xref: /linux/net/core/skbuff.c (revision 5832c4a77d6931cebf9ba737129ae8f14b66ee1d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/bitfield.h>
62 #include <linux/if_vlan.h>
63 #include <linux/mpls.h>
64 #include <linux/kcov.h>
65 #include <linux/iov_iter.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/gso.h>
72 #include <net/hotdata.h>
73 #include <net/ip6_checksum.h>
74 #include <net/xfrm.h>
75 #include <net/mpls.h>
76 #include <net/mptcp.h>
77 #include <net/mctp.h>
78 #include <net/page_pool/helpers.h>
79 #include <net/dropreason.h>
80 
81 #include <linux/uaccess.h>
82 #include <trace/events/skb.h>
83 #include <linux/highmem.h>
84 #include <linux/capability.h>
85 #include <linux/user_namespace.h>
86 #include <linux/indirect_call_wrapper.h>
87 #include <linux/textsearch.h>
88 
89 #include "dev.h"
90 #include "sock_destructor.h"
91 
92 #ifdef CONFIG_SKB_EXTENSIONS
93 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
94 #endif
95 
96 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
97 
98 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
99  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
100  * size, and we can differentiate heads from skb_small_head_cache
101  * vs system slabs by looking at their size (skb_end_offset()).
102  */
103 #define SKB_SMALL_HEAD_CACHE_SIZE					\
104 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
105 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
106 		SKB_SMALL_HEAD_SIZE)
107 
108 #define SKB_SMALL_HEAD_HEADROOM						\
109 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
110 
111 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
112 EXPORT_SYMBOL(sysctl_max_skb_frags);
113 
114 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
115  * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
116  * netmem is a page.
117  */
118 static_assert(offsetof(struct bio_vec, bv_page) ==
119 	      offsetof(skb_frag_t, netmem));
120 static_assert(sizeof_field(struct bio_vec, bv_page) ==
121 	      sizeof_field(skb_frag_t, netmem));
122 
123 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
124 static_assert(sizeof_field(struct bio_vec, bv_len) ==
125 	      sizeof_field(skb_frag_t, len));
126 
127 static_assert(offsetof(struct bio_vec, bv_offset) ==
128 	      offsetof(skb_frag_t, offset));
129 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
130 	      sizeof_field(skb_frag_t, offset));
131 
132 #undef FN
133 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
134 static const char * const drop_reasons[] = {
135 	[SKB_CONSUMED] = "CONSUMED",
136 	DEFINE_DROP_REASON(FN, FN)
137 };
138 
139 static const struct drop_reason_list drop_reasons_core = {
140 	.reasons = drop_reasons,
141 	.n_reasons = ARRAY_SIZE(drop_reasons),
142 };
143 
144 const struct drop_reason_list __rcu *
145 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
146 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
147 };
148 EXPORT_SYMBOL(drop_reasons_by_subsys);
149 
150 /**
151  * drop_reasons_register_subsys - register another drop reason subsystem
152  * @subsys: the subsystem to register, must not be the core
153  * @list: the list of drop reasons within the subsystem, must point to
154  *	a statically initialized list
155  */
156 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
157 				  const struct drop_reason_list *list)
158 {
159 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
160 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
161 		 "invalid subsystem %d\n", subsys))
162 		return;
163 
164 	/* must point to statically allocated memory, so INIT is OK */
165 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
166 }
167 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
168 
169 /**
170  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
171  * @subsys: the subsystem to remove, must not be the core
172  *
173  * Note: This will synchronize_rcu() to ensure no users when it returns.
174  */
175 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
176 {
177 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
178 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
179 		 "invalid subsystem %d\n", subsys))
180 		return;
181 
182 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
183 
184 	synchronize_rcu();
185 }
186 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
187 
188 /**
189  *	skb_panic - private function for out-of-line support
190  *	@skb:	buffer
191  *	@sz:	size
192  *	@addr:	address
193  *	@msg:	skb_over_panic or skb_under_panic
194  *
195  *	Out-of-line support for skb_put() and skb_push().
196  *	Called via the wrapper skb_over_panic() or skb_under_panic().
197  *	Keep out of line to prevent kernel bloat.
198  *	__builtin_return_address is not used because it is not always reliable.
199  */
200 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
201 		      const char msg[])
202 {
203 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
204 		 msg, addr, skb->len, sz, skb->head, skb->data,
205 		 (unsigned long)skb->tail, (unsigned long)skb->end,
206 		 skb->dev ? skb->dev->name : "<NULL>");
207 	BUG();
208 }
209 
210 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
211 {
212 	skb_panic(skb, sz, addr, __func__);
213 }
214 
215 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
216 {
217 	skb_panic(skb, sz, addr, __func__);
218 }
219 
220 #define NAPI_SKB_CACHE_SIZE	64
221 #define NAPI_SKB_CACHE_BULK	16
222 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
223 
224 #if PAGE_SIZE == SZ_4K
225 
226 #define NAPI_HAS_SMALL_PAGE_FRAG	1
227 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
228 
229 /* specialized page frag allocator using a single order 0 page
230  * and slicing it into 1K sized fragment. Constrained to systems
231  * with a very limited amount of 1K fragments fitting a single
232  * page - to avoid excessive truesize underestimation
233  */
234 
235 struct page_frag_1k {
236 	void *va;
237 	u16 offset;
238 	bool pfmemalloc;
239 };
240 
241 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
242 {
243 	struct page *page;
244 	int offset;
245 
246 	offset = nc->offset - SZ_1K;
247 	if (likely(offset >= 0))
248 		goto use_frag;
249 
250 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
251 	if (!page)
252 		return NULL;
253 
254 	nc->va = page_address(page);
255 	nc->pfmemalloc = page_is_pfmemalloc(page);
256 	offset = PAGE_SIZE - SZ_1K;
257 	page_ref_add(page, offset / SZ_1K);
258 
259 use_frag:
260 	nc->offset = offset;
261 	return nc->va + offset;
262 }
263 #else
264 
265 /* the small page is actually unused in this build; add dummy helpers
266  * to please the compiler and avoid later preprocessor's conditionals
267  */
268 #define NAPI_HAS_SMALL_PAGE_FRAG	0
269 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
270 
271 struct page_frag_1k {
272 };
273 
274 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
275 {
276 	return NULL;
277 }
278 
279 #endif
280 
281 struct napi_alloc_cache {
282 	struct page_frag_cache page;
283 	struct page_frag_1k page_small;
284 	unsigned int skb_count;
285 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
286 };
287 
288 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
289 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
290 
291 /* Double check that napi_get_frags() allocates skbs with
292  * skb->head being backed by slab, not a page fragment.
293  * This is to make sure bug fixed in 3226b158e67c
294  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
295  * does not accidentally come back.
296  */
297 void napi_get_frags_check(struct napi_struct *napi)
298 {
299 	struct sk_buff *skb;
300 
301 	local_bh_disable();
302 	skb = napi_get_frags(napi);
303 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
304 	napi_free_frags(napi);
305 	local_bh_enable();
306 }
307 
308 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
309 {
310 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
311 
312 	fragsz = SKB_DATA_ALIGN(fragsz);
313 
314 	return __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
315 				       align_mask);
316 }
317 EXPORT_SYMBOL(__napi_alloc_frag_align);
318 
319 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
320 {
321 	void *data;
322 
323 	fragsz = SKB_DATA_ALIGN(fragsz);
324 	if (in_hardirq() || irqs_disabled()) {
325 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
326 
327 		data = __page_frag_alloc_align(nc, fragsz, GFP_ATOMIC,
328 					       align_mask);
329 	} else {
330 		struct napi_alloc_cache *nc;
331 
332 		local_bh_disable();
333 		nc = this_cpu_ptr(&napi_alloc_cache);
334 		data = __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
335 					       align_mask);
336 		local_bh_enable();
337 	}
338 	return data;
339 }
340 EXPORT_SYMBOL(__netdev_alloc_frag_align);
341 
342 static struct sk_buff *napi_skb_cache_get(void)
343 {
344 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
345 	struct sk_buff *skb;
346 
347 	if (unlikely(!nc->skb_count)) {
348 		nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
349 						      GFP_ATOMIC,
350 						      NAPI_SKB_CACHE_BULK,
351 						      nc->skb_cache);
352 		if (unlikely(!nc->skb_count))
353 			return NULL;
354 	}
355 
356 	skb = nc->skb_cache[--nc->skb_count];
357 	kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
358 
359 	return skb;
360 }
361 
362 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
363 					 unsigned int size)
364 {
365 	struct skb_shared_info *shinfo;
366 
367 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
368 
369 	/* Assumes caller memset cleared SKB */
370 	skb->truesize = SKB_TRUESIZE(size);
371 	refcount_set(&skb->users, 1);
372 	skb->head = data;
373 	skb->data = data;
374 	skb_reset_tail_pointer(skb);
375 	skb_set_end_offset(skb, size);
376 	skb->mac_header = (typeof(skb->mac_header))~0U;
377 	skb->transport_header = (typeof(skb->transport_header))~0U;
378 	skb->alloc_cpu = raw_smp_processor_id();
379 	/* make sure we initialize shinfo sequentially */
380 	shinfo = skb_shinfo(skb);
381 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
382 	atomic_set(&shinfo->dataref, 1);
383 
384 	skb_set_kcov_handle(skb, kcov_common_handle());
385 }
386 
387 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
388 				     unsigned int *size)
389 {
390 	void *resized;
391 
392 	/* Must find the allocation size (and grow it to match). */
393 	*size = ksize(data);
394 	/* krealloc() will immediately return "data" when
395 	 * "ksize(data)" is requested: it is the existing upper
396 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
397 	 * that this "new" pointer needs to be passed back to the
398 	 * caller for use so the __alloc_size hinting will be
399 	 * tracked correctly.
400 	 */
401 	resized = krealloc(data, *size, GFP_ATOMIC);
402 	WARN_ON_ONCE(resized != data);
403 	return resized;
404 }
405 
406 /* build_skb() variant which can operate on slab buffers.
407  * Note that this should be used sparingly as slab buffers
408  * cannot be combined efficiently by GRO!
409  */
410 struct sk_buff *slab_build_skb(void *data)
411 {
412 	struct sk_buff *skb;
413 	unsigned int size;
414 
415 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
416 	if (unlikely(!skb))
417 		return NULL;
418 
419 	memset(skb, 0, offsetof(struct sk_buff, tail));
420 	data = __slab_build_skb(skb, data, &size);
421 	__finalize_skb_around(skb, data, size);
422 
423 	return skb;
424 }
425 EXPORT_SYMBOL(slab_build_skb);
426 
427 /* Caller must provide SKB that is memset cleared */
428 static void __build_skb_around(struct sk_buff *skb, void *data,
429 			       unsigned int frag_size)
430 {
431 	unsigned int size = frag_size;
432 
433 	/* frag_size == 0 is considered deprecated now. Callers
434 	 * using slab buffer should use slab_build_skb() instead.
435 	 */
436 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
437 		data = __slab_build_skb(skb, data, &size);
438 
439 	__finalize_skb_around(skb, data, size);
440 }
441 
442 /**
443  * __build_skb - build a network buffer
444  * @data: data buffer provided by caller
445  * @frag_size: size of data (must not be 0)
446  *
447  * Allocate a new &sk_buff. Caller provides space holding head and
448  * skb_shared_info. @data must have been allocated from the page
449  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
450  * allocation is deprecated, and callers should use slab_build_skb()
451  * instead.)
452  * The return is the new skb buffer.
453  * On a failure the return is %NULL, and @data is not freed.
454  * Notes :
455  *  Before IO, driver allocates only data buffer where NIC put incoming frame
456  *  Driver should add room at head (NET_SKB_PAD) and
457  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
458  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
459  *  before giving packet to stack.
460  *  RX rings only contains data buffers, not full skbs.
461  */
462 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
463 {
464 	struct sk_buff *skb;
465 
466 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
467 	if (unlikely(!skb))
468 		return NULL;
469 
470 	memset(skb, 0, offsetof(struct sk_buff, tail));
471 	__build_skb_around(skb, data, frag_size);
472 
473 	return skb;
474 }
475 
476 /* build_skb() is wrapper over __build_skb(), that specifically
477  * takes care of skb->head and skb->pfmemalloc
478  */
479 struct sk_buff *build_skb(void *data, unsigned int frag_size)
480 {
481 	struct sk_buff *skb = __build_skb(data, frag_size);
482 
483 	if (likely(skb && frag_size)) {
484 		skb->head_frag = 1;
485 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
486 	}
487 	return skb;
488 }
489 EXPORT_SYMBOL(build_skb);
490 
491 /**
492  * build_skb_around - build a network buffer around provided skb
493  * @skb: sk_buff provide by caller, must be memset cleared
494  * @data: data buffer provided by caller
495  * @frag_size: size of data
496  */
497 struct sk_buff *build_skb_around(struct sk_buff *skb,
498 				 void *data, unsigned int frag_size)
499 {
500 	if (unlikely(!skb))
501 		return NULL;
502 
503 	__build_skb_around(skb, data, frag_size);
504 
505 	if (frag_size) {
506 		skb->head_frag = 1;
507 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
508 	}
509 	return skb;
510 }
511 EXPORT_SYMBOL(build_skb_around);
512 
513 /**
514  * __napi_build_skb - build a network buffer
515  * @data: data buffer provided by caller
516  * @frag_size: size of data
517  *
518  * Version of __build_skb() that uses NAPI percpu caches to obtain
519  * skbuff_head instead of inplace allocation.
520  *
521  * Returns a new &sk_buff on success, %NULL on allocation failure.
522  */
523 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
524 {
525 	struct sk_buff *skb;
526 
527 	skb = napi_skb_cache_get();
528 	if (unlikely(!skb))
529 		return NULL;
530 
531 	memset(skb, 0, offsetof(struct sk_buff, tail));
532 	__build_skb_around(skb, data, frag_size);
533 
534 	return skb;
535 }
536 
537 /**
538  * napi_build_skb - build a network buffer
539  * @data: data buffer provided by caller
540  * @frag_size: size of data
541  *
542  * Version of __napi_build_skb() that takes care of skb->head_frag
543  * and skb->pfmemalloc when the data is a page or page fragment.
544  *
545  * Returns a new &sk_buff on success, %NULL on allocation failure.
546  */
547 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
548 {
549 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
550 
551 	if (likely(skb) && frag_size) {
552 		skb->head_frag = 1;
553 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
554 	}
555 
556 	return skb;
557 }
558 EXPORT_SYMBOL(napi_build_skb);
559 
560 /*
561  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
562  * the caller if emergency pfmemalloc reserves are being used. If it is and
563  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
564  * may be used. Otherwise, the packet data may be discarded until enough
565  * memory is free
566  */
567 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
568 			     bool *pfmemalloc)
569 {
570 	bool ret_pfmemalloc = false;
571 	size_t obj_size;
572 	void *obj;
573 
574 	obj_size = SKB_HEAD_ALIGN(*size);
575 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
576 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
577 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
578 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
579 				node);
580 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
581 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
582 			goto out;
583 		/* Try again but now we are using pfmemalloc reserves */
584 		ret_pfmemalloc = true;
585 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
586 		goto out;
587 	}
588 
589 	obj_size = kmalloc_size_roundup(obj_size);
590 	/* The following cast might truncate high-order bits of obj_size, this
591 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
592 	 */
593 	*size = (unsigned int)obj_size;
594 
595 	/*
596 	 * Try a regular allocation, when that fails and we're not entitled
597 	 * to the reserves, fail.
598 	 */
599 	obj = kmalloc_node_track_caller(obj_size,
600 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
601 					node);
602 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
603 		goto out;
604 
605 	/* Try again but now we are using pfmemalloc reserves */
606 	ret_pfmemalloc = true;
607 	obj = kmalloc_node_track_caller(obj_size, flags, node);
608 
609 out:
610 	if (pfmemalloc)
611 		*pfmemalloc = ret_pfmemalloc;
612 
613 	return obj;
614 }
615 
616 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
617  *	'private' fields and also do memory statistics to find all the
618  *	[BEEP] leaks.
619  *
620  */
621 
622 /**
623  *	__alloc_skb	-	allocate a network buffer
624  *	@size: size to allocate
625  *	@gfp_mask: allocation mask
626  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
627  *		instead of head cache and allocate a cloned (child) skb.
628  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
629  *		allocations in case the data is required for writeback
630  *	@node: numa node to allocate memory on
631  *
632  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
633  *	tail room of at least size bytes. The object has a reference count
634  *	of one. The return is the buffer. On a failure the return is %NULL.
635  *
636  *	Buffers may only be allocated from interrupts using a @gfp_mask of
637  *	%GFP_ATOMIC.
638  */
639 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
640 			    int flags, int node)
641 {
642 	struct kmem_cache *cache;
643 	struct sk_buff *skb;
644 	bool pfmemalloc;
645 	u8 *data;
646 
647 	cache = (flags & SKB_ALLOC_FCLONE)
648 		? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
649 
650 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
651 		gfp_mask |= __GFP_MEMALLOC;
652 
653 	/* Get the HEAD */
654 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
655 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
656 		skb = napi_skb_cache_get();
657 	else
658 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
659 	if (unlikely(!skb))
660 		return NULL;
661 	prefetchw(skb);
662 
663 	/* We do our best to align skb_shared_info on a separate cache
664 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
665 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
666 	 * Both skb->head and skb_shared_info are cache line aligned.
667 	 */
668 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
669 	if (unlikely(!data))
670 		goto nodata;
671 	/* kmalloc_size_roundup() might give us more room than requested.
672 	 * Put skb_shared_info exactly at the end of allocated zone,
673 	 * to allow max possible filling before reallocation.
674 	 */
675 	prefetchw(data + SKB_WITH_OVERHEAD(size));
676 
677 	/*
678 	 * Only clear those fields we need to clear, not those that we will
679 	 * actually initialise below. Hence, don't put any more fields after
680 	 * the tail pointer in struct sk_buff!
681 	 */
682 	memset(skb, 0, offsetof(struct sk_buff, tail));
683 	__build_skb_around(skb, data, size);
684 	skb->pfmemalloc = pfmemalloc;
685 
686 	if (flags & SKB_ALLOC_FCLONE) {
687 		struct sk_buff_fclones *fclones;
688 
689 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
690 
691 		skb->fclone = SKB_FCLONE_ORIG;
692 		refcount_set(&fclones->fclone_ref, 1);
693 	}
694 
695 	return skb;
696 
697 nodata:
698 	kmem_cache_free(cache, skb);
699 	return NULL;
700 }
701 EXPORT_SYMBOL(__alloc_skb);
702 
703 /**
704  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
705  *	@dev: network device to receive on
706  *	@len: length to allocate
707  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
708  *
709  *	Allocate a new &sk_buff and assign it a usage count of one. The
710  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
711  *	the headroom they think they need without accounting for the
712  *	built in space. The built in space is used for optimisations.
713  *
714  *	%NULL is returned if there is no free memory.
715  */
716 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
717 				   gfp_t gfp_mask)
718 {
719 	struct page_frag_cache *nc;
720 	struct sk_buff *skb;
721 	bool pfmemalloc;
722 	void *data;
723 
724 	len += NET_SKB_PAD;
725 
726 	/* If requested length is either too small or too big,
727 	 * we use kmalloc() for skb->head allocation.
728 	 */
729 	if (len <= SKB_WITH_OVERHEAD(1024) ||
730 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
731 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
732 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
733 		if (!skb)
734 			goto skb_fail;
735 		goto skb_success;
736 	}
737 
738 	len = SKB_HEAD_ALIGN(len);
739 
740 	if (sk_memalloc_socks())
741 		gfp_mask |= __GFP_MEMALLOC;
742 
743 	if (in_hardirq() || irqs_disabled()) {
744 		nc = this_cpu_ptr(&netdev_alloc_cache);
745 		data = page_frag_alloc(nc, len, gfp_mask);
746 		pfmemalloc = nc->pfmemalloc;
747 	} else {
748 		local_bh_disable();
749 		nc = this_cpu_ptr(&napi_alloc_cache.page);
750 		data = page_frag_alloc(nc, len, gfp_mask);
751 		pfmemalloc = nc->pfmemalloc;
752 		local_bh_enable();
753 	}
754 
755 	if (unlikely(!data))
756 		return NULL;
757 
758 	skb = __build_skb(data, len);
759 	if (unlikely(!skb)) {
760 		skb_free_frag(data);
761 		return NULL;
762 	}
763 
764 	if (pfmemalloc)
765 		skb->pfmemalloc = 1;
766 	skb->head_frag = 1;
767 
768 skb_success:
769 	skb_reserve(skb, NET_SKB_PAD);
770 	skb->dev = dev;
771 
772 skb_fail:
773 	return skb;
774 }
775 EXPORT_SYMBOL(__netdev_alloc_skb);
776 
777 /**
778  *	napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
779  *	@napi: napi instance this buffer was allocated for
780  *	@len: length to allocate
781  *
782  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
783  *	attempt to allocate the head from a special reserved region used
784  *	only for NAPI Rx allocation.  By doing this we can save several
785  *	CPU cycles by avoiding having to disable and re-enable IRQs.
786  *
787  *	%NULL is returned if there is no free memory.
788  */
789 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
790 {
791 	gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
792 	struct napi_alloc_cache *nc;
793 	struct sk_buff *skb;
794 	bool pfmemalloc;
795 	void *data;
796 
797 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
798 	len += NET_SKB_PAD + NET_IP_ALIGN;
799 
800 	/* If requested length is either too small or too big,
801 	 * we use kmalloc() for skb->head allocation.
802 	 * When the small frag allocator is available, prefer it over kmalloc
803 	 * for small fragments
804 	 */
805 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
806 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
807 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
808 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
809 				  NUMA_NO_NODE);
810 		if (!skb)
811 			goto skb_fail;
812 		goto skb_success;
813 	}
814 
815 	nc = this_cpu_ptr(&napi_alloc_cache);
816 
817 	if (sk_memalloc_socks())
818 		gfp_mask |= __GFP_MEMALLOC;
819 
820 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
821 		/* we are artificially inflating the allocation size, but
822 		 * that is not as bad as it may look like, as:
823 		 * - 'len' less than GRO_MAX_HEAD makes little sense
824 		 * - On most systems, larger 'len' values lead to fragment
825 		 *   size above 512 bytes
826 		 * - kmalloc would use the kmalloc-1k slab for such values
827 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
828 		 *   little networking, as that implies no WiFi and no
829 		 *   tunnels support, and 32 bits arches.
830 		 */
831 		len = SZ_1K;
832 
833 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
834 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
835 	} else {
836 		len = SKB_HEAD_ALIGN(len);
837 
838 		data = page_frag_alloc(&nc->page, len, gfp_mask);
839 		pfmemalloc = nc->page.pfmemalloc;
840 	}
841 
842 	if (unlikely(!data))
843 		return NULL;
844 
845 	skb = __napi_build_skb(data, len);
846 	if (unlikely(!skb)) {
847 		skb_free_frag(data);
848 		return NULL;
849 	}
850 
851 	if (pfmemalloc)
852 		skb->pfmemalloc = 1;
853 	skb->head_frag = 1;
854 
855 skb_success:
856 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
857 	skb->dev = napi->dev;
858 
859 skb_fail:
860 	return skb;
861 }
862 EXPORT_SYMBOL(napi_alloc_skb);
863 
864 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
865 			    int off, int size, unsigned int truesize)
866 {
867 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
868 
869 	skb_fill_netmem_desc(skb, i, netmem, off, size);
870 	skb->len += size;
871 	skb->data_len += size;
872 	skb->truesize += truesize;
873 }
874 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
875 
876 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
877 			  unsigned int truesize)
878 {
879 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
880 
881 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
882 
883 	skb_frag_size_add(frag, size);
884 	skb->len += size;
885 	skb->data_len += size;
886 	skb->truesize += truesize;
887 }
888 EXPORT_SYMBOL(skb_coalesce_rx_frag);
889 
890 static void skb_drop_list(struct sk_buff **listp)
891 {
892 	kfree_skb_list(*listp);
893 	*listp = NULL;
894 }
895 
896 static inline void skb_drop_fraglist(struct sk_buff *skb)
897 {
898 	skb_drop_list(&skb_shinfo(skb)->frag_list);
899 }
900 
901 static void skb_clone_fraglist(struct sk_buff *skb)
902 {
903 	struct sk_buff *list;
904 
905 	skb_walk_frags(skb, list)
906 		skb_get(list);
907 }
908 
909 static bool is_pp_page(struct page *page)
910 {
911 	return (page->pp_magic & ~0x3UL) == PP_SIGNATURE;
912 }
913 
914 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
915 		    unsigned int headroom)
916 {
917 #if IS_ENABLED(CONFIG_PAGE_POOL)
918 	u32 size, truesize, len, max_head_size, off;
919 	struct sk_buff *skb = *pskb, *nskb;
920 	int err, i, head_off;
921 	void *data;
922 
923 	/* XDP does not support fraglist so we need to linearize
924 	 * the skb.
925 	 */
926 	if (skb_has_frag_list(skb))
927 		return -EOPNOTSUPP;
928 
929 	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
930 	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
931 		return -ENOMEM;
932 
933 	size = min_t(u32, skb->len, max_head_size);
934 	truesize = SKB_HEAD_ALIGN(size) + headroom;
935 	data = page_pool_dev_alloc_va(pool, &truesize);
936 	if (!data)
937 		return -ENOMEM;
938 
939 	nskb = napi_build_skb(data, truesize);
940 	if (!nskb) {
941 		page_pool_free_va(pool, data, true);
942 		return -ENOMEM;
943 	}
944 
945 	skb_reserve(nskb, headroom);
946 	skb_copy_header(nskb, skb);
947 	skb_mark_for_recycle(nskb);
948 
949 	err = skb_copy_bits(skb, 0, nskb->data, size);
950 	if (err) {
951 		consume_skb(nskb);
952 		return err;
953 	}
954 	skb_put(nskb, size);
955 
956 	head_off = skb_headroom(nskb) - skb_headroom(skb);
957 	skb_headers_offset_update(nskb, head_off);
958 
959 	off = size;
960 	len = skb->len - off;
961 	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
962 		struct page *page;
963 		u32 page_off;
964 
965 		size = min_t(u32, len, PAGE_SIZE);
966 		truesize = size;
967 
968 		page = page_pool_dev_alloc(pool, &page_off, &truesize);
969 		if (!page) {
970 			consume_skb(nskb);
971 			return -ENOMEM;
972 		}
973 
974 		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
975 		err = skb_copy_bits(skb, off, page_address(page) + page_off,
976 				    size);
977 		if (err) {
978 			consume_skb(nskb);
979 			return err;
980 		}
981 
982 		len -= size;
983 		off += size;
984 	}
985 
986 	consume_skb(skb);
987 	*pskb = nskb;
988 
989 	return 0;
990 #else
991 	return -EOPNOTSUPP;
992 #endif
993 }
994 EXPORT_SYMBOL(skb_pp_cow_data);
995 
996 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
997 			 struct bpf_prog *prog)
998 {
999 	if (!prog->aux->xdp_has_frags)
1000 		return -EINVAL;
1001 
1002 	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
1003 }
1004 EXPORT_SYMBOL(skb_cow_data_for_xdp);
1005 
1006 #if IS_ENABLED(CONFIG_PAGE_POOL)
1007 bool napi_pp_put_page(struct page *page, bool napi_safe)
1008 {
1009 	bool allow_direct = false;
1010 	struct page_pool *pp;
1011 
1012 	page = compound_head(page);
1013 
1014 	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
1015 	 * in order to preserve any existing bits, such as bit 0 for the
1016 	 * head page of compound page and bit 1 for pfmemalloc page, so
1017 	 * mask those bits for freeing side when doing below checking,
1018 	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
1019 	 * to avoid recycling the pfmemalloc page.
1020 	 */
1021 	if (unlikely(!is_pp_page(page)))
1022 		return false;
1023 
1024 	pp = page->pp;
1025 
1026 	/* Allow direct recycle if we have reasons to believe that we are
1027 	 * in the same context as the consumer would run, so there's
1028 	 * no possible race.
1029 	 * __page_pool_put_page() makes sure we're not in hardirq context
1030 	 * and interrupts are enabled prior to accessing the cache.
1031 	 */
1032 	if (napi_safe || in_softirq()) {
1033 		const struct napi_struct *napi = READ_ONCE(pp->p.napi);
1034 		unsigned int cpuid = smp_processor_id();
1035 
1036 		allow_direct = napi && READ_ONCE(napi->list_owner) == cpuid;
1037 		allow_direct |= READ_ONCE(pp->cpuid) == cpuid;
1038 	}
1039 
1040 	/* Driver set this to memory recycling info. Reset it on recycle.
1041 	 * This will *not* work for NIC using a split-page memory model.
1042 	 * The page will be returned to the pool here regardless of the
1043 	 * 'flipped' fragment being in use or not.
1044 	 */
1045 	page_pool_put_full_page(pp, page, allow_direct);
1046 
1047 	return true;
1048 }
1049 EXPORT_SYMBOL(napi_pp_put_page);
1050 #endif
1051 
1052 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
1053 {
1054 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1055 		return false;
1056 	return napi_pp_put_page(virt_to_page(data), napi_safe);
1057 }
1058 
1059 /**
1060  * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1061  * @skb:	page pool aware skb
1062  *
1063  * Increase the fragment reference count (pp_ref_count) of a skb. This is
1064  * intended to gain fragment references only for page pool aware skbs,
1065  * i.e. when skb->pp_recycle is true, and not for fragments in a
1066  * non-pp-recycling skb. It has a fallback to increase references on normal
1067  * pages, as page pool aware skbs may also have normal page fragments.
1068  */
1069 static int skb_pp_frag_ref(struct sk_buff *skb)
1070 {
1071 	struct skb_shared_info *shinfo;
1072 	struct page *head_page;
1073 	int i;
1074 
1075 	if (!skb->pp_recycle)
1076 		return -EINVAL;
1077 
1078 	shinfo = skb_shinfo(skb);
1079 
1080 	for (i = 0; i < shinfo->nr_frags; i++) {
1081 		head_page = compound_head(skb_frag_page(&shinfo->frags[i]));
1082 		if (likely(is_pp_page(head_page)))
1083 			page_pool_ref_page(head_page);
1084 		else
1085 			page_ref_inc(head_page);
1086 	}
1087 	return 0;
1088 }
1089 
1090 static void skb_kfree_head(void *head, unsigned int end_offset)
1091 {
1092 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1093 		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1094 	else
1095 		kfree(head);
1096 }
1097 
1098 static void skb_free_head(struct sk_buff *skb, bool napi_safe)
1099 {
1100 	unsigned char *head = skb->head;
1101 
1102 	if (skb->head_frag) {
1103 		if (skb_pp_recycle(skb, head, napi_safe))
1104 			return;
1105 		skb_free_frag(head);
1106 	} else {
1107 		skb_kfree_head(head, skb_end_offset(skb));
1108 	}
1109 }
1110 
1111 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
1112 			     bool napi_safe)
1113 {
1114 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1115 	int i;
1116 
1117 	if (!skb_data_unref(skb, shinfo))
1118 		goto exit;
1119 
1120 	if (skb_zcopy(skb)) {
1121 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1122 
1123 		skb_zcopy_clear(skb, true);
1124 		if (skip_unref)
1125 			goto free_head;
1126 	}
1127 
1128 	for (i = 0; i < shinfo->nr_frags; i++)
1129 		napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
1130 
1131 free_head:
1132 	if (shinfo->frag_list)
1133 		kfree_skb_list_reason(shinfo->frag_list, reason);
1134 
1135 	skb_free_head(skb, napi_safe);
1136 exit:
1137 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1138 	 * bit is only set on the head though, so in order to avoid races
1139 	 * while trying to recycle fragments on __skb_frag_unref() we need
1140 	 * to make one SKB responsible for triggering the recycle path.
1141 	 * So disable the recycling bit if an SKB is cloned and we have
1142 	 * additional references to the fragmented part of the SKB.
1143 	 * Eventually the last SKB will have the recycling bit set and it's
1144 	 * dataref set to 0, which will trigger the recycling
1145 	 */
1146 	skb->pp_recycle = 0;
1147 }
1148 
1149 /*
1150  *	Free an skbuff by memory without cleaning the state.
1151  */
1152 static void kfree_skbmem(struct sk_buff *skb)
1153 {
1154 	struct sk_buff_fclones *fclones;
1155 
1156 	switch (skb->fclone) {
1157 	case SKB_FCLONE_UNAVAILABLE:
1158 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1159 		return;
1160 
1161 	case SKB_FCLONE_ORIG:
1162 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1163 
1164 		/* We usually free the clone (TX completion) before original skb
1165 		 * This test would have no chance to be true for the clone,
1166 		 * while here, branch prediction will be good.
1167 		 */
1168 		if (refcount_read(&fclones->fclone_ref) == 1)
1169 			goto fastpath;
1170 		break;
1171 
1172 	default: /* SKB_FCLONE_CLONE */
1173 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1174 		break;
1175 	}
1176 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1177 		return;
1178 fastpath:
1179 	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1180 }
1181 
1182 void skb_release_head_state(struct sk_buff *skb)
1183 {
1184 	skb_dst_drop(skb);
1185 	if (skb->destructor) {
1186 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1187 		skb->destructor(skb);
1188 	}
1189 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1190 	nf_conntrack_put(skb_nfct(skb));
1191 #endif
1192 	skb_ext_put(skb);
1193 }
1194 
1195 /* Free everything but the sk_buff shell. */
1196 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
1197 			    bool napi_safe)
1198 {
1199 	skb_release_head_state(skb);
1200 	if (likely(skb->head))
1201 		skb_release_data(skb, reason, napi_safe);
1202 }
1203 
1204 /**
1205  *	__kfree_skb - private function
1206  *	@skb: buffer
1207  *
1208  *	Free an sk_buff. Release anything attached to the buffer.
1209  *	Clean the state. This is an internal helper function. Users should
1210  *	always call kfree_skb
1211  */
1212 
1213 void __kfree_skb(struct sk_buff *skb)
1214 {
1215 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1216 	kfree_skbmem(skb);
1217 }
1218 EXPORT_SYMBOL(__kfree_skb);
1219 
1220 static __always_inline
1221 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1222 {
1223 	if (unlikely(!skb_unref(skb)))
1224 		return false;
1225 
1226 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1227 			       u32_get_bits(reason,
1228 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1229 				SKB_DROP_REASON_SUBSYS_NUM);
1230 
1231 	if (reason == SKB_CONSUMED)
1232 		trace_consume_skb(skb, __builtin_return_address(0));
1233 	else
1234 		trace_kfree_skb(skb, __builtin_return_address(0), reason);
1235 	return true;
1236 }
1237 
1238 /**
1239  *	kfree_skb_reason - free an sk_buff with special reason
1240  *	@skb: buffer to free
1241  *	@reason: reason why this skb is dropped
1242  *
1243  *	Drop a reference to the buffer and free it if the usage count has
1244  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1245  *	tracepoint.
1246  */
1247 void __fix_address
1248 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1249 {
1250 	if (__kfree_skb_reason(skb, reason))
1251 		__kfree_skb(skb);
1252 }
1253 EXPORT_SYMBOL(kfree_skb_reason);
1254 
1255 #define KFREE_SKB_BULK_SIZE	16
1256 
1257 struct skb_free_array {
1258 	unsigned int skb_count;
1259 	void *skb_array[KFREE_SKB_BULK_SIZE];
1260 };
1261 
1262 static void kfree_skb_add_bulk(struct sk_buff *skb,
1263 			       struct skb_free_array *sa,
1264 			       enum skb_drop_reason reason)
1265 {
1266 	/* if SKB is a clone, don't handle this case */
1267 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1268 		__kfree_skb(skb);
1269 		return;
1270 	}
1271 
1272 	skb_release_all(skb, reason, false);
1273 	sa->skb_array[sa->skb_count++] = skb;
1274 
1275 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1276 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1277 				     sa->skb_array);
1278 		sa->skb_count = 0;
1279 	}
1280 }
1281 
1282 void __fix_address
1283 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1284 {
1285 	struct skb_free_array sa;
1286 
1287 	sa.skb_count = 0;
1288 
1289 	while (segs) {
1290 		struct sk_buff *next = segs->next;
1291 
1292 		if (__kfree_skb_reason(segs, reason)) {
1293 			skb_poison_list(segs);
1294 			kfree_skb_add_bulk(segs, &sa, reason);
1295 		}
1296 
1297 		segs = next;
1298 	}
1299 
1300 	if (sa.skb_count)
1301 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1302 }
1303 EXPORT_SYMBOL(kfree_skb_list_reason);
1304 
1305 /* Dump skb information and contents.
1306  *
1307  * Must only be called from net_ratelimit()-ed paths.
1308  *
1309  * Dumps whole packets if full_pkt, only headers otherwise.
1310  */
1311 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1312 {
1313 	struct skb_shared_info *sh = skb_shinfo(skb);
1314 	struct net_device *dev = skb->dev;
1315 	struct sock *sk = skb->sk;
1316 	struct sk_buff *list_skb;
1317 	bool has_mac, has_trans;
1318 	int headroom, tailroom;
1319 	int i, len, seg_len;
1320 
1321 	if (full_pkt)
1322 		len = skb->len;
1323 	else
1324 		len = min_t(int, skb->len, MAX_HEADER + 128);
1325 
1326 	headroom = skb_headroom(skb);
1327 	tailroom = skb_tailroom(skb);
1328 
1329 	has_mac = skb_mac_header_was_set(skb);
1330 	has_trans = skb_transport_header_was_set(skb);
1331 
1332 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1333 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1334 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1335 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1336 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1337 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1338 	       has_mac ? skb->mac_header : -1,
1339 	       has_mac ? skb_mac_header_len(skb) : -1,
1340 	       skb->network_header,
1341 	       has_trans ? skb_network_header_len(skb) : -1,
1342 	       has_trans ? skb->transport_header : -1,
1343 	       sh->tx_flags, sh->nr_frags,
1344 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1345 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
1346 	       skb->csum_valid, skb->csum_level,
1347 	       skb->hash, skb->sw_hash, skb->l4_hash,
1348 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1349 
1350 	if (dev)
1351 		printk("%sdev name=%s feat=%pNF\n",
1352 		       level, dev->name, &dev->features);
1353 	if (sk)
1354 		printk("%ssk family=%hu type=%u proto=%u\n",
1355 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1356 
1357 	if (full_pkt && headroom)
1358 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1359 			       16, 1, skb->head, headroom, false);
1360 
1361 	seg_len = min_t(int, skb_headlen(skb), len);
1362 	if (seg_len)
1363 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1364 			       16, 1, skb->data, seg_len, false);
1365 	len -= seg_len;
1366 
1367 	if (full_pkt && tailroom)
1368 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1369 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1370 
1371 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1372 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1373 		u32 p_off, p_len, copied;
1374 		struct page *p;
1375 		u8 *vaddr;
1376 
1377 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1378 				      skb_frag_size(frag), p, p_off, p_len,
1379 				      copied) {
1380 			seg_len = min_t(int, p_len, len);
1381 			vaddr = kmap_atomic(p);
1382 			print_hex_dump(level, "skb frag:     ",
1383 				       DUMP_PREFIX_OFFSET,
1384 				       16, 1, vaddr + p_off, seg_len, false);
1385 			kunmap_atomic(vaddr);
1386 			len -= seg_len;
1387 			if (!len)
1388 				break;
1389 		}
1390 	}
1391 
1392 	if (full_pkt && skb_has_frag_list(skb)) {
1393 		printk("skb fraglist:\n");
1394 		skb_walk_frags(skb, list_skb)
1395 			skb_dump(level, list_skb, true);
1396 	}
1397 }
1398 EXPORT_SYMBOL(skb_dump);
1399 
1400 /**
1401  *	skb_tx_error - report an sk_buff xmit error
1402  *	@skb: buffer that triggered an error
1403  *
1404  *	Report xmit error if a device callback is tracking this skb.
1405  *	skb must be freed afterwards.
1406  */
1407 void skb_tx_error(struct sk_buff *skb)
1408 {
1409 	if (skb) {
1410 		skb_zcopy_downgrade_managed(skb);
1411 		skb_zcopy_clear(skb, true);
1412 	}
1413 }
1414 EXPORT_SYMBOL(skb_tx_error);
1415 
1416 #ifdef CONFIG_TRACEPOINTS
1417 /**
1418  *	consume_skb - free an skbuff
1419  *	@skb: buffer to free
1420  *
1421  *	Drop a ref to the buffer and free it if the usage count has hit zero
1422  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1423  *	is being dropped after a failure and notes that
1424  */
1425 void consume_skb(struct sk_buff *skb)
1426 {
1427 	if (!skb_unref(skb))
1428 		return;
1429 
1430 	trace_consume_skb(skb, __builtin_return_address(0));
1431 	__kfree_skb(skb);
1432 }
1433 EXPORT_SYMBOL(consume_skb);
1434 #endif
1435 
1436 /**
1437  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1438  *	@skb: buffer to free
1439  *
1440  *	Alike consume_skb(), but this variant assumes that this is the last
1441  *	skb reference and all the head states have been already dropped
1442  */
1443 void __consume_stateless_skb(struct sk_buff *skb)
1444 {
1445 	trace_consume_skb(skb, __builtin_return_address(0));
1446 	skb_release_data(skb, SKB_CONSUMED, false);
1447 	kfree_skbmem(skb);
1448 }
1449 
1450 static void napi_skb_cache_put(struct sk_buff *skb)
1451 {
1452 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1453 	u32 i;
1454 
1455 	if (!kasan_mempool_poison_object(skb))
1456 		return;
1457 
1458 	nc->skb_cache[nc->skb_count++] = skb;
1459 
1460 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1461 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1462 			kasan_mempool_unpoison_object(nc->skb_cache[i],
1463 						kmem_cache_size(net_hotdata.skbuff_cache));
1464 
1465 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1466 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1467 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1468 	}
1469 }
1470 
1471 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1472 {
1473 	skb_release_all(skb, reason, true);
1474 	napi_skb_cache_put(skb);
1475 }
1476 
1477 void napi_skb_free_stolen_head(struct sk_buff *skb)
1478 {
1479 	if (unlikely(skb->slow_gro)) {
1480 		nf_reset_ct(skb);
1481 		skb_dst_drop(skb);
1482 		skb_ext_put(skb);
1483 		skb_orphan(skb);
1484 		skb->slow_gro = 0;
1485 	}
1486 	napi_skb_cache_put(skb);
1487 }
1488 
1489 void napi_consume_skb(struct sk_buff *skb, int budget)
1490 {
1491 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1492 	if (unlikely(!budget)) {
1493 		dev_consume_skb_any(skb);
1494 		return;
1495 	}
1496 
1497 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1498 
1499 	if (!skb_unref(skb))
1500 		return;
1501 
1502 	/* if reaching here SKB is ready to free */
1503 	trace_consume_skb(skb, __builtin_return_address(0));
1504 
1505 	/* if SKB is a clone, don't handle this case */
1506 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1507 		__kfree_skb(skb);
1508 		return;
1509 	}
1510 
1511 	skb_release_all(skb, SKB_CONSUMED, !!budget);
1512 	napi_skb_cache_put(skb);
1513 }
1514 EXPORT_SYMBOL(napi_consume_skb);
1515 
1516 /* Make sure a field is contained by headers group */
1517 #define CHECK_SKB_FIELD(field) \
1518 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1519 		     offsetof(struct sk_buff, headers.field));	\
1520 
1521 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1522 {
1523 	new->tstamp		= old->tstamp;
1524 	/* We do not copy old->sk */
1525 	new->dev		= old->dev;
1526 	memcpy(new->cb, old->cb, sizeof(old->cb));
1527 	skb_dst_copy(new, old);
1528 	__skb_ext_copy(new, old);
1529 	__nf_copy(new, old, false);
1530 
1531 	/* Note : this field could be in the headers group.
1532 	 * It is not yet because we do not want to have a 16 bit hole
1533 	 */
1534 	new->queue_mapping = old->queue_mapping;
1535 
1536 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1537 	CHECK_SKB_FIELD(protocol);
1538 	CHECK_SKB_FIELD(csum);
1539 	CHECK_SKB_FIELD(hash);
1540 	CHECK_SKB_FIELD(priority);
1541 	CHECK_SKB_FIELD(skb_iif);
1542 	CHECK_SKB_FIELD(vlan_proto);
1543 	CHECK_SKB_FIELD(vlan_tci);
1544 	CHECK_SKB_FIELD(transport_header);
1545 	CHECK_SKB_FIELD(network_header);
1546 	CHECK_SKB_FIELD(mac_header);
1547 	CHECK_SKB_FIELD(inner_protocol);
1548 	CHECK_SKB_FIELD(inner_transport_header);
1549 	CHECK_SKB_FIELD(inner_network_header);
1550 	CHECK_SKB_FIELD(inner_mac_header);
1551 	CHECK_SKB_FIELD(mark);
1552 #ifdef CONFIG_NETWORK_SECMARK
1553 	CHECK_SKB_FIELD(secmark);
1554 #endif
1555 #ifdef CONFIG_NET_RX_BUSY_POLL
1556 	CHECK_SKB_FIELD(napi_id);
1557 #endif
1558 	CHECK_SKB_FIELD(alloc_cpu);
1559 #ifdef CONFIG_XPS
1560 	CHECK_SKB_FIELD(sender_cpu);
1561 #endif
1562 #ifdef CONFIG_NET_SCHED
1563 	CHECK_SKB_FIELD(tc_index);
1564 #endif
1565 
1566 }
1567 
1568 /*
1569  * You should not add any new code to this function.  Add it to
1570  * __copy_skb_header above instead.
1571  */
1572 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1573 {
1574 #define C(x) n->x = skb->x
1575 
1576 	n->next = n->prev = NULL;
1577 	n->sk = NULL;
1578 	__copy_skb_header(n, skb);
1579 
1580 	C(len);
1581 	C(data_len);
1582 	C(mac_len);
1583 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1584 	n->cloned = 1;
1585 	n->nohdr = 0;
1586 	n->peeked = 0;
1587 	C(pfmemalloc);
1588 	C(pp_recycle);
1589 	n->destructor = NULL;
1590 	C(tail);
1591 	C(end);
1592 	C(head);
1593 	C(head_frag);
1594 	C(data);
1595 	C(truesize);
1596 	refcount_set(&n->users, 1);
1597 
1598 	atomic_inc(&(skb_shinfo(skb)->dataref));
1599 	skb->cloned = 1;
1600 
1601 	return n;
1602 #undef C
1603 }
1604 
1605 /**
1606  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1607  * @first: first sk_buff of the msg
1608  */
1609 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1610 {
1611 	struct sk_buff *n;
1612 
1613 	n = alloc_skb(0, GFP_ATOMIC);
1614 	if (!n)
1615 		return NULL;
1616 
1617 	n->len = first->len;
1618 	n->data_len = first->len;
1619 	n->truesize = first->truesize;
1620 
1621 	skb_shinfo(n)->frag_list = first;
1622 
1623 	__copy_skb_header(n, first);
1624 	n->destructor = NULL;
1625 
1626 	return n;
1627 }
1628 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1629 
1630 /**
1631  *	skb_morph	-	morph one skb into another
1632  *	@dst: the skb to receive the contents
1633  *	@src: the skb to supply the contents
1634  *
1635  *	This is identical to skb_clone except that the target skb is
1636  *	supplied by the user.
1637  *
1638  *	The target skb is returned upon exit.
1639  */
1640 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1641 {
1642 	skb_release_all(dst, SKB_CONSUMED, false);
1643 	return __skb_clone(dst, src);
1644 }
1645 EXPORT_SYMBOL_GPL(skb_morph);
1646 
1647 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1648 {
1649 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1650 	struct user_struct *user;
1651 
1652 	if (capable(CAP_IPC_LOCK) || !size)
1653 		return 0;
1654 
1655 	rlim = rlimit(RLIMIT_MEMLOCK);
1656 	if (rlim == RLIM_INFINITY)
1657 		return 0;
1658 
1659 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1660 	max_pg = rlim >> PAGE_SHIFT;
1661 	user = mmp->user ? : current_user();
1662 
1663 	old_pg = atomic_long_read(&user->locked_vm);
1664 	do {
1665 		new_pg = old_pg + num_pg;
1666 		if (new_pg > max_pg)
1667 			return -ENOBUFS;
1668 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1669 
1670 	if (!mmp->user) {
1671 		mmp->user = get_uid(user);
1672 		mmp->num_pg = num_pg;
1673 	} else {
1674 		mmp->num_pg += num_pg;
1675 	}
1676 
1677 	return 0;
1678 }
1679 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1680 
1681 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1682 {
1683 	if (mmp->user) {
1684 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1685 		free_uid(mmp->user);
1686 	}
1687 }
1688 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1689 
1690 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1691 {
1692 	struct ubuf_info_msgzc *uarg;
1693 	struct sk_buff *skb;
1694 
1695 	WARN_ON_ONCE(!in_task());
1696 
1697 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1698 	if (!skb)
1699 		return NULL;
1700 
1701 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1702 	uarg = (void *)skb->cb;
1703 	uarg->mmp.user = NULL;
1704 
1705 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1706 		kfree_skb(skb);
1707 		return NULL;
1708 	}
1709 
1710 	uarg->ubuf.callback = msg_zerocopy_callback;
1711 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1712 	uarg->len = 1;
1713 	uarg->bytelen = size;
1714 	uarg->zerocopy = 1;
1715 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1716 	refcount_set(&uarg->ubuf.refcnt, 1);
1717 	sock_hold(sk);
1718 
1719 	return &uarg->ubuf;
1720 }
1721 
1722 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1723 {
1724 	return container_of((void *)uarg, struct sk_buff, cb);
1725 }
1726 
1727 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1728 				       struct ubuf_info *uarg)
1729 {
1730 	if (uarg) {
1731 		struct ubuf_info_msgzc *uarg_zc;
1732 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1733 		u32 bytelen, next;
1734 
1735 		/* there might be non MSG_ZEROCOPY users */
1736 		if (uarg->callback != msg_zerocopy_callback)
1737 			return NULL;
1738 
1739 		/* realloc only when socket is locked (TCP, UDP cork),
1740 		 * so uarg->len and sk_zckey access is serialized
1741 		 */
1742 		if (!sock_owned_by_user(sk)) {
1743 			WARN_ON_ONCE(1);
1744 			return NULL;
1745 		}
1746 
1747 		uarg_zc = uarg_to_msgzc(uarg);
1748 		bytelen = uarg_zc->bytelen + size;
1749 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1750 			/* TCP can create new skb to attach new uarg */
1751 			if (sk->sk_type == SOCK_STREAM)
1752 				goto new_alloc;
1753 			return NULL;
1754 		}
1755 
1756 		next = (u32)atomic_read(&sk->sk_zckey);
1757 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1758 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1759 				return NULL;
1760 			uarg_zc->len++;
1761 			uarg_zc->bytelen = bytelen;
1762 			atomic_set(&sk->sk_zckey, ++next);
1763 
1764 			/* no extra ref when appending to datagram (MSG_MORE) */
1765 			if (sk->sk_type == SOCK_STREAM)
1766 				net_zcopy_get(uarg);
1767 
1768 			return uarg;
1769 		}
1770 	}
1771 
1772 new_alloc:
1773 	return msg_zerocopy_alloc(sk, size);
1774 }
1775 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1776 
1777 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1778 {
1779 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1780 	u32 old_lo, old_hi;
1781 	u64 sum_len;
1782 
1783 	old_lo = serr->ee.ee_info;
1784 	old_hi = serr->ee.ee_data;
1785 	sum_len = old_hi - old_lo + 1ULL + len;
1786 
1787 	if (sum_len >= (1ULL << 32))
1788 		return false;
1789 
1790 	if (lo != old_hi + 1)
1791 		return false;
1792 
1793 	serr->ee.ee_data += len;
1794 	return true;
1795 }
1796 
1797 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1798 {
1799 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1800 	struct sock_exterr_skb *serr;
1801 	struct sock *sk = skb->sk;
1802 	struct sk_buff_head *q;
1803 	unsigned long flags;
1804 	bool is_zerocopy;
1805 	u32 lo, hi;
1806 	u16 len;
1807 
1808 	mm_unaccount_pinned_pages(&uarg->mmp);
1809 
1810 	/* if !len, there was only 1 call, and it was aborted
1811 	 * so do not queue a completion notification
1812 	 */
1813 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1814 		goto release;
1815 
1816 	len = uarg->len;
1817 	lo = uarg->id;
1818 	hi = uarg->id + len - 1;
1819 	is_zerocopy = uarg->zerocopy;
1820 
1821 	serr = SKB_EXT_ERR(skb);
1822 	memset(serr, 0, sizeof(*serr));
1823 	serr->ee.ee_errno = 0;
1824 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1825 	serr->ee.ee_data = hi;
1826 	serr->ee.ee_info = lo;
1827 	if (!is_zerocopy)
1828 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1829 
1830 	q = &sk->sk_error_queue;
1831 	spin_lock_irqsave(&q->lock, flags);
1832 	tail = skb_peek_tail(q);
1833 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1834 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1835 		__skb_queue_tail(q, skb);
1836 		skb = NULL;
1837 	}
1838 	spin_unlock_irqrestore(&q->lock, flags);
1839 
1840 	sk_error_report(sk);
1841 
1842 release:
1843 	consume_skb(skb);
1844 	sock_put(sk);
1845 }
1846 
1847 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1848 			   bool success)
1849 {
1850 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1851 
1852 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1853 
1854 	if (refcount_dec_and_test(&uarg->refcnt))
1855 		__msg_zerocopy_callback(uarg_zc);
1856 }
1857 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1858 
1859 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1860 {
1861 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1862 
1863 	atomic_dec(&sk->sk_zckey);
1864 	uarg_to_msgzc(uarg)->len--;
1865 
1866 	if (have_uref)
1867 		msg_zerocopy_callback(NULL, uarg, true);
1868 }
1869 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1870 
1871 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1872 			     struct msghdr *msg, int len,
1873 			     struct ubuf_info *uarg)
1874 {
1875 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1876 	int err, orig_len = skb->len;
1877 
1878 	/* An skb can only point to one uarg. This edge case happens when
1879 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1880 	 */
1881 	if (orig_uarg && uarg != orig_uarg)
1882 		return -EEXIST;
1883 
1884 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1885 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1886 		struct sock *save_sk = skb->sk;
1887 
1888 		/* Streams do not free skb on error. Reset to prev state. */
1889 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1890 		skb->sk = sk;
1891 		___pskb_trim(skb, orig_len);
1892 		skb->sk = save_sk;
1893 		return err;
1894 	}
1895 
1896 	skb_zcopy_set(skb, uarg, NULL);
1897 	return skb->len - orig_len;
1898 }
1899 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1900 
1901 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1902 {
1903 	int i;
1904 
1905 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1906 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1907 		skb_frag_ref(skb, i);
1908 }
1909 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1910 
1911 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1912 			      gfp_t gfp_mask)
1913 {
1914 	if (skb_zcopy(orig)) {
1915 		if (skb_zcopy(nskb)) {
1916 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1917 			if (!gfp_mask) {
1918 				WARN_ON_ONCE(1);
1919 				return -ENOMEM;
1920 			}
1921 			if (skb_uarg(nskb) == skb_uarg(orig))
1922 				return 0;
1923 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1924 				return -EIO;
1925 		}
1926 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1927 	}
1928 	return 0;
1929 }
1930 
1931 /**
1932  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1933  *	@skb: the skb to modify
1934  *	@gfp_mask: allocation priority
1935  *
1936  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1937  *	It will copy all frags into kernel and drop the reference
1938  *	to userspace pages.
1939  *
1940  *	If this function is called from an interrupt gfp_mask() must be
1941  *	%GFP_ATOMIC.
1942  *
1943  *	Returns 0 on success or a negative error code on failure
1944  *	to allocate kernel memory to copy to.
1945  */
1946 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1947 {
1948 	int num_frags = skb_shinfo(skb)->nr_frags;
1949 	struct page *page, *head = NULL;
1950 	int i, order, psize, new_frags;
1951 	u32 d_off;
1952 
1953 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1954 		return -EINVAL;
1955 
1956 	if (!num_frags)
1957 		goto release;
1958 
1959 	/* We might have to allocate high order pages, so compute what minimum
1960 	 * page order is needed.
1961 	 */
1962 	order = 0;
1963 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1964 		order++;
1965 	psize = (PAGE_SIZE << order);
1966 
1967 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1968 	for (i = 0; i < new_frags; i++) {
1969 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1970 		if (!page) {
1971 			while (head) {
1972 				struct page *next = (struct page *)page_private(head);
1973 				put_page(head);
1974 				head = next;
1975 			}
1976 			return -ENOMEM;
1977 		}
1978 		set_page_private(page, (unsigned long)head);
1979 		head = page;
1980 	}
1981 
1982 	page = head;
1983 	d_off = 0;
1984 	for (i = 0; i < num_frags; i++) {
1985 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1986 		u32 p_off, p_len, copied;
1987 		struct page *p;
1988 		u8 *vaddr;
1989 
1990 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1991 				      p, p_off, p_len, copied) {
1992 			u32 copy, done = 0;
1993 			vaddr = kmap_atomic(p);
1994 
1995 			while (done < p_len) {
1996 				if (d_off == psize) {
1997 					d_off = 0;
1998 					page = (struct page *)page_private(page);
1999 				}
2000 				copy = min_t(u32, psize - d_off, p_len - done);
2001 				memcpy(page_address(page) + d_off,
2002 				       vaddr + p_off + done, copy);
2003 				done += copy;
2004 				d_off += copy;
2005 			}
2006 			kunmap_atomic(vaddr);
2007 		}
2008 	}
2009 
2010 	/* skb frags release userspace buffers */
2011 	for (i = 0; i < num_frags; i++)
2012 		skb_frag_unref(skb, i);
2013 
2014 	/* skb frags point to kernel buffers */
2015 	for (i = 0; i < new_frags - 1; i++) {
2016 		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
2017 		head = (struct page *)page_private(head);
2018 	}
2019 	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2020 			       d_off);
2021 	skb_shinfo(skb)->nr_frags = new_frags;
2022 
2023 release:
2024 	skb_zcopy_clear(skb, false);
2025 	return 0;
2026 }
2027 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2028 
2029 /**
2030  *	skb_clone	-	duplicate an sk_buff
2031  *	@skb: buffer to clone
2032  *	@gfp_mask: allocation priority
2033  *
2034  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
2035  *	copies share the same packet data but not structure. The new
2036  *	buffer has a reference count of 1. If the allocation fails the
2037  *	function returns %NULL otherwise the new buffer is returned.
2038  *
2039  *	If this function is called from an interrupt gfp_mask() must be
2040  *	%GFP_ATOMIC.
2041  */
2042 
2043 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2044 {
2045 	struct sk_buff_fclones *fclones = container_of(skb,
2046 						       struct sk_buff_fclones,
2047 						       skb1);
2048 	struct sk_buff *n;
2049 
2050 	if (skb_orphan_frags(skb, gfp_mask))
2051 		return NULL;
2052 
2053 	if (skb->fclone == SKB_FCLONE_ORIG &&
2054 	    refcount_read(&fclones->fclone_ref) == 1) {
2055 		n = &fclones->skb2;
2056 		refcount_set(&fclones->fclone_ref, 2);
2057 		n->fclone = SKB_FCLONE_CLONE;
2058 	} else {
2059 		if (skb_pfmemalloc(skb))
2060 			gfp_mask |= __GFP_MEMALLOC;
2061 
2062 		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2063 		if (!n)
2064 			return NULL;
2065 
2066 		n->fclone = SKB_FCLONE_UNAVAILABLE;
2067 	}
2068 
2069 	return __skb_clone(n, skb);
2070 }
2071 EXPORT_SYMBOL(skb_clone);
2072 
2073 void skb_headers_offset_update(struct sk_buff *skb, int off)
2074 {
2075 	/* Only adjust this if it actually is csum_start rather than csum */
2076 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2077 		skb->csum_start += off;
2078 	/* {transport,network,mac}_header and tail are relative to skb->head */
2079 	skb->transport_header += off;
2080 	skb->network_header   += off;
2081 	if (skb_mac_header_was_set(skb))
2082 		skb->mac_header += off;
2083 	skb->inner_transport_header += off;
2084 	skb->inner_network_header += off;
2085 	skb->inner_mac_header += off;
2086 }
2087 EXPORT_SYMBOL(skb_headers_offset_update);
2088 
2089 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2090 {
2091 	__copy_skb_header(new, old);
2092 
2093 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2094 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2095 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2096 }
2097 EXPORT_SYMBOL(skb_copy_header);
2098 
2099 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2100 {
2101 	if (skb_pfmemalloc(skb))
2102 		return SKB_ALLOC_RX;
2103 	return 0;
2104 }
2105 
2106 /**
2107  *	skb_copy	-	create private copy of an sk_buff
2108  *	@skb: buffer to copy
2109  *	@gfp_mask: allocation priority
2110  *
2111  *	Make a copy of both an &sk_buff and its data. This is used when the
2112  *	caller wishes to modify the data and needs a private copy of the
2113  *	data to alter. Returns %NULL on failure or the pointer to the buffer
2114  *	on success. The returned buffer has a reference count of 1.
2115  *
2116  *	As by-product this function converts non-linear &sk_buff to linear
2117  *	one, so that &sk_buff becomes completely private and caller is allowed
2118  *	to modify all the data of returned buffer. This means that this
2119  *	function is not recommended for use in circumstances when only
2120  *	header is going to be modified. Use pskb_copy() instead.
2121  */
2122 
2123 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2124 {
2125 	int headerlen = skb_headroom(skb);
2126 	unsigned int size = skb_end_offset(skb) + skb->data_len;
2127 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
2128 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2129 
2130 	if (!n)
2131 		return NULL;
2132 
2133 	/* Set the data pointer */
2134 	skb_reserve(n, headerlen);
2135 	/* Set the tail pointer and length */
2136 	skb_put(n, skb->len);
2137 
2138 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2139 
2140 	skb_copy_header(n, skb);
2141 	return n;
2142 }
2143 EXPORT_SYMBOL(skb_copy);
2144 
2145 /**
2146  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2147  *	@skb: buffer to copy
2148  *	@headroom: headroom of new skb
2149  *	@gfp_mask: allocation priority
2150  *	@fclone: if true allocate the copy of the skb from the fclone
2151  *	cache instead of the head cache; it is recommended to set this
2152  *	to true for the cases where the copy will likely be cloned
2153  *
2154  *	Make a copy of both an &sk_buff and part of its data, located
2155  *	in header. Fragmented data remain shared. This is used when
2156  *	the caller wishes to modify only header of &sk_buff and needs
2157  *	private copy of the header to alter. Returns %NULL on failure
2158  *	or the pointer to the buffer on success.
2159  *	The returned buffer has a reference count of 1.
2160  */
2161 
2162 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2163 				   gfp_t gfp_mask, bool fclone)
2164 {
2165 	unsigned int size = skb_headlen(skb) + headroom;
2166 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2167 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2168 
2169 	if (!n)
2170 		goto out;
2171 
2172 	/* Set the data pointer */
2173 	skb_reserve(n, headroom);
2174 	/* Set the tail pointer and length */
2175 	skb_put(n, skb_headlen(skb));
2176 	/* Copy the bytes */
2177 	skb_copy_from_linear_data(skb, n->data, n->len);
2178 
2179 	n->truesize += skb->data_len;
2180 	n->data_len  = skb->data_len;
2181 	n->len	     = skb->len;
2182 
2183 	if (skb_shinfo(skb)->nr_frags) {
2184 		int i;
2185 
2186 		if (skb_orphan_frags(skb, gfp_mask) ||
2187 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2188 			kfree_skb(n);
2189 			n = NULL;
2190 			goto out;
2191 		}
2192 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2193 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2194 			skb_frag_ref(skb, i);
2195 		}
2196 		skb_shinfo(n)->nr_frags = i;
2197 	}
2198 
2199 	if (skb_has_frag_list(skb)) {
2200 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2201 		skb_clone_fraglist(n);
2202 	}
2203 
2204 	skb_copy_header(n, skb);
2205 out:
2206 	return n;
2207 }
2208 EXPORT_SYMBOL(__pskb_copy_fclone);
2209 
2210 /**
2211  *	pskb_expand_head - reallocate header of &sk_buff
2212  *	@skb: buffer to reallocate
2213  *	@nhead: room to add at head
2214  *	@ntail: room to add at tail
2215  *	@gfp_mask: allocation priority
2216  *
2217  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2218  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2219  *	reference count of 1. Returns zero in the case of success or error,
2220  *	if expansion failed. In the last case, &sk_buff is not changed.
2221  *
2222  *	All the pointers pointing into skb header may change and must be
2223  *	reloaded after call to this function.
2224  */
2225 
2226 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2227 		     gfp_t gfp_mask)
2228 {
2229 	unsigned int osize = skb_end_offset(skb);
2230 	unsigned int size = osize + nhead + ntail;
2231 	long off;
2232 	u8 *data;
2233 	int i;
2234 
2235 	BUG_ON(nhead < 0);
2236 
2237 	BUG_ON(skb_shared(skb));
2238 
2239 	skb_zcopy_downgrade_managed(skb);
2240 
2241 	if (skb_pfmemalloc(skb))
2242 		gfp_mask |= __GFP_MEMALLOC;
2243 
2244 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2245 	if (!data)
2246 		goto nodata;
2247 	size = SKB_WITH_OVERHEAD(size);
2248 
2249 	/* Copy only real data... and, alas, header. This should be
2250 	 * optimized for the cases when header is void.
2251 	 */
2252 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2253 
2254 	memcpy((struct skb_shared_info *)(data + size),
2255 	       skb_shinfo(skb),
2256 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2257 
2258 	/*
2259 	 * if shinfo is shared we must drop the old head gracefully, but if it
2260 	 * is not we can just drop the old head and let the existing refcount
2261 	 * be since all we did is relocate the values
2262 	 */
2263 	if (skb_cloned(skb)) {
2264 		if (skb_orphan_frags(skb, gfp_mask))
2265 			goto nofrags;
2266 		if (skb_zcopy(skb))
2267 			refcount_inc(&skb_uarg(skb)->refcnt);
2268 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2269 			skb_frag_ref(skb, i);
2270 
2271 		if (skb_has_frag_list(skb))
2272 			skb_clone_fraglist(skb);
2273 
2274 		skb_release_data(skb, SKB_CONSUMED, false);
2275 	} else {
2276 		skb_free_head(skb, false);
2277 	}
2278 	off = (data + nhead) - skb->head;
2279 
2280 	skb->head     = data;
2281 	skb->head_frag = 0;
2282 	skb->data    += off;
2283 
2284 	skb_set_end_offset(skb, size);
2285 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2286 	off           = nhead;
2287 #endif
2288 	skb->tail	      += off;
2289 	skb_headers_offset_update(skb, nhead);
2290 	skb->cloned   = 0;
2291 	skb->hdr_len  = 0;
2292 	skb->nohdr    = 0;
2293 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2294 
2295 	skb_metadata_clear(skb);
2296 
2297 	/* It is not generally safe to change skb->truesize.
2298 	 * For the moment, we really care of rx path, or
2299 	 * when skb is orphaned (not attached to a socket).
2300 	 */
2301 	if (!skb->sk || skb->destructor == sock_edemux)
2302 		skb->truesize += size - osize;
2303 
2304 	return 0;
2305 
2306 nofrags:
2307 	skb_kfree_head(data, size);
2308 nodata:
2309 	return -ENOMEM;
2310 }
2311 EXPORT_SYMBOL(pskb_expand_head);
2312 
2313 /* Make private copy of skb with writable head and some headroom */
2314 
2315 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2316 {
2317 	struct sk_buff *skb2;
2318 	int delta = headroom - skb_headroom(skb);
2319 
2320 	if (delta <= 0)
2321 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2322 	else {
2323 		skb2 = skb_clone(skb, GFP_ATOMIC);
2324 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2325 					     GFP_ATOMIC)) {
2326 			kfree_skb(skb2);
2327 			skb2 = NULL;
2328 		}
2329 	}
2330 	return skb2;
2331 }
2332 EXPORT_SYMBOL(skb_realloc_headroom);
2333 
2334 /* Note: We plan to rework this in linux-6.4 */
2335 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2336 {
2337 	unsigned int saved_end_offset, saved_truesize;
2338 	struct skb_shared_info *shinfo;
2339 	int res;
2340 
2341 	saved_end_offset = skb_end_offset(skb);
2342 	saved_truesize = skb->truesize;
2343 
2344 	res = pskb_expand_head(skb, 0, 0, pri);
2345 	if (res)
2346 		return res;
2347 
2348 	skb->truesize = saved_truesize;
2349 
2350 	if (likely(skb_end_offset(skb) == saved_end_offset))
2351 		return 0;
2352 
2353 	/* We can not change skb->end if the original or new value
2354 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2355 	 */
2356 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2357 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2358 		/* We think this path should not be taken.
2359 		 * Add a temporary trace to warn us just in case.
2360 		 */
2361 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2362 			    saved_end_offset, skb_end_offset(skb));
2363 		WARN_ON_ONCE(1);
2364 		return 0;
2365 	}
2366 
2367 	shinfo = skb_shinfo(skb);
2368 
2369 	/* We are about to change back skb->end,
2370 	 * we need to move skb_shinfo() to its new location.
2371 	 */
2372 	memmove(skb->head + saved_end_offset,
2373 		shinfo,
2374 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2375 
2376 	skb_set_end_offset(skb, saved_end_offset);
2377 
2378 	return 0;
2379 }
2380 
2381 /**
2382  *	skb_expand_head - reallocate header of &sk_buff
2383  *	@skb: buffer to reallocate
2384  *	@headroom: needed headroom
2385  *
2386  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2387  *	if possible; copies skb->sk to new skb as needed
2388  *	and frees original skb in case of failures.
2389  *
2390  *	It expect increased headroom and generates warning otherwise.
2391  */
2392 
2393 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2394 {
2395 	int delta = headroom - skb_headroom(skb);
2396 	int osize = skb_end_offset(skb);
2397 	struct sock *sk = skb->sk;
2398 
2399 	if (WARN_ONCE(delta <= 0,
2400 		      "%s is expecting an increase in the headroom", __func__))
2401 		return skb;
2402 
2403 	delta = SKB_DATA_ALIGN(delta);
2404 	/* pskb_expand_head() might crash, if skb is shared. */
2405 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2406 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2407 
2408 		if (unlikely(!nskb))
2409 			goto fail;
2410 
2411 		if (sk)
2412 			skb_set_owner_w(nskb, sk);
2413 		consume_skb(skb);
2414 		skb = nskb;
2415 	}
2416 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2417 		goto fail;
2418 
2419 	if (sk && is_skb_wmem(skb)) {
2420 		delta = skb_end_offset(skb) - osize;
2421 		refcount_add(delta, &sk->sk_wmem_alloc);
2422 		skb->truesize += delta;
2423 	}
2424 	return skb;
2425 
2426 fail:
2427 	kfree_skb(skb);
2428 	return NULL;
2429 }
2430 EXPORT_SYMBOL(skb_expand_head);
2431 
2432 /**
2433  *	skb_copy_expand	-	copy and expand sk_buff
2434  *	@skb: buffer to copy
2435  *	@newheadroom: new free bytes at head
2436  *	@newtailroom: new free bytes at tail
2437  *	@gfp_mask: allocation priority
2438  *
2439  *	Make a copy of both an &sk_buff and its data and while doing so
2440  *	allocate additional space.
2441  *
2442  *	This is used when the caller wishes to modify the data and needs a
2443  *	private copy of the data to alter as well as more space for new fields.
2444  *	Returns %NULL on failure or the pointer to the buffer
2445  *	on success. The returned buffer has a reference count of 1.
2446  *
2447  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2448  *	is called from an interrupt.
2449  */
2450 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2451 				int newheadroom, int newtailroom,
2452 				gfp_t gfp_mask)
2453 {
2454 	/*
2455 	 *	Allocate the copy buffer
2456 	 */
2457 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2458 					gfp_mask, skb_alloc_rx_flag(skb),
2459 					NUMA_NO_NODE);
2460 	int oldheadroom = skb_headroom(skb);
2461 	int head_copy_len, head_copy_off;
2462 
2463 	if (!n)
2464 		return NULL;
2465 
2466 	skb_reserve(n, newheadroom);
2467 
2468 	/* Set the tail pointer and length */
2469 	skb_put(n, skb->len);
2470 
2471 	head_copy_len = oldheadroom;
2472 	head_copy_off = 0;
2473 	if (newheadroom <= head_copy_len)
2474 		head_copy_len = newheadroom;
2475 	else
2476 		head_copy_off = newheadroom - head_copy_len;
2477 
2478 	/* Copy the linear header and data. */
2479 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2480 			     skb->len + head_copy_len));
2481 
2482 	skb_copy_header(n, skb);
2483 
2484 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2485 
2486 	return n;
2487 }
2488 EXPORT_SYMBOL(skb_copy_expand);
2489 
2490 /**
2491  *	__skb_pad		-	zero pad the tail of an skb
2492  *	@skb: buffer to pad
2493  *	@pad: space to pad
2494  *	@free_on_error: free buffer on error
2495  *
2496  *	Ensure that a buffer is followed by a padding area that is zero
2497  *	filled. Used by network drivers which may DMA or transfer data
2498  *	beyond the buffer end onto the wire.
2499  *
2500  *	May return error in out of memory cases. The skb is freed on error
2501  *	if @free_on_error is true.
2502  */
2503 
2504 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2505 {
2506 	int err;
2507 	int ntail;
2508 
2509 	/* If the skbuff is non linear tailroom is always zero.. */
2510 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2511 		memset(skb->data+skb->len, 0, pad);
2512 		return 0;
2513 	}
2514 
2515 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2516 	if (likely(skb_cloned(skb) || ntail > 0)) {
2517 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2518 		if (unlikely(err))
2519 			goto free_skb;
2520 	}
2521 
2522 	/* FIXME: The use of this function with non-linear skb's really needs
2523 	 * to be audited.
2524 	 */
2525 	err = skb_linearize(skb);
2526 	if (unlikely(err))
2527 		goto free_skb;
2528 
2529 	memset(skb->data + skb->len, 0, pad);
2530 	return 0;
2531 
2532 free_skb:
2533 	if (free_on_error)
2534 		kfree_skb(skb);
2535 	return err;
2536 }
2537 EXPORT_SYMBOL(__skb_pad);
2538 
2539 /**
2540  *	pskb_put - add data to the tail of a potentially fragmented buffer
2541  *	@skb: start of the buffer to use
2542  *	@tail: tail fragment of the buffer to use
2543  *	@len: amount of data to add
2544  *
2545  *	This function extends the used data area of the potentially
2546  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2547  *	@skb itself. If this would exceed the total buffer size the kernel
2548  *	will panic. A pointer to the first byte of the extra data is
2549  *	returned.
2550  */
2551 
2552 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2553 {
2554 	if (tail != skb) {
2555 		skb->data_len += len;
2556 		skb->len += len;
2557 	}
2558 	return skb_put(tail, len);
2559 }
2560 EXPORT_SYMBOL_GPL(pskb_put);
2561 
2562 /**
2563  *	skb_put - add data to a buffer
2564  *	@skb: buffer to use
2565  *	@len: amount of data to add
2566  *
2567  *	This function extends the used data area of the buffer. If this would
2568  *	exceed the total buffer size the kernel will panic. A pointer to the
2569  *	first byte of the extra data is returned.
2570  */
2571 void *skb_put(struct sk_buff *skb, unsigned int len)
2572 {
2573 	void *tmp = skb_tail_pointer(skb);
2574 	SKB_LINEAR_ASSERT(skb);
2575 	skb->tail += len;
2576 	skb->len  += len;
2577 	if (unlikely(skb->tail > skb->end))
2578 		skb_over_panic(skb, len, __builtin_return_address(0));
2579 	return tmp;
2580 }
2581 EXPORT_SYMBOL(skb_put);
2582 
2583 /**
2584  *	skb_push - add data to the start of a buffer
2585  *	@skb: buffer to use
2586  *	@len: amount of data to add
2587  *
2588  *	This function extends the used data area of the buffer at the buffer
2589  *	start. If this would exceed the total buffer headroom the kernel will
2590  *	panic. A pointer to the first byte of the extra data is returned.
2591  */
2592 void *skb_push(struct sk_buff *skb, unsigned int len)
2593 {
2594 	skb->data -= len;
2595 	skb->len  += len;
2596 	if (unlikely(skb->data < skb->head))
2597 		skb_under_panic(skb, len, __builtin_return_address(0));
2598 	return skb->data;
2599 }
2600 EXPORT_SYMBOL(skb_push);
2601 
2602 /**
2603  *	skb_pull - remove data from the start of a buffer
2604  *	@skb: buffer to use
2605  *	@len: amount of data to remove
2606  *
2607  *	This function removes data from the start of a buffer, returning
2608  *	the memory to the headroom. A pointer to the next data in the buffer
2609  *	is returned. Once the data has been pulled future pushes will overwrite
2610  *	the old data.
2611  */
2612 void *skb_pull(struct sk_buff *skb, unsigned int len)
2613 {
2614 	return skb_pull_inline(skb, len);
2615 }
2616 EXPORT_SYMBOL(skb_pull);
2617 
2618 /**
2619  *	skb_pull_data - remove data from the start of a buffer returning its
2620  *	original position.
2621  *	@skb: buffer to use
2622  *	@len: amount of data to remove
2623  *
2624  *	This function removes data from the start of a buffer, returning
2625  *	the memory to the headroom. A pointer to the original data in the buffer
2626  *	is returned after checking if there is enough data to pull. Once the
2627  *	data has been pulled future pushes will overwrite the old data.
2628  */
2629 void *skb_pull_data(struct sk_buff *skb, size_t len)
2630 {
2631 	void *data = skb->data;
2632 
2633 	if (skb->len < len)
2634 		return NULL;
2635 
2636 	skb_pull(skb, len);
2637 
2638 	return data;
2639 }
2640 EXPORT_SYMBOL(skb_pull_data);
2641 
2642 /**
2643  *	skb_trim - remove end from a buffer
2644  *	@skb: buffer to alter
2645  *	@len: new length
2646  *
2647  *	Cut the length of a buffer down by removing data from the tail. If
2648  *	the buffer is already under the length specified it is not modified.
2649  *	The skb must be linear.
2650  */
2651 void skb_trim(struct sk_buff *skb, unsigned int len)
2652 {
2653 	if (skb->len > len)
2654 		__skb_trim(skb, len);
2655 }
2656 EXPORT_SYMBOL(skb_trim);
2657 
2658 /* Trims skb to length len. It can change skb pointers.
2659  */
2660 
2661 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2662 {
2663 	struct sk_buff **fragp;
2664 	struct sk_buff *frag;
2665 	int offset = skb_headlen(skb);
2666 	int nfrags = skb_shinfo(skb)->nr_frags;
2667 	int i;
2668 	int err;
2669 
2670 	if (skb_cloned(skb) &&
2671 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2672 		return err;
2673 
2674 	i = 0;
2675 	if (offset >= len)
2676 		goto drop_pages;
2677 
2678 	for (; i < nfrags; i++) {
2679 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2680 
2681 		if (end < len) {
2682 			offset = end;
2683 			continue;
2684 		}
2685 
2686 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2687 
2688 drop_pages:
2689 		skb_shinfo(skb)->nr_frags = i;
2690 
2691 		for (; i < nfrags; i++)
2692 			skb_frag_unref(skb, i);
2693 
2694 		if (skb_has_frag_list(skb))
2695 			skb_drop_fraglist(skb);
2696 		goto done;
2697 	}
2698 
2699 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2700 	     fragp = &frag->next) {
2701 		int end = offset + frag->len;
2702 
2703 		if (skb_shared(frag)) {
2704 			struct sk_buff *nfrag;
2705 
2706 			nfrag = skb_clone(frag, GFP_ATOMIC);
2707 			if (unlikely(!nfrag))
2708 				return -ENOMEM;
2709 
2710 			nfrag->next = frag->next;
2711 			consume_skb(frag);
2712 			frag = nfrag;
2713 			*fragp = frag;
2714 		}
2715 
2716 		if (end < len) {
2717 			offset = end;
2718 			continue;
2719 		}
2720 
2721 		if (end > len &&
2722 		    unlikely((err = pskb_trim(frag, len - offset))))
2723 			return err;
2724 
2725 		if (frag->next)
2726 			skb_drop_list(&frag->next);
2727 		break;
2728 	}
2729 
2730 done:
2731 	if (len > skb_headlen(skb)) {
2732 		skb->data_len -= skb->len - len;
2733 		skb->len       = len;
2734 	} else {
2735 		skb->len       = len;
2736 		skb->data_len  = 0;
2737 		skb_set_tail_pointer(skb, len);
2738 	}
2739 
2740 	if (!skb->sk || skb->destructor == sock_edemux)
2741 		skb_condense(skb);
2742 	return 0;
2743 }
2744 EXPORT_SYMBOL(___pskb_trim);
2745 
2746 /* Note : use pskb_trim_rcsum() instead of calling this directly
2747  */
2748 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2749 {
2750 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2751 		int delta = skb->len - len;
2752 
2753 		skb->csum = csum_block_sub(skb->csum,
2754 					   skb_checksum(skb, len, delta, 0),
2755 					   len);
2756 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2757 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2758 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2759 
2760 		if (offset + sizeof(__sum16) > hdlen)
2761 			return -EINVAL;
2762 	}
2763 	return __pskb_trim(skb, len);
2764 }
2765 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2766 
2767 /**
2768  *	__pskb_pull_tail - advance tail of skb header
2769  *	@skb: buffer to reallocate
2770  *	@delta: number of bytes to advance tail
2771  *
2772  *	The function makes a sense only on a fragmented &sk_buff,
2773  *	it expands header moving its tail forward and copying necessary
2774  *	data from fragmented part.
2775  *
2776  *	&sk_buff MUST have reference count of 1.
2777  *
2778  *	Returns %NULL (and &sk_buff does not change) if pull failed
2779  *	or value of new tail of skb in the case of success.
2780  *
2781  *	All the pointers pointing into skb header may change and must be
2782  *	reloaded after call to this function.
2783  */
2784 
2785 /* Moves tail of skb head forward, copying data from fragmented part,
2786  * when it is necessary.
2787  * 1. It may fail due to malloc failure.
2788  * 2. It may change skb pointers.
2789  *
2790  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2791  */
2792 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2793 {
2794 	/* If skb has not enough free space at tail, get new one
2795 	 * plus 128 bytes for future expansions. If we have enough
2796 	 * room at tail, reallocate without expansion only if skb is cloned.
2797 	 */
2798 	int i, k, eat = (skb->tail + delta) - skb->end;
2799 
2800 	if (eat > 0 || skb_cloned(skb)) {
2801 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2802 				     GFP_ATOMIC))
2803 			return NULL;
2804 	}
2805 
2806 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2807 			     skb_tail_pointer(skb), delta));
2808 
2809 	/* Optimization: no fragments, no reasons to preestimate
2810 	 * size of pulled pages. Superb.
2811 	 */
2812 	if (!skb_has_frag_list(skb))
2813 		goto pull_pages;
2814 
2815 	/* Estimate size of pulled pages. */
2816 	eat = delta;
2817 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2818 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2819 
2820 		if (size >= eat)
2821 			goto pull_pages;
2822 		eat -= size;
2823 	}
2824 
2825 	/* If we need update frag list, we are in troubles.
2826 	 * Certainly, it is possible to add an offset to skb data,
2827 	 * but taking into account that pulling is expected to
2828 	 * be very rare operation, it is worth to fight against
2829 	 * further bloating skb head and crucify ourselves here instead.
2830 	 * Pure masohism, indeed. 8)8)
2831 	 */
2832 	if (eat) {
2833 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2834 		struct sk_buff *clone = NULL;
2835 		struct sk_buff *insp = NULL;
2836 
2837 		do {
2838 			if (list->len <= eat) {
2839 				/* Eaten as whole. */
2840 				eat -= list->len;
2841 				list = list->next;
2842 				insp = list;
2843 			} else {
2844 				/* Eaten partially. */
2845 				if (skb_is_gso(skb) && !list->head_frag &&
2846 				    skb_headlen(list))
2847 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2848 
2849 				if (skb_shared(list)) {
2850 					/* Sucks! We need to fork list. :-( */
2851 					clone = skb_clone(list, GFP_ATOMIC);
2852 					if (!clone)
2853 						return NULL;
2854 					insp = list->next;
2855 					list = clone;
2856 				} else {
2857 					/* This may be pulled without
2858 					 * problems. */
2859 					insp = list;
2860 				}
2861 				if (!pskb_pull(list, eat)) {
2862 					kfree_skb(clone);
2863 					return NULL;
2864 				}
2865 				break;
2866 			}
2867 		} while (eat);
2868 
2869 		/* Free pulled out fragments. */
2870 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2871 			skb_shinfo(skb)->frag_list = list->next;
2872 			consume_skb(list);
2873 		}
2874 		/* And insert new clone at head. */
2875 		if (clone) {
2876 			clone->next = list;
2877 			skb_shinfo(skb)->frag_list = clone;
2878 		}
2879 	}
2880 	/* Success! Now we may commit changes to skb data. */
2881 
2882 pull_pages:
2883 	eat = delta;
2884 	k = 0;
2885 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2886 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2887 
2888 		if (size <= eat) {
2889 			skb_frag_unref(skb, i);
2890 			eat -= size;
2891 		} else {
2892 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2893 
2894 			*frag = skb_shinfo(skb)->frags[i];
2895 			if (eat) {
2896 				skb_frag_off_add(frag, eat);
2897 				skb_frag_size_sub(frag, eat);
2898 				if (!i)
2899 					goto end;
2900 				eat = 0;
2901 			}
2902 			k++;
2903 		}
2904 	}
2905 	skb_shinfo(skb)->nr_frags = k;
2906 
2907 end:
2908 	skb->tail     += delta;
2909 	skb->data_len -= delta;
2910 
2911 	if (!skb->data_len)
2912 		skb_zcopy_clear(skb, false);
2913 
2914 	return skb_tail_pointer(skb);
2915 }
2916 EXPORT_SYMBOL(__pskb_pull_tail);
2917 
2918 /**
2919  *	skb_copy_bits - copy bits from skb to kernel buffer
2920  *	@skb: source skb
2921  *	@offset: offset in source
2922  *	@to: destination buffer
2923  *	@len: number of bytes to copy
2924  *
2925  *	Copy the specified number of bytes from the source skb to the
2926  *	destination buffer.
2927  *
2928  *	CAUTION ! :
2929  *		If its prototype is ever changed,
2930  *		check arch/{*}/net/{*}.S files,
2931  *		since it is called from BPF assembly code.
2932  */
2933 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2934 {
2935 	int start = skb_headlen(skb);
2936 	struct sk_buff *frag_iter;
2937 	int i, copy;
2938 
2939 	if (offset > (int)skb->len - len)
2940 		goto fault;
2941 
2942 	/* Copy header. */
2943 	if ((copy = start - offset) > 0) {
2944 		if (copy > len)
2945 			copy = len;
2946 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2947 		if ((len -= copy) == 0)
2948 			return 0;
2949 		offset += copy;
2950 		to     += copy;
2951 	}
2952 
2953 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2954 		int end;
2955 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2956 
2957 		WARN_ON(start > offset + len);
2958 
2959 		end = start + skb_frag_size(f);
2960 		if ((copy = end - offset) > 0) {
2961 			u32 p_off, p_len, copied;
2962 			struct page *p;
2963 			u8 *vaddr;
2964 
2965 			if (copy > len)
2966 				copy = len;
2967 
2968 			skb_frag_foreach_page(f,
2969 					      skb_frag_off(f) + offset - start,
2970 					      copy, p, p_off, p_len, copied) {
2971 				vaddr = kmap_atomic(p);
2972 				memcpy(to + copied, vaddr + p_off, p_len);
2973 				kunmap_atomic(vaddr);
2974 			}
2975 
2976 			if ((len -= copy) == 0)
2977 				return 0;
2978 			offset += copy;
2979 			to     += copy;
2980 		}
2981 		start = end;
2982 	}
2983 
2984 	skb_walk_frags(skb, frag_iter) {
2985 		int end;
2986 
2987 		WARN_ON(start > offset + len);
2988 
2989 		end = start + frag_iter->len;
2990 		if ((copy = end - offset) > 0) {
2991 			if (copy > len)
2992 				copy = len;
2993 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2994 				goto fault;
2995 			if ((len -= copy) == 0)
2996 				return 0;
2997 			offset += copy;
2998 			to     += copy;
2999 		}
3000 		start = end;
3001 	}
3002 
3003 	if (!len)
3004 		return 0;
3005 
3006 fault:
3007 	return -EFAULT;
3008 }
3009 EXPORT_SYMBOL(skb_copy_bits);
3010 
3011 /*
3012  * Callback from splice_to_pipe(), if we need to release some pages
3013  * at the end of the spd in case we error'ed out in filling the pipe.
3014  */
3015 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3016 {
3017 	put_page(spd->pages[i]);
3018 }
3019 
3020 static struct page *linear_to_page(struct page *page, unsigned int *len,
3021 				   unsigned int *offset,
3022 				   struct sock *sk)
3023 {
3024 	struct page_frag *pfrag = sk_page_frag(sk);
3025 
3026 	if (!sk_page_frag_refill(sk, pfrag))
3027 		return NULL;
3028 
3029 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3030 
3031 	memcpy(page_address(pfrag->page) + pfrag->offset,
3032 	       page_address(page) + *offset, *len);
3033 	*offset = pfrag->offset;
3034 	pfrag->offset += *len;
3035 
3036 	return pfrag->page;
3037 }
3038 
3039 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3040 			     struct page *page,
3041 			     unsigned int offset)
3042 {
3043 	return	spd->nr_pages &&
3044 		spd->pages[spd->nr_pages - 1] == page &&
3045 		(spd->partial[spd->nr_pages - 1].offset +
3046 		 spd->partial[spd->nr_pages - 1].len == offset);
3047 }
3048 
3049 /*
3050  * Fill page/offset/length into spd, if it can hold more pages.
3051  */
3052 static bool spd_fill_page(struct splice_pipe_desc *spd,
3053 			  struct pipe_inode_info *pipe, struct page *page,
3054 			  unsigned int *len, unsigned int offset,
3055 			  bool linear,
3056 			  struct sock *sk)
3057 {
3058 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3059 		return true;
3060 
3061 	if (linear) {
3062 		page = linear_to_page(page, len, &offset, sk);
3063 		if (!page)
3064 			return true;
3065 	}
3066 	if (spd_can_coalesce(spd, page, offset)) {
3067 		spd->partial[spd->nr_pages - 1].len += *len;
3068 		return false;
3069 	}
3070 	get_page(page);
3071 	spd->pages[spd->nr_pages] = page;
3072 	spd->partial[spd->nr_pages].len = *len;
3073 	spd->partial[spd->nr_pages].offset = offset;
3074 	spd->nr_pages++;
3075 
3076 	return false;
3077 }
3078 
3079 static bool __splice_segment(struct page *page, unsigned int poff,
3080 			     unsigned int plen, unsigned int *off,
3081 			     unsigned int *len,
3082 			     struct splice_pipe_desc *spd, bool linear,
3083 			     struct sock *sk,
3084 			     struct pipe_inode_info *pipe)
3085 {
3086 	if (!*len)
3087 		return true;
3088 
3089 	/* skip this segment if already processed */
3090 	if (*off >= plen) {
3091 		*off -= plen;
3092 		return false;
3093 	}
3094 
3095 	/* ignore any bits we already processed */
3096 	poff += *off;
3097 	plen -= *off;
3098 	*off = 0;
3099 
3100 	do {
3101 		unsigned int flen = min(*len, plen);
3102 
3103 		if (spd_fill_page(spd, pipe, page, &flen, poff,
3104 				  linear, sk))
3105 			return true;
3106 		poff += flen;
3107 		plen -= flen;
3108 		*len -= flen;
3109 	} while (*len && plen);
3110 
3111 	return false;
3112 }
3113 
3114 /*
3115  * Map linear and fragment data from the skb to spd. It reports true if the
3116  * pipe is full or if we already spliced the requested length.
3117  */
3118 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3119 			      unsigned int *offset, unsigned int *len,
3120 			      struct splice_pipe_desc *spd, struct sock *sk)
3121 {
3122 	int seg;
3123 	struct sk_buff *iter;
3124 
3125 	/* map the linear part :
3126 	 * If skb->head_frag is set, this 'linear' part is backed by a
3127 	 * fragment, and if the head is not shared with any clones then
3128 	 * we can avoid a copy since we own the head portion of this page.
3129 	 */
3130 	if (__splice_segment(virt_to_page(skb->data),
3131 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3132 			     skb_headlen(skb),
3133 			     offset, len, spd,
3134 			     skb_head_is_locked(skb),
3135 			     sk, pipe))
3136 		return true;
3137 
3138 	/*
3139 	 * then map the fragments
3140 	 */
3141 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3142 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3143 
3144 		if (__splice_segment(skb_frag_page(f),
3145 				     skb_frag_off(f), skb_frag_size(f),
3146 				     offset, len, spd, false, sk, pipe))
3147 			return true;
3148 	}
3149 
3150 	skb_walk_frags(skb, iter) {
3151 		if (*offset >= iter->len) {
3152 			*offset -= iter->len;
3153 			continue;
3154 		}
3155 		/* __skb_splice_bits() only fails if the output has no room
3156 		 * left, so no point in going over the frag_list for the error
3157 		 * case.
3158 		 */
3159 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3160 			return true;
3161 	}
3162 
3163 	return false;
3164 }
3165 
3166 /*
3167  * Map data from the skb to a pipe. Should handle both the linear part,
3168  * the fragments, and the frag list.
3169  */
3170 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3171 		    struct pipe_inode_info *pipe, unsigned int tlen,
3172 		    unsigned int flags)
3173 {
3174 	struct partial_page partial[MAX_SKB_FRAGS];
3175 	struct page *pages[MAX_SKB_FRAGS];
3176 	struct splice_pipe_desc spd = {
3177 		.pages = pages,
3178 		.partial = partial,
3179 		.nr_pages_max = MAX_SKB_FRAGS,
3180 		.ops = &nosteal_pipe_buf_ops,
3181 		.spd_release = sock_spd_release,
3182 	};
3183 	int ret = 0;
3184 
3185 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3186 
3187 	if (spd.nr_pages)
3188 		ret = splice_to_pipe(pipe, &spd);
3189 
3190 	return ret;
3191 }
3192 EXPORT_SYMBOL_GPL(skb_splice_bits);
3193 
3194 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3195 {
3196 	struct socket *sock = sk->sk_socket;
3197 	size_t size = msg_data_left(msg);
3198 
3199 	if (!sock)
3200 		return -EINVAL;
3201 
3202 	if (!sock->ops->sendmsg_locked)
3203 		return sock_no_sendmsg_locked(sk, msg, size);
3204 
3205 	return sock->ops->sendmsg_locked(sk, msg, size);
3206 }
3207 
3208 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3209 {
3210 	struct socket *sock = sk->sk_socket;
3211 
3212 	if (!sock)
3213 		return -EINVAL;
3214 	return sock_sendmsg(sock, msg);
3215 }
3216 
3217 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3218 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3219 			   int len, sendmsg_func sendmsg)
3220 {
3221 	unsigned int orig_len = len;
3222 	struct sk_buff *head = skb;
3223 	unsigned short fragidx;
3224 	int slen, ret;
3225 
3226 do_frag_list:
3227 
3228 	/* Deal with head data */
3229 	while (offset < skb_headlen(skb) && len) {
3230 		struct kvec kv;
3231 		struct msghdr msg;
3232 
3233 		slen = min_t(int, len, skb_headlen(skb) - offset);
3234 		kv.iov_base = skb->data + offset;
3235 		kv.iov_len = slen;
3236 		memset(&msg, 0, sizeof(msg));
3237 		msg.msg_flags = MSG_DONTWAIT;
3238 
3239 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3240 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3241 				      sendmsg_unlocked, sk, &msg);
3242 		if (ret <= 0)
3243 			goto error;
3244 
3245 		offset += ret;
3246 		len -= ret;
3247 	}
3248 
3249 	/* All the data was skb head? */
3250 	if (!len)
3251 		goto out;
3252 
3253 	/* Make offset relative to start of frags */
3254 	offset -= skb_headlen(skb);
3255 
3256 	/* Find where we are in frag list */
3257 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3258 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3259 
3260 		if (offset < skb_frag_size(frag))
3261 			break;
3262 
3263 		offset -= skb_frag_size(frag);
3264 	}
3265 
3266 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3267 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3268 
3269 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3270 
3271 		while (slen) {
3272 			struct bio_vec bvec;
3273 			struct msghdr msg = {
3274 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3275 			};
3276 
3277 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3278 				      skb_frag_off(frag) + offset);
3279 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3280 				      slen);
3281 
3282 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3283 					      sendmsg_unlocked, sk, &msg);
3284 			if (ret <= 0)
3285 				goto error;
3286 
3287 			len -= ret;
3288 			offset += ret;
3289 			slen -= ret;
3290 		}
3291 
3292 		offset = 0;
3293 	}
3294 
3295 	if (len) {
3296 		/* Process any frag lists */
3297 
3298 		if (skb == head) {
3299 			if (skb_has_frag_list(skb)) {
3300 				skb = skb_shinfo(skb)->frag_list;
3301 				goto do_frag_list;
3302 			}
3303 		} else if (skb->next) {
3304 			skb = skb->next;
3305 			goto do_frag_list;
3306 		}
3307 	}
3308 
3309 out:
3310 	return orig_len - len;
3311 
3312 error:
3313 	return orig_len == len ? ret : orig_len - len;
3314 }
3315 
3316 /* Send skb data on a socket. Socket must be locked. */
3317 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3318 			 int len)
3319 {
3320 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3321 }
3322 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3323 
3324 /* Send skb data on a socket. Socket must be unlocked. */
3325 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3326 {
3327 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3328 }
3329 
3330 /**
3331  *	skb_store_bits - store bits from kernel buffer to skb
3332  *	@skb: destination buffer
3333  *	@offset: offset in destination
3334  *	@from: source buffer
3335  *	@len: number of bytes to copy
3336  *
3337  *	Copy the specified number of bytes from the source buffer to the
3338  *	destination skb.  This function handles all the messy bits of
3339  *	traversing fragment lists and such.
3340  */
3341 
3342 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3343 {
3344 	int start = skb_headlen(skb);
3345 	struct sk_buff *frag_iter;
3346 	int i, copy;
3347 
3348 	if (offset > (int)skb->len - len)
3349 		goto fault;
3350 
3351 	if ((copy = start - offset) > 0) {
3352 		if (copy > len)
3353 			copy = len;
3354 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3355 		if ((len -= copy) == 0)
3356 			return 0;
3357 		offset += copy;
3358 		from += copy;
3359 	}
3360 
3361 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3362 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3363 		int end;
3364 
3365 		WARN_ON(start > offset + len);
3366 
3367 		end = start + skb_frag_size(frag);
3368 		if ((copy = end - offset) > 0) {
3369 			u32 p_off, p_len, copied;
3370 			struct page *p;
3371 			u8 *vaddr;
3372 
3373 			if (copy > len)
3374 				copy = len;
3375 
3376 			skb_frag_foreach_page(frag,
3377 					      skb_frag_off(frag) + offset - start,
3378 					      copy, p, p_off, p_len, copied) {
3379 				vaddr = kmap_atomic(p);
3380 				memcpy(vaddr + p_off, from + copied, p_len);
3381 				kunmap_atomic(vaddr);
3382 			}
3383 
3384 			if ((len -= copy) == 0)
3385 				return 0;
3386 			offset += copy;
3387 			from += copy;
3388 		}
3389 		start = end;
3390 	}
3391 
3392 	skb_walk_frags(skb, frag_iter) {
3393 		int end;
3394 
3395 		WARN_ON(start > offset + len);
3396 
3397 		end = start + frag_iter->len;
3398 		if ((copy = end - offset) > 0) {
3399 			if (copy > len)
3400 				copy = len;
3401 			if (skb_store_bits(frag_iter, offset - start,
3402 					   from, copy))
3403 				goto fault;
3404 			if ((len -= copy) == 0)
3405 				return 0;
3406 			offset += copy;
3407 			from += copy;
3408 		}
3409 		start = end;
3410 	}
3411 	if (!len)
3412 		return 0;
3413 
3414 fault:
3415 	return -EFAULT;
3416 }
3417 EXPORT_SYMBOL(skb_store_bits);
3418 
3419 /* Checksum skb data. */
3420 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3421 		      __wsum csum, const struct skb_checksum_ops *ops)
3422 {
3423 	int start = skb_headlen(skb);
3424 	int i, copy = start - offset;
3425 	struct sk_buff *frag_iter;
3426 	int pos = 0;
3427 
3428 	/* Checksum header. */
3429 	if (copy > 0) {
3430 		if (copy > len)
3431 			copy = len;
3432 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3433 				       skb->data + offset, copy, csum);
3434 		if ((len -= copy) == 0)
3435 			return csum;
3436 		offset += copy;
3437 		pos	= copy;
3438 	}
3439 
3440 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3441 		int end;
3442 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3443 
3444 		WARN_ON(start > offset + len);
3445 
3446 		end = start + skb_frag_size(frag);
3447 		if ((copy = end - offset) > 0) {
3448 			u32 p_off, p_len, copied;
3449 			struct page *p;
3450 			__wsum csum2;
3451 			u8 *vaddr;
3452 
3453 			if (copy > len)
3454 				copy = len;
3455 
3456 			skb_frag_foreach_page(frag,
3457 					      skb_frag_off(frag) + offset - start,
3458 					      copy, p, p_off, p_len, copied) {
3459 				vaddr = kmap_atomic(p);
3460 				csum2 = INDIRECT_CALL_1(ops->update,
3461 							csum_partial_ext,
3462 							vaddr + p_off, p_len, 0);
3463 				kunmap_atomic(vaddr);
3464 				csum = INDIRECT_CALL_1(ops->combine,
3465 						       csum_block_add_ext, csum,
3466 						       csum2, pos, p_len);
3467 				pos += p_len;
3468 			}
3469 
3470 			if (!(len -= copy))
3471 				return csum;
3472 			offset += copy;
3473 		}
3474 		start = end;
3475 	}
3476 
3477 	skb_walk_frags(skb, frag_iter) {
3478 		int end;
3479 
3480 		WARN_ON(start > offset + len);
3481 
3482 		end = start + frag_iter->len;
3483 		if ((copy = end - offset) > 0) {
3484 			__wsum csum2;
3485 			if (copy > len)
3486 				copy = len;
3487 			csum2 = __skb_checksum(frag_iter, offset - start,
3488 					       copy, 0, ops);
3489 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3490 					       csum, csum2, pos, copy);
3491 			if ((len -= copy) == 0)
3492 				return csum;
3493 			offset += copy;
3494 			pos    += copy;
3495 		}
3496 		start = end;
3497 	}
3498 	BUG_ON(len);
3499 
3500 	return csum;
3501 }
3502 EXPORT_SYMBOL(__skb_checksum);
3503 
3504 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3505 		    int len, __wsum csum)
3506 {
3507 	const struct skb_checksum_ops ops = {
3508 		.update  = csum_partial_ext,
3509 		.combine = csum_block_add_ext,
3510 	};
3511 
3512 	return __skb_checksum(skb, offset, len, csum, &ops);
3513 }
3514 EXPORT_SYMBOL(skb_checksum);
3515 
3516 /* Both of above in one bottle. */
3517 
3518 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3519 				    u8 *to, int len)
3520 {
3521 	int start = skb_headlen(skb);
3522 	int i, copy = start - offset;
3523 	struct sk_buff *frag_iter;
3524 	int pos = 0;
3525 	__wsum csum = 0;
3526 
3527 	/* Copy header. */
3528 	if (copy > 0) {
3529 		if (copy > len)
3530 			copy = len;
3531 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3532 						 copy);
3533 		if ((len -= copy) == 0)
3534 			return csum;
3535 		offset += copy;
3536 		to     += copy;
3537 		pos	= copy;
3538 	}
3539 
3540 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3541 		int end;
3542 
3543 		WARN_ON(start > offset + len);
3544 
3545 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3546 		if ((copy = end - offset) > 0) {
3547 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3548 			u32 p_off, p_len, copied;
3549 			struct page *p;
3550 			__wsum csum2;
3551 			u8 *vaddr;
3552 
3553 			if (copy > len)
3554 				copy = len;
3555 
3556 			skb_frag_foreach_page(frag,
3557 					      skb_frag_off(frag) + offset - start,
3558 					      copy, p, p_off, p_len, copied) {
3559 				vaddr = kmap_atomic(p);
3560 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3561 								  to + copied,
3562 								  p_len);
3563 				kunmap_atomic(vaddr);
3564 				csum = csum_block_add(csum, csum2, pos);
3565 				pos += p_len;
3566 			}
3567 
3568 			if (!(len -= copy))
3569 				return csum;
3570 			offset += copy;
3571 			to     += copy;
3572 		}
3573 		start = end;
3574 	}
3575 
3576 	skb_walk_frags(skb, frag_iter) {
3577 		__wsum csum2;
3578 		int end;
3579 
3580 		WARN_ON(start > offset + len);
3581 
3582 		end = start + frag_iter->len;
3583 		if ((copy = end - offset) > 0) {
3584 			if (copy > len)
3585 				copy = len;
3586 			csum2 = skb_copy_and_csum_bits(frag_iter,
3587 						       offset - start,
3588 						       to, copy);
3589 			csum = csum_block_add(csum, csum2, pos);
3590 			if ((len -= copy) == 0)
3591 				return csum;
3592 			offset += copy;
3593 			to     += copy;
3594 			pos    += copy;
3595 		}
3596 		start = end;
3597 	}
3598 	BUG_ON(len);
3599 	return csum;
3600 }
3601 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3602 
3603 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3604 {
3605 	__sum16 sum;
3606 
3607 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3608 	/* See comments in __skb_checksum_complete(). */
3609 	if (likely(!sum)) {
3610 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3611 		    !skb->csum_complete_sw)
3612 			netdev_rx_csum_fault(skb->dev, skb);
3613 	}
3614 	if (!skb_shared(skb))
3615 		skb->csum_valid = !sum;
3616 	return sum;
3617 }
3618 EXPORT_SYMBOL(__skb_checksum_complete_head);
3619 
3620 /* This function assumes skb->csum already holds pseudo header's checksum,
3621  * which has been changed from the hardware checksum, for example, by
3622  * __skb_checksum_validate_complete(). And, the original skb->csum must
3623  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3624  *
3625  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3626  * zero. The new checksum is stored back into skb->csum unless the skb is
3627  * shared.
3628  */
3629 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3630 {
3631 	__wsum csum;
3632 	__sum16 sum;
3633 
3634 	csum = skb_checksum(skb, 0, skb->len, 0);
3635 
3636 	sum = csum_fold(csum_add(skb->csum, csum));
3637 	/* This check is inverted, because we already knew the hardware
3638 	 * checksum is invalid before calling this function. So, if the
3639 	 * re-computed checksum is valid instead, then we have a mismatch
3640 	 * between the original skb->csum and skb_checksum(). This means either
3641 	 * the original hardware checksum is incorrect or we screw up skb->csum
3642 	 * when moving skb->data around.
3643 	 */
3644 	if (likely(!sum)) {
3645 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3646 		    !skb->csum_complete_sw)
3647 			netdev_rx_csum_fault(skb->dev, skb);
3648 	}
3649 
3650 	if (!skb_shared(skb)) {
3651 		/* Save full packet checksum */
3652 		skb->csum = csum;
3653 		skb->ip_summed = CHECKSUM_COMPLETE;
3654 		skb->csum_complete_sw = 1;
3655 		skb->csum_valid = !sum;
3656 	}
3657 
3658 	return sum;
3659 }
3660 EXPORT_SYMBOL(__skb_checksum_complete);
3661 
3662 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3663 {
3664 	net_warn_ratelimited(
3665 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3666 		__func__);
3667 	return 0;
3668 }
3669 
3670 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3671 				       int offset, int len)
3672 {
3673 	net_warn_ratelimited(
3674 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3675 		__func__);
3676 	return 0;
3677 }
3678 
3679 static const struct skb_checksum_ops default_crc32c_ops = {
3680 	.update  = warn_crc32c_csum_update,
3681 	.combine = warn_crc32c_csum_combine,
3682 };
3683 
3684 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3685 	&default_crc32c_ops;
3686 EXPORT_SYMBOL(crc32c_csum_stub);
3687 
3688  /**
3689  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3690  *	@from: source buffer
3691  *
3692  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3693  *	into skb_zerocopy().
3694  */
3695 unsigned int
3696 skb_zerocopy_headlen(const struct sk_buff *from)
3697 {
3698 	unsigned int hlen = 0;
3699 
3700 	if (!from->head_frag ||
3701 	    skb_headlen(from) < L1_CACHE_BYTES ||
3702 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3703 		hlen = skb_headlen(from);
3704 		if (!hlen)
3705 			hlen = from->len;
3706 	}
3707 
3708 	if (skb_has_frag_list(from))
3709 		hlen = from->len;
3710 
3711 	return hlen;
3712 }
3713 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3714 
3715 /**
3716  *	skb_zerocopy - Zero copy skb to skb
3717  *	@to: destination buffer
3718  *	@from: source buffer
3719  *	@len: number of bytes to copy from source buffer
3720  *	@hlen: size of linear headroom in destination buffer
3721  *
3722  *	Copies up to `len` bytes from `from` to `to` by creating references
3723  *	to the frags in the source buffer.
3724  *
3725  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3726  *	headroom in the `to` buffer.
3727  *
3728  *	Return value:
3729  *	0: everything is OK
3730  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3731  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3732  */
3733 int
3734 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3735 {
3736 	int i, j = 0;
3737 	int plen = 0; /* length of skb->head fragment */
3738 	int ret;
3739 	struct page *page;
3740 	unsigned int offset;
3741 
3742 	BUG_ON(!from->head_frag && !hlen);
3743 
3744 	/* dont bother with small payloads */
3745 	if (len <= skb_tailroom(to))
3746 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3747 
3748 	if (hlen) {
3749 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3750 		if (unlikely(ret))
3751 			return ret;
3752 		len -= hlen;
3753 	} else {
3754 		plen = min_t(int, skb_headlen(from), len);
3755 		if (plen) {
3756 			page = virt_to_head_page(from->head);
3757 			offset = from->data - (unsigned char *)page_address(page);
3758 			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3759 					       offset, plen);
3760 			get_page(page);
3761 			j = 1;
3762 			len -= plen;
3763 		}
3764 	}
3765 
3766 	skb_len_add(to, len + plen);
3767 
3768 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3769 		skb_tx_error(from);
3770 		return -ENOMEM;
3771 	}
3772 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3773 
3774 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3775 		int size;
3776 
3777 		if (!len)
3778 			break;
3779 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3780 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3781 					len);
3782 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3783 		len -= size;
3784 		skb_frag_ref(to, j);
3785 		j++;
3786 	}
3787 	skb_shinfo(to)->nr_frags = j;
3788 
3789 	return 0;
3790 }
3791 EXPORT_SYMBOL_GPL(skb_zerocopy);
3792 
3793 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3794 {
3795 	__wsum csum;
3796 	long csstart;
3797 
3798 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3799 		csstart = skb_checksum_start_offset(skb);
3800 	else
3801 		csstart = skb_headlen(skb);
3802 
3803 	BUG_ON(csstart > skb_headlen(skb));
3804 
3805 	skb_copy_from_linear_data(skb, to, csstart);
3806 
3807 	csum = 0;
3808 	if (csstart != skb->len)
3809 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3810 					      skb->len - csstart);
3811 
3812 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3813 		long csstuff = csstart + skb->csum_offset;
3814 
3815 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3816 	}
3817 }
3818 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3819 
3820 /**
3821  *	skb_dequeue - remove from the head of the queue
3822  *	@list: list to dequeue from
3823  *
3824  *	Remove the head of the list. The list lock is taken so the function
3825  *	may be used safely with other locking list functions. The head item is
3826  *	returned or %NULL if the list is empty.
3827  */
3828 
3829 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3830 {
3831 	unsigned long flags;
3832 	struct sk_buff *result;
3833 
3834 	spin_lock_irqsave(&list->lock, flags);
3835 	result = __skb_dequeue(list);
3836 	spin_unlock_irqrestore(&list->lock, flags);
3837 	return result;
3838 }
3839 EXPORT_SYMBOL(skb_dequeue);
3840 
3841 /**
3842  *	skb_dequeue_tail - remove from the tail of the queue
3843  *	@list: list to dequeue from
3844  *
3845  *	Remove the tail of the list. The list lock is taken so the function
3846  *	may be used safely with other locking list functions. The tail item is
3847  *	returned or %NULL if the list is empty.
3848  */
3849 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3850 {
3851 	unsigned long flags;
3852 	struct sk_buff *result;
3853 
3854 	spin_lock_irqsave(&list->lock, flags);
3855 	result = __skb_dequeue_tail(list);
3856 	spin_unlock_irqrestore(&list->lock, flags);
3857 	return result;
3858 }
3859 EXPORT_SYMBOL(skb_dequeue_tail);
3860 
3861 /**
3862  *	skb_queue_purge_reason - empty a list
3863  *	@list: list to empty
3864  *	@reason: drop reason
3865  *
3866  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3867  *	the list and one reference dropped. This function takes the list
3868  *	lock and is atomic with respect to other list locking functions.
3869  */
3870 void skb_queue_purge_reason(struct sk_buff_head *list,
3871 			    enum skb_drop_reason reason)
3872 {
3873 	struct sk_buff_head tmp;
3874 	unsigned long flags;
3875 
3876 	if (skb_queue_empty_lockless(list))
3877 		return;
3878 
3879 	__skb_queue_head_init(&tmp);
3880 
3881 	spin_lock_irqsave(&list->lock, flags);
3882 	skb_queue_splice_init(list, &tmp);
3883 	spin_unlock_irqrestore(&list->lock, flags);
3884 
3885 	__skb_queue_purge_reason(&tmp, reason);
3886 }
3887 EXPORT_SYMBOL(skb_queue_purge_reason);
3888 
3889 /**
3890  *	skb_rbtree_purge - empty a skb rbtree
3891  *	@root: root of the rbtree to empty
3892  *	Return value: the sum of truesizes of all purged skbs.
3893  *
3894  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3895  *	the list and one reference dropped. This function does not take
3896  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3897  *	out-of-order queue is protected by the socket lock).
3898  */
3899 unsigned int skb_rbtree_purge(struct rb_root *root)
3900 {
3901 	struct rb_node *p = rb_first(root);
3902 	unsigned int sum = 0;
3903 
3904 	while (p) {
3905 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3906 
3907 		p = rb_next(p);
3908 		rb_erase(&skb->rbnode, root);
3909 		sum += skb->truesize;
3910 		kfree_skb(skb);
3911 	}
3912 	return sum;
3913 }
3914 
3915 void skb_errqueue_purge(struct sk_buff_head *list)
3916 {
3917 	struct sk_buff *skb, *next;
3918 	struct sk_buff_head kill;
3919 	unsigned long flags;
3920 
3921 	__skb_queue_head_init(&kill);
3922 
3923 	spin_lock_irqsave(&list->lock, flags);
3924 	skb_queue_walk_safe(list, skb, next) {
3925 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3926 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3927 			continue;
3928 		__skb_unlink(skb, list);
3929 		__skb_queue_tail(&kill, skb);
3930 	}
3931 	spin_unlock_irqrestore(&list->lock, flags);
3932 	__skb_queue_purge(&kill);
3933 }
3934 EXPORT_SYMBOL(skb_errqueue_purge);
3935 
3936 /**
3937  *	skb_queue_head - queue a buffer at the list head
3938  *	@list: list to use
3939  *	@newsk: buffer to queue
3940  *
3941  *	Queue a buffer at the start of the list. This function takes the
3942  *	list lock and can be used safely with other locking &sk_buff functions
3943  *	safely.
3944  *
3945  *	A buffer cannot be placed on two lists at the same time.
3946  */
3947 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3948 {
3949 	unsigned long flags;
3950 
3951 	spin_lock_irqsave(&list->lock, flags);
3952 	__skb_queue_head(list, newsk);
3953 	spin_unlock_irqrestore(&list->lock, flags);
3954 }
3955 EXPORT_SYMBOL(skb_queue_head);
3956 
3957 /**
3958  *	skb_queue_tail - queue a buffer at the list tail
3959  *	@list: list to use
3960  *	@newsk: buffer to queue
3961  *
3962  *	Queue a buffer at the tail of the list. This function takes the
3963  *	list lock and can be used safely with other locking &sk_buff functions
3964  *	safely.
3965  *
3966  *	A buffer cannot be placed on two lists at the same time.
3967  */
3968 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3969 {
3970 	unsigned long flags;
3971 
3972 	spin_lock_irqsave(&list->lock, flags);
3973 	__skb_queue_tail(list, newsk);
3974 	spin_unlock_irqrestore(&list->lock, flags);
3975 }
3976 EXPORT_SYMBOL(skb_queue_tail);
3977 
3978 /**
3979  *	skb_unlink	-	remove a buffer from a list
3980  *	@skb: buffer to remove
3981  *	@list: list to use
3982  *
3983  *	Remove a packet from a list. The list locks are taken and this
3984  *	function is atomic with respect to other list locked calls
3985  *
3986  *	You must know what list the SKB is on.
3987  */
3988 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3989 {
3990 	unsigned long flags;
3991 
3992 	spin_lock_irqsave(&list->lock, flags);
3993 	__skb_unlink(skb, list);
3994 	spin_unlock_irqrestore(&list->lock, flags);
3995 }
3996 EXPORT_SYMBOL(skb_unlink);
3997 
3998 /**
3999  *	skb_append	-	append a buffer
4000  *	@old: buffer to insert after
4001  *	@newsk: buffer to insert
4002  *	@list: list to use
4003  *
4004  *	Place a packet after a given packet in a list. The list locks are taken
4005  *	and this function is atomic with respect to other list locked calls.
4006  *	A buffer cannot be placed on two lists at the same time.
4007  */
4008 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4009 {
4010 	unsigned long flags;
4011 
4012 	spin_lock_irqsave(&list->lock, flags);
4013 	__skb_queue_after(list, old, newsk);
4014 	spin_unlock_irqrestore(&list->lock, flags);
4015 }
4016 EXPORT_SYMBOL(skb_append);
4017 
4018 static inline void skb_split_inside_header(struct sk_buff *skb,
4019 					   struct sk_buff* skb1,
4020 					   const u32 len, const int pos)
4021 {
4022 	int i;
4023 
4024 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4025 					 pos - len);
4026 	/* And move data appendix as is. */
4027 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4028 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4029 
4030 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4031 	skb_shinfo(skb)->nr_frags  = 0;
4032 	skb1->data_len		   = skb->data_len;
4033 	skb1->len		   += skb1->data_len;
4034 	skb->data_len		   = 0;
4035 	skb->len		   = len;
4036 	skb_set_tail_pointer(skb, len);
4037 }
4038 
4039 static inline void skb_split_no_header(struct sk_buff *skb,
4040 				       struct sk_buff* skb1,
4041 				       const u32 len, int pos)
4042 {
4043 	int i, k = 0;
4044 	const int nfrags = skb_shinfo(skb)->nr_frags;
4045 
4046 	skb_shinfo(skb)->nr_frags = 0;
4047 	skb1->len		  = skb1->data_len = skb->len - len;
4048 	skb->len		  = len;
4049 	skb->data_len		  = len - pos;
4050 
4051 	for (i = 0; i < nfrags; i++) {
4052 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4053 
4054 		if (pos + size > len) {
4055 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4056 
4057 			if (pos < len) {
4058 				/* Split frag.
4059 				 * We have two variants in this case:
4060 				 * 1. Move all the frag to the second
4061 				 *    part, if it is possible. F.e.
4062 				 *    this approach is mandatory for TUX,
4063 				 *    where splitting is expensive.
4064 				 * 2. Split is accurately. We make this.
4065 				 */
4066 				skb_frag_ref(skb, i);
4067 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4068 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4069 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4070 				skb_shinfo(skb)->nr_frags++;
4071 			}
4072 			k++;
4073 		} else
4074 			skb_shinfo(skb)->nr_frags++;
4075 		pos += size;
4076 	}
4077 	skb_shinfo(skb1)->nr_frags = k;
4078 }
4079 
4080 /**
4081  * skb_split - Split fragmented skb to two parts at length len.
4082  * @skb: the buffer to split
4083  * @skb1: the buffer to receive the second part
4084  * @len: new length for skb
4085  */
4086 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4087 {
4088 	int pos = skb_headlen(skb);
4089 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4090 
4091 	skb_zcopy_downgrade_managed(skb);
4092 
4093 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4094 	skb_zerocopy_clone(skb1, skb, 0);
4095 	if (len < pos)	/* Split line is inside header. */
4096 		skb_split_inside_header(skb, skb1, len, pos);
4097 	else		/* Second chunk has no header, nothing to copy. */
4098 		skb_split_no_header(skb, skb1, len, pos);
4099 }
4100 EXPORT_SYMBOL(skb_split);
4101 
4102 /* Shifting from/to a cloned skb is a no-go.
4103  *
4104  * Caller cannot keep skb_shinfo related pointers past calling here!
4105  */
4106 static int skb_prepare_for_shift(struct sk_buff *skb)
4107 {
4108 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4109 }
4110 
4111 /**
4112  * skb_shift - Shifts paged data partially from skb to another
4113  * @tgt: buffer into which tail data gets added
4114  * @skb: buffer from which the paged data comes from
4115  * @shiftlen: shift up to this many bytes
4116  *
4117  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4118  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4119  * It's up to caller to free skb if everything was shifted.
4120  *
4121  * If @tgt runs out of frags, the whole operation is aborted.
4122  *
4123  * Skb cannot include anything else but paged data while tgt is allowed
4124  * to have non-paged data as well.
4125  *
4126  * TODO: full sized shift could be optimized but that would need
4127  * specialized skb free'er to handle frags without up-to-date nr_frags.
4128  */
4129 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4130 {
4131 	int from, to, merge, todo;
4132 	skb_frag_t *fragfrom, *fragto;
4133 
4134 	BUG_ON(shiftlen > skb->len);
4135 
4136 	if (skb_headlen(skb))
4137 		return 0;
4138 	if (skb_zcopy(tgt) || skb_zcopy(skb))
4139 		return 0;
4140 
4141 	todo = shiftlen;
4142 	from = 0;
4143 	to = skb_shinfo(tgt)->nr_frags;
4144 	fragfrom = &skb_shinfo(skb)->frags[from];
4145 
4146 	/* Actual merge is delayed until the point when we know we can
4147 	 * commit all, so that we don't have to undo partial changes
4148 	 */
4149 	if (!to ||
4150 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4151 			      skb_frag_off(fragfrom))) {
4152 		merge = -1;
4153 	} else {
4154 		merge = to - 1;
4155 
4156 		todo -= skb_frag_size(fragfrom);
4157 		if (todo < 0) {
4158 			if (skb_prepare_for_shift(skb) ||
4159 			    skb_prepare_for_shift(tgt))
4160 				return 0;
4161 
4162 			/* All previous frag pointers might be stale! */
4163 			fragfrom = &skb_shinfo(skb)->frags[from];
4164 			fragto = &skb_shinfo(tgt)->frags[merge];
4165 
4166 			skb_frag_size_add(fragto, shiftlen);
4167 			skb_frag_size_sub(fragfrom, shiftlen);
4168 			skb_frag_off_add(fragfrom, shiftlen);
4169 
4170 			goto onlymerged;
4171 		}
4172 
4173 		from++;
4174 	}
4175 
4176 	/* Skip full, not-fitting skb to avoid expensive operations */
4177 	if ((shiftlen == skb->len) &&
4178 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4179 		return 0;
4180 
4181 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4182 		return 0;
4183 
4184 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4185 		if (to == MAX_SKB_FRAGS)
4186 			return 0;
4187 
4188 		fragfrom = &skb_shinfo(skb)->frags[from];
4189 		fragto = &skb_shinfo(tgt)->frags[to];
4190 
4191 		if (todo >= skb_frag_size(fragfrom)) {
4192 			*fragto = *fragfrom;
4193 			todo -= skb_frag_size(fragfrom);
4194 			from++;
4195 			to++;
4196 
4197 		} else {
4198 			__skb_frag_ref(fragfrom);
4199 			skb_frag_page_copy(fragto, fragfrom);
4200 			skb_frag_off_copy(fragto, fragfrom);
4201 			skb_frag_size_set(fragto, todo);
4202 
4203 			skb_frag_off_add(fragfrom, todo);
4204 			skb_frag_size_sub(fragfrom, todo);
4205 			todo = 0;
4206 
4207 			to++;
4208 			break;
4209 		}
4210 	}
4211 
4212 	/* Ready to "commit" this state change to tgt */
4213 	skb_shinfo(tgt)->nr_frags = to;
4214 
4215 	if (merge >= 0) {
4216 		fragfrom = &skb_shinfo(skb)->frags[0];
4217 		fragto = &skb_shinfo(tgt)->frags[merge];
4218 
4219 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4220 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4221 	}
4222 
4223 	/* Reposition in the original skb */
4224 	to = 0;
4225 	while (from < skb_shinfo(skb)->nr_frags)
4226 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4227 	skb_shinfo(skb)->nr_frags = to;
4228 
4229 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4230 
4231 onlymerged:
4232 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4233 	 * the other hand might need it if it needs to be resent
4234 	 */
4235 	tgt->ip_summed = CHECKSUM_PARTIAL;
4236 	skb->ip_summed = CHECKSUM_PARTIAL;
4237 
4238 	skb_len_add(skb, -shiftlen);
4239 	skb_len_add(tgt, shiftlen);
4240 
4241 	return shiftlen;
4242 }
4243 
4244 /**
4245  * skb_prepare_seq_read - Prepare a sequential read of skb data
4246  * @skb: the buffer to read
4247  * @from: lower offset of data to be read
4248  * @to: upper offset of data to be read
4249  * @st: state variable
4250  *
4251  * Initializes the specified state variable. Must be called before
4252  * invoking skb_seq_read() for the first time.
4253  */
4254 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4255 			  unsigned int to, struct skb_seq_state *st)
4256 {
4257 	st->lower_offset = from;
4258 	st->upper_offset = to;
4259 	st->root_skb = st->cur_skb = skb;
4260 	st->frag_idx = st->stepped_offset = 0;
4261 	st->frag_data = NULL;
4262 	st->frag_off = 0;
4263 }
4264 EXPORT_SYMBOL(skb_prepare_seq_read);
4265 
4266 /**
4267  * skb_seq_read - Sequentially read skb data
4268  * @consumed: number of bytes consumed by the caller so far
4269  * @data: destination pointer for data to be returned
4270  * @st: state variable
4271  *
4272  * Reads a block of skb data at @consumed relative to the
4273  * lower offset specified to skb_prepare_seq_read(). Assigns
4274  * the head of the data block to @data and returns the length
4275  * of the block or 0 if the end of the skb data or the upper
4276  * offset has been reached.
4277  *
4278  * The caller is not required to consume all of the data
4279  * returned, i.e. @consumed is typically set to the number
4280  * of bytes already consumed and the next call to
4281  * skb_seq_read() will return the remaining part of the block.
4282  *
4283  * Note 1: The size of each block of data returned can be arbitrary,
4284  *       this limitation is the cost for zerocopy sequential
4285  *       reads of potentially non linear data.
4286  *
4287  * Note 2: Fragment lists within fragments are not implemented
4288  *       at the moment, state->root_skb could be replaced with
4289  *       a stack for this purpose.
4290  */
4291 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4292 			  struct skb_seq_state *st)
4293 {
4294 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4295 	skb_frag_t *frag;
4296 
4297 	if (unlikely(abs_offset >= st->upper_offset)) {
4298 		if (st->frag_data) {
4299 			kunmap_atomic(st->frag_data);
4300 			st->frag_data = NULL;
4301 		}
4302 		return 0;
4303 	}
4304 
4305 next_skb:
4306 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4307 
4308 	if (abs_offset < block_limit && !st->frag_data) {
4309 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4310 		return block_limit - abs_offset;
4311 	}
4312 
4313 	if (st->frag_idx == 0 && !st->frag_data)
4314 		st->stepped_offset += skb_headlen(st->cur_skb);
4315 
4316 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4317 		unsigned int pg_idx, pg_off, pg_sz;
4318 
4319 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4320 
4321 		pg_idx = 0;
4322 		pg_off = skb_frag_off(frag);
4323 		pg_sz = skb_frag_size(frag);
4324 
4325 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4326 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4327 			pg_off = offset_in_page(pg_off + st->frag_off);
4328 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4329 						    PAGE_SIZE - pg_off);
4330 		}
4331 
4332 		block_limit = pg_sz + st->stepped_offset;
4333 		if (abs_offset < block_limit) {
4334 			if (!st->frag_data)
4335 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4336 
4337 			*data = (u8 *)st->frag_data + pg_off +
4338 				(abs_offset - st->stepped_offset);
4339 
4340 			return block_limit - abs_offset;
4341 		}
4342 
4343 		if (st->frag_data) {
4344 			kunmap_atomic(st->frag_data);
4345 			st->frag_data = NULL;
4346 		}
4347 
4348 		st->stepped_offset += pg_sz;
4349 		st->frag_off += pg_sz;
4350 		if (st->frag_off == skb_frag_size(frag)) {
4351 			st->frag_off = 0;
4352 			st->frag_idx++;
4353 		}
4354 	}
4355 
4356 	if (st->frag_data) {
4357 		kunmap_atomic(st->frag_data);
4358 		st->frag_data = NULL;
4359 	}
4360 
4361 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4362 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4363 		st->frag_idx = 0;
4364 		goto next_skb;
4365 	} else if (st->cur_skb->next) {
4366 		st->cur_skb = st->cur_skb->next;
4367 		st->frag_idx = 0;
4368 		goto next_skb;
4369 	}
4370 
4371 	return 0;
4372 }
4373 EXPORT_SYMBOL(skb_seq_read);
4374 
4375 /**
4376  * skb_abort_seq_read - Abort a sequential read of skb data
4377  * @st: state variable
4378  *
4379  * Must be called if skb_seq_read() was not called until it
4380  * returned 0.
4381  */
4382 void skb_abort_seq_read(struct skb_seq_state *st)
4383 {
4384 	if (st->frag_data)
4385 		kunmap_atomic(st->frag_data);
4386 }
4387 EXPORT_SYMBOL(skb_abort_seq_read);
4388 
4389 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4390 
4391 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4392 					  struct ts_config *conf,
4393 					  struct ts_state *state)
4394 {
4395 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4396 }
4397 
4398 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4399 {
4400 	skb_abort_seq_read(TS_SKB_CB(state));
4401 }
4402 
4403 /**
4404  * skb_find_text - Find a text pattern in skb data
4405  * @skb: the buffer to look in
4406  * @from: search offset
4407  * @to: search limit
4408  * @config: textsearch configuration
4409  *
4410  * Finds a pattern in the skb data according to the specified
4411  * textsearch configuration. Use textsearch_next() to retrieve
4412  * subsequent occurrences of the pattern. Returns the offset
4413  * to the first occurrence or UINT_MAX if no match was found.
4414  */
4415 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4416 			   unsigned int to, struct ts_config *config)
4417 {
4418 	unsigned int patlen = config->ops->get_pattern_len(config);
4419 	struct ts_state state;
4420 	unsigned int ret;
4421 
4422 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4423 
4424 	config->get_next_block = skb_ts_get_next_block;
4425 	config->finish = skb_ts_finish;
4426 
4427 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4428 
4429 	ret = textsearch_find(config, &state);
4430 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4431 }
4432 EXPORT_SYMBOL(skb_find_text);
4433 
4434 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4435 			 int offset, size_t size, size_t max_frags)
4436 {
4437 	int i = skb_shinfo(skb)->nr_frags;
4438 
4439 	if (skb_can_coalesce(skb, i, page, offset)) {
4440 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4441 	} else if (i < max_frags) {
4442 		skb_zcopy_downgrade_managed(skb);
4443 		get_page(page);
4444 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4445 	} else {
4446 		return -EMSGSIZE;
4447 	}
4448 
4449 	return 0;
4450 }
4451 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4452 
4453 /**
4454  *	skb_pull_rcsum - pull skb and update receive checksum
4455  *	@skb: buffer to update
4456  *	@len: length of data pulled
4457  *
4458  *	This function performs an skb_pull on the packet and updates
4459  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4460  *	receive path processing instead of skb_pull unless you know
4461  *	that the checksum difference is zero (e.g., a valid IP header)
4462  *	or you are setting ip_summed to CHECKSUM_NONE.
4463  */
4464 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4465 {
4466 	unsigned char *data = skb->data;
4467 
4468 	BUG_ON(len > skb->len);
4469 	__skb_pull(skb, len);
4470 	skb_postpull_rcsum(skb, data, len);
4471 	return skb->data;
4472 }
4473 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4474 
4475 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4476 {
4477 	skb_frag_t head_frag;
4478 	struct page *page;
4479 
4480 	page = virt_to_head_page(frag_skb->head);
4481 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4482 				(unsigned char *)page_address(page),
4483 				skb_headlen(frag_skb));
4484 	return head_frag;
4485 }
4486 
4487 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4488 				 netdev_features_t features,
4489 				 unsigned int offset)
4490 {
4491 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4492 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4493 	unsigned int delta_truesize = 0;
4494 	unsigned int delta_len = 0;
4495 	struct sk_buff *tail = NULL;
4496 	struct sk_buff *nskb, *tmp;
4497 	int len_diff, err;
4498 
4499 	skb_push(skb, -skb_network_offset(skb) + offset);
4500 
4501 	/* Ensure the head is writeable before touching the shared info */
4502 	err = skb_unclone(skb, GFP_ATOMIC);
4503 	if (err)
4504 		goto err_linearize;
4505 
4506 	skb_shinfo(skb)->frag_list = NULL;
4507 
4508 	while (list_skb) {
4509 		nskb = list_skb;
4510 		list_skb = list_skb->next;
4511 
4512 		err = 0;
4513 		delta_truesize += nskb->truesize;
4514 		if (skb_shared(nskb)) {
4515 			tmp = skb_clone(nskb, GFP_ATOMIC);
4516 			if (tmp) {
4517 				consume_skb(nskb);
4518 				nskb = tmp;
4519 				err = skb_unclone(nskb, GFP_ATOMIC);
4520 			} else {
4521 				err = -ENOMEM;
4522 			}
4523 		}
4524 
4525 		if (!tail)
4526 			skb->next = nskb;
4527 		else
4528 			tail->next = nskb;
4529 
4530 		if (unlikely(err)) {
4531 			nskb->next = list_skb;
4532 			goto err_linearize;
4533 		}
4534 
4535 		tail = nskb;
4536 
4537 		delta_len += nskb->len;
4538 
4539 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4540 
4541 		skb_release_head_state(nskb);
4542 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4543 		__copy_skb_header(nskb, skb);
4544 
4545 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4546 		nskb->transport_header += len_diff;
4547 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4548 						 nskb->data - tnl_hlen,
4549 						 offset + tnl_hlen);
4550 
4551 		if (skb_needs_linearize(nskb, features) &&
4552 		    __skb_linearize(nskb))
4553 			goto err_linearize;
4554 	}
4555 
4556 	skb->truesize = skb->truesize - delta_truesize;
4557 	skb->data_len = skb->data_len - delta_len;
4558 	skb->len = skb->len - delta_len;
4559 
4560 	skb_gso_reset(skb);
4561 
4562 	skb->prev = tail;
4563 
4564 	if (skb_needs_linearize(skb, features) &&
4565 	    __skb_linearize(skb))
4566 		goto err_linearize;
4567 
4568 	skb_get(skb);
4569 
4570 	return skb;
4571 
4572 err_linearize:
4573 	kfree_skb_list(skb->next);
4574 	skb->next = NULL;
4575 	return ERR_PTR(-ENOMEM);
4576 }
4577 EXPORT_SYMBOL_GPL(skb_segment_list);
4578 
4579 /**
4580  *	skb_segment - Perform protocol segmentation on skb.
4581  *	@head_skb: buffer to segment
4582  *	@features: features for the output path (see dev->features)
4583  *
4584  *	This function performs segmentation on the given skb.  It returns
4585  *	a pointer to the first in a list of new skbs for the segments.
4586  *	In case of error it returns ERR_PTR(err).
4587  */
4588 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4589 			    netdev_features_t features)
4590 {
4591 	struct sk_buff *segs = NULL;
4592 	struct sk_buff *tail = NULL;
4593 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4594 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4595 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4596 	unsigned int offset = doffset;
4597 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4598 	unsigned int partial_segs = 0;
4599 	unsigned int headroom;
4600 	unsigned int len = head_skb->len;
4601 	struct sk_buff *frag_skb;
4602 	skb_frag_t *frag;
4603 	__be16 proto;
4604 	bool csum, sg;
4605 	int err = -ENOMEM;
4606 	int i = 0;
4607 	int nfrags, pos;
4608 
4609 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4610 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4611 		struct sk_buff *check_skb;
4612 
4613 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4614 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4615 				/* gso_size is untrusted, and we have a frag_list with
4616 				 * a linear non head_frag item.
4617 				 *
4618 				 * If head_skb's headlen does not fit requested gso_size,
4619 				 * it means that the frag_list members do NOT terminate
4620 				 * on exact gso_size boundaries. Hence we cannot perform
4621 				 * skb_frag_t page sharing. Therefore we must fallback to
4622 				 * copying the frag_list skbs; we do so by disabling SG.
4623 				 */
4624 				features &= ~NETIF_F_SG;
4625 				break;
4626 			}
4627 		}
4628 	}
4629 
4630 	__skb_push(head_skb, doffset);
4631 	proto = skb_network_protocol(head_skb, NULL);
4632 	if (unlikely(!proto))
4633 		return ERR_PTR(-EINVAL);
4634 
4635 	sg = !!(features & NETIF_F_SG);
4636 	csum = !!can_checksum_protocol(features, proto);
4637 
4638 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4639 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4640 			struct sk_buff *iter;
4641 			unsigned int frag_len;
4642 
4643 			if (!list_skb ||
4644 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4645 				goto normal;
4646 
4647 			/* If we get here then all the required
4648 			 * GSO features except frag_list are supported.
4649 			 * Try to split the SKB to multiple GSO SKBs
4650 			 * with no frag_list.
4651 			 * Currently we can do that only when the buffers don't
4652 			 * have a linear part and all the buffers except
4653 			 * the last are of the same length.
4654 			 */
4655 			frag_len = list_skb->len;
4656 			skb_walk_frags(head_skb, iter) {
4657 				if (frag_len != iter->len && iter->next)
4658 					goto normal;
4659 				if (skb_headlen(iter) && !iter->head_frag)
4660 					goto normal;
4661 
4662 				len -= iter->len;
4663 			}
4664 
4665 			if (len != frag_len)
4666 				goto normal;
4667 		}
4668 
4669 		/* GSO partial only requires that we trim off any excess that
4670 		 * doesn't fit into an MSS sized block, so take care of that
4671 		 * now.
4672 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4673 		 */
4674 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4675 		if (partial_segs > 1)
4676 			mss *= partial_segs;
4677 		else
4678 			partial_segs = 0;
4679 	}
4680 
4681 normal:
4682 	headroom = skb_headroom(head_skb);
4683 	pos = skb_headlen(head_skb);
4684 
4685 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4686 		return ERR_PTR(-ENOMEM);
4687 
4688 	nfrags = skb_shinfo(head_skb)->nr_frags;
4689 	frag = skb_shinfo(head_skb)->frags;
4690 	frag_skb = head_skb;
4691 
4692 	do {
4693 		struct sk_buff *nskb;
4694 		skb_frag_t *nskb_frag;
4695 		int hsize;
4696 		int size;
4697 
4698 		if (unlikely(mss == GSO_BY_FRAGS)) {
4699 			len = list_skb->len;
4700 		} else {
4701 			len = head_skb->len - offset;
4702 			if (len > mss)
4703 				len = mss;
4704 		}
4705 
4706 		hsize = skb_headlen(head_skb) - offset;
4707 
4708 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4709 		    (skb_headlen(list_skb) == len || sg)) {
4710 			BUG_ON(skb_headlen(list_skb) > len);
4711 
4712 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4713 			if (unlikely(!nskb))
4714 				goto err;
4715 
4716 			i = 0;
4717 			nfrags = skb_shinfo(list_skb)->nr_frags;
4718 			frag = skb_shinfo(list_skb)->frags;
4719 			frag_skb = list_skb;
4720 			pos += skb_headlen(list_skb);
4721 
4722 			while (pos < offset + len) {
4723 				BUG_ON(i >= nfrags);
4724 
4725 				size = skb_frag_size(frag);
4726 				if (pos + size > offset + len)
4727 					break;
4728 
4729 				i++;
4730 				pos += size;
4731 				frag++;
4732 			}
4733 
4734 			list_skb = list_skb->next;
4735 
4736 			if (unlikely(pskb_trim(nskb, len))) {
4737 				kfree_skb(nskb);
4738 				goto err;
4739 			}
4740 
4741 			hsize = skb_end_offset(nskb);
4742 			if (skb_cow_head(nskb, doffset + headroom)) {
4743 				kfree_skb(nskb);
4744 				goto err;
4745 			}
4746 
4747 			nskb->truesize += skb_end_offset(nskb) - hsize;
4748 			skb_release_head_state(nskb);
4749 			__skb_push(nskb, doffset);
4750 		} else {
4751 			if (hsize < 0)
4752 				hsize = 0;
4753 			if (hsize > len || !sg)
4754 				hsize = len;
4755 
4756 			nskb = __alloc_skb(hsize + doffset + headroom,
4757 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4758 					   NUMA_NO_NODE);
4759 
4760 			if (unlikely(!nskb))
4761 				goto err;
4762 
4763 			skb_reserve(nskb, headroom);
4764 			__skb_put(nskb, doffset);
4765 		}
4766 
4767 		if (segs)
4768 			tail->next = nskb;
4769 		else
4770 			segs = nskb;
4771 		tail = nskb;
4772 
4773 		__copy_skb_header(nskb, head_skb);
4774 
4775 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4776 		skb_reset_mac_len(nskb);
4777 
4778 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4779 						 nskb->data - tnl_hlen,
4780 						 doffset + tnl_hlen);
4781 
4782 		if (nskb->len == len + doffset)
4783 			goto perform_csum_check;
4784 
4785 		if (!sg) {
4786 			if (!csum) {
4787 				if (!nskb->remcsum_offload)
4788 					nskb->ip_summed = CHECKSUM_NONE;
4789 				SKB_GSO_CB(nskb)->csum =
4790 					skb_copy_and_csum_bits(head_skb, offset,
4791 							       skb_put(nskb,
4792 								       len),
4793 							       len);
4794 				SKB_GSO_CB(nskb)->csum_start =
4795 					skb_headroom(nskb) + doffset;
4796 			} else {
4797 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4798 					goto err;
4799 			}
4800 			continue;
4801 		}
4802 
4803 		nskb_frag = skb_shinfo(nskb)->frags;
4804 
4805 		skb_copy_from_linear_data_offset(head_skb, offset,
4806 						 skb_put(nskb, hsize), hsize);
4807 
4808 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4809 					   SKBFL_SHARED_FRAG;
4810 
4811 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4812 			goto err;
4813 
4814 		while (pos < offset + len) {
4815 			if (i >= nfrags) {
4816 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4817 				    skb_zerocopy_clone(nskb, list_skb,
4818 						       GFP_ATOMIC))
4819 					goto err;
4820 
4821 				i = 0;
4822 				nfrags = skb_shinfo(list_skb)->nr_frags;
4823 				frag = skb_shinfo(list_skb)->frags;
4824 				frag_skb = list_skb;
4825 				if (!skb_headlen(list_skb)) {
4826 					BUG_ON(!nfrags);
4827 				} else {
4828 					BUG_ON(!list_skb->head_frag);
4829 
4830 					/* to make room for head_frag. */
4831 					i--;
4832 					frag--;
4833 				}
4834 
4835 				list_skb = list_skb->next;
4836 			}
4837 
4838 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4839 				     MAX_SKB_FRAGS)) {
4840 				net_warn_ratelimited(
4841 					"skb_segment: too many frags: %u %u\n",
4842 					pos, mss);
4843 				err = -EINVAL;
4844 				goto err;
4845 			}
4846 
4847 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4848 			__skb_frag_ref(nskb_frag);
4849 			size = skb_frag_size(nskb_frag);
4850 
4851 			if (pos < offset) {
4852 				skb_frag_off_add(nskb_frag, offset - pos);
4853 				skb_frag_size_sub(nskb_frag, offset - pos);
4854 			}
4855 
4856 			skb_shinfo(nskb)->nr_frags++;
4857 
4858 			if (pos + size <= offset + len) {
4859 				i++;
4860 				frag++;
4861 				pos += size;
4862 			} else {
4863 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4864 				goto skip_fraglist;
4865 			}
4866 
4867 			nskb_frag++;
4868 		}
4869 
4870 skip_fraglist:
4871 		nskb->data_len = len - hsize;
4872 		nskb->len += nskb->data_len;
4873 		nskb->truesize += nskb->data_len;
4874 
4875 perform_csum_check:
4876 		if (!csum) {
4877 			if (skb_has_shared_frag(nskb) &&
4878 			    __skb_linearize(nskb))
4879 				goto err;
4880 
4881 			if (!nskb->remcsum_offload)
4882 				nskb->ip_summed = CHECKSUM_NONE;
4883 			SKB_GSO_CB(nskb)->csum =
4884 				skb_checksum(nskb, doffset,
4885 					     nskb->len - doffset, 0);
4886 			SKB_GSO_CB(nskb)->csum_start =
4887 				skb_headroom(nskb) + doffset;
4888 		}
4889 	} while ((offset += len) < head_skb->len);
4890 
4891 	/* Some callers want to get the end of the list.
4892 	 * Put it in segs->prev to avoid walking the list.
4893 	 * (see validate_xmit_skb_list() for example)
4894 	 */
4895 	segs->prev = tail;
4896 
4897 	if (partial_segs) {
4898 		struct sk_buff *iter;
4899 		int type = skb_shinfo(head_skb)->gso_type;
4900 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4901 
4902 		/* Update type to add partial and then remove dodgy if set */
4903 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4904 		type &= ~SKB_GSO_DODGY;
4905 
4906 		/* Update GSO info and prepare to start updating headers on
4907 		 * our way back down the stack of protocols.
4908 		 */
4909 		for (iter = segs; iter; iter = iter->next) {
4910 			skb_shinfo(iter)->gso_size = gso_size;
4911 			skb_shinfo(iter)->gso_segs = partial_segs;
4912 			skb_shinfo(iter)->gso_type = type;
4913 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4914 		}
4915 
4916 		if (tail->len - doffset <= gso_size)
4917 			skb_shinfo(tail)->gso_size = 0;
4918 		else if (tail != segs)
4919 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4920 	}
4921 
4922 	/* Following permits correct backpressure, for protocols
4923 	 * using skb_set_owner_w().
4924 	 * Idea is to tranfert ownership from head_skb to last segment.
4925 	 */
4926 	if (head_skb->destructor == sock_wfree) {
4927 		swap(tail->truesize, head_skb->truesize);
4928 		swap(tail->destructor, head_skb->destructor);
4929 		swap(tail->sk, head_skb->sk);
4930 	}
4931 	return segs;
4932 
4933 err:
4934 	kfree_skb_list(segs);
4935 	return ERR_PTR(err);
4936 }
4937 EXPORT_SYMBOL_GPL(skb_segment);
4938 
4939 #ifdef CONFIG_SKB_EXTENSIONS
4940 #define SKB_EXT_ALIGN_VALUE	8
4941 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4942 
4943 static const u8 skb_ext_type_len[] = {
4944 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4945 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4946 #endif
4947 #ifdef CONFIG_XFRM
4948 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4949 #endif
4950 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4951 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4952 #endif
4953 #if IS_ENABLED(CONFIG_MPTCP)
4954 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4955 #endif
4956 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4957 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4958 #endif
4959 };
4960 
4961 static __always_inline unsigned int skb_ext_total_length(void)
4962 {
4963 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4964 	int i;
4965 
4966 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4967 		l += skb_ext_type_len[i];
4968 
4969 	return l;
4970 }
4971 
4972 static void skb_extensions_init(void)
4973 {
4974 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4975 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4976 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4977 #endif
4978 
4979 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4980 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4981 					     0,
4982 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4983 					     NULL);
4984 }
4985 #else
4986 static void skb_extensions_init(void) {}
4987 #endif
4988 
4989 /* The SKB kmem_cache slab is critical for network performance.  Never
4990  * merge/alias the slab with similar sized objects.  This avoids fragmentation
4991  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
4992  */
4993 #ifndef CONFIG_SLUB_TINY
4994 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
4995 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
4996 #define FLAG_SKB_NO_MERGE	0
4997 #endif
4998 
4999 void __init skb_init(void)
5000 {
5001 	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5002 					      sizeof(struct sk_buff),
5003 					      0,
5004 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5005 						FLAG_SKB_NO_MERGE,
5006 					      offsetof(struct sk_buff, cb),
5007 					      sizeof_field(struct sk_buff, cb),
5008 					      NULL);
5009 	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5010 						sizeof(struct sk_buff_fclones),
5011 						0,
5012 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5013 						NULL);
5014 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5015 	 * struct skb_shared_info is located at the end of skb->head,
5016 	 * and should not be copied to/from user.
5017 	 */
5018 	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5019 						SKB_SMALL_HEAD_CACHE_SIZE,
5020 						0,
5021 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5022 						0,
5023 						SKB_SMALL_HEAD_HEADROOM,
5024 						NULL);
5025 	skb_extensions_init();
5026 }
5027 
5028 static int
5029 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5030 	       unsigned int recursion_level)
5031 {
5032 	int start = skb_headlen(skb);
5033 	int i, copy = start - offset;
5034 	struct sk_buff *frag_iter;
5035 	int elt = 0;
5036 
5037 	if (unlikely(recursion_level >= 24))
5038 		return -EMSGSIZE;
5039 
5040 	if (copy > 0) {
5041 		if (copy > len)
5042 			copy = len;
5043 		sg_set_buf(sg, skb->data + offset, copy);
5044 		elt++;
5045 		if ((len -= copy) == 0)
5046 			return elt;
5047 		offset += copy;
5048 	}
5049 
5050 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5051 		int end;
5052 
5053 		WARN_ON(start > offset + len);
5054 
5055 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5056 		if ((copy = end - offset) > 0) {
5057 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5058 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5059 				return -EMSGSIZE;
5060 
5061 			if (copy > len)
5062 				copy = len;
5063 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5064 				    skb_frag_off(frag) + offset - start);
5065 			elt++;
5066 			if (!(len -= copy))
5067 				return elt;
5068 			offset += copy;
5069 		}
5070 		start = end;
5071 	}
5072 
5073 	skb_walk_frags(skb, frag_iter) {
5074 		int end, ret;
5075 
5076 		WARN_ON(start > offset + len);
5077 
5078 		end = start + frag_iter->len;
5079 		if ((copy = end - offset) > 0) {
5080 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5081 				return -EMSGSIZE;
5082 
5083 			if (copy > len)
5084 				copy = len;
5085 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5086 					      copy, recursion_level + 1);
5087 			if (unlikely(ret < 0))
5088 				return ret;
5089 			elt += ret;
5090 			if ((len -= copy) == 0)
5091 				return elt;
5092 			offset += copy;
5093 		}
5094 		start = end;
5095 	}
5096 	BUG_ON(len);
5097 	return elt;
5098 }
5099 
5100 /**
5101  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5102  *	@skb: Socket buffer containing the buffers to be mapped
5103  *	@sg: The scatter-gather list to map into
5104  *	@offset: The offset into the buffer's contents to start mapping
5105  *	@len: Length of buffer space to be mapped
5106  *
5107  *	Fill the specified scatter-gather list with mappings/pointers into a
5108  *	region of the buffer space attached to a socket buffer. Returns either
5109  *	the number of scatterlist items used, or -EMSGSIZE if the contents
5110  *	could not fit.
5111  */
5112 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5113 {
5114 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5115 
5116 	if (nsg <= 0)
5117 		return nsg;
5118 
5119 	sg_mark_end(&sg[nsg - 1]);
5120 
5121 	return nsg;
5122 }
5123 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5124 
5125 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5126  * sglist without mark the sg which contain last skb data as the end.
5127  * So the caller can mannipulate sg list as will when padding new data after
5128  * the first call without calling sg_unmark_end to expend sg list.
5129  *
5130  * Scenario to use skb_to_sgvec_nomark:
5131  * 1. sg_init_table
5132  * 2. skb_to_sgvec_nomark(payload1)
5133  * 3. skb_to_sgvec_nomark(payload2)
5134  *
5135  * This is equivalent to:
5136  * 1. sg_init_table
5137  * 2. skb_to_sgvec(payload1)
5138  * 3. sg_unmark_end
5139  * 4. skb_to_sgvec(payload2)
5140  *
5141  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
5142  * is more preferable.
5143  */
5144 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5145 			int offset, int len)
5146 {
5147 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5148 }
5149 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5150 
5151 
5152 
5153 /**
5154  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5155  *	@skb: The socket buffer to check.
5156  *	@tailbits: Amount of trailing space to be added
5157  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5158  *
5159  *	Make sure that the data buffers attached to a socket buffer are
5160  *	writable. If they are not, private copies are made of the data buffers
5161  *	and the socket buffer is set to use these instead.
5162  *
5163  *	If @tailbits is given, make sure that there is space to write @tailbits
5164  *	bytes of data beyond current end of socket buffer.  @trailer will be
5165  *	set to point to the skb in which this space begins.
5166  *
5167  *	The number of scatterlist elements required to completely map the
5168  *	COW'd and extended socket buffer will be returned.
5169  */
5170 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5171 {
5172 	int copyflag;
5173 	int elt;
5174 	struct sk_buff *skb1, **skb_p;
5175 
5176 	/* If skb is cloned or its head is paged, reallocate
5177 	 * head pulling out all the pages (pages are considered not writable
5178 	 * at the moment even if they are anonymous).
5179 	 */
5180 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5181 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5182 		return -ENOMEM;
5183 
5184 	/* Easy case. Most of packets will go this way. */
5185 	if (!skb_has_frag_list(skb)) {
5186 		/* A little of trouble, not enough of space for trailer.
5187 		 * This should not happen, when stack is tuned to generate
5188 		 * good frames. OK, on miss we reallocate and reserve even more
5189 		 * space, 128 bytes is fair. */
5190 
5191 		if (skb_tailroom(skb) < tailbits &&
5192 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5193 			return -ENOMEM;
5194 
5195 		/* Voila! */
5196 		*trailer = skb;
5197 		return 1;
5198 	}
5199 
5200 	/* Misery. We are in troubles, going to mincer fragments... */
5201 
5202 	elt = 1;
5203 	skb_p = &skb_shinfo(skb)->frag_list;
5204 	copyflag = 0;
5205 
5206 	while ((skb1 = *skb_p) != NULL) {
5207 		int ntail = 0;
5208 
5209 		/* The fragment is partially pulled by someone,
5210 		 * this can happen on input. Copy it and everything
5211 		 * after it. */
5212 
5213 		if (skb_shared(skb1))
5214 			copyflag = 1;
5215 
5216 		/* If the skb is the last, worry about trailer. */
5217 
5218 		if (skb1->next == NULL && tailbits) {
5219 			if (skb_shinfo(skb1)->nr_frags ||
5220 			    skb_has_frag_list(skb1) ||
5221 			    skb_tailroom(skb1) < tailbits)
5222 				ntail = tailbits + 128;
5223 		}
5224 
5225 		if (copyflag ||
5226 		    skb_cloned(skb1) ||
5227 		    ntail ||
5228 		    skb_shinfo(skb1)->nr_frags ||
5229 		    skb_has_frag_list(skb1)) {
5230 			struct sk_buff *skb2;
5231 
5232 			/* Fuck, we are miserable poor guys... */
5233 			if (ntail == 0)
5234 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5235 			else
5236 				skb2 = skb_copy_expand(skb1,
5237 						       skb_headroom(skb1),
5238 						       ntail,
5239 						       GFP_ATOMIC);
5240 			if (unlikely(skb2 == NULL))
5241 				return -ENOMEM;
5242 
5243 			if (skb1->sk)
5244 				skb_set_owner_w(skb2, skb1->sk);
5245 
5246 			/* Looking around. Are we still alive?
5247 			 * OK, link new skb, drop old one */
5248 
5249 			skb2->next = skb1->next;
5250 			*skb_p = skb2;
5251 			kfree_skb(skb1);
5252 			skb1 = skb2;
5253 		}
5254 		elt++;
5255 		*trailer = skb1;
5256 		skb_p = &skb1->next;
5257 	}
5258 
5259 	return elt;
5260 }
5261 EXPORT_SYMBOL_GPL(skb_cow_data);
5262 
5263 static void sock_rmem_free(struct sk_buff *skb)
5264 {
5265 	struct sock *sk = skb->sk;
5266 
5267 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5268 }
5269 
5270 static void skb_set_err_queue(struct sk_buff *skb)
5271 {
5272 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5273 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5274 	 */
5275 	skb->pkt_type = PACKET_OUTGOING;
5276 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5277 }
5278 
5279 /*
5280  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5281  */
5282 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5283 {
5284 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5285 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5286 		return -ENOMEM;
5287 
5288 	skb_orphan(skb);
5289 	skb->sk = sk;
5290 	skb->destructor = sock_rmem_free;
5291 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5292 	skb_set_err_queue(skb);
5293 
5294 	/* before exiting rcu section, make sure dst is refcounted */
5295 	skb_dst_force(skb);
5296 
5297 	skb_queue_tail(&sk->sk_error_queue, skb);
5298 	if (!sock_flag(sk, SOCK_DEAD))
5299 		sk_error_report(sk);
5300 	return 0;
5301 }
5302 EXPORT_SYMBOL(sock_queue_err_skb);
5303 
5304 static bool is_icmp_err_skb(const struct sk_buff *skb)
5305 {
5306 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5307 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5308 }
5309 
5310 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5311 {
5312 	struct sk_buff_head *q = &sk->sk_error_queue;
5313 	struct sk_buff *skb, *skb_next = NULL;
5314 	bool icmp_next = false;
5315 	unsigned long flags;
5316 
5317 	if (skb_queue_empty_lockless(q))
5318 		return NULL;
5319 
5320 	spin_lock_irqsave(&q->lock, flags);
5321 	skb = __skb_dequeue(q);
5322 	if (skb && (skb_next = skb_peek(q))) {
5323 		icmp_next = is_icmp_err_skb(skb_next);
5324 		if (icmp_next)
5325 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5326 	}
5327 	spin_unlock_irqrestore(&q->lock, flags);
5328 
5329 	if (is_icmp_err_skb(skb) && !icmp_next)
5330 		sk->sk_err = 0;
5331 
5332 	if (skb_next)
5333 		sk_error_report(sk);
5334 
5335 	return skb;
5336 }
5337 EXPORT_SYMBOL(sock_dequeue_err_skb);
5338 
5339 /**
5340  * skb_clone_sk - create clone of skb, and take reference to socket
5341  * @skb: the skb to clone
5342  *
5343  * This function creates a clone of a buffer that holds a reference on
5344  * sk_refcnt.  Buffers created via this function are meant to be
5345  * returned using sock_queue_err_skb, or free via kfree_skb.
5346  *
5347  * When passing buffers allocated with this function to sock_queue_err_skb
5348  * it is necessary to wrap the call with sock_hold/sock_put in order to
5349  * prevent the socket from being released prior to being enqueued on
5350  * the sk_error_queue.
5351  */
5352 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5353 {
5354 	struct sock *sk = skb->sk;
5355 	struct sk_buff *clone;
5356 
5357 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5358 		return NULL;
5359 
5360 	clone = skb_clone(skb, GFP_ATOMIC);
5361 	if (!clone) {
5362 		sock_put(sk);
5363 		return NULL;
5364 	}
5365 
5366 	clone->sk = sk;
5367 	clone->destructor = sock_efree;
5368 
5369 	return clone;
5370 }
5371 EXPORT_SYMBOL(skb_clone_sk);
5372 
5373 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5374 					struct sock *sk,
5375 					int tstype,
5376 					bool opt_stats)
5377 {
5378 	struct sock_exterr_skb *serr;
5379 	int err;
5380 
5381 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5382 
5383 	serr = SKB_EXT_ERR(skb);
5384 	memset(serr, 0, sizeof(*serr));
5385 	serr->ee.ee_errno = ENOMSG;
5386 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5387 	serr->ee.ee_info = tstype;
5388 	serr->opt_stats = opt_stats;
5389 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5390 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5391 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5392 		if (sk_is_tcp(sk))
5393 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5394 	}
5395 
5396 	err = sock_queue_err_skb(sk, skb);
5397 
5398 	if (err)
5399 		kfree_skb(skb);
5400 }
5401 
5402 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5403 {
5404 	bool ret;
5405 
5406 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5407 		return true;
5408 
5409 	read_lock_bh(&sk->sk_callback_lock);
5410 	ret = sk->sk_socket && sk->sk_socket->file &&
5411 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5412 	read_unlock_bh(&sk->sk_callback_lock);
5413 	return ret;
5414 }
5415 
5416 void skb_complete_tx_timestamp(struct sk_buff *skb,
5417 			       struct skb_shared_hwtstamps *hwtstamps)
5418 {
5419 	struct sock *sk = skb->sk;
5420 
5421 	if (!skb_may_tx_timestamp(sk, false))
5422 		goto err;
5423 
5424 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5425 	 * but only if the socket refcount is not zero.
5426 	 */
5427 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5428 		*skb_hwtstamps(skb) = *hwtstamps;
5429 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5430 		sock_put(sk);
5431 		return;
5432 	}
5433 
5434 err:
5435 	kfree_skb(skb);
5436 }
5437 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5438 
5439 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5440 		     const struct sk_buff *ack_skb,
5441 		     struct skb_shared_hwtstamps *hwtstamps,
5442 		     struct sock *sk, int tstype)
5443 {
5444 	struct sk_buff *skb;
5445 	bool tsonly, opt_stats = false;
5446 	u32 tsflags;
5447 
5448 	if (!sk)
5449 		return;
5450 
5451 	tsflags = READ_ONCE(sk->sk_tsflags);
5452 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5453 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5454 		return;
5455 
5456 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5457 	if (!skb_may_tx_timestamp(sk, tsonly))
5458 		return;
5459 
5460 	if (tsonly) {
5461 #ifdef CONFIG_INET
5462 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5463 		    sk_is_tcp(sk)) {
5464 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5465 							     ack_skb);
5466 			opt_stats = true;
5467 		} else
5468 #endif
5469 			skb = alloc_skb(0, GFP_ATOMIC);
5470 	} else {
5471 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5472 
5473 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5474 			kfree_skb(skb);
5475 			return;
5476 		}
5477 	}
5478 	if (!skb)
5479 		return;
5480 
5481 	if (tsonly) {
5482 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5483 					     SKBTX_ANY_TSTAMP;
5484 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5485 	}
5486 
5487 	if (hwtstamps)
5488 		*skb_hwtstamps(skb) = *hwtstamps;
5489 	else
5490 		__net_timestamp(skb);
5491 
5492 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5493 }
5494 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5495 
5496 void skb_tstamp_tx(struct sk_buff *orig_skb,
5497 		   struct skb_shared_hwtstamps *hwtstamps)
5498 {
5499 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5500 			       SCM_TSTAMP_SND);
5501 }
5502 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5503 
5504 #ifdef CONFIG_WIRELESS
5505 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5506 {
5507 	struct sock *sk = skb->sk;
5508 	struct sock_exterr_skb *serr;
5509 	int err = 1;
5510 
5511 	skb->wifi_acked_valid = 1;
5512 	skb->wifi_acked = acked;
5513 
5514 	serr = SKB_EXT_ERR(skb);
5515 	memset(serr, 0, sizeof(*serr));
5516 	serr->ee.ee_errno = ENOMSG;
5517 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5518 
5519 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5520 	 * but only if the socket refcount is not zero.
5521 	 */
5522 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5523 		err = sock_queue_err_skb(sk, skb);
5524 		sock_put(sk);
5525 	}
5526 	if (err)
5527 		kfree_skb(skb);
5528 }
5529 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5530 #endif /* CONFIG_WIRELESS */
5531 
5532 /**
5533  * skb_partial_csum_set - set up and verify partial csum values for packet
5534  * @skb: the skb to set
5535  * @start: the number of bytes after skb->data to start checksumming.
5536  * @off: the offset from start to place the checksum.
5537  *
5538  * For untrusted partially-checksummed packets, we need to make sure the values
5539  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5540  *
5541  * This function checks and sets those values and skb->ip_summed: if this
5542  * returns false you should drop the packet.
5543  */
5544 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5545 {
5546 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5547 	u32 csum_start = skb_headroom(skb) + (u32)start;
5548 
5549 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5550 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5551 				     start, off, skb_headroom(skb), skb_headlen(skb));
5552 		return false;
5553 	}
5554 	skb->ip_summed = CHECKSUM_PARTIAL;
5555 	skb->csum_start = csum_start;
5556 	skb->csum_offset = off;
5557 	skb->transport_header = csum_start;
5558 	return true;
5559 }
5560 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5561 
5562 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5563 			       unsigned int max)
5564 {
5565 	if (skb_headlen(skb) >= len)
5566 		return 0;
5567 
5568 	/* If we need to pullup then pullup to the max, so we
5569 	 * won't need to do it again.
5570 	 */
5571 	if (max > skb->len)
5572 		max = skb->len;
5573 
5574 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5575 		return -ENOMEM;
5576 
5577 	if (skb_headlen(skb) < len)
5578 		return -EPROTO;
5579 
5580 	return 0;
5581 }
5582 
5583 #define MAX_TCP_HDR_LEN (15 * 4)
5584 
5585 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5586 				      typeof(IPPROTO_IP) proto,
5587 				      unsigned int off)
5588 {
5589 	int err;
5590 
5591 	switch (proto) {
5592 	case IPPROTO_TCP:
5593 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5594 					  off + MAX_TCP_HDR_LEN);
5595 		if (!err && !skb_partial_csum_set(skb, off,
5596 						  offsetof(struct tcphdr,
5597 							   check)))
5598 			err = -EPROTO;
5599 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5600 
5601 	case IPPROTO_UDP:
5602 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5603 					  off + sizeof(struct udphdr));
5604 		if (!err && !skb_partial_csum_set(skb, off,
5605 						  offsetof(struct udphdr,
5606 							   check)))
5607 			err = -EPROTO;
5608 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5609 	}
5610 
5611 	return ERR_PTR(-EPROTO);
5612 }
5613 
5614 /* This value should be large enough to cover a tagged ethernet header plus
5615  * maximally sized IP and TCP or UDP headers.
5616  */
5617 #define MAX_IP_HDR_LEN 128
5618 
5619 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5620 {
5621 	unsigned int off;
5622 	bool fragment;
5623 	__sum16 *csum;
5624 	int err;
5625 
5626 	fragment = false;
5627 
5628 	err = skb_maybe_pull_tail(skb,
5629 				  sizeof(struct iphdr),
5630 				  MAX_IP_HDR_LEN);
5631 	if (err < 0)
5632 		goto out;
5633 
5634 	if (ip_is_fragment(ip_hdr(skb)))
5635 		fragment = true;
5636 
5637 	off = ip_hdrlen(skb);
5638 
5639 	err = -EPROTO;
5640 
5641 	if (fragment)
5642 		goto out;
5643 
5644 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5645 	if (IS_ERR(csum))
5646 		return PTR_ERR(csum);
5647 
5648 	if (recalculate)
5649 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5650 					   ip_hdr(skb)->daddr,
5651 					   skb->len - off,
5652 					   ip_hdr(skb)->protocol, 0);
5653 	err = 0;
5654 
5655 out:
5656 	return err;
5657 }
5658 
5659 /* This value should be large enough to cover a tagged ethernet header plus
5660  * an IPv6 header, all options, and a maximal TCP or UDP header.
5661  */
5662 #define MAX_IPV6_HDR_LEN 256
5663 
5664 #define OPT_HDR(type, skb, off) \
5665 	(type *)(skb_network_header(skb) + (off))
5666 
5667 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5668 {
5669 	int err;
5670 	u8 nexthdr;
5671 	unsigned int off;
5672 	unsigned int len;
5673 	bool fragment;
5674 	bool done;
5675 	__sum16 *csum;
5676 
5677 	fragment = false;
5678 	done = false;
5679 
5680 	off = sizeof(struct ipv6hdr);
5681 
5682 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5683 	if (err < 0)
5684 		goto out;
5685 
5686 	nexthdr = ipv6_hdr(skb)->nexthdr;
5687 
5688 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5689 	while (off <= len && !done) {
5690 		switch (nexthdr) {
5691 		case IPPROTO_DSTOPTS:
5692 		case IPPROTO_HOPOPTS:
5693 		case IPPROTO_ROUTING: {
5694 			struct ipv6_opt_hdr *hp;
5695 
5696 			err = skb_maybe_pull_tail(skb,
5697 						  off +
5698 						  sizeof(struct ipv6_opt_hdr),
5699 						  MAX_IPV6_HDR_LEN);
5700 			if (err < 0)
5701 				goto out;
5702 
5703 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5704 			nexthdr = hp->nexthdr;
5705 			off += ipv6_optlen(hp);
5706 			break;
5707 		}
5708 		case IPPROTO_AH: {
5709 			struct ip_auth_hdr *hp;
5710 
5711 			err = skb_maybe_pull_tail(skb,
5712 						  off +
5713 						  sizeof(struct ip_auth_hdr),
5714 						  MAX_IPV6_HDR_LEN);
5715 			if (err < 0)
5716 				goto out;
5717 
5718 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5719 			nexthdr = hp->nexthdr;
5720 			off += ipv6_authlen(hp);
5721 			break;
5722 		}
5723 		case IPPROTO_FRAGMENT: {
5724 			struct frag_hdr *hp;
5725 
5726 			err = skb_maybe_pull_tail(skb,
5727 						  off +
5728 						  sizeof(struct frag_hdr),
5729 						  MAX_IPV6_HDR_LEN);
5730 			if (err < 0)
5731 				goto out;
5732 
5733 			hp = OPT_HDR(struct frag_hdr, skb, off);
5734 
5735 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5736 				fragment = true;
5737 
5738 			nexthdr = hp->nexthdr;
5739 			off += sizeof(struct frag_hdr);
5740 			break;
5741 		}
5742 		default:
5743 			done = true;
5744 			break;
5745 		}
5746 	}
5747 
5748 	err = -EPROTO;
5749 
5750 	if (!done || fragment)
5751 		goto out;
5752 
5753 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5754 	if (IS_ERR(csum))
5755 		return PTR_ERR(csum);
5756 
5757 	if (recalculate)
5758 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5759 					 &ipv6_hdr(skb)->daddr,
5760 					 skb->len - off, nexthdr, 0);
5761 	err = 0;
5762 
5763 out:
5764 	return err;
5765 }
5766 
5767 /**
5768  * skb_checksum_setup - set up partial checksum offset
5769  * @skb: the skb to set up
5770  * @recalculate: if true the pseudo-header checksum will be recalculated
5771  */
5772 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5773 {
5774 	int err;
5775 
5776 	switch (skb->protocol) {
5777 	case htons(ETH_P_IP):
5778 		err = skb_checksum_setup_ipv4(skb, recalculate);
5779 		break;
5780 
5781 	case htons(ETH_P_IPV6):
5782 		err = skb_checksum_setup_ipv6(skb, recalculate);
5783 		break;
5784 
5785 	default:
5786 		err = -EPROTO;
5787 		break;
5788 	}
5789 
5790 	return err;
5791 }
5792 EXPORT_SYMBOL(skb_checksum_setup);
5793 
5794 /**
5795  * skb_checksum_maybe_trim - maybe trims the given skb
5796  * @skb: the skb to check
5797  * @transport_len: the data length beyond the network header
5798  *
5799  * Checks whether the given skb has data beyond the given transport length.
5800  * If so, returns a cloned skb trimmed to this transport length.
5801  * Otherwise returns the provided skb. Returns NULL in error cases
5802  * (e.g. transport_len exceeds skb length or out-of-memory).
5803  *
5804  * Caller needs to set the skb transport header and free any returned skb if it
5805  * differs from the provided skb.
5806  */
5807 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5808 					       unsigned int transport_len)
5809 {
5810 	struct sk_buff *skb_chk;
5811 	unsigned int len = skb_transport_offset(skb) + transport_len;
5812 	int ret;
5813 
5814 	if (skb->len < len)
5815 		return NULL;
5816 	else if (skb->len == len)
5817 		return skb;
5818 
5819 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5820 	if (!skb_chk)
5821 		return NULL;
5822 
5823 	ret = pskb_trim_rcsum(skb_chk, len);
5824 	if (ret) {
5825 		kfree_skb(skb_chk);
5826 		return NULL;
5827 	}
5828 
5829 	return skb_chk;
5830 }
5831 
5832 /**
5833  * skb_checksum_trimmed - validate checksum of an skb
5834  * @skb: the skb to check
5835  * @transport_len: the data length beyond the network header
5836  * @skb_chkf: checksum function to use
5837  *
5838  * Applies the given checksum function skb_chkf to the provided skb.
5839  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5840  *
5841  * If the skb has data beyond the given transport length, then a
5842  * trimmed & cloned skb is checked and returned.
5843  *
5844  * Caller needs to set the skb transport header and free any returned skb if it
5845  * differs from the provided skb.
5846  */
5847 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5848 				     unsigned int transport_len,
5849 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5850 {
5851 	struct sk_buff *skb_chk;
5852 	unsigned int offset = skb_transport_offset(skb);
5853 	__sum16 ret;
5854 
5855 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5856 	if (!skb_chk)
5857 		goto err;
5858 
5859 	if (!pskb_may_pull(skb_chk, offset))
5860 		goto err;
5861 
5862 	skb_pull_rcsum(skb_chk, offset);
5863 	ret = skb_chkf(skb_chk);
5864 	skb_push_rcsum(skb_chk, offset);
5865 
5866 	if (ret)
5867 		goto err;
5868 
5869 	return skb_chk;
5870 
5871 err:
5872 	if (skb_chk && skb_chk != skb)
5873 		kfree_skb(skb_chk);
5874 
5875 	return NULL;
5876 
5877 }
5878 EXPORT_SYMBOL(skb_checksum_trimmed);
5879 
5880 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5881 {
5882 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5883 			     skb->dev->name);
5884 }
5885 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5886 
5887 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5888 {
5889 	if (head_stolen) {
5890 		skb_release_head_state(skb);
5891 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
5892 	} else {
5893 		__kfree_skb(skb);
5894 	}
5895 }
5896 EXPORT_SYMBOL(kfree_skb_partial);
5897 
5898 /**
5899  * skb_try_coalesce - try to merge skb to prior one
5900  * @to: prior buffer
5901  * @from: buffer to add
5902  * @fragstolen: pointer to boolean
5903  * @delta_truesize: how much more was allocated than was requested
5904  */
5905 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5906 		      bool *fragstolen, int *delta_truesize)
5907 {
5908 	struct skb_shared_info *to_shinfo, *from_shinfo;
5909 	int i, delta, len = from->len;
5910 
5911 	*fragstolen = false;
5912 
5913 	if (skb_cloned(to))
5914 		return false;
5915 
5916 	/* In general, avoid mixing page_pool and non-page_pool allocated
5917 	 * pages within the same SKB. In theory we could take full
5918 	 * references if @from is cloned and !@to->pp_recycle but its
5919 	 * tricky (due to potential race with the clone disappearing) and
5920 	 * rare, so not worth dealing with.
5921 	 */
5922 	if (to->pp_recycle != from->pp_recycle)
5923 		return false;
5924 
5925 	if (len <= skb_tailroom(to)) {
5926 		if (len)
5927 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5928 		*delta_truesize = 0;
5929 		return true;
5930 	}
5931 
5932 	to_shinfo = skb_shinfo(to);
5933 	from_shinfo = skb_shinfo(from);
5934 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5935 		return false;
5936 	if (skb_zcopy(to) || skb_zcopy(from))
5937 		return false;
5938 
5939 	if (skb_headlen(from) != 0) {
5940 		struct page *page;
5941 		unsigned int offset;
5942 
5943 		if (to_shinfo->nr_frags +
5944 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5945 			return false;
5946 
5947 		if (skb_head_is_locked(from))
5948 			return false;
5949 
5950 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5951 
5952 		page = virt_to_head_page(from->head);
5953 		offset = from->data - (unsigned char *)page_address(page);
5954 
5955 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5956 				   page, offset, skb_headlen(from));
5957 		*fragstolen = true;
5958 	} else {
5959 		if (to_shinfo->nr_frags +
5960 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5961 			return false;
5962 
5963 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5964 	}
5965 
5966 	WARN_ON_ONCE(delta < len);
5967 
5968 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5969 	       from_shinfo->frags,
5970 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5971 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5972 
5973 	if (!skb_cloned(from))
5974 		from_shinfo->nr_frags = 0;
5975 
5976 	/* if the skb is not cloned this does nothing
5977 	 * since we set nr_frags to 0.
5978 	 */
5979 	if (skb_pp_frag_ref(from)) {
5980 		for (i = 0; i < from_shinfo->nr_frags; i++)
5981 			__skb_frag_ref(&from_shinfo->frags[i]);
5982 	}
5983 
5984 	to->truesize += delta;
5985 	to->len += len;
5986 	to->data_len += len;
5987 
5988 	*delta_truesize = delta;
5989 	return true;
5990 }
5991 EXPORT_SYMBOL(skb_try_coalesce);
5992 
5993 /**
5994  * skb_scrub_packet - scrub an skb
5995  *
5996  * @skb: buffer to clean
5997  * @xnet: packet is crossing netns
5998  *
5999  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
6000  * into/from a tunnel. Some information have to be cleared during these
6001  * operations.
6002  * skb_scrub_packet can also be used to clean a skb before injecting it in
6003  * another namespace (@xnet == true). We have to clear all information in the
6004  * skb that could impact namespace isolation.
6005  */
6006 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6007 {
6008 	skb->pkt_type = PACKET_HOST;
6009 	skb->skb_iif = 0;
6010 	skb->ignore_df = 0;
6011 	skb_dst_drop(skb);
6012 	skb_ext_reset(skb);
6013 	nf_reset_ct(skb);
6014 	nf_reset_trace(skb);
6015 
6016 #ifdef CONFIG_NET_SWITCHDEV
6017 	skb->offload_fwd_mark = 0;
6018 	skb->offload_l3_fwd_mark = 0;
6019 #endif
6020 
6021 	if (!xnet)
6022 		return;
6023 
6024 	ipvs_reset(skb);
6025 	skb->mark = 0;
6026 	skb_clear_tstamp(skb);
6027 }
6028 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6029 
6030 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6031 {
6032 	int mac_len, meta_len;
6033 	void *meta;
6034 
6035 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
6036 		kfree_skb(skb);
6037 		return NULL;
6038 	}
6039 
6040 	mac_len = skb->data - skb_mac_header(skb);
6041 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6042 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6043 			mac_len - VLAN_HLEN - ETH_TLEN);
6044 	}
6045 
6046 	meta_len = skb_metadata_len(skb);
6047 	if (meta_len) {
6048 		meta = skb_metadata_end(skb) - meta_len;
6049 		memmove(meta + VLAN_HLEN, meta, meta_len);
6050 	}
6051 
6052 	skb->mac_header += VLAN_HLEN;
6053 	return skb;
6054 }
6055 
6056 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6057 {
6058 	struct vlan_hdr *vhdr;
6059 	u16 vlan_tci;
6060 
6061 	if (unlikely(skb_vlan_tag_present(skb))) {
6062 		/* vlan_tci is already set-up so leave this for another time */
6063 		return skb;
6064 	}
6065 
6066 	skb = skb_share_check(skb, GFP_ATOMIC);
6067 	if (unlikely(!skb))
6068 		goto err_free;
6069 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6070 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6071 		goto err_free;
6072 
6073 	vhdr = (struct vlan_hdr *)skb->data;
6074 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6075 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6076 
6077 	skb_pull_rcsum(skb, VLAN_HLEN);
6078 	vlan_set_encap_proto(skb, vhdr);
6079 
6080 	skb = skb_reorder_vlan_header(skb);
6081 	if (unlikely(!skb))
6082 		goto err_free;
6083 
6084 	skb_reset_network_header(skb);
6085 	if (!skb_transport_header_was_set(skb))
6086 		skb_reset_transport_header(skb);
6087 	skb_reset_mac_len(skb);
6088 
6089 	return skb;
6090 
6091 err_free:
6092 	kfree_skb(skb);
6093 	return NULL;
6094 }
6095 EXPORT_SYMBOL(skb_vlan_untag);
6096 
6097 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6098 {
6099 	if (!pskb_may_pull(skb, write_len))
6100 		return -ENOMEM;
6101 
6102 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6103 		return 0;
6104 
6105 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6106 }
6107 EXPORT_SYMBOL(skb_ensure_writable);
6108 
6109 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6110 {
6111 	int needed_headroom = dev->needed_headroom;
6112 	int needed_tailroom = dev->needed_tailroom;
6113 
6114 	/* For tail taggers, we need to pad short frames ourselves, to ensure
6115 	 * that the tail tag does not fail at its role of being at the end of
6116 	 * the packet, once the conduit interface pads the frame. Account for
6117 	 * that pad length here, and pad later.
6118 	 */
6119 	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6120 		needed_tailroom += ETH_ZLEN - skb->len;
6121 	/* skb_headroom() returns unsigned int... */
6122 	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6123 	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6124 
6125 	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6126 		/* No reallocation needed, yay! */
6127 		return 0;
6128 
6129 	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6130 				GFP_ATOMIC);
6131 }
6132 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6133 
6134 /* remove VLAN header from packet and update csum accordingly.
6135  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6136  */
6137 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6138 {
6139 	int offset = skb->data - skb_mac_header(skb);
6140 	int err;
6141 
6142 	if (WARN_ONCE(offset,
6143 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6144 		      offset)) {
6145 		return -EINVAL;
6146 	}
6147 
6148 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6149 	if (unlikely(err))
6150 		return err;
6151 
6152 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6153 
6154 	vlan_remove_tag(skb, vlan_tci);
6155 
6156 	skb->mac_header += VLAN_HLEN;
6157 
6158 	if (skb_network_offset(skb) < ETH_HLEN)
6159 		skb_set_network_header(skb, ETH_HLEN);
6160 
6161 	skb_reset_mac_len(skb);
6162 
6163 	return err;
6164 }
6165 EXPORT_SYMBOL(__skb_vlan_pop);
6166 
6167 /* Pop a vlan tag either from hwaccel or from payload.
6168  * Expects skb->data at mac header.
6169  */
6170 int skb_vlan_pop(struct sk_buff *skb)
6171 {
6172 	u16 vlan_tci;
6173 	__be16 vlan_proto;
6174 	int err;
6175 
6176 	if (likely(skb_vlan_tag_present(skb))) {
6177 		__vlan_hwaccel_clear_tag(skb);
6178 	} else {
6179 		if (unlikely(!eth_type_vlan(skb->protocol)))
6180 			return 0;
6181 
6182 		err = __skb_vlan_pop(skb, &vlan_tci);
6183 		if (err)
6184 			return err;
6185 	}
6186 	/* move next vlan tag to hw accel tag */
6187 	if (likely(!eth_type_vlan(skb->protocol)))
6188 		return 0;
6189 
6190 	vlan_proto = skb->protocol;
6191 	err = __skb_vlan_pop(skb, &vlan_tci);
6192 	if (unlikely(err))
6193 		return err;
6194 
6195 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6196 	return 0;
6197 }
6198 EXPORT_SYMBOL(skb_vlan_pop);
6199 
6200 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6201  * Expects skb->data at mac header.
6202  */
6203 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6204 {
6205 	if (skb_vlan_tag_present(skb)) {
6206 		int offset = skb->data - skb_mac_header(skb);
6207 		int err;
6208 
6209 		if (WARN_ONCE(offset,
6210 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6211 			      offset)) {
6212 			return -EINVAL;
6213 		}
6214 
6215 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6216 					skb_vlan_tag_get(skb));
6217 		if (err)
6218 			return err;
6219 
6220 		skb->protocol = skb->vlan_proto;
6221 		skb->mac_len += VLAN_HLEN;
6222 
6223 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6224 	}
6225 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6226 	return 0;
6227 }
6228 EXPORT_SYMBOL(skb_vlan_push);
6229 
6230 /**
6231  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6232  *
6233  * @skb: Socket buffer to modify
6234  *
6235  * Drop the Ethernet header of @skb.
6236  *
6237  * Expects that skb->data points to the mac header and that no VLAN tags are
6238  * present.
6239  *
6240  * Returns 0 on success, -errno otherwise.
6241  */
6242 int skb_eth_pop(struct sk_buff *skb)
6243 {
6244 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6245 	    skb_network_offset(skb) < ETH_HLEN)
6246 		return -EPROTO;
6247 
6248 	skb_pull_rcsum(skb, ETH_HLEN);
6249 	skb_reset_mac_header(skb);
6250 	skb_reset_mac_len(skb);
6251 
6252 	return 0;
6253 }
6254 EXPORT_SYMBOL(skb_eth_pop);
6255 
6256 /**
6257  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6258  *
6259  * @skb: Socket buffer to modify
6260  * @dst: Destination MAC address of the new header
6261  * @src: Source MAC address of the new header
6262  *
6263  * Prepend @skb with a new Ethernet header.
6264  *
6265  * Expects that skb->data points to the mac header, which must be empty.
6266  *
6267  * Returns 0 on success, -errno otherwise.
6268  */
6269 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6270 		 const unsigned char *src)
6271 {
6272 	struct ethhdr *eth;
6273 	int err;
6274 
6275 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6276 		return -EPROTO;
6277 
6278 	err = skb_cow_head(skb, sizeof(*eth));
6279 	if (err < 0)
6280 		return err;
6281 
6282 	skb_push(skb, sizeof(*eth));
6283 	skb_reset_mac_header(skb);
6284 	skb_reset_mac_len(skb);
6285 
6286 	eth = eth_hdr(skb);
6287 	ether_addr_copy(eth->h_dest, dst);
6288 	ether_addr_copy(eth->h_source, src);
6289 	eth->h_proto = skb->protocol;
6290 
6291 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6292 
6293 	return 0;
6294 }
6295 EXPORT_SYMBOL(skb_eth_push);
6296 
6297 /* Update the ethertype of hdr and the skb csum value if required. */
6298 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6299 			     __be16 ethertype)
6300 {
6301 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6302 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6303 
6304 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6305 	}
6306 
6307 	hdr->h_proto = ethertype;
6308 }
6309 
6310 /**
6311  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6312  *                   the packet
6313  *
6314  * @skb: buffer
6315  * @mpls_lse: MPLS label stack entry to push
6316  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6317  * @mac_len: length of the MAC header
6318  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6319  *            ethernet
6320  *
6321  * Expects skb->data at mac header.
6322  *
6323  * Returns 0 on success, -errno otherwise.
6324  */
6325 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6326 		  int mac_len, bool ethernet)
6327 {
6328 	struct mpls_shim_hdr *lse;
6329 	int err;
6330 
6331 	if (unlikely(!eth_p_mpls(mpls_proto)))
6332 		return -EINVAL;
6333 
6334 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6335 	if (skb->encapsulation)
6336 		return -EINVAL;
6337 
6338 	err = skb_cow_head(skb, MPLS_HLEN);
6339 	if (unlikely(err))
6340 		return err;
6341 
6342 	if (!skb->inner_protocol) {
6343 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6344 		skb_set_inner_protocol(skb, skb->protocol);
6345 	}
6346 
6347 	skb_push(skb, MPLS_HLEN);
6348 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6349 		mac_len);
6350 	skb_reset_mac_header(skb);
6351 	skb_set_network_header(skb, mac_len);
6352 	skb_reset_mac_len(skb);
6353 
6354 	lse = mpls_hdr(skb);
6355 	lse->label_stack_entry = mpls_lse;
6356 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6357 
6358 	if (ethernet && mac_len >= ETH_HLEN)
6359 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6360 	skb->protocol = mpls_proto;
6361 
6362 	return 0;
6363 }
6364 EXPORT_SYMBOL_GPL(skb_mpls_push);
6365 
6366 /**
6367  * skb_mpls_pop() - pop the outermost MPLS header
6368  *
6369  * @skb: buffer
6370  * @next_proto: ethertype of header after popped MPLS header
6371  * @mac_len: length of the MAC header
6372  * @ethernet: flag to indicate if the packet is ethernet
6373  *
6374  * Expects skb->data at mac header.
6375  *
6376  * Returns 0 on success, -errno otherwise.
6377  */
6378 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6379 		 bool ethernet)
6380 {
6381 	int err;
6382 
6383 	if (unlikely(!eth_p_mpls(skb->protocol)))
6384 		return 0;
6385 
6386 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6387 	if (unlikely(err))
6388 		return err;
6389 
6390 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6391 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6392 		mac_len);
6393 
6394 	__skb_pull(skb, MPLS_HLEN);
6395 	skb_reset_mac_header(skb);
6396 	skb_set_network_header(skb, mac_len);
6397 
6398 	if (ethernet && mac_len >= ETH_HLEN) {
6399 		struct ethhdr *hdr;
6400 
6401 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6402 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6403 		skb_mod_eth_type(skb, hdr, next_proto);
6404 	}
6405 	skb->protocol = next_proto;
6406 
6407 	return 0;
6408 }
6409 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6410 
6411 /**
6412  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6413  *
6414  * @skb: buffer
6415  * @mpls_lse: new MPLS label stack entry to update to
6416  *
6417  * Expects skb->data at mac header.
6418  *
6419  * Returns 0 on success, -errno otherwise.
6420  */
6421 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6422 {
6423 	int err;
6424 
6425 	if (unlikely(!eth_p_mpls(skb->protocol)))
6426 		return -EINVAL;
6427 
6428 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6429 	if (unlikely(err))
6430 		return err;
6431 
6432 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6433 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6434 
6435 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6436 	}
6437 
6438 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6439 
6440 	return 0;
6441 }
6442 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6443 
6444 /**
6445  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6446  *
6447  * @skb: buffer
6448  *
6449  * Expects skb->data at mac header.
6450  *
6451  * Returns 0 on success, -errno otherwise.
6452  */
6453 int skb_mpls_dec_ttl(struct sk_buff *skb)
6454 {
6455 	u32 lse;
6456 	u8 ttl;
6457 
6458 	if (unlikely(!eth_p_mpls(skb->protocol)))
6459 		return -EINVAL;
6460 
6461 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6462 		return -ENOMEM;
6463 
6464 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6465 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6466 	if (!--ttl)
6467 		return -EINVAL;
6468 
6469 	lse &= ~MPLS_LS_TTL_MASK;
6470 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6471 
6472 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6473 }
6474 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6475 
6476 /**
6477  * alloc_skb_with_frags - allocate skb with page frags
6478  *
6479  * @header_len: size of linear part
6480  * @data_len: needed length in frags
6481  * @order: max page order desired.
6482  * @errcode: pointer to error code if any
6483  * @gfp_mask: allocation mask
6484  *
6485  * This can be used to allocate a paged skb, given a maximal order for frags.
6486  */
6487 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6488 				     unsigned long data_len,
6489 				     int order,
6490 				     int *errcode,
6491 				     gfp_t gfp_mask)
6492 {
6493 	unsigned long chunk;
6494 	struct sk_buff *skb;
6495 	struct page *page;
6496 	int nr_frags = 0;
6497 
6498 	*errcode = -EMSGSIZE;
6499 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6500 		return NULL;
6501 
6502 	*errcode = -ENOBUFS;
6503 	skb = alloc_skb(header_len, gfp_mask);
6504 	if (!skb)
6505 		return NULL;
6506 
6507 	while (data_len) {
6508 		if (nr_frags == MAX_SKB_FRAGS - 1)
6509 			goto failure;
6510 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6511 			order--;
6512 
6513 		if (order) {
6514 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6515 					   __GFP_COMP |
6516 					   __GFP_NOWARN,
6517 					   order);
6518 			if (!page) {
6519 				order--;
6520 				continue;
6521 			}
6522 		} else {
6523 			page = alloc_page(gfp_mask);
6524 			if (!page)
6525 				goto failure;
6526 		}
6527 		chunk = min_t(unsigned long, data_len,
6528 			      PAGE_SIZE << order);
6529 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6530 		nr_frags++;
6531 		skb->truesize += (PAGE_SIZE << order);
6532 		data_len -= chunk;
6533 	}
6534 	return skb;
6535 
6536 failure:
6537 	kfree_skb(skb);
6538 	return NULL;
6539 }
6540 EXPORT_SYMBOL(alloc_skb_with_frags);
6541 
6542 /* carve out the first off bytes from skb when off < headlen */
6543 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6544 				    const int headlen, gfp_t gfp_mask)
6545 {
6546 	int i;
6547 	unsigned int size = skb_end_offset(skb);
6548 	int new_hlen = headlen - off;
6549 	u8 *data;
6550 
6551 	if (skb_pfmemalloc(skb))
6552 		gfp_mask |= __GFP_MEMALLOC;
6553 
6554 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6555 	if (!data)
6556 		return -ENOMEM;
6557 	size = SKB_WITH_OVERHEAD(size);
6558 
6559 	/* Copy real data, and all frags */
6560 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6561 	skb->len -= off;
6562 
6563 	memcpy((struct skb_shared_info *)(data + size),
6564 	       skb_shinfo(skb),
6565 	       offsetof(struct skb_shared_info,
6566 			frags[skb_shinfo(skb)->nr_frags]));
6567 	if (skb_cloned(skb)) {
6568 		/* drop the old head gracefully */
6569 		if (skb_orphan_frags(skb, gfp_mask)) {
6570 			skb_kfree_head(data, size);
6571 			return -ENOMEM;
6572 		}
6573 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6574 			skb_frag_ref(skb, i);
6575 		if (skb_has_frag_list(skb))
6576 			skb_clone_fraglist(skb);
6577 		skb_release_data(skb, SKB_CONSUMED, false);
6578 	} else {
6579 		/* we can reuse existing recount- all we did was
6580 		 * relocate values
6581 		 */
6582 		skb_free_head(skb, false);
6583 	}
6584 
6585 	skb->head = data;
6586 	skb->data = data;
6587 	skb->head_frag = 0;
6588 	skb_set_end_offset(skb, size);
6589 	skb_set_tail_pointer(skb, skb_headlen(skb));
6590 	skb_headers_offset_update(skb, 0);
6591 	skb->cloned = 0;
6592 	skb->hdr_len = 0;
6593 	skb->nohdr = 0;
6594 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6595 
6596 	return 0;
6597 }
6598 
6599 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6600 
6601 /* carve out the first eat bytes from skb's frag_list. May recurse into
6602  * pskb_carve()
6603  */
6604 static int pskb_carve_frag_list(struct sk_buff *skb,
6605 				struct skb_shared_info *shinfo, int eat,
6606 				gfp_t gfp_mask)
6607 {
6608 	struct sk_buff *list = shinfo->frag_list;
6609 	struct sk_buff *clone = NULL;
6610 	struct sk_buff *insp = NULL;
6611 
6612 	do {
6613 		if (!list) {
6614 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6615 			return -EFAULT;
6616 		}
6617 		if (list->len <= eat) {
6618 			/* Eaten as whole. */
6619 			eat -= list->len;
6620 			list = list->next;
6621 			insp = list;
6622 		} else {
6623 			/* Eaten partially. */
6624 			if (skb_shared(list)) {
6625 				clone = skb_clone(list, gfp_mask);
6626 				if (!clone)
6627 					return -ENOMEM;
6628 				insp = list->next;
6629 				list = clone;
6630 			} else {
6631 				/* This may be pulled without problems. */
6632 				insp = list;
6633 			}
6634 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6635 				kfree_skb(clone);
6636 				return -ENOMEM;
6637 			}
6638 			break;
6639 		}
6640 	} while (eat);
6641 
6642 	/* Free pulled out fragments. */
6643 	while ((list = shinfo->frag_list) != insp) {
6644 		shinfo->frag_list = list->next;
6645 		consume_skb(list);
6646 	}
6647 	/* And insert new clone at head. */
6648 	if (clone) {
6649 		clone->next = list;
6650 		shinfo->frag_list = clone;
6651 	}
6652 	return 0;
6653 }
6654 
6655 /* carve off first len bytes from skb. Split line (off) is in the
6656  * non-linear part of skb
6657  */
6658 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6659 				       int pos, gfp_t gfp_mask)
6660 {
6661 	int i, k = 0;
6662 	unsigned int size = skb_end_offset(skb);
6663 	u8 *data;
6664 	const int nfrags = skb_shinfo(skb)->nr_frags;
6665 	struct skb_shared_info *shinfo;
6666 
6667 	if (skb_pfmemalloc(skb))
6668 		gfp_mask |= __GFP_MEMALLOC;
6669 
6670 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6671 	if (!data)
6672 		return -ENOMEM;
6673 	size = SKB_WITH_OVERHEAD(size);
6674 
6675 	memcpy((struct skb_shared_info *)(data + size),
6676 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6677 	if (skb_orphan_frags(skb, gfp_mask)) {
6678 		skb_kfree_head(data, size);
6679 		return -ENOMEM;
6680 	}
6681 	shinfo = (struct skb_shared_info *)(data + size);
6682 	for (i = 0; i < nfrags; i++) {
6683 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6684 
6685 		if (pos + fsize > off) {
6686 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6687 
6688 			if (pos < off) {
6689 				/* Split frag.
6690 				 * We have two variants in this case:
6691 				 * 1. Move all the frag to the second
6692 				 *    part, if it is possible. F.e.
6693 				 *    this approach is mandatory for TUX,
6694 				 *    where splitting is expensive.
6695 				 * 2. Split is accurately. We make this.
6696 				 */
6697 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6698 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6699 			}
6700 			skb_frag_ref(skb, i);
6701 			k++;
6702 		}
6703 		pos += fsize;
6704 	}
6705 	shinfo->nr_frags = k;
6706 	if (skb_has_frag_list(skb))
6707 		skb_clone_fraglist(skb);
6708 
6709 	/* split line is in frag list */
6710 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6711 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6712 		if (skb_has_frag_list(skb))
6713 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6714 		skb_kfree_head(data, size);
6715 		return -ENOMEM;
6716 	}
6717 	skb_release_data(skb, SKB_CONSUMED, false);
6718 
6719 	skb->head = data;
6720 	skb->head_frag = 0;
6721 	skb->data = data;
6722 	skb_set_end_offset(skb, size);
6723 	skb_reset_tail_pointer(skb);
6724 	skb_headers_offset_update(skb, 0);
6725 	skb->cloned   = 0;
6726 	skb->hdr_len  = 0;
6727 	skb->nohdr    = 0;
6728 	skb->len -= off;
6729 	skb->data_len = skb->len;
6730 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6731 	return 0;
6732 }
6733 
6734 /* remove len bytes from the beginning of the skb */
6735 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6736 {
6737 	int headlen = skb_headlen(skb);
6738 
6739 	if (len < headlen)
6740 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6741 	else
6742 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6743 }
6744 
6745 /* Extract to_copy bytes starting at off from skb, and return this in
6746  * a new skb
6747  */
6748 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6749 			     int to_copy, gfp_t gfp)
6750 {
6751 	struct sk_buff  *clone = skb_clone(skb, gfp);
6752 
6753 	if (!clone)
6754 		return NULL;
6755 
6756 	if (pskb_carve(clone, off, gfp) < 0 ||
6757 	    pskb_trim(clone, to_copy)) {
6758 		kfree_skb(clone);
6759 		return NULL;
6760 	}
6761 	return clone;
6762 }
6763 EXPORT_SYMBOL(pskb_extract);
6764 
6765 /**
6766  * skb_condense - try to get rid of fragments/frag_list if possible
6767  * @skb: buffer
6768  *
6769  * Can be used to save memory before skb is added to a busy queue.
6770  * If packet has bytes in frags and enough tail room in skb->head,
6771  * pull all of them, so that we can free the frags right now and adjust
6772  * truesize.
6773  * Notes:
6774  *	We do not reallocate skb->head thus can not fail.
6775  *	Caller must re-evaluate skb->truesize if needed.
6776  */
6777 void skb_condense(struct sk_buff *skb)
6778 {
6779 	if (skb->data_len) {
6780 		if (skb->data_len > skb->end - skb->tail ||
6781 		    skb_cloned(skb))
6782 			return;
6783 
6784 		/* Nice, we can free page frag(s) right now */
6785 		__pskb_pull_tail(skb, skb->data_len);
6786 	}
6787 	/* At this point, skb->truesize might be over estimated,
6788 	 * because skb had a fragment, and fragments do not tell
6789 	 * their truesize.
6790 	 * When we pulled its content into skb->head, fragment
6791 	 * was freed, but __pskb_pull_tail() could not possibly
6792 	 * adjust skb->truesize, not knowing the frag truesize.
6793 	 */
6794 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6795 }
6796 EXPORT_SYMBOL(skb_condense);
6797 
6798 #ifdef CONFIG_SKB_EXTENSIONS
6799 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6800 {
6801 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6802 }
6803 
6804 /**
6805  * __skb_ext_alloc - allocate a new skb extensions storage
6806  *
6807  * @flags: See kmalloc().
6808  *
6809  * Returns the newly allocated pointer. The pointer can later attached to a
6810  * skb via __skb_ext_set().
6811  * Note: caller must handle the skb_ext as an opaque data.
6812  */
6813 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6814 {
6815 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6816 
6817 	if (new) {
6818 		memset(new->offset, 0, sizeof(new->offset));
6819 		refcount_set(&new->refcnt, 1);
6820 	}
6821 
6822 	return new;
6823 }
6824 
6825 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6826 					 unsigned int old_active)
6827 {
6828 	struct skb_ext *new;
6829 
6830 	if (refcount_read(&old->refcnt) == 1)
6831 		return old;
6832 
6833 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6834 	if (!new)
6835 		return NULL;
6836 
6837 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6838 	refcount_set(&new->refcnt, 1);
6839 
6840 #ifdef CONFIG_XFRM
6841 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6842 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6843 		unsigned int i;
6844 
6845 		for (i = 0; i < sp->len; i++)
6846 			xfrm_state_hold(sp->xvec[i]);
6847 	}
6848 #endif
6849 #ifdef CONFIG_MCTP_FLOWS
6850 	if (old_active & (1 << SKB_EXT_MCTP)) {
6851 		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6852 
6853 		if (flow->key)
6854 			refcount_inc(&flow->key->refs);
6855 	}
6856 #endif
6857 	__skb_ext_put(old);
6858 	return new;
6859 }
6860 
6861 /**
6862  * __skb_ext_set - attach the specified extension storage to this skb
6863  * @skb: buffer
6864  * @id: extension id
6865  * @ext: extension storage previously allocated via __skb_ext_alloc()
6866  *
6867  * Existing extensions, if any, are cleared.
6868  *
6869  * Returns the pointer to the extension.
6870  */
6871 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6872 		    struct skb_ext *ext)
6873 {
6874 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6875 
6876 	skb_ext_put(skb);
6877 	newlen = newoff + skb_ext_type_len[id];
6878 	ext->chunks = newlen;
6879 	ext->offset[id] = newoff;
6880 	skb->extensions = ext;
6881 	skb->active_extensions = 1 << id;
6882 	return skb_ext_get_ptr(ext, id);
6883 }
6884 
6885 /**
6886  * skb_ext_add - allocate space for given extension, COW if needed
6887  * @skb: buffer
6888  * @id: extension to allocate space for
6889  *
6890  * Allocates enough space for the given extension.
6891  * If the extension is already present, a pointer to that extension
6892  * is returned.
6893  *
6894  * If the skb was cloned, COW applies and the returned memory can be
6895  * modified without changing the extension space of clones buffers.
6896  *
6897  * Returns pointer to the extension or NULL on allocation failure.
6898  */
6899 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6900 {
6901 	struct skb_ext *new, *old = NULL;
6902 	unsigned int newlen, newoff;
6903 
6904 	if (skb->active_extensions) {
6905 		old = skb->extensions;
6906 
6907 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6908 		if (!new)
6909 			return NULL;
6910 
6911 		if (__skb_ext_exist(new, id))
6912 			goto set_active;
6913 
6914 		newoff = new->chunks;
6915 	} else {
6916 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6917 
6918 		new = __skb_ext_alloc(GFP_ATOMIC);
6919 		if (!new)
6920 			return NULL;
6921 	}
6922 
6923 	newlen = newoff + skb_ext_type_len[id];
6924 	new->chunks = newlen;
6925 	new->offset[id] = newoff;
6926 set_active:
6927 	skb->slow_gro = 1;
6928 	skb->extensions = new;
6929 	skb->active_extensions |= 1 << id;
6930 	return skb_ext_get_ptr(new, id);
6931 }
6932 EXPORT_SYMBOL(skb_ext_add);
6933 
6934 #ifdef CONFIG_XFRM
6935 static void skb_ext_put_sp(struct sec_path *sp)
6936 {
6937 	unsigned int i;
6938 
6939 	for (i = 0; i < sp->len; i++)
6940 		xfrm_state_put(sp->xvec[i]);
6941 }
6942 #endif
6943 
6944 #ifdef CONFIG_MCTP_FLOWS
6945 static void skb_ext_put_mctp(struct mctp_flow *flow)
6946 {
6947 	if (flow->key)
6948 		mctp_key_unref(flow->key);
6949 }
6950 #endif
6951 
6952 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6953 {
6954 	struct skb_ext *ext = skb->extensions;
6955 
6956 	skb->active_extensions &= ~(1 << id);
6957 	if (skb->active_extensions == 0) {
6958 		skb->extensions = NULL;
6959 		__skb_ext_put(ext);
6960 #ifdef CONFIG_XFRM
6961 	} else if (id == SKB_EXT_SEC_PATH &&
6962 		   refcount_read(&ext->refcnt) == 1) {
6963 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6964 
6965 		skb_ext_put_sp(sp);
6966 		sp->len = 0;
6967 #endif
6968 	}
6969 }
6970 EXPORT_SYMBOL(__skb_ext_del);
6971 
6972 void __skb_ext_put(struct skb_ext *ext)
6973 {
6974 	/* If this is last clone, nothing can increment
6975 	 * it after check passes.  Avoids one atomic op.
6976 	 */
6977 	if (refcount_read(&ext->refcnt) == 1)
6978 		goto free_now;
6979 
6980 	if (!refcount_dec_and_test(&ext->refcnt))
6981 		return;
6982 free_now:
6983 #ifdef CONFIG_XFRM
6984 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6985 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6986 #endif
6987 #ifdef CONFIG_MCTP_FLOWS
6988 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6989 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6990 #endif
6991 
6992 	kmem_cache_free(skbuff_ext_cache, ext);
6993 }
6994 EXPORT_SYMBOL(__skb_ext_put);
6995 #endif /* CONFIG_SKB_EXTENSIONS */
6996 
6997 /**
6998  * skb_attempt_defer_free - queue skb for remote freeing
6999  * @skb: buffer
7000  *
7001  * Put @skb in a per-cpu list, using the cpu which
7002  * allocated the skb/pages to reduce false sharing
7003  * and memory zone spinlock contention.
7004  */
7005 void skb_attempt_defer_free(struct sk_buff *skb)
7006 {
7007 	int cpu = skb->alloc_cpu;
7008 	struct softnet_data *sd;
7009 	unsigned int defer_max;
7010 	bool kick;
7011 
7012 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7013 	    !cpu_online(cpu) ||
7014 	    cpu == raw_smp_processor_id()) {
7015 nodefer:	__kfree_skb(skb);
7016 		return;
7017 	}
7018 
7019 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7020 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7021 
7022 	sd = &per_cpu(softnet_data, cpu);
7023 	defer_max = READ_ONCE(sysctl_skb_defer_max);
7024 	if (READ_ONCE(sd->defer_count) >= defer_max)
7025 		goto nodefer;
7026 
7027 	spin_lock_bh(&sd->defer_lock);
7028 	/* Send an IPI every time queue reaches half capacity. */
7029 	kick = sd->defer_count == (defer_max >> 1);
7030 	/* Paired with the READ_ONCE() few lines above */
7031 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7032 
7033 	skb->next = sd->defer_list;
7034 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
7035 	WRITE_ONCE(sd->defer_list, skb);
7036 	spin_unlock_bh(&sd->defer_lock);
7037 
7038 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7039 	 * if we are unlucky enough (this seems very unlikely).
7040 	 */
7041 	if (unlikely(kick))
7042 		kick_defer_list_purge(sd, cpu);
7043 }
7044 
7045 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7046 				 size_t offset, size_t len)
7047 {
7048 	const char *kaddr;
7049 	__wsum csum;
7050 
7051 	kaddr = kmap_local_page(page);
7052 	csum = csum_partial(kaddr + offset, len, 0);
7053 	kunmap_local(kaddr);
7054 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7055 }
7056 
7057 /**
7058  * skb_splice_from_iter - Splice (or copy) pages to skbuff
7059  * @skb: The buffer to add pages to
7060  * @iter: Iterator representing the pages to be added
7061  * @maxsize: Maximum amount of pages to be added
7062  * @gfp: Allocation flags
7063  *
7064  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7065  * extracts pages from an iterator and adds them to the socket buffer if
7066  * possible, copying them to fragments if not possible (such as if they're slab
7067  * pages).
7068  *
7069  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7070  * insufficient space in the buffer to transfer anything.
7071  */
7072 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7073 			     ssize_t maxsize, gfp_t gfp)
7074 {
7075 	size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
7076 	struct page *pages[8], **ppages = pages;
7077 	ssize_t spliced = 0, ret = 0;
7078 	unsigned int i;
7079 
7080 	while (iter->count > 0) {
7081 		ssize_t space, nr, len;
7082 		size_t off;
7083 
7084 		ret = -EMSGSIZE;
7085 		space = frag_limit - skb_shinfo(skb)->nr_frags;
7086 		if (space < 0)
7087 			break;
7088 
7089 		/* We might be able to coalesce without increasing nr_frags */
7090 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7091 
7092 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7093 		if (len <= 0) {
7094 			ret = len ?: -EIO;
7095 			break;
7096 		}
7097 
7098 		i = 0;
7099 		do {
7100 			struct page *page = pages[i++];
7101 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7102 
7103 			ret = -EIO;
7104 			if (WARN_ON_ONCE(!sendpage_ok(page)))
7105 				goto out;
7106 
7107 			ret = skb_append_pagefrags(skb, page, off, part,
7108 						   frag_limit);
7109 			if (ret < 0) {
7110 				iov_iter_revert(iter, len);
7111 				goto out;
7112 			}
7113 
7114 			if (skb->ip_summed == CHECKSUM_NONE)
7115 				skb_splice_csum_page(skb, page, off, part);
7116 
7117 			off = 0;
7118 			spliced += part;
7119 			maxsize -= part;
7120 			len -= part;
7121 		} while (len > 0);
7122 
7123 		if (maxsize <= 0)
7124 			break;
7125 	}
7126 
7127 out:
7128 	skb_len_add(skb, spliced);
7129 	return spliced ?: ret;
7130 }
7131 EXPORT_SYMBOL(skb_splice_from_iter);
7132 
7133 static __always_inline
7134 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7135 			     size_t len, void *to, void *priv2)
7136 {
7137 	__wsum *csum = priv2;
7138 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7139 
7140 	*csum = csum_block_add(*csum, next, progress);
7141 	return 0;
7142 }
7143 
7144 static __always_inline
7145 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7146 				size_t len, void *to, void *priv2)
7147 {
7148 	__wsum next, *csum = priv2;
7149 
7150 	next = csum_and_copy_from_user(iter_from, to + progress, len);
7151 	*csum = csum_block_add(*csum, next, progress);
7152 	return next ? 0 : len;
7153 }
7154 
7155 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7156 				  __wsum *csum, struct iov_iter *i)
7157 {
7158 	size_t copied;
7159 
7160 	if (WARN_ON_ONCE(!i->data_source))
7161 		return false;
7162 	copied = iterate_and_advance2(i, bytes, addr, csum,
7163 				      copy_from_user_iter_csum,
7164 				      memcpy_from_iter_csum);
7165 	if (likely(copied == bytes))
7166 		return true;
7167 	iov_iter_revert(i, copied);
7168 	return false;
7169 }
7170 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7171