xref: /linux/net/core/skbuff.c (revision 6e7fd890f1d6ac83805409e9c346240de2705584)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/skbuff_ref.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
60 #include <linux/errqueue.h>
61 #include <linux/prefetch.h>
62 #include <linux/bitfield.h>
63 #include <linux/if_vlan.h>
64 #include <linux/mpls.h>
65 #include <linux/kcov.h>
66 #include <linux/iov_iter.h>
67 
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/gso.h>
73 #include <net/hotdata.h>
74 #include <net/ip6_checksum.h>
75 #include <net/xfrm.h>
76 #include <net/mpls.h>
77 #include <net/mptcp.h>
78 #include <net/mctp.h>
79 #include <net/page_pool/helpers.h>
80 #include <net/dropreason.h>
81 
82 #include <linux/uaccess.h>
83 #include <trace/events/skb.h>
84 #include <linux/highmem.h>
85 #include <linux/capability.h>
86 #include <linux/user_namespace.h>
87 #include <linux/indirect_call_wrapper.h>
88 #include <linux/textsearch.h>
89 
90 #include "dev.h"
91 #include "sock_destructor.h"
92 
93 #ifdef CONFIG_SKB_EXTENSIONS
94 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
95 #endif
96 
97 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
98 
99 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
100  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
101  * size, and we can differentiate heads from skb_small_head_cache
102  * vs system slabs by looking at their size (skb_end_offset()).
103  */
104 #define SKB_SMALL_HEAD_CACHE_SIZE					\
105 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
106 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
107 		SKB_SMALL_HEAD_SIZE)
108 
109 #define SKB_SMALL_HEAD_HEADROOM						\
110 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
111 
112 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
113  * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
114  * netmem is a page.
115  */
116 static_assert(offsetof(struct bio_vec, bv_page) ==
117 	      offsetof(skb_frag_t, netmem));
118 static_assert(sizeof_field(struct bio_vec, bv_page) ==
119 	      sizeof_field(skb_frag_t, netmem));
120 
121 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
122 static_assert(sizeof_field(struct bio_vec, bv_len) ==
123 	      sizeof_field(skb_frag_t, len));
124 
125 static_assert(offsetof(struct bio_vec, bv_offset) ==
126 	      offsetof(skb_frag_t, offset));
127 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
128 	      sizeof_field(skb_frag_t, offset));
129 
130 #undef FN
131 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
132 static const char * const drop_reasons[] = {
133 	[SKB_CONSUMED] = "CONSUMED",
134 	DEFINE_DROP_REASON(FN, FN)
135 };
136 
137 static const struct drop_reason_list drop_reasons_core = {
138 	.reasons = drop_reasons,
139 	.n_reasons = ARRAY_SIZE(drop_reasons),
140 };
141 
142 const struct drop_reason_list __rcu *
143 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
144 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
145 };
146 EXPORT_SYMBOL(drop_reasons_by_subsys);
147 
148 /**
149  * drop_reasons_register_subsys - register another drop reason subsystem
150  * @subsys: the subsystem to register, must not be the core
151  * @list: the list of drop reasons within the subsystem, must point to
152  *	a statically initialized list
153  */
154 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
155 				  const struct drop_reason_list *list)
156 {
157 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
158 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
159 		 "invalid subsystem %d\n", subsys))
160 		return;
161 
162 	/* must point to statically allocated memory, so INIT is OK */
163 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
164 }
165 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
166 
167 /**
168  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
169  * @subsys: the subsystem to remove, must not be the core
170  *
171  * Note: This will synchronize_rcu() to ensure no users when it returns.
172  */
173 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
174 {
175 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
176 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
177 		 "invalid subsystem %d\n", subsys))
178 		return;
179 
180 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
181 
182 	synchronize_rcu();
183 }
184 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
185 
186 /**
187  *	skb_panic - private function for out-of-line support
188  *	@skb:	buffer
189  *	@sz:	size
190  *	@addr:	address
191  *	@msg:	skb_over_panic or skb_under_panic
192  *
193  *	Out-of-line support for skb_put() and skb_push().
194  *	Called via the wrapper skb_over_panic() or skb_under_panic().
195  *	Keep out of line to prevent kernel bloat.
196  *	__builtin_return_address is not used because it is not always reliable.
197  */
198 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
199 		      const char msg[])
200 {
201 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
202 		 msg, addr, skb->len, sz, skb->head, skb->data,
203 		 (unsigned long)skb->tail, (unsigned long)skb->end,
204 		 skb->dev ? skb->dev->name : "<NULL>");
205 	BUG();
206 }
207 
208 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
209 {
210 	skb_panic(skb, sz, addr, __func__);
211 }
212 
213 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
214 {
215 	skb_panic(skb, sz, addr, __func__);
216 }
217 
218 #define NAPI_SKB_CACHE_SIZE	64
219 #define NAPI_SKB_CACHE_BULK	16
220 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
221 
222 #if PAGE_SIZE == SZ_4K
223 
224 #define NAPI_HAS_SMALL_PAGE_FRAG	1
225 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
226 
227 /* specialized page frag allocator using a single order 0 page
228  * and slicing it into 1K sized fragment. Constrained to systems
229  * with a very limited amount of 1K fragments fitting a single
230  * page - to avoid excessive truesize underestimation
231  */
232 
233 struct page_frag_1k {
234 	void *va;
235 	u16 offset;
236 	bool pfmemalloc;
237 };
238 
239 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
240 {
241 	struct page *page;
242 	int offset;
243 
244 	offset = nc->offset - SZ_1K;
245 	if (likely(offset >= 0))
246 		goto use_frag;
247 
248 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
249 	if (!page)
250 		return NULL;
251 
252 	nc->va = page_address(page);
253 	nc->pfmemalloc = page_is_pfmemalloc(page);
254 	offset = PAGE_SIZE - SZ_1K;
255 	page_ref_add(page, offset / SZ_1K);
256 
257 use_frag:
258 	nc->offset = offset;
259 	return nc->va + offset;
260 }
261 #else
262 
263 /* the small page is actually unused in this build; add dummy helpers
264  * to please the compiler and avoid later preprocessor's conditionals
265  */
266 #define NAPI_HAS_SMALL_PAGE_FRAG	0
267 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
268 
269 struct page_frag_1k {
270 };
271 
272 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
273 {
274 	return NULL;
275 }
276 
277 #endif
278 
279 struct napi_alloc_cache {
280 	local_lock_t bh_lock;
281 	struct page_frag_cache page;
282 	struct page_frag_1k page_small;
283 	unsigned int skb_count;
284 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
285 };
286 
287 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
288 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = {
289 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
290 };
291 
292 /* Double check that napi_get_frags() allocates skbs with
293  * skb->head being backed by slab, not a page fragment.
294  * This is to make sure bug fixed in 3226b158e67c
295  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
296  * does not accidentally come back.
297  */
298 void napi_get_frags_check(struct napi_struct *napi)
299 {
300 	struct sk_buff *skb;
301 
302 	local_bh_disable();
303 	skb = napi_get_frags(napi);
304 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
305 	napi_free_frags(napi);
306 	local_bh_enable();
307 }
308 
309 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
310 {
311 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
312 	void *data;
313 
314 	fragsz = SKB_DATA_ALIGN(fragsz);
315 
316 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
317 	data = __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
318 				       align_mask);
319 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
320 	return data;
321 
322 }
323 EXPORT_SYMBOL(__napi_alloc_frag_align);
324 
325 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
326 {
327 	void *data;
328 
329 	if (in_hardirq() || irqs_disabled()) {
330 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
331 
332 		fragsz = SKB_DATA_ALIGN(fragsz);
333 		data = __page_frag_alloc_align(nc, fragsz, GFP_ATOMIC,
334 					       align_mask);
335 	} else {
336 		local_bh_disable();
337 		data = __napi_alloc_frag_align(fragsz, align_mask);
338 		local_bh_enable();
339 	}
340 	return data;
341 }
342 EXPORT_SYMBOL(__netdev_alloc_frag_align);
343 
344 static struct sk_buff *napi_skb_cache_get(void)
345 {
346 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
347 	struct sk_buff *skb;
348 
349 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
350 	if (unlikely(!nc->skb_count)) {
351 		nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
352 						      GFP_ATOMIC,
353 						      NAPI_SKB_CACHE_BULK,
354 						      nc->skb_cache);
355 		if (unlikely(!nc->skb_count)) {
356 			local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
357 			return NULL;
358 		}
359 	}
360 
361 	skb = nc->skb_cache[--nc->skb_count];
362 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
363 	kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
364 
365 	return skb;
366 }
367 
368 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
369 					 unsigned int size)
370 {
371 	struct skb_shared_info *shinfo;
372 
373 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
374 
375 	/* Assumes caller memset cleared SKB */
376 	skb->truesize = SKB_TRUESIZE(size);
377 	refcount_set(&skb->users, 1);
378 	skb->head = data;
379 	skb->data = data;
380 	skb_reset_tail_pointer(skb);
381 	skb_set_end_offset(skb, size);
382 	skb->mac_header = (typeof(skb->mac_header))~0U;
383 	skb->transport_header = (typeof(skb->transport_header))~0U;
384 	skb->alloc_cpu = raw_smp_processor_id();
385 	/* make sure we initialize shinfo sequentially */
386 	shinfo = skb_shinfo(skb);
387 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
388 	atomic_set(&shinfo->dataref, 1);
389 
390 	skb_set_kcov_handle(skb, kcov_common_handle());
391 }
392 
393 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
394 				     unsigned int *size)
395 {
396 	void *resized;
397 
398 	/* Must find the allocation size (and grow it to match). */
399 	*size = ksize(data);
400 	/* krealloc() will immediately return "data" when
401 	 * "ksize(data)" is requested: it is the existing upper
402 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
403 	 * that this "new" pointer needs to be passed back to the
404 	 * caller for use so the __alloc_size hinting will be
405 	 * tracked correctly.
406 	 */
407 	resized = krealloc(data, *size, GFP_ATOMIC);
408 	WARN_ON_ONCE(resized != data);
409 	return resized;
410 }
411 
412 /* build_skb() variant which can operate on slab buffers.
413  * Note that this should be used sparingly as slab buffers
414  * cannot be combined efficiently by GRO!
415  */
416 struct sk_buff *slab_build_skb(void *data)
417 {
418 	struct sk_buff *skb;
419 	unsigned int size;
420 
421 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
422 	if (unlikely(!skb))
423 		return NULL;
424 
425 	memset(skb, 0, offsetof(struct sk_buff, tail));
426 	data = __slab_build_skb(skb, data, &size);
427 	__finalize_skb_around(skb, data, size);
428 
429 	return skb;
430 }
431 EXPORT_SYMBOL(slab_build_skb);
432 
433 /* Caller must provide SKB that is memset cleared */
434 static void __build_skb_around(struct sk_buff *skb, void *data,
435 			       unsigned int frag_size)
436 {
437 	unsigned int size = frag_size;
438 
439 	/* frag_size == 0 is considered deprecated now. Callers
440 	 * using slab buffer should use slab_build_skb() instead.
441 	 */
442 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
443 		data = __slab_build_skb(skb, data, &size);
444 
445 	__finalize_skb_around(skb, data, size);
446 }
447 
448 /**
449  * __build_skb - build a network buffer
450  * @data: data buffer provided by caller
451  * @frag_size: size of data (must not be 0)
452  *
453  * Allocate a new &sk_buff. Caller provides space holding head and
454  * skb_shared_info. @data must have been allocated from the page
455  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
456  * allocation is deprecated, and callers should use slab_build_skb()
457  * instead.)
458  * The return is the new skb buffer.
459  * On a failure the return is %NULL, and @data is not freed.
460  * Notes :
461  *  Before IO, driver allocates only data buffer where NIC put incoming frame
462  *  Driver should add room at head (NET_SKB_PAD) and
463  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
464  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
465  *  before giving packet to stack.
466  *  RX rings only contains data buffers, not full skbs.
467  */
468 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
469 {
470 	struct sk_buff *skb;
471 
472 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
473 	if (unlikely(!skb))
474 		return NULL;
475 
476 	memset(skb, 0, offsetof(struct sk_buff, tail));
477 	__build_skb_around(skb, data, frag_size);
478 
479 	return skb;
480 }
481 
482 /* build_skb() is wrapper over __build_skb(), that specifically
483  * takes care of skb->head and skb->pfmemalloc
484  */
485 struct sk_buff *build_skb(void *data, unsigned int frag_size)
486 {
487 	struct sk_buff *skb = __build_skb(data, frag_size);
488 
489 	if (likely(skb && frag_size)) {
490 		skb->head_frag = 1;
491 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
492 	}
493 	return skb;
494 }
495 EXPORT_SYMBOL(build_skb);
496 
497 /**
498  * build_skb_around - build a network buffer around provided skb
499  * @skb: sk_buff provide by caller, must be memset cleared
500  * @data: data buffer provided by caller
501  * @frag_size: size of data
502  */
503 struct sk_buff *build_skb_around(struct sk_buff *skb,
504 				 void *data, unsigned int frag_size)
505 {
506 	if (unlikely(!skb))
507 		return NULL;
508 
509 	__build_skb_around(skb, data, frag_size);
510 
511 	if (frag_size) {
512 		skb->head_frag = 1;
513 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
514 	}
515 	return skb;
516 }
517 EXPORT_SYMBOL(build_skb_around);
518 
519 /**
520  * __napi_build_skb - build a network buffer
521  * @data: data buffer provided by caller
522  * @frag_size: size of data
523  *
524  * Version of __build_skb() that uses NAPI percpu caches to obtain
525  * skbuff_head instead of inplace allocation.
526  *
527  * Returns a new &sk_buff on success, %NULL on allocation failure.
528  */
529 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
530 {
531 	struct sk_buff *skb;
532 
533 	skb = napi_skb_cache_get();
534 	if (unlikely(!skb))
535 		return NULL;
536 
537 	memset(skb, 0, offsetof(struct sk_buff, tail));
538 	__build_skb_around(skb, data, frag_size);
539 
540 	return skb;
541 }
542 
543 /**
544  * napi_build_skb - build a network buffer
545  * @data: data buffer provided by caller
546  * @frag_size: size of data
547  *
548  * Version of __napi_build_skb() that takes care of skb->head_frag
549  * and skb->pfmemalloc when the data is a page or page fragment.
550  *
551  * Returns a new &sk_buff on success, %NULL on allocation failure.
552  */
553 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
554 {
555 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
556 
557 	if (likely(skb) && frag_size) {
558 		skb->head_frag = 1;
559 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
560 	}
561 
562 	return skb;
563 }
564 EXPORT_SYMBOL(napi_build_skb);
565 
566 /*
567  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
568  * the caller if emergency pfmemalloc reserves are being used. If it is and
569  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
570  * may be used. Otherwise, the packet data may be discarded until enough
571  * memory is free
572  */
573 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
574 			     bool *pfmemalloc)
575 {
576 	bool ret_pfmemalloc = false;
577 	size_t obj_size;
578 	void *obj;
579 
580 	obj_size = SKB_HEAD_ALIGN(*size);
581 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
582 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
583 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
584 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
585 				node);
586 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
587 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
588 			goto out;
589 		/* Try again but now we are using pfmemalloc reserves */
590 		ret_pfmemalloc = true;
591 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
592 		goto out;
593 	}
594 
595 	obj_size = kmalloc_size_roundup(obj_size);
596 	/* The following cast might truncate high-order bits of obj_size, this
597 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
598 	 */
599 	*size = (unsigned int)obj_size;
600 
601 	/*
602 	 * Try a regular allocation, when that fails and we're not entitled
603 	 * to the reserves, fail.
604 	 */
605 	obj = kmalloc_node_track_caller(obj_size,
606 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
607 					node);
608 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
609 		goto out;
610 
611 	/* Try again but now we are using pfmemalloc reserves */
612 	ret_pfmemalloc = true;
613 	obj = kmalloc_node_track_caller(obj_size, flags, node);
614 
615 out:
616 	if (pfmemalloc)
617 		*pfmemalloc = ret_pfmemalloc;
618 
619 	return obj;
620 }
621 
622 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
623  *	'private' fields and also do memory statistics to find all the
624  *	[BEEP] leaks.
625  *
626  */
627 
628 /**
629  *	__alloc_skb	-	allocate a network buffer
630  *	@size: size to allocate
631  *	@gfp_mask: allocation mask
632  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
633  *		instead of head cache and allocate a cloned (child) skb.
634  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
635  *		allocations in case the data is required for writeback
636  *	@node: numa node to allocate memory on
637  *
638  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
639  *	tail room of at least size bytes. The object has a reference count
640  *	of one. The return is the buffer. On a failure the return is %NULL.
641  *
642  *	Buffers may only be allocated from interrupts using a @gfp_mask of
643  *	%GFP_ATOMIC.
644  */
645 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
646 			    int flags, int node)
647 {
648 	struct kmem_cache *cache;
649 	struct sk_buff *skb;
650 	bool pfmemalloc;
651 	u8 *data;
652 
653 	cache = (flags & SKB_ALLOC_FCLONE)
654 		? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
655 
656 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
657 		gfp_mask |= __GFP_MEMALLOC;
658 
659 	/* Get the HEAD */
660 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
661 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
662 		skb = napi_skb_cache_get();
663 	else
664 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
665 	if (unlikely(!skb))
666 		return NULL;
667 	prefetchw(skb);
668 
669 	/* We do our best to align skb_shared_info on a separate cache
670 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
671 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
672 	 * Both skb->head and skb_shared_info are cache line aligned.
673 	 */
674 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
675 	if (unlikely(!data))
676 		goto nodata;
677 	/* kmalloc_size_roundup() might give us more room than requested.
678 	 * Put skb_shared_info exactly at the end of allocated zone,
679 	 * to allow max possible filling before reallocation.
680 	 */
681 	prefetchw(data + SKB_WITH_OVERHEAD(size));
682 
683 	/*
684 	 * Only clear those fields we need to clear, not those that we will
685 	 * actually initialise below. Hence, don't put any more fields after
686 	 * the tail pointer in struct sk_buff!
687 	 */
688 	memset(skb, 0, offsetof(struct sk_buff, tail));
689 	__build_skb_around(skb, data, size);
690 	skb->pfmemalloc = pfmemalloc;
691 
692 	if (flags & SKB_ALLOC_FCLONE) {
693 		struct sk_buff_fclones *fclones;
694 
695 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
696 
697 		skb->fclone = SKB_FCLONE_ORIG;
698 		refcount_set(&fclones->fclone_ref, 1);
699 	}
700 
701 	return skb;
702 
703 nodata:
704 	kmem_cache_free(cache, skb);
705 	return NULL;
706 }
707 EXPORT_SYMBOL(__alloc_skb);
708 
709 /**
710  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
711  *	@dev: network device to receive on
712  *	@len: length to allocate
713  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
714  *
715  *	Allocate a new &sk_buff and assign it a usage count of one. The
716  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
717  *	the headroom they think they need without accounting for the
718  *	built in space. The built in space is used for optimisations.
719  *
720  *	%NULL is returned if there is no free memory.
721  */
722 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
723 				   gfp_t gfp_mask)
724 {
725 	struct page_frag_cache *nc;
726 	struct sk_buff *skb;
727 	bool pfmemalloc;
728 	void *data;
729 
730 	len += NET_SKB_PAD;
731 
732 	/* If requested length is either too small or too big,
733 	 * we use kmalloc() for skb->head allocation.
734 	 */
735 	if (len <= SKB_WITH_OVERHEAD(1024) ||
736 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
737 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
738 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
739 		if (!skb)
740 			goto skb_fail;
741 		goto skb_success;
742 	}
743 
744 	len = SKB_HEAD_ALIGN(len);
745 
746 	if (sk_memalloc_socks())
747 		gfp_mask |= __GFP_MEMALLOC;
748 
749 	if (in_hardirq() || irqs_disabled()) {
750 		nc = this_cpu_ptr(&netdev_alloc_cache);
751 		data = page_frag_alloc(nc, len, gfp_mask);
752 		pfmemalloc = nc->pfmemalloc;
753 	} else {
754 		local_bh_disable();
755 		local_lock_nested_bh(&napi_alloc_cache.bh_lock);
756 
757 		nc = this_cpu_ptr(&napi_alloc_cache.page);
758 		data = page_frag_alloc(nc, len, gfp_mask);
759 		pfmemalloc = nc->pfmemalloc;
760 
761 		local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
762 		local_bh_enable();
763 	}
764 
765 	if (unlikely(!data))
766 		return NULL;
767 
768 	skb = __build_skb(data, len);
769 	if (unlikely(!skb)) {
770 		skb_free_frag(data);
771 		return NULL;
772 	}
773 
774 	if (pfmemalloc)
775 		skb->pfmemalloc = 1;
776 	skb->head_frag = 1;
777 
778 skb_success:
779 	skb_reserve(skb, NET_SKB_PAD);
780 	skb->dev = dev;
781 
782 skb_fail:
783 	return skb;
784 }
785 EXPORT_SYMBOL(__netdev_alloc_skb);
786 
787 /**
788  *	napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
789  *	@napi: napi instance this buffer was allocated for
790  *	@len: length to allocate
791  *
792  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
793  *	attempt to allocate the head from a special reserved region used
794  *	only for NAPI Rx allocation.  By doing this we can save several
795  *	CPU cycles by avoiding having to disable and re-enable IRQs.
796  *
797  *	%NULL is returned if there is no free memory.
798  */
799 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
800 {
801 	gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
802 	struct napi_alloc_cache *nc;
803 	struct sk_buff *skb;
804 	bool pfmemalloc;
805 	void *data;
806 
807 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
808 	len += NET_SKB_PAD + NET_IP_ALIGN;
809 
810 	/* If requested length is either too small or too big,
811 	 * we use kmalloc() for skb->head allocation.
812 	 * When the small frag allocator is available, prefer it over kmalloc
813 	 * for small fragments
814 	 */
815 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
816 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
817 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
818 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
819 				  NUMA_NO_NODE);
820 		if (!skb)
821 			goto skb_fail;
822 		goto skb_success;
823 	}
824 
825 	if (sk_memalloc_socks())
826 		gfp_mask |= __GFP_MEMALLOC;
827 
828 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
829 	nc = this_cpu_ptr(&napi_alloc_cache);
830 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
831 		/* we are artificially inflating the allocation size, but
832 		 * that is not as bad as it may look like, as:
833 		 * - 'len' less than GRO_MAX_HEAD makes little sense
834 		 * - On most systems, larger 'len' values lead to fragment
835 		 *   size above 512 bytes
836 		 * - kmalloc would use the kmalloc-1k slab for such values
837 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
838 		 *   little networking, as that implies no WiFi and no
839 		 *   tunnels support, and 32 bits arches.
840 		 */
841 		len = SZ_1K;
842 
843 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
844 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
845 	} else {
846 		len = SKB_HEAD_ALIGN(len);
847 
848 		data = page_frag_alloc(&nc->page, len, gfp_mask);
849 		pfmemalloc = nc->page.pfmemalloc;
850 	}
851 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
852 
853 	if (unlikely(!data))
854 		return NULL;
855 
856 	skb = __napi_build_skb(data, len);
857 	if (unlikely(!skb)) {
858 		skb_free_frag(data);
859 		return NULL;
860 	}
861 
862 	if (pfmemalloc)
863 		skb->pfmemalloc = 1;
864 	skb->head_frag = 1;
865 
866 skb_success:
867 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
868 	skb->dev = napi->dev;
869 
870 skb_fail:
871 	return skb;
872 }
873 EXPORT_SYMBOL(napi_alloc_skb);
874 
875 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
876 			    int off, int size, unsigned int truesize)
877 {
878 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
879 
880 	skb_fill_netmem_desc(skb, i, netmem, off, size);
881 	skb->len += size;
882 	skb->data_len += size;
883 	skb->truesize += truesize;
884 }
885 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
886 
887 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
888 			  unsigned int truesize)
889 {
890 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
891 
892 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
893 
894 	skb_frag_size_add(frag, size);
895 	skb->len += size;
896 	skb->data_len += size;
897 	skb->truesize += truesize;
898 }
899 EXPORT_SYMBOL(skb_coalesce_rx_frag);
900 
901 static void skb_drop_list(struct sk_buff **listp)
902 {
903 	kfree_skb_list(*listp);
904 	*listp = NULL;
905 }
906 
907 static inline void skb_drop_fraglist(struct sk_buff *skb)
908 {
909 	skb_drop_list(&skb_shinfo(skb)->frag_list);
910 }
911 
912 static void skb_clone_fraglist(struct sk_buff *skb)
913 {
914 	struct sk_buff *list;
915 
916 	skb_walk_frags(skb, list)
917 		skb_get(list);
918 }
919 
920 static bool is_pp_page(struct page *page)
921 {
922 	return (page->pp_magic & ~0x3UL) == PP_SIGNATURE;
923 }
924 
925 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
926 		    unsigned int headroom)
927 {
928 #if IS_ENABLED(CONFIG_PAGE_POOL)
929 	u32 size, truesize, len, max_head_size, off;
930 	struct sk_buff *skb = *pskb, *nskb;
931 	int err, i, head_off;
932 	void *data;
933 
934 	/* XDP does not support fraglist so we need to linearize
935 	 * the skb.
936 	 */
937 	if (skb_has_frag_list(skb))
938 		return -EOPNOTSUPP;
939 
940 	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
941 	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
942 		return -ENOMEM;
943 
944 	size = min_t(u32, skb->len, max_head_size);
945 	truesize = SKB_HEAD_ALIGN(size) + headroom;
946 	data = page_pool_dev_alloc_va(pool, &truesize);
947 	if (!data)
948 		return -ENOMEM;
949 
950 	nskb = napi_build_skb(data, truesize);
951 	if (!nskb) {
952 		page_pool_free_va(pool, data, true);
953 		return -ENOMEM;
954 	}
955 
956 	skb_reserve(nskb, headroom);
957 	skb_copy_header(nskb, skb);
958 	skb_mark_for_recycle(nskb);
959 
960 	err = skb_copy_bits(skb, 0, nskb->data, size);
961 	if (err) {
962 		consume_skb(nskb);
963 		return err;
964 	}
965 	skb_put(nskb, size);
966 
967 	head_off = skb_headroom(nskb) - skb_headroom(skb);
968 	skb_headers_offset_update(nskb, head_off);
969 
970 	off = size;
971 	len = skb->len - off;
972 	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
973 		struct page *page;
974 		u32 page_off;
975 
976 		size = min_t(u32, len, PAGE_SIZE);
977 		truesize = size;
978 
979 		page = page_pool_dev_alloc(pool, &page_off, &truesize);
980 		if (!page) {
981 			consume_skb(nskb);
982 			return -ENOMEM;
983 		}
984 
985 		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
986 		err = skb_copy_bits(skb, off, page_address(page) + page_off,
987 				    size);
988 		if (err) {
989 			consume_skb(nskb);
990 			return err;
991 		}
992 
993 		len -= size;
994 		off += size;
995 	}
996 
997 	consume_skb(skb);
998 	*pskb = nskb;
999 
1000 	return 0;
1001 #else
1002 	return -EOPNOTSUPP;
1003 #endif
1004 }
1005 EXPORT_SYMBOL(skb_pp_cow_data);
1006 
1007 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
1008 			 struct bpf_prog *prog)
1009 {
1010 	if (!prog->aux->xdp_has_frags)
1011 		return -EINVAL;
1012 
1013 	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
1014 }
1015 EXPORT_SYMBOL(skb_cow_data_for_xdp);
1016 
1017 #if IS_ENABLED(CONFIG_PAGE_POOL)
1018 bool napi_pp_put_page(netmem_ref netmem)
1019 {
1020 	struct page *page = netmem_to_page(netmem);
1021 
1022 	page = compound_head(page);
1023 
1024 	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
1025 	 * in order to preserve any existing bits, such as bit 0 for the
1026 	 * head page of compound page and bit 1 for pfmemalloc page, so
1027 	 * mask those bits for freeing side when doing below checking,
1028 	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
1029 	 * to avoid recycling the pfmemalloc page.
1030 	 */
1031 	if (unlikely(!is_pp_page(page)))
1032 		return false;
1033 
1034 	page_pool_put_full_netmem(page->pp, page_to_netmem(page), false);
1035 
1036 	return true;
1037 }
1038 EXPORT_SYMBOL(napi_pp_put_page);
1039 #endif
1040 
1041 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
1042 {
1043 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1044 		return false;
1045 	return napi_pp_put_page(page_to_netmem(virt_to_page(data)));
1046 }
1047 
1048 /**
1049  * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1050  * @skb:	page pool aware skb
1051  *
1052  * Increase the fragment reference count (pp_ref_count) of a skb. This is
1053  * intended to gain fragment references only for page pool aware skbs,
1054  * i.e. when skb->pp_recycle is true, and not for fragments in a
1055  * non-pp-recycling skb. It has a fallback to increase references on normal
1056  * pages, as page pool aware skbs may also have normal page fragments.
1057  */
1058 static int skb_pp_frag_ref(struct sk_buff *skb)
1059 {
1060 	struct skb_shared_info *shinfo;
1061 	struct page *head_page;
1062 	int i;
1063 
1064 	if (!skb->pp_recycle)
1065 		return -EINVAL;
1066 
1067 	shinfo = skb_shinfo(skb);
1068 
1069 	for (i = 0; i < shinfo->nr_frags; i++) {
1070 		head_page = compound_head(skb_frag_page(&shinfo->frags[i]));
1071 		if (likely(is_pp_page(head_page)))
1072 			page_pool_ref_page(head_page);
1073 		else
1074 			page_ref_inc(head_page);
1075 	}
1076 	return 0;
1077 }
1078 
1079 static void skb_kfree_head(void *head, unsigned int end_offset)
1080 {
1081 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1082 		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1083 	else
1084 		kfree(head);
1085 }
1086 
1087 static void skb_free_head(struct sk_buff *skb)
1088 {
1089 	unsigned char *head = skb->head;
1090 
1091 	if (skb->head_frag) {
1092 		if (skb_pp_recycle(skb, head))
1093 			return;
1094 		skb_free_frag(head);
1095 	} else {
1096 		skb_kfree_head(head, skb_end_offset(skb));
1097 	}
1098 }
1099 
1100 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1101 {
1102 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1103 	int i;
1104 
1105 	if (!skb_data_unref(skb, shinfo))
1106 		goto exit;
1107 
1108 	if (skb_zcopy(skb)) {
1109 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1110 
1111 		skb_zcopy_clear(skb, true);
1112 		if (skip_unref)
1113 			goto free_head;
1114 	}
1115 
1116 	for (i = 0; i < shinfo->nr_frags; i++)
1117 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1118 
1119 free_head:
1120 	if (shinfo->frag_list)
1121 		kfree_skb_list_reason(shinfo->frag_list, reason);
1122 
1123 	skb_free_head(skb);
1124 exit:
1125 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1126 	 * bit is only set on the head though, so in order to avoid races
1127 	 * while trying to recycle fragments on __skb_frag_unref() we need
1128 	 * to make one SKB responsible for triggering the recycle path.
1129 	 * So disable the recycling bit if an SKB is cloned and we have
1130 	 * additional references to the fragmented part of the SKB.
1131 	 * Eventually the last SKB will have the recycling bit set and it's
1132 	 * dataref set to 0, which will trigger the recycling
1133 	 */
1134 	skb->pp_recycle = 0;
1135 }
1136 
1137 /*
1138  *	Free an skbuff by memory without cleaning the state.
1139  */
1140 static void kfree_skbmem(struct sk_buff *skb)
1141 {
1142 	struct sk_buff_fclones *fclones;
1143 
1144 	switch (skb->fclone) {
1145 	case SKB_FCLONE_UNAVAILABLE:
1146 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1147 		return;
1148 
1149 	case SKB_FCLONE_ORIG:
1150 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1151 
1152 		/* We usually free the clone (TX completion) before original skb
1153 		 * This test would have no chance to be true for the clone,
1154 		 * while here, branch prediction will be good.
1155 		 */
1156 		if (refcount_read(&fclones->fclone_ref) == 1)
1157 			goto fastpath;
1158 		break;
1159 
1160 	default: /* SKB_FCLONE_CLONE */
1161 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1162 		break;
1163 	}
1164 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1165 		return;
1166 fastpath:
1167 	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1168 }
1169 
1170 void skb_release_head_state(struct sk_buff *skb)
1171 {
1172 	skb_dst_drop(skb);
1173 	if (skb->destructor) {
1174 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1175 		skb->destructor(skb);
1176 	}
1177 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1178 	nf_conntrack_put(skb_nfct(skb));
1179 #endif
1180 	skb_ext_put(skb);
1181 }
1182 
1183 /* Free everything but the sk_buff shell. */
1184 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1185 {
1186 	skb_release_head_state(skb);
1187 	if (likely(skb->head))
1188 		skb_release_data(skb, reason);
1189 }
1190 
1191 /**
1192  *	__kfree_skb - private function
1193  *	@skb: buffer
1194  *
1195  *	Free an sk_buff. Release anything attached to the buffer.
1196  *	Clean the state. This is an internal helper function. Users should
1197  *	always call kfree_skb
1198  */
1199 
1200 void __kfree_skb(struct sk_buff *skb)
1201 {
1202 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1203 	kfree_skbmem(skb);
1204 }
1205 EXPORT_SYMBOL(__kfree_skb);
1206 
1207 static __always_inline
1208 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1209 			  enum skb_drop_reason reason)
1210 {
1211 	if (unlikely(!skb_unref(skb)))
1212 		return false;
1213 
1214 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1215 			       u32_get_bits(reason,
1216 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1217 				SKB_DROP_REASON_SUBSYS_NUM);
1218 
1219 	if (reason == SKB_CONSUMED)
1220 		trace_consume_skb(skb, __builtin_return_address(0));
1221 	else
1222 		trace_kfree_skb(skb, __builtin_return_address(0), reason, sk);
1223 	return true;
1224 }
1225 
1226 /**
1227  *	sk_skb_reason_drop - free an sk_buff with special reason
1228  *	@sk: the socket to receive @skb, or NULL if not applicable
1229  *	@skb: buffer to free
1230  *	@reason: reason why this skb is dropped
1231  *
1232  *	Drop a reference to the buffer and free it if the usage count has hit
1233  *	zero. Meanwhile, pass the receiving socket and drop reason to
1234  *	'kfree_skb' tracepoint.
1235  */
1236 void __fix_address
1237 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
1238 {
1239 	if (__sk_skb_reason_drop(sk, skb, reason))
1240 		__kfree_skb(skb);
1241 }
1242 EXPORT_SYMBOL(sk_skb_reason_drop);
1243 
1244 #define KFREE_SKB_BULK_SIZE	16
1245 
1246 struct skb_free_array {
1247 	unsigned int skb_count;
1248 	void *skb_array[KFREE_SKB_BULK_SIZE];
1249 };
1250 
1251 static void kfree_skb_add_bulk(struct sk_buff *skb,
1252 			       struct skb_free_array *sa,
1253 			       enum skb_drop_reason reason)
1254 {
1255 	/* if SKB is a clone, don't handle this case */
1256 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1257 		__kfree_skb(skb);
1258 		return;
1259 	}
1260 
1261 	skb_release_all(skb, reason);
1262 	sa->skb_array[sa->skb_count++] = skb;
1263 
1264 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1265 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1266 				     sa->skb_array);
1267 		sa->skb_count = 0;
1268 	}
1269 }
1270 
1271 void __fix_address
1272 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1273 {
1274 	struct skb_free_array sa;
1275 
1276 	sa.skb_count = 0;
1277 
1278 	while (segs) {
1279 		struct sk_buff *next = segs->next;
1280 
1281 		if (__sk_skb_reason_drop(NULL, segs, reason)) {
1282 			skb_poison_list(segs);
1283 			kfree_skb_add_bulk(segs, &sa, reason);
1284 		}
1285 
1286 		segs = next;
1287 	}
1288 
1289 	if (sa.skb_count)
1290 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1291 }
1292 EXPORT_SYMBOL(kfree_skb_list_reason);
1293 
1294 /* Dump skb information and contents.
1295  *
1296  * Must only be called from net_ratelimit()-ed paths.
1297  *
1298  * Dumps whole packets if full_pkt, only headers otherwise.
1299  */
1300 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1301 {
1302 	struct skb_shared_info *sh = skb_shinfo(skb);
1303 	struct net_device *dev = skb->dev;
1304 	struct sock *sk = skb->sk;
1305 	struct sk_buff *list_skb;
1306 	bool has_mac, has_trans;
1307 	int headroom, tailroom;
1308 	int i, len, seg_len;
1309 
1310 	if (full_pkt)
1311 		len = skb->len;
1312 	else
1313 		len = min_t(int, skb->len, MAX_HEADER + 128);
1314 
1315 	headroom = skb_headroom(skb);
1316 	tailroom = skb_tailroom(skb);
1317 
1318 	has_mac = skb_mac_header_was_set(skb);
1319 	has_trans = skb_transport_header_was_set(skb);
1320 
1321 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1322 	       "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n"
1323 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1324 	       "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1325 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n"
1326 	       "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n"
1327 	       "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n",
1328 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1329 	       has_mac ? skb->mac_header : -1,
1330 	       has_mac ? skb_mac_header_len(skb) : -1,
1331 	       skb->mac_len,
1332 	       skb->network_header,
1333 	       has_trans ? skb_network_header_len(skb) : -1,
1334 	       has_trans ? skb->transport_header : -1,
1335 	       sh->tx_flags, sh->nr_frags,
1336 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1337 	       skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed,
1338 	       skb->csum_complete_sw, skb->csum_valid, skb->csum_level,
1339 	       skb->hash, skb->sw_hash, skb->l4_hash,
1340 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif,
1341 	       skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all,
1342 	       skb->encapsulation, skb->inner_protocol, skb->inner_mac_header,
1343 	       skb->inner_network_header, skb->inner_transport_header);
1344 
1345 	if (dev)
1346 		printk("%sdev name=%s feat=%pNF\n",
1347 		       level, dev->name, &dev->features);
1348 	if (sk)
1349 		printk("%ssk family=%hu type=%u proto=%u\n",
1350 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1351 
1352 	if (full_pkt && headroom)
1353 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1354 			       16, 1, skb->head, headroom, false);
1355 
1356 	seg_len = min_t(int, skb_headlen(skb), len);
1357 	if (seg_len)
1358 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1359 			       16, 1, skb->data, seg_len, false);
1360 	len -= seg_len;
1361 
1362 	if (full_pkt && tailroom)
1363 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1364 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1365 
1366 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1367 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1368 		u32 p_off, p_len, copied;
1369 		struct page *p;
1370 		u8 *vaddr;
1371 
1372 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1373 				      skb_frag_size(frag), p, p_off, p_len,
1374 				      copied) {
1375 			seg_len = min_t(int, p_len, len);
1376 			vaddr = kmap_atomic(p);
1377 			print_hex_dump(level, "skb frag:     ",
1378 				       DUMP_PREFIX_OFFSET,
1379 				       16, 1, vaddr + p_off, seg_len, false);
1380 			kunmap_atomic(vaddr);
1381 			len -= seg_len;
1382 			if (!len)
1383 				break;
1384 		}
1385 	}
1386 
1387 	if (full_pkt && skb_has_frag_list(skb)) {
1388 		printk("skb fraglist:\n");
1389 		skb_walk_frags(skb, list_skb)
1390 			skb_dump(level, list_skb, true);
1391 	}
1392 }
1393 EXPORT_SYMBOL(skb_dump);
1394 
1395 /**
1396  *	skb_tx_error - report an sk_buff xmit error
1397  *	@skb: buffer that triggered an error
1398  *
1399  *	Report xmit error if a device callback is tracking this skb.
1400  *	skb must be freed afterwards.
1401  */
1402 void skb_tx_error(struct sk_buff *skb)
1403 {
1404 	if (skb) {
1405 		skb_zcopy_downgrade_managed(skb);
1406 		skb_zcopy_clear(skb, true);
1407 	}
1408 }
1409 EXPORT_SYMBOL(skb_tx_error);
1410 
1411 #ifdef CONFIG_TRACEPOINTS
1412 /**
1413  *	consume_skb - free an skbuff
1414  *	@skb: buffer to free
1415  *
1416  *	Drop a ref to the buffer and free it if the usage count has hit zero
1417  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1418  *	is being dropped after a failure and notes that
1419  */
1420 void consume_skb(struct sk_buff *skb)
1421 {
1422 	if (!skb_unref(skb))
1423 		return;
1424 
1425 	trace_consume_skb(skb, __builtin_return_address(0));
1426 	__kfree_skb(skb);
1427 }
1428 EXPORT_SYMBOL(consume_skb);
1429 #endif
1430 
1431 /**
1432  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1433  *	@skb: buffer to free
1434  *
1435  *	Alike consume_skb(), but this variant assumes that this is the last
1436  *	skb reference and all the head states have been already dropped
1437  */
1438 void __consume_stateless_skb(struct sk_buff *skb)
1439 {
1440 	trace_consume_skb(skb, __builtin_return_address(0));
1441 	skb_release_data(skb, SKB_CONSUMED);
1442 	kfree_skbmem(skb);
1443 }
1444 
1445 static void napi_skb_cache_put(struct sk_buff *skb)
1446 {
1447 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1448 	u32 i;
1449 
1450 	if (!kasan_mempool_poison_object(skb))
1451 		return;
1452 
1453 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
1454 	nc->skb_cache[nc->skb_count++] = skb;
1455 
1456 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1457 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1458 			kasan_mempool_unpoison_object(nc->skb_cache[i],
1459 						kmem_cache_size(net_hotdata.skbuff_cache));
1460 
1461 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1462 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1463 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1464 	}
1465 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
1466 }
1467 
1468 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1469 {
1470 	skb_release_all(skb, reason);
1471 	napi_skb_cache_put(skb);
1472 }
1473 
1474 void napi_skb_free_stolen_head(struct sk_buff *skb)
1475 {
1476 	if (unlikely(skb->slow_gro)) {
1477 		nf_reset_ct(skb);
1478 		skb_dst_drop(skb);
1479 		skb_ext_put(skb);
1480 		skb_orphan(skb);
1481 		skb->slow_gro = 0;
1482 	}
1483 	napi_skb_cache_put(skb);
1484 }
1485 
1486 void napi_consume_skb(struct sk_buff *skb, int budget)
1487 {
1488 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1489 	if (unlikely(!budget)) {
1490 		dev_consume_skb_any(skb);
1491 		return;
1492 	}
1493 
1494 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1495 
1496 	if (!skb_unref(skb))
1497 		return;
1498 
1499 	/* if reaching here SKB is ready to free */
1500 	trace_consume_skb(skb, __builtin_return_address(0));
1501 
1502 	/* if SKB is a clone, don't handle this case */
1503 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1504 		__kfree_skb(skb);
1505 		return;
1506 	}
1507 
1508 	skb_release_all(skb, SKB_CONSUMED);
1509 	napi_skb_cache_put(skb);
1510 }
1511 EXPORT_SYMBOL(napi_consume_skb);
1512 
1513 /* Make sure a field is contained by headers group */
1514 #define CHECK_SKB_FIELD(field) \
1515 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1516 		     offsetof(struct sk_buff, headers.field));	\
1517 
1518 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1519 {
1520 	new->tstamp		= old->tstamp;
1521 	/* We do not copy old->sk */
1522 	new->dev		= old->dev;
1523 	memcpy(new->cb, old->cb, sizeof(old->cb));
1524 	skb_dst_copy(new, old);
1525 	__skb_ext_copy(new, old);
1526 	__nf_copy(new, old, false);
1527 
1528 	/* Note : this field could be in the headers group.
1529 	 * It is not yet because we do not want to have a 16 bit hole
1530 	 */
1531 	new->queue_mapping = old->queue_mapping;
1532 
1533 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1534 	CHECK_SKB_FIELD(protocol);
1535 	CHECK_SKB_FIELD(csum);
1536 	CHECK_SKB_FIELD(hash);
1537 	CHECK_SKB_FIELD(priority);
1538 	CHECK_SKB_FIELD(skb_iif);
1539 	CHECK_SKB_FIELD(vlan_proto);
1540 	CHECK_SKB_FIELD(vlan_tci);
1541 	CHECK_SKB_FIELD(transport_header);
1542 	CHECK_SKB_FIELD(network_header);
1543 	CHECK_SKB_FIELD(mac_header);
1544 	CHECK_SKB_FIELD(inner_protocol);
1545 	CHECK_SKB_FIELD(inner_transport_header);
1546 	CHECK_SKB_FIELD(inner_network_header);
1547 	CHECK_SKB_FIELD(inner_mac_header);
1548 	CHECK_SKB_FIELD(mark);
1549 #ifdef CONFIG_NETWORK_SECMARK
1550 	CHECK_SKB_FIELD(secmark);
1551 #endif
1552 #ifdef CONFIG_NET_RX_BUSY_POLL
1553 	CHECK_SKB_FIELD(napi_id);
1554 #endif
1555 	CHECK_SKB_FIELD(alloc_cpu);
1556 #ifdef CONFIG_XPS
1557 	CHECK_SKB_FIELD(sender_cpu);
1558 #endif
1559 #ifdef CONFIG_NET_SCHED
1560 	CHECK_SKB_FIELD(tc_index);
1561 #endif
1562 
1563 }
1564 
1565 /*
1566  * You should not add any new code to this function.  Add it to
1567  * __copy_skb_header above instead.
1568  */
1569 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1570 {
1571 #define C(x) n->x = skb->x
1572 
1573 	n->next = n->prev = NULL;
1574 	n->sk = NULL;
1575 	__copy_skb_header(n, skb);
1576 
1577 	C(len);
1578 	C(data_len);
1579 	C(mac_len);
1580 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1581 	n->cloned = 1;
1582 	n->nohdr = 0;
1583 	n->peeked = 0;
1584 	C(pfmemalloc);
1585 	C(pp_recycle);
1586 	n->destructor = NULL;
1587 	C(tail);
1588 	C(end);
1589 	C(head);
1590 	C(head_frag);
1591 	C(data);
1592 	C(truesize);
1593 	refcount_set(&n->users, 1);
1594 
1595 	atomic_inc(&(skb_shinfo(skb)->dataref));
1596 	skb->cloned = 1;
1597 
1598 	return n;
1599 #undef C
1600 }
1601 
1602 /**
1603  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1604  * @first: first sk_buff of the msg
1605  */
1606 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1607 {
1608 	struct sk_buff *n;
1609 
1610 	n = alloc_skb(0, GFP_ATOMIC);
1611 	if (!n)
1612 		return NULL;
1613 
1614 	n->len = first->len;
1615 	n->data_len = first->len;
1616 	n->truesize = first->truesize;
1617 
1618 	skb_shinfo(n)->frag_list = first;
1619 
1620 	__copy_skb_header(n, first);
1621 	n->destructor = NULL;
1622 
1623 	return n;
1624 }
1625 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1626 
1627 /**
1628  *	skb_morph	-	morph one skb into another
1629  *	@dst: the skb to receive the contents
1630  *	@src: the skb to supply the contents
1631  *
1632  *	This is identical to skb_clone except that the target skb is
1633  *	supplied by the user.
1634  *
1635  *	The target skb is returned upon exit.
1636  */
1637 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1638 {
1639 	skb_release_all(dst, SKB_CONSUMED);
1640 	return __skb_clone(dst, src);
1641 }
1642 EXPORT_SYMBOL_GPL(skb_morph);
1643 
1644 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1645 {
1646 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1647 	struct user_struct *user;
1648 
1649 	if (capable(CAP_IPC_LOCK) || !size)
1650 		return 0;
1651 
1652 	rlim = rlimit(RLIMIT_MEMLOCK);
1653 	if (rlim == RLIM_INFINITY)
1654 		return 0;
1655 
1656 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1657 	max_pg = rlim >> PAGE_SHIFT;
1658 	user = mmp->user ? : current_user();
1659 
1660 	old_pg = atomic_long_read(&user->locked_vm);
1661 	do {
1662 		new_pg = old_pg + num_pg;
1663 		if (new_pg > max_pg)
1664 			return -ENOBUFS;
1665 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1666 
1667 	if (!mmp->user) {
1668 		mmp->user = get_uid(user);
1669 		mmp->num_pg = num_pg;
1670 	} else {
1671 		mmp->num_pg += num_pg;
1672 	}
1673 
1674 	return 0;
1675 }
1676 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1677 
1678 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1679 {
1680 	if (mmp->user) {
1681 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1682 		free_uid(mmp->user);
1683 	}
1684 }
1685 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1686 
1687 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1688 {
1689 	struct ubuf_info_msgzc *uarg;
1690 	struct sk_buff *skb;
1691 
1692 	WARN_ON_ONCE(!in_task());
1693 
1694 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1695 	if (!skb)
1696 		return NULL;
1697 
1698 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1699 	uarg = (void *)skb->cb;
1700 	uarg->mmp.user = NULL;
1701 
1702 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1703 		kfree_skb(skb);
1704 		return NULL;
1705 	}
1706 
1707 	uarg->ubuf.ops = &msg_zerocopy_ubuf_ops;
1708 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1709 	uarg->len = 1;
1710 	uarg->bytelen = size;
1711 	uarg->zerocopy = 1;
1712 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1713 	refcount_set(&uarg->ubuf.refcnt, 1);
1714 	sock_hold(sk);
1715 
1716 	return &uarg->ubuf;
1717 }
1718 
1719 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1720 {
1721 	return container_of((void *)uarg, struct sk_buff, cb);
1722 }
1723 
1724 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1725 				       struct ubuf_info *uarg)
1726 {
1727 	if (uarg) {
1728 		struct ubuf_info_msgzc *uarg_zc;
1729 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1730 		u32 bytelen, next;
1731 
1732 		/* there might be non MSG_ZEROCOPY users */
1733 		if (uarg->ops != &msg_zerocopy_ubuf_ops)
1734 			return NULL;
1735 
1736 		/* realloc only when socket is locked (TCP, UDP cork),
1737 		 * so uarg->len and sk_zckey access is serialized
1738 		 */
1739 		if (!sock_owned_by_user(sk)) {
1740 			WARN_ON_ONCE(1);
1741 			return NULL;
1742 		}
1743 
1744 		uarg_zc = uarg_to_msgzc(uarg);
1745 		bytelen = uarg_zc->bytelen + size;
1746 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1747 			/* TCP can create new skb to attach new uarg */
1748 			if (sk->sk_type == SOCK_STREAM)
1749 				goto new_alloc;
1750 			return NULL;
1751 		}
1752 
1753 		next = (u32)atomic_read(&sk->sk_zckey);
1754 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1755 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1756 				return NULL;
1757 			uarg_zc->len++;
1758 			uarg_zc->bytelen = bytelen;
1759 			atomic_set(&sk->sk_zckey, ++next);
1760 
1761 			/* no extra ref when appending to datagram (MSG_MORE) */
1762 			if (sk->sk_type == SOCK_STREAM)
1763 				net_zcopy_get(uarg);
1764 
1765 			return uarg;
1766 		}
1767 	}
1768 
1769 new_alloc:
1770 	return msg_zerocopy_alloc(sk, size);
1771 }
1772 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1773 
1774 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1775 {
1776 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1777 	u32 old_lo, old_hi;
1778 	u64 sum_len;
1779 
1780 	old_lo = serr->ee.ee_info;
1781 	old_hi = serr->ee.ee_data;
1782 	sum_len = old_hi - old_lo + 1ULL + len;
1783 
1784 	if (sum_len >= (1ULL << 32))
1785 		return false;
1786 
1787 	if (lo != old_hi + 1)
1788 		return false;
1789 
1790 	serr->ee.ee_data += len;
1791 	return true;
1792 }
1793 
1794 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1795 {
1796 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1797 	struct sock_exterr_skb *serr;
1798 	struct sock *sk = skb->sk;
1799 	struct sk_buff_head *q;
1800 	unsigned long flags;
1801 	bool is_zerocopy;
1802 	u32 lo, hi;
1803 	u16 len;
1804 
1805 	mm_unaccount_pinned_pages(&uarg->mmp);
1806 
1807 	/* if !len, there was only 1 call, and it was aborted
1808 	 * so do not queue a completion notification
1809 	 */
1810 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1811 		goto release;
1812 
1813 	len = uarg->len;
1814 	lo = uarg->id;
1815 	hi = uarg->id + len - 1;
1816 	is_zerocopy = uarg->zerocopy;
1817 
1818 	serr = SKB_EXT_ERR(skb);
1819 	memset(serr, 0, sizeof(*serr));
1820 	serr->ee.ee_errno = 0;
1821 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1822 	serr->ee.ee_data = hi;
1823 	serr->ee.ee_info = lo;
1824 	if (!is_zerocopy)
1825 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1826 
1827 	q = &sk->sk_error_queue;
1828 	spin_lock_irqsave(&q->lock, flags);
1829 	tail = skb_peek_tail(q);
1830 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1831 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1832 		__skb_queue_tail(q, skb);
1833 		skb = NULL;
1834 	}
1835 	spin_unlock_irqrestore(&q->lock, flags);
1836 
1837 	sk_error_report(sk);
1838 
1839 release:
1840 	consume_skb(skb);
1841 	sock_put(sk);
1842 }
1843 
1844 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg,
1845 				  bool success)
1846 {
1847 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1848 
1849 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1850 
1851 	if (refcount_dec_and_test(&uarg->refcnt))
1852 		__msg_zerocopy_callback(uarg_zc);
1853 }
1854 
1855 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1856 {
1857 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1858 
1859 	atomic_dec(&sk->sk_zckey);
1860 	uarg_to_msgzc(uarg)->len--;
1861 
1862 	if (have_uref)
1863 		msg_zerocopy_complete(NULL, uarg, true);
1864 }
1865 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1866 
1867 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = {
1868 	.complete = msg_zerocopy_complete,
1869 };
1870 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops);
1871 
1872 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1873 			     struct msghdr *msg, int len,
1874 			     struct ubuf_info *uarg)
1875 {
1876 	int err, orig_len = skb->len;
1877 
1878 	if (uarg->ops->link_skb) {
1879 		err = uarg->ops->link_skb(skb, uarg);
1880 		if (err)
1881 			return err;
1882 	} else {
1883 		struct ubuf_info *orig_uarg = skb_zcopy(skb);
1884 
1885 		/* An skb can only point to one uarg. This edge case happens
1886 		 * when TCP appends to an skb, but zerocopy_realloc triggered
1887 		 * a new alloc.
1888 		 */
1889 		if (orig_uarg && uarg != orig_uarg)
1890 			return -EEXIST;
1891 	}
1892 
1893 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1894 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1895 		struct sock *save_sk = skb->sk;
1896 
1897 		/* Streams do not free skb on error. Reset to prev state. */
1898 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1899 		skb->sk = sk;
1900 		___pskb_trim(skb, orig_len);
1901 		skb->sk = save_sk;
1902 		return err;
1903 	}
1904 
1905 	skb_zcopy_set(skb, uarg, NULL);
1906 	return skb->len - orig_len;
1907 }
1908 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1909 
1910 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1911 {
1912 	int i;
1913 
1914 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1915 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1916 		skb_frag_ref(skb, i);
1917 }
1918 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1919 
1920 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1921 			      gfp_t gfp_mask)
1922 {
1923 	if (skb_zcopy(orig)) {
1924 		if (skb_zcopy(nskb)) {
1925 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1926 			if (!gfp_mask) {
1927 				WARN_ON_ONCE(1);
1928 				return -ENOMEM;
1929 			}
1930 			if (skb_uarg(nskb) == skb_uarg(orig))
1931 				return 0;
1932 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1933 				return -EIO;
1934 		}
1935 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1936 	}
1937 	return 0;
1938 }
1939 
1940 /**
1941  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1942  *	@skb: the skb to modify
1943  *	@gfp_mask: allocation priority
1944  *
1945  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1946  *	It will copy all frags into kernel and drop the reference
1947  *	to userspace pages.
1948  *
1949  *	If this function is called from an interrupt gfp_mask() must be
1950  *	%GFP_ATOMIC.
1951  *
1952  *	Returns 0 on success or a negative error code on failure
1953  *	to allocate kernel memory to copy to.
1954  */
1955 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1956 {
1957 	int num_frags = skb_shinfo(skb)->nr_frags;
1958 	struct page *page, *head = NULL;
1959 	int i, order, psize, new_frags;
1960 	u32 d_off;
1961 
1962 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1963 		return -EINVAL;
1964 
1965 	if (!num_frags)
1966 		goto release;
1967 
1968 	/* We might have to allocate high order pages, so compute what minimum
1969 	 * page order is needed.
1970 	 */
1971 	order = 0;
1972 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1973 		order++;
1974 	psize = (PAGE_SIZE << order);
1975 
1976 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1977 	for (i = 0; i < new_frags; i++) {
1978 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1979 		if (!page) {
1980 			while (head) {
1981 				struct page *next = (struct page *)page_private(head);
1982 				put_page(head);
1983 				head = next;
1984 			}
1985 			return -ENOMEM;
1986 		}
1987 		set_page_private(page, (unsigned long)head);
1988 		head = page;
1989 	}
1990 
1991 	page = head;
1992 	d_off = 0;
1993 	for (i = 0; i < num_frags; i++) {
1994 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1995 		u32 p_off, p_len, copied;
1996 		struct page *p;
1997 		u8 *vaddr;
1998 
1999 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
2000 				      p, p_off, p_len, copied) {
2001 			u32 copy, done = 0;
2002 			vaddr = kmap_atomic(p);
2003 
2004 			while (done < p_len) {
2005 				if (d_off == psize) {
2006 					d_off = 0;
2007 					page = (struct page *)page_private(page);
2008 				}
2009 				copy = min_t(u32, psize - d_off, p_len - done);
2010 				memcpy(page_address(page) + d_off,
2011 				       vaddr + p_off + done, copy);
2012 				done += copy;
2013 				d_off += copy;
2014 			}
2015 			kunmap_atomic(vaddr);
2016 		}
2017 	}
2018 
2019 	/* skb frags release userspace buffers */
2020 	for (i = 0; i < num_frags; i++)
2021 		skb_frag_unref(skb, i);
2022 
2023 	/* skb frags point to kernel buffers */
2024 	for (i = 0; i < new_frags - 1; i++) {
2025 		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
2026 		head = (struct page *)page_private(head);
2027 	}
2028 	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2029 			       d_off);
2030 	skb_shinfo(skb)->nr_frags = new_frags;
2031 
2032 release:
2033 	skb_zcopy_clear(skb, false);
2034 	return 0;
2035 }
2036 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2037 
2038 /**
2039  *	skb_clone	-	duplicate an sk_buff
2040  *	@skb: buffer to clone
2041  *	@gfp_mask: allocation priority
2042  *
2043  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
2044  *	copies share the same packet data but not structure. The new
2045  *	buffer has a reference count of 1. If the allocation fails the
2046  *	function returns %NULL otherwise the new buffer is returned.
2047  *
2048  *	If this function is called from an interrupt gfp_mask() must be
2049  *	%GFP_ATOMIC.
2050  */
2051 
2052 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2053 {
2054 	struct sk_buff_fclones *fclones = container_of(skb,
2055 						       struct sk_buff_fclones,
2056 						       skb1);
2057 	struct sk_buff *n;
2058 
2059 	if (skb_orphan_frags(skb, gfp_mask))
2060 		return NULL;
2061 
2062 	if (skb->fclone == SKB_FCLONE_ORIG &&
2063 	    refcount_read(&fclones->fclone_ref) == 1) {
2064 		n = &fclones->skb2;
2065 		refcount_set(&fclones->fclone_ref, 2);
2066 		n->fclone = SKB_FCLONE_CLONE;
2067 	} else {
2068 		if (skb_pfmemalloc(skb))
2069 			gfp_mask |= __GFP_MEMALLOC;
2070 
2071 		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2072 		if (!n)
2073 			return NULL;
2074 
2075 		n->fclone = SKB_FCLONE_UNAVAILABLE;
2076 	}
2077 
2078 	return __skb_clone(n, skb);
2079 }
2080 EXPORT_SYMBOL(skb_clone);
2081 
2082 void skb_headers_offset_update(struct sk_buff *skb, int off)
2083 {
2084 	/* Only adjust this if it actually is csum_start rather than csum */
2085 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2086 		skb->csum_start += off;
2087 	/* {transport,network,mac}_header and tail are relative to skb->head */
2088 	skb->transport_header += off;
2089 	skb->network_header   += off;
2090 	if (skb_mac_header_was_set(skb))
2091 		skb->mac_header += off;
2092 	skb->inner_transport_header += off;
2093 	skb->inner_network_header += off;
2094 	skb->inner_mac_header += off;
2095 }
2096 EXPORT_SYMBOL(skb_headers_offset_update);
2097 
2098 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2099 {
2100 	__copy_skb_header(new, old);
2101 
2102 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2103 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2104 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2105 }
2106 EXPORT_SYMBOL(skb_copy_header);
2107 
2108 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2109 {
2110 	if (skb_pfmemalloc(skb))
2111 		return SKB_ALLOC_RX;
2112 	return 0;
2113 }
2114 
2115 /**
2116  *	skb_copy	-	create private copy of an sk_buff
2117  *	@skb: buffer to copy
2118  *	@gfp_mask: allocation priority
2119  *
2120  *	Make a copy of both an &sk_buff and its data. This is used when the
2121  *	caller wishes to modify the data and needs a private copy of the
2122  *	data to alter. Returns %NULL on failure or the pointer to the buffer
2123  *	on success. The returned buffer has a reference count of 1.
2124  *
2125  *	As by-product this function converts non-linear &sk_buff to linear
2126  *	one, so that &sk_buff becomes completely private and caller is allowed
2127  *	to modify all the data of returned buffer. This means that this
2128  *	function is not recommended for use in circumstances when only
2129  *	header is going to be modified. Use pskb_copy() instead.
2130  */
2131 
2132 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2133 {
2134 	struct sk_buff *n;
2135 	unsigned int size;
2136 	int headerlen;
2137 
2138 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2139 		return NULL;
2140 
2141 	headerlen = skb_headroom(skb);
2142 	size = skb_end_offset(skb) + skb->data_len;
2143 	n = __alloc_skb(size, gfp_mask,
2144 			skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2145 	if (!n)
2146 		return NULL;
2147 
2148 	/* Set the data pointer */
2149 	skb_reserve(n, headerlen);
2150 	/* Set the tail pointer and length */
2151 	skb_put(n, skb->len);
2152 
2153 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2154 
2155 	skb_copy_header(n, skb);
2156 	return n;
2157 }
2158 EXPORT_SYMBOL(skb_copy);
2159 
2160 /**
2161  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2162  *	@skb: buffer to copy
2163  *	@headroom: headroom of new skb
2164  *	@gfp_mask: allocation priority
2165  *	@fclone: if true allocate the copy of the skb from the fclone
2166  *	cache instead of the head cache; it is recommended to set this
2167  *	to true for the cases where the copy will likely be cloned
2168  *
2169  *	Make a copy of both an &sk_buff and part of its data, located
2170  *	in header. Fragmented data remain shared. This is used when
2171  *	the caller wishes to modify only header of &sk_buff and needs
2172  *	private copy of the header to alter. Returns %NULL on failure
2173  *	or the pointer to the buffer on success.
2174  *	The returned buffer has a reference count of 1.
2175  */
2176 
2177 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2178 				   gfp_t gfp_mask, bool fclone)
2179 {
2180 	unsigned int size = skb_headlen(skb) + headroom;
2181 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2182 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2183 
2184 	if (!n)
2185 		goto out;
2186 
2187 	/* Set the data pointer */
2188 	skb_reserve(n, headroom);
2189 	/* Set the tail pointer and length */
2190 	skb_put(n, skb_headlen(skb));
2191 	/* Copy the bytes */
2192 	skb_copy_from_linear_data(skb, n->data, n->len);
2193 
2194 	n->truesize += skb->data_len;
2195 	n->data_len  = skb->data_len;
2196 	n->len	     = skb->len;
2197 
2198 	if (skb_shinfo(skb)->nr_frags) {
2199 		int i;
2200 
2201 		if (skb_orphan_frags(skb, gfp_mask) ||
2202 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2203 			kfree_skb(n);
2204 			n = NULL;
2205 			goto out;
2206 		}
2207 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2208 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2209 			skb_frag_ref(skb, i);
2210 		}
2211 		skb_shinfo(n)->nr_frags = i;
2212 	}
2213 
2214 	if (skb_has_frag_list(skb)) {
2215 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2216 		skb_clone_fraglist(n);
2217 	}
2218 
2219 	skb_copy_header(n, skb);
2220 out:
2221 	return n;
2222 }
2223 EXPORT_SYMBOL(__pskb_copy_fclone);
2224 
2225 /**
2226  *	pskb_expand_head - reallocate header of &sk_buff
2227  *	@skb: buffer to reallocate
2228  *	@nhead: room to add at head
2229  *	@ntail: room to add at tail
2230  *	@gfp_mask: allocation priority
2231  *
2232  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2233  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2234  *	reference count of 1. Returns zero in the case of success or error,
2235  *	if expansion failed. In the last case, &sk_buff is not changed.
2236  *
2237  *	All the pointers pointing into skb header may change and must be
2238  *	reloaded after call to this function.
2239  */
2240 
2241 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2242 		     gfp_t gfp_mask)
2243 {
2244 	unsigned int osize = skb_end_offset(skb);
2245 	unsigned int size = osize + nhead + ntail;
2246 	long off;
2247 	u8 *data;
2248 	int i;
2249 
2250 	BUG_ON(nhead < 0);
2251 
2252 	BUG_ON(skb_shared(skb));
2253 
2254 	skb_zcopy_downgrade_managed(skb);
2255 
2256 	if (skb_pfmemalloc(skb))
2257 		gfp_mask |= __GFP_MEMALLOC;
2258 
2259 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2260 	if (!data)
2261 		goto nodata;
2262 	size = SKB_WITH_OVERHEAD(size);
2263 
2264 	/* Copy only real data... and, alas, header. This should be
2265 	 * optimized for the cases when header is void.
2266 	 */
2267 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2268 
2269 	memcpy((struct skb_shared_info *)(data + size),
2270 	       skb_shinfo(skb),
2271 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2272 
2273 	/*
2274 	 * if shinfo is shared we must drop the old head gracefully, but if it
2275 	 * is not we can just drop the old head and let the existing refcount
2276 	 * be since all we did is relocate the values
2277 	 */
2278 	if (skb_cloned(skb)) {
2279 		if (skb_orphan_frags(skb, gfp_mask))
2280 			goto nofrags;
2281 		if (skb_zcopy(skb))
2282 			refcount_inc(&skb_uarg(skb)->refcnt);
2283 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2284 			skb_frag_ref(skb, i);
2285 
2286 		if (skb_has_frag_list(skb))
2287 			skb_clone_fraglist(skb);
2288 
2289 		skb_release_data(skb, SKB_CONSUMED);
2290 	} else {
2291 		skb_free_head(skb);
2292 	}
2293 	off = (data + nhead) - skb->head;
2294 
2295 	skb->head     = data;
2296 	skb->head_frag = 0;
2297 	skb->data    += off;
2298 
2299 	skb_set_end_offset(skb, size);
2300 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2301 	off           = nhead;
2302 #endif
2303 	skb->tail	      += off;
2304 	skb_headers_offset_update(skb, nhead);
2305 	skb->cloned   = 0;
2306 	skb->hdr_len  = 0;
2307 	skb->nohdr    = 0;
2308 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2309 
2310 	skb_metadata_clear(skb);
2311 
2312 	/* It is not generally safe to change skb->truesize.
2313 	 * For the moment, we really care of rx path, or
2314 	 * when skb is orphaned (not attached to a socket).
2315 	 */
2316 	if (!skb->sk || skb->destructor == sock_edemux)
2317 		skb->truesize += size - osize;
2318 
2319 	return 0;
2320 
2321 nofrags:
2322 	skb_kfree_head(data, size);
2323 nodata:
2324 	return -ENOMEM;
2325 }
2326 EXPORT_SYMBOL(pskb_expand_head);
2327 
2328 /* Make private copy of skb with writable head and some headroom */
2329 
2330 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2331 {
2332 	struct sk_buff *skb2;
2333 	int delta = headroom - skb_headroom(skb);
2334 
2335 	if (delta <= 0)
2336 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2337 	else {
2338 		skb2 = skb_clone(skb, GFP_ATOMIC);
2339 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2340 					     GFP_ATOMIC)) {
2341 			kfree_skb(skb2);
2342 			skb2 = NULL;
2343 		}
2344 	}
2345 	return skb2;
2346 }
2347 EXPORT_SYMBOL(skb_realloc_headroom);
2348 
2349 /* Note: We plan to rework this in linux-6.4 */
2350 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2351 {
2352 	unsigned int saved_end_offset, saved_truesize;
2353 	struct skb_shared_info *shinfo;
2354 	int res;
2355 
2356 	saved_end_offset = skb_end_offset(skb);
2357 	saved_truesize = skb->truesize;
2358 
2359 	res = pskb_expand_head(skb, 0, 0, pri);
2360 	if (res)
2361 		return res;
2362 
2363 	skb->truesize = saved_truesize;
2364 
2365 	if (likely(skb_end_offset(skb) == saved_end_offset))
2366 		return 0;
2367 
2368 	/* We can not change skb->end if the original or new value
2369 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2370 	 */
2371 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2372 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2373 		/* We think this path should not be taken.
2374 		 * Add a temporary trace to warn us just in case.
2375 		 */
2376 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2377 			    saved_end_offset, skb_end_offset(skb));
2378 		WARN_ON_ONCE(1);
2379 		return 0;
2380 	}
2381 
2382 	shinfo = skb_shinfo(skb);
2383 
2384 	/* We are about to change back skb->end,
2385 	 * we need to move skb_shinfo() to its new location.
2386 	 */
2387 	memmove(skb->head + saved_end_offset,
2388 		shinfo,
2389 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2390 
2391 	skb_set_end_offset(skb, saved_end_offset);
2392 
2393 	return 0;
2394 }
2395 
2396 /**
2397  *	skb_expand_head - reallocate header of &sk_buff
2398  *	@skb: buffer to reallocate
2399  *	@headroom: needed headroom
2400  *
2401  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2402  *	if possible; copies skb->sk to new skb as needed
2403  *	and frees original skb in case of failures.
2404  *
2405  *	It expect increased headroom and generates warning otherwise.
2406  */
2407 
2408 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2409 {
2410 	int delta = headroom - skb_headroom(skb);
2411 	int osize = skb_end_offset(skb);
2412 	struct sock *sk = skb->sk;
2413 
2414 	if (WARN_ONCE(delta <= 0,
2415 		      "%s is expecting an increase in the headroom", __func__))
2416 		return skb;
2417 
2418 	delta = SKB_DATA_ALIGN(delta);
2419 	/* pskb_expand_head() might crash, if skb is shared. */
2420 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2421 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2422 
2423 		if (unlikely(!nskb))
2424 			goto fail;
2425 
2426 		if (sk)
2427 			skb_set_owner_w(nskb, sk);
2428 		consume_skb(skb);
2429 		skb = nskb;
2430 	}
2431 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2432 		goto fail;
2433 
2434 	if (sk && is_skb_wmem(skb)) {
2435 		delta = skb_end_offset(skb) - osize;
2436 		refcount_add(delta, &sk->sk_wmem_alloc);
2437 		skb->truesize += delta;
2438 	}
2439 	return skb;
2440 
2441 fail:
2442 	kfree_skb(skb);
2443 	return NULL;
2444 }
2445 EXPORT_SYMBOL(skb_expand_head);
2446 
2447 /**
2448  *	skb_copy_expand	-	copy and expand sk_buff
2449  *	@skb: buffer to copy
2450  *	@newheadroom: new free bytes at head
2451  *	@newtailroom: new free bytes at tail
2452  *	@gfp_mask: allocation priority
2453  *
2454  *	Make a copy of both an &sk_buff and its data and while doing so
2455  *	allocate additional space.
2456  *
2457  *	This is used when the caller wishes to modify the data and needs a
2458  *	private copy of the data to alter as well as more space for new fields.
2459  *	Returns %NULL on failure or the pointer to the buffer
2460  *	on success. The returned buffer has a reference count of 1.
2461  *
2462  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2463  *	is called from an interrupt.
2464  */
2465 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2466 				int newheadroom, int newtailroom,
2467 				gfp_t gfp_mask)
2468 {
2469 	/*
2470 	 *	Allocate the copy buffer
2471 	 */
2472 	int head_copy_len, head_copy_off;
2473 	struct sk_buff *n;
2474 	int oldheadroom;
2475 
2476 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2477 		return NULL;
2478 
2479 	oldheadroom = skb_headroom(skb);
2480 	n = __alloc_skb(newheadroom + skb->len + newtailroom,
2481 			gfp_mask, skb_alloc_rx_flag(skb),
2482 			NUMA_NO_NODE);
2483 	if (!n)
2484 		return NULL;
2485 
2486 	skb_reserve(n, newheadroom);
2487 
2488 	/* Set the tail pointer and length */
2489 	skb_put(n, skb->len);
2490 
2491 	head_copy_len = oldheadroom;
2492 	head_copy_off = 0;
2493 	if (newheadroom <= head_copy_len)
2494 		head_copy_len = newheadroom;
2495 	else
2496 		head_copy_off = newheadroom - head_copy_len;
2497 
2498 	/* Copy the linear header and data. */
2499 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2500 			     skb->len + head_copy_len));
2501 
2502 	skb_copy_header(n, skb);
2503 
2504 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2505 
2506 	return n;
2507 }
2508 EXPORT_SYMBOL(skb_copy_expand);
2509 
2510 /**
2511  *	__skb_pad		-	zero pad the tail of an skb
2512  *	@skb: buffer to pad
2513  *	@pad: space to pad
2514  *	@free_on_error: free buffer on error
2515  *
2516  *	Ensure that a buffer is followed by a padding area that is zero
2517  *	filled. Used by network drivers which may DMA or transfer data
2518  *	beyond the buffer end onto the wire.
2519  *
2520  *	May return error in out of memory cases. The skb is freed on error
2521  *	if @free_on_error is true.
2522  */
2523 
2524 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2525 {
2526 	int err;
2527 	int ntail;
2528 
2529 	/* If the skbuff is non linear tailroom is always zero.. */
2530 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2531 		memset(skb->data+skb->len, 0, pad);
2532 		return 0;
2533 	}
2534 
2535 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2536 	if (likely(skb_cloned(skb) || ntail > 0)) {
2537 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2538 		if (unlikely(err))
2539 			goto free_skb;
2540 	}
2541 
2542 	/* FIXME: The use of this function with non-linear skb's really needs
2543 	 * to be audited.
2544 	 */
2545 	err = skb_linearize(skb);
2546 	if (unlikely(err))
2547 		goto free_skb;
2548 
2549 	memset(skb->data + skb->len, 0, pad);
2550 	return 0;
2551 
2552 free_skb:
2553 	if (free_on_error)
2554 		kfree_skb(skb);
2555 	return err;
2556 }
2557 EXPORT_SYMBOL(__skb_pad);
2558 
2559 /**
2560  *	pskb_put - add data to the tail of a potentially fragmented buffer
2561  *	@skb: start of the buffer to use
2562  *	@tail: tail fragment of the buffer to use
2563  *	@len: amount of data to add
2564  *
2565  *	This function extends the used data area of the potentially
2566  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2567  *	@skb itself. If this would exceed the total buffer size the kernel
2568  *	will panic. A pointer to the first byte of the extra data is
2569  *	returned.
2570  */
2571 
2572 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2573 {
2574 	if (tail != skb) {
2575 		skb->data_len += len;
2576 		skb->len += len;
2577 	}
2578 	return skb_put(tail, len);
2579 }
2580 EXPORT_SYMBOL_GPL(pskb_put);
2581 
2582 /**
2583  *	skb_put - add data to a buffer
2584  *	@skb: buffer to use
2585  *	@len: amount of data to add
2586  *
2587  *	This function extends the used data area of the buffer. If this would
2588  *	exceed the total buffer size the kernel will panic. A pointer to the
2589  *	first byte of the extra data is returned.
2590  */
2591 void *skb_put(struct sk_buff *skb, unsigned int len)
2592 {
2593 	void *tmp = skb_tail_pointer(skb);
2594 	SKB_LINEAR_ASSERT(skb);
2595 	skb->tail += len;
2596 	skb->len  += len;
2597 	if (unlikely(skb->tail > skb->end))
2598 		skb_over_panic(skb, len, __builtin_return_address(0));
2599 	return tmp;
2600 }
2601 EXPORT_SYMBOL(skb_put);
2602 
2603 /**
2604  *	skb_push - add data to the start of a buffer
2605  *	@skb: buffer to use
2606  *	@len: amount of data to add
2607  *
2608  *	This function extends the used data area of the buffer at the buffer
2609  *	start. If this would exceed the total buffer headroom the kernel will
2610  *	panic. A pointer to the first byte of the extra data is returned.
2611  */
2612 void *skb_push(struct sk_buff *skb, unsigned int len)
2613 {
2614 	skb->data -= len;
2615 	skb->len  += len;
2616 	if (unlikely(skb->data < skb->head))
2617 		skb_under_panic(skb, len, __builtin_return_address(0));
2618 	return skb->data;
2619 }
2620 EXPORT_SYMBOL(skb_push);
2621 
2622 /**
2623  *	skb_pull - remove data from the start of a buffer
2624  *	@skb: buffer to use
2625  *	@len: amount of data to remove
2626  *
2627  *	This function removes data from the start of a buffer, returning
2628  *	the memory to the headroom. A pointer to the next data in the buffer
2629  *	is returned. Once the data has been pulled future pushes will overwrite
2630  *	the old data.
2631  */
2632 void *skb_pull(struct sk_buff *skb, unsigned int len)
2633 {
2634 	return skb_pull_inline(skb, len);
2635 }
2636 EXPORT_SYMBOL(skb_pull);
2637 
2638 /**
2639  *	skb_pull_data - remove data from the start of a buffer returning its
2640  *	original position.
2641  *	@skb: buffer to use
2642  *	@len: amount of data to remove
2643  *
2644  *	This function removes data from the start of a buffer, returning
2645  *	the memory to the headroom. A pointer to the original data in the buffer
2646  *	is returned after checking if there is enough data to pull. Once the
2647  *	data has been pulled future pushes will overwrite the old data.
2648  */
2649 void *skb_pull_data(struct sk_buff *skb, size_t len)
2650 {
2651 	void *data = skb->data;
2652 
2653 	if (skb->len < len)
2654 		return NULL;
2655 
2656 	skb_pull(skb, len);
2657 
2658 	return data;
2659 }
2660 EXPORT_SYMBOL(skb_pull_data);
2661 
2662 /**
2663  *	skb_trim - remove end from a buffer
2664  *	@skb: buffer to alter
2665  *	@len: new length
2666  *
2667  *	Cut the length of a buffer down by removing data from the tail. If
2668  *	the buffer is already under the length specified it is not modified.
2669  *	The skb must be linear.
2670  */
2671 void skb_trim(struct sk_buff *skb, unsigned int len)
2672 {
2673 	if (skb->len > len)
2674 		__skb_trim(skb, len);
2675 }
2676 EXPORT_SYMBOL(skb_trim);
2677 
2678 /* Trims skb to length len. It can change skb pointers.
2679  */
2680 
2681 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2682 {
2683 	struct sk_buff **fragp;
2684 	struct sk_buff *frag;
2685 	int offset = skb_headlen(skb);
2686 	int nfrags = skb_shinfo(skb)->nr_frags;
2687 	int i;
2688 	int err;
2689 
2690 	if (skb_cloned(skb) &&
2691 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2692 		return err;
2693 
2694 	i = 0;
2695 	if (offset >= len)
2696 		goto drop_pages;
2697 
2698 	for (; i < nfrags; i++) {
2699 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2700 
2701 		if (end < len) {
2702 			offset = end;
2703 			continue;
2704 		}
2705 
2706 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2707 
2708 drop_pages:
2709 		skb_shinfo(skb)->nr_frags = i;
2710 
2711 		for (; i < nfrags; i++)
2712 			skb_frag_unref(skb, i);
2713 
2714 		if (skb_has_frag_list(skb))
2715 			skb_drop_fraglist(skb);
2716 		goto done;
2717 	}
2718 
2719 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2720 	     fragp = &frag->next) {
2721 		int end = offset + frag->len;
2722 
2723 		if (skb_shared(frag)) {
2724 			struct sk_buff *nfrag;
2725 
2726 			nfrag = skb_clone(frag, GFP_ATOMIC);
2727 			if (unlikely(!nfrag))
2728 				return -ENOMEM;
2729 
2730 			nfrag->next = frag->next;
2731 			consume_skb(frag);
2732 			frag = nfrag;
2733 			*fragp = frag;
2734 		}
2735 
2736 		if (end < len) {
2737 			offset = end;
2738 			continue;
2739 		}
2740 
2741 		if (end > len &&
2742 		    unlikely((err = pskb_trim(frag, len - offset))))
2743 			return err;
2744 
2745 		if (frag->next)
2746 			skb_drop_list(&frag->next);
2747 		break;
2748 	}
2749 
2750 done:
2751 	if (len > skb_headlen(skb)) {
2752 		skb->data_len -= skb->len - len;
2753 		skb->len       = len;
2754 	} else {
2755 		skb->len       = len;
2756 		skb->data_len  = 0;
2757 		skb_set_tail_pointer(skb, len);
2758 	}
2759 
2760 	if (!skb->sk || skb->destructor == sock_edemux)
2761 		skb_condense(skb);
2762 	return 0;
2763 }
2764 EXPORT_SYMBOL(___pskb_trim);
2765 
2766 /* Note : use pskb_trim_rcsum() instead of calling this directly
2767  */
2768 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2769 {
2770 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2771 		int delta = skb->len - len;
2772 
2773 		skb->csum = csum_block_sub(skb->csum,
2774 					   skb_checksum(skb, len, delta, 0),
2775 					   len);
2776 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2777 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2778 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2779 
2780 		if (offset + sizeof(__sum16) > hdlen)
2781 			return -EINVAL;
2782 	}
2783 	return __pskb_trim(skb, len);
2784 }
2785 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2786 
2787 /**
2788  *	__pskb_pull_tail - advance tail of skb header
2789  *	@skb: buffer to reallocate
2790  *	@delta: number of bytes to advance tail
2791  *
2792  *	The function makes a sense only on a fragmented &sk_buff,
2793  *	it expands header moving its tail forward and copying necessary
2794  *	data from fragmented part.
2795  *
2796  *	&sk_buff MUST have reference count of 1.
2797  *
2798  *	Returns %NULL (and &sk_buff does not change) if pull failed
2799  *	or value of new tail of skb in the case of success.
2800  *
2801  *	All the pointers pointing into skb header may change and must be
2802  *	reloaded after call to this function.
2803  */
2804 
2805 /* Moves tail of skb head forward, copying data from fragmented part,
2806  * when it is necessary.
2807  * 1. It may fail due to malloc failure.
2808  * 2. It may change skb pointers.
2809  *
2810  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2811  */
2812 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2813 {
2814 	/* If skb has not enough free space at tail, get new one
2815 	 * plus 128 bytes for future expansions. If we have enough
2816 	 * room at tail, reallocate without expansion only if skb is cloned.
2817 	 */
2818 	int i, k, eat = (skb->tail + delta) - skb->end;
2819 
2820 	if (eat > 0 || skb_cloned(skb)) {
2821 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2822 				     GFP_ATOMIC))
2823 			return NULL;
2824 	}
2825 
2826 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2827 			     skb_tail_pointer(skb), delta));
2828 
2829 	/* Optimization: no fragments, no reasons to preestimate
2830 	 * size of pulled pages. Superb.
2831 	 */
2832 	if (!skb_has_frag_list(skb))
2833 		goto pull_pages;
2834 
2835 	/* Estimate size of pulled pages. */
2836 	eat = delta;
2837 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2838 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2839 
2840 		if (size >= eat)
2841 			goto pull_pages;
2842 		eat -= size;
2843 	}
2844 
2845 	/* If we need update frag list, we are in troubles.
2846 	 * Certainly, it is possible to add an offset to skb data,
2847 	 * but taking into account that pulling is expected to
2848 	 * be very rare operation, it is worth to fight against
2849 	 * further bloating skb head and crucify ourselves here instead.
2850 	 * Pure masohism, indeed. 8)8)
2851 	 */
2852 	if (eat) {
2853 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2854 		struct sk_buff *clone = NULL;
2855 		struct sk_buff *insp = NULL;
2856 
2857 		do {
2858 			if (list->len <= eat) {
2859 				/* Eaten as whole. */
2860 				eat -= list->len;
2861 				list = list->next;
2862 				insp = list;
2863 			} else {
2864 				/* Eaten partially. */
2865 				if (skb_is_gso(skb) && !list->head_frag &&
2866 				    skb_headlen(list))
2867 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2868 
2869 				if (skb_shared(list)) {
2870 					/* Sucks! We need to fork list. :-( */
2871 					clone = skb_clone(list, GFP_ATOMIC);
2872 					if (!clone)
2873 						return NULL;
2874 					insp = list->next;
2875 					list = clone;
2876 				} else {
2877 					/* This may be pulled without
2878 					 * problems. */
2879 					insp = list;
2880 				}
2881 				if (!pskb_pull(list, eat)) {
2882 					kfree_skb(clone);
2883 					return NULL;
2884 				}
2885 				break;
2886 			}
2887 		} while (eat);
2888 
2889 		/* Free pulled out fragments. */
2890 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2891 			skb_shinfo(skb)->frag_list = list->next;
2892 			consume_skb(list);
2893 		}
2894 		/* And insert new clone at head. */
2895 		if (clone) {
2896 			clone->next = list;
2897 			skb_shinfo(skb)->frag_list = clone;
2898 		}
2899 	}
2900 	/* Success! Now we may commit changes to skb data. */
2901 
2902 pull_pages:
2903 	eat = delta;
2904 	k = 0;
2905 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2906 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2907 
2908 		if (size <= eat) {
2909 			skb_frag_unref(skb, i);
2910 			eat -= size;
2911 		} else {
2912 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2913 
2914 			*frag = skb_shinfo(skb)->frags[i];
2915 			if (eat) {
2916 				skb_frag_off_add(frag, eat);
2917 				skb_frag_size_sub(frag, eat);
2918 				if (!i)
2919 					goto end;
2920 				eat = 0;
2921 			}
2922 			k++;
2923 		}
2924 	}
2925 	skb_shinfo(skb)->nr_frags = k;
2926 
2927 end:
2928 	skb->tail     += delta;
2929 	skb->data_len -= delta;
2930 
2931 	if (!skb->data_len)
2932 		skb_zcopy_clear(skb, false);
2933 
2934 	return skb_tail_pointer(skb);
2935 }
2936 EXPORT_SYMBOL(__pskb_pull_tail);
2937 
2938 /**
2939  *	skb_copy_bits - copy bits from skb to kernel buffer
2940  *	@skb: source skb
2941  *	@offset: offset in source
2942  *	@to: destination buffer
2943  *	@len: number of bytes to copy
2944  *
2945  *	Copy the specified number of bytes from the source skb to the
2946  *	destination buffer.
2947  *
2948  *	CAUTION ! :
2949  *		If its prototype is ever changed,
2950  *		check arch/{*}/net/{*}.S files,
2951  *		since it is called from BPF assembly code.
2952  */
2953 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2954 {
2955 	int start = skb_headlen(skb);
2956 	struct sk_buff *frag_iter;
2957 	int i, copy;
2958 
2959 	if (offset > (int)skb->len - len)
2960 		goto fault;
2961 
2962 	/* Copy header. */
2963 	if ((copy = start - offset) > 0) {
2964 		if (copy > len)
2965 			copy = len;
2966 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2967 		if ((len -= copy) == 0)
2968 			return 0;
2969 		offset += copy;
2970 		to     += copy;
2971 	}
2972 
2973 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2974 		int end;
2975 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2976 
2977 		WARN_ON(start > offset + len);
2978 
2979 		end = start + skb_frag_size(f);
2980 		if ((copy = end - offset) > 0) {
2981 			u32 p_off, p_len, copied;
2982 			struct page *p;
2983 			u8 *vaddr;
2984 
2985 			if (copy > len)
2986 				copy = len;
2987 
2988 			skb_frag_foreach_page(f,
2989 					      skb_frag_off(f) + offset - start,
2990 					      copy, p, p_off, p_len, copied) {
2991 				vaddr = kmap_atomic(p);
2992 				memcpy(to + copied, vaddr + p_off, p_len);
2993 				kunmap_atomic(vaddr);
2994 			}
2995 
2996 			if ((len -= copy) == 0)
2997 				return 0;
2998 			offset += copy;
2999 			to     += copy;
3000 		}
3001 		start = end;
3002 	}
3003 
3004 	skb_walk_frags(skb, frag_iter) {
3005 		int end;
3006 
3007 		WARN_ON(start > offset + len);
3008 
3009 		end = start + frag_iter->len;
3010 		if ((copy = end - offset) > 0) {
3011 			if (copy > len)
3012 				copy = len;
3013 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
3014 				goto fault;
3015 			if ((len -= copy) == 0)
3016 				return 0;
3017 			offset += copy;
3018 			to     += copy;
3019 		}
3020 		start = end;
3021 	}
3022 
3023 	if (!len)
3024 		return 0;
3025 
3026 fault:
3027 	return -EFAULT;
3028 }
3029 EXPORT_SYMBOL(skb_copy_bits);
3030 
3031 /*
3032  * Callback from splice_to_pipe(), if we need to release some pages
3033  * at the end of the spd in case we error'ed out in filling the pipe.
3034  */
3035 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3036 {
3037 	put_page(spd->pages[i]);
3038 }
3039 
3040 static struct page *linear_to_page(struct page *page, unsigned int *len,
3041 				   unsigned int *offset,
3042 				   struct sock *sk)
3043 {
3044 	struct page_frag *pfrag = sk_page_frag(sk);
3045 
3046 	if (!sk_page_frag_refill(sk, pfrag))
3047 		return NULL;
3048 
3049 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3050 
3051 	memcpy(page_address(pfrag->page) + pfrag->offset,
3052 	       page_address(page) + *offset, *len);
3053 	*offset = pfrag->offset;
3054 	pfrag->offset += *len;
3055 
3056 	return pfrag->page;
3057 }
3058 
3059 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3060 			     struct page *page,
3061 			     unsigned int offset)
3062 {
3063 	return	spd->nr_pages &&
3064 		spd->pages[spd->nr_pages - 1] == page &&
3065 		(spd->partial[spd->nr_pages - 1].offset +
3066 		 spd->partial[spd->nr_pages - 1].len == offset);
3067 }
3068 
3069 /*
3070  * Fill page/offset/length into spd, if it can hold more pages.
3071  */
3072 static bool spd_fill_page(struct splice_pipe_desc *spd,
3073 			  struct pipe_inode_info *pipe, struct page *page,
3074 			  unsigned int *len, unsigned int offset,
3075 			  bool linear,
3076 			  struct sock *sk)
3077 {
3078 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3079 		return true;
3080 
3081 	if (linear) {
3082 		page = linear_to_page(page, len, &offset, sk);
3083 		if (!page)
3084 			return true;
3085 	}
3086 	if (spd_can_coalesce(spd, page, offset)) {
3087 		spd->partial[spd->nr_pages - 1].len += *len;
3088 		return false;
3089 	}
3090 	get_page(page);
3091 	spd->pages[spd->nr_pages] = page;
3092 	spd->partial[spd->nr_pages].len = *len;
3093 	spd->partial[spd->nr_pages].offset = offset;
3094 	spd->nr_pages++;
3095 
3096 	return false;
3097 }
3098 
3099 static bool __splice_segment(struct page *page, unsigned int poff,
3100 			     unsigned int plen, unsigned int *off,
3101 			     unsigned int *len,
3102 			     struct splice_pipe_desc *spd, bool linear,
3103 			     struct sock *sk,
3104 			     struct pipe_inode_info *pipe)
3105 {
3106 	if (!*len)
3107 		return true;
3108 
3109 	/* skip this segment if already processed */
3110 	if (*off >= plen) {
3111 		*off -= plen;
3112 		return false;
3113 	}
3114 
3115 	/* ignore any bits we already processed */
3116 	poff += *off;
3117 	plen -= *off;
3118 	*off = 0;
3119 
3120 	do {
3121 		unsigned int flen = min(*len, plen);
3122 
3123 		if (spd_fill_page(spd, pipe, page, &flen, poff,
3124 				  linear, sk))
3125 			return true;
3126 		poff += flen;
3127 		plen -= flen;
3128 		*len -= flen;
3129 	} while (*len && plen);
3130 
3131 	return false;
3132 }
3133 
3134 /*
3135  * Map linear and fragment data from the skb to spd. It reports true if the
3136  * pipe is full or if we already spliced the requested length.
3137  */
3138 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3139 			      unsigned int *offset, unsigned int *len,
3140 			      struct splice_pipe_desc *spd, struct sock *sk)
3141 {
3142 	int seg;
3143 	struct sk_buff *iter;
3144 
3145 	/* map the linear part :
3146 	 * If skb->head_frag is set, this 'linear' part is backed by a
3147 	 * fragment, and if the head is not shared with any clones then
3148 	 * we can avoid a copy since we own the head portion of this page.
3149 	 */
3150 	if (__splice_segment(virt_to_page(skb->data),
3151 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3152 			     skb_headlen(skb),
3153 			     offset, len, spd,
3154 			     skb_head_is_locked(skb),
3155 			     sk, pipe))
3156 		return true;
3157 
3158 	/*
3159 	 * then map the fragments
3160 	 */
3161 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3162 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3163 
3164 		if (__splice_segment(skb_frag_page(f),
3165 				     skb_frag_off(f), skb_frag_size(f),
3166 				     offset, len, spd, false, sk, pipe))
3167 			return true;
3168 	}
3169 
3170 	skb_walk_frags(skb, iter) {
3171 		if (*offset >= iter->len) {
3172 			*offset -= iter->len;
3173 			continue;
3174 		}
3175 		/* __skb_splice_bits() only fails if the output has no room
3176 		 * left, so no point in going over the frag_list for the error
3177 		 * case.
3178 		 */
3179 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3180 			return true;
3181 	}
3182 
3183 	return false;
3184 }
3185 
3186 /*
3187  * Map data from the skb to a pipe. Should handle both the linear part,
3188  * the fragments, and the frag list.
3189  */
3190 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3191 		    struct pipe_inode_info *pipe, unsigned int tlen,
3192 		    unsigned int flags)
3193 {
3194 	struct partial_page partial[MAX_SKB_FRAGS];
3195 	struct page *pages[MAX_SKB_FRAGS];
3196 	struct splice_pipe_desc spd = {
3197 		.pages = pages,
3198 		.partial = partial,
3199 		.nr_pages_max = MAX_SKB_FRAGS,
3200 		.ops = &nosteal_pipe_buf_ops,
3201 		.spd_release = sock_spd_release,
3202 	};
3203 	int ret = 0;
3204 
3205 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3206 
3207 	if (spd.nr_pages)
3208 		ret = splice_to_pipe(pipe, &spd);
3209 
3210 	return ret;
3211 }
3212 EXPORT_SYMBOL_GPL(skb_splice_bits);
3213 
3214 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3215 {
3216 	struct socket *sock = sk->sk_socket;
3217 	size_t size = msg_data_left(msg);
3218 
3219 	if (!sock)
3220 		return -EINVAL;
3221 
3222 	if (!sock->ops->sendmsg_locked)
3223 		return sock_no_sendmsg_locked(sk, msg, size);
3224 
3225 	return sock->ops->sendmsg_locked(sk, msg, size);
3226 }
3227 
3228 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3229 {
3230 	struct socket *sock = sk->sk_socket;
3231 
3232 	if (!sock)
3233 		return -EINVAL;
3234 	return sock_sendmsg(sock, msg);
3235 }
3236 
3237 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3238 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3239 			   int len, sendmsg_func sendmsg)
3240 {
3241 	unsigned int orig_len = len;
3242 	struct sk_buff *head = skb;
3243 	unsigned short fragidx;
3244 	int slen, ret;
3245 
3246 do_frag_list:
3247 
3248 	/* Deal with head data */
3249 	while (offset < skb_headlen(skb) && len) {
3250 		struct kvec kv;
3251 		struct msghdr msg;
3252 
3253 		slen = min_t(int, len, skb_headlen(skb) - offset);
3254 		kv.iov_base = skb->data + offset;
3255 		kv.iov_len = slen;
3256 		memset(&msg, 0, sizeof(msg));
3257 		msg.msg_flags = MSG_DONTWAIT;
3258 
3259 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3260 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3261 				      sendmsg_unlocked, sk, &msg);
3262 		if (ret <= 0)
3263 			goto error;
3264 
3265 		offset += ret;
3266 		len -= ret;
3267 	}
3268 
3269 	/* All the data was skb head? */
3270 	if (!len)
3271 		goto out;
3272 
3273 	/* Make offset relative to start of frags */
3274 	offset -= skb_headlen(skb);
3275 
3276 	/* Find where we are in frag list */
3277 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3278 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3279 
3280 		if (offset < skb_frag_size(frag))
3281 			break;
3282 
3283 		offset -= skb_frag_size(frag);
3284 	}
3285 
3286 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3287 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3288 
3289 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3290 
3291 		while (slen) {
3292 			struct bio_vec bvec;
3293 			struct msghdr msg = {
3294 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3295 			};
3296 
3297 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3298 				      skb_frag_off(frag) + offset);
3299 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3300 				      slen);
3301 
3302 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3303 					      sendmsg_unlocked, sk, &msg);
3304 			if (ret <= 0)
3305 				goto error;
3306 
3307 			len -= ret;
3308 			offset += ret;
3309 			slen -= ret;
3310 		}
3311 
3312 		offset = 0;
3313 	}
3314 
3315 	if (len) {
3316 		/* Process any frag lists */
3317 
3318 		if (skb == head) {
3319 			if (skb_has_frag_list(skb)) {
3320 				skb = skb_shinfo(skb)->frag_list;
3321 				goto do_frag_list;
3322 			}
3323 		} else if (skb->next) {
3324 			skb = skb->next;
3325 			goto do_frag_list;
3326 		}
3327 	}
3328 
3329 out:
3330 	return orig_len - len;
3331 
3332 error:
3333 	return orig_len == len ? ret : orig_len - len;
3334 }
3335 
3336 /* Send skb data on a socket. Socket must be locked. */
3337 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3338 			 int len)
3339 {
3340 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3341 }
3342 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3343 
3344 /* Send skb data on a socket. Socket must be unlocked. */
3345 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3346 {
3347 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3348 }
3349 
3350 /**
3351  *	skb_store_bits - store bits from kernel buffer to skb
3352  *	@skb: destination buffer
3353  *	@offset: offset in destination
3354  *	@from: source buffer
3355  *	@len: number of bytes to copy
3356  *
3357  *	Copy the specified number of bytes from the source buffer to the
3358  *	destination skb.  This function handles all the messy bits of
3359  *	traversing fragment lists and such.
3360  */
3361 
3362 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3363 {
3364 	int start = skb_headlen(skb);
3365 	struct sk_buff *frag_iter;
3366 	int i, copy;
3367 
3368 	if (offset > (int)skb->len - len)
3369 		goto fault;
3370 
3371 	if ((copy = start - offset) > 0) {
3372 		if (copy > len)
3373 			copy = len;
3374 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3375 		if ((len -= copy) == 0)
3376 			return 0;
3377 		offset += copy;
3378 		from += copy;
3379 	}
3380 
3381 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3382 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3383 		int end;
3384 
3385 		WARN_ON(start > offset + len);
3386 
3387 		end = start + skb_frag_size(frag);
3388 		if ((copy = end - offset) > 0) {
3389 			u32 p_off, p_len, copied;
3390 			struct page *p;
3391 			u8 *vaddr;
3392 
3393 			if (copy > len)
3394 				copy = len;
3395 
3396 			skb_frag_foreach_page(frag,
3397 					      skb_frag_off(frag) + offset - start,
3398 					      copy, p, p_off, p_len, copied) {
3399 				vaddr = kmap_atomic(p);
3400 				memcpy(vaddr + p_off, from + copied, p_len);
3401 				kunmap_atomic(vaddr);
3402 			}
3403 
3404 			if ((len -= copy) == 0)
3405 				return 0;
3406 			offset += copy;
3407 			from += copy;
3408 		}
3409 		start = end;
3410 	}
3411 
3412 	skb_walk_frags(skb, frag_iter) {
3413 		int end;
3414 
3415 		WARN_ON(start > offset + len);
3416 
3417 		end = start + frag_iter->len;
3418 		if ((copy = end - offset) > 0) {
3419 			if (copy > len)
3420 				copy = len;
3421 			if (skb_store_bits(frag_iter, offset - start,
3422 					   from, copy))
3423 				goto fault;
3424 			if ((len -= copy) == 0)
3425 				return 0;
3426 			offset += copy;
3427 			from += copy;
3428 		}
3429 		start = end;
3430 	}
3431 	if (!len)
3432 		return 0;
3433 
3434 fault:
3435 	return -EFAULT;
3436 }
3437 EXPORT_SYMBOL(skb_store_bits);
3438 
3439 /* Checksum skb data. */
3440 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3441 		      __wsum csum, const struct skb_checksum_ops *ops)
3442 {
3443 	int start = skb_headlen(skb);
3444 	int i, copy = start - offset;
3445 	struct sk_buff *frag_iter;
3446 	int pos = 0;
3447 
3448 	/* Checksum header. */
3449 	if (copy > 0) {
3450 		if (copy > len)
3451 			copy = len;
3452 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3453 				       skb->data + offset, copy, csum);
3454 		if ((len -= copy) == 0)
3455 			return csum;
3456 		offset += copy;
3457 		pos	= copy;
3458 	}
3459 
3460 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3461 		int end;
3462 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3463 
3464 		WARN_ON(start > offset + len);
3465 
3466 		end = start + skb_frag_size(frag);
3467 		if ((copy = end - offset) > 0) {
3468 			u32 p_off, p_len, copied;
3469 			struct page *p;
3470 			__wsum csum2;
3471 			u8 *vaddr;
3472 
3473 			if (copy > len)
3474 				copy = len;
3475 
3476 			skb_frag_foreach_page(frag,
3477 					      skb_frag_off(frag) + offset - start,
3478 					      copy, p, p_off, p_len, copied) {
3479 				vaddr = kmap_atomic(p);
3480 				csum2 = INDIRECT_CALL_1(ops->update,
3481 							csum_partial_ext,
3482 							vaddr + p_off, p_len, 0);
3483 				kunmap_atomic(vaddr);
3484 				csum = INDIRECT_CALL_1(ops->combine,
3485 						       csum_block_add_ext, csum,
3486 						       csum2, pos, p_len);
3487 				pos += p_len;
3488 			}
3489 
3490 			if (!(len -= copy))
3491 				return csum;
3492 			offset += copy;
3493 		}
3494 		start = end;
3495 	}
3496 
3497 	skb_walk_frags(skb, frag_iter) {
3498 		int end;
3499 
3500 		WARN_ON(start > offset + len);
3501 
3502 		end = start + frag_iter->len;
3503 		if ((copy = end - offset) > 0) {
3504 			__wsum csum2;
3505 			if (copy > len)
3506 				copy = len;
3507 			csum2 = __skb_checksum(frag_iter, offset - start,
3508 					       copy, 0, ops);
3509 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3510 					       csum, csum2, pos, copy);
3511 			if ((len -= copy) == 0)
3512 				return csum;
3513 			offset += copy;
3514 			pos    += copy;
3515 		}
3516 		start = end;
3517 	}
3518 	BUG_ON(len);
3519 
3520 	return csum;
3521 }
3522 EXPORT_SYMBOL(__skb_checksum);
3523 
3524 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3525 		    int len, __wsum csum)
3526 {
3527 	const struct skb_checksum_ops ops = {
3528 		.update  = csum_partial_ext,
3529 		.combine = csum_block_add_ext,
3530 	};
3531 
3532 	return __skb_checksum(skb, offset, len, csum, &ops);
3533 }
3534 EXPORT_SYMBOL(skb_checksum);
3535 
3536 /* Both of above in one bottle. */
3537 
3538 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3539 				    u8 *to, int len)
3540 {
3541 	int start = skb_headlen(skb);
3542 	int i, copy = start - offset;
3543 	struct sk_buff *frag_iter;
3544 	int pos = 0;
3545 	__wsum csum = 0;
3546 
3547 	/* Copy header. */
3548 	if (copy > 0) {
3549 		if (copy > len)
3550 			copy = len;
3551 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3552 						 copy);
3553 		if ((len -= copy) == 0)
3554 			return csum;
3555 		offset += copy;
3556 		to     += copy;
3557 		pos	= copy;
3558 	}
3559 
3560 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3561 		int end;
3562 
3563 		WARN_ON(start > offset + len);
3564 
3565 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3566 		if ((copy = end - offset) > 0) {
3567 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3568 			u32 p_off, p_len, copied;
3569 			struct page *p;
3570 			__wsum csum2;
3571 			u8 *vaddr;
3572 
3573 			if (copy > len)
3574 				copy = len;
3575 
3576 			skb_frag_foreach_page(frag,
3577 					      skb_frag_off(frag) + offset - start,
3578 					      copy, p, p_off, p_len, copied) {
3579 				vaddr = kmap_atomic(p);
3580 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3581 								  to + copied,
3582 								  p_len);
3583 				kunmap_atomic(vaddr);
3584 				csum = csum_block_add(csum, csum2, pos);
3585 				pos += p_len;
3586 			}
3587 
3588 			if (!(len -= copy))
3589 				return csum;
3590 			offset += copy;
3591 			to     += copy;
3592 		}
3593 		start = end;
3594 	}
3595 
3596 	skb_walk_frags(skb, frag_iter) {
3597 		__wsum csum2;
3598 		int end;
3599 
3600 		WARN_ON(start > offset + len);
3601 
3602 		end = start + frag_iter->len;
3603 		if ((copy = end - offset) > 0) {
3604 			if (copy > len)
3605 				copy = len;
3606 			csum2 = skb_copy_and_csum_bits(frag_iter,
3607 						       offset - start,
3608 						       to, copy);
3609 			csum = csum_block_add(csum, csum2, pos);
3610 			if ((len -= copy) == 0)
3611 				return csum;
3612 			offset += copy;
3613 			to     += copy;
3614 			pos    += copy;
3615 		}
3616 		start = end;
3617 	}
3618 	BUG_ON(len);
3619 	return csum;
3620 }
3621 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3622 
3623 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3624 {
3625 	__sum16 sum;
3626 
3627 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3628 	/* See comments in __skb_checksum_complete(). */
3629 	if (likely(!sum)) {
3630 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3631 		    !skb->csum_complete_sw)
3632 			netdev_rx_csum_fault(skb->dev, skb);
3633 	}
3634 	if (!skb_shared(skb))
3635 		skb->csum_valid = !sum;
3636 	return sum;
3637 }
3638 EXPORT_SYMBOL(__skb_checksum_complete_head);
3639 
3640 /* This function assumes skb->csum already holds pseudo header's checksum,
3641  * which has been changed from the hardware checksum, for example, by
3642  * __skb_checksum_validate_complete(). And, the original skb->csum must
3643  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3644  *
3645  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3646  * zero. The new checksum is stored back into skb->csum unless the skb is
3647  * shared.
3648  */
3649 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3650 {
3651 	__wsum csum;
3652 	__sum16 sum;
3653 
3654 	csum = skb_checksum(skb, 0, skb->len, 0);
3655 
3656 	sum = csum_fold(csum_add(skb->csum, csum));
3657 	/* This check is inverted, because we already knew the hardware
3658 	 * checksum is invalid before calling this function. So, if the
3659 	 * re-computed checksum is valid instead, then we have a mismatch
3660 	 * between the original skb->csum and skb_checksum(). This means either
3661 	 * the original hardware checksum is incorrect or we screw up skb->csum
3662 	 * when moving skb->data around.
3663 	 */
3664 	if (likely(!sum)) {
3665 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3666 		    !skb->csum_complete_sw)
3667 			netdev_rx_csum_fault(skb->dev, skb);
3668 	}
3669 
3670 	if (!skb_shared(skb)) {
3671 		/* Save full packet checksum */
3672 		skb->csum = csum;
3673 		skb->ip_summed = CHECKSUM_COMPLETE;
3674 		skb->csum_complete_sw = 1;
3675 		skb->csum_valid = !sum;
3676 	}
3677 
3678 	return sum;
3679 }
3680 EXPORT_SYMBOL(__skb_checksum_complete);
3681 
3682 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3683 {
3684 	net_warn_ratelimited(
3685 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3686 		__func__);
3687 	return 0;
3688 }
3689 
3690 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3691 				       int offset, int len)
3692 {
3693 	net_warn_ratelimited(
3694 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3695 		__func__);
3696 	return 0;
3697 }
3698 
3699 static const struct skb_checksum_ops default_crc32c_ops = {
3700 	.update  = warn_crc32c_csum_update,
3701 	.combine = warn_crc32c_csum_combine,
3702 };
3703 
3704 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3705 	&default_crc32c_ops;
3706 EXPORT_SYMBOL(crc32c_csum_stub);
3707 
3708  /**
3709  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3710  *	@from: source buffer
3711  *
3712  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3713  *	into skb_zerocopy().
3714  */
3715 unsigned int
3716 skb_zerocopy_headlen(const struct sk_buff *from)
3717 {
3718 	unsigned int hlen = 0;
3719 
3720 	if (!from->head_frag ||
3721 	    skb_headlen(from) < L1_CACHE_BYTES ||
3722 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3723 		hlen = skb_headlen(from);
3724 		if (!hlen)
3725 			hlen = from->len;
3726 	}
3727 
3728 	if (skb_has_frag_list(from))
3729 		hlen = from->len;
3730 
3731 	return hlen;
3732 }
3733 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3734 
3735 /**
3736  *	skb_zerocopy - Zero copy skb to skb
3737  *	@to: destination buffer
3738  *	@from: source buffer
3739  *	@len: number of bytes to copy from source buffer
3740  *	@hlen: size of linear headroom in destination buffer
3741  *
3742  *	Copies up to `len` bytes from `from` to `to` by creating references
3743  *	to the frags in the source buffer.
3744  *
3745  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3746  *	headroom in the `to` buffer.
3747  *
3748  *	Return value:
3749  *	0: everything is OK
3750  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3751  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3752  */
3753 int
3754 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3755 {
3756 	int i, j = 0;
3757 	int plen = 0; /* length of skb->head fragment */
3758 	int ret;
3759 	struct page *page;
3760 	unsigned int offset;
3761 
3762 	BUG_ON(!from->head_frag && !hlen);
3763 
3764 	/* dont bother with small payloads */
3765 	if (len <= skb_tailroom(to))
3766 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3767 
3768 	if (hlen) {
3769 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3770 		if (unlikely(ret))
3771 			return ret;
3772 		len -= hlen;
3773 	} else {
3774 		plen = min_t(int, skb_headlen(from), len);
3775 		if (plen) {
3776 			page = virt_to_head_page(from->head);
3777 			offset = from->data - (unsigned char *)page_address(page);
3778 			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3779 					       offset, plen);
3780 			get_page(page);
3781 			j = 1;
3782 			len -= plen;
3783 		}
3784 	}
3785 
3786 	skb_len_add(to, len + plen);
3787 
3788 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3789 		skb_tx_error(from);
3790 		return -ENOMEM;
3791 	}
3792 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3793 
3794 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3795 		int size;
3796 
3797 		if (!len)
3798 			break;
3799 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3800 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3801 					len);
3802 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3803 		len -= size;
3804 		skb_frag_ref(to, j);
3805 		j++;
3806 	}
3807 	skb_shinfo(to)->nr_frags = j;
3808 
3809 	return 0;
3810 }
3811 EXPORT_SYMBOL_GPL(skb_zerocopy);
3812 
3813 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3814 {
3815 	__wsum csum;
3816 	long csstart;
3817 
3818 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3819 		csstart = skb_checksum_start_offset(skb);
3820 	else
3821 		csstart = skb_headlen(skb);
3822 
3823 	BUG_ON(csstart > skb_headlen(skb));
3824 
3825 	skb_copy_from_linear_data(skb, to, csstart);
3826 
3827 	csum = 0;
3828 	if (csstart != skb->len)
3829 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3830 					      skb->len - csstart);
3831 
3832 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3833 		long csstuff = csstart + skb->csum_offset;
3834 
3835 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3836 	}
3837 }
3838 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3839 
3840 /**
3841  *	skb_dequeue - remove from the head of the queue
3842  *	@list: list to dequeue from
3843  *
3844  *	Remove the head of the list. The list lock is taken so the function
3845  *	may be used safely with other locking list functions. The head item is
3846  *	returned or %NULL if the list is empty.
3847  */
3848 
3849 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3850 {
3851 	unsigned long flags;
3852 	struct sk_buff *result;
3853 
3854 	spin_lock_irqsave(&list->lock, flags);
3855 	result = __skb_dequeue(list);
3856 	spin_unlock_irqrestore(&list->lock, flags);
3857 	return result;
3858 }
3859 EXPORT_SYMBOL(skb_dequeue);
3860 
3861 /**
3862  *	skb_dequeue_tail - remove from the tail of the queue
3863  *	@list: list to dequeue from
3864  *
3865  *	Remove the tail of the list. The list lock is taken so the function
3866  *	may be used safely with other locking list functions. The tail item is
3867  *	returned or %NULL if the list is empty.
3868  */
3869 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3870 {
3871 	unsigned long flags;
3872 	struct sk_buff *result;
3873 
3874 	spin_lock_irqsave(&list->lock, flags);
3875 	result = __skb_dequeue_tail(list);
3876 	spin_unlock_irqrestore(&list->lock, flags);
3877 	return result;
3878 }
3879 EXPORT_SYMBOL(skb_dequeue_tail);
3880 
3881 /**
3882  *	skb_queue_purge_reason - empty a list
3883  *	@list: list to empty
3884  *	@reason: drop reason
3885  *
3886  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3887  *	the list and one reference dropped. This function takes the list
3888  *	lock and is atomic with respect to other list locking functions.
3889  */
3890 void skb_queue_purge_reason(struct sk_buff_head *list,
3891 			    enum skb_drop_reason reason)
3892 {
3893 	struct sk_buff_head tmp;
3894 	unsigned long flags;
3895 
3896 	if (skb_queue_empty_lockless(list))
3897 		return;
3898 
3899 	__skb_queue_head_init(&tmp);
3900 
3901 	spin_lock_irqsave(&list->lock, flags);
3902 	skb_queue_splice_init(list, &tmp);
3903 	spin_unlock_irqrestore(&list->lock, flags);
3904 
3905 	__skb_queue_purge_reason(&tmp, reason);
3906 }
3907 EXPORT_SYMBOL(skb_queue_purge_reason);
3908 
3909 /**
3910  *	skb_rbtree_purge - empty a skb rbtree
3911  *	@root: root of the rbtree to empty
3912  *	Return value: the sum of truesizes of all purged skbs.
3913  *
3914  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3915  *	the list and one reference dropped. This function does not take
3916  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3917  *	out-of-order queue is protected by the socket lock).
3918  */
3919 unsigned int skb_rbtree_purge(struct rb_root *root)
3920 {
3921 	struct rb_node *p = rb_first(root);
3922 	unsigned int sum = 0;
3923 
3924 	while (p) {
3925 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3926 
3927 		p = rb_next(p);
3928 		rb_erase(&skb->rbnode, root);
3929 		sum += skb->truesize;
3930 		kfree_skb(skb);
3931 	}
3932 	return sum;
3933 }
3934 
3935 void skb_errqueue_purge(struct sk_buff_head *list)
3936 {
3937 	struct sk_buff *skb, *next;
3938 	struct sk_buff_head kill;
3939 	unsigned long flags;
3940 
3941 	__skb_queue_head_init(&kill);
3942 
3943 	spin_lock_irqsave(&list->lock, flags);
3944 	skb_queue_walk_safe(list, skb, next) {
3945 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3946 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3947 			continue;
3948 		__skb_unlink(skb, list);
3949 		__skb_queue_tail(&kill, skb);
3950 	}
3951 	spin_unlock_irqrestore(&list->lock, flags);
3952 	__skb_queue_purge(&kill);
3953 }
3954 EXPORT_SYMBOL(skb_errqueue_purge);
3955 
3956 /**
3957  *	skb_queue_head - queue a buffer at the list head
3958  *	@list: list to use
3959  *	@newsk: buffer to queue
3960  *
3961  *	Queue a buffer at the start of the list. This function takes the
3962  *	list lock and can be used safely with other locking &sk_buff functions
3963  *	safely.
3964  *
3965  *	A buffer cannot be placed on two lists at the same time.
3966  */
3967 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3968 {
3969 	unsigned long flags;
3970 
3971 	spin_lock_irqsave(&list->lock, flags);
3972 	__skb_queue_head(list, newsk);
3973 	spin_unlock_irqrestore(&list->lock, flags);
3974 }
3975 EXPORT_SYMBOL(skb_queue_head);
3976 
3977 /**
3978  *	skb_queue_tail - queue a buffer at the list tail
3979  *	@list: list to use
3980  *	@newsk: buffer to queue
3981  *
3982  *	Queue a buffer at the tail of the list. This function takes the
3983  *	list lock and can be used safely with other locking &sk_buff functions
3984  *	safely.
3985  *
3986  *	A buffer cannot be placed on two lists at the same time.
3987  */
3988 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3989 {
3990 	unsigned long flags;
3991 
3992 	spin_lock_irqsave(&list->lock, flags);
3993 	__skb_queue_tail(list, newsk);
3994 	spin_unlock_irqrestore(&list->lock, flags);
3995 }
3996 EXPORT_SYMBOL(skb_queue_tail);
3997 
3998 /**
3999  *	skb_unlink	-	remove a buffer from a list
4000  *	@skb: buffer to remove
4001  *	@list: list to use
4002  *
4003  *	Remove a packet from a list. The list locks are taken and this
4004  *	function is atomic with respect to other list locked calls
4005  *
4006  *	You must know what list the SKB is on.
4007  */
4008 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
4009 {
4010 	unsigned long flags;
4011 
4012 	spin_lock_irqsave(&list->lock, flags);
4013 	__skb_unlink(skb, list);
4014 	spin_unlock_irqrestore(&list->lock, flags);
4015 }
4016 EXPORT_SYMBOL(skb_unlink);
4017 
4018 /**
4019  *	skb_append	-	append a buffer
4020  *	@old: buffer to insert after
4021  *	@newsk: buffer to insert
4022  *	@list: list to use
4023  *
4024  *	Place a packet after a given packet in a list. The list locks are taken
4025  *	and this function is atomic with respect to other list locked calls.
4026  *	A buffer cannot be placed on two lists at the same time.
4027  */
4028 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4029 {
4030 	unsigned long flags;
4031 
4032 	spin_lock_irqsave(&list->lock, flags);
4033 	__skb_queue_after(list, old, newsk);
4034 	spin_unlock_irqrestore(&list->lock, flags);
4035 }
4036 EXPORT_SYMBOL(skb_append);
4037 
4038 static inline void skb_split_inside_header(struct sk_buff *skb,
4039 					   struct sk_buff* skb1,
4040 					   const u32 len, const int pos)
4041 {
4042 	int i;
4043 
4044 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4045 					 pos - len);
4046 	/* And move data appendix as is. */
4047 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4048 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4049 
4050 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4051 	skb_shinfo(skb)->nr_frags  = 0;
4052 	skb1->data_len		   = skb->data_len;
4053 	skb1->len		   += skb1->data_len;
4054 	skb->data_len		   = 0;
4055 	skb->len		   = len;
4056 	skb_set_tail_pointer(skb, len);
4057 }
4058 
4059 static inline void skb_split_no_header(struct sk_buff *skb,
4060 				       struct sk_buff* skb1,
4061 				       const u32 len, int pos)
4062 {
4063 	int i, k = 0;
4064 	const int nfrags = skb_shinfo(skb)->nr_frags;
4065 
4066 	skb_shinfo(skb)->nr_frags = 0;
4067 	skb1->len		  = skb1->data_len = skb->len - len;
4068 	skb->len		  = len;
4069 	skb->data_len		  = len - pos;
4070 
4071 	for (i = 0; i < nfrags; i++) {
4072 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4073 
4074 		if (pos + size > len) {
4075 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4076 
4077 			if (pos < len) {
4078 				/* Split frag.
4079 				 * We have two variants in this case:
4080 				 * 1. Move all the frag to the second
4081 				 *    part, if it is possible. F.e.
4082 				 *    this approach is mandatory for TUX,
4083 				 *    where splitting is expensive.
4084 				 * 2. Split is accurately. We make this.
4085 				 */
4086 				skb_frag_ref(skb, i);
4087 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4088 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4089 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4090 				skb_shinfo(skb)->nr_frags++;
4091 			}
4092 			k++;
4093 		} else
4094 			skb_shinfo(skb)->nr_frags++;
4095 		pos += size;
4096 	}
4097 	skb_shinfo(skb1)->nr_frags = k;
4098 }
4099 
4100 /**
4101  * skb_split - Split fragmented skb to two parts at length len.
4102  * @skb: the buffer to split
4103  * @skb1: the buffer to receive the second part
4104  * @len: new length for skb
4105  */
4106 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4107 {
4108 	int pos = skb_headlen(skb);
4109 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4110 
4111 	skb_zcopy_downgrade_managed(skb);
4112 
4113 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4114 	skb_zerocopy_clone(skb1, skb, 0);
4115 	if (len < pos)	/* Split line is inside header. */
4116 		skb_split_inside_header(skb, skb1, len, pos);
4117 	else		/* Second chunk has no header, nothing to copy. */
4118 		skb_split_no_header(skb, skb1, len, pos);
4119 }
4120 EXPORT_SYMBOL(skb_split);
4121 
4122 /* Shifting from/to a cloned skb is a no-go.
4123  *
4124  * Caller cannot keep skb_shinfo related pointers past calling here!
4125  */
4126 static int skb_prepare_for_shift(struct sk_buff *skb)
4127 {
4128 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4129 }
4130 
4131 /**
4132  * skb_shift - Shifts paged data partially from skb to another
4133  * @tgt: buffer into which tail data gets added
4134  * @skb: buffer from which the paged data comes from
4135  * @shiftlen: shift up to this many bytes
4136  *
4137  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4138  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4139  * It's up to caller to free skb if everything was shifted.
4140  *
4141  * If @tgt runs out of frags, the whole operation is aborted.
4142  *
4143  * Skb cannot include anything else but paged data while tgt is allowed
4144  * to have non-paged data as well.
4145  *
4146  * TODO: full sized shift could be optimized but that would need
4147  * specialized skb free'er to handle frags without up-to-date nr_frags.
4148  */
4149 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4150 {
4151 	int from, to, merge, todo;
4152 	skb_frag_t *fragfrom, *fragto;
4153 
4154 	BUG_ON(shiftlen > skb->len);
4155 
4156 	if (skb_headlen(skb))
4157 		return 0;
4158 	if (skb_zcopy(tgt) || skb_zcopy(skb))
4159 		return 0;
4160 
4161 	DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle);
4162 	DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb));
4163 
4164 	todo = shiftlen;
4165 	from = 0;
4166 	to = skb_shinfo(tgt)->nr_frags;
4167 	fragfrom = &skb_shinfo(skb)->frags[from];
4168 
4169 	/* Actual merge is delayed until the point when we know we can
4170 	 * commit all, so that we don't have to undo partial changes
4171 	 */
4172 	if (!to ||
4173 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4174 			      skb_frag_off(fragfrom))) {
4175 		merge = -1;
4176 	} else {
4177 		merge = to - 1;
4178 
4179 		todo -= skb_frag_size(fragfrom);
4180 		if (todo < 0) {
4181 			if (skb_prepare_for_shift(skb) ||
4182 			    skb_prepare_for_shift(tgt))
4183 				return 0;
4184 
4185 			/* All previous frag pointers might be stale! */
4186 			fragfrom = &skb_shinfo(skb)->frags[from];
4187 			fragto = &skb_shinfo(tgt)->frags[merge];
4188 
4189 			skb_frag_size_add(fragto, shiftlen);
4190 			skb_frag_size_sub(fragfrom, shiftlen);
4191 			skb_frag_off_add(fragfrom, shiftlen);
4192 
4193 			goto onlymerged;
4194 		}
4195 
4196 		from++;
4197 	}
4198 
4199 	/* Skip full, not-fitting skb to avoid expensive operations */
4200 	if ((shiftlen == skb->len) &&
4201 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4202 		return 0;
4203 
4204 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4205 		return 0;
4206 
4207 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4208 		if (to == MAX_SKB_FRAGS)
4209 			return 0;
4210 
4211 		fragfrom = &skb_shinfo(skb)->frags[from];
4212 		fragto = &skb_shinfo(tgt)->frags[to];
4213 
4214 		if (todo >= skb_frag_size(fragfrom)) {
4215 			*fragto = *fragfrom;
4216 			todo -= skb_frag_size(fragfrom);
4217 			from++;
4218 			to++;
4219 
4220 		} else {
4221 			__skb_frag_ref(fragfrom);
4222 			skb_frag_page_copy(fragto, fragfrom);
4223 			skb_frag_off_copy(fragto, fragfrom);
4224 			skb_frag_size_set(fragto, todo);
4225 
4226 			skb_frag_off_add(fragfrom, todo);
4227 			skb_frag_size_sub(fragfrom, todo);
4228 			todo = 0;
4229 
4230 			to++;
4231 			break;
4232 		}
4233 	}
4234 
4235 	/* Ready to "commit" this state change to tgt */
4236 	skb_shinfo(tgt)->nr_frags = to;
4237 
4238 	if (merge >= 0) {
4239 		fragfrom = &skb_shinfo(skb)->frags[0];
4240 		fragto = &skb_shinfo(tgt)->frags[merge];
4241 
4242 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4243 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4244 	}
4245 
4246 	/* Reposition in the original skb */
4247 	to = 0;
4248 	while (from < skb_shinfo(skb)->nr_frags)
4249 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4250 	skb_shinfo(skb)->nr_frags = to;
4251 
4252 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4253 
4254 onlymerged:
4255 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4256 	 * the other hand might need it if it needs to be resent
4257 	 */
4258 	tgt->ip_summed = CHECKSUM_PARTIAL;
4259 	skb->ip_summed = CHECKSUM_PARTIAL;
4260 
4261 	skb_len_add(skb, -shiftlen);
4262 	skb_len_add(tgt, shiftlen);
4263 
4264 	return shiftlen;
4265 }
4266 
4267 /**
4268  * skb_prepare_seq_read - Prepare a sequential read of skb data
4269  * @skb: the buffer to read
4270  * @from: lower offset of data to be read
4271  * @to: upper offset of data to be read
4272  * @st: state variable
4273  *
4274  * Initializes the specified state variable. Must be called before
4275  * invoking skb_seq_read() for the first time.
4276  */
4277 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4278 			  unsigned int to, struct skb_seq_state *st)
4279 {
4280 	st->lower_offset = from;
4281 	st->upper_offset = to;
4282 	st->root_skb = st->cur_skb = skb;
4283 	st->frag_idx = st->stepped_offset = 0;
4284 	st->frag_data = NULL;
4285 	st->frag_off = 0;
4286 }
4287 EXPORT_SYMBOL(skb_prepare_seq_read);
4288 
4289 /**
4290  * skb_seq_read - Sequentially read skb data
4291  * @consumed: number of bytes consumed by the caller so far
4292  * @data: destination pointer for data to be returned
4293  * @st: state variable
4294  *
4295  * Reads a block of skb data at @consumed relative to the
4296  * lower offset specified to skb_prepare_seq_read(). Assigns
4297  * the head of the data block to @data and returns the length
4298  * of the block or 0 if the end of the skb data or the upper
4299  * offset has been reached.
4300  *
4301  * The caller is not required to consume all of the data
4302  * returned, i.e. @consumed is typically set to the number
4303  * of bytes already consumed and the next call to
4304  * skb_seq_read() will return the remaining part of the block.
4305  *
4306  * Note 1: The size of each block of data returned can be arbitrary,
4307  *       this limitation is the cost for zerocopy sequential
4308  *       reads of potentially non linear data.
4309  *
4310  * Note 2: Fragment lists within fragments are not implemented
4311  *       at the moment, state->root_skb could be replaced with
4312  *       a stack for this purpose.
4313  */
4314 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4315 			  struct skb_seq_state *st)
4316 {
4317 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4318 	skb_frag_t *frag;
4319 
4320 	if (unlikely(abs_offset >= st->upper_offset)) {
4321 		if (st->frag_data) {
4322 			kunmap_atomic(st->frag_data);
4323 			st->frag_data = NULL;
4324 		}
4325 		return 0;
4326 	}
4327 
4328 next_skb:
4329 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4330 
4331 	if (abs_offset < block_limit && !st->frag_data) {
4332 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4333 		return block_limit - abs_offset;
4334 	}
4335 
4336 	if (st->frag_idx == 0 && !st->frag_data)
4337 		st->stepped_offset += skb_headlen(st->cur_skb);
4338 
4339 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4340 		unsigned int pg_idx, pg_off, pg_sz;
4341 
4342 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4343 
4344 		pg_idx = 0;
4345 		pg_off = skb_frag_off(frag);
4346 		pg_sz = skb_frag_size(frag);
4347 
4348 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4349 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4350 			pg_off = offset_in_page(pg_off + st->frag_off);
4351 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4352 						    PAGE_SIZE - pg_off);
4353 		}
4354 
4355 		block_limit = pg_sz + st->stepped_offset;
4356 		if (abs_offset < block_limit) {
4357 			if (!st->frag_data)
4358 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4359 
4360 			*data = (u8 *)st->frag_data + pg_off +
4361 				(abs_offset - st->stepped_offset);
4362 
4363 			return block_limit - abs_offset;
4364 		}
4365 
4366 		if (st->frag_data) {
4367 			kunmap_atomic(st->frag_data);
4368 			st->frag_data = NULL;
4369 		}
4370 
4371 		st->stepped_offset += pg_sz;
4372 		st->frag_off += pg_sz;
4373 		if (st->frag_off == skb_frag_size(frag)) {
4374 			st->frag_off = 0;
4375 			st->frag_idx++;
4376 		}
4377 	}
4378 
4379 	if (st->frag_data) {
4380 		kunmap_atomic(st->frag_data);
4381 		st->frag_data = NULL;
4382 	}
4383 
4384 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4385 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4386 		st->frag_idx = 0;
4387 		goto next_skb;
4388 	} else if (st->cur_skb->next) {
4389 		st->cur_skb = st->cur_skb->next;
4390 		st->frag_idx = 0;
4391 		goto next_skb;
4392 	}
4393 
4394 	return 0;
4395 }
4396 EXPORT_SYMBOL(skb_seq_read);
4397 
4398 /**
4399  * skb_abort_seq_read - Abort a sequential read of skb data
4400  * @st: state variable
4401  *
4402  * Must be called if skb_seq_read() was not called until it
4403  * returned 0.
4404  */
4405 void skb_abort_seq_read(struct skb_seq_state *st)
4406 {
4407 	if (st->frag_data)
4408 		kunmap_atomic(st->frag_data);
4409 }
4410 EXPORT_SYMBOL(skb_abort_seq_read);
4411 
4412 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4413 
4414 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4415 					  struct ts_config *conf,
4416 					  struct ts_state *state)
4417 {
4418 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4419 }
4420 
4421 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4422 {
4423 	skb_abort_seq_read(TS_SKB_CB(state));
4424 }
4425 
4426 /**
4427  * skb_find_text - Find a text pattern in skb data
4428  * @skb: the buffer to look in
4429  * @from: search offset
4430  * @to: search limit
4431  * @config: textsearch configuration
4432  *
4433  * Finds a pattern in the skb data according to the specified
4434  * textsearch configuration. Use textsearch_next() to retrieve
4435  * subsequent occurrences of the pattern. Returns the offset
4436  * to the first occurrence or UINT_MAX if no match was found.
4437  */
4438 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4439 			   unsigned int to, struct ts_config *config)
4440 {
4441 	unsigned int patlen = config->ops->get_pattern_len(config);
4442 	struct ts_state state;
4443 	unsigned int ret;
4444 
4445 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4446 
4447 	config->get_next_block = skb_ts_get_next_block;
4448 	config->finish = skb_ts_finish;
4449 
4450 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4451 
4452 	ret = textsearch_find(config, &state);
4453 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4454 }
4455 EXPORT_SYMBOL(skb_find_text);
4456 
4457 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4458 			 int offset, size_t size, size_t max_frags)
4459 {
4460 	int i = skb_shinfo(skb)->nr_frags;
4461 
4462 	if (skb_can_coalesce(skb, i, page, offset)) {
4463 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4464 	} else if (i < max_frags) {
4465 		skb_zcopy_downgrade_managed(skb);
4466 		get_page(page);
4467 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4468 	} else {
4469 		return -EMSGSIZE;
4470 	}
4471 
4472 	return 0;
4473 }
4474 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4475 
4476 /**
4477  *	skb_pull_rcsum - pull skb and update receive checksum
4478  *	@skb: buffer to update
4479  *	@len: length of data pulled
4480  *
4481  *	This function performs an skb_pull on the packet and updates
4482  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4483  *	receive path processing instead of skb_pull unless you know
4484  *	that the checksum difference is zero (e.g., a valid IP header)
4485  *	or you are setting ip_summed to CHECKSUM_NONE.
4486  */
4487 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4488 {
4489 	unsigned char *data = skb->data;
4490 
4491 	BUG_ON(len > skb->len);
4492 	__skb_pull(skb, len);
4493 	skb_postpull_rcsum(skb, data, len);
4494 	return skb->data;
4495 }
4496 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4497 
4498 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4499 {
4500 	skb_frag_t head_frag;
4501 	struct page *page;
4502 
4503 	page = virt_to_head_page(frag_skb->head);
4504 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4505 				(unsigned char *)page_address(page),
4506 				skb_headlen(frag_skb));
4507 	return head_frag;
4508 }
4509 
4510 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4511 				 netdev_features_t features,
4512 				 unsigned int offset)
4513 {
4514 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4515 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4516 	unsigned int delta_truesize = 0;
4517 	unsigned int delta_len = 0;
4518 	struct sk_buff *tail = NULL;
4519 	struct sk_buff *nskb, *tmp;
4520 	int len_diff, err;
4521 
4522 	skb_push(skb, -skb_network_offset(skb) + offset);
4523 
4524 	/* Ensure the head is writeable before touching the shared info */
4525 	err = skb_unclone(skb, GFP_ATOMIC);
4526 	if (err)
4527 		goto err_linearize;
4528 
4529 	skb_shinfo(skb)->frag_list = NULL;
4530 
4531 	while (list_skb) {
4532 		nskb = list_skb;
4533 		list_skb = list_skb->next;
4534 
4535 		err = 0;
4536 		delta_truesize += nskb->truesize;
4537 		if (skb_shared(nskb)) {
4538 			tmp = skb_clone(nskb, GFP_ATOMIC);
4539 			if (tmp) {
4540 				consume_skb(nskb);
4541 				nskb = tmp;
4542 				err = skb_unclone(nskb, GFP_ATOMIC);
4543 			} else {
4544 				err = -ENOMEM;
4545 			}
4546 		}
4547 
4548 		if (!tail)
4549 			skb->next = nskb;
4550 		else
4551 			tail->next = nskb;
4552 
4553 		if (unlikely(err)) {
4554 			nskb->next = list_skb;
4555 			goto err_linearize;
4556 		}
4557 
4558 		tail = nskb;
4559 
4560 		delta_len += nskb->len;
4561 
4562 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4563 
4564 		skb_release_head_state(nskb);
4565 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4566 		__copy_skb_header(nskb, skb);
4567 
4568 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4569 		nskb->transport_header += len_diff;
4570 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4571 						 nskb->data - tnl_hlen,
4572 						 offset + tnl_hlen);
4573 
4574 		if (skb_needs_linearize(nskb, features) &&
4575 		    __skb_linearize(nskb))
4576 			goto err_linearize;
4577 	}
4578 
4579 	skb->truesize = skb->truesize - delta_truesize;
4580 	skb->data_len = skb->data_len - delta_len;
4581 	skb->len = skb->len - delta_len;
4582 
4583 	skb_gso_reset(skb);
4584 
4585 	skb->prev = tail;
4586 
4587 	if (skb_needs_linearize(skb, features) &&
4588 	    __skb_linearize(skb))
4589 		goto err_linearize;
4590 
4591 	skb_get(skb);
4592 
4593 	return skb;
4594 
4595 err_linearize:
4596 	kfree_skb_list(skb->next);
4597 	skb->next = NULL;
4598 	return ERR_PTR(-ENOMEM);
4599 }
4600 EXPORT_SYMBOL_GPL(skb_segment_list);
4601 
4602 /**
4603  *	skb_segment - Perform protocol segmentation on skb.
4604  *	@head_skb: buffer to segment
4605  *	@features: features for the output path (see dev->features)
4606  *
4607  *	This function performs segmentation on the given skb.  It returns
4608  *	a pointer to the first in a list of new skbs for the segments.
4609  *	In case of error it returns ERR_PTR(err).
4610  */
4611 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4612 			    netdev_features_t features)
4613 {
4614 	struct sk_buff *segs = NULL;
4615 	struct sk_buff *tail = NULL;
4616 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4617 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4618 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4619 	unsigned int offset = doffset;
4620 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4621 	unsigned int partial_segs = 0;
4622 	unsigned int headroom;
4623 	unsigned int len = head_skb->len;
4624 	struct sk_buff *frag_skb;
4625 	skb_frag_t *frag;
4626 	__be16 proto;
4627 	bool csum, sg;
4628 	int err = -ENOMEM;
4629 	int i = 0;
4630 	int nfrags, pos;
4631 
4632 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4633 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4634 		struct sk_buff *check_skb;
4635 
4636 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4637 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4638 				/* gso_size is untrusted, and we have a frag_list with
4639 				 * a linear non head_frag item.
4640 				 *
4641 				 * If head_skb's headlen does not fit requested gso_size,
4642 				 * it means that the frag_list members do NOT terminate
4643 				 * on exact gso_size boundaries. Hence we cannot perform
4644 				 * skb_frag_t page sharing. Therefore we must fallback to
4645 				 * copying the frag_list skbs; we do so by disabling SG.
4646 				 */
4647 				features &= ~NETIF_F_SG;
4648 				break;
4649 			}
4650 		}
4651 	}
4652 
4653 	__skb_push(head_skb, doffset);
4654 	proto = skb_network_protocol(head_skb, NULL);
4655 	if (unlikely(!proto))
4656 		return ERR_PTR(-EINVAL);
4657 
4658 	sg = !!(features & NETIF_F_SG);
4659 	csum = !!can_checksum_protocol(features, proto);
4660 
4661 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4662 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4663 			struct sk_buff *iter;
4664 			unsigned int frag_len;
4665 
4666 			if (!list_skb ||
4667 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4668 				goto normal;
4669 
4670 			/* If we get here then all the required
4671 			 * GSO features except frag_list are supported.
4672 			 * Try to split the SKB to multiple GSO SKBs
4673 			 * with no frag_list.
4674 			 * Currently we can do that only when the buffers don't
4675 			 * have a linear part and all the buffers except
4676 			 * the last are of the same length.
4677 			 */
4678 			frag_len = list_skb->len;
4679 			skb_walk_frags(head_skb, iter) {
4680 				if (frag_len != iter->len && iter->next)
4681 					goto normal;
4682 				if (skb_headlen(iter) && !iter->head_frag)
4683 					goto normal;
4684 
4685 				len -= iter->len;
4686 			}
4687 
4688 			if (len != frag_len)
4689 				goto normal;
4690 		}
4691 
4692 		/* GSO partial only requires that we trim off any excess that
4693 		 * doesn't fit into an MSS sized block, so take care of that
4694 		 * now.
4695 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4696 		 */
4697 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4698 		if (partial_segs > 1)
4699 			mss *= partial_segs;
4700 		else
4701 			partial_segs = 0;
4702 	}
4703 
4704 normal:
4705 	headroom = skb_headroom(head_skb);
4706 	pos = skb_headlen(head_skb);
4707 
4708 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4709 		return ERR_PTR(-ENOMEM);
4710 
4711 	nfrags = skb_shinfo(head_skb)->nr_frags;
4712 	frag = skb_shinfo(head_skb)->frags;
4713 	frag_skb = head_skb;
4714 
4715 	do {
4716 		struct sk_buff *nskb;
4717 		skb_frag_t *nskb_frag;
4718 		int hsize;
4719 		int size;
4720 
4721 		if (unlikely(mss == GSO_BY_FRAGS)) {
4722 			len = list_skb->len;
4723 		} else {
4724 			len = head_skb->len - offset;
4725 			if (len > mss)
4726 				len = mss;
4727 		}
4728 
4729 		hsize = skb_headlen(head_skb) - offset;
4730 
4731 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4732 		    (skb_headlen(list_skb) == len || sg)) {
4733 			BUG_ON(skb_headlen(list_skb) > len);
4734 
4735 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4736 			if (unlikely(!nskb))
4737 				goto err;
4738 
4739 			i = 0;
4740 			nfrags = skb_shinfo(list_skb)->nr_frags;
4741 			frag = skb_shinfo(list_skb)->frags;
4742 			frag_skb = list_skb;
4743 			pos += skb_headlen(list_skb);
4744 
4745 			while (pos < offset + len) {
4746 				BUG_ON(i >= nfrags);
4747 
4748 				size = skb_frag_size(frag);
4749 				if (pos + size > offset + len)
4750 					break;
4751 
4752 				i++;
4753 				pos += size;
4754 				frag++;
4755 			}
4756 
4757 			list_skb = list_skb->next;
4758 
4759 			if (unlikely(pskb_trim(nskb, len))) {
4760 				kfree_skb(nskb);
4761 				goto err;
4762 			}
4763 
4764 			hsize = skb_end_offset(nskb);
4765 			if (skb_cow_head(nskb, doffset + headroom)) {
4766 				kfree_skb(nskb);
4767 				goto err;
4768 			}
4769 
4770 			nskb->truesize += skb_end_offset(nskb) - hsize;
4771 			skb_release_head_state(nskb);
4772 			__skb_push(nskb, doffset);
4773 		} else {
4774 			if (hsize < 0)
4775 				hsize = 0;
4776 			if (hsize > len || !sg)
4777 				hsize = len;
4778 
4779 			nskb = __alloc_skb(hsize + doffset + headroom,
4780 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4781 					   NUMA_NO_NODE);
4782 
4783 			if (unlikely(!nskb))
4784 				goto err;
4785 
4786 			skb_reserve(nskb, headroom);
4787 			__skb_put(nskb, doffset);
4788 		}
4789 
4790 		if (segs)
4791 			tail->next = nskb;
4792 		else
4793 			segs = nskb;
4794 		tail = nskb;
4795 
4796 		__copy_skb_header(nskb, head_skb);
4797 
4798 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4799 		skb_reset_mac_len(nskb);
4800 
4801 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4802 						 nskb->data - tnl_hlen,
4803 						 doffset + tnl_hlen);
4804 
4805 		if (nskb->len == len + doffset)
4806 			goto perform_csum_check;
4807 
4808 		if (!sg) {
4809 			if (!csum) {
4810 				if (!nskb->remcsum_offload)
4811 					nskb->ip_summed = CHECKSUM_NONE;
4812 				SKB_GSO_CB(nskb)->csum =
4813 					skb_copy_and_csum_bits(head_skb, offset,
4814 							       skb_put(nskb,
4815 								       len),
4816 							       len);
4817 				SKB_GSO_CB(nskb)->csum_start =
4818 					skb_headroom(nskb) + doffset;
4819 			} else {
4820 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4821 					goto err;
4822 			}
4823 			continue;
4824 		}
4825 
4826 		nskb_frag = skb_shinfo(nskb)->frags;
4827 
4828 		skb_copy_from_linear_data_offset(head_skb, offset,
4829 						 skb_put(nskb, hsize), hsize);
4830 
4831 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4832 					   SKBFL_SHARED_FRAG;
4833 
4834 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4835 			goto err;
4836 
4837 		while (pos < offset + len) {
4838 			if (i >= nfrags) {
4839 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4840 				    skb_zerocopy_clone(nskb, list_skb,
4841 						       GFP_ATOMIC))
4842 					goto err;
4843 
4844 				i = 0;
4845 				nfrags = skb_shinfo(list_skb)->nr_frags;
4846 				frag = skb_shinfo(list_skb)->frags;
4847 				frag_skb = list_skb;
4848 				if (!skb_headlen(list_skb)) {
4849 					BUG_ON(!nfrags);
4850 				} else {
4851 					BUG_ON(!list_skb->head_frag);
4852 
4853 					/* to make room for head_frag. */
4854 					i--;
4855 					frag--;
4856 				}
4857 
4858 				list_skb = list_skb->next;
4859 			}
4860 
4861 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4862 				     MAX_SKB_FRAGS)) {
4863 				net_warn_ratelimited(
4864 					"skb_segment: too many frags: %u %u\n",
4865 					pos, mss);
4866 				err = -EINVAL;
4867 				goto err;
4868 			}
4869 
4870 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4871 			__skb_frag_ref(nskb_frag);
4872 			size = skb_frag_size(nskb_frag);
4873 
4874 			if (pos < offset) {
4875 				skb_frag_off_add(nskb_frag, offset - pos);
4876 				skb_frag_size_sub(nskb_frag, offset - pos);
4877 			}
4878 
4879 			skb_shinfo(nskb)->nr_frags++;
4880 
4881 			if (pos + size <= offset + len) {
4882 				i++;
4883 				frag++;
4884 				pos += size;
4885 			} else {
4886 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4887 				goto skip_fraglist;
4888 			}
4889 
4890 			nskb_frag++;
4891 		}
4892 
4893 skip_fraglist:
4894 		nskb->data_len = len - hsize;
4895 		nskb->len += nskb->data_len;
4896 		nskb->truesize += nskb->data_len;
4897 
4898 perform_csum_check:
4899 		if (!csum) {
4900 			if (skb_has_shared_frag(nskb) &&
4901 			    __skb_linearize(nskb))
4902 				goto err;
4903 
4904 			if (!nskb->remcsum_offload)
4905 				nskb->ip_summed = CHECKSUM_NONE;
4906 			SKB_GSO_CB(nskb)->csum =
4907 				skb_checksum(nskb, doffset,
4908 					     nskb->len - doffset, 0);
4909 			SKB_GSO_CB(nskb)->csum_start =
4910 				skb_headroom(nskb) + doffset;
4911 		}
4912 	} while ((offset += len) < head_skb->len);
4913 
4914 	/* Some callers want to get the end of the list.
4915 	 * Put it in segs->prev to avoid walking the list.
4916 	 * (see validate_xmit_skb_list() for example)
4917 	 */
4918 	segs->prev = tail;
4919 
4920 	if (partial_segs) {
4921 		struct sk_buff *iter;
4922 		int type = skb_shinfo(head_skb)->gso_type;
4923 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4924 
4925 		/* Update type to add partial and then remove dodgy if set */
4926 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4927 		type &= ~SKB_GSO_DODGY;
4928 
4929 		/* Update GSO info and prepare to start updating headers on
4930 		 * our way back down the stack of protocols.
4931 		 */
4932 		for (iter = segs; iter; iter = iter->next) {
4933 			skb_shinfo(iter)->gso_size = gso_size;
4934 			skb_shinfo(iter)->gso_segs = partial_segs;
4935 			skb_shinfo(iter)->gso_type = type;
4936 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4937 		}
4938 
4939 		if (tail->len - doffset <= gso_size)
4940 			skb_shinfo(tail)->gso_size = 0;
4941 		else if (tail != segs)
4942 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4943 	}
4944 
4945 	/* Following permits correct backpressure, for protocols
4946 	 * using skb_set_owner_w().
4947 	 * Idea is to tranfert ownership from head_skb to last segment.
4948 	 */
4949 	if (head_skb->destructor == sock_wfree) {
4950 		swap(tail->truesize, head_skb->truesize);
4951 		swap(tail->destructor, head_skb->destructor);
4952 		swap(tail->sk, head_skb->sk);
4953 	}
4954 	return segs;
4955 
4956 err:
4957 	kfree_skb_list(segs);
4958 	return ERR_PTR(err);
4959 }
4960 EXPORT_SYMBOL_GPL(skb_segment);
4961 
4962 #ifdef CONFIG_SKB_EXTENSIONS
4963 #define SKB_EXT_ALIGN_VALUE	8
4964 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4965 
4966 static const u8 skb_ext_type_len[] = {
4967 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4968 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4969 #endif
4970 #ifdef CONFIG_XFRM
4971 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4972 #endif
4973 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4974 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4975 #endif
4976 #if IS_ENABLED(CONFIG_MPTCP)
4977 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4978 #endif
4979 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4980 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4981 #endif
4982 };
4983 
4984 static __always_inline unsigned int skb_ext_total_length(void)
4985 {
4986 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4987 	int i;
4988 
4989 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4990 		l += skb_ext_type_len[i];
4991 
4992 	return l;
4993 }
4994 
4995 static void skb_extensions_init(void)
4996 {
4997 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4998 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4999 	BUILD_BUG_ON(skb_ext_total_length() > 255);
5000 #endif
5001 
5002 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
5003 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
5004 					     0,
5005 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5006 					     NULL);
5007 }
5008 #else
5009 static void skb_extensions_init(void) {}
5010 #endif
5011 
5012 /* The SKB kmem_cache slab is critical for network performance.  Never
5013  * merge/alias the slab with similar sized objects.  This avoids fragmentation
5014  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
5015  */
5016 #ifndef CONFIG_SLUB_TINY
5017 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
5018 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5019 #define FLAG_SKB_NO_MERGE	0
5020 #endif
5021 
5022 void __init skb_init(void)
5023 {
5024 	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5025 					      sizeof(struct sk_buff),
5026 					      0,
5027 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5028 						FLAG_SKB_NO_MERGE,
5029 					      offsetof(struct sk_buff, cb),
5030 					      sizeof_field(struct sk_buff, cb),
5031 					      NULL);
5032 	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5033 						sizeof(struct sk_buff_fclones),
5034 						0,
5035 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5036 						NULL);
5037 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5038 	 * struct skb_shared_info is located at the end of skb->head,
5039 	 * and should not be copied to/from user.
5040 	 */
5041 	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5042 						SKB_SMALL_HEAD_CACHE_SIZE,
5043 						0,
5044 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5045 						0,
5046 						SKB_SMALL_HEAD_HEADROOM,
5047 						NULL);
5048 	skb_extensions_init();
5049 }
5050 
5051 static int
5052 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5053 	       unsigned int recursion_level)
5054 {
5055 	int start = skb_headlen(skb);
5056 	int i, copy = start - offset;
5057 	struct sk_buff *frag_iter;
5058 	int elt = 0;
5059 
5060 	if (unlikely(recursion_level >= 24))
5061 		return -EMSGSIZE;
5062 
5063 	if (copy > 0) {
5064 		if (copy > len)
5065 			copy = len;
5066 		sg_set_buf(sg, skb->data + offset, copy);
5067 		elt++;
5068 		if ((len -= copy) == 0)
5069 			return elt;
5070 		offset += copy;
5071 	}
5072 
5073 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5074 		int end;
5075 
5076 		WARN_ON(start > offset + len);
5077 
5078 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5079 		if ((copy = end - offset) > 0) {
5080 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5081 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5082 				return -EMSGSIZE;
5083 
5084 			if (copy > len)
5085 				copy = len;
5086 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5087 				    skb_frag_off(frag) + offset - start);
5088 			elt++;
5089 			if (!(len -= copy))
5090 				return elt;
5091 			offset += copy;
5092 		}
5093 		start = end;
5094 	}
5095 
5096 	skb_walk_frags(skb, frag_iter) {
5097 		int end, ret;
5098 
5099 		WARN_ON(start > offset + len);
5100 
5101 		end = start + frag_iter->len;
5102 		if ((copy = end - offset) > 0) {
5103 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5104 				return -EMSGSIZE;
5105 
5106 			if (copy > len)
5107 				copy = len;
5108 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5109 					      copy, recursion_level + 1);
5110 			if (unlikely(ret < 0))
5111 				return ret;
5112 			elt += ret;
5113 			if ((len -= copy) == 0)
5114 				return elt;
5115 			offset += copy;
5116 		}
5117 		start = end;
5118 	}
5119 	BUG_ON(len);
5120 	return elt;
5121 }
5122 
5123 /**
5124  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5125  *	@skb: Socket buffer containing the buffers to be mapped
5126  *	@sg: The scatter-gather list to map into
5127  *	@offset: The offset into the buffer's contents to start mapping
5128  *	@len: Length of buffer space to be mapped
5129  *
5130  *	Fill the specified scatter-gather list with mappings/pointers into a
5131  *	region of the buffer space attached to a socket buffer. Returns either
5132  *	the number of scatterlist items used, or -EMSGSIZE if the contents
5133  *	could not fit.
5134  */
5135 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5136 {
5137 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5138 
5139 	if (nsg <= 0)
5140 		return nsg;
5141 
5142 	sg_mark_end(&sg[nsg - 1]);
5143 
5144 	return nsg;
5145 }
5146 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5147 
5148 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5149  * sglist without mark the sg which contain last skb data as the end.
5150  * So the caller can mannipulate sg list as will when padding new data after
5151  * the first call without calling sg_unmark_end to expend sg list.
5152  *
5153  * Scenario to use skb_to_sgvec_nomark:
5154  * 1. sg_init_table
5155  * 2. skb_to_sgvec_nomark(payload1)
5156  * 3. skb_to_sgvec_nomark(payload2)
5157  *
5158  * This is equivalent to:
5159  * 1. sg_init_table
5160  * 2. skb_to_sgvec(payload1)
5161  * 3. sg_unmark_end
5162  * 4. skb_to_sgvec(payload2)
5163  *
5164  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
5165  * is more preferable.
5166  */
5167 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5168 			int offset, int len)
5169 {
5170 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5171 }
5172 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5173 
5174 
5175 
5176 /**
5177  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5178  *	@skb: The socket buffer to check.
5179  *	@tailbits: Amount of trailing space to be added
5180  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5181  *
5182  *	Make sure that the data buffers attached to a socket buffer are
5183  *	writable. If they are not, private copies are made of the data buffers
5184  *	and the socket buffer is set to use these instead.
5185  *
5186  *	If @tailbits is given, make sure that there is space to write @tailbits
5187  *	bytes of data beyond current end of socket buffer.  @trailer will be
5188  *	set to point to the skb in which this space begins.
5189  *
5190  *	The number of scatterlist elements required to completely map the
5191  *	COW'd and extended socket buffer will be returned.
5192  */
5193 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5194 {
5195 	int copyflag;
5196 	int elt;
5197 	struct sk_buff *skb1, **skb_p;
5198 
5199 	/* If skb is cloned or its head is paged, reallocate
5200 	 * head pulling out all the pages (pages are considered not writable
5201 	 * at the moment even if they are anonymous).
5202 	 */
5203 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5204 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5205 		return -ENOMEM;
5206 
5207 	/* Easy case. Most of packets will go this way. */
5208 	if (!skb_has_frag_list(skb)) {
5209 		/* A little of trouble, not enough of space for trailer.
5210 		 * This should not happen, when stack is tuned to generate
5211 		 * good frames. OK, on miss we reallocate and reserve even more
5212 		 * space, 128 bytes is fair. */
5213 
5214 		if (skb_tailroom(skb) < tailbits &&
5215 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5216 			return -ENOMEM;
5217 
5218 		/* Voila! */
5219 		*trailer = skb;
5220 		return 1;
5221 	}
5222 
5223 	/* Misery. We are in troubles, going to mincer fragments... */
5224 
5225 	elt = 1;
5226 	skb_p = &skb_shinfo(skb)->frag_list;
5227 	copyflag = 0;
5228 
5229 	while ((skb1 = *skb_p) != NULL) {
5230 		int ntail = 0;
5231 
5232 		/* The fragment is partially pulled by someone,
5233 		 * this can happen on input. Copy it and everything
5234 		 * after it. */
5235 
5236 		if (skb_shared(skb1))
5237 			copyflag = 1;
5238 
5239 		/* If the skb is the last, worry about trailer. */
5240 
5241 		if (skb1->next == NULL && tailbits) {
5242 			if (skb_shinfo(skb1)->nr_frags ||
5243 			    skb_has_frag_list(skb1) ||
5244 			    skb_tailroom(skb1) < tailbits)
5245 				ntail = tailbits + 128;
5246 		}
5247 
5248 		if (copyflag ||
5249 		    skb_cloned(skb1) ||
5250 		    ntail ||
5251 		    skb_shinfo(skb1)->nr_frags ||
5252 		    skb_has_frag_list(skb1)) {
5253 			struct sk_buff *skb2;
5254 
5255 			/* Fuck, we are miserable poor guys... */
5256 			if (ntail == 0)
5257 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5258 			else
5259 				skb2 = skb_copy_expand(skb1,
5260 						       skb_headroom(skb1),
5261 						       ntail,
5262 						       GFP_ATOMIC);
5263 			if (unlikely(skb2 == NULL))
5264 				return -ENOMEM;
5265 
5266 			if (skb1->sk)
5267 				skb_set_owner_w(skb2, skb1->sk);
5268 
5269 			/* Looking around. Are we still alive?
5270 			 * OK, link new skb, drop old one */
5271 
5272 			skb2->next = skb1->next;
5273 			*skb_p = skb2;
5274 			kfree_skb(skb1);
5275 			skb1 = skb2;
5276 		}
5277 		elt++;
5278 		*trailer = skb1;
5279 		skb_p = &skb1->next;
5280 	}
5281 
5282 	return elt;
5283 }
5284 EXPORT_SYMBOL_GPL(skb_cow_data);
5285 
5286 static void sock_rmem_free(struct sk_buff *skb)
5287 {
5288 	struct sock *sk = skb->sk;
5289 
5290 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5291 }
5292 
5293 static void skb_set_err_queue(struct sk_buff *skb)
5294 {
5295 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5296 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5297 	 */
5298 	skb->pkt_type = PACKET_OUTGOING;
5299 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5300 }
5301 
5302 /*
5303  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5304  */
5305 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5306 {
5307 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5308 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5309 		return -ENOMEM;
5310 
5311 	skb_orphan(skb);
5312 	skb->sk = sk;
5313 	skb->destructor = sock_rmem_free;
5314 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5315 	skb_set_err_queue(skb);
5316 
5317 	/* before exiting rcu section, make sure dst is refcounted */
5318 	skb_dst_force(skb);
5319 
5320 	skb_queue_tail(&sk->sk_error_queue, skb);
5321 	if (!sock_flag(sk, SOCK_DEAD))
5322 		sk_error_report(sk);
5323 	return 0;
5324 }
5325 EXPORT_SYMBOL(sock_queue_err_skb);
5326 
5327 static bool is_icmp_err_skb(const struct sk_buff *skb)
5328 {
5329 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5330 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5331 }
5332 
5333 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5334 {
5335 	struct sk_buff_head *q = &sk->sk_error_queue;
5336 	struct sk_buff *skb, *skb_next = NULL;
5337 	bool icmp_next = false;
5338 	unsigned long flags;
5339 
5340 	if (skb_queue_empty_lockless(q))
5341 		return NULL;
5342 
5343 	spin_lock_irqsave(&q->lock, flags);
5344 	skb = __skb_dequeue(q);
5345 	if (skb && (skb_next = skb_peek(q))) {
5346 		icmp_next = is_icmp_err_skb(skb_next);
5347 		if (icmp_next)
5348 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5349 	}
5350 	spin_unlock_irqrestore(&q->lock, flags);
5351 
5352 	if (is_icmp_err_skb(skb) && !icmp_next)
5353 		sk->sk_err = 0;
5354 
5355 	if (skb_next)
5356 		sk_error_report(sk);
5357 
5358 	return skb;
5359 }
5360 EXPORT_SYMBOL(sock_dequeue_err_skb);
5361 
5362 /**
5363  * skb_clone_sk - create clone of skb, and take reference to socket
5364  * @skb: the skb to clone
5365  *
5366  * This function creates a clone of a buffer that holds a reference on
5367  * sk_refcnt.  Buffers created via this function are meant to be
5368  * returned using sock_queue_err_skb, or free via kfree_skb.
5369  *
5370  * When passing buffers allocated with this function to sock_queue_err_skb
5371  * it is necessary to wrap the call with sock_hold/sock_put in order to
5372  * prevent the socket from being released prior to being enqueued on
5373  * the sk_error_queue.
5374  */
5375 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5376 {
5377 	struct sock *sk = skb->sk;
5378 	struct sk_buff *clone;
5379 
5380 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5381 		return NULL;
5382 
5383 	clone = skb_clone(skb, GFP_ATOMIC);
5384 	if (!clone) {
5385 		sock_put(sk);
5386 		return NULL;
5387 	}
5388 
5389 	clone->sk = sk;
5390 	clone->destructor = sock_efree;
5391 
5392 	return clone;
5393 }
5394 EXPORT_SYMBOL(skb_clone_sk);
5395 
5396 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5397 					struct sock *sk,
5398 					int tstype,
5399 					bool opt_stats)
5400 {
5401 	struct sock_exterr_skb *serr;
5402 	int err;
5403 
5404 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5405 
5406 	serr = SKB_EXT_ERR(skb);
5407 	memset(serr, 0, sizeof(*serr));
5408 	serr->ee.ee_errno = ENOMSG;
5409 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5410 	serr->ee.ee_info = tstype;
5411 	serr->opt_stats = opt_stats;
5412 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5413 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5414 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5415 		if (sk_is_tcp(sk))
5416 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5417 	}
5418 
5419 	err = sock_queue_err_skb(sk, skb);
5420 
5421 	if (err)
5422 		kfree_skb(skb);
5423 }
5424 
5425 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5426 {
5427 	bool ret;
5428 
5429 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5430 		return true;
5431 
5432 	read_lock_bh(&sk->sk_callback_lock);
5433 	ret = sk->sk_socket && sk->sk_socket->file &&
5434 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5435 	read_unlock_bh(&sk->sk_callback_lock);
5436 	return ret;
5437 }
5438 
5439 void skb_complete_tx_timestamp(struct sk_buff *skb,
5440 			       struct skb_shared_hwtstamps *hwtstamps)
5441 {
5442 	struct sock *sk = skb->sk;
5443 
5444 	if (!skb_may_tx_timestamp(sk, false))
5445 		goto err;
5446 
5447 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5448 	 * but only if the socket refcount is not zero.
5449 	 */
5450 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5451 		*skb_hwtstamps(skb) = *hwtstamps;
5452 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5453 		sock_put(sk);
5454 		return;
5455 	}
5456 
5457 err:
5458 	kfree_skb(skb);
5459 }
5460 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5461 
5462 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5463 		     const struct sk_buff *ack_skb,
5464 		     struct skb_shared_hwtstamps *hwtstamps,
5465 		     struct sock *sk, int tstype)
5466 {
5467 	struct sk_buff *skb;
5468 	bool tsonly, opt_stats = false;
5469 	u32 tsflags;
5470 
5471 	if (!sk)
5472 		return;
5473 
5474 	tsflags = READ_ONCE(sk->sk_tsflags);
5475 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5476 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5477 		return;
5478 
5479 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5480 	if (!skb_may_tx_timestamp(sk, tsonly))
5481 		return;
5482 
5483 	if (tsonly) {
5484 #ifdef CONFIG_INET
5485 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5486 		    sk_is_tcp(sk)) {
5487 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5488 							     ack_skb);
5489 			opt_stats = true;
5490 		} else
5491 #endif
5492 			skb = alloc_skb(0, GFP_ATOMIC);
5493 	} else {
5494 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5495 
5496 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5497 			kfree_skb(skb);
5498 			return;
5499 		}
5500 	}
5501 	if (!skb)
5502 		return;
5503 
5504 	if (tsonly) {
5505 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5506 					     SKBTX_ANY_TSTAMP;
5507 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5508 	}
5509 
5510 	if (hwtstamps)
5511 		*skb_hwtstamps(skb) = *hwtstamps;
5512 	else
5513 		__net_timestamp(skb);
5514 
5515 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5516 }
5517 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5518 
5519 void skb_tstamp_tx(struct sk_buff *orig_skb,
5520 		   struct skb_shared_hwtstamps *hwtstamps)
5521 {
5522 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5523 			       SCM_TSTAMP_SND);
5524 }
5525 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5526 
5527 #ifdef CONFIG_WIRELESS
5528 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5529 {
5530 	struct sock *sk = skb->sk;
5531 	struct sock_exterr_skb *serr;
5532 	int err = 1;
5533 
5534 	skb->wifi_acked_valid = 1;
5535 	skb->wifi_acked = acked;
5536 
5537 	serr = SKB_EXT_ERR(skb);
5538 	memset(serr, 0, sizeof(*serr));
5539 	serr->ee.ee_errno = ENOMSG;
5540 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5541 
5542 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5543 	 * but only if the socket refcount is not zero.
5544 	 */
5545 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5546 		err = sock_queue_err_skb(sk, skb);
5547 		sock_put(sk);
5548 	}
5549 	if (err)
5550 		kfree_skb(skb);
5551 }
5552 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5553 #endif /* CONFIG_WIRELESS */
5554 
5555 /**
5556  * skb_partial_csum_set - set up and verify partial csum values for packet
5557  * @skb: the skb to set
5558  * @start: the number of bytes after skb->data to start checksumming.
5559  * @off: the offset from start to place the checksum.
5560  *
5561  * For untrusted partially-checksummed packets, we need to make sure the values
5562  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5563  *
5564  * This function checks and sets those values and skb->ip_summed: if this
5565  * returns false you should drop the packet.
5566  */
5567 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5568 {
5569 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5570 	u32 csum_start = skb_headroom(skb) + (u32)start;
5571 
5572 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5573 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5574 				     start, off, skb_headroom(skb), skb_headlen(skb));
5575 		return false;
5576 	}
5577 	skb->ip_summed = CHECKSUM_PARTIAL;
5578 	skb->csum_start = csum_start;
5579 	skb->csum_offset = off;
5580 	skb->transport_header = csum_start;
5581 	return true;
5582 }
5583 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5584 
5585 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5586 			       unsigned int max)
5587 {
5588 	if (skb_headlen(skb) >= len)
5589 		return 0;
5590 
5591 	/* If we need to pullup then pullup to the max, so we
5592 	 * won't need to do it again.
5593 	 */
5594 	if (max > skb->len)
5595 		max = skb->len;
5596 
5597 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5598 		return -ENOMEM;
5599 
5600 	if (skb_headlen(skb) < len)
5601 		return -EPROTO;
5602 
5603 	return 0;
5604 }
5605 
5606 #define MAX_TCP_HDR_LEN (15 * 4)
5607 
5608 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5609 				      typeof(IPPROTO_IP) proto,
5610 				      unsigned int off)
5611 {
5612 	int err;
5613 
5614 	switch (proto) {
5615 	case IPPROTO_TCP:
5616 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5617 					  off + MAX_TCP_HDR_LEN);
5618 		if (!err && !skb_partial_csum_set(skb, off,
5619 						  offsetof(struct tcphdr,
5620 							   check)))
5621 			err = -EPROTO;
5622 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5623 
5624 	case IPPROTO_UDP:
5625 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5626 					  off + sizeof(struct udphdr));
5627 		if (!err && !skb_partial_csum_set(skb, off,
5628 						  offsetof(struct udphdr,
5629 							   check)))
5630 			err = -EPROTO;
5631 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5632 	}
5633 
5634 	return ERR_PTR(-EPROTO);
5635 }
5636 
5637 /* This value should be large enough to cover a tagged ethernet header plus
5638  * maximally sized IP and TCP or UDP headers.
5639  */
5640 #define MAX_IP_HDR_LEN 128
5641 
5642 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5643 {
5644 	unsigned int off;
5645 	bool fragment;
5646 	__sum16 *csum;
5647 	int err;
5648 
5649 	fragment = false;
5650 
5651 	err = skb_maybe_pull_tail(skb,
5652 				  sizeof(struct iphdr),
5653 				  MAX_IP_HDR_LEN);
5654 	if (err < 0)
5655 		goto out;
5656 
5657 	if (ip_is_fragment(ip_hdr(skb)))
5658 		fragment = true;
5659 
5660 	off = ip_hdrlen(skb);
5661 
5662 	err = -EPROTO;
5663 
5664 	if (fragment)
5665 		goto out;
5666 
5667 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5668 	if (IS_ERR(csum))
5669 		return PTR_ERR(csum);
5670 
5671 	if (recalculate)
5672 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5673 					   ip_hdr(skb)->daddr,
5674 					   skb->len - off,
5675 					   ip_hdr(skb)->protocol, 0);
5676 	err = 0;
5677 
5678 out:
5679 	return err;
5680 }
5681 
5682 /* This value should be large enough to cover a tagged ethernet header plus
5683  * an IPv6 header, all options, and a maximal TCP or UDP header.
5684  */
5685 #define MAX_IPV6_HDR_LEN 256
5686 
5687 #define OPT_HDR(type, skb, off) \
5688 	(type *)(skb_network_header(skb) + (off))
5689 
5690 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5691 {
5692 	int err;
5693 	u8 nexthdr;
5694 	unsigned int off;
5695 	unsigned int len;
5696 	bool fragment;
5697 	bool done;
5698 	__sum16 *csum;
5699 
5700 	fragment = false;
5701 	done = false;
5702 
5703 	off = sizeof(struct ipv6hdr);
5704 
5705 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5706 	if (err < 0)
5707 		goto out;
5708 
5709 	nexthdr = ipv6_hdr(skb)->nexthdr;
5710 
5711 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5712 	while (off <= len && !done) {
5713 		switch (nexthdr) {
5714 		case IPPROTO_DSTOPTS:
5715 		case IPPROTO_HOPOPTS:
5716 		case IPPROTO_ROUTING: {
5717 			struct ipv6_opt_hdr *hp;
5718 
5719 			err = skb_maybe_pull_tail(skb,
5720 						  off +
5721 						  sizeof(struct ipv6_opt_hdr),
5722 						  MAX_IPV6_HDR_LEN);
5723 			if (err < 0)
5724 				goto out;
5725 
5726 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5727 			nexthdr = hp->nexthdr;
5728 			off += ipv6_optlen(hp);
5729 			break;
5730 		}
5731 		case IPPROTO_AH: {
5732 			struct ip_auth_hdr *hp;
5733 
5734 			err = skb_maybe_pull_tail(skb,
5735 						  off +
5736 						  sizeof(struct ip_auth_hdr),
5737 						  MAX_IPV6_HDR_LEN);
5738 			if (err < 0)
5739 				goto out;
5740 
5741 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5742 			nexthdr = hp->nexthdr;
5743 			off += ipv6_authlen(hp);
5744 			break;
5745 		}
5746 		case IPPROTO_FRAGMENT: {
5747 			struct frag_hdr *hp;
5748 
5749 			err = skb_maybe_pull_tail(skb,
5750 						  off +
5751 						  sizeof(struct frag_hdr),
5752 						  MAX_IPV6_HDR_LEN);
5753 			if (err < 0)
5754 				goto out;
5755 
5756 			hp = OPT_HDR(struct frag_hdr, skb, off);
5757 
5758 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5759 				fragment = true;
5760 
5761 			nexthdr = hp->nexthdr;
5762 			off += sizeof(struct frag_hdr);
5763 			break;
5764 		}
5765 		default:
5766 			done = true;
5767 			break;
5768 		}
5769 	}
5770 
5771 	err = -EPROTO;
5772 
5773 	if (!done || fragment)
5774 		goto out;
5775 
5776 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5777 	if (IS_ERR(csum))
5778 		return PTR_ERR(csum);
5779 
5780 	if (recalculate)
5781 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5782 					 &ipv6_hdr(skb)->daddr,
5783 					 skb->len - off, nexthdr, 0);
5784 	err = 0;
5785 
5786 out:
5787 	return err;
5788 }
5789 
5790 /**
5791  * skb_checksum_setup - set up partial checksum offset
5792  * @skb: the skb to set up
5793  * @recalculate: if true the pseudo-header checksum will be recalculated
5794  */
5795 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5796 {
5797 	int err;
5798 
5799 	switch (skb->protocol) {
5800 	case htons(ETH_P_IP):
5801 		err = skb_checksum_setup_ipv4(skb, recalculate);
5802 		break;
5803 
5804 	case htons(ETH_P_IPV6):
5805 		err = skb_checksum_setup_ipv6(skb, recalculate);
5806 		break;
5807 
5808 	default:
5809 		err = -EPROTO;
5810 		break;
5811 	}
5812 
5813 	return err;
5814 }
5815 EXPORT_SYMBOL(skb_checksum_setup);
5816 
5817 /**
5818  * skb_checksum_maybe_trim - maybe trims the given skb
5819  * @skb: the skb to check
5820  * @transport_len: the data length beyond the network header
5821  *
5822  * Checks whether the given skb has data beyond the given transport length.
5823  * If so, returns a cloned skb trimmed to this transport length.
5824  * Otherwise returns the provided skb. Returns NULL in error cases
5825  * (e.g. transport_len exceeds skb length or out-of-memory).
5826  *
5827  * Caller needs to set the skb transport header and free any returned skb if it
5828  * differs from the provided skb.
5829  */
5830 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5831 					       unsigned int transport_len)
5832 {
5833 	struct sk_buff *skb_chk;
5834 	unsigned int len = skb_transport_offset(skb) + transport_len;
5835 	int ret;
5836 
5837 	if (skb->len < len)
5838 		return NULL;
5839 	else if (skb->len == len)
5840 		return skb;
5841 
5842 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5843 	if (!skb_chk)
5844 		return NULL;
5845 
5846 	ret = pskb_trim_rcsum(skb_chk, len);
5847 	if (ret) {
5848 		kfree_skb(skb_chk);
5849 		return NULL;
5850 	}
5851 
5852 	return skb_chk;
5853 }
5854 
5855 /**
5856  * skb_checksum_trimmed - validate checksum of an skb
5857  * @skb: the skb to check
5858  * @transport_len: the data length beyond the network header
5859  * @skb_chkf: checksum function to use
5860  *
5861  * Applies the given checksum function skb_chkf to the provided skb.
5862  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5863  *
5864  * If the skb has data beyond the given transport length, then a
5865  * trimmed & cloned skb is checked and returned.
5866  *
5867  * Caller needs to set the skb transport header and free any returned skb if it
5868  * differs from the provided skb.
5869  */
5870 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5871 				     unsigned int transport_len,
5872 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5873 {
5874 	struct sk_buff *skb_chk;
5875 	unsigned int offset = skb_transport_offset(skb);
5876 	__sum16 ret;
5877 
5878 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5879 	if (!skb_chk)
5880 		goto err;
5881 
5882 	if (!pskb_may_pull(skb_chk, offset))
5883 		goto err;
5884 
5885 	skb_pull_rcsum(skb_chk, offset);
5886 	ret = skb_chkf(skb_chk);
5887 	skb_push_rcsum(skb_chk, offset);
5888 
5889 	if (ret)
5890 		goto err;
5891 
5892 	return skb_chk;
5893 
5894 err:
5895 	if (skb_chk && skb_chk != skb)
5896 		kfree_skb(skb_chk);
5897 
5898 	return NULL;
5899 
5900 }
5901 EXPORT_SYMBOL(skb_checksum_trimmed);
5902 
5903 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5904 {
5905 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5906 			     skb->dev->name);
5907 }
5908 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5909 
5910 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5911 {
5912 	if (head_stolen) {
5913 		skb_release_head_state(skb);
5914 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
5915 	} else {
5916 		__kfree_skb(skb);
5917 	}
5918 }
5919 EXPORT_SYMBOL(kfree_skb_partial);
5920 
5921 /**
5922  * skb_try_coalesce - try to merge skb to prior one
5923  * @to: prior buffer
5924  * @from: buffer to add
5925  * @fragstolen: pointer to boolean
5926  * @delta_truesize: how much more was allocated than was requested
5927  */
5928 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5929 		      bool *fragstolen, int *delta_truesize)
5930 {
5931 	struct skb_shared_info *to_shinfo, *from_shinfo;
5932 	int i, delta, len = from->len;
5933 
5934 	*fragstolen = false;
5935 
5936 	if (skb_cloned(to))
5937 		return false;
5938 
5939 	/* In general, avoid mixing page_pool and non-page_pool allocated
5940 	 * pages within the same SKB. In theory we could take full
5941 	 * references if @from is cloned and !@to->pp_recycle but its
5942 	 * tricky (due to potential race with the clone disappearing) and
5943 	 * rare, so not worth dealing with.
5944 	 */
5945 	if (to->pp_recycle != from->pp_recycle)
5946 		return false;
5947 
5948 	if (len <= skb_tailroom(to)) {
5949 		if (len)
5950 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5951 		*delta_truesize = 0;
5952 		return true;
5953 	}
5954 
5955 	to_shinfo = skb_shinfo(to);
5956 	from_shinfo = skb_shinfo(from);
5957 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5958 		return false;
5959 	if (skb_zcopy(to) || skb_zcopy(from))
5960 		return false;
5961 
5962 	if (skb_headlen(from) != 0) {
5963 		struct page *page;
5964 		unsigned int offset;
5965 
5966 		if (to_shinfo->nr_frags +
5967 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5968 			return false;
5969 
5970 		if (skb_head_is_locked(from))
5971 			return false;
5972 
5973 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5974 
5975 		page = virt_to_head_page(from->head);
5976 		offset = from->data - (unsigned char *)page_address(page);
5977 
5978 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5979 				   page, offset, skb_headlen(from));
5980 		*fragstolen = true;
5981 	} else {
5982 		if (to_shinfo->nr_frags +
5983 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5984 			return false;
5985 
5986 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5987 	}
5988 
5989 	WARN_ON_ONCE(delta < len);
5990 
5991 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5992 	       from_shinfo->frags,
5993 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5994 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5995 
5996 	if (!skb_cloned(from))
5997 		from_shinfo->nr_frags = 0;
5998 
5999 	/* if the skb is not cloned this does nothing
6000 	 * since we set nr_frags to 0.
6001 	 */
6002 	if (skb_pp_frag_ref(from)) {
6003 		for (i = 0; i < from_shinfo->nr_frags; i++)
6004 			__skb_frag_ref(&from_shinfo->frags[i]);
6005 	}
6006 
6007 	to->truesize += delta;
6008 	to->len += len;
6009 	to->data_len += len;
6010 
6011 	*delta_truesize = delta;
6012 	return true;
6013 }
6014 EXPORT_SYMBOL(skb_try_coalesce);
6015 
6016 /**
6017  * skb_scrub_packet - scrub an skb
6018  *
6019  * @skb: buffer to clean
6020  * @xnet: packet is crossing netns
6021  *
6022  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
6023  * into/from a tunnel. Some information have to be cleared during these
6024  * operations.
6025  * skb_scrub_packet can also be used to clean a skb before injecting it in
6026  * another namespace (@xnet == true). We have to clear all information in the
6027  * skb that could impact namespace isolation.
6028  */
6029 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6030 {
6031 	skb->pkt_type = PACKET_HOST;
6032 	skb->skb_iif = 0;
6033 	skb->ignore_df = 0;
6034 	skb_dst_drop(skb);
6035 	skb_ext_reset(skb);
6036 	nf_reset_ct(skb);
6037 	nf_reset_trace(skb);
6038 
6039 #ifdef CONFIG_NET_SWITCHDEV
6040 	skb->offload_fwd_mark = 0;
6041 	skb->offload_l3_fwd_mark = 0;
6042 #endif
6043 
6044 	if (!xnet)
6045 		return;
6046 
6047 	ipvs_reset(skb);
6048 	skb->mark = 0;
6049 	skb_clear_tstamp(skb);
6050 }
6051 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6052 
6053 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6054 {
6055 	int mac_len, meta_len;
6056 	void *meta;
6057 
6058 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
6059 		kfree_skb(skb);
6060 		return NULL;
6061 	}
6062 
6063 	mac_len = skb->data - skb_mac_header(skb);
6064 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6065 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6066 			mac_len - VLAN_HLEN - ETH_TLEN);
6067 	}
6068 
6069 	meta_len = skb_metadata_len(skb);
6070 	if (meta_len) {
6071 		meta = skb_metadata_end(skb) - meta_len;
6072 		memmove(meta + VLAN_HLEN, meta, meta_len);
6073 	}
6074 
6075 	skb->mac_header += VLAN_HLEN;
6076 	return skb;
6077 }
6078 
6079 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6080 {
6081 	struct vlan_hdr *vhdr;
6082 	u16 vlan_tci;
6083 
6084 	if (unlikely(skb_vlan_tag_present(skb))) {
6085 		/* vlan_tci is already set-up so leave this for another time */
6086 		return skb;
6087 	}
6088 
6089 	skb = skb_share_check(skb, GFP_ATOMIC);
6090 	if (unlikely(!skb))
6091 		goto err_free;
6092 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6093 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6094 		goto err_free;
6095 
6096 	vhdr = (struct vlan_hdr *)skb->data;
6097 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6098 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6099 
6100 	skb_pull_rcsum(skb, VLAN_HLEN);
6101 	vlan_set_encap_proto(skb, vhdr);
6102 
6103 	skb = skb_reorder_vlan_header(skb);
6104 	if (unlikely(!skb))
6105 		goto err_free;
6106 
6107 	skb_reset_network_header(skb);
6108 	if (!skb_transport_header_was_set(skb))
6109 		skb_reset_transport_header(skb);
6110 	skb_reset_mac_len(skb);
6111 
6112 	return skb;
6113 
6114 err_free:
6115 	kfree_skb(skb);
6116 	return NULL;
6117 }
6118 EXPORT_SYMBOL(skb_vlan_untag);
6119 
6120 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6121 {
6122 	if (!pskb_may_pull(skb, write_len))
6123 		return -ENOMEM;
6124 
6125 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6126 		return 0;
6127 
6128 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6129 }
6130 EXPORT_SYMBOL(skb_ensure_writable);
6131 
6132 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6133 {
6134 	int needed_headroom = dev->needed_headroom;
6135 	int needed_tailroom = dev->needed_tailroom;
6136 
6137 	/* For tail taggers, we need to pad short frames ourselves, to ensure
6138 	 * that the tail tag does not fail at its role of being at the end of
6139 	 * the packet, once the conduit interface pads the frame. Account for
6140 	 * that pad length here, and pad later.
6141 	 */
6142 	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6143 		needed_tailroom += ETH_ZLEN - skb->len;
6144 	/* skb_headroom() returns unsigned int... */
6145 	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6146 	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6147 
6148 	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6149 		/* No reallocation needed, yay! */
6150 		return 0;
6151 
6152 	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6153 				GFP_ATOMIC);
6154 }
6155 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6156 
6157 /* remove VLAN header from packet and update csum accordingly.
6158  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6159  */
6160 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6161 {
6162 	int offset = skb->data - skb_mac_header(skb);
6163 	int err;
6164 
6165 	if (WARN_ONCE(offset,
6166 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6167 		      offset)) {
6168 		return -EINVAL;
6169 	}
6170 
6171 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6172 	if (unlikely(err))
6173 		return err;
6174 
6175 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6176 
6177 	vlan_remove_tag(skb, vlan_tci);
6178 
6179 	skb->mac_header += VLAN_HLEN;
6180 
6181 	if (skb_network_offset(skb) < ETH_HLEN)
6182 		skb_set_network_header(skb, ETH_HLEN);
6183 
6184 	skb_reset_mac_len(skb);
6185 
6186 	return err;
6187 }
6188 EXPORT_SYMBOL(__skb_vlan_pop);
6189 
6190 /* Pop a vlan tag either from hwaccel or from payload.
6191  * Expects skb->data at mac header.
6192  */
6193 int skb_vlan_pop(struct sk_buff *skb)
6194 {
6195 	u16 vlan_tci;
6196 	__be16 vlan_proto;
6197 	int err;
6198 
6199 	if (likely(skb_vlan_tag_present(skb))) {
6200 		__vlan_hwaccel_clear_tag(skb);
6201 	} else {
6202 		if (unlikely(!eth_type_vlan(skb->protocol)))
6203 			return 0;
6204 
6205 		err = __skb_vlan_pop(skb, &vlan_tci);
6206 		if (err)
6207 			return err;
6208 	}
6209 	/* move next vlan tag to hw accel tag */
6210 	if (likely(!eth_type_vlan(skb->protocol)))
6211 		return 0;
6212 
6213 	vlan_proto = skb->protocol;
6214 	err = __skb_vlan_pop(skb, &vlan_tci);
6215 	if (unlikely(err))
6216 		return err;
6217 
6218 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6219 	return 0;
6220 }
6221 EXPORT_SYMBOL(skb_vlan_pop);
6222 
6223 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6224  * Expects skb->data at mac header.
6225  */
6226 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6227 {
6228 	if (skb_vlan_tag_present(skb)) {
6229 		int offset = skb->data - skb_mac_header(skb);
6230 		int err;
6231 
6232 		if (WARN_ONCE(offset,
6233 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6234 			      offset)) {
6235 			return -EINVAL;
6236 		}
6237 
6238 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6239 					skb_vlan_tag_get(skb));
6240 		if (err)
6241 			return err;
6242 
6243 		skb->protocol = skb->vlan_proto;
6244 		skb->mac_len += VLAN_HLEN;
6245 
6246 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6247 	}
6248 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6249 	return 0;
6250 }
6251 EXPORT_SYMBOL(skb_vlan_push);
6252 
6253 /**
6254  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6255  *
6256  * @skb: Socket buffer to modify
6257  *
6258  * Drop the Ethernet header of @skb.
6259  *
6260  * Expects that skb->data points to the mac header and that no VLAN tags are
6261  * present.
6262  *
6263  * Returns 0 on success, -errno otherwise.
6264  */
6265 int skb_eth_pop(struct sk_buff *skb)
6266 {
6267 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6268 	    skb_network_offset(skb) < ETH_HLEN)
6269 		return -EPROTO;
6270 
6271 	skb_pull_rcsum(skb, ETH_HLEN);
6272 	skb_reset_mac_header(skb);
6273 	skb_reset_mac_len(skb);
6274 
6275 	return 0;
6276 }
6277 EXPORT_SYMBOL(skb_eth_pop);
6278 
6279 /**
6280  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6281  *
6282  * @skb: Socket buffer to modify
6283  * @dst: Destination MAC address of the new header
6284  * @src: Source MAC address of the new header
6285  *
6286  * Prepend @skb with a new Ethernet header.
6287  *
6288  * Expects that skb->data points to the mac header, which must be empty.
6289  *
6290  * Returns 0 on success, -errno otherwise.
6291  */
6292 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6293 		 const unsigned char *src)
6294 {
6295 	struct ethhdr *eth;
6296 	int err;
6297 
6298 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6299 		return -EPROTO;
6300 
6301 	err = skb_cow_head(skb, sizeof(*eth));
6302 	if (err < 0)
6303 		return err;
6304 
6305 	skb_push(skb, sizeof(*eth));
6306 	skb_reset_mac_header(skb);
6307 	skb_reset_mac_len(skb);
6308 
6309 	eth = eth_hdr(skb);
6310 	ether_addr_copy(eth->h_dest, dst);
6311 	ether_addr_copy(eth->h_source, src);
6312 	eth->h_proto = skb->protocol;
6313 
6314 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6315 
6316 	return 0;
6317 }
6318 EXPORT_SYMBOL(skb_eth_push);
6319 
6320 /* Update the ethertype of hdr and the skb csum value if required. */
6321 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6322 			     __be16 ethertype)
6323 {
6324 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6325 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6326 
6327 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6328 	}
6329 
6330 	hdr->h_proto = ethertype;
6331 }
6332 
6333 /**
6334  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6335  *                   the packet
6336  *
6337  * @skb: buffer
6338  * @mpls_lse: MPLS label stack entry to push
6339  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6340  * @mac_len: length of the MAC header
6341  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6342  *            ethernet
6343  *
6344  * Expects skb->data at mac header.
6345  *
6346  * Returns 0 on success, -errno otherwise.
6347  */
6348 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6349 		  int mac_len, bool ethernet)
6350 {
6351 	struct mpls_shim_hdr *lse;
6352 	int err;
6353 
6354 	if (unlikely(!eth_p_mpls(mpls_proto)))
6355 		return -EINVAL;
6356 
6357 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6358 	if (skb->encapsulation)
6359 		return -EINVAL;
6360 
6361 	err = skb_cow_head(skb, MPLS_HLEN);
6362 	if (unlikely(err))
6363 		return err;
6364 
6365 	if (!skb->inner_protocol) {
6366 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6367 		skb_set_inner_protocol(skb, skb->protocol);
6368 	}
6369 
6370 	skb_push(skb, MPLS_HLEN);
6371 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6372 		mac_len);
6373 	skb_reset_mac_header(skb);
6374 	skb_set_network_header(skb, mac_len);
6375 	skb_reset_mac_len(skb);
6376 
6377 	lse = mpls_hdr(skb);
6378 	lse->label_stack_entry = mpls_lse;
6379 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6380 
6381 	if (ethernet && mac_len >= ETH_HLEN)
6382 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6383 	skb->protocol = mpls_proto;
6384 
6385 	return 0;
6386 }
6387 EXPORT_SYMBOL_GPL(skb_mpls_push);
6388 
6389 /**
6390  * skb_mpls_pop() - pop the outermost MPLS header
6391  *
6392  * @skb: buffer
6393  * @next_proto: ethertype of header after popped MPLS header
6394  * @mac_len: length of the MAC header
6395  * @ethernet: flag to indicate if the packet is ethernet
6396  *
6397  * Expects skb->data at mac header.
6398  *
6399  * Returns 0 on success, -errno otherwise.
6400  */
6401 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6402 		 bool ethernet)
6403 {
6404 	int err;
6405 
6406 	if (unlikely(!eth_p_mpls(skb->protocol)))
6407 		return 0;
6408 
6409 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6410 	if (unlikely(err))
6411 		return err;
6412 
6413 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6414 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6415 		mac_len);
6416 
6417 	__skb_pull(skb, MPLS_HLEN);
6418 	skb_reset_mac_header(skb);
6419 	skb_set_network_header(skb, mac_len);
6420 
6421 	if (ethernet && mac_len >= ETH_HLEN) {
6422 		struct ethhdr *hdr;
6423 
6424 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6425 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6426 		skb_mod_eth_type(skb, hdr, next_proto);
6427 	}
6428 	skb->protocol = next_proto;
6429 
6430 	return 0;
6431 }
6432 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6433 
6434 /**
6435  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6436  *
6437  * @skb: buffer
6438  * @mpls_lse: new MPLS label stack entry to update to
6439  *
6440  * Expects skb->data at mac header.
6441  *
6442  * Returns 0 on success, -errno otherwise.
6443  */
6444 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6445 {
6446 	int err;
6447 
6448 	if (unlikely(!eth_p_mpls(skb->protocol)))
6449 		return -EINVAL;
6450 
6451 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6452 	if (unlikely(err))
6453 		return err;
6454 
6455 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6456 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6457 
6458 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6459 	}
6460 
6461 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6462 
6463 	return 0;
6464 }
6465 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6466 
6467 /**
6468  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6469  *
6470  * @skb: buffer
6471  *
6472  * Expects skb->data at mac header.
6473  *
6474  * Returns 0 on success, -errno otherwise.
6475  */
6476 int skb_mpls_dec_ttl(struct sk_buff *skb)
6477 {
6478 	u32 lse;
6479 	u8 ttl;
6480 
6481 	if (unlikely(!eth_p_mpls(skb->protocol)))
6482 		return -EINVAL;
6483 
6484 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6485 		return -ENOMEM;
6486 
6487 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6488 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6489 	if (!--ttl)
6490 		return -EINVAL;
6491 
6492 	lse &= ~MPLS_LS_TTL_MASK;
6493 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6494 
6495 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6496 }
6497 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6498 
6499 /**
6500  * alloc_skb_with_frags - allocate skb with page frags
6501  *
6502  * @header_len: size of linear part
6503  * @data_len: needed length in frags
6504  * @order: max page order desired.
6505  * @errcode: pointer to error code if any
6506  * @gfp_mask: allocation mask
6507  *
6508  * This can be used to allocate a paged skb, given a maximal order for frags.
6509  */
6510 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6511 				     unsigned long data_len,
6512 				     int order,
6513 				     int *errcode,
6514 				     gfp_t gfp_mask)
6515 {
6516 	unsigned long chunk;
6517 	struct sk_buff *skb;
6518 	struct page *page;
6519 	int nr_frags = 0;
6520 
6521 	*errcode = -EMSGSIZE;
6522 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6523 		return NULL;
6524 
6525 	*errcode = -ENOBUFS;
6526 	skb = alloc_skb(header_len, gfp_mask);
6527 	if (!skb)
6528 		return NULL;
6529 
6530 	while (data_len) {
6531 		if (nr_frags == MAX_SKB_FRAGS - 1)
6532 			goto failure;
6533 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6534 			order--;
6535 
6536 		if (order) {
6537 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6538 					   __GFP_COMP |
6539 					   __GFP_NOWARN,
6540 					   order);
6541 			if (!page) {
6542 				order--;
6543 				continue;
6544 			}
6545 		} else {
6546 			page = alloc_page(gfp_mask);
6547 			if (!page)
6548 				goto failure;
6549 		}
6550 		chunk = min_t(unsigned long, data_len,
6551 			      PAGE_SIZE << order);
6552 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6553 		nr_frags++;
6554 		skb->truesize += (PAGE_SIZE << order);
6555 		data_len -= chunk;
6556 	}
6557 	return skb;
6558 
6559 failure:
6560 	kfree_skb(skb);
6561 	return NULL;
6562 }
6563 EXPORT_SYMBOL(alloc_skb_with_frags);
6564 
6565 /* carve out the first off bytes from skb when off < headlen */
6566 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6567 				    const int headlen, gfp_t gfp_mask)
6568 {
6569 	int i;
6570 	unsigned int size = skb_end_offset(skb);
6571 	int new_hlen = headlen - off;
6572 	u8 *data;
6573 
6574 	if (skb_pfmemalloc(skb))
6575 		gfp_mask |= __GFP_MEMALLOC;
6576 
6577 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6578 	if (!data)
6579 		return -ENOMEM;
6580 	size = SKB_WITH_OVERHEAD(size);
6581 
6582 	/* Copy real data, and all frags */
6583 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6584 	skb->len -= off;
6585 
6586 	memcpy((struct skb_shared_info *)(data + size),
6587 	       skb_shinfo(skb),
6588 	       offsetof(struct skb_shared_info,
6589 			frags[skb_shinfo(skb)->nr_frags]));
6590 	if (skb_cloned(skb)) {
6591 		/* drop the old head gracefully */
6592 		if (skb_orphan_frags(skb, gfp_mask)) {
6593 			skb_kfree_head(data, size);
6594 			return -ENOMEM;
6595 		}
6596 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6597 			skb_frag_ref(skb, i);
6598 		if (skb_has_frag_list(skb))
6599 			skb_clone_fraglist(skb);
6600 		skb_release_data(skb, SKB_CONSUMED);
6601 	} else {
6602 		/* we can reuse existing recount- all we did was
6603 		 * relocate values
6604 		 */
6605 		skb_free_head(skb);
6606 	}
6607 
6608 	skb->head = data;
6609 	skb->data = data;
6610 	skb->head_frag = 0;
6611 	skb_set_end_offset(skb, size);
6612 	skb_set_tail_pointer(skb, skb_headlen(skb));
6613 	skb_headers_offset_update(skb, 0);
6614 	skb->cloned = 0;
6615 	skb->hdr_len = 0;
6616 	skb->nohdr = 0;
6617 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6618 
6619 	return 0;
6620 }
6621 
6622 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6623 
6624 /* carve out the first eat bytes from skb's frag_list. May recurse into
6625  * pskb_carve()
6626  */
6627 static int pskb_carve_frag_list(struct sk_buff *skb,
6628 				struct skb_shared_info *shinfo, int eat,
6629 				gfp_t gfp_mask)
6630 {
6631 	struct sk_buff *list = shinfo->frag_list;
6632 	struct sk_buff *clone = NULL;
6633 	struct sk_buff *insp = NULL;
6634 
6635 	do {
6636 		if (!list) {
6637 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6638 			return -EFAULT;
6639 		}
6640 		if (list->len <= eat) {
6641 			/* Eaten as whole. */
6642 			eat -= list->len;
6643 			list = list->next;
6644 			insp = list;
6645 		} else {
6646 			/* Eaten partially. */
6647 			if (skb_shared(list)) {
6648 				clone = skb_clone(list, gfp_mask);
6649 				if (!clone)
6650 					return -ENOMEM;
6651 				insp = list->next;
6652 				list = clone;
6653 			} else {
6654 				/* This may be pulled without problems. */
6655 				insp = list;
6656 			}
6657 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6658 				kfree_skb(clone);
6659 				return -ENOMEM;
6660 			}
6661 			break;
6662 		}
6663 	} while (eat);
6664 
6665 	/* Free pulled out fragments. */
6666 	while ((list = shinfo->frag_list) != insp) {
6667 		shinfo->frag_list = list->next;
6668 		consume_skb(list);
6669 	}
6670 	/* And insert new clone at head. */
6671 	if (clone) {
6672 		clone->next = list;
6673 		shinfo->frag_list = clone;
6674 	}
6675 	return 0;
6676 }
6677 
6678 /* carve off first len bytes from skb. Split line (off) is in the
6679  * non-linear part of skb
6680  */
6681 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6682 				       int pos, gfp_t gfp_mask)
6683 {
6684 	int i, k = 0;
6685 	unsigned int size = skb_end_offset(skb);
6686 	u8 *data;
6687 	const int nfrags = skb_shinfo(skb)->nr_frags;
6688 	struct skb_shared_info *shinfo;
6689 
6690 	if (skb_pfmemalloc(skb))
6691 		gfp_mask |= __GFP_MEMALLOC;
6692 
6693 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6694 	if (!data)
6695 		return -ENOMEM;
6696 	size = SKB_WITH_OVERHEAD(size);
6697 
6698 	memcpy((struct skb_shared_info *)(data + size),
6699 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6700 	if (skb_orphan_frags(skb, gfp_mask)) {
6701 		skb_kfree_head(data, size);
6702 		return -ENOMEM;
6703 	}
6704 	shinfo = (struct skb_shared_info *)(data + size);
6705 	for (i = 0; i < nfrags; i++) {
6706 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6707 
6708 		if (pos + fsize > off) {
6709 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6710 
6711 			if (pos < off) {
6712 				/* Split frag.
6713 				 * We have two variants in this case:
6714 				 * 1. Move all the frag to the second
6715 				 *    part, if it is possible. F.e.
6716 				 *    this approach is mandatory for TUX,
6717 				 *    where splitting is expensive.
6718 				 * 2. Split is accurately. We make this.
6719 				 */
6720 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6721 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6722 			}
6723 			skb_frag_ref(skb, i);
6724 			k++;
6725 		}
6726 		pos += fsize;
6727 	}
6728 	shinfo->nr_frags = k;
6729 	if (skb_has_frag_list(skb))
6730 		skb_clone_fraglist(skb);
6731 
6732 	/* split line is in frag list */
6733 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6734 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6735 		if (skb_has_frag_list(skb))
6736 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6737 		skb_kfree_head(data, size);
6738 		return -ENOMEM;
6739 	}
6740 	skb_release_data(skb, SKB_CONSUMED);
6741 
6742 	skb->head = data;
6743 	skb->head_frag = 0;
6744 	skb->data = data;
6745 	skb_set_end_offset(skb, size);
6746 	skb_reset_tail_pointer(skb);
6747 	skb_headers_offset_update(skb, 0);
6748 	skb->cloned   = 0;
6749 	skb->hdr_len  = 0;
6750 	skb->nohdr    = 0;
6751 	skb->len -= off;
6752 	skb->data_len = skb->len;
6753 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6754 	return 0;
6755 }
6756 
6757 /* remove len bytes from the beginning of the skb */
6758 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6759 {
6760 	int headlen = skb_headlen(skb);
6761 
6762 	if (len < headlen)
6763 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6764 	else
6765 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6766 }
6767 
6768 /* Extract to_copy bytes starting at off from skb, and return this in
6769  * a new skb
6770  */
6771 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6772 			     int to_copy, gfp_t gfp)
6773 {
6774 	struct sk_buff  *clone = skb_clone(skb, gfp);
6775 
6776 	if (!clone)
6777 		return NULL;
6778 
6779 	if (pskb_carve(clone, off, gfp) < 0 ||
6780 	    pskb_trim(clone, to_copy)) {
6781 		kfree_skb(clone);
6782 		return NULL;
6783 	}
6784 	return clone;
6785 }
6786 EXPORT_SYMBOL(pskb_extract);
6787 
6788 /**
6789  * skb_condense - try to get rid of fragments/frag_list if possible
6790  * @skb: buffer
6791  *
6792  * Can be used to save memory before skb is added to a busy queue.
6793  * If packet has bytes in frags and enough tail room in skb->head,
6794  * pull all of them, so that we can free the frags right now and adjust
6795  * truesize.
6796  * Notes:
6797  *	We do not reallocate skb->head thus can not fail.
6798  *	Caller must re-evaluate skb->truesize if needed.
6799  */
6800 void skb_condense(struct sk_buff *skb)
6801 {
6802 	if (skb->data_len) {
6803 		if (skb->data_len > skb->end - skb->tail ||
6804 		    skb_cloned(skb))
6805 			return;
6806 
6807 		/* Nice, we can free page frag(s) right now */
6808 		__pskb_pull_tail(skb, skb->data_len);
6809 	}
6810 	/* At this point, skb->truesize might be over estimated,
6811 	 * because skb had a fragment, and fragments do not tell
6812 	 * their truesize.
6813 	 * When we pulled its content into skb->head, fragment
6814 	 * was freed, but __pskb_pull_tail() could not possibly
6815 	 * adjust skb->truesize, not knowing the frag truesize.
6816 	 */
6817 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6818 }
6819 EXPORT_SYMBOL(skb_condense);
6820 
6821 #ifdef CONFIG_SKB_EXTENSIONS
6822 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6823 {
6824 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6825 }
6826 
6827 /**
6828  * __skb_ext_alloc - allocate a new skb extensions storage
6829  *
6830  * @flags: See kmalloc().
6831  *
6832  * Returns the newly allocated pointer. The pointer can later attached to a
6833  * skb via __skb_ext_set().
6834  * Note: caller must handle the skb_ext as an opaque data.
6835  */
6836 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6837 {
6838 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6839 
6840 	if (new) {
6841 		memset(new->offset, 0, sizeof(new->offset));
6842 		refcount_set(&new->refcnt, 1);
6843 	}
6844 
6845 	return new;
6846 }
6847 
6848 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6849 					 unsigned int old_active)
6850 {
6851 	struct skb_ext *new;
6852 
6853 	if (refcount_read(&old->refcnt) == 1)
6854 		return old;
6855 
6856 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6857 	if (!new)
6858 		return NULL;
6859 
6860 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6861 	refcount_set(&new->refcnt, 1);
6862 
6863 #ifdef CONFIG_XFRM
6864 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6865 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6866 		unsigned int i;
6867 
6868 		for (i = 0; i < sp->len; i++)
6869 			xfrm_state_hold(sp->xvec[i]);
6870 	}
6871 #endif
6872 #ifdef CONFIG_MCTP_FLOWS
6873 	if (old_active & (1 << SKB_EXT_MCTP)) {
6874 		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6875 
6876 		if (flow->key)
6877 			refcount_inc(&flow->key->refs);
6878 	}
6879 #endif
6880 	__skb_ext_put(old);
6881 	return new;
6882 }
6883 
6884 /**
6885  * __skb_ext_set - attach the specified extension storage to this skb
6886  * @skb: buffer
6887  * @id: extension id
6888  * @ext: extension storage previously allocated via __skb_ext_alloc()
6889  *
6890  * Existing extensions, if any, are cleared.
6891  *
6892  * Returns the pointer to the extension.
6893  */
6894 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6895 		    struct skb_ext *ext)
6896 {
6897 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6898 
6899 	skb_ext_put(skb);
6900 	newlen = newoff + skb_ext_type_len[id];
6901 	ext->chunks = newlen;
6902 	ext->offset[id] = newoff;
6903 	skb->extensions = ext;
6904 	skb->active_extensions = 1 << id;
6905 	return skb_ext_get_ptr(ext, id);
6906 }
6907 
6908 /**
6909  * skb_ext_add - allocate space for given extension, COW if needed
6910  * @skb: buffer
6911  * @id: extension to allocate space for
6912  *
6913  * Allocates enough space for the given extension.
6914  * If the extension is already present, a pointer to that extension
6915  * is returned.
6916  *
6917  * If the skb was cloned, COW applies and the returned memory can be
6918  * modified without changing the extension space of clones buffers.
6919  *
6920  * Returns pointer to the extension or NULL on allocation failure.
6921  */
6922 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6923 {
6924 	struct skb_ext *new, *old = NULL;
6925 	unsigned int newlen, newoff;
6926 
6927 	if (skb->active_extensions) {
6928 		old = skb->extensions;
6929 
6930 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6931 		if (!new)
6932 			return NULL;
6933 
6934 		if (__skb_ext_exist(new, id))
6935 			goto set_active;
6936 
6937 		newoff = new->chunks;
6938 	} else {
6939 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6940 
6941 		new = __skb_ext_alloc(GFP_ATOMIC);
6942 		if (!new)
6943 			return NULL;
6944 	}
6945 
6946 	newlen = newoff + skb_ext_type_len[id];
6947 	new->chunks = newlen;
6948 	new->offset[id] = newoff;
6949 set_active:
6950 	skb->slow_gro = 1;
6951 	skb->extensions = new;
6952 	skb->active_extensions |= 1 << id;
6953 	return skb_ext_get_ptr(new, id);
6954 }
6955 EXPORT_SYMBOL(skb_ext_add);
6956 
6957 #ifdef CONFIG_XFRM
6958 static void skb_ext_put_sp(struct sec_path *sp)
6959 {
6960 	unsigned int i;
6961 
6962 	for (i = 0; i < sp->len; i++)
6963 		xfrm_state_put(sp->xvec[i]);
6964 }
6965 #endif
6966 
6967 #ifdef CONFIG_MCTP_FLOWS
6968 static void skb_ext_put_mctp(struct mctp_flow *flow)
6969 {
6970 	if (flow->key)
6971 		mctp_key_unref(flow->key);
6972 }
6973 #endif
6974 
6975 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6976 {
6977 	struct skb_ext *ext = skb->extensions;
6978 
6979 	skb->active_extensions &= ~(1 << id);
6980 	if (skb->active_extensions == 0) {
6981 		skb->extensions = NULL;
6982 		__skb_ext_put(ext);
6983 #ifdef CONFIG_XFRM
6984 	} else if (id == SKB_EXT_SEC_PATH &&
6985 		   refcount_read(&ext->refcnt) == 1) {
6986 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6987 
6988 		skb_ext_put_sp(sp);
6989 		sp->len = 0;
6990 #endif
6991 	}
6992 }
6993 EXPORT_SYMBOL(__skb_ext_del);
6994 
6995 void __skb_ext_put(struct skb_ext *ext)
6996 {
6997 	/* If this is last clone, nothing can increment
6998 	 * it after check passes.  Avoids one atomic op.
6999 	 */
7000 	if (refcount_read(&ext->refcnt) == 1)
7001 		goto free_now;
7002 
7003 	if (!refcount_dec_and_test(&ext->refcnt))
7004 		return;
7005 free_now:
7006 #ifdef CONFIG_XFRM
7007 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
7008 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
7009 #endif
7010 #ifdef CONFIG_MCTP_FLOWS
7011 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
7012 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
7013 #endif
7014 
7015 	kmem_cache_free(skbuff_ext_cache, ext);
7016 }
7017 EXPORT_SYMBOL(__skb_ext_put);
7018 #endif /* CONFIG_SKB_EXTENSIONS */
7019 
7020 static void kfree_skb_napi_cache(struct sk_buff *skb)
7021 {
7022 	/* if SKB is a clone, don't handle this case */
7023 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
7024 		__kfree_skb(skb);
7025 		return;
7026 	}
7027 
7028 	local_bh_disable();
7029 	__napi_kfree_skb(skb, SKB_CONSUMED);
7030 	local_bh_enable();
7031 }
7032 
7033 /**
7034  * skb_attempt_defer_free - queue skb for remote freeing
7035  * @skb: buffer
7036  *
7037  * Put @skb in a per-cpu list, using the cpu which
7038  * allocated the skb/pages to reduce false sharing
7039  * and memory zone spinlock contention.
7040  */
7041 void skb_attempt_defer_free(struct sk_buff *skb)
7042 {
7043 	int cpu = skb->alloc_cpu;
7044 	struct softnet_data *sd;
7045 	unsigned int defer_max;
7046 	bool kick;
7047 
7048 	if (cpu == raw_smp_processor_id() ||
7049 	    WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7050 	    !cpu_online(cpu)) {
7051 nodefer:	kfree_skb_napi_cache(skb);
7052 		return;
7053 	}
7054 
7055 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7056 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7057 
7058 	sd = &per_cpu(softnet_data, cpu);
7059 	defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max);
7060 	if (READ_ONCE(sd->defer_count) >= defer_max)
7061 		goto nodefer;
7062 
7063 	spin_lock_bh(&sd->defer_lock);
7064 	/* Send an IPI every time queue reaches half capacity. */
7065 	kick = sd->defer_count == (defer_max >> 1);
7066 	/* Paired with the READ_ONCE() few lines above */
7067 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7068 
7069 	skb->next = sd->defer_list;
7070 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
7071 	WRITE_ONCE(sd->defer_list, skb);
7072 	spin_unlock_bh(&sd->defer_lock);
7073 
7074 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7075 	 * if we are unlucky enough (this seems very unlikely).
7076 	 */
7077 	if (unlikely(kick))
7078 		kick_defer_list_purge(sd, cpu);
7079 }
7080 
7081 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7082 				 size_t offset, size_t len)
7083 {
7084 	const char *kaddr;
7085 	__wsum csum;
7086 
7087 	kaddr = kmap_local_page(page);
7088 	csum = csum_partial(kaddr + offset, len, 0);
7089 	kunmap_local(kaddr);
7090 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7091 }
7092 
7093 /**
7094  * skb_splice_from_iter - Splice (or copy) pages to skbuff
7095  * @skb: The buffer to add pages to
7096  * @iter: Iterator representing the pages to be added
7097  * @maxsize: Maximum amount of pages to be added
7098  * @gfp: Allocation flags
7099  *
7100  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7101  * extracts pages from an iterator and adds them to the socket buffer if
7102  * possible, copying them to fragments if not possible (such as if they're slab
7103  * pages).
7104  *
7105  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7106  * insufficient space in the buffer to transfer anything.
7107  */
7108 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7109 			     ssize_t maxsize, gfp_t gfp)
7110 {
7111 	size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags);
7112 	struct page *pages[8], **ppages = pages;
7113 	ssize_t spliced = 0, ret = 0;
7114 	unsigned int i;
7115 
7116 	while (iter->count > 0) {
7117 		ssize_t space, nr, len;
7118 		size_t off;
7119 
7120 		ret = -EMSGSIZE;
7121 		space = frag_limit - skb_shinfo(skb)->nr_frags;
7122 		if (space < 0)
7123 			break;
7124 
7125 		/* We might be able to coalesce without increasing nr_frags */
7126 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7127 
7128 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7129 		if (len <= 0) {
7130 			ret = len ?: -EIO;
7131 			break;
7132 		}
7133 
7134 		i = 0;
7135 		do {
7136 			struct page *page = pages[i++];
7137 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7138 
7139 			ret = -EIO;
7140 			if (WARN_ON_ONCE(!sendpage_ok(page)))
7141 				goto out;
7142 
7143 			ret = skb_append_pagefrags(skb, page, off, part,
7144 						   frag_limit);
7145 			if (ret < 0) {
7146 				iov_iter_revert(iter, len);
7147 				goto out;
7148 			}
7149 
7150 			if (skb->ip_summed == CHECKSUM_NONE)
7151 				skb_splice_csum_page(skb, page, off, part);
7152 
7153 			off = 0;
7154 			spliced += part;
7155 			maxsize -= part;
7156 			len -= part;
7157 		} while (len > 0);
7158 
7159 		if (maxsize <= 0)
7160 			break;
7161 	}
7162 
7163 out:
7164 	skb_len_add(skb, spliced);
7165 	return spliced ?: ret;
7166 }
7167 EXPORT_SYMBOL(skb_splice_from_iter);
7168 
7169 static __always_inline
7170 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7171 			     size_t len, void *to, void *priv2)
7172 {
7173 	__wsum *csum = priv2;
7174 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7175 
7176 	*csum = csum_block_add(*csum, next, progress);
7177 	return 0;
7178 }
7179 
7180 static __always_inline
7181 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7182 				size_t len, void *to, void *priv2)
7183 {
7184 	__wsum next, *csum = priv2;
7185 
7186 	next = csum_and_copy_from_user(iter_from, to + progress, len);
7187 	*csum = csum_block_add(*csum, next, progress);
7188 	return next ? 0 : len;
7189 }
7190 
7191 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7192 				  __wsum *csum, struct iov_iter *i)
7193 {
7194 	size_t copied;
7195 
7196 	if (WARN_ON_ONCE(!i->data_source))
7197 		return false;
7198 	copied = iterate_and_advance2(i, bytes, addr, csum,
7199 				      copy_from_user_iter_csum,
7200 				      memcpy_from_iter_csum);
7201 	if (likely(copied == bytes))
7202 		return true;
7203 	iov_iter_revert(i, copied);
7204 	return false;
7205 }
7206 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7207