xref: /linux/net/core/skbuff.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <iiitac@pyr.swan.ac.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Version:	$Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
8  *
9  *	Fixes:
10  *		Alan Cox	:	Fixed the worst of the load
11  *					balancer bugs.
12  *		Dave Platt	:	Interrupt stacking fix.
13  *	Richard Kooijman	:	Timestamp fixes.
14  *		Alan Cox	:	Changed buffer format.
15  *		Alan Cox	:	destructor hook for AF_UNIX etc.
16  *		Linus Torvalds	:	Better skb_clone.
17  *		Alan Cox	:	Added skb_copy.
18  *		Alan Cox	:	Added all the changed routines Linus
19  *					only put in the headers
20  *		Ray VanTassle	:	Fixed --skb->lock in free
21  *		Alan Cox	:	skb_copy copy arp field
22  *		Andi Kleen	:	slabified it.
23  *		Robert Olsson	:	Removed skb_head_pool
24  *
25  *	NOTE:
26  *		The __skb_ routines should be called with interrupts
27  *	disabled, or you better be *real* sure that the operation is atomic
28  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
29  *	or via disabling bottom half handlers, etc).
30  *
31  *	This program is free software; you can redistribute it and/or
32  *	modify it under the terms of the GNU General Public License
33  *	as published by the Free Software Foundation; either version
34  *	2 of the License, or (at your option) any later version.
35  */
36 
37 /*
38  *	The functions in this file will not compile correctly with gcc 2.4.x
39  */
40 
41 #include <linux/config.h>
42 #include <linux/module.h>
43 #include <linux/types.h>
44 #include <linux/kernel.h>
45 #include <linux/sched.h>
46 #include <linux/mm.h>
47 #include <linux/interrupt.h>
48 #include <linux/in.h>
49 #include <linux/inet.h>
50 #include <linux/slab.h>
51 #include <linux/netdevice.h>
52 #ifdef CONFIG_NET_CLS_ACT
53 #include <net/pkt_sched.h>
54 #endif
55 #include <linux/string.h>
56 #include <linux/skbuff.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/highmem.h>
61 
62 #include <net/protocol.h>
63 #include <net/dst.h>
64 #include <net/sock.h>
65 #include <net/checksum.h>
66 #include <net/xfrm.h>
67 
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 
71 static kmem_cache_t *skbuff_head_cache __read_mostly;
72 static kmem_cache_t *skbuff_fclone_cache __read_mostly;
73 
74 /*
75  *	Keep out-of-line to prevent kernel bloat.
76  *	__builtin_return_address is not used because it is not always
77  *	reliable.
78  */
79 
80 /**
81  *	skb_over_panic	- 	private function
82  *	@skb: buffer
83  *	@sz: size
84  *	@here: address
85  *
86  *	Out of line support code for skb_put(). Not user callable.
87  */
88 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
89 {
90 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
91 	                  "data:%p tail:%p end:%p dev:%s\n",
92 	       here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
93 	       skb->dev ? skb->dev->name : "<NULL>");
94 	BUG();
95 }
96 
97 /**
98  *	skb_under_panic	- 	private function
99  *	@skb: buffer
100  *	@sz: size
101  *	@here: address
102  *
103  *	Out of line support code for skb_push(). Not user callable.
104  */
105 
106 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
107 {
108 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
109 	                  "data:%p tail:%p end:%p dev:%s\n",
110 	       here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
111 	       skb->dev ? skb->dev->name : "<NULL>");
112 	BUG();
113 }
114 
115 void skb_truesize_bug(struct sk_buff *skb)
116 {
117 	printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
118 	       "len=%u, sizeof(sk_buff)=%Zd\n",
119 	       skb->truesize, skb->len, sizeof(struct sk_buff));
120 }
121 EXPORT_SYMBOL(skb_truesize_bug);
122 
123 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
124  *	'private' fields and also do memory statistics to find all the
125  *	[BEEP] leaks.
126  *
127  */
128 
129 /**
130  *	__alloc_skb	-	allocate a network buffer
131  *	@size: size to allocate
132  *	@gfp_mask: allocation mask
133  *	@fclone: allocate from fclone cache instead of head cache
134  *		and allocate a cloned (child) skb
135  *
136  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
137  *	tail room of size bytes. The object has a reference count of one.
138  *	The return is the buffer. On a failure the return is %NULL.
139  *
140  *	Buffers may only be allocated from interrupts using a @gfp_mask of
141  *	%GFP_ATOMIC.
142  */
143 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
144 			    int fclone)
145 {
146 	kmem_cache_t *cache;
147 	struct skb_shared_info *shinfo;
148 	struct sk_buff *skb;
149 	u8 *data;
150 
151 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
152 
153 	/* Get the HEAD */
154 	skb = kmem_cache_alloc(cache, gfp_mask & ~__GFP_DMA);
155 	if (!skb)
156 		goto out;
157 
158 	/* Get the DATA. Size must match skb_add_mtu(). */
159 	size = SKB_DATA_ALIGN(size);
160 	data = ____kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
161 	if (!data)
162 		goto nodata;
163 
164 	memset(skb, 0, offsetof(struct sk_buff, truesize));
165 	skb->truesize = size + sizeof(struct sk_buff);
166 	atomic_set(&skb->users, 1);
167 	skb->head = data;
168 	skb->data = data;
169 	skb->tail = data;
170 	skb->end  = data + size;
171 	/* make sure we initialize shinfo sequentially */
172 	shinfo = skb_shinfo(skb);
173 	atomic_set(&shinfo->dataref, 1);
174 	shinfo->nr_frags  = 0;
175 	shinfo->gso_size = 0;
176 	shinfo->gso_segs = 0;
177 	shinfo->gso_type = 0;
178 	shinfo->ip6_frag_id = 0;
179 	shinfo->frag_list = NULL;
180 
181 	if (fclone) {
182 		struct sk_buff *child = skb + 1;
183 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
184 
185 		skb->fclone = SKB_FCLONE_ORIG;
186 		atomic_set(fclone_ref, 1);
187 
188 		child->fclone = SKB_FCLONE_UNAVAILABLE;
189 	}
190 out:
191 	return skb;
192 nodata:
193 	kmem_cache_free(cache, skb);
194 	skb = NULL;
195 	goto out;
196 }
197 
198 /**
199  *	alloc_skb_from_cache	-	allocate a network buffer
200  *	@cp: kmem_cache from which to allocate the data area
201  *           (object size must be big enough for @size bytes + skb overheads)
202  *	@size: size to allocate
203  *	@gfp_mask: allocation mask
204  *
205  *	Allocate a new &sk_buff. The returned buffer has no headroom and
206  *	tail room of size bytes. The object has a reference count of one.
207  *	The return is the buffer. On a failure the return is %NULL.
208  *
209  *	Buffers may only be allocated from interrupts using a @gfp_mask of
210  *	%GFP_ATOMIC.
211  */
212 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
213 				     unsigned int size,
214 				     gfp_t gfp_mask)
215 {
216 	struct sk_buff *skb;
217 	u8 *data;
218 
219 	/* Get the HEAD */
220 	skb = kmem_cache_alloc(skbuff_head_cache,
221 			       gfp_mask & ~__GFP_DMA);
222 	if (!skb)
223 		goto out;
224 
225 	/* Get the DATA. */
226 	size = SKB_DATA_ALIGN(size);
227 	data = kmem_cache_alloc(cp, gfp_mask);
228 	if (!data)
229 		goto nodata;
230 
231 	memset(skb, 0, offsetof(struct sk_buff, truesize));
232 	skb->truesize = size + sizeof(struct sk_buff);
233 	atomic_set(&skb->users, 1);
234 	skb->head = data;
235 	skb->data = data;
236 	skb->tail = data;
237 	skb->end  = data + size;
238 
239 	atomic_set(&(skb_shinfo(skb)->dataref), 1);
240 	skb_shinfo(skb)->nr_frags  = 0;
241 	skb_shinfo(skb)->gso_size = 0;
242 	skb_shinfo(skb)->gso_segs = 0;
243 	skb_shinfo(skb)->gso_type = 0;
244 	skb_shinfo(skb)->frag_list = NULL;
245 out:
246 	return skb;
247 nodata:
248 	kmem_cache_free(skbuff_head_cache, skb);
249 	skb = NULL;
250 	goto out;
251 }
252 
253 
254 static void skb_drop_fraglist(struct sk_buff *skb)
255 {
256 	struct sk_buff *list = skb_shinfo(skb)->frag_list;
257 
258 	skb_shinfo(skb)->frag_list = NULL;
259 
260 	do {
261 		struct sk_buff *this = list;
262 		list = list->next;
263 		kfree_skb(this);
264 	} while (list);
265 }
266 
267 static void skb_clone_fraglist(struct sk_buff *skb)
268 {
269 	struct sk_buff *list;
270 
271 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
272 		skb_get(list);
273 }
274 
275 static void skb_release_data(struct sk_buff *skb)
276 {
277 	if (!skb->cloned ||
278 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
279 			       &skb_shinfo(skb)->dataref)) {
280 		if (skb_shinfo(skb)->nr_frags) {
281 			int i;
282 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
283 				put_page(skb_shinfo(skb)->frags[i].page);
284 		}
285 
286 		if (skb_shinfo(skb)->frag_list)
287 			skb_drop_fraglist(skb);
288 
289 		kfree(skb->head);
290 	}
291 }
292 
293 /*
294  *	Free an skbuff by memory without cleaning the state.
295  */
296 void kfree_skbmem(struct sk_buff *skb)
297 {
298 	struct sk_buff *other;
299 	atomic_t *fclone_ref;
300 
301 	skb_release_data(skb);
302 	switch (skb->fclone) {
303 	case SKB_FCLONE_UNAVAILABLE:
304 		kmem_cache_free(skbuff_head_cache, skb);
305 		break;
306 
307 	case SKB_FCLONE_ORIG:
308 		fclone_ref = (atomic_t *) (skb + 2);
309 		if (atomic_dec_and_test(fclone_ref))
310 			kmem_cache_free(skbuff_fclone_cache, skb);
311 		break;
312 
313 	case SKB_FCLONE_CLONE:
314 		fclone_ref = (atomic_t *) (skb + 1);
315 		other = skb - 1;
316 
317 		/* The clone portion is available for
318 		 * fast-cloning again.
319 		 */
320 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
321 
322 		if (atomic_dec_and_test(fclone_ref))
323 			kmem_cache_free(skbuff_fclone_cache, other);
324 		break;
325 	};
326 }
327 
328 /**
329  *	__kfree_skb - private function
330  *	@skb: buffer
331  *
332  *	Free an sk_buff. Release anything attached to the buffer.
333  *	Clean the state. This is an internal helper function. Users should
334  *	always call kfree_skb
335  */
336 
337 void __kfree_skb(struct sk_buff *skb)
338 {
339 	dst_release(skb->dst);
340 #ifdef CONFIG_XFRM
341 	secpath_put(skb->sp);
342 #endif
343 	if (skb->destructor) {
344 		WARN_ON(in_irq());
345 		skb->destructor(skb);
346 	}
347 #ifdef CONFIG_NETFILTER
348 	nf_conntrack_put(skb->nfct);
349 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
350 	nf_conntrack_put_reasm(skb->nfct_reasm);
351 #endif
352 #ifdef CONFIG_BRIDGE_NETFILTER
353 	nf_bridge_put(skb->nf_bridge);
354 #endif
355 #endif
356 /* XXX: IS this still necessary? - JHS */
357 #ifdef CONFIG_NET_SCHED
358 	skb->tc_index = 0;
359 #ifdef CONFIG_NET_CLS_ACT
360 	skb->tc_verd = 0;
361 #endif
362 #endif
363 
364 	kfree_skbmem(skb);
365 }
366 
367 /**
368  *	kfree_skb - free an sk_buff
369  *	@skb: buffer to free
370  *
371  *	Drop a reference to the buffer and free it if the usage count has
372  *	hit zero.
373  */
374 void kfree_skb(struct sk_buff *skb)
375 {
376 	if (unlikely(!skb))
377 		return;
378 	if (likely(atomic_read(&skb->users) == 1))
379 		smp_rmb();
380 	else if (likely(!atomic_dec_and_test(&skb->users)))
381 		return;
382 	__kfree_skb(skb);
383 }
384 
385 /**
386  *	skb_clone	-	duplicate an sk_buff
387  *	@skb: buffer to clone
388  *	@gfp_mask: allocation priority
389  *
390  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
391  *	copies share the same packet data but not structure. The new
392  *	buffer has a reference count of 1. If the allocation fails the
393  *	function returns %NULL otherwise the new buffer is returned.
394  *
395  *	If this function is called from an interrupt gfp_mask() must be
396  *	%GFP_ATOMIC.
397  */
398 
399 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
400 {
401 	struct sk_buff *n;
402 
403 	n = skb + 1;
404 	if (skb->fclone == SKB_FCLONE_ORIG &&
405 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
406 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
407 		n->fclone = SKB_FCLONE_CLONE;
408 		atomic_inc(fclone_ref);
409 	} else {
410 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
411 		if (!n)
412 			return NULL;
413 		n->fclone = SKB_FCLONE_UNAVAILABLE;
414 	}
415 
416 #define C(x) n->x = skb->x
417 
418 	n->next = n->prev = NULL;
419 	n->sk = NULL;
420 	C(tstamp);
421 	C(dev);
422 	C(h);
423 	C(nh);
424 	C(mac);
425 	C(dst);
426 	dst_clone(skb->dst);
427 	C(sp);
428 #ifdef CONFIG_INET
429 	secpath_get(skb->sp);
430 #endif
431 	memcpy(n->cb, skb->cb, sizeof(skb->cb));
432 	C(len);
433 	C(data_len);
434 	C(csum);
435 	C(local_df);
436 	n->cloned = 1;
437 	n->nohdr = 0;
438 	C(pkt_type);
439 	C(ip_summed);
440 	C(priority);
441 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
442 	C(ipvs_property);
443 #endif
444 	C(protocol);
445 	n->destructor = NULL;
446 #ifdef CONFIG_NETFILTER
447 	C(nfmark);
448 	C(nfct);
449 	nf_conntrack_get(skb->nfct);
450 	C(nfctinfo);
451 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
452 	C(nfct_reasm);
453 	nf_conntrack_get_reasm(skb->nfct_reasm);
454 #endif
455 #ifdef CONFIG_BRIDGE_NETFILTER
456 	C(nf_bridge);
457 	nf_bridge_get(skb->nf_bridge);
458 #endif
459 #endif /*CONFIG_NETFILTER*/
460 #ifdef CONFIG_NET_SCHED
461 	C(tc_index);
462 #ifdef CONFIG_NET_CLS_ACT
463 	n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
464 	n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
465 	n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
466 	C(input_dev);
467 #endif
468 	skb_copy_secmark(n, skb);
469 #endif
470 	C(truesize);
471 	atomic_set(&n->users, 1);
472 	C(head);
473 	C(data);
474 	C(tail);
475 	C(end);
476 
477 	atomic_inc(&(skb_shinfo(skb)->dataref));
478 	skb->cloned = 1;
479 
480 	return n;
481 }
482 
483 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
484 {
485 	/*
486 	 *	Shift between the two data areas in bytes
487 	 */
488 	unsigned long offset = new->data - old->data;
489 
490 	new->sk		= NULL;
491 	new->dev	= old->dev;
492 	new->priority	= old->priority;
493 	new->protocol	= old->protocol;
494 	new->dst	= dst_clone(old->dst);
495 #ifdef CONFIG_INET
496 	new->sp		= secpath_get(old->sp);
497 #endif
498 	new->h.raw	= old->h.raw + offset;
499 	new->nh.raw	= old->nh.raw + offset;
500 	new->mac.raw	= old->mac.raw + offset;
501 	memcpy(new->cb, old->cb, sizeof(old->cb));
502 	new->local_df	= old->local_df;
503 	new->fclone	= SKB_FCLONE_UNAVAILABLE;
504 	new->pkt_type	= old->pkt_type;
505 	new->tstamp	= old->tstamp;
506 	new->destructor = NULL;
507 #ifdef CONFIG_NETFILTER
508 	new->nfmark	= old->nfmark;
509 	new->nfct	= old->nfct;
510 	nf_conntrack_get(old->nfct);
511 	new->nfctinfo	= old->nfctinfo;
512 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
513 	new->nfct_reasm = old->nfct_reasm;
514 	nf_conntrack_get_reasm(old->nfct_reasm);
515 #endif
516 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
517 	new->ipvs_property = old->ipvs_property;
518 #endif
519 #ifdef CONFIG_BRIDGE_NETFILTER
520 	new->nf_bridge	= old->nf_bridge;
521 	nf_bridge_get(old->nf_bridge);
522 #endif
523 #endif
524 #ifdef CONFIG_NET_SCHED
525 #ifdef CONFIG_NET_CLS_ACT
526 	new->tc_verd = old->tc_verd;
527 #endif
528 	new->tc_index	= old->tc_index;
529 #endif
530 	skb_copy_secmark(new, old);
531 	atomic_set(&new->users, 1);
532 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
533 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
534 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
535 }
536 
537 /**
538  *	skb_copy	-	create private copy of an sk_buff
539  *	@skb: buffer to copy
540  *	@gfp_mask: allocation priority
541  *
542  *	Make a copy of both an &sk_buff and its data. This is used when the
543  *	caller wishes to modify the data and needs a private copy of the
544  *	data to alter. Returns %NULL on failure or the pointer to the buffer
545  *	on success. The returned buffer has a reference count of 1.
546  *
547  *	As by-product this function converts non-linear &sk_buff to linear
548  *	one, so that &sk_buff becomes completely private and caller is allowed
549  *	to modify all the data of returned buffer. This means that this
550  *	function is not recommended for use in circumstances when only
551  *	header is going to be modified. Use pskb_copy() instead.
552  */
553 
554 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
555 {
556 	int headerlen = skb->data - skb->head;
557 	/*
558 	 *	Allocate the copy buffer
559 	 */
560 	struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
561 				      gfp_mask);
562 	if (!n)
563 		return NULL;
564 
565 	/* Set the data pointer */
566 	skb_reserve(n, headerlen);
567 	/* Set the tail pointer and length */
568 	skb_put(n, skb->len);
569 	n->csum	     = skb->csum;
570 	n->ip_summed = skb->ip_summed;
571 
572 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
573 		BUG();
574 
575 	copy_skb_header(n, skb);
576 	return n;
577 }
578 
579 
580 /**
581  *	pskb_copy	-	create copy of an sk_buff with private head.
582  *	@skb: buffer to copy
583  *	@gfp_mask: allocation priority
584  *
585  *	Make a copy of both an &sk_buff and part of its data, located
586  *	in header. Fragmented data remain shared. This is used when
587  *	the caller wishes to modify only header of &sk_buff and needs
588  *	private copy of the header to alter. Returns %NULL on failure
589  *	or the pointer to the buffer on success.
590  *	The returned buffer has a reference count of 1.
591  */
592 
593 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
594 {
595 	/*
596 	 *	Allocate the copy buffer
597 	 */
598 	struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
599 
600 	if (!n)
601 		goto out;
602 
603 	/* Set the data pointer */
604 	skb_reserve(n, skb->data - skb->head);
605 	/* Set the tail pointer and length */
606 	skb_put(n, skb_headlen(skb));
607 	/* Copy the bytes */
608 	memcpy(n->data, skb->data, n->len);
609 	n->csum	     = skb->csum;
610 	n->ip_summed = skb->ip_summed;
611 
612 	n->data_len  = skb->data_len;
613 	n->len	     = skb->len;
614 
615 	if (skb_shinfo(skb)->nr_frags) {
616 		int i;
617 
618 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
619 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
620 			get_page(skb_shinfo(n)->frags[i].page);
621 		}
622 		skb_shinfo(n)->nr_frags = i;
623 	}
624 
625 	if (skb_shinfo(skb)->frag_list) {
626 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
627 		skb_clone_fraglist(n);
628 	}
629 
630 	copy_skb_header(n, skb);
631 out:
632 	return n;
633 }
634 
635 /**
636  *	pskb_expand_head - reallocate header of &sk_buff
637  *	@skb: buffer to reallocate
638  *	@nhead: room to add at head
639  *	@ntail: room to add at tail
640  *	@gfp_mask: allocation priority
641  *
642  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
643  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
644  *	reference count of 1. Returns zero in the case of success or error,
645  *	if expansion failed. In the last case, &sk_buff is not changed.
646  *
647  *	All the pointers pointing into skb header may change and must be
648  *	reloaded after call to this function.
649  */
650 
651 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
652 		     gfp_t gfp_mask)
653 {
654 	int i;
655 	u8 *data;
656 	int size = nhead + (skb->end - skb->head) + ntail;
657 	long off;
658 
659 	if (skb_shared(skb))
660 		BUG();
661 
662 	size = SKB_DATA_ALIGN(size);
663 
664 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
665 	if (!data)
666 		goto nodata;
667 
668 	/* Copy only real data... and, alas, header. This should be
669 	 * optimized for the cases when header is void. */
670 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
671 	memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
672 
673 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
674 		get_page(skb_shinfo(skb)->frags[i].page);
675 
676 	if (skb_shinfo(skb)->frag_list)
677 		skb_clone_fraglist(skb);
678 
679 	skb_release_data(skb);
680 
681 	off = (data + nhead) - skb->head;
682 
683 	skb->head     = data;
684 	skb->end      = data + size;
685 	skb->data    += off;
686 	skb->tail    += off;
687 	skb->mac.raw += off;
688 	skb->h.raw   += off;
689 	skb->nh.raw  += off;
690 	skb->cloned   = 0;
691 	skb->nohdr    = 0;
692 	atomic_set(&skb_shinfo(skb)->dataref, 1);
693 	return 0;
694 
695 nodata:
696 	return -ENOMEM;
697 }
698 
699 /* Make private copy of skb with writable head and some headroom */
700 
701 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
702 {
703 	struct sk_buff *skb2;
704 	int delta = headroom - skb_headroom(skb);
705 
706 	if (delta <= 0)
707 		skb2 = pskb_copy(skb, GFP_ATOMIC);
708 	else {
709 		skb2 = skb_clone(skb, GFP_ATOMIC);
710 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
711 					     GFP_ATOMIC)) {
712 			kfree_skb(skb2);
713 			skb2 = NULL;
714 		}
715 	}
716 	return skb2;
717 }
718 
719 
720 /**
721  *	skb_copy_expand	-	copy and expand sk_buff
722  *	@skb: buffer to copy
723  *	@newheadroom: new free bytes at head
724  *	@newtailroom: new free bytes at tail
725  *	@gfp_mask: allocation priority
726  *
727  *	Make a copy of both an &sk_buff and its data and while doing so
728  *	allocate additional space.
729  *
730  *	This is used when the caller wishes to modify the data and needs a
731  *	private copy of the data to alter as well as more space for new fields.
732  *	Returns %NULL on failure or the pointer to the buffer
733  *	on success. The returned buffer has a reference count of 1.
734  *
735  *	You must pass %GFP_ATOMIC as the allocation priority if this function
736  *	is called from an interrupt.
737  *
738  *	BUG ALERT: ip_summed is not copied. Why does this work? Is it used
739  *	only by netfilter in the cases when checksum is recalculated? --ANK
740  */
741 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
742 				int newheadroom, int newtailroom,
743 				gfp_t gfp_mask)
744 {
745 	/*
746 	 *	Allocate the copy buffer
747 	 */
748 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
749 				      gfp_mask);
750 	int head_copy_len, head_copy_off;
751 
752 	if (!n)
753 		return NULL;
754 
755 	skb_reserve(n, newheadroom);
756 
757 	/* Set the tail pointer and length */
758 	skb_put(n, skb->len);
759 
760 	head_copy_len = skb_headroom(skb);
761 	head_copy_off = 0;
762 	if (newheadroom <= head_copy_len)
763 		head_copy_len = newheadroom;
764 	else
765 		head_copy_off = newheadroom - head_copy_len;
766 
767 	/* Copy the linear header and data. */
768 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
769 			  skb->len + head_copy_len))
770 		BUG();
771 
772 	copy_skb_header(n, skb);
773 
774 	return n;
775 }
776 
777 /**
778  *	skb_pad			-	zero pad the tail of an skb
779  *	@skb: buffer to pad
780  *	@pad: space to pad
781  *
782  *	Ensure that a buffer is followed by a padding area that is zero
783  *	filled. Used by network drivers which may DMA or transfer data
784  *	beyond the buffer end onto the wire.
785  *
786  *	May return error in out of memory cases. The skb is freed on error.
787  */
788 
789 int skb_pad(struct sk_buff *skb, int pad)
790 {
791 	int err;
792 	int ntail;
793 
794 	/* If the skbuff is non linear tailroom is always zero.. */
795 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
796 		memset(skb->data+skb->len, 0, pad);
797 		return 0;
798 	}
799 
800 	ntail = skb->data_len + pad - (skb->end - skb->tail);
801 	if (likely(skb_cloned(skb) || ntail > 0)) {
802 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
803 		if (unlikely(err))
804 			goto free_skb;
805 	}
806 
807 	/* FIXME: The use of this function with non-linear skb's really needs
808 	 * to be audited.
809 	 */
810 	err = skb_linearize(skb);
811 	if (unlikely(err))
812 		goto free_skb;
813 
814 	memset(skb->data + skb->len, 0, pad);
815 	return 0;
816 
817 free_skb:
818 	kfree_skb(skb);
819 	return err;
820 }
821 
822 /* Trims skb to length len. It can change skb pointers.
823  */
824 
825 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
826 {
827 	int offset = skb_headlen(skb);
828 	int nfrags = skb_shinfo(skb)->nr_frags;
829 	int i;
830 
831 	for (i = 0; i < nfrags; i++) {
832 		int end = offset + skb_shinfo(skb)->frags[i].size;
833 		if (end > len) {
834 			if (skb_cloned(skb)) {
835 				if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
836 					return -ENOMEM;
837 			}
838 			if (len <= offset) {
839 				put_page(skb_shinfo(skb)->frags[i].page);
840 				skb_shinfo(skb)->nr_frags--;
841 			} else {
842 				skb_shinfo(skb)->frags[i].size = len - offset;
843 			}
844 		}
845 		offset = end;
846 	}
847 
848 	if (offset < len) {
849 		skb->data_len -= skb->len - len;
850 		skb->len       = len;
851 	} else {
852 		if (len <= skb_headlen(skb)) {
853 			skb->len      = len;
854 			skb->data_len = 0;
855 			skb->tail     = skb->data + len;
856 			if (skb_shinfo(skb)->frag_list && !skb_cloned(skb))
857 				skb_drop_fraglist(skb);
858 		} else {
859 			skb->data_len -= skb->len - len;
860 			skb->len       = len;
861 		}
862 	}
863 
864 	return 0;
865 }
866 
867 /**
868  *	__pskb_pull_tail - advance tail of skb header
869  *	@skb: buffer to reallocate
870  *	@delta: number of bytes to advance tail
871  *
872  *	The function makes a sense only on a fragmented &sk_buff,
873  *	it expands header moving its tail forward and copying necessary
874  *	data from fragmented part.
875  *
876  *	&sk_buff MUST have reference count of 1.
877  *
878  *	Returns %NULL (and &sk_buff does not change) if pull failed
879  *	or value of new tail of skb in the case of success.
880  *
881  *	All the pointers pointing into skb header may change and must be
882  *	reloaded after call to this function.
883  */
884 
885 /* Moves tail of skb head forward, copying data from fragmented part,
886  * when it is necessary.
887  * 1. It may fail due to malloc failure.
888  * 2. It may change skb pointers.
889  *
890  * It is pretty complicated. Luckily, it is called only in exceptional cases.
891  */
892 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
893 {
894 	/* If skb has not enough free space at tail, get new one
895 	 * plus 128 bytes for future expansions. If we have enough
896 	 * room at tail, reallocate without expansion only if skb is cloned.
897 	 */
898 	int i, k, eat = (skb->tail + delta) - skb->end;
899 
900 	if (eat > 0 || skb_cloned(skb)) {
901 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
902 				     GFP_ATOMIC))
903 			return NULL;
904 	}
905 
906 	if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
907 		BUG();
908 
909 	/* Optimization: no fragments, no reasons to preestimate
910 	 * size of pulled pages. Superb.
911 	 */
912 	if (!skb_shinfo(skb)->frag_list)
913 		goto pull_pages;
914 
915 	/* Estimate size of pulled pages. */
916 	eat = delta;
917 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
918 		if (skb_shinfo(skb)->frags[i].size >= eat)
919 			goto pull_pages;
920 		eat -= skb_shinfo(skb)->frags[i].size;
921 	}
922 
923 	/* If we need update frag list, we are in troubles.
924 	 * Certainly, it possible to add an offset to skb data,
925 	 * but taking into account that pulling is expected to
926 	 * be very rare operation, it is worth to fight against
927 	 * further bloating skb head and crucify ourselves here instead.
928 	 * Pure masohism, indeed. 8)8)
929 	 */
930 	if (eat) {
931 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
932 		struct sk_buff *clone = NULL;
933 		struct sk_buff *insp = NULL;
934 
935 		do {
936 			BUG_ON(!list);
937 
938 			if (list->len <= eat) {
939 				/* Eaten as whole. */
940 				eat -= list->len;
941 				list = list->next;
942 				insp = list;
943 			} else {
944 				/* Eaten partially. */
945 
946 				if (skb_shared(list)) {
947 					/* Sucks! We need to fork list. :-( */
948 					clone = skb_clone(list, GFP_ATOMIC);
949 					if (!clone)
950 						return NULL;
951 					insp = list->next;
952 					list = clone;
953 				} else {
954 					/* This may be pulled without
955 					 * problems. */
956 					insp = list;
957 				}
958 				if (!pskb_pull(list, eat)) {
959 					if (clone)
960 						kfree_skb(clone);
961 					return NULL;
962 				}
963 				break;
964 			}
965 		} while (eat);
966 
967 		/* Free pulled out fragments. */
968 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
969 			skb_shinfo(skb)->frag_list = list->next;
970 			kfree_skb(list);
971 		}
972 		/* And insert new clone at head. */
973 		if (clone) {
974 			clone->next = list;
975 			skb_shinfo(skb)->frag_list = clone;
976 		}
977 	}
978 	/* Success! Now we may commit changes to skb data. */
979 
980 pull_pages:
981 	eat = delta;
982 	k = 0;
983 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
984 		if (skb_shinfo(skb)->frags[i].size <= eat) {
985 			put_page(skb_shinfo(skb)->frags[i].page);
986 			eat -= skb_shinfo(skb)->frags[i].size;
987 		} else {
988 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
989 			if (eat) {
990 				skb_shinfo(skb)->frags[k].page_offset += eat;
991 				skb_shinfo(skb)->frags[k].size -= eat;
992 				eat = 0;
993 			}
994 			k++;
995 		}
996 	}
997 	skb_shinfo(skb)->nr_frags = k;
998 
999 	skb->tail     += delta;
1000 	skb->data_len -= delta;
1001 
1002 	return skb->tail;
1003 }
1004 
1005 /* Copy some data bits from skb to kernel buffer. */
1006 
1007 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1008 {
1009 	int i, copy;
1010 	int start = skb_headlen(skb);
1011 
1012 	if (offset > (int)skb->len - len)
1013 		goto fault;
1014 
1015 	/* Copy header. */
1016 	if ((copy = start - offset) > 0) {
1017 		if (copy > len)
1018 			copy = len;
1019 		memcpy(to, skb->data + offset, copy);
1020 		if ((len -= copy) == 0)
1021 			return 0;
1022 		offset += copy;
1023 		to     += copy;
1024 	}
1025 
1026 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1027 		int end;
1028 
1029 		BUG_TRAP(start <= offset + len);
1030 
1031 		end = start + skb_shinfo(skb)->frags[i].size;
1032 		if ((copy = end - offset) > 0) {
1033 			u8 *vaddr;
1034 
1035 			if (copy > len)
1036 				copy = len;
1037 
1038 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1039 			memcpy(to,
1040 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1041 			       offset - start, copy);
1042 			kunmap_skb_frag(vaddr);
1043 
1044 			if ((len -= copy) == 0)
1045 				return 0;
1046 			offset += copy;
1047 			to     += copy;
1048 		}
1049 		start = end;
1050 	}
1051 
1052 	if (skb_shinfo(skb)->frag_list) {
1053 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1054 
1055 		for (; list; list = list->next) {
1056 			int end;
1057 
1058 			BUG_TRAP(start <= offset + len);
1059 
1060 			end = start + list->len;
1061 			if ((copy = end - offset) > 0) {
1062 				if (copy > len)
1063 					copy = len;
1064 				if (skb_copy_bits(list, offset - start,
1065 						  to, copy))
1066 					goto fault;
1067 				if ((len -= copy) == 0)
1068 					return 0;
1069 				offset += copy;
1070 				to     += copy;
1071 			}
1072 			start = end;
1073 		}
1074 	}
1075 	if (!len)
1076 		return 0;
1077 
1078 fault:
1079 	return -EFAULT;
1080 }
1081 
1082 /**
1083  *	skb_store_bits - store bits from kernel buffer to skb
1084  *	@skb: destination buffer
1085  *	@offset: offset in destination
1086  *	@from: source buffer
1087  *	@len: number of bytes to copy
1088  *
1089  *	Copy the specified number of bytes from the source buffer to the
1090  *	destination skb.  This function handles all the messy bits of
1091  *	traversing fragment lists and such.
1092  */
1093 
1094 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
1095 {
1096 	int i, copy;
1097 	int start = skb_headlen(skb);
1098 
1099 	if (offset > (int)skb->len - len)
1100 		goto fault;
1101 
1102 	if ((copy = start - offset) > 0) {
1103 		if (copy > len)
1104 			copy = len;
1105 		memcpy(skb->data + offset, from, copy);
1106 		if ((len -= copy) == 0)
1107 			return 0;
1108 		offset += copy;
1109 		from += copy;
1110 	}
1111 
1112 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1113 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1114 		int end;
1115 
1116 		BUG_TRAP(start <= offset + len);
1117 
1118 		end = start + frag->size;
1119 		if ((copy = end - offset) > 0) {
1120 			u8 *vaddr;
1121 
1122 			if (copy > len)
1123 				copy = len;
1124 
1125 			vaddr = kmap_skb_frag(frag);
1126 			memcpy(vaddr + frag->page_offset + offset - start,
1127 			       from, copy);
1128 			kunmap_skb_frag(vaddr);
1129 
1130 			if ((len -= copy) == 0)
1131 				return 0;
1132 			offset += copy;
1133 			from += copy;
1134 		}
1135 		start = end;
1136 	}
1137 
1138 	if (skb_shinfo(skb)->frag_list) {
1139 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1140 
1141 		for (; list; list = list->next) {
1142 			int end;
1143 
1144 			BUG_TRAP(start <= offset + len);
1145 
1146 			end = start + list->len;
1147 			if ((copy = end - offset) > 0) {
1148 				if (copy > len)
1149 					copy = len;
1150 				if (skb_store_bits(list, offset - start,
1151 						   from, copy))
1152 					goto fault;
1153 				if ((len -= copy) == 0)
1154 					return 0;
1155 				offset += copy;
1156 				from += copy;
1157 			}
1158 			start = end;
1159 		}
1160 	}
1161 	if (!len)
1162 		return 0;
1163 
1164 fault:
1165 	return -EFAULT;
1166 }
1167 
1168 EXPORT_SYMBOL(skb_store_bits);
1169 
1170 /* Checksum skb data. */
1171 
1172 unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1173 			  int len, unsigned int csum)
1174 {
1175 	int start = skb_headlen(skb);
1176 	int i, copy = start - offset;
1177 	int pos = 0;
1178 
1179 	/* Checksum header. */
1180 	if (copy > 0) {
1181 		if (copy > len)
1182 			copy = len;
1183 		csum = csum_partial(skb->data + offset, copy, csum);
1184 		if ((len -= copy) == 0)
1185 			return csum;
1186 		offset += copy;
1187 		pos	= copy;
1188 	}
1189 
1190 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1191 		int end;
1192 
1193 		BUG_TRAP(start <= offset + len);
1194 
1195 		end = start + skb_shinfo(skb)->frags[i].size;
1196 		if ((copy = end - offset) > 0) {
1197 			unsigned int csum2;
1198 			u8 *vaddr;
1199 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1200 
1201 			if (copy > len)
1202 				copy = len;
1203 			vaddr = kmap_skb_frag(frag);
1204 			csum2 = csum_partial(vaddr + frag->page_offset +
1205 					     offset - start, copy, 0);
1206 			kunmap_skb_frag(vaddr);
1207 			csum = csum_block_add(csum, csum2, pos);
1208 			if (!(len -= copy))
1209 				return csum;
1210 			offset += copy;
1211 			pos    += copy;
1212 		}
1213 		start = end;
1214 	}
1215 
1216 	if (skb_shinfo(skb)->frag_list) {
1217 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1218 
1219 		for (; list; list = list->next) {
1220 			int end;
1221 
1222 			BUG_TRAP(start <= offset + len);
1223 
1224 			end = start + list->len;
1225 			if ((copy = end - offset) > 0) {
1226 				unsigned int csum2;
1227 				if (copy > len)
1228 					copy = len;
1229 				csum2 = skb_checksum(list, offset - start,
1230 						     copy, 0);
1231 				csum = csum_block_add(csum, csum2, pos);
1232 				if ((len -= copy) == 0)
1233 					return csum;
1234 				offset += copy;
1235 				pos    += copy;
1236 			}
1237 			start = end;
1238 		}
1239 	}
1240 	BUG_ON(len);
1241 
1242 	return csum;
1243 }
1244 
1245 /* Both of above in one bottle. */
1246 
1247 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1248 				    u8 *to, int len, unsigned int csum)
1249 {
1250 	int start = skb_headlen(skb);
1251 	int i, copy = start - offset;
1252 	int pos = 0;
1253 
1254 	/* Copy header. */
1255 	if (copy > 0) {
1256 		if (copy > len)
1257 			copy = len;
1258 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1259 						 copy, csum);
1260 		if ((len -= copy) == 0)
1261 			return csum;
1262 		offset += copy;
1263 		to     += copy;
1264 		pos	= copy;
1265 	}
1266 
1267 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1268 		int end;
1269 
1270 		BUG_TRAP(start <= offset + len);
1271 
1272 		end = start + skb_shinfo(skb)->frags[i].size;
1273 		if ((copy = end - offset) > 0) {
1274 			unsigned int csum2;
1275 			u8 *vaddr;
1276 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1277 
1278 			if (copy > len)
1279 				copy = len;
1280 			vaddr = kmap_skb_frag(frag);
1281 			csum2 = csum_partial_copy_nocheck(vaddr +
1282 							  frag->page_offset +
1283 							  offset - start, to,
1284 							  copy, 0);
1285 			kunmap_skb_frag(vaddr);
1286 			csum = csum_block_add(csum, csum2, pos);
1287 			if (!(len -= copy))
1288 				return csum;
1289 			offset += copy;
1290 			to     += copy;
1291 			pos    += copy;
1292 		}
1293 		start = end;
1294 	}
1295 
1296 	if (skb_shinfo(skb)->frag_list) {
1297 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1298 
1299 		for (; list; list = list->next) {
1300 			unsigned int csum2;
1301 			int end;
1302 
1303 			BUG_TRAP(start <= offset + len);
1304 
1305 			end = start + list->len;
1306 			if ((copy = end - offset) > 0) {
1307 				if (copy > len)
1308 					copy = len;
1309 				csum2 = skb_copy_and_csum_bits(list,
1310 							       offset - start,
1311 							       to, copy, 0);
1312 				csum = csum_block_add(csum, csum2, pos);
1313 				if ((len -= copy) == 0)
1314 					return csum;
1315 				offset += copy;
1316 				to     += copy;
1317 				pos    += copy;
1318 			}
1319 			start = end;
1320 		}
1321 	}
1322 	BUG_ON(len);
1323 	return csum;
1324 }
1325 
1326 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1327 {
1328 	unsigned int csum;
1329 	long csstart;
1330 
1331 	if (skb->ip_summed == CHECKSUM_HW)
1332 		csstart = skb->h.raw - skb->data;
1333 	else
1334 		csstart = skb_headlen(skb);
1335 
1336 	BUG_ON(csstart > skb_headlen(skb));
1337 
1338 	memcpy(to, skb->data, csstart);
1339 
1340 	csum = 0;
1341 	if (csstart != skb->len)
1342 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1343 					      skb->len - csstart, 0);
1344 
1345 	if (skb->ip_summed == CHECKSUM_HW) {
1346 		long csstuff = csstart + skb->csum;
1347 
1348 		*((unsigned short *)(to + csstuff)) = csum_fold(csum);
1349 	}
1350 }
1351 
1352 /**
1353  *	skb_dequeue - remove from the head of the queue
1354  *	@list: list to dequeue from
1355  *
1356  *	Remove the head of the list. The list lock is taken so the function
1357  *	may be used safely with other locking list functions. The head item is
1358  *	returned or %NULL if the list is empty.
1359  */
1360 
1361 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1362 {
1363 	unsigned long flags;
1364 	struct sk_buff *result;
1365 
1366 	spin_lock_irqsave(&list->lock, flags);
1367 	result = __skb_dequeue(list);
1368 	spin_unlock_irqrestore(&list->lock, flags);
1369 	return result;
1370 }
1371 
1372 /**
1373  *	skb_dequeue_tail - remove from the tail of the queue
1374  *	@list: list to dequeue from
1375  *
1376  *	Remove the tail of the list. The list lock is taken so the function
1377  *	may be used safely with other locking list functions. The tail item is
1378  *	returned or %NULL if the list is empty.
1379  */
1380 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1381 {
1382 	unsigned long flags;
1383 	struct sk_buff *result;
1384 
1385 	spin_lock_irqsave(&list->lock, flags);
1386 	result = __skb_dequeue_tail(list);
1387 	spin_unlock_irqrestore(&list->lock, flags);
1388 	return result;
1389 }
1390 
1391 /**
1392  *	skb_queue_purge - empty a list
1393  *	@list: list to empty
1394  *
1395  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1396  *	the list and one reference dropped. This function takes the list
1397  *	lock and is atomic with respect to other list locking functions.
1398  */
1399 void skb_queue_purge(struct sk_buff_head *list)
1400 {
1401 	struct sk_buff *skb;
1402 	while ((skb = skb_dequeue(list)) != NULL)
1403 		kfree_skb(skb);
1404 }
1405 
1406 /**
1407  *	skb_queue_head - queue a buffer at the list head
1408  *	@list: list to use
1409  *	@newsk: buffer to queue
1410  *
1411  *	Queue a buffer at the start of the list. This function takes the
1412  *	list lock and can be used safely with other locking &sk_buff functions
1413  *	safely.
1414  *
1415  *	A buffer cannot be placed on two lists at the same time.
1416  */
1417 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1418 {
1419 	unsigned long flags;
1420 
1421 	spin_lock_irqsave(&list->lock, flags);
1422 	__skb_queue_head(list, newsk);
1423 	spin_unlock_irqrestore(&list->lock, flags);
1424 }
1425 
1426 /**
1427  *	skb_queue_tail - queue a buffer at the list tail
1428  *	@list: list to use
1429  *	@newsk: buffer to queue
1430  *
1431  *	Queue a buffer at the tail of the list. This function takes the
1432  *	list lock and can be used safely with other locking &sk_buff functions
1433  *	safely.
1434  *
1435  *	A buffer cannot be placed on two lists at the same time.
1436  */
1437 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1438 {
1439 	unsigned long flags;
1440 
1441 	spin_lock_irqsave(&list->lock, flags);
1442 	__skb_queue_tail(list, newsk);
1443 	spin_unlock_irqrestore(&list->lock, flags);
1444 }
1445 
1446 /**
1447  *	skb_unlink	-	remove a buffer from a list
1448  *	@skb: buffer to remove
1449  *	@list: list to use
1450  *
1451  *	Remove a packet from a list. The list locks are taken and this
1452  *	function is atomic with respect to other list locked calls
1453  *
1454  *	You must know what list the SKB is on.
1455  */
1456 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1457 {
1458 	unsigned long flags;
1459 
1460 	spin_lock_irqsave(&list->lock, flags);
1461 	__skb_unlink(skb, list);
1462 	spin_unlock_irqrestore(&list->lock, flags);
1463 }
1464 
1465 /**
1466  *	skb_append	-	append a buffer
1467  *	@old: buffer to insert after
1468  *	@newsk: buffer to insert
1469  *	@list: list to use
1470  *
1471  *	Place a packet after a given packet in a list. The list locks are taken
1472  *	and this function is atomic with respect to other list locked calls.
1473  *	A buffer cannot be placed on two lists at the same time.
1474  */
1475 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1476 {
1477 	unsigned long flags;
1478 
1479 	spin_lock_irqsave(&list->lock, flags);
1480 	__skb_append(old, newsk, list);
1481 	spin_unlock_irqrestore(&list->lock, flags);
1482 }
1483 
1484 
1485 /**
1486  *	skb_insert	-	insert a buffer
1487  *	@old: buffer to insert before
1488  *	@newsk: buffer to insert
1489  *	@list: list to use
1490  *
1491  *	Place a packet before a given packet in a list. The list locks are
1492  * 	taken and this function is atomic with respect to other list locked
1493  *	calls.
1494  *
1495  *	A buffer cannot be placed on two lists at the same time.
1496  */
1497 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1498 {
1499 	unsigned long flags;
1500 
1501 	spin_lock_irqsave(&list->lock, flags);
1502 	__skb_insert(newsk, old->prev, old, list);
1503 	spin_unlock_irqrestore(&list->lock, flags);
1504 }
1505 
1506 #if 0
1507 /*
1508  * 	Tune the memory allocator for a new MTU size.
1509  */
1510 void skb_add_mtu(int mtu)
1511 {
1512 	/* Must match allocation in alloc_skb */
1513 	mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1514 
1515 	kmem_add_cache_size(mtu);
1516 }
1517 #endif
1518 
1519 static inline void skb_split_inside_header(struct sk_buff *skb,
1520 					   struct sk_buff* skb1,
1521 					   const u32 len, const int pos)
1522 {
1523 	int i;
1524 
1525 	memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1526 
1527 	/* And move data appendix as is. */
1528 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1529 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1530 
1531 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1532 	skb_shinfo(skb)->nr_frags  = 0;
1533 	skb1->data_len		   = skb->data_len;
1534 	skb1->len		   += skb1->data_len;
1535 	skb->data_len		   = 0;
1536 	skb->len		   = len;
1537 	skb->tail		   = skb->data + len;
1538 }
1539 
1540 static inline void skb_split_no_header(struct sk_buff *skb,
1541 				       struct sk_buff* skb1,
1542 				       const u32 len, int pos)
1543 {
1544 	int i, k = 0;
1545 	const int nfrags = skb_shinfo(skb)->nr_frags;
1546 
1547 	skb_shinfo(skb)->nr_frags = 0;
1548 	skb1->len		  = skb1->data_len = skb->len - len;
1549 	skb->len		  = len;
1550 	skb->data_len		  = len - pos;
1551 
1552 	for (i = 0; i < nfrags; i++) {
1553 		int size = skb_shinfo(skb)->frags[i].size;
1554 
1555 		if (pos + size > len) {
1556 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1557 
1558 			if (pos < len) {
1559 				/* Split frag.
1560 				 * We have two variants in this case:
1561 				 * 1. Move all the frag to the second
1562 				 *    part, if it is possible. F.e.
1563 				 *    this approach is mandatory for TUX,
1564 				 *    where splitting is expensive.
1565 				 * 2. Split is accurately. We make this.
1566 				 */
1567 				get_page(skb_shinfo(skb)->frags[i].page);
1568 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1569 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1570 				skb_shinfo(skb)->frags[i].size	= len - pos;
1571 				skb_shinfo(skb)->nr_frags++;
1572 			}
1573 			k++;
1574 		} else
1575 			skb_shinfo(skb)->nr_frags++;
1576 		pos += size;
1577 	}
1578 	skb_shinfo(skb1)->nr_frags = k;
1579 }
1580 
1581 /**
1582  * skb_split - Split fragmented skb to two parts at length len.
1583  * @skb: the buffer to split
1584  * @skb1: the buffer to receive the second part
1585  * @len: new length for skb
1586  */
1587 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1588 {
1589 	int pos = skb_headlen(skb);
1590 
1591 	if (len < pos)	/* Split line is inside header. */
1592 		skb_split_inside_header(skb, skb1, len, pos);
1593 	else		/* Second chunk has no header, nothing to copy. */
1594 		skb_split_no_header(skb, skb1, len, pos);
1595 }
1596 
1597 /**
1598  * skb_prepare_seq_read - Prepare a sequential read of skb data
1599  * @skb: the buffer to read
1600  * @from: lower offset of data to be read
1601  * @to: upper offset of data to be read
1602  * @st: state variable
1603  *
1604  * Initializes the specified state variable. Must be called before
1605  * invoking skb_seq_read() for the first time.
1606  */
1607 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1608 			  unsigned int to, struct skb_seq_state *st)
1609 {
1610 	st->lower_offset = from;
1611 	st->upper_offset = to;
1612 	st->root_skb = st->cur_skb = skb;
1613 	st->frag_idx = st->stepped_offset = 0;
1614 	st->frag_data = NULL;
1615 }
1616 
1617 /**
1618  * skb_seq_read - Sequentially read skb data
1619  * @consumed: number of bytes consumed by the caller so far
1620  * @data: destination pointer for data to be returned
1621  * @st: state variable
1622  *
1623  * Reads a block of skb data at &consumed relative to the
1624  * lower offset specified to skb_prepare_seq_read(). Assigns
1625  * the head of the data block to &data and returns the length
1626  * of the block or 0 if the end of the skb data or the upper
1627  * offset has been reached.
1628  *
1629  * The caller is not required to consume all of the data
1630  * returned, i.e. &consumed is typically set to the number
1631  * of bytes already consumed and the next call to
1632  * skb_seq_read() will return the remaining part of the block.
1633  *
1634  * Note: The size of each block of data returned can be arbitary,
1635  *       this limitation is the cost for zerocopy seqeuental
1636  *       reads of potentially non linear data.
1637  *
1638  * Note: Fragment lists within fragments are not implemented
1639  *       at the moment, state->root_skb could be replaced with
1640  *       a stack for this purpose.
1641  */
1642 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1643 			  struct skb_seq_state *st)
1644 {
1645 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1646 	skb_frag_t *frag;
1647 
1648 	if (unlikely(abs_offset >= st->upper_offset))
1649 		return 0;
1650 
1651 next_skb:
1652 	block_limit = skb_headlen(st->cur_skb);
1653 
1654 	if (abs_offset < block_limit) {
1655 		*data = st->cur_skb->data + abs_offset;
1656 		return block_limit - abs_offset;
1657 	}
1658 
1659 	if (st->frag_idx == 0 && !st->frag_data)
1660 		st->stepped_offset += skb_headlen(st->cur_skb);
1661 
1662 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1663 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1664 		block_limit = frag->size + st->stepped_offset;
1665 
1666 		if (abs_offset < block_limit) {
1667 			if (!st->frag_data)
1668 				st->frag_data = kmap_skb_frag(frag);
1669 
1670 			*data = (u8 *) st->frag_data + frag->page_offset +
1671 				(abs_offset - st->stepped_offset);
1672 
1673 			return block_limit - abs_offset;
1674 		}
1675 
1676 		if (st->frag_data) {
1677 			kunmap_skb_frag(st->frag_data);
1678 			st->frag_data = NULL;
1679 		}
1680 
1681 		st->frag_idx++;
1682 		st->stepped_offset += frag->size;
1683 	}
1684 
1685 	if (st->cur_skb->next) {
1686 		st->cur_skb = st->cur_skb->next;
1687 		st->frag_idx = 0;
1688 		goto next_skb;
1689 	} else if (st->root_skb == st->cur_skb &&
1690 		   skb_shinfo(st->root_skb)->frag_list) {
1691 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1692 		goto next_skb;
1693 	}
1694 
1695 	return 0;
1696 }
1697 
1698 /**
1699  * skb_abort_seq_read - Abort a sequential read of skb data
1700  * @st: state variable
1701  *
1702  * Must be called if skb_seq_read() was not called until it
1703  * returned 0.
1704  */
1705 void skb_abort_seq_read(struct skb_seq_state *st)
1706 {
1707 	if (st->frag_data)
1708 		kunmap_skb_frag(st->frag_data);
1709 }
1710 
1711 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
1712 
1713 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1714 					  struct ts_config *conf,
1715 					  struct ts_state *state)
1716 {
1717 	return skb_seq_read(offset, text, TS_SKB_CB(state));
1718 }
1719 
1720 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1721 {
1722 	skb_abort_seq_read(TS_SKB_CB(state));
1723 }
1724 
1725 /**
1726  * skb_find_text - Find a text pattern in skb data
1727  * @skb: the buffer to look in
1728  * @from: search offset
1729  * @to: search limit
1730  * @config: textsearch configuration
1731  * @state: uninitialized textsearch state variable
1732  *
1733  * Finds a pattern in the skb data according to the specified
1734  * textsearch configuration. Use textsearch_next() to retrieve
1735  * subsequent occurrences of the pattern. Returns the offset
1736  * to the first occurrence or UINT_MAX if no match was found.
1737  */
1738 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1739 			   unsigned int to, struct ts_config *config,
1740 			   struct ts_state *state)
1741 {
1742 	unsigned int ret;
1743 
1744 	config->get_next_block = skb_ts_get_next_block;
1745 	config->finish = skb_ts_finish;
1746 
1747 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1748 
1749 	ret = textsearch_find(config, state);
1750 	return (ret <= to - from ? ret : UINT_MAX);
1751 }
1752 
1753 /**
1754  * skb_append_datato_frags: - append the user data to a skb
1755  * @sk: sock  structure
1756  * @skb: skb structure to be appened with user data.
1757  * @getfrag: call back function to be used for getting the user data
1758  * @from: pointer to user message iov
1759  * @length: length of the iov message
1760  *
1761  * Description: This procedure append the user data in the fragment part
1762  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
1763  */
1764 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1765 			int (*getfrag)(void *from, char *to, int offset,
1766 					int len, int odd, struct sk_buff *skb),
1767 			void *from, int length)
1768 {
1769 	int frg_cnt = 0;
1770 	skb_frag_t *frag = NULL;
1771 	struct page *page = NULL;
1772 	int copy, left;
1773 	int offset = 0;
1774 	int ret;
1775 
1776 	do {
1777 		/* Return error if we don't have space for new frag */
1778 		frg_cnt = skb_shinfo(skb)->nr_frags;
1779 		if (frg_cnt >= MAX_SKB_FRAGS)
1780 			return -EFAULT;
1781 
1782 		/* allocate a new page for next frag */
1783 		page = alloc_pages(sk->sk_allocation, 0);
1784 
1785 		/* If alloc_page fails just return failure and caller will
1786 		 * free previous allocated pages by doing kfree_skb()
1787 		 */
1788 		if (page == NULL)
1789 			return -ENOMEM;
1790 
1791 		/* initialize the next frag */
1792 		sk->sk_sndmsg_page = page;
1793 		sk->sk_sndmsg_off = 0;
1794 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1795 		skb->truesize += PAGE_SIZE;
1796 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1797 
1798 		/* get the new initialized frag */
1799 		frg_cnt = skb_shinfo(skb)->nr_frags;
1800 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1801 
1802 		/* copy the user data to page */
1803 		left = PAGE_SIZE - frag->page_offset;
1804 		copy = (length > left)? left : length;
1805 
1806 		ret = getfrag(from, (page_address(frag->page) +
1807 			    frag->page_offset + frag->size),
1808 			    offset, copy, 0, skb);
1809 		if (ret < 0)
1810 			return -EFAULT;
1811 
1812 		/* copy was successful so update the size parameters */
1813 		sk->sk_sndmsg_off += copy;
1814 		frag->size += copy;
1815 		skb->len += copy;
1816 		skb->data_len += copy;
1817 		offset += copy;
1818 		length -= copy;
1819 
1820 	} while (length > 0);
1821 
1822 	return 0;
1823 }
1824 
1825 /**
1826  *	skb_pull_rcsum - pull skb and update receive checksum
1827  *	@skb: buffer to update
1828  *	@start: start of data before pull
1829  *	@len: length of data pulled
1830  *
1831  *	This function performs an skb_pull on the packet and updates
1832  *	update the CHECKSUM_HW checksum.  It should be used on receive
1833  *	path processing instead of skb_pull unless you know that the
1834  *	checksum difference is zero (e.g., a valid IP header) or you
1835  *	are setting ip_summed to CHECKSUM_NONE.
1836  */
1837 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
1838 {
1839 	BUG_ON(len > skb->len);
1840 	skb->len -= len;
1841 	BUG_ON(skb->len < skb->data_len);
1842 	skb_postpull_rcsum(skb, skb->data, len);
1843 	return skb->data += len;
1844 }
1845 
1846 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
1847 
1848 /**
1849  *	skb_segment - Perform protocol segmentation on skb.
1850  *	@skb: buffer to segment
1851  *	@features: features for the output path (see dev->features)
1852  *
1853  *	This function performs segmentation on the given skb.  It returns
1854  *	the segment at the given position.  It returns NULL if there are
1855  *	no more segments to generate, or when an error is encountered.
1856  */
1857 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
1858 {
1859 	struct sk_buff *segs = NULL;
1860 	struct sk_buff *tail = NULL;
1861 	unsigned int mss = skb_shinfo(skb)->gso_size;
1862 	unsigned int doffset = skb->data - skb->mac.raw;
1863 	unsigned int offset = doffset;
1864 	unsigned int headroom;
1865 	unsigned int len;
1866 	int sg = features & NETIF_F_SG;
1867 	int nfrags = skb_shinfo(skb)->nr_frags;
1868 	int err = -ENOMEM;
1869 	int i = 0;
1870 	int pos;
1871 
1872 	__skb_push(skb, doffset);
1873 	headroom = skb_headroom(skb);
1874 	pos = skb_headlen(skb);
1875 
1876 	do {
1877 		struct sk_buff *nskb;
1878 		skb_frag_t *frag;
1879 		int hsize, nsize;
1880 		int k;
1881 		int size;
1882 
1883 		len = skb->len - offset;
1884 		if (len > mss)
1885 			len = mss;
1886 
1887 		hsize = skb_headlen(skb) - offset;
1888 		if (hsize < 0)
1889 			hsize = 0;
1890 		nsize = hsize + doffset;
1891 		if (nsize > len + doffset || !sg)
1892 			nsize = len + doffset;
1893 
1894 		nskb = alloc_skb(nsize + headroom, GFP_ATOMIC);
1895 		if (unlikely(!nskb))
1896 			goto err;
1897 
1898 		if (segs)
1899 			tail->next = nskb;
1900 		else
1901 			segs = nskb;
1902 		tail = nskb;
1903 
1904 		nskb->dev = skb->dev;
1905 		nskb->priority = skb->priority;
1906 		nskb->protocol = skb->protocol;
1907 		nskb->dst = dst_clone(skb->dst);
1908 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
1909 		nskb->pkt_type = skb->pkt_type;
1910 		nskb->mac_len = skb->mac_len;
1911 
1912 		skb_reserve(nskb, headroom);
1913 		nskb->mac.raw = nskb->data;
1914 		nskb->nh.raw = nskb->data + skb->mac_len;
1915 		nskb->h.raw = nskb->nh.raw + (skb->h.raw - skb->nh.raw);
1916 		memcpy(skb_put(nskb, doffset), skb->data, doffset);
1917 
1918 		if (!sg) {
1919 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
1920 							    skb_put(nskb, len),
1921 							    len, 0);
1922 			continue;
1923 		}
1924 
1925 		frag = skb_shinfo(nskb)->frags;
1926 		k = 0;
1927 
1928 		nskb->ip_summed = CHECKSUM_HW;
1929 		nskb->csum = skb->csum;
1930 		memcpy(skb_put(nskb, hsize), skb->data + offset, hsize);
1931 
1932 		while (pos < offset + len) {
1933 			BUG_ON(i >= nfrags);
1934 
1935 			*frag = skb_shinfo(skb)->frags[i];
1936 			get_page(frag->page);
1937 			size = frag->size;
1938 
1939 			if (pos < offset) {
1940 				frag->page_offset += offset - pos;
1941 				frag->size -= offset - pos;
1942 			}
1943 
1944 			k++;
1945 
1946 			if (pos + size <= offset + len) {
1947 				i++;
1948 				pos += size;
1949 			} else {
1950 				frag->size -= pos + size - (offset + len);
1951 				break;
1952 			}
1953 
1954 			frag++;
1955 		}
1956 
1957 		skb_shinfo(nskb)->nr_frags = k;
1958 		nskb->data_len = len - hsize;
1959 		nskb->len += nskb->data_len;
1960 		nskb->truesize += nskb->data_len;
1961 	} while ((offset += len) < skb->len);
1962 
1963 	return segs;
1964 
1965 err:
1966 	while ((skb = segs)) {
1967 		segs = skb->next;
1968 		kfree(skb);
1969 	}
1970 	return ERR_PTR(err);
1971 }
1972 
1973 EXPORT_SYMBOL_GPL(skb_segment);
1974 
1975 void __init skb_init(void)
1976 {
1977 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
1978 					      sizeof(struct sk_buff),
1979 					      0,
1980 					      SLAB_HWCACHE_ALIGN,
1981 					      NULL, NULL);
1982 	if (!skbuff_head_cache)
1983 		panic("cannot create skbuff cache");
1984 
1985 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
1986 						(2*sizeof(struct sk_buff)) +
1987 						sizeof(atomic_t),
1988 						0,
1989 						SLAB_HWCACHE_ALIGN,
1990 						NULL, NULL);
1991 	if (!skbuff_fclone_cache)
1992 		panic("cannot create skbuff cache");
1993 }
1994 
1995 EXPORT_SYMBOL(___pskb_trim);
1996 EXPORT_SYMBOL(__kfree_skb);
1997 EXPORT_SYMBOL(kfree_skb);
1998 EXPORT_SYMBOL(__pskb_pull_tail);
1999 EXPORT_SYMBOL(__alloc_skb);
2000 EXPORT_SYMBOL(pskb_copy);
2001 EXPORT_SYMBOL(pskb_expand_head);
2002 EXPORT_SYMBOL(skb_checksum);
2003 EXPORT_SYMBOL(skb_clone);
2004 EXPORT_SYMBOL(skb_clone_fraglist);
2005 EXPORT_SYMBOL(skb_copy);
2006 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2007 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2008 EXPORT_SYMBOL(skb_copy_bits);
2009 EXPORT_SYMBOL(skb_copy_expand);
2010 EXPORT_SYMBOL(skb_over_panic);
2011 EXPORT_SYMBOL(skb_pad);
2012 EXPORT_SYMBOL(skb_realloc_headroom);
2013 EXPORT_SYMBOL(skb_under_panic);
2014 EXPORT_SYMBOL(skb_dequeue);
2015 EXPORT_SYMBOL(skb_dequeue_tail);
2016 EXPORT_SYMBOL(skb_insert);
2017 EXPORT_SYMBOL(skb_queue_purge);
2018 EXPORT_SYMBOL(skb_queue_head);
2019 EXPORT_SYMBOL(skb_queue_tail);
2020 EXPORT_SYMBOL(skb_unlink);
2021 EXPORT_SYMBOL(skb_append);
2022 EXPORT_SYMBOL(skb_split);
2023 EXPORT_SYMBOL(skb_prepare_seq_read);
2024 EXPORT_SYMBOL(skb_seq_read);
2025 EXPORT_SYMBOL(skb_abort_seq_read);
2026 EXPORT_SYMBOL(skb_find_text);
2027 EXPORT_SYMBOL(skb_append_datato_frags);
2028