? - JHS */ 384 #ifdef CONFIG_NET_SCHED 385 skb->tc_index = 0; 386 #ifdef CONFIG_NET_CLS_ACT 387 skb->tc_verd = 0; 388 #endif 389 #endif 390 391 kfree_skbmem(skb); 392 } 393 394 /** 395 * kfree_skb - free an sk_buff 396 * @skb: buffer to free 397 * 398 * Drop a reference to the buffer and free it if the usage count has 399 * hit zero. 400 */ 401 void kfree_skb(struct sk_buff *skb) 402 { 403 if (unlikely(!skb)) 404 return; 405 if (likely(atomic_read(&skb->users) == 1)) 406 smp_rmb(); 407 else if (likely(!atomic_dec_and_test(&skb->users))) 408 return; 409 __kfree_skb(skb); 410 } 411 412 /** 413 * skb_clone - duplicate an sk_buff 414 * @skb: buffer to clone 415 * @gfp_mask: allocation priority 416 * 417 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 418 * copies share the same packet data but not structure. The new 419 * buffer has a reference count of 1. If the allocation fails the 420 * function returns %NULL otherwise the new buffer is returned. 421 * 422 * If this function is called from an interrupt gfp_mask() must be 423 * %GFP_ATOMIC. 424 */ 425 426 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 427 { 428 struct sk_buff *n; 429 430 n = skb + 1; 431 if (skb->fclone == SKB_FCLONE_ORIG && 432 n->fclone == SKB_FCLONE_UNAVAILABLE) { 433 atomic_t *fclone_ref = (atomic_t *) (n + 1); 434 n->fclone = SKB_FCLONE_CLONE; 435 atomic_inc(fclone_ref); 436 } else { 437 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 438 if (!n) 439 return NULL; 440 n->fclone = SKB_FCLONE_UNAVAILABLE; 441 } 442 443 #define C(x) n->x = skb->x 444 445 n->next = n->prev = NULL; 446 n->sk = NULL; 447 C(tstamp); 448 C(dev); 449 C(h); 450 C(nh); 451 C(mac); 452 C(dst); 453 dst_clone(skb->dst); 454 C(sp); 455 #ifdef CONFIG_INET 456 secpath_get(skb->sp); 457 #endif 458 memcpy(n->cb, skb->cb, sizeof(skb->cb)); 459 C(len); 460 C(data_len); 461 C(csum); 462 C(local_df); 463 n->cloned = 1; 464 n->nohdr = 0; 465 C(pkt_type); 466 C(ip_summed); 467 C(priority); 468 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 469 C(ipvs_property); 470 #endif 471 C(protocol); 472 n->destructor = NULL; 473 #ifdef CONFIG_NETFILTER 474 C(nfmark); 475 C(nfct); 476 nf_conntrack_get(skb->nfct); 477 C(nfctinfo); 478 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 479 C(nfct_reasm); 480 nf_conntrack_get_reasm(skb->nfct_reasm); 481 #endif 482 #ifdef CONFIG_BRIDGE_NETFILTER 483 C(nf_bridge); 484 nf_bridge_get(skb->nf_bridge); 485 #endif 486 #endif /*CONFIG_NETFILTER*/ 487 #ifdef CONFIG_NET_SCHED 488 C(tc_index); 489 #ifdef CONFIG_NET_CLS_ACT 490 n->tc_verd = SET_TC_VERD(skb->tc_verd,0); 491 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd); 492 n->tc_verd = CLR_TC_MUNGED(n->tc_verd); 493 C(input_dev); 494 #endif 495 skb_copy_secmark(n, skb); 496 #endif 497 C(truesize); 498 atomic_set(&n->users, 1); 499 C(head); 500 C(data); 501 C(tail); 502 C(end); 503 504 atomic_inc(&(skb_shinfo(skb)->dataref)); 505 skb->cloned = 1; 506 507 return n; 508 } 509 510 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 511 { 512 /* 513 * Shift between the two data areas in bytes 514 */ 515 unsigned long offset = new->data - old->data; 516 517 new->sk = NULL; 518 new->dev = old->dev; 519 new->priority = old->priority; 520 new->protocol = old->protocol; 521 new->dst = dst_clone(old->dst); 522 #ifdef CONFIG_INET 523 new->sp = secpath_get(old->sp); 524 #endif 525 new->h.raw = old->h.raw + offset; 526 new->nh.raw = old->nh.raw + offset; 527 new->mac.raw = old->mac.raw + offset; 528 memcpy(new->cb, old->cb, sizeof(old->cb)); 529 new->local_df = old->local_df; 530 new->fclone = SKB_FCLONE_UNAVAILABLE; 531 new->pkt_type = old->pkt_type; 532 new->tstamp = old->tstamp; 533 new->destructor = NULL; 534 #ifdef CONFIG_NETFILTER 535 new->nfmark = old->nfmark; 536 new->nfct = old->nfct; 537 nf_conntrack_get(old->nfct); 538 new->nfctinfo = old->nfctinfo; 539 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 540 new->nfct_reasm = old->nfct_reasm; 541 nf_conntrack_get_reasm(old->nfct_reasm); 542 #endif 543 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 544 new->ipvs_property = old->ipvs_property; 545 #endif 546 #ifdef CONFIG_BRIDGE_NETFILTER 547 new->nf_bridge = old->nf_bridge; 548 nf_bridge_get(old->nf_bridge); 549 #endif 550 #endif 551 #ifdef CONFIG_NET_SCHED 552 #ifdef CONFIG_NET_CLS_ACT 553 new->tc_verd = old->tc_verd; 554 #endif 555 new->tc_index = old->tc_index; 556 #endif 557 skb_copy_secmark(new, old); 558 atomic_set(&new->users, 1); 559 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 560 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 561 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 562 } 563 564 /** 565 * skb_copy - create private copy of an sk_buff 566 * @skb: buffer to copy 567 * @gfp_mask: allocation priority 568 * 569 * Make a copy of both an &sk_buff and its data. This is used when the 570 * caller wishes to modify the data and needs a private copy of the 571 * data to alter. Returns %NULL on failure or the pointer to the buffer 572 * on success. The returned buffer has a reference count of 1. 573 * 574 * As by-product this function converts non-linear &sk_buff to linear 575 * one, so that &sk_buff becomes completely private and caller is allowed 576 * to modify all the data of returned buffer. This means that this 577 * function is not recommended for use in circumstances when only 578 * header is going to be modified. Use pskb_copy() instead. 579 */ 580 581 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 582 { 583 int headerlen = skb->data - skb->head; 584 /* 585 * Allocate the copy buffer 586 */ 587 struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len, 588 gfp_mask); 589 if (!n) 590 return NULL; 591 592 /* Set the data pointer */ 593 skb_reserve(n, headerlen); 594 /* Set the tail pointer and length */ 595 skb_put(n, skb->len); 596 n->csum = skb->csum; 597 n->ip_summed = skb->ip_summed; 598 599 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 600 BUG(); 601 602 copy_skb_header(n, skb); 603 return n; 604 } 605 606 607 /** 608 * pskb_copy - create copy of an sk_buff with private head. 609 * @skb: buffer to copy 610 * @gfp_mask: allocation priority 611 * 612 * Make a copy of both an &sk_buff and part of its data, located 613 * in header. Fragmented data remain shared. This is used when 614 * the caller wishes to modify only header of &sk_buff and needs 615 * private copy of the header to alter. Returns %NULL on failure 616 * or the pointer to the buffer on success. 617 * The returned buffer has a reference count of 1. 618 */ 619 620 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 621 { 622 /* 623 * Allocate the copy buffer 624 */ 625 struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask); 626 627 if (!n) 628 goto out; 629 630 /* Set the data pointer */ 631 skb_reserve(n, skb->data - skb->head); 632 /* Set the tail pointer and length */ 633 skb_put(n, skb_headlen(skb)); 634 /* Copy the bytes */ 635 memcpy(n->data, skb->data, n->len); 636 n->csum = skb->csum; 637 n->ip_summed = skb->ip_summed; 638 639 n->data_len = skb->data_len; 640 n->len = skb->len; 641 642 if (skb_shinfo(skb)->nr_frags) { 643 int i; 644 645 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 646 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 647 get_page(skb_shinfo(n)->frags[i].page); 648 } 649 skb_shinfo(n)->nr_frags = i; 650 } 651 652 if (skb_shinfo(skb)->frag_list) { 653 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 654 skb_clone_fraglist(n); 655 } 656 657 copy_skb_header(n, skb); 658 out: 659 return n; 660 } 661 662 /** 663 * pskb_expand_head - reallocate header of &sk_buff 664 * @skb: buffer to reallocate 665 * @nhead: room to add at head 666 * @ntail: room to add at tail 667 * @gfp_mask: allocation priority 668 * 669 * Expands (or creates identical copy, if &nhead and &ntail are zero) 670 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 671 * reference count of 1. Returns zero in the case of success or error, 672 * if expansion failed. In the last case, &sk_buff is not changed. 673 * 674 * All the pointers pointing into skb header may change and must be 675 * reloaded after call to this function. 676 */ 677 678 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 679 gfp_t gfp_mask) 680 { 681 int i; 682 u8 *data; 683 int size = nhead + (skb->end - skb->head) + ntail; 684 long off; 685 686 if (skb_shared(skb)) 687 BUG(); 688 689 size = SKB_DATA_ALIGN(size); 690 691 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 692 if (!data) 693 goto nodata; 694 695 /* Copy only real data... and, alas, header. This should be 696 * optimized for the cases when header is void. */ 697 memcpy(data + nhead, skb->head, skb->tail - skb->head); 698 memcpy(data + size, skb->end, sizeof(struct skb_shared_info)); 699 700 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 701 get_page(skb_shinfo(skb)->frags[i].page); 702 703 if (skb_shinfo(skb)->frag_list) 704 skb_clone_fraglist(skb); 705 706 skb_release_data(skb); 707 708 off = (data + nhead) - skb->head; 709 710 skb->head = data; 711 skb->end = data + size; 712 skb->data += off; 713 skb->tail += off; 714 skb->mac.raw += off; 715 skb->h.raw += off; 716 skb->nh.raw += off; 717 skb->cloned = 0; 718 skb->nohdr = 0; 719 atomic_set(&skb_shinfo(skb)->dataref, 1); 720 return 0; 721 722 nodata: 723 return -ENOMEM; 724 } 725 726 /* Make private copy of skb with writable head and some headroom */ 727 728 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 729 { 730 struct sk_buff *skb2; 731 int delta = headroom - skb_headroom(skb); 732 733 if (delta <= 0) 734 skb2 = pskb_copy(skb, GFP_ATOMIC); 735 else { 736 skb2 = skb_clone(skb, GFP_ATOMIC); 737 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 738 GFP_ATOMIC)) { 739 kfree_skb(skb2); 740 skb2 = NULL; 741 } 742 } 743 return skb2; 744 } 745 746 747 /** 748 * skb_copy_expand - copy and expand sk_buff 749 * @skb: buffer to copy 750 * @newheadroom: new free bytes at head 751 * @newtailroom: new free bytes at tail 752 * @gfp_mask: allocation priority 753 * 754 * Make a copy of both an &sk_buff and its data and while doing so 755 * allocate additional space. 756 * 757 * This is used when the caller wishes to modify the data and needs a 758 * private copy of the data to alter as well as more space for new fields. 759 * Returns %NULL on failure or the pointer to the buffer 760 * on success. The returned buffer has a reference count of 1. 761 * 762 * You must pass %GFP_ATOMIC as the allocation priority if this function 763 * is called from an interrupt. 764 * 765 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used 766 * only by netfilter in the cases when checksum is recalculated? --ANK 767 */ 768 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 769 int newheadroom, int newtailroom, 770 gfp_t gfp_mask) 771 { 772 /* 773 * Allocate the copy buffer 774 */ 775 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 776 gfp_mask); 777 int head_copy_len, head_copy_off; 778 779 if (!n) 780 return NULL; 781 782 skb_reserve(n, newheadroom); 783 784 /* Set the tail pointer and length */ 785 skb_put(n, skb->len); 786 787 head_copy_len = skb_headroom(skb); 788 head_copy_off = 0; 789 if (newheadroom <= head_copy_len) 790 head_copy_len = newheadroom; 791 else 792 head_copy_off = newheadroom - head_copy_len; 793 794 /* Copy the linear header and data. */ 795 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 796 skb->len + head_copy_len)) 797 BUG(); 798 799 copy_skb_header(n, skb); 800 801 return n; 802 } 803 804 /** 805 * skb_pad - zero pad the tail of an skb 806 * @skb: buffer to pad 807 * @pad: space to pad 808 * 809 * Ensure that a buffer is followed by a padding area that is zero 810 * filled. Used by network drivers which may DMA or transfer data 811 * beyond the buffer end onto the wire. 812 * 813 * May return error in out of memory cases. The skb is freed on error. 814 */ 815 816 int skb_pad(struct sk_buff *skb, int pad) 817 { 818 int err; 819 int ntail; 820 821 /* If the skbuff is non linear tailroom is always zero.. */ 822 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 823 memset(skb->data+skb->len, 0, pad); 824 return 0; 825 } 826 827 ntail = skb->data_len + pad - (skb->end - skb->tail); 828 if (likely(skb_cloned(skb) || ntail > 0)) { 829 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 830 if (unlikely(err)) 831 goto free_skb; 832 } 833 834 /* FIXME: The use of this function with non-linear skb's really needs 835 * to be audited. 836 */ 837 err = skb_linearize(skb); 838 if (unlikely(err)) 839 goto free_skb; 840 841 memset(skb->data + skb->len, 0, pad); 842 return 0; 843 844 free_skb: 845 kfree_skb(skb); 846 return err; 847 } 848 849 /* Trims skb to length len. It can change skb pointers. 850 */ 851 852 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 853 { 854 struct sk_buff **fragp; 855 struct sk_buff *frag; 856 int offset = skb_headlen(skb); 857 int nfrags = skb_shinfo(skb)->nr_frags; 858 int i; 859 int err; 860 861 if (skb_cloned(skb) && 862 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 863 return err; 864 865 i = 0; 866 if (offset >= len) 867 goto drop_pages; 868 869 for (; i < nfrags; i++) { 870 int end = offset + skb_shinfo(skb)->frags[i].size; 871 872 if (end < len) { 873 offset = end; 874 continue; 875 } 876 877 skb_shinfo(skb)->frags[i++].size = len - offset; 878 879 drop_pages: 880 skb_shinfo(skb)->nr_frags = i; 881 882 for (; i < nfrags; i++) 883 put_page(skb_shinfo(skb)->frags[i].page); 884 885 if (skb_shinfo(skb)->frag_list) 886 skb_drop_fraglist(skb); 887 goto done; 888 } 889 890 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 891 fragp = &frag->next) { 892 int end = offset + frag->len; 893 894 if (skb_shared(frag)) { 895 struct sk_buff *nfrag; 896 897 nfrag = skb_clone(frag, GFP_ATOMIC); 898 if (unlikely(!nfrag)) 899 return -ENOMEM; 900 901 nfrag->next = frag->next; 902 kfree_skb(frag); 903 frag = nfrag; 904 *fragp = frag; 905 } 906 907 if (end < len) { 908 offset = end; 909 continue; 910 } 911 912 if (end > len && 913 unlikely((err = pskb_trim(frag, len - offset)))) 914 return err; 915 916 if (frag->next) 917 skb_drop_list(&frag->next); 918 break; 919 } 920 921 done: 922 if (len > skb_headlen(skb)) { 923 skb->data_len -= skb->len - len; 924 skb->len = len; 925 } else { 926 skb->len = len; 927 skb->data_len = 0; 928 skb->tail = skb->data + len; 929 } 930 931 return 0; 932 } 933 934 /** 935 * __pskb_pull_tail - advance tail of skb header 936 * @skb: buffer to reallocate 937 * @delta: number of bytes to advance tail 938 * 939 * The function makes a sense only on a fragmented &sk_buff, 940 * it expands header moving its tail forward and copying necessary 941 * data from fragmented part. 942 * 943 * &sk_buff MUST have reference count of 1. 944 * 945 * Returns %NULL (and &sk_buff does not change) if pull failed 946 * or value of new tail of skb in the case of success. 947 * 948 * All the pointers pointing into skb header may change and must be 949 * reloaded after call to this function. 950 */ 951 952 /* Moves tail of skb head forward, copying data from fragmented part, 953 * when it is necessary. 954 * 1. It may fail due to malloc failure. 955 * 2. It may change skb pointers. 956 * 957 * It is pretty complicated. Luckily, it is called only in exceptional cases. 958 */ 959 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 960 { 961 /* If skb has not enough free space at tail, get new one 962 * plus 128 bytes for future expansions. If we have enough 963 * room at tail, reallocate without expansion only if skb is cloned. 964 */ 965 int i, k, eat = (skb->tail + delta) - skb->end; 966 967 if (eat > 0 || skb_cloned(skb)) { 968 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 969 GFP_ATOMIC)) 970 return NULL; 971 } 972 973 if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta)) 974 BUG(); 975 976 /* Optimization: no fragments, no reasons to preestimate 977 * size of pulled pages. Superb. 978 */ 979 if (!skb_shinfo(skb)->frag_list) 980 goto pull_pages; 981 982 /* Estimate size of pulled pages. */ 983 eat = delta; 984 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 985 if (skb_shinfo(skb)->frags[i].size >= eat) 986 goto pull_pages; 987 eat -= skb_shinfo(skb)->frags[i].size; 988 } 989 990 /* If we need update frag list, we are in troubles. 991 * Certainly, it possible to add an offset to skb data, 992 * but taking into account that pulling is expected to 993 * be very rare operation, it is worth to fight against 994 * further bloating skb head and crucify ourselves here instead. 995 * Pure masohism, indeed. 8)8) 996 */ 997 if (eat) { 998 struct sk_buff *list = skb_shinfo(skb)->frag_list; 999 struct sk_buff *clone = NULL; 1000 struct sk_buff *insp = NULL; 1001 1002 do { 1003 BUG_ON(!list); 1004 1005 if (list->len <= eat) { 1006 /* Eaten as whole. */ 1007 eat -= list->len; 1008 list = list->next; 1009 insp = list; 1010 } else { 1011 /* Eaten partially. */ 1012 1013 if (skb_shared(list)) { 1014 /* Sucks! We need to fork list. :-( */ 1015 clone = skb_clone(list, GFP_ATOMIC); 1016 if (!clone) 1017 return NULL; 1018 insp = list->next; 1019 list = clone; 1020 } else { 1021 /* This may be pulled without 1022 * problems. */ 1023 insp = list; 1024 } 1025 if (!pskb_pull(list, eat)) { 1026 if (clone) 1027 kfree_skb(clone); 1028 return NULL; 1029 } 1030 break; 1031 } 1032 } while (eat); 1033 1034 /* Free pulled out fragments. */ 1035 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1036 skb_shinfo(skb)->frag_list = list->next; 1037 kfree_skb(list); 1038 } 1039 /* And insert new clone at head. */ 1040 if (clone) { 1041 clone->next = list; 1042 skb_shinfo(skb)->frag_list = clone; 1043 } 1044 } 1045 /* Success! Now we may commit changes to skb data. */ 1046 1047 pull_pages: 1048 eat = delta; 1049 k = 0; 1050 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1051 if (skb_shinfo(skb)->frags[i].size <= eat) { 1052 put_page(skb_shinfo(skb)->frags[i].page); 1053 eat -= skb_shinfo(skb)->frags[i].size; 1054 } else { 1055 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1056 if (eat) { 1057 skb_shinfo(skb)->frags[k].page_offset += eat; 1058 skb_shinfo(skb)->frags[k].size -= eat; 1059 eat = 0; 1060 } 1061 k++; 1062 } 1063 } 1064 skb_shinfo(skb)->nr_frags = k; 1065 1066 skb->tail += delta; 1067 skb->data_len -= delta; 1068 1069 return skb->tail; 1070 } 1071 1072 /* Copy some data bits from skb to kernel buffer. */ 1073 1074 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1075 { 1076 int i, copy; 1077 int start = skb_headlen(skb); 1078 1079 if (offset > (int)skb->len - len) 1080 goto fault; 1081 1082 /* Copy header. */ 1083 if ((copy = start - offset) > 0) { 1084 if (copy > len) 1085 copy = len; 1086 memcpy(to, skb->data + offset, copy); 1087 if ((len -= copy) == 0) 1088 return 0; 1089 offset += copy; 1090 to += copy; 1091 } 1092 1093 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1094 int end; 1095 1096 BUG_TRAP(start <= offset + len); 1097 1098 end = start + skb_shinfo(skb)->frags[i].size; 1099 if ((copy = end - offset) > 0) { 1100 u8 *vaddr; 1101 1102 if (copy > len) 1103 copy = len; 1104 1105 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1106 memcpy(to, 1107 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1108 offset - start, copy); 1109 kunmap_skb_frag(vaddr); 1110 1111 if ((len -= copy) == 0) 1112 return 0; 1113 offset += copy; 1114 to += copy; 1115 } 1116 start = end; 1117 } 1118 1119 if (skb_shinfo(skb)->frag_list) { 1120 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1121 1122 for (; list; list = list->next) { 1123 int end; 1124 1125 BUG_TRAP(start <= offset + len); 1126 1127 end = start + list->len; 1128 if ((copy = end - offset) > 0) { 1129 if (copy > len) 1130 copy = len; 1131 if (skb_copy_bits(list, offset - start, 1132 to, copy)) 1133 goto fault; 1134 if ((len -= copy) == 0) 1135 return 0; 1136 offset += copy; 1137 to += copy; 1138 } 1139 start = end; 1140 } 1141 } 1142 if (!len) 1143 return 0; 1144 1145 fault: 1146 return -EFAULT; 1147 } 1148 1149 /** 1150 * skb_store_bits - store bits from kernel buffer to skb 1151 * @skb: destination buffer 1152 * @offset: offset in destination 1153 * @from: source buffer 1154 * @len: number of bytes to copy 1155 * 1156 * Copy the specified number of bytes from the source buffer to the 1157 * destination skb. This function handles all the messy bits of 1158 * traversing fragment lists and such. 1159 */ 1160 1161 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len) 1162 { 1163 int i, copy; 1164 int start = skb_headlen(skb); 1165 1166 if (offset > (int)skb->len - len) 1167 goto fault; 1168 1169 if ((copy = start - offset) > 0) { 1170 if (copy > len) 1171 copy = len; 1172 memcpy(skb->data + offset, from, copy); 1173 if ((len -= copy) == 0) 1174 return 0; 1175 offset += copy; 1176 from += copy; 1177 } 1178 1179 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1180 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1181 int end; 1182 1183 BUG_TRAP(start <= offset + len); 1184 1185 end = start + frag->size; 1186 if ((copy = end - offset) > 0) { 1187 u8 *vaddr; 1188 1189 if (copy > len) 1190 copy = len; 1191 1192 vaddr = kmap_skb_frag(frag); 1193 memcpy(vaddr + frag->page_offset + offset - start, 1194 from, copy); 1195 kunmap_skb_frag(vaddr); 1196 1197 if ((len -= copy) == 0) 1198 return 0; 1199 offset += copy; 1200 from += copy; 1201 } 1202 start = end; 1203 } 1204 1205 if (skb_shinfo(skb)->frag_list) { 1206 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1207 1208 for (; list; list = list->next) { 1209 int end; 1210 1211 BUG_TRAP(start <= offset + len); 1212 1213 end = start + list->len; 1214 if ((copy = end - offset) > 0) { 1215 if (copy > len) 1216 copy = len; 1217 if (skb_store_bits(list, offset - start, 1218 from, copy)) 1219 goto fault; 1220 if ((len -= copy) == 0) 1221 return 0; 1222 offset += copy; 1223 from += copy; 1224 } 1225 start = end; 1226 } 1227 } 1228 if (!len) 1229 return 0; 1230 1231 fault: 1232 return -EFAULT; 1233 } 1234 1235 EXPORT_SYMBOL(skb_store_bits); 1236 1237 /* Checksum skb data. */ 1238 1239 unsigned int skb_checksum(const struct sk_buff *skb, int offset, 1240 int len, unsigned int csum) 1241 { 1242 int start = skb_headlen(skb); 1243 int i, copy = start - offset; 1244 int pos = 0; 1245 1246 /* Checksum header. */ 1247 if (copy > 0) { 1248 if (copy > len) 1249 copy = len; 1250 csum = csum_partial(skb->data + offset, copy, csum); 1251 if ((len -= copy) == 0) 1252 return csum; 1253 offset += copy; 1254 pos = copy; 1255 } 1256 1257 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1258 int end; 1259 1260 BUG_TRAP(start <= offset + len); 1261 1262 end = start + skb_shinfo(skb)->frags[i].size; 1263 if ((copy = end - offset) > 0) { 1264 unsigned int csum2; 1265 u8 *vaddr; 1266 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1267 1268 if (copy > len) 1269 copy = len; 1270 vaddr = kmap_skb_frag(frag); 1271 csum2 = csum_partial(vaddr + frag->page_offset + 1272 offset - start, copy, 0); 1273 kunmap_skb_frag(vaddr); 1274 csum = csum_block_add(csum, csum2, pos); 1275 if (!(len -= copy)) 1276 return csum; 1277 offset += copy; 1278 pos += copy; 1279 } 1280 start = end; 1281 } 1282 1283 if (skb_shinfo(skb)->frag_list) { 1284 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1285 1286 for (; list; list = list->next) { 1287 int end; 1288 1289 BUG_TRAP(start <= offset + len); 1290 1291 end = start + list->len; 1292 if ((copy = end - offset) > 0) { 1293 unsigned int csum2; 1294 if (copy > len) 1295 copy = len; 1296 csum2 = skb_checksum(list, offset - start, 1297 copy, 0); 1298 csum = csum_block_add(csum, csum2, pos); 1299 if ((len -= copy) == 0) 1300 return csum; 1301 offset += copy; 1302 pos += copy; 1303 } 1304 start = end; 1305 } 1306 } 1307 BUG_ON(len); 1308 1309 return csum; 1310 } 1311 1312 /* Both of above in one bottle. */ 1313 1314 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1315 u8 *to, int len, unsigned int csum) 1316 { 1317 int start = skb_headlen(skb); 1318 int i, copy = start - offset; 1319 int pos = 0; 1320 1321 /* Copy header. */ 1322 if (copy > 0) { 1323 if (copy > len) 1324 copy = len; 1325 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1326 copy, csum); 1327 if ((len -= copy) == 0) 1328 return csum; 1329 offset += copy; 1330 to += copy; 1331 pos = copy; 1332 } 1333 1334 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1335 int end; 1336 1337 BUG_TRAP(start <= offset + len); 1338 1339 end = start + skb_shinfo(skb)->frags[i].size; 1340 if ((copy = end - offset) > 0) { 1341 unsigned int csum2; 1342 u8 *vaddr; 1343 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1344 1345 if (copy > len) 1346 copy = len; 1347 vaddr = kmap_skb_frag(frag); 1348 csum2 = csum_partial_copy_nocheck(vaddr + 1349 frag->page_offset + 1350 offset - start, to, 1351 copy, 0); 1352 kunmap_skb_frag(vaddr); 1353 csum = csum_block_add(csum, csum2, pos); 1354 if (!(len -= copy)) 1355 return csum; 1356 offset += copy; 1357 to += copy; 1358 pos += copy; 1359 } 1360 start = end; 1361 } 1362 1363 if (skb_shinfo(skb)->frag_list) { 1364 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1365 1366 for (; list; list = list->next) { 1367 unsigned int csum2; 1368 int end; 1369 1370 BUG_TRAP(start <= offset + len); 1371 1372 end = start + list->len; 1373 if ((copy = end - offset) > 0) { 1374 if (copy > len) 1375 copy = len; 1376 csum2 = skb_copy_and_csum_bits(list, 1377 offset - start, 1378 to, copy, 0); 1379 csum = csum_block_add(csum, csum2, pos); 1380 if ((len -= copy) == 0) 1381 return csum; 1382 offset += copy; 1383 to += copy; 1384 pos += copy; 1385 } 1386 start = end; 1387 } 1388 } 1389 BUG_ON(len); 1390 return csum; 1391 } 1392 1393 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1394 { 1395 unsigned int csum; 1396 long csstart; 1397 1398 if (skb->ip_summed == CHECKSUM_HW) 1399 csstart = skb->h.raw - skb->data; 1400 else 1401 csstart = skb_headlen(skb); 1402 1403 BUG_ON(csstart > skb_headlen(skb)); 1404 1405 memcpy(to, skb->data, csstart); 1406 1407 csum = 0; 1408 if (csstart != skb->len) 1409 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1410 skb->len - csstart, 0); 1411 1412 if (skb->ip_summed == CHECKSUM_HW) { 1413 long csstuff = csstart + skb->csum; 1414 1415 *((unsigned short *)(to + csstuff)) = csum_fold(csum); 1416 } 1417 } 1418 1419 /** 1420 * skb_dequeue - remove from the head of the queue 1421 * @list: list to dequeue from 1422 * 1423 * Remove the head of the list. The list lock is taken so the function 1424 * may be used safely with other locking list functions. The head item is 1425 * returned or %NULL if the list is empty. 1426 */ 1427 1428 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1429 { 1430 unsigned long flags; 1431 struct sk_buff *result; 1432 1433 spin_lock_irqsave(&list->lock, flags); 1434 result = __skb_dequeue(list); 1435 spin_unlock_irqrestore(&list->lock, flags); 1436 return result; 1437 } 1438 1439 /** 1440 * skb_dequeue_tail - remove from the tail of the queue 1441 * @list: list to dequeue from 1442 * 1443 * Remove the tail of the list. The list lock is taken so the function 1444 * may be used safely with other locking list functions. The tail item is 1445 * returned or %NULL if the list is empty. 1446 */ 1447 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1448 { 1449 unsigned long flags; 1450 struct sk_buff *result; 1451 1452 spin_lock_irqsave(&list->lock, flags); 1453 result = __skb_dequeue_tail(list); 1454 spin_unlock_irqrestore(&list->lock, flags); 1455 return result; 1456 } 1457 1458 /** 1459 * skb_queue_purge - empty a list 1460 * @list: list to empty 1461 * 1462 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1463 * the list and one reference dropped. This function takes the list 1464 * lock and is atomic with respect to other list locking functions. 1465 */ 1466 void skb_queue_purge(struct sk_buff_head *list) 1467 { 1468 struct sk_buff *skb; 1469 while ((skb = skb_dequeue(list)) != NULL) 1470 kfree_skb(skb); 1471 } 1472 1473 /** 1474 * skb_queue_head - queue a buffer at the list head 1475 * @list: list to use 1476 * @newsk: buffer to queue 1477 * 1478 * Queue a buffer at the start of the list. This function takes the 1479 * list lock and can be used safely with other locking &sk_buff functions 1480 * safely. 1481 * 1482 * A buffer cannot be placed on two lists at the same time. 1483 */ 1484 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1485 { 1486 unsigned long flags; 1487 1488 spin_lock_irqsave(&list->lock, flags); 1489 __skb_queue_head(list, newsk); 1490 spin_unlock_irqrestore(&list->lock, flags); 1491 } 1492 1493 /** 1494 * skb_queue_tail - queue a buffer at the list tail 1495 * @list: list to use 1496 * @newsk: buffer to queue 1497 * 1498 * Queue a buffer at the tail of the list. This function takes the 1499 * list lock and can be used safely with other locking &sk_buff functions 1500 * safely. 1501 * 1502 * A buffer cannot be placed on two lists at the same time. 1503 */ 1504 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1505 { 1506 unsigned long flags; 1507 1508 spin_lock_irqsave(&list->lock, flags); 1509 __skb_queue_tail(list, newsk); 1510 spin_unlock_irqrestore(&list->lock, flags); 1511 } 1512 1513 /** 1514 * skb_unlink - remove a buffer from a list 1515 * @skb: buffer to remove 1516 * @list: list to use 1517 * 1518 * Remove a packet from a list. The list locks are taken and this 1519 * function is atomic with respect to other list locked calls 1520 * 1521 * You must know what list the SKB is on. 1522 */ 1523 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1524 { 1525 unsigned long flags; 1526 1527 spin_lock_irqsave(&list->lock, flags); 1528 __skb_unlink(skb, list); 1529 spin_unlock_irqrestore(&list->lock, flags); 1530 } 1531 1532 /** 1533 * skb_append - append a buffer 1534 * @old: buffer to insert after 1535 * @newsk: buffer to insert 1536 * @list: list to use 1537 * 1538 * Place a packet after a given packet in a list. The list locks are taken 1539 * and this function is atomic with respect to other list locked calls. 1540 * A buffer cannot be placed on two lists at the same time. 1541 */ 1542 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1543 { 1544 unsigned long flags; 1545 1546 spin_lock_irqsave(&list->lock, flags); 1547 __skb_append(old, newsk, list); 1548 spin_unlock_irqrestore(&list->lock, flags); 1549 } 1550 1551 1552 /** 1553 * skb_insert - insert a buffer 1554 * @old: buffer to insert before 1555 * @newsk: buffer to insert 1556 * @list: list to use 1557 * 1558 * Place a packet before a given packet in a list. The list locks are 1559 * taken and this function is atomic with respect to other list locked 1560 * calls. 1561 * 1562 * A buffer cannot be placed on two lists at the same time. 1563 */ 1564 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1565 { 1566 unsigned long flags; 1567 1568 spin_lock_irqsave(&list->lock, flags); 1569 __skb_insert(newsk, old->prev, old, list); 1570 spin_unlock_irqrestore(&list->lock, flags); 1571 } 1572 1573 #if 0 1574 /* 1575 * Tune the memory allocator for a new MTU size. 1576 */ 1577 void skb_add_mtu(int mtu) 1578 { 1579 /* Must match allocation in alloc_skb */ 1580 mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info); 1581 1582 kmem_add_cache_size(mtu); 1583 } 1584 #endif 1585 1586 static inline void skb_split_inside_header(struct sk_buff *skb, 1587 struct sk_buff* skb1, 1588 const u32 len, const int pos) 1589 { 1590 int i; 1591 1592 memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len); 1593 1594 /* And move data appendix as is. */ 1595 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1596 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 1597 1598 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 1599 skb_shinfo(skb)->nr_frags = 0; 1600 skb1->data_len = skb->data_len; 1601 skb1->len += skb1->data_len; 1602 skb->data_len = 0; 1603 skb->len = len; 1604 skb->tail = skb->data + len; 1605 } 1606 1607 static inline void skb_split_no_header(struct sk_buff *skb, 1608 struct sk_buff* skb1, 1609 const u32 len, int pos) 1610 { 1611 int i, k = 0; 1612 const int nfrags = skb_shinfo(skb)->nr_frags; 1613 1614 skb_shinfo(skb)->nr_frags = 0; 1615 skb1->len = skb1->data_len = skb->len - len; 1616 skb->len = len; 1617 skb->data_len = len - pos; 1618 1619 for (i = 0; i < nfrags; i++) { 1620 int size = skb_shinfo(skb)->frags[i].size; 1621 1622 if (pos + size > len) { 1623 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 1624 1625 if (pos < len) { 1626 /* Split frag. 1627 * We have two variants in this case: 1628 * 1. Move all the frag to the second 1629 * part, if it is possible. F.e. 1630 * this approach is mandatory for TUX, 1631 * where splitting is expensive. 1632 * 2. Split is accurately. We make this. 1633 */ 1634 get_page(skb_shinfo(skb)->frags[i].page); 1635 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 1636 skb_shinfo(skb1)->frags[0].size -= len - pos; 1637 skb_shinfo(skb)->frags[i].size = len - pos; 1638 skb_shinfo(skb)->nr_frags++; 1639 } 1640 k++; 1641 } else 1642 skb_shinfo(skb)->nr_frags++; 1643 pos += size; 1644 } 1645 skb_shinfo(skb1)->nr_frags = k; 1646 } 1647 1648 /** 1649 * skb_split - Split fragmented skb to two parts at length len. 1650 * @skb: the buffer to split 1651 * @skb1: the buffer to receive the second part 1652 * @len: new length for skb 1653 */ 1654 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 1655 { 1656 int pos = skb_headlen(skb); 1657 1658 if (len < pos) /* Split line is inside header. */ 1659 skb_split_inside_header(skb, skb1, len, pos); 1660 else /* Second chunk has no header, nothing to copy. */ 1661 skb_split_no_header(skb, skb1, len, pos); 1662 } 1663 1664 /** 1665 * skb_prepare_seq_read - Prepare a sequential read of skb data 1666 * @skb: the buffer to read 1667 * @from: lower offset of data to be read 1668 * @to: upper offset of data to be read 1669 * @st: state variable 1670 * 1671 * Initializes the specified state variable. Must be called before 1672 * invoking skb_seq_read() for the first time. 1673 */ 1674 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1675 unsigned int to, struct skb_seq_state *st) 1676 { 1677 st->lower_offset = from; 1678 st->upper_offset = to; 1679 st->root_skb = st->cur_skb = skb; 1680 st->frag_idx = st->stepped_offset = 0; 1681 st->frag_data = NULL; 1682 } 1683 1684 /** 1685 * skb_seq_read - Sequentially read skb data 1686 * @consumed: number of bytes consumed by the caller so far 1687 * @data: destination pointer for data to be returned 1688 * @st: state variable 1689 * 1690 * Reads a block of skb data at &consumed relative to the 1691 * lower offset specified to skb_prepare_seq_read(). Assigns 1692 * the head of the data block to &data and returns the length 1693 * of the block or 0 if the end of the skb data or the upper 1694 * offset has been reached. 1695 * 1696 * The caller is not required to consume all of the data 1697 * returned, i.e. &consumed is typically set to the number 1698 * of bytes already consumed and the next call to 1699 * skb_seq_read() will return the remaining part of the block. 1700 * 1701 * Note: The size of each block of data returned can be arbitary, 1702 * this limitation is the cost for zerocopy seqeuental 1703 * reads of potentially non linear data. 1704 * 1705 * Note: Fragment lists within fragments are not implemented 1706 * at the moment, state->root_skb could be replaced with 1707 * a stack for this purpose. 1708 */ 1709 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1710 struct skb_seq_state *st) 1711 { 1712 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 1713 skb_frag_t *frag; 1714 1715 if (unlikely(abs_offset >= st->upper_offset)) 1716 return 0; 1717 1718 next_skb: 1719 block_limit = skb_headlen(st->cur_skb); 1720 1721 if (abs_offset < block_limit) { 1722 *data = st->cur_skb->data + abs_offset; 1723 return block_limit - abs_offset; 1724 } 1725 1726 if (st->frag_idx == 0 && !st->frag_data) 1727 st->stepped_offset += skb_headlen(st->cur_skb); 1728 1729 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 1730 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 1731 block_limit = frag->size + st->stepped_offset; 1732 1733 if (abs_offset < block_limit) { 1734 if (!st->frag_data) 1735 st->frag_data = kmap_skb_frag(frag); 1736 1737 *data = (u8 *) st->frag_data + frag->page_offset + 1738 (abs_offset - st->stepped_offset); 1739 1740 return block_limit - abs_offset; 1741 } 1742 1743 if (st->frag_data) { 1744 kunmap_skb_frag(st->frag_data); 1745 st->frag_data = NULL; 1746 } 1747 1748 st->frag_idx++; 1749 st->stepped_offset += frag->size; 1750 } 1751 1752 if (st->cur_skb->next) { 1753 st->cur_skb = st->cur_skb->next; 1754 st->frag_idx = 0; 1755 goto next_skb; 1756 } else if (st->root_skb == st->cur_skb && 1757 skb_shinfo(st->root_skb)->frag_list) { 1758 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 1759 goto next_skb; 1760 } 1761 1762 return 0; 1763 } 1764 1765 /** 1766 * skb_abort_seq_read - Abort a sequential read of skb data 1767 * @st: state variable 1768 * 1769 * Must be called if skb_seq_read() was not called until it 1770 * returned 0. 1771 */ 1772 void skb_abort_seq_read(struct skb_seq_state *st) 1773 { 1774 if (st->frag_data) 1775 kunmap_skb_frag(st->frag_data); 1776 } 1777 1778 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 1779 1780 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 1781 struct ts_config *conf, 1782 struct ts_state *state) 1783 { 1784 return skb_seq_read(offset, text, TS_SKB_CB(state)); 1785 } 1786 1787 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 1788 { 1789 skb_abort_seq_read(TS_SKB_CB(state)); 1790 } 1791 1792 /** 1793 * skb_find_text - Find a text pattern in skb data 1794 * @skb: the buffer to look in 1795 * @from: search offset 1796 * @to: search limit 1797 * @config: textsearch configuration 1798 * @state: uninitialized textsearch state variable 1799 * 1800 * Finds a pattern in the skb data according to the specified 1801 * textsearch configuration. Use textsearch_next() to retrieve 1802 * subsequent occurrences of the pattern. Returns the offset 1803 * to the first occurrence or UINT_MAX if no match was found. 1804 */ 1805 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1806 unsigned int to, struct ts_config *config, 1807 struct ts_state *state) 1808 { 1809 unsigned int ret; 1810 1811 config->get_next_block = skb_ts_get_next_block; 1812 config->finish = skb_ts_finish; 1813 1814 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 1815 1816 ret = textsearch_find(config, state); 1817 return (ret <= to - from ? ret : UINT_MAX); 1818 } 1819 1820 /** 1821 * skb_append_datato_frags: - append the user data to a skb 1822 * @sk: sock structure 1823 * @skb: skb structure to be appened with user data. 1824 * @getfrag: call back function to be used for getting the user data 1825 * @from: pointer to user message iov 1826 * @length: length of the iov message 1827 * 1828 * Description: This procedure append the user data in the fragment part 1829 * of the skb if any page alloc fails user this procedure returns -ENOMEM 1830 */ 1831 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 1832 int (*getfrag)(void *from, char *to, int offset, 1833 int len, int odd, struct sk_buff *skb), 1834 void *from, int length) 1835 { 1836 int frg_cnt = 0; 1837 skb_frag_t *frag = NULL; 1838 struct page *page = NULL; 1839 int copy, left; 1840 int offset = 0; 1841 int ret; 1842 1843 do { 1844 /* Return error if we don't have space for new frag */ 1845 frg_cnt = skb_shinfo(skb)->nr_frags; 1846 if (frg_cnt >= MAX_SKB_FRAGS) 1847 return -EFAULT; 1848 1849 /* allocate a new page for next frag */ 1850 page = alloc_pages(sk->sk_allocation, 0); 1851 1852 /* If alloc_page fails just return failure and caller will 1853 * free previous allocated pages by doing kfree_skb() 1854 */ 1855 if (page == NULL) 1856 return -ENOMEM; 1857 1858 /* initialize the next frag */ 1859 sk->sk_sndmsg_page = page; 1860 sk->sk_sndmsg_off = 0; 1861 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 1862 skb->truesize += PAGE_SIZE; 1863 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 1864 1865 /* get the new initialized frag */ 1866 frg_cnt = skb_shinfo(skb)->nr_frags; 1867 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 1868 1869 /* copy the user data to page */ 1870 left = PAGE_SIZE - frag->page_offset; 1871 copy = (length > left)? left : length; 1872 1873 ret = getfrag(from, (page_address(frag->page) + 1874 frag->page_offset + frag->size), 1875 offset, copy, 0, skb); 1876 if (ret < 0) 1877 return -EFAULT; 1878 1879 /* copy was successful so update the size parameters */ 1880 sk->sk_sndmsg_off += copy; 1881 frag->size += copy; 1882 skb->len += copy; 1883 skb->data_len += copy; 1884 offset += copy; 1885 length -= copy; 1886 1887 } while (length > 0); 1888 1889 return 0; 1890 } 1891 1892 /** 1893 * skb_pull_rcsum - pull skb and update receive checksum 1894 * @skb: buffer to update 1895 * @start: start of data before pull 1896 * @len: length of data pulled 1897 * 1898 * This function performs an skb_pull on the packet and updates 1899 * update the CHECKSUM_HW checksum. It should be used on receive 1900 * path processing instead of skb_pull unless you know that the 1901 * checksum difference is zero (e.g., a valid IP header) or you 1902 * are setting ip_summed to CHECKSUM_NONE. 1903 */ 1904 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 1905 { 1906 BUG_ON(len > skb->len); 1907 skb->len -= len; 1908 BUG_ON(skb->len < skb->data_len); 1909 skb_postpull_rcsum(skb, skb->data, len); 1910 return skb->data += len; 1911 } 1912 1913 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 1914 1915 /** 1916 * skb_segment - Perform protocol segmentation on skb. 1917 * @skb: buffer to segment 1918 * @features: features for the output path (see dev->features) 1919 * 1920 * This function performs segmentation on the given skb. It returns 1921 * the segment at the given position. It returns NULL if there are 1922 * no more segments to generate, or when an error is encountered. 1923 */ 1924 struct sk_buff *skb_segment(struct sk_buff *skb, int features) 1925 { 1926 struct sk_buff *segs = NULL; 1927 struct sk_buff *tail = NULL; 1928 unsigned int mss = skb_shinfo(skb)->gso_size; 1929 unsigned int doffset = skb->data - skb->mac.raw; 1930 unsigned int offset = doffset; 1931 unsigned int headroom; 1932 unsigned int len; 1933 int sg = features & NETIF_F_SG; 1934 int nfrags = skb_shinfo(skb)->nr_frags; 1935 int err = -ENOMEM; 1936 int i = 0; 1937 int pos; 1938 1939 __skb_push(skb, doffset); 1940 headroom = skb_headroom(skb); 1941 pos = skb_headlen(skb); 1942 1943 do { 1944 struct sk_buff *nskb; 1945 skb_frag_t *frag; 1946 int hsize, nsize; 1947 int k; 1948 int size; 1949 1950 len = skb->len - offset; 1951 if (len > mss) 1952 len = mss; 1953 1954 hsize = skb_headlen(skb) - offset; 1955 if (hsize < 0) 1956 hsize = 0; 1957 nsize = hsize + doffset; 1958 if (nsize > len + doffset || !sg) 1959 nsize = len + doffset; 1960 1961 nskb = alloc_skb(nsize + headroom, GFP_ATOMIC); 1962 if (unlikely(!nskb)) 1963 goto err; 1964 1965 if (segs) 1966 tail->next = nskb; 1967 else 1968 segs = nskb; 1969 tail = nskb; 1970 1971 nskb->dev = skb->dev; 1972 nskb->priority = skb->priority; 1973 nskb->protocol = skb->protocol; 1974 nskb->dst = dst_clone(skb->dst); 1975 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 1976 nskb->pkt_type = skb->pkt_type; 1977 nskb->mac_len = skb->mac_len; 1978 1979 skb_reserve(nskb, headroom); 1980 nskb->mac.raw = nskb->data; 1981 nskb->nh.raw = nskb->data + skb->mac_len; 1982 nskb->h.raw = nskb->nh.raw + (skb->h.raw - skb->nh.raw); 1983 memcpy(skb_put(nskb, doffset), skb->data, doffset); 1984 1985 if (!sg) { 1986 nskb->csum = skb_copy_and_csum_bits(skb, offset, 1987 skb_put(nskb, len), 1988 len, 0); 1989 continue; 1990 } 1991 1992 frag = skb_shinfo(nskb)->frags; 1993 k = 0; 1994 1995 nskb->ip_summed = CHECKSUM_HW; 1996 nskb->csum = skb->csum; 1997 memcpy(skb_put(nskb, hsize), skb->data + offset, hsize); 1998 1999 while (pos < offset + len) { 2000 BUG_ON(i >= nfrags); 2001 2002 *frag = skb_shinfo(skb)->frags[i]; 2003 get_page(frag->page); 2004 size = frag->size; 2005 2006 if (pos < offset) { 2007 frag->page_offset += offset - pos; 2008 frag->size -= offset - pos; 2009 } 2010 2011 k++; 2012 2013 if (pos + size <= offset + len) { 2014 i++; 2015 pos += size; 2016 } else { 2017 frag->size -= pos + size - (offset + len); 2018 break; 2019 } 2020 2021 frag++; 2022 } 2023 2024 skb_shinfo(nskb)->nr_frags = k; 2025 nskb->data_len = len - hsize; 2026 nskb->len += nskb->data_len; 2027 nskb->truesize += nskb->data_len; 2028 } while ((offset += len) < skb->len); 2029 2030 return segs; 2031 2032 err: 2033 while ((skb = segs)) { 2034 segs = skb->next; 2035 kfree(skb); 2036 } 2037 return ERR_PTR(err); 2038 } 2039 2040 EXPORT_SYMBOL_GPL(skb_segment); 2041 2042 void __init skb_init(void) 2043 { 2044 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 2045 sizeof(struct sk_buff), 2046 0, 2047 SLAB_HWCACHE_ALIGN, 2048 NULL, NULL); 2049 if (!skbuff_head_cache) 2050 panic("cannot create skbuff cache"); 2051 2052 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 2053 (2*sizeof(struct sk_buff)) + 2054 sizeof(atomic_t), 2055 0, 2056 SLAB_HWCACHE_ALIGN, 2057 NULL, NULL); 2058 if (!skbuff_fclone_cache) 2059 panic("cannot create skbuff cache"); 2060 } 2061 2062 EXPORT_SYMBOL(___pskb_trim); 2063 EXPORT_SYMBOL(__kfree_skb); 2064 EXPORT_SYMBOL(kfree_skb); 2065 EXPORT_SYMBOL(__pskb_pull_tail); 2066 EXPORT_SYMBOL(__alloc_skb); 2067 EXPORT_SYMBOL(__netdev_alloc_skb); 2068 EXPORT_SYMBOL(pskb_copy); 2069 EXPORT_SYMBOL(pskb_expand_head); 2070 EXPORT_SYMBOL(skb_checksum); 2071 EXPORT_SYMBOL(skb_clone); 2072 EXPORT_SYMBOL(skb_clone_fraglist); 2073 EXPORT_SYMBOL(skb_copy); 2074 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2075 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2076 EXPORT_SYMBOL(skb_copy_bits); 2077 EXPORT_SYMBOL(skb_copy_expand); 2078 EXPORT_SYMBOL(skb_over_panic); 2079 EXPORT_SYMBOL(skb_pad); 2080 EXPORT_SYMBOL(skb_realloc_headroom); 2081 EXPORT_SYMBOL(skb_under_panic); 2082 EXPORT_SYMBOL(skb_dequeue); 2083 EXPORT_SYMBOL(skb_dequeue_tail); 2084 EXPORT_SYMBOL(skb_insert); 2085 EXPORT_SYMBOL(skb_queue_purge); 2086 EXPORT_SYMBOL(skb_queue_head); 2087 EXPORT_SYMBOL(skb_queue_tail); 2088 EXPORT_SYMBOL(skb_unlink); 2089 EXPORT_SYMBOL(skb_append); 2090 EXPORT_SYMBOL(skb_split); 2091 EXPORT_SYMBOL(skb_prepare_seq_read); 2092 EXPORT_SYMBOL(skb_seq_read); 2093 EXPORT_SYMBOL(skb_abort_seq_read); 2094 EXPORT_SYMBOL(skb_find_text); 2095 EXPORT_SYMBOL(skb_append_datato_frags); 2096