1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/bitfield.h> 62 #include <linux/if_vlan.h> 63 #include <linux/mpls.h> 64 #include <linux/kcov.h> 65 #include <linux/iov_iter.h> 66 67 #include <net/protocol.h> 68 #include <net/dst.h> 69 #include <net/sock.h> 70 #include <net/checksum.h> 71 #include <net/gso.h> 72 #include <net/hotdata.h> 73 #include <net/ip6_checksum.h> 74 #include <net/xfrm.h> 75 #include <net/mpls.h> 76 #include <net/mptcp.h> 77 #include <net/mctp.h> 78 #include <net/page_pool/helpers.h> 79 #include <net/dropreason.h> 80 81 #include <linux/uaccess.h> 82 #include <trace/events/skb.h> 83 #include <linux/highmem.h> 84 #include <linux/capability.h> 85 #include <linux/user_namespace.h> 86 #include <linux/indirect_call_wrapper.h> 87 #include <linux/textsearch.h> 88 89 #include "dev.h" 90 #include "sock_destructor.h" 91 92 #ifdef CONFIG_SKB_EXTENSIONS 93 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 94 #endif 95 96 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER) 97 98 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 99 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 100 * size, and we can differentiate heads from skb_small_head_cache 101 * vs system slabs by looking at their size (skb_end_offset()). 102 */ 103 #define SKB_SMALL_HEAD_CACHE_SIZE \ 104 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 105 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 106 SKB_SMALL_HEAD_SIZE) 107 108 #define SKB_SMALL_HEAD_HEADROOM \ 109 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 110 111 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 112 EXPORT_SYMBOL(sysctl_max_skb_frags); 113 114 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use 115 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the 116 * netmem is a page. 117 */ 118 static_assert(offsetof(struct bio_vec, bv_page) == 119 offsetof(skb_frag_t, netmem)); 120 static_assert(sizeof_field(struct bio_vec, bv_page) == 121 sizeof_field(skb_frag_t, netmem)); 122 123 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len)); 124 static_assert(sizeof_field(struct bio_vec, bv_len) == 125 sizeof_field(skb_frag_t, len)); 126 127 static_assert(offsetof(struct bio_vec, bv_offset) == 128 offsetof(skb_frag_t, offset)); 129 static_assert(sizeof_field(struct bio_vec, bv_offset) == 130 sizeof_field(skb_frag_t, offset)); 131 132 #undef FN 133 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 134 static const char * const drop_reasons[] = { 135 [SKB_CONSUMED] = "CONSUMED", 136 DEFINE_DROP_REASON(FN, FN) 137 }; 138 139 static const struct drop_reason_list drop_reasons_core = { 140 .reasons = drop_reasons, 141 .n_reasons = ARRAY_SIZE(drop_reasons), 142 }; 143 144 const struct drop_reason_list __rcu * 145 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 146 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 147 }; 148 EXPORT_SYMBOL(drop_reasons_by_subsys); 149 150 /** 151 * drop_reasons_register_subsys - register another drop reason subsystem 152 * @subsys: the subsystem to register, must not be the core 153 * @list: the list of drop reasons within the subsystem, must point to 154 * a statically initialized list 155 */ 156 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 157 const struct drop_reason_list *list) 158 { 159 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 160 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 161 "invalid subsystem %d\n", subsys)) 162 return; 163 164 /* must point to statically allocated memory, so INIT is OK */ 165 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 166 } 167 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 168 169 /** 170 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 171 * @subsys: the subsystem to remove, must not be the core 172 * 173 * Note: This will synchronize_rcu() to ensure no users when it returns. 174 */ 175 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 176 { 177 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 178 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 179 "invalid subsystem %d\n", subsys)) 180 return; 181 182 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 183 184 synchronize_rcu(); 185 } 186 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 187 188 /** 189 * skb_panic - private function for out-of-line support 190 * @skb: buffer 191 * @sz: size 192 * @addr: address 193 * @msg: skb_over_panic or skb_under_panic 194 * 195 * Out-of-line support for skb_put() and skb_push(). 196 * Called via the wrapper skb_over_panic() or skb_under_panic(). 197 * Keep out of line to prevent kernel bloat. 198 * __builtin_return_address is not used because it is not always reliable. 199 */ 200 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 201 const char msg[]) 202 { 203 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 204 msg, addr, skb->len, sz, skb->head, skb->data, 205 (unsigned long)skb->tail, (unsigned long)skb->end, 206 skb->dev ? skb->dev->name : "<NULL>"); 207 BUG(); 208 } 209 210 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 211 { 212 skb_panic(skb, sz, addr, __func__); 213 } 214 215 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 216 { 217 skb_panic(skb, sz, addr, __func__); 218 } 219 220 #define NAPI_SKB_CACHE_SIZE 64 221 #define NAPI_SKB_CACHE_BULK 16 222 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 223 224 #if PAGE_SIZE == SZ_4K 225 226 #define NAPI_HAS_SMALL_PAGE_FRAG 1 227 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc) 228 229 /* specialized page frag allocator using a single order 0 page 230 * and slicing it into 1K sized fragment. Constrained to systems 231 * with a very limited amount of 1K fragments fitting a single 232 * page - to avoid excessive truesize underestimation 233 */ 234 235 struct page_frag_1k { 236 void *va; 237 u16 offset; 238 bool pfmemalloc; 239 }; 240 241 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp) 242 { 243 struct page *page; 244 int offset; 245 246 offset = nc->offset - SZ_1K; 247 if (likely(offset >= 0)) 248 goto use_frag; 249 250 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 251 if (!page) 252 return NULL; 253 254 nc->va = page_address(page); 255 nc->pfmemalloc = page_is_pfmemalloc(page); 256 offset = PAGE_SIZE - SZ_1K; 257 page_ref_add(page, offset / SZ_1K); 258 259 use_frag: 260 nc->offset = offset; 261 return nc->va + offset; 262 } 263 #else 264 265 /* the small page is actually unused in this build; add dummy helpers 266 * to please the compiler and avoid later preprocessor's conditionals 267 */ 268 #define NAPI_HAS_SMALL_PAGE_FRAG 0 269 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false 270 271 struct page_frag_1k { 272 }; 273 274 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask) 275 { 276 return NULL; 277 } 278 279 #endif 280 281 struct napi_alloc_cache { 282 struct page_frag_cache page; 283 struct page_frag_1k page_small; 284 unsigned int skb_count; 285 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 286 }; 287 288 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 289 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 290 291 /* Double check that napi_get_frags() allocates skbs with 292 * skb->head being backed by slab, not a page fragment. 293 * This is to make sure bug fixed in 3226b158e67c 294 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 295 * does not accidentally come back. 296 */ 297 void napi_get_frags_check(struct napi_struct *napi) 298 { 299 struct sk_buff *skb; 300 301 local_bh_disable(); 302 skb = napi_get_frags(napi); 303 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag); 304 napi_free_frags(napi); 305 local_bh_enable(); 306 } 307 308 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 309 { 310 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 311 312 fragsz = SKB_DATA_ALIGN(fragsz); 313 314 return __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, 315 align_mask); 316 } 317 EXPORT_SYMBOL(__napi_alloc_frag_align); 318 319 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 320 { 321 void *data; 322 323 fragsz = SKB_DATA_ALIGN(fragsz); 324 if (in_hardirq() || irqs_disabled()) { 325 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 326 327 data = __page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, 328 align_mask); 329 } else { 330 struct napi_alloc_cache *nc; 331 332 local_bh_disable(); 333 nc = this_cpu_ptr(&napi_alloc_cache); 334 data = __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, 335 align_mask); 336 local_bh_enable(); 337 } 338 return data; 339 } 340 EXPORT_SYMBOL(__netdev_alloc_frag_align); 341 342 static struct sk_buff *napi_skb_cache_get(void) 343 { 344 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 345 struct sk_buff *skb; 346 347 if (unlikely(!nc->skb_count)) { 348 nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 349 GFP_ATOMIC, 350 NAPI_SKB_CACHE_BULK, 351 nc->skb_cache); 352 if (unlikely(!nc->skb_count)) 353 return NULL; 354 } 355 356 skb = nc->skb_cache[--nc->skb_count]; 357 kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache)); 358 359 return skb; 360 } 361 362 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 363 unsigned int size) 364 { 365 struct skb_shared_info *shinfo; 366 367 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 368 369 /* Assumes caller memset cleared SKB */ 370 skb->truesize = SKB_TRUESIZE(size); 371 refcount_set(&skb->users, 1); 372 skb->head = data; 373 skb->data = data; 374 skb_reset_tail_pointer(skb); 375 skb_set_end_offset(skb, size); 376 skb->mac_header = (typeof(skb->mac_header))~0U; 377 skb->transport_header = (typeof(skb->transport_header))~0U; 378 skb->alloc_cpu = raw_smp_processor_id(); 379 /* make sure we initialize shinfo sequentially */ 380 shinfo = skb_shinfo(skb); 381 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 382 atomic_set(&shinfo->dataref, 1); 383 384 skb_set_kcov_handle(skb, kcov_common_handle()); 385 } 386 387 static inline void *__slab_build_skb(struct sk_buff *skb, void *data, 388 unsigned int *size) 389 { 390 void *resized; 391 392 /* Must find the allocation size (and grow it to match). */ 393 *size = ksize(data); 394 /* krealloc() will immediately return "data" when 395 * "ksize(data)" is requested: it is the existing upper 396 * bounds. As a result, GFP_ATOMIC will be ignored. Note 397 * that this "new" pointer needs to be passed back to the 398 * caller for use so the __alloc_size hinting will be 399 * tracked correctly. 400 */ 401 resized = krealloc(data, *size, GFP_ATOMIC); 402 WARN_ON_ONCE(resized != data); 403 return resized; 404 } 405 406 /* build_skb() variant which can operate on slab buffers. 407 * Note that this should be used sparingly as slab buffers 408 * cannot be combined efficiently by GRO! 409 */ 410 struct sk_buff *slab_build_skb(void *data) 411 { 412 struct sk_buff *skb; 413 unsigned int size; 414 415 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC); 416 if (unlikely(!skb)) 417 return NULL; 418 419 memset(skb, 0, offsetof(struct sk_buff, tail)); 420 data = __slab_build_skb(skb, data, &size); 421 __finalize_skb_around(skb, data, size); 422 423 return skb; 424 } 425 EXPORT_SYMBOL(slab_build_skb); 426 427 /* Caller must provide SKB that is memset cleared */ 428 static void __build_skb_around(struct sk_buff *skb, void *data, 429 unsigned int frag_size) 430 { 431 unsigned int size = frag_size; 432 433 /* frag_size == 0 is considered deprecated now. Callers 434 * using slab buffer should use slab_build_skb() instead. 435 */ 436 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 437 data = __slab_build_skb(skb, data, &size); 438 439 __finalize_skb_around(skb, data, size); 440 } 441 442 /** 443 * __build_skb - build a network buffer 444 * @data: data buffer provided by caller 445 * @frag_size: size of data (must not be 0) 446 * 447 * Allocate a new &sk_buff. Caller provides space holding head and 448 * skb_shared_info. @data must have been allocated from the page 449 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 450 * allocation is deprecated, and callers should use slab_build_skb() 451 * instead.) 452 * The return is the new skb buffer. 453 * On a failure the return is %NULL, and @data is not freed. 454 * Notes : 455 * Before IO, driver allocates only data buffer where NIC put incoming frame 456 * Driver should add room at head (NET_SKB_PAD) and 457 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 458 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 459 * before giving packet to stack. 460 * RX rings only contains data buffers, not full skbs. 461 */ 462 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 463 { 464 struct sk_buff *skb; 465 466 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC); 467 if (unlikely(!skb)) 468 return NULL; 469 470 memset(skb, 0, offsetof(struct sk_buff, tail)); 471 __build_skb_around(skb, data, frag_size); 472 473 return skb; 474 } 475 476 /* build_skb() is wrapper over __build_skb(), that specifically 477 * takes care of skb->head and skb->pfmemalloc 478 */ 479 struct sk_buff *build_skb(void *data, unsigned int frag_size) 480 { 481 struct sk_buff *skb = __build_skb(data, frag_size); 482 483 if (likely(skb && frag_size)) { 484 skb->head_frag = 1; 485 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 486 } 487 return skb; 488 } 489 EXPORT_SYMBOL(build_skb); 490 491 /** 492 * build_skb_around - build a network buffer around provided skb 493 * @skb: sk_buff provide by caller, must be memset cleared 494 * @data: data buffer provided by caller 495 * @frag_size: size of data 496 */ 497 struct sk_buff *build_skb_around(struct sk_buff *skb, 498 void *data, unsigned int frag_size) 499 { 500 if (unlikely(!skb)) 501 return NULL; 502 503 __build_skb_around(skb, data, frag_size); 504 505 if (frag_size) { 506 skb->head_frag = 1; 507 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 508 } 509 return skb; 510 } 511 EXPORT_SYMBOL(build_skb_around); 512 513 /** 514 * __napi_build_skb - build a network buffer 515 * @data: data buffer provided by caller 516 * @frag_size: size of data 517 * 518 * Version of __build_skb() that uses NAPI percpu caches to obtain 519 * skbuff_head instead of inplace allocation. 520 * 521 * Returns a new &sk_buff on success, %NULL on allocation failure. 522 */ 523 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 524 { 525 struct sk_buff *skb; 526 527 skb = napi_skb_cache_get(); 528 if (unlikely(!skb)) 529 return NULL; 530 531 memset(skb, 0, offsetof(struct sk_buff, tail)); 532 __build_skb_around(skb, data, frag_size); 533 534 return skb; 535 } 536 537 /** 538 * napi_build_skb - build a network buffer 539 * @data: data buffer provided by caller 540 * @frag_size: size of data 541 * 542 * Version of __napi_build_skb() that takes care of skb->head_frag 543 * and skb->pfmemalloc when the data is a page or page fragment. 544 * 545 * Returns a new &sk_buff on success, %NULL on allocation failure. 546 */ 547 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 548 { 549 struct sk_buff *skb = __napi_build_skb(data, frag_size); 550 551 if (likely(skb) && frag_size) { 552 skb->head_frag = 1; 553 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 554 } 555 556 return skb; 557 } 558 EXPORT_SYMBOL(napi_build_skb); 559 560 /* 561 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 562 * the caller if emergency pfmemalloc reserves are being used. If it is and 563 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 564 * may be used. Otherwise, the packet data may be discarded until enough 565 * memory is free 566 */ 567 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 568 bool *pfmemalloc) 569 { 570 bool ret_pfmemalloc = false; 571 size_t obj_size; 572 void *obj; 573 574 obj_size = SKB_HEAD_ALIGN(*size); 575 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 576 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 577 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, 578 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 579 node); 580 *size = SKB_SMALL_HEAD_CACHE_SIZE; 581 if (obj || !(gfp_pfmemalloc_allowed(flags))) 582 goto out; 583 /* Try again but now we are using pfmemalloc reserves */ 584 ret_pfmemalloc = true; 585 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node); 586 goto out; 587 } 588 589 obj_size = kmalloc_size_roundup(obj_size); 590 /* The following cast might truncate high-order bits of obj_size, this 591 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. 592 */ 593 *size = (unsigned int)obj_size; 594 595 /* 596 * Try a regular allocation, when that fails and we're not entitled 597 * to the reserves, fail. 598 */ 599 obj = kmalloc_node_track_caller(obj_size, 600 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 601 node); 602 if (obj || !(gfp_pfmemalloc_allowed(flags))) 603 goto out; 604 605 /* Try again but now we are using pfmemalloc reserves */ 606 ret_pfmemalloc = true; 607 obj = kmalloc_node_track_caller(obj_size, flags, node); 608 609 out: 610 if (pfmemalloc) 611 *pfmemalloc = ret_pfmemalloc; 612 613 return obj; 614 } 615 616 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 617 * 'private' fields and also do memory statistics to find all the 618 * [BEEP] leaks. 619 * 620 */ 621 622 /** 623 * __alloc_skb - allocate a network buffer 624 * @size: size to allocate 625 * @gfp_mask: allocation mask 626 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 627 * instead of head cache and allocate a cloned (child) skb. 628 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 629 * allocations in case the data is required for writeback 630 * @node: numa node to allocate memory on 631 * 632 * Allocate a new &sk_buff. The returned buffer has no headroom and a 633 * tail room of at least size bytes. The object has a reference count 634 * of one. The return is the buffer. On a failure the return is %NULL. 635 * 636 * Buffers may only be allocated from interrupts using a @gfp_mask of 637 * %GFP_ATOMIC. 638 */ 639 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 640 int flags, int node) 641 { 642 struct kmem_cache *cache; 643 struct sk_buff *skb; 644 bool pfmemalloc; 645 u8 *data; 646 647 cache = (flags & SKB_ALLOC_FCLONE) 648 ? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache; 649 650 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 651 gfp_mask |= __GFP_MEMALLOC; 652 653 /* Get the HEAD */ 654 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 655 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 656 skb = napi_skb_cache_get(); 657 else 658 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 659 if (unlikely(!skb)) 660 return NULL; 661 prefetchw(skb); 662 663 /* We do our best to align skb_shared_info on a separate cache 664 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 665 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 666 * Both skb->head and skb_shared_info are cache line aligned. 667 */ 668 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 669 if (unlikely(!data)) 670 goto nodata; 671 /* kmalloc_size_roundup() might give us more room than requested. 672 * Put skb_shared_info exactly at the end of allocated zone, 673 * to allow max possible filling before reallocation. 674 */ 675 prefetchw(data + SKB_WITH_OVERHEAD(size)); 676 677 /* 678 * Only clear those fields we need to clear, not those that we will 679 * actually initialise below. Hence, don't put any more fields after 680 * the tail pointer in struct sk_buff! 681 */ 682 memset(skb, 0, offsetof(struct sk_buff, tail)); 683 __build_skb_around(skb, data, size); 684 skb->pfmemalloc = pfmemalloc; 685 686 if (flags & SKB_ALLOC_FCLONE) { 687 struct sk_buff_fclones *fclones; 688 689 fclones = container_of(skb, struct sk_buff_fclones, skb1); 690 691 skb->fclone = SKB_FCLONE_ORIG; 692 refcount_set(&fclones->fclone_ref, 1); 693 } 694 695 return skb; 696 697 nodata: 698 kmem_cache_free(cache, skb); 699 return NULL; 700 } 701 EXPORT_SYMBOL(__alloc_skb); 702 703 /** 704 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 705 * @dev: network device to receive on 706 * @len: length to allocate 707 * @gfp_mask: get_free_pages mask, passed to alloc_skb 708 * 709 * Allocate a new &sk_buff and assign it a usage count of one. The 710 * buffer has NET_SKB_PAD headroom built in. Users should allocate 711 * the headroom they think they need without accounting for the 712 * built in space. The built in space is used for optimisations. 713 * 714 * %NULL is returned if there is no free memory. 715 */ 716 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 717 gfp_t gfp_mask) 718 { 719 struct page_frag_cache *nc; 720 struct sk_buff *skb; 721 bool pfmemalloc; 722 void *data; 723 724 len += NET_SKB_PAD; 725 726 /* If requested length is either too small or too big, 727 * we use kmalloc() for skb->head allocation. 728 */ 729 if (len <= SKB_WITH_OVERHEAD(1024) || 730 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 731 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 732 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 733 if (!skb) 734 goto skb_fail; 735 goto skb_success; 736 } 737 738 len = SKB_HEAD_ALIGN(len); 739 740 if (sk_memalloc_socks()) 741 gfp_mask |= __GFP_MEMALLOC; 742 743 if (in_hardirq() || irqs_disabled()) { 744 nc = this_cpu_ptr(&netdev_alloc_cache); 745 data = page_frag_alloc(nc, len, gfp_mask); 746 pfmemalloc = nc->pfmemalloc; 747 } else { 748 local_bh_disable(); 749 nc = this_cpu_ptr(&napi_alloc_cache.page); 750 data = page_frag_alloc(nc, len, gfp_mask); 751 pfmemalloc = nc->pfmemalloc; 752 local_bh_enable(); 753 } 754 755 if (unlikely(!data)) 756 return NULL; 757 758 skb = __build_skb(data, len); 759 if (unlikely(!skb)) { 760 skb_free_frag(data); 761 return NULL; 762 } 763 764 if (pfmemalloc) 765 skb->pfmemalloc = 1; 766 skb->head_frag = 1; 767 768 skb_success: 769 skb_reserve(skb, NET_SKB_PAD); 770 skb->dev = dev; 771 772 skb_fail: 773 return skb; 774 } 775 EXPORT_SYMBOL(__netdev_alloc_skb); 776 777 /** 778 * napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 779 * @napi: napi instance this buffer was allocated for 780 * @len: length to allocate 781 * 782 * Allocate a new sk_buff for use in NAPI receive. This buffer will 783 * attempt to allocate the head from a special reserved region used 784 * only for NAPI Rx allocation. By doing this we can save several 785 * CPU cycles by avoiding having to disable and re-enable IRQs. 786 * 787 * %NULL is returned if there is no free memory. 788 */ 789 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len) 790 { 791 gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN; 792 struct napi_alloc_cache *nc; 793 struct sk_buff *skb; 794 bool pfmemalloc; 795 void *data; 796 797 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 798 len += NET_SKB_PAD + NET_IP_ALIGN; 799 800 /* If requested length is either too small or too big, 801 * we use kmalloc() for skb->head allocation. 802 * When the small frag allocator is available, prefer it over kmalloc 803 * for small fragments 804 */ 805 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) || 806 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 807 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 808 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 809 NUMA_NO_NODE); 810 if (!skb) 811 goto skb_fail; 812 goto skb_success; 813 } 814 815 nc = this_cpu_ptr(&napi_alloc_cache); 816 817 if (sk_memalloc_socks()) 818 gfp_mask |= __GFP_MEMALLOC; 819 820 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) { 821 /* we are artificially inflating the allocation size, but 822 * that is not as bad as it may look like, as: 823 * - 'len' less than GRO_MAX_HEAD makes little sense 824 * - On most systems, larger 'len' values lead to fragment 825 * size above 512 bytes 826 * - kmalloc would use the kmalloc-1k slab for such values 827 * - Builds with smaller GRO_MAX_HEAD will very likely do 828 * little networking, as that implies no WiFi and no 829 * tunnels support, and 32 bits arches. 830 */ 831 len = SZ_1K; 832 833 data = page_frag_alloc_1k(&nc->page_small, gfp_mask); 834 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small); 835 } else { 836 len = SKB_HEAD_ALIGN(len); 837 838 data = page_frag_alloc(&nc->page, len, gfp_mask); 839 pfmemalloc = nc->page.pfmemalloc; 840 } 841 842 if (unlikely(!data)) 843 return NULL; 844 845 skb = __napi_build_skb(data, len); 846 if (unlikely(!skb)) { 847 skb_free_frag(data); 848 return NULL; 849 } 850 851 if (pfmemalloc) 852 skb->pfmemalloc = 1; 853 skb->head_frag = 1; 854 855 skb_success: 856 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 857 skb->dev = napi->dev; 858 859 skb_fail: 860 return skb; 861 } 862 EXPORT_SYMBOL(napi_alloc_skb); 863 864 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 865 int off, int size, unsigned int truesize) 866 { 867 DEBUG_NET_WARN_ON_ONCE(size > truesize); 868 869 skb_fill_netmem_desc(skb, i, netmem, off, size); 870 skb->len += size; 871 skb->data_len += size; 872 skb->truesize += truesize; 873 } 874 EXPORT_SYMBOL(skb_add_rx_frag_netmem); 875 876 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 877 unsigned int truesize) 878 { 879 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 880 881 DEBUG_NET_WARN_ON_ONCE(size > truesize); 882 883 skb_frag_size_add(frag, size); 884 skb->len += size; 885 skb->data_len += size; 886 skb->truesize += truesize; 887 } 888 EXPORT_SYMBOL(skb_coalesce_rx_frag); 889 890 static void skb_drop_list(struct sk_buff **listp) 891 { 892 kfree_skb_list(*listp); 893 *listp = NULL; 894 } 895 896 static inline void skb_drop_fraglist(struct sk_buff *skb) 897 { 898 skb_drop_list(&skb_shinfo(skb)->frag_list); 899 } 900 901 static void skb_clone_fraglist(struct sk_buff *skb) 902 { 903 struct sk_buff *list; 904 905 skb_walk_frags(skb, list) 906 skb_get(list); 907 } 908 909 static bool is_pp_page(struct page *page) 910 { 911 return (page->pp_magic & ~0x3UL) == PP_SIGNATURE; 912 } 913 914 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 915 unsigned int headroom) 916 { 917 #if IS_ENABLED(CONFIG_PAGE_POOL) 918 u32 size, truesize, len, max_head_size, off; 919 struct sk_buff *skb = *pskb, *nskb; 920 int err, i, head_off; 921 void *data; 922 923 /* XDP does not support fraglist so we need to linearize 924 * the skb. 925 */ 926 if (skb_has_frag_list(skb)) 927 return -EOPNOTSUPP; 928 929 max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom); 930 if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE) 931 return -ENOMEM; 932 933 size = min_t(u32, skb->len, max_head_size); 934 truesize = SKB_HEAD_ALIGN(size) + headroom; 935 data = page_pool_dev_alloc_va(pool, &truesize); 936 if (!data) 937 return -ENOMEM; 938 939 nskb = napi_build_skb(data, truesize); 940 if (!nskb) { 941 page_pool_free_va(pool, data, true); 942 return -ENOMEM; 943 } 944 945 skb_reserve(nskb, headroom); 946 skb_copy_header(nskb, skb); 947 skb_mark_for_recycle(nskb); 948 949 err = skb_copy_bits(skb, 0, nskb->data, size); 950 if (err) { 951 consume_skb(nskb); 952 return err; 953 } 954 skb_put(nskb, size); 955 956 head_off = skb_headroom(nskb) - skb_headroom(skb); 957 skb_headers_offset_update(nskb, head_off); 958 959 off = size; 960 len = skb->len - off; 961 for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) { 962 struct page *page; 963 u32 page_off; 964 965 size = min_t(u32, len, PAGE_SIZE); 966 truesize = size; 967 968 page = page_pool_dev_alloc(pool, &page_off, &truesize); 969 if (!page) { 970 consume_skb(nskb); 971 return -ENOMEM; 972 } 973 974 skb_add_rx_frag(nskb, i, page, page_off, size, truesize); 975 err = skb_copy_bits(skb, off, page_address(page) + page_off, 976 size); 977 if (err) { 978 consume_skb(nskb); 979 return err; 980 } 981 982 len -= size; 983 off += size; 984 } 985 986 consume_skb(skb); 987 *pskb = nskb; 988 989 return 0; 990 #else 991 return -EOPNOTSUPP; 992 #endif 993 } 994 EXPORT_SYMBOL(skb_pp_cow_data); 995 996 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 997 struct bpf_prog *prog) 998 { 999 if (!prog->aux->xdp_has_frags) 1000 return -EINVAL; 1001 1002 return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM); 1003 } 1004 EXPORT_SYMBOL(skb_cow_data_for_xdp); 1005 1006 #if IS_ENABLED(CONFIG_PAGE_POOL) 1007 bool napi_pp_put_page(struct page *page, bool napi_safe) 1008 { 1009 bool allow_direct = false; 1010 struct page_pool *pp; 1011 1012 page = compound_head(page); 1013 1014 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation 1015 * in order to preserve any existing bits, such as bit 0 for the 1016 * head page of compound page and bit 1 for pfmemalloc page, so 1017 * mask those bits for freeing side when doing below checking, 1018 * and page_is_pfmemalloc() is checked in __page_pool_put_page() 1019 * to avoid recycling the pfmemalloc page. 1020 */ 1021 if (unlikely(!is_pp_page(page))) 1022 return false; 1023 1024 pp = page->pp; 1025 1026 /* Allow direct recycle if we have reasons to believe that we are 1027 * in the same context as the consumer would run, so there's 1028 * no possible race. 1029 * __page_pool_put_page() makes sure we're not in hardirq context 1030 * and interrupts are enabled prior to accessing the cache. 1031 */ 1032 if (napi_safe || in_softirq()) { 1033 const struct napi_struct *napi = READ_ONCE(pp->p.napi); 1034 unsigned int cpuid = smp_processor_id(); 1035 1036 allow_direct = napi && READ_ONCE(napi->list_owner) == cpuid; 1037 allow_direct |= READ_ONCE(pp->cpuid) == cpuid; 1038 } 1039 1040 /* Driver set this to memory recycling info. Reset it on recycle. 1041 * This will *not* work for NIC using a split-page memory model. 1042 * The page will be returned to the pool here regardless of the 1043 * 'flipped' fragment being in use or not. 1044 */ 1045 page_pool_put_full_page(pp, page, allow_direct); 1046 1047 return true; 1048 } 1049 EXPORT_SYMBOL(napi_pp_put_page); 1050 #endif 1051 1052 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe) 1053 { 1054 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 1055 return false; 1056 return napi_pp_put_page(virt_to_page(data), napi_safe); 1057 } 1058 1059 /** 1060 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb 1061 * @skb: page pool aware skb 1062 * 1063 * Increase the fragment reference count (pp_ref_count) of a skb. This is 1064 * intended to gain fragment references only for page pool aware skbs, 1065 * i.e. when skb->pp_recycle is true, and not for fragments in a 1066 * non-pp-recycling skb. It has a fallback to increase references on normal 1067 * pages, as page pool aware skbs may also have normal page fragments. 1068 */ 1069 static int skb_pp_frag_ref(struct sk_buff *skb) 1070 { 1071 struct skb_shared_info *shinfo; 1072 struct page *head_page; 1073 int i; 1074 1075 if (!skb->pp_recycle) 1076 return -EINVAL; 1077 1078 shinfo = skb_shinfo(skb); 1079 1080 for (i = 0; i < shinfo->nr_frags; i++) { 1081 head_page = compound_head(skb_frag_page(&shinfo->frags[i])); 1082 if (likely(is_pp_page(head_page))) 1083 page_pool_ref_page(head_page); 1084 else 1085 page_ref_inc(head_page); 1086 } 1087 return 0; 1088 } 1089 1090 static void skb_kfree_head(void *head, unsigned int end_offset) 1091 { 1092 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 1093 kmem_cache_free(net_hotdata.skb_small_head_cache, head); 1094 else 1095 kfree(head); 1096 } 1097 1098 static void skb_free_head(struct sk_buff *skb, bool napi_safe) 1099 { 1100 unsigned char *head = skb->head; 1101 1102 if (skb->head_frag) { 1103 if (skb_pp_recycle(skb, head, napi_safe)) 1104 return; 1105 skb_free_frag(head); 1106 } else { 1107 skb_kfree_head(head, skb_end_offset(skb)); 1108 } 1109 } 1110 1111 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason, 1112 bool napi_safe) 1113 { 1114 struct skb_shared_info *shinfo = skb_shinfo(skb); 1115 int i; 1116 1117 if (!skb_data_unref(skb, shinfo)) 1118 goto exit; 1119 1120 if (skb_zcopy(skb)) { 1121 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 1122 1123 skb_zcopy_clear(skb, true); 1124 if (skip_unref) 1125 goto free_head; 1126 } 1127 1128 for (i = 0; i < shinfo->nr_frags; i++) 1129 napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe); 1130 1131 free_head: 1132 if (shinfo->frag_list) 1133 kfree_skb_list_reason(shinfo->frag_list, reason); 1134 1135 skb_free_head(skb, napi_safe); 1136 exit: 1137 /* When we clone an SKB we copy the reycling bit. The pp_recycle 1138 * bit is only set on the head though, so in order to avoid races 1139 * while trying to recycle fragments on __skb_frag_unref() we need 1140 * to make one SKB responsible for triggering the recycle path. 1141 * So disable the recycling bit if an SKB is cloned and we have 1142 * additional references to the fragmented part of the SKB. 1143 * Eventually the last SKB will have the recycling bit set and it's 1144 * dataref set to 0, which will trigger the recycling 1145 */ 1146 skb->pp_recycle = 0; 1147 } 1148 1149 /* 1150 * Free an skbuff by memory without cleaning the state. 1151 */ 1152 static void kfree_skbmem(struct sk_buff *skb) 1153 { 1154 struct sk_buff_fclones *fclones; 1155 1156 switch (skb->fclone) { 1157 case SKB_FCLONE_UNAVAILABLE: 1158 kmem_cache_free(net_hotdata.skbuff_cache, skb); 1159 return; 1160 1161 case SKB_FCLONE_ORIG: 1162 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1163 1164 /* We usually free the clone (TX completion) before original skb 1165 * This test would have no chance to be true for the clone, 1166 * while here, branch prediction will be good. 1167 */ 1168 if (refcount_read(&fclones->fclone_ref) == 1) 1169 goto fastpath; 1170 break; 1171 1172 default: /* SKB_FCLONE_CLONE */ 1173 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1174 break; 1175 } 1176 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1177 return; 1178 fastpath: 1179 kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones); 1180 } 1181 1182 void skb_release_head_state(struct sk_buff *skb) 1183 { 1184 skb_dst_drop(skb); 1185 if (skb->destructor) { 1186 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1187 skb->destructor(skb); 1188 } 1189 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 1190 nf_conntrack_put(skb_nfct(skb)); 1191 #endif 1192 skb_ext_put(skb); 1193 } 1194 1195 /* Free everything but the sk_buff shell. */ 1196 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason, 1197 bool napi_safe) 1198 { 1199 skb_release_head_state(skb); 1200 if (likely(skb->head)) 1201 skb_release_data(skb, reason, napi_safe); 1202 } 1203 1204 /** 1205 * __kfree_skb - private function 1206 * @skb: buffer 1207 * 1208 * Free an sk_buff. Release anything attached to the buffer. 1209 * Clean the state. This is an internal helper function. Users should 1210 * always call kfree_skb 1211 */ 1212 1213 void __kfree_skb(struct sk_buff *skb) 1214 { 1215 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false); 1216 kfree_skbmem(skb); 1217 } 1218 EXPORT_SYMBOL(__kfree_skb); 1219 1220 static __always_inline 1221 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1222 { 1223 if (unlikely(!skb_unref(skb))) 1224 return false; 1225 1226 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1227 u32_get_bits(reason, 1228 SKB_DROP_REASON_SUBSYS_MASK) >= 1229 SKB_DROP_REASON_SUBSYS_NUM); 1230 1231 if (reason == SKB_CONSUMED) 1232 trace_consume_skb(skb, __builtin_return_address(0)); 1233 else 1234 trace_kfree_skb(skb, __builtin_return_address(0), reason); 1235 return true; 1236 } 1237 1238 /** 1239 * kfree_skb_reason - free an sk_buff with special reason 1240 * @skb: buffer to free 1241 * @reason: reason why this skb is dropped 1242 * 1243 * Drop a reference to the buffer and free it if the usage count has 1244 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 1245 * tracepoint. 1246 */ 1247 void __fix_address 1248 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1249 { 1250 if (__kfree_skb_reason(skb, reason)) 1251 __kfree_skb(skb); 1252 } 1253 EXPORT_SYMBOL(kfree_skb_reason); 1254 1255 #define KFREE_SKB_BULK_SIZE 16 1256 1257 struct skb_free_array { 1258 unsigned int skb_count; 1259 void *skb_array[KFREE_SKB_BULK_SIZE]; 1260 }; 1261 1262 static void kfree_skb_add_bulk(struct sk_buff *skb, 1263 struct skb_free_array *sa, 1264 enum skb_drop_reason reason) 1265 { 1266 /* if SKB is a clone, don't handle this case */ 1267 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1268 __kfree_skb(skb); 1269 return; 1270 } 1271 1272 skb_release_all(skb, reason, false); 1273 sa->skb_array[sa->skb_count++] = skb; 1274 1275 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1276 kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE, 1277 sa->skb_array); 1278 sa->skb_count = 0; 1279 } 1280 } 1281 1282 void __fix_address 1283 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1284 { 1285 struct skb_free_array sa; 1286 1287 sa.skb_count = 0; 1288 1289 while (segs) { 1290 struct sk_buff *next = segs->next; 1291 1292 if (__kfree_skb_reason(segs, reason)) { 1293 skb_poison_list(segs); 1294 kfree_skb_add_bulk(segs, &sa, reason); 1295 } 1296 1297 segs = next; 1298 } 1299 1300 if (sa.skb_count) 1301 kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array); 1302 } 1303 EXPORT_SYMBOL(kfree_skb_list_reason); 1304 1305 /* Dump skb information and contents. 1306 * 1307 * Must only be called from net_ratelimit()-ed paths. 1308 * 1309 * Dumps whole packets if full_pkt, only headers otherwise. 1310 */ 1311 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1312 { 1313 struct skb_shared_info *sh = skb_shinfo(skb); 1314 struct net_device *dev = skb->dev; 1315 struct sock *sk = skb->sk; 1316 struct sk_buff *list_skb; 1317 bool has_mac, has_trans; 1318 int headroom, tailroom; 1319 int i, len, seg_len; 1320 1321 if (full_pkt) 1322 len = skb->len; 1323 else 1324 len = min_t(int, skb->len, MAX_HEADER + 128); 1325 1326 headroom = skb_headroom(skb); 1327 tailroom = skb_tailroom(skb); 1328 1329 has_mac = skb_mac_header_was_set(skb); 1330 has_trans = skb_transport_header_was_set(skb); 1331 1332 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1333 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 1334 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1335 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1336 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 1337 level, skb->len, headroom, skb_headlen(skb), tailroom, 1338 has_mac ? skb->mac_header : -1, 1339 has_mac ? skb_mac_header_len(skb) : -1, 1340 skb->network_header, 1341 has_trans ? skb_network_header_len(skb) : -1, 1342 has_trans ? skb->transport_header : -1, 1343 sh->tx_flags, sh->nr_frags, 1344 sh->gso_size, sh->gso_type, sh->gso_segs, 1345 skb->csum, skb->ip_summed, skb->csum_complete_sw, 1346 skb->csum_valid, skb->csum_level, 1347 skb->hash, skb->sw_hash, skb->l4_hash, 1348 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 1349 1350 if (dev) 1351 printk("%sdev name=%s feat=%pNF\n", 1352 level, dev->name, &dev->features); 1353 if (sk) 1354 printk("%ssk family=%hu type=%u proto=%u\n", 1355 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1356 1357 if (full_pkt && headroom) 1358 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1359 16, 1, skb->head, headroom, false); 1360 1361 seg_len = min_t(int, skb_headlen(skb), len); 1362 if (seg_len) 1363 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1364 16, 1, skb->data, seg_len, false); 1365 len -= seg_len; 1366 1367 if (full_pkt && tailroom) 1368 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1369 16, 1, skb_tail_pointer(skb), tailroom, false); 1370 1371 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1372 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1373 u32 p_off, p_len, copied; 1374 struct page *p; 1375 u8 *vaddr; 1376 1377 skb_frag_foreach_page(frag, skb_frag_off(frag), 1378 skb_frag_size(frag), p, p_off, p_len, 1379 copied) { 1380 seg_len = min_t(int, p_len, len); 1381 vaddr = kmap_atomic(p); 1382 print_hex_dump(level, "skb frag: ", 1383 DUMP_PREFIX_OFFSET, 1384 16, 1, vaddr + p_off, seg_len, false); 1385 kunmap_atomic(vaddr); 1386 len -= seg_len; 1387 if (!len) 1388 break; 1389 } 1390 } 1391 1392 if (full_pkt && skb_has_frag_list(skb)) { 1393 printk("skb fraglist:\n"); 1394 skb_walk_frags(skb, list_skb) 1395 skb_dump(level, list_skb, true); 1396 } 1397 } 1398 EXPORT_SYMBOL(skb_dump); 1399 1400 /** 1401 * skb_tx_error - report an sk_buff xmit error 1402 * @skb: buffer that triggered an error 1403 * 1404 * Report xmit error if a device callback is tracking this skb. 1405 * skb must be freed afterwards. 1406 */ 1407 void skb_tx_error(struct sk_buff *skb) 1408 { 1409 if (skb) { 1410 skb_zcopy_downgrade_managed(skb); 1411 skb_zcopy_clear(skb, true); 1412 } 1413 } 1414 EXPORT_SYMBOL(skb_tx_error); 1415 1416 #ifdef CONFIG_TRACEPOINTS 1417 /** 1418 * consume_skb - free an skbuff 1419 * @skb: buffer to free 1420 * 1421 * Drop a ref to the buffer and free it if the usage count has hit zero 1422 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1423 * is being dropped after a failure and notes that 1424 */ 1425 void consume_skb(struct sk_buff *skb) 1426 { 1427 if (!skb_unref(skb)) 1428 return; 1429 1430 trace_consume_skb(skb, __builtin_return_address(0)); 1431 __kfree_skb(skb); 1432 } 1433 EXPORT_SYMBOL(consume_skb); 1434 #endif 1435 1436 /** 1437 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1438 * @skb: buffer to free 1439 * 1440 * Alike consume_skb(), but this variant assumes that this is the last 1441 * skb reference and all the head states have been already dropped 1442 */ 1443 void __consume_stateless_skb(struct sk_buff *skb) 1444 { 1445 trace_consume_skb(skb, __builtin_return_address(0)); 1446 skb_release_data(skb, SKB_CONSUMED, false); 1447 kfree_skbmem(skb); 1448 } 1449 1450 static void napi_skb_cache_put(struct sk_buff *skb) 1451 { 1452 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1453 u32 i; 1454 1455 if (!kasan_mempool_poison_object(skb)) 1456 return; 1457 1458 nc->skb_cache[nc->skb_count++] = skb; 1459 1460 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1461 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1462 kasan_mempool_unpoison_object(nc->skb_cache[i], 1463 kmem_cache_size(net_hotdata.skbuff_cache)); 1464 1465 kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF, 1466 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1467 nc->skb_count = NAPI_SKB_CACHE_HALF; 1468 } 1469 } 1470 1471 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1472 { 1473 skb_release_all(skb, reason, true); 1474 napi_skb_cache_put(skb); 1475 } 1476 1477 void napi_skb_free_stolen_head(struct sk_buff *skb) 1478 { 1479 if (unlikely(skb->slow_gro)) { 1480 nf_reset_ct(skb); 1481 skb_dst_drop(skb); 1482 skb_ext_put(skb); 1483 skb_orphan(skb); 1484 skb->slow_gro = 0; 1485 } 1486 napi_skb_cache_put(skb); 1487 } 1488 1489 void napi_consume_skb(struct sk_buff *skb, int budget) 1490 { 1491 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1492 if (unlikely(!budget)) { 1493 dev_consume_skb_any(skb); 1494 return; 1495 } 1496 1497 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1498 1499 if (!skb_unref(skb)) 1500 return; 1501 1502 /* if reaching here SKB is ready to free */ 1503 trace_consume_skb(skb, __builtin_return_address(0)); 1504 1505 /* if SKB is a clone, don't handle this case */ 1506 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1507 __kfree_skb(skb); 1508 return; 1509 } 1510 1511 skb_release_all(skb, SKB_CONSUMED, !!budget); 1512 napi_skb_cache_put(skb); 1513 } 1514 EXPORT_SYMBOL(napi_consume_skb); 1515 1516 /* Make sure a field is contained by headers group */ 1517 #define CHECK_SKB_FIELD(field) \ 1518 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1519 offsetof(struct sk_buff, headers.field)); \ 1520 1521 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1522 { 1523 new->tstamp = old->tstamp; 1524 /* We do not copy old->sk */ 1525 new->dev = old->dev; 1526 memcpy(new->cb, old->cb, sizeof(old->cb)); 1527 skb_dst_copy(new, old); 1528 __skb_ext_copy(new, old); 1529 __nf_copy(new, old, false); 1530 1531 /* Note : this field could be in the headers group. 1532 * It is not yet because we do not want to have a 16 bit hole 1533 */ 1534 new->queue_mapping = old->queue_mapping; 1535 1536 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1537 CHECK_SKB_FIELD(protocol); 1538 CHECK_SKB_FIELD(csum); 1539 CHECK_SKB_FIELD(hash); 1540 CHECK_SKB_FIELD(priority); 1541 CHECK_SKB_FIELD(skb_iif); 1542 CHECK_SKB_FIELD(vlan_proto); 1543 CHECK_SKB_FIELD(vlan_tci); 1544 CHECK_SKB_FIELD(transport_header); 1545 CHECK_SKB_FIELD(network_header); 1546 CHECK_SKB_FIELD(mac_header); 1547 CHECK_SKB_FIELD(inner_protocol); 1548 CHECK_SKB_FIELD(inner_transport_header); 1549 CHECK_SKB_FIELD(inner_network_header); 1550 CHECK_SKB_FIELD(inner_mac_header); 1551 CHECK_SKB_FIELD(mark); 1552 #ifdef CONFIG_NETWORK_SECMARK 1553 CHECK_SKB_FIELD(secmark); 1554 #endif 1555 #ifdef CONFIG_NET_RX_BUSY_POLL 1556 CHECK_SKB_FIELD(napi_id); 1557 #endif 1558 CHECK_SKB_FIELD(alloc_cpu); 1559 #ifdef CONFIG_XPS 1560 CHECK_SKB_FIELD(sender_cpu); 1561 #endif 1562 #ifdef CONFIG_NET_SCHED 1563 CHECK_SKB_FIELD(tc_index); 1564 #endif 1565 1566 } 1567 1568 /* 1569 * You should not add any new code to this function. Add it to 1570 * __copy_skb_header above instead. 1571 */ 1572 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1573 { 1574 #define C(x) n->x = skb->x 1575 1576 n->next = n->prev = NULL; 1577 n->sk = NULL; 1578 __copy_skb_header(n, skb); 1579 1580 C(len); 1581 C(data_len); 1582 C(mac_len); 1583 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1584 n->cloned = 1; 1585 n->nohdr = 0; 1586 n->peeked = 0; 1587 C(pfmemalloc); 1588 C(pp_recycle); 1589 n->destructor = NULL; 1590 C(tail); 1591 C(end); 1592 C(head); 1593 C(head_frag); 1594 C(data); 1595 C(truesize); 1596 refcount_set(&n->users, 1); 1597 1598 atomic_inc(&(skb_shinfo(skb)->dataref)); 1599 skb->cloned = 1; 1600 1601 return n; 1602 #undef C 1603 } 1604 1605 /** 1606 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1607 * @first: first sk_buff of the msg 1608 */ 1609 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1610 { 1611 struct sk_buff *n; 1612 1613 n = alloc_skb(0, GFP_ATOMIC); 1614 if (!n) 1615 return NULL; 1616 1617 n->len = first->len; 1618 n->data_len = first->len; 1619 n->truesize = first->truesize; 1620 1621 skb_shinfo(n)->frag_list = first; 1622 1623 __copy_skb_header(n, first); 1624 n->destructor = NULL; 1625 1626 return n; 1627 } 1628 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1629 1630 /** 1631 * skb_morph - morph one skb into another 1632 * @dst: the skb to receive the contents 1633 * @src: the skb to supply the contents 1634 * 1635 * This is identical to skb_clone except that the target skb is 1636 * supplied by the user. 1637 * 1638 * The target skb is returned upon exit. 1639 */ 1640 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1641 { 1642 skb_release_all(dst, SKB_CONSUMED, false); 1643 return __skb_clone(dst, src); 1644 } 1645 EXPORT_SYMBOL_GPL(skb_morph); 1646 1647 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1648 { 1649 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1650 struct user_struct *user; 1651 1652 if (capable(CAP_IPC_LOCK) || !size) 1653 return 0; 1654 1655 rlim = rlimit(RLIMIT_MEMLOCK); 1656 if (rlim == RLIM_INFINITY) 1657 return 0; 1658 1659 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1660 max_pg = rlim >> PAGE_SHIFT; 1661 user = mmp->user ? : current_user(); 1662 1663 old_pg = atomic_long_read(&user->locked_vm); 1664 do { 1665 new_pg = old_pg + num_pg; 1666 if (new_pg > max_pg) 1667 return -ENOBUFS; 1668 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1669 1670 if (!mmp->user) { 1671 mmp->user = get_uid(user); 1672 mmp->num_pg = num_pg; 1673 } else { 1674 mmp->num_pg += num_pg; 1675 } 1676 1677 return 0; 1678 } 1679 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1680 1681 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1682 { 1683 if (mmp->user) { 1684 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1685 free_uid(mmp->user); 1686 } 1687 } 1688 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1689 1690 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1691 { 1692 struct ubuf_info_msgzc *uarg; 1693 struct sk_buff *skb; 1694 1695 WARN_ON_ONCE(!in_task()); 1696 1697 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1698 if (!skb) 1699 return NULL; 1700 1701 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1702 uarg = (void *)skb->cb; 1703 uarg->mmp.user = NULL; 1704 1705 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1706 kfree_skb(skb); 1707 return NULL; 1708 } 1709 1710 uarg->ubuf.callback = msg_zerocopy_callback; 1711 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1712 uarg->len = 1; 1713 uarg->bytelen = size; 1714 uarg->zerocopy = 1; 1715 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1716 refcount_set(&uarg->ubuf.refcnt, 1); 1717 sock_hold(sk); 1718 1719 return &uarg->ubuf; 1720 } 1721 1722 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1723 { 1724 return container_of((void *)uarg, struct sk_buff, cb); 1725 } 1726 1727 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1728 struct ubuf_info *uarg) 1729 { 1730 if (uarg) { 1731 struct ubuf_info_msgzc *uarg_zc; 1732 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1733 u32 bytelen, next; 1734 1735 /* there might be non MSG_ZEROCOPY users */ 1736 if (uarg->callback != msg_zerocopy_callback) 1737 return NULL; 1738 1739 /* realloc only when socket is locked (TCP, UDP cork), 1740 * so uarg->len and sk_zckey access is serialized 1741 */ 1742 if (!sock_owned_by_user(sk)) { 1743 WARN_ON_ONCE(1); 1744 return NULL; 1745 } 1746 1747 uarg_zc = uarg_to_msgzc(uarg); 1748 bytelen = uarg_zc->bytelen + size; 1749 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1750 /* TCP can create new skb to attach new uarg */ 1751 if (sk->sk_type == SOCK_STREAM) 1752 goto new_alloc; 1753 return NULL; 1754 } 1755 1756 next = (u32)atomic_read(&sk->sk_zckey); 1757 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1758 if (mm_account_pinned_pages(&uarg_zc->mmp, size)) 1759 return NULL; 1760 uarg_zc->len++; 1761 uarg_zc->bytelen = bytelen; 1762 atomic_set(&sk->sk_zckey, ++next); 1763 1764 /* no extra ref when appending to datagram (MSG_MORE) */ 1765 if (sk->sk_type == SOCK_STREAM) 1766 net_zcopy_get(uarg); 1767 1768 return uarg; 1769 } 1770 } 1771 1772 new_alloc: 1773 return msg_zerocopy_alloc(sk, size); 1774 } 1775 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1776 1777 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1778 { 1779 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1780 u32 old_lo, old_hi; 1781 u64 sum_len; 1782 1783 old_lo = serr->ee.ee_info; 1784 old_hi = serr->ee.ee_data; 1785 sum_len = old_hi - old_lo + 1ULL + len; 1786 1787 if (sum_len >= (1ULL << 32)) 1788 return false; 1789 1790 if (lo != old_hi + 1) 1791 return false; 1792 1793 serr->ee.ee_data += len; 1794 return true; 1795 } 1796 1797 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1798 { 1799 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1800 struct sock_exterr_skb *serr; 1801 struct sock *sk = skb->sk; 1802 struct sk_buff_head *q; 1803 unsigned long flags; 1804 bool is_zerocopy; 1805 u32 lo, hi; 1806 u16 len; 1807 1808 mm_unaccount_pinned_pages(&uarg->mmp); 1809 1810 /* if !len, there was only 1 call, and it was aborted 1811 * so do not queue a completion notification 1812 */ 1813 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1814 goto release; 1815 1816 len = uarg->len; 1817 lo = uarg->id; 1818 hi = uarg->id + len - 1; 1819 is_zerocopy = uarg->zerocopy; 1820 1821 serr = SKB_EXT_ERR(skb); 1822 memset(serr, 0, sizeof(*serr)); 1823 serr->ee.ee_errno = 0; 1824 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1825 serr->ee.ee_data = hi; 1826 serr->ee.ee_info = lo; 1827 if (!is_zerocopy) 1828 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1829 1830 q = &sk->sk_error_queue; 1831 spin_lock_irqsave(&q->lock, flags); 1832 tail = skb_peek_tail(q); 1833 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1834 !skb_zerocopy_notify_extend(tail, lo, len)) { 1835 __skb_queue_tail(q, skb); 1836 skb = NULL; 1837 } 1838 spin_unlock_irqrestore(&q->lock, flags); 1839 1840 sk_error_report(sk); 1841 1842 release: 1843 consume_skb(skb); 1844 sock_put(sk); 1845 } 1846 1847 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1848 bool success) 1849 { 1850 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1851 1852 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1853 1854 if (refcount_dec_and_test(&uarg->refcnt)) 1855 __msg_zerocopy_callback(uarg_zc); 1856 } 1857 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1858 1859 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1860 { 1861 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1862 1863 atomic_dec(&sk->sk_zckey); 1864 uarg_to_msgzc(uarg)->len--; 1865 1866 if (have_uref) 1867 msg_zerocopy_callback(NULL, uarg, true); 1868 } 1869 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1870 1871 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1872 struct msghdr *msg, int len, 1873 struct ubuf_info *uarg) 1874 { 1875 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1876 int err, orig_len = skb->len; 1877 1878 /* An skb can only point to one uarg. This edge case happens when 1879 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1880 */ 1881 if (orig_uarg && uarg != orig_uarg) 1882 return -EEXIST; 1883 1884 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1885 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1886 struct sock *save_sk = skb->sk; 1887 1888 /* Streams do not free skb on error. Reset to prev state. */ 1889 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1890 skb->sk = sk; 1891 ___pskb_trim(skb, orig_len); 1892 skb->sk = save_sk; 1893 return err; 1894 } 1895 1896 skb_zcopy_set(skb, uarg, NULL); 1897 return skb->len - orig_len; 1898 } 1899 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1900 1901 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1902 { 1903 int i; 1904 1905 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1906 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1907 skb_frag_ref(skb, i); 1908 } 1909 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1910 1911 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1912 gfp_t gfp_mask) 1913 { 1914 if (skb_zcopy(orig)) { 1915 if (skb_zcopy(nskb)) { 1916 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1917 if (!gfp_mask) { 1918 WARN_ON_ONCE(1); 1919 return -ENOMEM; 1920 } 1921 if (skb_uarg(nskb) == skb_uarg(orig)) 1922 return 0; 1923 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1924 return -EIO; 1925 } 1926 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1927 } 1928 return 0; 1929 } 1930 1931 /** 1932 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1933 * @skb: the skb to modify 1934 * @gfp_mask: allocation priority 1935 * 1936 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1937 * It will copy all frags into kernel and drop the reference 1938 * to userspace pages. 1939 * 1940 * If this function is called from an interrupt gfp_mask() must be 1941 * %GFP_ATOMIC. 1942 * 1943 * Returns 0 on success or a negative error code on failure 1944 * to allocate kernel memory to copy to. 1945 */ 1946 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1947 { 1948 int num_frags = skb_shinfo(skb)->nr_frags; 1949 struct page *page, *head = NULL; 1950 int i, order, psize, new_frags; 1951 u32 d_off; 1952 1953 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1954 return -EINVAL; 1955 1956 if (!num_frags) 1957 goto release; 1958 1959 /* We might have to allocate high order pages, so compute what minimum 1960 * page order is needed. 1961 */ 1962 order = 0; 1963 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1964 order++; 1965 psize = (PAGE_SIZE << order); 1966 1967 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1968 for (i = 0; i < new_frags; i++) { 1969 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1970 if (!page) { 1971 while (head) { 1972 struct page *next = (struct page *)page_private(head); 1973 put_page(head); 1974 head = next; 1975 } 1976 return -ENOMEM; 1977 } 1978 set_page_private(page, (unsigned long)head); 1979 head = page; 1980 } 1981 1982 page = head; 1983 d_off = 0; 1984 for (i = 0; i < num_frags; i++) { 1985 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1986 u32 p_off, p_len, copied; 1987 struct page *p; 1988 u8 *vaddr; 1989 1990 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1991 p, p_off, p_len, copied) { 1992 u32 copy, done = 0; 1993 vaddr = kmap_atomic(p); 1994 1995 while (done < p_len) { 1996 if (d_off == psize) { 1997 d_off = 0; 1998 page = (struct page *)page_private(page); 1999 } 2000 copy = min_t(u32, psize - d_off, p_len - done); 2001 memcpy(page_address(page) + d_off, 2002 vaddr + p_off + done, copy); 2003 done += copy; 2004 d_off += copy; 2005 } 2006 kunmap_atomic(vaddr); 2007 } 2008 } 2009 2010 /* skb frags release userspace buffers */ 2011 for (i = 0; i < num_frags; i++) 2012 skb_frag_unref(skb, i); 2013 2014 /* skb frags point to kernel buffers */ 2015 for (i = 0; i < new_frags - 1; i++) { 2016 __skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize); 2017 head = (struct page *)page_private(head); 2018 } 2019 __skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0, 2020 d_off); 2021 skb_shinfo(skb)->nr_frags = new_frags; 2022 2023 release: 2024 skb_zcopy_clear(skb, false); 2025 return 0; 2026 } 2027 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 2028 2029 /** 2030 * skb_clone - duplicate an sk_buff 2031 * @skb: buffer to clone 2032 * @gfp_mask: allocation priority 2033 * 2034 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 2035 * copies share the same packet data but not structure. The new 2036 * buffer has a reference count of 1. If the allocation fails the 2037 * function returns %NULL otherwise the new buffer is returned. 2038 * 2039 * If this function is called from an interrupt gfp_mask() must be 2040 * %GFP_ATOMIC. 2041 */ 2042 2043 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 2044 { 2045 struct sk_buff_fclones *fclones = container_of(skb, 2046 struct sk_buff_fclones, 2047 skb1); 2048 struct sk_buff *n; 2049 2050 if (skb_orphan_frags(skb, gfp_mask)) 2051 return NULL; 2052 2053 if (skb->fclone == SKB_FCLONE_ORIG && 2054 refcount_read(&fclones->fclone_ref) == 1) { 2055 n = &fclones->skb2; 2056 refcount_set(&fclones->fclone_ref, 2); 2057 n->fclone = SKB_FCLONE_CLONE; 2058 } else { 2059 if (skb_pfmemalloc(skb)) 2060 gfp_mask |= __GFP_MEMALLOC; 2061 2062 n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask); 2063 if (!n) 2064 return NULL; 2065 2066 n->fclone = SKB_FCLONE_UNAVAILABLE; 2067 } 2068 2069 return __skb_clone(n, skb); 2070 } 2071 EXPORT_SYMBOL(skb_clone); 2072 2073 void skb_headers_offset_update(struct sk_buff *skb, int off) 2074 { 2075 /* Only adjust this if it actually is csum_start rather than csum */ 2076 if (skb->ip_summed == CHECKSUM_PARTIAL) 2077 skb->csum_start += off; 2078 /* {transport,network,mac}_header and tail are relative to skb->head */ 2079 skb->transport_header += off; 2080 skb->network_header += off; 2081 if (skb_mac_header_was_set(skb)) 2082 skb->mac_header += off; 2083 skb->inner_transport_header += off; 2084 skb->inner_network_header += off; 2085 skb->inner_mac_header += off; 2086 } 2087 EXPORT_SYMBOL(skb_headers_offset_update); 2088 2089 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 2090 { 2091 __copy_skb_header(new, old); 2092 2093 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 2094 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 2095 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 2096 } 2097 EXPORT_SYMBOL(skb_copy_header); 2098 2099 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 2100 { 2101 if (skb_pfmemalloc(skb)) 2102 return SKB_ALLOC_RX; 2103 return 0; 2104 } 2105 2106 /** 2107 * skb_copy - create private copy of an sk_buff 2108 * @skb: buffer to copy 2109 * @gfp_mask: allocation priority 2110 * 2111 * Make a copy of both an &sk_buff and its data. This is used when the 2112 * caller wishes to modify the data and needs a private copy of the 2113 * data to alter. Returns %NULL on failure or the pointer to the buffer 2114 * on success. The returned buffer has a reference count of 1. 2115 * 2116 * As by-product this function converts non-linear &sk_buff to linear 2117 * one, so that &sk_buff becomes completely private and caller is allowed 2118 * to modify all the data of returned buffer. This means that this 2119 * function is not recommended for use in circumstances when only 2120 * header is going to be modified. Use pskb_copy() instead. 2121 */ 2122 2123 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 2124 { 2125 int headerlen = skb_headroom(skb); 2126 unsigned int size = skb_end_offset(skb) + skb->data_len; 2127 struct sk_buff *n = __alloc_skb(size, gfp_mask, 2128 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 2129 2130 if (!n) 2131 return NULL; 2132 2133 /* Set the data pointer */ 2134 skb_reserve(n, headerlen); 2135 /* Set the tail pointer and length */ 2136 skb_put(n, skb->len); 2137 2138 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 2139 2140 skb_copy_header(n, skb); 2141 return n; 2142 } 2143 EXPORT_SYMBOL(skb_copy); 2144 2145 /** 2146 * __pskb_copy_fclone - create copy of an sk_buff with private head. 2147 * @skb: buffer to copy 2148 * @headroom: headroom of new skb 2149 * @gfp_mask: allocation priority 2150 * @fclone: if true allocate the copy of the skb from the fclone 2151 * cache instead of the head cache; it is recommended to set this 2152 * to true for the cases where the copy will likely be cloned 2153 * 2154 * Make a copy of both an &sk_buff and part of its data, located 2155 * in header. Fragmented data remain shared. This is used when 2156 * the caller wishes to modify only header of &sk_buff and needs 2157 * private copy of the header to alter. Returns %NULL on failure 2158 * or the pointer to the buffer on success. 2159 * The returned buffer has a reference count of 1. 2160 */ 2161 2162 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2163 gfp_t gfp_mask, bool fclone) 2164 { 2165 unsigned int size = skb_headlen(skb) + headroom; 2166 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2167 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2168 2169 if (!n) 2170 goto out; 2171 2172 /* Set the data pointer */ 2173 skb_reserve(n, headroom); 2174 /* Set the tail pointer and length */ 2175 skb_put(n, skb_headlen(skb)); 2176 /* Copy the bytes */ 2177 skb_copy_from_linear_data(skb, n->data, n->len); 2178 2179 n->truesize += skb->data_len; 2180 n->data_len = skb->data_len; 2181 n->len = skb->len; 2182 2183 if (skb_shinfo(skb)->nr_frags) { 2184 int i; 2185 2186 if (skb_orphan_frags(skb, gfp_mask) || 2187 skb_zerocopy_clone(n, skb, gfp_mask)) { 2188 kfree_skb(n); 2189 n = NULL; 2190 goto out; 2191 } 2192 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2193 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2194 skb_frag_ref(skb, i); 2195 } 2196 skb_shinfo(n)->nr_frags = i; 2197 } 2198 2199 if (skb_has_frag_list(skb)) { 2200 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2201 skb_clone_fraglist(n); 2202 } 2203 2204 skb_copy_header(n, skb); 2205 out: 2206 return n; 2207 } 2208 EXPORT_SYMBOL(__pskb_copy_fclone); 2209 2210 /** 2211 * pskb_expand_head - reallocate header of &sk_buff 2212 * @skb: buffer to reallocate 2213 * @nhead: room to add at head 2214 * @ntail: room to add at tail 2215 * @gfp_mask: allocation priority 2216 * 2217 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2218 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2219 * reference count of 1. Returns zero in the case of success or error, 2220 * if expansion failed. In the last case, &sk_buff is not changed. 2221 * 2222 * All the pointers pointing into skb header may change and must be 2223 * reloaded after call to this function. 2224 */ 2225 2226 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2227 gfp_t gfp_mask) 2228 { 2229 unsigned int osize = skb_end_offset(skb); 2230 unsigned int size = osize + nhead + ntail; 2231 long off; 2232 u8 *data; 2233 int i; 2234 2235 BUG_ON(nhead < 0); 2236 2237 BUG_ON(skb_shared(skb)); 2238 2239 skb_zcopy_downgrade_managed(skb); 2240 2241 if (skb_pfmemalloc(skb)) 2242 gfp_mask |= __GFP_MEMALLOC; 2243 2244 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2245 if (!data) 2246 goto nodata; 2247 size = SKB_WITH_OVERHEAD(size); 2248 2249 /* Copy only real data... and, alas, header. This should be 2250 * optimized for the cases when header is void. 2251 */ 2252 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2253 2254 memcpy((struct skb_shared_info *)(data + size), 2255 skb_shinfo(skb), 2256 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2257 2258 /* 2259 * if shinfo is shared we must drop the old head gracefully, but if it 2260 * is not we can just drop the old head and let the existing refcount 2261 * be since all we did is relocate the values 2262 */ 2263 if (skb_cloned(skb)) { 2264 if (skb_orphan_frags(skb, gfp_mask)) 2265 goto nofrags; 2266 if (skb_zcopy(skb)) 2267 refcount_inc(&skb_uarg(skb)->refcnt); 2268 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2269 skb_frag_ref(skb, i); 2270 2271 if (skb_has_frag_list(skb)) 2272 skb_clone_fraglist(skb); 2273 2274 skb_release_data(skb, SKB_CONSUMED, false); 2275 } else { 2276 skb_free_head(skb, false); 2277 } 2278 off = (data + nhead) - skb->head; 2279 2280 skb->head = data; 2281 skb->head_frag = 0; 2282 skb->data += off; 2283 2284 skb_set_end_offset(skb, size); 2285 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2286 off = nhead; 2287 #endif 2288 skb->tail += off; 2289 skb_headers_offset_update(skb, nhead); 2290 skb->cloned = 0; 2291 skb->hdr_len = 0; 2292 skb->nohdr = 0; 2293 atomic_set(&skb_shinfo(skb)->dataref, 1); 2294 2295 skb_metadata_clear(skb); 2296 2297 /* It is not generally safe to change skb->truesize. 2298 * For the moment, we really care of rx path, or 2299 * when skb is orphaned (not attached to a socket). 2300 */ 2301 if (!skb->sk || skb->destructor == sock_edemux) 2302 skb->truesize += size - osize; 2303 2304 return 0; 2305 2306 nofrags: 2307 skb_kfree_head(data, size); 2308 nodata: 2309 return -ENOMEM; 2310 } 2311 EXPORT_SYMBOL(pskb_expand_head); 2312 2313 /* Make private copy of skb with writable head and some headroom */ 2314 2315 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2316 { 2317 struct sk_buff *skb2; 2318 int delta = headroom - skb_headroom(skb); 2319 2320 if (delta <= 0) 2321 skb2 = pskb_copy(skb, GFP_ATOMIC); 2322 else { 2323 skb2 = skb_clone(skb, GFP_ATOMIC); 2324 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2325 GFP_ATOMIC)) { 2326 kfree_skb(skb2); 2327 skb2 = NULL; 2328 } 2329 } 2330 return skb2; 2331 } 2332 EXPORT_SYMBOL(skb_realloc_headroom); 2333 2334 /* Note: We plan to rework this in linux-6.4 */ 2335 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2336 { 2337 unsigned int saved_end_offset, saved_truesize; 2338 struct skb_shared_info *shinfo; 2339 int res; 2340 2341 saved_end_offset = skb_end_offset(skb); 2342 saved_truesize = skb->truesize; 2343 2344 res = pskb_expand_head(skb, 0, 0, pri); 2345 if (res) 2346 return res; 2347 2348 skb->truesize = saved_truesize; 2349 2350 if (likely(skb_end_offset(skb) == saved_end_offset)) 2351 return 0; 2352 2353 /* We can not change skb->end if the original or new value 2354 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2355 */ 2356 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2357 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2358 /* We think this path should not be taken. 2359 * Add a temporary trace to warn us just in case. 2360 */ 2361 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2362 saved_end_offset, skb_end_offset(skb)); 2363 WARN_ON_ONCE(1); 2364 return 0; 2365 } 2366 2367 shinfo = skb_shinfo(skb); 2368 2369 /* We are about to change back skb->end, 2370 * we need to move skb_shinfo() to its new location. 2371 */ 2372 memmove(skb->head + saved_end_offset, 2373 shinfo, 2374 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2375 2376 skb_set_end_offset(skb, saved_end_offset); 2377 2378 return 0; 2379 } 2380 2381 /** 2382 * skb_expand_head - reallocate header of &sk_buff 2383 * @skb: buffer to reallocate 2384 * @headroom: needed headroom 2385 * 2386 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2387 * if possible; copies skb->sk to new skb as needed 2388 * and frees original skb in case of failures. 2389 * 2390 * It expect increased headroom and generates warning otherwise. 2391 */ 2392 2393 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2394 { 2395 int delta = headroom - skb_headroom(skb); 2396 int osize = skb_end_offset(skb); 2397 struct sock *sk = skb->sk; 2398 2399 if (WARN_ONCE(delta <= 0, 2400 "%s is expecting an increase in the headroom", __func__)) 2401 return skb; 2402 2403 delta = SKB_DATA_ALIGN(delta); 2404 /* pskb_expand_head() might crash, if skb is shared. */ 2405 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2406 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2407 2408 if (unlikely(!nskb)) 2409 goto fail; 2410 2411 if (sk) 2412 skb_set_owner_w(nskb, sk); 2413 consume_skb(skb); 2414 skb = nskb; 2415 } 2416 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2417 goto fail; 2418 2419 if (sk && is_skb_wmem(skb)) { 2420 delta = skb_end_offset(skb) - osize; 2421 refcount_add(delta, &sk->sk_wmem_alloc); 2422 skb->truesize += delta; 2423 } 2424 return skb; 2425 2426 fail: 2427 kfree_skb(skb); 2428 return NULL; 2429 } 2430 EXPORT_SYMBOL(skb_expand_head); 2431 2432 /** 2433 * skb_copy_expand - copy and expand sk_buff 2434 * @skb: buffer to copy 2435 * @newheadroom: new free bytes at head 2436 * @newtailroom: new free bytes at tail 2437 * @gfp_mask: allocation priority 2438 * 2439 * Make a copy of both an &sk_buff and its data and while doing so 2440 * allocate additional space. 2441 * 2442 * This is used when the caller wishes to modify the data and needs a 2443 * private copy of the data to alter as well as more space for new fields. 2444 * Returns %NULL on failure or the pointer to the buffer 2445 * on success. The returned buffer has a reference count of 1. 2446 * 2447 * You must pass %GFP_ATOMIC as the allocation priority if this function 2448 * is called from an interrupt. 2449 */ 2450 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2451 int newheadroom, int newtailroom, 2452 gfp_t gfp_mask) 2453 { 2454 /* 2455 * Allocate the copy buffer 2456 */ 2457 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 2458 gfp_mask, skb_alloc_rx_flag(skb), 2459 NUMA_NO_NODE); 2460 int oldheadroom = skb_headroom(skb); 2461 int head_copy_len, head_copy_off; 2462 2463 if (!n) 2464 return NULL; 2465 2466 skb_reserve(n, newheadroom); 2467 2468 /* Set the tail pointer and length */ 2469 skb_put(n, skb->len); 2470 2471 head_copy_len = oldheadroom; 2472 head_copy_off = 0; 2473 if (newheadroom <= head_copy_len) 2474 head_copy_len = newheadroom; 2475 else 2476 head_copy_off = newheadroom - head_copy_len; 2477 2478 /* Copy the linear header and data. */ 2479 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2480 skb->len + head_copy_len)); 2481 2482 skb_copy_header(n, skb); 2483 2484 skb_headers_offset_update(n, newheadroom - oldheadroom); 2485 2486 return n; 2487 } 2488 EXPORT_SYMBOL(skb_copy_expand); 2489 2490 /** 2491 * __skb_pad - zero pad the tail of an skb 2492 * @skb: buffer to pad 2493 * @pad: space to pad 2494 * @free_on_error: free buffer on error 2495 * 2496 * Ensure that a buffer is followed by a padding area that is zero 2497 * filled. Used by network drivers which may DMA or transfer data 2498 * beyond the buffer end onto the wire. 2499 * 2500 * May return error in out of memory cases. The skb is freed on error 2501 * if @free_on_error is true. 2502 */ 2503 2504 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2505 { 2506 int err; 2507 int ntail; 2508 2509 /* If the skbuff is non linear tailroom is always zero.. */ 2510 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2511 memset(skb->data+skb->len, 0, pad); 2512 return 0; 2513 } 2514 2515 ntail = skb->data_len + pad - (skb->end - skb->tail); 2516 if (likely(skb_cloned(skb) || ntail > 0)) { 2517 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2518 if (unlikely(err)) 2519 goto free_skb; 2520 } 2521 2522 /* FIXME: The use of this function with non-linear skb's really needs 2523 * to be audited. 2524 */ 2525 err = skb_linearize(skb); 2526 if (unlikely(err)) 2527 goto free_skb; 2528 2529 memset(skb->data + skb->len, 0, pad); 2530 return 0; 2531 2532 free_skb: 2533 if (free_on_error) 2534 kfree_skb(skb); 2535 return err; 2536 } 2537 EXPORT_SYMBOL(__skb_pad); 2538 2539 /** 2540 * pskb_put - add data to the tail of a potentially fragmented buffer 2541 * @skb: start of the buffer to use 2542 * @tail: tail fragment of the buffer to use 2543 * @len: amount of data to add 2544 * 2545 * This function extends the used data area of the potentially 2546 * fragmented buffer. @tail must be the last fragment of @skb -- or 2547 * @skb itself. If this would exceed the total buffer size the kernel 2548 * will panic. A pointer to the first byte of the extra data is 2549 * returned. 2550 */ 2551 2552 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2553 { 2554 if (tail != skb) { 2555 skb->data_len += len; 2556 skb->len += len; 2557 } 2558 return skb_put(tail, len); 2559 } 2560 EXPORT_SYMBOL_GPL(pskb_put); 2561 2562 /** 2563 * skb_put - add data to a buffer 2564 * @skb: buffer to use 2565 * @len: amount of data to add 2566 * 2567 * This function extends the used data area of the buffer. If this would 2568 * exceed the total buffer size the kernel will panic. A pointer to the 2569 * first byte of the extra data is returned. 2570 */ 2571 void *skb_put(struct sk_buff *skb, unsigned int len) 2572 { 2573 void *tmp = skb_tail_pointer(skb); 2574 SKB_LINEAR_ASSERT(skb); 2575 skb->tail += len; 2576 skb->len += len; 2577 if (unlikely(skb->tail > skb->end)) 2578 skb_over_panic(skb, len, __builtin_return_address(0)); 2579 return tmp; 2580 } 2581 EXPORT_SYMBOL(skb_put); 2582 2583 /** 2584 * skb_push - add data to the start of a buffer 2585 * @skb: buffer to use 2586 * @len: amount of data to add 2587 * 2588 * This function extends the used data area of the buffer at the buffer 2589 * start. If this would exceed the total buffer headroom the kernel will 2590 * panic. A pointer to the first byte of the extra data is returned. 2591 */ 2592 void *skb_push(struct sk_buff *skb, unsigned int len) 2593 { 2594 skb->data -= len; 2595 skb->len += len; 2596 if (unlikely(skb->data < skb->head)) 2597 skb_under_panic(skb, len, __builtin_return_address(0)); 2598 return skb->data; 2599 } 2600 EXPORT_SYMBOL(skb_push); 2601 2602 /** 2603 * skb_pull - remove data from the start of a buffer 2604 * @skb: buffer to use 2605 * @len: amount of data to remove 2606 * 2607 * This function removes data from the start of a buffer, returning 2608 * the memory to the headroom. A pointer to the next data in the buffer 2609 * is returned. Once the data has been pulled future pushes will overwrite 2610 * the old data. 2611 */ 2612 void *skb_pull(struct sk_buff *skb, unsigned int len) 2613 { 2614 return skb_pull_inline(skb, len); 2615 } 2616 EXPORT_SYMBOL(skb_pull); 2617 2618 /** 2619 * skb_pull_data - remove data from the start of a buffer returning its 2620 * original position. 2621 * @skb: buffer to use 2622 * @len: amount of data to remove 2623 * 2624 * This function removes data from the start of a buffer, returning 2625 * the memory to the headroom. A pointer to the original data in the buffer 2626 * is returned after checking if there is enough data to pull. Once the 2627 * data has been pulled future pushes will overwrite the old data. 2628 */ 2629 void *skb_pull_data(struct sk_buff *skb, size_t len) 2630 { 2631 void *data = skb->data; 2632 2633 if (skb->len < len) 2634 return NULL; 2635 2636 skb_pull(skb, len); 2637 2638 return data; 2639 } 2640 EXPORT_SYMBOL(skb_pull_data); 2641 2642 /** 2643 * skb_trim - remove end from a buffer 2644 * @skb: buffer to alter 2645 * @len: new length 2646 * 2647 * Cut the length of a buffer down by removing data from the tail. If 2648 * the buffer is already under the length specified it is not modified. 2649 * The skb must be linear. 2650 */ 2651 void skb_trim(struct sk_buff *skb, unsigned int len) 2652 { 2653 if (skb->len > len) 2654 __skb_trim(skb, len); 2655 } 2656 EXPORT_SYMBOL(skb_trim); 2657 2658 /* Trims skb to length len. It can change skb pointers. 2659 */ 2660 2661 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2662 { 2663 struct sk_buff **fragp; 2664 struct sk_buff *frag; 2665 int offset = skb_headlen(skb); 2666 int nfrags = skb_shinfo(skb)->nr_frags; 2667 int i; 2668 int err; 2669 2670 if (skb_cloned(skb) && 2671 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2672 return err; 2673 2674 i = 0; 2675 if (offset >= len) 2676 goto drop_pages; 2677 2678 for (; i < nfrags; i++) { 2679 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2680 2681 if (end < len) { 2682 offset = end; 2683 continue; 2684 } 2685 2686 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2687 2688 drop_pages: 2689 skb_shinfo(skb)->nr_frags = i; 2690 2691 for (; i < nfrags; i++) 2692 skb_frag_unref(skb, i); 2693 2694 if (skb_has_frag_list(skb)) 2695 skb_drop_fraglist(skb); 2696 goto done; 2697 } 2698 2699 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2700 fragp = &frag->next) { 2701 int end = offset + frag->len; 2702 2703 if (skb_shared(frag)) { 2704 struct sk_buff *nfrag; 2705 2706 nfrag = skb_clone(frag, GFP_ATOMIC); 2707 if (unlikely(!nfrag)) 2708 return -ENOMEM; 2709 2710 nfrag->next = frag->next; 2711 consume_skb(frag); 2712 frag = nfrag; 2713 *fragp = frag; 2714 } 2715 2716 if (end < len) { 2717 offset = end; 2718 continue; 2719 } 2720 2721 if (end > len && 2722 unlikely((err = pskb_trim(frag, len - offset)))) 2723 return err; 2724 2725 if (frag->next) 2726 skb_drop_list(&frag->next); 2727 break; 2728 } 2729 2730 done: 2731 if (len > skb_headlen(skb)) { 2732 skb->data_len -= skb->len - len; 2733 skb->len = len; 2734 } else { 2735 skb->len = len; 2736 skb->data_len = 0; 2737 skb_set_tail_pointer(skb, len); 2738 } 2739 2740 if (!skb->sk || skb->destructor == sock_edemux) 2741 skb_condense(skb); 2742 return 0; 2743 } 2744 EXPORT_SYMBOL(___pskb_trim); 2745 2746 /* Note : use pskb_trim_rcsum() instead of calling this directly 2747 */ 2748 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2749 { 2750 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2751 int delta = skb->len - len; 2752 2753 skb->csum = csum_block_sub(skb->csum, 2754 skb_checksum(skb, len, delta, 0), 2755 len); 2756 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2757 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2758 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2759 2760 if (offset + sizeof(__sum16) > hdlen) 2761 return -EINVAL; 2762 } 2763 return __pskb_trim(skb, len); 2764 } 2765 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2766 2767 /** 2768 * __pskb_pull_tail - advance tail of skb header 2769 * @skb: buffer to reallocate 2770 * @delta: number of bytes to advance tail 2771 * 2772 * The function makes a sense only on a fragmented &sk_buff, 2773 * it expands header moving its tail forward and copying necessary 2774 * data from fragmented part. 2775 * 2776 * &sk_buff MUST have reference count of 1. 2777 * 2778 * Returns %NULL (and &sk_buff does not change) if pull failed 2779 * or value of new tail of skb in the case of success. 2780 * 2781 * All the pointers pointing into skb header may change and must be 2782 * reloaded after call to this function. 2783 */ 2784 2785 /* Moves tail of skb head forward, copying data from fragmented part, 2786 * when it is necessary. 2787 * 1. It may fail due to malloc failure. 2788 * 2. It may change skb pointers. 2789 * 2790 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2791 */ 2792 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2793 { 2794 /* If skb has not enough free space at tail, get new one 2795 * plus 128 bytes for future expansions. If we have enough 2796 * room at tail, reallocate without expansion only if skb is cloned. 2797 */ 2798 int i, k, eat = (skb->tail + delta) - skb->end; 2799 2800 if (eat > 0 || skb_cloned(skb)) { 2801 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2802 GFP_ATOMIC)) 2803 return NULL; 2804 } 2805 2806 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2807 skb_tail_pointer(skb), delta)); 2808 2809 /* Optimization: no fragments, no reasons to preestimate 2810 * size of pulled pages. Superb. 2811 */ 2812 if (!skb_has_frag_list(skb)) 2813 goto pull_pages; 2814 2815 /* Estimate size of pulled pages. */ 2816 eat = delta; 2817 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2818 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2819 2820 if (size >= eat) 2821 goto pull_pages; 2822 eat -= size; 2823 } 2824 2825 /* If we need update frag list, we are in troubles. 2826 * Certainly, it is possible to add an offset to skb data, 2827 * but taking into account that pulling is expected to 2828 * be very rare operation, it is worth to fight against 2829 * further bloating skb head and crucify ourselves here instead. 2830 * Pure masohism, indeed. 8)8) 2831 */ 2832 if (eat) { 2833 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2834 struct sk_buff *clone = NULL; 2835 struct sk_buff *insp = NULL; 2836 2837 do { 2838 if (list->len <= eat) { 2839 /* Eaten as whole. */ 2840 eat -= list->len; 2841 list = list->next; 2842 insp = list; 2843 } else { 2844 /* Eaten partially. */ 2845 if (skb_is_gso(skb) && !list->head_frag && 2846 skb_headlen(list)) 2847 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2848 2849 if (skb_shared(list)) { 2850 /* Sucks! We need to fork list. :-( */ 2851 clone = skb_clone(list, GFP_ATOMIC); 2852 if (!clone) 2853 return NULL; 2854 insp = list->next; 2855 list = clone; 2856 } else { 2857 /* This may be pulled without 2858 * problems. */ 2859 insp = list; 2860 } 2861 if (!pskb_pull(list, eat)) { 2862 kfree_skb(clone); 2863 return NULL; 2864 } 2865 break; 2866 } 2867 } while (eat); 2868 2869 /* Free pulled out fragments. */ 2870 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2871 skb_shinfo(skb)->frag_list = list->next; 2872 consume_skb(list); 2873 } 2874 /* And insert new clone at head. */ 2875 if (clone) { 2876 clone->next = list; 2877 skb_shinfo(skb)->frag_list = clone; 2878 } 2879 } 2880 /* Success! Now we may commit changes to skb data. */ 2881 2882 pull_pages: 2883 eat = delta; 2884 k = 0; 2885 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2886 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2887 2888 if (size <= eat) { 2889 skb_frag_unref(skb, i); 2890 eat -= size; 2891 } else { 2892 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2893 2894 *frag = skb_shinfo(skb)->frags[i]; 2895 if (eat) { 2896 skb_frag_off_add(frag, eat); 2897 skb_frag_size_sub(frag, eat); 2898 if (!i) 2899 goto end; 2900 eat = 0; 2901 } 2902 k++; 2903 } 2904 } 2905 skb_shinfo(skb)->nr_frags = k; 2906 2907 end: 2908 skb->tail += delta; 2909 skb->data_len -= delta; 2910 2911 if (!skb->data_len) 2912 skb_zcopy_clear(skb, false); 2913 2914 return skb_tail_pointer(skb); 2915 } 2916 EXPORT_SYMBOL(__pskb_pull_tail); 2917 2918 /** 2919 * skb_copy_bits - copy bits from skb to kernel buffer 2920 * @skb: source skb 2921 * @offset: offset in source 2922 * @to: destination buffer 2923 * @len: number of bytes to copy 2924 * 2925 * Copy the specified number of bytes from the source skb to the 2926 * destination buffer. 2927 * 2928 * CAUTION ! : 2929 * If its prototype is ever changed, 2930 * check arch/{*}/net/{*}.S files, 2931 * since it is called from BPF assembly code. 2932 */ 2933 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2934 { 2935 int start = skb_headlen(skb); 2936 struct sk_buff *frag_iter; 2937 int i, copy; 2938 2939 if (offset > (int)skb->len - len) 2940 goto fault; 2941 2942 /* Copy header. */ 2943 if ((copy = start - offset) > 0) { 2944 if (copy > len) 2945 copy = len; 2946 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2947 if ((len -= copy) == 0) 2948 return 0; 2949 offset += copy; 2950 to += copy; 2951 } 2952 2953 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2954 int end; 2955 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2956 2957 WARN_ON(start > offset + len); 2958 2959 end = start + skb_frag_size(f); 2960 if ((copy = end - offset) > 0) { 2961 u32 p_off, p_len, copied; 2962 struct page *p; 2963 u8 *vaddr; 2964 2965 if (copy > len) 2966 copy = len; 2967 2968 skb_frag_foreach_page(f, 2969 skb_frag_off(f) + offset - start, 2970 copy, p, p_off, p_len, copied) { 2971 vaddr = kmap_atomic(p); 2972 memcpy(to + copied, vaddr + p_off, p_len); 2973 kunmap_atomic(vaddr); 2974 } 2975 2976 if ((len -= copy) == 0) 2977 return 0; 2978 offset += copy; 2979 to += copy; 2980 } 2981 start = end; 2982 } 2983 2984 skb_walk_frags(skb, frag_iter) { 2985 int end; 2986 2987 WARN_ON(start > offset + len); 2988 2989 end = start + frag_iter->len; 2990 if ((copy = end - offset) > 0) { 2991 if (copy > len) 2992 copy = len; 2993 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2994 goto fault; 2995 if ((len -= copy) == 0) 2996 return 0; 2997 offset += copy; 2998 to += copy; 2999 } 3000 start = end; 3001 } 3002 3003 if (!len) 3004 return 0; 3005 3006 fault: 3007 return -EFAULT; 3008 } 3009 EXPORT_SYMBOL(skb_copy_bits); 3010 3011 /* 3012 * Callback from splice_to_pipe(), if we need to release some pages 3013 * at the end of the spd in case we error'ed out in filling the pipe. 3014 */ 3015 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 3016 { 3017 put_page(spd->pages[i]); 3018 } 3019 3020 static struct page *linear_to_page(struct page *page, unsigned int *len, 3021 unsigned int *offset, 3022 struct sock *sk) 3023 { 3024 struct page_frag *pfrag = sk_page_frag(sk); 3025 3026 if (!sk_page_frag_refill(sk, pfrag)) 3027 return NULL; 3028 3029 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 3030 3031 memcpy(page_address(pfrag->page) + pfrag->offset, 3032 page_address(page) + *offset, *len); 3033 *offset = pfrag->offset; 3034 pfrag->offset += *len; 3035 3036 return pfrag->page; 3037 } 3038 3039 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 3040 struct page *page, 3041 unsigned int offset) 3042 { 3043 return spd->nr_pages && 3044 spd->pages[spd->nr_pages - 1] == page && 3045 (spd->partial[spd->nr_pages - 1].offset + 3046 spd->partial[spd->nr_pages - 1].len == offset); 3047 } 3048 3049 /* 3050 * Fill page/offset/length into spd, if it can hold more pages. 3051 */ 3052 static bool spd_fill_page(struct splice_pipe_desc *spd, 3053 struct pipe_inode_info *pipe, struct page *page, 3054 unsigned int *len, unsigned int offset, 3055 bool linear, 3056 struct sock *sk) 3057 { 3058 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 3059 return true; 3060 3061 if (linear) { 3062 page = linear_to_page(page, len, &offset, sk); 3063 if (!page) 3064 return true; 3065 } 3066 if (spd_can_coalesce(spd, page, offset)) { 3067 spd->partial[spd->nr_pages - 1].len += *len; 3068 return false; 3069 } 3070 get_page(page); 3071 spd->pages[spd->nr_pages] = page; 3072 spd->partial[spd->nr_pages].len = *len; 3073 spd->partial[spd->nr_pages].offset = offset; 3074 spd->nr_pages++; 3075 3076 return false; 3077 } 3078 3079 static bool __splice_segment(struct page *page, unsigned int poff, 3080 unsigned int plen, unsigned int *off, 3081 unsigned int *len, 3082 struct splice_pipe_desc *spd, bool linear, 3083 struct sock *sk, 3084 struct pipe_inode_info *pipe) 3085 { 3086 if (!*len) 3087 return true; 3088 3089 /* skip this segment if already processed */ 3090 if (*off >= plen) { 3091 *off -= plen; 3092 return false; 3093 } 3094 3095 /* ignore any bits we already processed */ 3096 poff += *off; 3097 plen -= *off; 3098 *off = 0; 3099 3100 do { 3101 unsigned int flen = min(*len, plen); 3102 3103 if (spd_fill_page(spd, pipe, page, &flen, poff, 3104 linear, sk)) 3105 return true; 3106 poff += flen; 3107 plen -= flen; 3108 *len -= flen; 3109 } while (*len && plen); 3110 3111 return false; 3112 } 3113 3114 /* 3115 * Map linear and fragment data from the skb to spd. It reports true if the 3116 * pipe is full or if we already spliced the requested length. 3117 */ 3118 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 3119 unsigned int *offset, unsigned int *len, 3120 struct splice_pipe_desc *spd, struct sock *sk) 3121 { 3122 int seg; 3123 struct sk_buff *iter; 3124 3125 /* map the linear part : 3126 * If skb->head_frag is set, this 'linear' part is backed by a 3127 * fragment, and if the head is not shared with any clones then 3128 * we can avoid a copy since we own the head portion of this page. 3129 */ 3130 if (__splice_segment(virt_to_page(skb->data), 3131 (unsigned long) skb->data & (PAGE_SIZE - 1), 3132 skb_headlen(skb), 3133 offset, len, spd, 3134 skb_head_is_locked(skb), 3135 sk, pipe)) 3136 return true; 3137 3138 /* 3139 * then map the fragments 3140 */ 3141 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 3142 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 3143 3144 if (__splice_segment(skb_frag_page(f), 3145 skb_frag_off(f), skb_frag_size(f), 3146 offset, len, spd, false, sk, pipe)) 3147 return true; 3148 } 3149 3150 skb_walk_frags(skb, iter) { 3151 if (*offset >= iter->len) { 3152 *offset -= iter->len; 3153 continue; 3154 } 3155 /* __skb_splice_bits() only fails if the output has no room 3156 * left, so no point in going over the frag_list for the error 3157 * case. 3158 */ 3159 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 3160 return true; 3161 } 3162 3163 return false; 3164 } 3165 3166 /* 3167 * Map data from the skb to a pipe. Should handle both the linear part, 3168 * the fragments, and the frag list. 3169 */ 3170 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3171 struct pipe_inode_info *pipe, unsigned int tlen, 3172 unsigned int flags) 3173 { 3174 struct partial_page partial[MAX_SKB_FRAGS]; 3175 struct page *pages[MAX_SKB_FRAGS]; 3176 struct splice_pipe_desc spd = { 3177 .pages = pages, 3178 .partial = partial, 3179 .nr_pages_max = MAX_SKB_FRAGS, 3180 .ops = &nosteal_pipe_buf_ops, 3181 .spd_release = sock_spd_release, 3182 }; 3183 int ret = 0; 3184 3185 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3186 3187 if (spd.nr_pages) 3188 ret = splice_to_pipe(pipe, &spd); 3189 3190 return ret; 3191 } 3192 EXPORT_SYMBOL_GPL(skb_splice_bits); 3193 3194 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3195 { 3196 struct socket *sock = sk->sk_socket; 3197 size_t size = msg_data_left(msg); 3198 3199 if (!sock) 3200 return -EINVAL; 3201 3202 if (!sock->ops->sendmsg_locked) 3203 return sock_no_sendmsg_locked(sk, msg, size); 3204 3205 return sock->ops->sendmsg_locked(sk, msg, size); 3206 } 3207 3208 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3209 { 3210 struct socket *sock = sk->sk_socket; 3211 3212 if (!sock) 3213 return -EINVAL; 3214 return sock_sendmsg(sock, msg); 3215 } 3216 3217 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3218 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3219 int len, sendmsg_func sendmsg) 3220 { 3221 unsigned int orig_len = len; 3222 struct sk_buff *head = skb; 3223 unsigned short fragidx; 3224 int slen, ret; 3225 3226 do_frag_list: 3227 3228 /* Deal with head data */ 3229 while (offset < skb_headlen(skb) && len) { 3230 struct kvec kv; 3231 struct msghdr msg; 3232 3233 slen = min_t(int, len, skb_headlen(skb) - offset); 3234 kv.iov_base = skb->data + offset; 3235 kv.iov_len = slen; 3236 memset(&msg, 0, sizeof(msg)); 3237 msg.msg_flags = MSG_DONTWAIT; 3238 3239 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3240 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3241 sendmsg_unlocked, sk, &msg); 3242 if (ret <= 0) 3243 goto error; 3244 3245 offset += ret; 3246 len -= ret; 3247 } 3248 3249 /* All the data was skb head? */ 3250 if (!len) 3251 goto out; 3252 3253 /* Make offset relative to start of frags */ 3254 offset -= skb_headlen(skb); 3255 3256 /* Find where we are in frag list */ 3257 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3258 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3259 3260 if (offset < skb_frag_size(frag)) 3261 break; 3262 3263 offset -= skb_frag_size(frag); 3264 } 3265 3266 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3267 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3268 3269 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3270 3271 while (slen) { 3272 struct bio_vec bvec; 3273 struct msghdr msg = { 3274 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT, 3275 }; 3276 3277 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3278 skb_frag_off(frag) + offset); 3279 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3280 slen); 3281 3282 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3283 sendmsg_unlocked, sk, &msg); 3284 if (ret <= 0) 3285 goto error; 3286 3287 len -= ret; 3288 offset += ret; 3289 slen -= ret; 3290 } 3291 3292 offset = 0; 3293 } 3294 3295 if (len) { 3296 /* Process any frag lists */ 3297 3298 if (skb == head) { 3299 if (skb_has_frag_list(skb)) { 3300 skb = skb_shinfo(skb)->frag_list; 3301 goto do_frag_list; 3302 } 3303 } else if (skb->next) { 3304 skb = skb->next; 3305 goto do_frag_list; 3306 } 3307 } 3308 3309 out: 3310 return orig_len - len; 3311 3312 error: 3313 return orig_len == len ? ret : orig_len - len; 3314 } 3315 3316 /* Send skb data on a socket. Socket must be locked. */ 3317 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3318 int len) 3319 { 3320 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked); 3321 } 3322 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3323 3324 /* Send skb data on a socket. Socket must be unlocked. */ 3325 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3326 { 3327 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked); 3328 } 3329 3330 /** 3331 * skb_store_bits - store bits from kernel buffer to skb 3332 * @skb: destination buffer 3333 * @offset: offset in destination 3334 * @from: source buffer 3335 * @len: number of bytes to copy 3336 * 3337 * Copy the specified number of bytes from the source buffer to the 3338 * destination skb. This function handles all the messy bits of 3339 * traversing fragment lists and such. 3340 */ 3341 3342 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3343 { 3344 int start = skb_headlen(skb); 3345 struct sk_buff *frag_iter; 3346 int i, copy; 3347 3348 if (offset > (int)skb->len - len) 3349 goto fault; 3350 3351 if ((copy = start - offset) > 0) { 3352 if (copy > len) 3353 copy = len; 3354 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3355 if ((len -= copy) == 0) 3356 return 0; 3357 offset += copy; 3358 from += copy; 3359 } 3360 3361 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3362 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3363 int end; 3364 3365 WARN_ON(start > offset + len); 3366 3367 end = start + skb_frag_size(frag); 3368 if ((copy = end - offset) > 0) { 3369 u32 p_off, p_len, copied; 3370 struct page *p; 3371 u8 *vaddr; 3372 3373 if (copy > len) 3374 copy = len; 3375 3376 skb_frag_foreach_page(frag, 3377 skb_frag_off(frag) + offset - start, 3378 copy, p, p_off, p_len, copied) { 3379 vaddr = kmap_atomic(p); 3380 memcpy(vaddr + p_off, from + copied, p_len); 3381 kunmap_atomic(vaddr); 3382 } 3383 3384 if ((len -= copy) == 0) 3385 return 0; 3386 offset += copy; 3387 from += copy; 3388 } 3389 start = end; 3390 } 3391 3392 skb_walk_frags(skb, frag_iter) { 3393 int end; 3394 3395 WARN_ON(start > offset + len); 3396 3397 end = start + frag_iter->len; 3398 if ((copy = end - offset) > 0) { 3399 if (copy > len) 3400 copy = len; 3401 if (skb_store_bits(frag_iter, offset - start, 3402 from, copy)) 3403 goto fault; 3404 if ((len -= copy) == 0) 3405 return 0; 3406 offset += copy; 3407 from += copy; 3408 } 3409 start = end; 3410 } 3411 if (!len) 3412 return 0; 3413 3414 fault: 3415 return -EFAULT; 3416 } 3417 EXPORT_SYMBOL(skb_store_bits); 3418 3419 /* Checksum skb data. */ 3420 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3421 __wsum csum, const struct skb_checksum_ops *ops) 3422 { 3423 int start = skb_headlen(skb); 3424 int i, copy = start - offset; 3425 struct sk_buff *frag_iter; 3426 int pos = 0; 3427 3428 /* Checksum header. */ 3429 if (copy > 0) { 3430 if (copy > len) 3431 copy = len; 3432 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 3433 skb->data + offset, copy, csum); 3434 if ((len -= copy) == 0) 3435 return csum; 3436 offset += copy; 3437 pos = copy; 3438 } 3439 3440 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3441 int end; 3442 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3443 3444 WARN_ON(start > offset + len); 3445 3446 end = start + skb_frag_size(frag); 3447 if ((copy = end - offset) > 0) { 3448 u32 p_off, p_len, copied; 3449 struct page *p; 3450 __wsum csum2; 3451 u8 *vaddr; 3452 3453 if (copy > len) 3454 copy = len; 3455 3456 skb_frag_foreach_page(frag, 3457 skb_frag_off(frag) + offset - start, 3458 copy, p, p_off, p_len, copied) { 3459 vaddr = kmap_atomic(p); 3460 csum2 = INDIRECT_CALL_1(ops->update, 3461 csum_partial_ext, 3462 vaddr + p_off, p_len, 0); 3463 kunmap_atomic(vaddr); 3464 csum = INDIRECT_CALL_1(ops->combine, 3465 csum_block_add_ext, csum, 3466 csum2, pos, p_len); 3467 pos += p_len; 3468 } 3469 3470 if (!(len -= copy)) 3471 return csum; 3472 offset += copy; 3473 } 3474 start = end; 3475 } 3476 3477 skb_walk_frags(skb, frag_iter) { 3478 int end; 3479 3480 WARN_ON(start > offset + len); 3481 3482 end = start + frag_iter->len; 3483 if ((copy = end - offset) > 0) { 3484 __wsum csum2; 3485 if (copy > len) 3486 copy = len; 3487 csum2 = __skb_checksum(frag_iter, offset - start, 3488 copy, 0, ops); 3489 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 3490 csum, csum2, pos, copy); 3491 if ((len -= copy) == 0) 3492 return csum; 3493 offset += copy; 3494 pos += copy; 3495 } 3496 start = end; 3497 } 3498 BUG_ON(len); 3499 3500 return csum; 3501 } 3502 EXPORT_SYMBOL(__skb_checksum); 3503 3504 __wsum skb_checksum(const struct sk_buff *skb, int offset, 3505 int len, __wsum csum) 3506 { 3507 const struct skb_checksum_ops ops = { 3508 .update = csum_partial_ext, 3509 .combine = csum_block_add_ext, 3510 }; 3511 3512 return __skb_checksum(skb, offset, len, csum, &ops); 3513 } 3514 EXPORT_SYMBOL(skb_checksum); 3515 3516 /* Both of above in one bottle. */ 3517 3518 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3519 u8 *to, int len) 3520 { 3521 int start = skb_headlen(skb); 3522 int i, copy = start - offset; 3523 struct sk_buff *frag_iter; 3524 int pos = 0; 3525 __wsum csum = 0; 3526 3527 /* Copy header. */ 3528 if (copy > 0) { 3529 if (copy > len) 3530 copy = len; 3531 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3532 copy); 3533 if ((len -= copy) == 0) 3534 return csum; 3535 offset += copy; 3536 to += copy; 3537 pos = copy; 3538 } 3539 3540 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3541 int end; 3542 3543 WARN_ON(start > offset + len); 3544 3545 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3546 if ((copy = end - offset) > 0) { 3547 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3548 u32 p_off, p_len, copied; 3549 struct page *p; 3550 __wsum csum2; 3551 u8 *vaddr; 3552 3553 if (copy > len) 3554 copy = len; 3555 3556 skb_frag_foreach_page(frag, 3557 skb_frag_off(frag) + offset - start, 3558 copy, p, p_off, p_len, copied) { 3559 vaddr = kmap_atomic(p); 3560 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3561 to + copied, 3562 p_len); 3563 kunmap_atomic(vaddr); 3564 csum = csum_block_add(csum, csum2, pos); 3565 pos += p_len; 3566 } 3567 3568 if (!(len -= copy)) 3569 return csum; 3570 offset += copy; 3571 to += copy; 3572 } 3573 start = end; 3574 } 3575 3576 skb_walk_frags(skb, frag_iter) { 3577 __wsum csum2; 3578 int end; 3579 3580 WARN_ON(start > offset + len); 3581 3582 end = start + frag_iter->len; 3583 if ((copy = end - offset) > 0) { 3584 if (copy > len) 3585 copy = len; 3586 csum2 = skb_copy_and_csum_bits(frag_iter, 3587 offset - start, 3588 to, copy); 3589 csum = csum_block_add(csum, csum2, pos); 3590 if ((len -= copy) == 0) 3591 return csum; 3592 offset += copy; 3593 to += copy; 3594 pos += copy; 3595 } 3596 start = end; 3597 } 3598 BUG_ON(len); 3599 return csum; 3600 } 3601 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3602 3603 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3604 { 3605 __sum16 sum; 3606 3607 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3608 /* See comments in __skb_checksum_complete(). */ 3609 if (likely(!sum)) { 3610 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3611 !skb->csum_complete_sw) 3612 netdev_rx_csum_fault(skb->dev, skb); 3613 } 3614 if (!skb_shared(skb)) 3615 skb->csum_valid = !sum; 3616 return sum; 3617 } 3618 EXPORT_SYMBOL(__skb_checksum_complete_head); 3619 3620 /* This function assumes skb->csum already holds pseudo header's checksum, 3621 * which has been changed from the hardware checksum, for example, by 3622 * __skb_checksum_validate_complete(). And, the original skb->csum must 3623 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3624 * 3625 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3626 * zero. The new checksum is stored back into skb->csum unless the skb is 3627 * shared. 3628 */ 3629 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3630 { 3631 __wsum csum; 3632 __sum16 sum; 3633 3634 csum = skb_checksum(skb, 0, skb->len, 0); 3635 3636 sum = csum_fold(csum_add(skb->csum, csum)); 3637 /* This check is inverted, because we already knew the hardware 3638 * checksum is invalid before calling this function. So, if the 3639 * re-computed checksum is valid instead, then we have a mismatch 3640 * between the original skb->csum and skb_checksum(). This means either 3641 * the original hardware checksum is incorrect or we screw up skb->csum 3642 * when moving skb->data around. 3643 */ 3644 if (likely(!sum)) { 3645 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3646 !skb->csum_complete_sw) 3647 netdev_rx_csum_fault(skb->dev, skb); 3648 } 3649 3650 if (!skb_shared(skb)) { 3651 /* Save full packet checksum */ 3652 skb->csum = csum; 3653 skb->ip_summed = CHECKSUM_COMPLETE; 3654 skb->csum_complete_sw = 1; 3655 skb->csum_valid = !sum; 3656 } 3657 3658 return sum; 3659 } 3660 EXPORT_SYMBOL(__skb_checksum_complete); 3661 3662 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3663 { 3664 net_warn_ratelimited( 3665 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3666 __func__); 3667 return 0; 3668 } 3669 3670 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3671 int offset, int len) 3672 { 3673 net_warn_ratelimited( 3674 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3675 __func__); 3676 return 0; 3677 } 3678 3679 static const struct skb_checksum_ops default_crc32c_ops = { 3680 .update = warn_crc32c_csum_update, 3681 .combine = warn_crc32c_csum_combine, 3682 }; 3683 3684 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3685 &default_crc32c_ops; 3686 EXPORT_SYMBOL(crc32c_csum_stub); 3687 3688 /** 3689 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3690 * @from: source buffer 3691 * 3692 * Calculates the amount of linear headroom needed in the 'to' skb passed 3693 * into skb_zerocopy(). 3694 */ 3695 unsigned int 3696 skb_zerocopy_headlen(const struct sk_buff *from) 3697 { 3698 unsigned int hlen = 0; 3699 3700 if (!from->head_frag || 3701 skb_headlen(from) < L1_CACHE_BYTES || 3702 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3703 hlen = skb_headlen(from); 3704 if (!hlen) 3705 hlen = from->len; 3706 } 3707 3708 if (skb_has_frag_list(from)) 3709 hlen = from->len; 3710 3711 return hlen; 3712 } 3713 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3714 3715 /** 3716 * skb_zerocopy - Zero copy skb to skb 3717 * @to: destination buffer 3718 * @from: source buffer 3719 * @len: number of bytes to copy from source buffer 3720 * @hlen: size of linear headroom in destination buffer 3721 * 3722 * Copies up to `len` bytes from `from` to `to` by creating references 3723 * to the frags in the source buffer. 3724 * 3725 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3726 * headroom in the `to` buffer. 3727 * 3728 * Return value: 3729 * 0: everything is OK 3730 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3731 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3732 */ 3733 int 3734 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3735 { 3736 int i, j = 0; 3737 int plen = 0; /* length of skb->head fragment */ 3738 int ret; 3739 struct page *page; 3740 unsigned int offset; 3741 3742 BUG_ON(!from->head_frag && !hlen); 3743 3744 /* dont bother with small payloads */ 3745 if (len <= skb_tailroom(to)) 3746 return skb_copy_bits(from, 0, skb_put(to, len), len); 3747 3748 if (hlen) { 3749 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3750 if (unlikely(ret)) 3751 return ret; 3752 len -= hlen; 3753 } else { 3754 plen = min_t(int, skb_headlen(from), len); 3755 if (plen) { 3756 page = virt_to_head_page(from->head); 3757 offset = from->data - (unsigned char *)page_address(page); 3758 __skb_fill_netmem_desc(to, 0, page_to_netmem(page), 3759 offset, plen); 3760 get_page(page); 3761 j = 1; 3762 len -= plen; 3763 } 3764 } 3765 3766 skb_len_add(to, len + plen); 3767 3768 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3769 skb_tx_error(from); 3770 return -ENOMEM; 3771 } 3772 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3773 3774 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3775 int size; 3776 3777 if (!len) 3778 break; 3779 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3780 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3781 len); 3782 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3783 len -= size; 3784 skb_frag_ref(to, j); 3785 j++; 3786 } 3787 skb_shinfo(to)->nr_frags = j; 3788 3789 return 0; 3790 } 3791 EXPORT_SYMBOL_GPL(skb_zerocopy); 3792 3793 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3794 { 3795 __wsum csum; 3796 long csstart; 3797 3798 if (skb->ip_summed == CHECKSUM_PARTIAL) 3799 csstart = skb_checksum_start_offset(skb); 3800 else 3801 csstart = skb_headlen(skb); 3802 3803 BUG_ON(csstart > skb_headlen(skb)); 3804 3805 skb_copy_from_linear_data(skb, to, csstart); 3806 3807 csum = 0; 3808 if (csstart != skb->len) 3809 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3810 skb->len - csstart); 3811 3812 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3813 long csstuff = csstart + skb->csum_offset; 3814 3815 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3816 } 3817 } 3818 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3819 3820 /** 3821 * skb_dequeue - remove from the head of the queue 3822 * @list: list to dequeue from 3823 * 3824 * Remove the head of the list. The list lock is taken so the function 3825 * may be used safely with other locking list functions. The head item is 3826 * returned or %NULL if the list is empty. 3827 */ 3828 3829 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3830 { 3831 unsigned long flags; 3832 struct sk_buff *result; 3833 3834 spin_lock_irqsave(&list->lock, flags); 3835 result = __skb_dequeue(list); 3836 spin_unlock_irqrestore(&list->lock, flags); 3837 return result; 3838 } 3839 EXPORT_SYMBOL(skb_dequeue); 3840 3841 /** 3842 * skb_dequeue_tail - remove from the tail of the queue 3843 * @list: list to dequeue from 3844 * 3845 * Remove the tail of the list. The list lock is taken so the function 3846 * may be used safely with other locking list functions. The tail item is 3847 * returned or %NULL if the list is empty. 3848 */ 3849 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3850 { 3851 unsigned long flags; 3852 struct sk_buff *result; 3853 3854 spin_lock_irqsave(&list->lock, flags); 3855 result = __skb_dequeue_tail(list); 3856 spin_unlock_irqrestore(&list->lock, flags); 3857 return result; 3858 } 3859 EXPORT_SYMBOL(skb_dequeue_tail); 3860 3861 /** 3862 * skb_queue_purge_reason - empty a list 3863 * @list: list to empty 3864 * @reason: drop reason 3865 * 3866 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3867 * the list and one reference dropped. This function takes the list 3868 * lock and is atomic with respect to other list locking functions. 3869 */ 3870 void skb_queue_purge_reason(struct sk_buff_head *list, 3871 enum skb_drop_reason reason) 3872 { 3873 struct sk_buff_head tmp; 3874 unsigned long flags; 3875 3876 if (skb_queue_empty_lockless(list)) 3877 return; 3878 3879 __skb_queue_head_init(&tmp); 3880 3881 spin_lock_irqsave(&list->lock, flags); 3882 skb_queue_splice_init(list, &tmp); 3883 spin_unlock_irqrestore(&list->lock, flags); 3884 3885 __skb_queue_purge_reason(&tmp, reason); 3886 } 3887 EXPORT_SYMBOL(skb_queue_purge_reason); 3888 3889 /** 3890 * skb_rbtree_purge - empty a skb rbtree 3891 * @root: root of the rbtree to empty 3892 * Return value: the sum of truesizes of all purged skbs. 3893 * 3894 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3895 * the list and one reference dropped. This function does not take 3896 * any lock. Synchronization should be handled by the caller (e.g., TCP 3897 * out-of-order queue is protected by the socket lock). 3898 */ 3899 unsigned int skb_rbtree_purge(struct rb_root *root) 3900 { 3901 struct rb_node *p = rb_first(root); 3902 unsigned int sum = 0; 3903 3904 while (p) { 3905 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3906 3907 p = rb_next(p); 3908 rb_erase(&skb->rbnode, root); 3909 sum += skb->truesize; 3910 kfree_skb(skb); 3911 } 3912 return sum; 3913 } 3914 3915 void skb_errqueue_purge(struct sk_buff_head *list) 3916 { 3917 struct sk_buff *skb, *next; 3918 struct sk_buff_head kill; 3919 unsigned long flags; 3920 3921 __skb_queue_head_init(&kill); 3922 3923 spin_lock_irqsave(&list->lock, flags); 3924 skb_queue_walk_safe(list, skb, next) { 3925 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || 3926 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) 3927 continue; 3928 __skb_unlink(skb, list); 3929 __skb_queue_tail(&kill, skb); 3930 } 3931 spin_unlock_irqrestore(&list->lock, flags); 3932 __skb_queue_purge(&kill); 3933 } 3934 EXPORT_SYMBOL(skb_errqueue_purge); 3935 3936 /** 3937 * skb_queue_head - queue a buffer at the list head 3938 * @list: list to use 3939 * @newsk: buffer to queue 3940 * 3941 * Queue a buffer at the start of the list. This function takes the 3942 * list lock and can be used safely with other locking &sk_buff functions 3943 * safely. 3944 * 3945 * A buffer cannot be placed on two lists at the same time. 3946 */ 3947 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3948 { 3949 unsigned long flags; 3950 3951 spin_lock_irqsave(&list->lock, flags); 3952 __skb_queue_head(list, newsk); 3953 spin_unlock_irqrestore(&list->lock, flags); 3954 } 3955 EXPORT_SYMBOL(skb_queue_head); 3956 3957 /** 3958 * skb_queue_tail - queue a buffer at the list tail 3959 * @list: list to use 3960 * @newsk: buffer to queue 3961 * 3962 * Queue a buffer at the tail of the list. This function takes the 3963 * list lock and can be used safely with other locking &sk_buff functions 3964 * safely. 3965 * 3966 * A buffer cannot be placed on two lists at the same time. 3967 */ 3968 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3969 { 3970 unsigned long flags; 3971 3972 spin_lock_irqsave(&list->lock, flags); 3973 __skb_queue_tail(list, newsk); 3974 spin_unlock_irqrestore(&list->lock, flags); 3975 } 3976 EXPORT_SYMBOL(skb_queue_tail); 3977 3978 /** 3979 * skb_unlink - remove a buffer from a list 3980 * @skb: buffer to remove 3981 * @list: list to use 3982 * 3983 * Remove a packet from a list. The list locks are taken and this 3984 * function is atomic with respect to other list locked calls 3985 * 3986 * You must know what list the SKB is on. 3987 */ 3988 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3989 { 3990 unsigned long flags; 3991 3992 spin_lock_irqsave(&list->lock, flags); 3993 __skb_unlink(skb, list); 3994 spin_unlock_irqrestore(&list->lock, flags); 3995 } 3996 EXPORT_SYMBOL(skb_unlink); 3997 3998 /** 3999 * skb_append - append a buffer 4000 * @old: buffer to insert after 4001 * @newsk: buffer to insert 4002 * @list: list to use 4003 * 4004 * Place a packet after a given packet in a list. The list locks are taken 4005 * and this function is atomic with respect to other list locked calls. 4006 * A buffer cannot be placed on two lists at the same time. 4007 */ 4008 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 4009 { 4010 unsigned long flags; 4011 4012 spin_lock_irqsave(&list->lock, flags); 4013 __skb_queue_after(list, old, newsk); 4014 spin_unlock_irqrestore(&list->lock, flags); 4015 } 4016 EXPORT_SYMBOL(skb_append); 4017 4018 static inline void skb_split_inside_header(struct sk_buff *skb, 4019 struct sk_buff* skb1, 4020 const u32 len, const int pos) 4021 { 4022 int i; 4023 4024 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 4025 pos - len); 4026 /* And move data appendix as is. */ 4027 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 4028 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 4029 4030 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 4031 skb_shinfo(skb)->nr_frags = 0; 4032 skb1->data_len = skb->data_len; 4033 skb1->len += skb1->data_len; 4034 skb->data_len = 0; 4035 skb->len = len; 4036 skb_set_tail_pointer(skb, len); 4037 } 4038 4039 static inline void skb_split_no_header(struct sk_buff *skb, 4040 struct sk_buff* skb1, 4041 const u32 len, int pos) 4042 { 4043 int i, k = 0; 4044 const int nfrags = skb_shinfo(skb)->nr_frags; 4045 4046 skb_shinfo(skb)->nr_frags = 0; 4047 skb1->len = skb1->data_len = skb->len - len; 4048 skb->len = len; 4049 skb->data_len = len - pos; 4050 4051 for (i = 0; i < nfrags; i++) { 4052 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 4053 4054 if (pos + size > len) { 4055 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 4056 4057 if (pos < len) { 4058 /* Split frag. 4059 * We have two variants in this case: 4060 * 1. Move all the frag to the second 4061 * part, if it is possible. F.e. 4062 * this approach is mandatory for TUX, 4063 * where splitting is expensive. 4064 * 2. Split is accurately. We make this. 4065 */ 4066 skb_frag_ref(skb, i); 4067 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 4068 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 4069 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 4070 skb_shinfo(skb)->nr_frags++; 4071 } 4072 k++; 4073 } else 4074 skb_shinfo(skb)->nr_frags++; 4075 pos += size; 4076 } 4077 skb_shinfo(skb1)->nr_frags = k; 4078 } 4079 4080 /** 4081 * skb_split - Split fragmented skb to two parts at length len. 4082 * @skb: the buffer to split 4083 * @skb1: the buffer to receive the second part 4084 * @len: new length for skb 4085 */ 4086 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 4087 { 4088 int pos = skb_headlen(skb); 4089 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 4090 4091 skb_zcopy_downgrade_managed(skb); 4092 4093 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 4094 skb_zerocopy_clone(skb1, skb, 0); 4095 if (len < pos) /* Split line is inside header. */ 4096 skb_split_inside_header(skb, skb1, len, pos); 4097 else /* Second chunk has no header, nothing to copy. */ 4098 skb_split_no_header(skb, skb1, len, pos); 4099 } 4100 EXPORT_SYMBOL(skb_split); 4101 4102 /* Shifting from/to a cloned skb is a no-go. 4103 * 4104 * Caller cannot keep skb_shinfo related pointers past calling here! 4105 */ 4106 static int skb_prepare_for_shift(struct sk_buff *skb) 4107 { 4108 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 4109 } 4110 4111 /** 4112 * skb_shift - Shifts paged data partially from skb to another 4113 * @tgt: buffer into which tail data gets added 4114 * @skb: buffer from which the paged data comes from 4115 * @shiftlen: shift up to this many bytes 4116 * 4117 * Attempts to shift up to shiftlen worth of bytes, which may be less than 4118 * the length of the skb, from skb to tgt. Returns number bytes shifted. 4119 * It's up to caller to free skb if everything was shifted. 4120 * 4121 * If @tgt runs out of frags, the whole operation is aborted. 4122 * 4123 * Skb cannot include anything else but paged data while tgt is allowed 4124 * to have non-paged data as well. 4125 * 4126 * TODO: full sized shift could be optimized but that would need 4127 * specialized skb free'er to handle frags without up-to-date nr_frags. 4128 */ 4129 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 4130 { 4131 int from, to, merge, todo; 4132 skb_frag_t *fragfrom, *fragto; 4133 4134 BUG_ON(shiftlen > skb->len); 4135 4136 if (skb_headlen(skb)) 4137 return 0; 4138 if (skb_zcopy(tgt) || skb_zcopy(skb)) 4139 return 0; 4140 4141 todo = shiftlen; 4142 from = 0; 4143 to = skb_shinfo(tgt)->nr_frags; 4144 fragfrom = &skb_shinfo(skb)->frags[from]; 4145 4146 /* Actual merge is delayed until the point when we know we can 4147 * commit all, so that we don't have to undo partial changes 4148 */ 4149 if (!to || 4150 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 4151 skb_frag_off(fragfrom))) { 4152 merge = -1; 4153 } else { 4154 merge = to - 1; 4155 4156 todo -= skb_frag_size(fragfrom); 4157 if (todo < 0) { 4158 if (skb_prepare_for_shift(skb) || 4159 skb_prepare_for_shift(tgt)) 4160 return 0; 4161 4162 /* All previous frag pointers might be stale! */ 4163 fragfrom = &skb_shinfo(skb)->frags[from]; 4164 fragto = &skb_shinfo(tgt)->frags[merge]; 4165 4166 skb_frag_size_add(fragto, shiftlen); 4167 skb_frag_size_sub(fragfrom, shiftlen); 4168 skb_frag_off_add(fragfrom, shiftlen); 4169 4170 goto onlymerged; 4171 } 4172 4173 from++; 4174 } 4175 4176 /* Skip full, not-fitting skb to avoid expensive operations */ 4177 if ((shiftlen == skb->len) && 4178 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 4179 return 0; 4180 4181 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 4182 return 0; 4183 4184 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 4185 if (to == MAX_SKB_FRAGS) 4186 return 0; 4187 4188 fragfrom = &skb_shinfo(skb)->frags[from]; 4189 fragto = &skb_shinfo(tgt)->frags[to]; 4190 4191 if (todo >= skb_frag_size(fragfrom)) { 4192 *fragto = *fragfrom; 4193 todo -= skb_frag_size(fragfrom); 4194 from++; 4195 to++; 4196 4197 } else { 4198 __skb_frag_ref(fragfrom); 4199 skb_frag_page_copy(fragto, fragfrom); 4200 skb_frag_off_copy(fragto, fragfrom); 4201 skb_frag_size_set(fragto, todo); 4202 4203 skb_frag_off_add(fragfrom, todo); 4204 skb_frag_size_sub(fragfrom, todo); 4205 todo = 0; 4206 4207 to++; 4208 break; 4209 } 4210 } 4211 4212 /* Ready to "commit" this state change to tgt */ 4213 skb_shinfo(tgt)->nr_frags = to; 4214 4215 if (merge >= 0) { 4216 fragfrom = &skb_shinfo(skb)->frags[0]; 4217 fragto = &skb_shinfo(tgt)->frags[merge]; 4218 4219 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4220 __skb_frag_unref(fragfrom, skb->pp_recycle); 4221 } 4222 4223 /* Reposition in the original skb */ 4224 to = 0; 4225 while (from < skb_shinfo(skb)->nr_frags) 4226 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4227 skb_shinfo(skb)->nr_frags = to; 4228 4229 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4230 4231 onlymerged: 4232 /* Most likely the tgt won't ever need its checksum anymore, skb on 4233 * the other hand might need it if it needs to be resent 4234 */ 4235 tgt->ip_summed = CHECKSUM_PARTIAL; 4236 skb->ip_summed = CHECKSUM_PARTIAL; 4237 4238 skb_len_add(skb, -shiftlen); 4239 skb_len_add(tgt, shiftlen); 4240 4241 return shiftlen; 4242 } 4243 4244 /** 4245 * skb_prepare_seq_read - Prepare a sequential read of skb data 4246 * @skb: the buffer to read 4247 * @from: lower offset of data to be read 4248 * @to: upper offset of data to be read 4249 * @st: state variable 4250 * 4251 * Initializes the specified state variable. Must be called before 4252 * invoking skb_seq_read() for the first time. 4253 */ 4254 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4255 unsigned int to, struct skb_seq_state *st) 4256 { 4257 st->lower_offset = from; 4258 st->upper_offset = to; 4259 st->root_skb = st->cur_skb = skb; 4260 st->frag_idx = st->stepped_offset = 0; 4261 st->frag_data = NULL; 4262 st->frag_off = 0; 4263 } 4264 EXPORT_SYMBOL(skb_prepare_seq_read); 4265 4266 /** 4267 * skb_seq_read - Sequentially read skb data 4268 * @consumed: number of bytes consumed by the caller so far 4269 * @data: destination pointer for data to be returned 4270 * @st: state variable 4271 * 4272 * Reads a block of skb data at @consumed relative to the 4273 * lower offset specified to skb_prepare_seq_read(). Assigns 4274 * the head of the data block to @data and returns the length 4275 * of the block or 0 if the end of the skb data or the upper 4276 * offset has been reached. 4277 * 4278 * The caller is not required to consume all of the data 4279 * returned, i.e. @consumed is typically set to the number 4280 * of bytes already consumed and the next call to 4281 * skb_seq_read() will return the remaining part of the block. 4282 * 4283 * Note 1: The size of each block of data returned can be arbitrary, 4284 * this limitation is the cost for zerocopy sequential 4285 * reads of potentially non linear data. 4286 * 4287 * Note 2: Fragment lists within fragments are not implemented 4288 * at the moment, state->root_skb could be replaced with 4289 * a stack for this purpose. 4290 */ 4291 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4292 struct skb_seq_state *st) 4293 { 4294 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4295 skb_frag_t *frag; 4296 4297 if (unlikely(abs_offset >= st->upper_offset)) { 4298 if (st->frag_data) { 4299 kunmap_atomic(st->frag_data); 4300 st->frag_data = NULL; 4301 } 4302 return 0; 4303 } 4304 4305 next_skb: 4306 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4307 4308 if (abs_offset < block_limit && !st->frag_data) { 4309 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4310 return block_limit - abs_offset; 4311 } 4312 4313 if (st->frag_idx == 0 && !st->frag_data) 4314 st->stepped_offset += skb_headlen(st->cur_skb); 4315 4316 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4317 unsigned int pg_idx, pg_off, pg_sz; 4318 4319 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4320 4321 pg_idx = 0; 4322 pg_off = skb_frag_off(frag); 4323 pg_sz = skb_frag_size(frag); 4324 4325 if (skb_frag_must_loop(skb_frag_page(frag))) { 4326 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4327 pg_off = offset_in_page(pg_off + st->frag_off); 4328 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4329 PAGE_SIZE - pg_off); 4330 } 4331 4332 block_limit = pg_sz + st->stepped_offset; 4333 if (abs_offset < block_limit) { 4334 if (!st->frag_data) 4335 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4336 4337 *data = (u8 *)st->frag_data + pg_off + 4338 (abs_offset - st->stepped_offset); 4339 4340 return block_limit - abs_offset; 4341 } 4342 4343 if (st->frag_data) { 4344 kunmap_atomic(st->frag_data); 4345 st->frag_data = NULL; 4346 } 4347 4348 st->stepped_offset += pg_sz; 4349 st->frag_off += pg_sz; 4350 if (st->frag_off == skb_frag_size(frag)) { 4351 st->frag_off = 0; 4352 st->frag_idx++; 4353 } 4354 } 4355 4356 if (st->frag_data) { 4357 kunmap_atomic(st->frag_data); 4358 st->frag_data = NULL; 4359 } 4360 4361 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4362 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4363 st->frag_idx = 0; 4364 goto next_skb; 4365 } else if (st->cur_skb->next) { 4366 st->cur_skb = st->cur_skb->next; 4367 st->frag_idx = 0; 4368 goto next_skb; 4369 } 4370 4371 return 0; 4372 } 4373 EXPORT_SYMBOL(skb_seq_read); 4374 4375 /** 4376 * skb_abort_seq_read - Abort a sequential read of skb data 4377 * @st: state variable 4378 * 4379 * Must be called if skb_seq_read() was not called until it 4380 * returned 0. 4381 */ 4382 void skb_abort_seq_read(struct skb_seq_state *st) 4383 { 4384 if (st->frag_data) 4385 kunmap_atomic(st->frag_data); 4386 } 4387 EXPORT_SYMBOL(skb_abort_seq_read); 4388 4389 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4390 4391 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4392 struct ts_config *conf, 4393 struct ts_state *state) 4394 { 4395 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4396 } 4397 4398 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4399 { 4400 skb_abort_seq_read(TS_SKB_CB(state)); 4401 } 4402 4403 /** 4404 * skb_find_text - Find a text pattern in skb data 4405 * @skb: the buffer to look in 4406 * @from: search offset 4407 * @to: search limit 4408 * @config: textsearch configuration 4409 * 4410 * Finds a pattern in the skb data according to the specified 4411 * textsearch configuration. Use textsearch_next() to retrieve 4412 * subsequent occurrences of the pattern. Returns the offset 4413 * to the first occurrence or UINT_MAX if no match was found. 4414 */ 4415 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4416 unsigned int to, struct ts_config *config) 4417 { 4418 unsigned int patlen = config->ops->get_pattern_len(config); 4419 struct ts_state state; 4420 unsigned int ret; 4421 4422 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4423 4424 config->get_next_block = skb_ts_get_next_block; 4425 config->finish = skb_ts_finish; 4426 4427 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4428 4429 ret = textsearch_find(config, &state); 4430 return (ret + patlen <= to - from ? ret : UINT_MAX); 4431 } 4432 EXPORT_SYMBOL(skb_find_text); 4433 4434 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4435 int offset, size_t size, size_t max_frags) 4436 { 4437 int i = skb_shinfo(skb)->nr_frags; 4438 4439 if (skb_can_coalesce(skb, i, page, offset)) { 4440 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4441 } else if (i < max_frags) { 4442 skb_zcopy_downgrade_managed(skb); 4443 get_page(page); 4444 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4445 } else { 4446 return -EMSGSIZE; 4447 } 4448 4449 return 0; 4450 } 4451 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4452 4453 /** 4454 * skb_pull_rcsum - pull skb and update receive checksum 4455 * @skb: buffer to update 4456 * @len: length of data pulled 4457 * 4458 * This function performs an skb_pull on the packet and updates 4459 * the CHECKSUM_COMPLETE checksum. It should be used on 4460 * receive path processing instead of skb_pull unless you know 4461 * that the checksum difference is zero (e.g., a valid IP header) 4462 * or you are setting ip_summed to CHECKSUM_NONE. 4463 */ 4464 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4465 { 4466 unsigned char *data = skb->data; 4467 4468 BUG_ON(len > skb->len); 4469 __skb_pull(skb, len); 4470 skb_postpull_rcsum(skb, data, len); 4471 return skb->data; 4472 } 4473 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4474 4475 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4476 { 4477 skb_frag_t head_frag; 4478 struct page *page; 4479 4480 page = virt_to_head_page(frag_skb->head); 4481 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4482 (unsigned char *)page_address(page), 4483 skb_headlen(frag_skb)); 4484 return head_frag; 4485 } 4486 4487 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4488 netdev_features_t features, 4489 unsigned int offset) 4490 { 4491 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4492 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4493 unsigned int delta_truesize = 0; 4494 unsigned int delta_len = 0; 4495 struct sk_buff *tail = NULL; 4496 struct sk_buff *nskb, *tmp; 4497 int len_diff, err; 4498 4499 skb_push(skb, -skb_network_offset(skb) + offset); 4500 4501 /* Ensure the head is writeable before touching the shared info */ 4502 err = skb_unclone(skb, GFP_ATOMIC); 4503 if (err) 4504 goto err_linearize; 4505 4506 skb_shinfo(skb)->frag_list = NULL; 4507 4508 while (list_skb) { 4509 nskb = list_skb; 4510 list_skb = list_skb->next; 4511 4512 err = 0; 4513 delta_truesize += nskb->truesize; 4514 if (skb_shared(nskb)) { 4515 tmp = skb_clone(nskb, GFP_ATOMIC); 4516 if (tmp) { 4517 consume_skb(nskb); 4518 nskb = tmp; 4519 err = skb_unclone(nskb, GFP_ATOMIC); 4520 } else { 4521 err = -ENOMEM; 4522 } 4523 } 4524 4525 if (!tail) 4526 skb->next = nskb; 4527 else 4528 tail->next = nskb; 4529 4530 if (unlikely(err)) { 4531 nskb->next = list_skb; 4532 goto err_linearize; 4533 } 4534 4535 tail = nskb; 4536 4537 delta_len += nskb->len; 4538 4539 skb_push(nskb, -skb_network_offset(nskb) + offset); 4540 4541 skb_release_head_state(nskb); 4542 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4543 __copy_skb_header(nskb, skb); 4544 4545 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4546 nskb->transport_header += len_diff; 4547 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4548 nskb->data - tnl_hlen, 4549 offset + tnl_hlen); 4550 4551 if (skb_needs_linearize(nskb, features) && 4552 __skb_linearize(nskb)) 4553 goto err_linearize; 4554 } 4555 4556 skb->truesize = skb->truesize - delta_truesize; 4557 skb->data_len = skb->data_len - delta_len; 4558 skb->len = skb->len - delta_len; 4559 4560 skb_gso_reset(skb); 4561 4562 skb->prev = tail; 4563 4564 if (skb_needs_linearize(skb, features) && 4565 __skb_linearize(skb)) 4566 goto err_linearize; 4567 4568 skb_get(skb); 4569 4570 return skb; 4571 4572 err_linearize: 4573 kfree_skb_list(skb->next); 4574 skb->next = NULL; 4575 return ERR_PTR(-ENOMEM); 4576 } 4577 EXPORT_SYMBOL_GPL(skb_segment_list); 4578 4579 /** 4580 * skb_segment - Perform protocol segmentation on skb. 4581 * @head_skb: buffer to segment 4582 * @features: features for the output path (see dev->features) 4583 * 4584 * This function performs segmentation on the given skb. It returns 4585 * a pointer to the first in a list of new skbs for the segments. 4586 * In case of error it returns ERR_PTR(err). 4587 */ 4588 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4589 netdev_features_t features) 4590 { 4591 struct sk_buff *segs = NULL; 4592 struct sk_buff *tail = NULL; 4593 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4594 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4595 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4596 unsigned int offset = doffset; 4597 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4598 unsigned int partial_segs = 0; 4599 unsigned int headroom; 4600 unsigned int len = head_skb->len; 4601 struct sk_buff *frag_skb; 4602 skb_frag_t *frag; 4603 __be16 proto; 4604 bool csum, sg; 4605 int err = -ENOMEM; 4606 int i = 0; 4607 int nfrags, pos; 4608 4609 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4610 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4611 struct sk_buff *check_skb; 4612 4613 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4614 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4615 /* gso_size is untrusted, and we have a frag_list with 4616 * a linear non head_frag item. 4617 * 4618 * If head_skb's headlen does not fit requested gso_size, 4619 * it means that the frag_list members do NOT terminate 4620 * on exact gso_size boundaries. Hence we cannot perform 4621 * skb_frag_t page sharing. Therefore we must fallback to 4622 * copying the frag_list skbs; we do so by disabling SG. 4623 */ 4624 features &= ~NETIF_F_SG; 4625 break; 4626 } 4627 } 4628 } 4629 4630 __skb_push(head_skb, doffset); 4631 proto = skb_network_protocol(head_skb, NULL); 4632 if (unlikely(!proto)) 4633 return ERR_PTR(-EINVAL); 4634 4635 sg = !!(features & NETIF_F_SG); 4636 csum = !!can_checksum_protocol(features, proto); 4637 4638 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4639 if (!(features & NETIF_F_GSO_PARTIAL)) { 4640 struct sk_buff *iter; 4641 unsigned int frag_len; 4642 4643 if (!list_skb || 4644 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4645 goto normal; 4646 4647 /* If we get here then all the required 4648 * GSO features except frag_list are supported. 4649 * Try to split the SKB to multiple GSO SKBs 4650 * with no frag_list. 4651 * Currently we can do that only when the buffers don't 4652 * have a linear part and all the buffers except 4653 * the last are of the same length. 4654 */ 4655 frag_len = list_skb->len; 4656 skb_walk_frags(head_skb, iter) { 4657 if (frag_len != iter->len && iter->next) 4658 goto normal; 4659 if (skb_headlen(iter) && !iter->head_frag) 4660 goto normal; 4661 4662 len -= iter->len; 4663 } 4664 4665 if (len != frag_len) 4666 goto normal; 4667 } 4668 4669 /* GSO partial only requires that we trim off any excess that 4670 * doesn't fit into an MSS sized block, so take care of that 4671 * now. 4672 * Cap len to not accidentally hit GSO_BY_FRAGS. 4673 */ 4674 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss; 4675 if (partial_segs > 1) 4676 mss *= partial_segs; 4677 else 4678 partial_segs = 0; 4679 } 4680 4681 normal: 4682 headroom = skb_headroom(head_skb); 4683 pos = skb_headlen(head_skb); 4684 4685 if (skb_orphan_frags(head_skb, GFP_ATOMIC)) 4686 return ERR_PTR(-ENOMEM); 4687 4688 nfrags = skb_shinfo(head_skb)->nr_frags; 4689 frag = skb_shinfo(head_skb)->frags; 4690 frag_skb = head_skb; 4691 4692 do { 4693 struct sk_buff *nskb; 4694 skb_frag_t *nskb_frag; 4695 int hsize; 4696 int size; 4697 4698 if (unlikely(mss == GSO_BY_FRAGS)) { 4699 len = list_skb->len; 4700 } else { 4701 len = head_skb->len - offset; 4702 if (len > mss) 4703 len = mss; 4704 } 4705 4706 hsize = skb_headlen(head_skb) - offset; 4707 4708 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4709 (skb_headlen(list_skb) == len || sg)) { 4710 BUG_ON(skb_headlen(list_skb) > len); 4711 4712 nskb = skb_clone(list_skb, GFP_ATOMIC); 4713 if (unlikely(!nskb)) 4714 goto err; 4715 4716 i = 0; 4717 nfrags = skb_shinfo(list_skb)->nr_frags; 4718 frag = skb_shinfo(list_skb)->frags; 4719 frag_skb = list_skb; 4720 pos += skb_headlen(list_skb); 4721 4722 while (pos < offset + len) { 4723 BUG_ON(i >= nfrags); 4724 4725 size = skb_frag_size(frag); 4726 if (pos + size > offset + len) 4727 break; 4728 4729 i++; 4730 pos += size; 4731 frag++; 4732 } 4733 4734 list_skb = list_skb->next; 4735 4736 if (unlikely(pskb_trim(nskb, len))) { 4737 kfree_skb(nskb); 4738 goto err; 4739 } 4740 4741 hsize = skb_end_offset(nskb); 4742 if (skb_cow_head(nskb, doffset + headroom)) { 4743 kfree_skb(nskb); 4744 goto err; 4745 } 4746 4747 nskb->truesize += skb_end_offset(nskb) - hsize; 4748 skb_release_head_state(nskb); 4749 __skb_push(nskb, doffset); 4750 } else { 4751 if (hsize < 0) 4752 hsize = 0; 4753 if (hsize > len || !sg) 4754 hsize = len; 4755 4756 nskb = __alloc_skb(hsize + doffset + headroom, 4757 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4758 NUMA_NO_NODE); 4759 4760 if (unlikely(!nskb)) 4761 goto err; 4762 4763 skb_reserve(nskb, headroom); 4764 __skb_put(nskb, doffset); 4765 } 4766 4767 if (segs) 4768 tail->next = nskb; 4769 else 4770 segs = nskb; 4771 tail = nskb; 4772 4773 __copy_skb_header(nskb, head_skb); 4774 4775 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4776 skb_reset_mac_len(nskb); 4777 4778 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4779 nskb->data - tnl_hlen, 4780 doffset + tnl_hlen); 4781 4782 if (nskb->len == len + doffset) 4783 goto perform_csum_check; 4784 4785 if (!sg) { 4786 if (!csum) { 4787 if (!nskb->remcsum_offload) 4788 nskb->ip_summed = CHECKSUM_NONE; 4789 SKB_GSO_CB(nskb)->csum = 4790 skb_copy_and_csum_bits(head_skb, offset, 4791 skb_put(nskb, 4792 len), 4793 len); 4794 SKB_GSO_CB(nskb)->csum_start = 4795 skb_headroom(nskb) + doffset; 4796 } else { 4797 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4798 goto err; 4799 } 4800 continue; 4801 } 4802 4803 nskb_frag = skb_shinfo(nskb)->frags; 4804 4805 skb_copy_from_linear_data_offset(head_skb, offset, 4806 skb_put(nskb, hsize), hsize); 4807 4808 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4809 SKBFL_SHARED_FRAG; 4810 4811 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4812 goto err; 4813 4814 while (pos < offset + len) { 4815 if (i >= nfrags) { 4816 if (skb_orphan_frags(list_skb, GFP_ATOMIC) || 4817 skb_zerocopy_clone(nskb, list_skb, 4818 GFP_ATOMIC)) 4819 goto err; 4820 4821 i = 0; 4822 nfrags = skb_shinfo(list_skb)->nr_frags; 4823 frag = skb_shinfo(list_skb)->frags; 4824 frag_skb = list_skb; 4825 if (!skb_headlen(list_skb)) { 4826 BUG_ON(!nfrags); 4827 } else { 4828 BUG_ON(!list_skb->head_frag); 4829 4830 /* to make room for head_frag. */ 4831 i--; 4832 frag--; 4833 } 4834 4835 list_skb = list_skb->next; 4836 } 4837 4838 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4839 MAX_SKB_FRAGS)) { 4840 net_warn_ratelimited( 4841 "skb_segment: too many frags: %u %u\n", 4842 pos, mss); 4843 err = -EINVAL; 4844 goto err; 4845 } 4846 4847 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4848 __skb_frag_ref(nskb_frag); 4849 size = skb_frag_size(nskb_frag); 4850 4851 if (pos < offset) { 4852 skb_frag_off_add(nskb_frag, offset - pos); 4853 skb_frag_size_sub(nskb_frag, offset - pos); 4854 } 4855 4856 skb_shinfo(nskb)->nr_frags++; 4857 4858 if (pos + size <= offset + len) { 4859 i++; 4860 frag++; 4861 pos += size; 4862 } else { 4863 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4864 goto skip_fraglist; 4865 } 4866 4867 nskb_frag++; 4868 } 4869 4870 skip_fraglist: 4871 nskb->data_len = len - hsize; 4872 nskb->len += nskb->data_len; 4873 nskb->truesize += nskb->data_len; 4874 4875 perform_csum_check: 4876 if (!csum) { 4877 if (skb_has_shared_frag(nskb) && 4878 __skb_linearize(nskb)) 4879 goto err; 4880 4881 if (!nskb->remcsum_offload) 4882 nskb->ip_summed = CHECKSUM_NONE; 4883 SKB_GSO_CB(nskb)->csum = 4884 skb_checksum(nskb, doffset, 4885 nskb->len - doffset, 0); 4886 SKB_GSO_CB(nskb)->csum_start = 4887 skb_headroom(nskb) + doffset; 4888 } 4889 } while ((offset += len) < head_skb->len); 4890 4891 /* Some callers want to get the end of the list. 4892 * Put it in segs->prev to avoid walking the list. 4893 * (see validate_xmit_skb_list() for example) 4894 */ 4895 segs->prev = tail; 4896 4897 if (partial_segs) { 4898 struct sk_buff *iter; 4899 int type = skb_shinfo(head_skb)->gso_type; 4900 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4901 4902 /* Update type to add partial and then remove dodgy if set */ 4903 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4904 type &= ~SKB_GSO_DODGY; 4905 4906 /* Update GSO info and prepare to start updating headers on 4907 * our way back down the stack of protocols. 4908 */ 4909 for (iter = segs; iter; iter = iter->next) { 4910 skb_shinfo(iter)->gso_size = gso_size; 4911 skb_shinfo(iter)->gso_segs = partial_segs; 4912 skb_shinfo(iter)->gso_type = type; 4913 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4914 } 4915 4916 if (tail->len - doffset <= gso_size) 4917 skb_shinfo(tail)->gso_size = 0; 4918 else if (tail != segs) 4919 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4920 } 4921 4922 /* Following permits correct backpressure, for protocols 4923 * using skb_set_owner_w(). 4924 * Idea is to tranfert ownership from head_skb to last segment. 4925 */ 4926 if (head_skb->destructor == sock_wfree) { 4927 swap(tail->truesize, head_skb->truesize); 4928 swap(tail->destructor, head_skb->destructor); 4929 swap(tail->sk, head_skb->sk); 4930 } 4931 return segs; 4932 4933 err: 4934 kfree_skb_list(segs); 4935 return ERR_PTR(err); 4936 } 4937 EXPORT_SYMBOL_GPL(skb_segment); 4938 4939 #ifdef CONFIG_SKB_EXTENSIONS 4940 #define SKB_EXT_ALIGN_VALUE 8 4941 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4942 4943 static const u8 skb_ext_type_len[] = { 4944 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4945 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4946 #endif 4947 #ifdef CONFIG_XFRM 4948 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4949 #endif 4950 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4951 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4952 #endif 4953 #if IS_ENABLED(CONFIG_MPTCP) 4954 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4955 #endif 4956 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4957 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4958 #endif 4959 }; 4960 4961 static __always_inline unsigned int skb_ext_total_length(void) 4962 { 4963 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); 4964 int i; 4965 4966 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) 4967 l += skb_ext_type_len[i]; 4968 4969 return l; 4970 } 4971 4972 static void skb_extensions_init(void) 4973 { 4974 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4975 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL) 4976 BUILD_BUG_ON(skb_ext_total_length() > 255); 4977 #endif 4978 4979 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4980 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4981 0, 4982 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4983 NULL); 4984 } 4985 #else 4986 static void skb_extensions_init(void) {} 4987 #endif 4988 4989 /* The SKB kmem_cache slab is critical for network performance. Never 4990 * merge/alias the slab with similar sized objects. This avoids fragmentation 4991 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. 4992 */ 4993 #ifndef CONFIG_SLUB_TINY 4994 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE 4995 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ 4996 #define FLAG_SKB_NO_MERGE 0 4997 #endif 4998 4999 void __init skb_init(void) 5000 { 5001 net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 5002 sizeof(struct sk_buff), 5003 0, 5004 SLAB_HWCACHE_ALIGN|SLAB_PANIC| 5005 FLAG_SKB_NO_MERGE, 5006 offsetof(struct sk_buff, cb), 5007 sizeof_field(struct sk_buff, cb), 5008 NULL); 5009 net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 5010 sizeof(struct sk_buff_fclones), 5011 0, 5012 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5013 NULL); 5014 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 5015 * struct skb_shared_info is located at the end of skb->head, 5016 * and should not be copied to/from user. 5017 */ 5018 net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 5019 SKB_SMALL_HEAD_CACHE_SIZE, 5020 0, 5021 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 5022 0, 5023 SKB_SMALL_HEAD_HEADROOM, 5024 NULL); 5025 skb_extensions_init(); 5026 } 5027 5028 static int 5029 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 5030 unsigned int recursion_level) 5031 { 5032 int start = skb_headlen(skb); 5033 int i, copy = start - offset; 5034 struct sk_buff *frag_iter; 5035 int elt = 0; 5036 5037 if (unlikely(recursion_level >= 24)) 5038 return -EMSGSIZE; 5039 5040 if (copy > 0) { 5041 if (copy > len) 5042 copy = len; 5043 sg_set_buf(sg, skb->data + offset, copy); 5044 elt++; 5045 if ((len -= copy) == 0) 5046 return elt; 5047 offset += copy; 5048 } 5049 5050 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 5051 int end; 5052 5053 WARN_ON(start > offset + len); 5054 5055 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 5056 if ((copy = end - offset) > 0) { 5057 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 5058 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5059 return -EMSGSIZE; 5060 5061 if (copy > len) 5062 copy = len; 5063 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 5064 skb_frag_off(frag) + offset - start); 5065 elt++; 5066 if (!(len -= copy)) 5067 return elt; 5068 offset += copy; 5069 } 5070 start = end; 5071 } 5072 5073 skb_walk_frags(skb, frag_iter) { 5074 int end, ret; 5075 5076 WARN_ON(start > offset + len); 5077 5078 end = start + frag_iter->len; 5079 if ((copy = end - offset) > 0) { 5080 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5081 return -EMSGSIZE; 5082 5083 if (copy > len) 5084 copy = len; 5085 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 5086 copy, recursion_level + 1); 5087 if (unlikely(ret < 0)) 5088 return ret; 5089 elt += ret; 5090 if ((len -= copy) == 0) 5091 return elt; 5092 offset += copy; 5093 } 5094 start = end; 5095 } 5096 BUG_ON(len); 5097 return elt; 5098 } 5099 5100 /** 5101 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 5102 * @skb: Socket buffer containing the buffers to be mapped 5103 * @sg: The scatter-gather list to map into 5104 * @offset: The offset into the buffer's contents to start mapping 5105 * @len: Length of buffer space to be mapped 5106 * 5107 * Fill the specified scatter-gather list with mappings/pointers into a 5108 * region of the buffer space attached to a socket buffer. Returns either 5109 * the number of scatterlist items used, or -EMSGSIZE if the contents 5110 * could not fit. 5111 */ 5112 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 5113 { 5114 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 5115 5116 if (nsg <= 0) 5117 return nsg; 5118 5119 sg_mark_end(&sg[nsg - 1]); 5120 5121 return nsg; 5122 } 5123 EXPORT_SYMBOL_GPL(skb_to_sgvec); 5124 5125 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 5126 * sglist without mark the sg which contain last skb data as the end. 5127 * So the caller can mannipulate sg list as will when padding new data after 5128 * the first call without calling sg_unmark_end to expend sg list. 5129 * 5130 * Scenario to use skb_to_sgvec_nomark: 5131 * 1. sg_init_table 5132 * 2. skb_to_sgvec_nomark(payload1) 5133 * 3. skb_to_sgvec_nomark(payload2) 5134 * 5135 * This is equivalent to: 5136 * 1. sg_init_table 5137 * 2. skb_to_sgvec(payload1) 5138 * 3. sg_unmark_end 5139 * 4. skb_to_sgvec(payload2) 5140 * 5141 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 5142 * is more preferable. 5143 */ 5144 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 5145 int offset, int len) 5146 { 5147 return __skb_to_sgvec(skb, sg, offset, len, 0); 5148 } 5149 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 5150 5151 5152 5153 /** 5154 * skb_cow_data - Check that a socket buffer's data buffers are writable 5155 * @skb: The socket buffer to check. 5156 * @tailbits: Amount of trailing space to be added 5157 * @trailer: Returned pointer to the skb where the @tailbits space begins 5158 * 5159 * Make sure that the data buffers attached to a socket buffer are 5160 * writable. If they are not, private copies are made of the data buffers 5161 * and the socket buffer is set to use these instead. 5162 * 5163 * If @tailbits is given, make sure that there is space to write @tailbits 5164 * bytes of data beyond current end of socket buffer. @trailer will be 5165 * set to point to the skb in which this space begins. 5166 * 5167 * The number of scatterlist elements required to completely map the 5168 * COW'd and extended socket buffer will be returned. 5169 */ 5170 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 5171 { 5172 int copyflag; 5173 int elt; 5174 struct sk_buff *skb1, **skb_p; 5175 5176 /* If skb is cloned or its head is paged, reallocate 5177 * head pulling out all the pages (pages are considered not writable 5178 * at the moment even if they are anonymous). 5179 */ 5180 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 5181 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 5182 return -ENOMEM; 5183 5184 /* Easy case. Most of packets will go this way. */ 5185 if (!skb_has_frag_list(skb)) { 5186 /* A little of trouble, not enough of space for trailer. 5187 * This should not happen, when stack is tuned to generate 5188 * good frames. OK, on miss we reallocate and reserve even more 5189 * space, 128 bytes is fair. */ 5190 5191 if (skb_tailroom(skb) < tailbits && 5192 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 5193 return -ENOMEM; 5194 5195 /* Voila! */ 5196 *trailer = skb; 5197 return 1; 5198 } 5199 5200 /* Misery. We are in troubles, going to mincer fragments... */ 5201 5202 elt = 1; 5203 skb_p = &skb_shinfo(skb)->frag_list; 5204 copyflag = 0; 5205 5206 while ((skb1 = *skb_p) != NULL) { 5207 int ntail = 0; 5208 5209 /* The fragment is partially pulled by someone, 5210 * this can happen on input. Copy it and everything 5211 * after it. */ 5212 5213 if (skb_shared(skb1)) 5214 copyflag = 1; 5215 5216 /* If the skb is the last, worry about trailer. */ 5217 5218 if (skb1->next == NULL && tailbits) { 5219 if (skb_shinfo(skb1)->nr_frags || 5220 skb_has_frag_list(skb1) || 5221 skb_tailroom(skb1) < tailbits) 5222 ntail = tailbits + 128; 5223 } 5224 5225 if (copyflag || 5226 skb_cloned(skb1) || 5227 ntail || 5228 skb_shinfo(skb1)->nr_frags || 5229 skb_has_frag_list(skb1)) { 5230 struct sk_buff *skb2; 5231 5232 /* Fuck, we are miserable poor guys... */ 5233 if (ntail == 0) 5234 skb2 = skb_copy(skb1, GFP_ATOMIC); 5235 else 5236 skb2 = skb_copy_expand(skb1, 5237 skb_headroom(skb1), 5238 ntail, 5239 GFP_ATOMIC); 5240 if (unlikely(skb2 == NULL)) 5241 return -ENOMEM; 5242 5243 if (skb1->sk) 5244 skb_set_owner_w(skb2, skb1->sk); 5245 5246 /* Looking around. Are we still alive? 5247 * OK, link new skb, drop old one */ 5248 5249 skb2->next = skb1->next; 5250 *skb_p = skb2; 5251 kfree_skb(skb1); 5252 skb1 = skb2; 5253 } 5254 elt++; 5255 *trailer = skb1; 5256 skb_p = &skb1->next; 5257 } 5258 5259 return elt; 5260 } 5261 EXPORT_SYMBOL_GPL(skb_cow_data); 5262 5263 static void sock_rmem_free(struct sk_buff *skb) 5264 { 5265 struct sock *sk = skb->sk; 5266 5267 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5268 } 5269 5270 static void skb_set_err_queue(struct sk_buff *skb) 5271 { 5272 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5273 * So, it is safe to (mis)use it to mark skbs on the error queue. 5274 */ 5275 skb->pkt_type = PACKET_OUTGOING; 5276 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5277 } 5278 5279 /* 5280 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5281 */ 5282 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5283 { 5284 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5285 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5286 return -ENOMEM; 5287 5288 skb_orphan(skb); 5289 skb->sk = sk; 5290 skb->destructor = sock_rmem_free; 5291 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5292 skb_set_err_queue(skb); 5293 5294 /* before exiting rcu section, make sure dst is refcounted */ 5295 skb_dst_force(skb); 5296 5297 skb_queue_tail(&sk->sk_error_queue, skb); 5298 if (!sock_flag(sk, SOCK_DEAD)) 5299 sk_error_report(sk); 5300 return 0; 5301 } 5302 EXPORT_SYMBOL(sock_queue_err_skb); 5303 5304 static bool is_icmp_err_skb(const struct sk_buff *skb) 5305 { 5306 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5307 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5308 } 5309 5310 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5311 { 5312 struct sk_buff_head *q = &sk->sk_error_queue; 5313 struct sk_buff *skb, *skb_next = NULL; 5314 bool icmp_next = false; 5315 unsigned long flags; 5316 5317 if (skb_queue_empty_lockless(q)) 5318 return NULL; 5319 5320 spin_lock_irqsave(&q->lock, flags); 5321 skb = __skb_dequeue(q); 5322 if (skb && (skb_next = skb_peek(q))) { 5323 icmp_next = is_icmp_err_skb(skb_next); 5324 if (icmp_next) 5325 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5326 } 5327 spin_unlock_irqrestore(&q->lock, flags); 5328 5329 if (is_icmp_err_skb(skb) && !icmp_next) 5330 sk->sk_err = 0; 5331 5332 if (skb_next) 5333 sk_error_report(sk); 5334 5335 return skb; 5336 } 5337 EXPORT_SYMBOL(sock_dequeue_err_skb); 5338 5339 /** 5340 * skb_clone_sk - create clone of skb, and take reference to socket 5341 * @skb: the skb to clone 5342 * 5343 * This function creates a clone of a buffer that holds a reference on 5344 * sk_refcnt. Buffers created via this function are meant to be 5345 * returned using sock_queue_err_skb, or free via kfree_skb. 5346 * 5347 * When passing buffers allocated with this function to sock_queue_err_skb 5348 * it is necessary to wrap the call with sock_hold/sock_put in order to 5349 * prevent the socket from being released prior to being enqueued on 5350 * the sk_error_queue. 5351 */ 5352 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5353 { 5354 struct sock *sk = skb->sk; 5355 struct sk_buff *clone; 5356 5357 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5358 return NULL; 5359 5360 clone = skb_clone(skb, GFP_ATOMIC); 5361 if (!clone) { 5362 sock_put(sk); 5363 return NULL; 5364 } 5365 5366 clone->sk = sk; 5367 clone->destructor = sock_efree; 5368 5369 return clone; 5370 } 5371 EXPORT_SYMBOL(skb_clone_sk); 5372 5373 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5374 struct sock *sk, 5375 int tstype, 5376 bool opt_stats) 5377 { 5378 struct sock_exterr_skb *serr; 5379 int err; 5380 5381 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5382 5383 serr = SKB_EXT_ERR(skb); 5384 memset(serr, 0, sizeof(*serr)); 5385 serr->ee.ee_errno = ENOMSG; 5386 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5387 serr->ee.ee_info = tstype; 5388 serr->opt_stats = opt_stats; 5389 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5390 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 5391 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5392 if (sk_is_tcp(sk)) 5393 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5394 } 5395 5396 err = sock_queue_err_skb(sk, skb); 5397 5398 if (err) 5399 kfree_skb(skb); 5400 } 5401 5402 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5403 { 5404 bool ret; 5405 5406 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 5407 return true; 5408 5409 read_lock_bh(&sk->sk_callback_lock); 5410 ret = sk->sk_socket && sk->sk_socket->file && 5411 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5412 read_unlock_bh(&sk->sk_callback_lock); 5413 return ret; 5414 } 5415 5416 void skb_complete_tx_timestamp(struct sk_buff *skb, 5417 struct skb_shared_hwtstamps *hwtstamps) 5418 { 5419 struct sock *sk = skb->sk; 5420 5421 if (!skb_may_tx_timestamp(sk, false)) 5422 goto err; 5423 5424 /* Take a reference to prevent skb_orphan() from freeing the socket, 5425 * but only if the socket refcount is not zero. 5426 */ 5427 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5428 *skb_hwtstamps(skb) = *hwtstamps; 5429 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5430 sock_put(sk); 5431 return; 5432 } 5433 5434 err: 5435 kfree_skb(skb); 5436 } 5437 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5438 5439 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5440 const struct sk_buff *ack_skb, 5441 struct skb_shared_hwtstamps *hwtstamps, 5442 struct sock *sk, int tstype) 5443 { 5444 struct sk_buff *skb; 5445 bool tsonly, opt_stats = false; 5446 u32 tsflags; 5447 5448 if (!sk) 5449 return; 5450 5451 tsflags = READ_ONCE(sk->sk_tsflags); 5452 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5453 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5454 return; 5455 5456 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5457 if (!skb_may_tx_timestamp(sk, tsonly)) 5458 return; 5459 5460 if (tsonly) { 5461 #ifdef CONFIG_INET 5462 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5463 sk_is_tcp(sk)) { 5464 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5465 ack_skb); 5466 opt_stats = true; 5467 } else 5468 #endif 5469 skb = alloc_skb(0, GFP_ATOMIC); 5470 } else { 5471 skb = skb_clone(orig_skb, GFP_ATOMIC); 5472 5473 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5474 kfree_skb(skb); 5475 return; 5476 } 5477 } 5478 if (!skb) 5479 return; 5480 5481 if (tsonly) { 5482 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5483 SKBTX_ANY_TSTAMP; 5484 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5485 } 5486 5487 if (hwtstamps) 5488 *skb_hwtstamps(skb) = *hwtstamps; 5489 else 5490 __net_timestamp(skb); 5491 5492 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5493 } 5494 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5495 5496 void skb_tstamp_tx(struct sk_buff *orig_skb, 5497 struct skb_shared_hwtstamps *hwtstamps) 5498 { 5499 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5500 SCM_TSTAMP_SND); 5501 } 5502 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5503 5504 #ifdef CONFIG_WIRELESS 5505 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5506 { 5507 struct sock *sk = skb->sk; 5508 struct sock_exterr_skb *serr; 5509 int err = 1; 5510 5511 skb->wifi_acked_valid = 1; 5512 skb->wifi_acked = acked; 5513 5514 serr = SKB_EXT_ERR(skb); 5515 memset(serr, 0, sizeof(*serr)); 5516 serr->ee.ee_errno = ENOMSG; 5517 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5518 5519 /* Take a reference to prevent skb_orphan() from freeing the socket, 5520 * but only if the socket refcount is not zero. 5521 */ 5522 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5523 err = sock_queue_err_skb(sk, skb); 5524 sock_put(sk); 5525 } 5526 if (err) 5527 kfree_skb(skb); 5528 } 5529 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5530 #endif /* CONFIG_WIRELESS */ 5531 5532 /** 5533 * skb_partial_csum_set - set up and verify partial csum values for packet 5534 * @skb: the skb to set 5535 * @start: the number of bytes after skb->data to start checksumming. 5536 * @off: the offset from start to place the checksum. 5537 * 5538 * For untrusted partially-checksummed packets, we need to make sure the values 5539 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5540 * 5541 * This function checks and sets those values and skb->ip_summed: if this 5542 * returns false you should drop the packet. 5543 */ 5544 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5545 { 5546 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5547 u32 csum_start = skb_headroom(skb) + (u32)start; 5548 5549 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5550 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5551 start, off, skb_headroom(skb), skb_headlen(skb)); 5552 return false; 5553 } 5554 skb->ip_summed = CHECKSUM_PARTIAL; 5555 skb->csum_start = csum_start; 5556 skb->csum_offset = off; 5557 skb->transport_header = csum_start; 5558 return true; 5559 } 5560 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5561 5562 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5563 unsigned int max) 5564 { 5565 if (skb_headlen(skb) >= len) 5566 return 0; 5567 5568 /* If we need to pullup then pullup to the max, so we 5569 * won't need to do it again. 5570 */ 5571 if (max > skb->len) 5572 max = skb->len; 5573 5574 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5575 return -ENOMEM; 5576 5577 if (skb_headlen(skb) < len) 5578 return -EPROTO; 5579 5580 return 0; 5581 } 5582 5583 #define MAX_TCP_HDR_LEN (15 * 4) 5584 5585 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5586 typeof(IPPROTO_IP) proto, 5587 unsigned int off) 5588 { 5589 int err; 5590 5591 switch (proto) { 5592 case IPPROTO_TCP: 5593 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5594 off + MAX_TCP_HDR_LEN); 5595 if (!err && !skb_partial_csum_set(skb, off, 5596 offsetof(struct tcphdr, 5597 check))) 5598 err = -EPROTO; 5599 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5600 5601 case IPPROTO_UDP: 5602 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5603 off + sizeof(struct udphdr)); 5604 if (!err && !skb_partial_csum_set(skb, off, 5605 offsetof(struct udphdr, 5606 check))) 5607 err = -EPROTO; 5608 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5609 } 5610 5611 return ERR_PTR(-EPROTO); 5612 } 5613 5614 /* This value should be large enough to cover a tagged ethernet header plus 5615 * maximally sized IP and TCP or UDP headers. 5616 */ 5617 #define MAX_IP_HDR_LEN 128 5618 5619 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5620 { 5621 unsigned int off; 5622 bool fragment; 5623 __sum16 *csum; 5624 int err; 5625 5626 fragment = false; 5627 5628 err = skb_maybe_pull_tail(skb, 5629 sizeof(struct iphdr), 5630 MAX_IP_HDR_LEN); 5631 if (err < 0) 5632 goto out; 5633 5634 if (ip_is_fragment(ip_hdr(skb))) 5635 fragment = true; 5636 5637 off = ip_hdrlen(skb); 5638 5639 err = -EPROTO; 5640 5641 if (fragment) 5642 goto out; 5643 5644 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5645 if (IS_ERR(csum)) 5646 return PTR_ERR(csum); 5647 5648 if (recalculate) 5649 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5650 ip_hdr(skb)->daddr, 5651 skb->len - off, 5652 ip_hdr(skb)->protocol, 0); 5653 err = 0; 5654 5655 out: 5656 return err; 5657 } 5658 5659 /* This value should be large enough to cover a tagged ethernet header plus 5660 * an IPv6 header, all options, and a maximal TCP or UDP header. 5661 */ 5662 #define MAX_IPV6_HDR_LEN 256 5663 5664 #define OPT_HDR(type, skb, off) \ 5665 (type *)(skb_network_header(skb) + (off)) 5666 5667 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5668 { 5669 int err; 5670 u8 nexthdr; 5671 unsigned int off; 5672 unsigned int len; 5673 bool fragment; 5674 bool done; 5675 __sum16 *csum; 5676 5677 fragment = false; 5678 done = false; 5679 5680 off = sizeof(struct ipv6hdr); 5681 5682 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5683 if (err < 0) 5684 goto out; 5685 5686 nexthdr = ipv6_hdr(skb)->nexthdr; 5687 5688 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5689 while (off <= len && !done) { 5690 switch (nexthdr) { 5691 case IPPROTO_DSTOPTS: 5692 case IPPROTO_HOPOPTS: 5693 case IPPROTO_ROUTING: { 5694 struct ipv6_opt_hdr *hp; 5695 5696 err = skb_maybe_pull_tail(skb, 5697 off + 5698 sizeof(struct ipv6_opt_hdr), 5699 MAX_IPV6_HDR_LEN); 5700 if (err < 0) 5701 goto out; 5702 5703 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5704 nexthdr = hp->nexthdr; 5705 off += ipv6_optlen(hp); 5706 break; 5707 } 5708 case IPPROTO_AH: { 5709 struct ip_auth_hdr *hp; 5710 5711 err = skb_maybe_pull_tail(skb, 5712 off + 5713 sizeof(struct ip_auth_hdr), 5714 MAX_IPV6_HDR_LEN); 5715 if (err < 0) 5716 goto out; 5717 5718 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5719 nexthdr = hp->nexthdr; 5720 off += ipv6_authlen(hp); 5721 break; 5722 } 5723 case IPPROTO_FRAGMENT: { 5724 struct frag_hdr *hp; 5725 5726 err = skb_maybe_pull_tail(skb, 5727 off + 5728 sizeof(struct frag_hdr), 5729 MAX_IPV6_HDR_LEN); 5730 if (err < 0) 5731 goto out; 5732 5733 hp = OPT_HDR(struct frag_hdr, skb, off); 5734 5735 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5736 fragment = true; 5737 5738 nexthdr = hp->nexthdr; 5739 off += sizeof(struct frag_hdr); 5740 break; 5741 } 5742 default: 5743 done = true; 5744 break; 5745 } 5746 } 5747 5748 err = -EPROTO; 5749 5750 if (!done || fragment) 5751 goto out; 5752 5753 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5754 if (IS_ERR(csum)) 5755 return PTR_ERR(csum); 5756 5757 if (recalculate) 5758 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5759 &ipv6_hdr(skb)->daddr, 5760 skb->len - off, nexthdr, 0); 5761 err = 0; 5762 5763 out: 5764 return err; 5765 } 5766 5767 /** 5768 * skb_checksum_setup - set up partial checksum offset 5769 * @skb: the skb to set up 5770 * @recalculate: if true the pseudo-header checksum will be recalculated 5771 */ 5772 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5773 { 5774 int err; 5775 5776 switch (skb->protocol) { 5777 case htons(ETH_P_IP): 5778 err = skb_checksum_setup_ipv4(skb, recalculate); 5779 break; 5780 5781 case htons(ETH_P_IPV6): 5782 err = skb_checksum_setup_ipv6(skb, recalculate); 5783 break; 5784 5785 default: 5786 err = -EPROTO; 5787 break; 5788 } 5789 5790 return err; 5791 } 5792 EXPORT_SYMBOL(skb_checksum_setup); 5793 5794 /** 5795 * skb_checksum_maybe_trim - maybe trims the given skb 5796 * @skb: the skb to check 5797 * @transport_len: the data length beyond the network header 5798 * 5799 * Checks whether the given skb has data beyond the given transport length. 5800 * If so, returns a cloned skb trimmed to this transport length. 5801 * Otherwise returns the provided skb. Returns NULL in error cases 5802 * (e.g. transport_len exceeds skb length or out-of-memory). 5803 * 5804 * Caller needs to set the skb transport header and free any returned skb if it 5805 * differs from the provided skb. 5806 */ 5807 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5808 unsigned int transport_len) 5809 { 5810 struct sk_buff *skb_chk; 5811 unsigned int len = skb_transport_offset(skb) + transport_len; 5812 int ret; 5813 5814 if (skb->len < len) 5815 return NULL; 5816 else if (skb->len == len) 5817 return skb; 5818 5819 skb_chk = skb_clone(skb, GFP_ATOMIC); 5820 if (!skb_chk) 5821 return NULL; 5822 5823 ret = pskb_trim_rcsum(skb_chk, len); 5824 if (ret) { 5825 kfree_skb(skb_chk); 5826 return NULL; 5827 } 5828 5829 return skb_chk; 5830 } 5831 5832 /** 5833 * skb_checksum_trimmed - validate checksum of an skb 5834 * @skb: the skb to check 5835 * @transport_len: the data length beyond the network header 5836 * @skb_chkf: checksum function to use 5837 * 5838 * Applies the given checksum function skb_chkf to the provided skb. 5839 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5840 * 5841 * If the skb has data beyond the given transport length, then a 5842 * trimmed & cloned skb is checked and returned. 5843 * 5844 * Caller needs to set the skb transport header and free any returned skb if it 5845 * differs from the provided skb. 5846 */ 5847 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5848 unsigned int transport_len, 5849 __sum16(*skb_chkf)(struct sk_buff *skb)) 5850 { 5851 struct sk_buff *skb_chk; 5852 unsigned int offset = skb_transport_offset(skb); 5853 __sum16 ret; 5854 5855 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5856 if (!skb_chk) 5857 goto err; 5858 5859 if (!pskb_may_pull(skb_chk, offset)) 5860 goto err; 5861 5862 skb_pull_rcsum(skb_chk, offset); 5863 ret = skb_chkf(skb_chk); 5864 skb_push_rcsum(skb_chk, offset); 5865 5866 if (ret) 5867 goto err; 5868 5869 return skb_chk; 5870 5871 err: 5872 if (skb_chk && skb_chk != skb) 5873 kfree_skb(skb_chk); 5874 5875 return NULL; 5876 5877 } 5878 EXPORT_SYMBOL(skb_checksum_trimmed); 5879 5880 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5881 { 5882 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5883 skb->dev->name); 5884 } 5885 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5886 5887 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5888 { 5889 if (head_stolen) { 5890 skb_release_head_state(skb); 5891 kmem_cache_free(net_hotdata.skbuff_cache, skb); 5892 } else { 5893 __kfree_skb(skb); 5894 } 5895 } 5896 EXPORT_SYMBOL(kfree_skb_partial); 5897 5898 /** 5899 * skb_try_coalesce - try to merge skb to prior one 5900 * @to: prior buffer 5901 * @from: buffer to add 5902 * @fragstolen: pointer to boolean 5903 * @delta_truesize: how much more was allocated than was requested 5904 */ 5905 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5906 bool *fragstolen, int *delta_truesize) 5907 { 5908 struct skb_shared_info *to_shinfo, *from_shinfo; 5909 int i, delta, len = from->len; 5910 5911 *fragstolen = false; 5912 5913 if (skb_cloned(to)) 5914 return false; 5915 5916 /* In general, avoid mixing page_pool and non-page_pool allocated 5917 * pages within the same SKB. In theory we could take full 5918 * references if @from is cloned and !@to->pp_recycle but its 5919 * tricky (due to potential race with the clone disappearing) and 5920 * rare, so not worth dealing with. 5921 */ 5922 if (to->pp_recycle != from->pp_recycle) 5923 return false; 5924 5925 if (len <= skb_tailroom(to)) { 5926 if (len) 5927 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5928 *delta_truesize = 0; 5929 return true; 5930 } 5931 5932 to_shinfo = skb_shinfo(to); 5933 from_shinfo = skb_shinfo(from); 5934 if (to_shinfo->frag_list || from_shinfo->frag_list) 5935 return false; 5936 if (skb_zcopy(to) || skb_zcopy(from)) 5937 return false; 5938 5939 if (skb_headlen(from) != 0) { 5940 struct page *page; 5941 unsigned int offset; 5942 5943 if (to_shinfo->nr_frags + 5944 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5945 return false; 5946 5947 if (skb_head_is_locked(from)) 5948 return false; 5949 5950 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5951 5952 page = virt_to_head_page(from->head); 5953 offset = from->data - (unsigned char *)page_address(page); 5954 5955 skb_fill_page_desc(to, to_shinfo->nr_frags, 5956 page, offset, skb_headlen(from)); 5957 *fragstolen = true; 5958 } else { 5959 if (to_shinfo->nr_frags + 5960 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5961 return false; 5962 5963 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5964 } 5965 5966 WARN_ON_ONCE(delta < len); 5967 5968 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5969 from_shinfo->frags, 5970 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5971 to_shinfo->nr_frags += from_shinfo->nr_frags; 5972 5973 if (!skb_cloned(from)) 5974 from_shinfo->nr_frags = 0; 5975 5976 /* if the skb is not cloned this does nothing 5977 * since we set nr_frags to 0. 5978 */ 5979 if (skb_pp_frag_ref(from)) { 5980 for (i = 0; i < from_shinfo->nr_frags; i++) 5981 __skb_frag_ref(&from_shinfo->frags[i]); 5982 } 5983 5984 to->truesize += delta; 5985 to->len += len; 5986 to->data_len += len; 5987 5988 *delta_truesize = delta; 5989 return true; 5990 } 5991 EXPORT_SYMBOL(skb_try_coalesce); 5992 5993 /** 5994 * skb_scrub_packet - scrub an skb 5995 * 5996 * @skb: buffer to clean 5997 * @xnet: packet is crossing netns 5998 * 5999 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 6000 * into/from a tunnel. Some information have to be cleared during these 6001 * operations. 6002 * skb_scrub_packet can also be used to clean a skb before injecting it in 6003 * another namespace (@xnet == true). We have to clear all information in the 6004 * skb that could impact namespace isolation. 6005 */ 6006 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 6007 { 6008 skb->pkt_type = PACKET_HOST; 6009 skb->skb_iif = 0; 6010 skb->ignore_df = 0; 6011 skb_dst_drop(skb); 6012 skb_ext_reset(skb); 6013 nf_reset_ct(skb); 6014 nf_reset_trace(skb); 6015 6016 #ifdef CONFIG_NET_SWITCHDEV 6017 skb->offload_fwd_mark = 0; 6018 skb->offload_l3_fwd_mark = 0; 6019 #endif 6020 6021 if (!xnet) 6022 return; 6023 6024 ipvs_reset(skb); 6025 skb->mark = 0; 6026 skb_clear_tstamp(skb); 6027 } 6028 EXPORT_SYMBOL_GPL(skb_scrub_packet); 6029 6030 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 6031 { 6032 int mac_len, meta_len; 6033 void *meta; 6034 6035 if (skb_cow(skb, skb_headroom(skb)) < 0) { 6036 kfree_skb(skb); 6037 return NULL; 6038 } 6039 6040 mac_len = skb->data - skb_mac_header(skb); 6041 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 6042 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 6043 mac_len - VLAN_HLEN - ETH_TLEN); 6044 } 6045 6046 meta_len = skb_metadata_len(skb); 6047 if (meta_len) { 6048 meta = skb_metadata_end(skb) - meta_len; 6049 memmove(meta + VLAN_HLEN, meta, meta_len); 6050 } 6051 6052 skb->mac_header += VLAN_HLEN; 6053 return skb; 6054 } 6055 6056 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 6057 { 6058 struct vlan_hdr *vhdr; 6059 u16 vlan_tci; 6060 6061 if (unlikely(skb_vlan_tag_present(skb))) { 6062 /* vlan_tci is already set-up so leave this for another time */ 6063 return skb; 6064 } 6065 6066 skb = skb_share_check(skb, GFP_ATOMIC); 6067 if (unlikely(!skb)) 6068 goto err_free; 6069 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 6070 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 6071 goto err_free; 6072 6073 vhdr = (struct vlan_hdr *)skb->data; 6074 vlan_tci = ntohs(vhdr->h_vlan_TCI); 6075 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 6076 6077 skb_pull_rcsum(skb, VLAN_HLEN); 6078 vlan_set_encap_proto(skb, vhdr); 6079 6080 skb = skb_reorder_vlan_header(skb); 6081 if (unlikely(!skb)) 6082 goto err_free; 6083 6084 skb_reset_network_header(skb); 6085 if (!skb_transport_header_was_set(skb)) 6086 skb_reset_transport_header(skb); 6087 skb_reset_mac_len(skb); 6088 6089 return skb; 6090 6091 err_free: 6092 kfree_skb(skb); 6093 return NULL; 6094 } 6095 EXPORT_SYMBOL(skb_vlan_untag); 6096 6097 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 6098 { 6099 if (!pskb_may_pull(skb, write_len)) 6100 return -ENOMEM; 6101 6102 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 6103 return 0; 6104 6105 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 6106 } 6107 EXPORT_SYMBOL(skb_ensure_writable); 6108 6109 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev) 6110 { 6111 int needed_headroom = dev->needed_headroom; 6112 int needed_tailroom = dev->needed_tailroom; 6113 6114 /* For tail taggers, we need to pad short frames ourselves, to ensure 6115 * that the tail tag does not fail at its role of being at the end of 6116 * the packet, once the conduit interface pads the frame. Account for 6117 * that pad length here, and pad later. 6118 */ 6119 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN)) 6120 needed_tailroom += ETH_ZLEN - skb->len; 6121 /* skb_headroom() returns unsigned int... */ 6122 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0); 6123 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0); 6124 6125 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb))) 6126 /* No reallocation needed, yay! */ 6127 return 0; 6128 6129 return pskb_expand_head(skb, needed_headroom, needed_tailroom, 6130 GFP_ATOMIC); 6131 } 6132 EXPORT_SYMBOL(skb_ensure_writable_head_tail); 6133 6134 /* remove VLAN header from packet and update csum accordingly. 6135 * expects a non skb_vlan_tag_present skb with a vlan tag payload 6136 */ 6137 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 6138 { 6139 int offset = skb->data - skb_mac_header(skb); 6140 int err; 6141 6142 if (WARN_ONCE(offset, 6143 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 6144 offset)) { 6145 return -EINVAL; 6146 } 6147 6148 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 6149 if (unlikely(err)) 6150 return err; 6151 6152 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6153 6154 vlan_remove_tag(skb, vlan_tci); 6155 6156 skb->mac_header += VLAN_HLEN; 6157 6158 if (skb_network_offset(skb) < ETH_HLEN) 6159 skb_set_network_header(skb, ETH_HLEN); 6160 6161 skb_reset_mac_len(skb); 6162 6163 return err; 6164 } 6165 EXPORT_SYMBOL(__skb_vlan_pop); 6166 6167 /* Pop a vlan tag either from hwaccel or from payload. 6168 * Expects skb->data at mac header. 6169 */ 6170 int skb_vlan_pop(struct sk_buff *skb) 6171 { 6172 u16 vlan_tci; 6173 __be16 vlan_proto; 6174 int err; 6175 6176 if (likely(skb_vlan_tag_present(skb))) { 6177 __vlan_hwaccel_clear_tag(skb); 6178 } else { 6179 if (unlikely(!eth_type_vlan(skb->protocol))) 6180 return 0; 6181 6182 err = __skb_vlan_pop(skb, &vlan_tci); 6183 if (err) 6184 return err; 6185 } 6186 /* move next vlan tag to hw accel tag */ 6187 if (likely(!eth_type_vlan(skb->protocol))) 6188 return 0; 6189 6190 vlan_proto = skb->protocol; 6191 err = __skb_vlan_pop(skb, &vlan_tci); 6192 if (unlikely(err)) 6193 return err; 6194 6195 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6196 return 0; 6197 } 6198 EXPORT_SYMBOL(skb_vlan_pop); 6199 6200 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 6201 * Expects skb->data at mac header. 6202 */ 6203 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6204 { 6205 if (skb_vlan_tag_present(skb)) { 6206 int offset = skb->data - skb_mac_header(skb); 6207 int err; 6208 6209 if (WARN_ONCE(offset, 6210 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6211 offset)) { 6212 return -EINVAL; 6213 } 6214 6215 err = __vlan_insert_tag(skb, skb->vlan_proto, 6216 skb_vlan_tag_get(skb)); 6217 if (err) 6218 return err; 6219 6220 skb->protocol = skb->vlan_proto; 6221 skb->mac_len += VLAN_HLEN; 6222 6223 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6224 } 6225 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6226 return 0; 6227 } 6228 EXPORT_SYMBOL(skb_vlan_push); 6229 6230 /** 6231 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6232 * 6233 * @skb: Socket buffer to modify 6234 * 6235 * Drop the Ethernet header of @skb. 6236 * 6237 * Expects that skb->data points to the mac header and that no VLAN tags are 6238 * present. 6239 * 6240 * Returns 0 on success, -errno otherwise. 6241 */ 6242 int skb_eth_pop(struct sk_buff *skb) 6243 { 6244 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6245 skb_network_offset(skb) < ETH_HLEN) 6246 return -EPROTO; 6247 6248 skb_pull_rcsum(skb, ETH_HLEN); 6249 skb_reset_mac_header(skb); 6250 skb_reset_mac_len(skb); 6251 6252 return 0; 6253 } 6254 EXPORT_SYMBOL(skb_eth_pop); 6255 6256 /** 6257 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6258 * 6259 * @skb: Socket buffer to modify 6260 * @dst: Destination MAC address of the new header 6261 * @src: Source MAC address of the new header 6262 * 6263 * Prepend @skb with a new Ethernet header. 6264 * 6265 * Expects that skb->data points to the mac header, which must be empty. 6266 * 6267 * Returns 0 on success, -errno otherwise. 6268 */ 6269 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6270 const unsigned char *src) 6271 { 6272 struct ethhdr *eth; 6273 int err; 6274 6275 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6276 return -EPROTO; 6277 6278 err = skb_cow_head(skb, sizeof(*eth)); 6279 if (err < 0) 6280 return err; 6281 6282 skb_push(skb, sizeof(*eth)); 6283 skb_reset_mac_header(skb); 6284 skb_reset_mac_len(skb); 6285 6286 eth = eth_hdr(skb); 6287 ether_addr_copy(eth->h_dest, dst); 6288 ether_addr_copy(eth->h_source, src); 6289 eth->h_proto = skb->protocol; 6290 6291 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6292 6293 return 0; 6294 } 6295 EXPORT_SYMBOL(skb_eth_push); 6296 6297 /* Update the ethertype of hdr and the skb csum value if required. */ 6298 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6299 __be16 ethertype) 6300 { 6301 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6302 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6303 6304 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6305 } 6306 6307 hdr->h_proto = ethertype; 6308 } 6309 6310 /** 6311 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6312 * the packet 6313 * 6314 * @skb: buffer 6315 * @mpls_lse: MPLS label stack entry to push 6316 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6317 * @mac_len: length of the MAC header 6318 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6319 * ethernet 6320 * 6321 * Expects skb->data at mac header. 6322 * 6323 * Returns 0 on success, -errno otherwise. 6324 */ 6325 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6326 int mac_len, bool ethernet) 6327 { 6328 struct mpls_shim_hdr *lse; 6329 int err; 6330 6331 if (unlikely(!eth_p_mpls(mpls_proto))) 6332 return -EINVAL; 6333 6334 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6335 if (skb->encapsulation) 6336 return -EINVAL; 6337 6338 err = skb_cow_head(skb, MPLS_HLEN); 6339 if (unlikely(err)) 6340 return err; 6341 6342 if (!skb->inner_protocol) { 6343 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6344 skb_set_inner_protocol(skb, skb->protocol); 6345 } 6346 6347 skb_push(skb, MPLS_HLEN); 6348 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6349 mac_len); 6350 skb_reset_mac_header(skb); 6351 skb_set_network_header(skb, mac_len); 6352 skb_reset_mac_len(skb); 6353 6354 lse = mpls_hdr(skb); 6355 lse->label_stack_entry = mpls_lse; 6356 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6357 6358 if (ethernet && mac_len >= ETH_HLEN) 6359 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6360 skb->protocol = mpls_proto; 6361 6362 return 0; 6363 } 6364 EXPORT_SYMBOL_GPL(skb_mpls_push); 6365 6366 /** 6367 * skb_mpls_pop() - pop the outermost MPLS header 6368 * 6369 * @skb: buffer 6370 * @next_proto: ethertype of header after popped MPLS header 6371 * @mac_len: length of the MAC header 6372 * @ethernet: flag to indicate if the packet is ethernet 6373 * 6374 * Expects skb->data at mac header. 6375 * 6376 * Returns 0 on success, -errno otherwise. 6377 */ 6378 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6379 bool ethernet) 6380 { 6381 int err; 6382 6383 if (unlikely(!eth_p_mpls(skb->protocol))) 6384 return 0; 6385 6386 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6387 if (unlikely(err)) 6388 return err; 6389 6390 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6391 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6392 mac_len); 6393 6394 __skb_pull(skb, MPLS_HLEN); 6395 skb_reset_mac_header(skb); 6396 skb_set_network_header(skb, mac_len); 6397 6398 if (ethernet && mac_len >= ETH_HLEN) { 6399 struct ethhdr *hdr; 6400 6401 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6402 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6403 skb_mod_eth_type(skb, hdr, next_proto); 6404 } 6405 skb->protocol = next_proto; 6406 6407 return 0; 6408 } 6409 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6410 6411 /** 6412 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6413 * 6414 * @skb: buffer 6415 * @mpls_lse: new MPLS label stack entry to update to 6416 * 6417 * Expects skb->data at mac header. 6418 * 6419 * Returns 0 on success, -errno otherwise. 6420 */ 6421 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6422 { 6423 int err; 6424 6425 if (unlikely(!eth_p_mpls(skb->protocol))) 6426 return -EINVAL; 6427 6428 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6429 if (unlikely(err)) 6430 return err; 6431 6432 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6433 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6434 6435 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6436 } 6437 6438 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6439 6440 return 0; 6441 } 6442 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6443 6444 /** 6445 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6446 * 6447 * @skb: buffer 6448 * 6449 * Expects skb->data at mac header. 6450 * 6451 * Returns 0 on success, -errno otherwise. 6452 */ 6453 int skb_mpls_dec_ttl(struct sk_buff *skb) 6454 { 6455 u32 lse; 6456 u8 ttl; 6457 6458 if (unlikely(!eth_p_mpls(skb->protocol))) 6459 return -EINVAL; 6460 6461 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6462 return -ENOMEM; 6463 6464 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6465 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6466 if (!--ttl) 6467 return -EINVAL; 6468 6469 lse &= ~MPLS_LS_TTL_MASK; 6470 lse |= ttl << MPLS_LS_TTL_SHIFT; 6471 6472 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6473 } 6474 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6475 6476 /** 6477 * alloc_skb_with_frags - allocate skb with page frags 6478 * 6479 * @header_len: size of linear part 6480 * @data_len: needed length in frags 6481 * @order: max page order desired. 6482 * @errcode: pointer to error code if any 6483 * @gfp_mask: allocation mask 6484 * 6485 * This can be used to allocate a paged skb, given a maximal order for frags. 6486 */ 6487 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6488 unsigned long data_len, 6489 int order, 6490 int *errcode, 6491 gfp_t gfp_mask) 6492 { 6493 unsigned long chunk; 6494 struct sk_buff *skb; 6495 struct page *page; 6496 int nr_frags = 0; 6497 6498 *errcode = -EMSGSIZE; 6499 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6500 return NULL; 6501 6502 *errcode = -ENOBUFS; 6503 skb = alloc_skb(header_len, gfp_mask); 6504 if (!skb) 6505 return NULL; 6506 6507 while (data_len) { 6508 if (nr_frags == MAX_SKB_FRAGS - 1) 6509 goto failure; 6510 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6511 order--; 6512 6513 if (order) { 6514 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6515 __GFP_COMP | 6516 __GFP_NOWARN, 6517 order); 6518 if (!page) { 6519 order--; 6520 continue; 6521 } 6522 } else { 6523 page = alloc_page(gfp_mask); 6524 if (!page) 6525 goto failure; 6526 } 6527 chunk = min_t(unsigned long, data_len, 6528 PAGE_SIZE << order); 6529 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6530 nr_frags++; 6531 skb->truesize += (PAGE_SIZE << order); 6532 data_len -= chunk; 6533 } 6534 return skb; 6535 6536 failure: 6537 kfree_skb(skb); 6538 return NULL; 6539 } 6540 EXPORT_SYMBOL(alloc_skb_with_frags); 6541 6542 /* carve out the first off bytes from skb when off < headlen */ 6543 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6544 const int headlen, gfp_t gfp_mask) 6545 { 6546 int i; 6547 unsigned int size = skb_end_offset(skb); 6548 int new_hlen = headlen - off; 6549 u8 *data; 6550 6551 if (skb_pfmemalloc(skb)) 6552 gfp_mask |= __GFP_MEMALLOC; 6553 6554 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6555 if (!data) 6556 return -ENOMEM; 6557 size = SKB_WITH_OVERHEAD(size); 6558 6559 /* Copy real data, and all frags */ 6560 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6561 skb->len -= off; 6562 6563 memcpy((struct skb_shared_info *)(data + size), 6564 skb_shinfo(skb), 6565 offsetof(struct skb_shared_info, 6566 frags[skb_shinfo(skb)->nr_frags])); 6567 if (skb_cloned(skb)) { 6568 /* drop the old head gracefully */ 6569 if (skb_orphan_frags(skb, gfp_mask)) { 6570 skb_kfree_head(data, size); 6571 return -ENOMEM; 6572 } 6573 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6574 skb_frag_ref(skb, i); 6575 if (skb_has_frag_list(skb)) 6576 skb_clone_fraglist(skb); 6577 skb_release_data(skb, SKB_CONSUMED, false); 6578 } else { 6579 /* we can reuse existing recount- all we did was 6580 * relocate values 6581 */ 6582 skb_free_head(skb, false); 6583 } 6584 6585 skb->head = data; 6586 skb->data = data; 6587 skb->head_frag = 0; 6588 skb_set_end_offset(skb, size); 6589 skb_set_tail_pointer(skb, skb_headlen(skb)); 6590 skb_headers_offset_update(skb, 0); 6591 skb->cloned = 0; 6592 skb->hdr_len = 0; 6593 skb->nohdr = 0; 6594 atomic_set(&skb_shinfo(skb)->dataref, 1); 6595 6596 return 0; 6597 } 6598 6599 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6600 6601 /* carve out the first eat bytes from skb's frag_list. May recurse into 6602 * pskb_carve() 6603 */ 6604 static int pskb_carve_frag_list(struct sk_buff *skb, 6605 struct skb_shared_info *shinfo, int eat, 6606 gfp_t gfp_mask) 6607 { 6608 struct sk_buff *list = shinfo->frag_list; 6609 struct sk_buff *clone = NULL; 6610 struct sk_buff *insp = NULL; 6611 6612 do { 6613 if (!list) { 6614 pr_err("Not enough bytes to eat. Want %d\n", eat); 6615 return -EFAULT; 6616 } 6617 if (list->len <= eat) { 6618 /* Eaten as whole. */ 6619 eat -= list->len; 6620 list = list->next; 6621 insp = list; 6622 } else { 6623 /* Eaten partially. */ 6624 if (skb_shared(list)) { 6625 clone = skb_clone(list, gfp_mask); 6626 if (!clone) 6627 return -ENOMEM; 6628 insp = list->next; 6629 list = clone; 6630 } else { 6631 /* This may be pulled without problems. */ 6632 insp = list; 6633 } 6634 if (pskb_carve(list, eat, gfp_mask) < 0) { 6635 kfree_skb(clone); 6636 return -ENOMEM; 6637 } 6638 break; 6639 } 6640 } while (eat); 6641 6642 /* Free pulled out fragments. */ 6643 while ((list = shinfo->frag_list) != insp) { 6644 shinfo->frag_list = list->next; 6645 consume_skb(list); 6646 } 6647 /* And insert new clone at head. */ 6648 if (clone) { 6649 clone->next = list; 6650 shinfo->frag_list = clone; 6651 } 6652 return 0; 6653 } 6654 6655 /* carve off first len bytes from skb. Split line (off) is in the 6656 * non-linear part of skb 6657 */ 6658 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6659 int pos, gfp_t gfp_mask) 6660 { 6661 int i, k = 0; 6662 unsigned int size = skb_end_offset(skb); 6663 u8 *data; 6664 const int nfrags = skb_shinfo(skb)->nr_frags; 6665 struct skb_shared_info *shinfo; 6666 6667 if (skb_pfmemalloc(skb)) 6668 gfp_mask |= __GFP_MEMALLOC; 6669 6670 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6671 if (!data) 6672 return -ENOMEM; 6673 size = SKB_WITH_OVERHEAD(size); 6674 6675 memcpy((struct skb_shared_info *)(data + size), 6676 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6677 if (skb_orphan_frags(skb, gfp_mask)) { 6678 skb_kfree_head(data, size); 6679 return -ENOMEM; 6680 } 6681 shinfo = (struct skb_shared_info *)(data + size); 6682 for (i = 0; i < nfrags; i++) { 6683 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6684 6685 if (pos + fsize > off) { 6686 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6687 6688 if (pos < off) { 6689 /* Split frag. 6690 * We have two variants in this case: 6691 * 1. Move all the frag to the second 6692 * part, if it is possible. F.e. 6693 * this approach is mandatory for TUX, 6694 * where splitting is expensive. 6695 * 2. Split is accurately. We make this. 6696 */ 6697 skb_frag_off_add(&shinfo->frags[0], off - pos); 6698 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6699 } 6700 skb_frag_ref(skb, i); 6701 k++; 6702 } 6703 pos += fsize; 6704 } 6705 shinfo->nr_frags = k; 6706 if (skb_has_frag_list(skb)) 6707 skb_clone_fraglist(skb); 6708 6709 /* split line is in frag list */ 6710 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6711 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6712 if (skb_has_frag_list(skb)) 6713 kfree_skb_list(skb_shinfo(skb)->frag_list); 6714 skb_kfree_head(data, size); 6715 return -ENOMEM; 6716 } 6717 skb_release_data(skb, SKB_CONSUMED, false); 6718 6719 skb->head = data; 6720 skb->head_frag = 0; 6721 skb->data = data; 6722 skb_set_end_offset(skb, size); 6723 skb_reset_tail_pointer(skb); 6724 skb_headers_offset_update(skb, 0); 6725 skb->cloned = 0; 6726 skb->hdr_len = 0; 6727 skb->nohdr = 0; 6728 skb->len -= off; 6729 skb->data_len = skb->len; 6730 atomic_set(&skb_shinfo(skb)->dataref, 1); 6731 return 0; 6732 } 6733 6734 /* remove len bytes from the beginning of the skb */ 6735 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6736 { 6737 int headlen = skb_headlen(skb); 6738 6739 if (len < headlen) 6740 return pskb_carve_inside_header(skb, len, headlen, gfp); 6741 else 6742 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6743 } 6744 6745 /* Extract to_copy bytes starting at off from skb, and return this in 6746 * a new skb 6747 */ 6748 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6749 int to_copy, gfp_t gfp) 6750 { 6751 struct sk_buff *clone = skb_clone(skb, gfp); 6752 6753 if (!clone) 6754 return NULL; 6755 6756 if (pskb_carve(clone, off, gfp) < 0 || 6757 pskb_trim(clone, to_copy)) { 6758 kfree_skb(clone); 6759 return NULL; 6760 } 6761 return clone; 6762 } 6763 EXPORT_SYMBOL(pskb_extract); 6764 6765 /** 6766 * skb_condense - try to get rid of fragments/frag_list if possible 6767 * @skb: buffer 6768 * 6769 * Can be used to save memory before skb is added to a busy queue. 6770 * If packet has bytes in frags and enough tail room in skb->head, 6771 * pull all of them, so that we can free the frags right now and adjust 6772 * truesize. 6773 * Notes: 6774 * We do not reallocate skb->head thus can not fail. 6775 * Caller must re-evaluate skb->truesize if needed. 6776 */ 6777 void skb_condense(struct sk_buff *skb) 6778 { 6779 if (skb->data_len) { 6780 if (skb->data_len > skb->end - skb->tail || 6781 skb_cloned(skb)) 6782 return; 6783 6784 /* Nice, we can free page frag(s) right now */ 6785 __pskb_pull_tail(skb, skb->data_len); 6786 } 6787 /* At this point, skb->truesize might be over estimated, 6788 * because skb had a fragment, and fragments do not tell 6789 * their truesize. 6790 * When we pulled its content into skb->head, fragment 6791 * was freed, but __pskb_pull_tail() could not possibly 6792 * adjust skb->truesize, not knowing the frag truesize. 6793 */ 6794 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6795 } 6796 EXPORT_SYMBOL(skb_condense); 6797 6798 #ifdef CONFIG_SKB_EXTENSIONS 6799 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6800 { 6801 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6802 } 6803 6804 /** 6805 * __skb_ext_alloc - allocate a new skb extensions storage 6806 * 6807 * @flags: See kmalloc(). 6808 * 6809 * Returns the newly allocated pointer. The pointer can later attached to a 6810 * skb via __skb_ext_set(). 6811 * Note: caller must handle the skb_ext as an opaque data. 6812 */ 6813 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6814 { 6815 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6816 6817 if (new) { 6818 memset(new->offset, 0, sizeof(new->offset)); 6819 refcount_set(&new->refcnt, 1); 6820 } 6821 6822 return new; 6823 } 6824 6825 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6826 unsigned int old_active) 6827 { 6828 struct skb_ext *new; 6829 6830 if (refcount_read(&old->refcnt) == 1) 6831 return old; 6832 6833 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6834 if (!new) 6835 return NULL; 6836 6837 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6838 refcount_set(&new->refcnt, 1); 6839 6840 #ifdef CONFIG_XFRM 6841 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6842 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6843 unsigned int i; 6844 6845 for (i = 0; i < sp->len; i++) 6846 xfrm_state_hold(sp->xvec[i]); 6847 } 6848 #endif 6849 #ifdef CONFIG_MCTP_FLOWS 6850 if (old_active & (1 << SKB_EXT_MCTP)) { 6851 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP); 6852 6853 if (flow->key) 6854 refcount_inc(&flow->key->refs); 6855 } 6856 #endif 6857 __skb_ext_put(old); 6858 return new; 6859 } 6860 6861 /** 6862 * __skb_ext_set - attach the specified extension storage to this skb 6863 * @skb: buffer 6864 * @id: extension id 6865 * @ext: extension storage previously allocated via __skb_ext_alloc() 6866 * 6867 * Existing extensions, if any, are cleared. 6868 * 6869 * Returns the pointer to the extension. 6870 */ 6871 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6872 struct skb_ext *ext) 6873 { 6874 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6875 6876 skb_ext_put(skb); 6877 newlen = newoff + skb_ext_type_len[id]; 6878 ext->chunks = newlen; 6879 ext->offset[id] = newoff; 6880 skb->extensions = ext; 6881 skb->active_extensions = 1 << id; 6882 return skb_ext_get_ptr(ext, id); 6883 } 6884 6885 /** 6886 * skb_ext_add - allocate space for given extension, COW if needed 6887 * @skb: buffer 6888 * @id: extension to allocate space for 6889 * 6890 * Allocates enough space for the given extension. 6891 * If the extension is already present, a pointer to that extension 6892 * is returned. 6893 * 6894 * If the skb was cloned, COW applies and the returned memory can be 6895 * modified without changing the extension space of clones buffers. 6896 * 6897 * Returns pointer to the extension or NULL on allocation failure. 6898 */ 6899 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6900 { 6901 struct skb_ext *new, *old = NULL; 6902 unsigned int newlen, newoff; 6903 6904 if (skb->active_extensions) { 6905 old = skb->extensions; 6906 6907 new = skb_ext_maybe_cow(old, skb->active_extensions); 6908 if (!new) 6909 return NULL; 6910 6911 if (__skb_ext_exist(new, id)) 6912 goto set_active; 6913 6914 newoff = new->chunks; 6915 } else { 6916 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6917 6918 new = __skb_ext_alloc(GFP_ATOMIC); 6919 if (!new) 6920 return NULL; 6921 } 6922 6923 newlen = newoff + skb_ext_type_len[id]; 6924 new->chunks = newlen; 6925 new->offset[id] = newoff; 6926 set_active: 6927 skb->slow_gro = 1; 6928 skb->extensions = new; 6929 skb->active_extensions |= 1 << id; 6930 return skb_ext_get_ptr(new, id); 6931 } 6932 EXPORT_SYMBOL(skb_ext_add); 6933 6934 #ifdef CONFIG_XFRM 6935 static void skb_ext_put_sp(struct sec_path *sp) 6936 { 6937 unsigned int i; 6938 6939 for (i = 0; i < sp->len; i++) 6940 xfrm_state_put(sp->xvec[i]); 6941 } 6942 #endif 6943 6944 #ifdef CONFIG_MCTP_FLOWS 6945 static void skb_ext_put_mctp(struct mctp_flow *flow) 6946 { 6947 if (flow->key) 6948 mctp_key_unref(flow->key); 6949 } 6950 #endif 6951 6952 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6953 { 6954 struct skb_ext *ext = skb->extensions; 6955 6956 skb->active_extensions &= ~(1 << id); 6957 if (skb->active_extensions == 0) { 6958 skb->extensions = NULL; 6959 __skb_ext_put(ext); 6960 #ifdef CONFIG_XFRM 6961 } else if (id == SKB_EXT_SEC_PATH && 6962 refcount_read(&ext->refcnt) == 1) { 6963 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6964 6965 skb_ext_put_sp(sp); 6966 sp->len = 0; 6967 #endif 6968 } 6969 } 6970 EXPORT_SYMBOL(__skb_ext_del); 6971 6972 void __skb_ext_put(struct skb_ext *ext) 6973 { 6974 /* If this is last clone, nothing can increment 6975 * it after check passes. Avoids one atomic op. 6976 */ 6977 if (refcount_read(&ext->refcnt) == 1) 6978 goto free_now; 6979 6980 if (!refcount_dec_and_test(&ext->refcnt)) 6981 return; 6982 free_now: 6983 #ifdef CONFIG_XFRM 6984 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6985 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6986 #endif 6987 #ifdef CONFIG_MCTP_FLOWS 6988 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6989 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6990 #endif 6991 6992 kmem_cache_free(skbuff_ext_cache, ext); 6993 } 6994 EXPORT_SYMBOL(__skb_ext_put); 6995 #endif /* CONFIG_SKB_EXTENSIONS */ 6996 6997 /** 6998 * skb_attempt_defer_free - queue skb for remote freeing 6999 * @skb: buffer 7000 * 7001 * Put @skb in a per-cpu list, using the cpu which 7002 * allocated the skb/pages to reduce false sharing 7003 * and memory zone spinlock contention. 7004 */ 7005 void skb_attempt_defer_free(struct sk_buff *skb) 7006 { 7007 int cpu = skb->alloc_cpu; 7008 struct softnet_data *sd; 7009 unsigned int defer_max; 7010 bool kick; 7011 7012 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 7013 !cpu_online(cpu) || 7014 cpu == raw_smp_processor_id()) { 7015 nodefer: __kfree_skb(skb); 7016 return; 7017 } 7018 7019 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 7020 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 7021 7022 sd = &per_cpu(softnet_data, cpu); 7023 defer_max = READ_ONCE(sysctl_skb_defer_max); 7024 if (READ_ONCE(sd->defer_count) >= defer_max) 7025 goto nodefer; 7026 7027 spin_lock_bh(&sd->defer_lock); 7028 /* Send an IPI every time queue reaches half capacity. */ 7029 kick = sd->defer_count == (defer_max >> 1); 7030 /* Paired with the READ_ONCE() few lines above */ 7031 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 7032 7033 skb->next = sd->defer_list; 7034 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 7035 WRITE_ONCE(sd->defer_list, skb); 7036 spin_unlock_bh(&sd->defer_lock); 7037 7038 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 7039 * if we are unlucky enough (this seems very unlikely). 7040 */ 7041 if (unlikely(kick)) 7042 kick_defer_list_purge(sd, cpu); 7043 } 7044 7045 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 7046 size_t offset, size_t len) 7047 { 7048 const char *kaddr; 7049 __wsum csum; 7050 7051 kaddr = kmap_local_page(page); 7052 csum = csum_partial(kaddr + offset, len, 0); 7053 kunmap_local(kaddr); 7054 skb->csum = csum_block_add(skb->csum, csum, skb->len); 7055 } 7056 7057 /** 7058 * skb_splice_from_iter - Splice (or copy) pages to skbuff 7059 * @skb: The buffer to add pages to 7060 * @iter: Iterator representing the pages to be added 7061 * @maxsize: Maximum amount of pages to be added 7062 * @gfp: Allocation flags 7063 * 7064 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 7065 * extracts pages from an iterator and adds them to the socket buffer if 7066 * possible, copying them to fragments if not possible (such as if they're slab 7067 * pages). 7068 * 7069 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 7070 * insufficient space in the buffer to transfer anything. 7071 */ 7072 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 7073 ssize_t maxsize, gfp_t gfp) 7074 { 7075 size_t frag_limit = READ_ONCE(sysctl_max_skb_frags); 7076 struct page *pages[8], **ppages = pages; 7077 ssize_t spliced = 0, ret = 0; 7078 unsigned int i; 7079 7080 while (iter->count > 0) { 7081 ssize_t space, nr, len; 7082 size_t off; 7083 7084 ret = -EMSGSIZE; 7085 space = frag_limit - skb_shinfo(skb)->nr_frags; 7086 if (space < 0) 7087 break; 7088 7089 /* We might be able to coalesce without increasing nr_frags */ 7090 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 7091 7092 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 7093 if (len <= 0) { 7094 ret = len ?: -EIO; 7095 break; 7096 } 7097 7098 i = 0; 7099 do { 7100 struct page *page = pages[i++]; 7101 size_t part = min_t(size_t, PAGE_SIZE - off, len); 7102 7103 ret = -EIO; 7104 if (WARN_ON_ONCE(!sendpage_ok(page))) 7105 goto out; 7106 7107 ret = skb_append_pagefrags(skb, page, off, part, 7108 frag_limit); 7109 if (ret < 0) { 7110 iov_iter_revert(iter, len); 7111 goto out; 7112 } 7113 7114 if (skb->ip_summed == CHECKSUM_NONE) 7115 skb_splice_csum_page(skb, page, off, part); 7116 7117 off = 0; 7118 spliced += part; 7119 maxsize -= part; 7120 len -= part; 7121 } while (len > 0); 7122 7123 if (maxsize <= 0) 7124 break; 7125 } 7126 7127 out: 7128 skb_len_add(skb, spliced); 7129 return spliced ?: ret; 7130 } 7131 EXPORT_SYMBOL(skb_splice_from_iter); 7132 7133 static __always_inline 7134 size_t memcpy_from_iter_csum(void *iter_from, size_t progress, 7135 size_t len, void *to, void *priv2) 7136 { 7137 __wsum *csum = priv2; 7138 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len); 7139 7140 *csum = csum_block_add(*csum, next, progress); 7141 return 0; 7142 } 7143 7144 static __always_inline 7145 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress, 7146 size_t len, void *to, void *priv2) 7147 { 7148 __wsum next, *csum = priv2; 7149 7150 next = csum_and_copy_from_user(iter_from, to + progress, len); 7151 *csum = csum_block_add(*csum, next, progress); 7152 return next ? 0 : len; 7153 } 7154 7155 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, 7156 __wsum *csum, struct iov_iter *i) 7157 { 7158 size_t copied; 7159 7160 if (WARN_ON_ONCE(!i->data_source)) 7161 return false; 7162 copied = iterate_and_advance2(i, bytes, addr, csum, 7163 copy_from_user_iter_csum, 7164 memcpy_from_iter_csum); 7165 if (likely(copied == bytes)) 7166 return true; 7167 iov_iter_revert(i, copied); 7168 return false; 7169 } 7170 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 7171