1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 #include <linux/kcov.h> 64 65 #include <net/protocol.h> 66 #include <net/dst.h> 67 #include <net/sock.h> 68 #include <net/checksum.h> 69 #include <net/ip6_checksum.h> 70 #include <net/xfrm.h> 71 #include <net/mpls.h> 72 #include <net/mptcp.h> 73 #include <net/page_pool.h> 74 75 #include <linux/uaccess.h> 76 #include <trace/events/skb.h> 77 #include <linux/highmem.h> 78 #include <linux/capability.h> 79 #include <linux/user_namespace.h> 80 #include <linux/indirect_call_wrapper.h> 81 82 #include "datagram.h" 83 84 struct kmem_cache *skbuff_head_cache __ro_after_init; 85 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 86 #ifdef CONFIG_SKB_EXTENSIONS 87 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 88 #endif 89 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 90 EXPORT_SYMBOL(sysctl_max_skb_frags); 91 92 /** 93 * skb_panic - private function for out-of-line support 94 * @skb: buffer 95 * @sz: size 96 * @addr: address 97 * @msg: skb_over_panic or skb_under_panic 98 * 99 * Out-of-line support for skb_put() and skb_push(). 100 * Called via the wrapper skb_over_panic() or skb_under_panic(). 101 * Keep out of line to prevent kernel bloat. 102 * __builtin_return_address is not used because it is not always reliable. 103 */ 104 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 105 const char msg[]) 106 { 107 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 108 msg, addr, skb->len, sz, skb->head, skb->data, 109 (unsigned long)skb->tail, (unsigned long)skb->end, 110 skb->dev ? skb->dev->name : "<NULL>"); 111 BUG(); 112 } 113 114 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 115 { 116 skb_panic(skb, sz, addr, __func__); 117 } 118 119 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 120 { 121 skb_panic(skb, sz, addr, __func__); 122 } 123 124 #define NAPI_SKB_CACHE_SIZE 64 125 #define NAPI_SKB_CACHE_BULK 16 126 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 127 128 struct napi_alloc_cache { 129 struct page_frag_cache page; 130 unsigned int skb_count; 131 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 132 }; 133 134 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 135 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 136 137 static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask, 138 unsigned int align_mask) 139 { 140 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 141 142 return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask); 143 } 144 145 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 146 { 147 fragsz = SKB_DATA_ALIGN(fragsz); 148 149 return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask); 150 } 151 EXPORT_SYMBOL(__napi_alloc_frag_align); 152 153 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 154 { 155 struct page_frag_cache *nc; 156 void *data; 157 158 fragsz = SKB_DATA_ALIGN(fragsz); 159 if (in_irq() || irqs_disabled()) { 160 nc = this_cpu_ptr(&netdev_alloc_cache); 161 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 162 } else { 163 local_bh_disable(); 164 data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask); 165 local_bh_enable(); 166 } 167 return data; 168 } 169 EXPORT_SYMBOL(__netdev_alloc_frag_align); 170 171 static struct sk_buff *napi_skb_cache_get(void) 172 { 173 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 174 struct sk_buff *skb; 175 176 if (unlikely(!nc->skb_count)) 177 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, 178 GFP_ATOMIC, 179 NAPI_SKB_CACHE_BULK, 180 nc->skb_cache); 181 if (unlikely(!nc->skb_count)) 182 return NULL; 183 184 skb = nc->skb_cache[--nc->skb_count]; 185 kasan_unpoison_object_data(skbuff_head_cache, skb); 186 187 return skb; 188 } 189 190 /* Caller must provide SKB that is memset cleared */ 191 static void __build_skb_around(struct sk_buff *skb, void *data, 192 unsigned int frag_size) 193 { 194 struct skb_shared_info *shinfo; 195 unsigned int size = frag_size ? : ksize(data); 196 197 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 198 199 /* Assumes caller memset cleared SKB */ 200 skb->truesize = SKB_TRUESIZE(size); 201 refcount_set(&skb->users, 1); 202 skb->head = data; 203 skb->data = data; 204 skb_reset_tail_pointer(skb); 205 skb->end = skb->tail + size; 206 skb->mac_header = (typeof(skb->mac_header))~0U; 207 skb->transport_header = (typeof(skb->transport_header))~0U; 208 209 /* make sure we initialize shinfo sequentially */ 210 shinfo = skb_shinfo(skb); 211 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 212 atomic_set(&shinfo->dataref, 1); 213 214 skb_set_kcov_handle(skb, kcov_common_handle()); 215 } 216 217 /** 218 * __build_skb - build a network buffer 219 * @data: data buffer provided by caller 220 * @frag_size: size of data, or 0 if head was kmalloced 221 * 222 * Allocate a new &sk_buff. Caller provides space holding head and 223 * skb_shared_info. @data must have been allocated by kmalloc() only if 224 * @frag_size is 0, otherwise data should come from the page allocator 225 * or vmalloc() 226 * The return is the new skb buffer. 227 * On a failure the return is %NULL, and @data is not freed. 228 * Notes : 229 * Before IO, driver allocates only data buffer where NIC put incoming frame 230 * Driver should add room at head (NET_SKB_PAD) and 231 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 232 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 233 * before giving packet to stack. 234 * RX rings only contains data buffers, not full skbs. 235 */ 236 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 237 { 238 struct sk_buff *skb; 239 240 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 241 if (unlikely(!skb)) 242 return NULL; 243 244 memset(skb, 0, offsetof(struct sk_buff, tail)); 245 __build_skb_around(skb, data, frag_size); 246 247 return skb; 248 } 249 250 /* build_skb() is wrapper over __build_skb(), that specifically 251 * takes care of skb->head and skb->pfmemalloc 252 * This means that if @frag_size is not zero, then @data must be backed 253 * by a page fragment, not kmalloc() or vmalloc() 254 */ 255 struct sk_buff *build_skb(void *data, unsigned int frag_size) 256 { 257 struct sk_buff *skb = __build_skb(data, frag_size); 258 259 if (skb && frag_size) { 260 skb->head_frag = 1; 261 if (page_is_pfmemalloc(virt_to_head_page(data))) 262 skb->pfmemalloc = 1; 263 } 264 return skb; 265 } 266 EXPORT_SYMBOL(build_skb); 267 268 /** 269 * build_skb_around - build a network buffer around provided skb 270 * @skb: sk_buff provide by caller, must be memset cleared 271 * @data: data buffer provided by caller 272 * @frag_size: size of data, or 0 if head was kmalloced 273 */ 274 struct sk_buff *build_skb_around(struct sk_buff *skb, 275 void *data, unsigned int frag_size) 276 { 277 if (unlikely(!skb)) 278 return NULL; 279 280 __build_skb_around(skb, data, frag_size); 281 282 if (frag_size) { 283 skb->head_frag = 1; 284 if (page_is_pfmemalloc(virt_to_head_page(data))) 285 skb->pfmemalloc = 1; 286 } 287 return skb; 288 } 289 EXPORT_SYMBOL(build_skb_around); 290 291 /** 292 * __napi_build_skb - build a network buffer 293 * @data: data buffer provided by caller 294 * @frag_size: size of data, or 0 if head was kmalloced 295 * 296 * Version of __build_skb() that uses NAPI percpu caches to obtain 297 * skbuff_head instead of inplace allocation. 298 * 299 * Returns a new &sk_buff on success, %NULL on allocation failure. 300 */ 301 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 302 { 303 struct sk_buff *skb; 304 305 skb = napi_skb_cache_get(); 306 if (unlikely(!skb)) 307 return NULL; 308 309 memset(skb, 0, offsetof(struct sk_buff, tail)); 310 __build_skb_around(skb, data, frag_size); 311 312 return skb; 313 } 314 315 /** 316 * napi_build_skb - build a network buffer 317 * @data: data buffer provided by caller 318 * @frag_size: size of data, or 0 if head was kmalloced 319 * 320 * Version of __napi_build_skb() that takes care of skb->head_frag 321 * and skb->pfmemalloc when the data is a page or page fragment. 322 * 323 * Returns a new &sk_buff on success, %NULL on allocation failure. 324 */ 325 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 326 { 327 struct sk_buff *skb = __napi_build_skb(data, frag_size); 328 329 if (likely(skb) && frag_size) { 330 skb->head_frag = 1; 331 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 332 } 333 334 return skb; 335 } 336 EXPORT_SYMBOL(napi_build_skb); 337 338 /* 339 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 340 * the caller if emergency pfmemalloc reserves are being used. If it is and 341 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 342 * may be used. Otherwise, the packet data may be discarded until enough 343 * memory is free 344 */ 345 static void *kmalloc_reserve(size_t size, gfp_t flags, int node, 346 bool *pfmemalloc) 347 { 348 void *obj; 349 bool ret_pfmemalloc = false; 350 351 /* 352 * Try a regular allocation, when that fails and we're not entitled 353 * to the reserves, fail. 354 */ 355 obj = kmalloc_node_track_caller(size, 356 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 357 node); 358 if (obj || !(gfp_pfmemalloc_allowed(flags))) 359 goto out; 360 361 /* Try again but now we are using pfmemalloc reserves */ 362 ret_pfmemalloc = true; 363 obj = kmalloc_node_track_caller(size, flags, node); 364 365 out: 366 if (pfmemalloc) 367 *pfmemalloc = ret_pfmemalloc; 368 369 return obj; 370 } 371 372 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 373 * 'private' fields and also do memory statistics to find all the 374 * [BEEP] leaks. 375 * 376 */ 377 378 /** 379 * __alloc_skb - allocate a network buffer 380 * @size: size to allocate 381 * @gfp_mask: allocation mask 382 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 383 * instead of head cache and allocate a cloned (child) skb. 384 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 385 * allocations in case the data is required for writeback 386 * @node: numa node to allocate memory on 387 * 388 * Allocate a new &sk_buff. The returned buffer has no headroom and a 389 * tail room of at least size bytes. The object has a reference count 390 * of one. The return is the buffer. On a failure the return is %NULL. 391 * 392 * Buffers may only be allocated from interrupts using a @gfp_mask of 393 * %GFP_ATOMIC. 394 */ 395 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 396 int flags, int node) 397 { 398 struct kmem_cache *cache; 399 struct sk_buff *skb; 400 u8 *data; 401 bool pfmemalloc; 402 403 cache = (flags & SKB_ALLOC_FCLONE) 404 ? skbuff_fclone_cache : skbuff_head_cache; 405 406 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 407 gfp_mask |= __GFP_MEMALLOC; 408 409 /* Get the HEAD */ 410 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 411 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 412 skb = napi_skb_cache_get(); 413 else 414 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 415 if (unlikely(!skb)) 416 return NULL; 417 prefetchw(skb); 418 419 /* We do our best to align skb_shared_info on a separate cache 420 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 421 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 422 * Both skb->head and skb_shared_info are cache line aligned. 423 */ 424 size = SKB_DATA_ALIGN(size); 425 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 426 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 427 if (unlikely(!data)) 428 goto nodata; 429 /* kmalloc(size) might give us more room than requested. 430 * Put skb_shared_info exactly at the end of allocated zone, 431 * to allow max possible filling before reallocation. 432 */ 433 size = SKB_WITH_OVERHEAD(ksize(data)); 434 prefetchw(data + size); 435 436 /* 437 * Only clear those fields we need to clear, not those that we will 438 * actually initialise below. Hence, don't put any more fields after 439 * the tail pointer in struct sk_buff! 440 */ 441 memset(skb, 0, offsetof(struct sk_buff, tail)); 442 __build_skb_around(skb, data, 0); 443 skb->pfmemalloc = pfmemalloc; 444 445 if (flags & SKB_ALLOC_FCLONE) { 446 struct sk_buff_fclones *fclones; 447 448 fclones = container_of(skb, struct sk_buff_fclones, skb1); 449 450 skb->fclone = SKB_FCLONE_ORIG; 451 refcount_set(&fclones->fclone_ref, 1); 452 453 fclones->skb2.fclone = SKB_FCLONE_CLONE; 454 } 455 456 return skb; 457 458 nodata: 459 kmem_cache_free(cache, skb); 460 return NULL; 461 } 462 EXPORT_SYMBOL(__alloc_skb); 463 464 /** 465 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 466 * @dev: network device to receive on 467 * @len: length to allocate 468 * @gfp_mask: get_free_pages mask, passed to alloc_skb 469 * 470 * Allocate a new &sk_buff and assign it a usage count of one. The 471 * buffer has NET_SKB_PAD headroom built in. Users should allocate 472 * the headroom they think they need without accounting for the 473 * built in space. The built in space is used for optimisations. 474 * 475 * %NULL is returned if there is no free memory. 476 */ 477 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 478 gfp_t gfp_mask) 479 { 480 struct page_frag_cache *nc; 481 struct sk_buff *skb; 482 bool pfmemalloc; 483 void *data; 484 485 len += NET_SKB_PAD; 486 487 /* If requested length is either too small or too big, 488 * we use kmalloc() for skb->head allocation. 489 */ 490 if (len <= SKB_WITH_OVERHEAD(1024) || 491 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 492 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 493 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 494 if (!skb) 495 goto skb_fail; 496 goto skb_success; 497 } 498 499 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 500 len = SKB_DATA_ALIGN(len); 501 502 if (sk_memalloc_socks()) 503 gfp_mask |= __GFP_MEMALLOC; 504 505 if (in_irq() || irqs_disabled()) { 506 nc = this_cpu_ptr(&netdev_alloc_cache); 507 data = page_frag_alloc(nc, len, gfp_mask); 508 pfmemalloc = nc->pfmemalloc; 509 } else { 510 local_bh_disable(); 511 nc = this_cpu_ptr(&napi_alloc_cache.page); 512 data = page_frag_alloc(nc, len, gfp_mask); 513 pfmemalloc = nc->pfmemalloc; 514 local_bh_enable(); 515 } 516 517 if (unlikely(!data)) 518 return NULL; 519 520 skb = __build_skb(data, len); 521 if (unlikely(!skb)) { 522 skb_free_frag(data); 523 return NULL; 524 } 525 526 if (pfmemalloc) 527 skb->pfmemalloc = 1; 528 skb->head_frag = 1; 529 530 skb_success: 531 skb_reserve(skb, NET_SKB_PAD); 532 skb->dev = dev; 533 534 skb_fail: 535 return skb; 536 } 537 EXPORT_SYMBOL(__netdev_alloc_skb); 538 539 /** 540 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 541 * @napi: napi instance this buffer was allocated for 542 * @len: length to allocate 543 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 544 * 545 * Allocate a new sk_buff for use in NAPI receive. This buffer will 546 * attempt to allocate the head from a special reserved region used 547 * only for NAPI Rx allocation. By doing this we can save several 548 * CPU cycles by avoiding having to disable and re-enable IRQs. 549 * 550 * %NULL is returned if there is no free memory. 551 */ 552 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 553 gfp_t gfp_mask) 554 { 555 struct napi_alloc_cache *nc; 556 struct sk_buff *skb; 557 void *data; 558 559 len += NET_SKB_PAD + NET_IP_ALIGN; 560 561 /* If requested length is either too small or too big, 562 * we use kmalloc() for skb->head allocation. 563 */ 564 if (len <= SKB_WITH_OVERHEAD(1024) || 565 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 566 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 567 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 568 NUMA_NO_NODE); 569 if (!skb) 570 goto skb_fail; 571 goto skb_success; 572 } 573 574 nc = this_cpu_ptr(&napi_alloc_cache); 575 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 576 len = SKB_DATA_ALIGN(len); 577 578 if (sk_memalloc_socks()) 579 gfp_mask |= __GFP_MEMALLOC; 580 581 data = page_frag_alloc(&nc->page, len, gfp_mask); 582 if (unlikely(!data)) 583 return NULL; 584 585 skb = __napi_build_skb(data, len); 586 if (unlikely(!skb)) { 587 skb_free_frag(data); 588 return NULL; 589 } 590 591 if (nc->page.pfmemalloc) 592 skb->pfmemalloc = 1; 593 skb->head_frag = 1; 594 595 skb_success: 596 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 597 skb->dev = napi->dev; 598 599 skb_fail: 600 return skb; 601 } 602 EXPORT_SYMBOL(__napi_alloc_skb); 603 604 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 605 int size, unsigned int truesize) 606 { 607 skb_fill_page_desc(skb, i, page, off, size); 608 skb->len += size; 609 skb->data_len += size; 610 skb->truesize += truesize; 611 } 612 EXPORT_SYMBOL(skb_add_rx_frag); 613 614 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 615 unsigned int truesize) 616 { 617 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 618 619 skb_frag_size_add(frag, size); 620 skb->len += size; 621 skb->data_len += size; 622 skb->truesize += truesize; 623 } 624 EXPORT_SYMBOL(skb_coalesce_rx_frag); 625 626 static void skb_drop_list(struct sk_buff **listp) 627 { 628 kfree_skb_list(*listp); 629 *listp = NULL; 630 } 631 632 static inline void skb_drop_fraglist(struct sk_buff *skb) 633 { 634 skb_drop_list(&skb_shinfo(skb)->frag_list); 635 } 636 637 static void skb_clone_fraglist(struct sk_buff *skb) 638 { 639 struct sk_buff *list; 640 641 skb_walk_frags(skb, list) 642 skb_get(list); 643 } 644 645 static void skb_free_head(struct sk_buff *skb) 646 { 647 unsigned char *head = skb->head; 648 649 if (skb->head_frag) { 650 if (skb_pp_recycle(skb, head)) 651 return; 652 skb_free_frag(head); 653 } else { 654 kfree(head); 655 } 656 } 657 658 static void skb_release_data(struct sk_buff *skb) 659 { 660 struct skb_shared_info *shinfo = skb_shinfo(skb); 661 int i; 662 663 if (skb->cloned && 664 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 665 &shinfo->dataref)) 666 return; 667 668 skb_zcopy_clear(skb, true); 669 670 for (i = 0; i < shinfo->nr_frags; i++) 671 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 672 673 if (shinfo->frag_list) 674 kfree_skb_list(shinfo->frag_list); 675 676 skb_free_head(skb); 677 } 678 679 /* 680 * Free an skbuff by memory without cleaning the state. 681 */ 682 static void kfree_skbmem(struct sk_buff *skb) 683 { 684 struct sk_buff_fclones *fclones; 685 686 switch (skb->fclone) { 687 case SKB_FCLONE_UNAVAILABLE: 688 kmem_cache_free(skbuff_head_cache, skb); 689 return; 690 691 case SKB_FCLONE_ORIG: 692 fclones = container_of(skb, struct sk_buff_fclones, skb1); 693 694 /* We usually free the clone (TX completion) before original skb 695 * This test would have no chance to be true for the clone, 696 * while here, branch prediction will be good. 697 */ 698 if (refcount_read(&fclones->fclone_ref) == 1) 699 goto fastpath; 700 break; 701 702 default: /* SKB_FCLONE_CLONE */ 703 fclones = container_of(skb, struct sk_buff_fclones, skb2); 704 break; 705 } 706 if (!refcount_dec_and_test(&fclones->fclone_ref)) 707 return; 708 fastpath: 709 kmem_cache_free(skbuff_fclone_cache, fclones); 710 } 711 712 void skb_release_head_state(struct sk_buff *skb) 713 { 714 skb_dst_drop(skb); 715 if (skb->destructor) { 716 WARN_ON(in_irq()); 717 skb->destructor(skb); 718 } 719 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 720 nf_conntrack_put(skb_nfct(skb)); 721 #endif 722 skb_ext_put(skb); 723 } 724 725 /* Free everything but the sk_buff shell. */ 726 static void skb_release_all(struct sk_buff *skb) 727 { 728 skb_release_head_state(skb); 729 if (likely(skb->head)) 730 skb_release_data(skb); 731 } 732 733 /** 734 * __kfree_skb - private function 735 * @skb: buffer 736 * 737 * Free an sk_buff. Release anything attached to the buffer. 738 * Clean the state. This is an internal helper function. Users should 739 * always call kfree_skb 740 */ 741 742 void __kfree_skb(struct sk_buff *skb) 743 { 744 skb_release_all(skb); 745 kfree_skbmem(skb); 746 } 747 EXPORT_SYMBOL(__kfree_skb); 748 749 /** 750 * kfree_skb - free an sk_buff 751 * @skb: buffer to free 752 * 753 * Drop a reference to the buffer and free it if the usage count has 754 * hit zero. 755 */ 756 void kfree_skb(struct sk_buff *skb) 757 { 758 if (!skb_unref(skb)) 759 return; 760 761 trace_kfree_skb(skb, __builtin_return_address(0)); 762 __kfree_skb(skb); 763 } 764 EXPORT_SYMBOL(kfree_skb); 765 766 void kfree_skb_list(struct sk_buff *segs) 767 { 768 while (segs) { 769 struct sk_buff *next = segs->next; 770 771 kfree_skb(segs); 772 segs = next; 773 } 774 } 775 EXPORT_SYMBOL(kfree_skb_list); 776 777 /* Dump skb information and contents. 778 * 779 * Must only be called from net_ratelimit()-ed paths. 780 * 781 * Dumps whole packets if full_pkt, only headers otherwise. 782 */ 783 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 784 { 785 struct skb_shared_info *sh = skb_shinfo(skb); 786 struct net_device *dev = skb->dev; 787 struct sock *sk = skb->sk; 788 struct sk_buff *list_skb; 789 bool has_mac, has_trans; 790 int headroom, tailroom; 791 int i, len, seg_len; 792 793 if (full_pkt) 794 len = skb->len; 795 else 796 len = min_t(int, skb->len, MAX_HEADER + 128); 797 798 headroom = skb_headroom(skb); 799 tailroom = skb_tailroom(skb); 800 801 has_mac = skb_mac_header_was_set(skb); 802 has_trans = skb_transport_header_was_set(skb); 803 804 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 805 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 806 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 807 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 808 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 809 level, skb->len, headroom, skb_headlen(skb), tailroom, 810 has_mac ? skb->mac_header : -1, 811 has_mac ? skb_mac_header_len(skb) : -1, 812 skb->network_header, 813 has_trans ? skb_network_header_len(skb) : -1, 814 has_trans ? skb->transport_header : -1, 815 sh->tx_flags, sh->nr_frags, 816 sh->gso_size, sh->gso_type, sh->gso_segs, 817 skb->csum, skb->ip_summed, skb->csum_complete_sw, 818 skb->csum_valid, skb->csum_level, 819 skb->hash, skb->sw_hash, skb->l4_hash, 820 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 821 822 if (dev) 823 printk("%sdev name=%s feat=0x%pNF\n", 824 level, dev->name, &dev->features); 825 if (sk) 826 printk("%ssk family=%hu type=%u proto=%u\n", 827 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 828 829 if (full_pkt && headroom) 830 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 831 16, 1, skb->head, headroom, false); 832 833 seg_len = min_t(int, skb_headlen(skb), len); 834 if (seg_len) 835 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 836 16, 1, skb->data, seg_len, false); 837 len -= seg_len; 838 839 if (full_pkt && tailroom) 840 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 841 16, 1, skb_tail_pointer(skb), tailroom, false); 842 843 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 844 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 845 u32 p_off, p_len, copied; 846 struct page *p; 847 u8 *vaddr; 848 849 skb_frag_foreach_page(frag, skb_frag_off(frag), 850 skb_frag_size(frag), p, p_off, p_len, 851 copied) { 852 seg_len = min_t(int, p_len, len); 853 vaddr = kmap_atomic(p); 854 print_hex_dump(level, "skb frag: ", 855 DUMP_PREFIX_OFFSET, 856 16, 1, vaddr + p_off, seg_len, false); 857 kunmap_atomic(vaddr); 858 len -= seg_len; 859 if (!len) 860 break; 861 } 862 } 863 864 if (full_pkt && skb_has_frag_list(skb)) { 865 printk("skb fraglist:\n"); 866 skb_walk_frags(skb, list_skb) 867 skb_dump(level, list_skb, true); 868 } 869 } 870 EXPORT_SYMBOL(skb_dump); 871 872 /** 873 * skb_tx_error - report an sk_buff xmit error 874 * @skb: buffer that triggered an error 875 * 876 * Report xmit error if a device callback is tracking this skb. 877 * skb must be freed afterwards. 878 */ 879 void skb_tx_error(struct sk_buff *skb) 880 { 881 skb_zcopy_clear(skb, true); 882 } 883 EXPORT_SYMBOL(skb_tx_error); 884 885 #ifdef CONFIG_TRACEPOINTS 886 /** 887 * consume_skb - free an skbuff 888 * @skb: buffer to free 889 * 890 * Drop a ref to the buffer and free it if the usage count has hit zero 891 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 892 * is being dropped after a failure and notes that 893 */ 894 void consume_skb(struct sk_buff *skb) 895 { 896 if (!skb_unref(skb)) 897 return; 898 899 trace_consume_skb(skb); 900 __kfree_skb(skb); 901 } 902 EXPORT_SYMBOL(consume_skb); 903 #endif 904 905 /** 906 * __consume_stateless_skb - free an skbuff, assuming it is stateless 907 * @skb: buffer to free 908 * 909 * Alike consume_skb(), but this variant assumes that this is the last 910 * skb reference and all the head states have been already dropped 911 */ 912 void __consume_stateless_skb(struct sk_buff *skb) 913 { 914 trace_consume_skb(skb); 915 skb_release_data(skb); 916 kfree_skbmem(skb); 917 } 918 919 static void napi_skb_cache_put(struct sk_buff *skb) 920 { 921 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 922 u32 i; 923 924 kasan_poison_object_data(skbuff_head_cache, skb); 925 nc->skb_cache[nc->skb_count++] = skb; 926 927 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 928 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 929 kasan_unpoison_object_data(skbuff_head_cache, 930 nc->skb_cache[i]); 931 932 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF, 933 nc->skb_cache + NAPI_SKB_CACHE_HALF); 934 nc->skb_count = NAPI_SKB_CACHE_HALF; 935 } 936 } 937 938 void __kfree_skb_defer(struct sk_buff *skb) 939 { 940 skb_release_all(skb); 941 napi_skb_cache_put(skb); 942 } 943 944 void napi_skb_free_stolen_head(struct sk_buff *skb) 945 { 946 skb_dst_drop(skb); 947 skb_ext_put(skb); 948 napi_skb_cache_put(skb); 949 } 950 951 void napi_consume_skb(struct sk_buff *skb, int budget) 952 { 953 /* Zero budget indicate non-NAPI context called us, like netpoll */ 954 if (unlikely(!budget)) { 955 dev_consume_skb_any(skb); 956 return; 957 } 958 959 lockdep_assert_in_softirq(); 960 961 if (!skb_unref(skb)) 962 return; 963 964 /* if reaching here SKB is ready to free */ 965 trace_consume_skb(skb); 966 967 /* if SKB is a clone, don't handle this case */ 968 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 969 __kfree_skb(skb); 970 return; 971 } 972 973 skb_release_all(skb); 974 napi_skb_cache_put(skb); 975 } 976 EXPORT_SYMBOL(napi_consume_skb); 977 978 /* Make sure a field is enclosed inside headers_start/headers_end section */ 979 #define CHECK_SKB_FIELD(field) \ 980 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 981 offsetof(struct sk_buff, headers_start)); \ 982 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 983 offsetof(struct sk_buff, headers_end)); \ 984 985 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 986 { 987 new->tstamp = old->tstamp; 988 /* We do not copy old->sk */ 989 new->dev = old->dev; 990 memcpy(new->cb, old->cb, sizeof(old->cb)); 991 skb_dst_copy(new, old); 992 __skb_ext_copy(new, old); 993 __nf_copy(new, old, false); 994 995 /* Note : this field could be in headers_start/headers_end section 996 * It is not yet because we do not want to have a 16 bit hole 997 */ 998 new->queue_mapping = old->queue_mapping; 999 1000 memcpy(&new->headers_start, &old->headers_start, 1001 offsetof(struct sk_buff, headers_end) - 1002 offsetof(struct sk_buff, headers_start)); 1003 CHECK_SKB_FIELD(protocol); 1004 CHECK_SKB_FIELD(csum); 1005 CHECK_SKB_FIELD(hash); 1006 CHECK_SKB_FIELD(priority); 1007 CHECK_SKB_FIELD(skb_iif); 1008 CHECK_SKB_FIELD(vlan_proto); 1009 CHECK_SKB_FIELD(vlan_tci); 1010 CHECK_SKB_FIELD(transport_header); 1011 CHECK_SKB_FIELD(network_header); 1012 CHECK_SKB_FIELD(mac_header); 1013 CHECK_SKB_FIELD(inner_protocol); 1014 CHECK_SKB_FIELD(inner_transport_header); 1015 CHECK_SKB_FIELD(inner_network_header); 1016 CHECK_SKB_FIELD(inner_mac_header); 1017 CHECK_SKB_FIELD(mark); 1018 #ifdef CONFIG_NETWORK_SECMARK 1019 CHECK_SKB_FIELD(secmark); 1020 #endif 1021 #ifdef CONFIG_NET_RX_BUSY_POLL 1022 CHECK_SKB_FIELD(napi_id); 1023 #endif 1024 #ifdef CONFIG_XPS 1025 CHECK_SKB_FIELD(sender_cpu); 1026 #endif 1027 #ifdef CONFIG_NET_SCHED 1028 CHECK_SKB_FIELD(tc_index); 1029 #endif 1030 1031 } 1032 1033 /* 1034 * You should not add any new code to this function. Add it to 1035 * __copy_skb_header above instead. 1036 */ 1037 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1038 { 1039 #define C(x) n->x = skb->x 1040 1041 n->next = n->prev = NULL; 1042 n->sk = NULL; 1043 __copy_skb_header(n, skb); 1044 1045 C(len); 1046 C(data_len); 1047 C(mac_len); 1048 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1049 n->cloned = 1; 1050 n->nohdr = 0; 1051 n->peeked = 0; 1052 C(pfmemalloc); 1053 C(pp_recycle); 1054 n->destructor = NULL; 1055 C(tail); 1056 C(end); 1057 C(head); 1058 C(head_frag); 1059 C(data); 1060 C(truesize); 1061 refcount_set(&n->users, 1); 1062 1063 atomic_inc(&(skb_shinfo(skb)->dataref)); 1064 skb->cloned = 1; 1065 1066 return n; 1067 #undef C 1068 } 1069 1070 /** 1071 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1072 * @first: first sk_buff of the msg 1073 */ 1074 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1075 { 1076 struct sk_buff *n; 1077 1078 n = alloc_skb(0, GFP_ATOMIC); 1079 if (!n) 1080 return NULL; 1081 1082 n->len = first->len; 1083 n->data_len = first->len; 1084 n->truesize = first->truesize; 1085 1086 skb_shinfo(n)->frag_list = first; 1087 1088 __copy_skb_header(n, first); 1089 n->destructor = NULL; 1090 1091 return n; 1092 } 1093 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1094 1095 /** 1096 * skb_morph - morph one skb into another 1097 * @dst: the skb to receive the contents 1098 * @src: the skb to supply the contents 1099 * 1100 * This is identical to skb_clone except that the target skb is 1101 * supplied by the user. 1102 * 1103 * The target skb is returned upon exit. 1104 */ 1105 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1106 { 1107 skb_release_all(dst); 1108 return __skb_clone(dst, src); 1109 } 1110 EXPORT_SYMBOL_GPL(skb_morph); 1111 1112 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1113 { 1114 unsigned long max_pg, num_pg, new_pg, old_pg; 1115 struct user_struct *user; 1116 1117 if (capable(CAP_IPC_LOCK) || !size) 1118 return 0; 1119 1120 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1121 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1122 user = mmp->user ? : current_user(); 1123 1124 do { 1125 old_pg = atomic_long_read(&user->locked_vm); 1126 new_pg = old_pg + num_pg; 1127 if (new_pg > max_pg) 1128 return -ENOBUFS; 1129 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1130 old_pg); 1131 1132 if (!mmp->user) { 1133 mmp->user = get_uid(user); 1134 mmp->num_pg = num_pg; 1135 } else { 1136 mmp->num_pg += num_pg; 1137 } 1138 1139 return 0; 1140 } 1141 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1142 1143 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1144 { 1145 if (mmp->user) { 1146 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1147 free_uid(mmp->user); 1148 } 1149 } 1150 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1151 1152 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1153 { 1154 struct ubuf_info *uarg; 1155 struct sk_buff *skb; 1156 1157 WARN_ON_ONCE(!in_task()); 1158 1159 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1160 if (!skb) 1161 return NULL; 1162 1163 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1164 uarg = (void *)skb->cb; 1165 uarg->mmp.user = NULL; 1166 1167 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1168 kfree_skb(skb); 1169 return NULL; 1170 } 1171 1172 uarg->callback = msg_zerocopy_callback; 1173 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1174 uarg->len = 1; 1175 uarg->bytelen = size; 1176 uarg->zerocopy = 1; 1177 uarg->flags = SKBFL_ZEROCOPY_FRAG; 1178 refcount_set(&uarg->refcnt, 1); 1179 sock_hold(sk); 1180 1181 return uarg; 1182 } 1183 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc); 1184 1185 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1186 { 1187 return container_of((void *)uarg, struct sk_buff, cb); 1188 } 1189 1190 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1191 struct ubuf_info *uarg) 1192 { 1193 if (uarg) { 1194 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1195 u32 bytelen, next; 1196 1197 /* realloc only when socket is locked (TCP, UDP cork), 1198 * so uarg->len and sk_zckey access is serialized 1199 */ 1200 if (!sock_owned_by_user(sk)) { 1201 WARN_ON_ONCE(1); 1202 return NULL; 1203 } 1204 1205 bytelen = uarg->bytelen + size; 1206 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1207 /* TCP can create new skb to attach new uarg */ 1208 if (sk->sk_type == SOCK_STREAM) 1209 goto new_alloc; 1210 return NULL; 1211 } 1212 1213 next = (u32)atomic_read(&sk->sk_zckey); 1214 if ((u32)(uarg->id + uarg->len) == next) { 1215 if (mm_account_pinned_pages(&uarg->mmp, size)) 1216 return NULL; 1217 uarg->len++; 1218 uarg->bytelen = bytelen; 1219 atomic_set(&sk->sk_zckey, ++next); 1220 1221 /* no extra ref when appending to datagram (MSG_MORE) */ 1222 if (sk->sk_type == SOCK_STREAM) 1223 net_zcopy_get(uarg); 1224 1225 return uarg; 1226 } 1227 } 1228 1229 new_alloc: 1230 return msg_zerocopy_alloc(sk, size); 1231 } 1232 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1233 1234 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1235 { 1236 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1237 u32 old_lo, old_hi; 1238 u64 sum_len; 1239 1240 old_lo = serr->ee.ee_info; 1241 old_hi = serr->ee.ee_data; 1242 sum_len = old_hi - old_lo + 1ULL + len; 1243 1244 if (sum_len >= (1ULL << 32)) 1245 return false; 1246 1247 if (lo != old_hi + 1) 1248 return false; 1249 1250 serr->ee.ee_data += len; 1251 return true; 1252 } 1253 1254 static void __msg_zerocopy_callback(struct ubuf_info *uarg) 1255 { 1256 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1257 struct sock_exterr_skb *serr; 1258 struct sock *sk = skb->sk; 1259 struct sk_buff_head *q; 1260 unsigned long flags; 1261 bool is_zerocopy; 1262 u32 lo, hi; 1263 u16 len; 1264 1265 mm_unaccount_pinned_pages(&uarg->mmp); 1266 1267 /* if !len, there was only 1 call, and it was aborted 1268 * so do not queue a completion notification 1269 */ 1270 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1271 goto release; 1272 1273 len = uarg->len; 1274 lo = uarg->id; 1275 hi = uarg->id + len - 1; 1276 is_zerocopy = uarg->zerocopy; 1277 1278 serr = SKB_EXT_ERR(skb); 1279 memset(serr, 0, sizeof(*serr)); 1280 serr->ee.ee_errno = 0; 1281 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1282 serr->ee.ee_data = hi; 1283 serr->ee.ee_info = lo; 1284 if (!is_zerocopy) 1285 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1286 1287 q = &sk->sk_error_queue; 1288 spin_lock_irqsave(&q->lock, flags); 1289 tail = skb_peek_tail(q); 1290 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1291 !skb_zerocopy_notify_extend(tail, lo, len)) { 1292 __skb_queue_tail(q, skb); 1293 skb = NULL; 1294 } 1295 spin_unlock_irqrestore(&q->lock, flags); 1296 1297 sk_error_report(sk); 1298 1299 release: 1300 consume_skb(skb); 1301 sock_put(sk); 1302 } 1303 1304 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1305 bool success) 1306 { 1307 uarg->zerocopy = uarg->zerocopy & success; 1308 1309 if (refcount_dec_and_test(&uarg->refcnt)) 1310 __msg_zerocopy_callback(uarg); 1311 } 1312 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1313 1314 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1315 { 1316 struct sock *sk = skb_from_uarg(uarg)->sk; 1317 1318 atomic_dec(&sk->sk_zckey); 1319 uarg->len--; 1320 1321 if (have_uref) 1322 msg_zerocopy_callback(NULL, uarg, true); 1323 } 1324 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1325 1326 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1327 { 1328 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1329 } 1330 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1331 1332 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1333 struct msghdr *msg, int len, 1334 struct ubuf_info *uarg) 1335 { 1336 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1337 struct iov_iter orig_iter = msg->msg_iter; 1338 int err, orig_len = skb->len; 1339 1340 /* An skb can only point to one uarg. This edge case happens when 1341 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1342 */ 1343 if (orig_uarg && uarg != orig_uarg) 1344 return -EEXIST; 1345 1346 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1347 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1348 struct sock *save_sk = skb->sk; 1349 1350 /* Streams do not free skb on error. Reset to prev state. */ 1351 msg->msg_iter = orig_iter; 1352 skb->sk = sk; 1353 ___pskb_trim(skb, orig_len); 1354 skb->sk = save_sk; 1355 return err; 1356 } 1357 1358 skb_zcopy_set(skb, uarg, NULL); 1359 return skb->len - orig_len; 1360 } 1361 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1362 1363 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1364 gfp_t gfp_mask) 1365 { 1366 if (skb_zcopy(orig)) { 1367 if (skb_zcopy(nskb)) { 1368 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1369 if (!gfp_mask) { 1370 WARN_ON_ONCE(1); 1371 return -ENOMEM; 1372 } 1373 if (skb_uarg(nskb) == skb_uarg(orig)) 1374 return 0; 1375 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1376 return -EIO; 1377 } 1378 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1379 } 1380 return 0; 1381 } 1382 1383 /** 1384 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1385 * @skb: the skb to modify 1386 * @gfp_mask: allocation priority 1387 * 1388 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1389 * It will copy all frags into kernel and drop the reference 1390 * to userspace pages. 1391 * 1392 * If this function is called from an interrupt gfp_mask() must be 1393 * %GFP_ATOMIC. 1394 * 1395 * Returns 0 on success or a negative error code on failure 1396 * to allocate kernel memory to copy to. 1397 */ 1398 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1399 { 1400 int num_frags = skb_shinfo(skb)->nr_frags; 1401 struct page *page, *head = NULL; 1402 int i, new_frags; 1403 u32 d_off; 1404 1405 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1406 return -EINVAL; 1407 1408 if (!num_frags) 1409 goto release; 1410 1411 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1412 for (i = 0; i < new_frags; i++) { 1413 page = alloc_page(gfp_mask); 1414 if (!page) { 1415 while (head) { 1416 struct page *next = (struct page *)page_private(head); 1417 put_page(head); 1418 head = next; 1419 } 1420 return -ENOMEM; 1421 } 1422 set_page_private(page, (unsigned long)head); 1423 head = page; 1424 } 1425 1426 page = head; 1427 d_off = 0; 1428 for (i = 0; i < num_frags; i++) { 1429 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1430 u32 p_off, p_len, copied; 1431 struct page *p; 1432 u8 *vaddr; 1433 1434 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1435 p, p_off, p_len, copied) { 1436 u32 copy, done = 0; 1437 vaddr = kmap_atomic(p); 1438 1439 while (done < p_len) { 1440 if (d_off == PAGE_SIZE) { 1441 d_off = 0; 1442 page = (struct page *)page_private(page); 1443 } 1444 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1445 memcpy(page_address(page) + d_off, 1446 vaddr + p_off + done, copy); 1447 done += copy; 1448 d_off += copy; 1449 } 1450 kunmap_atomic(vaddr); 1451 } 1452 } 1453 1454 /* skb frags release userspace buffers */ 1455 for (i = 0; i < num_frags; i++) 1456 skb_frag_unref(skb, i); 1457 1458 /* skb frags point to kernel buffers */ 1459 for (i = 0; i < new_frags - 1; i++) { 1460 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1461 head = (struct page *)page_private(head); 1462 } 1463 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1464 skb_shinfo(skb)->nr_frags = new_frags; 1465 1466 release: 1467 skb_zcopy_clear(skb, false); 1468 return 0; 1469 } 1470 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1471 1472 /** 1473 * skb_clone - duplicate an sk_buff 1474 * @skb: buffer to clone 1475 * @gfp_mask: allocation priority 1476 * 1477 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1478 * copies share the same packet data but not structure. The new 1479 * buffer has a reference count of 1. If the allocation fails the 1480 * function returns %NULL otherwise the new buffer is returned. 1481 * 1482 * If this function is called from an interrupt gfp_mask() must be 1483 * %GFP_ATOMIC. 1484 */ 1485 1486 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1487 { 1488 struct sk_buff_fclones *fclones = container_of(skb, 1489 struct sk_buff_fclones, 1490 skb1); 1491 struct sk_buff *n; 1492 1493 if (skb_orphan_frags(skb, gfp_mask)) 1494 return NULL; 1495 1496 if (skb->fclone == SKB_FCLONE_ORIG && 1497 refcount_read(&fclones->fclone_ref) == 1) { 1498 n = &fclones->skb2; 1499 refcount_set(&fclones->fclone_ref, 2); 1500 } else { 1501 if (skb_pfmemalloc(skb)) 1502 gfp_mask |= __GFP_MEMALLOC; 1503 1504 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1505 if (!n) 1506 return NULL; 1507 1508 n->fclone = SKB_FCLONE_UNAVAILABLE; 1509 } 1510 1511 return __skb_clone(n, skb); 1512 } 1513 EXPORT_SYMBOL(skb_clone); 1514 1515 void skb_headers_offset_update(struct sk_buff *skb, int off) 1516 { 1517 /* Only adjust this if it actually is csum_start rather than csum */ 1518 if (skb->ip_summed == CHECKSUM_PARTIAL) 1519 skb->csum_start += off; 1520 /* {transport,network,mac}_header and tail are relative to skb->head */ 1521 skb->transport_header += off; 1522 skb->network_header += off; 1523 if (skb_mac_header_was_set(skb)) 1524 skb->mac_header += off; 1525 skb->inner_transport_header += off; 1526 skb->inner_network_header += off; 1527 skb->inner_mac_header += off; 1528 } 1529 EXPORT_SYMBOL(skb_headers_offset_update); 1530 1531 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1532 { 1533 __copy_skb_header(new, old); 1534 1535 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1536 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1537 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1538 } 1539 EXPORT_SYMBOL(skb_copy_header); 1540 1541 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1542 { 1543 if (skb_pfmemalloc(skb)) 1544 return SKB_ALLOC_RX; 1545 return 0; 1546 } 1547 1548 /** 1549 * skb_copy - create private copy of an sk_buff 1550 * @skb: buffer to copy 1551 * @gfp_mask: allocation priority 1552 * 1553 * Make a copy of both an &sk_buff and its data. This is used when the 1554 * caller wishes to modify the data and needs a private copy of the 1555 * data to alter. Returns %NULL on failure or the pointer to the buffer 1556 * on success. The returned buffer has a reference count of 1. 1557 * 1558 * As by-product this function converts non-linear &sk_buff to linear 1559 * one, so that &sk_buff becomes completely private and caller is allowed 1560 * to modify all the data of returned buffer. This means that this 1561 * function is not recommended for use in circumstances when only 1562 * header is going to be modified. Use pskb_copy() instead. 1563 */ 1564 1565 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1566 { 1567 int headerlen = skb_headroom(skb); 1568 unsigned int size = skb_end_offset(skb) + skb->data_len; 1569 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1570 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1571 1572 if (!n) 1573 return NULL; 1574 1575 /* Set the data pointer */ 1576 skb_reserve(n, headerlen); 1577 /* Set the tail pointer and length */ 1578 skb_put(n, skb->len); 1579 1580 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1581 1582 skb_copy_header(n, skb); 1583 return n; 1584 } 1585 EXPORT_SYMBOL(skb_copy); 1586 1587 /** 1588 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1589 * @skb: buffer to copy 1590 * @headroom: headroom of new skb 1591 * @gfp_mask: allocation priority 1592 * @fclone: if true allocate the copy of the skb from the fclone 1593 * cache instead of the head cache; it is recommended to set this 1594 * to true for the cases where the copy will likely be cloned 1595 * 1596 * Make a copy of both an &sk_buff and part of its data, located 1597 * in header. Fragmented data remain shared. This is used when 1598 * the caller wishes to modify only header of &sk_buff and needs 1599 * private copy of the header to alter. Returns %NULL on failure 1600 * or the pointer to the buffer on success. 1601 * The returned buffer has a reference count of 1. 1602 */ 1603 1604 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1605 gfp_t gfp_mask, bool fclone) 1606 { 1607 unsigned int size = skb_headlen(skb) + headroom; 1608 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1609 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1610 1611 if (!n) 1612 goto out; 1613 1614 /* Set the data pointer */ 1615 skb_reserve(n, headroom); 1616 /* Set the tail pointer and length */ 1617 skb_put(n, skb_headlen(skb)); 1618 /* Copy the bytes */ 1619 skb_copy_from_linear_data(skb, n->data, n->len); 1620 1621 n->truesize += skb->data_len; 1622 n->data_len = skb->data_len; 1623 n->len = skb->len; 1624 1625 if (skb_shinfo(skb)->nr_frags) { 1626 int i; 1627 1628 if (skb_orphan_frags(skb, gfp_mask) || 1629 skb_zerocopy_clone(n, skb, gfp_mask)) { 1630 kfree_skb(n); 1631 n = NULL; 1632 goto out; 1633 } 1634 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1635 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1636 skb_frag_ref(skb, i); 1637 } 1638 skb_shinfo(n)->nr_frags = i; 1639 } 1640 1641 if (skb_has_frag_list(skb)) { 1642 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1643 skb_clone_fraglist(n); 1644 } 1645 1646 skb_copy_header(n, skb); 1647 out: 1648 return n; 1649 } 1650 EXPORT_SYMBOL(__pskb_copy_fclone); 1651 1652 /** 1653 * pskb_expand_head - reallocate header of &sk_buff 1654 * @skb: buffer to reallocate 1655 * @nhead: room to add at head 1656 * @ntail: room to add at tail 1657 * @gfp_mask: allocation priority 1658 * 1659 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1660 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1661 * reference count of 1. Returns zero in the case of success or error, 1662 * if expansion failed. In the last case, &sk_buff is not changed. 1663 * 1664 * All the pointers pointing into skb header may change and must be 1665 * reloaded after call to this function. 1666 */ 1667 1668 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1669 gfp_t gfp_mask) 1670 { 1671 int i, osize = skb_end_offset(skb); 1672 int size = osize + nhead + ntail; 1673 long off; 1674 u8 *data; 1675 1676 BUG_ON(nhead < 0); 1677 1678 BUG_ON(skb_shared(skb)); 1679 1680 size = SKB_DATA_ALIGN(size); 1681 1682 if (skb_pfmemalloc(skb)) 1683 gfp_mask |= __GFP_MEMALLOC; 1684 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1685 gfp_mask, NUMA_NO_NODE, NULL); 1686 if (!data) 1687 goto nodata; 1688 size = SKB_WITH_OVERHEAD(ksize(data)); 1689 1690 /* Copy only real data... and, alas, header. This should be 1691 * optimized for the cases when header is void. 1692 */ 1693 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1694 1695 memcpy((struct skb_shared_info *)(data + size), 1696 skb_shinfo(skb), 1697 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1698 1699 /* 1700 * if shinfo is shared we must drop the old head gracefully, but if it 1701 * is not we can just drop the old head and let the existing refcount 1702 * be since all we did is relocate the values 1703 */ 1704 if (skb_cloned(skb)) { 1705 if (skb_orphan_frags(skb, gfp_mask)) 1706 goto nofrags; 1707 if (skb_zcopy(skb)) 1708 refcount_inc(&skb_uarg(skb)->refcnt); 1709 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1710 skb_frag_ref(skb, i); 1711 1712 if (skb_has_frag_list(skb)) 1713 skb_clone_fraglist(skb); 1714 1715 skb_release_data(skb); 1716 } else { 1717 skb_free_head(skb); 1718 } 1719 off = (data + nhead) - skb->head; 1720 1721 skb->head = data; 1722 skb->head_frag = 0; 1723 skb->data += off; 1724 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1725 skb->end = size; 1726 off = nhead; 1727 #else 1728 skb->end = skb->head + size; 1729 #endif 1730 skb->tail += off; 1731 skb_headers_offset_update(skb, nhead); 1732 skb->cloned = 0; 1733 skb->hdr_len = 0; 1734 skb->nohdr = 0; 1735 atomic_set(&skb_shinfo(skb)->dataref, 1); 1736 1737 skb_metadata_clear(skb); 1738 1739 /* It is not generally safe to change skb->truesize. 1740 * For the moment, we really care of rx path, or 1741 * when skb is orphaned (not attached to a socket). 1742 */ 1743 if (!skb->sk || skb->destructor == sock_edemux) 1744 skb->truesize += size - osize; 1745 1746 return 0; 1747 1748 nofrags: 1749 kfree(data); 1750 nodata: 1751 return -ENOMEM; 1752 } 1753 EXPORT_SYMBOL(pskb_expand_head); 1754 1755 /* Make private copy of skb with writable head and some headroom */ 1756 1757 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1758 { 1759 struct sk_buff *skb2; 1760 int delta = headroom - skb_headroom(skb); 1761 1762 if (delta <= 0) 1763 skb2 = pskb_copy(skb, GFP_ATOMIC); 1764 else { 1765 skb2 = skb_clone(skb, GFP_ATOMIC); 1766 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1767 GFP_ATOMIC)) { 1768 kfree_skb(skb2); 1769 skb2 = NULL; 1770 } 1771 } 1772 return skb2; 1773 } 1774 EXPORT_SYMBOL(skb_realloc_headroom); 1775 1776 /** 1777 * skb_copy_expand - copy and expand sk_buff 1778 * @skb: buffer to copy 1779 * @newheadroom: new free bytes at head 1780 * @newtailroom: new free bytes at tail 1781 * @gfp_mask: allocation priority 1782 * 1783 * Make a copy of both an &sk_buff and its data and while doing so 1784 * allocate additional space. 1785 * 1786 * This is used when the caller wishes to modify the data and needs a 1787 * private copy of the data to alter as well as more space for new fields. 1788 * Returns %NULL on failure or the pointer to the buffer 1789 * on success. The returned buffer has a reference count of 1. 1790 * 1791 * You must pass %GFP_ATOMIC as the allocation priority if this function 1792 * is called from an interrupt. 1793 */ 1794 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1795 int newheadroom, int newtailroom, 1796 gfp_t gfp_mask) 1797 { 1798 /* 1799 * Allocate the copy buffer 1800 */ 1801 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1802 gfp_mask, skb_alloc_rx_flag(skb), 1803 NUMA_NO_NODE); 1804 int oldheadroom = skb_headroom(skb); 1805 int head_copy_len, head_copy_off; 1806 1807 if (!n) 1808 return NULL; 1809 1810 skb_reserve(n, newheadroom); 1811 1812 /* Set the tail pointer and length */ 1813 skb_put(n, skb->len); 1814 1815 head_copy_len = oldheadroom; 1816 head_copy_off = 0; 1817 if (newheadroom <= head_copy_len) 1818 head_copy_len = newheadroom; 1819 else 1820 head_copy_off = newheadroom - head_copy_len; 1821 1822 /* Copy the linear header and data. */ 1823 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1824 skb->len + head_copy_len)); 1825 1826 skb_copy_header(n, skb); 1827 1828 skb_headers_offset_update(n, newheadroom - oldheadroom); 1829 1830 return n; 1831 } 1832 EXPORT_SYMBOL(skb_copy_expand); 1833 1834 /** 1835 * __skb_pad - zero pad the tail of an skb 1836 * @skb: buffer to pad 1837 * @pad: space to pad 1838 * @free_on_error: free buffer on error 1839 * 1840 * Ensure that a buffer is followed by a padding area that is zero 1841 * filled. Used by network drivers which may DMA or transfer data 1842 * beyond the buffer end onto the wire. 1843 * 1844 * May return error in out of memory cases. The skb is freed on error 1845 * if @free_on_error is true. 1846 */ 1847 1848 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1849 { 1850 int err; 1851 int ntail; 1852 1853 /* If the skbuff is non linear tailroom is always zero.. */ 1854 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1855 memset(skb->data+skb->len, 0, pad); 1856 return 0; 1857 } 1858 1859 ntail = skb->data_len + pad - (skb->end - skb->tail); 1860 if (likely(skb_cloned(skb) || ntail > 0)) { 1861 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1862 if (unlikely(err)) 1863 goto free_skb; 1864 } 1865 1866 /* FIXME: The use of this function with non-linear skb's really needs 1867 * to be audited. 1868 */ 1869 err = skb_linearize(skb); 1870 if (unlikely(err)) 1871 goto free_skb; 1872 1873 memset(skb->data + skb->len, 0, pad); 1874 return 0; 1875 1876 free_skb: 1877 if (free_on_error) 1878 kfree_skb(skb); 1879 return err; 1880 } 1881 EXPORT_SYMBOL(__skb_pad); 1882 1883 /** 1884 * pskb_put - add data to the tail of a potentially fragmented buffer 1885 * @skb: start of the buffer to use 1886 * @tail: tail fragment of the buffer to use 1887 * @len: amount of data to add 1888 * 1889 * This function extends the used data area of the potentially 1890 * fragmented buffer. @tail must be the last fragment of @skb -- or 1891 * @skb itself. If this would exceed the total buffer size the kernel 1892 * will panic. A pointer to the first byte of the extra data is 1893 * returned. 1894 */ 1895 1896 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1897 { 1898 if (tail != skb) { 1899 skb->data_len += len; 1900 skb->len += len; 1901 } 1902 return skb_put(tail, len); 1903 } 1904 EXPORT_SYMBOL_GPL(pskb_put); 1905 1906 /** 1907 * skb_put - add data to a buffer 1908 * @skb: buffer to use 1909 * @len: amount of data to add 1910 * 1911 * This function extends the used data area of the buffer. If this would 1912 * exceed the total buffer size the kernel will panic. A pointer to the 1913 * first byte of the extra data is returned. 1914 */ 1915 void *skb_put(struct sk_buff *skb, unsigned int len) 1916 { 1917 void *tmp = skb_tail_pointer(skb); 1918 SKB_LINEAR_ASSERT(skb); 1919 skb->tail += len; 1920 skb->len += len; 1921 if (unlikely(skb->tail > skb->end)) 1922 skb_over_panic(skb, len, __builtin_return_address(0)); 1923 return tmp; 1924 } 1925 EXPORT_SYMBOL(skb_put); 1926 1927 /** 1928 * skb_push - add data to the start of a buffer 1929 * @skb: buffer to use 1930 * @len: amount of data to add 1931 * 1932 * This function extends the used data area of the buffer at the buffer 1933 * start. If this would exceed the total buffer headroom the kernel will 1934 * panic. A pointer to the first byte of the extra data is returned. 1935 */ 1936 void *skb_push(struct sk_buff *skb, unsigned int len) 1937 { 1938 skb->data -= len; 1939 skb->len += len; 1940 if (unlikely(skb->data < skb->head)) 1941 skb_under_panic(skb, len, __builtin_return_address(0)); 1942 return skb->data; 1943 } 1944 EXPORT_SYMBOL(skb_push); 1945 1946 /** 1947 * skb_pull - remove data from the start of a buffer 1948 * @skb: buffer to use 1949 * @len: amount of data to remove 1950 * 1951 * This function removes data from the start of a buffer, returning 1952 * the memory to the headroom. A pointer to the next data in the buffer 1953 * is returned. Once the data has been pulled future pushes will overwrite 1954 * the old data. 1955 */ 1956 void *skb_pull(struct sk_buff *skb, unsigned int len) 1957 { 1958 return skb_pull_inline(skb, len); 1959 } 1960 EXPORT_SYMBOL(skb_pull); 1961 1962 /** 1963 * skb_trim - remove end from a buffer 1964 * @skb: buffer to alter 1965 * @len: new length 1966 * 1967 * Cut the length of a buffer down by removing data from the tail. If 1968 * the buffer is already under the length specified it is not modified. 1969 * The skb must be linear. 1970 */ 1971 void skb_trim(struct sk_buff *skb, unsigned int len) 1972 { 1973 if (skb->len > len) 1974 __skb_trim(skb, len); 1975 } 1976 EXPORT_SYMBOL(skb_trim); 1977 1978 /* Trims skb to length len. It can change skb pointers. 1979 */ 1980 1981 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1982 { 1983 struct sk_buff **fragp; 1984 struct sk_buff *frag; 1985 int offset = skb_headlen(skb); 1986 int nfrags = skb_shinfo(skb)->nr_frags; 1987 int i; 1988 int err; 1989 1990 if (skb_cloned(skb) && 1991 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1992 return err; 1993 1994 i = 0; 1995 if (offset >= len) 1996 goto drop_pages; 1997 1998 for (; i < nfrags; i++) { 1999 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2000 2001 if (end < len) { 2002 offset = end; 2003 continue; 2004 } 2005 2006 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2007 2008 drop_pages: 2009 skb_shinfo(skb)->nr_frags = i; 2010 2011 for (; i < nfrags; i++) 2012 skb_frag_unref(skb, i); 2013 2014 if (skb_has_frag_list(skb)) 2015 skb_drop_fraglist(skb); 2016 goto done; 2017 } 2018 2019 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2020 fragp = &frag->next) { 2021 int end = offset + frag->len; 2022 2023 if (skb_shared(frag)) { 2024 struct sk_buff *nfrag; 2025 2026 nfrag = skb_clone(frag, GFP_ATOMIC); 2027 if (unlikely(!nfrag)) 2028 return -ENOMEM; 2029 2030 nfrag->next = frag->next; 2031 consume_skb(frag); 2032 frag = nfrag; 2033 *fragp = frag; 2034 } 2035 2036 if (end < len) { 2037 offset = end; 2038 continue; 2039 } 2040 2041 if (end > len && 2042 unlikely((err = pskb_trim(frag, len - offset)))) 2043 return err; 2044 2045 if (frag->next) 2046 skb_drop_list(&frag->next); 2047 break; 2048 } 2049 2050 done: 2051 if (len > skb_headlen(skb)) { 2052 skb->data_len -= skb->len - len; 2053 skb->len = len; 2054 } else { 2055 skb->len = len; 2056 skb->data_len = 0; 2057 skb_set_tail_pointer(skb, len); 2058 } 2059 2060 if (!skb->sk || skb->destructor == sock_edemux) 2061 skb_condense(skb); 2062 return 0; 2063 } 2064 EXPORT_SYMBOL(___pskb_trim); 2065 2066 /* Note : use pskb_trim_rcsum() instead of calling this directly 2067 */ 2068 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2069 { 2070 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2071 int delta = skb->len - len; 2072 2073 skb->csum = csum_block_sub(skb->csum, 2074 skb_checksum(skb, len, delta, 0), 2075 len); 2076 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2077 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2078 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2079 2080 if (offset + sizeof(__sum16) > hdlen) 2081 return -EINVAL; 2082 } 2083 return __pskb_trim(skb, len); 2084 } 2085 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2086 2087 /** 2088 * __pskb_pull_tail - advance tail of skb header 2089 * @skb: buffer to reallocate 2090 * @delta: number of bytes to advance tail 2091 * 2092 * The function makes a sense only on a fragmented &sk_buff, 2093 * it expands header moving its tail forward and copying necessary 2094 * data from fragmented part. 2095 * 2096 * &sk_buff MUST have reference count of 1. 2097 * 2098 * Returns %NULL (and &sk_buff does not change) if pull failed 2099 * or value of new tail of skb in the case of success. 2100 * 2101 * All the pointers pointing into skb header may change and must be 2102 * reloaded after call to this function. 2103 */ 2104 2105 /* Moves tail of skb head forward, copying data from fragmented part, 2106 * when it is necessary. 2107 * 1. It may fail due to malloc failure. 2108 * 2. It may change skb pointers. 2109 * 2110 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2111 */ 2112 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2113 { 2114 /* If skb has not enough free space at tail, get new one 2115 * plus 128 bytes for future expansions. If we have enough 2116 * room at tail, reallocate without expansion only if skb is cloned. 2117 */ 2118 int i, k, eat = (skb->tail + delta) - skb->end; 2119 2120 if (eat > 0 || skb_cloned(skb)) { 2121 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2122 GFP_ATOMIC)) 2123 return NULL; 2124 } 2125 2126 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2127 skb_tail_pointer(skb), delta)); 2128 2129 /* Optimization: no fragments, no reasons to preestimate 2130 * size of pulled pages. Superb. 2131 */ 2132 if (!skb_has_frag_list(skb)) 2133 goto pull_pages; 2134 2135 /* Estimate size of pulled pages. */ 2136 eat = delta; 2137 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2138 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2139 2140 if (size >= eat) 2141 goto pull_pages; 2142 eat -= size; 2143 } 2144 2145 /* If we need update frag list, we are in troubles. 2146 * Certainly, it is possible to add an offset to skb data, 2147 * but taking into account that pulling is expected to 2148 * be very rare operation, it is worth to fight against 2149 * further bloating skb head and crucify ourselves here instead. 2150 * Pure masohism, indeed. 8)8) 2151 */ 2152 if (eat) { 2153 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2154 struct sk_buff *clone = NULL; 2155 struct sk_buff *insp = NULL; 2156 2157 do { 2158 if (list->len <= eat) { 2159 /* Eaten as whole. */ 2160 eat -= list->len; 2161 list = list->next; 2162 insp = list; 2163 } else { 2164 /* Eaten partially. */ 2165 2166 if (skb_shared(list)) { 2167 /* Sucks! We need to fork list. :-( */ 2168 clone = skb_clone(list, GFP_ATOMIC); 2169 if (!clone) 2170 return NULL; 2171 insp = list->next; 2172 list = clone; 2173 } else { 2174 /* This may be pulled without 2175 * problems. */ 2176 insp = list; 2177 } 2178 if (!pskb_pull(list, eat)) { 2179 kfree_skb(clone); 2180 return NULL; 2181 } 2182 break; 2183 } 2184 } while (eat); 2185 2186 /* Free pulled out fragments. */ 2187 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2188 skb_shinfo(skb)->frag_list = list->next; 2189 kfree_skb(list); 2190 } 2191 /* And insert new clone at head. */ 2192 if (clone) { 2193 clone->next = list; 2194 skb_shinfo(skb)->frag_list = clone; 2195 } 2196 } 2197 /* Success! Now we may commit changes to skb data. */ 2198 2199 pull_pages: 2200 eat = delta; 2201 k = 0; 2202 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2203 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2204 2205 if (size <= eat) { 2206 skb_frag_unref(skb, i); 2207 eat -= size; 2208 } else { 2209 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2210 2211 *frag = skb_shinfo(skb)->frags[i]; 2212 if (eat) { 2213 skb_frag_off_add(frag, eat); 2214 skb_frag_size_sub(frag, eat); 2215 if (!i) 2216 goto end; 2217 eat = 0; 2218 } 2219 k++; 2220 } 2221 } 2222 skb_shinfo(skb)->nr_frags = k; 2223 2224 end: 2225 skb->tail += delta; 2226 skb->data_len -= delta; 2227 2228 if (!skb->data_len) 2229 skb_zcopy_clear(skb, false); 2230 2231 return skb_tail_pointer(skb); 2232 } 2233 EXPORT_SYMBOL(__pskb_pull_tail); 2234 2235 /** 2236 * skb_copy_bits - copy bits from skb to kernel buffer 2237 * @skb: source skb 2238 * @offset: offset in source 2239 * @to: destination buffer 2240 * @len: number of bytes to copy 2241 * 2242 * Copy the specified number of bytes from the source skb to the 2243 * destination buffer. 2244 * 2245 * CAUTION ! : 2246 * If its prototype is ever changed, 2247 * check arch/{*}/net/{*}.S files, 2248 * since it is called from BPF assembly code. 2249 */ 2250 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2251 { 2252 int start = skb_headlen(skb); 2253 struct sk_buff *frag_iter; 2254 int i, copy; 2255 2256 if (offset > (int)skb->len - len) 2257 goto fault; 2258 2259 /* Copy header. */ 2260 if ((copy = start - offset) > 0) { 2261 if (copy > len) 2262 copy = len; 2263 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2264 if ((len -= copy) == 0) 2265 return 0; 2266 offset += copy; 2267 to += copy; 2268 } 2269 2270 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2271 int end; 2272 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2273 2274 WARN_ON(start > offset + len); 2275 2276 end = start + skb_frag_size(f); 2277 if ((copy = end - offset) > 0) { 2278 u32 p_off, p_len, copied; 2279 struct page *p; 2280 u8 *vaddr; 2281 2282 if (copy > len) 2283 copy = len; 2284 2285 skb_frag_foreach_page(f, 2286 skb_frag_off(f) + offset - start, 2287 copy, p, p_off, p_len, copied) { 2288 vaddr = kmap_atomic(p); 2289 memcpy(to + copied, vaddr + p_off, p_len); 2290 kunmap_atomic(vaddr); 2291 } 2292 2293 if ((len -= copy) == 0) 2294 return 0; 2295 offset += copy; 2296 to += copy; 2297 } 2298 start = end; 2299 } 2300 2301 skb_walk_frags(skb, frag_iter) { 2302 int end; 2303 2304 WARN_ON(start > offset + len); 2305 2306 end = start + frag_iter->len; 2307 if ((copy = end - offset) > 0) { 2308 if (copy > len) 2309 copy = len; 2310 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2311 goto fault; 2312 if ((len -= copy) == 0) 2313 return 0; 2314 offset += copy; 2315 to += copy; 2316 } 2317 start = end; 2318 } 2319 2320 if (!len) 2321 return 0; 2322 2323 fault: 2324 return -EFAULT; 2325 } 2326 EXPORT_SYMBOL(skb_copy_bits); 2327 2328 /* 2329 * Callback from splice_to_pipe(), if we need to release some pages 2330 * at the end of the spd in case we error'ed out in filling the pipe. 2331 */ 2332 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2333 { 2334 put_page(spd->pages[i]); 2335 } 2336 2337 static struct page *linear_to_page(struct page *page, unsigned int *len, 2338 unsigned int *offset, 2339 struct sock *sk) 2340 { 2341 struct page_frag *pfrag = sk_page_frag(sk); 2342 2343 if (!sk_page_frag_refill(sk, pfrag)) 2344 return NULL; 2345 2346 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2347 2348 memcpy(page_address(pfrag->page) + pfrag->offset, 2349 page_address(page) + *offset, *len); 2350 *offset = pfrag->offset; 2351 pfrag->offset += *len; 2352 2353 return pfrag->page; 2354 } 2355 2356 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2357 struct page *page, 2358 unsigned int offset) 2359 { 2360 return spd->nr_pages && 2361 spd->pages[spd->nr_pages - 1] == page && 2362 (spd->partial[spd->nr_pages - 1].offset + 2363 spd->partial[spd->nr_pages - 1].len == offset); 2364 } 2365 2366 /* 2367 * Fill page/offset/length into spd, if it can hold more pages. 2368 */ 2369 static bool spd_fill_page(struct splice_pipe_desc *spd, 2370 struct pipe_inode_info *pipe, struct page *page, 2371 unsigned int *len, unsigned int offset, 2372 bool linear, 2373 struct sock *sk) 2374 { 2375 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2376 return true; 2377 2378 if (linear) { 2379 page = linear_to_page(page, len, &offset, sk); 2380 if (!page) 2381 return true; 2382 } 2383 if (spd_can_coalesce(spd, page, offset)) { 2384 spd->partial[spd->nr_pages - 1].len += *len; 2385 return false; 2386 } 2387 get_page(page); 2388 spd->pages[spd->nr_pages] = page; 2389 spd->partial[spd->nr_pages].len = *len; 2390 spd->partial[spd->nr_pages].offset = offset; 2391 spd->nr_pages++; 2392 2393 return false; 2394 } 2395 2396 static bool __splice_segment(struct page *page, unsigned int poff, 2397 unsigned int plen, unsigned int *off, 2398 unsigned int *len, 2399 struct splice_pipe_desc *spd, bool linear, 2400 struct sock *sk, 2401 struct pipe_inode_info *pipe) 2402 { 2403 if (!*len) 2404 return true; 2405 2406 /* skip this segment if already processed */ 2407 if (*off >= plen) { 2408 *off -= plen; 2409 return false; 2410 } 2411 2412 /* ignore any bits we already processed */ 2413 poff += *off; 2414 plen -= *off; 2415 *off = 0; 2416 2417 do { 2418 unsigned int flen = min(*len, plen); 2419 2420 if (spd_fill_page(spd, pipe, page, &flen, poff, 2421 linear, sk)) 2422 return true; 2423 poff += flen; 2424 plen -= flen; 2425 *len -= flen; 2426 } while (*len && plen); 2427 2428 return false; 2429 } 2430 2431 /* 2432 * Map linear and fragment data from the skb to spd. It reports true if the 2433 * pipe is full or if we already spliced the requested length. 2434 */ 2435 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2436 unsigned int *offset, unsigned int *len, 2437 struct splice_pipe_desc *spd, struct sock *sk) 2438 { 2439 int seg; 2440 struct sk_buff *iter; 2441 2442 /* map the linear part : 2443 * If skb->head_frag is set, this 'linear' part is backed by a 2444 * fragment, and if the head is not shared with any clones then 2445 * we can avoid a copy since we own the head portion of this page. 2446 */ 2447 if (__splice_segment(virt_to_page(skb->data), 2448 (unsigned long) skb->data & (PAGE_SIZE - 1), 2449 skb_headlen(skb), 2450 offset, len, spd, 2451 skb_head_is_locked(skb), 2452 sk, pipe)) 2453 return true; 2454 2455 /* 2456 * then map the fragments 2457 */ 2458 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2459 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2460 2461 if (__splice_segment(skb_frag_page(f), 2462 skb_frag_off(f), skb_frag_size(f), 2463 offset, len, spd, false, sk, pipe)) 2464 return true; 2465 } 2466 2467 skb_walk_frags(skb, iter) { 2468 if (*offset >= iter->len) { 2469 *offset -= iter->len; 2470 continue; 2471 } 2472 /* __skb_splice_bits() only fails if the output has no room 2473 * left, so no point in going over the frag_list for the error 2474 * case. 2475 */ 2476 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2477 return true; 2478 } 2479 2480 return false; 2481 } 2482 2483 /* 2484 * Map data from the skb to a pipe. Should handle both the linear part, 2485 * the fragments, and the frag list. 2486 */ 2487 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2488 struct pipe_inode_info *pipe, unsigned int tlen, 2489 unsigned int flags) 2490 { 2491 struct partial_page partial[MAX_SKB_FRAGS]; 2492 struct page *pages[MAX_SKB_FRAGS]; 2493 struct splice_pipe_desc spd = { 2494 .pages = pages, 2495 .partial = partial, 2496 .nr_pages_max = MAX_SKB_FRAGS, 2497 .ops = &nosteal_pipe_buf_ops, 2498 .spd_release = sock_spd_release, 2499 }; 2500 int ret = 0; 2501 2502 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2503 2504 if (spd.nr_pages) 2505 ret = splice_to_pipe(pipe, &spd); 2506 2507 return ret; 2508 } 2509 EXPORT_SYMBOL_GPL(skb_splice_bits); 2510 2511 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg, 2512 struct kvec *vec, size_t num, size_t size) 2513 { 2514 struct socket *sock = sk->sk_socket; 2515 2516 if (!sock) 2517 return -EINVAL; 2518 return kernel_sendmsg(sock, msg, vec, num, size); 2519 } 2520 2521 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset, 2522 size_t size, int flags) 2523 { 2524 struct socket *sock = sk->sk_socket; 2525 2526 if (!sock) 2527 return -EINVAL; 2528 return kernel_sendpage(sock, page, offset, size, flags); 2529 } 2530 2531 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg, 2532 struct kvec *vec, size_t num, size_t size); 2533 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset, 2534 size_t size, int flags); 2535 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 2536 int len, sendmsg_func sendmsg, sendpage_func sendpage) 2537 { 2538 unsigned int orig_len = len; 2539 struct sk_buff *head = skb; 2540 unsigned short fragidx; 2541 int slen, ret; 2542 2543 do_frag_list: 2544 2545 /* Deal with head data */ 2546 while (offset < skb_headlen(skb) && len) { 2547 struct kvec kv; 2548 struct msghdr msg; 2549 2550 slen = min_t(int, len, skb_headlen(skb) - offset); 2551 kv.iov_base = skb->data + offset; 2552 kv.iov_len = slen; 2553 memset(&msg, 0, sizeof(msg)); 2554 msg.msg_flags = MSG_DONTWAIT; 2555 2556 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked, 2557 sendmsg_unlocked, sk, &msg, &kv, 1, slen); 2558 if (ret <= 0) 2559 goto error; 2560 2561 offset += ret; 2562 len -= ret; 2563 } 2564 2565 /* All the data was skb head? */ 2566 if (!len) 2567 goto out; 2568 2569 /* Make offset relative to start of frags */ 2570 offset -= skb_headlen(skb); 2571 2572 /* Find where we are in frag list */ 2573 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2574 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2575 2576 if (offset < skb_frag_size(frag)) 2577 break; 2578 2579 offset -= skb_frag_size(frag); 2580 } 2581 2582 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2583 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2584 2585 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2586 2587 while (slen) { 2588 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked, 2589 sendpage_unlocked, sk, 2590 skb_frag_page(frag), 2591 skb_frag_off(frag) + offset, 2592 slen, MSG_DONTWAIT); 2593 if (ret <= 0) 2594 goto error; 2595 2596 len -= ret; 2597 offset += ret; 2598 slen -= ret; 2599 } 2600 2601 offset = 0; 2602 } 2603 2604 if (len) { 2605 /* Process any frag lists */ 2606 2607 if (skb == head) { 2608 if (skb_has_frag_list(skb)) { 2609 skb = skb_shinfo(skb)->frag_list; 2610 goto do_frag_list; 2611 } 2612 } else if (skb->next) { 2613 skb = skb->next; 2614 goto do_frag_list; 2615 } 2616 } 2617 2618 out: 2619 return orig_len - len; 2620 2621 error: 2622 return orig_len == len ? ret : orig_len - len; 2623 } 2624 2625 /* Send skb data on a socket. Socket must be locked. */ 2626 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2627 int len) 2628 { 2629 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked, 2630 kernel_sendpage_locked); 2631 } 2632 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2633 2634 /* Send skb data on a socket. Socket must be unlocked. */ 2635 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2636 { 2637 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 2638 sendpage_unlocked); 2639 } 2640 2641 /** 2642 * skb_store_bits - store bits from kernel buffer to skb 2643 * @skb: destination buffer 2644 * @offset: offset in destination 2645 * @from: source buffer 2646 * @len: number of bytes to copy 2647 * 2648 * Copy the specified number of bytes from the source buffer to the 2649 * destination skb. This function handles all the messy bits of 2650 * traversing fragment lists and such. 2651 */ 2652 2653 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2654 { 2655 int start = skb_headlen(skb); 2656 struct sk_buff *frag_iter; 2657 int i, copy; 2658 2659 if (offset > (int)skb->len - len) 2660 goto fault; 2661 2662 if ((copy = start - offset) > 0) { 2663 if (copy > len) 2664 copy = len; 2665 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2666 if ((len -= copy) == 0) 2667 return 0; 2668 offset += copy; 2669 from += copy; 2670 } 2671 2672 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2673 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2674 int end; 2675 2676 WARN_ON(start > offset + len); 2677 2678 end = start + skb_frag_size(frag); 2679 if ((copy = end - offset) > 0) { 2680 u32 p_off, p_len, copied; 2681 struct page *p; 2682 u8 *vaddr; 2683 2684 if (copy > len) 2685 copy = len; 2686 2687 skb_frag_foreach_page(frag, 2688 skb_frag_off(frag) + offset - start, 2689 copy, p, p_off, p_len, copied) { 2690 vaddr = kmap_atomic(p); 2691 memcpy(vaddr + p_off, from + copied, p_len); 2692 kunmap_atomic(vaddr); 2693 } 2694 2695 if ((len -= copy) == 0) 2696 return 0; 2697 offset += copy; 2698 from += copy; 2699 } 2700 start = end; 2701 } 2702 2703 skb_walk_frags(skb, frag_iter) { 2704 int end; 2705 2706 WARN_ON(start > offset + len); 2707 2708 end = start + frag_iter->len; 2709 if ((copy = end - offset) > 0) { 2710 if (copy > len) 2711 copy = len; 2712 if (skb_store_bits(frag_iter, offset - start, 2713 from, copy)) 2714 goto fault; 2715 if ((len -= copy) == 0) 2716 return 0; 2717 offset += copy; 2718 from += copy; 2719 } 2720 start = end; 2721 } 2722 if (!len) 2723 return 0; 2724 2725 fault: 2726 return -EFAULT; 2727 } 2728 EXPORT_SYMBOL(skb_store_bits); 2729 2730 /* Checksum skb data. */ 2731 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2732 __wsum csum, const struct skb_checksum_ops *ops) 2733 { 2734 int start = skb_headlen(skb); 2735 int i, copy = start - offset; 2736 struct sk_buff *frag_iter; 2737 int pos = 0; 2738 2739 /* Checksum header. */ 2740 if (copy > 0) { 2741 if (copy > len) 2742 copy = len; 2743 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2744 skb->data + offset, copy, csum); 2745 if ((len -= copy) == 0) 2746 return csum; 2747 offset += copy; 2748 pos = copy; 2749 } 2750 2751 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2752 int end; 2753 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2754 2755 WARN_ON(start > offset + len); 2756 2757 end = start + skb_frag_size(frag); 2758 if ((copy = end - offset) > 0) { 2759 u32 p_off, p_len, copied; 2760 struct page *p; 2761 __wsum csum2; 2762 u8 *vaddr; 2763 2764 if (copy > len) 2765 copy = len; 2766 2767 skb_frag_foreach_page(frag, 2768 skb_frag_off(frag) + offset - start, 2769 copy, p, p_off, p_len, copied) { 2770 vaddr = kmap_atomic(p); 2771 csum2 = INDIRECT_CALL_1(ops->update, 2772 csum_partial_ext, 2773 vaddr + p_off, p_len, 0); 2774 kunmap_atomic(vaddr); 2775 csum = INDIRECT_CALL_1(ops->combine, 2776 csum_block_add_ext, csum, 2777 csum2, pos, p_len); 2778 pos += p_len; 2779 } 2780 2781 if (!(len -= copy)) 2782 return csum; 2783 offset += copy; 2784 } 2785 start = end; 2786 } 2787 2788 skb_walk_frags(skb, frag_iter) { 2789 int end; 2790 2791 WARN_ON(start > offset + len); 2792 2793 end = start + frag_iter->len; 2794 if ((copy = end - offset) > 0) { 2795 __wsum csum2; 2796 if (copy > len) 2797 copy = len; 2798 csum2 = __skb_checksum(frag_iter, offset - start, 2799 copy, 0, ops); 2800 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2801 csum, csum2, pos, copy); 2802 if ((len -= copy) == 0) 2803 return csum; 2804 offset += copy; 2805 pos += copy; 2806 } 2807 start = end; 2808 } 2809 BUG_ON(len); 2810 2811 return csum; 2812 } 2813 EXPORT_SYMBOL(__skb_checksum); 2814 2815 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2816 int len, __wsum csum) 2817 { 2818 const struct skb_checksum_ops ops = { 2819 .update = csum_partial_ext, 2820 .combine = csum_block_add_ext, 2821 }; 2822 2823 return __skb_checksum(skb, offset, len, csum, &ops); 2824 } 2825 EXPORT_SYMBOL(skb_checksum); 2826 2827 /* Both of above in one bottle. */ 2828 2829 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2830 u8 *to, int len) 2831 { 2832 int start = skb_headlen(skb); 2833 int i, copy = start - offset; 2834 struct sk_buff *frag_iter; 2835 int pos = 0; 2836 __wsum csum = 0; 2837 2838 /* Copy header. */ 2839 if (copy > 0) { 2840 if (copy > len) 2841 copy = len; 2842 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2843 copy); 2844 if ((len -= copy) == 0) 2845 return csum; 2846 offset += copy; 2847 to += copy; 2848 pos = copy; 2849 } 2850 2851 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2852 int end; 2853 2854 WARN_ON(start > offset + len); 2855 2856 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2857 if ((copy = end - offset) > 0) { 2858 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2859 u32 p_off, p_len, copied; 2860 struct page *p; 2861 __wsum csum2; 2862 u8 *vaddr; 2863 2864 if (copy > len) 2865 copy = len; 2866 2867 skb_frag_foreach_page(frag, 2868 skb_frag_off(frag) + offset - start, 2869 copy, p, p_off, p_len, copied) { 2870 vaddr = kmap_atomic(p); 2871 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2872 to + copied, 2873 p_len); 2874 kunmap_atomic(vaddr); 2875 csum = csum_block_add(csum, csum2, pos); 2876 pos += p_len; 2877 } 2878 2879 if (!(len -= copy)) 2880 return csum; 2881 offset += copy; 2882 to += copy; 2883 } 2884 start = end; 2885 } 2886 2887 skb_walk_frags(skb, frag_iter) { 2888 __wsum csum2; 2889 int end; 2890 2891 WARN_ON(start > offset + len); 2892 2893 end = start + frag_iter->len; 2894 if ((copy = end - offset) > 0) { 2895 if (copy > len) 2896 copy = len; 2897 csum2 = skb_copy_and_csum_bits(frag_iter, 2898 offset - start, 2899 to, copy); 2900 csum = csum_block_add(csum, csum2, pos); 2901 if ((len -= copy) == 0) 2902 return csum; 2903 offset += copy; 2904 to += copy; 2905 pos += copy; 2906 } 2907 start = end; 2908 } 2909 BUG_ON(len); 2910 return csum; 2911 } 2912 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2913 2914 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2915 { 2916 __sum16 sum; 2917 2918 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2919 /* See comments in __skb_checksum_complete(). */ 2920 if (likely(!sum)) { 2921 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2922 !skb->csum_complete_sw) 2923 netdev_rx_csum_fault(skb->dev, skb); 2924 } 2925 if (!skb_shared(skb)) 2926 skb->csum_valid = !sum; 2927 return sum; 2928 } 2929 EXPORT_SYMBOL(__skb_checksum_complete_head); 2930 2931 /* This function assumes skb->csum already holds pseudo header's checksum, 2932 * which has been changed from the hardware checksum, for example, by 2933 * __skb_checksum_validate_complete(). And, the original skb->csum must 2934 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2935 * 2936 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2937 * zero. The new checksum is stored back into skb->csum unless the skb is 2938 * shared. 2939 */ 2940 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2941 { 2942 __wsum csum; 2943 __sum16 sum; 2944 2945 csum = skb_checksum(skb, 0, skb->len, 0); 2946 2947 sum = csum_fold(csum_add(skb->csum, csum)); 2948 /* This check is inverted, because we already knew the hardware 2949 * checksum is invalid before calling this function. So, if the 2950 * re-computed checksum is valid instead, then we have a mismatch 2951 * between the original skb->csum and skb_checksum(). This means either 2952 * the original hardware checksum is incorrect or we screw up skb->csum 2953 * when moving skb->data around. 2954 */ 2955 if (likely(!sum)) { 2956 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2957 !skb->csum_complete_sw) 2958 netdev_rx_csum_fault(skb->dev, skb); 2959 } 2960 2961 if (!skb_shared(skb)) { 2962 /* Save full packet checksum */ 2963 skb->csum = csum; 2964 skb->ip_summed = CHECKSUM_COMPLETE; 2965 skb->csum_complete_sw = 1; 2966 skb->csum_valid = !sum; 2967 } 2968 2969 return sum; 2970 } 2971 EXPORT_SYMBOL(__skb_checksum_complete); 2972 2973 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2974 { 2975 net_warn_ratelimited( 2976 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2977 __func__); 2978 return 0; 2979 } 2980 2981 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2982 int offset, int len) 2983 { 2984 net_warn_ratelimited( 2985 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2986 __func__); 2987 return 0; 2988 } 2989 2990 static const struct skb_checksum_ops default_crc32c_ops = { 2991 .update = warn_crc32c_csum_update, 2992 .combine = warn_crc32c_csum_combine, 2993 }; 2994 2995 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2996 &default_crc32c_ops; 2997 EXPORT_SYMBOL(crc32c_csum_stub); 2998 2999 /** 3000 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3001 * @from: source buffer 3002 * 3003 * Calculates the amount of linear headroom needed in the 'to' skb passed 3004 * into skb_zerocopy(). 3005 */ 3006 unsigned int 3007 skb_zerocopy_headlen(const struct sk_buff *from) 3008 { 3009 unsigned int hlen = 0; 3010 3011 if (!from->head_frag || 3012 skb_headlen(from) < L1_CACHE_BYTES || 3013 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 3014 hlen = skb_headlen(from); 3015 3016 if (skb_has_frag_list(from)) 3017 hlen = from->len; 3018 3019 return hlen; 3020 } 3021 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3022 3023 /** 3024 * skb_zerocopy - Zero copy skb to skb 3025 * @to: destination buffer 3026 * @from: source buffer 3027 * @len: number of bytes to copy from source buffer 3028 * @hlen: size of linear headroom in destination buffer 3029 * 3030 * Copies up to `len` bytes from `from` to `to` by creating references 3031 * to the frags in the source buffer. 3032 * 3033 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3034 * headroom in the `to` buffer. 3035 * 3036 * Return value: 3037 * 0: everything is OK 3038 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3039 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3040 */ 3041 int 3042 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3043 { 3044 int i, j = 0; 3045 int plen = 0; /* length of skb->head fragment */ 3046 int ret; 3047 struct page *page; 3048 unsigned int offset; 3049 3050 BUG_ON(!from->head_frag && !hlen); 3051 3052 /* dont bother with small payloads */ 3053 if (len <= skb_tailroom(to)) 3054 return skb_copy_bits(from, 0, skb_put(to, len), len); 3055 3056 if (hlen) { 3057 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3058 if (unlikely(ret)) 3059 return ret; 3060 len -= hlen; 3061 } else { 3062 plen = min_t(int, skb_headlen(from), len); 3063 if (plen) { 3064 page = virt_to_head_page(from->head); 3065 offset = from->data - (unsigned char *)page_address(page); 3066 __skb_fill_page_desc(to, 0, page, offset, plen); 3067 get_page(page); 3068 j = 1; 3069 len -= plen; 3070 } 3071 } 3072 3073 to->truesize += len + plen; 3074 to->len += len + plen; 3075 to->data_len += len + plen; 3076 3077 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3078 skb_tx_error(from); 3079 return -ENOMEM; 3080 } 3081 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3082 3083 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3084 int size; 3085 3086 if (!len) 3087 break; 3088 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3089 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3090 len); 3091 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3092 len -= size; 3093 skb_frag_ref(to, j); 3094 j++; 3095 } 3096 skb_shinfo(to)->nr_frags = j; 3097 3098 return 0; 3099 } 3100 EXPORT_SYMBOL_GPL(skb_zerocopy); 3101 3102 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3103 { 3104 __wsum csum; 3105 long csstart; 3106 3107 if (skb->ip_summed == CHECKSUM_PARTIAL) 3108 csstart = skb_checksum_start_offset(skb); 3109 else 3110 csstart = skb_headlen(skb); 3111 3112 BUG_ON(csstart > skb_headlen(skb)); 3113 3114 skb_copy_from_linear_data(skb, to, csstart); 3115 3116 csum = 0; 3117 if (csstart != skb->len) 3118 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3119 skb->len - csstart); 3120 3121 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3122 long csstuff = csstart + skb->csum_offset; 3123 3124 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3125 } 3126 } 3127 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3128 3129 /** 3130 * skb_dequeue - remove from the head of the queue 3131 * @list: list to dequeue from 3132 * 3133 * Remove the head of the list. The list lock is taken so the function 3134 * may be used safely with other locking list functions. The head item is 3135 * returned or %NULL if the list is empty. 3136 */ 3137 3138 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3139 { 3140 unsigned long flags; 3141 struct sk_buff *result; 3142 3143 spin_lock_irqsave(&list->lock, flags); 3144 result = __skb_dequeue(list); 3145 spin_unlock_irqrestore(&list->lock, flags); 3146 return result; 3147 } 3148 EXPORT_SYMBOL(skb_dequeue); 3149 3150 /** 3151 * skb_dequeue_tail - remove from the tail of the queue 3152 * @list: list to dequeue from 3153 * 3154 * Remove the tail of the list. The list lock is taken so the function 3155 * may be used safely with other locking list functions. The tail item is 3156 * returned or %NULL if the list is empty. 3157 */ 3158 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3159 { 3160 unsigned long flags; 3161 struct sk_buff *result; 3162 3163 spin_lock_irqsave(&list->lock, flags); 3164 result = __skb_dequeue_tail(list); 3165 spin_unlock_irqrestore(&list->lock, flags); 3166 return result; 3167 } 3168 EXPORT_SYMBOL(skb_dequeue_tail); 3169 3170 /** 3171 * skb_queue_purge - empty a list 3172 * @list: list to empty 3173 * 3174 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3175 * the list and one reference dropped. This function takes the list 3176 * lock and is atomic with respect to other list locking functions. 3177 */ 3178 void skb_queue_purge(struct sk_buff_head *list) 3179 { 3180 struct sk_buff *skb; 3181 while ((skb = skb_dequeue(list)) != NULL) 3182 kfree_skb(skb); 3183 } 3184 EXPORT_SYMBOL(skb_queue_purge); 3185 3186 /** 3187 * skb_rbtree_purge - empty a skb rbtree 3188 * @root: root of the rbtree to empty 3189 * Return value: the sum of truesizes of all purged skbs. 3190 * 3191 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3192 * the list and one reference dropped. This function does not take 3193 * any lock. Synchronization should be handled by the caller (e.g., TCP 3194 * out-of-order queue is protected by the socket lock). 3195 */ 3196 unsigned int skb_rbtree_purge(struct rb_root *root) 3197 { 3198 struct rb_node *p = rb_first(root); 3199 unsigned int sum = 0; 3200 3201 while (p) { 3202 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3203 3204 p = rb_next(p); 3205 rb_erase(&skb->rbnode, root); 3206 sum += skb->truesize; 3207 kfree_skb(skb); 3208 } 3209 return sum; 3210 } 3211 3212 /** 3213 * skb_queue_head - queue a buffer at the list head 3214 * @list: list to use 3215 * @newsk: buffer to queue 3216 * 3217 * Queue a buffer at the start of the list. This function takes the 3218 * list lock and can be used safely with other locking &sk_buff functions 3219 * safely. 3220 * 3221 * A buffer cannot be placed on two lists at the same time. 3222 */ 3223 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3224 { 3225 unsigned long flags; 3226 3227 spin_lock_irqsave(&list->lock, flags); 3228 __skb_queue_head(list, newsk); 3229 spin_unlock_irqrestore(&list->lock, flags); 3230 } 3231 EXPORT_SYMBOL(skb_queue_head); 3232 3233 /** 3234 * skb_queue_tail - queue a buffer at the list tail 3235 * @list: list to use 3236 * @newsk: buffer to queue 3237 * 3238 * Queue a buffer at the tail of the list. This function takes the 3239 * list lock and can be used safely with other locking &sk_buff functions 3240 * safely. 3241 * 3242 * A buffer cannot be placed on two lists at the same time. 3243 */ 3244 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3245 { 3246 unsigned long flags; 3247 3248 spin_lock_irqsave(&list->lock, flags); 3249 __skb_queue_tail(list, newsk); 3250 spin_unlock_irqrestore(&list->lock, flags); 3251 } 3252 EXPORT_SYMBOL(skb_queue_tail); 3253 3254 /** 3255 * skb_unlink - remove a buffer from a list 3256 * @skb: buffer to remove 3257 * @list: list to use 3258 * 3259 * Remove a packet from a list. The list locks are taken and this 3260 * function is atomic with respect to other list locked calls 3261 * 3262 * You must know what list the SKB is on. 3263 */ 3264 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3265 { 3266 unsigned long flags; 3267 3268 spin_lock_irqsave(&list->lock, flags); 3269 __skb_unlink(skb, list); 3270 spin_unlock_irqrestore(&list->lock, flags); 3271 } 3272 EXPORT_SYMBOL(skb_unlink); 3273 3274 /** 3275 * skb_append - append a buffer 3276 * @old: buffer to insert after 3277 * @newsk: buffer to insert 3278 * @list: list to use 3279 * 3280 * Place a packet after a given packet in a list. The list locks are taken 3281 * and this function is atomic with respect to other list locked calls. 3282 * A buffer cannot be placed on two lists at the same time. 3283 */ 3284 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3285 { 3286 unsigned long flags; 3287 3288 spin_lock_irqsave(&list->lock, flags); 3289 __skb_queue_after(list, old, newsk); 3290 spin_unlock_irqrestore(&list->lock, flags); 3291 } 3292 EXPORT_SYMBOL(skb_append); 3293 3294 static inline void skb_split_inside_header(struct sk_buff *skb, 3295 struct sk_buff* skb1, 3296 const u32 len, const int pos) 3297 { 3298 int i; 3299 3300 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3301 pos - len); 3302 /* And move data appendix as is. */ 3303 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3304 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3305 3306 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3307 skb_shinfo(skb)->nr_frags = 0; 3308 skb1->data_len = skb->data_len; 3309 skb1->len += skb1->data_len; 3310 skb->data_len = 0; 3311 skb->len = len; 3312 skb_set_tail_pointer(skb, len); 3313 } 3314 3315 static inline void skb_split_no_header(struct sk_buff *skb, 3316 struct sk_buff* skb1, 3317 const u32 len, int pos) 3318 { 3319 int i, k = 0; 3320 const int nfrags = skb_shinfo(skb)->nr_frags; 3321 3322 skb_shinfo(skb)->nr_frags = 0; 3323 skb1->len = skb1->data_len = skb->len - len; 3324 skb->len = len; 3325 skb->data_len = len - pos; 3326 3327 for (i = 0; i < nfrags; i++) { 3328 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3329 3330 if (pos + size > len) { 3331 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3332 3333 if (pos < len) { 3334 /* Split frag. 3335 * We have two variants in this case: 3336 * 1. Move all the frag to the second 3337 * part, if it is possible. F.e. 3338 * this approach is mandatory for TUX, 3339 * where splitting is expensive. 3340 * 2. Split is accurately. We make this. 3341 */ 3342 skb_frag_ref(skb, i); 3343 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3344 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3345 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3346 skb_shinfo(skb)->nr_frags++; 3347 } 3348 k++; 3349 } else 3350 skb_shinfo(skb)->nr_frags++; 3351 pos += size; 3352 } 3353 skb_shinfo(skb1)->nr_frags = k; 3354 } 3355 3356 /** 3357 * skb_split - Split fragmented skb to two parts at length len. 3358 * @skb: the buffer to split 3359 * @skb1: the buffer to receive the second part 3360 * @len: new length for skb 3361 */ 3362 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3363 { 3364 int pos = skb_headlen(skb); 3365 3366 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3367 skb_zerocopy_clone(skb1, skb, 0); 3368 if (len < pos) /* Split line is inside header. */ 3369 skb_split_inside_header(skb, skb1, len, pos); 3370 else /* Second chunk has no header, nothing to copy. */ 3371 skb_split_no_header(skb, skb1, len, pos); 3372 } 3373 EXPORT_SYMBOL(skb_split); 3374 3375 /* Shifting from/to a cloned skb is a no-go. 3376 * 3377 * Caller cannot keep skb_shinfo related pointers past calling here! 3378 */ 3379 static int skb_prepare_for_shift(struct sk_buff *skb) 3380 { 3381 int ret = 0; 3382 3383 if (skb_cloned(skb)) { 3384 /* Save and restore truesize: pskb_expand_head() may reallocate 3385 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we 3386 * cannot change truesize at this point. 3387 */ 3388 unsigned int save_truesize = skb->truesize; 3389 3390 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3391 skb->truesize = save_truesize; 3392 } 3393 return ret; 3394 } 3395 3396 /** 3397 * skb_shift - Shifts paged data partially from skb to another 3398 * @tgt: buffer into which tail data gets added 3399 * @skb: buffer from which the paged data comes from 3400 * @shiftlen: shift up to this many bytes 3401 * 3402 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3403 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3404 * It's up to caller to free skb if everything was shifted. 3405 * 3406 * If @tgt runs out of frags, the whole operation is aborted. 3407 * 3408 * Skb cannot include anything else but paged data while tgt is allowed 3409 * to have non-paged data as well. 3410 * 3411 * TODO: full sized shift could be optimized but that would need 3412 * specialized skb free'er to handle frags without up-to-date nr_frags. 3413 */ 3414 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3415 { 3416 int from, to, merge, todo; 3417 skb_frag_t *fragfrom, *fragto; 3418 3419 BUG_ON(shiftlen > skb->len); 3420 3421 if (skb_headlen(skb)) 3422 return 0; 3423 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3424 return 0; 3425 3426 todo = shiftlen; 3427 from = 0; 3428 to = skb_shinfo(tgt)->nr_frags; 3429 fragfrom = &skb_shinfo(skb)->frags[from]; 3430 3431 /* Actual merge is delayed until the point when we know we can 3432 * commit all, so that we don't have to undo partial changes 3433 */ 3434 if (!to || 3435 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3436 skb_frag_off(fragfrom))) { 3437 merge = -1; 3438 } else { 3439 merge = to - 1; 3440 3441 todo -= skb_frag_size(fragfrom); 3442 if (todo < 0) { 3443 if (skb_prepare_for_shift(skb) || 3444 skb_prepare_for_shift(tgt)) 3445 return 0; 3446 3447 /* All previous frag pointers might be stale! */ 3448 fragfrom = &skb_shinfo(skb)->frags[from]; 3449 fragto = &skb_shinfo(tgt)->frags[merge]; 3450 3451 skb_frag_size_add(fragto, shiftlen); 3452 skb_frag_size_sub(fragfrom, shiftlen); 3453 skb_frag_off_add(fragfrom, shiftlen); 3454 3455 goto onlymerged; 3456 } 3457 3458 from++; 3459 } 3460 3461 /* Skip full, not-fitting skb to avoid expensive operations */ 3462 if ((shiftlen == skb->len) && 3463 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3464 return 0; 3465 3466 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3467 return 0; 3468 3469 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3470 if (to == MAX_SKB_FRAGS) 3471 return 0; 3472 3473 fragfrom = &skb_shinfo(skb)->frags[from]; 3474 fragto = &skb_shinfo(tgt)->frags[to]; 3475 3476 if (todo >= skb_frag_size(fragfrom)) { 3477 *fragto = *fragfrom; 3478 todo -= skb_frag_size(fragfrom); 3479 from++; 3480 to++; 3481 3482 } else { 3483 __skb_frag_ref(fragfrom); 3484 skb_frag_page_copy(fragto, fragfrom); 3485 skb_frag_off_copy(fragto, fragfrom); 3486 skb_frag_size_set(fragto, todo); 3487 3488 skb_frag_off_add(fragfrom, todo); 3489 skb_frag_size_sub(fragfrom, todo); 3490 todo = 0; 3491 3492 to++; 3493 break; 3494 } 3495 } 3496 3497 /* Ready to "commit" this state change to tgt */ 3498 skb_shinfo(tgt)->nr_frags = to; 3499 3500 if (merge >= 0) { 3501 fragfrom = &skb_shinfo(skb)->frags[0]; 3502 fragto = &skb_shinfo(tgt)->frags[merge]; 3503 3504 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3505 __skb_frag_unref(fragfrom, skb->pp_recycle); 3506 } 3507 3508 /* Reposition in the original skb */ 3509 to = 0; 3510 while (from < skb_shinfo(skb)->nr_frags) 3511 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3512 skb_shinfo(skb)->nr_frags = to; 3513 3514 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3515 3516 onlymerged: 3517 /* Most likely the tgt won't ever need its checksum anymore, skb on 3518 * the other hand might need it if it needs to be resent 3519 */ 3520 tgt->ip_summed = CHECKSUM_PARTIAL; 3521 skb->ip_summed = CHECKSUM_PARTIAL; 3522 3523 /* Yak, is it really working this way? Some helper please? */ 3524 skb->len -= shiftlen; 3525 skb->data_len -= shiftlen; 3526 skb->truesize -= shiftlen; 3527 tgt->len += shiftlen; 3528 tgt->data_len += shiftlen; 3529 tgt->truesize += shiftlen; 3530 3531 return shiftlen; 3532 } 3533 3534 /** 3535 * skb_prepare_seq_read - Prepare a sequential read of skb data 3536 * @skb: the buffer to read 3537 * @from: lower offset of data to be read 3538 * @to: upper offset of data to be read 3539 * @st: state variable 3540 * 3541 * Initializes the specified state variable. Must be called before 3542 * invoking skb_seq_read() for the first time. 3543 */ 3544 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3545 unsigned int to, struct skb_seq_state *st) 3546 { 3547 st->lower_offset = from; 3548 st->upper_offset = to; 3549 st->root_skb = st->cur_skb = skb; 3550 st->frag_idx = st->stepped_offset = 0; 3551 st->frag_data = NULL; 3552 st->frag_off = 0; 3553 } 3554 EXPORT_SYMBOL(skb_prepare_seq_read); 3555 3556 /** 3557 * skb_seq_read - Sequentially read skb data 3558 * @consumed: number of bytes consumed by the caller so far 3559 * @data: destination pointer for data to be returned 3560 * @st: state variable 3561 * 3562 * Reads a block of skb data at @consumed relative to the 3563 * lower offset specified to skb_prepare_seq_read(). Assigns 3564 * the head of the data block to @data and returns the length 3565 * of the block or 0 if the end of the skb data or the upper 3566 * offset has been reached. 3567 * 3568 * The caller is not required to consume all of the data 3569 * returned, i.e. @consumed is typically set to the number 3570 * of bytes already consumed and the next call to 3571 * skb_seq_read() will return the remaining part of the block. 3572 * 3573 * Note 1: The size of each block of data returned can be arbitrary, 3574 * this limitation is the cost for zerocopy sequential 3575 * reads of potentially non linear data. 3576 * 3577 * Note 2: Fragment lists within fragments are not implemented 3578 * at the moment, state->root_skb could be replaced with 3579 * a stack for this purpose. 3580 */ 3581 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3582 struct skb_seq_state *st) 3583 { 3584 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3585 skb_frag_t *frag; 3586 3587 if (unlikely(abs_offset >= st->upper_offset)) { 3588 if (st->frag_data) { 3589 kunmap_atomic(st->frag_data); 3590 st->frag_data = NULL; 3591 } 3592 return 0; 3593 } 3594 3595 next_skb: 3596 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3597 3598 if (abs_offset < block_limit && !st->frag_data) { 3599 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3600 return block_limit - abs_offset; 3601 } 3602 3603 if (st->frag_idx == 0 && !st->frag_data) 3604 st->stepped_offset += skb_headlen(st->cur_skb); 3605 3606 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3607 unsigned int pg_idx, pg_off, pg_sz; 3608 3609 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3610 3611 pg_idx = 0; 3612 pg_off = skb_frag_off(frag); 3613 pg_sz = skb_frag_size(frag); 3614 3615 if (skb_frag_must_loop(skb_frag_page(frag))) { 3616 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3617 pg_off = offset_in_page(pg_off + st->frag_off); 3618 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3619 PAGE_SIZE - pg_off); 3620 } 3621 3622 block_limit = pg_sz + st->stepped_offset; 3623 if (abs_offset < block_limit) { 3624 if (!st->frag_data) 3625 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3626 3627 *data = (u8 *)st->frag_data + pg_off + 3628 (abs_offset - st->stepped_offset); 3629 3630 return block_limit - abs_offset; 3631 } 3632 3633 if (st->frag_data) { 3634 kunmap_atomic(st->frag_data); 3635 st->frag_data = NULL; 3636 } 3637 3638 st->stepped_offset += pg_sz; 3639 st->frag_off += pg_sz; 3640 if (st->frag_off == skb_frag_size(frag)) { 3641 st->frag_off = 0; 3642 st->frag_idx++; 3643 } 3644 } 3645 3646 if (st->frag_data) { 3647 kunmap_atomic(st->frag_data); 3648 st->frag_data = NULL; 3649 } 3650 3651 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3652 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3653 st->frag_idx = 0; 3654 goto next_skb; 3655 } else if (st->cur_skb->next) { 3656 st->cur_skb = st->cur_skb->next; 3657 st->frag_idx = 0; 3658 goto next_skb; 3659 } 3660 3661 return 0; 3662 } 3663 EXPORT_SYMBOL(skb_seq_read); 3664 3665 /** 3666 * skb_abort_seq_read - Abort a sequential read of skb data 3667 * @st: state variable 3668 * 3669 * Must be called if skb_seq_read() was not called until it 3670 * returned 0. 3671 */ 3672 void skb_abort_seq_read(struct skb_seq_state *st) 3673 { 3674 if (st->frag_data) 3675 kunmap_atomic(st->frag_data); 3676 } 3677 EXPORT_SYMBOL(skb_abort_seq_read); 3678 3679 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3680 3681 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3682 struct ts_config *conf, 3683 struct ts_state *state) 3684 { 3685 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3686 } 3687 3688 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3689 { 3690 skb_abort_seq_read(TS_SKB_CB(state)); 3691 } 3692 3693 /** 3694 * skb_find_text - Find a text pattern in skb data 3695 * @skb: the buffer to look in 3696 * @from: search offset 3697 * @to: search limit 3698 * @config: textsearch configuration 3699 * 3700 * Finds a pattern in the skb data according to the specified 3701 * textsearch configuration. Use textsearch_next() to retrieve 3702 * subsequent occurrences of the pattern. Returns the offset 3703 * to the first occurrence or UINT_MAX if no match was found. 3704 */ 3705 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3706 unsigned int to, struct ts_config *config) 3707 { 3708 struct ts_state state; 3709 unsigned int ret; 3710 3711 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 3712 3713 config->get_next_block = skb_ts_get_next_block; 3714 config->finish = skb_ts_finish; 3715 3716 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3717 3718 ret = textsearch_find(config, &state); 3719 return (ret <= to - from ? ret : UINT_MAX); 3720 } 3721 EXPORT_SYMBOL(skb_find_text); 3722 3723 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3724 int offset, size_t size) 3725 { 3726 int i = skb_shinfo(skb)->nr_frags; 3727 3728 if (skb_can_coalesce(skb, i, page, offset)) { 3729 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3730 } else if (i < MAX_SKB_FRAGS) { 3731 get_page(page); 3732 skb_fill_page_desc(skb, i, page, offset, size); 3733 } else { 3734 return -EMSGSIZE; 3735 } 3736 3737 return 0; 3738 } 3739 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3740 3741 /** 3742 * skb_pull_rcsum - pull skb and update receive checksum 3743 * @skb: buffer to update 3744 * @len: length of data pulled 3745 * 3746 * This function performs an skb_pull on the packet and updates 3747 * the CHECKSUM_COMPLETE checksum. It should be used on 3748 * receive path processing instead of skb_pull unless you know 3749 * that the checksum difference is zero (e.g., a valid IP header) 3750 * or you are setting ip_summed to CHECKSUM_NONE. 3751 */ 3752 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3753 { 3754 unsigned char *data = skb->data; 3755 3756 BUG_ON(len > skb->len); 3757 __skb_pull(skb, len); 3758 skb_postpull_rcsum(skb, data, len); 3759 return skb->data; 3760 } 3761 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3762 3763 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3764 { 3765 skb_frag_t head_frag; 3766 struct page *page; 3767 3768 page = virt_to_head_page(frag_skb->head); 3769 __skb_frag_set_page(&head_frag, page); 3770 skb_frag_off_set(&head_frag, frag_skb->data - 3771 (unsigned char *)page_address(page)); 3772 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3773 return head_frag; 3774 } 3775 3776 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3777 netdev_features_t features, 3778 unsigned int offset) 3779 { 3780 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3781 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3782 unsigned int delta_truesize = 0; 3783 unsigned int delta_len = 0; 3784 struct sk_buff *tail = NULL; 3785 struct sk_buff *nskb, *tmp; 3786 int err; 3787 3788 skb_push(skb, -skb_network_offset(skb) + offset); 3789 3790 skb_shinfo(skb)->frag_list = NULL; 3791 3792 do { 3793 nskb = list_skb; 3794 list_skb = list_skb->next; 3795 3796 err = 0; 3797 if (skb_shared(nskb)) { 3798 tmp = skb_clone(nskb, GFP_ATOMIC); 3799 if (tmp) { 3800 consume_skb(nskb); 3801 nskb = tmp; 3802 err = skb_unclone(nskb, GFP_ATOMIC); 3803 } else { 3804 err = -ENOMEM; 3805 } 3806 } 3807 3808 if (!tail) 3809 skb->next = nskb; 3810 else 3811 tail->next = nskb; 3812 3813 if (unlikely(err)) { 3814 nskb->next = list_skb; 3815 goto err_linearize; 3816 } 3817 3818 tail = nskb; 3819 3820 delta_len += nskb->len; 3821 delta_truesize += nskb->truesize; 3822 3823 skb_push(nskb, -skb_network_offset(nskb) + offset); 3824 3825 skb_release_head_state(nskb); 3826 __copy_skb_header(nskb, skb); 3827 3828 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3829 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3830 nskb->data - tnl_hlen, 3831 offset + tnl_hlen); 3832 3833 if (skb_needs_linearize(nskb, features) && 3834 __skb_linearize(nskb)) 3835 goto err_linearize; 3836 3837 } while (list_skb); 3838 3839 skb->truesize = skb->truesize - delta_truesize; 3840 skb->data_len = skb->data_len - delta_len; 3841 skb->len = skb->len - delta_len; 3842 3843 skb_gso_reset(skb); 3844 3845 skb->prev = tail; 3846 3847 if (skb_needs_linearize(skb, features) && 3848 __skb_linearize(skb)) 3849 goto err_linearize; 3850 3851 skb_get(skb); 3852 3853 return skb; 3854 3855 err_linearize: 3856 kfree_skb_list(skb->next); 3857 skb->next = NULL; 3858 return ERR_PTR(-ENOMEM); 3859 } 3860 EXPORT_SYMBOL_GPL(skb_segment_list); 3861 3862 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb) 3863 { 3864 if (unlikely(p->len + skb->len >= 65536)) 3865 return -E2BIG; 3866 3867 if (NAPI_GRO_CB(p)->last == p) 3868 skb_shinfo(p)->frag_list = skb; 3869 else 3870 NAPI_GRO_CB(p)->last->next = skb; 3871 3872 skb_pull(skb, skb_gro_offset(skb)); 3873 3874 NAPI_GRO_CB(p)->last = skb; 3875 NAPI_GRO_CB(p)->count++; 3876 p->data_len += skb->len; 3877 p->truesize += skb->truesize; 3878 p->len += skb->len; 3879 3880 NAPI_GRO_CB(skb)->same_flow = 1; 3881 3882 return 0; 3883 } 3884 3885 /** 3886 * skb_segment - Perform protocol segmentation on skb. 3887 * @head_skb: buffer to segment 3888 * @features: features for the output path (see dev->features) 3889 * 3890 * This function performs segmentation on the given skb. It returns 3891 * a pointer to the first in a list of new skbs for the segments. 3892 * In case of error it returns ERR_PTR(err). 3893 */ 3894 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3895 netdev_features_t features) 3896 { 3897 struct sk_buff *segs = NULL; 3898 struct sk_buff *tail = NULL; 3899 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3900 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3901 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3902 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3903 struct sk_buff *frag_skb = head_skb; 3904 unsigned int offset = doffset; 3905 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3906 unsigned int partial_segs = 0; 3907 unsigned int headroom; 3908 unsigned int len = head_skb->len; 3909 __be16 proto; 3910 bool csum, sg; 3911 int nfrags = skb_shinfo(head_skb)->nr_frags; 3912 int err = -ENOMEM; 3913 int i = 0; 3914 int pos; 3915 3916 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 3917 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 3918 /* gso_size is untrusted, and we have a frag_list with a linear 3919 * non head_frag head. 3920 * 3921 * (we assume checking the first list_skb member suffices; 3922 * i.e if either of the list_skb members have non head_frag 3923 * head, then the first one has too). 3924 * 3925 * If head_skb's headlen does not fit requested gso_size, it 3926 * means that the frag_list members do NOT terminate on exact 3927 * gso_size boundaries. Hence we cannot perform skb_frag_t page 3928 * sharing. Therefore we must fallback to copying the frag_list 3929 * skbs; we do so by disabling SG. 3930 */ 3931 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 3932 features &= ~NETIF_F_SG; 3933 } 3934 3935 __skb_push(head_skb, doffset); 3936 proto = skb_network_protocol(head_skb, NULL); 3937 if (unlikely(!proto)) 3938 return ERR_PTR(-EINVAL); 3939 3940 sg = !!(features & NETIF_F_SG); 3941 csum = !!can_checksum_protocol(features, proto); 3942 3943 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3944 if (!(features & NETIF_F_GSO_PARTIAL)) { 3945 struct sk_buff *iter; 3946 unsigned int frag_len; 3947 3948 if (!list_skb || 3949 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3950 goto normal; 3951 3952 /* If we get here then all the required 3953 * GSO features except frag_list are supported. 3954 * Try to split the SKB to multiple GSO SKBs 3955 * with no frag_list. 3956 * Currently we can do that only when the buffers don't 3957 * have a linear part and all the buffers except 3958 * the last are of the same length. 3959 */ 3960 frag_len = list_skb->len; 3961 skb_walk_frags(head_skb, iter) { 3962 if (frag_len != iter->len && iter->next) 3963 goto normal; 3964 if (skb_headlen(iter) && !iter->head_frag) 3965 goto normal; 3966 3967 len -= iter->len; 3968 } 3969 3970 if (len != frag_len) 3971 goto normal; 3972 } 3973 3974 /* GSO partial only requires that we trim off any excess that 3975 * doesn't fit into an MSS sized block, so take care of that 3976 * now. 3977 */ 3978 partial_segs = len / mss; 3979 if (partial_segs > 1) 3980 mss *= partial_segs; 3981 else 3982 partial_segs = 0; 3983 } 3984 3985 normal: 3986 headroom = skb_headroom(head_skb); 3987 pos = skb_headlen(head_skb); 3988 3989 do { 3990 struct sk_buff *nskb; 3991 skb_frag_t *nskb_frag; 3992 int hsize; 3993 int size; 3994 3995 if (unlikely(mss == GSO_BY_FRAGS)) { 3996 len = list_skb->len; 3997 } else { 3998 len = head_skb->len - offset; 3999 if (len > mss) 4000 len = mss; 4001 } 4002 4003 hsize = skb_headlen(head_skb) - offset; 4004 4005 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4006 (skb_headlen(list_skb) == len || sg)) { 4007 BUG_ON(skb_headlen(list_skb) > len); 4008 4009 i = 0; 4010 nfrags = skb_shinfo(list_skb)->nr_frags; 4011 frag = skb_shinfo(list_skb)->frags; 4012 frag_skb = list_skb; 4013 pos += skb_headlen(list_skb); 4014 4015 while (pos < offset + len) { 4016 BUG_ON(i >= nfrags); 4017 4018 size = skb_frag_size(frag); 4019 if (pos + size > offset + len) 4020 break; 4021 4022 i++; 4023 pos += size; 4024 frag++; 4025 } 4026 4027 nskb = skb_clone(list_skb, GFP_ATOMIC); 4028 list_skb = list_skb->next; 4029 4030 if (unlikely(!nskb)) 4031 goto err; 4032 4033 if (unlikely(pskb_trim(nskb, len))) { 4034 kfree_skb(nskb); 4035 goto err; 4036 } 4037 4038 hsize = skb_end_offset(nskb); 4039 if (skb_cow_head(nskb, doffset + headroom)) { 4040 kfree_skb(nskb); 4041 goto err; 4042 } 4043 4044 nskb->truesize += skb_end_offset(nskb) - hsize; 4045 skb_release_head_state(nskb); 4046 __skb_push(nskb, doffset); 4047 } else { 4048 if (hsize < 0) 4049 hsize = 0; 4050 if (hsize > len || !sg) 4051 hsize = len; 4052 4053 nskb = __alloc_skb(hsize + doffset + headroom, 4054 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4055 NUMA_NO_NODE); 4056 4057 if (unlikely(!nskb)) 4058 goto err; 4059 4060 skb_reserve(nskb, headroom); 4061 __skb_put(nskb, doffset); 4062 } 4063 4064 if (segs) 4065 tail->next = nskb; 4066 else 4067 segs = nskb; 4068 tail = nskb; 4069 4070 __copy_skb_header(nskb, head_skb); 4071 4072 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4073 skb_reset_mac_len(nskb); 4074 4075 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4076 nskb->data - tnl_hlen, 4077 doffset + tnl_hlen); 4078 4079 if (nskb->len == len + doffset) 4080 goto perform_csum_check; 4081 4082 if (!sg) { 4083 if (!csum) { 4084 if (!nskb->remcsum_offload) 4085 nskb->ip_summed = CHECKSUM_NONE; 4086 SKB_GSO_CB(nskb)->csum = 4087 skb_copy_and_csum_bits(head_skb, offset, 4088 skb_put(nskb, 4089 len), 4090 len); 4091 SKB_GSO_CB(nskb)->csum_start = 4092 skb_headroom(nskb) + doffset; 4093 } else { 4094 skb_copy_bits(head_skb, offset, 4095 skb_put(nskb, len), 4096 len); 4097 } 4098 continue; 4099 } 4100 4101 nskb_frag = skb_shinfo(nskb)->frags; 4102 4103 skb_copy_from_linear_data_offset(head_skb, offset, 4104 skb_put(nskb, hsize), hsize); 4105 4106 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4107 SKBFL_SHARED_FRAG; 4108 4109 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4110 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4111 goto err; 4112 4113 while (pos < offset + len) { 4114 if (i >= nfrags) { 4115 i = 0; 4116 nfrags = skb_shinfo(list_skb)->nr_frags; 4117 frag = skb_shinfo(list_skb)->frags; 4118 frag_skb = list_skb; 4119 if (!skb_headlen(list_skb)) { 4120 BUG_ON(!nfrags); 4121 } else { 4122 BUG_ON(!list_skb->head_frag); 4123 4124 /* to make room for head_frag. */ 4125 i--; 4126 frag--; 4127 } 4128 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4129 skb_zerocopy_clone(nskb, frag_skb, 4130 GFP_ATOMIC)) 4131 goto err; 4132 4133 list_skb = list_skb->next; 4134 } 4135 4136 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4137 MAX_SKB_FRAGS)) { 4138 net_warn_ratelimited( 4139 "skb_segment: too many frags: %u %u\n", 4140 pos, mss); 4141 err = -EINVAL; 4142 goto err; 4143 } 4144 4145 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4146 __skb_frag_ref(nskb_frag); 4147 size = skb_frag_size(nskb_frag); 4148 4149 if (pos < offset) { 4150 skb_frag_off_add(nskb_frag, offset - pos); 4151 skb_frag_size_sub(nskb_frag, offset - pos); 4152 } 4153 4154 skb_shinfo(nskb)->nr_frags++; 4155 4156 if (pos + size <= offset + len) { 4157 i++; 4158 frag++; 4159 pos += size; 4160 } else { 4161 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4162 goto skip_fraglist; 4163 } 4164 4165 nskb_frag++; 4166 } 4167 4168 skip_fraglist: 4169 nskb->data_len = len - hsize; 4170 nskb->len += nskb->data_len; 4171 nskb->truesize += nskb->data_len; 4172 4173 perform_csum_check: 4174 if (!csum) { 4175 if (skb_has_shared_frag(nskb) && 4176 __skb_linearize(nskb)) 4177 goto err; 4178 4179 if (!nskb->remcsum_offload) 4180 nskb->ip_summed = CHECKSUM_NONE; 4181 SKB_GSO_CB(nskb)->csum = 4182 skb_checksum(nskb, doffset, 4183 nskb->len - doffset, 0); 4184 SKB_GSO_CB(nskb)->csum_start = 4185 skb_headroom(nskb) + doffset; 4186 } 4187 } while ((offset += len) < head_skb->len); 4188 4189 /* Some callers want to get the end of the list. 4190 * Put it in segs->prev to avoid walking the list. 4191 * (see validate_xmit_skb_list() for example) 4192 */ 4193 segs->prev = tail; 4194 4195 if (partial_segs) { 4196 struct sk_buff *iter; 4197 int type = skb_shinfo(head_skb)->gso_type; 4198 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4199 4200 /* Update type to add partial and then remove dodgy if set */ 4201 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4202 type &= ~SKB_GSO_DODGY; 4203 4204 /* Update GSO info and prepare to start updating headers on 4205 * our way back down the stack of protocols. 4206 */ 4207 for (iter = segs; iter; iter = iter->next) { 4208 skb_shinfo(iter)->gso_size = gso_size; 4209 skb_shinfo(iter)->gso_segs = partial_segs; 4210 skb_shinfo(iter)->gso_type = type; 4211 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4212 } 4213 4214 if (tail->len - doffset <= gso_size) 4215 skb_shinfo(tail)->gso_size = 0; 4216 else if (tail != segs) 4217 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4218 } 4219 4220 /* Following permits correct backpressure, for protocols 4221 * using skb_set_owner_w(). 4222 * Idea is to tranfert ownership from head_skb to last segment. 4223 */ 4224 if (head_skb->destructor == sock_wfree) { 4225 swap(tail->truesize, head_skb->truesize); 4226 swap(tail->destructor, head_skb->destructor); 4227 swap(tail->sk, head_skb->sk); 4228 } 4229 return segs; 4230 4231 err: 4232 kfree_skb_list(segs); 4233 return ERR_PTR(err); 4234 } 4235 EXPORT_SYMBOL_GPL(skb_segment); 4236 4237 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 4238 { 4239 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 4240 unsigned int offset = skb_gro_offset(skb); 4241 unsigned int headlen = skb_headlen(skb); 4242 unsigned int len = skb_gro_len(skb); 4243 unsigned int delta_truesize; 4244 struct sk_buff *lp; 4245 4246 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush)) 4247 return -E2BIG; 4248 4249 lp = NAPI_GRO_CB(p)->last; 4250 pinfo = skb_shinfo(lp); 4251 4252 if (headlen <= offset) { 4253 skb_frag_t *frag; 4254 skb_frag_t *frag2; 4255 int i = skbinfo->nr_frags; 4256 int nr_frags = pinfo->nr_frags + i; 4257 4258 if (nr_frags > MAX_SKB_FRAGS) 4259 goto merge; 4260 4261 offset -= headlen; 4262 pinfo->nr_frags = nr_frags; 4263 skbinfo->nr_frags = 0; 4264 4265 frag = pinfo->frags + nr_frags; 4266 frag2 = skbinfo->frags + i; 4267 do { 4268 *--frag = *--frag2; 4269 } while (--i); 4270 4271 skb_frag_off_add(frag, offset); 4272 skb_frag_size_sub(frag, offset); 4273 4274 /* all fragments truesize : remove (head size + sk_buff) */ 4275 delta_truesize = skb->truesize - 4276 SKB_TRUESIZE(skb_end_offset(skb)); 4277 4278 skb->truesize -= skb->data_len; 4279 skb->len -= skb->data_len; 4280 skb->data_len = 0; 4281 4282 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 4283 goto done; 4284 } else if (skb->head_frag) { 4285 int nr_frags = pinfo->nr_frags; 4286 skb_frag_t *frag = pinfo->frags + nr_frags; 4287 struct page *page = virt_to_head_page(skb->head); 4288 unsigned int first_size = headlen - offset; 4289 unsigned int first_offset; 4290 4291 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 4292 goto merge; 4293 4294 first_offset = skb->data - 4295 (unsigned char *)page_address(page) + 4296 offset; 4297 4298 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 4299 4300 __skb_frag_set_page(frag, page); 4301 skb_frag_off_set(frag, first_offset); 4302 skb_frag_size_set(frag, first_size); 4303 4304 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 4305 /* We dont need to clear skbinfo->nr_frags here */ 4306 4307 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4308 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 4309 goto done; 4310 } 4311 4312 merge: 4313 delta_truesize = skb->truesize; 4314 if (offset > headlen) { 4315 unsigned int eat = offset - headlen; 4316 4317 skb_frag_off_add(&skbinfo->frags[0], eat); 4318 skb_frag_size_sub(&skbinfo->frags[0], eat); 4319 skb->data_len -= eat; 4320 skb->len -= eat; 4321 offset = headlen; 4322 } 4323 4324 __skb_pull(skb, offset); 4325 4326 if (NAPI_GRO_CB(p)->last == p) 4327 skb_shinfo(p)->frag_list = skb; 4328 else 4329 NAPI_GRO_CB(p)->last->next = skb; 4330 NAPI_GRO_CB(p)->last = skb; 4331 __skb_header_release(skb); 4332 lp = p; 4333 4334 done: 4335 NAPI_GRO_CB(p)->count++; 4336 p->data_len += len; 4337 p->truesize += delta_truesize; 4338 p->len += len; 4339 if (lp != p) { 4340 lp->data_len += len; 4341 lp->truesize += delta_truesize; 4342 lp->len += len; 4343 } 4344 NAPI_GRO_CB(skb)->same_flow = 1; 4345 return 0; 4346 } 4347 4348 #ifdef CONFIG_SKB_EXTENSIONS 4349 #define SKB_EXT_ALIGN_VALUE 8 4350 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4351 4352 static const u8 skb_ext_type_len[] = { 4353 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4354 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4355 #endif 4356 #ifdef CONFIG_XFRM 4357 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4358 #endif 4359 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4360 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4361 #endif 4362 #if IS_ENABLED(CONFIG_MPTCP) 4363 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4364 #endif 4365 }; 4366 4367 static __always_inline unsigned int skb_ext_total_length(void) 4368 { 4369 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4370 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4371 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4372 #endif 4373 #ifdef CONFIG_XFRM 4374 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4375 #endif 4376 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4377 skb_ext_type_len[TC_SKB_EXT] + 4378 #endif 4379 #if IS_ENABLED(CONFIG_MPTCP) 4380 skb_ext_type_len[SKB_EXT_MPTCP] + 4381 #endif 4382 0; 4383 } 4384 4385 static void skb_extensions_init(void) 4386 { 4387 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4388 BUILD_BUG_ON(skb_ext_total_length() > 255); 4389 4390 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4391 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4392 0, 4393 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4394 NULL); 4395 } 4396 #else 4397 static void skb_extensions_init(void) {} 4398 #endif 4399 4400 void __init skb_init(void) 4401 { 4402 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4403 sizeof(struct sk_buff), 4404 0, 4405 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4406 offsetof(struct sk_buff, cb), 4407 sizeof_field(struct sk_buff, cb), 4408 NULL); 4409 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4410 sizeof(struct sk_buff_fclones), 4411 0, 4412 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4413 NULL); 4414 skb_extensions_init(); 4415 } 4416 4417 static int 4418 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4419 unsigned int recursion_level) 4420 { 4421 int start = skb_headlen(skb); 4422 int i, copy = start - offset; 4423 struct sk_buff *frag_iter; 4424 int elt = 0; 4425 4426 if (unlikely(recursion_level >= 24)) 4427 return -EMSGSIZE; 4428 4429 if (copy > 0) { 4430 if (copy > len) 4431 copy = len; 4432 sg_set_buf(sg, skb->data + offset, copy); 4433 elt++; 4434 if ((len -= copy) == 0) 4435 return elt; 4436 offset += copy; 4437 } 4438 4439 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4440 int end; 4441 4442 WARN_ON(start > offset + len); 4443 4444 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4445 if ((copy = end - offset) > 0) { 4446 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4447 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4448 return -EMSGSIZE; 4449 4450 if (copy > len) 4451 copy = len; 4452 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4453 skb_frag_off(frag) + offset - start); 4454 elt++; 4455 if (!(len -= copy)) 4456 return elt; 4457 offset += copy; 4458 } 4459 start = end; 4460 } 4461 4462 skb_walk_frags(skb, frag_iter) { 4463 int end, ret; 4464 4465 WARN_ON(start > offset + len); 4466 4467 end = start + frag_iter->len; 4468 if ((copy = end - offset) > 0) { 4469 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4470 return -EMSGSIZE; 4471 4472 if (copy > len) 4473 copy = len; 4474 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4475 copy, recursion_level + 1); 4476 if (unlikely(ret < 0)) 4477 return ret; 4478 elt += ret; 4479 if ((len -= copy) == 0) 4480 return elt; 4481 offset += copy; 4482 } 4483 start = end; 4484 } 4485 BUG_ON(len); 4486 return elt; 4487 } 4488 4489 /** 4490 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4491 * @skb: Socket buffer containing the buffers to be mapped 4492 * @sg: The scatter-gather list to map into 4493 * @offset: The offset into the buffer's contents to start mapping 4494 * @len: Length of buffer space to be mapped 4495 * 4496 * Fill the specified scatter-gather list with mappings/pointers into a 4497 * region of the buffer space attached to a socket buffer. Returns either 4498 * the number of scatterlist items used, or -EMSGSIZE if the contents 4499 * could not fit. 4500 */ 4501 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4502 { 4503 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4504 4505 if (nsg <= 0) 4506 return nsg; 4507 4508 sg_mark_end(&sg[nsg - 1]); 4509 4510 return nsg; 4511 } 4512 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4513 4514 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4515 * sglist without mark the sg which contain last skb data as the end. 4516 * So the caller can mannipulate sg list as will when padding new data after 4517 * the first call without calling sg_unmark_end to expend sg list. 4518 * 4519 * Scenario to use skb_to_sgvec_nomark: 4520 * 1. sg_init_table 4521 * 2. skb_to_sgvec_nomark(payload1) 4522 * 3. skb_to_sgvec_nomark(payload2) 4523 * 4524 * This is equivalent to: 4525 * 1. sg_init_table 4526 * 2. skb_to_sgvec(payload1) 4527 * 3. sg_unmark_end 4528 * 4. skb_to_sgvec(payload2) 4529 * 4530 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4531 * is more preferable. 4532 */ 4533 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4534 int offset, int len) 4535 { 4536 return __skb_to_sgvec(skb, sg, offset, len, 0); 4537 } 4538 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4539 4540 4541 4542 /** 4543 * skb_cow_data - Check that a socket buffer's data buffers are writable 4544 * @skb: The socket buffer to check. 4545 * @tailbits: Amount of trailing space to be added 4546 * @trailer: Returned pointer to the skb where the @tailbits space begins 4547 * 4548 * Make sure that the data buffers attached to a socket buffer are 4549 * writable. If they are not, private copies are made of the data buffers 4550 * and the socket buffer is set to use these instead. 4551 * 4552 * If @tailbits is given, make sure that there is space to write @tailbits 4553 * bytes of data beyond current end of socket buffer. @trailer will be 4554 * set to point to the skb in which this space begins. 4555 * 4556 * The number of scatterlist elements required to completely map the 4557 * COW'd and extended socket buffer will be returned. 4558 */ 4559 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4560 { 4561 int copyflag; 4562 int elt; 4563 struct sk_buff *skb1, **skb_p; 4564 4565 /* If skb is cloned or its head is paged, reallocate 4566 * head pulling out all the pages (pages are considered not writable 4567 * at the moment even if they are anonymous). 4568 */ 4569 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4570 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4571 return -ENOMEM; 4572 4573 /* Easy case. Most of packets will go this way. */ 4574 if (!skb_has_frag_list(skb)) { 4575 /* A little of trouble, not enough of space for trailer. 4576 * This should not happen, when stack is tuned to generate 4577 * good frames. OK, on miss we reallocate and reserve even more 4578 * space, 128 bytes is fair. */ 4579 4580 if (skb_tailroom(skb) < tailbits && 4581 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4582 return -ENOMEM; 4583 4584 /* Voila! */ 4585 *trailer = skb; 4586 return 1; 4587 } 4588 4589 /* Misery. We are in troubles, going to mincer fragments... */ 4590 4591 elt = 1; 4592 skb_p = &skb_shinfo(skb)->frag_list; 4593 copyflag = 0; 4594 4595 while ((skb1 = *skb_p) != NULL) { 4596 int ntail = 0; 4597 4598 /* The fragment is partially pulled by someone, 4599 * this can happen on input. Copy it and everything 4600 * after it. */ 4601 4602 if (skb_shared(skb1)) 4603 copyflag = 1; 4604 4605 /* If the skb is the last, worry about trailer. */ 4606 4607 if (skb1->next == NULL && tailbits) { 4608 if (skb_shinfo(skb1)->nr_frags || 4609 skb_has_frag_list(skb1) || 4610 skb_tailroom(skb1) < tailbits) 4611 ntail = tailbits + 128; 4612 } 4613 4614 if (copyflag || 4615 skb_cloned(skb1) || 4616 ntail || 4617 skb_shinfo(skb1)->nr_frags || 4618 skb_has_frag_list(skb1)) { 4619 struct sk_buff *skb2; 4620 4621 /* Fuck, we are miserable poor guys... */ 4622 if (ntail == 0) 4623 skb2 = skb_copy(skb1, GFP_ATOMIC); 4624 else 4625 skb2 = skb_copy_expand(skb1, 4626 skb_headroom(skb1), 4627 ntail, 4628 GFP_ATOMIC); 4629 if (unlikely(skb2 == NULL)) 4630 return -ENOMEM; 4631 4632 if (skb1->sk) 4633 skb_set_owner_w(skb2, skb1->sk); 4634 4635 /* Looking around. Are we still alive? 4636 * OK, link new skb, drop old one */ 4637 4638 skb2->next = skb1->next; 4639 *skb_p = skb2; 4640 kfree_skb(skb1); 4641 skb1 = skb2; 4642 } 4643 elt++; 4644 *trailer = skb1; 4645 skb_p = &skb1->next; 4646 } 4647 4648 return elt; 4649 } 4650 EXPORT_SYMBOL_GPL(skb_cow_data); 4651 4652 static void sock_rmem_free(struct sk_buff *skb) 4653 { 4654 struct sock *sk = skb->sk; 4655 4656 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4657 } 4658 4659 static void skb_set_err_queue(struct sk_buff *skb) 4660 { 4661 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4662 * So, it is safe to (mis)use it to mark skbs on the error queue. 4663 */ 4664 skb->pkt_type = PACKET_OUTGOING; 4665 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4666 } 4667 4668 /* 4669 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4670 */ 4671 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4672 { 4673 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4674 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4675 return -ENOMEM; 4676 4677 skb_orphan(skb); 4678 skb->sk = sk; 4679 skb->destructor = sock_rmem_free; 4680 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4681 skb_set_err_queue(skb); 4682 4683 /* before exiting rcu section, make sure dst is refcounted */ 4684 skb_dst_force(skb); 4685 4686 skb_queue_tail(&sk->sk_error_queue, skb); 4687 if (!sock_flag(sk, SOCK_DEAD)) 4688 sk_error_report(sk); 4689 return 0; 4690 } 4691 EXPORT_SYMBOL(sock_queue_err_skb); 4692 4693 static bool is_icmp_err_skb(const struct sk_buff *skb) 4694 { 4695 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4696 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4697 } 4698 4699 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4700 { 4701 struct sk_buff_head *q = &sk->sk_error_queue; 4702 struct sk_buff *skb, *skb_next = NULL; 4703 bool icmp_next = false; 4704 unsigned long flags; 4705 4706 spin_lock_irqsave(&q->lock, flags); 4707 skb = __skb_dequeue(q); 4708 if (skb && (skb_next = skb_peek(q))) { 4709 icmp_next = is_icmp_err_skb(skb_next); 4710 if (icmp_next) 4711 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4712 } 4713 spin_unlock_irqrestore(&q->lock, flags); 4714 4715 if (is_icmp_err_skb(skb) && !icmp_next) 4716 sk->sk_err = 0; 4717 4718 if (skb_next) 4719 sk_error_report(sk); 4720 4721 return skb; 4722 } 4723 EXPORT_SYMBOL(sock_dequeue_err_skb); 4724 4725 /** 4726 * skb_clone_sk - create clone of skb, and take reference to socket 4727 * @skb: the skb to clone 4728 * 4729 * This function creates a clone of a buffer that holds a reference on 4730 * sk_refcnt. Buffers created via this function are meant to be 4731 * returned using sock_queue_err_skb, or free via kfree_skb. 4732 * 4733 * When passing buffers allocated with this function to sock_queue_err_skb 4734 * it is necessary to wrap the call with sock_hold/sock_put in order to 4735 * prevent the socket from being released prior to being enqueued on 4736 * the sk_error_queue. 4737 */ 4738 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4739 { 4740 struct sock *sk = skb->sk; 4741 struct sk_buff *clone; 4742 4743 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4744 return NULL; 4745 4746 clone = skb_clone(skb, GFP_ATOMIC); 4747 if (!clone) { 4748 sock_put(sk); 4749 return NULL; 4750 } 4751 4752 clone->sk = sk; 4753 clone->destructor = sock_efree; 4754 4755 return clone; 4756 } 4757 EXPORT_SYMBOL(skb_clone_sk); 4758 4759 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4760 struct sock *sk, 4761 int tstype, 4762 bool opt_stats) 4763 { 4764 struct sock_exterr_skb *serr; 4765 int err; 4766 4767 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4768 4769 serr = SKB_EXT_ERR(skb); 4770 memset(serr, 0, sizeof(*serr)); 4771 serr->ee.ee_errno = ENOMSG; 4772 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4773 serr->ee.ee_info = tstype; 4774 serr->opt_stats = opt_stats; 4775 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4776 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4777 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4778 if (sk->sk_protocol == IPPROTO_TCP && 4779 sk->sk_type == SOCK_STREAM) 4780 serr->ee.ee_data -= sk->sk_tskey; 4781 } 4782 4783 err = sock_queue_err_skb(sk, skb); 4784 4785 if (err) 4786 kfree_skb(skb); 4787 } 4788 4789 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4790 { 4791 bool ret; 4792 4793 if (likely(sysctl_tstamp_allow_data || tsonly)) 4794 return true; 4795 4796 read_lock_bh(&sk->sk_callback_lock); 4797 ret = sk->sk_socket && sk->sk_socket->file && 4798 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4799 read_unlock_bh(&sk->sk_callback_lock); 4800 return ret; 4801 } 4802 4803 void skb_complete_tx_timestamp(struct sk_buff *skb, 4804 struct skb_shared_hwtstamps *hwtstamps) 4805 { 4806 struct sock *sk = skb->sk; 4807 4808 if (!skb_may_tx_timestamp(sk, false)) 4809 goto err; 4810 4811 /* Take a reference to prevent skb_orphan() from freeing the socket, 4812 * but only if the socket refcount is not zero. 4813 */ 4814 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4815 *skb_hwtstamps(skb) = *hwtstamps; 4816 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4817 sock_put(sk); 4818 return; 4819 } 4820 4821 err: 4822 kfree_skb(skb); 4823 } 4824 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4825 4826 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4827 const struct sk_buff *ack_skb, 4828 struct skb_shared_hwtstamps *hwtstamps, 4829 struct sock *sk, int tstype) 4830 { 4831 struct sk_buff *skb; 4832 bool tsonly, opt_stats = false; 4833 4834 if (!sk) 4835 return; 4836 4837 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4838 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4839 return; 4840 4841 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4842 if (!skb_may_tx_timestamp(sk, tsonly)) 4843 return; 4844 4845 if (tsonly) { 4846 #ifdef CONFIG_INET 4847 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4848 sk->sk_protocol == IPPROTO_TCP && 4849 sk->sk_type == SOCK_STREAM) { 4850 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 4851 ack_skb); 4852 opt_stats = true; 4853 } else 4854 #endif 4855 skb = alloc_skb(0, GFP_ATOMIC); 4856 } else { 4857 skb = skb_clone(orig_skb, GFP_ATOMIC); 4858 } 4859 if (!skb) 4860 return; 4861 4862 if (tsonly) { 4863 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4864 SKBTX_ANY_TSTAMP; 4865 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4866 } 4867 4868 if (hwtstamps) 4869 *skb_hwtstamps(skb) = *hwtstamps; 4870 else 4871 skb->tstamp = ktime_get_real(); 4872 4873 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4874 } 4875 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4876 4877 void skb_tstamp_tx(struct sk_buff *orig_skb, 4878 struct skb_shared_hwtstamps *hwtstamps) 4879 { 4880 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 4881 SCM_TSTAMP_SND); 4882 } 4883 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4884 4885 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4886 { 4887 struct sock *sk = skb->sk; 4888 struct sock_exterr_skb *serr; 4889 int err = 1; 4890 4891 skb->wifi_acked_valid = 1; 4892 skb->wifi_acked = acked; 4893 4894 serr = SKB_EXT_ERR(skb); 4895 memset(serr, 0, sizeof(*serr)); 4896 serr->ee.ee_errno = ENOMSG; 4897 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4898 4899 /* Take a reference to prevent skb_orphan() from freeing the socket, 4900 * but only if the socket refcount is not zero. 4901 */ 4902 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4903 err = sock_queue_err_skb(sk, skb); 4904 sock_put(sk); 4905 } 4906 if (err) 4907 kfree_skb(skb); 4908 } 4909 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4910 4911 /** 4912 * skb_partial_csum_set - set up and verify partial csum values for packet 4913 * @skb: the skb to set 4914 * @start: the number of bytes after skb->data to start checksumming. 4915 * @off: the offset from start to place the checksum. 4916 * 4917 * For untrusted partially-checksummed packets, we need to make sure the values 4918 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4919 * 4920 * This function checks and sets those values and skb->ip_summed: if this 4921 * returns false you should drop the packet. 4922 */ 4923 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4924 { 4925 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4926 u32 csum_start = skb_headroom(skb) + (u32)start; 4927 4928 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4929 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4930 start, off, skb_headroom(skb), skb_headlen(skb)); 4931 return false; 4932 } 4933 skb->ip_summed = CHECKSUM_PARTIAL; 4934 skb->csum_start = csum_start; 4935 skb->csum_offset = off; 4936 skb_set_transport_header(skb, start); 4937 return true; 4938 } 4939 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4940 4941 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4942 unsigned int max) 4943 { 4944 if (skb_headlen(skb) >= len) 4945 return 0; 4946 4947 /* If we need to pullup then pullup to the max, so we 4948 * won't need to do it again. 4949 */ 4950 if (max > skb->len) 4951 max = skb->len; 4952 4953 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4954 return -ENOMEM; 4955 4956 if (skb_headlen(skb) < len) 4957 return -EPROTO; 4958 4959 return 0; 4960 } 4961 4962 #define MAX_TCP_HDR_LEN (15 * 4) 4963 4964 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4965 typeof(IPPROTO_IP) proto, 4966 unsigned int off) 4967 { 4968 int err; 4969 4970 switch (proto) { 4971 case IPPROTO_TCP: 4972 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4973 off + MAX_TCP_HDR_LEN); 4974 if (!err && !skb_partial_csum_set(skb, off, 4975 offsetof(struct tcphdr, 4976 check))) 4977 err = -EPROTO; 4978 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4979 4980 case IPPROTO_UDP: 4981 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4982 off + sizeof(struct udphdr)); 4983 if (!err && !skb_partial_csum_set(skb, off, 4984 offsetof(struct udphdr, 4985 check))) 4986 err = -EPROTO; 4987 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4988 } 4989 4990 return ERR_PTR(-EPROTO); 4991 } 4992 4993 /* This value should be large enough to cover a tagged ethernet header plus 4994 * maximally sized IP and TCP or UDP headers. 4995 */ 4996 #define MAX_IP_HDR_LEN 128 4997 4998 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4999 { 5000 unsigned int off; 5001 bool fragment; 5002 __sum16 *csum; 5003 int err; 5004 5005 fragment = false; 5006 5007 err = skb_maybe_pull_tail(skb, 5008 sizeof(struct iphdr), 5009 MAX_IP_HDR_LEN); 5010 if (err < 0) 5011 goto out; 5012 5013 if (ip_is_fragment(ip_hdr(skb))) 5014 fragment = true; 5015 5016 off = ip_hdrlen(skb); 5017 5018 err = -EPROTO; 5019 5020 if (fragment) 5021 goto out; 5022 5023 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5024 if (IS_ERR(csum)) 5025 return PTR_ERR(csum); 5026 5027 if (recalculate) 5028 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5029 ip_hdr(skb)->daddr, 5030 skb->len - off, 5031 ip_hdr(skb)->protocol, 0); 5032 err = 0; 5033 5034 out: 5035 return err; 5036 } 5037 5038 /* This value should be large enough to cover a tagged ethernet header plus 5039 * an IPv6 header, all options, and a maximal TCP or UDP header. 5040 */ 5041 #define MAX_IPV6_HDR_LEN 256 5042 5043 #define OPT_HDR(type, skb, off) \ 5044 (type *)(skb_network_header(skb) + (off)) 5045 5046 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5047 { 5048 int err; 5049 u8 nexthdr; 5050 unsigned int off; 5051 unsigned int len; 5052 bool fragment; 5053 bool done; 5054 __sum16 *csum; 5055 5056 fragment = false; 5057 done = false; 5058 5059 off = sizeof(struct ipv6hdr); 5060 5061 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5062 if (err < 0) 5063 goto out; 5064 5065 nexthdr = ipv6_hdr(skb)->nexthdr; 5066 5067 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5068 while (off <= len && !done) { 5069 switch (nexthdr) { 5070 case IPPROTO_DSTOPTS: 5071 case IPPROTO_HOPOPTS: 5072 case IPPROTO_ROUTING: { 5073 struct ipv6_opt_hdr *hp; 5074 5075 err = skb_maybe_pull_tail(skb, 5076 off + 5077 sizeof(struct ipv6_opt_hdr), 5078 MAX_IPV6_HDR_LEN); 5079 if (err < 0) 5080 goto out; 5081 5082 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5083 nexthdr = hp->nexthdr; 5084 off += ipv6_optlen(hp); 5085 break; 5086 } 5087 case IPPROTO_AH: { 5088 struct ip_auth_hdr *hp; 5089 5090 err = skb_maybe_pull_tail(skb, 5091 off + 5092 sizeof(struct ip_auth_hdr), 5093 MAX_IPV6_HDR_LEN); 5094 if (err < 0) 5095 goto out; 5096 5097 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5098 nexthdr = hp->nexthdr; 5099 off += ipv6_authlen(hp); 5100 break; 5101 } 5102 case IPPROTO_FRAGMENT: { 5103 struct frag_hdr *hp; 5104 5105 err = skb_maybe_pull_tail(skb, 5106 off + 5107 sizeof(struct frag_hdr), 5108 MAX_IPV6_HDR_LEN); 5109 if (err < 0) 5110 goto out; 5111 5112 hp = OPT_HDR(struct frag_hdr, skb, off); 5113 5114 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5115 fragment = true; 5116 5117 nexthdr = hp->nexthdr; 5118 off += sizeof(struct frag_hdr); 5119 break; 5120 } 5121 default: 5122 done = true; 5123 break; 5124 } 5125 } 5126 5127 err = -EPROTO; 5128 5129 if (!done || fragment) 5130 goto out; 5131 5132 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5133 if (IS_ERR(csum)) 5134 return PTR_ERR(csum); 5135 5136 if (recalculate) 5137 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5138 &ipv6_hdr(skb)->daddr, 5139 skb->len - off, nexthdr, 0); 5140 err = 0; 5141 5142 out: 5143 return err; 5144 } 5145 5146 /** 5147 * skb_checksum_setup - set up partial checksum offset 5148 * @skb: the skb to set up 5149 * @recalculate: if true the pseudo-header checksum will be recalculated 5150 */ 5151 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5152 { 5153 int err; 5154 5155 switch (skb->protocol) { 5156 case htons(ETH_P_IP): 5157 err = skb_checksum_setup_ipv4(skb, recalculate); 5158 break; 5159 5160 case htons(ETH_P_IPV6): 5161 err = skb_checksum_setup_ipv6(skb, recalculate); 5162 break; 5163 5164 default: 5165 err = -EPROTO; 5166 break; 5167 } 5168 5169 return err; 5170 } 5171 EXPORT_SYMBOL(skb_checksum_setup); 5172 5173 /** 5174 * skb_checksum_maybe_trim - maybe trims the given skb 5175 * @skb: the skb to check 5176 * @transport_len: the data length beyond the network header 5177 * 5178 * Checks whether the given skb has data beyond the given transport length. 5179 * If so, returns a cloned skb trimmed to this transport length. 5180 * Otherwise returns the provided skb. Returns NULL in error cases 5181 * (e.g. transport_len exceeds skb length or out-of-memory). 5182 * 5183 * Caller needs to set the skb transport header and free any returned skb if it 5184 * differs from the provided skb. 5185 */ 5186 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5187 unsigned int transport_len) 5188 { 5189 struct sk_buff *skb_chk; 5190 unsigned int len = skb_transport_offset(skb) + transport_len; 5191 int ret; 5192 5193 if (skb->len < len) 5194 return NULL; 5195 else if (skb->len == len) 5196 return skb; 5197 5198 skb_chk = skb_clone(skb, GFP_ATOMIC); 5199 if (!skb_chk) 5200 return NULL; 5201 5202 ret = pskb_trim_rcsum(skb_chk, len); 5203 if (ret) { 5204 kfree_skb(skb_chk); 5205 return NULL; 5206 } 5207 5208 return skb_chk; 5209 } 5210 5211 /** 5212 * skb_checksum_trimmed - validate checksum of an skb 5213 * @skb: the skb to check 5214 * @transport_len: the data length beyond the network header 5215 * @skb_chkf: checksum function to use 5216 * 5217 * Applies the given checksum function skb_chkf to the provided skb. 5218 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5219 * 5220 * If the skb has data beyond the given transport length, then a 5221 * trimmed & cloned skb is checked and returned. 5222 * 5223 * Caller needs to set the skb transport header and free any returned skb if it 5224 * differs from the provided skb. 5225 */ 5226 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5227 unsigned int transport_len, 5228 __sum16(*skb_chkf)(struct sk_buff *skb)) 5229 { 5230 struct sk_buff *skb_chk; 5231 unsigned int offset = skb_transport_offset(skb); 5232 __sum16 ret; 5233 5234 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5235 if (!skb_chk) 5236 goto err; 5237 5238 if (!pskb_may_pull(skb_chk, offset)) 5239 goto err; 5240 5241 skb_pull_rcsum(skb_chk, offset); 5242 ret = skb_chkf(skb_chk); 5243 skb_push_rcsum(skb_chk, offset); 5244 5245 if (ret) 5246 goto err; 5247 5248 return skb_chk; 5249 5250 err: 5251 if (skb_chk && skb_chk != skb) 5252 kfree_skb(skb_chk); 5253 5254 return NULL; 5255 5256 } 5257 EXPORT_SYMBOL(skb_checksum_trimmed); 5258 5259 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5260 { 5261 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5262 skb->dev->name); 5263 } 5264 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5265 5266 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5267 { 5268 if (head_stolen) { 5269 skb_release_head_state(skb); 5270 kmem_cache_free(skbuff_head_cache, skb); 5271 } else { 5272 __kfree_skb(skb); 5273 } 5274 } 5275 EXPORT_SYMBOL(kfree_skb_partial); 5276 5277 /** 5278 * skb_try_coalesce - try to merge skb to prior one 5279 * @to: prior buffer 5280 * @from: buffer to add 5281 * @fragstolen: pointer to boolean 5282 * @delta_truesize: how much more was allocated than was requested 5283 */ 5284 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5285 bool *fragstolen, int *delta_truesize) 5286 { 5287 struct skb_shared_info *to_shinfo, *from_shinfo; 5288 int i, delta, len = from->len; 5289 5290 *fragstolen = false; 5291 5292 if (skb_cloned(to)) 5293 return false; 5294 5295 /* The page pool signature of struct page will eventually figure out 5296 * which pages can be recycled or not but for now let's prohibit slab 5297 * allocated and page_pool allocated SKBs from being coalesced. 5298 */ 5299 if (to->pp_recycle != from->pp_recycle) 5300 return false; 5301 5302 if (len <= skb_tailroom(to)) { 5303 if (len) 5304 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5305 *delta_truesize = 0; 5306 return true; 5307 } 5308 5309 to_shinfo = skb_shinfo(to); 5310 from_shinfo = skb_shinfo(from); 5311 if (to_shinfo->frag_list || from_shinfo->frag_list) 5312 return false; 5313 if (skb_zcopy(to) || skb_zcopy(from)) 5314 return false; 5315 5316 if (skb_headlen(from) != 0) { 5317 struct page *page; 5318 unsigned int offset; 5319 5320 if (to_shinfo->nr_frags + 5321 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5322 return false; 5323 5324 if (skb_head_is_locked(from)) 5325 return false; 5326 5327 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5328 5329 page = virt_to_head_page(from->head); 5330 offset = from->data - (unsigned char *)page_address(page); 5331 5332 skb_fill_page_desc(to, to_shinfo->nr_frags, 5333 page, offset, skb_headlen(from)); 5334 *fragstolen = true; 5335 } else { 5336 if (to_shinfo->nr_frags + 5337 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5338 return false; 5339 5340 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5341 } 5342 5343 WARN_ON_ONCE(delta < len); 5344 5345 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5346 from_shinfo->frags, 5347 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5348 to_shinfo->nr_frags += from_shinfo->nr_frags; 5349 5350 if (!skb_cloned(from)) 5351 from_shinfo->nr_frags = 0; 5352 5353 /* if the skb is not cloned this does nothing 5354 * since we set nr_frags to 0. 5355 */ 5356 for (i = 0; i < from_shinfo->nr_frags; i++) 5357 __skb_frag_ref(&from_shinfo->frags[i]); 5358 5359 to->truesize += delta; 5360 to->len += len; 5361 to->data_len += len; 5362 5363 *delta_truesize = delta; 5364 return true; 5365 } 5366 EXPORT_SYMBOL(skb_try_coalesce); 5367 5368 /** 5369 * skb_scrub_packet - scrub an skb 5370 * 5371 * @skb: buffer to clean 5372 * @xnet: packet is crossing netns 5373 * 5374 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5375 * into/from a tunnel. Some information have to be cleared during these 5376 * operations. 5377 * skb_scrub_packet can also be used to clean a skb before injecting it in 5378 * another namespace (@xnet == true). We have to clear all information in the 5379 * skb that could impact namespace isolation. 5380 */ 5381 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5382 { 5383 skb->pkt_type = PACKET_HOST; 5384 skb->skb_iif = 0; 5385 skb->ignore_df = 0; 5386 skb_dst_drop(skb); 5387 skb_ext_reset(skb); 5388 nf_reset_ct(skb); 5389 nf_reset_trace(skb); 5390 5391 #ifdef CONFIG_NET_SWITCHDEV 5392 skb->offload_fwd_mark = 0; 5393 skb->offload_l3_fwd_mark = 0; 5394 #endif 5395 5396 if (!xnet) 5397 return; 5398 5399 ipvs_reset(skb); 5400 skb->mark = 0; 5401 skb->tstamp = 0; 5402 } 5403 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5404 5405 /** 5406 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5407 * 5408 * @skb: GSO skb 5409 * 5410 * skb_gso_transport_seglen is used to determine the real size of the 5411 * individual segments, including Layer4 headers (TCP/UDP). 5412 * 5413 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5414 */ 5415 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5416 { 5417 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5418 unsigned int thlen = 0; 5419 5420 if (skb->encapsulation) { 5421 thlen = skb_inner_transport_header(skb) - 5422 skb_transport_header(skb); 5423 5424 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5425 thlen += inner_tcp_hdrlen(skb); 5426 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5427 thlen = tcp_hdrlen(skb); 5428 } else if (unlikely(skb_is_gso_sctp(skb))) { 5429 thlen = sizeof(struct sctphdr); 5430 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5431 thlen = sizeof(struct udphdr); 5432 } 5433 /* UFO sets gso_size to the size of the fragmentation 5434 * payload, i.e. the size of the L4 (UDP) header is already 5435 * accounted for. 5436 */ 5437 return thlen + shinfo->gso_size; 5438 } 5439 5440 /** 5441 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5442 * 5443 * @skb: GSO skb 5444 * 5445 * skb_gso_network_seglen is used to determine the real size of the 5446 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5447 * 5448 * The MAC/L2 header is not accounted for. 5449 */ 5450 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5451 { 5452 unsigned int hdr_len = skb_transport_header(skb) - 5453 skb_network_header(skb); 5454 5455 return hdr_len + skb_gso_transport_seglen(skb); 5456 } 5457 5458 /** 5459 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5460 * 5461 * @skb: GSO skb 5462 * 5463 * skb_gso_mac_seglen is used to determine the real size of the 5464 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5465 * headers (TCP/UDP). 5466 */ 5467 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5468 { 5469 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5470 5471 return hdr_len + skb_gso_transport_seglen(skb); 5472 } 5473 5474 /** 5475 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5476 * 5477 * There are a couple of instances where we have a GSO skb, and we 5478 * want to determine what size it would be after it is segmented. 5479 * 5480 * We might want to check: 5481 * - L3+L4+payload size (e.g. IP forwarding) 5482 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5483 * 5484 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5485 * 5486 * @skb: GSO skb 5487 * 5488 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5489 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5490 * 5491 * @max_len: The maximum permissible length. 5492 * 5493 * Returns true if the segmented length <= max length. 5494 */ 5495 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5496 unsigned int seg_len, 5497 unsigned int max_len) { 5498 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5499 const struct sk_buff *iter; 5500 5501 if (shinfo->gso_size != GSO_BY_FRAGS) 5502 return seg_len <= max_len; 5503 5504 /* Undo this so we can re-use header sizes */ 5505 seg_len -= GSO_BY_FRAGS; 5506 5507 skb_walk_frags(skb, iter) { 5508 if (seg_len + skb_headlen(iter) > max_len) 5509 return false; 5510 } 5511 5512 return true; 5513 } 5514 5515 /** 5516 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5517 * 5518 * @skb: GSO skb 5519 * @mtu: MTU to validate against 5520 * 5521 * skb_gso_validate_network_len validates if a given skb will fit a 5522 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5523 * payload. 5524 */ 5525 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5526 { 5527 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5528 } 5529 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5530 5531 /** 5532 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5533 * 5534 * @skb: GSO skb 5535 * @len: length to validate against 5536 * 5537 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5538 * length once split, including L2, L3 and L4 headers and the payload. 5539 */ 5540 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5541 { 5542 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5543 } 5544 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5545 5546 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5547 { 5548 int mac_len, meta_len; 5549 void *meta; 5550 5551 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5552 kfree_skb(skb); 5553 return NULL; 5554 } 5555 5556 mac_len = skb->data - skb_mac_header(skb); 5557 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5558 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5559 mac_len - VLAN_HLEN - ETH_TLEN); 5560 } 5561 5562 meta_len = skb_metadata_len(skb); 5563 if (meta_len) { 5564 meta = skb_metadata_end(skb) - meta_len; 5565 memmove(meta + VLAN_HLEN, meta, meta_len); 5566 } 5567 5568 skb->mac_header += VLAN_HLEN; 5569 return skb; 5570 } 5571 5572 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5573 { 5574 struct vlan_hdr *vhdr; 5575 u16 vlan_tci; 5576 5577 if (unlikely(skb_vlan_tag_present(skb))) { 5578 /* vlan_tci is already set-up so leave this for another time */ 5579 return skb; 5580 } 5581 5582 skb = skb_share_check(skb, GFP_ATOMIC); 5583 if (unlikely(!skb)) 5584 goto err_free; 5585 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5586 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5587 goto err_free; 5588 5589 vhdr = (struct vlan_hdr *)skb->data; 5590 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5591 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5592 5593 skb_pull_rcsum(skb, VLAN_HLEN); 5594 vlan_set_encap_proto(skb, vhdr); 5595 5596 skb = skb_reorder_vlan_header(skb); 5597 if (unlikely(!skb)) 5598 goto err_free; 5599 5600 skb_reset_network_header(skb); 5601 if (!skb_transport_header_was_set(skb)) 5602 skb_reset_transport_header(skb); 5603 skb_reset_mac_len(skb); 5604 5605 return skb; 5606 5607 err_free: 5608 kfree_skb(skb); 5609 return NULL; 5610 } 5611 EXPORT_SYMBOL(skb_vlan_untag); 5612 5613 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5614 { 5615 if (!pskb_may_pull(skb, write_len)) 5616 return -ENOMEM; 5617 5618 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5619 return 0; 5620 5621 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5622 } 5623 EXPORT_SYMBOL(skb_ensure_writable); 5624 5625 /* remove VLAN header from packet and update csum accordingly. 5626 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5627 */ 5628 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5629 { 5630 struct vlan_hdr *vhdr; 5631 int offset = skb->data - skb_mac_header(skb); 5632 int err; 5633 5634 if (WARN_ONCE(offset, 5635 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5636 offset)) { 5637 return -EINVAL; 5638 } 5639 5640 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5641 if (unlikely(err)) 5642 return err; 5643 5644 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5645 5646 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5647 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5648 5649 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5650 __skb_pull(skb, VLAN_HLEN); 5651 5652 vlan_set_encap_proto(skb, vhdr); 5653 skb->mac_header += VLAN_HLEN; 5654 5655 if (skb_network_offset(skb) < ETH_HLEN) 5656 skb_set_network_header(skb, ETH_HLEN); 5657 5658 skb_reset_mac_len(skb); 5659 5660 return err; 5661 } 5662 EXPORT_SYMBOL(__skb_vlan_pop); 5663 5664 /* Pop a vlan tag either from hwaccel or from payload. 5665 * Expects skb->data at mac header. 5666 */ 5667 int skb_vlan_pop(struct sk_buff *skb) 5668 { 5669 u16 vlan_tci; 5670 __be16 vlan_proto; 5671 int err; 5672 5673 if (likely(skb_vlan_tag_present(skb))) { 5674 __vlan_hwaccel_clear_tag(skb); 5675 } else { 5676 if (unlikely(!eth_type_vlan(skb->protocol))) 5677 return 0; 5678 5679 err = __skb_vlan_pop(skb, &vlan_tci); 5680 if (err) 5681 return err; 5682 } 5683 /* move next vlan tag to hw accel tag */ 5684 if (likely(!eth_type_vlan(skb->protocol))) 5685 return 0; 5686 5687 vlan_proto = skb->protocol; 5688 err = __skb_vlan_pop(skb, &vlan_tci); 5689 if (unlikely(err)) 5690 return err; 5691 5692 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5693 return 0; 5694 } 5695 EXPORT_SYMBOL(skb_vlan_pop); 5696 5697 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5698 * Expects skb->data at mac header. 5699 */ 5700 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5701 { 5702 if (skb_vlan_tag_present(skb)) { 5703 int offset = skb->data - skb_mac_header(skb); 5704 int err; 5705 5706 if (WARN_ONCE(offset, 5707 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5708 offset)) { 5709 return -EINVAL; 5710 } 5711 5712 err = __vlan_insert_tag(skb, skb->vlan_proto, 5713 skb_vlan_tag_get(skb)); 5714 if (err) 5715 return err; 5716 5717 skb->protocol = skb->vlan_proto; 5718 skb->mac_len += VLAN_HLEN; 5719 5720 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5721 } 5722 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5723 return 0; 5724 } 5725 EXPORT_SYMBOL(skb_vlan_push); 5726 5727 /** 5728 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5729 * 5730 * @skb: Socket buffer to modify 5731 * 5732 * Drop the Ethernet header of @skb. 5733 * 5734 * Expects that skb->data points to the mac header and that no VLAN tags are 5735 * present. 5736 * 5737 * Returns 0 on success, -errno otherwise. 5738 */ 5739 int skb_eth_pop(struct sk_buff *skb) 5740 { 5741 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5742 skb_network_offset(skb) < ETH_HLEN) 5743 return -EPROTO; 5744 5745 skb_pull_rcsum(skb, ETH_HLEN); 5746 skb_reset_mac_header(skb); 5747 skb_reset_mac_len(skb); 5748 5749 return 0; 5750 } 5751 EXPORT_SYMBOL(skb_eth_pop); 5752 5753 /** 5754 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5755 * 5756 * @skb: Socket buffer to modify 5757 * @dst: Destination MAC address of the new header 5758 * @src: Source MAC address of the new header 5759 * 5760 * Prepend @skb with a new Ethernet header. 5761 * 5762 * Expects that skb->data points to the mac header, which must be empty. 5763 * 5764 * Returns 0 on success, -errno otherwise. 5765 */ 5766 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5767 const unsigned char *src) 5768 { 5769 struct ethhdr *eth; 5770 int err; 5771 5772 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5773 return -EPROTO; 5774 5775 err = skb_cow_head(skb, sizeof(*eth)); 5776 if (err < 0) 5777 return err; 5778 5779 skb_push(skb, sizeof(*eth)); 5780 skb_reset_mac_header(skb); 5781 skb_reset_mac_len(skb); 5782 5783 eth = eth_hdr(skb); 5784 ether_addr_copy(eth->h_dest, dst); 5785 ether_addr_copy(eth->h_source, src); 5786 eth->h_proto = skb->protocol; 5787 5788 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5789 5790 return 0; 5791 } 5792 EXPORT_SYMBOL(skb_eth_push); 5793 5794 /* Update the ethertype of hdr and the skb csum value if required. */ 5795 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5796 __be16 ethertype) 5797 { 5798 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5799 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5800 5801 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5802 } 5803 5804 hdr->h_proto = ethertype; 5805 } 5806 5807 /** 5808 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5809 * the packet 5810 * 5811 * @skb: buffer 5812 * @mpls_lse: MPLS label stack entry to push 5813 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5814 * @mac_len: length of the MAC header 5815 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5816 * ethernet 5817 * 5818 * Expects skb->data at mac header. 5819 * 5820 * Returns 0 on success, -errno otherwise. 5821 */ 5822 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5823 int mac_len, bool ethernet) 5824 { 5825 struct mpls_shim_hdr *lse; 5826 int err; 5827 5828 if (unlikely(!eth_p_mpls(mpls_proto))) 5829 return -EINVAL; 5830 5831 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5832 if (skb->encapsulation) 5833 return -EINVAL; 5834 5835 err = skb_cow_head(skb, MPLS_HLEN); 5836 if (unlikely(err)) 5837 return err; 5838 5839 if (!skb->inner_protocol) { 5840 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5841 skb_set_inner_protocol(skb, skb->protocol); 5842 } 5843 5844 skb_push(skb, MPLS_HLEN); 5845 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5846 mac_len); 5847 skb_reset_mac_header(skb); 5848 skb_set_network_header(skb, mac_len); 5849 skb_reset_mac_len(skb); 5850 5851 lse = mpls_hdr(skb); 5852 lse->label_stack_entry = mpls_lse; 5853 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5854 5855 if (ethernet && mac_len >= ETH_HLEN) 5856 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5857 skb->protocol = mpls_proto; 5858 5859 return 0; 5860 } 5861 EXPORT_SYMBOL_GPL(skb_mpls_push); 5862 5863 /** 5864 * skb_mpls_pop() - pop the outermost MPLS header 5865 * 5866 * @skb: buffer 5867 * @next_proto: ethertype of header after popped MPLS header 5868 * @mac_len: length of the MAC header 5869 * @ethernet: flag to indicate if the packet is ethernet 5870 * 5871 * Expects skb->data at mac header. 5872 * 5873 * Returns 0 on success, -errno otherwise. 5874 */ 5875 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5876 bool ethernet) 5877 { 5878 int err; 5879 5880 if (unlikely(!eth_p_mpls(skb->protocol))) 5881 return 0; 5882 5883 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5884 if (unlikely(err)) 5885 return err; 5886 5887 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5888 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5889 mac_len); 5890 5891 __skb_pull(skb, MPLS_HLEN); 5892 skb_reset_mac_header(skb); 5893 skb_set_network_header(skb, mac_len); 5894 5895 if (ethernet && mac_len >= ETH_HLEN) { 5896 struct ethhdr *hdr; 5897 5898 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5899 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5900 skb_mod_eth_type(skb, hdr, next_proto); 5901 } 5902 skb->protocol = next_proto; 5903 5904 return 0; 5905 } 5906 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5907 5908 /** 5909 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5910 * 5911 * @skb: buffer 5912 * @mpls_lse: new MPLS label stack entry to update to 5913 * 5914 * Expects skb->data at mac header. 5915 * 5916 * Returns 0 on success, -errno otherwise. 5917 */ 5918 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5919 { 5920 int err; 5921 5922 if (unlikely(!eth_p_mpls(skb->protocol))) 5923 return -EINVAL; 5924 5925 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5926 if (unlikely(err)) 5927 return err; 5928 5929 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5930 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5931 5932 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5933 } 5934 5935 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5936 5937 return 0; 5938 } 5939 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5940 5941 /** 5942 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5943 * 5944 * @skb: buffer 5945 * 5946 * Expects skb->data at mac header. 5947 * 5948 * Returns 0 on success, -errno otherwise. 5949 */ 5950 int skb_mpls_dec_ttl(struct sk_buff *skb) 5951 { 5952 u32 lse; 5953 u8 ttl; 5954 5955 if (unlikely(!eth_p_mpls(skb->protocol))) 5956 return -EINVAL; 5957 5958 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 5959 return -ENOMEM; 5960 5961 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5962 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5963 if (!--ttl) 5964 return -EINVAL; 5965 5966 lse &= ~MPLS_LS_TTL_MASK; 5967 lse |= ttl << MPLS_LS_TTL_SHIFT; 5968 5969 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5970 } 5971 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5972 5973 /** 5974 * alloc_skb_with_frags - allocate skb with page frags 5975 * 5976 * @header_len: size of linear part 5977 * @data_len: needed length in frags 5978 * @max_page_order: max page order desired. 5979 * @errcode: pointer to error code if any 5980 * @gfp_mask: allocation mask 5981 * 5982 * This can be used to allocate a paged skb, given a maximal order for frags. 5983 */ 5984 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5985 unsigned long data_len, 5986 int max_page_order, 5987 int *errcode, 5988 gfp_t gfp_mask) 5989 { 5990 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5991 unsigned long chunk; 5992 struct sk_buff *skb; 5993 struct page *page; 5994 int i; 5995 5996 *errcode = -EMSGSIZE; 5997 /* Note this test could be relaxed, if we succeed to allocate 5998 * high order pages... 5999 */ 6000 if (npages > MAX_SKB_FRAGS) 6001 return NULL; 6002 6003 *errcode = -ENOBUFS; 6004 skb = alloc_skb(header_len, gfp_mask); 6005 if (!skb) 6006 return NULL; 6007 6008 skb->truesize += npages << PAGE_SHIFT; 6009 6010 for (i = 0; npages > 0; i++) { 6011 int order = max_page_order; 6012 6013 while (order) { 6014 if (npages >= 1 << order) { 6015 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6016 __GFP_COMP | 6017 __GFP_NOWARN, 6018 order); 6019 if (page) 6020 goto fill_page; 6021 /* Do not retry other high order allocations */ 6022 order = 1; 6023 max_page_order = 0; 6024 } 6025 order--; 6026 } 6027 page = alloc_page(gfp_mask); 6028 if (!page) 6029 goto failure; 6030 fill_page: 6031 chunk = min_t(unsigned long, data_len, 6032 PAGE_SIZE << order); 6033 skb_fill_page_desc(skb, i, page, 0, chunk); 6034 data_len -= chunk; 6035 npages -= 1 << order; 6036 } 6037 return skb; 6038 6039 failure: 6040 kfree_skb(skb); 6041 return NULL; 6042 } 6043 EXPORT_SYMBOL(alloc_skb_with_frags); 6044 6045 /* carve out the first off bytes from skb when off < headlen */ 6046 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6047 const int headlen, gfp_t gfp_mask) 6048 { 6049 int i; 6050 int size = skb_end_offset(skb); 6051 int new_hlen = headlen - off; 6052 u8 *data; 6053 6054 size = SKB_DATA_ALIGN(size); 6055 6056 if (skb_pfmemalloc(skb)) 6057 gfp_mask |= __GFP_MEMALLOC; 6058 data = kmalloc_reserve(size + 6059 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6060 gfp_mask, NUMA_NO_NODE, NULL); 6061 if (!data) 6062 return -ENOMEM; 6063 6064 size = SKB_WITH_OVERHEAD(ksize(data)); 6065 6066 /* Copy real data, and all frags */ 6067 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6068 skb->len -= off; 6069 6070 memcpy((struct skb_shared_info *)(data + size), 6071 skb_shinfo(skb), 6072 offsetof(struct skb_shared_info, 6073 frags[skb_shinfo(skb)->nr_frags])); 6074 if (skb_cloned(skb)) { 6075 /* drop the old head gracefully */ 6076 if (skb_orphan_frags(skb, gfp_mask)) { 6077 kfree(data); 6078 return -ENOMEM; 6079 } 6080 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6081 skb_frag_ref(skb, i); 6082 if (skb_has_frag_list(skb)) 6083 skb_clone_fraglist(skb); 6084 skb_release_data(skb); 6085 } else { 6086 /* we can reuse existing recount- all we did was 6087 * relocate values 6088 */ 6089 skb_free_head(skb); 6090 } 6091 6092 skb->head = data; 6093 skb->data = data; 6094 skb->head_frag = 0; 6095 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6096 skb->end = size; 6097 #else 6098 skb->end = skb->head + size; 6099 #endif 6100 skb_set_tail_pointer(skb, skb_headlen(skb)); 6101 skb_headers_offset_update(skb, 0); 6102 skb->cloned = 0; 6103 skb->hdr_len = 0; 6104 skb->nohdr = 0; 6105 atomic_set(&skb_shinfo(skb)->dataref, 1); 6106 6107 return 0; 6108 } 6109 6110 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6111 6112 /* carve out the first eat bytes from skb's frag_list. May recurse into 6113 * pskb_carve() 6114 */ 6115 static int pskb_carve_frag_list(struct sk_buff *skb, 6116 struct skb_shared_info *shinfo, int eat, 6117 gfp_t gfp_mask) 6118 { 6119 struct sk_buff *list = shinfo->frag_list; 6120 struct sk_buff *clone = NULL; 6121 struct sk_buff *insp = NULL; 6122 6123 do { 6124 if (!list) { 6125 pr_err("Not enough bytes to eat. Want %d\n", eat); 6126 return -EFAULT; 6127 } 6128 if (list->len <= eat) { 6129 /* Eaten as whole. */ 6130 eat -= list->len; 6131 list = list->next; 6132 insp = list; 6133 } else { 6134 /* Eaten partially. */ 6135 if (skb_shared(list)) { 6136 clone = skb_clone(list, gfp_mask); 6137 if (!clone) 6138 return -ENOMEM; 6139 insp = list->next; 6140 list = clone; 6141 } else { 6142 /* This may be pulled without problems. */ 6143 insp = list; 6144 } 6145 if (pskb_carve(list, eat, gfp_mask) < 0) { 6146 kfree_skb(clone); 6147 return -ENOMEM; 6148 } 6149 break; 6150 } 6151 } while (eat); 6152 6153 /* Free pulled out fragments. */ 6154 while ((list = shinfo->frag_list) != insp) { 6155 shinfo->frag_list = list->next; 6156 kfree_skb(list); 6157 } 6158 /* And insert new clone at head. */ 6159 if (clone) { 6160 clone->next = list; 6161 shinfo->frag_list = clone; 6162 } 6163 return 0; 6164 } 6165 6166 /* carve off first len bytes from skb. Split line (off) is in the 6167 * non-linear part of skb 6168 */ 6169 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6170 int pos, gfp_t gfp_mask) 6171 { 6172 int i, k = 0; 6173 int size = skb_end_offset(skb); 6174 u8 *data; 6175 const int nfrags = skb_shinfo(skb)->nr_frags; 6176 struct skb_shared_info *shinfo; 6177 6178 size = SKB_DATA_ALIGN(size); 6179 6180 if (skb_pfmemalloc(skb)) 6181 gfp_mask |= __GFP_MEMALLOC; 6182 data = kmalloc_reserve(size + 6183 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6184 gfp_mask, NUMA_NO_NODE, NULL); 6185 if (!data) 6186 return -ENOMEM; 6187 6188 size = SKB_WITH_OVERHEAD(ksize(data)); 6189 6190 memcpy((struct skb_shared_info *)(data + size), 6191 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6192 if (skb_orphan_frags(skb, gfp_mask)) { 6193 kfree(data); 6194 return -ENOMEM; 6195 } 6196 shinfo = (struct skb_shared_info *)(data + size); 6197 for (i = 0; i < nfrags; i++) { 6198 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6199 6200 if (pos + fsize > off) { 6201 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6202 6203 if (pos < off) { 6204 /* Split frag. 6205 * We have two variants in this case: 6206 * 1. Move all the frag to the second 6207 * part, if it is possible. F.e. 6208 * this approach is mandatory for TUX, 6209 * where splitting is expensive. 6210 * 2. Split is accurately. We make this. 6211 */ 6212 skb_frag_off_add(&shinfo->frags[0], off - pos); 6213 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6214 } 6215 skb_frag_ref(skb, i); 6216 k++; 6217 } 6218 pos += fsize; 6219 } 6220 shinfo->nr_frags = k; 6221 if (skb_has_frag_list(skb)) 6222 skb_clone_fraglist(skb); 6223 6224 /* split line is in frag list */ 6225 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6226 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6227 if (skb_has_frag_list(skb)) 6228 kfree_skb_list(skb_shinfo(skb)->frag_list); 6229 kfree(data); 6230 return -ENOMEM; 6231 } 6232 skb_release_data(skb); 6233 6234 skb->head = data; 6235 skb->head_frag = 0; 6236 skb->data = data; 6237 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6238 skb->end = size; 6239 #else 6240 skb->end = skb->head + size; 6241 #endif 6242 skb_reset_tail_pointer(skb); 6243 skb_headers_offset_update(skb, 0); 6244 skb->cloned = 0; 6245 skb->hdr_len = 0; 6246 skb->nohdr = 0; 6247 skb->len -= off; 6248 skb->data_len = skb->len; 6249 atomic_set(&skb_shinfo(skb)->dataref, 1); 6250 return 0; 6251 } 6252 6253 /* remove len bytes from the beginning of the skb */ 6254 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6255 { 6256 int headlen = skb_headlen(skb); 6257 6258 if (len < headlen) 6259 return pskb_carve_inside_header(skb, len, headlen, gfp); 6260 else 6261 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6262 } 6263 6264 /* Extract to_copy bytes starting at off from skb, and return this in 6265 * a new skb 6266 */ 6267 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6268 int to_copy, gfp_t gfp) 6269 { 6270 struct sk_buff *clone = skb_clone(skb, gfp); 6271 6272 if (!clone) 6273 return NULL; 6274 6275 if (pskb_carve(clone, off, gfp) < 0 || 6276 pskb_trim(clone, to_copy)) { 6277 kfree_skb(clone); 6278 return NULL; 6279 } 6280 return clone; 6281 } 6282 EXPORT_SYMBOL(pskb_extract); 6283 6284 /** 6285 * skb_condense - try to get rid of fragments/frag_list if possible 6286 * @skb: buffer 6287 * 6288 * Can be used to save memory before skb is added to a busy queue. 6289 * If packet has bytes in frags and enough tail room in skb->head, 6290 * pull all of them, so that we can free the frags right now and adjust 6291 * truesize. 6292 * Notes: 6293 * We do not reallocate skb->head thus can not fail. 6294 * Caller must re-evaluate skb->truesize if needed. 6295 */ 6296 void skb_condense(struct sk_buff *skb) 6297 { 6298 if (skb->data_len) { 6299 if (skb->data_len > skb->end - skb->tail || 6300 skb_cloned(skb)) 6301 return; 6302 6303 /* Nice, we can free page frag(s) right now */ 6304 __pskb_pull_tail(skb, skb->data_len); 6305 } 6306 /* At this point, skb->truesize might be over estimated, 6307 * because skb had a fragment, and fragments do not tell 6308 * their truesize. 6309 * When we pulled its content into skb->head, fragment 6310 * was freed, but __pskb_pull_tail() could not possibly 6311 * adjust skb->truesize, not knowing the frag truesize. 6312 */ 6313 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6314 } 6315 6316 #ifdef CONFIG_SKB_EXTENSIONS 6317 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6318 { 6319 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6320 } 6321 6322 /** 6323 * __skb_ext_alloc - allocate a new skb extensions storage 6324 * 6325 * @flags: See kmalloc(). 6326 * 6327 * Returns the newly allocated pointer. The pointer can later attached to a 6328 * skb via __skb_ext_set(). 6329 * Note: caller must handle the skb_ext as an opaque data. 6330 */ 6331 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6332 { 6333 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6334 6335 if (new) { 6336 memset(new->offset, 0, sizeof(new->offset)); 6337 refcount_set(&new->refcnt, 1); 6338 } 6339 6340 return new; 6341 } 6342 6343 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6344 unsigned int old_active) 6345 { 6346 struct skb_ext *new; 6347 6348 if (refcount_read(&old->refcnt) == 1) 6349 return old; 6350 6351 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6352 if (!new) 6353 return NULL; 6354 6355 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6356 refcount_set(&new->refcnt, 1); 6357 6358 #ifdef CONFIG_XFRM 6359 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6360 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6361 unsigned int i; 6362 6363 for (i = 0; i < sp->len; i++) 6364 xfrm_state_hold(sp->xvec[i]); 6365 } 6366 #endif 6367 __skb_ext_put(old); 6368 return new; 6369 } 6370 6371 /** 6372 * __skb_ext_set - attach the specified extension storage to this skb 6373 * @skb: buffer 6374 * @id: extension id 6375 * @ext: extension storage previously allocated via __skb_ext_alloc() 6376 * 6377 * Existing extensions, if any, are cleared. 6378 * 6379 * Returns the pointer to the extension. 6380 */ 6381 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6382 struct skb_ext *ext) 6383 { 6384 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6385 6386 skb_ext_put(skb); 6387 newlen = newoff + skb_ext_type_len[id]; 6388 ext->chunks = newlen; 6389 ext->offset[id] = newoff; 6390 skb->extensions = ext; 6391 skb->active_extensions = 1 << id; 6392 return skb_ext_get_ptr(ext, id); 6393 } 6394 6395 /** 6396 * skb_ext_add - allocate space for given extension, COW if needed 6397 * @skb: buffer 6398 * @id: extension to allocate space for 6399 * 6400 * Allocates enough space for the given extension. 6401 * If the extension is already present, a pointer to that extension 6402 * is returned. 6403 * 6404 * If the skb was cloned, COW applies and the returned memory can be 6405 * modified without changing the extension space of clones buffers. 6406 * 6407 * Returns pointer to the extension or NULL on allocation failure. 6408 */ 6409 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6410 { 6411 struct skb_ext *new, *old = NULL; 6412 unsigned int newlen, newoff; 6413 6414 if (skb->active_extensions) { 6415 old = skb->extensions; 6416 6417 new = skb_ext_maybe_cow(old, skb->active_extensions); 6418 if (!new) 6419 return NULL; 6420 6421 if (__skb_ext_exist(new, id)) 6422 goto set_active; 6423 6424 newoff = new->chunks; 6425 } else { 6426 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6427 6428 new = __skb_ext_alloc(GFP_ATOMIC); 6429 if (!new) 6430 return NULL; 6431 } 6432 6433 newlen = newoff + skb_ext_type_len[id]; 6434 new->chunks = newlen; 6435 new->offset[id] = newoff; 6436 set_active: 6437 skb->extensions = new; 6438 skb->active_extensions |= 1 << id; 6439 return skb_ext_get_ptr(new, id); 6440 } 6441 EXPORT_SYMBOL(skb_ext_add); 6442 6443 #ifdef CONFIG_XFRM 6444 static void skb_ext_put_sp(struct sec_path *sp) 6445 { 6446 unsigned int i; 6447 6448 for (i = 0; i < sp->len; i++) 6449 xfrm_state_put(sp->xvec[i]); 6450 } 6451 #endif 6452 6453 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6454 { 6455 struct skb_ext *ext = skb->extensions; 6456 6457 skb->active_extensions &= ~(1 << id); 6458 if (skb->active_extensions == 0) { 6459 skb->extensions = NULL; 6460 __skb_ext_put(ext); 6461 #ifdef CONFIG_XFRM 6462 } else if (id == SKB_EXT_SEC_PATH && 6463 refcount_read(&ext->refcnt) == 1) { 6464 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6465 6466 skb_ext_put_sp(sp); 6467 sp->len = 0; 6468 #endif 6469 } 6470 } 6471 EXPORT_SYMBOL(__skb_ext_del); 6472 6473 void __skb_ext_put(struct skb_ext *ext) 6474 { 6475 /* If this is last clone, nothing can increment 6476 * it after check passes. Avoids one atomic op. 6477 */ 6478 if (refcount_read(&ext->refcnt) == 1) 6479 goto free_now; 6480 6481 if (!refcount_dec_and_test(&ext->refcnt)) 6482 return; 6483 free_now: 6484 #ifdef CONFIG_XFRM 6485 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6486 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6487 #endif 6488 6489 kmem_cache_free(skbuff_ext_cache, ext); 6490 } 6491 EXPORT_SYMBOL(__skb_ext_put); 6492 #endif /* CONFIG_SKB_EXTENSIONS */ 6493