xref: /linux/net/core/skbuff.c (revision 6a143a7cf94730f57544ea14a987dc025364dbb8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71 #include <net/mptcp.h>
72 
73 #include <linux/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76 #include <linux/capability.h>
77 #include <linux/user_namespace.h>
78 #include <linux/indirect_call_wrapper.h>
79 
80 #include "datagram.h"
81 
82 struct kmem_cache *skbuff_head_cache __ro_after_init;
83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
84 #ifdef CONFIG_SKB_EXTENSIONS
85 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
86 #endif
87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
88 EXPORT_SYMBOL(sysctl_max_skb_frags);
89 
90 /**
91  *	skb_panic - private function for out-of-line support
92  *	@skb:	buffer
93  *	@sz:	size
94  *	@addr:	address
95  *	@msg:	skb_over_panic or skb_under_panic
96  *
97  *	Out-of-line support for skb_put() and skb_push().
98  *	Called via the wrapper skb_over_panic() or skb_under_panic().
99  *	Keep out of line to prevent kernel bloat.
100  *	__builtin_return_address is not used because it is not always reliable.
101  */
102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
103 		      const char msg[])
104 {
105 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
106 		 msg, addr, skb->len, sz, skb->head, skb->data,
107 		 (unsigned long)skb->tail, (unsigned long)skb->end,
108 		 skb->dev ? skb->dev->name : "<NULL>");
109 	BUG();
110 }
111 
112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
118 {
119 	skb_panic(skb, sz, addr, __func__);
120 }
121 
122 #define NAPI_SKB_CACHE_SIZE	64
123 #define NAPI_SKB_CACHE_BULK	16
124 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
125 
126 struct napi_alloc_cache {
127 	struct page_frag_cache page;
128 	unsigned int skb_count;
129 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
130 };
131 
132 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
133 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
134 
135 static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask,
136 				unsigned int align_mask)
137 {
138 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
139 
140 	return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask);
141 }
142 
143 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
144 {
145 	fragsz = SKB_DATA_ALIGN(fragsz);
146 
147 	return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
148 }
149 EXPORT_SYMBOL(__napi_alloc_frag_align);
150 
151 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
152 {
153 	struct page_frag_cache *nc;
154 	void *data;
155 
156 	fragsz = SKB_DATA_ALIGN(fragsz);
157 	if (in_irq() || irqs_disabled()) {
158 		nc = this_cpu_ptr(&netdev_alloc_cache);
159 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
160 	} else {
161 		local_bh_disable();
162 		data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
163 		local_bh_enable();
164 	}
165 	return data;
166 }
167 EXPORT_SYMBOL(__netdev_alloc_frag_align);
168 
169 static struct sk_buff *napi_skb_cache_get(void)
170 {
171 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
172 	struct sk_buff *skb;
173 
174 	if (unlikely(!nc->skb_count))
175 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
176 						      GFP_ATOMIC,
177 						      NAPI_SKB_CACHE_BULK,
178 						      nc->skb_cache);
179 	if (unlikely(!nc->skb_count))
180 		return NULL;
181 
182 	skb = nc->skb_cache[--nc->skb_count];
183 	kasan_unpoison_object_data(skbuff_head_cache, skb);
184 
185 	return skb;
186 }
187 
188 /* Caller must provide SKB that is memset cleared */
189 static void __build_skb_around(struct sk_buff *skb, void *data,
190 			       unsigned int frag_size)
191 {
192 	struct skb_shared_info *shinfo;
193 	unsigned int size = frag_size ? : ksize(data);
194 
195 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
196 
197 	/* Assumes caller memset cleared SKB */
198 	skb->truesize = SKB_TRUESIZE(size);
199 	refcount_set(&skb->users, 1);
200 	skb->head = data;
201 	skb->data = data;
202 	skb_reset_tail_pointer(skb);
203 	skb->end = skb->tail + size;
204 	skb->mac_header = (typeof(skb->mac_header))~0U;
205 	skb->transport_header = (typeof(skb->transport_header))~0U;
206 
207 	/* make sure we initialize shinfo sequentially */
208 	shinfo = skb_shinfo(skb);
209 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
210 	atomic_set(&shinfo->dataref, 1);
211 
212 	skb_set_kcov_handle(skb, kcov_common_handle());
213 }
214 
215 /**
216  * __build_skb - build a network buffer
217  * @data: data buffer provided by caller
218  * @frag_size: size of data, or 0 if head was kmalloced
219  *
220  * Allocate a new &sk_buff. Caller provides space holding head and
221  * skb_shared_info. @data must have been allocated by kmalloc() only if
222  * @frag_size is 0, otherwise data should come from the page allocator
223  *  or vmalloc()
224  * The return is the new skb buffer.
225  * On a failure the return is %NULL, and @data is not freed.
226  * Notes :
227  *  Before IO, driver allocates only data buffer where NIC put incoming frame
228  *  Driver should add room at head (NET_SKB_PAD) and
229  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
230  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
231  *  before giving packet to stack.
232  *  RX rings only contains data buffers, not full skbs.
233  */
234 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
235 {
236 	struct sk_buff *skb;
237 
238 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
239 	if (unlikely(!skb))
240 		return NULL;
241 
242 	memset(skb, 0, offsetof(struct sk_buff, tail));
243 	__build_skb_around(skb, data, frag_size);
244 
245 	return skb;
246 }
247 
248 /* build_skb() is wrapper over __build_skb(), that specifically
249  * takes care of skb->head and skb->pfmemalloc
250  * This means that if @frag_size is not zero, then @data must be backed
251  * by a page fragment, not kmalloc() or vmalloc()
252  */
253 struct sk_buff *build_skb(void *data, unsigned int frag_size)
254 {
255 	struct sk_buff *skb = __build_skb(data, frag_size);
256 
257 	if (skb && frag_size) {
258 		skb->head_frag = 1;
259 		if (page_is_pfmemalloc(virt_to_head_page(data)))
260 			skb->pfmemalloc = 1;
261 	}
262 	return skb;
263 }
264 EXPORT_SYMBOL(build_skb);
265 
266 /**
267  * build_skb_around - build a network buffer around provided skb
268  * @skb: sk_buff provide by caller, must be memset cleared
269  * @data: data buffer provided by caller
270  * @frag_size: size of data, or 0 if head was kmalloced
271  */
272 struct sk_buff *build_skb_around(struct sk_buff *skb,
273 				 void *data, unsigned int frag_size)
274 {
275 	if (unlikely(!skb))
276 		return NULL;
277 
278 	__build_skb_around(skb, data, frag_size);
279 
280 	if (frag_size) {
281 		skb->head_frag = 1;
282 		if (page_is_pfmemalloc(virt_to_head_page(data)))
283 			skb->pfmemalloc = 1;
284 	}
285 	return skb;
286 }
287 EXPORT_SYMBOL(build_skb_around);
288 
289 /**
290  * __napi_build_skb - build a network buffer
291  * @data: data buffer provided by caller
292  * @frag_size: size of data, or 0 if head was kmalloced
293  *
294  * Version of __build_skb() that uses NAPI percpu caches to obtain
295  * skbuff_head instead of inplace allocation.
296  *
297  * Returns a new &sk_buff on success, %NULL on allocation failure.
298  */
299 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
300 {
301 	struct sk_buff *skb;
302 
303 	skb = napi_skb_cache_get();
304 	if (unlikely(!skb))
305 		return NULL;
306 
307 	memset(skb, 0, offsetof(struct sk_buff, tail));
308 	__build_skb_around(skb, data, frag_size);
309 
310 	return skb;
311 }
312 
313 /**
314  * napi_build_skb - build a network buffer
315  * @data: data buffer provided by caller
316  * @frag_size: size of data, or 0 if head was kmalloced
317  *
318  * Version of __napi_build_skb() that takes care of skb->head_frag
319  * and skb->pfmemalloc when the data is a page or page fragment.
320  *
321  * Returns a new &sk_buff on success, %NULL on allocation failure.
322  */
323 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
324 {
325 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
326 
327 	if (likely(skb) && frag_size) {
328 		skb->head_frag = 1;
329 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
330 	}
331 
332 	return skb;
333 }
334 EXPORT_SYMBOL(napi_build_skb);
335 
336 /*
337  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
338  * the caller if emergency pfmemalloc reserves are being used. If it is and
339  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
340  * may be used. Otherwise, the packet data may be discarded until enough
341  * memory is free
342  */
343 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
344 			     bool *pfmemalloc)
345 {
346 	void *obj;
347 	bool ret_pfmemalloc = false;
348 
349 	/*
350 	 * Try a regular allocation, when that fails and we're not entitled
351 	 * to the reserves, fail.
352 	 */
353 	obj = kmalloc_node_track_caller(size,
354 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
355 					node);
356 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
357 		goto out;
358 
359 	/* Try again but now we are using pfmemalloc reserves */
360 	ret_pfmemalloc = true;
361 	obj = kmalloc_node_track_caller(size, flags, node);
362 
363 out:
364 	if (pfmemalloc)
365 		*pfmemalloc = ret_pfmemalloc;
366 
367 	return obj;
368 }
369 
370 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
371  *	'private' fields and also do memory statistics to find all the
372  *	[BEEP] leaks.
373  *
374  */
375 
376 /**
377  *	__alloc_skb	-	allocate a network buffer
378  *	@size: size to allocate
379  *	@gfp_mask: allocation mask
380  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
381  *		instead of head cache and allocate a cloned (child) skb.
382  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
383  *		allocations in case the data is required for writeback
384  *	@node: numa node to allocate memory on
385  *
386  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
387  *	tail room of at least size bytes. The object has a reference count
388  *	of one. The return is the buffer. On a failure the return is %NULL.
389  *
390  *	Buffers may only be allocated from interrupts using a @gfp_mask of
391  *	%GFP_ATOMIC.
392  */
393 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
394 			    int flags, int node)
395 {
396 	struct kmem_cache *cache;
397 	struct sk_buff *skb;
398 	u8 *data;
399 	bool pfmemalloc;
400 
401 	cache = (flags & SKB_ALLOC_FCLONE)
402 		? skbuff_fclone_cache : skbuff_head_cache;
403 
404 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
405 		gfp_mask |= __GFP_MEMALLOC;
406 
407 	/* Get the HEAD */
408 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
409 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
410 		skb = napi_skb_cache_get();
411 	else
412 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
413 	if (unlikely(!skb))
414 		return NULL;
415 	prefetchw(skb);
416 
417 	/* We do our best to align skb_shared_info on a separate cache
418 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
419 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
420 	 * Both skb->head and skb_shared_info are cache line aligned.
421 	 */
422 	size = SKB_DATA_ALIGN(size);
423 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
424 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
425 	if (unlikely(!data))
426 		goto nodata;
427 	/* kmalloc(size) might give us more room than requested.
428 	 * Put skb_shared_info exactly at the end of allocated zone,
429 	 * to allow max possible filling before reallocation.
430 	 */
431 	size = SKB_WITH_OVERHEAD(ksize(data));
432 	prefetchw(data + size);
433 
434 	/*
435 	 * Only clear those fields we need to clear, not those that we will
436 	 * actually initialise below. Hence, don't put any more fields after
437 	 * the tail pointer in struct sk_buff!
438 	 */
439 	memset(skb, 0, offsetof(struct sk_buff, tail));
440 	__build_skb_around(skb, data, 0);
441 	skb->pfmemalloc = pfmemalloc;
442 
443 	if (flags & SKB_ALLOC_FCLONE) {
444 		struct sk_buff_fclones *fclones;
445 
446 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
447 
448 		skb->fclone = SKB_FCLONE_ORIG;
449 		refcount_set(&fclones->fclone_ref, 1);
450 
451 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
452 	}
453 
454 	return skb;
455 
456 nodata:
457 	kmem_cache_free(cache, skb);
458 	return NULL;
459 }
460 EXPORT_SYMBOL(__alloc_skb);
461 
462 /**
463  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
464  *	@dev: network device to receive on
465  *	@len: length to allocate
466  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
467  *
468  *	Allocate a new &sk_buff and assign it a usage count of one. The
469  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
470  *	the headroom they think they need without accounting for the
471  *	built in space. The built in space is used for optimisations.
472  *
473  *	%NULL is returned if there is no free memory.
474  */
475 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
476 				   gfp_t gfp_mask)
477 {
478 	struct page_frag_cache *nc;
479 	struct sk_buff *skb;
480 	bool pfmemalloc;
481 	void *data;
482 
483 	len += NET_SKB_PAD;
484 
485 	/* If requested length is either too small or too big,
486 	 * we use kmalloc() for skb->head allocation.
487 	 */
488 	if (len <= SKB_WITH_OVERHEAD(1024) ||
489 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
490 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
491 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
492 		if (!skb)
493 			goto skb_fail;
494 		goto skb_success;
495 	}
496 
497 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
498 	len = SKB_DATA_ALIGN(len);
499 
500 	if (sk_memalloc_socks())
501 		gfp_mask |= __GFP_MEMALLOC;
502 
503 	if (in_irq() || irqs_disabled()) {
504 		nc = this_cpu_ptr(&netdev_alloc_cache);
505 		data = page_frag_alloc(nc, len, gfp_mask);
506 		pfmemalloc = nc->pfmemalloc;
507 	} else {
508 		local_bh_disable();
509 		nc = this_cpu_ptr(&napi_alloc_cache.page);
510 		data = page_frag_alloc(nc, len, gfp_mask);
511 		pfmemalloc = nc->pfmemalloc;
512 		local_bh_enable();
513 	}
514 
515 	if (unlikely(!data))
516 		return NULL;
517 
518 	skb = __build_skb(data, len);
519 	if (unlikely(!skb)) {
520 		skb_free_frag(data);
521 		return NULL;
522 	}
523 
524 	if (pfmemalloc)
525 		skb->pfmemalloc = 1;
526 	skb->head_frag = 1;
527 
528 skb_success:
529 	skb_reserve(skb, NET_SKB_PAD);
530 	skb->dev = dev;
531 
532 skb_fail:
533 	return skb;
534 }
535 EXPORT_SYMBOL(__netdev_alloc_skb);
536 
537 /**
538  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
539  *	@napi: napi instance this buffer was allocated for
540  *	@len: length to allocate
541  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
542  *
543  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
544  *	attempt to allocate the head from a special reserved region used
545  *	only for NAPI Rx allocation.  By doing this we can save several
546  *	CPU cycles by avoiding having to disable and re-enable IRQs.
547  *
548  *	%NULL is returned if there is no free memory.
549  */
550 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
551 				 gfp_t gfp_mask)
552 {
553 	struct napi_alloc_cache *nc;
554 	struct sk_buff *skb;
555 	void *data;
556 
557 	len += NET_SKB_PAD + NET_IP_ALIGN;
558 
559 	/* If requested length is either too small or too big,
560 	 * we use kmalloc() for skb->head allocation.
561 	 */
562 	if (len <= SKB_WITH_OVERHEAD(1024) ||
563 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
564 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
565 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
566 				  NUMA_NO_NODE);
567 		if (!skb)
568 			goto skb_fail;
569 		goto skb_success;
570 	}
571 
572 	nc = this_cpu_ptr(&napi_alloc_cache);
573 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
574 	len = SKB_DATA_ALIGN(len);
575 
576 	if (sk_memalloc_socks())
577 		gfp_mask |= __GFP_MEMALLOC;
578 
579 	data = page_frag_alloc(&nc->page, len, gfp_mask);
580 	if (unlikely(!data))
581 		return NULL;
582 
583 	skb = __napi_build_skb(data, len);
584 	if (unlikely(!skb)) {
585 		skb_free_frag(data);
586 		return NULL;
587 	}
588 
589 	if (nc->page.pfmemalloc)
590 		skb->pfmemalloc = 1;
591 	skb->head_frag = 1;
592 
593 skb_success:
594 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
595 	skb->dev = napi->dev;
596 
597 skb_fail:
598 	return skb;
599 }
600 EXPORT_SYMBOL(__napi_alloc_skb);
601 
602 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
603 		     int size, unsigned int truesize)
604 {
605 	skb_fill_page_desc(skb, i, page, off, size);
606 	skb->len += size;
607 	skb->data_len += size;
608 	skb->truesize += truesize;
609 }
610 EXPORT_SYMBOL(skb_add_rx_frag);
611 
612 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
613 			  unsigned int truesize)
614 {
615 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
616 
617 	skb_frag_size_add(frag, size);
618 	skb->len += size;
619 	skb->data_len += size;
620 	skb->truesize += truesize;
621 }
622 EXPORT_SYMBOL(skb_coalesce_rx_frag);
623 
624 static void skb_drop_list(struct sk_buff **listp)
625 {
626 	kfree_skb_list(*listp);
627 	*listp = NULL;
628 }
629 
630 static inline void skb_drop_fraglist(struct sk_buff *skb)
631 {
632 	skb_drop_list(&skb_shinfo(skb)->frag_list);
633 }
634 
635 static void skb_clone_fraglist(struct sk_buff *skb)
636 {
637 	struct sk_buff *list;
638 
639 	skb_walk_frags(skb, list)
640 		skb_get(list);
641 }
642 
643 static void skb_free_head(struct sk_buff *skb)
644 {
645 	unsigned char *head = skb->head;
646 
647 	if (skb->head_frag)
648 		skb_free_frag(head);
649 	else
650 		kfree(head);
651 }
652 
653 static void skb_release_data(struct sk_buff *skb)
654 {
655 	struct skb_shared_info *shinfo = skb_shinfo(skb);
656 	int i;
657 
658 	if (skb->cloned &&
659 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
660 			      &shinfo->dataref))
661 		return;
662 
663 	skb_zcopy_clear(skb, true);
664 
665 	for (i = 0; i < shinfo->nr_frags; i++)
666 		__skb_frag_unref(&shinfo->frags[i]);
667 
668 	if (shinfo->frag_list)
669 		kfree_skb_list(shinfo->frag_list);
670 
671 	skb_free_head(skb);
672 }
673 
674 /*
675  *	Free an skbuff by memory without cleaning the state.
676  */
677 static void kfree_skbmem(struct sk_buff *skb)
678 {
679 	struct sk_buff_fclones *fclones;
680 
681 	switch (skb->fclone) {
682 	case SKB_FCLONE_UNAVAILABLE:
683 		kmem_cache_free(skbuff_head_cache, skb);
684 		return;
685 
686 	case SKB_FCLONE_ORIG:
687 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
688 
689 		/* We usually free the clone (TX completion) before original skb
690 		 * This test would have no chance to be true for the clone,
691 		 * while here, branch prediction will be good.
692 		 */
693 		if (refcount_read(&fclones->fclone_ref) == 1)
694 			goto fastpath;
695 		break;
696 
697 	default: /* SKB_FCLONE_CLONE */
698 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
699 		break;
700 	}
701 	if (!refcount_dec_and_test(&fclones->fclone_ref))
702 		return;
703 fastpath:
704 	kmem_cache_free(skbuff_fclone_cache, fclones);
705 }
706 
707 void skb_release_head_state(struct sk_buff *skb)
708 {
709 	skb_dst_drop(skb);
710 	if (skb->destructor) {
711 		WARN_ON(in_irq());
712 		skb->destructor(skb);
713 	}
714 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
715 	nf_conntrack_put(skb_nfct(skb));
716 #endif
717 	skb_ext_put(skb);
718 }
719 
720 /* Free everything but the sk_buff shell. */
721 static void skb_release_all(struct sk_buff *skb)
722 {
723 	skb_release_head_state(skb);
724 	if (likely(skb->head))
725 		skb_release_data(skb);
726 }
727 
728 /**
729  *	__kfree_skb - private function
730  *	@skb: buffer
731  *
732  *	Free an sk_buff. Release anything attached to the buffer.
733  *	Clean the state. This is an internal helper function. Users should
734  *	always call kfree_skb
735  */
736 
737 void __kfree_skb(struct sk_buff *skb)
738 {
739 	skb_release_all(skb);
740 	kfree_skbmem(skb);
741 }
742 EXPORT_SYMBOL(__kfree_skb);
743 
744 /**
745  *	kfree_skb - free an sk_buff
746  *	@skb: buffer to free
747  *
748  *	Drop a reference to the buffer and free it if the usage count has
749  *	hit zero.
750  */
751 void kfree_skb(struct sk_buff *skb)
752 {
753 	if (!skb_unref(skb))
754 		return;
755 
756 	trace_kfree_skb(skb, __builtin_return_address(0));
757 	__kfree_skb(skb);
758 }
759 EXPORT_SYMBOL(kfree_skb);
760 
761 void kfree_skb_list(struct sk_buff *segs)
762 {
763 	while (segs) {
764 		struct sk_buff *next = segs->next;
765 
766 		kfree_skb(segs);
767 		segs = next;
768 	}
769 }
770 EXPORT_SYMBOL(kfree_skb_list);
771 
772 /* Dump skb information and contents.
773  *
774  * Must only be called from net_ratelimit()-ed paths.
775  *
776  * Dumps whole packets if full_pkt, only headers otherwise.
777  */
778 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
779 {
780 	struct skb_shared_info *sh = skb_shinfo(skb);
781 	struct net_device *dev = skb->dev;
782 	struct sock *sk = skb->sk;
783 	struct sk_buff *list_skb;
784 	bool has_mac, has_trans;
785 	int headroom, tailroom;
786 	int i, len, seg_len;
787 
788 	if (full_pkt)
789 		len = skb->len;
790 	else
791 		len = min_t(int, skb->len, MAX_HEADER + 128);
792 
793 	headroom = skb_headroom(skb);
794 	tailroom = skb_tailroom(skb);
795 
796 	has_mac = skb_mac_header_was_set(skb);
797 	has_trans = skb_transport_header_was_set(skb);
798 
799 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
800 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
801 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
802 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
803 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
804 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
805 	       has_mac ? skb->mac_header : -1,
806 	       has_mac ? skb_mac_header_len(skb) : -1,
807 	       skb->network_header,
808 	       has_trans ? skb_network_header_len(skb) : -1,
809 	       has_trans ? skb->transport_header : -1,
810 	       sh->tx_flags, sh->nr_frags,
811 	       sh->gso_size, sh->gso_type, sh->gso_segs,
812 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
813 	       skb->csum_valid, skb->csum_level,
814 	       skb->hash, skb->sw_hash, skb->l4_hash,
815 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
816 
817 	if (dev)
818 		printk("%sdev name=%s feat=0x%pNF\n",
819 		       level, dev->name, &dev->features);
820 	if (sk)
821 		printk("%ssk family=%hu type=%u proto=%u\n",
822 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
823 
824 	if (full_pkt && headroom)
825 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
826 			       16, 1, skb->head, headroom, false);
827 
828 	seg_len = min_t(int, skb_headlen(skb), len);
829 	if (seg_len)
830 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
831 			       16, 1, skb->data, seg_len, false);
832 	len -= seg_len;
833 
834 	if (full_pkt && tailroom)
835 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
836 			       16, 1, skb_tail_pointer(skb), tailroom, false);
837 
838 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
839 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
840 		u32 p_off, p_len, copied;
841 		struct page *p;
842 		u8 *vaddr;
843 
844 		skb_frag_foreach_page(frag, skb_frag_off(frag),
845 				      skb_frag_size(frag), p, p_off, p_len,
846 				      copied) {
847 			seg_len = min_t(int, p_len, len);
848 			vaddr = kmap_atomic(p);
849 			print_hex_dump(level, "skb frag:     ",
850 				       DUMP_PREFIX_OFFSET,
851 				       16, 1, vaddr + p_off, seg_len, false);
852 			kunmap_atomic(vaddr);
853 			len -= seg_len;
854 			if (!len)
855 				break;
856 		}
857 	}
858 
859 	if (full_pkt && skb_has_frag_list(skb)) {
860 		printk("skb fraglist:\n");
861 		skb_walk_frags(skb, list_skb)
862 			skb_dump(level, list_skb, true);
863 	}
864 }
865 EXPORT_SYMBOL(skb_dump);
866 
867 /**
868  *	skb_tx_error - report an sk_buff xmit error
869  *	@skb: buffer that triggered an error
870  *
871  *	Report xmit error if a device callback is tracking this skb.
872  *	skb must be freed afterwards.
873  */
874 void skb_tx_error(struct sk_buff *skb)
875 {
876 	skb_zcopy_clear(skb, true);
877 }
878 EXPORT_SYMBOL(skb_tx_error);
879 
880 #ifdef CONFIG_TRACEPOINTS
881 /**
882  *	consume_skb - free an skbuff
883  *	@skb: buffer to free
884  *
885  *	Drop a ref to the buffer and free it if the usage count has hit zero
886  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
887  *	is being dropped after a failure and notes that
888  */
889 void consume_skb(struct sk_buff *skb)
890 {
891 	if (!skb_unref(skb))
892 		return;
893 
894 	trace_consume_skb(skb);
895 	__kfree_skb(skb);
896 }
897 EXPORT_SYMBOL(consume_skb);
898 #endif
899 
900 /**
901  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
902  *	@skb: buffer to free
903  *
904  *	Alike consume_skb(), but this variant assumes that this is the last
905  *	skb reference and all the head states have been already dropped
906  */
907 void __consume_stateless_skb(struct sk_buff *skb)
908 {
909 	trace_consume_skb(skb);
910 	skb_release_data(skb);
911 	kfree_skbmem(skb);
912 }
913 
914 static void napi_skb_cache_put(struct sk_buff *skb)
915 {
916 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
917 	u32 i;
918 
919 	kasan_poison_object_data(skbuff_head_cache, skb);
920 	nc->skb_cache[nc->skb_count++] = skb;
921 
922 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
923 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
924 			kasan_unpoison_object_data(skbuff_head_cache,
925 						   nc->skb_cache[i]);
926 
927 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
928 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
929 		nc->skb_count = NAPI_SKB_CACHE_HALF;
930 	}
931 }
932 
933 void __kfree_skb_defer(struct sk_buff *skb)
934 {
935 	skb_release_all(skb);
936 	napi_skb_cache_put(skb);
937 }
938 
939 void napi_skb_free_stolen_head(struct sk_buff *skb)
940 {
941 	skb_dst_drop(skb);
942 	skb_ext_put(skb);
943 	napi_skb_cache_put(skb);
944 }
945 
946 void napi_consume_skb(struct sk_buff *skb, int budget)
947 {
948 	/* Zero budget indicate non-NAPI context called us, like netpoll */
949 	if (unlikely(!budget)) {
950 		dev_consume_skb_any(skb);
951 		return;
952 	}
953 
954 	lockdep_assert_in_softirq();
955 
956 	if (!skb_unref(skb))
957 		return;
958 
959 	/* if reaching here SKB is ready to free */
960 	trace_consume_skb(skb);
961 
962 	/* if SKB is a clone, don't handle this case */
963 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
964 		__kfree_skb(skb);
965 		return;
966 	}
967 
968 	skb_release_all(skb);
969 	napi_skb_cache_put(skb);
970 }
971 EXPORT_SYMBOL(napi_consume_skb);
972 
973 /* Make sure a field is enclosed inside headers_start/headers_end section */
974 #define CHECK_SKB_FIELD(field) \
975 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
976 		     offsetof(struct sk_buff, headers_start));	\
977 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
978 		     offsetof(struct sk_buff, headers_end));	\
979 
980 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
981 {
982 	new->tstamp		= old->tstamp;
983 	/* We do not copy old->sk */
984 	new->dev		= old->dev;
985 	memcpy(new->cb, old->cb, sizeof(old->cb));
986 	skb_dst_copy(new, old);
987 	__skb_ext_copy(new, old);
988 	__nf_copy(new, old, false);
989 
990 	/* Note : this field could be in headers_start/headers_end section
991 	 * It is not yet because we do not want to have a 16 bit hole
992 	 */
993 	new->queue_mapping = old->queue_mapping;
994 
995 	memcpy(&new->headers_start, &old->headers_start,
996 	       offsetof(struct sk_buff, headers_end) -
997 	       offsetof(struct sk_buff, headers_start));
998 	CHECK_SKB_FIELD(protocol);
999 	CHECK_SKB_FIELD(csum);
1000 	CHECK_SKB_FIELD(hash);
1001 	CHECK_SKB_FIELD(priority);
1002 	CHECK_SKB_FIELD(skb_iif);
1003 	CHECK_SKB_FIELD(vlan_proto);
1004 	CHECK_SKB_FIELD(vlan_tci);
1005 	CHECK_SKB_FIELD(transport_header);
1006 	CHECK_SKB_FIELD(network_header);
1007 	CHECK_SKB_FIELD(mac_header);
1008 	CHECK_SKB_FIELD(inner_protocol);
1009 	CHECK_SKB_FIELD(inner_transport_header);
1010 	CHECK_SKB_FIELD(inner_network_header);
1011 	CHECK_SKB_FIELD(inner_mac_header);
1012 	CHECK_SKB_FIELD(mark);
1013 #ifdef CONFIG_NETWORK_SECMARK
1014 	CHECK_SKB_FIELD(secmark);
1015 #endif
1016 #ifdef CONFIG_NET_RX_BUSY_POLL
1017 	CHECK_SKB_FIELD(napi_id);
1018 #endif
1019 #ifdef CONFIG_XPS
1020 	CHECK_SKB_FIELD(sender_cpu);
1021 #endif
1022 #ifdef CONFIG_NET_SCHED
1023 	CHECK_SKB_FIELD(tc_index);
1024 #endif
1025 
1026 }
1027 
1028 /*
1029  * You should not add any new code to this function.  Add it to
1030  * __copy_skb_header above instead.
1031  */
1032 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1033 {
1034 #define C(x) n->x = skb->x
1035 
1036 	n->next = n->prev = NULL;
1037 	n->sk = NULL;
1038 	__copy_skb_header(n, skb);
1039 
1040 	C(len);
1041 	C(data_len);
1042 	C(mac_len);
1043 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1044 	n->cloned = 1;
1045 	n->nohdr = 0;
1046 	n->peeked = 0;
1047 	C(pfmemalloc);
1048 	n->destructor = NULL;
1049 	C(tail);
1050 	C(end);
1051 	C(head);
1052 	C(head_frag);
1053 	C(data);
1054 	C(truesize);
1055 	refcount_set(&n->users, 1);
1056 
1057 	atomic_inc(&(skb_shinfo(skb)->dataref));
1058 	skb->cloned = 1;
1059 
1060 	return n;
1061 #undef C
1062 }
1063 
1064 /**
1065  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1066  * @first: first sk_buff of the msg
1067  */
1068 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1069 {
1070 	struct sk_buff *n;
1071 
1072 	n = alloc_skb(0, GFP_ATOMIC);
1073 	if (!n)
1074 		return NULL;
1075 
1076 	n->len = first->len;
1077 	n->data_len = first->len;
1078 	n->truesize = first->truesize;
1079 
1080 	skb_shinfo(n)->frag_list = first;
1081 
1082 	__copy_skb_header(n, first);
1083 	n->destructor = NULL;
1084 
1085 	return n;
1086 }
1087 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1088 
1089 /**
1090  *	skb_morph	-	morph one skb into another
1091  *	@dst: the skb to receive the contents
1092  *	@src: the skb to supply the contents
1093  *
1094  *	This is identical to skb_clone except that the target skb is
1095  *	supplied by the user.
1096  *
1097  *	The target skb is returned upon exit.
1098  */
1099 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1100 {
1101 	skb_release_all(dst);
1102 	return __skb_clone(dst, src);
1103 }
1104 EXPORT_SYMBOL_GPL(skb_morph);
1105 
1106 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1107 {
1108 	unsigned long max_pg, num_pg, new_pg, old_pg;
1109 	struct user_struct *user;
1110 
1111 	if (capable(CAP_IPC_LOCK) || !size)
1112 		return 0;
1113 
1114 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1115 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1116 	user = mmp->user ? : current_user();
1117 
1118 	do {
1119 		old_pg = atomic_long_read(&user->locked_vm);
1120 		new_pg = old_pg + num_pg;
1121 		if (new_pg > max_pg)
1122 			return -ENOBUFS;
1123 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1124 		 old_pg);
1125 
1126 	if (!mmp->user) {
1127 		mmp->user = get_uid(user);
1128 		mmp->num_pg = num_pg;
1129 	} else {
1130 		mmp->num_pg += num_pg;
1131 	}
1132 
1133 	return 0;
1134 }
1135 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1136 
1137 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1138 {
1139 	if (mmp->user) {
1140 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1141 		free_uid(mmp->user);
1142 	}
1143 }
1144 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1145 
1146 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1147 {
1148 	struct ubuf_info *uarg;
1149 	struct sk_buff *skb;
1150 
1151 	WARN_ON_ONCE(!in_task());
1152 
1153 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1154 	if (!skb)
1155 		return NULL;
1156 
1157 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1158 	uarg = (void *)skb->cb;
1159 	uarg->mmp.user = NULL;
1160 
1161 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1162 		kfree_skb(skb);
1163 		return NULL;
1164 	}
1165 
1166 	uarg->callback = msg_zerocopy_callback;
1167 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1168 	uarg->len = 1;
1169 	uarg->bytelen = size;
1170 	uarg->zerocopy = 1;
1171 	uarg->flags = SKBFL_ZEROCOPY_FRAG;
1172 	refcount_set(&uarg->refcnt, 1);
1173 	sock_hold(sk);
1174 
1175 	return uarg;
1176 }
1177 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1178 
1179 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1180 {
1181 	return container_of((void *)uarg, struct sk_buff, cb);
1182 }
1183 
1184 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1185 				       struct ubuf_info *uarg)
1186 {
1187 	if (uarg) {
1188 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1189 		u32 bytelen, next;
1190 
1191 		/* realloc only when socket is locked (TCP, UDP cork),
1192 		 * so uarg->len and sk_zckey access is serialized
1193 		 */
1194 		if (!sock_owned_by_user(sk)) {
1195 			WARN_ON_ONCE(1);
1196 			return NULL;
1197 		}
1198 
1199 		bytelen = uarg->bytelen + size;
1200 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1201 			/* TCP can create new skb to attach new uarg */
1202 			if (sk->sk_type == SOCK_STREAM)
1203 				goto new_alloc;
1204 			return NULL;
1205 		}
1206 
1207 		next = (u32)atomic_read(&sk->sk_zckey);
1208 		if ((u32)(uarg->id + uarg->len) == next) {
1209 			if (mm_account_pinned_pages(&uarg->mmp, size))
1210 				return NULL;
1211 			uarg->len++;
1212 			uarg->bytelen = bytelen;
1213 			atomic_set(&sk->sk_zckey, ++next);
1214 
1215 			/* no extra ref when appending to datagram (MSG_MORE) */
1216 			if (sk->sk_type == SOCK_STREAM)
1217 				net_zcopy_get(uarg);
1218 
1219 			return uarg;
1220 		}
1221 	}
1222 
1223 new_alloc:
1224 	return msg_zerocopy_alloc(sk, size);
1225 }
1226 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1227 
1228 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1229 {
1230 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1231 	u32 old_lo, old_hi;
1232 	u64 sum_len;
1233 
1234 	old_lo = serr->ee.ee_info;
1235 	old_hi = serr->ee.ee_data;
1236 	sum_len = old_hi - old_lo + 1ULL + len;
1237 
1238 	if (sum_len >= (1ULL << 32))
1239 		return false;
1240 
1241 	if (lo != old_hi + 1)
1242 		return false;
1243 
1244 	serr->ee.ee_data += len;
1245 	return true;
1246 }
1247 
1248 static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1249 {
1250 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1251 	struct sock_exterr_skb *serr;
1252 	struct sock *sk = skb->sk;
1253 	struct sk_buff_head *q;
1254 	unsigned long flags;
1255 	u32 lo, hi;
1256 	u16 len;
1257 
1258 	mm_unaccount_pinned_pages(&uarg->mmp);
1259 
1260 	/* if !len, there was only 1 call, and it was aborted
1261 	 * so do not queue a completion notification
1262 	 */
1263 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1264 		goto release;
1265 
1266 	len = uarg->len;
1267 	lo = uarg->id;
1268 	hi = uarg->id + len - 1;
1269 
1270 	serr = SKB_EXT_ERR(skb);
1271 	memset(serr, 0, sizeof(*serr));
1272 	serr->ee.ee_errno = 0;
1273 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1274 	serr->ee.ee_data = hi;
1275 	serr->ee.ee_info = lo;
1276 	if (!uarg->zerocopy)
1277 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1278 
1279 	q = &sk->sk_error_queue;
1280 	spin_lock_irqsave(&q->lock, flags);
1281 	tail = skb_peek_tail(q);
1282 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1283 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1284 		__skb_queue_tail(q, skb);
1285 		skb = NULL;
1286 	}
1287 	spin_unlock_irqrestore(&q->lock, flags);
1288 
1289 	sk->sk_error_report(sk);
1290 
1291 release:
1292 	consume_skb(skb);
1293 	sock_put(sk);
1294 }
1295 
1296 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1297 			   bool success)
1298 {
1299 	uarg->zerocopy = uarg->zerocopy & success;
1300 
1301 	if (refcount_dec_and_test(&uarg->refcnt))
1302 		__msg_zerocopy_callback(uarg);
1303 }
1304 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1305 
1306 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1307 {
1308 	struct sock *sk = skb_from_uarg(uarg)->sk;
1309 
1310 	atomic_dec(&sk->sk_zckey);
1311 	uarg->len--;
1312 
1313 	if (have_uref)
1314 		msg_zerocopy_callback(NULL, uarg, true);
1315 }
1316 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1317 
1318 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1319 {
1320 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1321 }
1322 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1323 
1324 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1325 			     struct msghdr *msg, int len,
1326 			     struct ubuf_info *uarg)
1327 {
1328 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1329 	struct iov_iter orig_iter = msg->msg_iter;
1330 	int err, orig_len = skb->len;
1331 
1332 	/* An skb can only point to one uarg. This edge case happens when
1333 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1334 	 */
1335 	if (orig_uarg && uarg != orig_uarg)
1336 		return -EEXIST;
1337 
1338 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1339 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1340 		struct sock *save_sk = skb->sk;
1341 
1342 		/* Streams do not free skb on error. Reset to prev state. */
1343 		msg->msg_iter = orig_iter;
1344 		skb->sk = sk;
1345 		___pskb_trim(skb, orig_len);
1346 		skb->sk = save_sk;
1347 		return err;
1348 	}
1349 
1350 	skb_zcopy_set(skb, uarg, NULL);
1351 	return skb->len - orig_len;
1352 }
1353 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1354 
1355 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1356 			      gfp_t gfp_mask)
1357 {
1358 	if (skb_zcopy(orig)) {
1359 		if (skb_zcopy(nskb)) {
1360 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1361 			if (!gfp_mask) {
1362 				WARN_ON_ONCE(1);
1363 				return -ENOMEM;
1364 			}
1365 			if (skb_uarg(nskb) == skb_uarg(orig))
1366 				return 0;
1367 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1368 				return -EIO;
1369 		}
1370 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1371 	}
1372 	return 0;
1373 }
1374 
1375 /**
1376  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1377  *	@skb: the skb to modify
1378  *	@gfp_mask: allocation priority
1379  *
1380  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1381  *	It will copy all frags into kernel and drop the reference
1382  *	to userspace pages.
1383  *
1384  *	If this function is called from an interrupt gfp_mask() must be
1385  *	%GFP_ATOMIC.
1386  *
1387  *	Returns 0 on success or a negative error code on failure
1388  *	to allocate kernel memory to copy to.
1389  */
1390 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1391 {
1392 	int num_frags = skb_shinfo(skb)->nr_frags;
1393 	struct page *page, *head = NULL;
1394 	int i, new_frags;
1395 	u32 d_off;
1396 
1397 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1398 		return -EINVAL;
1399 
1400 	if (!num_frags)
1401 		goto release;
1402 
1403 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1404 	for (i = 0; i < new_frags; i++) {
1405 		page = alloc_page(gfp_mask);
1406 		if (!page) {
1407 			while (head) {
1408 				struct page *next = (struct page *)page_private(head);
1409 				put_page(head);
1410 				head = next;
1411 			}
1412 			return -ENOMEM;
1413 		}
1414 		set_page_private(page, (unsigned long)head);
1415 		head = page;
1416 	}
1417 
1418 	page = head;
1419 	d_off = 0;
1420 	for (i = 0; i < num_frags; i++) {
1421 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1422 		u32 p_off, p_len, copied;
1423 		struct page *p;
1424 		u8 *vaddr;
1425 
1426 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1427 				      p, p_off, p_len, copied) {
1428 			u32 copy, done = 0;
1429 			vaddr = kmap_atomic(p);
1430 
1431 			while (done < p_len) {
1432 				if (d_off == PAGE_SIZE) {
1433 					d_off = 0;
1434 					page = (struct page *)page_private(page);
1435 				}
1436 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1437 				memcpy(page_address(page) + d_off,
1438 				       vaddr + p_off + done, copy);
1439 				done += copy;
1440 				d_off += copy;
1441 			}
1442 			kunmap_atomic(vaddr);
1443 		}
1444 	}
1445 
1446 	/* skb frags release userspace buffers */
1447 	for (i = 0; i < num_frags; i++)
1448 		skb_frag_unref(skb, i);
1449 
1450 	/* skb frags point to kernel buffers */
1451 	for (i = 0; i < new_frags - 1; i++) {
1452 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1453 		head = (struct page *)page_private(head);
1454 	}
1455 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1456 	skb_shinfo(skb)->nr_frags = new_frags;
1457 
1458 release:
1459 	skb_zcopy_clear(skb, false);
1460 	return 0;
1461 }
1462 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1463 
1464 /**
1465  *	skb_clone	-	duplicate an sk_buff
1466  *	@skb: buffer to clone
1467  *	@gfp_mask: allocation priority
1468  *
1469  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1470  *	copies share the same packet data but not structure. The new
1471  *	buffer has a reference count of 1. If the allocation fails the
1472  *	function returns %NULL otherwise the new buffer is returned.
1473  *
1474  *	If this function is called from an interrupt gfp_mask() must be
1475  *	%GFP_ATOMIC.
1476  */
1477 
1478 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1479 {
1480 	struct sk_buff_fclones *fclones = container_of(skb,
1481 						       struct sk_buff_fclones,
1482 						       skb1);
1483 	struct sk_buff *n;
1484 
1485 	if (skb_orphan_frags(skb, gfp_mask))
1486 		return NULL;
1487 
1488 	if (skb->fclone == SKB_FCLONE_ORIG &&
1489 	    refcount_read(&fclones->fclone_ref) == 1) {
1490 		n = &fclones->skb2;
1491 		refcount_set(&fclones->fclone_ref, 2);
1492 	} else {
1493 		if (skb_pfmemalloc(skb))
1494 			gfp_mask |= __GFP_MEMALLOC;
1495 
1496 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1497 		if (!n)
1498 			return NULL;
1499 
1500 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1501 	}
1502 
1503 	return __skb_clone(n, skb);
1504 }
1505 EXPORT_SYMBOL(skb_clone);
1506 
1507 void skb_headers_offset_update(struct sk_buff *skb, int off)
1508 {
1509 	/* Only adjust this if it actually is csum_start rather than csum */
1510 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1511 		skb->csum_start += off;
1512 	/* {transport,network,mac}_header and tail are relative to skb->head */
1513 	skb->transport_header += off;
1514 	skb->network_header   += off;
1515 	if (skb_mac_header_was_set(skb))
1516 		skb->mac_header += off;
1517 	skb->inner_transport_header += off;
1518 	skb->inner_network_header += off;
1519 	skb->inner_mac_header += off;
1520 }
1521 EXPORT_SYMBOL(skb_headers_offset_update);
1522 
1523 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1524 {
1525 	__copy_skb_header(new, old);
1526 
1527 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1528 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1529 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1530 }
1531 EXPORT_SYMBOL(skb_copy_header);
1532 
1533 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1534 {
1535 	if (skb_pfmemalloc(skb))
1536 		return SKB_ALLOC_RX;
1537 	return 0;
1538 }
1539 
1540 /**
1541  *	skb_copy	-	create private copy of an sk_buff
1542  *	@skb: buffer to copy
1543  *	@gfp_mask: allocation priority
1544  *
1545  *	Make a copy of both an &sk_buff and its data. This is used when the
1546  *	caller wishes to modify the data and needs a private copy of the
1547  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1548  *	on success. The returned buffer has a reference count of 1.
1549  *
1550  *	As by-product this function converts non-linear &sk_buff to linear
1551  *	one, so that &sk_buff becomes completely private and caller is allowed
1552  *	to modify all the data of returned buffer. This means that this
1553  *	function is not recommended for use in circumstances when only
1554  *	header is going to be modified. Use pskb_copy() instead.
1555  */
1556 
1557 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1558 {
1559 	int headerlen = skb_headroom(skb);
1560 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1561 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1562 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1563 
1564 	if (!n)
1565 		return NULL;
1566 
1567 	/* Set the data pointer */
1568 	skb_reserve(n, headerlen);
1569 	/* Set the tail pointer and length */
1570 	skb_put(n, skb->len);
1571 
1572 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1573 
1574 	skb_copy_header(n, skb);
1575 	return n;
1576 }
1577 EXPORT_SYMBOL(skb_copy);
1578 
1579 /**
1580  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1581  *	@skb: buffer to copy
1582  *	@headroom: headroom of new skb
1583  *	@gfp_mask: allocation priority
1584  *	@fclone: if true allocate the copy of the skb from the fclone
1585  *	cache instead of the head cache; it is recommended to set this
1586  *	to true for the cases where the copy will likely be cloned
1587  *
1588  *	Make a copy of both an &sk_buff and part of its data, located
1589  *	in header. Fragmented data remain shared. This is used when
1590  *	the caller wishes to modify only header of &sk_buff and needs
1591  *	private copy of the header to alter. Returns %NULL on failure
1592  *	or the pointer to the buffer on success.
1593  *	The returned buffer has a reference count of 1.
1594  */
1595 
1596 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1597 				   gfp_t gfp_mask, bool fclone)
1598 {
1599 	unsigned int size = skb_headlen(skb) + headroom;
1600 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1601 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1602 
1603 	if (!n)
1604 		goto out;
1605 
1606 	/* Set the data pointer */
1607 	skb_reserve(n, headroom);
1608 	/* Set the tail pointer and length */
1609 	skb_put(n, skb_headlen(skb));
1610 	/* Copy the bytes */
1611 	skb_copy_from_linear_data(skb, n->data, n->len);
1612 
1613 	n->truesize += skb->data_len;
1614 	n->data_len  = skb->data_len;
1615 	n->len	     = skb->len;
1616 
1617 	if (skb_shinfo(skb)->nr_frags) {
1618 		int i;
1619 
1620 		if (skb_orphan_frags(skb, gfp_mask) ||
1621 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1622 			kfree_skb(n);
1623 			n = NULL;
1624 			goto out;
1625 		}
1626 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1627 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1628 			skb_frag_ref(skb, i);
1629 		}
1630 		skb_shinfo(n)->nr_frags = i;
1631 	}
1632 
1633 	if (skb_has_frag_list(skb)) {
1634 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1635 		skb_clone_fraglist(n);
1636 	}
1637 
1638 	skb_copy_header(n, skb);
1639 out:
1640 	return n;
1641 }
1642 EXPORT_SYMBOL(__pskb_copy_fclone);
1643 
1644 /**
1645  *	pskb_expand_head - reallocate header of &sk_buff
1646  *	@skb: buffer to reallocate
1647  *	@nhead: room to add at head
1648  *	@ntail: room to add at tail
1649  *	@gfp_mask: allocation priority
1650  *
1651  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1652  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1653  *	reference count of 1. Returns zero in the case of success or error,
1654  *	if expansion failed. In the last case, &sk_buff is not changed.
1655  *
1656  *	All the pointers pointing into skb header may change and must be
1657  *	reloaded after call to this function.
1658  */
1659 
1660 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1661 		     gfp_t gfp_mask)
1662 {
1663 	int i, osize = skb_end_offset(skb);
1664 	int size = osize + nhead + ntail;
1665 	long off;
1666 	u8 *data;
1667 
1668 	BUG_ON(nhead < 0);
1669 
1670 	BUG_ON(skb_shared(skb));
1671 
1672 	size = SKB_DATA_ALIGN(size);
1673 
1674 	if (skb_pfmemalloc(skb))
1675 		gfp_mask |= __GFP_MEMALLOC;
1676 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1677 			       gfp_mask, NUMA_NO_NODE, NULL);
1678 	if (!data)
1679 		goto nodata;
1680 	size = SKB_WITH_OVERHEAD(ksize(data));
1681 
1682 	/* Copy only real data... and, alas, header. This should be
1683 	 * optimized for the cases when header is void.
1684 	 */
1685 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1686 
1687 	memcpy((struct skb_shared_info *)(data + size),
1688 	       skb_shinfo(skb),
1689 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1690 
1691 	/*
1692 	 * if shinfo is shared we must drop the old head gracefully, but if it
1693 	 * is not we can just drop the old head and let the existing refcount
1694 	 * be since all we did is relocate the values
1695 	 */
1696 	if (skb_cloned(skb)) {
1697 		if (skb_orphan_frags(skb, gfp_mask))
1698 			goto nofrags;
1699 		if (skb_zcopy(skb))
1700 			refcount_inc(&skb_uarg(skb)->refcnt);
1701 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1702 			skb_frag_ref(skb, i);
1703 
1704 		if (skb_has_frag_list(skb))
1705 			skb_clone_fraglist(skb);
1706 
1707 		skb_release_data(skb);
1708 	} else {
1709 		skb_free_head(skb);
1710 	}
1711 	off = (data + nhead) - skb->head;
1712 
1713 	skb->head     = data;
1714 	skb->head_frag = 0;
1715 	skb->data    += off;
1716 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1717 	skb->end      = size;
1718 	off           = nhead;
1719 #else
1720 	skb->end      = skb->head + size;
1721 #endif
1722 	skb->tail	      += off;
1723 	skb_headers_offset_update(skb, nhead);
1724 	skb->cloned   = 0;
1725 	skb->hdr_len  = 0;
1726 	skb->nohdr    = 0;
1727 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1728 
1729 	skb_metadata_clear(skb);
1730 
1731 	/* It is not generally safe to change skb->truesize.
1732 	 * For the moment, we really care of rx path, or
1733 	 * when skb is orphaned (not attached to a socket).
1734 	 */
1735 	if (!skb->sk || skb->destructor == sock_edemux)
1736 		skb->truesize += size - osize;
1737 
1738 	return 0;
1739 
1740 nofrags:
1741 	kfree(data);
1742 nodata:
1743 	return -ENOMEM;
1744 }
1745 EXPORT_SYMBOL(pskb_expand_head);
1746 
1747 /* Make private copy of skb with writable head and some headroom */
1748 
1749 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1750 {
1751 	struct sk_buff *skb2;
1752 	int delta = headroom - skb_headroom(skb);
1753 
1754 	if (delta <= 0)
1755 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1756 	else {
1757 		skb2 = skb_clone(skb, GFP_ATOMIC);
1758 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1759 					     GFP_ATOMIC)) {
1760 			kfree_skb(skb2);
1761 			skb2 = NULL;
1762 		}
1763 	}
1764 	return skb2;
1765 }
1766 EXPORT_SYMBOL(skb_realloc_headroom);
1767 
1768 /**
1769  *	skb_copy_expand	-	copy and expand sk_buff
1770  *	@skb: buffer to copy
1771  *	@newheadroom: new free bytes at head
1772  *	@newtailroom: new free bytes at tail
1773  *	@gfp_mask: allocation priority
1774  *
1775  *	Make a copy of both an &sk_buff and its data and while doing so
1776  *	allocate additional space.
1777  *
1778  *	This is used when the caller wishes to modify the data and needs a
1779  *	private copy of the data to alter as well as more space for new fields.
1780  *	Returns %NULL on failure or the pointer to the buffer
1781  *	on success. The returned buffer has a reference count of 1.
1782  *
1783  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1784  *	is called from an interrupt.
1785  */
1786 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1787 				int newheadroom, int newtailroom,
1788 				gfp_t gfp_mask)
1789 {
1790 	/*
1791 	 *	Allocate the copy buffer
1792 	 */
1793 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1794 					gfp_mask, skb_alloc_rx_flag(skb),
1795 					NUMA_NO_NODE);
1796 	int oldheadroom = skb_headroom(skb);
1797 	int head_copy_len, head_copy_off;
1798 
1799 	if (!n)
1800 		return NULL;
1801 
1802 	skb_reserve(n, newheadroom);
1803 
1804 	/* Set the tail pointer and length */
1805 	skb_put(n, skb->len);
1806 
1807 	head_copy_len = oldheadroom;
1808 	head_copy_off = 0;
1809 	if (newheadroom <= head_copy_len)
1810 		head_copy_len = newheadroom;
1811 	else
1812 		head_copy_off = newheadroom - head_copy_len;
1813 
1814 	/* Copy the linear header and data. */
1815 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1816 			     skb->len + head_copy_len));
1817 
1818 	skb_copy_header(n, skb);
1819 
1820 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1821 
1822 	return n;
1823 }
1824 EXPORT_SYMBOL(skb_copy_expand);
1825 
1826 /**
1827  *	__skb_pad		-	zero pad the tail of an skb
1828  *	@skb: buffer to pad
1829  *	@pad: space to pad
1830  *	@free_on_error: free buffer on error
1831  *
1832  *	Ensure that a buffer is followed by a padding area that is zero
1833  *	filled. Used by network drivers which may DMA or transfer data
1834  *	beyond the buffer end onto the wire.
1835  *
1836  *	May return error in out of memory cases. The skb is freed on error
1837  *	if @free_on_error is true.
1838  */
1839 
1840 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1841 {
1842 	int err;
1843 	int ntail;
1844 
1845 	/* If the skbuff is non linear tailroom is always zero.. */
1846 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1847 		memset(skb->data+skb->len, 0, pad);
1848 		return 0;
1849 	}
1850 
1851 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1852 	if (likely(skb_cloned(skb) || ntail > 0)) {
1853 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1854 		if (unlikely(err))
1855 			goto free_skb;
1856 	}
1857 
1858 	/* FIXME: The use of this function with non-linear skb's really needs
1859 	 * to be audited.
1860 	 */
1861 	err = skb_linearize(skb);
1862 	if (unlikely(err))
1863 		goto free_skb;
1864 
1865 	memset(skb->data + skb->len, 0, pad);
1866 	return 0;
1867 
1868 free_skb:
1869 	if (free_on_error)
1870 		kfree_skb(skb);
1871 	return err;
1872 }
1873 EXPORT_SYMBOL(__skb_pad);
1874 
1875 /**
1876  *	pskb_put - add data to the tail of a potentially fragmented buffer
1877  *	@skb: start of the buffer to use
1878  *	@tail: tail fragment of the buffer to use
1879  *	@len: amount of data to add
1880  *
1881  *	This function extends the used data area of the potentially
1882  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1883  *	@skb itself. If this would exceed the total buffer size the kernel
1884  *	will panic. A pointer to the first byte of the extra data is
1885  *	returned.
1886  */
1887 
1888 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1889 {
1890 	if (tail != skb) {
1891 		skb->data_len += len;
1892 		skb->len += len;
1893 	}
1894 	return skb_put(tail, len);
1895 }
1896 EXPORT_SYMBOL_GPL(pskb_put);
1897 
1898 /**
1899  *	skb_put - add data to a buffer
1900  *	@skb: buffer to use
1901  *	@len: amount of data to add
1902  *
1903  *	This function extends the used data area of the buffer. If this would
1904  *	exceed the total buffer size the kernel will panic. A pointer to the
1905  *	first byte of the extra data is returned.
1906  */
1907 void *skb_put(struct sk_buff *skb, unsigned int len)
1908 {
1909 	void *tmp = skb_tail_pointer(skb);
1910 	SKB_LINEAR_ASSERT(skb);
1911 	skb->tail += len;
1912 	skb->len  += len;
1913 	if (unlikely(skb->tail > skb->end))
1914 		skb_over_panic(skb, len, __builtin_return_address(0));
1915 	return tmp;
1916 }
1917 EXPORT_SYMBOL(skb_put);
1918 
1919 /**
1920  *	skb_push - add data to the start of a buffer
1921  *	@skb: buffer to use
1922  *	@len: amount of data to add
1923  *
1924  *	This function extends the used data area of the buffer at the buffer
1925  *	start. If this would exceed the total buffer headroom the kernel will
1926  *	panic. A pointer to the first byte of the extra data is returned.
1927  */
1928 void *skb_push(struct sk_buff *skb, unsigned int len)
1929 {
1930 	skb->data -= len;
1931 	skb->len  += len;
1932 	if (unlikely(skb->data < skb->head))
1933 		skb_under_panic(skb, len, __builtin_return_address(0));
1934 	return skb->data;
1935 }
1936 EXPORT_SYMBOL(skb_push);
1937 
1938 /**
1939  *	skb_pull - remove data from the start of a buffer
1940  *	@skb: buffer to use
1941  *	@len: amount of data to remove
1942  *
1943  *	This function removes data from the start of a buffer, returning
1944  *	the memory to the headroom. A pointer to the next data in the buffer
1945  *	is returned. Once the data has been pulled future pushes will overwrite
1946  *	the old data.
1947  */
1948 void *skb_pull(struct sk_buff *skb, unsigned int len)
1949 {
1950 	return skb_pull_inline(skb, len);
1951 }
1952 EXPORT_SYMBOL(skb_pull);
1953 
1954 /**
1955  *	skb_trim - remove end from a buffer
1956  *	@skb: buffer to alter
1957  *	@len: new length
1958  *
1959  *	Cut the length of a buffer down by removing data from the tail. If
1960  *	the buffer is already under the length specified it is not modified.
1961  *	The skb must be linear.
1962  */
1963 void skb_trim(struct sk_buff *skb, unsigned int len)
1964 {
1965 	if (skb->len > len)
1966 		__skb_trim(skb, len);
1967 }
1968 EXPORT_SYMBOL(skb_trim);
1969 
1970 /* Trims skb to length len. It can change skb pointers.
1971  */
1972 
1973 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1974 {
1975 	struct sk_buff **fragp;
1976 	struct sk_buff *frag;
1977 	int offset = skb_headlen(skb);
1978 	int nfrags = skb_shinfo(skb)->nr_frags;
1979 	int i;
1980 	int err;
1981 
1982 	if (skb_cloned(skb) &&
1983 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1984 		return err;
1985 
1986 	i = 0;
1987 	if (offset >= len)
1988 		goto drop_pages;
1989 
1990 	for (; i < nfrags; i++) {
1991 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1992 
1993 		if (end < len) {
1994 			offset = end;
1995 			continue;
1996 		}
1997 
1998 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1999 
2000 drop_pages:
2001 		skb_shinfo(skb)->nr_frags = i;
2002 
2003 		for (; i < nfrags; i++)
2004 			skb_frag_unref(skb, i);
2005 
2006 		if (skb_has_frag_list(skb))
2007 			skb_drop_fraglist(skb);
2008 		goto done;
2009 	}
2010 
2011 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2012 	     fragp = &frag->next) {
2013 		int end = offset + frag->len;
2014 
2015 		if (skb_shared(frag)) {
2016 			struct sk_buff *nfrag;
2017 
2018 			nfrag = skb_clone(frag, GFP_ATOMIC);
2019 			if (unlikely(!nfrag))
2020 				return -ENOMEM;
2021 
2022 			nfrag->next = frag->next;
2023 			consume_skb(frag);
2024 			frag = nfrag;
2025 			*fragp = frag;
2026 		}
2027 
2028 		if (end < len) {
2029 			offset = end;
2030 			continue;
2031 		}
2032 
2033 		if (end > len &&
2034 		    unlikely((err = pskb_trim(frag, len - offset))))
2035 			return err;
2036 
2037 		if (frag->next)
2038 			skb_drop_list(&frag->next);
2039 		break;
2040 	}
2041 
2042 done:
2043 	if (len > skb_headlen(skb)) {
2044 		skb->data_len -= skb->len - len;
2045 		skb->len       = len;
2046 	} else {
2047 		skb->len       = len;
2048 		skb->data_len  = 0;
2049 		skb_set_tail_pointer(skb, len);
2050 	}
2051 
2052 	if (!skb->sk || skb->destructor == sock_edemux)
2053 		skb_condense(skb);
2054 	return 0;
2055 }
2056 EXPORT_SYMBOL(___pskb_trim);
2057 
2058 /* Note : use pskb_trim_rcsum() instead of calling this directly
2059  */
2060 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2061 {
2062 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2063 		int delta = skb->len - len;
2064 
2065 		skb->csum = csum_block_sub(skb->csum,
2066 					   skb_checksum(skb, len, delta, 0),
2067 					   len);
2068 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2069 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2070 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2071 
2072 		if (offset + sizeof(__sum16) > hdlen)
2073 			return -EINVAL;
2074 	}
2075 	return __pskb_trim(skb, len);
2076 }
2077 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2078 
2079 /**
2080  *	__pskb_pull_tail - advance tail of skb header
2081  *	@skb: buffer to reallocate
2082  *	@delta: number of bytes to advance tail
2083  *
2084  *	The function makes a sense only on a fragmented &sk_buff,
2085  *	it expands header moving its tail forward and copying necessary
2086  *	data from fragmented part.
2087  *
2088  *	&sk_buff MUST have reference count of 1.
2089  *
2090  *	Returns %NULL (and &sk_buff does not change) if pull failed
2091  *	or value of new tail of skb in the case of success.
2092  *
2093  *	All the pointers pointing into skb header may change and must be
2094  *	reloaded after call to this function.
2095  */
2096 
2097 /* Moves tail of skb head forward, copying data from fragmented part,
2098  * when it is necessary.
2099  * 1. It may fail due to malloc failure.
2100  * 2. It may change skb pointers.
2101  *
2102  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2103  */
2104 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2105 {
2106 	/* If skb has not enough free space at tail, get new one
2107 	 * plus 128 bytes for future expansions. If we have enough
2108 	 * room at tail, reallocate without expansion only if skb is cloned.
2109 	 */
2110 	int i, k, eat = (skb->tail + delta) - skb->end;
2111 
2112 	if (eat > 0 || skb_cloned(skb)) {
2113 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2114 				     GFP_ATOMIC))
2115 			return NULL;
2116 	}
2117 
2118 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2119 			     skb_tail_pointer(skb), delta));
2120 
2121 	/* Optimization: no fragments, no reasons to preestimate
2122 	 * size of pulled pages. Superb.
2123 	 */
2124 	if (!skb_has_frag_list(skb))
2125 		goto pull_pages;
2126 
2127 	/* Estimate size of pulled pages. */
2128 	eat = delta;
2129 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2130 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2131 
2132 		if (size >= eat)
2133 			goto pull_pages;
2134 		eat -= size;
2135 	}
2136 
2137 	/* If we need update frag list, we are in troubles.
2138 	 * Certainly, it is possible to add an offset to skb data,
2139 	 * but taking into account that pulling is expected to
2140 	 * be very rare operation, it is worth to fight against
2141 	 * further bloating skb head and crucify ourselves here instead.
2142 	 * Pure masohism, indeed. 8)8)
2143 	 */
2144 	if (eat) {
2145 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2146 		struct sk_buff *clone = NULL;
2147 		struct sk_buff *insp = NULL;
2148 
2149 		do {
2150 			if (list->len <= eat) {
2151 				/* Eaten as whole. */
2152 				eat -= list->len;
2153 				list = list->next;
2154 				insp = list;
2155 			} else {
2156 				/* Eaten partially. */
2157 
2158 				if (skb_shared(list)) {
2159 					/* Sucks! We need to fork list. :-( */
2160 					clone = skb_clone(list, GFP_ATOMIC);
2161 					if (!clone)
2162 						return NULL;
2163 					insp = list->next;
2164 					list = clone;
2165 				} else {
2166 					/* This may be pulled without
2167 					 * problems. */
2168 					insp = list;
2169 				}
2170 				if (!pskb_pull(list, eat)) {
2171 					kfree_skb(clone);
2172 					return NULL;
2173 				}
2174 				break;
2175 			}
2176 		} while (eat);
2177 
2178 		/* Free pulled out fragments. */
2179 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2180 			skb_shinfo(skb)->frag_list = list->next;
2181 			kfree_skb(list);
2182 		}
2183 		/* And insert new clone at head. */
2184 		if (clone) {
2185 			clone->next = list;
2186 			skb_shinfo(skb)->frag_list = clone;
2187 		}
2188 	}
2189 	/* Success! Now we may commit changes to skb data. */
2190 
2191 pull_pages:
2192 	eat = delta;
2193 	k = 0;
2194 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2195 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2196 
2197 		if (size <= eat) {
2198 			skb_frag_unref(skb, i);
2199 			eat -= size;
2200 		} else {
2201 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2202 
2203 			*frag = skb_shinfo(skb)->frags[i];
2204 			if (eat) {
2205 				skb_frag_off_add(frag, eat);
2206 				skb_frag_size_sub(frag, eat);
2207 				if (!i)
2208 					goto end;
2209 				eat = 0;
2210 			}
2211 			k++;
2212 		}
2213 	}
2214 	skb_shinfo(skb)->nr_frags = k;
2215 
2216 end:
2217 	skb->tail     += delta;
2218 	skb->data_len -= delta;
2219 
2220 	if (!skb->data_len)
2221 		skb_zcopy_clear(skb, false);
2222 
2223 	return skb_tail_pointer(skb);
2224 }
2225 EXPORT_SYMBOL(__pskb_pull_tail);
2226 
2227 /**
2228  *	skb_copy_bits - copy bits from skb to kernel buffer
2229  *	@skb: source skb
2230  *	@offset: offset in source
2231  *	@to: destination buffer
2232  *	@len: number of bytes to copy
2233  *
2234  *	Copy the specified number of bytes from the source skb to the
2235  *	destination buffer.
2236  *
2237  *	CAUTION ! :
2238  *		If its prototype is ever changed,
2239  *		check arch/{*}/net/{*}.S files,
2240  *		since it is called from BPF assembly code.
2241  */
2242 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2243 {
2244 	int start = skb_headlen(skb);
2245 	struct sk_buff *frag_iter;
2246 	int i, copy;
2247 
2248 	if (offset > (int)skb->len - len)
2249 		goto fault;
2250 
2251 	/* Copy header. */
2252 	if ((copy = start - offset) > 0) {
2253 		if (copy > len)
2254 			copy = len;
2255 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2256 		if ((len -= copy) == 0)
2257 			return 0;
2258 		offset += copy;
2259 		to     += copy;
2260 	}
2261 
2262 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2263 		int end;
2264 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2265 
2266 		WARN_ON(start > offset + len);
2267 
2268 		end = start + skb_frag_size(f);
2269 		if ((copy = end - offset) > 0) {
2270 			u32 p_off, p_len, copied;
2271 			struct page *p;
2272 			u8 *vaddr;
2273 
2274 			if (copy > len)
2275 				copy = len;
2276 
2277 			skb_frag_foreach_page(f,
2278 					      skb_frag_off(f) + offset - start,
2279 					      copy, p, p_off, p_len, copied) {
2280 				vaddr = kmap_atomic(p);
2281 				memcpy(to + copied, vaddr + p_off, p_len);
2282 				kunmap_atomic(vaddr);
2283 			}
2284 
2285 			if ((len -= copy) == 0)
2286 				return 0;
2287 			offset += copy;
2288 			to     += copy;
2289 		}
2290 		start = end;
2291 	}
2292 
2293 	skb_walk_frags(skb, frag_iter) {
2294 		int end;
2295 
2296 		WARN_ON(start > offset + len);
2297 
2298 		end = start + frag_iter->len;
2299 		if ((copy = end - offset) > 0) {
2300 			if (copy > len)
2301 				copy = len;
2302 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2303 				goto fault;
2304 			if ((len -= copy) == 0)
2305 				return 0;
2306 			offset += copy;
2307 			to     += copy;
2308 		}
2309 		start = end;
2310 	}
2311 
2312 	if (!len)
2313 		return 0;
2314 
2315 fault:
2316 	return -EFAULT;
2317 }
2318 EXPORT_SYMBOL(skb_copy_bits);
2319 
2320 /*
2321  * Callback from splice_to_pipe(), if we need to release some pages
2322  * at the end of the spd in case we error'ed out in filling the pipe.
2323  */
2324 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2325 {
2326 	put_page(spd->pages[i]);
2327 }
2328 
2329 static struct page *linear_to_page(struct page *page, unsigned int *len,
2330 				   unsigned int *offset,
2331 				   struct sock *sk)
2332 {
2333 	struct page_frag *pfrag = sk_page_frag(sk);
2334 
2335 	if (!sk_page_frag_refill(sk, pfrag))
2336 		return NULL;
2337 
2338 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2339 
2340 	memcpy(page_address(pfrag->page) + pfrag->offset,
2341 	       page_address(page) + *offset, *len);
2342 	*offset = pfrag->offset;
2343 	pfrag->offset += *len;
2344 
2345 	return pfrag->page;
2346 }
2347 
2348 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2349 			     struct page *page,
2350 			     unsigned int offset)
2351 {
2352 	return	spd->nr_pages &&
2353 		spd->pages[spd->nr_pages - 1] == page &&
2354 		(spd->partial[spd->nr_pages - 1].offset +
2355 		 spd->partial[spd->nr_pages - 1].len == offset);
2356 }
2357 
2358 /*
2359  * Fill page/offset/length into spd, if it can hold more pages.
2360  */
2361 static bool spd_fill_page(struct splice_pipe_desc *spd,
2362 			  struct pipe_inode_info *pipe, struct page *page,
2363 			  unsigned int *len, unsigned int offset,
2364 			  bool linear,
2365 			  struct sock *sk)
2366 {
2367 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2368 		return true;
2369 
2370 	if (linear) {
2371 		page = linear_to_page(page, len, &offset, sk);
2372 		if (!page)
2373 			return true;
2374 	}
2375 	if (spd_can_coalesce(spd, page, offset)) {
2376 		spd->partial[spd->nr_pages - 1].len += *len;
2377 		return false;
2378 	}
2379 	get_page(page);
2380 	spd->pages[spd->nr_pages] = page;
2381 	spd->partial[spd->nr_pages].len = *len;
2382 	spd->partial[spd->nr_pages].offset = offset;
2383 	spd->nr_pages++;
2384 
2385 	return false;
2386 }
2387 
2388 static bool __splice_segment(struct page *page, unsigned int poff,
2389 			     unsigned int plen, unsigned int *off,
2390 			     unsigned int *len,
2391 			     struct splice_pipe_desc *spd, bool linear,
2392 			     struct sock *sk,
2393 			     struct pipe_inode_info *pipe)
2394 {
2395 	if (!*len)
2396 		return true;
2397 
2398 	/* skip this segment if already processed */
2399 	if (*off >= plen) {
2400 		*off -= plen;
2401 		return false;
2402 	}
2403 
2404 	/* ignore any bits we already processed */
2405 	poff += *off;
2406 	plen -= *off;
2407 	*off = 0;
2408 
2409 	do {
2410 		unsigned int flen = min(*len, plen);
2411 
2412 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2413 				  linear, sk))
2414 			return true;
2415 		poff += flen;
2416 		plen -= flen;
2417 		*len -= flen;
2418 	} while (*len && plen);
2419 
2420 	return false;
2421 }
2422 
2423 /*
2424  * Map linear and fragment data from the skb to spd. It reports true if the
2425  * pipe is full or if we already spliced the requested length.
2426  */
2427 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2428 			      unsigned int *offset, unsigned int *len,
2429 			      struct splice_pipe_desc *spd, struct sock *sk)
2430 {
2431 	int seg;
2432 	struct sk_buff *iter;
2433 
2434 	/* map the linear part :
2435 	 * If skb->head_frag is set, this 'linear' part is backed by a
2436 	 * fragment, and if the head is not shared with any clones then
2437 	 * we can avoid a copy since we own the head portion of this page.
2438 	 */
2439 	if (__splice_segment(virt_to_page(skb->data),
2440 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2441 			     skb_headlen(skb),
2442 			     offset, len, spd,
2443 			     skb_head_is_locked(skb),
2444 			     sk, pipe))
2445 		return true;
2446 
2447 	/*
2448 	 * then map the fragments
2449 	 */
2450 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2451 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2452 
2453 		if (__splice_segment(skb_frag_page(f),
2454 				     skb_frag_off(f), skb_frag_size(f),
2455 				     offset, len, spd, false, sk, pipe))
2456 			return true;
2457 	}
2458 
2459 	skb_walk_frags(skb, iter) {
2460 		if (*offset >= iter->len) {
2461 			*offset -= iter->len;
2462 			continue;
2463 		}
2464 		/* __skb_splice_bits() only fails if the output has no room
2465 		 * left, so no point in going over the frag_list for the error
2466 		 * case.
2467 		 */
2468 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2469 			return true;
2470 	}
2471 
2472 	return false;
2473 }
2474 
2475 /*
2476  * Map data from the skb to a pipe. Should handle both the linear part,
2477  * the fragments, and the frag list.
2478  */
2479 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2480 		    struct pipe_inode_info *pipe, unsigned int tlen,
2481 		    unsigned int flags)
2482 {
2483 	struct partial_page partial[MAX_SKB_FRAGS];
2484 	struct page *pages[MAX_SKB_FRAGS];
2485 	struct splice_pipe_desc spd = {
2486 		.pages = pages,
2487 		.partial = partial,
2488 		.nr_pages_max = MAX_SKB_FRAGS,
2489 		.ops = &nosteal_pipe_buf_ops,
2490 		.spd_release = sock_spd_release,
2491 	};
2492 	int ret = 0;
2493 
2494 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2495 
2496 	if (spd.nr_pages)
2497 		ret = splice_to_pipe(pipe, &spd);
2498 
2499 	return ret;
2500 }
2501 EXPORT_SYMBOL_GPL(skb_splice_bits);
2502 
2503 /* Send skb data on a socket. Socket must be locked. */
2504 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2505 			 int len)
2506 {
2507 	unsigned int orig_len = len;
2508 	struct sk_buff *head = skb;
2509 	unsigned short fragidx;
2510 	int slen, ret;
2511 
2512 do_frag_list:
2513 
2514 	/* Deal with head data */
2515 	while (offset < skb_headlen(skb) && len) {
2516 		struct kvec kv;
2517 		struct msghdr msg;
2518 
2519 		slen = min_t(int, len, skb_headlen(skb) - offset);
2520 		kv.iov_base = skb->data + offset;
2521 		kv.iov_len = slen;
2522 		memset(&msg, 0, sizeof(msg));
2523 		msg.msg_flags = MSG_DONTWAIT;
2524 
2525 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2526 		if (ret <= 0)
2527 			goto error;
2528 
2529 		offset += ret;
2530 		len -= ret;
2531 	}
2532 
2533 	/* All the data was skb head? */
2534 	if (!len)
2535 		goto out;
2536 
2537 	/* Make offset relative to start of frags */
2538 	offset -= skb_headlen(skb);
2539 
2540 	/* Find where we are in frag list */
2541 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2542 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2543 
2544 		if (offset < skb_frag_size(frag))
2545 			break;
2546 
2547 		offset -= skb_frag_size(frag);
2548 	}
2549 
2550 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2551 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2552 
2553 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2554 
2555 		while (slen) {
2556 			ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2557 						     skb_frag_off(frag) + offset,
2558 						     slen, MSG_DONTWAIT);
2559 			if (ret <= 0)
2560 				goto error;
2561 
2562 			len -= ret;
2563 			offset += ret;
2564 			slen -= ret;
2565 		}
2566 
2567 		offset = 0;
2568 	}
2569 
2570 	if (len) {
2571 		/* Process any frag lists */
2572 
2573 		if (skb == head) {
2574 			if (skb_has_frag_list(skb)) {
2575 				skb = skb_shinfo(skb)->frag_list;
2576 				goto do_frag_list;
2577 			}
2578 		} else if (skb->next) {
2579 			skb = skb->next;
2580 			goto do_frag_list;
2581 		}
2582 	}
2583 
2584 out:
2585 	return orig_len - len;
2586 
2587 error:
2588 	return orig_len == len ? ret : orig_len - len;
2589 }
2590 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2591 
2592 /**
2593  *	skb_store_bits - store bits from kernel buffer to skb
2594  *	@skb: destination buffer
2595  *	@offset: offset in destination
2596  *	@from: source buffer
2597  *	@len: number of bytes to copy
2598  *
2599  *	Copy the specified number of bytes from the source buffer to the
2600  *	destination skb.  This function handles all the messy bits of
2601  *	traversing fragment lists and such.
2602  */
2603 
2604 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2605 {
2606 	int start = skb_headlen(skb);
2607 	struct sk_buff *frag_iter;
2608 	int i, copy;
2609 
2610 	if (offset > (int)skb->len - len)
2611 		goto fault;
2612 
2613 	if ((copy = start - offset) > 0) {
2614 		if (copy > len)
2615 			copy = len;
2616 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2617 		if ((len -= copy) == 0)
2618 			return 0;
2619 		offset += copy;
2620 		from += copy;
2621 	}
2622 
2623 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2624 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2625 		int end;
2626 
2627 		WARN_ON(start > offset + len);
2628 
2629 		end = start + skb_frag_size(frag);
2630 		if ((copy = end - offset) > 0) {
2631 			u32 p_off, p_len, copied;
2632 			struct page *p;
2633 			u8 *vaddr;
2634 
2635 			if (copy > len)
2636 				copy = len;
2637 
2638 			skb_frag_foreach_page(frag,
2639 					      skb_frag_off(frag) + offset - start,
2640 					      copy, p, p_off, p_len, copied) {
2641 				vaddr = kmap_atomic(p);
2642 				memcpy(vaddr + p_off, from + copied, p_len);
2643 				kunmap_atomic(vaddr);
2644 			}
2645 
2646 			if ((len -= copy) == 0)
2647 				return 0;
2648 			offset += copy;
2649 			from += copy;
2650 		}
2651 		start = end;
2652 	}
2653 
2654 	skb_walk_frags(skb, frag_iter) {
2655 		int end;
2656 
2657 		WARN_ON(start > offset + len);
2658 
2659 		end = start + frag_iter->len;
2660 		if ((copy = end - offset) > 0) {
2661 			if (copy > len)
2662 				copy = len;
2663 			if (skb_store_bits(frag_iter, offset - start,
2664 					   from, copy))
2665 				goto fault;
2666 			if ((len -= copy) == 0)
2667 				return 0;
2668 			offset += copy;
2669 			from += copy;
2670 		}
2671 		start = end;
2672 	}
2673 	if (!len)
2674 		return 0;
2675 
2676 fault:
2677 	return -EFAULT;
2678 }
2679 EXPORT_SYMBOL(skb_store_bits);
2680 
2681 /* Checksum skb data. */
2682 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2683 		      __wsum csum, const struct skb_checksum_ops *ops)
2684 {
2685 	int start = skb_headlen(skb);
2686 	int i, copy = start - offset;
2687 	struct sk_buff *frag_iter;
2688 	int pos = 0;
2689 
2690 	/* Checksum header. */
2691 	if (copy > 0) {
2692 		if (copy > len)
2693 			copy = len;
2694 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2695 				       skb->data + offset, copy, csum);
2696 		if ((len -= copy) == 0)
2697 			return csum;
2698 		offset += copy;
2699 		pos	= copy;
2700 	}
2701 
2702 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2703 		int end;
2704 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2705 
2706 		WARN_ON(start > offset + len);
2707 
2708 		end = start + skb_frag_size(frag);
2709 		if ((copy = end - offset) > 0) {
2710 			u32 p_off, p_len, copied;
2711 			struct page *p;
2712 			__wsum csum2;
2713 			u8 *vaddr;
2714 
2715 			if (copy > len)
2716 				copy = len;
2717 
2718 			skb_frag_foreach_page(frag,
2719 					      skb_frag_off(frag) + offset - start,
2720 					      copy, p, p_off, p_len, copied) {
2721 				vaddr = kmap_atomic(p);
2722 				csum2 = INDIRECT_CALL_1(ops->update,
2723 							csum_partial_ext,
2724 							vaddr + p_off, p_len, 0);
2725 				kunmap_atomic(vaddr);
2726 				csum = INDIRECT_CALL_1(ops->combine,
2727 						       csum_block_add_ext, csum,
2728 						       csum2, pos, p_len);
2729 				pos += p_len;
2730 			}
2731 
2732 			if (!(len -= copy))
2733 				return csum;
2734 			offset += copy;
2735 		}
2736 		start = end;
2737 	}
2738 
2739 	skb_walk_frags(skb, frag_iter) {
2740 		int end;
2741 
2742 		WARN_ON(start > offset + len);
2743 
2744 		end = start + frag_iter->len;
2745 		if ((copy = end - offset) > 0) {
2746 			__wsum csum2;
2747 			if (copy > len)
2748 				copy = len;
2749 			csum2 = __skb_checksum(frag_iter, offset - start,
2750 					       copy, 0, ops);
2751 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2752 					       csum, csum2, pos, copy);
2753 			if ((len -= copy) == 0)
2754 				return csum;
2755 			offset += copy;
2756 			pos    += copy;
2757 		}
2758 		start = end;
2759 	}
2760 	BUG_ON(len);
2761 
2762 	return csum;
2763 }
2764 EXPORT_SYMBOL(__skb_checksum);
2765 
2766 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2767 		    int len, __wsum csum)
2768 {
2769 	const struct skb_checksum_ops ops = {
2770 		.update  = csum_partial_ext,
2771 		.combine = csum_block_add_ext,
2772 	};
2773 
2774 	return __skb_checksum(skb, offset, len, csum, &ops);
2775 }
2776 EXPORT_SYMBOL(skb_checksum);
2777 
2778 /* Both of above in one bottle. */
2779 
2780 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2781 				    u8 *to, int len)
2782 {
2783 	int start = skb_headlen(skb);
2784 	int i, copy = start - offset;
2785 	struct sk_buff *frag_iter;
2786 	int pos = 0;
2787 	__wsum csum = 0;
2788 
2789 	/* Copy header. */
2790 	if (copy > 0) {
2791 		if (copy > len)
2792 			copy = len;
2793 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2794 						 copy);
2795 		if ((len -= copy) == 0)
2796 			return csum;
2797 		offset += copy;
2798 		to     += copy;
2799 		pos	= copy;
2800 	}
2801 
2802 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2803 		int end;
2804 
2805 		WARN_ON(start > offset + len);
2806 
2807 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2808 		if ((copy = end - offset) > 0) {
2809 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2810 			u32 p_off, p_len, copied;
2811 			struct page *p;
2812 			__wsum csum2;
2813 			u8 *vaddr;
2814 
2815 			if (copy > len)
2816 				copy = len;
2817 
2818 			skb_frag_foreach_page(frag,
2819 					      skb_frag_off(frag) + offset - start,
2820 					      copy, p, p_off, p_len, copied) {
2821 				vaddr = kmap_atomic(p);
2822 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2823 								  to + copied,
2824 								  p_len);
2825 				kunmap_atomic(vaddr);
2826 				csum = csum_block_add(csum, csum2, pos);
2827 				pos += p_len;
2828 			}
2829 
2830 			if (!(len -= copy))
2831 				return csum;
2832 			offset += copy;
2833 			to     += copy;
2834 		}
2835 		start = end;
2836 	}
2837 
2838 	skb_walk_frags(skb, frag_iter) {
2839 		__wsum csum2;
2840 		int end;
2841 
2842 		WARN_ON(start > offset + len);
2843 
2844 		end = start + frag_iter->len;
2845 		if ((copy = end - offset) > 0) {
2846 			if (copy > len)
2847 				copy = len;
2848 			csum2 = skb_copy_and_csum_bits(frag_iter,
2849 						       offset - start,
2850 						       to, copy);
2851 			csum = csum_block_add(csum, csum2, pos);
2852 			if ((len -= copy) == 0)
2853 				return csum;
2854 			offset += copy;
2855 			to     += copy;
2856 			pos    += copy;
2857 		}
2858 		start = end;
2859 	}
2860 	BUG_ON(len);
2861 	return csum;
2862 }
2863 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2864 
2865 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2866 {
2867 	__sum16 sum;
2868 
2869 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2870 	/* See comments in __skb_checksum_complete(). */
2871 	if (likely(!sum)) {
2872 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2873 		    !skb->csum_complete_sw)
2874 			netdev_rx_csum_fault(skb->dev, skb);
2875 	}
2876 	if (!skb_shared(skb))
2877 		skb->csum_valid = !sum;
2878 	return sum;
2879 }
2880 EXPORT_SYMBOL(__skb_checksum_complete_head);
2881 
2882 /* This function assumes skb->csum already holds pseudo header's checksum,
2883  * which has been changed from the hardware checksum, for example, by
2884  * __skb_checksum_validate_complete(). And, the original skb->csum must
2885  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2886  *
2887  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2888  * zero. The new checksum is stored back into skb->csum unless the skb is
2889  * shared.
2890  */
2891 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2892 {
2893 	__wsum csum;
2894 	__sum16 sum;
2895 
2896 	csum = skb_checksum(skb, 0, skb->len, 0);
2897 
2898 	sum = csum_fold(csum_add(skb->csum, csum));
2899 	/* This check is inverted, because we already knew the hardware
2900 	 * checksum is invalid before calling this function. So, if the
2901 	 * re-computed checksum is valid instead, then we have a mismatch
2902 	 * between the original skb->csum and skb_checksum(). This means either
2903 	 * the original hardware checksum is incorrect or we screw up skb->csum
2904 	 * when moving skb->data around.
2905 	 */
2906 	if (likely(!sum)) {
2907 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2908 		    !skb->csum_complete_sw)
2909 			netdev_rx_csum_fault(skb->dev, skb);
2910 	}
2911 
2912 	if (!skb_shared(skb)) {
2913 		/* Save full packet checksum */
2914 		skb->csum = csum;
2915 		skb->ip_summed = CHECKSUM_COMPLETE;
2916 		skb->csum_complete_sw = 1;
2917 		skb->csum_valid = !sum;
2918 	}
2919 
2920 	return sum;
2921 }
2922 EXPORT_SYMBOL(__skb_checksum_complete);
2923 
2924 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2925 {
2926 	net_warn_ratelimited(
2927 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2928 		__func__);
2929 	return 0;
2930 }
2931 
2932 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2933 				       int offset, int len)
2934 {
2935 	net_warn_ratelimited(
2936 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2937 		__func__);
2938 	return 0;
2939 }
2940 
2941 static const struct skb_checksum_ops default_crc32c_ops = {
2942 	.update  = warn_crc32c_csum_update,
2943 	.combine = warn_crc32c_csum_combine,
2944 };
2945 
2946 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2947 	&default_crc32c_ops;
2948 EXPORT_SYMBOL(crc32c_csum_stub);
2949 
2950  /**
2951  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2952  *	@from: source buffer
2953  *
2954  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2955  *	into skb_zerocopy().
2956  */
2957 unsigned int
2958 skb_zerocopy_headlen(const struct sk_buff *from)
2959 {
2960 	unsigned int hlen = 0;
2961 
2962 	if (!from->head_frag ||
2963 	    skb_headlen(from) < L1_CACHE_BYTES ||
2964 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2965 		hlen = skb_headlen(from);
2966 
2967 	if (skb_has_frag_list(from))
2968 		hlen = from->len;
2969 
2970 	return hlen;
2971 }
2972 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2973 
2974 /**
2975  *	skb_zerocopy - Zero copy skb to skb
2976  *	@to: destination buffer
2977  *	@from: source buffer
2978  *	@len: number of bytes to copy from source buffer
2979  *	@hlen: size of linear headroom in destination buffer
2980  *
2981  *	Copies up to `len` bytes from `from` to `to` by creating references
2982  *	to the frags in the source buffer.
2983  *
2984  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2985  *	headroom in the `to` buffer.
2986  *
2987  *	Return value:
2988  *	0: everything is OK
2989  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2990  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2991  */
2992 int
2993 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2994 {
2995 	int i, j = 0;
2996 	int plen = 0; /* length of skb->head fragment */
2997 	int ret;
2998 	struct page *page;
2999 	unsigned int offset;
3000 
3001 	BUG_ON(!from->head_frag && !hlen);
3002 
3003 	/* dont bother with small payloads */
3004 	if (len <= skb_tailroom(to))
3005 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3006 
3007 	if (hlen) {
3008 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3009 		if (unlikely(ret))
3010 			return ret;
3011 		len -= hlen;
3012 	} else {
3013 		plen = min_t(int, skb_headlen(from), len);
3014 		if (plen) {
3015 			page = virt_to_head_page(from->head);
3016 			offset = from->data - (unsigned char *)page_address(page);
3017 			__skb_fill_page_desc(to, 0, page, offset, plen);
3018 			get_page(page);
3019 			j = 1;
3020 			len -= plen;
3021 		}
3022 	}
3023 
3024 	to->truesize += len + plen;
3025 	to->len += len + plen;
3026 	to->data_len += len + plen;
3027 
3028 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3029 		skb_tx_error(from);
3030 		return -ENOMEM;
3031 	}
3032 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3033 
3034 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3035 		int size;
3036 
3037 		if (!len)
3038 			break;
3039 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3040 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3041 					len);
3042 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3043 		len -= size;
3044 		skb_frag_ref(to, j);
3045 		j++;
3046 	}
3047 	skb_shinfo(to)->nr_frags = j;
3048 
3049 	return 0;
3050 }
3051 EXPORT_SYMBOL_GPL(skb_zerocopy);
3052 
3053 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3054 {
3055 	__wsum csum;
3056 	long csstart;
3057 
3058 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3059 		csstart = skb_checksum_start_offset(skb);
3060 	else
3061 		csstart = skb_headlen(skb);
3062 
3063 	BUG_ON(csstart > skb_headlen(skb));
3064 
3065 	skb_copy_from_linear_data(skb, to, csstart);
3066 
3067 	csum = 0;
3068 	if (csstart != skb->len)
3069 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3070 					      skb->len - csstart);
3071 
3072 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3073 		long csstuff = csstart + skb->csum_offset;
3074 
3075 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3076 	}
3077 }
3078 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3079 
3080 /**
3081  *	skb_dequeue - remove from the head of the queue
3082  *	@list: list to dequeue from
3083  *
3084  *	Remove the head of the list. The list lock is taken so the function
3085  *	may be used safely with other locking list functions. The head item is
3086  *	returned or %NULL if the list is empty.
3087  */
3088 
3089 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3090 {
3091 	unsigned long flags;
3092 	struct sk_buff *result;
3093 
3094 	spin_lock_irqsave(&list->lock, flags);
3095 	result = __skb_dequeue(list);
3096 	spin_unlock_irqrestore(&list->lock, flags);
3097 	return result;
3098 }
3099 EXPORT_SYMBOL(skb_dequeue);
3100 
3101 /**
3102  *	skb_dequeue_tail - remove from the tail of the queue
3103  *	@list: list to dequeue from
3104  *
3105  *	Remove the tail of the list. The list lock is taken so the function
3106  *	may be used safely with other locking list functions. The tail item is
3107  *	returned or %NULL if the list is empty.
3108  */
3109 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3110 {
3111 	unsigned long flags;
3112 	struct sk_buff *result;
3113 
3114 	spin_lock_irqsave(&list->lock, flags);
3115 	result = __skb_dequeue_tail(list);
3116 	spin_unlock_irqrestore(&list->lock, flags);
3117 	return result;
3118 }
3119 EXPORT_SYMBOL(skb_dequeue_tail);
3120 
3121 /**
3122  *	skb_queue_purge - empty a list
3123  *	@list: list to empty
3124  *
3125  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3126  *	the list and one reference dropped. This function takes the list
3127  *	lock and is atomic with respect to other list locking functions.
3128  */
3129 void skb_queue_purge(struct sk_buff_head *list)
3130 {
3131 	struct sk_buff *skb;
3132 	while ((skb = skb_dequeue(list)) != NULL)
3133 		kfree_skb(skb);
3134 }
3135 EXPORT_SYMBOL(skb_queue_purge);
3136 
3137 /**
3138  *	skb_rbtree_purge - empty a skb rbtree
3139  *	@root: root of the rbtree to empty
3140  *	Return value: the sum of truesizes of all purged skbs.
3141  *
3142  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3143  *	the list and one reference dropped. This function does not take
3144  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3145  *	out-of-order queue is protected by the socket lock).
3146  */
3147 unsigned int skb_rbtree_purge(struct rb_root *root)
3148 {
3149 	struct rb_node *p = rb_first(root);
3150 	unsigned int sum = 0;
3151 
3152 	while (p) {
3153 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3154 
3155 		p = rb_next(p);
3156 		rb_erase(&skb->rbnode, root);
3157 		sum += skb->truesize;
3158 		kfree_skb(skb);
3159 	}
3160 	return sum;
3161 }
3162 
3163 /**
3164  *	skb_queue_head - queue a buffer at the list head
3165  *	@list: list to use
3166  *	@newsk: buffer to queue
3167  *
3168  *	Queue a buffer at the start of the list. This function takes the
3169  *	list lock and can be used safely with other locking &sk_buff functions
3170  *	safely.
3171  *
3172  *	A buffer cannot be placed on two lists at the same time.
3173  */
3174 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3175 {
3176 	unsigned long flags;
3177 
3178 	spin_lock_irqsave(&list->lock, flags);
3179 	__skb_queue_head(list, newsk);
3180 	spin_unlock_irqrestore(&list->lock, flags);
3181 }
3182 EXPORT_SYMBOL(skb_queue_head);
3183 
3184 /**
3185  *	skb_queue_tail - queue a buffer at the list tail
3186  *	@list: list to use
3187  *	@newsk: buffer to queue
3188  *
3189  *	Queue a buffer at the tail of the list. This function takes the
3190  *	list lock and can be used safely with other locking &sk_buff functions
3191  *	safely.
3192  *
3193  *	A buffer cannot be placed on two lists at the same time.
3194  */
3195 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3196 {
3197 	unsigned long flags;
3198 
3199 	spin_lock_irqsave(&list->lock, flags);
3200 	__skb_queue_tail(list, newsk);
3201 	spin_unlock_irqrestore(&list->lock, flags);
3202 }
3203 EXPORT_SYMBOL(skb_queue_tail);
3204 
3205 /**
3206  *	skb_unlink	-	remove a buffer from a list
3207  *	@skb: buffer to remove
3208  *	@list: list to use
3209  *
3210  *	Remove a packet from a list. The list locks are taken and this
3211  *	function is atomic with respect to other list locked calls
3212  *
3213  *	You must know what list the SKB is on.
3214  */
3215 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3216 {
3217 	unsigned long flags;
3218 
3219 	spin_lock_irqsave(&list->lock, flags);
3220 	__skb_unlink(skb, list);
3221 	spin_unlock_irqrestore(&list->lock, flags);
3222 }
3223 EXPORT_SYMBOL(skb_unlink);
3224 
3225 /**
3226  *	skb_append	-	append a buffer
3227  *	@old: buffer to insert after
3228  *	@newsk: buffer to insert
3229  *	@list: list to use
3230  *
3231  *	Place a packet after a given packet in a list. The list locks are taken
3232  *	and this function is atomic with respect to other list locked calls.
3233  *	A buffer cannot be placed on two lists at the same time.
3234  */
3235 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3236 {
3237 	unsigned long flags;
3238 
3239 	spin_lock_irqsave(&list->lock, flags);
3240 	__skb_queue_after(list, old, newsk);
3241 	spin_unlock_irqrestore(&list->lock, flags);
3242 }
3243 EXPORT_SYMBOL(skb_append);
3244 
3245 static inline void skb_split_inside_header(struct sk_buff *skb,
3246 					   struct sk_buff* skb1,
3247 					   const u32 len, const int pos)
3248 {
3249 	int i;
3250 
3251 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3252 					 pos - len);
3253 	/* And move data appendix as is. */
3254 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3255 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3256 
3257 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3258 	skb_shinfo(skb)->nr_frags  = 0;
3259 	skb1->data_len		   = skb->data_len;
3260 	skb1->len		   += skb1->data_len;
3261 	skb->data_len		   = 0;
3262 	skb->len		   = len;
3263 	skb_set_tail_pointer(skb, len);
3264 }
3265 
3266 static inline void skb_split_no_header(struct sk_buff *skb,
3267 				       struct sk_buff* skb1,
3268 				       const u32 len, int pos)
3269 {
3270 	int i, k = 0;
3271 	const int nfrags = skb_shinfo(skb)->nr_frags;
3272 
3273 	skb_shinfo(skb)->nr_frags = 0;
3274 	skb1->len		  = skb1->data_len = skb->len - len;
3275 	skb->len		  = len;
3276 	skb->data_len		  = len - pos;
3277 
3278 	for (i = 0; i < nfrags; i++) {
3279 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3280 
3281 		if (pos + size > len) {
3282 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3283 
3284 			if (pos < len) {
3285 				/* Split frag.
3286 				 * We have two variants in this case:
3287 				 * 1. Move all the frag to the second
3288 				 *    part, if it is possible. F.e.
3289 				 *    this approach is mandatory for TUX,
3290 				 *    where splitting is expensive.
3291 				 * 2. Split is accurately. We make this.
3292 				 */
3293 				skb_frag_ref(skb, i);
3294 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3295 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3296 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3297 				skb_shinfo(skb)->nr_frags++;
3298 			}
3299 			k++;
3300 		} else
3301 			skb_shinfo(skb)->nr_frags++;
3302 		pos += size;
3303 	}
3304 	skb_shinfo(skb1)->nr_frags = k;
3305 }
3306 
3307 /**
3308  * skb_split - Split fragmented skb to two parts at length len.
3309  * @skb: the buffer to split
3310  * @skb1: the buffer to receive the second part
3311  * @len: new length for skb
3312  */
3313 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3314 {
3315 	int pos = skb_headlen(skb);
3316 
3317 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3318 	skb_zerocopy_clone(skb1, skb, 0);
3319 	if (len < pos)	/* Split line is inside header. */
3320 		skb_split_inside_header(skb, skb1, len, pos);
3321 	else		/* Second chunk has no header, nothing to copy. */
3322 		skb_split_no_header(skb, skb1, len, pos);
3323 }
3324 EXPORT_SYMBOL(skb_split);
3325 
3326 /* Shifting from/to a cloned skb is a no-go.
3327  *
3328  * Caller cannot keep skb_shinfo related pointers past calling here!
3329  */
3330 static int skb_prepare_for_shift(struct sk_buff *skb)
3331 {
3332 	int ret = 0;
3333 
3334 	if (skb_cloned(skb)) {
3335 		/* Save and restore truesize: pskb_expand_head() may reallocate
3336 		 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we
3337 		 * cannot change truesize at this point.
3338 		 */
3339 		unsigned int save_truesize = skb->truesize;
3340 
3341 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3342 		skb->truesize = save_truesize;
3343 	}
3344 	return ret;
3345 }
3346 
3347 /**
3348  * skb_shift - Shifts paged data partially from skb to another
3349  * @tgt: buffer into which tail data gets added
3350  * @skb: buffer from which the paged data comes from
3351  * @shiftlen: shift up to this many bytes
3352  *
3353  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3354  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3355  * It's up to caller to free skb if everything was shifted.
3356  *
3357  * If @tgt runs out of frags, the whole operation is aborted.
3358  *
3359  * Skb cannot include anything else but paged data while tgt is allowed
3360  * to have non-paged data as well.
3361  *
3362  * TODO: full sized shift could be optimized but that would need
3363  * specialized skb free'er to handle frags without up-to-date nr_frags.
3364  */
3365 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3366 {
3367 	int from, to, merge, todo;
3368 	skb_frag_t *fragfrom, *fragto;
3369 
3370 	BUG_ON(shiftlen > skb->len);
3371 
3372 	if (skb_headlen(skb))
3373 		return 0;
3374 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3375 		return 0;
3376 
3377 	todo = shiftlen;
3378 	from = 0;
3379 	to = skb_shinfo(tgt)->nr_frags;
3380 	fragfrom = &skb_shinfo(skb)->frags[from];
3381 
3382 	/* Actual merge is delayed until the point when we know we can
3383 	 * commit all, so that we don't have to undo partial changes
3384 	 */
3385 	if (!to ||
3386 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3387 			      skb_frag_off(fragfrom))) {
3388 		merge = -1;
3389 	} else {
3390 		merge = to - 1;
3391 
3392 		todo -= skb_frag_size(fragfrom);
3393 		if (todo < 0) {
3394 			if (skb_prepare_for_shift(skb) ||
3395 			    skb_prepare_for_shift(tgt))
3396 				return 0;
3397 
3398 			/* All previous frag pointers might be stale! */
3399 			fragfrom = &skb_shinfo(skb)->frags[from];
3400 			fragto = &skb_shinfo(tgt)->frags[merge];
3401 
3402 			skb_frag_size_add(fragto, shiftlen);
3403 			skb_frag_size_sub(fragfrom, shiftlen);
3404 			skb_frag_off_add(fragfrom, shiftlen);
3405 
3406 			goto onlymerged;
3407 		}
3408 
3409 		from++;
3410 	}
3411 
3412 	/* Skip full, not-fitting skb to avoid expensive operations */
3413 	if ((shiftlen == skb->len) &&
3414 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3415 		return 0;
3416 
3417 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3418 		return 0;
3419 
3420 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3421 		if (to == MAX_SKB_FRAGS)
3422 			return 0;
3423 
3424 		fragfrom = &skb_shinfo(skb)->frags[from];
3425 		fragto = &skb_shinfo(tgt)->frags[to];
3426 
3427 		if (todo >= skb_frag_size(fragfrom)) {
3428 			*fragto = *fragfrom;
3429 			todo -= skb_frag_size(fragfrom);
3430 			from++;
3431 			to++;
3432 
3433 		} else {
3434 			__skb_frag_ref(fragfrom);
3435 			skb_frag_page_copy(fragto, fragfrom);
3436 			skb_frag_off_copy(fragto, fragfrom);
3437 			skb_frag_size_set(fragto, todo);
3438 
3439 			skb_frag_off_add(fragfrom, todo);
3440 			skb_frag_size_sub(fragfrom, todo);
3441 			todo = 0;
3442 
3443 			to++;
3444 			break;
3445 		}
3446 	}
3447 
3448 	/* Ready to "commit" this state change to tgt */
3449 	skb_shinfo(tgt)->nr_frags = to;
3450 
3451 	if (merge >= 0) {
3452 		fragfrom = &skb_shinfo(skb)->frags[0];
3453 		fragto = &skb_shinfo(tgt)->frags[merge];
3454 
3455 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3456 		__skb_frag_unref(fragfrom);
3457 	}
3458 
3459 	/* Reposition in the original skb */
3460 	to = 0;
3461 	while (from < skb_shinfo(skb)->nr_frags)
3462 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3463 	skb_shinfo(skb)->nr_frags = to;
3464 
3465 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3466 
3467 onlymerged:
3468 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3469 	 * the other hand might need it if it needs to be resent
3470 	 */
3471 	tgt->ip_summed = CHECKSUM_PARTIAL;
3472 	skb->ip_summed = CHECKSUM_PARTIAL;
3473 
3474 	/* Yak, is it really working this way? Some helper please? */
3475 	skb->len -= shiftlen;
3476 	skb->data_len -= shiftlen;
3477 	skb->truesize -= shiftlen;
3478 	tgt->len += shiftlen;
3479 	tgt->data_len += shiftlen;
3480 	tgt->truesize += shiftlen;
3481 
3482 	return shiftlen;
3483 }
3484 
3485 /**
3486  * skb_prepare_seq_read - Prepare a sequential read of skb data
3487  * @skb: the buffer to read
3488  * @from: lower offset of data to be read
3489  * @to: upper offset of data to be read
3490  * @st: state variable
3491  *
3492  * Initializes the specified state variable. Must be called before
3493  * invoking skb_seq_read() for the first time.
3494  */
3495 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3496 			  unsigned int to, struct skb_seq_state *st)
3497 {
3498 	st->lower_offset = from;
3499 	st->upper_offset = to;
3500 	st->root_skb = st->cur_skb = skb;
3501 	st->frag_idx = st->stepped_offset = 0;
3502 	st->frag_data = NULL;
3503 	st->frag_off = 0;
3504 }
3505 EXPORT_SYMBOL(skb_prepare_seq_read);
3506 
3507 /**
3508  * skb_seq_read - Sequentially read skb data
3509  * @consumed: number of bytes consumed by the caller so far
3510  * @data: destination pointer for data to be returned
3511  * @st: state variable
3512  *
3513  * Reads a block of skb data at @consumed relative to the
3514  * lower offset specified to skb_prepare_seq_read(). Assigns
3515  * the head of the data block to @data and returns the length
3516  * of the block or 0 if the end of the skb data or the upper
3517  * offset has been reached.
3518  *
3519  * The caller is not required to consume all of the data
3520  * returned, i.e. @consumed is typically set to the number
3521  * of bytes already consumed and the next call to
3522  * skb_seq_read() will return the remaining part of the block.
3523  *
3524  * Note 1: The size of each block of data returned can be arbitrary,
3525  *       this limitation is the cost for zerocopy sequential
3526  *       reads of potentially non linear data.
3527  *
3528  * Note 2: Fragment lists within fragments are not implemented
3529  *       at the moment, state->root_skb could be replaced with
3530  *       a stack for this purpose.
3531  */
3532 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3533 			  struct skb_seq_state *st)
3534 {
3535 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3536 	skb_frag_t *frag;
3537 
3538 	if (unlikely(abs_offset >= st->upper_offset)) {
3539 		if (st->frag_data) {
3540 			kunmap_atomic(st->frag_data);
3541 			st->frag_data = NULL;
3542 		}
3543 		return 0;
3544 	}
3545 
3546 next_skb:
3547 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3548 
3549 	if (abs_offset < block_limit && !st->frag_data) {
3550 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3551 		return block_limit - abs_offset;
3552 	}
3553 
3554 	if (st->frag_idx == 0 && !st->frag_data)
3555 		st->stepped_offset += skb_headlen(st->cur_skb);
3556 
3557 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3558 		unsigned int pg_idx, pg_off, pg_sz;
3559 
3560 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3561 
3562 		pg_idx = 0;
3563 		pg_off = skb_frag_off(frag);
3564 		pg_sz = skb_frag_size(frag);
3565 
3566 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3567 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3568 			pg_off = offset_in_page(pg_off + st->frag_off);
3569 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3570 						    PAGE_SIZE - pg_off);
3571 		}
3572 
3573 		block_limit = pg_sz + st->stepped_offset;
3574 		if (abs_offset < block_limit) {
3575 			if (!st->frag_data)
3576 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3577 
3578 			*data = (u8 *)st->frag_data + pg_off +
3579 				(abs_offset - st->stepped_offset);
3580 
3581 			return block_limit - abs_offset;
3582 		}
3583 
3584 		if (st->frag_data) {
3585 			kunmap_atomic(st->frag_data);
3586 			st->frag_data = NULL;
3587 		}
3588 
3589 		st->stepped_offset += pg_sz;
3590 		st->frag_off += pg_sz;
3591 		if (st->frag_off == skb_frag_size(frag)) {
3592 			st->frag_off = 0;
3593 			st->frag_idx++;
3594 		}
3595 	}
3596 
3597 	if (st->frag_data) {
3598 		kunmap_atomic(st->frag_data);
3599 		st->frag_data = NULL;
3600 	}
3601 
3602 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3603 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3604 		st->frag_idx = 0;
3605 		goto next_skb;
3606 	} else if (st->cur_skb->next) {
3607 		st->cur_skb = st->cur_skb->next;
3608 		st->frag_idx = 0;
3609 		goto next_skb;
3610 	}
3611 
3612 	return 0;
3613 }
3614 EXPORT_SYMBOL(skb_seq_read);
3615 
3616 /**
3617  * skb_abort_seq_read - Abort a sequential read of skb data
3618  * @st: state variable
3619  *
3620  * Must be called if skb_seq_read() was not called until it
3621  * returned 0.
3622  */
3623 void skb_abort_seq_read(struct skb_seq_state *st)
3624 {
3625 	if (st->frag_data)
3626 		kunmap_atomic(st->frag_data);
3627 }
3628 EXPORT_SYMBOL(skb_abort_seq_read);
3629 
3630 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3631 
3632 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3633 					  struct ts_config *conf,
3634 					  struct ts_state *state)
3635 {
3636 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3637 }
3638 
3639 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3640 {
3641 	skb_abort_seq_read(TS_SKB_CB(state));
3642 }
3643 
3644 /**
3645  * skb_find_text - Find a text pattern in skb data
3646  * @skb: the buffer to look in
3647  * @from: search offset
3648  * @to: search limit
3649  * @config: textsearch configuration
3650  *
3651  * Finds a pattern in the skb data according to the specified
3652  * textsearch configuration. Use textsearch_next() to retrieve
3653  * subsequent occurrences of the pattern. Returns the offset
3654  * to the first occurrence or UINT_MAX if no match was found.
3655  */
3656 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3657 			   unsigned int to, struct ts_config *config)
3658 {
3659 	struct ts_state state;
3660 	unsigned int ret;
3661 
3662 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3663 
3664 	config->get_next_block = skb_ts_get_next_block;
3665 	config->finish = skb_ts_finish;
3666 
3667 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3668 
3669 	ret = textsearch_find(config, &state);
3670 	return (ret <= to - from ? ret : UINT_MAX);
3671 }
3672 EXPORT_SYMBOL(skb_find_text);
3673 
3674 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3675 			 int offset, size_t size)
3676 {
3677 	int i = skb_shinfo(skb)->nr_frags;
3678 
3679 	if (skb_can_coalesce(skb, i, page, offset)) {
3680 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3681 	} else if (i < MAX_SKB_FRAGS) {
3682 		get_page(page);
3683 		skb_fill_page_desc(skb, i, page, offset, size);
3684 	} else {
3685 		return -EMSGSIZE;
3686 	}
3687 
3688 	return 0;
3689 }
3690 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3691 
3692 /**
3693  *	skb_pull_rcsum - pull skb and update receive checksum
3694  *	@skb: buffer to update
3695  *	@len: length of data pulled
3696  *
3697  *	This function performs an skb_pull on the packet and updates
3698  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3699  *	receive path processing instead of skb_pull unless you know
3700  *	that the checksum difference is zero (e.g., a valid IP header)
3701  *	or you are setting ip_summed to CHECKSUM_NONE.
3702  */
3703 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3704 {
3705 	unsigned char *data = skb->data;
3706 
3707 	BUG_ON(len > skb->len);
3708 	__skb_pull(skb, len);
3709 	skb_postpull_rcsum(skb, data, len);
3710 	return skb->data;
3711 }
3712 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3713 
3714 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3715 {
3716 	skb_frag_t head_frag;
3717 	struct page *page;
3718 
3719 	page = virt_to_head_page(frag_skb->head);
3720 	__skb_frag_set_page(&head_frag, page);
3721 	skb_frag_off_set(&head_frag, frag_skb->data -
3722 			 (unsigned char *)page_address(page));
3723 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3724 	return head_frag;
3725 }
3726 
3727 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3728 				 netdev_features_t features,
3729 				 unsigned int offset)
3730 {
3731 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3732 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3733 	unsigned int delta_truesize = 0;
3734 	unsigned int delta_len = 0;
3735 	struct sk_buff *nskb, *tmp;
3736 	int err;
3737 
3738 	skb_push(skb, -skb_network_offset(skb) + offset);
3739 
3740 	skb_shinfo(skb)->frag_list = NULL;
3741 	skb->next = list_skb;
3742 
3743 	do {
3744 		nskb = list_skb;
3745 		list_skb = list_skb->next;
3746 
3747 		err = 0;
3748 		if (skb_shared(nskb)) {
3749 			tmp = skb_clone(nskb, GFP_ATOMIC);
3750 			if (tmp) {
3751 				consume_skb(nskb);
3752 				nskb = tmp;
3753 				err = skb_unclone(nskb, GFP_ATOMIC);
3754 			} else {
3755 				err = -ENOMEM;
3756 			}
3757 		}
3758 
3759 		if (unlikely(err))
3760 			goto err_linearize;
3761 
3762 		delta_len += nskb->len;
3763 		delta_truesize += nskb->truesize;
3764 
3765 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3766 
3767 		skb_release_head_state(nskb);
3768 		 __copy_skb_header(nskb, skb);
3769 
3770 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3771 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3772 						 nskb->data - tnl_hlen,
3773 						 offset + tnl_hlen);
3774 
3775 		if (skb_needs_linearize(nskb, features) &&
3776 		    __skb_linearize(nskb))
3777 			goto err_linearize;
3778 
3779 	} while (list_skb);
3780 
3781 	skb->truesize = skb->truesize - delta_truesize;
3782 	skb->data_len = skb->data_len - delta_len;
3783 	skb->len = skb->len - delta_len;
3784 
3785 	skb_gso_reset(skb);
3786 
3787 	skb->prev = nskb;
3788 
3789 	if (skb_needs_linearize(skb, features) &&
3790 	    __skb_linearize(skb))
3791 		goto err_linearize;
3792 
3793 	skb_get(skb);
3794 
3795 	return skb;
3796 
3797 err_linearize:
3798 	kfree_skb_list(skb->next);
3799 	skb->next = NULL;
3800 	return ERR_PTR(-ENOMEM);
3801 }
3802 EXPORT_SYMBOL_GPL(skb_segment_list);
3803 
3804 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3805 {
3806 	if (unlikely(p->len + skb->len >= 65536))
3807 		return -E2BIG;
3808 
3809 	if (NAPI_GRO_CB(p)->last == p)
3810 		skb_shinfo(p)->frag_list = skb;
3811 	else
3812 		NAPI_GRO_CB(p)->last->next = skb;
3813 
3814 	skb_pull(skb, skb_gro_offset(skb));
3815 
3816 	NAPI_GRO_CB(p)->last = skb;
3817 	NAPI_GRO_CB(p)->count++;
3818 	p->data_len += skb->len;
3819 	p->truesize += skb->truesize;
3820 	p->len += skb->len;
3821 
3822 	NAPI_GRO_CB(skb)->same_flow = 1;
3823 
3824 	return 0;
3825 }
3826 
3827 /**
3828  *	skb_segment - Perform protocol segmentation on skb.
3829  *	@head_skb: buffer to segment
3830  *	@features: features for the output path (see dev->features)
3831  *
3832  *	This function performs segmentation on the given skb.  It returns
3833  *	a pointer to the first in a list of new skbs for the segments.
3834  *	In case of error it returns ERR_PTR(err).
3835  */
3836 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3837 			    netdev_features_t features)
3838 {
3839 	struct sk_buff *segs = NULL;
3840 	struct sk_buff *tail = NULL;
3841 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3842 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3843 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3844 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3845 	struct sk_buff *frag_skb = head_skb;
3846 	unsigned int offset = doffset;
3847 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3848 	unsigned int partial_segs = 0;
3849 	unsigned int headroom;
3850 	unsigned int len = head_skb->len;
3851 	__be16 proto;
3852 	bool csum, sg;
3853 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3854 	int err = -ENOMEM;
3855 	int i = 0;
3856 	int pos;
3857 
3858 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3859 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3860 		/* gso_size is untrusted, and we have a frag_list with a linear
3861 		 * non head_frag head.
3862 		 *
3863 		 * (we assume checking the first list_skb member suffices;
3864 		 * i.e if either of the list_skb members have non head_frag
3865 		 * head, then the first one has too).
3866 		 *
3867 		 * If head_skb's headlen does not fit requested gso_size, it
3868 		 * means that the frag_list members do NOT terminate on exact
3869 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3870 		 * sharing. Therefore we must fallback to copying the frag_list
3871 		 * skbs; we do so by disabling SG.
3872 		 */
3873 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3874 			features &= ~NETIF_F_SG;
3875 	}
3876 
3877 	__skb_push(head_skb, doffset);
3878 	proto = skb_network_protocol(head_skb, NULL);
3879 	if (unlikely(!proto))
3880 		return ERR_PTR(-EINVAL);
3881 
3882 	sg = !!(features & NETIF_F_SG);
3883 	csum = !!can_checksum_protocol(features, proto);
3884 
3885 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3886 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3887 			struct sk_buff *iter;
3888 			unsigned int frag_len;
3889 
3890 			if (!list_skb ||
3891 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3892 				goto normal;
3893 
3894 			/* If we get here then all the required
3895 			 * GSO features except frag_list are supported.
3896 			 * Try to split the SKB to multiple GSO SKBs
3897 			 * with no frag_list.
3898 			 * Currently we can do that only when the buffers don't
3899 			 * have a linear part and all the buffers except
3900 			 * the last are of the same length.
3901 			 */
3902 			frag_len = list_skb->len;
3903 			skb_walk_frags(head_skb, iter) {
3904 				if (frag_len != iter->len && iter->next)
3905 					goto normal;
3906 				if (skb_headlen(iter) && !iter->head_frag)
3907 					goto normal;
3908 
3909 				len -= iter->len;
3910 			}
3911 
3912 			if (len != frag_len)
3913 				goto normal;
3914 		}
3915 
3916 		/* GSO partial only requires that we trim off any excess that
3917 		 * doesn't fit into an MSS sized block, so take care of that
3918 		 * now.
3919 		 */
3920 		partial_segs = len / mss;
3921 		if (partial_segs > 1)
3922 			mss *= partial_segs;
3923 		else
3924 			partial_segs = 0;
3925 	}
3926 
3927 normal:
3928 	headroom = skb_headroom(head_skb);
3929 	pos = skb_headlen(head_skb);
3930 
3931 	do {
3932 		struct sk_buff *nskb;
3933 		skb_frag_t *nskb_frag;
3934 		int hsize;
3935 		int size;
3936 
3937 		if (unlikely(mss == GSO_BY_FRAGS)) {
3938 			len = list_skb->len;
3939 		} else {
3940 			len = head_skb->len - offset;
3941 			if (len > mss)
3942 				len = mss;
3943 		}
3944 
3945 		hsize = skb_headlen(head_skb) - offset;
3946 
3947 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
3948 		    (skb_headlen(list_skb) == len || sg)) {
3949 			BUG_ON(skb_headlen(list_skb) > len);
3950 
3951 			i = 0;
3952 			nfrags = skb_shinfo(list_skb)->nr_frags;
3953 			frag = skb_shinfo(list_skb)->frags;
3954 			frag_skb = list_skb;
3955 			pos += skb_headlen(list_skb);
3956 
3957 			while (pos < offset + len) {
3958 				BUG_ON(i >= nfrags);
3959 
3960 				size = skb_frag_size(frag);
3961 				if (pos + size > offset + len)
3962 					break;
3963 
3964 				i++;
3965 				pos += size;
3966 				frag++;
3967 			}
3968 
3969 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3970 			list_skb = list_skb->next;
3971 
3972 			if (unlikely(!nskb))
3973 				goto err;
3974 
3975 			if (unlikely(pskb_trim(nskb, len))) {
3976 				kfree_skb(nskb);
3977 				goto err;
3978 			}
3979 
3980 			hsize = skb_end_offset(nskb);
3981 			if (skb_cow_head(nskb, doffset + headroom)) {
3982 				kfree_skb(nskb);
3983 				goto err;
3984 			}
3985 
3986 			nskb->truesize += skb_end_offset(nskb) - hsize;
3987 			skb_release_head_state(nskb);
3988 			__skb_push(nskb, doffset);
3989 		} else {
3990 			if (hsize < 0)
3991 				hsize = 0;
3992 			if (hsize > len || !sg)
3993 				hsize = len;
3994 
3995 			nskb = __alloc_skb(hsize + doffset + headroom,
3996 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3997 					   NUMA_NO_NODE);
3998 
3999 			if (unlikely(!nskb))
4000 				goto err;
4001 
4002 			skb_reserve(nskb, headroom);
4003 			__skb_put(nskb, doffset);
4004 		}
4005 
4006 		if (segs)
4007 			tail->next = nskb;
4008 		else
4009 			segs = nskb;
4010 		tail = nskb;
4011 
4012 		__copy_skb_header(nskb, head_skb);
4013 
4014 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4015 		skb_reset_mac_len(nskb);
4016 
4017 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4018 						 nskb->data - tnl_hlen,
4019 						 doffset + tnl_hlen);
4020 
4021 		if (nskb->len == len + doffset)
4022 			goto perform_csum_check;
4023 
4024 		if (!sg) {
4025 			if (!csum) {
4026 				if (!nskb->remcsum_offload)
4027 					nskb->ip_summed = CHECKSUM_NONE;
4028 				SKB_GSO_CB(nskb)->csum =
4029 					skb_copy_and_csum_bits(head_skb, offset,
4030 							       skb_put(nskb,
4031 								       len),
4032 							       len);
4033 				SKB_GSO_CB(nskb)->csum_start =
4034 					skb_headroom(nskb) + doffset;
4035 			} else {
4036 				skb_copy_bits(head_skb, offset,
4037 					      skb_put(nskb, len),
4038 					      len);
4039 			}
4040 			continue;
4041 		}
4042 
4043 		nskb_frag = skb_shinfo(nskb)->frags;
4044 
4045 		skb_copy_from_linear_data_offset(head_skb, offset,
4046 						 skb_put(nskb, hsize), hsize);
4047 
4048 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4049 					   SKBFL_SHARED_FRAG;
4050 
4051 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4052 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4053 			goto err;
4054 
4055 		while (pos < offset + len) {
4056 			if (i >= nfrags) {
4057 				i = 0;
4058 				nfrags = skb_shinfo(list_skb)->nr_frags;
4059 				frag = skb_shinfo(list_skb)->frags;
4060 				frag_skb = list_skb;
4061 				if (!skb_headlen(list_skb)) {
4062 					BUG_ON(!nfrags);
4063 				} else {
4064 					BUG_ON(!list_skb->head_frag);
4065 
4066 					/* to make room for head_frag. */
4067 					i--;
4068 					frag--;
4069 				}
4070 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4071 				    skb_zerocopy_clone(nskb, frag_skb,
4072 						       GFP_ATOMIC))
4073 					goto err;
4074 
4075 				list_skb = list_skb->next;
4076 			}
4077 
4078 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4079 				     MAX_SKB_FRAGS)) {
4080 				net_warn_ratelimited(
4081 					"skb_segment: too many frags: %u %u\n",
4082 					pos, mss);
4083 				err = -EINVAL;
4084 				goto err;
4085 			}
4086 
4087 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4088 			__skb_frag_ref(nskb_frag);
4089 			size = skb_frag_size(nskb_frag);
4090 
4091 			if (pos < offset) {
4092 				skb_frag_off_add(nskb_frag, offset - pos);
4093 				skb_frag_size_sub(nskb_frag, offset - pos);
4094 			}
4095 
4096 			skb_shinfo(nskb)->nr_frags++;
4097 
4098 			if (pos + size <= offset + len) {
4099 				i++;
4100 				frag++;
4101 				pos += size;
4102 			} else {
4103 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4104 				goto skip_fraglist;
4105 			}
4106 
4107 			nskb_frag++;
4108 		}
4109 
4110 skip_fraglist:
4111 		nskb->data_len = len - hsize;
4112 		nskb->len += nskb->data_len;
4113 		nskb->truesize += nskb->data_len;
4114 
4115 perform_csum_check:
4116 		if (!csum) {
4117 			if (skb_has_shared_frag(nskb) &&
4118 			    __skb_linearize(nskb))
4119 				goto err;
4120 
4121 			if (!nskb->remcsum_offload)
4122 				nskb->ip_summed = CHECKSUM_NONE;
4123 			SKB_GSO_CB(nskb)->csum =
4124 				skb_checksum(nskb, doffset,
4125 					     nskb->len - doffset, 0);
4126 			SKB_GSO_CB(nskb)->csum_start =
4127 				skb_headroom(nskb) + doffset;
4128 		}
4129 	} while ((offset += len) < head_skb->len);
4130 
4131 	/* Some callers want to get the end of the list.
4132 	 * Put it in segs->prev to avoid walking the list.
4133 	 * (see validate_xmit_skb_list() for example)
4134 	 */
4135 	segs->prev = tail;
4136 
4137 	if (partial_segs) {
4138 		struct sk_buff *iter;
4139 		int type = skb_shinfo(head_skb)->gso_type;
4140 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4141 
4142 		/* Update type to add partial and then remove dodgy if set */
4143 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4144 		type &= ~SKB_GSO_DODGY;
4145 
4146 		/* Update GSO info and prepare to start updating headers on
4147 		 * our way back down the stack of protocols.
4148 		 */
4149 		for (iter = segs; iter; iter = iter->next) {
4150 			skb_shinfo(iter)->gso_size = gso_size;
4151 			skb_shinfo(iter)->gso_segs = partial_segs;
4152 			skb_shinfo(iter)->gso_type = type;
4153 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4154 		}
4155 
4156 		if (tail->len - doffset <= gso_size)
4157 			skb_shinfo(tail)->gso_size = 0;
4158 		else if (tail != segs)
4159 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4160 	}
4161 
4162 	/* Following permits correct backpressure, for protocols
4163 	 * using skb_set_owner_w().
4164 	 * Idea is to tranfert ownership from head_skb to last segment.
4165 	 */
4166 	if (head_skb->destructor == sock_wfree) {
4167 		swap(tail->truesize, head_skb->truesize);
4168 		swap(tail->destructor, head_skb->destructor);
4169 		swap(tail->sk, head_skb->sk);
4170 	}
4171 	return segs;
4172 
4173 err:
4174 	kfree_skb_list(segs);
4175 	return ERR_PTR(err);
4176 }
4177 EXPORT_SYMBOL_GPL(skb_segment);
4178 
4179 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4180 {
4181 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4182 	unsigned int offset = skb_gro_offset(skb);
4183 	unsigned int headlen = skb_headlen(skb);
4184 	unsigned int len = skb_gro_len(skb);
4185 	unsigned int delta_truesize;
4186 	struct sk_buff *lp;
4187 
4188 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4189 		return -E2BIG;
4190 
4191 	lp = NAPI_GRO_CB(p)->last;
4192 	pinfo = skb_shinfo(lp);
4193 
4194 	if (headlen <= offset) {
4195 		skb_frag_t *frag;
4196 		skb_frag_t *frag2;
4197 		int i = skbinfo->nr_frags;
4198 		int nr_frags = pinfo->nr_frags + i;
4199 
4200 		if (nr_frags > MAX_SKB_FRAGS)
4201 			goto merge;
4202 
4203 		offset -= headlen;
4204 		pinfo->nr_frags = nr_frags;
4205 		skbinfo->nr_frags = 0;
4206 
4207 		frag = pinfo->frags + nr_frags;
4208 		frag2 = skbinfo->frags + i;
4209 		do {
4210 			*--frag = *--frag2;
4211 		} while (--i);
4212 
4213 		skb_frag_off_add(frag, offset);
4214 		skb_frag_size_sub(frag, offset);
4215 
4216 		/* all fragments truesize : remove (head size + sk_buff) */
4217 		delta_truesize = skb->truesize -
4218 				 SKB_TRUESIZE(skb_end_offset(skb));
4219 
4220 		skb->truesize -= skb->data_len;
4221 		skb->len -= skb->data_len;
4222 		skb->data_len = 0;
4223 
4224 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4225 		goto done;
4226 	} else if (skb->head_frag) {
4227 		int nr_frags = pinfo->nr_frags;
4228 		skb_frag_t *frag = pinfo->frags + nr_frags;
4229 		struct page *page = virt_to_head_page(skb->head);
4230 		unsigned int first_size = headlen - offset;
4231 		unsigned int first_offset;
4232 
4233 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4234 			goto merge;
4235 
4236 		first_offset = skb->data -
4237 			       (unsigned char *)page_address(page) +
4238 			       offset;
4239 
4240 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4241 
4242 		__skb_frag_set_page(frag, page);
4243 		skb_frag_off_set(frag, first_offset);
4244 		skb_frag_size_set(frag, first_size);
4245 
4246 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4247 		/* We dont need to clear skbinfo->nr_frags here */
4248 
4249 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4250 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4251 		goto done;
4252 	}
4253 
4254 merge:
4255 	delta_truesize = skb->truesize;
4256 	if (offset > headlen) {
4257 		unsigned int eat = offset - headlen;
4258 
4259 		skb_frag_off_add(&skbinfo->frags[0], eat);
4260 		skb_frag_size_sub(&skbinfo->frags[0], eat);
4261 		skb->data_len -= eat;
4262 		skb->len -= eat;
4263 		offset = headlen;
4264 	}
4265 
4266 	__skb_pull(skb, offset);
4267 
4268 	if (NAPI_GRO_CB(p)->last == p)
4269 		skb_shinfo(p)->frag_list = skb;
4270 	else
4271 		NAPI_GRO_CB(p)->last->next = skb;
4272 	NAPI_GRO_CB(p)->last = skb;
4273 	__skb_header_release(skb);
4274 	lp = p;
4275 
4276 done:
4277 	NAPI_GRO_CB(p)->count++;
4278 	p->data_len += len;
4279 	p->truesize += delta_truesize;
4280 	p->len += len;
4281 	if (lp != p) {
4282 		lp->data_len += len;
4283 		lp->truesize += delta_truesize;
4284 		lp->len += len;
4285 	}
4286 	NAPI_GRO_CB(skb)->same_flow = 1;
4287 	return 0;
4288 }
4289 
4290 #ifdef CONFIG_SKB_EXTENSIONS
4291 #define SKB_EXT_ALIGN_VALUE	8
4292 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4293 
4294 static const u8 skb_ext_type_len[] = {
4295 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4296 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4297 #endif
4298 #ifdef CONFIG_XFRM
4299 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4300 #endif
4301 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4302 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4303 #endif
4304 #if IS_ENABLED(CONFIG_MPTCP)
4305 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4306 #endif
4307 };
4308 
4309 static __always_inline unsigned int skb_ext_total_length(void)
4310 {
4311 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4312 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4313 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4314 #endif
4315 #ifdef CONFIG_XFRM
4316 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4317 #endif
4318 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4319 		skb_ext_type_len[TC_SKB_EXT] +
4320 #endif
4321 #if IS_ENABLED(CONFIG_MPTCP)
4322 		skb_ext_type_len[SKB_EXT_MPTCP] +
4323 #endif
4324 		0;
4325 }
4326 
4327 static void skb_extensions_init(void)
4328 {
4329 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4330 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4331 
4332 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4333 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4334 					     0,
4335 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4336 					     NULL);
4337 }
4338 #else
4339 static void skb_extensions_init(void) {}
4340 #endif
4341 
4342 void __init skb_init(void)
4343 {
4344 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4345 					      sizeof(struct sk_buff),
4346 					      0,
4347 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4348 					      offsetof(struct sk_buff, cb),
4349 					      sizeof_field(struct sk_buff, cb),
4350 					      NULL);
4351 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4352 						sizeof(struct sk_buff_fclones),
4353 						0,
4354 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4355 						NULL);
4356 	skb_extensions_init();
4357 }
4358 
4359 static int
4360 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4361 	       unsigned int recursion_level)
4362 {
4363 	int start = skb_headlen(skb);
4364 	int i, copy = start - offset;
4365 	struct sk_buff *frag_iter;
4366 	int elt = 0;
4367 
4368 	if (unlikely(recursion_level >= 24))
4369 		return -EMSGSIZE;
4370 
4371 	if (copy > 0) {
4372 		if (copy > len)
4373 			copy = len;
4374 		sg_set_buf(sg, skb->data + offset, copy);
4375 		elt++;
4376 		if ((len -= copy) == 0)
4377 			return elt;
4378 		offset += copy;
4379 	}
4380 
4381 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4382 		int end;
4383 
4384 		WARN_ON(start > offset + len);
4385 
4386 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4387 		if ((copy = end - offset) > 0) {
4388 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4389 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4390 				return -EMSGSIZE;
4391 
4392 			if (copy > len)
4393 				copy = len;
4394 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4395 				    skb_frag_off(frag) + offset - start);
4396 			elt++;
4397 			if (!(len -= copy))
4398 				return elt;
4399 			offset += copy;
4400 		}
4401 		start = end;
4402 	}
4403 
4404 	skb_walk_frags(skb, frag_iter) {
4405 		int end, ret;
4406 
4407 		WARN_ON(start > offset + len);
4408 
4409 		end = start + frag_iter->len;
4410 		if ((copy = end - offset) > 0) {
4411 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4412 				return -EMSGSIZE;
4413 
4414 			if (copy > len)
4415 				copy = len;
4416 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4417 					      copy, recursion_level + 1);
4418 			if (unlikely(ret < 0))
4419 				return ret;
4420 			elt += ret;
4421 			if ((len -= copy) == 0)
4422 				return elt;
4423 			offset += copy;
4424 		}
4425 		start = end;
4426 	}
4427 	BUG_ON(len);
4428 	return elt;
4429 }
4430 
4431 /**
4432  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4433  *	@skb: Socket buffer containing the buffers to be mapped
4434  *	@sg: The scatter-gather list to map into
4435  *	@offset: The offset into the buffer's contents to start mapping
4436  *	@len: Length of buffer space to be mapped
4437  *
4438  *	Fill the specified scatter-gather list with mappings/pointers into a
4439  *	region of the buffer space attached to a socket buffer. Returns either
4440  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4441  *	could not fit.
4442  */
4443 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4444 {
4445 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4446 
4447 	if (nsg <= 0)
4448 		return nsg;
4449 
4450 	sg_mark_end(&sg[nsg - 1]);
4451 
4452 	return nsg;
4453 }
4454 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4455 
4456 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4457  * sglist without mark the sg which contain last skb data as the end.
4458  * So the caller can mannipulate sg list as will when padding new data after
4459  * the first call without calling sg_unmark_end to expend sg list.
4460  *
4461  * Scenario to use skb_to_sgvec_nomark:
4462  * 1. sg_init_table
4463  * 2. skb_to_sgvec_nomark(payload1)
4464  * 3. skb_to_sgvec_nomark(payload2)
4465  *
4466  * This is equivalent to:
4467  * 1. sg_init_table
4468  * 2. skb_to_sgvec(payload1)
4469  * 3. sg_unmark_end
4470  * 4. skb_to_sgvec(payload2)
4471  *
4472  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4473  * is more preferable.
4474  */
4475 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4476 			int offset, int len)
4477 {
4478 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4479 }
4480 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4481 
4482 
4483 
4484 /**
4485  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4486  *	@skb: The socket buffer to check.
4487  *	@tailbits: Amount of trailing space to be added
4488  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4489  *
4490  *	Make sure that the data buffers attached to a socket buffer are
4491  *	writable. If they are not, private copies are made of the data buffers
4492  *	and the socket buffer is set to use these instead.
4493  *
4494  *	If @tailbits is given, make sure that there is space to write @tailbits
4495  *	bytes of data beyond current end of socket buffer.  @trailer will be
4496  *	set to point to the skb in which this space begins.
4497  *
4498  *	The number of scatterlist elements required to completely map the
4499  *	COW'd and extended socket buffer will be returned.
4500  */
4501 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4502 {
4503 	int copyflag;
4504 	int elt;
4505 	struct sk_buff *skb1, **skb_p;
4506 
4507 	/* If skb is cloned or its head is paged, reallocate
4508 	 * head pulling out all the pages (pages are considered not writable
4509 	 * at the moment even if they are anonymous).
4510 	 */
4511 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4512 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4513 		return -ENOMEM;
4514 
4515 	/* Easy case. Most of packets will go this way. */
4516 	if (!skb_has_frag_list(skb)) {
4517 		/* A little of trouble, not enough of space for trailer.
4518 		 * This should not happen, when stack is tuned to generate
4519 		 * good frames. OK, on miss we reallocate and reserve even more
4520 		 * space, 128 bytes is fair. */
4521 
4522 		if (skb_tailroom(skb) < tailbits &&
4523 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4524 			return -ENOMEM;
4525 
4526 		/* Voila! */
4527 		*trailer = skb;
4528 		return 1;
4529 	}
4530 
4531 	/* Misery. We are in troubles, going to mincer fragments... */
4532 
4533 	elt = 1;
4534 	skb_p = &skb_shinfo(skb)->frag_list;
4535 	copyflag = 0;
4536 
4537 	while ((skb1 = *skb_p) != NULL) {
4538 		int ntail = 0;
4539 
4540 		/* The fragment is partially pulled by someone,
4541 		 * this can happen on input. Copy it and everything
4542 		 * after it. */
4543 
4544 		if (skb_shared(skb1))
4545 			copyflag = 1;
4546 
4547 		/* If the skb is the last, worry about trailer. */
4548 
4549 		if (skb1->next == NULL && tailbits) {
4550 			if (skb_shinfo(skb1)->nr_frags ||
4551 			    skb_has_frag_list(skb1) ||
4552 			    skb_tailroom(skb1) < tailbits)
4553 				ntail = tailbits + 128;
4554 		}
4555 
4556 		if (copyflag ||
4557 		    skb_cloned(skb1) ||
4558 		    ntail ||
4559 		    skb_shinfo(skb1)->nr_frags ||
4560 		    skb_has_frag_list(skb1)) {
4561 			struct sk_buff *skb2;
4562 
4563 			/* Fuck, we are miserable poor guys... */
4564 			if (ntail == 0)
4565 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4566 			else
4567 				skb2 = skb_copy_expand(skb1,
4568 						       skb_headroom(skb1),
4569 						       ntail,
4570 						       GFP_ATOMIC);
4571 			if (unlikely(skb2 == NULL))
4572 				return -ENOMEM;
4573 
4574 			if (skb1->sk)
4575 				skb_set_owner_w(skb2, skb1->sk);
4576 
4577 			/* Looking around. Are we still alive?
4578 			 * OK, link new skb, drop old one */
4579 
4580 			skb2->next = skb1->next;
4581 			*skb_p = skb2;
4582 			kfree_skb(skb1);
4583 			skb1 = skb2;
4584 		}
4585 		elt++;
4586 		*trailer = skb1;
4587 		skb_p = &skb1->next;
4588 	}
4589 
4590 	return elt;
4591 }
4592 EXPORT_SYMBOL_GPL(skb_cow_data);
4593 
4594 static void sock_rmem_free(struct sk_buff *skb)
4595 {
4596 	struct sock *sk = skb->sk;
4597 
4598 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4599 }
4600 
4601 static void skb_set_err_queue(struct sk_buff *skb)
4602 {
4603 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4604 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4605 	 */
4606 	skb->pkt_type = PACKET_OUTGOING;
4607 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4608 }
4609 
4610 /*
4611  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4612  */
4613 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4614 {
4615 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4616 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4617 		return -ENOMEM;
4618 
4619 	skb_orphan(skb);
4620 	skb->sk = sk;
4621 	skb->destructor = sock_rmem_free;
4622 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4623 	skb_set_err_queue(skb);
4624 
4625 	/* before exiting rcu section, make sure dst is refcounted */
4626 	skb_dst_force(skb);
4627 
4628 	skb_queue_tail(&sk->sk_error_queue, skb);
4629 	if (!sock_flag(sk, SOCK_DEAD))
4630 		sk->sk_error_report(sk);
4631 	return 0;
4632 }
4633 EXPORT_SYMBOL(sock_queue_err_skb);
4634 
4635 static bool is_icmp_err_skb(const struct sk_buff *skb)
4636 {
4637 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4638 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4639 }
4640 
4641 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4642 {
4643 	struct sk_buff_head *q = &sk->sk_error_queue;
4644 	struct sk_buff *skb, *skb_next = NULL;
4645 	bool icmp_next = false;
4646 	unsigned long flags;
4647 
4648 	spin_lock_irqsave(&q->lock, flags);
4649 	skb = __skb_dequeue(q);
4650 	if (skb && (skb_next = skb_peek(q))) {
4651 		icmp_next = is_icmp_err_skb(skb_next);
4652 		if (icmp_next)
4653 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4654 	}
4655 	spin_unlock_irqrestore(&q->lock, flags);
4656 
4657 	if (is_icmp_err_skb(skb) && !icmp_next)
4658 		sk->sk_err = 0;
4659 
4660 	if (skb_next)
4661 		sk->sk_error_report(sk);
4662 
4663 	return skb;
4664 }
4665 EXPORT_SYMBOL(sock_dequeue_err_skb);
4666 
4667 /**
4668  * skb_clone_sk - create clone of skb, and take reference to socket
4669  * @skb: the skb to clone
4670  *
4671  * This function creates a clone of a buffer that holds a reference on
4672  * sk_refcnt.  Buffers created via this function are meant to be
4673  * returned using sock_queue_err_skb, or free via kfree_skb.
4674  *
4675  * When passing buffers allocated with this function to sock_queue_err_skb
4676  * it is necessary to wrap the call with sock_hold/sock_put in order to
4677  * prevent the socket from being released prior to being enqueued on
4678  * the sk_error_queue.
4679  */
4680 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4681 {
4682 	struct sock *sk = skb->sk;
4683 	struct sk_buff *clone;
4684 
4685 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4686 		return NULL;
4687 
4688 	clone = skb_clone(skb, GFP_ATOMIC);
4689 	if (!clone) {
4690 		sock_put(sk);
4691 		return NULL;
4692 	}
4693 
4694 	clone->sk = sk;
4695 	clone->destructor = sock_efree;
4696 
4697 	return clone;
4698 }
4699 EXPORT_SYMBOL(skb_clone_sk);
4700 
4701 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4702 					struct sock *sk,
4703 					int tstype,
4704 					bool opt_stats)
4705 {
4706 	struct sock_exterr_skb *serr;
4707 	int err;
4708 
4709 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4710 
4711 	serr = SKB_EXT_ERR(skb);
4712 	memset(serr, 0, sizeof(*serr));
4713 	serr->ee.ee_errno = ENOMSG;
4714 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4715 	serr->ee.ee_info = tstype;
4716 	serr->opt_stats = opt_stats;
4717 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4718 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4719 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4720 		if (sk->sk_protocol == IPPROTO_TCP &&
4721 		    sk->sk_type == SOCK_STREAM)
4722 			serr->ee.ee_data -= sk->sk_tskey;
4723 	}
4724 
4725 	err = sock_queue_err_skb(sk, skb);
4726 
4727 	if (err)
4728 		kfree_skb(skb);
4729 }
4730 
4731 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4732 {
4733 	bool ret;
4734 
4735 	if (likely(sysctl_tstamp_allow_data || tsonly))
4736 		return true;
4737 
4738 	read_lock_bh(&sk->sk_callback_lock);
4739 	ret = sk->sk_socket && sk->sk_socket->file &&
4740 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4741 	read_unlock_bh(&sk->sk_callback_lock);
4742 	return ret;
4743 }
4744 
4745 void skb_complete_tx_timestamp(struct sk_buff *skb,
4746 			       struct skb_shared_hwtstamps *hwtstamps)
4747 {
4748 	struct sock *sk = skb->sk;
4749 
4750 	if (!skb_may_tx_timestamp(sk, false))
4751 		goto err;
4752 
4753 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4754 	 * but only if the socket refcount is not zero.
4755 	 */
4756 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4757 		*skb_hwtstamps(skb) = *hwtstamps;
4758 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4759 		sock_put(sk);
4760 		return;
4761 	}
4762 
4763 err:
4764 	kfree_skb(skb);
4765 }
4766 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4767 
4768 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4769 		     const struct sk_buff *ack_skb,
4770 		     struct skb_shared_hwtstamps *hwtstamps,
4771 		     struct sock *sk, int tstype)
4772 {
4773 	struct sk_buff *skb;
4774 	bool tsonly, opt_stats = false;
4775 
4776 	if (!sk)
4777 		return;
4778 
4779 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4780 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4781 		return;
4782 
4783 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4784 	if (!skb_may_tx_timestamp(sk, tsonly))
4785 		return;
4786 
4787 	if (tsonly) {
4788 #ifdef CONFIG_INET
4789 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4790 		    sk->sk_protocol == IPPROTO_TCP &&
4791 		    sk->sk_type == SOCK_STREAM) {
4792 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4793 							     ack_skb);
4794 			opt_stats = true;
4795 		} else
4796 #endif
4797 			skb = alloc_skb(0, GFP_ATOMIC);
4798 	} else {
4799 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4800 	}
4801 	if (!skb)
4802 		return;
4803 
4804 	if (tsonly) {
4805 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4806 					     SKBTX_ANY_TSTAMP;
4807 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4808 	}
4809 
4810 	if (hwtstamps)
4811 		*skb_hwtstamps(skb) = *hwtstamps;
4812 	else
4813 		skb->tstamp = ktime_get_real();
4814 
4815 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4816 }
4817 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4818 
4819 void skb_tstamp_tx(struct sk_buff *orig_skb,
4820 		   struct skb_shared_hwtstamps *hwtstamps)
4821 {
4822 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4823 			       SCM_TSTAMP_SND);
4824 }
4825 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4826 
4827 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4828 {
4829 	struct sock *sk = skb->sk;
4830 	struct sock_exterr_skb *serr;
4831 	int err = 1;
4832 
4833 	skb->wifi_acked_valid = 1;
4834 	skb->wifi_acked = acked;
4835 
4836 	serr = SKB_EXT_ERR(skb);
4837 	memset(serr, 0, sizeof(*serr));
4838 	serr->ee.ee_errno = ENOMSG;
4839 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4840 
4841 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4842 	 * but only if the socket refcount is not zero.
4843 	 */
4844 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4845 		err = sock_queue_err_skb(sk, skb);
4846 		sock_put(sk);
4847 	}
4848 	if (err)
4849 		kfree_skb(skb);
4850 }
4851 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4852 
4853 /**
4854  * skb_partial_csum_set - set up and verify partial csum values for packet
4855  * @skb: the skb to set
4856  * @start: the number of bytes after skb->data to start checksumming.
4857  * @off: the offset from start to place the checksum.
4858  *
4859  * For untrusted partially-checksummed packets, we need to make sure the values
4860  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4861  *
4862  * This function checks and sets those values and skb->ip_summed: if this
4863  * returns false you should drop the packet.
4864  */
4865 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4866 {
4867 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4868 	u32 csum_start = skb_headroom(skb) + (u32)start;
4869 
4870 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4871 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4872 				     start, off, skb_headroom(skb), skb_headlen(skb));
4873 		return false;
4874 	}
4875 	skb->ip_summed = CHECKSUM_PARTIAL;
4876 	skb->csum_start = csum_start;
4877 	skb->csum_offset = off;
4878 	skb_set_transport_header(skb, start);
4879 	return true;
4880 }
4881 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4882 
4883 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4884 			       unsigned int max)
4885 {
4886 	if (skb_headlen(skb) >= len)
4887 		return 0;
4888 
4889 	/* If we need to pullup then pullup to the max, so we
4890 	 * won't need to do it again.
4891 	 */
4892 	if (max > skb->len)
4893 		max = skb->len;
4894 
4895 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4896 		return -ENOMEM;
4897 
4898 	if (skb_headlen(skb) < len)
4899 		return -EPROTO;
4900 
4901 	return 0;
4902 }
4903 
4904 #define MAX_TCP_HDR_LEN (15 * 4)
4905 
4906 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4907 				      typeof(IPPROTO_IP) proto,
4908 				      unsigned int off)
4909 {
4910 	int err;
4911 
4912 	switch (proto) {
4913 	case IPPROTO_TCP:
4914 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4915 					  off + MAX_TCP_HDR_LEN);
4916 		if (!err && !skb_partial_csum_set(skb, off,
4917 						  offsetof(struct tcphdr,
4918 							   check)))
4919 			err = -EPROTO;
4920 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4921 
4922 	case IPPROTO_UDP:
4923 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4924 					  off + sizeof(struct udphdr));
4925 		if (!err && !skb_partial_csum_set(skb, off,
4926 						  offsetof(struct udphdr,
4927 							   check)))
4928 			err = -EPROTO;
4929 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4930 	}
4931 
4932 	return ERR_PTR(-EPROTO);
4933 }
4934 
4935 /* This value should be large enough to cover a tagged ethernet header plus
4936  * maximally sized IP and TCP or UDP headers.
4937  */
4938 #define MAX_IP_HDR_LEN 128
4939 
4940 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4941 {
4942 	unsigned int off;
4943 	bool fragment;
4944 	__sum16 *csum;
4945 	int err;
4946 
4947 	fragment = false;
4948 
4949 	err = skb_maybe_pull_tail(skb,
4950 				  sizeof(struct iphdr),
4951 				  MAX_IP_HDR_LEN);
4952 	if (err < 0)
4953 		goto out;
4954 
4955 	if (ip_is_fragment(ip_hdr(skb)))
4956 		fragment = true;
4957 
4958 	off = ip_hdrlen(skb);
4959 
4960 	err = -EPROTO;
4961 
4962 	if (fragment)
4963 		goto out;
4964 
4965 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4966 	if (IS_ERR(csum))
4967 		return PTR_ERR(csum);
4968 
4969 	if (recalculate)
4970 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4971 					   ip_hdr(skb)->daddr,
4972 					   skb->len - off,
4973 					   ip_hdr(skb)->protocol, 0);
4974 	err = 0;
4975 
4976 out:
4977 	return err;
4978 }
4979 
4980 /* This value should be large enough to cover a tagged ethernet header plus
4981  * an IPv6 header, all options, and a maximal TCP or UDP header.
4982  */
4983 #define MAX_IPV6_HDR_LEN 256
4984 
4985 #define OPT_HDR(type, skb, off) \
4986 	(type *)(skb_network_header(skb) + (off))
4987 
4988 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4989 {
4990 	int err;
4991 	u8 nexthdr;
4992 	unsigned int off;
4993 	unsigned int len;
4994 	bool fragment;
4995 	bool done;
4996 	__sum16 *csum;
4997 
4998 	fragment = false;
4999 	done = false;
5000 
5001 	off = sizeof(struct ipv6hdr);
5002 
5003 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5004 	if (err < 0)
5005 		goto out;
5006 
5007 	nexthdr = ipv6_hdr(skb)->nexthdr;
5008 
5009 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5010 	while (off <= len && !done) {
5011 		switch (nexthdr) {
5012 		case IPPROTO_DSTOPTS:
5013 		case IPPROTO_HOPOPTS:
5014 		case IPPROTO_ROUTING: {
5015 			struct ipv6_opt_hdr *hp;
5016 
5017 			err = skb_maybe_pull_tail(skb,
5018 						  off +
5019 						  sizeof(struct ipv6_opt_hdr),
5020 						  MAX_IPV6_HDR_LEN);
5021 			if (err < 0)
5022 				goto out;
5023 
5024 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5025 			nexthdr = hp->nexthdr;
5026 			off += ipv6_optlen(hp);
5027 			break;
5028 		}
5029 		case IPPROTO_AH: {
5030 			struct ip_auth_hdr *hp;
5031 
5032 			err = skb_maybe_pull_tail(skb,
5033 						  off +
5034 						  sizeof(struct ip_auth_hdr),
5035 						  MAX_IPV6_HDR_LEN);
5036 			if (err < 0)
5037 				goto out;
5038 
5039 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5040 			nexthdr = hp->nexthdr;
5041 			off += ipv6_authlen(hp);
5042 			break;
5043 		}
5044 		case IPPROTO_FRAGMENT: {
5045 			struct frag_hdr *hp;
5046 
5047 			err = skb_maybe_pull_tail(skb,
5048 						  off +
5049 						  sizeof(struct frag_hdr),
5050 						  MAX_IPV6_HDR_LEN);
5051 			if (err < 0)
5052 				goto out;
5053 
5054 			hp = OPT_HDR(struct frag_hdr, skb, off);
5055 
5056 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5057 				fragment = true;
5058 
5059 			nexthdr = hp->nexthdr;
5060 			off += sizeof(struct frag_hdr);
5061 			break;
5062 		}
5063 		default:
5064 			done = true;
5065 			break;
5066 		}
5067 	}
5068 
5069 	err = -EPROTO;
5070 
5071 	if (!done || fragment)
5072 		goto out;
5073 
5074 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5075 	if (IS_ERR(csum))
5076 		return PTR_ERR(csum);
5077 
5078 	if (recalculate)
5079 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5080 					 &ipv6_hdr(skb)->daddr,
5081 					 skb->len - off, nexthdr, 0);
5082 	err = 0;
5083 
5084 out:
5085 	return err;
5086 }
5087 
5088 /**
5089  * skb_checksum_setup - set up partial checksum offset
5090  * @skb: the skb to set up
5091  * @recalculate: if true the pseudo-header checksum will be recalculated
5092  */
5093 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5094 {
5095 	int err;
5096 
5097 	switch (skb->protocol) {
5098 	case htons(ETH_P_IP):
5099 		err = skb_checksum_setup_ipv4(skb, recalculate);
5100 		break;
5101 
5102 	case htons(ETH_P_IPV6):
5103 		err = skb_checksum_setup_ipv6(skb, recalculate);
5104 		break;
5105 
5106 	default:
5107 		err = -EPROTO;
5108 		break;
5109 	}
5110 
5111 	return err;
5112 }
5113 EXPORT_SYMBOL(skb_checksum_setup);
5114 
5115 /**
5116  * skb_checksum_maybe_trim - maybe trims the given skb
5117  * @skb: the skb to check
5118  * @transport_len: the data length beyond the network header
5119  *
5120  * Checks whether the given skb has data beyond the given transport length.
5121  * If so, returns a cloned skb trimmed to this transport length.
5122  * Otherwise returns the provided skb. Returns NULL in error cases
5123  * (e.g. transport_len exceeds skb length or out-of-memory).
5124  *
5125  * Caller needs to set the skb transport header and free any returned skb if it
5126  * differs from the provided skb.
5127  */
5128 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5129 					       unsigned int transport_len)
5130 {
5131 	struct sk_buff *skb_chk;
5132 	unsigned int len = skb_transport_offset(skb) + transport_len;
5133 	int ret;
5134 
5135 	if (skb->len < len)
5136 		return NULL;
5137 	else if (skb->len == len)
5138 		return skb;
5139 
5140 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5141 	if (!skb_chk)
5142 		return NULL;
5143 
5144 	ret = pskb_trim_rcsum(skb_chk, len);
5145 	if (ret) {
5146 		kfree_skb(skb_chk);
5147 		return NULL;
5148 	}
5149 
5150 	return skb_chk;
5151 }
5152 
5153 /**
5154  * skb_checksum_trimmed - validate checksum of an skb
5155  * @skb: the skb to check
5156  * @transport_len: the data length beyond the network header
5157  * @skb_chkf: checksum function to use
5158  *
5159  * Applies the given checksum function skb_chkf to the provided skb.
5160  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5161  *
5162  * If the skb has data beyond the given transport length, then a
5163  * trimmed & cloned skb is checked and returned.
5164  *
5165  * Caller needs to set the skb transport header and free any returned skb if it
5166  * differs from the provided skb.
5167  */
5168 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5169 				     unsigned int transport_len,
5170 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5171 {
5172 	struct sk_buff *skb_chk;
5173 	unsigned int offset = skb_transport_offset(skb);
5174 	__sum16 ret;
5175 
5176 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5177 	if (!skb_chk)
5178 		goto err;
5179 
5180 	if (!pskb_may_pull(skb_chk, offset))
5181 		goto err;
5182 
5183 	skb_pull_rcsum(skb_chk, offset);
5184 	ret = skb_chkf(skb_chk);
5185 	skb_push_rcsum(skb_chk, offset);
5186 
5187 	if (ret)
5188 		goto err;
5189 
5190 	return skb_chk;
5191 
5192 err:
5193 	if (skb_chk && skb_chk != skb)
5194 		kfree_skb(skb_chk);
5195 
5196 	return NULL;
5197 
5198 }
5199 EXPORT_SYMBOL(skb_checksum_trimmed);
5200 
5201 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5202 {
5203 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5204 			     skb->dev->name);
5205 }
5206 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5207 
5208 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5209 {
5210 	if (head_stolen) {
5211 		skb_release_head_state(skb);
5212 		kmem_cache_free(skbuff_head_cache, skb);
5213 	} else {
5214 		__kfree_skb(skb);
5215 	}
5216 }
5217 EXPORT_SYMBOL(kfree_skb_partial);
5218 
5219 /**
5220  * skb_try_coalesce - try to merge skb to prior one
5221  * @to: prior buffer
5222  * @from: buffer to add
5223  * @fragstolen: pointer to boolean
5224  * @delta_truesize: how much more was allocated than was requested
5225  */
5226 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5227 		      bool *fragstolen, int *delta_truesize)
5228 {
5229 	struct skb_shared_info *to_shinfo, *from_shinfo;
5230 	int i, delta, len = from->len;
5231 
5232 	*fragstolen = false;
5233 
5234 	if (skb_cloned(to))
5235 		return false;
5236 
5237 	if (len <= skb_tailroom(to)) {
5238 		if (len)
5239 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5240 		*delta_truesize = 0;
5241 		return true;
5242 	}
5243 
5244 	to_shinfo = skb_shinfo(to);
5245 	from_shinfo = skb_shinfo(from);
5246 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5247 		return false;
5248 	if (skb_zcopy(to) || skb_zcopy(from))
5249 		return false;
5250 
5251 	if (skb_headlen(from) != 0) {
5252 		struct page *page;
5253 		unsigned int offset;
5254 
5255 		if (to_shinfo->nr_frags +
5256 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5257 			return false;
5258 
5259 		if (skb_head_is_locked(from))
5260 			return false;
5261 
5262 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5263 
5264 		page = virt_to_head_page(from->head);
5265 		offset = from->data - (unsigned char *)page_address(page);
5266 
5267 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5268 				   page, offset, skb_headlen(from));
5269 		*fragstolen = true;
5270 	} else {
5271 		if (to_shinfo->nr_frags +
5272 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5273 			return false;
5274 
5275 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5276 	}
5277 
5278 	WARN_ON_ONCE(delta < len);
5279 
5280 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5281 	       from_shinfo->frags,
5282 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5283 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5284 
5285 	if (!skb_cloned(from))
5286 		from_shinfo->nr_frags = 0;
5287 
5288 	/* if the skb is not cloned this does nothing
5289 	 * since we set nr_frags to 0.
5290 	 */
5291 	for (i = 0; i < from_shinfo->nr_frags; i++)
5292 		__skb_frag_ref(&from_shinfo->frags[i]);
5293 
5294 	to->truesize += delta;
5295 	to->len += len;
5296 	to->data_len += len;
5297 
5298 	*delta_truesize = delta;
5299 	return true;
5300 }
5301 EXPORT_SYMBOL(skb_try_coalesce);
5302 
5303 /**
5304  * skb_scrub_packet - scrub an skb
5305  *
5306  * @skb: buffer to clean
5307  * @xnet: packet is crossing netns
5308  *
5309  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5310  * into/from a tunnel. Some information have to be cleared during these
5311  * operations.
5312  * skb_scrub_packet can also be used to clean a skb before injecting it in
5313  * another namespace (@xnet == true). We have to clear all information in the
5314  * skb that could impact namespace isolation.
5315  */
5316 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5317 {
5318 	skb->pkt_type = PACKET_HOST;
5319 	skb->skb_iif = 0;
5320 	skb->ignore_df = 0;
5321 	skb_dst_drop(skb);
5322 	skb_ext_reset(skb);
5323 	nf_reset_ct(skb);
5324 	nf_reset_trace(skb);
5325 
5326 #ifdef CONFIG_NET_SWITCHDEV
5327 	skb->offload_fwd_mark = 0;
5328 	skb->offload_l3_fwd_mark = 0;
5329 #endif
5330 
5331 	if (!xnet)
5332 		return;
5333 
5334 	ipvs_reset(skb);
5335 	skb->mark = 0;
5336 	skb->tstamp = 0;
5337 }
5338 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5339 
5340 /**
5341  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5342  *
5343  * @skb: GSO skb
5344  *
5345  * skb_gso_transport_seglen is used to determine the real size of the
5346  * individual segments, including Layer4 headers (TCP/UDP).
5347  *
5348  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5349  */
5350 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5351 {
5352 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5353 	unsigned int thlen = 0;
5354 
5355 	if (skb->encapsulation) {
5356 		thlen = skb_inner_transport_header(skb) -
5357 			skb_transport_header(skb);
5358 
5359 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5360 			thlen += inner_tcp_hdrlen(skb);
5361 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5362 		thlen = tcp_hdrlen(skb);
5363 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5364 		thlen = sizeof(struct sctphdr);
5365 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5366 		thlen = sizeof(struct udphdr);
5367 	}
5368 	/* UFO sets gso_size to the size of the fragmentation
5369 	 * payload, i.e. the size of the L4 (UDP) header is already
5370 	 * accounted for.
5371 	 */
5372 	return thlen + shinfo->gso_size;
5373 }
5374 
5375 /**
5376  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5377  *
5378  * @skb: GSO skb
5379  *
5380  * skb_gso_network_seglen is used to determine the real size of the
5381  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5382  *
5383  * The MAC/L2 header is not accounted for.
5384  */
5385 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5386 {
5387 	unsigned int hdr_len = skb_transport_header(skb) -
5388 			       skb_network_header(skb);
5389 
5390 	return hdr_len + skb_gso_transport_seglen(skb);
5391 }
5392 
5393 /**
5394  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5395  *
5396  * @skb: GSO skb
5397  *
5398  * skb_gso_mac_seglen is used to determine the real size of the
5399  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5400  * headers (TCP/UDP).
5401  */
5402 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5403 {
5404 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5405 
5406 	return hdr_len + skb_gso_transport_seglen(skb);
5407 }
5408 
5409 /**
5410  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5411  *
5412  * There are a couple of instances where we have a GSO skb, and we
5413  * want to determine what size it would be after it is segmented.
5414  *
5415  * We might want to check:
5416  * -    L3+L4+payload size (e.g. IP forwarding)
5417  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5418  *
5419  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5420  *
5421  * @skb: GSO skb
5422  *
5423  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5424  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5425  *
5426  * @max_len: The maximum permissible length.
5427  *
5428  * Returns true if the segmented length <= max length.
5429  */
5430 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5431 				      unsigned int seg_len,
5432 				      unsigned int max_len) {
5433 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5434 	const struct sk_buff *iter;
5435 
5436 	if (shinfo->gso_size != GSO_BY_FRAGS)
5437 		return seg_len <= max_len;
5438 
5439 	/* Undo this so we can re-use header sizes */
5440 	seg_len -= GSO_BY_FRAGS;
5441 
5442 	skb_walk_frags(skb, iter) {
5443 		if (seg_len + skb_headlen(iter) > max_len)
5444 			return false;
5445 	}
5446 
5447 	return true;
5448 }
5449 
5450 /**
5451  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5452  *
5453  * @skb: GSO skb
5454  * @mtu: MTU to validate against
5455  *
5456  * skb_gso_validate_network_len validates if a given skb will fit a
5457  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5458  * payload.
5459  */
5460 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5461 {
5462 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5463 }
5464 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5465 
5466 /**
5467  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5468  *
5469  * @skb: GSO skb
5470  * @len: length to validate against
5471  *
5472  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5473  * length once split, including L2, L3 and L4 headers and the payload.
5474  */
5475 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5476 {
5477 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5478 }
5479 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5480 
5481 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5482 {
5483 	int mac_len, meta_len;
5484 	void *meta;
5485 
5486 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5487 		kfree_skb(skb);
5488 		return NULL;
5489 	}
5490 
5491 	mac_len = skb->data - skb_mac_header(skb);
5492 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5493 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5494 			mac_len - VLAN_HLEN - ETH_TLEN);
5495 	}
5496 
5497 	meta_len = skb_metadata_len(skb);
5498 	if (meta_len) {
5499 		meta = skb_metadata_end(skb) - meta_len;
5500 		memmove(meta + VLAN_HLEN, meta, meta_len);
5501 	}
5502 
5503 	skb->mac_header += VLAN_HLEN;
5504 	return skb;
5505 }
5506 
5507 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5508 {
5509 	struct vlan_hdr *vhdr;
5510 	u16 vlan_tci;
5511 
5512 	if (unlikely(skb_vlan_tag_present(skb))) {
5513 		/* vlan_tci is already set-up so leave this for another time */
5514 		return skb;
5515 	}
5516 
5517 	skb = skb_share_check(skb, GFP_ATOMIC);
5518 	if (unlikely(!skb))
5519 		goto err_free;
5520 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5521 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5522 		goto err_free;
5523 
5524 	vhdr = (struct vlan_hdr *)skb->data;
5525 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5526 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5527 
5528 	skb_pull_rcsum(skb, VLAN_HLEN);
5529 	vlan_set_encap_proto(skb, vhdr);
5530 
5531 	skb = skb_reorder_vlan_header(skb);
5532 	if (unlikely(!skb))
5533 		goto err_free;
5534 
5535 	skb_reset_network_header(skb);
5536 	if (!skb_transport_header_was_set(skb))
5537 		skb_reset_transport_header(skb);
5538 	skb_reset_mac_len(skb);
5539 
5540 	return skb;
5541 
5542 err_free:
5543 	kfree_skb(skb);
5544 	return NULL;
5545 }
5546 EXPORT_SYMBOL(skb_vlan_untag);
5547 
5548 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5549 {
5550 	if (!pskb_may_pull(skb, write_len))
5551 		return -ENOMEM;
5552 
5553 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5554 		return 0;
5555 
5556 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5557 }
5558 EXPORT_SYMBOL(skb_ensure_writable);
5559 
5560 /* remove VLAN header from packet and update csum accordingly.
5561  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5562  */
5563 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5564 {
5565 	struct vlan_hdr *vhdr;
5566 	int offset = skb->data - skb_mac_header(skb);
5567 	int err;
5568 
5569 	if (WARN_ONCE(offset,
5570 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5571 		      offset)) {
5572 		return -EINVAL;
5573 	}
5574 
5575 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5576 	if (unlikely(err))
5577 		return err;
5578 
5579 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5580 
5581 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5582 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5583 
5584 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5585 	__skb_pull(skb, VLAN_HLEN);
5586 
5587 	vlan_set_encap_proto(skb, vhdr);
5588 	skb->mac_header += VLAN_HLEN;
5589 
5590 	if (skb_network_offset(skb) < ETH_HLEN)
5591 		skb_set_network_header(skb, ETH_HLEN);
5592 
5593 	skb_reset_mac_len(skb);
5594 
5595 	return err;
5596 }
5597 EXPORT_SYMBOL(__skb_vlan_pop);
5598 
5599 /* Pop a vlan tag either from hwaccel or from payload.
5600  * Expects skb->data at mac header.
5601  */
5602 int skb_vlan_pop(struct sk_buff *skb)
5603 {
5604 	u16 vlan_tci;
5605 	__be16 vlan_proto;
5606 	int err;
5607 
5608 	if (likely(skb_vlan_tag_present(skb))) {
5609 		__vlan_hwaccel_clear_tag(skb);
5610 	} else {
5611 		if (unlikely(!eth_type_vlan(skb->protocol)))
5612 			return 0;
5613 
5614 		err = __skb_vlan_pop(skb, &vlan_tci);
5615 		if (err)
5616 			return err;
5617 	}
5618 	/* move next vlan tag to hw accel tag */
5619 	if (likely(!eth_type_vlan(skb->protocol)))
5620 		return 0;
5621 
5622 	vlan_proto = skb->protocol;
5623 	err = __skb_vlan_pop(skb, &vlan_tci);
5624 	if (unlikely(err))
5625 		return err;
5626 
5627 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5628 	return 0;
5629 }
5630 EXPORT_SYMBOL(skb_vlan_pop);
5631 
5632 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5633  * Expects skb->data at mac header.
5634  */
5635 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5636 {
5637 	if (skb_vlan_tag_present(skb)) {
5638 		int offset = skb->data - skb_mac_header(skb);
5639 		int err;
5640 
5641 		if (WARN_ONCE(offset,
5642 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5643 			      offset)) {
5644 			return -EINVAL;
5645 		}
5646 
5647 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5648 					skb_vlan_tag_get(skb));
5649 		if (err)
5650 			return err;
5651 
5652 		skb->protocol = skb->vlan_proto;
5653 		skb->mac_len += VLAN_HLEN;
5654 
5655 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5656 	}
5657 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5658 	return 0;
5659 }
5660 EXPORT_SYMBOL(skb_vlan_push);
5661 
5662 /**
5663  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5664  *
5665  * @skb: Socket buffer to modify
5666  *
5667  * Drop the Ethernet header of @skb.
5668  *
5669  * Expects that skb->data points to the mac header and that no VLAN tags are
5670  * present.
5671  *
5672  * Returns 0 on success, -errno otherwise.
5673  */
5674 int skb_eth_pop(struct sk_buff *skb)
5675 {
5676 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5677 	    skb_network_offset(skb) < ETH_HLEN)
5678 		return -EPROTO;
5679 
5680 	skb_pull_rcsum(skb, ETH_HLEN);
5681 	skb_reset_mac_header(skb);
5682 	skb_reset_mac_len(skb);
5683 
5684 	return 0;
5685 }
5686 EXPORT_SYMBOL(skb_eth_pop);
5687 
5688 /**
5689  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5690  *
5691  * @skb: Socket buffer to modify
5692  * @dst: Destination MAC address of the new header
5693  * @src: Source MAC address of the new header
5694  *
5695  * Prepend @skb with a new Ethernet header.
5696  *
5697  * Expects that skb->data points to the mac header, which must be empty.
5698  *
5699  * Returns 0 on success, -errno otherwise.
5700  */
5701 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5702 		 const unsigned char *src)
5703 {
5704 	struct ethhdr *eth;
5705 	int err;
5706 
5707 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5708 		return -EPROTO;
5709 
5710 	err = skb_cow_head(skb, sizeof(*eth));
5711 	if (err < 0)
5712 		return err;
5713 
5714 	skb_push(skb, sizeof(*eth));
5715 	skb_reset_mac_header(skb);
5716 	skb_reset_mac_len(skb);
5717 
5718 	eth = eth_hdr(skb);
5719 	ether_addr_copy(eth->h_dest, dst);
5720 	ether_addr_copy(eth->h_source, src);
5721 	eth->h_proto = skb->protocol;
5722 
5723 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5724 
5725 	return 0;
5726 }
5727 EXPORT_SYMBOL(skb_eth_push);
5728 
5729 /* Update the ethertype of hdr and the skb csum value if required. */
5730 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5731 			     __be16 ethertype)
5732 {
5733 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5734 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5735 
5736 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5737 	}
5738 
5739 	hdr->h_proto = ethertype;
5740 }
5741 
5742 /**
5743  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5744  *                   the packet
5745  *
5746  * @skb: buffer
5747  * @mpls_lse: MPLS label stack entry to push
5748  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5749  * @mac_len: length of the MAC header
5750  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5751  *            ethernet
5752  *
5753  * Expects skb->data at mac header.
5754  *
5755  * Returns 0 on success, -errno otherwise.
5756  */
5757 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5758 		  int mac_len, bool ethernet)
5759 {
5760 	struct mpls_shim_hdr *lse;
5761 	int err;
5762 
5763 	if (unlikely(!eth_p_mpls(mpls_proto)))
5764 		return -EINVAL;
5765 
5766 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5767 	if (skb->encapsulation)
5768 		return -EINVAL;
5769 
5770 	err = skb_cow_head(skb, MPLS_HLEN);
5771 	if (unlikely(err))
5772 		return err;
5773 
5774 	if (!skb->inner_protocol) {
5775 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5776 		skb_set_inner_protocol(skb, skb->protocol);
5777 	}
5778 
5779 	skb_push(skb, MPLS_HLEN);
5780 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5781 		mac_len);
5782 	skb_reset_mac_header(skb);
5783 	skb_set_network_header(skb, mac_len);
5784 	skb_reset_mac_len(skb);
5785 
5786 	lse = mpls_hdr(skb);
5787 	lse->label_stack_entry = mpls_lse;
5788 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5789 
5790 	if (ethernet && mac_len >= ETH_HLEN)
5791 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5792 	skb->protocol = mpls_proto;
5793 
5794 	return 0;
5795 }
5796 EXPORT_SYMBOL_GPL(skb_mpls_push);
5797 
5798 /**
5799  * skb_mpls_pop() - pop the outermost MPLS header
5800  *
5801  * @skb: buffer
5802  * @next_proto: ethertype of header after popped MPLS header
5803  * @mac_len: length of the MAC header
5804  * @ethernet: flag to indicate if the packet is ethernet
5805  *
5806  * Expects skb->data at mac header.
5807  *
5808  * Returns 0 on success, -errno otherwise.
5809  */
5810 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5811 		 bool ethernet)
5812 {
5813 	int err;
5814 
5815 	if (unlikely(!eth_p_mpls(skb->protocol)))
5816 		return 0;
5817 
5818 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5819 	if (unlikely(err))
5820 		return err;
5821 
5822 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5823 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5824 		mac_len);
5825 
5826 	__skb_pull(skb, MPLS_HLEN);
5827 	skb_reset_mac_header(skb);
5828 	skb_set_network_header(skb, mac_len);
5829 
5830 	if (ethernet && mac_len >= ETH_HLEN) {
5831 		struct ethhdr *hdr;
5832 
5833 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5834 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5835 		skb_mod_eth_type(skb, hdr, next_proto);
5836 	}
5837 	skb->protocol = next_proto;
5838 
5839 	return 0;
5840 }
5841 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5842 
5843 /**
5844  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5845  *
5846  * @skb: buffer
5847  * @mpls_lse: new MPLS label stack entry to update to
5848  *
5849  * Expects skb->data at mac header.
5850  *
5851  * Returns 0 on success, -errno otherwise.
5852  */
5853 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5854 {
5855 	int err;
5856 
5857 	if (unlikely(!eth_p_mpls(skb->protocol)))
5858 		return -EINVAL;
5859 
5860 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5861 	if (unlikely(err))
5862 		return err;
5863 
5864 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5865 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5866 
5867 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5868 	}
5869 
5870 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5871 
5872 	return 0;
5873 }
5874 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5875 
5876 /**
5877  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5878  *
5879  * @skb: buffer
5880  *
5881  * Expects skb->data at mac header.
5882  *
5883  * Returns 0 on success, -errno otherwise.
5884  */
5885 int skb_mpls_dec_ttl(struct sk_buff *skb)
5886 {
5887 	u32 lse;
5888 	u8 ttl;
5889 
5890 	if (unlikely(!eth_p_mpls(skb->protocol)))
5891 		return -EINVAL;
5892 
5893 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5894 		return -ENOMEM;
5895 
5896 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5897 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5898 	if (!--ttl)
5899 		return -EINVAL;
5900 
5901 	lse &= ~MPLS_LS_TTL_MASK;
5902 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5903 
5904 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5905 }
5906 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5907 
5908 /**
5909  * alloc_skb_with_frags - allocate skb with page frags
5910  *
5911  * @header_len: size of linear part
5912  * @data_len: needed length in frags
5913  * @max_page_order: max page order desired.
5914  * @errcode: pointer to error code if any
5915  * @gfp_mask: allocation mask
5916  *
5917  * This can be used to allocate a paged skb, given a maximal order for frags.
5918  */
5919 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5920 				     unsigned long data_len,
5921 				     int max_page_order,
5922 				     int *errcode,
5923 				     gfp_t gfp_mask)
5924 {
5925 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5926 	unsigned long chunk;
5927 	struct sk_buff *skb;
5928 	struct page *page;
5929 	int i;
5930 
5931 	*errcode = -EMSGSIZE;
5932 	/* Note this test could be relaxed, if we succeed to allocate
5933 	 * high order pages...
5934 	 */
5935 	if (npages > MAX_SKB_FRAGS)
5936 		return NULL;
5937 
5938 	*errcode = -ENOBUFS;
5939 	skb = alloc_skb(header_len, gfp_mask);
5940 	if (!skb)
5941 		return NULL;
5942 
5943 	skb->truesize += npages << PAGE_SHIFT;
5944 
5945 	for (i = 0; npages > 0; i++) {
5946 		int order = max_page_order;
5947 
5948 		while (order) {
5949 			if (npages >= 1 << order) {
5950 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5951 						   __GFP_COMP |
5952 						   __GFP_NOWARN,
5953 						   order);
5954 				if (page)
5955 					goto fill_page;
5956 				/* Do not retry other high order allocations */
5957 				order = 1;
5958 				max_page_order = 0;
5959 			}
5960 			order--;
5961 		}
5962 		page = alloc_page(gfp_mask);
5963 		if (!page)
5964 			goto failure;
5965 fill_page:
5966 		chunk = min_t(unsigned long, data_len,
5967 			      PAGE_SIZE << order);
5968 		skb_fill_page_desc(skb, i, page, 0, chunk);
5969 		data_len -= chunk;
5970 		npages -= 1 << order;
5971 	}
5972 	return skb;
5973 
5974 failure:
5975 	kfree_skb(skb);
5976 	return NULL;
5977 }
5978 EXPORT_SYMBOL(alloc_skb_with_frags);
5979 
5980 /* carve out the first off bytes from skb when off < headlen */
5981 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5982 				    const int headlen, gfp_t gfp_mask)
5983 {
5984 	int i;
5985 	int size = skb_end_offset(skb);
5986 	int new_hlen = headlen - off;
5987 	u8 *data;
5988 
5989 	size = SKB_DATA_ALIGN(size);
5990 
5991 	if (skb_pfmemalloc(skb))
5992 		gfp_mask |= __GFP_MEMALLOC;
5993 	data = kmalloc_reserve(size +
5994 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5995 			       gfp_mask, NUMA_NO_NODE, NULL);
5996 	if (!data)
5997 		return -ENOMEM;
5998 
5999 	size = SKB_WITH_OVERHEAD(ksize(data));
6000 
6001 	/* Copy real data, and all frags */
6002 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6003 	skb->len -= off;
6004 
6005 	memcpy((struct skb_shared_info *)(data + size),
6006 	       skb_shinfo(skb),
6007 	       offsetof(struct skb_shared_info,
6008 			frags[skb_shinfo(skb)->nr_frags]));
6009 	if (skb_cloned(skb)) {
6010 		/* drop the old head gracefully */
6011 		if (skb_orphan_frags(skb, gfp_mask)) {
6012 			kfree(data);
6013 			return -ENOMEM;
6014 		}
6015 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6016 			skb_frag_ref(skb, i);
6017 		if (skb_has_frag_list(skb))
6018 			skb_clone_fraglist(skb);
6019 		skb_release_data(skb);
6020 	} else {
6021 		/* we can reuse existing recount- all we did was
6022 		 * relocate values
6023 		 */
6024 		skb_free_head(skb);
6025 	}
6026 
6027 	skb->head = data;
6028 	skb->data = data;
6029 	skb->head_frag = 0;
6030 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6031 	skb->end = size;
6032 #else
6033 	skb->end = skb->head + size;
6034 #endif
6035 	skb_set_tail_pointer(skb, skb_headlen(skb));
6036 	skb_headers_offset_update(skb, 0);
6037 	skb->cloned = 0;
6038 	skb->hdr_len = 0;
6039 	skb->nohdr = 0;
6040 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6041 
6042 	return 0;
6043 }
6044 
6045 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6046 
6047 /* carve out the first eat bytes from skb's frag_list. May recurse into
6048  * pskb_carve()
6049  */
6050 static int pskb_carve_frag_list(struct sk_buff *skb,
6051 				struct skb_shared_info *shinfo, int eat,
6052 				gfp_t gfp_mask)
6053 {
6054 	struct sk_buff *list = shinfo->frag_list;
6055 	struct sk_buff *clone = NULL;
6056 	struct sk_buff *insp = NULL;
6057 
6058 	do {
6059 		if (!list) {
6060 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6061 			return -EFAULT;
6062 		}
6063 		if (list->len <= eat) {
6064 			/* Eaten as whole. */
6065 			eat -= list->len;
6066 			list = list->next;
6067 			insp = list;
6068 		} else {
6069 			/* Eaten partially. */
6070 			if (skb_shared(list)) {
6071 				clone = skb_clone(list, gfp_mask);
6072 				if (!clone)
6073 					return -ENOMEM;
6074 				insp = list->next;
6075 				list = clone;
6076 			} else {
6077 				/* This may be pulled without problems. */
6078 				insp = list;
6079 			}
6080 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6081 				kfree_skb(clone);
6082 				return -ENOMEM;
6083 			}
6084 			break;
6085 		}
6086 	} while (eat);
6087 
6088 	/* Free pulled out fragments. */
6089 	while ((list = shinfo->frag_list) != insp) {
6090 		shinfo->frag_list = list->next;
6091 		kfree_skb(list);
6092 	}
6093 	/* And insert new clone at head. */
6094 	if (clone) {
6095 		clone->next = list;
6096 		shinfo->frag_list = clone;
6097 	}
6098 	return 0;
6099 }
6100 
6101 /* carve off first len bytes from skb. Split line (off) is in the
6102  * non-linear part of skb
6103  */
6104 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6105 				       int pos, gfp_t gfp_mask)
6106 {
6107 	int i, k = 0;
6108 	int size = skb_end_offset(skb);
6109 	u8 *data;
6110 	const int nfrags = skb_shinfo(skb)->nr_frags;
6111 	struct skb_shared_info *shinfo;
6112 
6113 	size = SKB_DATA_ALIGN(size);
6114 
6115 	if (skb_pfmemalloc(skb))
6116 		gfp_mask |= __GFP_MEMALLOC;
6117 	data = kmalloc_reserve(size +
6118 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6119 			       gfp_mask, NUMA_NO_NODE, NULL);
6120 	if (!data)
6121 		return -ENOMEM;
6122 
6123 	size = SKB_WITH_OVERHEAD(ksize(data));
6124 
6125 	memcpy((struct skb_shared_info *)(data + size),
6126 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6127 	if (skb_orphan_frags(skb, gfp_mask)) {
6128 		kfree(data);
6129 		return -ENOMEM;
6130 	}
6131 	shinfo = (struct skb_shared_info *)(data + size);
6132 	for (i = 0; i < nfrags; i++) {
6133 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6134 
6135 		if (pos + fsize > off) {
6136 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6137 
6138 			if (pos < off) {
6139 				/* Split frag.
6140 				 * We have two variants in this case:
6141 				 * 1. Move all the frag to the second
6142 				 *    part, if it is possible. F.e.
6143 				 *    this approach is mandatory for TUX,
6144 				 *    where splitting is expensive.
6145 				 * 2. Split is accurately. We make this.
6146 				 */
6147 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6148 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6149 			}
6150 			skb_frag_ref(skb, i);
6151 			k++;
6152 		}
6153 		pos += fsize;
6154 	}
6155 	shinfo->nr_frags = k;
6156 	if (skb_has_frag_list(skb))
6157 		skb_clone_fraglist(skb);
6158 
6159 	/* split line is in frag list */
6160 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6161 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6162 		if (skb_has_frag_list(skb))
6163 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6164 		kfree(data);
6165 		return -ENOMEM;
6166 	}
6167 	skb_release_data(skb);
6168 
6169 	skb->head = data;
6170 	skb->head_frag = 0;
6171 	skb->data = data;
6172 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6173 	skb->end = size;
6174 #else
6175 	skb->end = skb->head + size;
6176 #endif
6177 	skb_reset_tail_pointer(skb);
6178 	skb_headers_offset_update(skb, 0);
6179 	skb->cloned   = 0;
6180 	skb->hdr_len  = 0;
6181 	skb->nohdr    = 0;
6182 	skb->len -= off;
6183 	skb->data_len = skb->len;
6184 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6185 	return 0;
6186 }
6187 
6188 /* remove len bytes from the beginning of the skb */
6189 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6190 {
6191 	int headlen = skb_headlen(skb);
6192 
6193 	if (len < headlen)
6194 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6195 	else
6196 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6197 }
6198 
6199 /* Extract to_copy bytes starting at off from skb, and return this in
6200  * a new skb
6201  */
6202 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6203 			     int to_copy, gfp_t gfp)
6204 {
6205 	struct sk_buff  *clone = skb_clone(skb, gfp);
6206 
6207 	if (!clone)
6208 		return NULL;
6209 
6210 	if (pskb_carve(clone, off, gfp) < 0 ||
6211 	    pskb_trim(clone, to_copy)) {
6212 		kfree_skb(clone);
6213 		return NULL;
6214 	}
6215 	return clone;
6216 }
6217 EXPORT_SYMBOL(pskb_extract);
6218 
6219 /**
6220  * skb_condense - try to get rid of fragments/frag_list if possible
6221  * @skb: buffer
6222  *
6223  * Can be used to save memory before skb is added to a busy queue.
6224  * If packet has bytes in frags and enough tail room in skb->head,
6225  * pull all of them, so that we can free the frags right now and adjust
6226  * truesize.
6227  * Notes:
6228  *	We do not reallocate skb->head thus can not fail.
6229  *	Caller must re-evaluate skb->truesize if needed.
6230  */
6231 void skb_condense(struct sk_buff *skb)
6232 {
6233 	if (skb->data_len) {
6234 		if (skb->data_len > skb->end - skb->tail ||
6235 		    skb_cloned(skb))
6236 			return;
6237 
6238 		/* Nice, we can free page frag(s) right now */
6239 		__pskb_pull_tail(skb, skb->data_len);
6240 	}
6241 	/* At this point, skb->truesize might be over estimated,
6242 	 * because skb had a fragment, and fragments do not tell
6243 	 * their truesize.
6244 	 * When we pulled its content into skb->head, fragment
6245 	 * was freed, but __pskb_pull_tail() could not possibly
6246 	 * adjust skb->truesize, not knowing the frag truesize.
6247 	 */
6248 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6249 }
6250 
6251 #ifdef CONFIG_SKB_EXTENSIONS
6252 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6253 {
6254 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6255 }
6256 
6257 /**
6258  * __skb_ext_alloc - allocate a new skb extensions storage
6259  *
6260  * @flags: See kmalloc().
6261  *
6262  * Returns the newly allocated pointer. The pointer can later attached to a
6263  * skb via __skb_ext_set().
6264  * Note: caller must handle the skb_ext as an opaque data.
6265  */
6266 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6267 {
6268 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6269 
6270 	if (new) {
6271 		memset(new->offset, 0, sizeof(new->offset));
6272 		refcount_set(&new->refcnt, 1);
6273 	}
6274 
6275 	return new;
6276 }
6277 
6278 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6279 					 unsigned int old_active)
6280 {
6281 	struct skb_ext *new;
6282 
6283 	if (refcount_read(&old->refcnt) == 1)
6284 		return old;
6285 
6286 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6287 	if (!new)
6288 		return NULL;
6289 
6290 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6291 	refcount_set(&new->refcnt, 1);
6292 
6293 #ifdef CONFIG_XFRM
6294 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6295 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6296 		unsigned int i;
6297 
6298 		for (i = 0; i < sp->len; i++)
6299 			xfrm_state_hold(sp->xvec[i]);
6300 	}
6301 #endif
6302 	__skb_ext_put(old);
6303 	return new;
6304 }
6305 
6306 /**
6307  * __skb_ext_set - attach the specified extension storage to this skb
6308  * @skb: buffer
6309  * @id: extension id
6310  * @ext: extension storage previously allocated via __skb_ext_alloc()
6311  *
6312  * Existing extensions, if any, are cleared.
6313  *
6314  * Returns the pointer to the extension.
6315  */
6316 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6317 		    struct skb_ext *ext)
6318 {
6319 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6320 
6321 	skb_ext_put(skb);
6322 	newlen = newoff + skb_ext_type_len[id];
6323 	ext->chunks = newlen;
6324 	ext->offset[id] = newoff;
6325 	skb->extensions = ext;
6326 	skb->active_extensions = 1 << id;
6327 	return skb_ext_get_ptr(ext, id);
6328 }
6329 
6330 /**
6331  * skb_ext_add - allocate space for given extension, COW if needed
6332  * @skb: buffer
6333  * @id: extension to allocate space for
6334  *
6335  * Allocates enough space for the given extension.
6336  * If the extension is already present, a pointer to that extension
6337  * is returned.
6338  *
6339  * If the skb was cloned, COW applies and the returned memory can be
6340  * modified without changing the extension space of clones buffers.
6341  *
6342  * Returns pointer to the extension or NULL on allocation failure.
6343  */
6344 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6345 {
6346 	struct skb_ext *new, *old = NULL;
6347 	unsigned int newlen, newoff;
6348 
6349 	if (skb->active_extensions) {
6350 		old = skb->extensions;
6351 
6352 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6353 		if (!new)
6354 			return NULL;
6355 
6356 		if (__skb_ext_exist(new, id))
6357 			goto set_active;
6358 
6359 		newoff = new->chunks;
6360 	} else {
6361 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6362 
6363 		new = __skb_ext_alloc(GFP_ATOMIC);
6364 		if (!new)
6365 			return NULL;
6366 	}
6367 
6368 	newlen = newoff + skb_ext_type_len[id];
6369 	new->chunks = newlen;
6370 	new->offset[id] = newoff;
6371 set_active:
6372 	skb->extensions = new;
6373 	skb->active_extensions |= 1 << id;
6374 	return skb_ext_get_ptr(new, id);
6375 }
6376 EXPORT_SYMBOL(skb_ext_add);
6377 
6378 #ifdef CONFIG_XFRM
6379 static void skb_ext_put_sp(struct sec_path *sp)
6380 {
6381 	unsigned int i;
6382 
6383 	for (i = 0; i < sp->len; i++)
6384 		xfrm_state_put(sp->xvec[i]);
6385 }
6386 #endif
6387 
6388 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6389 {
6390 	struct skb_ext *ext = skb->extensions;
6391 
6392 	skb->active_extensions &= ~(1 << id);
6393 	if (skb->active_extensions == 0) {
6394 		skb->extensions = NULL;
6395 		__skb_ext_put(ext);
6396 #ifdef CONFIG_XFRM
6397 	} else if (id == SKB_EXT_SEC_PATH &&
6398 		   refcount_read(&ext->refcnt) == 1) {
6399 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6400 
6401 		skb_ext_put_sp(sp);
6402 		sp->len = 0;
6403 #endif
6404 	}
6405 }
6406 EXPORT_SYMBOL(__skb_ext_del);
6407 
6408 void __skb_ext_put(struct skb_ext *ext)
6409 {
6410 	/* If this is last clone, nothing can increment
6411 	 * it after check passes.  Avoids one atomic op.
6412 	 */
6413 	if (refcount_read(&ext->refcnt) == 1)
6414 		goto free_now;
6415 
6416 	if (!refcount_dec_and_test(&ext->refcnt))
6417 		return;
6418 free_now:
6419 #ifdef CONFIG_XFRM
6420 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6421 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6422 #endif
6423 
6424 	kmem_cache_free(skbuff_ext_cache, ext);
6425 }
6426 EXPORT_SYMBOL(__skb_ext_put);
6427 #endif /* CONFIG_SKB_EXTENSIONS */
6428