xref: /linux/net/core/skbuff.c (revision 6bab77ced3ffbce3d6c5b5bcce17da7c8a3f8266)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/skbuff_ref.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
60 #include <linux/errqueue.h>
61 #include <linux/prefetch.h>
62 #include <linux/bitfield.h>
63 #include <linux/if_vlan.h>
64 #include <linux/mpls.h>
65 #include <linux/kcov.h>
66 #include <linux/iov_iter.h>
67 
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/gro.h>
73 #include <net/gso.h>
74 #include <net/hotdata.h>
75 #include <net/ip6_checksum.h>
76 #include <net/xfrm.h>
77 #include <net/mpls.h>
78 #include <net/mptcp.h>
79 #include <net/mctp.h>
80 #include <net/page_pool/helpers.h>
81 #include <net/dropreason.h>
82 
83 #include <linux/uaccess.h>
84 #include <trace/events/skb.h>
85 #include <linux/highmem.h>
86 #include <linux/capability.h>
87 #include <linux/user_namespace.h>
88 #include <linux/indirect_call_wrapper.h>
89 #include <linux/textsearch.h>
90 
91 #include "dev.h"
92 #include "devmem.h"
93 #include "netmem_priv.h"
94 #include "sock_destructor.h"
95 
96 #ifdef CONFIG_SKB_EXTENSIONS
97 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
98 #endif
99 
100 #define GRO_MAX_HEAD_PAD (GRO_MAX_HEAD + NET_SKB_PAD + NET_IP_ALIGN)
101 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(max(MAX_TCP_HEADER, \
102 					       GRO_MAX_HEAD_PAD))
103 
104 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
105  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
106  * size, and we can differentiate heads from skb_small_head_cache
107  * vs system slabs by looking at their size (skb_end_offset()).
108  */
109 #define SKB_SMALL_HEAD_CACHE_SIZE					\
110 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
111 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
112 		SKB_SMALL_HEAD_SIZE)
113 
114 #define SKB_SMALL_HEAD_HEADROOM						\
115 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
116 
117 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
118  * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
119  * netmem is a page.
120  */
121 static_assert(offsetof(struct bio_vec, bv_page) ==
122 	      offsetof(skb_frag_t, netmem));
123 static_assert(sizeof_field(struct bio_vec, bv_page) ==
124 	      sizeof_field(skb_frag_t, netmem));
125 
126 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
127 static_assert(sizeof_field(struct bio_vec, bv_len) ==
128 	      sizeof_field(skb_frag_t, len));
129 
130 static_assert(offsetof(struct bio_vec, bv_offset) ==
131 	      offsetof(skb_frag_t, offset));
132 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
133 	      sizeof_field(skb_frag_t, offset));
134 
135 #undef FN
136 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
137 static const char * const drop_reasons[] = {
138 	[SKB_CONSUMED] = "CONSUMED",
139 	DEFINE_DROP_REASON(FN, FN)
140 };
141 
142 static const struct drop_reason_list drop_reasons_core = {
143 	.reasons = drop_reasons,
144 	.n_reasons = ARRAY_SIZE(drop_reasons),
145 };
146 
147 const struct drop_reason_list __rcu *
148 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
149 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
150 };
151 EXPORT_SYMBOL(drop_reasons_by_subsys);
152 
153 /**
154  * drop_reasons_register_subsys - register another drop reason subsystem
155  * @subsys: the subsystem to register, must not be the core
156  * @list: the list of drop reasons within the subsystem, must point to
157  *	a statically initialized list
158  */
159 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
160 				  const struct drop_reason_list *list)
161 {
162 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
163 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
164 		 "invalid subsystem %d\n", subsys))
165 		return;
166 
167 	/* must point to statically allocated memory, so INIT is OK */
168 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
169 }
170 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
171 
172 /**
173  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
174  * @subsys: the subsystem to remove, must not be the core
175  *
176  * Note: This will synchronize_rcu() to ensure no users when it returns.
177  */
178 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
179 {
180 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
181 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
182 		 "invalid subsystem %d\n", subsys))
183 		return;
184 
185 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
186 
187 	synchronize_rcu();
188 }
189 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
190 
191 /**
192  *	skb_panic - private function for out-of-line support
193  *	@skb:	buffer
194  *	@sz:	size
195  *	@addr:	address
196  *	@msg:	skb_over_panic or skb_under_panic
197  *
198  *	Out-of-line support for skb_put() and skb_push().
199  *	Called via the wrapper skb_over_panic() or skb_under_panic().
200  *	Keep out of line to prevent kernel bloat.
201  *	__builtin_return_address is not used because it is not always reliable.
202  */
203 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
204 		      const char msg[])
205 {
206 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
207 		 msg, addr, skb->len, sz, skb->head, skb->data,
208 		 (unsigned long)skb->tail, (unsigned long)skb->end,
209 		 skb->dev ? skb->dev->name : "<NULL>");
210 	BUG();
211 }
212 
213 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
214 {
215 	skb_panic(skb, sz, addr, __func__);
216 }
217 
218 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
219 {
220 	skb_panic(skb, sz, addr, __func__);
221 }
222 
223 #define NAPI_SKB_CACHE_SIZE	64
224 #define NAPI_SKB_CACHE_BULK	16
225 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
226 
227 struct napi_alloc_cache {
228 	local_lock_t bh_lock;
229 	struct page_frag_cache page;
230 	unsigned int skb_count;
231 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
232 };
233 
234 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
235 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = {
236 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
237 };
238 
239 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
240 {
241 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
242 	void *data;
243 
244 	fragsz = SKB_DATA_ALIGN(fragsz);
245 
246 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
247 	data = __page_frag_alloc_align(&nc->page, fragsz,
248 				       GFP_ATOMIC | __GFP_NOWARN, align_mask);
249 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
250 	return data;
251 
252 }
253 EXPORT_SYMBOL(__napi_alloc_frag_align);
254 
255 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
256 {
257 	void *data;
258 
259 	if (in_hardirq() || irqs_disabled()) {
260 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
261 
262 		fragsz = SKB_DATA_ALIGN(fragsz);
263 		data = __page_frag_alloc_align(nc, fragsz,
264 					       GFP_ATOMIC | __GFP_NOWARN,
265 					       align_mask);
266 	} else {
267 		local_bh_disable();
268 		data = __napi_alloc_frag_align(fragsz, align_mask);
269 		local_bh_enable();
270 	}
271 	return data;
272 }
273 EXPORT_SYMBOL(__netdev_alloc_frag_align);
274 
275 static struct sk_buff *napi_skb_cache_get(void)
276 {
277 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
278 	struct sk_buff *skb;
279 
280 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
281 	if (unlikely(!nc->skb_count)) {
282 		nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
283 						      GFP_ATOMIC | __GFP_NOWARN,
284 						      NAPI_SKB_CACHE_BULK,
285 						      nc->skb_cache);
286 		if (unlikely(!nc->skb_count)) {
287 			local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
288 			return NULL;
289 		}
290 	}
291 
292 	skb = nc->skb_cache[--nc->skb_count];
293 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
294 	kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
295 
296 	return skb;
297 }
298 
299 /**
300  * napi_skb_cache_get_bulk - obtain a number of zeroed skb heads from the cache
301  * @skbs: pointer to an at least @n-sized array to fill with skb pointers
302  * @n: number of entries to provide
303  *
304  * Tries to obtain @n &sk_buff entries from the NAPI percpu cache and writes
305  * the pointers into the provided array @skbs. If there are less entries
306  * available, tries to replenish the cache and bulk-allocates the diff from
307  * the MM layer if needed.
308  * The heads are being zeroed with either memset() or %__GFP_ZERO, so they are
309  * ready for {,__}build_skb_around() and don't have any data buffers attached.
310  * Must be called *only* from the BH context.
311  *
312  * Return: number of successfully allocated skbs (@n if no actual allocation
313  *	   needed or kmem_cache_alloc_bulk() didn't fail).
314  */
315 u32 napi_skb_cache_get_bulk(void **skbs, u32 n)
316 {
317 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
318 	u32 bulk, total = n;
319 
320 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
321 
322 	if (nc->skb_count >= n)
323 		goto get;
324 
325 	/* No enough cached skbs. Try refilling the cache first */
326 	bulk = min(NAPI_SKB_CACHE_SIZE - nc->skb_count, NAPI_SKB_CACHE_BULK);
327 	nc->skb_count += kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
328 					       GFP_ATOMIC | __GFP_NOWARN, bulk,
329 					       &nc->skb_cache[nc->skb_count]);
330 	if (likely(nc->skb_count >= n))
331 		goto get;
332 
333 	/* Still not enough. Bulk-allocate the missing part directly, zeroed */
334 	n -= kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
335 				   GFP_ATOMIC | __GFP_ZERO | __GFP_NOWARN,
336 				   n - nc->skb_count, &skbs[nc->skb_count]);
337 	if (likely(nc->skb_count >= n))
338 		goto get;
339 
340 	/* kmem_cache didn't allocate the number we need, limit the output */
341 	total -= n - nc->skb_count;
342 	n = nc->skb_count;
343 
344 get:
345 	for (u32 base = nc->skb_count - n, i = 0; i < n; i++) {
346 		u32 cache_size = kmem_cache_size(net_hotdata.skbuff_cache);
347 
348 		skbs[i] = nc->skb_cache[base + i];
349 
350 		kasan_mempool_unpoison_object(skbs[i], cache_size);
351 		memset(skbs[i], 0, offsetof(struct sk_buff, tail));
352 	}
353 
354 	nc->skb_count -= n;
355 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
356 
357 	return total;
358 }
359 EXPORT_SYMBOL_GPL(napi_skb_cache_get_bulk);
360 
361 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
362 					 unsigned int size)
363 {
364 	struct skb_shared_info *shinfo;
365 
366 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
367 
368 	/* Assumes caller memset cleared SKB */
369 	skb->truesize = SKB_TRUESIZE(size);
370 	refcount_set(&skb->users, 1);
371 	skb->head = data;
372 	skb->data = data;
373 	skb_reset_tail_pointer(skb);
374 	skb_set_end_offset(skb, size);
375 	skb->mac_header = (typeof(skb->mac_header))~0U;
376 	skb->transport_header = (typeof(skb->transport_header))~0U;
377 	skb->alloc_cpu = raw_smp_processor_id();
378 	/* make sure we initialize shinfo sequentially */
379 	shinfo = skb_shinfo(skb);
380 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
381 	atomic_set(&shinfo->dataref, 1);
382 
383 	skb_set_kcov_handle(skb, kcov_common_handle());
384 }
385 
386 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
387 				     unsigned int *size)
388 {
389 	void *resized;
390 
391 	/* Must find the allocation size (and grow it to match). */
392 	*size = ksize(data);
393 	/* krealloc() will immediately return "data" when
394 	 * "ksize(data)" is requested: it is the existing upper
395 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
396 	 * that this "new" pointer needs to be passed back to the
397 	 * caller for use so the __alloc_size hinting will be
398 	 * tracked correctly.
399 	 */
400 	resized = krealloc(data, *size, GFP_ATOMIC);
401 	WARN_ON_ONCE(resized != data);
402 	return resized;
403 }
404 
405 /* build_skb() variant which can operate on slab buffers.
406  * Note that this should be used sparingly as slab buffers
407  * cannot be combined efficiently by GRO!
408  */
409 struct sk_buff *slab_build_skb(void *data)
410 {
411 	struct sk_buff *skb;
412 	unsigned int size;
413 
414 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
415 			       GFP_ATOMIC | __GFP_NOWARN);
416 	if (unlikely(!skb))
417 		return NULL;
418 
419 	memset(skb, 0, offsetof(struct sk_buff, tail));
420 	data = __slab_build_skb(skb, data, &size);
421 	__finalize_skb_around(skb, data, size);
422 
423 	return skb;
424 }
425 EXPORT_SYMBOL(slab_build_skb);
426 
427 /* Caller must provide SKB that is memset cleared */
428 static void __build_skb_around(struct sk_buff *skb, void *data,
429 			       unsigned int frag_size)
430 {
431 	unsigned int size = frag_size;
432 
433 	/* frag_size == 0 is considered deprecated now. Callers
434 	 * using slab buffer should use slab_build_skb() instead.
435 	 */
436 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
437 		data = __slab_build_skb(skb, data, &size);
438 
439 	__finalize_skb_around(skb, data, size);
440 }
441 
442 /**
443  * __build_skb - build a network buffer
444  * @data: data buffer provided by caller
445  * @frag_size: size of data (must not be 0)
446  *
447  * Allocate a new &sk_buff. Caller provides space holding head and
448  * skb_shared_info. @data must have been allocated from the page
449  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
450  * allocation is deprecated, and callers should use slab_build_skb()
451  * instead.)
452  * The return is the new skb buffer.
453  * On a failure the return is %NULL, and @data is not freed.
454  * Notes :
455  *  Before IO, driver allocates only data buffer where NIC put incoming frame
456  *  Driver should add room at head (NET_SKB_PAD) and
457  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
458  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
459  *  before giving packet to stack.
460  *  RX rings only contains data buffers, not full skbs.
461  */
462 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
463 {
464 	struct sk_buff *skb;
465 
466 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
467 			       GFP_ATOMIC | __GFP_NOWARN);
468 	if (unlikely(!skb))
469 		return NULL;
470 
471 	memset(skb, 0, offsetof(struct sk_buff, tail));
472 	__build_skb_around(skb, data, frag_size);
473 
474 	return skb;
475 }
476 
477 /* build_skb() is wrapper over __build_skb(), that specifically
478  * takes care of skb->head and skb->pfmemalloc
479  */
480 struct sk_buff *build_skb(void *data, unsigned int frag_size)
481 {
482 	struct sk_buff *skb = __build_skb(data, frag_size);
483 
484 	if (likely(skb && frag_size)) {
485 		skb->head_frag = 1;
486 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
487 	}
488 	return skb;
489 }
490 EXPORT_SYMBOL(build_skb);
491 
492 /**
493  * build_skb_around - build a network buffer around provided skb
494  * @skb: sk_buff provide by caller, must be memset cleared
495  * @data: data buffer provided by caller
496  * @frag_size: size of data
497  */
498 struct sk_buff *build_skb_around(struct sk_buff *skb,
499 				 void *data, unsigned int frag_size)
500 {
501 	if (unlikely(!skb))
502 		return NULL;
503 
504 	__build_skb_around(skb, data, frag_size);
505 
506 	if (frag_size) {
507 		skb->head_frag = 1;
508 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
509 	}
510 	return skb;
511 }
512 EXPORT_SYMBOL(build_skb_around);
513 
514 /**
515  * __napi_build_skb - build a network buffer
516  * @data: data buffer provided by caller
517  * @frag_size: size of data
518  *
519  * Version of __build_skb() that uses NAPI percpu caches to obtain
520  * skbuff_head instead of inplace allocation.
521  *
522  * Returns a new &sk_buff on success, %NULL on allocation failure.
523  */
524 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
525 {
526 	struct sk_buff *skb;
527 
528 	skb = napi_skb_cache_get();
529 	if (unlikely(!skb))
530 		return NULL;
531 
532 	memset(skb, 0, offsetof(struct sk_buff, tail));
533 	__build_skb_around(skb, data, frag_size);
534 
535 	return skb;
536 }
537 
538 /**
539  * napi_build_skb - build a network buffer
540  * @data: data buffer provided by caller
541  * @frag_size: size of data
542  *
543  * Version of __napi_build_skb() that takes care of skb->head_frag
544  * and skb->pfmemalloc when the data is a page or page fragment.
545  *
546  * Returns a new &sk_buff on success, %NULL on allocation failure.
547  */
548 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
549 {
550 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
551 
552 	if (likely(skb) && frag_size) {
553 		skb->head_frag = 1;
554 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
555 	}
556 
557 	return skb;
558 }
559 EXPORT_SYMBOL(napi_build_skb);
560 
561 /*
562  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
563  * the caller if emergency pfmemalloc reserves are being used. If it is and
564  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
565  * may be used. Otherwise, the packet data may be discarded until enough
566  * memory is free
567  */
568 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
569 			     bool *pfmemalloc)
570 {
571 	bool ret_pfmemalloc = false;
572 	size_t obj_size;
573 	void *obj;
574 
575 	obj_size = SKB_HEAD_ALIGN(*size);
576 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
577 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
578 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
579 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
580 				node);
581 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
582 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
583 			goto out;
584 		/* Try again but now we are using pfmemalloc reserves */
585 		ret_pfmemalloc = true;
586 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
587 		goto out;
588 	}
589 
590 	obj_size = kmalloc_size_roundup(obj_size);
591 	/* The following cast might truncate high-order bits of obj_size, this
592 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
593 	 */
594 	*size = (unsigned int)obj_size;
595 
596 	/*
597 	 * Try a regular allocation, when that fails and we're not entitled
598 	 * to the reserves, fail.
599 	 */
600 	obj = kmalloc_node_track_caller(obj_size,
601 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
602 					node);
603 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
604 		goto out;
605 
606 	/* Try again but now we are using pfmemalloc reserves */
607 	ret_pfmemalloc = true;
608 	obj = kmalloc_node_track_caller(obj_size, flags, node);
609 
610 out:
611 	if (pfmemalloc)
612 		*pfmemalloc = ret_pfmemalloc;
613 
614 	return obj;
615 }
616 
617 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
618  *	'private' fields and also do memory statistics to find all the
619  *	[BEEP] leaks.
620  *
621  */
622 
623 /**
624  *	__alloc_skb	-	allocate a network buffer
625  *	@size: size to allocate
626  *	@gfp_mask: allocation mask
627  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
628  *		instead of head cache and allocate a cloned (child) skb.
629  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
630  *		allocations in case the data is required for writeback
631  *	@node: numa node to allocate memory on
632  *
633  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
634  *	tail room of at least size bytes. The object has a reference count
635  *	of one. The return is the buffer. On a failure the return is %NULL.
636  *
637  *	Buffers may only be allocated from interrupts using a @gfp_mask of
638  *	%GFP_ATOMIC.
639  */
640 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
641 			    int flags, int node)
642 {
643 	struct kmem_cache *cache;
644 	struct sk_buff *skb;
645 	bool pfmemalloc;
646 	u8 *data;
647 
648 	cache = (flags & SKB_ALLOC_FCLONE)
649 		? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
650 
651 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
652 		gfp_mask |= __GFP_MEMALLOC;
653 
654 	/* Get the HEAD */
655 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
656 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
657 		skb = napi_skb_cache_get();
658 	else
659 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
660 	if (unlikely(!skb))
661 		return NULL;
662 	prefetchw(skb);
663 
664 	/* We do our best to align skb_shared_info on a separate cache
665 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
666 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
667 	 * Both skb->head and skb_shared_info are cache line aligned.
668 	 */
669 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
670 	if (unlikely(!data))
671 		goto nodata;
672 	/* kmalloc_size_roundup() might give us more room than requested.
673 	 * Put skb_shared_info exactly at the end of allocated zone,
674 	 * to allow max possible filling before reallocation.
675 	 */
676 	prefetchw(data + SKB_WITH_OVERHEAD(size));
677 
678 	/*
679 	 * Only clear those fields we need to clear, not those that we will
680 	 * actually initialise below. Hence, don't put any more fields after
681 	 * the tail pointer in struct sk_buff!
682 	 */
683 	memset(skb, 0, offsetof(struct sk_buff, tail));
684 	__build_skb_around(skb, data, size);
685 	skb->pfmemalloc = pfmemalloc;
686 
687 	if (flags & SKB_ALLOC_FCLONE) {
688 		struct sk_buff_fclones *fclones;
689 
690 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
691 
692 		skb->fclone = SKB_FCLONE_ORIG;
693 		refcount_set(&fclones->fclone_ref, 1);
694 	}
695 
696 	return skb;
697 
698 nodata:
699 	kmem_cache_free(cache, skb);
700 	return NULL;
701 }
702 EXPORT_SYMBOL(__alloc_skb);
703 
704 /**
705  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
706  *	@dev: network device to receive on
707  *	@len: length to allocate
708  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
709  *
710  *	Allocate a new &sk_buff and assign it a usage count of one. The
711  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
712  *	the headroom they think they need without accounting for the
713  *	built in space. The built in space is used for optimisations.
714  *
715  *	%NULL is returned if there is no free memory.
716  */
717 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
718 				   gfp_t gfp_mask)
719 {
720 	struct page_frag_cache *nc;
721 	struct sk_buff *skb;
722 	bool pfmemalloc;
723 	void *data;
724 
725 	len += NET_SKB_PAD;
726 
727 	/* If requested length is either too small or too big,
728 	 * we use kmalloc() for skb->head allocation.
729 	 */
730 	if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
731 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
732 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
733 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
734 		if (!skb)
735 			goto skb_fail;
736 		goto skb_success;
737 	}
738 
739 	len = SKB_HEAD_ALIGN(len);
740 
741 	if (sk_memalloc_socks())
742 		gfp_mask |= __GFP_MEMALLOC;
743 
744 	if (in_hardirq() || irqs_disabled()) {
745 		nc = this_cpu_ptr(&netdev_alloc_cache);
746 		data = page_frag_alloc(nc, len, gfp_mask);
747 		pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
748 	} else {
749 		local_bh_disable();
750 		local_lock_nested_bh(&napi_alloc_cache.bh_lock);
751 
752 		nc = this_cpu_ptr(&napi_alloc_cache.page);
753 		data = page_frag_alloc(nc, len, gfp_mask);
754 		pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
755 
756 		local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
757 		local_bh_enable();
758 	}
759 
760 	if (unlikely(!data))
761 		return NULL;
762 
763 	skb = __build_skb(data, len);
764 	if (unlikely(!skb)) {
765 		skb_free_frag(data);
766 		return NULL;
767 	}
768 
769 	if (pfmemalloc)
770 		skb->pfmemalloc = 1;
771 	skb->head_frag = 1;
772 
773 skb_success:
774 	skb_reserve(skb, NET_SKB_PAD);
775 	skb->dev = dev;
776 
777 skb_fail:
778 	return skb;
779 }
780 EXPORT_SYMBOL(__netdev_alloc_skb);
781 
782 /**
783  *	napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
784  *	@napi: napi instance this buffer was allocated for
785  *	@len: length to allocate
786  *
787  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
788  *	attempt to allocate the head from a special reserved region used
789  *	only for NAPI Rx allocation.  By doing this we can save several
790  *	CPU cycles by avoiding having to disable and re-enable IRQs.
791  *
792  *	%NULL is returned if there is no free memory.
793  */
794 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
795 {
796 	gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
797 	struct napi_alloc_cache *nc;
798 	struct sk_buff *skb;
799 	bool pfmemalloc;
800 	void *data;
801 
802 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
803 	len += NET_SKB_PAD + NET_IP_ALIGN;
804 
805 	/* If requested length is either too small or too big,
806 	 * we use kmalloc() for skb->head allocation.
807 	 */
808 	if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
809 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
810 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
811 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
812 				  NUMA_NO_NODE);
813 		if (!skb)
814 			goto skb_fail;
815 		goto skb_success;
816 	}
817 
818 	len = SKB_HEAD_ALIGN(len);
819 
820 	if (sk_memalloc_socks())
821 		gfp_mask |= __GFP_MEMALLOC;
822 
823 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
824 	nc = this_cpu_ptr(&napi_alloc_cache);
825 
826 	data = page_frag_alloc(&nc->page, len, gfp_mask);
827 	pfmemalloc = page_frag_cache_is_pfmemalloc(&nc->page);
828 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
829 
830 	if (unlikely(!data))
831 		return NULL;
832 
833 	skb = __napi_build_skb(data, len);
834 	if (unlikely(!skb)) {
835 		skb_free_frag(data);
836 		return NULL;
837 	}
838 
839 	if (pfmemalloc)
840 		skb->pfmemalloc = 1;
841 	skb->head_frag = 1;
842 
843 skb_success:
844 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
845 	skb->dev = napi->dev;
846 
847 skb_fail:
848 	return skb;
849 }
850 EXPORT_SYMBOL(napi_alloc_skb);
851 
852 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
853 			    int off, int size, unsigned int truesize)
854 {
855 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
856 
857 	skb_fill_netmem_desc(skb, i, netmem, off, size);
858 	skb->len += size;
859 	skb->data_len += size;
860 	skb->truesize += truesize;
861 }
862 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
863 
864 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
865 			  unsigned int truesize)
866 {
867 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
868 
869 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
870 
871 	skb_frag_size_add(frag, size);
872 	skb->len += size;
873 	skb->data_len += size;
874 	skb->truesize += truesize;
875 }
876 EXPORT_SYMBOL(skb_coalesce_rx_frag);
877 
878 static void skb_drop_list(struct sk_buff **listp)
879 {
880 	kfree_skb_list(*listp);
881 	*listp = NULL;
882 }
883 
884 static inline void skb_drop_fraglist(struct sk_buff *skb)
885 {
886 	skb_drop_list(&skb_shinfo(skb)->frag_list);
887 }
888 
889 static void skb_clone_fraglist(struct sk_buff *skb)
890 {
891 	struct sk_buff *list;
892 
893 	skb_walk_frags(skb, list)
894 		skb_get(list);
895 }
896 
897 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
898 		    unsigned int headroom)
899 {
900 #if IS_ENABLED(CONFIG_PAGE_POOL)
901 	u32 size, truesize, len, max_head_size, off;
902 	struct sk_buff *skb = *pskb, *nskb;
903 	int err, i, head_off;
904 	void *data;
905 
906 	/* XDP does not support fraglist so we need to linearize
907 	 * the skb.
908 	 */
909 	if (skb_has_frag_list(skb))
910 		return -EOPNOTSUPP;
911 
912 	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
913 	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
914 		return -ENOMEM;
915 
916 	size = min_t(u32, skb->len, max_head_size);
917 	truesize = SKB_HEAD_ALIGN(size) + headroom;
918 	data = page_pool_dev_alloc_va(pool, &truesize);
919 	if (!data)
920 		return -ENOMEM;
921 
922 	nskb = napi_build_skb(data, truesize);
923 	if (!nskb) {
924 		page_pool_free_va(pool, data, true);
925 		return -ENOMEM;
926 	}
927 
928 	skb_reserve(nskb, headroom);
929 	skb_copy_header(nskb, skb);
930 	skb_mark_for_recycle(nskb);
931 
932 	err = skb_copy_bits(skb, 0, nskb->data, size);
933 	if (err) {
934 		consume_skb(nskb);
935 		return err;
936 	}
937 	skb_put(nskb, size);
938 
939 	head_off = skb_headroom(nskb) - skb_headroom(skb);
940 	skb_headers_offset_update(nskb, head_off);
941 
942 	off = size;
943 	len = skb->len - off;
944 	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
945 		struct page *page;
946 		u32 page_off;
947 
948 		size = min_t(u32, len, PAGE_SIZE);
949 		truesize = size;
950 
951 		page = page_pool_dev_alloc(pool, &page_off, &truesize);
952 		if (!page) {
953 			consume_skb(nskb);
954 			return -ENOMEM;
955 		}
956 
957 		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
958 		err = skb_copy_bits(skb, off, page_address(page) + page_off,
959 				    size);
960 		if (err) {
961 			consume_skb(nskb);
962 			return err;
963 		}
964 
965 		len -= size;
966 		off += size;
967 	}
968 
969 	consume_skb(skb);
970 	*pskb = nskb;
971 
972 	return 0;
973 #else
974 	return -EOPNOTSUPP;
975 #endif
976 }
977 EXPORT_SYMBOL(skb_pp_cow_data);
978 
979 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
980 			 const struct bpf_prog *prog)
981 {
982 	if (!prog->aux->xdp_has_frags)
983 		return -EINVAL;
984 
985 	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
986 }
987 EXPORT_SYMBOL(skb_cow_data_for_xdp);
988 
989 #if IS_ENABLED(CONFIG_PAGE_POOL)
990 bool napi_pp_put_page(netmem_ref netmem)
991 {
992 	netmem = netmem_compound_head(netmem);
993 
994 	if (unlikely(!netmem_is_pp(netmem)))
995 		return false;
996 
997 	page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false);
998 
999 	return true;
1000 }
1001 EXPORT_SYMBOL(napi_pp_put_page);
1002 #endif
1003 
1004 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
1005 {
1006 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1007 		return false;
1008 	return napi_pp_put_page(page_to_netmem(virt_to_page(data)));
1009 }
1010 
1011 /**
1012  * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1013  * @skb:	page pool aware skb
1014  *
1015  * Increase the fragment reference count (pp_ref_count) of a skb. This is
1016  * intended to gain fragment references only for page pool aware skbs,
1017  * i.e. when skb->pp_recycle is true, and not for fragments in a
1018  * non-pp-recycling skb. It has a fallback to increase references on normal
1019  * pages, as page pool aware skbs may also have normal page fragments.
1020  */
1021 static int skb_pp_frag_ref(struct sk_buff *skb)
1022 {
1023 	struct skb_shared_info *shinfo;
1024 	netmem_ref head_netmem;
1025 	int i;
1026 
1027 	if (!skb->pp_recycle)
1028 		return -EINVAL;
1029 
1030 	shinfo = skb_shinfo(skb);
1031 
1032 	for (i = 0; i < shinfo->nr_frags; i++) {
1033 		head_netmem = netmem_compound_head(shinfo->frags[i].netmem);
1034 		if (likely(netmem_is_pp(head_netmem)))
1035 			page_pool_ref_netmem(head_netmem);
1036 		else
1037 			page_ref_inc(netmem_to_page(head_netmem));
1038 	}
1039 	return 0;
1040 }
1041 
1042 static void skb_kfree_head(void *head, unsigned int end_offset)
1043 {
1044 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1045 		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1046 	else
1047 		kfree(head);
1048 }
1049 
1050 static void skb_free_head(struct sk_buff *skb)
1051 {
1052 	unsigned char *head = skb->head;
1053 
1054 	if (skb->head_frag) {
1055 		if (skb_pp_recycle(skb, head))
1056 			return;
1057 		skb_free_frag(head);
1058 	} else {
1059 		skb_kfree_head(head, skb_end_offset(skb));
1060 	}
1061 }
1062 
1063 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1064 {
1065 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1066 	int i;
1067 
1068 	if (!skb_data_unref(skb, shinfo))
1069 		goto exit;
1070 
1071 	if (skb_zcopy(skb)) {
1072 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1073 
1074 		skb_zcopy_clear(skb, true);
1075 		if (skip_unref)
1076 			goto free_head;
1077 	}
1078 
1079 	for (i = 0; i < shinfo->nr_frags; i++)
1080 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1081 
1082 free_head:
1083 	if (shinfo->frag_list)
1084 		kfree_skb_list_reason(shinfo->frag_list, reason);
1085 
1086 	skb_free_head(skb);
1087 exit:
1088 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1089 	 * bit is only set on the head though, so in order to avoid races
1090 	 * while trying to recycle fragments on __skb_frag_unref() we need
1091 	 * to make one SKB responsible for triggering the recycle path.
1092 	 * So disable the recycling bit if an SKB is cloned and we have
1093 	 * additional references to the fragmented part of the SKB.
1094 	 * Eventually the last SKB will have the recycling bit set and it's
1095 	 * dataref set to 0, which will trigger the recycling
1096 	 */
1097 	skb->pp_recycle = 0;
1098 }
1099 
1100 /*
1101  *	Free an skbuff by memory without cleaning the state.
1102  */
1103 static void kfree_skbmem(struct sk_buff *skb)
1104 {
1105 	struct sk_buff_fclones *fclones;
1106 
1107 	switch (skb->fclone) {
1108 	case SKB_FCLONE_UNAVAILABLE:
1109 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1110 		return;
1111 
1112 	case SKB_FCLONE_ORIG:
1113 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1114 
1115 		/* We usually free the clone (TX completion) before original skb
1116 		 * This test would have no chance to be true for the clone,
1117 		 * while here, branch prediction will be good.
1118 		 */
1119 		if (refcount_read(&fclones->fclone_ref) == 1)
1120 			goto fastpath;
1121 		break;
1122 
1123 	default: /* SKB_FCLONE_CLONE */
1124 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1125 		break;
1126 	}
1127 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1128 		return;
1129 fastpath:
1130 	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1131 }
1132 
1133 void skb_release_head_state(struct sk_buff *skb)
1134 {
1135 	skb_dst_drop(skb);
1136 	if (skb->destructor) {
1137 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1138 		skb->destructor(skb);
1139 	}
1140 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1141 	nf_conntrack_put(skb_nfct(skb));
1142 #endif
1143 	skb_ext_put(skb);
1144 }
1145 
1146 /* Free everything but the sk_buff shell. */
1147 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1148 {
1149 	skb_release_head_state(skb);
1150 	if (likely(skb->head))
1151 		skb_release_data(skb, reason);
1152 }
1153 
1154 /**
1155  *	__kfree_skb - private function
1156  *	@skb: buffer
1157  *
1158  *	Free an sk_buff. Release anything attached to the buffer.
1159  *	Clean the state. This is an internal helper function. Users should
1160  *	always call kfree_skb
1161  */
1162 
1163 void __kfree_skb(struct sk_buff *skb)
1164 {
1165 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1166 	kfree_skbmem(skb);
1167 }
1168 EXPORT_SYMBOL(__kfree_skb);
1169 
1170 static __always_inline
1171 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1172 			  enum skb_drop_reason reason)
1173 {
1174 	if (unlikely(!skb_unref(skb)))
1175 		return false;
1176 
1177 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1178 			       u32_get_bits(reason,
1179 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1180 				SKB_DROP_REASON_SUBSYS_NUM);
1181 
1182 	if (reason == SKB_CONSUMED)
1183 		trace_consume_skb(skb, __builtin_return_address(0));
1184 	else
1185 		trace_kfree_skb(skb, __builtin_return_address(0), reason, sk);
1186 	return true;
1187 }
1188 
1189 /**
1190  *	sk_skb_reason_drop - free an sk_buff with special reason
1191  *	@sk: the socket to receive @skb, or NULL if not applicable
1192  *	@skb: buffer to free
1193  *	@reason: reason why this skb is dropped
1194  *
1195  *	Drop a reference to the buffer and free it if the usage count has hit
1196  *	zero. Meanwhile, pass the receiving socket and drop reason to
1197  *	'kfree_skb' tracepoint.
1198  */
1199 void __fix_address
1200 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
1201 {
1202 	if (__sk_skb_reason_drop(sk, skb, reason))
1203 		__kfree_skb(skb);
1204 }
1205 EXPORT_SYMBOL(sk_skb_reason_drop);
1206 
1207 #define KFREE_SKB_BULK_SIZE	16
1208 
1209 struct skb_free_array {
1210 	unsigned int skb_count;
1211 	void *skb_array[KFREE_SKB_BULK_SIZE];
1212 };
1213 
1214 static void kfree_skb_add_bulk(struct sk_buff *skb,
1215 			       struct skb_free_array *sa,
1216 			       enum skb_drop_reason reason)
1217 {
1218 	/* if SKB is a clone, don't handle this case */
1219 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1220 		__kfree_skb(skb);
1221 		return;
1222 	}
1223 
1224 	skb_release_all(skb, reason);
1225 	sa->skb_array[sa->skb_count++] = skb;
1226 
1227 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1228 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1229 				     sa->skb_array);
1230 		sa->skb_count = 0;
1231 	}
1232 }
1233 
1234 void __fix_address
1235 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1236 {
1237 	struct skb_free_array sa;
1238 
1239 	sa.skb_count = 0;
1240 
1241 	while (segs) {
1242 		struct sk_buff *next = segs->next;
1243 
1244 		if (__sk_skb_reason_drop(NULL, segs, reason)) {
1245 			skb_poison_list(segs);
1246 			kfree_skb_add_bulk(segs, &sa, reason);
1247 		}
1248 
1249 		segs = next;
1250 	}
1251 
1252 	if (sa.skb_count)
1253 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1254 }
1255 EXPORT_SYMBOL(kfree_skb_list_reason);
1256 
1257 /* Dump skb information and contents.
1258  *
1259  * Must only be called from net_ratelimit()-ed paths.
1260  *
1261  * Dumps whole packets if full_pkt, only headers otherwise.
1262  */
1263 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1264 {
1265 	struct skb_shared_info *sh = skb_shinfo(skb);
1266 	struct net_device *dev = skb->dev;
1267 	struct sock *sk = skb->sk;
1268 	struct sk_buff *list_skb;
1269 	bool has_mac, has_trans;
1270 	int headroom, tailroom;
1271 	int i, len, seg_len;
1272 
1273 	if (full_pkt)
1274 		len = skb->len;
1275 	else
1276 		len = min_t(int, skb->len, MAX_HEADER + 128);
1277 
1278 	headroom = skb_headroom(skb);
1279 	tailroom = skb_tailroom(skb);
1280 
1281 	has_mac = skb_mac_header_was_set(skb);
1282 	has_trans = skb_transport_header_was_set(skb);
1283 
1284 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1285 	       "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n"
1286 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1287 	       "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1288 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n"
1289 	       "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n"
1290 	       "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n",
1291 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1292 	       has_mac ? skb->mac_header : -1,
1293 	       has_mac ? skb_mac_header_len(skb) : -1,
1294 	       skb->mac_len,
1295 	       skb->network_header,
1296 	       has_trans ? skb_network_header_len(skb) : -1,
1297 	       has_trans ? skb->transport_header : -1,
1298 	       sh->tx_flags, sh->nr_frags,
1299 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1300 	       skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed,
1301 	       skb->csum_complete_sw, skb->csum_valid, skb->csum_level,
1302 	       skb->hash, skb->sw_hash, skb->l4_hash,
1303 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif,
1304 	       skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all,
1305 	       skb->encapsulation, skb->inner_protocol, skb->inner_mac_header,
1306 	       skb->inner_network_header, skb->inner_transport_header);
1307 
1308 	if (dev)
1309 		printk("%sdev name=%s feat=%pNF\n",
1310 		       level, dev->name, &dev->features);
1311 	if (sk)
1312 		printk("%ssk family=%hu type=%u proto=%u\n",
1313 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1314 
1315 	if (full_pkt && headroom)
1316 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1317 			       16, 1, skb->head, headroom, false);
1318 
1319 	seg_len = min_t(int, skb_headlen(skb), len);
1320 	if (seg_len)
1321 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1322 			       16, 1, skb->data, seg_len, false);
1323 	len -= seg_len;
1324 
1325 	if (full_pkt && tailroom)
1326 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1327 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1328 
1329 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1330 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1331 		u32 p_off, p_len, copied;
1332 		struct page *p;
1333 		u8 *vaddr;
1334 
1335 		if (skb_frag_is_net_iov(frag)) {
1336 			printk("%sskb frag %d: not readable\n", level, i);
1337 			len -= skb_frag_size(frag);
1338 			if (!len)
1339 				break;
1340 			continue;
1341 		}
1342 
1343 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1344 				      skb_frag_size(frag), p, p_off, p_len,
1345 				      copied) {
1346 			seg_len = min_t(int, p_len, len);
1347 			vaddr = kmap_atomic(p);
1348 			print_hex_dump(level, "skb frag:     ",
1349 				       DUMP_PREFIX_OFFSET,
1350 				       16, 1, vaddr + p_off, seg_len, false);
1351 			kunmap_atomic(vaddr);
1352 			len -= seg_len;
1353 			if (!len)
1354 				break;
1355 		}
1356 	}
1357 
1358 	if (full_pkt && skb_has_frag_list(skb)) {
1359 		printk("skb fraglist:\n");
1360 		skb_walk_frags(skb, list_skb)
1361 			skb_dump(level, list_skb, true);
1362 	}
1363 }
1364 EXPORT_SYMBOL(skb_dump);
1365 
1366 /**
1367  *	skb_tx_error - report an sk_buff xmit error
1368  *	@skb: buffer that triggered an error
1369  *
1370  *	Report xmit error if a device callback is tracking this skb.
1371  *	skb must be freed afterwards.
1372  */
1373 void skb_tx_error(struct sk_buff *skb)
1374 {
1375 	if (skb) {
1376 		skb_zcopy_downgrade_managed(skb);
1377 		skb_zcopy_clear(skb, true);
1378 	}
1379 }
1380 EXPORT_SYMBOL(skb_tx_error);
1381 
1382 #ifdef CONFIG_TRACEPOINTS
1383 /**
1384  *	consume_skb - free an skbuff
1385  *	@skb: buffer to free
1386  *
1387  *	Drop a ref to the buffer and free it if the usage count has hit zero
1388  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1389  *	is being dropped after a failure and notes that
1390  */
1391 void consume_skb(struct sk_buff *skb)
1392 {
1393 	if (!skb_unref(skb))
1394 		return;
1395 
1396 	trace_consume_skb(skb, __builtin_return_address(0));
1397 	__kfree_skb(skb);
1398 }
1399 EXPORT_SYMBOL(consume_skb);
1400 #endif
1401 
1402 /**
1403  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1404  *	@skb: buffer to free
1405  *
1406  *	Alike consume_skb(), but this variant assumes that this is the last
1407  *	skb reference and all the head states have been already dropped
1408  */
1409 void __consume_stateless_skb(struct sk_buff *skb)
1410 {
1411 	trace_consume_skb(skb, __builtin_return_address(0));
1412 	skb_release_data(skb, SKB_CONSUMED);
1413 	kfree_skbmem(skb);
1414 }
1415 
1416 static void napi_skb_cache_put(struct sk_buff *skb)
1417 {
1418 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1419 	u32 i;
1420 
1421 	if (!kasan_mempool_poison_object(skb))
1422 		return;
1423 
1424 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
1425 	nc->skb_cache[nc->skb_count++] = skb;
1426 
1427 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1428 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1429 			kasan_mempool_unpoison_object(nc->skb_cache[i],
1430 						kmem_cache_size(net_hotdata.skbuff_cache));
1431 
1432 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1433 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1434 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1435 	}
1436 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
1437 }
1438 
1439 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1440 {
1441 	skb_release_all(skb, reason);
1442 	napi_skb_cache_put(skb);
1443 }
1444 
1445 void napi_skb_free_stolen_head(struct sk_buff *skb)
1446 {
1447 	if (unlikely(skb->slow_gro)) {
1448 		nf_reset_ct(skb);
1449 		skb_dst_drop(skb);
1450 		skb_ext_put(skb);
1451 		skb_orphan(skb);
1452 		skb->slow_gro = 0;
1453 	}
1454 	napi_skb_cache_put(skb);
1455 }
1456 
1457 void napi_consume_skb(struct sk_buff *skb, int budget)
1458 {
1459 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1460 	if (unlikely(!budget)) {
1461 		dev_consume_skb_any(skb);
1462 		return;
1463 	}
1464 
1465 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1466 
1467 	if (!skb_unref(skb))
1468 		return;
1469 
1470 	/* if reaching here SKB is ready to free */
1471 	trace_consume_skb(skb, __builtin_return_address(0));
1472 
1473 	/* if SKB is a clone, don't handle this case */
1474 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1475 		__kfree_skb(skb);
1476 		return;
1477 	}
1478 
1479 	skb_release_all(skb, SKB_CONSUMED);
1480 	napi_skb_cache_put(skb);
1481 }
1482 EXPORT_SYMBOL(napi_consume_skb);
1483 
1484 /* Make sure a field is contained by headers group */
1485 #define CHECK_SKB_FIELD(field) \
1486 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1487 		     offsetof(struct sk_buff, headers.field));	\
1488 
1489 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1490 {
1491 	new->tstamp		= old->tstamp;
1492 	/* We do not copy old->sk */
1493 	new->dev		= old->dev;
1494 	memcpy(new->cb, old->cb, sizeof(old->cb));
1495 	skb_dst_copy(new, old);
1496 	__skb_ext_copy(new, old);
1497 	__nf_copy(new, old, false);
1498 
1499 	/* Note : this field could be in the headers group.
1500 	 * It is not yet because we do not want to have a 16 bit hole
1501 	 */
1502 	new->queue_mapping = old->queue_mapping;
1503 
1504 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1505 	CHECK_SKB_FIELD(protocol);
1506 	CHECK_SKB_FIELD(csum);
1507 	CHECK_SKB_FIELD(hash);
1508 	CHECK_SKB_FIELD(priority);
1509 	CHECK_SKB_FIELD(skb_iif);
1510 	CHECK_SKB_FIELD(vlan_proto);
1511 	CHECK_SKB_FIELD(vlan_tci);
1512 	CHECK_SKB_FIELD(transport_header);
1513 	CHECK_SKB_FIELD(network_header);
1514 	CHECK_SKB_FIELD(mac_header);
1515 	CHECK_SKB_FIELD(inner_protocol);
1516 	CHECK_SKB_FIELD(inner_transport_header);
1517 	CHECK_SKB_FIELD(inner_network_header);
1518 	CHECK_SKB_FIELD(inner_mac_header);
1519 	CHECK_SKB_FIELD(mark);
1520 #ifdef CONFIG_NETWORK_SECMARK
1521 	CHECK_SKB_FIELD(secmark);
1522 #endif
1523 #ifdef CONFIG_NET_RX_BUSY_POLL
1524 	CHECK_SKB_FIELD(napi_id);
1525 #endif
1526 	CHECK_SKB_FIELD(alloc_cpu);
1527 #ifdef CONFIG_XPS
1528 	CHECK_SKB_FIELD(sender_cpu);
1529 #endif
1530 #ifdef CONFIG_NET_SCHED
1531 	CHECK_SKB_FIELD(tc_index);
1532 #endif
1533 
1534 }
1535 
1536 /*
1537  * You should not add any new code to this function.  Add it to
1538  * __copy_skb_header above instead.
1539  */
1540 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1541 {
1542 #define C(x) n->x = skb->x
1543 
1544 	n->next = n->prev = NULL;
1545 	n->sk = NULL;
1546 	__copy_skb_header(n, skb);
1547 
1548 	C(len);
1549 	C(data_len);
1550 	C(mac_len);
1551 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1552 	n->cloned = 1;
1553 	n->nohdr = 0;
1554 	n->peeked = 0;
1555 	C(pfmemalloc);
1556 	C(pp_recycle);
1557 	n->destructor = NULL;
1558 	C(tail);
1559 	C(end);
1560 	C(head);
1561 	C(head_frag);
1562 	C(data);
1563 	C(truesize);
1564 	refcount_set(&n->users, 1);
1565 
1566 	atomic_inc(&(skb_shinfo(skb)->dataref));
1567 	skb->cloned = 1;
1568 
1569 	return n;
1570 #undef C
1571 }
1572 
1573 /**
1574  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1575  * @first: first sk_buff of the msg
1576  */
1577 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1578 {
1579 	struct sk_buff *n;
1580 
1581 	n = alloc_skb(0, GFP_ATOMIC);
1582 	if (!n)
1583 		return NULL;
1584 
1585 	n->len = first->len;
1586 	n->data_len = first->len;
1587 	n->truesize = first->truesize;
1588 
1589 	skb_shinfo(n)->frag_list = first;
1590 
1591 	__copy_skb_header(n, first);
1592 	n->destructor = NULL;
1593 
1594 	return n;
1595 }
1596 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1597 
1598 /**
1599  *	skb_morph	-	morph one skb into another
1600  *	@dst: the skb to receive the contents
1601  *	@src: the skb to supply the contents
1602  *
1603  *	This is identical to skb_clone except that the target skb is
1604  *	supplied by the user.
1605  *
1606  *	The target skb is returned upon exit.
1607  */
1608 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1609 {
1610 	skb_release_all(dst, SKB_CONSUMED);
1611 	return __skb_clone(dst, src);
1612 }
1613 EXPORT_SYMBOL_GPL(skb_morph);
1614 
1615 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1616 {
1617 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1618 	struct user_struct *user;
1619 
1620 	if (capable(CAP_IPC_LOCK) || !size)
1621 		return 0;
1622 
1623 	rlim = rlimit(RLIMIT_MEMLOCK);
1624 	if (rlim == RLIM_INFINITY)
1625 		return 0;
1626 
1627 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1628 	max_pg = rlim >> PAGE_SHIFT;
1629 	user = mmp->user ? : current_user();
1630 
1631 	old_pg = atomic_long_read(&user->locked_vm);
1632 	do {
1633 		new_pg = old_pg + num_pg;
1634 		if (new_pg > max_pg)
1635 			return -ENOBUFS;
1636 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1637 
1638 	if (!mmp->user) {
1639 		mmp->user = get_uid(user);
1640 		mmp->num_pg = num_pg;
1641 	} else {
1642 		mmp->num_pg += num_pg;
1643 	}
1644 
1645 	return 0;
1646 }
1647 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1648 
1649 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1650 {
1651 	if (mmp->user) {
1652 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1653 		free_uid(mmp->user);
1654 	}
1655 }
1656 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1657 
1658 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size,
1659 					    bool devmem)
1660 {
1661 	struct ubuf_info_msgzc *uarg;
1662 	struct sk_buff *skb;
1663 
1664 	WARN_ON_ONCE(!in_task());
1665 
1666 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1667 	if (!skb)
1668 		return NULL;
1669 
1670 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1671 	uarg = (void *)skb->cb;
1672 	uarg->mmp.user = NULL;
1673 
1674 	if (likely(!devmem) && mm_account_pinned_pages(&uarg->mmp, size)) {
1675 		kfree_skb(skb);
1676 		return NULL;
1677 	}
1678 
1679 	uarg->ubuf.ops = &msg_zerocopy_ubuf_ops;
1680 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1681 	uarg->len = 1;
1682 	uarg->bytelen = size;
1683 	uarg->zerocopy = 1;
1684 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1685 	refcount_set(&uarg->ubuf.refcnt, 1);
1686 	sock_hold(sk);
1687 
1688 	return &uarg->ubuf;
1689 }
1690 
1691 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1692 {
1693 	return container_of((void *)uarg, struct sk_buff, cb);
1694 }
1695 
1696 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1697 				       struct ubuf_info *uarg, bool devmem)
1698 {
1699 	if (uarg) {
1700 		struct ubuf_info_msgzc *uarg_zc;
1701 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1702 		u32 bytelen, next;
1703 
1704 		/* there might be non MSG_ZEROCOPY users */
1705 		if (uarg->ops != &msg_zerocopy_ubuf_ops)
1706 			return NULL;
1707 
1708 		/* realloc only when socket is locked (TCP, UDP cork),
1709 		 * so uarg->len and sk_zckey access is serialized
1710 		 */
1711 		if (!sock_owned_by_user(sk)) {
1712 			WARN_ON_ONCE(1);
1713 			return NULL;
1714 		}
1715 
1716 		uarg_zc = uarg_to_msgzc(uarg);
1717 		bytelen = uarg_zc->bytelen + size;
1718 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1719 			/* TCP can create new skb to attach new uarg */
1720 			if (sk->sk_type == SOCK_STREAM)
1721 				goto new_alloc;
1722 			return NULL;
1723 		}
1724 
1725 		next = (u32)atomic_read(&sk->sk_zckey);
1726 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1727 			if (likely(!devmem) &&
1728 			    mm_account_pinned_pages(&uarg_zc->mmp, size))
1729 				return NULL;
1730 			uarg_zc->len++;
1731 			uarg_zc->bytelen = bytelen;
1732 			atomic_set(&sk->sk_zckey, ++next);
1733 
1734 			/* no extra ref when appending to datagram (MSG_MORE) */
1735 			if (sk->sk_type == SOCK_STREAM)
1736 				net_zcopy_get(uarg);
1737 
1738 			return uarg;
1739 		}
1740 	}
1741 
1742 new_alloc:
1743 	return msg_zerocopy_alloc(sk, size, devmem);
1744 }
1745 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1746 
1747 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1748 {
1749 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1750 	u32 old_lo, old_hi;
1751 	u64 sum_len;
1752 
1753 	old_lo = serr->ee.ee_info;
1754 	old_hi = serr->ee.ee_data;
1755 	sum_len = old_hi - old_lo + 1ULL + len;
1756 
1757 	if (sum_len >= (1ULL << 32))
1758 		return false;
1759 
1760 	if (lo != old_hi + 1)
1761 		return false;
1762 
1763 	serr->ee.ee_data += len;
1764 	return true;
1765 }
1766 
1767 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1768 {
1769 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1770 	struct sock_exterr_skb *serr;
1771 	struct sock *sk = skb->sk;
1772 	struct sk_buff_head *q;
1773 	unsigned long flags;
1774 	bool is_zerocopy;
1775 	u32 lo, hi;
1776 	u16 len;
1777 
1778 	mm_unaccount_pinned_pages(&uarg->mmp);
1779 
1780 	/* if !len, there was only 1 call, and it was aborted
1781 	 * so do not queue a completion notification
1782 	 */
1783 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1784 		goto release;
1785 
1786 	len = uarg->len;
1787 	lo = uarg->id;
1788 	hi = uarg->id + len - 1;
1789 	is_zerocopy = uarg->zerocopy;
1790 
1791 	serr = SKB_EXT_ERR(skb);
1792 	memset(serr, 0, sizeof(*serr));
1793 	serr->ee.ee_errno = 0;
1794 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1795 	serr->ee.ee_data = hi;
1796 	serr->ee.ee_info = lo;
1797 	if (!is_zerocopy)
1798 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1799 
1800 	q = &sk->sk_error_queue;
1801 	spin_lock_irqsave(&q->lock, flags);
1802 	tail = skb_peek_tail(q);
1803 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1804 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1805 		__skb_queue_tail(q, skb);
1806 		skb = NULL;
1807 	}
1808 	spin_unlock_irqrestore(&q->lock, flags);
1809 
1810 	sk_error_report(sk);
1811 
1812 release:
1813 	consume_skb(skb);
1814 	sock_put(sk);
1815 }
1816 
1817 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg,
1818 				  bool success)
1819 {
1820 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1821 
1822 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1823 
1824 	if (refcount_dec_and_test(&uarg->refcnt))
1825 		__msg_zerocopy_callback(uarg_zc);
1826 }
1827 
1828 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1829 {
1830 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1831 
1832 	atomic_dec(&sk->sk_zckey);
1833 	uarg_to_msgzc(uarg)->len--;
1834 
1835 	if (have_uref)
1836 		msg_zerocopy_complete(NULL, uarg, true);
1837 }
1838 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1839 
1840 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = {
1841 	.complete = msg_zerocopy_complete,
1842 };
1843 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops);
1844 
1845 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1846 			     struct msghdr *msg, int len,
1847 			     struct ubuf_info *uarg,
1848 			     struct net_devmem_dmabuf_binding *binding)
1849 {
1850 	int err, orig_len = skb->len;
1851 
1852 	if (uarg->ops->link_skb) {
1853 		err = uarg->ops->link_skb(skb, uarg);
1854 		if (err)
1855 			return err;
1856 	} else {
1857 		struct ubuf_info *orig_uarg = skb_zcopy(skb);
1858 
1859 		/* An skb can only point to one uarg. This edge case happens
1860 		 * when TCP appends to an skb, but zerocopy_realloc triggered
1861 		 * a new alloc.
1862 		 */
1863 		if (orig_uarg && uarg != orig_uarg)
1864 			return -EEXIST;
1865 	}
1866 
1867 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len,
1868 				      binding);
1869 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1870 		struct sock *save_sk = skb->sk;
1871 
1872 		/* Streams do not free skb on error. Reset to prev state. */
1873 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1874 		skb->sk = sk;
1875 		___pskb_trim(skb, orig_len);
1876 		skb->sk = save_sk;
1877 		return err;
1878 	}
1879 
1880 	skb_zcopy_set(skb, uarg, NULL);
1881 	return skb->len - orig_len;
1882 }
1883 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1884 
1885 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1886 {
1887 	int i;
1888 
1889 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1890 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1891 		skb_frag_ref(skb, i);
1892 }
1893 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1894 
1895 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1896 			      gfp_t gfp_mask)
1897 {
1898 	if (skb_zcopy(orig)) {
1899 		if (skb_zcopy(nskb)) {
1900 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1901 			if (!gfp_mask) {
1902 				WARN_ON_ONCE(1);
1903 				return -ENOMEM;
1904 			}
1905 			if (skb_uarg(nskb) == skb_uarg(orig))
1906 				return 0;
1907 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1908 				return -EIO;
1909 		}
1910 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1911 	}
1912 	return 0;
1913 }
1914 
1915 /**
1916  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1917  *	@skb: the skb to modify
1918  *	@gfp_mask: allocation priority
1919  *
1920  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1921  *	It will copy all frags into kernel and drop the reference
1922  *	to userspace pages.
1923  *
1924  *	If this function is called from an interrupt gfp_mask() must be
1925  *	%GFP_ATOMIC.
1926  *
1927  *	Returns 0 on success or a negative error code on failure
1928  *	to allocate kernel memory to copy to.
1929  */
1930 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1931 {
1932 	int num_frags = skb_shinfo(skb)->nr_frags;
1933 	struct page *page, *head = NULL;
1934 	int i, order, psize, new_frags;
1935 	u32 d_off;
1936 
1937 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1938 		return -EINVAL;
1939 
1940 	if (!skb_frags_readable(skb))
1941 		return -EFAULT;
1942 
1943 	if (!num_frags)
1944 		goto release;
1945 
1946 	/* We might have to allocate high order pages, so compute what minimum
1947 	 * page order is needed.
1948 	 */
1949 	order = 0;
1950 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1951 		order++;
1952 	psize = (PAGE_SIZE << order);
1953 
1954 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1955 	for (i = 0; i < new_frags; i++) {
1956 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1957 		if (!page) {
1958 			while (head) {
1959 				struct page *next = (struct page *)page_private(head);
1960 				put_page(head);
1961 				head = next;
1962 			}
1963 			return -ENOMEM;
1964 		}
1965 		set_page_private(page, (unsigned long)head);
1966 		head = page;
1967 	}
1968 
1969 	page = head;
1970 	d_off = 0;
1971 	for (i = 0; i < num_frags; i++) {
1972 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1973 		u32 p_off, p_len, copied;
1974 		struct page *p;
1975 		u8 *vaddr;
1976 
1977 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1978 				      p, p_off, p_len, copied) {
1979 			u32 copy, done = 0;
1980 			vaddr = kmap_atomic(p);
1981 
1982 			while (done < p_len) {
1983 				if (d_off == psize) {
1984 					d_off = 0;
1985 					page = (struct page *)page_private(page);
1986 				}
1987 				copy = min_t(u32, psize - d_off, p_len - done);
1988 				memcpy(page_address(page) + d_off,
1989 				       vaddr + p_off + done, copy);
1990 				done += copy;
1991 				d_off += copy;
1992 			}
1993 			kunmap_atomic(vaddr);
1994 		}
1995 	}
1996 
1997 	/* skb frags release userspace buffers */
1998 	for (i = 0; i < num_frags; i++)
1999 		skb_frag_unref(skb, i);
2000 
2001 	/* skb frags point to kernel buffers */
2002 	for (i = 0; i < new_frags - 1; i++) {
2003 		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
2004 		head = (struct page *)page_private(head);
2005 	}
2006 	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2007 			       d_off);
2008 	skb_shinfo(skb)->nr_frags = new_frags;
2009 
2010 release:
2011 	skb_zcopy_clear(skb, false);
2012 	return 0;
2013 }
2014 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2015 
2016 /**
2017  *	skb_clone	-	duplicate an sk_buff
2018  *	@skb: buffer to clone
2019  *	@gfp_mask: allocation priority
2020  *
2021  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
2022  *	copies share the same packet data but not structure. The new
2023  *	buffer has a reference count of 1. If the allocation fails the
2024  *	function returns %NULL otherwise the new buffer is returned.
2025  *
2026  *	If this function is called from an interrupt gfp_mask() must be
2027  *	%GFP_ATOMIC.
2028  */
2029 
2030 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2031 {
2032 	struct sk_buff_fclones *fclones = container_of(skb,
2033 						       struct sk_buff_fclones,
2034 						       skb1);
2035 	struct sk_buff *n;
2036 
2037 	if (skb_orphan_frags(skb, gfp_mask))
2038 		return NULL;
2039 
2040 	if (skb->fclone == SKB_FCLONE_ORIG &&
2041 	    refcount_read(&fclones->fclone_ref) == 1) {
2042 		n = &fclones->skb2;
2043 		refcount_set(&fclones->fclone_ref, 2);
2044 		n->fclone = SKB_FCLONE_CLONE;
2045 	} else {
2046 		if (skb_pfmemalloc(skb))
2047 			gfp_mask |= __GFP_MEMALLOC;
2048 
2049 		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2050 		if (!n)
2051 			return NULL;
2052 
2053 		n->fclone = SKB_FCLONE_UNAVAILABLE;
2054 	}
2055 
2056 	return __skb_clone(n, skb);
2057 }
2058 EXPORT_SYMBOL(skb_clone);
2059 
2060 void skb_headers_offset_update(struct sk_buff *skb, int off)
2061 {
2062 	/* Only adjust this if it actually is csum_start rather than csum */
2063 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2064 		skb->csum_start += off;
2065 	/* {transport,network,mac}_header and tail are relative to skb->head */
2066 	skb->transport_header += off;
2067 	skb->network_header   += off;
2068 	if (skb_mac_header_was_set(skb))
2069 		skb->mac_header += off;
2070 	skb->inner_transport_header += off;
2071 	skb->inner_network_header += off;
2072 	skb->inner_mac_header += off;
2073 }
2074 EXPORT_SYMBOL(skb_headers_offset_update);
2075 
2076 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2077 {
2078 	__copy_skb_header(new, old);
2079 
2080 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2081 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2082 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2083 }
2084 EXPORT_SYMBOL(skb_copy_header);
2085 
2086 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2087 {
2088 	if (skb_pfmemalloc(skb))
2089 		return SKB_ALLOC_RX;
2090 	return 0;
2091 }
2092 
2093 /**
2094  *	skb_copy	-	create private copy of an sk_buff
2095  *	@skb: buffer to copy
2096  *	@gfp_mask: allocation priority
2097  *
2098  *	Make a copy of both an &sk_buff and its data. This is used when the
2099  *	caller wishes to modify the data and needs a private copy of the
2100  *	data to alter. Returns %NULL on failure or the pointer to the buffer
2101  *	on success. The returned buffer has a reference count of 1.
2102  *
2103  *	As by-product this function converts non-linear &sk_buff to linear
2104  *	one, so that &sk_buff becomes completely private and caller is allowed
2105  *	to modify all the data of returned buffer. This means that this
2106  *	function is not recommended for use in circumstances when only
2107  *	header is going to be modified. Use pskb_copy() instead.
2108  */
2109 
2110 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2111 {
2112 	struct sk_buff *n;
2113 	unsigned int size;
2114 	int headerlen;
2115 
2116 	if (!skb_frags_readable(skb))
2117 		return NULL;
2118 
2119 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2120 		return NULL;
2121 
2122 	headerlen = skb_headroom(skb);
2123 	size = skb_end_offset(skb) + skb->data_len;
2124 	n = __alloc_skb(size, gfp_mask,
2125 			skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2126 	if (!n)
2127 		return NULL;
2128 
2129 	/* Set the data pointer */
2130 	skb_reserve(n, headerlen);
2131 	/* Set the tail pointer and length */
2132 	skb_put(n, skb->len);
2133 
2134 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2135 
2136 	skb_copy_header(n, skb);
2137 	return n;
2138 }
2139 EXPORT_SYMBOL(skb_copy);
2140 
2141 /**
2142  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2143  *	@skb: buffer to copy
2144  *	@headroom: headroom of new skb
2145  *	@gfp_mask: allocation priority
2146  *	@fclone: if true allocate the copy of the skb from the fclone
2147  *	cache instead of the head cache; it is recommended to set this
2148  *	to true for the cases where the copy will likely be cloned
2149  *
2150  *	Make a copy of both an &sk_buff and part of its data, located
2151  *	in header. Fragmented data remain shared. This is used when
2152  *	the caller wishes to modify only header of &sk_buff and needs
2153  *	private copy of the header to alter. Returns %NULL on failure
2154  *	or the pointer to the buffer on success.
2155  *	The returned buffer has a reference count of 1.
2156  */
2157 
2158 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2159 				   gfp_t gfp_mask, bool fclone)
2160 {
2161 	unsigned int size = skb_headlen(skb) + headroom;
2162 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2163 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2164 
2165 	if (!n)
2166 		goto out;
2167 
2168 	/* Set the data pointer */
2169 	skb_reserve(n, headroom);
2170 	/* Set the tail pointer and length */
2171 	skb_put(n, skb_headlen(skb));
2172 	/* Copy the bytes */
2173 	skb_copy_from_linear_data(skb, n->data, n->len);
2174 
2175 	n->truesize += skb->data_len;
2176 	n->data_len  = skb->data_len;
2177 	n->len	     = skb->len;
2178 
2179 	if (skb_shinfo(skb)->nr_frags) {
2180 		int i;
2181 
2182 		if (skb_orphan_frags(skb, gfp_mask) ||
2183 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2184 			kfree_skb(n);
2185 			n = NULL;
2186 			goto out;
2187 		}
2188 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2189 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2190 			skb_frag_ref(skb, i);
2191 		}
2192 		skb_shinfo(n)->nr_frags = i;
2193 	}
2194 
2195 	if (skb_has_frag_list(skb)) {
2196 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2197 		skb_clone_fraglist(n);
2198 	}
2199 
2200 	skb_copy_header(n, skb);
2201 out:
2202 	return n;
2203 }
2204 EXPORT_SYMBOL(__pskb_copy_fclone);
2205 
2206 /**
2207  *	pskb_expand_head - reallocate header of &sk_buff
2208  *	@skb: buffer to reallocate
2209  *	@nhead: room to add at head
2210  *	@ntail: room to add at tail
2211  *	@gfp_mask: allocation priority
2212  *
2213  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2214  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2215  *	reference count of 1. Returns zero in the case of success or error,
2216  *	if expansion failed. In the last case, &sk_buff is not changed.
2217  *
2218  *	All the pointers pointing into skb header may change and must be
2219  *	reloaded after call to this function.
2220  */
2221 
2222 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2223 		     gfp_t gfp_mask)
2224 {
2225 	unsigned int osize = skb_end_offset(skb);
2226 	unsigned int size = osize + nhead + ntail;
2227 	long off;
2228 	u8 *data;
2229 	int i;
2230 
2231 	BUG_ON(nhead < 0);
2232 
2233 	BUG_ON(skb_shared(skb));
2234 
2235 	skb_zcopy_downgrade_managed(skb);
2236 
2237 	if (skb_pfmemalloc(skb))
2238 		gfp_mask |= __GFP_MEMALLOC;
2239 
2240 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2241 	if (!data)
2242 		goto nodata;
2243 	size = SKB_WITH_OVERHEAD(size);
2244 
2245 	/* Copy only real data... and, alas, header. This should be
2246 	 * optimized for the cases when header is void.
2247 	 */
2248 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2249 
2250 	memcpy((struct skb_shared_info *)(data + size),
2251 	       skb_shinfo(skb),
2252 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2253 
2254 	/*
2255 	 * if shinfo is shared we must drop the old head gracefully, but if it
2256 	 * is not we can just drop the old head and let the existing refcount
2257 	 * be since all we did is relocate the values
2258 	 */
2259 	if (skb_cloned(skb)) {
2260 		if (skb_orphan_frags(skb, gfp_mask))
2261 			goto nofrags;
2262 		if (skb_zcopy(skb))
2263 			refcount_inc(&skb_uarg(skb)->refcnt);
2264 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2265 			skb_frag_ref(skb, i);
2266 
2267 		if (skb_has_frag_list(skb))
2268 			skb_clone_fraglist(skb);
2269 
2270 		skb_release_data(skb, SKB_CONSUMED);
2271 	} else {
2272 		skb_free_head(skb);
2273 	}
2274 	off = (data + nhead) - skb->head;
2275 
2276 	skb->head     = data;
2277 	skb->head_frag = 0;
2278 	skb->data    += off;
2279 
2280 	skb_set_end_offset(skb, size);
2281 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2282 	off           = nhead;
2283 #endif
2284 	skb->tail	      += off;
2285 	skb_headers_offset_update(skb, nhead);
2286 	skb->cloned   = 0;
2287 	skb->hdr_len  = 0;
2288 	skb->nohdr    = 0;
2289 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2290 
2291 	skb_metadata_clear(skb);
2292 
2293 	/* It is not generally safe to change skb->truesize.
2294 	 * For the moment, we really care of rx path, or
2295 	 * when skb is orphaned (not attached to a socket).
2296 	 */
2297 	if (!skb->sk || skb->destructor == sock_edemux)
2298 		skb->truesize += size - osize;
2299 
2300 	return 0;
2301 
2302 nofrags:
2303 	skb_kfree_head(data, size);
2304 nodata:
2305 	return -ENOMEM;
2306 }
2307 EXPORT_SYMBOL(pskb_expand_head);
2308 
2309 /* Make private copy of skb with writable head and some headroom */
2310 
2311 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2312 {
2313 	struct sk_buff *skb2;
2314 	int delta = headroom - skb_headroom(skb);
2315 
2316 	if (delta <= 0)
2317 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2318 	else {
2319 		skb2 = skb_clone(skb, GFP_ATOMIC);
2320 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2321 					     GFP_ATOMIC)) {
2322 			kfree_skb(skb2);
2323 			skb2 = NULL;
2324 		}
2325 	}
2326 	return skb2;
2327 }
2328 EXPORT_SYMBOL(skb_realloc_headroom);
2329 
2330 /* Note: We plan to rework this in linux-6.4 */
2331 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2332 {
2333 	unsigned int saved_end_offset, saved_truesize;
2334 	struct skb_shared_info *shinfo;
2335 	int res;
2336 
2337 	saved_end_offset = skb_end_offset(skb);
2338 	saved_truesize = skb->truesize;
2339 
2340 	res = pskb_expand_head(skb, 0, 0, pri);
2341 	if (res)
2342 		return res;
2343 
2344 	skb->truesize = saved_truesize;
2345 
2346 	if (likely(skb_end_offset(skb) == saved_end_offset))
2347 		return 0;
2348 
2349 	/* We can not change skb->end if the original or new value
2350 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2351 	 */
2352 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2353 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2354 		/* We think this path should not be taken.
2355 		 * Add a temporary trace to warn us just in case.
2356 		 */
2357 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2358 			    saved_end_offset, skb_end_offset(skb));
2359 		WARN_ON_ONCE(1);
2360 		return 0;
2361 	}
2362 
2363 	shinfo = skb_shinfo(skb);
2364 
2365 	/* We are about to change back skb->end,
2366 	 * we need to move skb_shinfo() to its new location.
2367 	 */
2368 	memmove(skb->head + saved_end_offset,
2369 		shinfo,
2370 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2371 
2372 	skb_set_end_offset(skb, saved_end_offset);
2373 
2374 	return 0;
2375 }
2376 
2377 /**
2378  *	skb_expand_head - reallocate header of &sk_buff
2379  *	@skb: buffer to reallocate
2380  *	@headroom: needed headroom
2381  *
2382  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2383  *	if possible; copies skb->sk to new skb as needed
2384  *	and frees original skb in case of failures.
2385  *
2386  *	It expect increased headroom and generates warning otherwise.
2387  */
2388 
2389 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2390 {
2391 	int delta = headroom - skb_headroom(skb);
2392 	int osize = skb_end_offset(skb);
2393 	struct sock *sk = skb->sk;
2394 
2395 	if (WARN_ONCE(delta <= 0,
2396 		      "%s is expecting an increase in the headroom", __func__))
2397 		return skb;
2398 
2399 	delta = SKB_DATA_ALIGN(delta);
2400 	/* pskb_expand_head() might crash, if skb is shared. */
2401 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2402 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2403 
2404 		if (unlikely(!nskb))
2405 			goto fail;
2406 
2407 		if (sk)
2408 			skb_set_owner_w(nskb, sk);
2409 		consume_skb(skb);
2410 		skb = nskb;
2411 	}
2412 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2413 		goto fail;
2414 
2415 	if (sk && is_skb_wmem(skb)) {
2416 		delta = skb_end_offset(skb) - osize;
2417 		refcount_add(delta, &sk->sk_wmem_alloc);
2418 		skb->truesize += delta;
2419 	}
2420 	return skb;
2421 
2422 fail:
2423 	kfree_skb(skb);
2424 	return NULL;
2425 }
2426 EXPORT_SYMBOL(skb_expand_head);
2427 
2428 /**
2429  *	skb_copy_expand	-	copy and expand sk_buff
2430  *	@skb: buffer to copy
2431  *	@newheadroom: new free bytes at head
2432  *	@newtailroom: new free bytes at tail
2433  *	@gfp_mask: allocation priority
2434  *
2435  *	Make a copy of both an &sk_buff and its data and while doing so
2436  *	allocate additional space.
2437  *
2438  *	This is used when the caller wishes to modify the data and needs a
2439  *	private copy of the data to alter as well as more space for new fields.
2440  *	Returns %NULL on failure or the pointer to the buffer
2441  *	on success. The returned buffer has a reference count of 1.
2442  *
2443  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2444  *	is called from an interrupt.
2445  */
2446 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2447 				int newheadroom, int newtailroom,
2448 				gfp_t gfp_mask)
2449 {
2450 	/*
2451 	 *	Allocate the copy buffer
2452 	 */
2453 	int head_copy_len, head_copy_off;
2454 	struct sk_buff *n;
2455 	int oldheadroom;
2456 
2457 	if (!skb_frags_readable(skb))
2458 		return NULL;
2459 
2460 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2461 		return NULL;
2462 
2463 	oldheadroom = skb_headroom(skb);
2464 	n = __alloc_skb(newheadroom + skb->len + newtailroom,
2465 			gfp_mask, skb_alloc_rx_flag(skb),
2466 			NUMA_NO_NODE);
2467 	if (!n)
2468 		return NULL;
2469 
2470 	skb_reserve(n, newheadroom);
2471 
2472 	/* Set the tail pointer and length */
2473 	skb_put(n, skb->len);
2474 
2475 	head_copy_len = oldheadroom;
2476 	head_copy_off = 0;
2477 	if (newheadroom <= head_copy_len)
2478 		head_copy_len = newheadroom;
2479 	else
2480 		head_copy_off = newheadroom - head_copy_len;
2481 
2482 	/* Copy the linear header and data. */
2483 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2484 			     skb->len + head_copy_len));
2485 
2486 	skb_copy_header(n, skb);
2487 
2488 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2489 
2490 	return n;
2491 }
2492 EXPORT_SYMBOL(skb_copy_expand);
2493 
2494 /**
2495  *	__skb_pad		-	zero pad the tail of an skb
2496  *	@skb: buffer to pad
2497  *	@pad: space to pad
2498  *	@free_on_error: free buffer on error
2499  *
2500  *	Ensure that a buffer is followed by a padding area that is zero
2501  *	filled. Used by network drivers which may DMA or transfer data
2502  *	beyond the buffer end onto the wire.
2503  *
2504  *	May return error in out of memory cases. The skb is freed on error
2505  *	if @free_on_error is true.
2506  */
2507 
2508 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2509 {
2510 	int err;
2511 	int ntail;
2512 
2513 	/* If the skbuff is non linear tailroom is always zero.. */
2514 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2515 		memset(skb->data+skb->len, 0, pad);
2516 		return 0;
2517 	}
2518 
2519 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2520 	if (likely(skb_cloned(skb) || ntail > 0)) {
2521 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2522 		if (unlikely(err))
2523 			goto free_skb;
2524 	}
2525 
2526 	/* FIXME: The use of this function with non-linear skb's really needs
2527 	 * to be audited.
2528 	 */
2529 	err = skb_linearize(skb);
2530 	if (unlikely(err))
2531 		goto free_skb;
2532 
2533 	memset(skb->data + skb->len, 0, pad);
2534 	return 0;
2535 
2536 free_skb:
2537 	if (free_on_error)
2538 		kfree_skb(skb);
2539 	return err;
2540 }
2541 EXPORT_SYMBOL(__skb_pad);
2542 
2543 /**
2544  *	pskb_put - add data to the tail of a potentially fragmented buffer
2545  *	@skb: start of the buffer to use
2546  *	@tail: tail fragment of the buffer to use
2547  *	@len: amount of data to add
2548  *
2549  *	This function extends the used data area of the potentially
2550  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2551  *	@skb itself. If this would exceed the total buffer size the kernel
2552  *	will panic. A pointer to the first byte of the extra data is
2553  *	returned.
2554  */
2555 
2556 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2557 {
2558 	if (tail != skb) {
2559 		skb->data_len += len;
2560 		skb->len += len;
2561 	}
2562 	return skb_put(tail, len);
2563 }
2564 EXPORT_SYMBOL_GPL(pskb_put);
2565 
2566 /**
2567  *	skb_put - add data to a buffer
2568  *	@skb: buffer to use
2569  *	@len: amount of data to add
2570  *
2571  *	This function extends the used data area of the buffer. If this would
2572  *	exceed the total buffer size the kernel will panic. A pointer to the
2573  *	first byte of the extra data is returned.
2574  */
2575 void *skb_put(struct sk_buff *skb, unsigned int len)
2576 {
2577 	void *tmp = skb_tail_pointer(skb);
2578 	SKB_LINEAR_ASSERT(skb);
2579 	skb->tail += len;
2580 	skb->len  += len;
2581 	if (unlikely(skb->tail > skb->end))
2582 		skb_over_panic(skb, len, __builtin_return_address(0));
2583 	return tmp;
2584 }
2585 EXPORT_SYMBOL(skb_put);
2586 
2587 /**
2588  *	skb_push - add data to the start of a buffer
2589  *	@skb: buffer to use
2590  *	@len: amount of data to add
2591  *
2592  *	This function extends the used data area of the buffer at the buffer
2593  *	start. If this would exceed the total buffer headroom the kernel will
2594  *	panic. A pointer to the first byte of the extra data is returned.
2595  */
2596 void *skb_push(struct sk_buff *skb, unsigned int len)
2597 {
2598 	skb->data -= len;
2599 	skb->len  += len;
2600 	if (unlikely(skb->data < skb->head))
2601 		skb_under_panic(skb, len, __builtin_return_address(0));
2602 	return skb->data;
2603 }
2604 EXPORT_SYMBOL(skb_push);
2605 
2606 /**
2607  *	skb_pull - remove data from the start of a buffer
2608  *	@skb: buffer to use
2609  *	@len: amount of data to remove
2610  *
2611  *	This function removes data from the start of a buffer, returning
2612  *	the memory to the headroom. A pointer to the next data in the buffer
2613  *	is returned. Once the data has been pulled future pushes will overwrite
2614  *	the old data.
2615  */
2616 void *skb_pull(struct sk_buff *skb, unsigned int len)
2617 {
2618 	return skb_pull_inline(skb, len);
2619 }
2620 EXPORT_SYMBOL(skb_pull);
2621 
2622 /**
2623  *	skb_pull_data - remove data from the start of a buffer returning its
2624  *	original position.
2625  *	@skb: buffer to use
2626  *	@len: amount of data to remove
2627  *
2628  *	This function removes data from the start of a buffer, returning
2629  *	the memory to the headroom. A pointer to the original data in the buffer
2630  *	is returned after checking if there is enough data to pull. Once the
2631  *	data has been pulled future pushes will overwrite the old data.
2632  */
2633 void *skb_pull_data(struct sk_buff *skb, size_t len)
2634 {
2635 	void *data = skb->data;
2636 
2637 	if (skb->len < len)
2638 		return NULL;
2639 
2640 	skb_pull(skb, len);
2641 
2642 	return data;
2643 }
2644 EXPORT_SYMBOL(skb_pull_data);
2645 
2646 /**
2647  *	skb_trim - remove end from a buffer
2648  *	@skb: buffer to alter
2649  *	@len: new length
2650  *
2651  *	Cut the length of a buffer down by removing data from the tail. If
2652  *	the buffer is already under the length specified it is not modified.
2653  *	The skb must be linear.
2654  */
2655 void skb_trim(struct sk_buff *skb, unsigned int len)
2656 {
2657 	if (skb->len > len)
2658 		__skb_trim(skb, len);
2659 }
2660 EXPORT_SYMBOL(skb_trim);
2661 
2662 /* Trims skb to length len. It can change skb pointers.
2663  */
2664 
2665 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2666 {
2667 	struct sk_buff **fragp;
2668 	struct sk_buff *frag;
2669 	int offset = skb_headlen(skb);
2670 	int nfrags = skb_shinfo(skb)->nr_frags;
2671 	int i;
2672 	int err;
2673 
2674 	if (skb_cloned(skb) &&
2675 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2676 		return err;
2677 
2678 	i = 0;
2679 	if (offset >= len)
2680 		goto drop_pages;
2681 
2682 	for (; i < nfrags; i++) {
2683 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2684 
2685 		if (end < len) {
2686 			offset = end;
2687 			continue;
2688 		}
2689 
2690 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2691 
2692 drop_pages:
2693 		skb_shinfo(skb)->nr_frags = i;
2694 
2695 		for (; i < nfrags; i++)
2696 			skb_frag_unref(skb, i);
2697 
2698 		if (skb_has_frag_list(skb))
2699 			skb_drop_fraglist(skb);
2700 		goto done;
2701 	}
2702 
2703 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2704 	     fragp = &frag->next) {
2705 		int end = offset + frag->len;
2706 
2707 		if (skb_shared(frag)) {
2708 			struct sk_buff *nfrag;
2709 
2710 			nfrag = skb_clone(frag, GFP_ATOMIC);
2711 			if (unlikely(!nfrag))
2712 				return -ENOMEM;
2713 
2714 			nfrag->next = frag->next;
2715 			consume_skb(frag);
2716 			frag = nfrag;
2717 			*fragp = frag;
2718 		}
2719 
2720 		if (end < len) {
2721 			offset = end;
2722 			continue;
2723 		}
2724 
2725 		if (end > len &&
2726 		    unlikely((err = pskb_trim(frag, len - offset))))
2727 			return err;
2728 
2729 		if (frag->next)
2730 			skb_drop_list(&frag->next);
2731 		break;
2732 	}
2733 
2734 done:
2735 	if (len > skb_headlen(skb)) {
2736 		skb->data_len -= skb->len - len;
2737 		skb->len       = len;
2738 	} else {
2739 		skb->len       = len;
2740 		skb->data_len  = 0;
2741 		skb_set_tail_pointer(skb, len);
2742 	}
2743 
2744 	if (!skb->sk || skb->destructor == sock_edemux)
2745 		skb_condense(skb);
2746 	return 0;
2747 }
2748 EXPORT_SYMBOL(___pskb_trim);
2749 
2750 /* Note : use pskb_trim_rcsum() instead of calling this directly
2751  */
2752 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2753 {
2754 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2755 		int delta = skb->len - len;
2756 
2757 		skb->csum = csum_block_sub(skb->csum,
2758 					   skb_checksum(skb, len, delta, 0),
2759 					   len);
2760 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2761 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2762 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2763 
2764 		if (offset + sizeof(__sum16) > hdlen)
2765 			return -EINVAL;
2766 	}
2767 	return __pskb_trim(skb, len);
2768 }
2769 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2770 
2771 /**
2772  *	__pskb_pull_tail - advance tail of skb header
2773  *	@skb: buffer to reallocate
2774  *	@delta: number of bytes to advance tail
2775  *
2776  *	The function makes a sense only on a fragmented &sk_buff,
2777  *	it expands header moving its tail forward and copying necessary
2778  *	data from fragmented part.
2779  *
2780  *	&sk_buff MUST have reference count of 1.
2781  *
2782  *	Returns %NULL (and &sk_buff does not change) if pull failed
2783  *	or value of new tail of skb in the case of success.
2784  *
2785  *	All the pointers pointing into skb header may change and must be
2786  *	reloaded after call to this function.
2787  */
2788 
2789 /* Moves tail of skb head forward, copying data from fragmented part,
2790  * when it is necessary.
2791  * 1. It may fail due to malloc failure.
2792  * 2. It may change skb pointers.
2793  *
2794  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2795  */
2796 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2797 {
2798 	/* If skb has not enough free space at tail, get new one
2799 	 * plus 128 bytes for future expansions. If we have enough
2800 	 * room at tail, reallocate without expansion only if skb is cloned.
2801 	 */
2802 	int i, k, eat = (skb->tail + delta) - skb->end;
2803 
2804 	if (!skb_frags_readable(skb))
2805 		return NULL;
2806 
2807 	if (eat > 0 || skb_cloned(skb)) {
2808 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2809 				     GFP_ATOMIC))
2810 			return NULL;
2811 	}
2812 
2813 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2814 			     skb_tail_pointer(skb), delta));
2815 
2816 	/* Optimization: no fragments, no reasons to preestimate
2817 	 * size of pulled pages. Superb.
2818 	 */
2819 	if (!skb_has_frag_list(skb))
2820 		goto pull_pages;
2821 
2822 	/* Estimate size of pulled pages. */
2823 	eat = delta;
2824 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2825 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2826 
2827 		if (size >= eat)
2828 			goto pull_pages;
2829 		eat -= size;
2830 	}
2831 
2832 	/* If we need update frag list, we are in troubles.
2833 	 * Certainly, it is possible to add an offset to skb data,
2834 	 * but taking into account that pulling is expected to
2835 	 * be very rare operation, it is worth to fight against
2836 	 * further bloating skb head and crucify ourselves here instead.
2837 	 * Pure masohism, indeed. 8)8)
2838 	 */
2839 	if (eat) {
2840 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2841 		struct sk_buff *clone = NULL;
2842 		struct sk_buff *insp = NULL;
2843 
2844 		do {
2845 			if (list->len <= eat) {
2846 				/* Eaten as whole. */
2847 				eat -= list->len;
2848 				list = list->next;
2849 				insp = list;
2850 			} else {
2851 				/* Eaten partially. */
2852 				if (skb_is_gso(skb) && !list->head_frag &&
2853 				    skb_headlen(list))
2854 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2855 
2856 				if (skb_shared(list)) {
2857 					/* Sucks! We need to fork list. :-( */
2858 					clone = skb_clone(list, GFP_ATOMIC);
2859 					if (!clone)
2860 						return NULL;
2861 					insp = list->next;
2862 					list = clone;
2863 				} else {
2864 					/* This may be pulled without
2865 					 * problems. */
2866 					insp = list;
2867 				}
2868 				if (!pskb_pull(list, eat)) {
2869 					kfree_skb(clone);
2870 					return NULL;
2871 				}
2872 				break;
2873 			}
2874 		} while (eat);
2875 
2876 		/* Free pulled out fragments. */
2877 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2878 			skb_shinfo(skb)->frag_list = list->next;
2879 			consume_skb(list);
2880 		}
2881 		/* And insert new clone at head. */
2882 		if (clone) {
2883 			clone->next = list;
2884 			skb_shinfo(skb)->frag_list = clone;
2885 		}
2886 	}
2887 	/* Success! Now we may commit changes to skb data. */
2888 
2889 pull_pages:
2890 	eat = delta;
2891 	k = 0;
2892 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2893 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2894 
2895 		if (size <= eat) {
2896 			skb_frag_unref(skb, i);
2897 			eat -= size;
2898 		} else {
2899 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2900 
2901 			*frag = skb_shinfo(skb)->frags[i];
2902 			if (eat) {
2903 				skb_frag_off_add(frag, eat);
2904 				skb_frag_size_sub(frag, eat);
2905 				if (!i)
2906 					goto end;
2907 				eat = 0;
2908 			}
2909 			k++;
2910 		}
2911 	}
2912 	skb_shinfo(skb)->nr_frags = k;
2913 
2914 end:
2915 	skb->tail     += delta;
2916 	skb->data_len -= delta;
2917 
2918 	if (!skb->data_len)
2919 		skb_zcopy_clear(skb, false);
2920 
2921 	return skb_tail_pointer(skb);
2922 }
2923 EXPORT_SYMBOL(__pskb_pull_tail);
2924 
2925 /**
2926  *	skb_copy_bits - copy bits from skb to kernel buffer
2927  *	@skb: source skb
2928  *	@offset: offset in source
2929  *	@to: destination buffer
2930  *	@len: number of bytes to copy
2931  *
2932  *	Copy the specified number of bytes from the source skb to the
2933  *	destination buffer.
2934  *
2935  *	CAUTION ! :
2936  *		If its prototype is ever changed,
2937  *		check arch/{*}/net/{*}.S files,
2938  *		since it is called from BPF assembly code.
2939  */
2940 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2941 {
2942 	int start = skb_headlen(skb);
2943 	struct sk_buff *frag_iter;
2944 	int i, copy;
2945 
2946 	if (offset > (int)skb->len - len)
2947 		goto fault;
2948 
2949 	/* Copy header. */
2950 	if ((copy = start - offset) > 0) {
2951 		if (copy > len)
2952 			copy = len;
2953 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2954 		if ((len -= copy) == 0)
2955 			return 0;
2956 		offset += copy;
2957 		to     += copy;
2958 	}
2959 
2960 	if (!skb_frags_readable(skb))
2961 		goto fault;
2962 
2963 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2964 		int end;
2965 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2966 
2967 		WARN_ON(start > offset + len);
2968 
2969 		end = start + skb_frag_size(f);
2970 		if ((copy = end - offset) > 0) {
2971 			u32 p_off, p_len, copied;
2972 			struct page *p;
2973 			u8 *vaddr;
2974 
2975 			if (copy > len)
2976 				copy = len;
2977 
2978 			skb_frag_foreach_page(f,
2979 					      skb_frag_off(f) + offset - start,
2980 					      copy, p, p_off, p_len, copied) {
2981 				vaddr = kmap_atomic(p);
2982 				memcpy(to + copied, vaddr + p_off, p_len);
2983 				kunmap_atomic(vaddr);
2984 			}
2985 
2986 			if ((len -= copy) == 0)
2987 				return 0;
2988 			offset += copy;
2989 			to     += copy;
2990 		}
2991 		start = end;
2992 	}
2993 
2994 	skb_walk_frags(skb, frag_iter) {
2995 		int end;
2996 
2997 		WARN_ON(start > offset + len);
2998 
2999 		end = start + frag_iter->len;
3000 		if ((copy = end - offset) > 0) {
3001 			if (copy > len)
3002 				copy = len;
3003 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
3004 				goto fault;
3005 			if ((len -= copy) == 0)
3006 				return 0;
3007 			offset += copy;
3008 			to     += copy;
3009 		}
3010 		start = end;
3011 	}
3012 
3013 	if (!len)
3014 		return 0;
3015 
3016 fault:
3017 	return -EFAULT;
3018 }
3019 EXPORT_SYMBOL(skb_copy_bits);
3020 
3021 /*
3022  * Callback from splice_to_pipe(), if we need to release some pages
3023  * at the end of the spd in case we error'ed out in filling the pipe.
3024  */
3025 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3026 {
3027 	put_page(spd->pages[i]);
3028 }
3029 
3030 static struct page *linear_to_page(struct page *page, unsigned int *len,
3031 				   unsigned int *offset,
3032 				   struct sock *sk)
3033 {
3034 	struct page_frag *pfrag = sk_page_frag(sk);
3035 
3036 	if (!sk_page_frag_refill(sk, pfrag))
3037 		return NULL;
3038 
3039 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3040 
3041 	memcpy(page_address(pfrag->page) + pfrag->offset,
3042 	       page_address(page) + *offset, *len);
3043 	*offset = pfrag->offset;
3044 	pfrag->offset += *len;
3045 
3046 	return pfrag->page;
3047 }
3048 
3049 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3050 			     struct page *page,
3051 			     unsigned int offset)
3052 {
3053 	return	spd->nr_pages &&
3054 		spd->pages[spd->nr_pages - 1] == page &&
3055 		(spd->partial[spd->nr_pages - 1].offset +
3056 		 spd->partial[spd->nr_pages - 1].len == offset);
3057 }
3058 
3059 /*
3060  * Fill page/offset/length into spd, if it can hold more pages.
3061  */
3062 static bool spd_fill_page(struct splice_pipe_desc *spd,
3063 			  struct pipe_inode_info *pipe, struct page *page,
3064 			  unsigned int *len, unsigned int offset,
3065 			  bool linear,
3066 			  struct sock *sk)
3067 {
3068 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3069 		return true;
3070 
3071 	if (linear) {
3072 		page = linear_to_page(page, len, &offset, sk);
3073 		if (!page)
3074 			return true;
3075 	}
3076 	if (spd_can_coalesce(spd, page, offset)) {
3077 		spd->partial[spd->nr_pages - 1].len += *len;
3078 		return false;
3079 	}
3080 	get_page(page);
3081 	spd->pages[spd->nr_pages] = page;
3082 	spd->partial[spd->nr_pages].len = *len;
3083 	spd->partial[spd->nr_pages].offset = offset;
3084 	spd->nr_pages++;
3085 
3086 	return false;
3087 }
3088 
3089 static bool __splice_segment(struct page *page, unsigned int poff,
3090 			     unsigned int plen, unsigned int *off,
3091 			     unsigned int *len,
3092 			     struct splice_pipe_desc *spd, bool linear,
3093 			     struct sock *sk,
3094 			     struct pipe_inode_info *pipe)
3095 {
3096 	if (!*len)
3097 		return true;
3098 
3099 	/* skip this segment if already processed */
3100 	if (*off >= plen) {
3101 		*off -= plen;
3102 		return false;
3103 	}
3104 
3105 	/* ignore any bits we already processed */
3106 	poff += *off;
3107 	plen -= *off;
3108 	*off = 0;
3109 
3110 	do {
3111 		unsigned int flen = min(*len, plen);
3112 
3113 		if (spd_fill_page(spd, pipe, page, &flen, poff,
3114 				  linear, sk))
3115 			return true;
3116 		poff += flen;
3117 		plen -= flen;
3118 		*len -= flen;
3119 	} while (*len && plen);
3120 
3121 	return false;
3122 }
3123 
3124 /*
3125  * Map linear and fragment data from the skb to spd. It reports true if the
3126  * pipe is full or if we already spliced the requested length.
3127  */
3128 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3129 			      unsigned int *offset, unsigned int *len,
3130 			      struct splice_pipe_desc *spd, struct sock *sk)
3131 {
3132 	int seg;
3133 	struct sk_buff *iter;
3134 
3135 	/* map the linear part :
3136 	 * If skb->head_frag is set, this 'linear' part is backed by a
3137 	 * fragment, and if the head is not shared with any clones then
3138 	 * we can avoid a copy since we own the head portion of this page.
3139 	 */
3140 	if (__splice_segment(virt_to_page(skb->data),
3141 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3142 			     skb_headlen(skb),
3143 			     offset, len, spd,
3144 			     skb_head_is_locked(skb),
3145 			     sk, pipe))
3146 		return true;
3147 
3148 	/*
3149 	 * then map the fragments
3150 	 */
3151 	if (!skb_frags_readable(skb))
3152 		return false;
3153 
3154 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3155 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3156 
3157 		if (WARN_ON_ONCE(!skb_frag_page(f)))
3158 			return false;
3159 
3160 		if (__splice_segment(skb_frag_page(f),
3161 				     skb_frag_off(f), skb_frag_size(f),
3162 				     offset, len, spd, false, sk, pipe))
3163 			return true;
3164 	}
3165 
3166 	skb_walk_frags(skb, iter) {
3167 		if (*offset >= iter->len) {
3168 			*offset -= iter->len;
3169 			continue;
3170 		}
3171 		/* __skb_splice_bits() only fails if the output has no room
3172 		 * left, so no point in going over the frag_list for the error
3173 		 * case.
3174 		 */
3175 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3176 			return true;
3177 	}
3178 
3179 	return false;
3180 }
3181 
3182 /*
3183  * Map data from the skb to a pipe. Should handle both the linear part,
3184  * the fragments, and the frag list.
3185  */
3186 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3187 		    struct pipe_inode_info *pipe, unsigned int tlen,
3188 		    unsigned int flags)
3189 {
3190 	struct partial_page partial[MAX_SKB_FRAGS];
3191 	struct page *pages[MAX_SKB_FRAGS];
3192 	struct splice_pipe_desc spd = {
3193 		.pages = pages,
3194 		.partial = partial,
3195 		.nr_pages_max = MAX_SKB_FRAGS,
3196 		.ops = &nosteal_pipe_buf_ops,
3197 		.spd_release = sock_spd_release,
3198 	};
3199 	int ret = 0;
3200 
3201 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3202 
3203 	if (spd.nr_pages)
3204 		ret = splice_to_pipe(pipe, &spd);
3205 
3206 	return ret;
3207 }
3208 EXPORT_SYMBOL_GPL(skb_splice_bits);
3209 
3210 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3211 {
3212 	struct socket *sock = sk->sk_socket;
3213 	size_t size = msg_data_left(msg);
3214 
3215 	if (!sock)
3216 		return -EINVAL;
3217 
3218 	if (!sock->ops->sendmsg_locked)
3219 		return sock_no_sendmsg_locked(sk, msg, size);
3220 
3221 	return sock->ops->sendmsg_locked(sk, msg, size);
3222 }
3223 
3224 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3225 {
3226 	struct socket *sock = sk->sk_socket;
3227 
3228 	if (!sock)
3229 		return -EINVAL;
3230 	return sock_sendmsg(sock, msg);
3231 }
3232 
3233 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3234 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3235 			   int len, sendmsg_func sendmsg, int flags)
3236 {
3237 	unsigned int orig_len = len;
3238 	struct sk_buff *head = skb;
3239 	unsigned short fragidx;
3240 	int slen, ret;
3241 
3242 do_frag_list:
3243 
3244 	/* Deal with head data */
3245 	while (offset < skb_headlen(skb) && len) {
3246 		struct kvec kv;
3247 		struct msghdr msg;
3248 
3249 		slen = min_t(int, len, skb_headlen(skb) - offset);
3250 		kv.iov_base = skb->data + offset;
3251 		kv.iov_len = slen;
3252 		memset(&msg, 0, sizeof(msg));
3253 		msg.msg_flags = MSG_DONTWAIT | flags;
3254 
3255 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3256 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3257 				      sendmsg_unlocked, sk, &msg);
3258 		if (ret <= 0)
3259 			goto error;
3260 
3261 		offset += ret;
3262 		len -= ret;
3263 	}
3264 
3265 	/* All the data was skb head? */
3266 	if (!len)
3267 		goto out;
3268 
3269 	/* Make offset relative to start of frags */
3270 	offset -= skb_headlen(skb);
3271 
3272 	/* Find where we are in frag list */
3273 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3274 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3275 
3276 		if (offset < skb_frag_size(frag))
3277 			break;
3278 
3279 		offset -= skb_frag_size(frag);
3280 	}
3281 
3282 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3283 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3284 
3285 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3286 
3287 		while (slen) {
3288 			struct bio_vec bvec;
3289 			struct msghdr msg = {
3290 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT |
3291 					     flags,
3292 			};
3293 
3294 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3295 				      skb_frag_off(frag) + offset);
3296 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3297 				      slen);
3298 
3299 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3300 					      sendmsg_unlocked, sk, &msg);
3301 			if (ret <= 0)
3302 				goto error;
3303 
3304 			len -= ret;
3305 			offset += ret;
3306 			slen -= ret;
3307 		}
3308 
3309 		offset = 0;
3310 	}
3311 
3312 	if (len) {
3313 		/* Process any frag lists */
3314 
3315 		if (skb == head) {
3316 			if (skb_has_frag_list(skb)) {
3317 				skb = skb_shinfo(skb)->frag_list;
3318 				goto do_frag_list;
3319 			}
3320 		} else if (skb->next) {
3321 			skb = skb->next;
3322 			goto do_frag_list;
3323 		}
3324 	}
3325 
3326 out:
3327 	return orig_len - len;
3328 
3329 error:
3330 	return orig_len == len ? ret : orig_len - len;
3331 }
3332 
3333 /* Send skb data on a socket. Socket must be locked. */
3334 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3335 			 int len)
3336 {
3337 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, 0);
3338 }
3339 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3340 
3341 int skb_send_sock_locked_with_flags(struct sock *sk, struct sk_buff *skb,
3342 				    int offset, int len, int flags)
3343 {
3344 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, flags);
3345 }
3346 EXPORT_SYMBOL_GPL(skb_send_sock_locked_with_flags);
3347 
3348 /* Send skb data on a socket. Socket must be unlocked. */
3349 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3350 {
3351 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 0);
3352 }
3353 
3354 /**
3355  *	skb_store_bits - store bits from kernel buffer to skb
3356  *	@skb: destination buffer
3357  *	@offset: offset in destination
3358  *	@from: source buffer
3359  *	@len: number of bytes to copy
3360  *
3361  *	Copy the specified number of bytes from the source buffer to the
3362  *	destination skb.  This function handles all the messy bits of
3363  *	traversing fragment lists and such.
3364  */
3365 
3366 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3367 {
3368 	int start = skb_headlen(skb);
3369 	struct sk_buff *frag_iter;
3370 	int i, copy;
3371 
3372 	if (offset > (int)skb->len - len)
3373 		goto fault;
3374 
3375 	if ((copy = start - offset) > 0) {
3376 		if (copy > len)
3377 			copy = len;
3378 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3379 		if ((len -= copy) == 0)
3380 			return 0;
3381 		offset += copy;
3382 		from += copy;
3383 	}
3384 
3385 	if (!skb_frags_readable(skb))
3386 		goto fault;
3387 
3388 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3389 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3390 		int end;
3391 
3392 		WARN_ON(start > offset + len);
3393 
3394 		end = start + skb_frag_size(frag);
3395 		if ((copy = end - offset) > 0) {
3396 			u32 p_off, p_len, copied;
3397 			struct page *p;
3398 			u8 *vaddr;
3399 
3400 			if (copy > len)
3401 				copy = len;
3402 
3403 			skb_frag_foreach_page(frag,
3404 					      skb_frag_off(frag) + offset - start,
3405 					      copy, p, p_off, p_len, copied) {
3406 				vaddr = kmap_atomic(p);
3407 				memcpy(vaddr + p_off, from + copied, p_len);
3408 				kunmap_atomic(vaddr);
3409 			}
3410 
3411 			if ((len -= copy) == 0)
3412 				return 0;
3413 			offset += copy;
3414 			from += copy;
3415 		}
3416 		start = end;
3417 	}
3418 
3419 	skb_walk_frags(skb, frag_iter) {
3420 		int end;
3421 
3422 		WARN_ON(start > offset + len);
3423 
3424 		end = start + frag_iter->len;
3425 		if ((copy = end - offset) > 0) {
3426 			if (copy > len)
3427 				copy = len;
3428 			if (skb_store_bits(frag_iter, offset - start,
3429 					   from, copy))
3430 				goto fault;
3431 			if ((len -= copy) == 0)
3432 				return 0;
3433 			offset += copy;
3434 			from += copy;
3435 		}
3436 		start = end;
3437 	}
3438 	if (!len)
3439 		return 0;
3440 
3441 fault:
3442 	return -EFAULT;
3443 }
3444 EXPORT_SYMBOL(skb_store_bits);
3445 
3446 /* Checksum skb data. */
3447 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3448 		      __wsum csum, const struct skb_checksum_ops *ops)
3449 {
3450 	int start = skb_headlen(skb);
3451 	int i, copy = start - offset;
3452 	struct sk_buff *frag_iter;
3453 	int pos = 0;
3454 
3455 	/* Checksum header. */
3456 	if (copy > 0) {
3457 		if (copy > len)
3458 			copy = len;
3459 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3460 				       skb->data + offset, copy, csum);
3461 		if ((len -= copy) == 0)
3462 			return csum;
3463 		offset += copy;
3464 		pos	= copy;
3465 	}
3466 
3467 	if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3468 		return 0;
3469 
3470 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3471 		int end;
3472 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3473 
3474 		WARN_ON(start > offset + len);
3475 
3476 		end = start + skb_frag_size(frag);
3477 		if ((copy = end - offset) > 0) {
3478 			u32 p_off, p_len, copied;
3479 			struct page *p;
3480 			__wsum csum2;
3481 			u8 *vaddr;
3482 
3483 			if (copy > len)
3484 				copy = len;
3485 
3486 			skb_frag_foreach_page(frag,
3487 					      skb_frag_off(frag) + offset - start,
3488 					      copy, p, p_off, p_len, copied) {
3489 				vaddr = kmap_atomic(p);
3490 				csum2 = INDIRECT_CALL_1(ops->update,
3491 							csum_partial_ext,
3492 							vaddr + p_off, p_len, 0);
3493 				kunmap_atomic(vaddr);
3494 				csum = INDIRECT_CALL_1(ops->combine,
3495 						       csum_block_add_ext, csum,
3496 						       csum2, pos, p_len);
3497 				pos += p_len;
3498 			}
3499 
3500 			if (!(len -= copy))
3501 				return csum;
3502 			offset += copy;
3503 		}
3504 		start = end;
3505 	}
3506 
3507 	skb_walk_frags(skb, frag_iter) {
3508 		int end;
3509 
3510 		WARN_ON(start > offset + len);
3511 
3512 		end = start + frag_iter->len;
3513 		if ((copy = end - offset) > 0) {
3514 			__wsum csum2;
3515 			if (copy > len)
3516 				copy = len;
3517 			csum2 = __skb_checksum(frag_iter, offset - start,
3518 					       copy, 0, ops);
3519 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3520 					       csum, csum2, pos, copy);
3521 			if ((len -= copy) == 0)
3522 				return csum;
3523 			offset += copy;
3524 			pos    += copy;
3525 		}
3526 		start = end;
3527 	}
3528 	BUG_ON(len);
3529 
3530 	return csum;
3531 }
3532 EXPORT_SYMBOL(__skb_checksum);
3533 
3534 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3535 		    int len, __wsum csum)
3536 {
3537 	const struct skb_checksum_ops ops = {
3538 		.update  = csum_partial_ext,
3539 		.combine = csum_block_add_ext,
3540 	};
3541 
3542 	return __skb_checksum(skb, offset, len, csum, &ops);
3543 }
3544 EXPORT_SYMBOL(skb_checksum);
3545 
3546 /* Both of above in one bottle. */
3547 
3548 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3549 				    u8 *to, int len)
3550 {
3551 	int start = skb_headlen(skb);
3552 	int i, copy = start - offset;
3553 	struct sk_buff *frag_iter;
3554 	int pos = 0;
3555 	__wsum csum = 0;
3556 
3557 	/* Copy header. */
3558 	if (copy > 0) {
3559 		if (copy > len)
3560 			copy = len;
3561 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3562 						 copy);
3563 		if ((len -= copy) == 0)
3564 			return csum;
3565 		offset += copy;
3566 		to     += copy;
3567 		pos	= copy;
3568 	}
3569 
3570 	if (!skb_frags_readable(skb))
3571 		return 0;
3572 
3573 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3574 		int end;
3575 
3576 		WARN_ON(start > offset + len);
3577 
3578 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3579 		if ((copy = end - offset) > 0) {
3580 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3581 			u32 p_off, p_len, copied;
3582 			struct page *p;
3583 			__wsum csum2;
3584 			u8 *vaddr;
3585 
3586 			if (copy > len)
3587 				copy = len;
3588 
3589 			skb_frag_foreach_page(frag,
3590 					      skb_frag_off(frag) + offset - start,
3591 					      copy, p, p_off, p_len, copied) {
3592 				vaddr = kmap_atomic(p);
3593 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3594 								  to + copied,
3595 								  p_len);
3596 				kunmap_atomic(vaddr);
3597 				csum = csum_block_add(csum, csum2, pos);
3598 				pos += p_len;
3599 			}
3600 
3601 			if (!(len -= copy))
3602 				return csum;
3603 			offset += copy;
3604 			to     += copy;
3605 		}
3606 		start = end;
3607 	}
3608 
3609 	skb_walk_frags(skb, frag_iter) {
3610 		__wsum csum2;
3611 		int end;
3612 
3613 		WARN_ON(start > offset + len);
3614 
3615 		end = start + frag_iter->len;
3616 		if ((copy = end - offset) > 0) {
3617 			if (copy > len)
3618 				copy = len;
3619 			csum2 = skb_copy_and_csum_bits(frag_iter,
3620 						       offset - start,
3621 						       to, copy);
3622 			csum = csum_block_add(csum, csum2, pos);
3623 			if ((len -= copy) == 0)
3624 				return csum;
3625 			offset += copy;
3626 			to     += copy;
3627 			pos    += copy;
3628 		}
3629 		start = end;
3630 	}
3631 	BUG_ON(len);
3632 	return csum;
3633 }
3634 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3635 
3636 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3637 {
3638 	__sum16 sum;
3639 
3640 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3641 	/* See comments in __skb_checksum_complete(). */
3642 	if (likely(!sum)) {
3643 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3644 		    !skb->csum_complete_sw)
3645 			netdev_rx_csum_fault(skb->dev, skb);
3646 	}
3647 	if (!skb_shared(skb))
3648 		skb->csum_valid = !sum;
3649 	return sum;
3650 }
3651 EXPORT_SYMBOL(__skb_checksum_complete_head);
3652 
3653 /* This function assumes skb->csum already holds pseudo header's checksum,
3654  * which has been changed from the hardware checksum, for example, by
3655  * __skb_checksum_validate_complete(). And, the original skb->csum must
3656  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3657  *
3658  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3659  * zero. The new checksum is stored back into skb->csum unless the skb is
3660  * shared.
3661  */
3662 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3663 {
3664 	__wsum csum;
3665 	__sum16 sum;
3666 
3667 	csum = skb_checksum(skb, 0, skb->len, 0);
3668 
3669 	sum = csum_fold(csum_add(skb->csum, csum));
3670 	/* This check is inverted, because we already knew the hardware
3671 	 * checksum is invalid before calling this function. So, if the
3672 	 * re-computed checksum is valid instead, then we have a mismatch
3673 	 * between the original skb->csum and skb_checksum(). This means either
3674 	 * the original hardware checksum is incorrect or we screw up skb->csum
3675 	 * when moving skb->data around.
3676 	 */
3677 	if (likely(!sum)) {
3678 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3679 		    !skb->csum_complete_sw)
3680 			netdev_rx_csum_fault(skb->dev, skb);
3681 	}
3682 
3683 	if (!skb_shared(skb)) {
3684 		/* Save full packet checksum */
3685 		skb->csum = csum;
3686 		skb->ip_summed = CHECKSUM_COMPLETE;
3687 		skb->csum_complete_sw = 1;
3688 		skb->csum_valid = !sum;
3689 	}
3690 
3691 	return sum;
3692 }
3693 EXPORT_SYMBOL(__skb_checksum_complete);
3694 
3695 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3696 {
3697 	net_warn_ratelimited(
3698 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3699 		__func__);
3700 	return 0;
3701 }
3702 
3703 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3704 				       int offset, int len)
3705 {
3706 	net_warn_ratelimited(
3707 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3708 		__func__);
3709 	return 0;
3710 }
3711 
3712 static const struct skb_checksum_ops default_crc32c_ops = {
3713 	.update  = warn_crc32c_csum_update,
3714 	.combine = warn_crc32c_csum_combine,
3715 };
3716 
3717 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3718 	&default_crc32c_ops;
3719 EXPORT_SYMBOL(crc32c_csum_stub);
3720 
3721  /**
3722  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3723  *	@from: source buffer
3724  *
3725  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3726  *	into skb_zerocopy().
3727  */
3728 unsigned int
3729 skb_zerocopy_headlen(const struct sk_buff *from)
3730 {
3731 	unsigned int hlen = 0;
3732 
3733 	if (!from->head_frag ||
3734 	    skb_headlen(from) < L1_CACHE_BYTES ||
3735 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3736 		hlen = skb_headlen(from);
3737 		if (!hlen)
3738 			hlen = from->len;
3739 	}
3740 
3741 	if (skb_has_frag_list(from))
3742 		hlen = from->len;
3743 
3744 	return hlen;
3745 }
3746 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3747 
3748 /**
3749  *	skb_zerocopy - Zero copy skb to skb
3750  *	@to: destination buffer
3751  *	@from: source buffer
3752  *	@len: number of bytes to copy from source buffer
3753  *	@hlen: size of linear headroom in destination buffer
3754  *
3755  *	Copies up to `len` bytes from `from` to `to` by creating references
3756  *	to the frags in the source buffer.
3757  *
3758  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3759  *	headroom in the `to` buffer.
3760  *
3761  *	Return value:
3762  *	0: everything is OK
3763  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3764  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3765  */
3766 int
3767 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3768 {
3769 	int i, j = 0;
3770 	int plen = 0; /* length of skb->head fragment */
3771 	int ret;
3772 	struct page *page;
3773 	unsigned int offset;
3774 
3775 	BUG_ON(!from->head_frag && !hlen);
3776 
3777 	/* dont bother with small payloads */
3778 	if (len <= skb_tailroom(to))
3779 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3780 
3781 	if (hlen) {
3782 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3783 		if (unlikely(ret))
3784 			return ret;
3785 		len -= hlen;
3786 	} else {
3787 		plen = min_t(int, skb_headlen(from), len);
3788 		if (plen) {
3789 			page = virt_to_head_page(from->head);
3790 			offset = from->data - (unsigned char *)page_address(page);
3791 			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3792 					       offset, plen);
3793 			get_page(page);
3794 			j = 1;
3795 			len -= plen;
3796 		}
3797 	}
3798 
3799 	skb_len_add(to, len + plen);
3800 
3801 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3802 		skb_tx_error(from);
3803 		return -ENOMEM;
3804 	}
3805 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3806 
3807 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3808 		int size;
3809 
3810 		if (!len)
3811 			break;
3812 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3813 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3814 					len);
3815 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3816 		len -= size;
3817 		skb_frag_ref(to, j);
3818 		j++;
3819 	}
3820 	skb_shinfo(to)->nr_frags = j;
3821 
3822 	return 0;
3823 }
3824 EXPORT_SYMBOL_GPL(skb_zerocopy);
3825 
3826 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3827 {
3828 	__wsum csum;
3829 	long csstart;
3830 
3831 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3832 		csstart = skb_checksum_start_offset(skb);
3833 	else
3834 		csstart = skb_headlen(skb);
3835 
3836 	BUG_ON(csstart > skb_headlen(skb));
3837 
3838 	skb_copy_from_linear_data(skb, to, csstart);
3839 
3840 	csum = 0;
3841 	if (csstart != skb->len)
3842 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3843 					      skb->len - csstart);
3844 
3845 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3846 		long csstuff = csstart + skb->csum_offset;
3847 
3848 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3849 	}
3850 }
3851 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3852 
3853 /**
3854  *	skb_dequeue - remove from the head of the queue
3855  *	@list: list to dequeue from
3856  *
3857  *	Remove the head of the list. The list lock is taken so the function
3858  *	may be used safely with other locking list functions. The head item is
3859  *	returned or %NULL if the list is empty.
3860  */
3861 
3862 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3863 {
3864 	unsigned long flags;
3865 	struct sk_buff *result;
3866 
3867 	spin_lock_irqsave(&list->lock, flags);
3868 	result = __skb_dequeue(list);
3869 	spin_unlock_irqrestore(&list->lock, flags);
3870 	return result;
3871 }
3872 EXPORT_SYMBOL(skb_dequeue);
3873 
3874 /**
3875  *	skb_dequeue_tail - remove from the tail of the queue
3876  *	@list: list to dequeue from
3877  *
3878  *	Remove the tail of the list. The list lock is taken so the function
3879  *	may be used safely with other locking list functions. The tail item is
3880  *	returned or %NULL if the list is empty.
3881  */
3882 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3883 {
3884 	unsigned long flags;
3885 	struct sk_buff *result;
3886 
3887 	spin_lock_irqsave(&list->lock, flags);
3888 	result = __skb_dequeue_tail(list);
3889 	spin_unlock_irqrestore(&list->lock, flags);
3890 	return result;
3891 }
3892 EXPORT_SYMBOL(skb_dequeue_tail);
3893 
3894 /**
3895  *	skb_queue_purge_reason - empty a list
3896  *	@list: list to empty
3897  *	@reason: drop reason
3898  *
3899  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3900  *	the list and one reference dropped. This function takes the list
3901  *	lock and is atomic with respect to other list locking functions.
3902  */
3903 void skb_queue_purge_reason(struct sk_buff_head *list,
3904 			    enum skb_drop_reason reason)
3905 {
3906 	struct sk_buff_head tmp;
3907 	unsigned long flags;
3908 
3909 	if (skb_queue_empty_lockless(list))
3910 		return;
3911 
3912 	__skb_queue_head_init(&tmp);
3913 
3914 	spin_lock_irqsave(&list->lock, flags);
3915 	skb_queue_splice_init(list, &tmp);
3916 	spin_unlock_irqrestore(&list->lock, flags);
3917 
3918 	__skb_queue_purge_reason(&tmp, reason);
3919 }
3920 EXPORT_SYMBOL(skb_queue_purge_reason);
3921 
3922 /**
3923  *	skb_rbtree_purge - empty a skb rbtree
3924  *	@root: root of the rbtree to empty
3925  *	Return value: the sum of truesizes of all purged skbs.
3926  *
3927  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3928  *	the list and one reference dropped. This function does not take
3929  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3930  *	out-of-order queue is protected by the socket lock).
3931  */
3932 unsigned int skb_rbtree_purge(struct rb_root *root)
3933 {
3934 	struct rb_node *p = rb_first(root);
3935 	unsigned int sum = 0;
3936 
3937 	while (p) {
3938 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3939 
3940 		p = rb_next(p);
3941 		rb_erase(&skb->rbnode, root);
3942 		sum += skb->truesize;
3943 		kfree_skb(skb);
3944 	}
3945 	return sum;
3946 }
3947 
3948 void skb_errqueue_purge(struct sk_buff_head *list)
3949 {
3950 	struct sk_buff *skb, *next;
3951 	struct sk_buff_head kill;
3952 	unsigned long flags;
3953 
3954 	__skb_queue_head_init(&kill);
3955 
3956 	spin_lock_irqsave(&list->lock, flags);
3957 	skb_queue_walk_safe(list, skb, next) {
3958 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3959 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3960 			continue;
3961 		__skb_unlink(skb, list);
3962 		__skb_queue_tail(&kill, skb);
3963 	}
3964 	spin_unlock_irqrestore(&list->lock, flags);
3965 	__skb_queue_purge(&kill);
3966 }
3967 EXPORT_SYMBOL(skb_errqueue_purge);
3968 
3969 /**
3970  *	skb_queue_head - queue a buffer at the list head
3971  *	@list: list to use
3972  *	@newsk: buffer to queue
3973  *
3974  *	Queue a buffer at the start of the list. This function takes the
3975  *	list lock and can be used safely with other locking &sk_buff functions
3976  *	safely.
3977  *
3978  *	A buffer cannot be placed on two lists at the same time.
3979  */
3980 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3981 {
3982 	unsigned long flags;
3983 
3984 	spin_lock_irqsave(&list->lock, flags);
3985 	__skb_queue_head(list, newsk);
3986 	spin_unlock_irqrestore(&list->lock, flags);
3987 }
3988 EXPORT_SYMBOL(skb_queue_head);
3989 
3990 /**
3991  *	skb_queue_tail - queue a buffer at the list tail
3992  *	@list: list to use
3993  *	@newsk: buffer to queue
3994  *
3995  *	Queue a buffer at the tail of the list. This function takes the
3996  *	list lock and can be used safely with other locking &sk_buff functions
3997  *	safely.
3998  *
3999  *	A buffer cannot be placed on two lists at the same time.
4000  */
4001 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
4002 {
4003 	unsigned long flags;
4004 
4005 	spin_lock_irqsave(&list->lock, flags);
4006 	__skb_queue_tail(list, newsk);
4007 	spin_unlock_irqrestore(&list->lock, flags);
4008 }
4009 EXPORT_SYMBOL(skb_queue_tail);
4010 
4011 /**
4012  *	skb_unlink	-	remove a buffer from a list
4013  *	@skb: buffer to remove
4014  *	@list: list to use
4015  *
4016  *	Remove a packet from a list. The list locks are taken and this
4017  *	function is atomic with respect to other list locked calls
4018  *
4019  *	You must know what list the SKB is on.
4020  */
4021 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
4022 {
4023 	unsigned long flags;
4024 
4025 	spin_lock_irqsave(&list->lock, flags);
4026 	__skb_unlink(skb, list);
4027 	spin_unlock_irqrestore(&list->lock, flags);
4028 }
4029 EXPORT_SYMBOL(skb_unlink);
4030 
4031 /**
4032  *	skb_append	-	append a buffer
4033  *	@old: buffer to insert after
4034  *	@newsk: buffer to insert
4035  *	@list: list to use
4036  *
4037  *	Place a packet after a given packet in a list. The list locks are taken
4038  *	and this function is atomic with respect to other list locked calls.
4039  *	A buffer cannot be placed on two lists at the same time.
4040  */
4041 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4042 {
4043 	unsigned long flags;
4044 
4045 	spin_lock_irqsave(&list->lock, flags);
4046 	__skb_queue_after(list, old, newsk);
4047 	spin_unlock_irqrestore(&list->lock, flags);
4048 }
4049 EXPORT_SYMBOL(skb_append);
4050 
4051 static inline void skb_split_inside_header(struct sk_buff *skb,
4052 					   struct sk_buff* skb1,
4053 					   const u32 len, const int pos)
4054 {
4055 	int i;
4056 
4057 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4058 					 pos - len);
4059 	/* And move data appendix as is. */
4060 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4061 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4062 
4063 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4064 	skb1->unreadable	   = skb->unreadable;
4065 	skb_shinfo(skb)->nr_frags  = 0;
4066 	skb1->data_len		   = skb->data_len;
4067 	skb1->len		   += skb1->data_len;
4068 	skb->data_len		   = 0;
4069 	skb->len		   = len;
4070 	skb_set_tail_pointer(skb, len);
4071 }
4072 
4073 static inline void skb_split_no_header(struct sk_buff *skb,
4074 				       struct sk_buff* skb1,
4075 				       const u32 len, int pos)
4076 {
4077 	int i, k = 0;
4078 	const int nfrags = skb_shinfo(skb)->nr_frags;
4079 
4080 	skb_shinfo(skb)->nr_frags = 0;
4081 	skb1->len		  = skb1->data_len = skb->len - len;
4082 	skb->len		  = len;
4083 	skb->data_len		  = len - pos;
4084 
4085 	for (i = 0; i < nfrags; i++) {
4086 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4087 
4088 		if (pos + size > len) {
4089 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4090 
4091 			if (pos < len) {
4092 				/* Split frag.
4093 				 * We have two variants in this case:
4094 				 * 1. Move all the frag to the second
4095 				 *    part, if it is possible. F.e.
4096 				 *    this approach is mandatory for TUX,
4097 				 *    where splitting is expensive.
4098 				 * 2. Split is accurately. We make this.
4099 				 */
4100 				skb_frag_ref(skb, i);
4101 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4102 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4103 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4104 				skb_shinfo(skb)->nr_frags++;
4105 			}
4106 			k++;
4107 		} else
4108 			skb_shinfo(skb)->nr_frags++;
4109 		pos += size;
4110 	}
4111 	skb_shinfo(skb1)->nr_frags = k;
4112 
4113 	skb1->unreadable = skb->unreadable;
4114 }
4115 
4116 /**
4117  * skb_split - Split fragmented skb to two parts at length len.
4118  * @skb: the buffer to split
4119  * @skb1: the buffer to receive the second part
4120  * @len: new length for skb
4121  */
4122 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4123 {
4124 	int pos = skb_headlen(skb);
4125 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4126 
4127 	skb_zcopy_downgrade_managed(skb);
4128 
4129 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4130 	skb_zerocopy_clone(skb1, skb, 0);
4131 	if (len < pos)	/* Split line is inside header. */
4132 		skb_split_inside_header(skb, skb1, len, pos);
4133 	else		/* Second chunk has no header, nothing to copy. */
4134 		skb_split_no_header(skb, skb1, len, pos);
4135 }
4136 EXPORT_SYMBOL(skb_split);
4137 
4138 /* Shifting from/to a cloned skb is a no-go.
4139  *
4140  * Caller cannot keep skb_shinfo related pointers past calling here!
4141  */
4142 static int skb_prepare_for_shift(struct sk_buff *skb)
4143 {
4144 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4145 }
4146 
4147 /**
4148  * skb_shift - Shifts paged data partially from skb to another
4149  * @tgt: buffer into which tail data gets added
4150  * @skb: buffer from which the paged data comes from
4151  * @shiftlen: shift up to this many bytes
4152  *
4153  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4154  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4155  * It's up to caller to free skb if everything was shifted.
4156  *
4157  * If @tgt runs out of frags, the whole operation is aborted.
4158  *
4159  * Skb cannot include anything else but paged data while tgt is allowed
4160  * to have non-paged data as well.
4161  *
4162  * TODO: full sized shift could be optimized but that would need
4163  * specialized skb free'er to handle frags without up-to-date nr_frags.
4164  */
4165 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4166 {
4167 	int from, to, merge, todo;
4168 	skb_frag_t *fragfrom, *fragto;
4169 
4170 	BUG_ON(shiftlen > skb->len);
4171 
4172 	if (skb_headlen(skb))
4173 		return 0;
4174 	if (skb_zcopy(tgt) || skb_zcopy(skb))
4175 		return 0;
4176 
4177 	DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle);
4178 	DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb));
4179 
4180 	todo = shiftlen;
4181 	from = 0;
4182 	to = skb_shinfo(tgt)->nr_frags;
4183 	fragfrom = &skb_shinfo(skb)->frags[from];
4184 
4185 	/* Actual merge is delayed until the point when we know we can
4186 	 * commit all, so that we don't have to undo partial changes
4187 	 */
4188 	if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4189 			      skb_frag_off(fragfrom))) {
4190 		merge = -1;
4191 	} else {
4192 		merge = to - 1;
4193 
4194 		todo -= skb_frag_size(fragfrom);
4195 		if (todo < 0) {
4196 			if (skb_prepare_for_shift(skb) ||
4197 			    skb_prepare_for_shift(tgt))
4198 				return 0;
4199 
4200 			/* All previous frag pointers might be stale! */
4201 			fragfrom = &skb_shinfo(skb)->frags[from];
4202 			fragto = &skb_shinfo(tgt)->frags[merge];
4203 
4204 			skb_frag_size_add(fragto, shiftlen);
4205 			skb_frag_size_sub(fragfrom, shiftlen);
4206 			skb_frag_off_add(fragfrom, shiftlen);
4207 
4208 			goto onlymerged;
4209 		}
4210 
4211 		from++;
4212 	}
4213 
4214 	/* Skip full, not-fitting skb to avoid expensive operations */
4215 	if ((shiftlen == skb->len) &&
4216 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4217 		return 0;
4218 
4219 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4220 		return 0;
4221 
4222 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4223 		if (to == MAX_SKB_FRAGS)
4224 			return 0;
4225 
4226 		fragfrom = &skb_shinfo(skb)->frags[from];
4227 		fragto = &skb_shinfo(tgt)->frags[to];
4228 
4229 		if (todo >= skb_frag_size(fragfrom)) {
4230 			*fragto = *fragfrom;
4231 			todo -= skb_frag_size(fragfrom);
4232 			from++;
4233 			to++;
4234 
4235 		} else {
4236 			__skb_frag_ref(fragfrom);
4237 			skb_frag_page_copy(fragto, fragfrom);
4238 			skb_frag_off_copy(fragto, fragfrom);
4239 			skb_frag_size_set(fragto, todo);
4240 
4241 			skb_frag_off_add(fragfrom, todo);
4242 			skb_frag_size_sub(fragfrom, todo);
4243 			todo = 0;
4244 
4245 			to++;
4246 			break;
4247 		}
4248 	}
4249 
4250 	/* Ready to "commit" this state change to tgt */
4251 	skb_shinfo(tgt)->nr_frags = to;
4252 
4253 	if (merge >= 0) {
4254 		fragfrom = &skb_shinfo(skb)->frags[0];
4255 		fragto = &skb_shinfo(tgt)->frags[merge];
4256 
4257 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4258 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4259 	}
4260 
4261 	/* Reposition in the original skb */
4262 	to = 0;
4263 	while (from < skb_shinfo(skb)->nr_frags)
4264 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4265 	skb_shinfo(skb)->nr_frags = to;
4266 
4267 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4268 
4269 onlymerged:
4270 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4271 	 * the other hand might need it if it needs to be resent
4272 	 */
4273 	tgt->ip_summed = CHECKSUM_PARTIAL;
4274 	skb->ip_summed = CHECKSUM_PARTIAL;
4275 
4276 	skb_len_add(skb, -shiftlen);
4277 	skb_len_add(tgt, shiftlen);
4278 
4279 	return shiftlen;
4280 }
4281 
4282 /**
4283  * skb_prepare_seq_read - Prepare a sequential read of skb data
4284  * @skb: the buffer to read
4285  * @from: lower offset of data to be read
4286  * @to: upper offset of data to be read
4287  * @st: state variable
4288  *
4289  * Initializes the specified state variable. Must be called before
4290  * invoking skb_seq_read() for the first time.
4291  */
4292 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4293 			  unsigned int to, struct skb_seq_state *st)
4294 {
4295 	st->lower_offset = from;
4296 	st->upper_offset = to;
4297 	st->root_skb = st->cur_skb = skb;
4298 	st->frag_idx = st->stepped_offset = 0;
4299 	st->frag_data = NULL;
4300 	st->frag_off = 0;
4301 }
4302 EXPORT_SYMBOL(skb_prepare_seq_read);
4303 
4304 /**
4305  * skb_seq_read - Sequentially read skb data
4306  * @consumed: number of bytes consumed by the caller so far
4307  * @data: destination pointer for data to be returned
4308  * @st: state variable
4309  *
4310  * Reads a block of skb data at @consumed relative to the
4311  * lower offset specified to skb_prepare_seq_read(). Assigns
4312  * the head of the data block to @data and returns the length
4313  * of the block or 0 if the end of the skb data or the upper
4314  * offset has been reached.
4315  *
4316  * The caller is not required to consume all of the data
4317  * returned, i.e. @consumed is typically set to the number
4318  * of bytes already consumed and the next call to
4319  * skb_seq_read() will return the remaining part of the block.
4320  *
4321  * Note 1: The size of each block of data returned can be arbitrary,
4322  *       this limitation is the cost for zerocopy sequential
4323  *       reads of potentially non linear data.
4324  *
4325  * Note 2: Fragment lists within fragments are not implemented
4326  *       at the moment, state->root_skb could be replaced with
4327  *       a stack for this purpose.
4328  */
4329 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4330 			  struct skb_seq_state *st)
4331 {
4332 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4333 	skb_frag_t *frag;
4334 
4335 	if (unlikely(abs_offset >= st->upper_offset)) {
4336 		if (st->frag_data) {
4337 			kunmap_atomic(st->frag_data);
4338 			st->frag_data = NULL;
4339 		}
4340 		return 0;
4341 	}
4342 
4343 next_skb:
4344 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4345 
4346 	if (abs_offset < block_limit && !st->frag_data) {
4347 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4348 		return block_limit - abs_offset;
4349 	}
4350 
4351 	if (!skb_frags_readable(st->cur_skb))
4352 		return 0;
4353 
4354 	if (st->frag_idx == 0 && !st->frag_data)
4355 		st->stepped_offset += skb_headlen(st->cur_skb);
4356 
4357 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4358 		unsigned int pg_idx, pg_off, pg_sz;
4359 
4360 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4361 
4362 		pg_idx = 0;
4363 		pg_off = skb_frag_off(frag);
4364 		pg_sz = skb_frag_size(frag);
4365 
4366 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4367 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4368 			pg_off = offset_in_page(pg_off + st->frag_off);
4369 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4370 						    PAGE_SIZE - pg_off);
4371 		}
4372 
4373 		block_limit = pg_sz + st->stepped_offset;
4374 		if (abs_offset < block_limit) {
4375 			if (!st->frag_data)
4376 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4377 
4378 			*data = (u8 *)st->frag_data + pg_off +
4379 				(abs_offset - st->stepped_offset);
4380 
4381 			return block_limit - abs_offset;
4382 		}
4383 
4384 		if (st->frag_data) {
4385 			kunmap_atomic(st->frag_data);
4386 			st->frag_data = NULL;
4387 		}
4388 
4389 		st->stepped_offset += pg_sz;
4390 		st->frag_off += pg_sz;
4391 		if (st->frag_off == skb_frag_size(frag)) {
4392 			st->frag_off = 0;
4393 			st->frag_idx++;
4394 		}
4395 	}
4396 
4397 	if (st->frag_data) {
4398 		kunmap_atomic(st->frag_data);
4399 		st->frag_data = NULL;
4400 	}
4401 
4402 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4403 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4404 		st->frag_idx = 0;
4405 		goto next_skb;
4406 	} else if (st->cur_skb->next) {
4407 		st->cur_skb = st->cur_skb->next;
4408 		st->frag_idx = 0;
4409 		goto next_skb;
4410 	}
4411 
4412 	return 0;
4413 }
4414 EXPORT_SYMBOL(skb_seq_read);
4415 
4416 /**
4417  * skb_abort_seq_read - Abort a sequential read of skb data
4418  * @st: state variable
4419  *
4420  * Must be called if skb_seq_read() was not called until it
4421  * returned 0.
4422  */
4423 void skb_abort_seq_read(struct skb_seq_state *st)
4424 {
4425 	if (st->frag_data)
4426 		kunmap_atomic(st->frag_data);
4427 }
4428 EXPORT_SYMBOL(skb_abort_seq_read);
4429 
4430 /**
4431  * skb_copy_seq_read() - copy from a skb_seq_state to a buffer
4432  * @st: source skb_seq_state
4433  * @offset: offset in source
4434  * @to: destination buffer
4435  * @len: number of bytes to copy
4436  *
4437  * Copy @len bytes from @offset bytes into the source @st to the destination
4438  * buffer @to. `offset` should increase (or be unchanged) with each subsequent
4439  * call to this function. If offset needs to decrease from the previous use `st`
4440  * should be reset first.
4441  *
4442  * Return: 0 on success or -EINVAL if the copy ended early
4443  */
4444 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len)
4445 {
4446 	const u8 *data;
4447 	u32 sqlen;
4448 
4449 	for (;;) {
4450 		sqlen = skb_seq_read(offset, &data, st);
4451 		if (sqlen == 0)
4452 			return -EINVAL;
4453 		if (sqlen >= len) {
4454 			memcpy(to, data, len);
4455 			return 0;
4456 		}
4457 		memcpy(to, data, sqlen);
4458 		to += sqlen;
4459 		offset += sqlen;
4460 		len -= sqlen;
4461 	}
4462 }
4463 EXPORT_SYMBOL(skb_copy_seq_read);
4464 
4465 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4466 
4467 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4468 					  struct ts_config *conf,
4469 					  struct ts_state *state)
4470 {
4471 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4472 }
4473 
4474 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4475 {
4476 	skb_abort_seq_read(TS_SKB_CB(state));
4477 }
4478 
4479 /**
4480  * skb_find_text - Find a text pattern in skb data
4481  * @skb: the buffer to look in
4482  * @from: search offset
4483  * @to: search limit
4484  * @config: textsearch configuration
4485  *
4486  * Finds a pattern in the skb data according to the specified
4487  * textsearch configuration. Use textsearch_next() to retrieve
4488  * subsequent occurrences of the pattern. Returns the offset
4489  * to the first occurrence or UINT_MAX if no match was found.
4490  */
4491 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4492 			   unsigned int to, struct ts_config *config)
4493 {
4494 	unsigned int patlen = config->ops->get_pattern_len(config);
4495 	struct ts_state state;
4496 	unsigned int ret;
4497 
4498 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4499 
4500 	config->get_next_block = skb_ts_get_next_block;
4501 	config->finish = skb_ts_finish;
4502 
4503 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4504 
4505 	ret = textsearch_find(config, &state);
4506 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4507 }
4508 EXPORT_SYMBOL(skb_find_text);
4509 
4510 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4511 			 int offset, size_t size, size_t max_frags)
4512 {
4513 	int i = skb_shinfo(skb)->nr_frags;
4514 
4515 	if (skb_can_coalesce(skb, i, page, offset)) {
4516 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4517 	} else if (i < max_frags) {
4518 		skb_zcopy_downgrade_managed(skb);
4519 		get_page(page);
4520 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4521 	} else {
4522 		return -EMSGSIZE;
4523 	}
4524 
4525 	return 0;
4526 }
4527 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4528 
4529 /**
4530  *	skb_pull_rcsum - pull skb and update receive checksum
4531  *	@skb: buffer to update
4532  *	@len: length of data pulled
4533  *
4534  *	This function performs an skb_pull on the packet and updates
4535  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4536  *	receive path processing instead of skb_pull unless you know
4537  *	that the checksum difference is zero (e.g., a valid IP header)
4538  *	or you are setting ip_summed to CHECKSUM_NONE.
4539  */
4540 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4541 {
4542 	unsigned char *data = skb->data;
4543 
4544 	BUG_ON(len > skb->len);
4545 	__skb_pull(skb, len);
4546 	skb_postpull_rcsum(skb, data, len);
4547 	return skb->data;
4548 }
4549 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4550 
4551 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4552 {
4553 	skb_frag_t head_frag;
4554 	struct page *page;
4555 
4556 	page = virt_to_head_page(frag_skb->head);
4557 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4558 				(unsigned char *)page_address(page),
4559 				skb_headlen(frag_skb));
4560 	return head_frag;
4561 }
4562 
4563 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4564 				 netdev_features_t features,
4565 				 unsigned int offset)
4566 {
4567 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4568 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4569 	unsigned int delta_truesize = 0;
4570 	unsigned int delta_len = 0;
4571 	struct sk_buff *tail = NULL;
4572 	struct sk_buff *nskb, *tmp;
4573 	int len_diff, err;
4574 
4575 	skb_push(skb, -skb_network_offset(skb) + offset);
4576 
4577 	/* Ensure the head is writeable before touching the shared info */
4578 	err = skb_unclone(skb, GFP_ATOMIC);
4579 	if (err)
4580 		goto err_linearize;
4581 
4582 	skb_shinfo(skb)->frag_list = NULL;
4583 
4584 	while (list_skb) {
4585 		nskb = list_skb;
4586 		list_skb = list_skb->next;
4587 
4588 		err = 0;
4589 		delta_truesize += nskb->truesize;
4590 		if (skb_shared(nskb)) {
4591 			tmp = skb_clone(nskb, GFP_ATOMIC);
4592 			if (tmp) {
4593 				consume_skb(nskb);
4594 				nskb = tmp;
4595 				err = skb_unclone(nskb, GFP_ATOMIC);
4596 			} else {
4597 				err = -ENOMEM;
4598 			}
4599 		}
4600 
4601 		if (!tail)
4602 			skb->next = nskb;
4603 		else
4604 			tail->next = nskb;
4605 
4606 		if (unlikely(err)) {
4607 			nskb->next = list_skb;
4608 			goto err_linearize;
4609 		}
4610 
4611 		tail = nskb;
4612 
4613 		delta_len += nskb->len;
4614 
4615 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4616 
4617 		skb_release_head_state(nskb);
4618 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4619 		__copy_skb_header(nskb, skb);
4620 
4621 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4622 		nskb->transport_header += len_diff;
4623 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4624 						 nskb->data - tnl_hlen,
4625 						 offset + tnl_hlen);
4626 
4627 		if (skb_needs_linearize(nskb, features) &&
4628 		    __skb_linearize(nskb))
4629 			goto err_linearize;
4630 	}
4631 
4632 	skb->truesize = skb->truesize - delta_truesize;
4633 	skb->data_len = skb->data_len - delta_len;
4634 	skb->len = skb->len - delta_len;
4635 
4636 	skb_gso_reset(skb);
4637 
4638 	skb->prev = tail;
4639 
4640 	if (skb_needs_linearize(skb, features) &&
4641 	    __skb_linearize(skb))
4642 		goto err_linearize;
4643 
4644 	skb_get(skb);
4645 
4646 	return skb;
4647 
4648 err_linearize:
4649 	kfree_skb_list(skb->next);
4650 	skb->next = NULL;
4651 	return ERR_PTR(-ENOMEM);
4652 }
4653 EXPORT_SYMBOL_GPL(skb_segment_list);
4654 
4655 /**
4656  *	skb_segment - Perform protocol segmentation on skb.
4657  *	@head_skb: buffer to segment
4658  *	@features: features for the output path (see dev->features)
4659  *
4660  *	This function performs segmentation on the given skb.  It returns
4661  *	a pointer to the first in a list of new skbs for the segments.
4662  *	In case of error it returns ERR_PTR(err).
4663  */
4664 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4665 			    netdev_features_t features)
4666 {
4667 	struct sk_buff *segs = NULL;
4668 	struct sk_buff *tail = NULL;
4669 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4670 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4671 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4672 	unsigned int offset = doffset;
4673 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4674 	unsigned int partial_segs = 0;
4675 	unsigned int headroom;
4676 	unsigned int len = head_skb->len;
4677 	struct sk_buff *frag_skb;
4678 	skb_frag_t *frag;
4679 	__be16 proto;
4680 	bool csum, sg;
4681 	int err = -ENOMEM;
4682 	int i = 0;
4683 	int nfrags, pos;
4684 
4685 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4686 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4687 		struct sk_buff *check_skb;
4688 
4689 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4690 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4691 				/* gso_size is untrusted, and we have a frag_list with
4692 				 * a linear non head_frag item.
4693 				 *
4694 				 * If head_skb's headlen does not fit requested gso_size,
4695 				 * it means that the frag_list members do NOT terminate
4696 				 * on exact gso_size boundaries. Hence we cannot perform
4697 				 * skb_frag_t page sharing. Therefore we must fallback to
4698 				 * copying the frag_list skbs; we do so by disabling SG.
4699 				 */
4700 				features &= ~NETIF_F_SG;
4701 				break;
4702 			}
4703 		}
4704 	}
4705 
4706 	__skb_push(head_skb, doffset);
4707 	proto = skb_network_protocol(head_skb, NULL);
4708 	if (unlikely(!proto))
4709 		return ERR_PTR(-EINVAL);
4710 
4711 	sg = !!(features & NETIF_F_SG);
4712 	csum = !!can_checksum_protocol(features, proto);
4713 
4714 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4715 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4716 			struct sk_buff *iter;
4717 			unsigned int frag_len;
4718 
4719 			if (!list_skb ||
4720 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4721 				goto normal;
4722 
4723 			/* If we get here then all the required
4724 			 * GSO features except frag_list are supported.
4725 			 * Try to split the SKB to multiple GSO SKBs
4726 			 * with no frag_list.
4727 			 * Currently we can do that only when the buffers don't
4728 			 * have a linear part and all the buffers except
4729 			 * the last are of the same length.
4730 			 */
4731 			frag_len = list_skb->len;
4732 			skb_walk_frags(head_skb, iter) {
4733 				if (frag_len != iter->len && iter->next)
4734 					goto normal;
4735 				if (skb_headlen(iter) && !iter->head_frag)
4736 					goto normal;
4737 
4738 				len -= iter->len;
4739 			}
4740 
4741 			if (len != frag_len)
4742 				goto normal;
4743 		}
4744 
4745 		/* GSO partial only requires that we trim off any excess that
4746 		 * doesn't fit into an MSS sized block, so take care of that
4747 		 * now.
4748 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4749 		 */
4750 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4751 		if (partial_segs > 1)
4752 			mss *= partial_segs;
4753 		else
4754 			partial_segs = 0;
4755 	}
4756 
4757 normal:
4758 	headroom = skb_headroom(head_skb);
4759 	pos = skb_headlen(head_skb);
4760 
4761 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4762 		return ERR_PTR(-ENOMEM);
4763 
4764 	nfrags = skb_shinfo(head_skb)->nr_frags;
4765 	frag = skb_shinfo(head_skb)->frags;
4766 	frag_skb = head_skb;
4767 
4768 	do {
4769 		struct sk_buff *nskb;
4770 		skb_frag_t *nskb_frag;
4771 		int hsize;
4772 		int size;
4773 
4774 		if (unlikely(mss == GSO_BY_FRAGS)) {
4775 			len = list_skb->len;
4776 		} else {
4777 			len = head_skb->len - offset;
4778 			if (len > mss)
4779 				len = mss;
4780 		}
4781 
4782 		hsize = skb_headlen(head_skb) - offset;
4783 
4784 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4785 		    (skb_headlen(list_skb) == len || sg)) {
4786 			BUG_ON(skb_headlen(list_skb) > len);
4787 
4788 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4789 			if (unlikely(!nskb))
4790 				goto err;
4791 
4792 			i = 0;
4793 			nfrags = skb_shinfo(list_skb)->nr_frags;
4794 			frag = skb_shinfo(list_skb)->frags;
4795 			frag_skb = list_skb;
4796 			pos += skb_headlen(list_skb);
4797 
4798 			while (pos < offset + len) {
4799 				BUG_ON(i >= nfrags);
4800 
4801 				size = skb_frag_size(frag);
4802 				if (pos + size > offset + len)
4803 					break;
4804 
4805 				i++;
4806 				pos += size;
4807 				frag++;
4808 			}
4809 
4810 			list_skb = list_skb->next;
4811 
4812 			if (unlikely(pskb_trim(nskb, len))) {
4813 				kfree_skb(nskb);
4814 				goto err;
4815 			}
4816 
4817 			hsize = skb_end_offset(nskb);
4818 			if (skb_cow_head(nskb, doffset + headroom)) {
4819 				kfree_skb(nskb);
4820 				goto err;
4821 			}
4822 
4823 			nskb->truesize += skb_end_offset(nskb) - hsize;
4824 			skb_release_head_state(nskb);
4825 			__skb_push(nskb, doffset);
4826 		} else {
4827 			if (hsize < 0)
4828 				hsize = 0;
4829 			if (hsize > len || !sg)
4830 				hsize = len;
4831 
4832 			nskb = __alloc_skb(hsize + doffset + headroom,
4833 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4834 					   NUMA_NO_NODE);
4835 
4836 			if (unlikely(!nskb))
4837 				goto err;
4838 
4839 			skb_reserve(nskb, headroom);
4840 			__skb_put(nskb, doffset);
4841 		}
4842 
4843 		if (segs)
4844 			tail->next = nskb;
4845 		else
4846 			segs = nskb;
4847 		tail = nskb;
4848 
4849 		__copy_skb_header(nskb, head_skb);
4850 
4851 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4852 		skb_reset_mac_len(nskb);
4853 
4854 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4855 						 nskb->data - tnl_hlen,
4856 						 doffset + tnl_hlen);
4857 
4858 		if (nskb->len == len + doffset)
4859 			goto perform_csum_check;
4860 
4861 		if (!sg) {
4862 			if (!csum) {
4863 				if (!nskb->remcsum_offload)
4864 					nskb->ip_summed = CHECKSUM_NONE;
4865 				SKB_GSO_CB(nskb)->csum =
4866 					skb_copy_and_csum_bits(head_skb, offset,
4867 							       skb_put(nskb,
4868 								       len),
4869 							       len);
4870 				SKB_GSO_CB(nskb)->csum_start =
4871 					skb_headroom(nskb) + doffset;
4872 			} else {
4873 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4874 					goto err;
4875 			}
4876 			continue;
4877 		}
4878 
4879 		nskb_frag = skb_shinfo(nskb)->frags;
4880 
4881 		skb_copy_from_linear_data_offset(head_skb, offset,
4882 						 skb_put(nskb, hsize), hsize);
4883 
4884 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4885 					   SKBFL_SHARED_FRAG;
4886 
4887 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4888 			goto err;
4889 
4890 		while (pos < offset + len) {
4891 			if (i >= nfrags) {
4892 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4893 				    skb_zerocopy_clone(nskb, list_skb,
4894 						       GFP_ATOMIC))
4895 					goto err;
4896 
4897 				i = 0;
4898 				nfrags = skb_shinfo(list_skb)->nr_frags;
4899 				frag = skb_shinfo(list_skb)->frags;
4900 				frag_skb = list_skb;
4901 				if (!skb_headlen(list_skb)) {
4902 					BUG_ON(!nfrags);
4903 				} else {
4904 					BUG_ON(!list_skb->head_frag);
4905 
4906 					/* to make room for head_frag. */
4907 					i--;
4908 					frag--;
4909 				}
4910 
4911 				list_skb = list_skb->next;
4912 			}
4913 
4914 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4915 				     MAX_SKB_FRAGS)) {
4916 				net_warn_ratelimited(
4917 					"skb_segment: too many frags: %u %u\n",
4918 					pos, mss);
4919 				err = -EINVAL;
4920 				goto err;
4921 			}
4922 
4923 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4924 			__skb_frag_ref(nskb_frag);
4925 			size = skb_frag_size(nskb_frag);
4926 
4927 			if (pos < offset) {
4928 				skb_frag_off_add(nskb_frag, offset - pos);
4929 				skb_frag_size_sub(nskb_frag, offset - pos);
4930 			}
4931 
4932 			skb_shinfo(nskb)->nr_frags++;
4933 
4934 			if (pos + size <= offset + len) {
4935 				i++;
4936 				frag++;
4937 				pos += size;
4938 			} else {
4939 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4940 				goto skip_fraglist;
4941 			}
4942 
4943 			nskb_frag++;
4944 		}
4945 
4946 skip_fraglist:
4947 		nskb->data_len = len - hsize;
4948 		nskb->len += nskb->data_len;
4949 		nskb->truesize += nskb->data_len;
4950 
4951 perform_csum_check:
4952 		if (!csum) {
4953 			if (skb_has_shared_frag(nskb) &&
4954 			    __skb_linearize(nskb))
4955 				goto err;
4956 
4957 			if (!nskb->remcsum_offload)
4958 				nskb->ip_summed = CHECKSUM_NONE;
4959 			SKB_GSO_CB(nskb)->csum =
4960 				skb_checksum(nskb, doffset,
4961 					     nskb->len - doffset, 0);
4962 			SKB_GSO_CB(nskb)->csum_start =
4963 				skb_headroom(nskb) + doffset;
4964 		}
4965 	} while ((offset += len) < head_skb->len);
4966 
4967 	/* Some callers want to get the end of the list.
4968 	 * Put it in segs->prev to avoid walking the list.
4969 	 * (see validate_xmit_skb_list() for example)
4970 	 */
4971 	segs->prev = tail;
4972 
4973 	if (partial_segs) {
4974 		struct sk_buff *iter;
4975 		int type = skb_shinfo(head_skb)->gso_type;
4976 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4977 
4978 		/* Update type to add partial and then remove dodgy if set */
4979 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4980 		type &= ~SKB_GSO_DODGY;
4981 
4982 		/* Update GSO info and prepare to start updating headers on
4983 		 * our way back down the stack of protocols.
4984 		 */
4985 		for (iter = segs; iter; iter = iter->next) {
4986 			skb_shinfo(iter)->gso_size = gso_size;
4987 			skb_shinfo(iter)->gso_segs = partial_segs;
4988 			skb_shinfo(iter)->gso_type = type;
4989 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4990 		}
4991 
4992 		if (tail->len - doffset <= gso_size)
4993 			skb_shinfo(tail)->gso_size = 0;
4994 		else if (tail != segs)
4995 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4996 	}
4997 
4998 	/* Following permits correct backpressure, for protocols
4999 	 * using skb_set_owner_w().
5000 	 * Idea is to tranfert ownership from head_skb to last segment.
5001 	 */
5002 	if (head_skb->destructor == sock_wfree) {
5003 		swap(tail->truesize, head_skb->truesize);
5004 		swap(tail->destructor, head_skb->destructor);
5005 		swap(tail->sk, head_skb->sk);
5006 	}
5007 	return segs;
5008 
5009 err:
5010 	kfree_skb_list(segs);
5011 	return ERR_PTR(err);
5012 }
5013 EXPORT_SYMBOL_GPL(skb_segment);
5014 
5015 #ifdef CONFIG_SKB_EXTENSIONS
5016 #define SKB_EXT_ALIGN_VALUE	8
5017 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
5018 
5019 static const u8 skb_ext_type_len[] = {
5020 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
5021 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
5022 #endif
5023 #ifdef CONFIG_XFRM
5024 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
5025 #endif
5026 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5027 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
5028 #endif
5029 #if IS_ENABLED(CONFIG_MPTCP)
5030 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
5031 #endif
5032 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
5033 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
5034 #endif
5035 };
5036 
5037 static __always_inline unsigned int skb_ext_total_length(void)
5038 {
5039 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
5040 	int i;
5041 
5042 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
5043 		l += skb_ext_type_len[i];
5044 
5045 	return l;
5046 }
5047 
5048 static void skb_extensions_init(void)
5049 {
5050 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
5051 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
5052 	BUILD_BUG_ON(skb_ext_total_length() > 255);
5053 #endif
5054 
5055 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
5056 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
5057 					     0,
5058 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5059 					     NULL);
5060 }
5061 #else
5062 static void skb_extensions_init(void) {}
5063 #endif
5064 
5065 /* The SKB kmem_cache slab is critical for network performance.  Never
5066  * merge/alias the slab with similar sized objects.  This avoids fragmentation
5067  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
5068  */
5069 #ifndef CONFIG_SLUB_TINY
5070 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
5071 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5072 #define FLAG_SKB_NO_MERGE	0
5073 #endif
5074 
5075 void __init skb_init(void)
5076 {
5077 	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5078 					      sizeof(struct sk_buff),
5079 					      0,
5080 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5081 						FLAG_SKB_NO_MERGE,
5082 					      offsetof(struct sk_buff, cb),
5083 					      sizeof_field(struct sk_buff, cb),
5084 					      NULL);
5085 	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5086 						sizeof(struct sk_buff_fclones),
5087 						0,
5088 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5089 						NULL);
5090 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5091 	 * struct skb_shared_info is located at the end of skb->head,
5092 	 * and should not be copied to/from user.
5093 	 */
5094 	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5095 						SKB_SMALL_HEAD_CACHE_SIZE,
5096 						0,
5097 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5098 						0,
5099 						SKB_SMALL_HEAD_HEADROOM,
5100 						NULL);
5101 	skb_extensions_init();
5102 }
5103 
5104 static int
5105 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5106 	       unsigned int recursion_level)
5107 {
5108 	int start = skb_headlen(skb);
5109 	int i, copy = start - offset;
5110 	struct sk_buff *frag_iter;
5111 	int elt = 0;
5112 
5113 	if (unlikely(recursion_level >= 24))
5114 		return -EMSGSIZE;
5115 
5116 	if (copy > 0) {
5117 		if (copy > len)
5118 			copy = len;
5119 		sg_set_buf(sg, skb->data + offset, copy);
5120 		elt++;
5121 		if ((len -= copy) == 0)
5122 			return elt;
5123 		offset += copy;
5124 	}
5125 
5126 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5127 		int end;
5128 
5129 		WARN_ON(start > offset + len);
5130 
5131 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5132 		if ((copy = end - offset) > 0) {
5133 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5134 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5135 				return -EMSGSIZE;
5136 
5137 			if (copy > len)
5138 				copy = len;
5139 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5140 				    skb_frag_off(frag) + offset - start);
5141 			elt++;
5142 			if (!(len -= copy))
5143 				return elt;
5144 			offset += copy;
5145 		}
5146 		start = end;
5147 	}
5148 
5149 	skb_walk_frags(skb, frag_iter) {
5150 		int end, ret;
5151 
5152 		WARN_ON(start > offset + len);
5153 
5154 		end = start + frag_iter->len;
5155 		if ((copy = end - offset) > 0) {
5156 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5157 				return -EMSGSIZE;
5158 
5159 			if (copy > len)
5160 				copy = len;
5161 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5162 					      copy, recursion_level + 1);
5163 			if (unlikely(ret < 0))
5164 				return ret;
5165 			elt += ret;
5166 			if ((len -= copy) == 0)
5167 				return elt;
5168 			offset += copy;
5169 		}
5170 		start = end;
5171 	}
5172 	BUG_ON(len);
5173 	return elt;
5174 }
5175 
5176 /**
5177  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5178  *	@skb: Socket buffer containing the buffers to be mapped
5179  *	@sg: The scatter-gather list to map into
5180  *	@offset: The offset into the buffer's contents to start mapping
5181  *	@len: Length of buffer space to be mapped
5182  *
5183  *	Fill the specified scatter-gather list with mappings/pointers into a
5184  *	region of the buffer space attached to a socket buffer. Returns either
5185  *	the number of scatterlist items used, or -EMSGSIZE if the contents
5186  *	could not fit.
5187  */
5188 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5189 {
5190 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5191 
5192 	if (nsg <= 0)
5193 		return nsg;
5194 
5195 	sg_mark_end(&sg[nsg - 1]);
5196 
5197 	return nsg;
5198 }
5199 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5200 
5201 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5202  * sglist without mark the sg which contain last skb data as the end.
5203  * So the caller can mannipulate sg list as will when padding new data after
5204  * the first call without calling sg_unmark_end to expend sg list.
5205  *
5206  * Scenario to use skb_to_sgvec_nomark:
5207  * 1. sg_init_table
5208  * 2. skb_to_sgvec_nomark(payload1)
5209  * 3. skb_to_sgvec_nomark(payload2)
5210  *
5211  * This is equivalent to:
5212  * 1. sg_init_table
5213  * 2. skb_to_sgvec(payload1)
5214  * 3. sg_unmark_end
5215  * 4. skb_to_sgvec(payload2)
5216  *
5217  * When mapping multiple payload conditionally, skb_to_sgvec_nomark
5218  * is more preferable.
5219  */
5220 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5221 			int offset, int len)
5222 {
5223 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5224 }
5225 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5226 
5227 
5228 
5229 /**
5230  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5231  *	@skb: The socket buffer to check.
5232  *	@tailbits: Amount of trailing space to be added
5233  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5234  *
5235  *	Make sure that the data buffers attached to a socket buffer are
5236  *	writable. If they are not, private copies are made of the data buffers
5237  *	and the socket buffer is set to use these instead.
5238  *
5239  *	If @tailbits is given, make sure that there is space to write @tailbits
5240  *	bytes of data beyond current end of socket buffer.  @trailer will be
5241  *	set to point to the skb in which this space begins.
5242  *
5243  *	The number of scatterlist elements required to completely map the
5244  *	COW'd and extended socket buffer will be returned.
5245  */
5246 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5247 {
5248 	int copyflag;
5249 	int elt;
5250 	struct sk_buff *skb1, **skb_p;
5251 
5252 	/* If skb is cloned or its head is paged, reallocate
5253 	 * head pulling out all the pages (pages are considered not writable
5254 	 * at the moment even if they are anonymous).
5255 	 */
5256 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5257 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5258 		return -ENOMEM;
5259 
5260 	/* Easy case. Most of packets will go this way. */
5261 	if (!skb_has_frag_list(skb)) {
5262 		/* A little of trouble, not enough of space for trailer.
5263 		 * This should not happen, when stack is tuned to generate
5264 		 * good frames. OK, on miss we reallocate and reserve even more
5265 		 * space, 128 bytes is fair. */
5266 
5267 		if (skb_tailroom(skb) < tailbits &&
5268 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5269 			return -ENOMEM;
5270 
5271 		/* Voila! */
5272 		*trailer = skb;
5273 		return 1;
5274 	}
5275 
5276 	/* Misery. We are in troubles, going to mincer fragments... */
5277 
5278 	elt = 1;
5279 	skb_p = &skb_shinfo(skb)->frag_list;
5280 	copyflag = 0;
5281 
5282 	while ((skb1 = *skb_p) != NULL) {
5283 		int ntail = 0;
5284 
5285 		/* The fragment is partially pulled by someone,
5286 		 * this can happen on input. Copy it and everything
5287 		 * after it. */
5288 
5289 		if (skb_shared(skb1))
5290 			copyflag = 1;
5291 
5292 		/* If the skb is the last, worry about trailer. */
5293 
5294 		if (skb1->next == NULL && tailbits) {
5295 			if (skb_shinfo(skb1)->nr_frags ||
5296 			    skb_has_frag_list(skb1) ||
5297 			    skb_tailroom(skb1) < tailbits)
5298 				ntail = tailbits + 128;
5299 		}
5300 
5301 		if (copyflag ||
5302 		    skb_cloned(skb1) ||
5303 		    ntail ||
5304 		    skb_shinfo(skb1)->nr_frags ||
5305 		    skb_has_frag_list(skb1)) {
5306 			struct sk_buff *skb2;
5307 
5308 			/* Fuck, we are miserable poor guys... */
5309 			if (ntail == 0)
5310 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5311 			else
5312 				skb2 = skb_copy_expand(skb1,
5313 						       skb_headroom(skb1),
5314 						       ntail,
5315 						       GFP_ATOMIC);
5316 			if (unlikely(skb2 == NULL))
5317 				return -ENOMEM;
5318 
5319 			if (skb1->sk)
5320 				skb_set_owner_w(skb2, skb1->sk);
5321 
5322 			/* Looking around. Are we still alive?
5323 			 * OK, link new skb, drop old one */
5324 
5325 			skb2->next = skb1->next;
5326 			*skb_p = skb2;
5327 			kfree_skb(skb1);
5328 			skb1 = skb2;
5329 		}
5330 		elt++;
5331 		*trailer = skb1;
5332 		skb_p = &skb1->next;
5333 	}
5334 
5335 	return elt;
5336 }
5337 EXPORT_SYMBOL_GPL(skb_cow_data);
5338 
5339 static void sock_rmem_free(struct sk_buff *skb)
5340 {
5341 	struct sock *sk = skb->sk;
5342 
5343 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5344 }
5345 
5346 static void skb_set_err_queue(struct sk_buff *skb)
5347 {
5348 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5349 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5350 	 */
5351 	skb->pkt_type = PACKET_OUTGOING;
5352 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5353 }
5354 
5355 /*
5356  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5357  */
5358 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5359 {
5360 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5361 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5362 		return -ENOMEM;
5363 
5364 	skb_orphan(skb);
5365 	skb->sk = sk;
5366 	skb->destructor = sock_rmem_free;
5367 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5368 	skb_set_err_queue(skb);
5369 
5370 	/* before exiting rcu section, make sure dst is refcounted */
5371 	skb_dst_force(skb);
5372 
5373 	skb_queue_tail(&sk->sk_error_queue, skb);
5374 	if (!sock_flag(sk, SOCK_DEAD))
5375 		sk_error_report(sk);
5376 	return 0;
5377 }
5378 EXPORT_SYMBOL(sock_queue_err_skb);
5379 
5380 static bool is_icmp_err_skb(const struct sk_buff *skb)
5381 {
5382 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5383 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5384 }
5385 
5386 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5387 {
5388 	struct sk_buff_head *q = &sk->sk_error_queue;
5389 	struct sk_buff *skb, *skb_next = NULL;
5390 	bool icmp_next = false;
5391 	unsigned long flags;
5392 
5393 	if (skb_queue_empty_lockless(q))
5394 		return NULL;
5395 
5396 	spin_lock_irqsave(&q->lock, flags);
5397 	skb = __skb_dequeue(q);
5398 	if (skb && (skb_next = skb_peek(q))) {
5399 		icmp_next = is_icmp_err_skb(skb_next);
5400 		if (icmp_next)
5401 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5402 	}
5403 	spin_unlock_irqrestore(&q->lock, flags);
5404 
5405 	if (is_icmp_err_skb(skb) && !icmp_next)
5406 		sk->sk_err = 0;
5407 
5408 	if (skb_next)
5409 		sk_error_report(sk);
5410 
5411 	return skb;
5412 }
5413 EXPORT_SYMBOL(sock_dequeue_err_skb);
5414 
5415 /**
5416  * skb_clone_sk - create clone of skb, and take reference to socket
5417  * @skb: the skb to clone
5418  *
5419  * This function creates a clone of a buffer that holds a reference on
5420  * sk_refcnt.  Buffers created via this function are meant to be
5421  * returned using sock_queue_err_skb, or free via kfree_skb.
5422  *
5423  * When passing buffers allocated with this function to sock_queue_err_skb
5424  * it is necessary to wrap the call with sock_hold/sock_put in order to
5425  * prevent the socket from being released prior to being enqueued on
5426  * the sk_error_queue.
5427  */
5428 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5429 {
5430 	struct sock *sk = skb->sk;
5431 	struct sk_buff *clone;
5432 
5433 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5434 		return NULL;
5435 
5436 	clone = skb_clone(skb, GFP_ATOMIC);
5437 	if (!clone) {
5438 		sock_put(sk);
5439 		return NULL;
5440 	}
5441 
5442 	clone->sk = sk;
5443 	clone->destructor = sock_efree;
5444 
5445 	return clone;
5446 }
5447 EXPORT_SYMBOL(skb_clone_sk);
5448 
5449 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5450 					struct sock *sk,
5451 					int tstype,
5452 					bool opt_stats)
5453 {
5454 	struct sock_exterr_skb *serr;
5455 	int err;
5456 
5457 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5458 
5459 	serr = SKB_EXT_ERR(skb);
5460 	memset(serr, 0, sizeof(*serr));
5461 	serr->ee.ee_errno = ENOMSG;
5462 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5463 	serr->ee.ee_info = tstype;
5464 	serr->opt_stats = opt_stats;
5465 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5466 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5467 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5468 		if (sk_is_tcp(sk))
5469 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5470 	}
5471 
5472 	err = sock_queue_err_skb(sk, skb);
5473 
5474 	if (err)
5475 		kfree_skb(skb);
5476 }
5477 
5478 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5479 {
5480 	bool ret;
5481 
5482 	if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data)))
5483 		return true;
5484 
5485 	read_lock_bh(&sk->sk_callback_lock);
5486 	ret = sk->sk_socket && sk->sk_socket->file &&
5487 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5488 	read_unlock_bh(&sk->sk_callback_lock);
5489 	return ret;
5490 }
5491 
5492 void skb_complete_tx_timestamp(struct sk_buff *skb,
5493 			       struct skb_shared_hwtstamps *hwtstamps)
5494 {
5495 	struct sock *sk = skb->sk;
5496 
5497 	if (!skb_may_tx_timestamp(sk, false))
5498 		goto err;
5499 
5500 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5501 	 * but only if the socket refcount is not zero.
5502 	 */
5503 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5504 		*skb_hwtstamps(skb) = *hwtstamps;
5505 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5506 		sock_put(sk);
5507 		return;
5508 	}
5509 
5510 err:
5511 	kfree_skb(skb);
5512 }
5513 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5514 
5515 static bool skb_tstamp_tx_report_so_timestamping(struct sk_buff *skb,
5516 						 struct skb_shared_hwtstamps *hwtstamps,
5517 						 int tstype)
5518 {
5519 	switch (tstype) {
5520 	case SCM_TSTAMP_SCHED:
5521 		return skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP;
5522 	case SCM_TSTAMP_SND:
5523 		return skb_shinfo(skb)->tx_flags & (hwtstamps ? SKBTX_HW_TSTAMP_NOBPF :
5524 						    SKBTX_SW_TSTAMP);
5525 	case SCM_TSTAMP_ACK:
5526 		return TCP_SKB_CB(skb)->txstamp_ack & TSTAMP_ACK_SK;
5527 	case SCM_TSTAMP_COMPLETION:
5528 		return skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP;
5529 	}
5530 
5531 	return false;
5532 }
5533 
5534 static void skb_tstamp_tx_report_bpf_timestamping(struct sk_buff *skb,
5535 						  struct skb_shared_hwtstamps *hwtstamps,
5536 						  struct sock *sk,
5537 						  int tstype)
5538 {
5539 	int op;
5540 
5541 	switch (tstype) {
5542 	case SCM_TSTAMP_SCHED:
5543 		op = BPF_SOCK_OPS_TSTAMP_SCHED_CB;
5544 		break;
5545 	case SCM_TSTAMP_SND:
5546 		if (hwtstamps) {
5547 			op = BPF_SOCK_OPS_TSTAMP_SND_HW_CB;
5548 			*skb_hwtstamps(skb) = *hwtstamps;
5549 		} else {
5550 			op = BPF_SOCK_OPS_TSTAMP_SND_SW_CB;
5551 		}
5552 		break;
5553 	case SCM_TSTAMP_ACK:
5554 		op = BPF_SOCK_OPS_TSTAMP_ACK_CB;
5555 		break;
5556 	default:
5557 		return;
5558 	}
5559 
5560 	bpf_skops_tx_timestamping(sk, skb, op);
5561 }
5562 
5563 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5564 		     const struct sk_buff *ack_skb,
5565 		     struct skb_shared_hwtstamps *hwtstamps,
5566 		     struct sock *sk, int tstype)
5567 {
5568 	struct sk_buff *skb;
5569 	bool tsonly, opt_stats = false;
5570 	u32 tsflags;
5571 
5572 	if (!sk)
5573 		return;
5574 
5575 	if (skb_shinfo(orig_skb)->tx_flags & SKBTX_BPF)
5576 		skb_tstamp_tx_report_bpf_timestamping(orig_skb, hwtstamps,
5577 						      sk, tstype);
5578 
5579 	if (!skb_tstamp_tx_report_so_timestamping(orig_skb, hwtstamps, tstype))
5580 		return;
5581 
5582 	tsflags = READ_ONCE(sk->sk_tsflags);
5583 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5584 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5585 		return;
5586 
5587 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5588 	if (!skb_may_tx_timestamp(sk, tsonly))
5589 		return;
5590 
5591 	if (tsonly) {
5592 #ifdef CONFIG_INET
5593 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5594 		    sk_is_tcp(sk)) {
5595 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5596 							     ack_skb);
5597 			opt_stats = true;
5598 		} else
5599 #endif
5600 			skb = alloc_skb(0, GFP_ATOMIC);
5601 	} else {
5602 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5603 
5604 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5605 			kfree_skb(skb);
5606 			return;
5607 		}
5608 	}
5609 	if (!skb)
5610 		return;
5611 
5612 	if (tsonly) {
5613 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5614 					     SKBTX_ANY_TSTAMP;
5615 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5616 	}
5617 
5618 	if (hwtstamps)
5619 		*skb_hwtstamps(skb) = *hwtstamps;
5620 	else
5621 		__net_timestamp(skb);
5622 
5623 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5624 }
5625 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5626 
5627 void skb_tstamp_tx(struct sk_buff *orig_skb,
5628 		   struct skb_shared_hwtstamps *hwtstamps)
5629 {
5630 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5631 			       SCM_TSTAMP_SND);
5632 }
5633 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5634 
5635 #ifdef CONFIG_WIRELESS
5636 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5637 {
5638 	struct sock *sk = skb->sk;
5639 	struct sock_exterr_skb *serr;
5640 	int err = 1;
5641 
5642 	skb->wifi_acked_valid = 1;
5643 	skb->wifi_acked = acked;
5644 
5645 	serr = SKB_EXT_ERR(skb);
5646 	memset(serr, 0, sizeof(*serr));
5647 	serr->ee.ee_errno = ENOMSG;
5648 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5649 
5650 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5651 	 * but only if the socket refcount is not zero.
5652 	 */
5653 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5654 		err = sock_queue_err_skb(sk, skb);
5655 		sock_put(sk);
5656 	}
5657 	if (err)
5658 		kfree_skb(skb);
5659 }
5660 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5661 #endif /* CONFIG_WIRELESS */
5662 
5663 /**
5664  * skb_partial_csum_set - set up and verify partial csum values for packet
5665  * @skb: the skb to set
5666  * @start: the number of bytes after skb->data to start checksumming.
5667  * @off: the offset from start to place the checksum.
5668  *
5669  * For untrusted partially-checksummed packets, we need to make sure the values
5670  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5671  *
5672  * This function checks and sets those values and skb->ip_summed: if this
5673  * returns false you should drop the packet.
5674  */
5675 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5676 {
5677 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5678 	u32 csum_start = skb_headroom(skb) + (u32)start;
5679 
5680 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5681 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5682 				     start, off, skb_headroom(skb), skb_headlen(skb));
5683 		return false;
5684 	}
5685 	skb->ip_summed = CHECKSUM_PARTIAL;
5686 	skb->csum_start = csum_start;
5687 	skb->csum_offset = off;
5688 	skb->transport_header = csum_start;
5689 	return true;
5690 }
5691 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5692 
5693 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5694 			       unsigned int max)
5695 {
5696 	if (skb_headlen(skb) >= len)
5697 		return 0;
5698 
5699 	/* If we need to pullup then pullup to the max, so we
5700 	 * won't need to do it again.
5701 	 */
5702 	if (max > skb->len)
5703 		max = skb->len;
5704 
5705 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5706 		return -ENOMEM;
5707 
5708 	if (skb_headlen(skb) < len)
5709 		return -EPROTO;
5710 
5711 	return 0;
5712 }
5713 
5714 #define MAX_TCP_HDR_LEN (15 * 4)
5715 
5716 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5717 				      typeof(IPPROTO_IP) proto,
5718 				      unsigned int off)
5719 {
5720 	int err;
5721 
5722 	switch (proto) {
5723 	case IPPROTO_TCP:
5724 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5725 					  off + MAX_TCP_HDR_LEN);
5726 		if (!err && !skb_partial_csum_set(skb, off,
5727 						  offsetof(struct tcphdr,
5728 							   check)))
5729 			err = -EPROTO;
5730 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5731 
5732 	case IPPROTO_UDP:
5733 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5734 					  off + sizeof(struct udphdr));
5735 		if (!err && !skb_partial_csum_set(skb, off,
5736 						  offsetof(struct udphdr,
5737 							   check)))
5738 			err = -EPROTO;
5739 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5740 	}
5741 
5742 	return ERR_PTR(-EPROTO);
5743 }
5744 
5745 /* This value should be large enough to cover a tagged ethernet header plus
5746  * maximally sized IP and TCP or UDP headers.
5747  */
5748 #define MAX_IP_HDR_LEN 128
5749 
5750 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5751 {
5752 	unsigned int off;
5753 	bool fragment;
5754 	__sum16 *csum;
5755 	int err;
5756 
5757 	fragment = false;
5758 
5759 	err = skb_maybe_pull_tail(skb,
5760 				  sizeof(struct iphdr),
5761 				  MAX_IP_HDR_LEN);
5762 	if (err < 0)
5763 		goto out;
5764 
5765 	if (ip_is_fragment(ip_hdr(skb)))
5766 		fragment = true;
5767 
5768 	off = ip_hdrlen(skb);
5769 
5770 	err = -EPROTO;
5771 
5772 	if (fragment)
5773 		goto out;
5774 
5775 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5776 	if (IS_ERR(csum))
5777 		return PTR_ERR(csum);
5778 
5779 	if (recalculate)
5780 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5781 					   ip_hdr(skb)->daddr,
5782 					   skb->len - off,
5783 					   ip_hdr(skb)->protocol, 0);
5784 	err = 0;
5785 
5786 out:
5787 	return err;
5788 }
5789 
5790 /* This value should be large enough to cover a tagged ethernet header plus
5791  * an IPv6 header, all options, and a maximal TCP or UDP header.
5792  */
5793 #define MAX_IPV6_HDR_LEN 256
5794 
5795 #define OPT_HDR(type, skb, off) \
5796 	(type *)(skb_network_header(skb) + (off))
5797 
5798 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5799 {
5800 	int err;
5801 	u8 nexthdr;
5802 	unsigned int off;
5803 	unsigned int len;
5804 	bool fragment;
5805 	bool done;
5806 	__sum16 *csum;
5807 
5808 	fragment = false;
5809 	done = false;
5810 
5811 	off = sizeof(struct ipv6hdr);
5812 
5813 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5814 	if (err < 0)
5815 		goto out;
5816 
5817 	nexthdr = ipv6_hdr(skb)->nexthdr;
5818 
5819 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5820 	while (off <= len && !done) {
5821 		switch (nexthdr) {
5822 		case IPPROTO_DSTOPTS:
5823 		case IPPROTO_HOPOPTS:
5824 		case IPPROTO_ROUTING: {
5825 			struct ipv6_opt_hdr *hp;
5826 
5827 			err = skb_maybe_pull_tail(skb,
5828 						  off +
5829 						  sizeof(struct ipv6_opt_hdr),
5830 						  MAX_IPV6_HDR_LEN);
5831 			if (err < 0)
5832 				goto out;
5833 
5834 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5835 			nexthdr = hp->nexthdr;
5836 			off += ipv6_optlen(hp);
5837 			break;
5838 		}
5839 		case IPPROTO_AH: {
5840 			struct ip_auth_hdr *hp;
5841 
5842 			err = skb_maybe_pull_tail(skb,
5843 						  off +
5844 						  sizeof(struct ip_auth_hdr),
5845 						  MAX_IPV6_HDR_LEN);
5846 			if (err < 0)
5847 				goto out;
5848 
5849 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5850 			nexthdr = hp->nexthdr;
5851 			off += ipv6_authlen(hp);
5852 			break;
5853 		}
5854 		case IPPROTO_FRAGMENT: {
5855 			struct frag_hdr *hp;
5856 
5857 			err = skb_maybe_pull_tail(skb,
5858 						  off +
5859 						  sizeof(struct frag_hdr),
5860 						  MAX_IPV6_HDR_LEN);
5861 			if (err < 0)
5862 				goto out;
5863 
5864 			hp = OPT_HDR(struct frag_hdr, skb, off);
5865 
5866 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5867 				fragment = true;
5868 
5869 			nexthdr = hp->nexthdr;
5870 			off += sizeof(struct frag_hdr);
5871 			break;
5872 		}
5873 		default:
5874 			done = true;
5875 			break;
5876 		}
5877 	}
5878 
5879 	err = -EPROTO;
5880 
5881 	if (!done || fragment)
5882 		goto out;
5883 
5884 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5885 	if (IS_ERR(csum))
5886 		return PTR_ERR(csum);
5887 
5888 	if (recalculate)
5889 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5890 					 &ipv6_hdr(skb)->daddr,
5891 					 skb->len - off, nexthdr, 0);
5892 	err = 0;
5893 
5894 out:
5895 	return err;
5896 }
5897 
5898 /**
5899  * skb_checksum_setup - set up partial checksum offset
5900  * @skb: the skb to set up
5901  * @recalculate: if true the pseudo-header checksum will be recalculated
5902  */
5903 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5904 {
5905 	int err;
5906 
5907 	switch (skb->protocol) {
5908 	case htons(ETH_P_IP):
5909 		err = skb_checksum_setup_ipv4(skb, recalculate);
5910 		break;
5911 
5912 	case htons(ETH_P_IPV6):
5913 		err = skb_checksum_setup_ipv6(skb, recalculate);
5914 		break;
5915 
5916 	default:
5917 		err = -EPROTO;
5918 		break;
5919 	}
5920 
5921 	return err;
5922 }
5923 EXPORT_SYMBOL(skb_checksum_setup);
5924 
5925 /**
5926  * skb_checksum_maybe_trim - maybe trims the given skb
5927  * @skb: the skb to check
5928  * @transport_len: the data length beyond the network header
5929  *
5930  * Checks whether the given skb has data beyond the given transport length.
5931  * If so, returns a cloned skb trimmed to this transport length.
5932  * Otherwise returns the provided skb. Returns NULL in error cases
5933  * (e.g. transport_len exceeds skb length or out-of-memory).
5934  *
5935  * Caller needs to set the skb transport header and free any returned skb if it
5936  * differs from the provided skb.
5937  */
5938 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5939 					       unsigned int transport_len)
5940 {
5941 	struct sk_buff *skb_chk;
5942 	unsigned int len = skb_transport_offset(skb) + transport_len;
5943 	int ret;
5944 
5945 	if (skb->len < len)
5946 		return NULL;
5947 	else if (skb->len == len)
5948 		return skb;
5949 
5950 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5951 	if (!skb_chk)
5952 		return NULL;
5953 
5954 	ret = pskb_trim_rcsum(skb_chk, len);
5955 	if (ret) {
5956 		kfree_skb(skb_chk);
5957 		return NULL;
5958 	}
5959 
5960 	return skb_chk;
5961 }
5962 
5963 /**
5964  * skb_checksum_trimmed - validate checksum of an skb
5965  * @skb: the skb to check
5966  * @transport_len: the data length beyond the network header
5967  * @skb_chkf: checksum function to use
5968  *
5969  * Applies the given checksum function skb_chkf to the provided skb.
5970  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5971  *
5972  * If the skb has data beyond the given transport length, then a
5973  * trimmed & cloned skb is checked and returned.
5974  *
5975  * Caller needs to set the skb transport header and free any returned skb if it
5976  * differs from the provided skb.
5977  */
5978 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5979 				     unsigned int transport_len,
5980 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5981 {
5982 	struct sk_buff *skb_chk;
5983 	unsigned int offset = skb_transport_offset(skb);
5984 	__sum16 ret;
5985 
5986 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5987 	if (!skb_chk)
5988 		goto err;
5989 
5990 	if (!pskb_may_pull(skb_chk, offset))
5991 		goto err;
5992 
5993 	skb_pull_rcsum(skb_chk, offset);
5994 	ret = skb_chkf(skb_chk);
5995 	skb_push_rcsum(skb_chk, offset);
5996 
5997 	if (ret)
5998 		goto err;
5999 
6000 	return skb_chk;
6001 
6002 err:
6003 	if (skb_chk && skb_chk != skb)
6004 		kfree_skb(skb_chk);
6005 
6006 	return NULL;
6007 
6008 }
6009 EXPORT_SYMBOL(skb_checksum_trimmed);
6010 
6011 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
6012 {
6013 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
6014 			     skb->dev->name);
6015 }
6016 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
6017 
6018 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
6019 {
6020 	if (head_stolen) {
6021 		skb_release_head_state(skb);
6022 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
6023 	} else {
6024 		__kfree_skb(skb);
6025 	}
6026 }
6027 EXPORT_SYMBOL(kfree_skb_partial);
6028 
6029 /**
6030  * skb_try_coalesce - try to merge skb to prior one
6031  * @to: prior buffer
6032  * @from: buffer to add
6033  * @fragstolen: pointer to boolean
6034  * @delta_truesize: how much more was allocated than was requested
6035  */
6036 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
6037 		      bool *fragstolen, int *delta_truesize)
6038 {
6039 	struct skb_shared_info *to_shinfo, *from_shinfo;
6040 	int i, delta, len = from->len;
6041 
6042 	*fragstolen = false;
6043 
6044 	if (skb_cloned(to))
6045 		return false;
6046 
6047 	/* In general, avoid mixing page_pool and non-page_pool allocated
6048 	 * pages within the same SKB. In theory we could take full
6049 	 * references if @from is cloned and !@to->pp_recycle but its
6050 	 * tricky (due to potential race with the clone disappearing) and
6051 	 * rare, so not worth dealing with.
6052 	 */
6053 	if (to->pp_recycle != from->pp_recycle)
6054 		return false;
6055 
6056 	if (skb_frags_readable(from) != skb_frags_readable(to))
6057 		return false;
6058 
6059 	if (len <= skb_tailroom(to) && skb_frags_readable(from)) {
6060 		if (len)
6061 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
6062 		*delta_truesize = 0;
6063 		return true;
6064 	}
6065 
6066 	to_shinfo = skb_shinfo(to);
6067 	from_shinfo = skb_shinfo(from);
6068 	if (to_shinfo->frag_list || from_shinfo->frag_list)
6069 		return false;
6070 	if (skb_zcopy(to) || skb_zcopy(from))
6071 		return false;
6072 
6073 	if (skb_headlen(from) != 0) {
6074 		struct page *page;
6075 		unsigned int offset;
6076 
6077 		if (to_shinfo->nr_frags +
6078 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
6079 			return false;
6080 
6081 		if (skb_head_is_locked(from))
6082 			return false;
6083 
6084 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
6085 
6086 		page = virt_to_head_page(from->head);
6087 		offset = from->data - (unsigned char *)page_address(page);
6088 
6089 		skb_fill_page_desc(to, to_shinfo->nr_frags,
6090 				   page, offset, skb_headlen(from));
6091 		*fragstolen = true;
6092 	} else {
6093 		if (to_shinfo->nr_frags +
6094 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
6095 			return false;
6096 
6097 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
6098 	}
6099 
6100 	WARN_ON_ONCE(delta < len);
6101 
6102 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
6103 	       from_shinfo->frags,
6104 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
6105 	to_shinfo->nr_frags += from_shinfo->nr_frags;
6106 
6107 	if (!skb_cloned(from))
6108 		from_shinfo->nr_frags = 0;
6109 
6110 	/* if the skb is not cloned this does nothing
6111 	 * since we set nr_frags to 0.
6112 	 */
6113 	if (skb_pp_frag_ref(from)) {
6114 		for (i = 0; i < from_shinfo->nr_frags; i++)
6115 			__skb_frag_ref(&from_shinfo->frags[i]);
6116 	}
6117 
6118 	to->truesize += delta;
6119 	to->len += len;
6120 	to->data_len += len;
6121 
6122 	*delta_truesize = delta;
6123 	return true;
6124 }
6125 EXPORT_SYMBOL(skb_try_coalesce);
6126 
6127 /**
6128  * skb_scrub_packet - scrub an skb
6129  *
6130  * @skb: buffer to clean
6131  * @xnet: packet is crossing netns
6132  *
6133  * skb_scrub_packet can be used after encapsulating or decapsulating a packet
6134  * into/from a tunnel. Some information have to be cleared during these
6135  * operations.
6136  * skb_scrub_packet can also be used to clean a skb before injecting it in
6137  * another namespace (@xnet == true). We have to clear all information in the
6138  * skb that could impact namespace isolation.
6139  */
6140 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6141 {
6142 	skb->pkt_type = PACKET_HOST;
6143 	skb->skb_iif = 0;
6144 	skb->ignore_df = 0;
6145 	skb_dst_drop(skb);
6146 	skb_ext_reset(skb);
6147 	nf_reset_ct(skb);
6148 	nf_reset_trace(skb);
6149 
6150 #ifdef CONFIG_NET_SWITCHDEV
6151 	skb->offload_fwd_mark = 0;
6152 	skb->offload_l3_fwd_mark = 0;
6153 #endif
6154 	ipvs_reset(skb);
6155 
6156 	if (!xnet)
6157 		return;
6158 
6159 	skb->mark = 0;
6160 	skb_clear_tstamp(skb);
6161 }
6162 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6163 
6164 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6165 {
6166 	int mac_len, meta_len;
6167 	void *meta;
6168 
6169 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
6170 		kfree_skb(skb);
6171 		return NULL;
6172 	}
6173 
6174 	mac_len = skb->data - skb_mac_header(skb);
6175 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6176 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6177 			mac_len - VLAN_HLEN - ETH_TLEN);
6178 	}
6179 
6180 	meta_len = skb_metadata_len(skb);
6181 	if (meta_len) {
6182 		meta = skb_metadata_end(skb) - meta_len;
6183 		memmove(meta + VLAN_HLEN, meta, meta_len);
6184 	}
6185 
6186 	skb->mac_header += VLAN_HLEN;
6187 	return skb;
6188 }
6189 
6190 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6191 {
6192 	struct vlan_hdr *vhdr;
6193 	u16 vlan_tci;
6194 
6195 	if (unlikely(skb_vlan_tag_present(skb))) {
6196 		/* vlan_tci is already set-up so leave this for another time */
6197 		return skb;
6198 	}
6199 
6200 	skb = skb_share_check(skb, GFP_ATOMIC);
6201 	if (unlikely(!skb))
6202 		goto err_free;
6203 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6204 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6205 		goto err_free;
6206 
6207 	vhdr = (struct vlan_hdr *)skb->data;
6208 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6209 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6210 
6211 	skb_pull_rcsum(skb, VLAN_HLEN);
6212 	vlan_set_encap_proto(skb, vhdr);
6213 
6214 	skb = skb_reorder_vlan_header(skb);
6215 	if (unlikely(!skb))
6216 		goto err_free;
6217 
6218 	skb_reset_network_header(skb);
6219 	if (!skb_transport_header_was_set(skb))
6220 		skb_reset_transport_header(skb);
6221 	skb_reset_mac_len(skb);
6222 
6223 	return skb;
6224 
6225 err_free:
6226 	kfree_skb(skb);
6227 	return NULL;
6228 }
6229 EXPORT_SYMBOL(skb_vlan_untag);
6230 
6231 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6232 {
6233 	if (!pskb_may_pull(skb, write_len))
6234 		return -ENOMEM;
6235 
6236 	if (!skb_frags_readable(skb))
6237 		return -EFAULT;
6238 
6239 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6240 		return 0;
6241 
6242 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6243 }
6244 EXPORT_SYMBOL(skb_ensure_writable);
6245 
6246 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6247 {
6248 	int needed_headroom = dev->needed_headroom;
6249 	int needed_tailroom = dev->needed_tailroom;
6250 
6251 	/* For tail taggers, we need to pad short frames ourselves, to ensure
6252 	 * that the tail tag does not fail at its role of being at the end of
6253 	 * the packet, once the conduit interface pads the frame. Account for
6254 	 * that pad length here, and pad later.
6255 	 */
6256 	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6257 		needed_tailroom += ETH_ZLEN - skb->len;
6258 	/* skb_headroom() returns unsigned int... */
6259 	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6260 	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6261 
6262 	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6263 		/* No reallocation needed, yay! */
6264 		return 0;
6265 
6266 	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6267 				GFP_ATOMIC);
6268 }
6269 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6270 
6271 /* remove VLAN header from packet and update csum accordingly.
6272  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6273  */
6274 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6275 {
6276 	int offset = skb->data - skb_mac_header(skb);
6277 	int err;
6278 
6279 	if (WARN_ONCE(offset,
6280 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6281 		      offset)) {
6282 		return -EINVAL;
6283 	}
6284 
6285 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6286 	if (unlikely(err))
6287 		return err;
6288 
6289 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6290 
6291 	vlan_remove_tag(skb, vlan_tci);
6292 
6293 	skb->mac_header += VLAN_HLEN;
6294 
6295 	if (skb_network_offset(skb) < ETH_HLEN)
6296 		skb_set_network_header(skb, ETH_HLEN);
6297 
6298 	skb_reset_mac_len(skb);
6299 
6300 	return err;
6301 }
6302 EXPORT_SYMBOL(__skb_vlan_pop);
6303 
6304 /* Pop a vlan tag either from hwaccel or from payload.
6305  * Expects skb->data at mac header.
6306  */
6307 int skb_vlan_pop(struct sk_buff *skb)
6308 {
6309 	u16 vlan_tci;
6310 	__be16 vlan_proto;
6311 	int err;
6312 
6313 	if (likely(skb_vlan_tag_present(skb))) {
6314 		__vlan_hwaccel_clear_tag(skb);
6315 	} else {
6316 		if (unlikely(!eth_type_vlan(skb->protocol)))
6317 			return 0;
6318 
6319 		err = __skb_vlan_pop(skb, &vlan_tci);
6320 		if (err)
6321 			return err;
6322 	}
6323 	/* move next vlan tag to hw accel tag */
6324 	if (likely(!eth_type_vlan(skb->protocol)))
6325 		return 0;
6326 
6327 	vlan_proto = skb->protocol;
6328 	err = __skb_vlan_pop(skb, &vlan_tci);
6329 	if (unlikely(err))
6330 		return err;
6331 
6332 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6333 	return 0;
6334 }
6335 EXPORT_SYMBOL(skb_vlan_pop);
6336 
6337 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6338  * Expects skb->data at mac header.
6339  */
6340 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6341 {
6342 	if (skb_vlan_tag_present(skb)) {
6343 		int offset = skb->data - skb_mac_header(skb);
6344 		int err;
6345 
6346 		if (WARN_ONCE(offset,
6347 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6348 			      offset)) {
6349 			return -EINVAL;
6350 		}
6351 
6352 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6353 					skb_vlan_tag_get(skb));
6354 		if (err)
6355 			return err;
6356 
6357 		skb->protocol = skb->vlan_proto;
6358 		skb->network_header -= VLAN_HLEN;
6359 
6360 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6361 	}
6362 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6363 	return 0;
6364 }
6365 EXPORT_SYMBOL(skb_vlan_push);
6366 
6367 /**
6368  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6369  *
6370  * @skb: Socket buffer to modify
6371  *
6372  * Drop the Ethernet header of @skb.
6373  *
6374  * Expects that skb->data points to the mac header and that no VLAN tags are
6375  * present.
6376  *
6377  * Returns 0 on success, -errno otherwise.
6378  */
6379 int skb_eth_pop(struct sk_buff *skb)
6380 {
6381 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6382 	    skb_network_offset(skb) < ETH_HLEN)
6383 		return -EPROTO;
6384 
6385 	skb_pull_rcsum(skb, ETH_HLEN);
6386 	skb_reset_mac_header(skb);
6387 	skb_reset_mac_len(skb);
6388 
6389 	return 0;
6390 }
6391 EXPORT_SYMBOL(skb_eth_pop);
6392 
6393 /**
6394  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6395  *
6396  * @skb: Socket buffer to modify
6397  * @dst: Destination MAC address of the new header
6398  * @src: Source MAC address of the new header
6399  *
6400  * Prepend @skb with a new Ethernet header.
6401  *
6402  * Expects that skb->data points to the mac header, which must be empty.
6403  *
6404  * Returns 0 on success, -errno otherwise.
6405  */
6406 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6407 		 const unsigned char *src)
6408 {
6409 	struct ethhdr *eth;
6410 	int err;
6411 
6412 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6413 		return -EPROTO;
6414 
6415 	err = skb_cow_head(skb, sizeof(*eth));
6416 	if (err < 0)
6417 		return err;
6418 
6419 	skb_push(skb, sizeof(*eth));
6420 	skb_reset_mac_header(skb);
6421 	skb_reset_mac_len(skb);
6422 
6423 	eth = eth_hdr(skb);
6424 	ether_addr_copy(eth->h_dest, dst);
6425 	ether_addr_copy(eth->h_source, src);
6426 	eth->h_proto = skb->protocol;
6427 
6428 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6429 
6430 	return 0;
6431 }
6432 EXPORT_SYMBOL(skb_eth_push);
6433 
6434 /* Update the ethertype of hdr and the skb csum value if required. */
6435 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6436 			     __be16 ethertype)
6437 {
6438 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6439 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6440 
6441 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6442 	}
6443 
6444 	hdr->h_proto = ethertype;
6445 }
6446 
6447 /**
6448  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6449  *                   the packet
6450  *
6451  * @skb: buffer
6452  * @mpls_lse: MPLS label stack entry to push
6453  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6454  * @mac_len: length of the MAC header
6455  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6456  *            ethernet
6457  *
6458  * Expects skb->data at mac header.
6459  *
6460  * Returns 0 on success, -errno otherwise.
6461  */
6462 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6463 		  int mac_len, bool ethernet)
6464 {
6465 	struct mpls_shim_hdr *lse;
6466 	int err;
6467 
6468 	if (unlikely(!eth_p_mpls(mpls_proto)))
6469 		return -EINVAL;
6470 
6471 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6472 	if (skb->encapsulation)
6473 		return -EINVAL;
6474 
6475 	err = skb_cow_head(skb, MPLS_HLEN);
6476 	if (unlikely(err))
6477 		return err;
6478 
6479 	if (!skb->inner_protocol) {
6480 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6481 		skb_set_inner_protocol(skb, skb->protocol);
6482 	}
6483 
6484 	skb_push(skb, MPLS_HLEN);
6485 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6486 		mac_len);
6487 	skb_reset_mac_header(skb);
6488 	skb_set_network_header(skb, mac_len);
6489 	skb_reset_mac_len(skb);
6490 
6491 	lse = mpls_hdr(skb);
6492 	lse->label_stack_entry = mpls_lse;
6493 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6494 
6495 	if (ethernet && mac_len >= ETH_HLEN)
6496 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6497 	skb->protocol = mpls_proto;
6498 
6499 	return 0;
6500 }
6501 EXPORT_SYMBOL_GPL(skb_mpls_push);
6502 
6503 /**
6504  * skb_mpls_pop() - pop the outermost MPLS header
6505  *
6506  * @skb: buffer
6507  * @next_proto: ethertype of header after popped MPLS header
6508  * @mac_len: length of the MAC header
6509  * @ethernet: flag to indicate if the packet is ethernet
6510  *
6511  * Expects skb->data at mac header.
6512  *
6513  * Returns 0 on success, -errno otherwise.
6514  */
6515 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6516 		 bool ethernet)
6517 {
6518 	int err;
6519 
6520 	if (unlikely(!eth_p_mpls(skb->protocol)))
6521 		return 0;
6522 
6523 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6524 	if (unlikely(err))
6525 		return err;
6526 
6527 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6528 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6529 		mac_len);
6530 
6531 	__skb_pull(skb, MPLS_HLEN);
6532 	skb_reset_mac_header(skb);
6533 	skb_set_network_header(skb, mac_len);
6534 
6535 	if (ethernet && mac_len >= ETH_HLEN) {
6536 		struct ethhdr *hdr;
6537 
6538 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6539 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6540 		skb_mod_eth_type(skb, hdr, next_proto);
6541 	}
6542 	skb->protocol = next_proto;
6543 
6544 	return 0;
6545 }
6546 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6547 
6548 /**
6549  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6550  *
6551  * @skb: buffer
6552  * @mpls_lse: new MPLS label stack entry to update to
6553  *
6554  * Expects skb->data at mac header.
6555  *
6556  * Returns 0 on success, -errno otherwise.
6557  */
6558 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6559 {
6560 	int err;
6561 
6562 	if (unlikely(!eth_p_mpls(skb->protocol)))
6563 		return -EINVAL;
6564 
6565 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6566 	if (unlikely(err))
6567 		return err;
6568 
6569 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6570 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6571 
6572 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6573 	}
6574 
6575 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6576 
6577 	return 0;
6578 }
6579 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6580 
6581 /**
6582  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6583  *
6584  * @skb: buffer
6585  *
6586  * Expects skb->data at mac header.
6587  *
6588  * Returns 0 on success, -errno otherwise.
6589  */
6590 int skb_mpls_dec_ttl(struct sk_buff *skb)
6591 {
6592 	u32 lse;
6593 	u8 ttl;
6594 
6595 	if (unlikely(!eth_p_mpls(skb->protocol)))
6596 		return -EINVAL;
6597 
6598 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6599 		return -ENOMEM;
6600 
6601 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6602 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6603 	if (!--ttl)
6604 		return -EINVAL;
6605 
6606 	lse &= ~MPLS_LS_TTL_MASK;
6607 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6608 
6609 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6610 }
6611 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6612 
6613 /**
6614  * alloc_skb_with_frags - allocate skb with page frags
6615  *
6616  * @header_len: size of linear part
6617  * @data_len: needed length in frags
6618  * @order: max page order desired.
6619  * @errcode: pointer to error code if any
6620  * @gfp_mask: allocation mask
6621  *
6622  * This can be used to allocate a paged skb, given a maximal order for frags.
6623  */
6624 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6625 				     unsigned long data_len,
6626 				     int order,
6627 				     int *errcode,
6628 				     gfp_t gfp_mask)
6629 {
6630 	unsigned long chunk;
6631 	struct sk_buff *skb;
6632 	struct page *page;
6633 	int nr_frags = 0;
6634 
6635 	*errcode = -EMSGSIZE;
6636 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6637 		return NULL;
6638 
6639 	*errcode = -ENOBUFS;
6640 	skb = alloc_skb(header_len, gfp_mask);
6641 	if (!skb)
6642 		return NULL;
6643 
6644 	while (data_len) {
6645 		if (nr_frags == MAX_SKB_FRAGS - 1)
6646 			goto failure;
6647 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6648 			order--;
6649 
6650 		if (order) {
6651 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6652 					   __GFP_COMP |
6653 					   __GFP_NOWARN,
6654 					   order);
6655 			if (!page) {
6656 				order--;
6657 				continue;
6658 			}
6659 		} else {
6660 			page = alloc_page(gfp_mask);
6661 			if (!page)
6662 				goto failure;
6663 		}
6664 		chunk = min_t(unsigned long, data_len,
6665 			      PAGE_SIZE << order);
6666 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6667 		nr_frags++;
6668 		skb->truesize += (PAGE_SIZE << order);
6669 		data_len -= chunk;
6670 	}
6671 	return skb;
6672 
6673 failure:
6674 	kfree_skb(skb);
6675 	return NULL;
6676 }
6677 EXPORT_SYMBOL(alloc_skb_with_frags);
6678 
6679 /* carve out the first off bytes from skb when off < headlen */
6680 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6681 				    const int headlen, gfp_t gfp_mask)
6682 {
6683 	int i;
6684 	unsigned int size = skb_end_offset(skb);
6685 	int new_hlen = headlen - off;
6686 	u8 *data;
6687 
6688 	if (skb_pfmemalloc(skb))
6689 		gfp_mask |= __GFP_MEMALLOC;
6690 
6691 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6692 	if (!data)
6693 		return -ENOMEM;
6694 	size = SKB_WITH_OVERHEAD(size);
6695 
6696 	/* Copy real data, and all frags */
6697 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6698 	skb->len -= off;
6699 
6700 	memcpy((struct skb_shared_info *)(data + size),
6701 	       skb_shinfo(skb),
6702 	       offsetof(struct skb_shared_info,
6703 			frags[skb_shinfo(skb)->nr_frags]));
6704 	if (skb_cloned(skb)) {
6705 		/* drop the old head gracefully */
6706 		if (skb_orphan_frags(skb, gfp_mask)) {
6707 			skb_kfree_head(data, size);
6708 			return -ENOMEM;
6709 		}
6710 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6711 			skb_frag_ref(skb, i);
6712 		if (skb_has_frag_list(skb))
6713 			skb_clone_fraglist(skb);
6714 		skb_release_data(skb, SKB_CONSUMED);
6715 	} else {
6716 		/* we can reuse existing recount- all we did was
6717 		 * relocate values
6718 		 */
6719 		skb_free_head(skb);
6720 	}
6721 
6722 	skb->head = data;
6723 	skb->data = data;
6724 	skb->head_frag = 0;
6725 	skb_set_end_offset(skb, size);
6726 	skb_set_tail_pointer(skb, skb_headlen(skb));
6727 	skb_headers_offset_update(skb, 0);
6728 	skb->cloned = 0;
6729 	skb->hdr_len = 0;
6730 	skb->nohdr = 0;
6731 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6732 
6733 	return 0;
6734 }
6735 
6736 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6737 
6738 /* carve out the first eat bytes from skb's frag_list. May recurse into
6739  * pskb_carve()
6740  */
6741 static int pskb_carve_frag_list(struct sk_buff *skb,
6742 				struct skb_shared_info *shinfo, int eat,
6743 				gfp_t gfp_mask)
6744 {
6745 	struct sk_buff *list = shinfo->frag_list;
6746 	struct sk_buff *clone = NULL;
6747 	struct sk_buff *insp = NULL;
6748 
6749 	do {
6750 		if (!list) {
6751 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6752 			return -EFAULT;
6753 		}
6754 		if (list->len <= eat) {
6755 			/* Eaten as whole. */
6756 			eat -= list->len;
6757 			list = list->next;
6758 			insp = list;
6759 		} else {
6760 			/* Eaten partially. */
6761 			if (skb_shared(list)) {
6762 				clone = skb_clone(list, gfp_mask);
6763 				if (!clone)
6764 					return -ENOMEM;
6765 				insp = list->next;
6766 				list = clone;
6767 			} else {
6768 				/* This may be pulled without problems. */
6769 				insp = list;
6770 			}
6771 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6772 				kfree_skb(clone);
6773 				return -ENOMEM;
6774 			}
6775 			break;
6776 		}
6777 	} while (eat);
6778 
6779 	/* Free pulled out fragments. */
6780 	while ((list = shinfo->frag_list) != insp) {
6781 		shinfo->frag_list = list->next;
6782 		consume_skb(list);
6783 	}
6784 	/* And insert new clone at head. */
6785 	if (clone) {
6786 		clone->next = list;
6787 		shinfo->frag_list = clone;
6788 	}
6789 	return 0;
6790 }
6791 
6792 /* carve off first len bytes from skb. Split line (off) is in the
6793  * non-linear part of skb
6794  */
6795 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6796 				       int pos, gfp_t gfp_mask)
6797 {
6798 	int i, k = 0;
6799 	unsigned int size = skb_end_offset(skb);
6800 	u8 *data;
6801 	const int nfrags = skb_shinfo(skb)->nr_frags;
6802 	struct skb_shared_info *shinfo;
6803 
6804 	if (skb_pfmemalloc(skb))
6805 		gfp_mask |= __GFP_MEMALLOC;
6806 
6807 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6808 	if (!data)
6809 		return -ENOMEM;
6810 	size = SKB_WITH_OVERHEAD(size);
6811 
6812 	memcpy((struct skb_shared_info *)(data + size),
6813 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6814 	if (skb_orphan_frags(skb, gfp_mask)) {
6815 		skb_kfree_head(data, size);
6816 		return -ENOMEM;
6817 	}
6818 	shinfo = (struct skb_shared_info *)(data + size);
6819 	for (i = 0; i < nfrags; i++) {
6820 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6821 
6822 		if (pos + fsize > off) {
6823 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6824 
6825 			if (pos < off) {
6826 				/* Split frag.
6827 				 * We have two variants in this case:
6828 				 * 1. Move all the frag to the second
6829 				 *    part, if it is possible. F.e.
6830 				 *    this approach is mandatory for TUX,
6831 				 *    where splitting is expensive.
6832 				 * 2. Split is accurately. We make this.
6833 				 */
6834 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6835 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6836 			}
6837 			skb_frag_ref(skb, i);
6838 			k++;
6839 		}
6840 		pos += fsize;
6841 	}
6842 	shinfo->nr_frags = k;
6843 	if (skb_has_frag_list(skb))
6844 		skb_clone_fraglist(skb);
6845 
6846 	/* split line is in frag list */
6847 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6848 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6849 		if (skb_has_frag_list(skb))
6850 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6851 		skb_kfree_head(data, size);
6852 		return -ENOMEM;
6853 	}
6854 	skb_release_data(skb, SKB_CONSUMED);
6855 
6856 	skb->head = data;
6857 	skb->head_frag = 0;
6858 	skb->data = data;
6859 	skb_set_end_offset(skb, size);
6860 	skb_reset_tail_pointer(skb);
6861 	skb_headers_offset_update(skb, 0);
6862 	skb->cloned   = 0;
6863 	skb->hdr_len  = 0;
6864 	skb->nohdr    = 0;
6865 	skb->len -= off;
6866 	skb->data_len = skb->len;
6867 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6868 	return 0;
6869 }
6870 
6871 /* remove len bytes from the beginning of the skb */
6872 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6873 {
6874 	int headlen = skb_headlen(skb);
6875 
6876 	if (len < headlen)
6877 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6878 	else
6879 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6880 }
6881 
6882 /* Extract to_copy bytes starting at off from skb, and return this in
6883  * a new skb
6884  */
6885 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6886 			     int to_copy, gfp_t gfp)
6887 {
6888 	struct sk_buff  *clone = skb_clone(skb, gfp);
6889 
6890 	if (!clone)
6891 		return NULL;
6892 
6893 	if (pskb_carve(clone, off, gfp) < 0 ||
6894 	    pskb_trim(clone, to_copy)) {
6895 		kfree_skb(clone);
6896 		return NULL;
6897 	}
6898 	return clone;
6899 }
6900 EXPORT_SYMBOL(pskb_extract);
6901 
6902 /**
6903  * skb_condense - try to get rid of fragments/frag_list if possible
6904  * @skb: buffer
6905  *
6906  * Can be used to save memory before skb is added to a busy queue.
6907  * If packet has bytes in frags and enough tail room in skb->head,
6908  * pull all of them, so that we can free the frags right now and adjust
6909  * truesize.
6910  * Notes:
6911  *	We do not reallocate skb->head thus can not fail.
6912  *	Caller must re-evaluate skb->truesize if needed.
6913  */
6914 void skb_condense(struct sk_buff *skb)
6915 {
6916 	if (skb->data_len) {
6917 		if (skb->data_len > skb->end - skb->tail ||
6918 		    skb_cloned(skb) || !skb_frags_readable(skb))
6919 			return;
6920 
6921 		/* Nice, we can free page frag(s) right now */
6922 		__pskb_pull_tail(skb, skb->data_len);
6923 	}
6924 	/* At this point, skb->truesize might be over estimated,
6925 	 * because skb had a fragment, and fragments do not tell
6926 	 * their truesize.
6927 	 * When we pulled its content into skb->head, fragment
6928 	 * was freed, but __pskb_pull_tail() could not possibly
6929 	 * adjust skb->truesize, not knowing the frag truesize.
6930 	 */
6931 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6932 }
6933 EXPORT_SYMBOL(skb_condense);
6934 
6935 #ifdef CONFIG_SKB_EXTENSIONS
6936 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6937 {
6938 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6939 }
6940 
6941 /**
6942  * __skb_ext_alloc - allocate a new skb extensions storage
6943  *
6944  * @flags: See kmalloc().
6945  *
6946  * Returns the newly allocated pointer. The pointer can later attached to a
6947  * skb via __skb_ext_set().
6948  * Note: caller must handle the skb_ext as an opaque data.
6949  */
6950 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6951 {
6952 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6953 
6954 	if (new) {
6955 		memset(new->offset, 0, sizeof(new->offset));
6956 		refcount_set(&new->refcnt, 1);
6957 	}
6958 
6959 	return new;
6960 }
6961 
6962 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6963 					 unsigned int old_active)
6964 {
6965 	struct skb_ext *new;
6966 
6967 	if (refcount_read(&old->refcnt) == 1)
6968 		return old;
6969 
6970 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6971 	if (!new)
6972 		return NULL;
6973 
6974 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6975 	refcount_set(&new->refcnt, 1);
6976 
6977 #ifdef CONFIG_XFRM
6978 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6979 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6980 		unsigned int i;
6981 
6982 		for (i = 0; i < sp->len; i++)
6983 			xfrm_state_hold(sp->xvec[i]);
6984 	}
6985 #endif
6986 #ifdef CONFIG_MCTP_FLOWS
6987 	if (old_active & (1 << SKB_EXT_MCTP)) {
6988 		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6989 
6990 		if (flow->key)
6991 			refcount_inc(&flow->key->refs);
6992 	}
6993 #endif
6994 	__skb_ext_put(old);
6995 	return new;
6996 }
6997 
6998 /**
6999  * __skb_ext_set - attach the specified extension storage to this skb
7000  * @skb: buffer
7001  * @id: extension id
7002  * @ext: extension storage previously allocated via __skb_ext_alloc()
7003  *
7004  * Existing extensions, if any, are cleared.
7005  *
7006  * Returns the pointer to the extension.
7007  */
7008 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
7009 		    struct skb_ext *ext)
7010 {
7011 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
7012 
7013 	skb_ext_put(skb);
7014 	newlen = newoff + skb_ext_type_len[id];
7015 	ext->chunks = newlen;
7016 	ext->offset[id] = newoff;
7017 	skb->extensions = ext;
7018 	skb->active_extensions = 1 << id;
7019 	return skb_ext_get_ptr(ext, id);
7020 }
7021 
7022 /**
7023  * skb_ext_add - allocate space for given extension, COW if needed
7024  * @skb: buffer
7025  * @id: extension to allocate space for
7026  *
7027  * Allocates enough space for the given extension.
7028  * If the extension is already present, a pointer to that extension
7029  * is returned.
7030  *
7031  * If the skb was cloned, COW applies and the returned memory can be
7032  * modified without changing the extension space of clones buffers.
7033  *
7034  * Returns pointer to the extension or NULL on allocation failure.
7035  */
7036 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
7037 {
7038 	struct skb_ext *new, *old = NULL;
7039 	unsigned int newlen, newoff;
7040 
7041 	if (skb->active_extensions) {
7042 		old = skb->extensions;
7043 
7044 		new = skb_ext_maybe_cow(old, skb->active_extensions);
7045 		if (!new)
7046 			return NULL;
7047 
7048 		if (__skb_ext_exist(new, id))
7049 			goto set_active;
7050 
7051 		newoff = new->chunks;
7052 	} else {
7053 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
7054 
7055 		new = __skb_ext_alloc(GFP_ATOMIC);
7056 		if (!new)
7057 			return NULL;
7058 	}
7059 
7060 	newlen = newoff + skb_ext_type_len[id];
7061 	new->chunks = newlen;
7062 	new->offset[id] = newoff;
7063 set_active:
7064 	skb->slow_gro = 1;
7065 	skb->extensions = new;
7066 	skb->active_extensions |= 1 << id;
7067 	return skb_ext_get_ptr(new, id);
7068 }
7069 EXPORT_SYMBOL(skb_ext_add);
7070 
7071 #ifdef CONFIG_XFRM
7072 static void skb_ext_put_sp(struct sec_path *sp)
7073 {
7074 	unsigned int i;
7075 
7076 	for (i = 0; i < sp->len; i++)
7077 		xfrm_state_put(sp->xvec[i]);
7078 }
7079 #endif
7080 
7081 #ifdef CONFIG_MCTP_FLOWS
7082 static void skb_ext_put_mctp(struct mctp_flow *flow)
7083 {
7084 	if (flow->key)
7085 		mctp_key_unref(flow->key);
7086 }
7087 #endif
7088 
7089 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
7090 {
7091 	struct skb_ext *ext = skb->extensions;
7092 
7093 	skb->active_extensions &= ~(1 << id);
7094 	if (skb->active_extensions == 0) {
7095 		skb->extensions = NULL;
7096 		__skb_ext_put(ext);
7097 #ifdef CONFIG_XFRM
7098 	} else if (id == SKB_EXT_SEC_PATH &&
7099 		   refcount_read(&ext->refcnt) == 1) {
7100 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
7101 
7102 		skb_ext_put_sp(sp);
7103 		sp->len = 0;
7104 #endif
7105 	}
7106 }
7107 EXPORT_SYMBOL(__skb_ext_del);
7108 
7109 void __skb_ext_put(struct skb_ext *ext)
7110 {
7111 	/* If this is last clone, nothing can increment
7112 	 * it after check passes.  Avoids one atomic op.
7113 	 */
7114 	if (refcount_read(&ext->refcnt) == 1)
7115 		goto free_now;
7116 
7117 	if (!refcount_dec_and_test(&ext->refcnt))
7118 		return;
7119 free_now:
7120 #ifdef CONFIG_XFRM
7121 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
7122 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
7123 #endif
7124 #ifdef CONFIG_MCTP_FLOWS
7125 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
7126 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
7127 #endif
7128 
7129 	kmem_cache_free(skbuff_ext_cache, ext);
7130 }
7131 EXPORT_SYMBOL(__skb_ext_put);
7132 #endif /* CONFIG_SKB_EXTENSIONS */
7133 
7134 static void kfree_skb_napi_cache(struct sk_buff *skb)
7135 {
7136 	/* if SKB is a clone, don't handle this case */
7137 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
7138 		__kfree_skb(skb);
7139 		return;
7140 	}
7141 
7142 	local_bh_disable();
7143 	__napi_kfree_skb(skb, SKB_CONSUMED);
7144 	local_bh_enable();
7145 }
7146 
7147 /**
7148  * skb_attempt_defer_free - queue skb for remote freeing
7149  * @skb: buffer
7150  *
7151  * Put @skb in a per-cpu list, using the cpu which
7152  * allocated the skb/pages to reduce false sharing
7153  * and memory zone spinlock contention.
7154  */
7155 void skb_attempt_defer_free(struct sk_buff *skb)
7156 {
7157 	int cpu = skb->alloc_cpu;
7158 	struct softnet_data *sd;
7159 	unsigned int defer_max;
7160 	bool kick;
7161 
7162 	if (cpu == raw_smp_processor_id() ||
7163 	    WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7164 	    !cpu_online(cpu)) {
7165 nodefer:	kfree_skb_napi_cache(skb);
7166 		return;
7167 	}
7168 
7169 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7170 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7171 
7172 	sd = &per_cpu(softnet_data, cpu);
7173 	defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max);
7174 	if (READ_ONCE(sd->defer_count) >= defer_max)
7175 		goto nodefer;
7176 
7177 	spin_lock_bh(&sd->defer_lock);
7178 	/* Send an IPI every time queue reaches half capacity. */
7179 	kick = sd->defer_count == (defer_max >> 1);
7180 	/* Paired with the READ_ONCE() few lines above */
7181 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7182 
7183 	skb->next = sd->defer_list;
7184 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
7185 	WRITE_ONCE(sd->defer_list, skb);
7186 	spin_unlock_bh(&sd->defer_lock);
7187 
7188 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7189 	 * if we are unlucky enough (this seems very unlikely).
7190 	 */
7191 	if (unlikely(kick))
7192 		kick_defer_list_purge(sd, cpu);
7193 }
7194 
7195 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7196 				 size_t offset, size_t len)
7197 {
7198 	const char *kaddr;
7199 	__wsum csum;
7200 
7201 	kaddr = kmap_local_page(page);
7202 	csum = csum_partial(kaddr + offset, len, 0);
7203 	kunmap_local(kaddr);
7204 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7205 }
7206 
7207 /**
7208  * skb_splice_from_iter - Splice (or copy) pages to skbuff
7209  * @skb: The buffer to add pages to
7210  * @iter: Iterator representing the pages to be added
7211  * @maxsize: Maximum amount of pages to be added
7212  * @gfp: Allocation flags
7213  *
7214  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7215  * extracts pages from an iterator and adds them to the socket buffer if
7216  * possible, copying them to fragments if not possible (such as if they're slab
7217  * pages).
7218  *
7219  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7220  * insufficient space in the buffer to transfer anything.
7221  */
7222 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7223 			     ssize_t maxsize, gfp_t gfp)
7224 {
7225 	size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags);
7226 	struct page *pages[8], **ppages = pages;
7227 	ssize_t spliced = 0, ret = 0;
7228 	unsigned int i;
7229 
7230 	while (iter->count > 0) {
7231 		ssize_t space, nr, len;
7232 		size_t off;
7233 
7234 		ret = -EMSGSIZE;
7235 		space = frag_limit - skb_shinfo(skb)->nr_frags;
7236 		if (space < 0)
7237 			break;
7238 
7239 		/* We might be able to coalesce without increasing nr_frags */
7240 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7241 
7242 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7243 		if (len <= 0) {
7244 			ret = len ?: -EIO;
7245 			break;
7246 		}
7247 
7248 		i = 0;
7249 		do {
7250 			struct page *page = pages[i++];
7251 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7252 
7253 			ret = -EIO;
7254 			if (WARN_ON_ONCE(!sendpage_ok(page)))
7255 				goto out;
7256 
7257 			ret = skb_append_pagefrags(skb, page, off, part,
7258 						   frag_limit);
7259 			if (ret < 0) {
7260 				iov_iter_revert(iter, len);
7261 				goto out;
7262 			}
7263 
7264 			if (skb->ip_summed == CHECKSUM_NONE)
7265 				skb_splice_csum_page(skb, page, off, part);
7266 
7267 			off = 0;
7268 			spliced += part;
7269 			maxsize -= part;
7270 			len -= part;
7271 		} while (len > 0);
7272 
7273 		if (maxsize <= 0)
7274 			break;
7275 	}
7276 
7277 out:
7278 	skb_len_add(skb, spliced);
7279 	return spliced ?: ret;
7280 }
7281 EXPORT_SYMBOL(skb_splice_from_iter);
7282 
7283 static __always_inline
7284 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7285 			     size_t len, void *to, void *priv2)
7286 {
7287 	__wsum *csum = priv2;
7288 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7289 
7290 	*csum = csum_block_add(*csum, next, progress);
7291 	return 0;
7292 }
7293 
7294 static __always_inline
7295 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7296 				size_t len, void *to, void *priv2)
7297 {
7298 	__wsum next, *csum = priv2;
7299 
7300 	next = csum_and_copy_from_user(iter_from, to + progress, len);
7301 	*csum = csum_block_add(*csum, next, progress);
7302 	return next ? 0 : len;
7303 }
7304 
7305 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7306 				  __wsum *csum, struct iov_iter *i)
7307 {
7308 	size_t copied;
7309 
7310 	if (WARN_ON_ONCE(!i->data_source))
7311 		return false;
7312 	copied = iterate_and_advance2(i, bytes, addr, csum,
7313 				      copy_from_user_iter_csum,
7314 				      memcpy_from_iter_csum);
7315 	if (likely(copied == bytes))
7316 		return true;
7317 	iov_iter_revert(i, copied);
7318 	return false;
7319 }
7320 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7321 
7322 void get_netmem(netmem_ref netmem)
7323 {
7324 	struct net_iov *niov;
7325 
7326 	if (netmem_is_net_iov(netmem)) {
7327 		niov = netmem_to_net_iov(netmem);
7328 		if (net_is_devmem_iov(niov))
7329 			net_devmem_get_net_iov(netmem_to_net_iov(netmem));
7330 		return;
7331 	}
7332 	get_page(netmem_to_page(netmem));
7333 }
7334 EXPORT_SYMBOL(get_netmem);
7335 
7336 void put_netmem(netmem_ref netmem)
7337 {
7338 	struct net_iov *niov;
7339 
7340 	if (netmem_is_net_iov(netmem)) {
7341 		niov = netmem_to_net_iov(netmem);
7342 		if (net_is_devmem_iov(niov))
7343 			net_devmem_put_net_iov(netmem_to_net_iov(netmem));
7344 		return;
7345 	}
7346 
7347 	put_page(netmem_to_page(netmem));
7348 }
7349 EXPORT_SYMBOL(put_netmem);
7350