1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/bitfield.h> 62 #include <linux/if_vlan.h> 63 #include <linux/mpls.h> 64 #include <linux/kcov.h> 65 #include <linux/iov_iter.h> 66 67 #include <net/protocol.h> 68 #include <net/dst.h> 69 #include <net/sock.h> 70 #include <net/checksum.h> 71 #include <net/gso.h> 72 #include <net/ip6_checksum.h> 73 #include <net/xfrm.h> 74 #include <net/mpls.h> 75 #include <net/mptcp.h> 76 #include <net/mctp.h> 77 #include <net/page_pool/helpers.h> 78 #include <net/dropreason.h> 79 80 #include <linux/uaccess.h> 81 #include <trace/events/skb.h> 82 #include <linux/highmem.h> 83 #include <linux/capability.h> 84 #include <linux/user_namespace.h> 85 #include <linux/indirect_call_wrapper.h> 86 #include <linux/textsearch.h> 87 88 #include "dev.h" 89 #include "sock_destructor.h" 90 91 struct kmem_cache *skbuff_cache __ro_after_init; 92 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 93 #ifdef CONFIG_SKB_EXTENSIONS 94 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 95 #endif 96 97 98 static struct kmem_cache *skb_small_head_cache __ro_after_init; 99 100 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER) 101 102 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 103 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 104 * size, and we can differentiate heads from skb_small_head_cache 105 * vs system slabs by looking at their size (skb_end_offset()). 106 */ 107 #define SKB_SMALL_HEAD_CACHE_SIZE \ 108 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 109 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 110 SKB_SMALL_HEAD_SIZE) 111 112 #define SKB_SMALL_HEAD_HEADROOM \ 113 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 114 115 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 116 EXPORT_SYMBOL(sysctl_max_skb_frags); 117 118 #undef FN 119 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 120 static const char * const drop_reasons[] = { 121 [SKB_CONSUMED] = "CONSUMED", 122 DEFINE_DROP_REASON(FN, FN) 123 }; 124 125 static const struct drop_reason_list drop_reasons_core = { 126 .reasons = drop_reasons, 127 .n_reasons = ARRAY_SIZE(drop_reasons), 128 }; 129 130 const struct drop_reason_list __rcu * 131 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 132 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 133 }; 134 EXPORT_SYMBOL(drop_reasons_by_subsys); 135 136 /** 137 * drop_reasons_register_subsys - register another drop reason subsystem 138 * @subsys: the subsystem to register, must not be the core 139 * @list: the list of drop reasons within the subsystem, must point to 140 * a statically initialized list 141 */ 142 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 143 const struct drop_reason_list *list) 144 { 145 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 146 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 147 "invalid subsystem %d\n", subsys)) 148 return; 149 150 /* must point to statically allocated memory, so INIT is OK */ 151 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 152 } 153 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 154 155 /** 156 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 157 * @subsys: the subsystem to remove, must not be the core 158 * 159 * Note: This will synchronize_rcu() to ensure no users when it returns. 160 */ 161 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 162 { 163 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 164 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 165 "invalid subsystem %d\n", subsys)) 166 return; 167 168 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 169 170 synchronize_rcu(); 171 } 172 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 173 174 /** 175 * skb_panic - private function for out-of-line support 176 * @skb: buffer 177 * @sz: size 178 * @addr: address 179 * @msg: skb_over_panic or skb_under_panic 180 * 181 * Out-of-line support for skb_put() and skb_push(). 182 * Called via the wrapper skb_over_panic() or skb_under_panic(). 183 * Keep out of line to prevent kernel bloat. 184 * __builtin_return_address is not used because it is not always reliable. 185 */ 186 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 187 const char msg[]) 188 { 189 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 190 msg, addr, skb->len, sz, skb->head, skb->data, 191 (unsigned long)skb->tail, (unsigned long)skb->end, 192 skb->dev ? skb->dev->name : "<NULL>"); 193 BUG(); 194 } 195 196 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 197 { 198 skb_panic(skb, sz, addr, __func__); 199 } 200 201 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 202 { 203 skb_panic(skb, sz, addr, __func__); 204 } 205 206 #define NAPI_SKB_CACHE_SIZE 64 207 #define NAPI_SKB_CACHE_BULK 16 208 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 209 210 #if PAGE_SIZE == SZ_4K 211 212 #define NAPI_HAS_SMALL_PAGE_FRAG 1 213 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc) 214 215 /* specialized page frag allocator using a single order 0 page 216 * and slicing it into 1K sized fragment. Constrained to systems 217 * with a very limited amount of 1K fragments fitting a single 218 * page - to avoid excessive truesize underestimation 219 */ 220 221 struct page_frag_1k { 222 void *va; 223 u16 offset; 224 bool pfmemalloc; 225 }; 226 227 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp) 228 { 229 struct page *page; 230 int offset; 231 232 offset = nc->offset - SZ_1K; 233 if (likely(offset >= 0)) 234 goto use_frag; 235 236 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 237 if (!page) 238 return NULL; 239 240 nc->va = page_address(page); 241 nc->pfmemalloc = page_is_pfmemalloc(page); 242 offset = PAGE_SIZE - SZ_1K; 243 page_ref_add(page, offset / SZ_1K); 244 245 use_frag: 246 nc->offset = offset; 247 return nc->va + offset; 248 } 249 #else 250 251 /* the small page is actually unused in this build; add dummy helpers 252 * to please the compiler and avoid later preprocessor's conditionals 253 */ 254 #define NAPI_HAS_SMALL_PAGE_FRAG 0 255 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false 256 257 struct page_frag_1k { 258 }; 259 260 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask) 261 { 262 return NULL; 263 } 264 265 #endif 266 267 struct napi_alloc_cache { 268 struct page_frag_cache page; 269 struct page_frag_1k page_small; 270 unsigned int skb_count; 271 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 272 }; 273 274 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 275 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 276 277 /* Double check that napi_get_frags() allocates skbs with 278 * skb->head being backed by slab, not a page fragment. 279 * This is to make sure bug fixed in 3226b158e67c 280 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 281 * does not accidentally come back. 282 */ 283 void napi_get_frags_check(struct napi_struct *napi) 284 { 285 struct sk_buff *skb; 286 287 local_bh_disable(); 288 skb = napi_get_frags(napi); 289 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag); 290 napi_free_frags(napi); 291 local_bh_enable(); 292 } 293 294 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 295 { 296 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 297 298 fragsz = SKB_DATA_ALIGN(fragsz); 299 300 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 301 } 302 EXPORT_SYMBOL(__napi_alloc_frag_align); 303 304 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 305 { 306 void *data; 307 308 fragsz = SKB_DATA_ALIGN(fragsz); 309 if (in_hardirq() || irqs_disabled()) { 310 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 311 312 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 313 } else { 314 struct napi_alloc_cache *nc; 315 316 local_bh_disable(); 317 nc = this_cpu_ptr(&napi_alloc_cache); 318 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 319 local_bh_enable(); 320 } 321 return data; 322 } 323 EXPORT_SYMBOL(__netdev_alloc_frag_align); 324 325 static struct sk_buff *napi_skb_cache_get(void) 326 { 327 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 328 struct sk_buff *skb; 329 330 if (unlikely(!nc->skb_count)) { 331 nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache, 332 GFP_ATOMIC, 333 NAPI_SKB_CACHE_BULK, 334 nc->skb_cache); 335 if (unlikely(!nc->skb_count)) 336 return NULL; 337 } 338 339 skb = nc->skb_cache[--nc->skb_count]; 340 kasan_mempool_unpoison_object(skb, kmem_cache_size(skbuff_cache)); 341 342 return skb; 343 } 344 345 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 346 unsigned int size) 347 { 348 struct skb_shared_info *shinfo; 349 350 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 351 352 /* Assumes caller memset cleared SKB */ 353 skb->truesize = SKB_TRUESIZE(size); 354 refcount_set(&skb->users, 1); 355 skb->head = data; 356 skb->data = data; 357 skb_reset_tail_pointer(skb); 358 skb_set_end_offset(skb, size); 359 skb->mac_header = (typeof(skb->mac_header))~0U; 360 skb->transport_header = (typeof(skb->transport_header))~0U; 361 skb->alloc_cpu = raw_smp_processor_id(); 362 /* make sure we initialize shinfo sequentially */ 363 shinfo = skb_shinfo(skb); 364 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 365 atomic_set(&shinfo->dataref, 1); 366 367 skb_set_kcov_handle(skb, kcov_common_handle()); 368 } 369 370 static inline void *__slab_build_skb(struct sk_buff *skb, void *data, 371 unsigned int *size) 372 { 373 void *resized; 374 375 /* Must find the allocation size (and grow it to match). */ 376 *size = ksize(data); 377 /* krealloc() will immediately return "data" when 378 * "ksize(data)" is requested: it is the existing upper 379 * bounds. As a result, GFP_ATOMIC will be ignored. Note 380 * that this "new" pointer needs to be passed back to the 381 * caller for use so the __alloc_size hinting will be 382 * tracked correctly. 383 */ 384 resized = krealloc(data, *size, GFP_ATOMIC); 385 WARN_ON_ONCE(resized != data); 386 return resized; 387 } 388 389 /* build_skb() variant which can operate on slab buffers. 390 * Note that this should be used sparingly as slab buffers 391 * cannot be combined efficiently by GRO! 392 */ 393 struct sk_buff *slab_build_skb(void *data) 394 { 395 struct sk_buff *skb; 396 unsigned int size; 397 398 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 399 if (unlikely(!skb)) 400 return NULL; 401 402 memset(skb, 0, offsetof(struct sk_buff, tail)); 403 data = __slab_build_skb(skb, data, &size); 404 __finalize_skb_around(skb, data, size); 405 406 return skb; 407 } 408 EXPORT_SYMBOL(slab_build_skb); 409 410 /* Caller must provide SKB that is memset cleared */ 411 static void __build_skb_around(struct sk_buff *skb, void *data, 412 unsigned int frag_size) 413 { 414 unsigned int size = frag_size; 415 416 /* frag_size == 0 is considered deprecated now. Callers 417 * using slab buffer should use slab_build_skb() instead. 418 */ 419 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 420 data = __slab_build_skb(skb, data, &size); 421 422 __finalize_skb_around(skb, data, size); 423 } 424 425 /** 426 * __build_skb - build a network buffer 427 * @data: data buffer provided by caller 428 * @frag_size: size of data (must not be 0) 429 * 430 * Allocate a new &sk_buff. Caller provides space holding head and 431 * skb_shared_info. @data must have been allocated from the page 432 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 433 * allocation is deprecated, and callers should use slab_build_skb() 434 * instead.) 435 * The return is the new skb buffer. 436 * On a failure the return is %NULL, and @data is not freed. 437 * Notes : 438 * Before IO, driver allocates only data buffer where NIC put incoming frame 439 * Driver should add room at head (NET_SKB_PAD) and 440 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 441 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 442 * before giving packet to stack. 443 * RX rings only contains data buffers, not full skbs. 444 */ 445 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 446 { 447 struct sk_buff *skb; 448 449 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 450 if (unlikely(!skb)) 451 return NULL; 452 453 memset(skb, 0, offsetof(struct sk_buff, tail)); 454 __build_skb_around(skb, data, frag_size); 455 456 return skb; 457 } 458 459 /* build_skb() is wrapper over __build_skb(), that specifically 460 * takes care of skb->head and skb->pfmemalloc 461 */ 462 struct sk_buff *build_skb(void *data, unsigned int frag_size) 463 { 464 struct sk_buff *skb = __build_skb(data, frag_size); 465 466 if (likely(skb && frag_size)) { 467 skb->head_frag = 1; 468 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 469 } 470 return skb; 471 } 472 EXPORT_SYMBOL(build_skb); 473 474 /** 475 * build_skb_around - build a network buffer around provided skb 476 * @skb: sk_buff provide by caller, must be memset cleared 477 * @data: data buffer provided by caller 478 * @frag_size: size of data 479 */ 480 struct sk_buff *build_skb_around(struct sk_buff *skb, 481 void *data, unsigned int frag_size) 482 { 483 if (unlikely(!skb)) 484 return NULL; 485 486 __build_skb_around(skb, data, frag_size); 487 488 if (frag_size) { 489 skb->head_frag = 1; 490 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 491 } 492 return skb; 493 } 494 EXPORT_SYMBOL(build_skb_around); 495 496 /** 497 * __napi_build_skb - build a network buffer 498 * @data: data buffer provided by caller 499 * @frag_size: size of data 500 * 501 * Version of __build_skb() that uses NAPI percpu caches to obtain 502 * skbuff_head instead of inplace allocation. 503 * 504 * Returns a new &sk_buff on success, %NULL on allocation failure. 505 */ 506 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 507 { 508 struct sk_buff *skb; 509 510 skb = napi_skb_cache_get(); 511 if (unlikely(!skb)) 512 return NULL; 513 514 memset(skb, 0, offsetof(struct sk_buff, tail)); 515 __build_skb_around(skb, data, frag_size); 516 517 return skb; 518 } 519 520 /** 521 * napi_build_skb - build a network buffer 522 * @data: data buffer provided by caller 523 * @frag_size: size of data 524 * 525 * Version of __napi_build_skb() that takes care of skb->head_frag 526 * and skb->pfmemalloc when the data is a page or page fragment. 527 * 528 * Returns a new &sk_buff on success, %NULL on allocation failure. 529 */ 530 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 531 { 532 struct sk_buff *skb = __napi_build_skb(data, frag_size); 533 534 if (likely(skb) && frag_size) { 535 skb->head_frag = 1; 536 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 537 } 538 539 return skb; 540 } 541 EXPORT_SYMBOL(napi_build_skb); 542 543 /* 544 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 545 * the caller if emergency pfmemalloc reserves are being used. If it is and 546 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 547 * may be used. Otherwise, the packet data may be discarded until enough 548 * memory is free 549 */ 550 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 551 bool *pfmemalloc) 552 { 553 bool ret_pfmemalloc = false; 554 size_t obj_size; 555 void *obj; 556 557 obj_size = SKB_HEAD_ALIGN(*size); 558 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 559 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 560 obj = kmem_cache_alloc_node(skb_small_head_cache, 561 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 562 node); 563 *size = SKB_SMALL_HEAD_CACHE_SIZE; 564 if (obj || !(gfp_pfmemalloc_allowed(flags))) 565 goto out; 566 /* Try again but now we are using pfmemalloc reserves */ 567 ret_pfmemalloc = true; 568 obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node); 569 goto out; 570 } 571 572 obj_size = kmalloc_size_roundup(obj_size); 573 /* The following cast might truncate high-order bits of obj_size, this 574 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. 575 */ 576 *size = (unsigned int)obj_size; 577 578 /* 579 * Try a regular allocation, when that fails and we're not entitled 580 * to the reserves, fail. 581 */ 582 obj = kmalloc_node_track_caller(obj_size, 583 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 584 node); 585 if (obj || !(gfp_pfmemalloc_allowed(flags))) 586 goto out; 587 588 /* Try again but now we are using pfmemalloc reserves */ 589 ret_pfmemalloc = true; 590 obj = kmalloc_node_track_caller(obj_size, flags, node); 591 592 out: 593 if (pfmemalloc) 594 *pfmemalloc = ret_pfmemalloc; 595 596 return obj; 597 } 598 599 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 600 * 'private' fields and also do memory statistics to find all the 601 * [BEEP] leaks. 602 * 603 */ 604 605 /** 606 * __alloc_skb - allocate a network buffer 607 * @size: size to allocate 608 * @gfp_mask: allocation mask 609 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 610 * instead of head cache and allocate a cloned (child) skb. 611 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 612 * allocations in case the data is required for writeback 613 * @node: numa node to allocate memory on 614 * 615 * Allocate a new &sk_buff. The returned buffer has no headroom and a 616 * tail room of at least size bytes. The object has a reference count 617 * of one. The return is the buffer. On a failure the return is %NULL. 618 * 619 * Buffers may only be allocated from interrupts using a @gfp_mask of 620 * %GFP_ATOMIC. 621 */ 622 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 623 int flags, int node) 624 { 625 struct kmem_cache *cache; 626 struct sk_buff *skb; 627 bool pfmemalloc; 628 u8 *data; 629 630 cache = (flags & SKB_ALLOC_FCLONE) 631 ? skbuff_fclone_cache : skbuff_cache; 632 633 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 634 gfp_mask |= __GFP_MEMALLOC; 635 636 /* Get the HEAD */ 637 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 638 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 639 skb = napi_skb_cache_get(); 640 else 641 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 642 if (unlikely(!skb)) 643 return NULL; 644 prefetchw(skb); 645 646 /* We do our best to align skb_shared_info on a separate cache 647 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 648 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 649 * Both skb->head and skb_shared_info are cache line aligned. 650 */ 651 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 652 if (unlikely(!data)) 653 goto nodata; 654 /* kmalloc_size_roundup() might give us more room than requested. 655 * Put skb_shared_info exactly at the end of allocated zone, 656 * to allow max possible filling before reallocation. 657 */ 658 prefetchw(data + SKB_WITH_OVERHEAD(size)); 659 660 /* 661 * Only clear those fields we need to clear, not those that we will 662 * actually initialise below. Hence, don't put any more fields after 663 * the tail pointer in struct sk_buff! 664 */ 665 memset(skb, 0, offsetof(struct sk_buff, tail)); 666 __build_skb_around(skb, data, size); 667 skb->pfmemalloc = pfmemalloc; 668 669 if (flags & SKB_ALLOC_FCLONE) { 670 struct sk_buff_fclones *fclones; 671 672 fclones = container_of(skb, struct sk_buff_fclones, skb1); 673 674 skb->fclone = SKB_FCLONE_ORIG; 675 refcount_set(&fclones->fclone_ref, 1); 676 } 677 678 return skb; 679 680 nodata: 681 kmem_cache_free(cache, skb); 682 return NULL; 683 } 684 EXPORT_SYMBOL(__alloc_skb); 685 686 /** 687 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 688 * @dev: network device to receive on 689 * @len: length to allocate 690 * @gfp_mask: get_free_pages mask, passed to alloc_skb 691 * 692 * Allocate a new &sk_buff and assign it a usage count of one. The 693 * buffer has NET_SKB_PAD headroom built in. Users should allocate 694 * the headroom they think they need without accounting for the 695 * built in space. The built in space is used for optimisations. 696 * 697 * %NULL is returned if there is no free memory. 698 */ 699 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 700 gfp_t gfp_mask) 701 { 702 struct page_frag_cache *nc; 703 struct sk_buff *skb; 704 bool pfmemalloc; 705 void *data; 706 707 len += NET_SKB_PAD; 708 709 /* If requested length is either too small or too big, 710 * we use kmalloc() for skb->head allocation. 711 */ 712 if (len <= SKB_WITH_OVERHEAD(1024) || 713 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 714 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 715 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 716 if (!skb) 717 goto skb_fail; 718 goto skb_success; 719 } 720 721 len = SKB_HEAD_ALIGN(len); 722 723 if (sk_memalloc_socks()) 724 gfp_mask |= __GFP_MEMALLOC; 725 726 if (in_hardirq() || irqs_disabled()) { 727 nc = this_cpu_ptr(&netdev_alloc_cache); 728 data = page_frag_alloc(nc, len, gfp_mask); 729 pfmemalloc = nc->pfmemalloc; 730 } else { 731 local_bh_disable(); 732 nc = this_cpu_ptr(&napi_alloc_cache.page); 733 data = page_frag_alloc(nc, len, gfp_mask); 734 pfmemalloc = nc->pfmemalloc; 735 local_bh_enable(); 736 } 737 738 if (unlikely(!data)) 739 return NULL; 740 741 skb = __build_skb(data, len); 742 if (unlikely(!skb)) { 743 skb_free_frag(data); 744 return NULL; 745 } 746 747 if (pfmemalloc) 748 skb->pfmemalloc = 1; 749 skb->head_frag = 1; 750 751 skb_success: 752 skb_reserve(skb, NET_SKB_PAD); 753 skb->dev = dev; 754 755 skb_fail: 756 return skb; 757 } 758 EXPORT_SYMBOL(__netdev_alloc_skb); 759 760 /** 761 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 762 * @napi: napi instance this buffer was allocated for 763 * @len: length to allocate 764 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 765 * 766 * Allocate a new sk_buff for use in NAPI receive. This buffer will 767 * attempt to allocate the head from a special reserved region used 768 * only for NAPI Rx allocation. By doing this we can save several 769 * CPU cycles by avoiding having to disable and re-enable IRQs. 770 * 771 * %NULL is returned if there is no free memory. 772 */ 773 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 774 gfp_t gfp_mask) 775 { 776 struct napi_alloc_cache *nc; 777 struct sk_buff *skb; 778 bool pfmemalloc; 779 void *data; 780 781 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 782 len += NET_SKB_PAD + NET_IP_ALIGN; 783 784 /* If requested length is either too small or too big, 785 * we use kmalloc() for skb->head allocation. 786 * When the small frag allocator is available, prefer it over kmalloc 787 * for small fragments 788 */ 789 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) || 790 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 791 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 792 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 793 NUMA_NO_NODE); 794 if (!skb) 795 goto skb_fail; 796 goto skb_success; 797 } 798 799 nc = this_cpu_ptr(&napi_alloc_cache); 800 801 if (sk_memalloc_socks()) 802 gfp_mask |= __GFP_MEMALLOC; 803 804 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) { 805 /* we are artificially inflating the allocation size, but 806 * that is not as bad as it may look like, as: 807 * - 'len' less than GRO_MAX_HEAD makes little sense 808 * - On most systems, larger 'len' values lead to fragment 809 * size above 512 bytes 810 * - kmalloc would use the kmalloc-1k slab for such values 811 * - Builds with smaller GRO_MAX_HEAD will very likely do 812 * little networking, as that implies no WiFi and no 813 * tunnels support, and 32 bits arches. 814 */ 815 len = SZ_1K; 816 817 data = page_frag_alloc_1k(&nc->page_small, gfp_mask); 818 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small); 819 } else { 820 len = SKB_HEAD_ALIGN(len); 821 822 data = page_frag_alloc(&nc->page, len, gfp_mask); 823 pfmemalloc = nc->page.pfmemalloc; 824 } 825 826 if (unlikely(!data)) 827 return NULL; 828 829 skb = __napi_build_skb(data, len); 830 if (unlikely(!skb)) { 831 skb_free_frag(data); 832 return NULL; 833 } 834 835 if (pfmemalloc) 836 skb->pfmemalloc = 1; 837 skb->head_frag = 1; 838 839 skb_success: 840 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 841 skb->dev = napi->dev; 842 843 skb_fail: 844 return skb; 845 } 846 EXPORT_SYMBOL(__napi_alloc_skb); 847 848 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 849 int size, unsigned int truesize) 850 { 851 DEBUG_NET_WARN_ON_ONCE(size > truesize); 852 853 skb_fill_page_desc(skb, i, page, off, size); 854 skb->len += size; 855 skb->data_len += size; 856 skb->truesize += truesize; 857 } 858 EXPORT_SYMBOL(skb_add_rx_frag); 859 860 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 861 unsigned int truesize) 862 { 863 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 864 865 DEBUG_NET_WARN_ON_ONCE(size > truesize); 866 867 skb_frag_size_add(frag, size); 868 skb->len += size; 869 skb->data_len += size; 870 skb->truesize += truesize; 871 } 872 EXPORT_SYMBOL(skb_coalesce_rx_frag); 873 874 static void skb_drop_list(struct sk_buff **listp) 875 { 876 kfree_skb_list(*listp); 877 *listp = NULL; 878 } 879 880 static inline void skb_drop_fraglist(struct sk_buff *skb) 881 { 882 skb_drop_list(&skb_shinfo(skb)->frag_list); 883 } 884 885 static void skb_clone_fraglist(struct sk_buff *skb) 886 { 887 struct sk_buff *list; 888 889 skb_walk_frags(skb, list) 890 skb_get(list); 891 } 892 893 static bool is_pp_page(struct page *page) 894 { 895 return (page->pp_magic & ~0x3UL) == PP_SIGNATURE; 896 } 897 898 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 899 unsigned int headroom) 900 { 901 #if IS_ENABLED(CONFIG_PAGE_POOL) 902 u32 size, truesize, len, max_head_size, off; 903 struct sk_buff *skb = *pskb, *nskb; 904 int err, i, head_off; 905 void *data; 906 907 /* XDP does not support fraglist so we need to linearize 908 * the skb. 909 */ 910 if (skb_has_frag_list(skb)) 911 return -EOPNOTSUPP; 912 913 max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom); 914 if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE) 915 return -ENOMEM; 916 917 size = min_t(u32, skb->len, max_head_size); 918 truesize = SKB_HEAD_ALIGN(size) + headroom; 919 data = page_pool_dev_alloc_va(pool, &truesize); 920 if (!data) 921 return -ENOMEM; 922 923 nskb = napi_build_skb(data, truesize); 924 if (!nskb) { 925 page_pool_free_va(pool, data, true); 926 return -ENOMEM; 927 } 928 929 skb_reserve(nskb, headroom); 930 skb_copy_header(nskb, skb); 931 skb_mark_for_recycle(nskb); 932 933 err = skb_copy_bits(skb, 0, nskb->data, size); 934 if (err) { 935 consume_skb(nskb); 936 return err; 937 } 938 skb_put(nskb, size); 939 940 head_off = skb_headroom(nskb) - skb_headroom(skb); 941 skb_headers_offset_update(nskb, head_off); 942 943 off = size; 944 len = skb->len - off; 945 for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) { 946 struct page *page; 947 u32 page_off; 948 949 size = min_t(u32, len, PAGE_SIZE); 950 truesize = size; 951 952 page = page_pool_dev_alloc(pool, &page_off, &truesize); 953 if (!data) { 954 consume_skb(nskb); 955 return -ENOMEM; 956 } 957 958 skb_add_rx_frag(nskb, i, page, page_off, size, truesize); 959 err = skb_copy_bits(skb, off, page_address(page) + page_off, 960 size); 961 if (err) { 962 consume_skb(nskb); 963 return err; 964 } 965 966 len -= size; 967 off += size; 968 } 969 970 consume_skb(skb); 971 *pskb = nskb; 972 973 return 0; 974 #else 975 return -EOPNOTSUPP; 976 #endif 977 } 978 EXPORT_SYMBOL(skb_pp_cow_data); 979 980 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 981 struct bpf_prog *prog) 982 { 983 if (!prog->aux->xdp_has_frags) 984 return -EINVAL; 985 986 return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM); 987 } 988 EXPORT_SYMBOL(skb_cow_data_for_xdp); 989 990 #if IS_ENABLED(CONFIG_PAGE_POOL) 991 bool napi_pp_put_page(struct page *page, bool napi_safe) 992 { 993 bool allow_direct = false; 994 struct page_pool *pp; 995 996 page = compound_head(page); 997 998 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation 999 * in order to preserve any existing bits, such as bit 0 for the 1000 * head page of compound page and bit 1 for pfmemalloc page, so 1001 * mask those bits for freeing side when doing below checking, 1002 * and page_is_pfmemalloc() is checked in __page_pool_put_page() 1003 * to avoid recycling the pfmemalloc page. 1004 */ 1005 if (unlikely(!is_pp_page(page))) 1006 return false; 1007 1008 pp = page->pp; 1009 1010 /* Allow direct recycle if we have reasons to believe that we are 1011 * in the same context as the consumer would run, so there's 1012 * no possible race. 1013 * __page_pool_put_page() makes sure we're not in hardirq context 1014 * and interrupts are enabled prior to accessing the cache. 1015 */ 1016 if (napi_safe || in_softirq()) { 1017 const struct napi_struct *napi = READ_ONCE(pp->p.napi); 1018 unsigned int cpuid = smp_processor_id(); 1019 1020 allow_direct = napi && READ_ONCE(napi->list_owner) == cpuid; 1021 allow_direct |= READ_ONCE(pp->cpuid) == cpuid; 1022 } 1023 1024 /* Driver set this to memory recycling info. Reset it on recycle. 1025 * This will *not* work for NIC using a split-page memory model. 1026 * The page will be returned to the pool here regardless of the 1027 * 'flipped' fragment being in use or not. 1028 */ 1029 page_pool_put_full_page(pp, page, allow_direct); 1030 1031 return true; 1032 } 1033 EXPORT_SYMBOL(napi_pp_put_page); 1034 #endif 1035 1036 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe) 1037 { 1038 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 1039 return false; 1040 return napi_pp_put_page(virt_to_page(data), napi_safe); 1041 } 1042 1043 /** 1044 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb 1045 * @skb: page pool aware skb 1046 * 1047 * Increase the fragment reference count (pp_ref_count) of a skb. This is 1048 * intended to gain fragment references only for page pool aware skbs, 1049 * i.e. when skb->pp_recycle is true, and not for fragments in a 1050 * non-pp-recycling skb. It has a fallback to increase references on normal 1051 * pages, as page pool aware skbs may also have normal page fragments. 1052 */ 1053 static int skb_pp_frag_ref(struct sk_buff *skb) 1054 { 1055 struct skb_shared_info *shinfo; 1056 struct page *head_page; 1057 int i; 1058 1059 if (!skb->pp_recycle) 1060 return -EINVAL; 1061 1062 shinfo = skb_shinfo(skb); 1063 1064 for (i = 0; i < shinfo->nr_frags; i++) { 1065 head_page = compound_head(skb_frag_page(&shinfo->frags[i])); 1066 if (likely(is_pp_page(head_page))) 1067 page_pool_ref_page(head_page); 1068 else 1069 page_ref_inc(head_page); 1070 } 1071 return 0; 1072 } 1073 1074 static void skb_kfree_head(void *head, unsigned int end_offset) 1075 { 1076 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 1077 kmem_cache_free(skb_small_head_cache, head); 1078 else 1079 kfree(head); 1080 } 1081 1082 static void skb_free_head(struct sk_buff *skb, bool napi_safe) 1083 { 1084 unsigned char *head = skb->head; 1085 1086 if (skb->head_frag) { 1087 if (skb_pp_recycle(skb, head, napi_safe)) 1088 return; 1089 skb_free_frag(head); 1090 } else { 1091 skb_kfree_head(head, skb_end_offset(skb)); 1092 } 1093 } 1094 1095 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason, 1096 bool napi_safe) 1097 { 1098 struct skb_shared_info *shinfo = skb_shinfo(skb); 1099 int i; 1100 1101 if (skb->cloned && 1102 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 1103 &shinfo->dataref)) 1104 goto exit; 1105 1106 if (skb_zcopy(skb)) { 1107 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 1108 1109 skb_zcopy_clear(skb, true); 1110 if (skip_unref) 1111 goto free_head; 1112 } 1113 1114 for (i = 0; i < shinfo->nr_frags; i++) 1115 napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe); 1116 1117 free_head: 1118 if (shinfo->frag_list) 1119 kfree_skb_list_reason(shinfo->frag_list, reason); 1120 1121 skb_free_head(skb, napi_safe); 1122 exit: 1123 /* When we clone an SKB we copy the reycling bit. The pp_recycle 1124 * bit is only set on the head though, so in order to avoid races 1125 * while trying to recycle fragments on __skb_frag_unref() we need 1126 * to make one SKB responsible for triggering the recycle path. 1127 * So disable the recycling bit if an SKB is cloned and we have 1128 * additional references to the fragmented part of the SKB. 1129 * Eventually the last SKB will have the recycling bit set and it's 1130 * dataref set to 0, which will trigger the recycling 1131 */ 1132 skb->pp_recycle = 0; 1133 } 1134 1135 /* 1136 * Free an skbuff by memory without cleaning the state. 1137 */ 1138 static void kfree_skbmem(struct sk_buff *skb) 1139 { 1140 struct sk_buff_fclones *fclones; 1141 1142 switch (skb->fclone) { 1143 case SKB_FCLONE_UNAVAILABLE: 1144 kmem_cache_free(skbuff_cache, skb); 1145 return; 1146 1147 case SKB_FCLONE_ORIG: 1148 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1149 1150 /* We usually free the clone (TX completion) before original skb 1151 * This test would have no chance to be true for the clone, 1152 * while here, branch prediction will be good. 1153 */ 1154 if (refcount_read(&fclones->fclone_ref) == 1) 1155 goto fastpath; 1156 break; 1157 1158 default: /* SKB_FCLONE_CLONE */ 1159 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1160 break; 1161 } 1162 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1163 return; 1164 fastpath: 1165 kmem_cache_free(skbuff_fclone_cache, fclones); 1166 } 1167 1168 void skb_release_head_state(struct sk_buff *skb) 1169 { 1170 skb_dst_drop(skb); 1171 if (skb->destructor) { 1172 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1173 skb->destructor(skb); 1174 } 1175 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 1176 nf_conntrack_put(skb_nfct(skb)); 1177 #endif 1178 skb_ext_put(skb); 1179 } 1180 1181 /* Free everything but the sk_buff shell. */ 1182 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason, 1183 bool napi_safe) 1184 { 1185 skb_release_head_state(skb); 1186 if (likely(skb->head)) 1187 skb_release_data(skb, reason, napi_safe); 1188 } 1189 1190 /** 1191 * __kfree_skb - private function 1192 * @skb: buffer 1193 * 1194 * Free an sk_buff. Release anything attached to the buffer. 1195 * Clean the state. This is an internal helper function. Users should 1196 * always call kfree_skb 1197 */ 1198 1199 void __kfree_skb(struct sk_buff *skb) 1200 { 1201 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false); 1202 kfree_skbmem(skb); 1203 } 1204 EXPORT_SYMBOL(__kfree_skb); 1205 1206 static __always_inline 1207 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1208 { 1209 if (unlikely(!skb_unref(skb))) 1210 return false; 1211 1212 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1213 u32_get_bits(reason, 1214 SKB_DROP_REASON_SUBSYS_MASK) >= 1215 SKB_DROP_REASON_SUBSYS_NUM); 1216 1217 if (reason == SKB_CONSUMED) 1218 trace_consume_skb(skb, __builtin_return_address(0)); 1219 else 1220 trace_kfree_skb(skb, __builtin_return_address(0), reason); 1221 return true; 1222 } 1223 1224 /** 1225 * kfree_skb_reason - free an sk_buff with special reason 1226 * @skb: buffer to free 1227 * @reason: reason why this skb is dropped 1228 * 1229 * Drop a reference to the buffer and free it if the usage count has 1230 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 1231 * tracepoint. 1232 */ 1233 void __fix_address 1234 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1235 { 1236 if (__kfree_skb_reason(skb, reason)) 1237 __kfree_skb(skb); 1238 } 1239 EXPORT_SYMBOL(kfree_skb_reason); 1240 1241 #define KFREE_SKB_BULK_SIZE 16 1242 1243 struct skb_free_array { 1244 unsigned int skb_count; 1245 void *skb_array[KFREE_SKB_BULK_SIZE]; 1246 }; 1247 1248 static void kfree_skb_add_bulk(struct sk_buff *skb, 1249 struct skb_free_array *sa, 1250 enum skb_drop_reason reason) 1251 { 1252 /* if SKB is a clone, don't handle this case */ 1253 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1254 __kfree_skb(skb); 1255 return; 1256 } 1257 1258 skb_release_all(skb, reason, false); 1259 sa->skb_array[sa->skb_count++] = skb; 1260 1261 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1262 kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE, 1263 sa->skb_array); 1264 sa->skb_count = 0; 1265 } 1266 } 1267 1268 void __fix_address 1269 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1270 { 1271 struct skb_free_array sa; 1272 1273 sa.skb_count = 0; 1274 1275 while (segs) { 1276 struct sk_buff *next = segs->next; 1277 1278 if (__kfree_skb_reason(segs, reason)) { 1279 skb_poison_list(segs); 1280 kfree_skb_add_bulk(segs, &sa, reason); 1281 } 1282 1283 segs = next; 1284 } 1285 1286 if (sa.skb_count) 1287 kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array); 1288 } 1289 EXPORT_SYMBOL(kfree_skb_list_reason); 1290 1291 /* Dump skb information and contents. 1292 * 1293 * Must only be called from net_ratelimit()-ed paths. 1294 * 1295 * Dumps whole packets if full_pkt, only headers otherwise. 1296 */ 1297 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1298 { 1299 struct skb_shared_info *sh = skb_shinfo(skb); 1300 struct net_device *dev = skb->dev; 1301 struct sock *sk = skb->sk; 1302 struct sk_buff *list_skb; 1303 bool has_mac, has_trans; 1304 int headroom, tailroom; 1305 int i, len, seg_len; 1306 1307 if (full_pkt) 1308 len = skb->len; 1309 else 1310 len = min_t(int, skb->len, MAX_HEADER + 128); 1311 1312 headroom = skb_headroom(skb); 1313 tailroom = skb_tailroom(skb); 1314 1315 has_mac = skb_mac_header_was_set(skb); 1316 has_trans = skb_transport_header_was_set(skb); 1317 1318 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1319 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 1320 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1321 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1322 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 1323 level, skb->len, headroom, skb_headlen(skb), tailroom, 1324 has_mac ? skb->mac_header : -1, 1325 has_mac ? skb_mac_header_len(skb) : -1, 1326 skb->network_header, 1327 has_trans ? skb_network_header_len(skb) : -1, 1328 has_trans ? skb->transport_header : -1, 1329 sh->tx_flags, sh->nr_frags, 1330 sh->gso_size, sh->gso_type, sh->gso_segs, 1331 skb->csum, skb->ip_summed, skb->csum_complete_sw, 1332 skb->csum_valid, skb->csum_level, 1333 skb->hash, skb->sw_hash, skb->l4_hash, 1334 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 1335 1336 if (dev) 1337 printk("%sdev name=%s feat=%pNF\n", 1338 level, dev->name, &dev->features); 1339 if (sk) 1340 printk("%ssk family=%hu type=%u proto=%u\n", 1341 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1342 1343 if (full_pkt && headroom) 1344 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1345 16, 1, skb->head, headroom, false); 1346 1347 seg_len = min_t(int, skb_headlen(skb), len); 1348 if (seg_len) 1349 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1350 16, 1, skb->data, seg_len, false); 1351 len -= seg_len; 1352 1353 if (full_pkt && tailroom) 1354 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1355 16, 1, skb_tail_pointer(skb), tailroom, false); 1356 1357 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1358 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1359 u32 p_off, p_len, copied; 1360 struct page *p; 1361 u8 *vaddr; 1362 1363 skb_frag_foreach_page(frag, skb_frag_off(frag), 1364 skb_frag_size(frag), p, p_off, p_len, 1365 copied) { 1366 seg_len = min_t(int, p_len, len); 1367 vaddr = kmap_atomic(p); 1368 print_hex_dump(level, "skb frag: ", 1369 DUMP_PREFIX_OFFSET, 1370 16, 1, vaddr + p_off, seg_len, false); 1371 kunmap_atomic(vaddr); 1372 len -= seg_len; 1373 if (!len) 1374 break; 1375 } 1376 } 1377 1378 if (full_pkt && skb_has_frag_list(skb)) { 1379 printk("skb fraglist:\n"); 1380 skb_walk_frags(skb, list_skb) 1381 skb_dump(level, list_skb, true); 1382 } 1383 } 1384 EXPORT_SYMBOL(skb_dump); 1385 1386 /** 1387 * skb_tx_error - report an sk_buff xmit error 1388 * @skb: buffer that triggered an error 1389 * 1390 * Report xmit error if a device callback is tracking this skb. 1391 * skb must be freed afterwards. 1392 */ 1393 void skb_tx_error(struct sk_buff *skb) 1394 { 1395 if (skb) { 1396 skb_zcopy_downgrade_managed(skb); 1397 skb_zcopy_clear(skb, true); 1398 } 1399 } 1400 EXPORT_SYMBOL(skb_tx_error); 1401 1402 #ifdef CONFIG_TRACEPOINTS 1403 /** 1404 * consume_skb - free an skbuff 1405 * @skb: buffer to free 1406 * 1407 * Drop a ref to the buffer and free it if the usage count has hit zero 1408 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1409 * is being dropped after a failure and notes that 1410 */ 1411 void consume_skb(struct sk_buff *skb) 1412 { 1413 if (!skb_unref(skb)) 1414 return; 1415 1416 trace_consume_skb(skb, __builtin_return_address(0)); 1417 __kfree_skb(skb); 1418 } 1419 EXPORT_SYMBOL(consume_skb); 1420 #endif 1421 1422 /** 1423 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1424 * @skb: buffer to free 1425 * 1426 * Alike consume_skb(), but this variant assumes that this is the last 1427 * skb reference and all the head states have been already dropped 1428 */ 1429 void __consume_stateless_skb(struct sk_buff *skb) 1430 { 1431 trace_consume_skb(skb, __builtin_return_address(0)); 1432 skb_release_data(skb, SKB_CONSUMED, false); 1433 kfree_skbmem(skb); 1434 } 1435 1436 static void napi_skb_cache_put(struct sk_buff *skb) 1437 { 1438 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1439 u32 i; 1440 1441 if (!kasan_mempool_poison_object(skb)) 1442 return; 1443 1444 nc->skb_cache[nc->skb_count++] = skb; 1445 1446 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1447 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1448 kasan_mempool_unpoison_object(nc->skb_cache[i], 1449 kmem_cache_size(skbuff_cache)); 1450 1451 kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF, 1452 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1453 nc->skb_count = NAPI_SKB_CACHE_HALF; 1454 } 1455 } 1456 1457 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1458 { 1459 skb_release_all(skb, reason, true); 1460 napi_skb_cache_put(skb); 1461 } 1462 1463 void napi_skb_free_stolen_head(struct sk_buff *skb) 1464 { 1465 if (unlikely(skb->slow_gro)) { 1466 nf_reset_ct(skb); 1467 skb_dst_drop(skb); 1468 skb_ext_put(skb); 1469 skb_orphan(skb); 1470 skb->slow_gro = 0; 1471 } 1472 napi_skb_cache_put(skb); 1473 } 1474 1475 void napi_consume_skb(struct sk_buff *skb, int budget) 1476 { 1477 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1478 if (unlikely(!budget)) { 1479 dev_consume_skb_any(skb); 1480 return; 1481 } 1482 1483 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1484 1485 if (!skb_unref(skb)) 1486 return; 1487 1488 /* if reaching here SKB is ready to free */ 1489 trace_consume_skb(skb, __builtin_return_address(0)); 1490 1491 /* if SKB is a clone, don't handle this case */ 1492 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1493 __kfree_skb(skb); 1494 return; 1495 } 1496 1497 skb_release_all(skb, SKB_CONSUMED, !!budget); 1498 napi_skb_cache_put(skb); 1499 } 1500 EXPORT_SYMBOL(napi_consume_skb); 1501 1502 /* Make sure a field is contained by headers group */ 1503 #define CHECK_SKB_FIELD(field) \ 1504 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1505 offsetof(struct sk_buff, headers.field)); \ 1506 1507 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1508 { 1509 new->tstamp = old->tstamp; 1510 /* We do not copy old->sk */ 1511 new->dev = old->dev; 1512 memcpy(new->cb, old->cb, sizeof(old->cb)); 1513 skb_dst_copy(new, old); 1514 __skb_ext_copy(new, old); 1515 __nf_copy(new, old, false); 1516 1517 /* Note : this field could be in the headers group. 1518 * It is not yet because we do not want to have a 16 bit hole 1519 */ 1520 new->queue_mapping = old->queue_mapping; 1521 1522 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1523 CHECK_SKB_FIELD(protocol); 1524 CHECK_SKB_FIELD(csum); 1525 CHECK_SKB_FIELD(hash); 1526 CHECK_SKB_FIELD(priority); 1527 CHECK_SKB_FIELD(skb_iif); 1528 CHECK_SKB_FIELD(vlan_proto); 1529 CHECK_SKB_FIELD(vlan_tci); 1530 CHECK_SKB_FIELD(transport_header); 1531 CHECK_SKB_FIELD(network_header); 1532 CHECK_SKB_FIELD(mac_header); 1533 CHECK_SKB_FIELD(inner_protocol); 1534 CHECK_SKB_FIELD(inner_transport_header); 1535 CHECK_SKB_FIELD(inner_network_header); 1536 CHECK_SKB_FIELD(inner_mac_header); 1537 CHECK_SKB_FIELD(mark); 1538 #ifdef CONFIG_NETWORK_SECMARK 1539 CHECK_SKB_FIELD(secmark); 1540 #endif 1541 #ifdef CONFIG_NET_RX_BUSY_POLL 1542 CHECK_SKB_FIELD(napi_id); 1543 #endif 1544 CHECK_SKB_FIELD(alloc_cpu); 1545 #ifdef CONFIG_XPS 1546 CHECK_SKB_FIELD(sender_cpu); 1547 #endif 1548 #ifdef CONFIG_NET_SCHED 1549 CHECK_SKB_FIELD(tc_index); 1550 #endif 1551 1552 } 1553 1554 /* 1555 * You should not add any new code to this function. Add it to 1556 * __copy_skb_header above instead. 1557 */ 1558 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1559 { 1560 #define C(x) n->x = skb->x 1561 1562 n->next = n->prev = NULL; 1563 n->sk = NULL; 1564 __copy_skb_header(n, skb); 1565 1566 C(len); 1567 C(data_len); 1568 C(mac_len); 1569 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1570 n->cloned = 1; 1571 n->nohdr = 0; 1572 n->peeked = 0; 1573 C(pfmemalloc); 1574 C(pp_recycle); 1575 n->destructor = NULL; 1576 C(tail); 1577 C(end); 1578 C(head); 1579 C(head_frag); 1580 C(data); 1581 C(truesize); 1582 refcount_set(&n->users, 1); 1583 1584 atomic_inc(&(skb_shinfo(skb)->dataref)); 1585 skb->cloned = 1; 1586 1587 return n; 1588 #undef C 1589 } 1590 1591 /** 1592 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1593 * @first: first sk_buff of the msg 1594 */ 1595 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1596 { 1597 struct sk_buff *n; 1598 1599 n = alloc_skb(0, GFP_ATOMIC); 1600 if (!n) 1601 return NULL; 1602 1603 n->len = first->len; 1604 n->data_len = first->len; 1605 n->truesize = first->truesize; 1606 1607 skb_shinfo(n)->frag_list = first; 1608 1609 __copy_skb_header(n, first); 1610 n->destructor = NULL; 1611 1612 return n; 1613 } 1614 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1615 1616 /** 1617 * skb_morph - morph one skb into another 1618 * @dst: the skb to receive the contents 1619 * @src: the skb to supply the contents 1620 * 1621 * This is identical to skb_clone except that the target skb is 1622 * supplied by the user. 1623 * 1624 * The target skb is returned upon exit. 1625 */ 1626 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1627 { 1628 skb_release_all(dst, SKB_CONSUMED, false); 1629 return __skb_clone(dst, src); 1630 } 1631 EXPORT_SYMBOL_GPL(skb_morph); 1632 1633 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1634 { 1635 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1636 struct user_struct *user; 1637 1638 if (capable(CAP_IPC_LOCK) || !size) 1639 return 0; 1640 1641 rlim = rlimit(RLIMIT_MEMLOCK); 1642 if (rlim == RLIM_INFINITY) 1643 return 0; 1644 1645 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1646 max_pg = rlim >> PAGE_SHIFT; 1647 user = mmp->user ? : current_user(); 1648 1649 old_pg = atomic_long_read(&user->locked_vm); 1650 do { 1651 new_pg = old_pg + num_pg; 1652 if (new_pg > max_pg) 1653 return -ENOBUFS; 1654 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1655 1656 if (!mmp->user) { 1657 mmp->user = get_uid(user); 1658 mmp->num_pg = num_pg; 1659 } else { 1660 mmp->num_pg += num_pg; 1661 } 1662 1663 return 0; 1664 } 1665 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1666 1667 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1668 { 1669 if (mmp->user) { 1670 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1671 free_uid(mmp->user); 1672 } 1673 } 1674 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1675 1676 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1677 { 1678 struct ubuf_info_msgzc *uarg; 1679 struct sk_buff *skb; 1680 1681 WARN_ON_ONCE(!in_task()); 1682 1683 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1684 if (!skb) 1685 return NULL; 1686 1687 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1688 uarg = (void *)skb->cb; 1689 uarg->mmp.user = NULL; 1690 1691 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1692 kfree_skb(skb); 1693 return NULL; 1694 } 1695 1696 uarg->ubuf.callback = msg_zerocopy_callback; 1697 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1698 uarg->len = 1; 1699 uarg->bytelen = size; 1700 uarg->zerocopy = 1; 1701 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1702 refcount_set(&uarg->ubuf.refcnt, 1); 1703 sock_hold(sk); 1704 1705 return &uarg->ubuf; 1706 } 1707 1708 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1709 { 1710 return container_of((void *)uarg, struct sk_buff, cb); 1711 } 1712 1713 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1714 struct ubuf_info *uarg) 1715 { 1716 if (uarg) { 1717 struct ubuf_info_msgzc *uarg_zc; 1718 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1719 u32 bytelen, next; 1720 1721 /* there might be non MSG_ZEROCOPY users */ 1722 if (uarg->callback != msg_zerocopy_callback) 1723 return NULL; 1724 1725 /* realloc only when socket is locked (TCP, UDP cork), 1726 * so uarg->len and sk_zckey access is serialized 1727 */ 1728 if (!sock_owned_by_user(sk)) { 1729 WARN_ON_ONCE(1); 1730 return NULL; 1731 } 1732 1733 uarg_zc = uarg_to_msgzc(uarg); 1734 bytelen = uarg_zc->bytelen + size; 1735 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1736 /* TCP can create new skb to attach new uarg */ 1737 if (sk->sk_type == SOCK_STREAM) 1738 goto new_alloc; 1739 return NULL; 1740 } 1741 1742 next = (u32)atomic_read(&sk->sk_zckey); 1743 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1744 if (mm_account_pinned_pages(&uarg_zc->mmp, size)) 1745 return NULL; 1746 uarg_zc->len++; 1747 uarg_zc->bytelen = bytelen; 1748 atomic_set(&sk->sk_zckey, ++next); 1749 1750 /* no extra ref when appending to datagram (MSG_MORE) */ 1751 if (sk->sk_type == SOCK_STREAM) 1752 net_zcopy_get(uarg); 1753 1754 return uarg; 1755 } 1756 } 1757 1758 new_alloc: 1759 return msg_zerocopy_alloc(sk, size); 1760 } 1761 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1762 1763 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1764 { 1765 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1766 u32 old_lo, old_hi; 1767 u64 sum_len; 1768 1769 old_lo = serr->ee.ee_info; 1770 old_hi = serr->ee.ee_data; 1771 sum_len = old_hi - old_lo + 1ULL + len; 1772 1773 if (sum_len >= (1ULL << 32)) 1774 return false; 1775 1776 if (lo != old_hi + 1) 1777 return false; 1778 1779 serr->ee.ee_data += len; 1780 return true; 1781 } 1782 1783 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1784 { 1785 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1786 struct sock_exterr_skb *serr; 1787 struct sock *sk = skb->sk; 1788 struct sk_buff_head *q; 1789 unsigned long flags; 1790 bool is_zerocopy; 1791 u32 lo, hi; 1792 u16 len; 1793 1794 mm_unaccount_pinned_pages(&uarg->mmp); 1795 1796 /* if !len, there was only 1 call, and it was aborted 1797 * so do not queue a completion notification 1798 */ 1799 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1800 goto release; 1801 1802 len = uarg->len; 1803 lo = uarg->id; 1804 hi = uarg->id + len - 1; 1805 is_zerocopy = uarg->zerocopy; 1806 1807 serr = SKB_EXT_ERR(skb); 1808 memset(serr, 0, sizeof(*serr)); 1809 serr->ee.ee_errno = 0; 1810 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1811 serr->ee.ee_data = hi; 1812 serr->ee.ee_info = lo; 1813 if (!is_zerocopy) 1814 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1815 1816 q = &sk->sk_error_queue; 1817 spin_lock_irqsave(&q->lock, flags); 1818 tail = skb_peek_tail(q); 1819 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1820 !skb_zerocopy_notify_extend(tail, lo, len)) { 1821 __skb_queue_tail(q, skb); 1822 skb = NULL; 1823 } 1824 spin_unlock_irqrestore(&q->lock, flags); 1825 1826 sk_error_report(sk); 1827 1828 release: 1829 consume_skb(skb); 1830 sock_put(sk); 1831 } 1832 1833 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1834 bool success) 1835 { 1836 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1837 1838 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1839 1840 if (refcount_dec_and_test(&uarg->refcnt)) 1841 __msg_zerocopy_callback(uarg_zc); 1842 } 1843 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1844 1845 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1846 { 1847 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1848 1849 atomic_dec(&sk->sk_zckey); 1850 uarg_to_msgzc(uarg)->len--; 1851 1852 if (have_uref) 1853 msg_zerocopy_callback(NULL, uarg, true); 1854 } 1855 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1856 1857 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1858 struct msghdr *msg, int len, 1859 struct ubuf_info *uarg) 1860 { 1861 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1862 int err, orig_len = skb->len; 1863 1864 /* An skb can only point to one uarg. This edge case happens when 1865 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1866 */ 1867 if (orig_uarg && uarg != orig_uarg) 1868 return -EEXIST; 1869 1870 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1871 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1872 struct sock *save_sk = skb->sk; 1873 1874 /* Streams do not free skb on error. Reset to prev state. */ 1875 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1876 skb->sk = sk; 1877 ___pskb_trim(skb, orig_len); 1878 skb->sk = save_sk; 1879 return err; 1880 } 1881 1882 skb_zcopy_set(skb, uarg, NULL); 1883 return skb->len - orig_len; 1884 } 1885 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1886 1887 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1888 { 1889 int i; 1890 1891 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1892 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1893 skb_frag_ref(skb, i); 1894 } 1895 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1896 1897 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1898 gfp_t gfp_mask) 1899 { 1900 if (skb_zcopy(orig)) { 1901 if (skb_zcopy(nskb)) { 1902 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1903 if (!gfp_mask) { 1904 WARN_ON_ONCE(1); 1905 return -ENOMEM; 1906 } 1907 if (skb_uarg(nskb) == skb_uarg(orig)) 1908 return 0; 1909 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1910 return -EIO; 1911 } 1912 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1913 } 1914 return 0; 1915 } 1916 1917 /** 1918 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1919 * @skb: the skb to modify 1920 * @gfp_mask: allocation priority 1921 * 1922 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1923 * It will copy all frags into kernel and drop the reference 1924 * to userspace pages. 1925 * 1926 * If this function is called from an interrupt gfp_mask() must be 1927 * %GFP_ATOMIC. 1928 * 1929 * Returns 0 on success or a negative error code on failure 1930 * to allocate kernel memory to copy to. 1931 */ 1932 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1933 { 1934 int num_frags = skb_shinfo(skb)->nr_frags; 1935 struct page *page, *head = NULL; 1936 int i, order, psize, new_frags; 1937 u32 d_off; 1938 1939 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1940 return -EINVAL; 1941 1942 if (!num_frags) 1943 goto release; 1944 1945 /* We might have to allocate high order pages, so compute what minimum 1946 * page order is needed. 1947 */ 1948 order = 0; 1949 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1950 order++; 1951 psize = (PAGE_SIZE << order); 1952 1953 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1954 for (i = 0; i < new_frags; i++) { 1955 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1956 if (!page) { 1957 while (head) { 1958 struct page *next = (struct page *)page_private(head); 1959 put_page(head); 1960 head = next; 1961 } 1962 return -ENOMEM; 1963 } 1964 set_page_private(page, (unsigned long)head); 1965 head = page; 1966 } 1967 1968 page = head; 1969 d_off = 0; 1970 for (i = 0; i < num_frags; i++) { 1971 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1972 u32 p_off, p_len, copied; 1973 struct page *p; 1974 u8 *vaddr; 1975 1976 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1977 p, p_off, p_len, copied) { 1978 u32 copy, done = 0; 1979 vaddr = kmap_atomic(p); 1980 1981 while (done < p_len) { 1982 if (d_off == psize) { 1983 d_off = 0; 1984 page = (struct page *)page_private(page); 1985 } 1986 copy = min_t(u32, psize - d_off, p_len - done); 1987 memcpy(page_address(page) + d_off, 1988 vaddr + p_off + done, copy); 1989 done += copy; 1990 d_off += copy; 1991 } 1992 kunmap_atomic(vaddr); 1993 } 1994 } 1995 1996 /* skb frags release userspace buffers */ 1997 for (i = 0; i < num_frags; i++) 1998 skb_frag_unref(skb, i); 1999 2000 /* skb frags point to kernel buffers */ 2001 for (i = 0; i < new_frags - 1; i++) { 2002 __skb_fill_page_desc(skb, i, head, 0, psize); 2003 head = (struct page *)page_private(head); 2004 } 2005 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 2006 skb_shinfo(skb)->nr_frags = new_frags; 2007 2008 release: 2009 skb_zcopy_clear(skb, false); 2010 return 0; 2011 } 2012 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 2013 2014 /** 2015 * skb_clone - duplicate an sk_buff 2016 * @skb: buffer to clone 2017 * @gfp_mask: allocation priority 2018 * 2019 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 2020 * copies share the same packet data but not structure. The new 2021 * buffer has a reference count of 1. If the allocation fails the 2022 * function returns %NULL otherwise the new buffer is returned. 2023 * 2024 * If this function is called from an interrupt gfp_mask() must be 2025 * %GFP_ATOMIC. 2026 */ 2027 2028 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 2029 { 2030 struct sk_buff_fclones *fclones = container_of(skb, 2031 struct sk_buff_fclones, 2032 skb1); 2033 struct sk_buff *n; 2034 2035 if (skb_orphan_frags(skb, gfp_mask)) 2036 return NULL; 2037 2038 if (skb->fclone == SKB_FCLONE_ORIG && 2039 refcount_read(&fclones->fclone_ref) == 1) { 2040 n = &fclones->skb2; 2041 refcount_set(&fclones->fclone_ref, 2); 2042 n->fclone = SKB_FCLONE_CLONE; 2043 } else { 2044 if (skb_pfmemalloc(skb)) 2045 gfp_mask |= __GFP_MEMALLOC; 2046 2047 n = kmem_cache_alloc(skbuff_cache, gfp_mask); 2048 if (!n) 2049 return NULL; 2050 2051 n->fclone = SKB_FCLONE_UNAVAILABLE; 2052 } 2053 2054 return __skb_clone(n, skb); 2055 } 2056 EXPORT_SYMBOL(skb_clone); 2057 2058 void skb_headers_offset_update(struct sk_buff *skb, int off) 2059 { 2060 /* Only adjust this if it actually is csum_start rather than csum */ 2061 if (skb->ip_summed == CHECKSUM_PARTIAL) 2062 skb->csum_start += off; 2063 /* {transport,network,mac}_header and tail are relative to skb->head */ 2064 skb->transport_header += off; 2065 skb->network_header += off; 2066 if (skb_mac_header_was_set(skb)) 2067 skb->mac_header += off; 2068 skb->inner_transport_header += off; 2069 skb->inner_network_header += off; 2070 skb->inner_mac_header += off; 2071 } 2072 EXPORT_SYMBOL(skb_headers_offset_update); 2073 2074 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 2075 { 2076 __copy_skb_header(new, old); 2077 2078 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 2079 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 2080 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 2081 } 2082 EXPORT_SYMBOL(skb_copy_header); 2083 2084 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 2085 { 2086 if (skb_pfmemalloc(skb)) 2087 return SKB_ALLOC_RX; 2088 return 0; 2089 } 2090 2091 /** 2092 * skb_copy - create private copy of an sk_buff 2093 * @skb: buffer to copy 2094 * @gfp_mask: allocation priority 2095 * 2096 * Make a copy of both an &sk_buff and its data. This is used when the 2097 * caller wishes to modify the data and needs a private copy of the 2098 * data to alter. Returns %NULL on failure or the pointer to the buffer 2099 * on success. The returned buffer has a reference count of 1. 2100 * 2101 * As by-product this function converts non-linear &sk_buff to linear 2102 * one, so that &sk_buff becomes completely private and caller is allowed 2103 * to modify all the data of returned buffer. This means that this 2104 * function is not recommended for use in circumstances when only 2105 * header is going to be modified. Use pskb_copy() instead. 2106 */ 2107 2108 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 2109 { 2110 int headerlen = skb_headroom(skb); 2111 unsigned int size = skb_end_offset(skb) + skb->data_len; 2112 struct sk_buff *n = __alloc_skb(size, gfp_mask, 2113 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 2114 2115 if (!n) 2116 return NULL; 2117 2118 /* Set the data pointer */ 2119 skb_reserve(n, headerlen); 2120 /* Set the tail pointer and length */ 2121 skb_put(n, skb->len); 2122 2123 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 2124 2125 skb_copy_header(n, skb); 2126 return n; 2127 } 2128 EXPORT_SYMBOL(skb_copy); 2129 2130 /** 2131 * __pskb_copy_fclone - create copy of an sk_buff with private head. 2132 * @skb: buffer to copy 2133 * @headroom: headroom of new skb 2134 * @gfp_mask: allocation priority 2135 * @fclone: if true allocate the copy of the skb from the fclone 2136 * cache instead of the head cache; it is recommended to set this 2137 * to true for the cases where the copy will likely be cloned 2138 * 2139 * Make a copy of both an &sk_buff and part of its data, located 2140 * in header. Fragmented data remain shared. This is used when 2141 * the caller wishes to modify only header of &sk_buff and needs 2142 * private copy of the header to alter. Returns %NULL on failure 2143 * or the pointer to the buffer on success. 2144 * The returned buffer has a reference count of 1. 2145 */ 2146 2147 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2148 gfp_t gfp_mask, bool fclone) 2149 { 2150 unsigned int size = skb_headlen(skb) + headroom; 2151 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2152 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2153 2154 if (!n) 2155 goto out; 2156 2157 /* Set the data pointer */ 2158 skb_reserve(n, headroom); 2159 /* Set the tail pointer and length */ 2160 skb_put(n, skb_headlen(skb)); 2161 /* Copy the bytes */ 2162 skb_copy_from_linear_data(skb, n->data, n->len); 2163 2164 n->truesize += skb->data_len; 2165 n->data_len = skb->data_len; 2166 n->len = skb->len; 2167 2168 if (skb_shinfo(skb)->nr_frags) { 2169 int i; 2170 2171 if (skb_orphan_frags(skb, gfp_mask) || 2172 skb_zerocopy_clone(n, skb, gfp_mask)) { 2173 kfree_skb(n); 2174 n = NULL; 2175 goto out; 2176 } 2177 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2178 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2179 skb_frag_ref(skb, i); 2180 } 2181 skb_shinfo(n)->nr_frags = i; 2182 } 2183 2184 if (skb_has_frag_list(skb)) { 2185 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2186 skb_clone_fraglist(n); 2187 } 2188 2189 skb_copy_header(n, skb); 2190 out: 2191 return n; 2192 } 2193 EXPORT_SYMBOL(__pskb_copy_fclone); 2194 2195 /** 2196 * pskb_expand_head - reallocate header of &sk_buff 2197 * @skb: buffer to reallocate 2198 * @nhead: room to add at head 2199 * @ntail: room to add at tail 2200 * @gfp_mask: allocation priority 2201 * 2202 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2203 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2204 * reference count of 1. Returns zero in the case of success or error, 2205 * if expansion failed. In the last case, &sk_buff is not changed. 2206 * 2207 * All the pointers pointing into skb header may change and must be 2208 * reloaded after call to this function. 2209 */ 2210 2211 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2212 gfp_t gfp_mask) 2213 { 2214 unsigned int osize = skb_end_offset(skb); 2215 unsigned int size = osize + nhead + ntail; 2216 long off; 2217 u8 *data; 2218 int i; 2219 2220 BUG_ON(nhead < 0); 2221 2222 BUG_ON(skb_shared(skb)); 2223 2224 skb_zcopy_downgrade_managed(skb); 2225 2226 if (skb_pfmemalloc(skb)) 2227 gfp_mask |= __GFP_MEMALLOC; 2228 2229 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2230 if (!data) 2231 goto nodata; 2232 size = SKB_WITH_OVERHEAD(size); 2233 2234 /* Copy only real data... and, alas, header. This should be 2235 * optimized for the cases when header is void. 2236 */ 2237 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2238 2239 memcpy((struct skb_shared_info *)(data + size), 2240 skb_shinfo(skb), 2241 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2242 2243 /* 2244 * if shinfo is shared we must drop the old head gracefully, but if it 2245 * is not we can just drop the old head and let the existing refcount 2246 * be since all we did is relocate the values 2247 */ 2248 if (skb_cloned(skb)) { 2249 if (skb_orphan_frags(skb, gfp_mask)) 2250 goto nofrags; 2251 if (skb_zcopy(skb)) 2252 refcount_inc(&skb_uarg(skb)->refcnt); 2253 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2254 skb_frag_ref(skb, i); 2255 2256 if (skb_has_frag_list(skb)) 2257 skb_clone_fraglist(skb); 2258 2259 skb_release_data(skb, SKB_CONSUMED, false); 2260 } else { 2261 skb_free_head(skb, false); 2262 } 2263 off = (data + nhead) - skb->head; 2264 2265 skb->head = data; 2266 skb->head_frag = 0; 2267 skb->data += off; 2268 2269 skb_set_end_offset(skb, size); 2270 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2271 off = nhead; 2272 #endif 2273 skb->tail += off; 2274 skb_headers_offset_update(skb, nhead); 2275 skb->cloned = 0; 2276 skb->hdr_len = 0; 2277 skb->nohdr = 0; 2278 atomic_set(&skb_shinfo(skb)->dataref, 1); 2279 2280 skb_metadata_clear(skb); 2281 2282 /* It is not generally safe to change skb->truesize. 2283 * For the moment, we really care of rx path, or 2284 * when skb is orphaned (not attached to a socket). 2285 */ 2286 if (!skb->sk || skb->destructor == sock_edemux) 2287 skb->truesize += size - osize; 2288 2289 return 0; 2290 2291 nofrags: 2292 skb_kfree_head(data, size); 2293 nodata: 2294 return -ENOMEM; 2295 } 2296 EXPORT_SYMBOL(pskb_expand_head); 2297 2298 /* Make private copy of skb with writable head and some headroom */ 2299 2300 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2301 { 2302 struct sk_buff *skb2; 2303 int delta = headroom - skb_headroom(skb); 2304 2305 if (delta <= 0) 2306 skb2 = pskb_copy(skb, GFP_ATOMIC); 2307 else { 2308 skb2 = skb_clone(skb, GFP_ATOMIC); 2309 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2310 GFP_ATOMIC)) { 2311 kfree_skb(skb2); 2312 skb2 = NULL; 2313 } 2314 } 2315 return skb2; 2316 } 2317 EXPORT_SYMBOL(skb_realloc_headroom); 2318 2319 /* Note: We plan to rework this in linux-6.4 */ 2320 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2321 { 2322 unsigned int saved_end_offset, saved_truesize; 2323 struct skb_shared_info *shinfo; 2324 int res; 2325 2326 saved_end_offset = skb_end_offset(skb); 2327 saved_truesize = skb->truesize; 2328 2329 res = pskb_expand_head(skb, 0, 0, pri); 2330 if (res) 2331 return res; 2332 2333 skb->truesize = saved_truesize; 2334 2335 if (likely(skb_end_offset(skb) == saved_end_offset)) 2336 return 0; 2337 2338 /* We can not change skb->end if the original or new value 2339 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2340 */ 2341 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2342 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2343 /* We think this path should not be taken. 2344 * Add a temporary trace to warn us just in case. 2345 */ 2346 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2347 saved_end_offset, skb_end_offset(skb)); 2348 WARN_ON_ONCE(1); 2349 return 0; 2350 } 2351 2352 shinfo = skb_shinfo(skb); 2353 2354 /* We are about to change back skb->end, 2355 * we need to move skb_shinfo() to its new location. 2356 */ 2357 memmove(skb->head + saved_end_offset, 2358 shinfo, 2359 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2360 2361 skb_set_end_offset(skb, saved_end_offset); 2362 2363 return 0; 2364 } 2365 2366 /** 2367 * skb_expand_head - reallocate header of &sk_buff 2368 * @skb: buffer to reallocate 2369 * @headroom: needed headroom 2370 * 2371 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2372 * if possible; copies skb->sk to new skb as needed 2373 * and frees original skb in case of failures. 2374 * 2375 * It expect increased headroom and generates warning otherwise. 2376 */ 2377 2378 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2379 { 2380 int delta = headroom - skb_headroom(skb); 2381 int osize = skb_end_offset(skb); 2382 struct sock *sk = skb->sk; 2383 2384 if (WARN_ONCE(delta <= 0, 2385 "%s is expecting an increase in the headroom", __func__)) 2386 return skb; 2387 2388 delta = SKB_DATA_ALIGN(delta); 2389 /* pskb_expand_head() might crash, if skb is shared. */ 2390 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2391 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2392 2393 if (unlikely(!nskb)) 2394 goto fail; 2395 2396 if (sk) 2397 skb_set_owner_w(nskb, sk); 2398 consume_skb(skb); 2399 skb = nskb; 2400 } 2401 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2402 goto fail; 2403 2404 if (sk && is_skb_wmem(skb)) { 2405 delta = skb_end_offset(skb) - osize; 2406 refcount_add(delta, &sk->sk_wmem_alloc); 2407 skb->truesize += delta; 2408 } 2409 return skb; 2410 2411 fail: 2412 kfree_skb(skb); 2413 return NULL; 2414 } 2415 EXPORT_SYMBOL(skb_expand_head); 2416 2417 /** 2418 * skb_copy_expand - copy and expand sk_buff 2419 * @skb: buffer to copy 2420 * @newheadroom: new free bytes at head 2421 * @newtailroom: new free bytes at tail 2422 * @gfp_mask: allocation priority 2423 * 2424 * Make a copy of both an &sk_buff and its data and while doing so 2425 * allocate additional space. 2426 * 2427 * This is used when the caller wishes to modify the data and needs a 2428 * private copy of the data to alter as well as more space for new fields. 2429 * Returns %NULL on failure or the pointer to the buffer 2430 * on success. The returned buffer has a reference count of 1. 2431 * 2432 * You must pass %GFP_ATOMIC as the allocation priority if this function 2433 * is called from an interrupt. 2434 */ 2435 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2436 int newheadroom, int newtailroom, 2437 gfp_t gfp_mask) 2438 { 2439 /* 2440 * Allocate the copy buffer 2441 */ 2442 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 2443 gfp_mask, skb_alloc_rx_flag(skb), 2444 NUMA_NO_NODE); 2445 int oldheadroom = skb_headroom(skb); 2446 int head_copy_len, head_copy_off; 2447 2448 if (!n) 2449 return NULL; 2450 2451 skb_reserve(n, newheadroom); 2452 2453 /* Set the tail pointer and length */ 2454 skb_put(n, skb->len); 2455 2456 head_copy_len = oldheadroom; 2457 head_copy_off = 0; 2458 if (newheadroom <= head_copy_len) 2459 head_copy_len = newheadroom; 2460 else 2461 head_copy_off = newheadroom - head_copy_len; 2462 2463 /* Copy the linear header and data. */ 2464 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2465 skb->len + head_copy_len)); 2466 2467 skb_copy_header(n, skb); 2468 2469 skb_headers_offset_update(n, newheadroom - oldheadroom); 2470 2471 return n; 2472 } 2473 EXPORT_SYMBOL(skb_copy_expand); 2474 2475 /** 2476 * __skb_pad - zero pad the tail of an skb 2477 * @skb: buffer to pad 2478 * @pad: space to pad 2479 * @free_on_error: free buffer on error 2480 * 2481 * Ensure that a buffer is followed by a padding area that is zero 2482 * filled. Used by network drivers which may DMA or transfer data 2483 * beyond the buffer end onto the wire. 2484 * 2485 * May return error in out of memory cases. The skb is freed on error 2486 * if @free_on_error is true. 2487 */ 2488 2489 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2490 { 2491 int err; 2492 int ntail; 2493 2494 /* If the skbuff is non linear tailroom is always zero.. */ 2495 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2496 memset(skb->data+skb->len, 0, pad); 2497 return 0; 2498 } 2499 2500 ntail = skb->data_len + pad - (skb->end - skb->tail); 2501 if (likely(skb_cloned(skb) || ntail > 0)) { 2502 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2503 if (unlikely(err)) 2504 goto free_skb; 2505 } 2506 2507 /* FIXME: The use of this function with non-linear skb's really needs 2508 * to be audited. 2509 */ 2510 err = skb_linearize(skb); 2511 if (unlikely(err)) 2512 goto free_skb; 2513 2514 memset(skb->data + skb->len, 0, pad); 2515 return 0; 2516 2517 free_skb: 2518 if (free_on_error) 2519 kfree_skb(skb); 2520 return err; 2521 } 2522 EXPORT_SYMBOL(__skb_pad); 2523 2524 /** 2525 * pskb_put - add data to the tail of a potentially fragmented buffer 2526 * @skb: start of the buffer to use 2527 * @tail: tail fragment of the buffer to use 2528 * @len: amount of data to add 2529 * 2530 * This function extends the used data area of the potentially 2531 * fragmented buffer. @tail must be the last fragment of @skb -- or 2532 * @skb itself. If this would exceed the total buffer size the kernel 2533 * will panic. A pointer to the first byte of the extra data is 2534 * returned. 2535 */ 2536 2537 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2538 { 2539 if (tail != skb) { 2540 skb->data_len += len; 2541 skb->len += len; 2542 } 2543 return skb_put(tail, len); 2544 } 2545 EXPORT_SYMBOL_GPL(pskb_put); 2546 2547 /** 2548 * skb_put - add data to a buffer 2549 * @skb: buffer to use 2550 * @len: amount of data to add 2551 * 2552 * This function extends the used data area of the buffer. If this would 2553 * exceed the total buffer size the kernel will panic. A pointer to the 2554 * first byte of the extra data is returned. 2555 */ 2556 void *skb_put(struct sk_buff *skb, unsigned int len) 2557 { 2558 void *tmp = skb_tail_pointer(skb); 2559 SKB_LINEAR_ASSERT(skb); 2560 skb->tail += len; 2561 skb->len += len; 2562 if (unlikely(skb->tail > skb->end)) 2563 skb_over_panic(skb, len, __builtin_return_address(0)); 2564 return tmp; 2565 } 2566 EXPORT_SYMBOL(skb_put); 2567 2568 /** 2569 * skb_push - add data to the start of a buffer 2570 * @skb: buffer to use 2571 * @len: amount of data to add 2572 * 2573 * This function extends the used data area of the buffer at the buffer 2574 * start. If this would exceed the total buffer headroom the kernel will 2575 * panic. A pointer to the first byte of the extra data is returned. 2576 */ 2577 void *skb_push(struct sk_buff *skb, unsigned int len) 2578 { 2579 skb->data -= len; 2580 skb->len += len; 2581 if (unlikely(skb->data < skb->head)) 2582 skb_under_panic(skb, len, __builtin_return_address(0)); 2583 return skb->data; 2584 } 2585 EXPORT_SYMBOL(skb_push); 2586 2587 /** 2588 * skb_pull - remove data from the start of a buffer 2589 * @skb: buffer to use 2590 * @len: amount of data to remove 2591 * 2592 * This function removes data from the start of a buffer, returning 2593 * the memory to the headroom. A pointer to the next data in the buffer 2594 * is returned. Once the data has been pulled future pushes will overwrite 2595 * the old data. 2596 */ 2597 void *skb_pull(struct sk_buff *skb, unsigned int len) 2598 { 2599 return skb_pull_inline(skb, len); 2600 } 2601 EXPORT_SYMBOL(skb_pull); 2602 2603 /** 2604 * skb_pull_data - remove data from the start of a buffer returning its 2605 * original position. 2606 * @skb: buffer to use 2607 * @len: amount of data to remove 2608 * 2609 * This function removes data from the start of a buffer, returning 2610 * the memory to the headroom. A pointer to the original data in the buffer 2611 * is returned after checking if there is enough data to pull. Once the 2612 * data has been pulled future pushes will overwrite the old data. 2613 */ 2614 void *skb_pull_data(struct sk_buff *skb, size_t len) 2615 { 2616 void *data = skb->data; 2617 2618 if (skb->len < len) 2619 return NULL; 2620 2621 skb_pull(skb, len); 2622 2623 return data; 2624 } 2625 EXPORT_SYMBOL(skb_pull_data); 2626 2627 /** 2628 * skb_trim - remove end from a buffer 2629 * @skb: buffer to alter 2630 * @len: new length 2631 * 2632 * Cut the length of a buffer down by removing data from the tail. If 2633 * the buffer is already under the length specified it is not modified. 2634 * The skb must be linear. 2635 */ 2636 void skb_trim(struct sk_buff *skb, unsigned int len) 2637 { 2638 if (skb->len > len) 2639 __skb_trim(skb, len); 2640 } 2641 EXPORT_SYMBOL(skb_trim); 2642 2643 /* Trims skb to length len. It can change skb pointers. 2644 */ 2645 2646 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2647 { 2648 struct sk_buff **fragp; 2649 struct sk_buff *frag; 2650 int offset = skb_headlen(skb); 2651 int nfrags = skb_shinfo(skb)->nr_frags; 2652 int i; 2653 int err; 2654 2655 if (skb_cloned(skb) && 2656 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2657 return err; 2658 2659 i = 0; 2660 if (offset >= len) 2661 goto drop_pages; 2662 2663 for (; i < nfrags; i++) { 2664 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2665 2666 if (end < len) { 2667 offset = end; 2668 continue; 2669 } 2670 2671 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2672 2673 drop_pages: 2674 skb_shinfo(skb)->nr_frags = i; 2675 2676 for (; i < nfrags; i++) 2677 skb_frag_unref(skb, i); 2678 2679 if (skb_has_frag_list(skb)) 2680 skb_drop_fraglist(skb); 2681 goto done; 2682 } 2683 2684 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2685 fragp = &frag->next) { 2686 int end = offset + frag->len; 2687 2688 if (skb_shared(frag)) { 2689 struct sk_buff *nfrag; 2690 2691 nfrag = skb_clone(frag, GFP_ATOMIC); 2692 if (unlikely(!nfrag)) 2693 return -ENOMEM; 2694 2695 nfrag->next = frag->next; 2696 consume_skb(frag); 2697 frag = nfrag; 2698 *fragp = frag; 2699 } 2700 2701 if (end < len) { 2702 offset = end; 2703 continue; 2704 } 2705 2706 if (end > len && 2707 unlikely((err = pskb_trim(frag, len - offset)))) 2708 return err; 2709 2710 if (frag->next) 2711 skb_drop_list(&frag->next); 2712 break; 2713 } 2714 2715 done: 2716 if (len > skb_headlen(skb)) { 2717 skb->data_len -= skb->len - len; 2718 skb->len = len; 2719 } else { 2720 skb->len = len; 2721 skb->data_len = 0; 2722 skb_set_tail_pointer(skb, len); 2723 } 2724 2725 if (!skb->sk || skb->destructor == sock_edemux) 2726 skb_condense(skb); 2727 return 0; 2728 } 2729 EXPORT_SYMBOL(___pskb_trim); 2730 2731 /* Note : use pskb_trim_rcsum() instead of calling this directly 2732 */ 2733 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2734 { 2735 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2736 int delta = skb->len - len; 2737 2738 skb->csum = csum_block_sub(skb->csum, 2739 skb_checksum(skb, len, delta, 0), 2740 len); 2741 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2742 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2743 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2744 2745 if (offset + sizeof(__sum16) > hdlen) 2746 return -EINVAL; 2747 } 2748 return __pskb_trim(skb, len); 2749 } 2750 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2751 2752 /** 2753 * __pskb_pull_tail - advance tail of skb header 2754 * @skb: buffer to reallocate 2755 * @delta: number of bytes to advance tail 2756 * 2757 * The function makes a sense only on a fragmented &sk_buff, 2758 * it expands header moving its tail forward and copying necessary 2759 * data from fragmented part. 2760 * 2761 * &sk_buff MUST have reference count of 1. 2762 * 2763 * Returns %NULL (and &sk_buff does not change) if pull failed 2764 * or value of new tail of skb in the case of success. 2765 * 2766 * All the pointers pointing into skb header may change and must be 2767 * reloaded after call to this function. 2768 */ 2769 2770 /* Moves tail of skb head forward, copying data from fragmented part, 2771 * when it is necessary. 2772 * 1. It may fail due to malloc failure. 2773 * 2. It may change skb pointers. 2774 * 2775 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2776 */ 2777 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2778 { 2779 /* If skb has not enough free space at tail, get new one 2780 * plus 128 bytes for future expansions. If we have enough 2781 * room at tail, reallocate without expansion only if skb is cloned. 2782 */ 2783 int i, k, eat = (skb->tail + delta) - skb->end; 2784 2785 if (eat > 0 || skb_cloned(skb)) { 2786 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2787 GFP_ATOMIC)) 2788 return NULL; 2789 } 2790 2791 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2792 skb_tail_pointer(skb), delta)); 2793 2794 /* Optimization: no fragments, no reasons to preestimate 2795 * size of pulled pages. Superb. 2796 */ 2797 if (!skb_has_frag_list(skb)) 2798 goto pull_pages; 2799 2800 /* Estimate size of pulled pages. */ 2801 eat = delta; 2802 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2803 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2804 2805 if (size >= eat) 2806 goto pull_pages; 2807 eat -= size; 2808 } 2809 2810 /* If we need update frag list, we are in troubles. 2811 * Certainly, it is possible to add an offset to skb data, 2812 * but taking into account that pulling is expected to 2813 * be very rare operation, it is worth to fight against 2814 * further bloating skb head and crucify ourselves here instead. 2815 * Pure masohism, indeed. 8)8) 2816 */ 2817 if (eat) { 2818 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2819 struct sk_buff *clone = NULL; 2820 struct sk_buff *insp = NULL; 2821 2822 do { 2823 if (list->len <= eat) { 2824 /* Eaten as whole. */ 2825 eat -= list->len; 2826 list = list->next; 2827 insp = list; 2828 } else { 2829 /* Eaten partially. */ 2830 if (skb_is_gso(skb) && !list->head_frag && 2831 skb_headlen(list)) 2832 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2833 2834 if (skb_shared(list)) { 2835 /* Sucks! We need to fork list. :-( */ 2836 clone = skb_clone(list, GFP_ATOMIC); 2837 if (!clone) 2838 return NULL; 2839 insp = list->next; 2840 list = clone; 2841 } else { 2842 /* This may be pulled without 2843 * problems. */ 2844 insp = list; 2845 } 2846 if (!pskb_pull(list, eat)) { 2847 kfree_skb(clone); 2848 return NULL; 2849 } 2850 break; 2851 } 2852 } while (eat); 2853 2854 /* Free pulled out fragments. */ 2855 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2856 skb_shinfo(skb)->frag_list = list->next; 2857 consume_skb(list); 2858 } 2859 /* And insert new clone at head. */ 2860 if (clone) { 2861 clone->next = list; 2862 skb_shinfo(skb)->frag_list = clone; 2863 } 2864 } 2865 /* Success! Now we may commit changes to skb data. */ 2866 2867 pull_pages: 2868 eat = delta; 2869 k = 0; 2870 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2871 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2872 2873 if (size <= eat) { 2874 skb_frag_unref(skb, i); 2875 eat -= size; 2876 } else { 2877 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2878 2879 *frag = skb_shinfo(skb)->frags[i]; 2880 if (eat) { 2881 skb_frag_off_add(frag, eat); 2882 skb_frag_size_sub(frag, eat); 2883 if (!i) 2884 goto end; 2885 eat = 0; 2886 } 2887 k++; 2888 } 2889 } 2890 skb_shinfo(skb)->nr_frags = k; 2891 2892 end: 2893 skb->tail += delta; 2894 skb->data_len -= delta; 2895 2896 if (!skb->data_len) 2897 skb_zcopy_clear(skb, false); 2898 2899 return skb_tail_pointer(skb); 2900 } 2901 EXPORT_SYMBOL(__pskb_pull_tail); 2902 2903 /** 2904 * skb_copy_bits - copy bits from skb to kernel buffer 2905 * @skb: source skb 2906 * @offset: offset in source 2907 * @to: destination buffer 2908 * @len: number of bytes to copy 2909 * 2910 * Copy the specified number of bytes from the source skb to the 2911 * destination buffer. 2912 * 2913 * CAUTION ! : 2914 * If its prototype is ever changed, 2915 * check arch/{*}/net/{*}.S files, 2916 * since it is called from BPF assembly code. 2917 */ 2918 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2919 { 2920 int start = skb_headlen(skb); 2921 struct sk_buff *frag_iter; 2922 int i, copy; 2923 2924 if (offset > (int)skb->len - len) 2925 goto fault; 2926 2927 /* Copy header. */ 2928 if ((copy = start - offset) > 0) { 2929 if (copy > len) 2930 copy = len; 2931 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2932 if ((len -= copy) == 0) 2933 return 0; 2934 offset += copy; 2935 to += copy; 2936 } 2937 2938 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2939 int end; 2940 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2941 2942 WARN_ON(start > offset + len); 2943 2944 end = start + skb_frag_size(f); 2945 if ((copy = end - offset) > 0) { 2946 u32 p_off, p_len, copied; 2947 struct page *p; 2948 u8 *vaddr; 2949 2950 if (copy > len) 2951 copy = len; 2952 2953 skb_frag_foreach_page(f, 2954 skb_frag_off(f) + offset - start, 2955 copy, p, p_off, p_len, copied) { 2956 vaddr = kmap_atomic(p); 2957 memcpy(to + copied, vaddr + p_off, p_len); 2958 kunmap_atomic(vaddr); 2959 } 2960 2961 if ((len -= copy) == 0) 2962 return 0; 2963 offset += copy; 2964 to += copy; 2965 } 2966 start = end; 2967 } 2968 2969 skb_walk_frags(skb, frag_iter) { 2970 int end; 2971 2972 WARN_ON(start > offset + len); 2973 2974 end = start + frag_iter->len; 2975 if ((copy = end - offset) > 0) { 2976 if (copy > len) 2977 copy = len; 2978 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2979 goto fault; 2980 if ((len -= copy) == 0) 2981 return 0; 2982 offset += copy; 2983 to += copy; 2984 } 2985 start = end; 2986 } 2987 2988 if (!len) 2989 return 0; 2990 2991 fault: 2992 return -EFAULT; 2993 } 2994 EXPORT_SYMBOL(skb_copy_bits); 2995 2996 /* 2997 * Callback from splice_to_pipe(), if we need to release some pages 2998 * at the end of the spd in case we error'ed out in filling the pipe. 2999 */ 3000 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 3001 { 3002 put_page(spd->pages[i]); 3003 } 3004 3005 static struct page *linear_to_page(struct page *page, unsigned int *len, 3006 unsigned int *offset, 3007 struct sock *sk) 3008 { 3009 struct page_frag *pfrag = sk_page_frag(sk); 3010 3011 if (!sk_page_frag_refill(sk, pfrag)) 3012 return NULL; 3013 3014 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 3015 3016 memcpy(page_address(pfrag->page) + pfrag->offset, 3017 page_address(page) + *offset, *len); 3018 *offset = pfrag->offset; 3019 pfrag->offset += *len; 3020 3021 return pfrag->page; 3022 } 3023 3024 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 3025 struct page *page, 3026 unsigned int offset) 3027 { 3028 return spd->nr_pages && 3029 spd->pages[spd->nr_pages - 1] == page && 3030 (spd->partial[spd->nr_pages - 1].offset + 3031 spd->partial[spd->nr_pages - 1].len == offset); 3032 } 3033 3034 /* 3035 * Fill page/offset/length into spd, if it can hold more pages. 3036 */ 3037 static bool spd_fill_page(struct splice_pipe_desc *spd, 3038 struct pipe_inode_info *pipe, struct page *page, 3039 unsigned int *len, unsigned int offset, 3040 bool linear, 3041 struct sock *sk) 3042 { 3043 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 3044 return true; 3045 3046 if (linear) { 3047 page = linear_to_page(page, len, &offset, sk); 3048 if (!page) 3049 return true; 3050 } 3051 if (spd_can_coalesce(spd, page, offset)) { 3052 spd->partial[spd->nr_pages - 1].len += *len; 3053 return false; 3054 } 3055 get_page(page); 3056 spd->pages[spd->nr_pages] = page; 3057 spd->partial[spd->nr_pages].len = *len; 3058 spd->partial[spd->nr_pages].offset = offset; 3059 spd->nr_pages++; 3060 3061 return false; 3062 } 3063 3064 static bool __splice_segment(struct page *page, unsigned int poff, 3065 unsigned int plen, unsigned int *off, 3066 unsigned int *len, 3067 struct splice_pipe_desc *spd, bool linear, 3068 struct sock *sk, 3069 struct pipe_inode_info *pipe) 3070 { 3071 if (!*len) 3072 return true; 3073 3074 /* skip this segment if already processed */ 3075 if (*off >= plen) { 3076 *off -= plen; 3077 return false; 3078 } 3079 3080 /* ignore any bits we already processed */ 3081 poff += *off; 3082 plen -= *off; 3083 *off = 0; 3084 3085 do { 3086 unsigned int flen = min(*len, plen); 3087 3088 if (spd_fill_page(spd, pipe, page, &flen, poff, 3089 linear, sk)) 3090 return true; 3091 poff += flen; 3092 plen -= flen; 3093 *len -= flen; 3094 } while (*len && plen); 3095 3096 return false; 3097 } 3098 3099 /* 3100 * Map linear and fragment data from the skb to spd. It reports true if the 3101 * pipe is full or if we already spliced the requested length. 3102 */ 3103 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 3104 unsigned int *offset, unsigned int *len, 3105 struct splice_pipe_desc *spd, struct sock *sk) 3106 { 3107 int seg; 3108 struct sk_buff *iter; 3109 3110 /* map the linear part : 3111 * If skb->head_frag is set, this 'linear' part is backed by a 3112 * fragment, and if the head is not shared with any clones then 3113 * we can avoid a copy since we own the head portion of this page. 3114 */ 3115 if (__splice_segment(virt_to_page(skb->data), 3116 (unsigned long) skb->data & (PAGE_SIZE - 1), 3117 skb_headlen(skb), 3118 offset, len, spd, 3119 skb_head_is_locked(skb), 3120 sk, pipe)) 3121 return true; 3122 3123 /* 3124 * then map the fragments 3125 */ 3126 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 3127 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 3128 3129 if (__splice_segment(skb_frag_page(f), 3130 skb_frag_off(f), skb_frag_size(f), 3131 offset, len, spd, false, sk, pipe)) 3132 return true; 3133 } 3134 3135 skb_walk_frags(skb, iter) { 3136 if (*offset >= iter->len) { 3137 *offset -= iter->len; 3138 continue; 3139 } 3140 /* __skb_splice_bits() only fails if the output has no room 3141 * left, so no point in going over the frag_list for the error 3142 * case. 3143 */ 3144 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 3145 return true; 3146 } 3147 3148 return false; 3149 } 3150 3151 /* 3152 * Map data from the skb to a pipe. Should handle both the linear part, 3153 * the fragments, and the frag list. 3154 */ 3155 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3156 struct pipe_inode_info *pipe, unsigned int tlen, 3157 unsigned int flags) 3158 { 3159 struct partial_page partial[MAX_SKB_FRAGS]; 3160 struct page *pages[MAX_SKB_FRAGS]; 3161 struct splice_pipe_desc spd = { 3162 .pages = pages, 3163 .partial = partial, 3164 .nr_pages_max = MAX_SKB_FRAGS, 3165 .ops = &nosteal_pipe_buf_ops, 3166 .spd_release = sock_spd_release, 3167 }; 3168 int ret = 0; 3169 3170 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3171 3172 if (spd.nr_pages) 3173 ret = splice_to_pipe(pipe, &spd); 3174 3175 return ret; 3176 } 3177 EXPORT_SYMBOL_GPL(skb_splice_bits); 3178 3179 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3180 { 3181 struct socket *sock = sk->sk_socket; 3182 size_t size = msg_data_left(msg); 3183 3184 if (!sock) 3185 return -EINVAL; 3186 3187 if (!sock->ops->sendmsg_locked) 3188 return sock_no_sendmsg_locked(sk, msg, size); 3189 3190 return sock->ops->sendmsg_locked(sk, msg, size); 3191 } 3192 3193 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3194 { 3195 struct socket *sock = sk->sk_socket; 3196 3197 if (!sock) 3198 return -EINVAL; 3199 return sock_sendmsg(sock, msg); 3200 } 3201 3202 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3203 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3204 int len, sendmsg_func sendmsg) 3205 { 3206 unsigned int orig_len = len; 3207 struct sk_buff *head = skb; 3208 unsigned short fragidx; 3209 int slen, ret; 3210 3211 do_frag_list: 3212 3213 /* Deal with head data */ 3214 while (offset < skb_headlen(skb) && len) { 3215 struct kvec kv; 3216 struct msghdr msg; 3217 3218 slen = min_t(int, len, skb_headlen(skb) - offset); 3219 kv.iov_base = skb->data + offset; 3220 kv.iov_len = slen; 3221 memset(&msg, 0, sizeof(msg)); 3222 msg.msg_flags = MSG_DONTWAIT; 3223 3224 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3225 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3226 sendmsg_unlocked, sk, &msg); 3227 if (ret <= 0) 3228 goto error; 3229 3230 offset += ret; 3231 len -= ret; 3232 } 3233 3234 /* All the data was skb head? */ 3235 if (!len) 3236 goto out; 3237 3238 /* Make offset relative to start of frags */ 3239 offset -= skb_headlen(skb); 3240 3241 /* Find where we are in frag list */ 3242 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3243 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3244 3245 if (offset < skb_frag_size(frag)) 3246 break; 3247 3248 offset -= skb_frag_size(frag); 3249 } 3250 3251 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3252 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3253 3254 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3255 3256 while (slen) { 3257 struct bio_vec bvec; 3258 struct msghdr msg = { 3259 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT, 3260 }; 3261 3262 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3263 skb_frag_off(frag) + offset); 3264 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3265 slen); 3266 3267 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3268 sendmsg_unlocked, sk, &msg); 3269 if (ret <= 0) 3270 goto error; 3271 3272 len -= ret; 3273 offset += ret; 3274 slen -= ret; 3275 } 3276 3277 offset = 0; 3278 } 3279 3280 if (len) { 3281 /* Process any frag lists */ 3282 3283 if (skb == head) { 3284 if (skb_has_frag_list(skb)) { 3285 skb = skb_shinfo(skb)->frag_list; 3286 goto do_frag_list; 3287 } 3288 } else if (skb->next) { 3289 skb = skb->next; 3290 goto do_frag_list; 3291 } 3292 } 3293 3294 out: 3295 return orig_len - len; 3296 3297 error: 3298 return orig_len == len ? ret : orig_len - len; 3299 } 3300 3301 /* Send skb data on a socket. Socket must be locked. */ 3302 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3303 int len) 3304 { 3305 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked); 3306 } 3307 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3308 3309 /* Send skb data on a socket. Socket must be unlocked. */ 3310 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3311 { 3312 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked); 3313 } 3314 3315 /** 3316 * skb_store_bits - store bits from kernel buffer to skb 3317 * @skb: destination buffer 3318 * @offset: offset in destination 3319 * @from: source buffer 3320 * @len: number of bytes to copy 3321 * 3322 * Copy the specified number of bytes from the source buffer to the 3323 * destination skb. This function handles all the messy bits of 3324 * traversing fragment lists and such. 3325 */ 3326 3327 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3328 { 3329 int start = skb_headlen(skb); 3330 struct sk_buff *frag_iter; 3331 int i, copy; 3332 3333 if (offset > (int)skb->len - len) 3334 goto fault; 3335 3336 if ((copy = start - offset) > 0) { 3337 if (copy > len) 3338 copy = len; 3339 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3340 if ((len -= copy) == 0) 3341 return 0; 3342 offset += copy; 3343 from += copy; 3344 } 3345 3346 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3347 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3348 int end; 3349 3350 WARN_ON(start > offset + len); 3351 3352 end = start + skb_frag_size(frag); 3353 if ((copy = end - offset) > 0) { 3354 u32 p_off, p_len, copied; 3355 struct page *p; 3356 u8 *vaddr; 3357 3358 if (copy > len) 3359 copy = len; 3360 3361 skb_frag_foreach_page(frag, 3362 skb_frag_off(frag) + offset - start, 3363 copy, p, p_off, p_len, copied) { 3364 vaddr = kmap_atomic(p); 3365 memcpy(vaddr + p_off, from + copied, p_len); 3366 kunmap_atomic(vaddr); 3367 } 3368 3369 if ((len -= copy) == 0) 3370 return 0; 3371 offset += copy; 3372 from += copy; 3373 } 3374 start = end; 3375 } 3376 3377 skb_walk_frags(skb, frag_iter) { 3378 int end; 3379 3380 WARN_ON(start > offset + len); 3381 3382 end = start + frag_iter->len; 3383 if ((copy = end - offset) > 0) { 3384 if (copy > len) 3385 copy = len; 3386 if (skb_store_bits(frag_iter, offset - start, 3387 from, copy)) 3388 goto fault; 3389 if ((len -= copy) == 0) 3390 return 0; 3391 offset += copy; 3392 from += copy; 3393 } 3394 start = end; 3395 } 3396 if (!len) 3397 return 0; 3398 3399 fault: 3400 return -EFAULT; 3401 } 3402 EXPORT_SYMBOL(skb_store_bits); 3403 3404 /* Checksum skb data. */ 3405 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3406 __wsum csum, const struct skb_checksum_ops *ops) 3407 { 3408 int start = skb_headlen(skb); 3409 int i, copy = start - offset; 3410 struct sk_buff *frag_iter; 3411 int pos = 0; 3412 3413 /* Checksum header. */ 3414 if (copy > 0) { 3415 if (copy > len) 3416 copy = len; 3417 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 3418 skb->data + offset, copy, csum); 3419 if ((len -= copy) == 0) 3420 return csum; 3421 offset += copy; 3422 pos = copy; 3423 } 3424 3425 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3426 int end; 3427 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3428 3429 WARN_ON(start > offset + len); 3430 3431 end = start + skb_frag_size(frag); 3432 if ((copy = end - offset) > 0) { 3433 u32 p_off, p_len, copied; 3434 struct page *p; 3435 __wsum csum2; 3436 u8 *vaddr; 3437 3438 if (copy > len) 3439 copy = len; 3440 3441 skb_frag_foreach_page(frag, 3442 skb_frag_off(frag) + offset - start, 3443 copy, p, p_off, p_len, copied) { 3444 vaddr = kmap_atomic(p); 3445 csum2 = INDIRECT_CALL_1(ops->update, 3446 csum_partial_ext, 3447 vaddr + p_off, p_len, 0); 3448 kunmap_atomic(vaddr); 3449 csum = INDIRECT_CALL_1(ops->combine, 3450 csum_block_add_ext, csum, 3451 csum2, pos, p_len); 3452 pos += p_len; 3453 } 3454 3455 if (!(len -= copy)) 3456 return csum; 3457 offset += copy; 3458 } 3459 start = end; 3460 } 3461 3462 skb_walk_frags(skb, frag_iter) { 3463 int end; 3464 3465 WARN_ON(start > offset + len); 3466 3467 end = start + frag_iter->len; 3468 if ((copy = end - offset) > 0) { 3469 __wsum csum2; 3470 if (copy > len) 3471 copy = len; 3472 csum2 = __skb_checksum(frag_iter, offset - start, 3473 copy, 0, ops); 3474 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 3475 csum, csum2, pos, copy); 3476 if ((len -= copy) == 0) 3477 return csum; 3478 offset += copy; 3479 pos += copy; 3480 } 3481 start = end; 3482 } 3483 BUG_ON(len); 3484 3485 return csum; 3486 } 3487 EXPORT_SYMBOL(__skb_checksum); 3488 3489 __wsum skb_checksum(const struct sk_buff *skb, int offset, 3490 int len, __wsum csum) 3491 { 3492 const struct skb_checksum_ops ops = { 3493 .update = csum_partial_ext, 3494 .combine = csum_block_add_ext, 3495 }; 3496 3497 return __skb_checksum(skb, offset, len, csum, &ops); 3498 } 3499 EXPORT_SYMBOL(skb_checksum); 3500 3501 /* Both of above in one bottle. */ 3502 3503 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3504 u8 *to, int len) 3505 { 3506 int start = skb_headlen(skb); 3507 int i, copy = start - offset; 3508 struct sk_buff *frag_iter; 3509 int pos = 0; 3510 __wsum csum = 0; 3511 3512 /* Copy header. */ 3513 if (copy > 0) { 3514 if (copy > len) 3515 copy = len; 3516 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3517 copy); 3518 if ((len -= copy) == 0) 3519 return csum; 3520 offset += copy; 3521 to += copy; 3522 pos = copy; 3523 } 3524 3525 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3526 int end; 3527 3528 WARN_ON(start > offset + len); 3529 3530 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3531 if ((copy = end - offset) > 0) { 3532 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3533 u32 p_off, p_len, copied; 3534 struct page *p; 3535 __wsum csum2; 3536 u8 *vaddr; 3537 3538 if (copy > len) 3539 copy = len; 3540 3541 skb_frag_foreach_page(frag, 3542 skb_frag_off(frag) + offset - start, 3543 copy, p, p_off, p_len, copied) { 3544 vaddr = kmap_atomic(p); 3545 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3546 to + copied, 3547 p_len); 3548 kunmap_atomic(vaddr); 3549 csum = csum_block_add(csum, csum2, pos); 3550 pos += p_len; 3551 } 3552 3553 if (!(len -= copy)) 3554 return csum; 3555 offset += copy; 3556 to += copy; 3557 } 3558 start = end; 3559 } 3560 3561 skb_walk_frags(skb, frag_iter) { 3562 __wsum csum2; 3563 int end; 3564 3565 WARN_ON(start > offset + len); 3566 3567 end = start + frag_iter->len; 3568 if ((copy = end - offset) > 0) { 3569 if (copy > len) 3570 copy = len; 3571 csum2 = skb_copy_and_csum_bits(frag_iter, 3572 offset - start, 3573 to, copy); 3574 csum = csum_block_add(csum, csum2, pos); 3575 if ((len -= copy) == 0) 3576 return csum; 3577 offset += copy; 3578 to += copy; 3579 pos += copy; 3580 } 3581 start = end; 3582 } 3583 BUG_ON(len); 3584 return csum; 3585 } 3586 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3587 3588 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3589 { 3590 __sum16 sum; 3591 3592 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3593 /* See comments in __skb_checksum_complete(). */ 3594 if (likely(!sum)) { 3595 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3596 !skb->csum_complete_sw) 3597 netdev_rx_csum_fault(skb->dev, skb); 3598 } 3599 if (!skb_shared(skb)) 3600 skb->csum_valid = !sum; 3601 return sum; 3602 } 3603 EXPORT_SYMBOL(__skb_checksum_complete_head); 3604 3605 /* This function assumes skb->csum already holds pseudo header's checksum, 3606 * which has been changed from the hardware checksum, for example, by 3607 * __skb_checksum_validate_complete(). And, the original skb->csum must 3608 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3609 * 3610 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3611 * zero. The new checksum is stored back into skb->csum unless the skb is 3612 * shared. 3613 */ 3614 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3615 { 3616 __wsum csum; 3617 __sum16 sum; 3618 3619 csum = skb_checksum(skb, 0, skb->len, 0); 3620 3621 sum = csum_fold(csum_add(skb->csum, csum)); 3622 /* This check is inverted, because we already knew the hardware 3623 * checksum is invalid before calling this function. So, if the 3624 * re-computed checksum is valid instead, then we have a mismatch 3625 * between the original skb->csum and skb_checksum(). This means either 3626 * the original hardware checksum is incorrect or we screw up skb->csum 3627 * when moving skb->data around. 3628 */ 3629 if (likely(!sum)) { 3630 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3631 !skb->csum_complete_sw) 3632 netdev_rx_csum_fault(skb->dev, skb); 3633 } 3634 3635 if (!skb_shared(skb)) { 3636 /* Save full packet checksum */ 3637 skb->csum = csum; 3638 skb->ip_summed = CHECKSUM_COMPLETE; 3639 skb->csum_complete_sw = 1; 3640 skb->csum_valid = !sum; 3641 } 3642 3643 return sum; 3644 } 3645 EXPORT_SYMBOL(__skb_checksum_complete); 3646 3647 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3648 { 3649 net_warn_ratelimited( 3650 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3651 __func__); 3652 return 0; 3653 } 3654 3655 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3656 int offset, int len) 3657 { 3658 net_warn_ratelimited( 3659 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3660 __func__); 3661 return 0; 3662 } 3663 3664 static const struct skb_checksum_ops default_crc32c_ops = { 3665 .update = warn_crc32c_csum_update, 3666 .combine = warn_crc32c_csum_combine, 3667 }; 3668 3669 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3670 &default_crc32c_ops; 3671 EXPORT_SYMBOL(crc32c_csum_stub); 3672 3673 /** 3674 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3675 * @from: source buffer 3676 * 3677 * Calculates the amount of linear headroom needed in the 'to' skb passed 3678 * into skb_zerocopy(). 3679 */ 3680 unsigned int 3681 skb_zerocopy_headlen(const struct sk_buff *from) 3682 { 3683 unsigned int hlen = 0; 3684 3685 if (!from->head_frag || 3686 skb_headlen(from) < L1_CACHE_BYTES || 3687 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3688 hlen = skb_headlen(from); 3689 if (!hlen) 3690 hlen = from->len; 3691 } 3692 3693 if (skb_has_frag_list(from)) 3694 hlen = from->len; 3695 3696 return hlen; 3697 } 3698 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3699 3700 /** 3701 * skb_zerocopy - Zero copy skb to skb 3702 * @to: destination buffer 3703 * @from: source buffer 3704 * @len: number of bytes to copy from source buffer 3705 * @hlen: size of linear headroom in destination buffer 3706 * 3707 * Copies up to `len` bytes from `from` to `to` by creating references 3708 * to the frags in the source buffer. 3709 * 3710 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3711 * headroom in the `to` buffer. 3712 * 3713 * Return value: 3714 * 0: everything is OK 3715 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3716 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3717 */ 3718 int 3719 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3720 { 3721 int i, j = 0; 3722 int plen = 0; /* length of skb->head fragment */ 3723 int ret; 3724 struct page *page; 3725 unsigned int offset; 3726 3727 BUG_ON(!from->head_frag && !hlen); 3728 3729 /* dont bother with small payloads */ 3730 if (len <= skb_tailroom(to)) 3731 return skb_copy_bits(from, 0, skb_put(to, len), len); 3732 3733 if (hlen) { 3734 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3735 if (unlikely(ret)) 3736 return ret; 3737 len -= hlen; 3738 } else { 3739 plen = min_t(int, skb_headlen(from), len); 3740 if (plen) { 3741 page = virt_to_head_page(from->head); 3742 offset = from->data - (unsigned char *)page_address(page); 3743 __skb_fill_page_desc(to, 0, page, offset, plen); 3744 get_page(page); 3745 j = 1; 3746 len -= plen; 3747 } 3748 } 3749 3750 skb_len_add(to, len + plen); 3751 3752 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3753 skb_tx_error(from); 3754 return -ENOMEM; 3755 } 3756 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3757 3758 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3759 int size; 3760 3761 if (!len) 3762 break; 3763 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3764 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3765 len); 3766 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3767 len -= size; 3768 skb_frag_ref(to, j); 3769 j++; 3770 } 3771 skb_shinfo(to)->nr_frags = j; 3772 3773 return 0; 3774 } 3775 EXPORT_SYMBOL_GPL(skb_zerocopy); 3776 3777 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3778 { 3779 __wsum csum; 3780 long csstart; 3781 3782 if (skb->ip_summed == CHECKSUM_PARTIAL) 3783 csstart = skb_checksum_start_offset(skb); 3784 else 3785 csstart = skb_headlen(skb); 3786 3787 BUG_ON(csstart > skb_headlen(skb)); 3788 3789 skb_copy_from_linear_data(skb, to, csstart); 3790 3791 csum = 0; 3792 if (csstart != skb->len) 3793 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3794 skb->len - csstart); 3795 3796 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3797 long csstuff = csstart + skb->csum_offset; 3798 3799 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3800 } 3801 } 3802 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3803 3804 /** 3805 * skb_dequeue - remove from the head of the queue 3806 * @list: list to dequeue from 3807 * 3808 * Remove the head of the list. The list lock is taken so the function 3809 * may be used safely with other locking list functions. The head item is 3810 * returned or %NULL if the list is empty. 3811 */ 3812 3813 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3814 { 3815 unsigned long flags; 3816 struct sk_buff *result; 3817 3818 spin_lock_irqsave(&list->lock, flags); 3819 result = __skb_dequeue(list); 3820 spin_unlock_irqrestore(&list->lock, flags); 3821 return result; 3822 } 3823 EXPORT_SYMBOL(skb_dequeue); 3824 3825 /** 3826 * skb_dequeue_tail - remove from the tail of the queue 3827 * @list: list to dequeue from 3828 * 3829 * Remove the tail of the list. The list lock is taken so the function 3830 * may be used safely with other locking list functions. The tail item is 3831 * returned or %NULL if the list is empty. 3832 */ 3833 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3834 { 3835 unsigned long flags; 3836 struct sk_buff *result; 3837 3838 spin_lock_irqsave(&list->lock, flags); 3839 result = __skb_dequeue_tail(list); 3840 spin_unlock_irqrestore(&list->lock, flags); 3841 return result; 3842 } 3843 EXPORT_SYMBOL(skb_dequeue_tail); 3844 3845 /** 3846 * skb_queue_purge_reason - empty a list 3847 * @list: list to empty 3848 * @reason: drop reason 3849 * 3850 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3851 * the list and one reference dropped. This function takes the list 3852 * lock and is atomic with respect to other list locking functions. 3853 */ 3854 void skb_queue_purge_reason(struct sk_buff_head *list, 3855 enum skb_drop_reason reason) 3856 { 3857 struct sk_buff_head tmp; 3858 unsigned long flags; 3859 3860 if (skb_queue_empty_lockless(list)) 3861 return; 3862 3863 __skb_queue_head_init(&tmp); 3864 3865 spin_lock_irqsave(&list->lock, flags); 3866 skb_queue_splice_init(list, &tmp); 3867 spin_unlock_irqrestore(&list->lock, flags); 3868 3869 __skb_queue_purge_reason(&tmp, reason); 3870 } 3871 EXPORT_SYMBOL(skb_queue_purge_reason); 3872 3873 /** 3874 * skb_rbtree_purge - empty a skb rbtree 3875 * @root: root of the rbtree to empty 3876 * Return value: the sum of truesizes of all purged skbs. 3877 * 3878 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3879 * the list and one reference dropped. This function does not take 3880 * any lock. Synchronization should be handled by the caller (e.g., TCP 3881 * out-of-order queue is protected by the socket lock). 3882 */ 3883 unsigned int skb_rbtree_purge(struct rb_root *root) 3884 { 3885 struct rb_node *p = rb_first(root); 3886 unsigned int sum = 0; 3887 3888 while (p) { 3889 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3890 3891 p = rb_next(p); 3892 rb_erase(&skb->rbnode, root); 3893 sum += skb->truesize; 3894 kfree_skb(skb); 3895 } 3896 return sum; 3897 } 3898 3899 void skb_errqueue_purge(struct sk_buff_head *list) 3900 { 3901 struct sk_buff *skb, *next; 3902 struct sk_buff_head kill; 3903 unsigned long flags; 3904 3905 __skb_queue_head_init(&kill); 3906 3907 spin_lock_irqsave(&list->lock, flags); 3908 skb_queue_walk_safe(list, skb, next) { 3909 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || 3910 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) 3911 continue; 3912 __skb_unlink(skb, list); 3913 __skb_queue_tail(&kill, skb); 3914 } 3915 spin_unlock_irqrestore(&list->lock, flags); 3916 __skb_queue_purge(&kill); 3917 } 3918 EXPORT_SYMBOL(skb_errqueue_purge); 3919 3920 /** 3921 * skb_queue_head - queue a buffer at the list head 3922 * @list: list to use 3923 * @newsk: buffer to queue 3924 * 3925 * Queue a buffer at the start of the list. This function takes the 3926 * list lock and can be used safely with other locking &sk_buff functions 3927 * safely. 3928 * 3929 * A buffer cannot be placed on two lists at the same time. 3930 */ 3931 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3932 { 3933 unsigned long flags; 3934 3935 spin_lock_irqsave(&list->lock, flags); 3936 __skb_queue_head(list, newsk); 3937 spin_unlock_irqrestore(&list->lock, flags); 3938 } 3939 EXPORT_SYMBOL(skb_queue_head); 3940 3941 /** 3942 * skb_queue_tail - queue a buffer at the list tail 3943 * @list: list to use 3944 * @newsk: buffer to queue 3945 * 3946 * Queue a buffer at the tail of the list. This function takes the 3947 * list lock and can be used safely with other locking &sk_buff functions 3948 * safely. 3949 * 3950 * A buffer cannot be placed on two lists at the same time. 3951 */ 3952 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3953 { 3954 unsigned long flags; 3955 3956 spin_lock_irqsave(&list->lock, flags); 3957 __skb_queue_tail(list, newsk); 3958 spin_unlock_irqrestore(&list->lock, flags); 3959 } 3960 EXPORT_SYMBOL(skb_queue_tail); 3961 3962 /** 3963 * skb_unlink - remove a buffer from a list 3964 * @skb: buffer to remove 3965 * @list: list to use 3966 * 3967 * Remove a packet from a list. The list locks are taken and this 3968 * function is atomic with respect to other list locked calls 3969 * 3970 * You must know what list the SKB is on. 3971 */ 3972 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3973 { 3974 unsigned long flags; 3975 3976 spin_lock_irqsave(&list->lock, flags); 3977 __skb_unlink(skb, list); 3978 spin_unlock_irqrestore(&list->lock, flags); 3979 } 3980 EXPORT_SYMBOL(skb_unlink); 3981 3982 /** 3983 * skb_append - append a buffer 3984 * @old: buffer to insert after 3985 * @newsk: buffer to insert 3986 * @list: list to use 3987 * 3988 * Place a packet after a given packet in a list. The list locks are taken 3989 * and this function is atomic with respect to other list locked calls. 3990 * A buffer cannot be placed on two lists at the same time. 3991 */ 3992 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3993 { 3994 unsigned long flags; 3995 3996 spin_lock_irqsave(&list->lock, flags); 3997 __skb_queue_after(list, old, newsk); 3998 spin_unlock_irqrestore(&list->lock, flags); 3999 } 4000 EXPORT_SYMBOL(skb_append); 4001 4002 static inline void skb_split_inside_header(struct sk_buff *skb, 4003 struct sk_buff* skb1, 4004 const u32 len, const int pos) 4005 { 4006 int i; 4007 4008 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 4009 pos - len); 4010 /* And move data appendix as is. */ 4011 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 4012 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 4013 4014 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 4015 skb_shinfo(skb)->nr_frags = 0; 4016 skb1->data_len = skb->data_len; 4017 skb1->len += skb1->data_len; 4018 skb->data_len = 0; 4019 skb->len = len; 4020 skb_set_tail_pointer(skb, len); 4021 } 4022 4023 static inline void skb_split_no_header(struct sk_buff *skb, 4024 struct sk_buff* skb1, 4025 const u32 len, int pos) 4026 { 4027 int i, k = 0; 4028 const int nfrags = skb_shinfo(skb)->nr_frags; 4029 4030 skb_shinfo(skb)->nr_frags = 0; 4031 skb1->len = skb1->data_len = skb->len - len; 4032 skb->len = len; 4033 skb->data_len = len - pos; 4034 4035 for (i = 0; i < nfrags; i++) { 4036 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 4037 4038 if (pos + size > len) { 4039 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 4040 4041 if (pos < len) { 4042 /* Split frag. 4043 * We have two variants in this case: 4044 * 1. Move all the frag to the second 4045 * part, if it is possible. F.e. 4046 * this approach is mandatory for TUX, 4047 * where splitting is expensive. 4048 * 2. Split is accurately. We make this. 4049 */ 4050 skb_frag_ref(skb, i); 4051 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 4052 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 4053 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 4054 skb_shinfo(skb)->nr_frags++; 4055 } 4056 k++; 4057 } else 4058 skb_shinfo(skb)->nr_frags++; 4059 pos += size; 4060 } 4061 skb_shinfo(skb1)->nr_frags = k; 4062 } 4063 4064 /** 4065 * skb_split - Split fragmented skb to two parts at length len. 4066 * @skb: the buffer to split 4067 * @skb1: the buffer to receive the second part 4068 * @len: new length for skb 4069 */ 4070 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 4071 { 4072 int pos = skb_headlen(skb); 4073 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 4074 4075 skb_zcopy_downgrade_managed(skb); 4076 4077 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 4078 skb_zerocopy_clone(skb1, skb, 0); 4079 if (len < pos) /* Split line is inside header. */ 4080 skb_split_inside_header(skb, skb1, len, pos); 4081 else /* Second chunk has no header, nothing to copy. */ 4082 skb_split_no_header(skb, skb1, len, pos); 4083 } 4084 EXPORT_SYMBOL(skb_split); 4085 4086 /* Shifting from/to a cloned skb is a no-go. 4087 * 4088 * Caller cannot keep skb_shinfo related pointers past calling here! 4089 */ 4090 static int skb_prepare_for_shift(struct sk_buff *skb) 4091 { 4092 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 4093 } 4094 4095 /** 4096 * skb_shift - Shifts paged data partially from skb to another 4097 * @tgt: buffer into which tail data gets added 4098 * @skb: buffer from which the paged data comes from 4099 * @shiftlen: shift up to this many bytes 4100 * 4101 * Attempts to shift up to shiftlen worth of bytes, which may be less than 4102 * the length of the skb, from skb to tgt. Returns number bytes shifted. 4103 * It's up to caller to free skb if everything was shifted. 4104 * 4105 * If @tgt runs out of frags, the whole operation is aborted. 4106 * 4107 * Skb cannot include anything else but paged data while tgt is allowed 4108 * to have non-paged data as well. 4109 * 4110 * TODO: full sized shift could be optimized but that would need 4111 * specialized skb free'er to handle frags without up-to-date nr_frags. 4112 */ 4113 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 4114 { 4115 int from, to, merge, todo; 4116 skb_frag_t *fragfrom, *fragto; 4117 4118 BUG_ON(shiftlen > skb->len); 4119 4120 if (skb_headlen(skb)) 4121 return 0; 4122 if (skb_zcopy(tgt) || skb_zcopy(skb)) 4123 return 0; 4124 4125 todo = shiftlen; 4126 from = 0; 4127 to = skb_shinfo(tgt)->nr_frags; 4128 fragfrom = &skb_shinfo(skb)->frags[from]; 4129 4130 /* Actual merge is delayed until the point when we know we can 4131 * commit all, so that we don't have to undo partial changes 4132 */ 4133 if (!to || 4134 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 4135 skb_frag_off(fragfrom))) { 4136 merge = -1; 4137 } else { 4138 merge = to - 1; 4139 4140 todo -= skb_frag_size(fragfrom); 4141 if (todo < 0) { 4142 if (skb_prepare_for_shift(skb) || 4143 skb_prepare_for_shift(tgt)) 4144 return 0; 4145 4146 /* All previous frag pointers might be stale! */ 4147 fragfrom = &skb_shinfo(skb)->frags[from]; 4148 fragto = &skb_shinfo(tgt)->frags[merge]; 4149 4150 skb_frag_size_add(fragto, shiftlen); 4151 skb_frag_size_sub(fragfrom, shiftlen); 4152 skb_frag_off_add(fragfrom, shiftlen); 4153 4154 goto onlymerged; 4155 } 4156 4157 from++; 4158 } 4159 4160 /* Skip full, not-fitting skb to avoid expensive operations */ 4161 if ((shiftlen == skb->len) && 4162 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 4163 return 0; 4164 4165 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 4166 return 0; 4167 4168 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 4169 if (to == MAX_SKB_FRAGS) 4170 return 0; 4171 4172 fragfrom = &skb_shinfo(skb)->frags[from]; 4173 fragto = &skb_shinfo(tgt)->frags[to]; 4174 4175 if (todo >= skb_frag_size(fragfrom)) { 4176 *fragto = *fragfrom; 4177 todo -= skb_frag_size(fragfrom); 4178 from++; 4179 to++; 4180 4181 } else { 4182 __skb_frag_ref(fragfrom); 4183 skb_frag_page_copy(fragto, fragfrom); 4184 skb_frag_off_copy(fragto, fragfrom); 4185 skb_frag_size_set(fragto, todo); 4186 4187 skb_frag_off_add(fragfrom, todo); 4188 skb_frag_size_sub(fragfrom, todo); 4189 todo = 0; 4190 4191 to++; 4192 break; 4193 } 4194 } 4195 4196 /* Ready to "commit" this state change to tgt */ 4197 skb_shinfo(tgt)->nr_frags = to; 4198 4199 if (merge >= 0) { 4200 fragfrom = &skb_shinfo(skb)->frags[0]; 4201 fragto = &skb_shinfo(tgt)->frags[merge]; 4202 4203 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4204 __skb_frag_unref(fragfrom, skb->pp_recycle); 4205 } 4206 4207 /* Reposition in the original skb */ 4208 to = 0; 4209 while (from < skb_shinfo(skb)->nr_frags) 4210 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4211 skb_shinfo(skb)->nr_frags = to; 4212 4213 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4214 4215 onlymerged: 4216 /* Most likely the tgt won't ever need its checksum anymore, skb on 4217 * the other hand might need it if it needs to be resent 4218 */ 4219 tgt->ip_summed = CHECKSUM_PARTIAL; 4220 skb->ip_summed = CHECKSUM_PARTIAL; 4221 4222 skb_len_add(skb, -shiftlen); 4223 skb_len_add(tgt, shiftlen); 4224 4225 return shiftlen; 4226 } 4227 4228 /** 4229 * skb_prepare_seq_read - Prepare a sequential read of skb data 4230 * @skb: the buffer to read 4231 * @from: lower offset of data to be read 4232 * @to: upper offset of data to be read 4233 * @st: state variable 4234 * 4235 * Initializes the specified state variable. Must be called before 4236 * invoking skb_seq_read() for the first time. 4237 */ 4238 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4239 unsigned int to, struct skb_seq_state *st) 4240 { 4241 st->lower_offset = from; 4242 st->upper_offset = to; 4243 st->root_skb = st->cur_skb = skb; 4244 st->frag_idx = st->stepped_offset = 0; 4245 st->frag_data = NULL; 4246 st->frag_off = 0; 4247 } 4248 EXPORT_SYMBOL(skb_prepare_seq_read); 4249 4250 /** 4251 * skb_seq_read - Sequentially read skb data 4252 * @consumed: number of bytes consumed by the caller so far 4253 * @data: destination pointer for data to be returned 4254 * @st: state variable 4255 * 4256 * Reads a block of skb data at @consumed relative to the 4257 * lower offset specified to skb_prepare_seq_read(). Assigns 4258 * the head of the data block to @data and returns the length 4259 * of the block or 0 if the end of the skb data or the upper 4260 * offset has been reached. 4261 * 4262 * The caller is not required to consume all of the data 4263 * returned, i.e. @consumed is typically set to the number 4264 * of bytes already consumed and the next call to 4265 * skb_seq_read() will return the remaining part of the block. 4266 * 4267 * Note 1: The size of each block of data returned can be arbitrary, 4268 * this limitation is the cost for zerocopy sequential 4269 * reads of potentially non linear data. 4270 * 4271 * Note 2: Fragment lists within fragments are not implemented 4272 * at the moment, state->root_skb could be replaced with 4273 * a stack for this purpose. 4274 */ 4275 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4276 struct skb_seq_state *st) 4277 { 4278 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4279 skb_frag_t *frag; 4280 4281 if (unlikely(abs_offset >= st->upper_offset)) { 4282 if (st->frag_data) { 4283 kunmap_atomic(st->frag_data); 4284 st->frag_data = NULL; 4285 } 4286 return 0; 4287 } 4288 4289 next_skb: 4290 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4291 4292 if (abs_offset < block_limit && !st->frag_data) { 4293 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4294 return block_limit - abs_offset; 4295 } 4296 4297 if (st->frag_idx == 0 && !st->frag_data) 4298 st->stepped_offset += skb_headlen(st->cur_skb); 4299 4300 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4301 unsigned int pg_idx, pg_off, pg_sz; 4302 4303 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4304 4305 pg_idx = 0; 4306 pg_off = skb_frag_off(frag); 4307 pg_sz = skb_frag_size(frag); 4308 4309 if (skb_frag_must_loop(skb_frag_page(frag))) { 4310 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4311 pg_off = offset_in_page(pg_off + st->frag_off); 4312 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4313 PAGE_SIZE - pg_off); 4314 } 4315 4316 block_limit = pg_sz + st->stepped_offset; 4317 if (abs_offset < block_limit) { 4318 if (!st->frag_data) 4319 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4320 4321 *data = (u8 *)st->frag_data + pg_off + 4322 (abs_offset - st->stepped_offset); 4323 4324 return block_limit - abs_offset; 4325 } 4326 4327 if (st->frag_data) { 4328 kunmap_atomic(st->frag_data); 4329 st->frag_data = NULL; 4330 } 4331 4332 st->stepped_offset += pg_sz; 4333 st->frag_off += pg_sz; 4334 if (st->frag_off == skb_frag_size(frag)) { 4335 st->frag_off = 0; 4336 st->frag_idx++; 4337 } 4338 } 4339 4340 if (st->frag_data) { 4341 kunmap_atomic(st->frag_data); 4342 st->frag_data = NULL; 4343 } 4344 4345 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4346 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4347 st->frag_idx = 0; 4348 goto next_skb; 4349 } else if (st->cur_skb->next) { 4350 st->cur_skb = st->cur_skb->next; 4351 st->frag_idx = 0; 4352 goto next_skb; 4353 } 4354 4355 return 0; 4356 } 4357 EXPORT_SYMBOL(skb_seq_read); 4358 4359 /** 4360 * skb_abort_seq_read - Abort a sequential read of skb data 4361 * @st: state variable 4362 * 4363 * Must be called if skb_seq_read() was not called until it 4364 * returned 0. 4365 */ 4366 void skb_abort_seq_read(struct skb_seq_state *st) 4367 { 4368 if (st->frag_data) 4369 kunmap_atomic(st->frag_data); 4370 } 4371 EXPORT_SYMBOL(skb_abort_seq_read); 4372 4373 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4374 4375 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4376 struct ts_config *conf, 4377 struct ts_state *state) 4378 { 4379 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4380 } 4381 4382 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4383 { 4384 skb_abort_seq_read(TS_SKB_CB(state)); 4385 } 4386 4387 /** 4388 * skb_find_text - Find a text pattern in skb data 4389 * @skb: the buffer to look in 4390 * @from: search offset 4391 * @to: search limit 4392 * @config: textsearch configuration 4393 * 4394 * Finds a pattern in the skb data according to the specified 4395 * textsearch configuration. Use textsearch_next() to retrieve 4396 * subsequent occurrences of the pattern. Returns the offset 4397 * to the first occurrence or UINT_MAX if no match was found. 4398 */ 4399 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4400 unsigned int to, struct ts_config *config) 4401 { 4402 unsigned int patlen = config->ops->get_pattern_len(config); 4403 struct ts_state state; 4404 unsigned int ret; 4405 4406 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4407 4408 config->get_next_block = skb_ts_get_next_block; 4409 config->finish = skb_ts_finish; 4410 4411 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4412 4413 ret = textsearch_find(config, &state); 4414 return (ret + patlen <= to - from ? ret : UINT_MAX); 4415 } 4416 EXPORT_SYMBOL(skb_find_text); 4417 4418 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4419 int offset, size_t size, size_t max_frags) 4420 { 4421 int i = skb_shinfo(skb)->nr_frags; 4422 4423 if (skb_can_coalesce(skb, i, page, offset)) { 4424 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4425 } else if (i < max_frags) { 4426 skb_zcopy_downgrade_managed(skb); 4427 get_page(page); 4428 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4429 } else { 4430 return -EMSGSIZE; 4431 } 4432 4433 return 0; 4434 } 4435 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4436 4437 /** 4438 * skb_pull_rcsum - pull skb and update receive checksum 4439 * @skb: buffer to update 4440 * @len: length of data pulled 4441 * 4442 * This function performs an skb_pull on the packet and updates 4443 * the CHECKSUM_COMPLETE checksum. It should be used on 4444 * receive path processing instead of skb_pull unless you know 4445 * that the checksum difference is zero (e.g., a valid IP header) 4446 * or you are setting ip_summed to CHECKSUM_NONE. 4447 */ 4448 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4449 { 4450 unsigned char *data = skb->data; 4451 4452 BUG_ON(len > skb->len); 4453 __skb_pull(skb, len); 4454 skb_postpull_rcsum(skb, data, len); 4455 return skb->data; 4456 } 4457 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4458 4459 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4460 { 4461 skb_frag_t head_frag; 4462 struct page *page; 4463 4464 page = virt_to_head_page(frag_skb->head); 4465 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4466 (unsigned char *)page_address(page), 4467 skb_headlen(frag_skb)); 4468 return head_frag; 4469 } 4470 4471 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4472 netdev_features_t features, 4473 unsigned int offset) 4474 { 4475 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4476 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4477 unsigned int delta_truesize = 0; 4478 unsigned int delta_len = 0; 4479 struct sk_buff *tail = NULL; 4480 struct sk_buff *nskb, *tmp; 4481 int len_diff, err; 4482 4483 skb_push(skb, -skb_network_offset(skb) + offset); 4484 4485 /* Ensure the head is writeable before touching the shared info */ 4486 err = skb_unclone(skb, GFP_ATOMIC); 4487 if (err) 4488 goto err_linearize; 4489 4490 skb_shinfo(skb)->frag_list = NULL; 4491 4492 while (list_skb) { 4493 nskb = list_skb; 4494 list_skb = list_skb->next; 4495 4496 err = 0; 4497 delta_truesize += nskb->truesize; 4498 if (skb_shared(nskb)) { 4499 tmp = skb_clone(nskb, GFP_ATOMIC); 4500 if (tmp) { 4501 consume_skb(nskb); 4502 nskb = tmp; 4503 err = skb_unclone(nskb, GFP_ATOMIC); 4504 } else { 4505 err = -ENOMEM; 4506 } 4507 } 4508 4509 if (!tail) 4510 skb->next = nskb; 4511 else 4512 tail->next = nskb; 4513 4514 if (unlikely(err)) { 4515 nskb->next = list_skb; 4516 goto err_linearize; 4517 } 4518 4519 tail = nskb; 4520 4521 delta_len += nskb->len; 4522 4523 skb_push(nskb, -skb_network_offset(nskb) + offset); 4524 4525 skb_release_head_state(nskb); 4526 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4527 __copy_skb_header(nskb, skb); 4528 4529 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4530 nskb->transport_header += len_diff; 4531 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4532 nskb->data - tnl_hlen, 4533 offset + tnl_hlen); 4534 4535 if (skb_needs_linearize(nskb, features) && 4536 __skb_linearize(nskb)) 4537 goto err_linearize; 4538 } 4539 4540 skb->truesize = skb->truesize - delta_truesize; 4541 skb->data_len = skb->data_len - delta_len; 4542 skb->len = skb->len - delta_len; 4543 4544 skb_gso_reset(skb); 4545 4546 skb->prev = tail; 4547 4548 if (skb_needs_linearize(skb, features) && 4549 __skb_linearize(skb)) 4550 goto err_linearize; 4551 4552 skb_get(skb); 4553 4554 return skb; 4555 4556 err_linearize: 4557 kfree_skb_list(skb->next); 4558 skb->next = NULL; 4559 return ERR_PTR(-ENOMEM); 4560 } 4561 EXPORT_SYMBOL_GPL(skb_segment_list); 4562 4563 /** 4564 * skb_segment - Perform protocol segmentation on skb. 4565 * @head_skb: buffer to segment 4566 * @features: features for the output path (see dev->features) 4567 * 4568 * This function performs segmentation on the given skb. It returns 4569 * a pointer to the first in a list of new skbs for the segments. 4570 * In case of error it returns ERR_PTR(err). 4571 */ 4572 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4573 netdev_features_t features) 4574 { 4575 struct sk_buff *segs = NULL; 4576 struct sk_buff *tail = NULL; 4577 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4578 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4579 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4580 unsigned int offset = doffset; 4581 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4582 unsigned int partial_segs = 0; 4583 unsigned int headroom; 4584 unsigned int len = head_skb->len; 4585 struct sk_buff *frag_skb; 4586 skb_frag_t *frag; 4587 __be16 proto; 4588 bool csum, sg; 4589 int err = -ENOMEM; 4590 int i = 0; 4591 int nfrags, pos; 4592 4593 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4594 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4595 struct sk_buff *check_skb; 4596 4597 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4598 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4599 /* gso_size is untrusted, and we have a frag_list with 4600 * a linear non head_frag item. 4601 * 4602 * If head_skb's headlen does not fit requested gso_size, 4603 * it means that the frag_list members do NOT terminate 4604 * on exact gso_size boundaries. Hence we cannot perform 4605 * skb_frag_t page sharing. Therefore we must fallback to 4606 * copying the frag_list skbs; we do so by disabling SG. 4607 */ 4608 features &= ~NETIF_F_SG; 4609 break; 4610 } 4611 } 4612 } 4613 4614 __skb_push(head_skb, doffset); 4615 proto = skb_network_protocol(head_skb, NULL); 4616 if (unlikely(!proto)) 4617 return ERR_PTR(-EINVAL); 4618 4619 sg = !!(features & NETIF_F_SG); 4620 csum = !!can_checksum_protocol(features, proto); 4621 4622 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4623 if (!(features & NETIF_F_GSO_PARTIAL)) { 4624 struct sk_buff *iter; 4625 unsigned int frag_len; 4626 4627 if (!list_skb || 4628 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4629 goto normal; 4630 4631 /* If we get here then all the required 4632 * GSO features except frag_list are supported. 4633 * Try to split the SKB to multiple GSO SKBs 4634 * with no frag_list. 4635 * Currently we can do that only when the buffers don't 4636 * have a linear part and all the buffers except 4637 * the last are of the same length. 4638 */ 4639 frag_len = list_skb->len; 4640 skb_walk_frags(head_skb, iter) { 4641 if (frag_len != iter->len && iter->next) 4642 goto normal; 4643 if (skb_headlen(iter) && !iter->head_frag) 4644 goto normal; 4645 4646 len -= iter->len; 4647 } 4648 4649 if (len != frag_len) 4650 goto normal; 4651 } 4652 4653 /* GSO partial only requires that we trim off any excess that 4654 * doesn't fit into an MSS sized block, so take care of that 4655 * now. 4656 * Cap len to not accidentally hit GSO_BY_FRAGS. 4657 */ 4658 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss; 4659 if (partial_segs > 1) 4660 mss *= partial_segs; 4661 else 4662 partial_segs = 0; 4663 } 4664 4665 normal: 4666 headroom = skb_headroom(head_skb); 4667 pos = skb_headlen(head_skb); 4668 4669 if (skb_orphan_frags(head_skb, GFP_ATOMIC)) 4670 return ERR_PTR(-ENOMEM); 4671 4672 nfrags = skb_shinfo(head_skb)->nr_frags; 4673 frag = skb_shinfo(head_skb)->frags; 4674 frag_skb = head_skb; 4675 4676 do { 4677 struct sk_buff *nskb; 4678 skb_frag_t *nskb_frag; 4679 int hsize; 4680 int size; 4681 4682 if (unlikely(mss == GSO_BY_FRAGS)) { 4683 len = list_skb->len; 4684 } else { 4685 len = head_skb->len - offset; 4686 if (len > mss) 4687 len = mss; 4688 } 4689 4690 hsize = skb_headlen(head_skb) - offset; 4691 4692 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4693 (skb_headlen(list_skb) == len || sg)) { 4694 BUG_ON(skb_headlen(list_skb) > len); 4695 4696 nskb = skb_clone(list_skb, GFP_ATOMIC); 4697 if (unlikely(!nskb)) 4698 goto err; 4699 4700 i = 0; 4701 nfrags = skb_shinfo(list_skb)->nr_frags; 4702 frag = skb_shinfo(list_skb)->frags; 4703 frag_skb = list_skb; 4704 pos += skb_headlen(list_skb); 4705 4706 while (pos < offset + len) { 4707 BUG_ON(i >= nfrags); 4708 4709 size = skb_frag_size(frag); 4710 if (pos + size > offset + len) 4711 break; 4712 4713 i++; 4714 pos += size; 4715 frag++; 4716 } 4717 4718 list_skb = list_skb->next; 4719 4720 if (unlikely(pskb_trim(nskb, len))) { 4721 kfree_skb(nskb); 4722 goto err; 4723 } 4724 4725 hsize = skb_end_offset(nskb); 4726 if (skb_cow_head(nskb, doffset + headroom)) { 4727 kfree_skb(nskb); 4728 goto err; 4729 } 4730 4731 nskb->truesize += skb_end_offset(nskb) - hsize; 4732 skb_release_head_state(nskb); 4733 __skb_push(nskb, doffset); 4734 } else { 4735 if (hsize < 0) 4736 hsize = 0; 4737 if (hsize > len || !sg) 4738 hsize = len; 4739 4740 nskb = __alloc_skb(hsize + doffset + headroom, 4741 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4742 NUMA_NO_NODE); 4743 4744 if (unlikely(!nskb)) 4745 goto err; 4746 4747 skb_reserve(nskb, headroom); 4748 __skb_put(nskb, doffset); 4749 } 4750 4751 if (segs) 4752 tail->next = nskb; 4753 else 4754 segs = nskb; 4755 tail = nskb; 4756 4757 __copy_skb_header(nskb, head_skb); 4758 4759 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4760 skb_reset_mac_len(nskb); 4761 4762 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4763 nskb->data - tnl_hlen, 4764 doffset + tnl_hlen); 4765 4766 if (nskb->len == len + doffset) 4767 goto perform_csum_check; 4768 4769 if (!sg) { 4770 if (!csum) { 4771 if (!nskb->remcsum_offload) 4772 nskb->ip_summed = CHECKSUM_NONE; 4773 SKB_GSO_CB(nskb)->csum = 4774 skb_copy_and_csum_bits(head_skb, offset, 4775 skb_put(nskb, 4776 len), 4777 len); 4778 SKB_GSO_CB(nskb)->csum_start = 4779 skb_headroom(nskb) + doffset; 4780 } else { 4781 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4782 goto err; 4783 } 4784 continue; 4785 } 4786 4787 nskb_frag = skb_shinfo(nskb)->frags; 4788 4789 skb_copy_from_linear_data_offset(head_skb, offset, 4790 skb_put(nskb, hsize), hsize); 4791 4792 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4793 SKBFL_SHARED_FRAG; 4794 4795 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4796 goto err; 4797 4798 while (pos < offset + len) { 4799 if (i >= nfrags) { 4800 if (skb_orphan_frags(list_skb, GFP_ATOMIC) || 4801 skb_zerocopy_clone(nskb, list_skb, 4802 GFP_ATOMIC)) 4803 goto err; 4804 4805 i = 0; 4806 nfrags = skb_shinfo(list_skb)->nr_frags; 4807 frag = skb_shinfo(list_skb)->frags; 4808 frag_skb = list_skb; 4809 if (!skb_headlen(list_skb)) { 4810 BUG_ON(!nfrags); 4811 } else { 4812 BUG_ON(!list_skb->head_frag); 4813 4814 /* to make room for head_frag. */ 4815 i--; 4816 frag--; 4817 } 4818 4819 list_skb = list_skb->next; 4820 } 4821 4822 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4823 MAX_SKB_FRAGS)) { 4824 net_warn_ratelimited( 4825 "skb_segment: too many frags: %u %u\n", 4826 pos, mss); 4827 err = -EINVAL; 4828 goto err; 4829 } 4830 4831 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4832 __skb_frag_ref(nskb_frag); 4833 size = skb_frag_size(nskb_frag); 4834 4835 if (pos < offset) { 4836 skb_frag_off_add(nskb_frag, offset - pos); 4837 skb_frag_size_sub(nskb_frag, offset - pos); 4838 } 4839 4840 skb_shinfo(nskb)->nr_frags++; 4841 4842 if (pos + size <= offset + len) { 4843 i++; 4844 frag++; 4845 pos += size; 4846 } else { 4847 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4848 goto skip_fraglist; 4849 } 4850 4851 nskb_frag++; 4852 } 4853 4854 skip_fraglist: 4855 nskb->data_len = len - hsize; 4856 nskb->len += nskb->data_len; 4857 nskb->truesize += nskb->data_len; 4858 4859 perform_csum_check: 4860 if (!csum) { 4861 if (skb_has_shared_frag(nskb) && 4862 __skb_linearize(nskb)) 4863 goto err; 4864 4865 if (!nskb->remcsum_offload) 4866 nskb->ip_summed = CHECKSUM_NONE; 4867 SKB_GSO_CB(nskb)->csum = 4868 skb_checksum(nskb, doffset, 4869 nskb->len - doffset, 0); 4870 SKB_GSO_CB(nskb)->csum_start = 4871 skb_headroom(nskb) + doffset; 4872 } 4873 } while ((offset += len) < head_skb->len); 4874 4875 /* Some callers want to get the end of the list. 4876 * Put it in segs->prev to avoid walking the list. 4877 * (see validate_xmit_skb_list() for example) 4878 */ 4879 segs->prev = tail; 4880 4881 if (partial_segs) { 4882 struct sk_buff *iter; 4883 int type = skb_shinfo(head_skb)->gso_type; 4884 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4885 4886 /* Update type to add partial and then remove dodgy if set */ 4887 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4888 type &= ~SKB_GSO_DODGY; 4889 4890 /* Update GSO info and prepare to start updating headers on 4891 * our way back down the stack of protocols. 4892 */ 4893 for (iter = segs; iter; iter = iter->next) { 4894 skb_shinfo(iter)->gso_size = gso_size; 4895 skb_shinfo(iter)->gso_segs = partial_segs; 4896 skb_shinfo(iter)->gso_type = type; 4897 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4898 } 4899 4900 if (tail->len - doffset <= gso_size) 4901 skb_shinfo(tail)->gso_size = 0; 4902 else if (tail != segs) 4903 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4904 } 4905 4906 /* Following permits correct backpressure, for protocols 4907 * using skb_set_owner_w(). 4908 * Idea is to tranfert ownership from head_skb to last segment. 4909 */ 4910 if (head_skb->destructor == sock_wfree) { 4911 swap(tail->truesize, head_skb->truesize); 4912 swap(tail->destructor, head_skb->destructor); 4913 swap(tail->sk, head_skb->sk); 4914 } 4915 return segs; 4916 4917 err: 4918 kfree_skb_list(segs); 4919 return ERR_PTR(err); 4920 } 4921 EXPORT_SYMBOL_GPL(skb_segment); 4922 4923 #ifdef CONFIG_SKB_EXTENSIONS 4924 #define SKB_EXT_ALIGN_VALUE 8 4925 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4926 4927 static const u8 skb_ext_type_len[] = { 4928 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4929 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4930 #endif 4931 #ifdef CONFIG_XFRM 4932 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4933 #endif 4934 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4935 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4936 #endif 4937 #if IS_ENABLED(CONFIG_MPTCP) 4938 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4939 #endif 4940 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4941 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4942 #endif 4943 }; 4944 4945 static __always_inline unsigned int skb_ext_total_length(void) 4946 { 4947 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); 4948 int i; 4949 4950 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) 4951 l += skb_ext_type_len[i]; 4952 4953 return l; 4954 } 4955 4956 static void skb_extensions_init(void) 4957 { 4958 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4959 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL) 4960 BUILD_BUG_ON(skb_ext_total_length() > 255); 4961 #endif 4962 4963 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4964 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4965 0, 4966 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4967 NULL); 4968 } 4969 #else 4970 static void skb_extensions_init(void) {} 4971 #endif 4972 4973 /* The SKB kmem_cache slab is critical for network performance. Never 4974 * merge/alias the slab with similar sized objects. This avoids fragmentation 4975 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. 4976 */ 4977 #ifndef CONFIG_SLUB_TINY 4978 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE 4979 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ 4980 #define FLAG_SKB_NO_MERGE 0 4981 #endif 4982 4983 void __init skb_init(void) 4984 { 4985 skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4986 sizeof(struct sk_buff), 4987 0, 4988 SLAB_HWCACHE_ALIGN|SLAB_PANIC| 4989 FLAG_SKB_NO_MERGE, 4990 offsetof(struct sk_buff, cb), 4991 sizeof_field(struct sk_buff, cb), 4992 NULL); 4993 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4994 sizeof(struct sk_buff_fclones), 4995 0, 4996 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4997 NULL); 4998 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 4999 * struct skb_shared_info is located at the end of skb->head, 5000 * and should not be copied to/from user. 5001 */ 5002 skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 5003 SKB_SMALL_HEAD_CACHE_SIZE, 5004 0, 5005 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 5006 0, 5007 SKB_SMALL_HEAD_HEADROOM, 5008 NULL); 5009 skb_extensions_init(); 5010 } 5011 5012 static int 5013 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 5014 unsigned int recursion_level) 5015 { 5016 int start = skb_headlen(skb); 5017 int i, copy = start - offset; 5018 struct sk_buff *frag_iter; 5019 int elt = 0; 5020 5021 if (unlikely(recursion_level >= 24)) 5022 return -EMSGSIZE; 5023 5024 if (copy > 0) { 5025 if (copy > len) 5026 copy = len; 5027 sg_set_buf(sg, skb->data + offset, copy); 5028 elt++; 5029 if ((len -= copy) == 0) 5030 return elt; 5031 offset += copy; 5032 } 5033 5034 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 5035 int end; 5036 5037 WARN_ON(start > offset + len); 5038 5039 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 5040 if ((copy = end - offset) > 0) { 5041 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 5042 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5043 return -EMSGSIZE; 5044 5045 if (copy > len) 5046 copy = len; 5047 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 5048 skb_frag_off(frag) + offset - start); 5049 elt++; 5050 if (!(len -= copy)) 5051 return elt; 5052 offset += copy; 5053 } 5054 start = end; 5055 } 5056 5057 skb_walk_frags(skb, frag_iter) { 5058 int end, ret; 5059 5060 WARN_ON(start > offset + len); 5061 5062 end = start + frag_iter->len; 5063 if ((copy = end - offset) > 0) { 5064 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5065 return -EMSGSIZE; 5066 5067 if (copy > len) 5068 copy = len; 5069 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 5070 copy, recursion_level + 1); 5071 if (unlikely(ret < 0)) 5072 return ret; 5073 elt += ret; 5074 if ((len -= copy) == 0) 5075 return elt; 5076 offset += copy; 5077 } 5078 start = end; 5079 } 5080 BUG_ON(len); 5081 return elt; 5082 } 5083 5084 /** 5085 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 5086 * @skb: Socket buffer containing the buffers to be mapped 5087 * @sg: The scatter-gather list to map into 5088 * @offset: The offset into the buffer's contents to start mapping 5089 * @len: Length of buffer space to be mapped 5090 * 5091 * Fill the specified scatter-gather list with mappings/pointers into a 5092 * region of the buffer space attached to a socket buffer. Returns either 5093 * the number of scatterlist items used, or -EMSGSIZE if the contents 5094 * could not fit. 5095 */ 5096 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 5097 { 5098 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 5099 5100 if (nsg <= 0) 5101 return nsg; 5102 5103 sg_mark_end(&sg[nsg - 1]); 5104 5105 return nsg; 5106 } 5107 EXPORT_SYMBOL_GPL(skb_to_sgvec); 5108 5109 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 5110 * sglist without mark the sg which contain last skb data as the end. 5111 * So the caller can mannipulate sg list as will when padding new data after 5112 * the first call without calling sg_unmark_end to expend sg list. 5113 * 5114 * Scenario to use skb_to_sgvec_nomark: 5115 * 1. sg_init_table 5116 * 2. skb_to_sgvec_nomark(payload1) 5117 * 3. skb_to_sgvec_nomark(payload2) 5118 * 5119 * This is equivalent to: 5120 * 1. sg_init_table 5121 * 2. skb_to_sgvec(payload1) 5122 * 3. sg_unmark_end 5123 * 4. skb_to_sgvec(payload2) 5124 * 5125 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 5126 * is more preferable. 5127 */ 5128 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 5129 int offset, int len) 5130 { 5131 return __skb_to_sgvec(skb, sg, offset, len, 0); 5132 } 5133 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 5134 5135 5136 5137 /** 5138 * skb_cow_data - Check that a socket buffer's data buffers are writable 5139 * @skb: The socket buffer to check. 5140 * @tailbits: Amount of trailing space to be added 5141 * @trailer: Returned pointer to the skb where the @tailbits space begins 5142 * 5143 * Make sure that the data buffers attached to a socket buffer are 5144 * writable. If they are not, private copies are made of the data buffers 5145 * and the socket buffer is set to use these instead. 5146 * 5147 * If @tailbits is given, make sure that there is space to write @tailbits 5148 * bytes of data beyond current end of socket buffer. @trailer will be 5149 * set to point to the skb in which this space begins. 5150 * 5151 * The number of scatterlist elements required to completely map the 5152 * COW'd and extended socket buffer will be returned. 5153 */ 5154 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 5155 { 5156 int copyflag; 5157 int elt; 5158 struct sk_buff *skb1, **skb_p; 5159 5160 /* If skb is cloned or its head is paged, reallocate 5161 * head pulling out all the pages (pages are considered not writable 5162 * at the moment even if they are anonymous). 5163 */ 5164 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 5165 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 5166 return -ENOMEM; 5167 5168 /* Easy case. Most of packets will go this way. */ 5169 if (!skb_has_frag_list(skb)) { 5170 /* A little of trouble, not enough of space for trailer. 5171 * This should not happen, when stack is tuned to generate 5172 * good frames. OK, on miss we reallocate and reserve even more 5173 * space, 128 bytes is fair. */ 5174 5175 if (skb_tailroom(skb) < tailbits && 5176 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 5177 return -ENOMEM; 5178 5179 /* Voila! */ 5180 *trailer = skb; 5181 return 1; 5182 } 5183 5184 /* Misery. We are in troubles, going to mincer fragments... */ 5185 5186 elt = 1; 5187 skb_p = &skb_shinfo(skb)->frag_list; 5188 copyflag = 0; 5189 5190 while ((skb1 = *skb_p) != NULL) { 5191 int ntail = 0; 5192 5193 /* The fragment is partially pulled by someone, 5194 * this can happen on input. Copy it and everything 5195 * after it. */ 5196 5197 if (skb_shared(skb1)) 5198 copyflag = 1; 5199 5200 /* If the skb is the last, worry about trailer. */ 5201 5202 if (skb1->next == NULL && tailbits) { 5203 if (skb_shinfo(skb1)->nr_frags || 5204 skb_has_frag_list(skb1) || 5205 skb_tailroom(skb1) < tailbits) 5206 ntail = tailbits + 128; 5207 } 5208 5209 if (copyflag || 5210 skb_cloned(skb1) || 5211 ntail || 5212 skb_shinfo(skb1)->nr_frags || 5213 skb_has_frag_list(skb1)) { 5214 struct sk_buff *skb2; 5215 5216 /* Fuck, we are miserable poor guys... */ 5217 if (ntail == 0) 5218 skb2 = skb_copy(skb1, GFP_ATOMIC); 5219 else 5220 skb2 = skb_copy_expand(skb1, 5221 skb_headroom(skb1), 5222 ntail, 5223 GFP_ATOMIC); 5224 if (unlikely(skb2 == NULL)) 5225 return -ENOMEM; 5226 5227 if (skb1->sk) 5228 skb_set_owner_w(skb2, skb1->sk); 5229 5230 /* Looking around. Are we still alive? 5231 * OK, link new skb, drop old one */ 5232 5233 skb2->next = skb1->next; 5234 *skb_p = skb2; 5235 kfree_skb(skb1); 5236 skb1 = skb2; 5237 } 5238 elt++; 5239 *trailer = skb1; 5240 skb_p = &skb1->next; 5241 } 5242 5243 return elt; 5244 } 5245 EXPORT_SYMBOL_GPL(skb_cow_data); 5246 5247 static void sock_rmem_free(struct sk_buff *skb) 5248 { 5249 struct sock *sk = skb->sk; 5250 5251 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5252 } 5253 5254 static void skb_set_err_queue(struct sk_buff *skb) 5255 { 5256 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5257 * So, it is safe to (mis)use it to mark skbs on the error queue. 5258 */ 5259 skb->pkt_type = PACKET_OUTGOING; 5260 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5261 } 5262 5263 /* 5264 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5265 */ 5266 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5267 { 5268 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5269 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5270 return -ENOMEM; 5271 5272 skb_orphan(skb); 5273 skb->sk = sk; 5274 skb->destructor = sock_rmem_free; 5275 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5276 skb_set_err_queue(skb); 5277 5278 /* before exiting rcu section, make sure dst is refcounted */ 5279 skb_dst_force(skb); 5280 5281 skb_queue_tail(&sk->sk_error_queue, skb); 5282 if (!sock_flag(sk, SOCK_DEAD)) 5283 sk_error_report(sk); 5284 return 0; 5285 } 5286 EXPORT_SYMBOL(sock_queue_err_skb); 5287 5288 static bool is_icmp_err_skb(const struct sk_buff *skb) 5289 { 5290 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5291 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5292 } 5293 5294 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5295 { 5296 struct sk_buff_head *q = &sk->sk_error_queue; 5297 struct sk_buff *skb, *skb_next = NULL; 5298 bool icmp_next = false; 5299 unsigned long flags; 5300 5301 if (skb_queue_empty_lockless(q)) 5302 return NULL; 5303 5304 spin_lock_irqsave(&q->lock, flags); 5305 skb = __skb_dequeue(q); 5306 if (skb && (skb_next = skb_peek(q))) { 5307 icmp_next = is_icmp_err_skb(skb_next); 5308 if (icmp_next) 5309 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5310 } 5311 spin_unlock_irqrestore(&q->lock, flags); 5312 5313 if (is_icmp_err_skb(skb) && !icmp_next) 5314 sk->sk_err = 0; 5315 5316 if (skb_next) 5317 sk_error_report(sk); 5318 5319 return skb; 5320 } 5321 EXPORT_SYMBOL(sock_dequeue_err_skb); 5322 5323 /** 5324 * skb_clone_sk - create clone of skb, and take reference to socket 5325 * @skb: the skb to clone 5326 * 5327 * This function creates a clone of a buffer that holds a reference on 5328 * sk_refcnt. Buffers created via this function are meant to be 5329 * returned using sock_queue_err_skb, or free via kfree_skb. 5330 * 5331 * When passing buffers allocated with this function to sock_queue_err_skb 5332 * it is necessary to wrap the call with sock_hold/sock_put in order to 5333 * prevent the socket from being released prior to being enqueued on 5334 * the sk_error_queue. 5335 */ 5336 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5337 { 5338 struct sock *sk = skb->sk; 5339 struct sk_buff *clone; 5340 5341 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5342 return NULL; 5343 5344 clone = skb_clone(skb, GFP_ATOMIC); 5345 if (!clone) { 5346 sock_put(sk); 5347 return NULL; 5348 } 5349 5350 clone->sk = sk; 5351 clone->destructor = sock_efree; 5352 5353 return clone; 5354 } 5355 EXPORT_SYMBOL(skb_clone_sk); 5356 5357 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5358 struct sock *sk, 5359 int tstype, 5360 bool opt_stats) 5361 { 5362 struct sock_exterr_skb *serr; 5363 int err; 5364 5365 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5366 5367 serr = SKB_EXT_ERR(skb); 5368 memset(serr, 0, sizeof(*serr)); 5369 serr->ee.ee_errno = ENOMSG; 5370 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5371 serr->ee.ee_info = tstype; 5372 serr->opt_stats = opt_stats; 5373 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5374 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 5375 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5376 if (sk_is_tcp(sk)) 5377 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5378 } 5379 5380 err = sock_queue_err_skb(sk, skb); 5381 5382 if (err) 5383 kfree_skb(skb); 5384 } 5385 5386 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5387 { 5388 bool ret; 5389 5390 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 5391 return true; 5392 5393 read_lock_bh(&sk->sk_callback_lock); 5394 ret = sk->sk_socket && sk->sk_socket->file && 5395 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5396 read_unlock_bh(&sk->sk_callback_lock); 5397 return ret; 5398 } 5399 5400 void skb_complete_tx_timestamp(struct sk_buff *skb, 5401 struct skb_shared_hwtstamps *hwtstamps) 5402 { 5403 struct sock *sk = skb->sk; 5404 5405 if (!skb_may_tx_timestamp(sk, false)) 5406 goto err; 5407 5408 /* Take a reference to prevent skb_orphan() from freeing the socket, 5409 * but only if the socket refcount is not zero. 5410 */ 5411 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5412 *skb_hwtstamps(skb) = *hwtstamps; 5413 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5414 sock_put(sk); 5415 return; 5416 } 5417 5418 err: 5419 kfree_skb(skb); 5420 } 5421 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5422 5423 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5424 const struct sk_buff *ack_skb, 5425 struct skb_shared_hwtstamps *hwtstamps, 5426 struct sock *sk, int tstype) 5427 { 5428 struct sk_buff *skb; 5429 bool tsonly, opt_stats = false; 5430 u32 tsflags; 5431 5432 if (!sk) 5433 return; 5434 5435 tsflags = READ_ONCE(sk->sk_tsflags); 5436 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5437 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5438 return; 5439 5440 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5441 if (!skb_may_tx_timestamp(sk, tsonly)) 5442 return; 5443 5444 if (tsonly) { 5445 #ifdef CONFIG_INET 5446 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5447 sk_is_tcp(sk)) { 5448 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5449 ack_skb); 5450 opt_stats = true; 5451 } else 5452 #endif 5453 skb = alloc_skb(0, GFP_ATOMIC); 5454 } else { 5455 skb = skb_clone(orig_skb, GFP_ATOMIC); 5456 5457 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5458 kfree_skb(skb); 5459 return; 5460 } 5461 } 5462 if (!skb) 5463 return; 5464 5465 if (tsonly) { 5466 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5467 SKBTX_ANY_TSTAMP; 5468 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5469 } 5470 5471 if (hwtstamps) 5472 *skb_hwtstamps(skb) = *hwtstamps; 5473 else 5474 __net_timestamp(skb); 5475 5476 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5477 } 5478 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5479 5480 void skb_tstamp_tx(struct sk_buff *orig_skb, 5481 struct skb_shared_hwtstamps *hwtstamps) 5482 { 5483 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5484 SCM_TSTAMP_SND); 5485 } 5486 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5487 5488 #ifdef CONFIG_WIRELESS 5489 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5490 { 5491 struct sock *sk = skb->sk; 5492 struct sock_exterr_skb *serr; 5493 int err = 1; 5494 5495 skb->wifi_acked_valid = 1; 5496 skb->wifi_acked = acked; 5497 5498 serr = SKB_EXT_ERR(skb); 5499 memset(serr, 0, sizeof(*serr)); 5500 serr->ee.ee_errno = ENOMSG; 5501 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5502 5503 /* Take a reference to prevent skb_orphan() from freeing the socket, 5504 * but only if the socket refcount is not zero. 5505 */ 5506 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5507 err = sock_queue_err_skb(sk, skb); 5508 sock_put(sk); 5509 } 5510 if (err) 5511 kfree_skb(skb); 5512 } 5513 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5514 #endif /* CONFIG_WIRELESS */ 5515 5516 /** 5517 * skb_partial_csum_set - set up and verify partial csum values for packet 5518 * @skb: the skb to set 5519 * @start: the number of bytes after skb->data to start checksumming. 5520 * @off: the offset from start to place the checksum. 5521 * 5522 * For untrusted partially-checksummed packets, we need to make sure the values 5523 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5524 * 5525 * This function checks and sets those values and skb->ip_summed: if this 5526 * returns false you should drop the packet. 5527 */ 5528 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5529 { 5530 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5531 u32 csum_start = skb_headroom(skb) + (u32)start; 5532 5533 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5534 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5535 start, off, skb_headroom(skb), skb_headlen(skb)); 5536 return false; 5537 } 5538 skb->ip_summed = CHECKSUM_PARTIAL; 5539 skb->csum_start = csum_start; 5540 skb->csum_offset = off; 5541 skb->transport_header = csum_start; 5542 return true; 5543 } 5544 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5545 5546 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5547 unsigned int max) 5548 { 5549 if (skb_headlen(skb) >= len) 5550 return 0; 5551 5552 /* If we need to pullup then pullup to the max, so we 5553 * won't need to do it again. 5554 */ 5555 if (max > skb->len) 5556 max = skb->len; 5557 5558 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5559 return -ENOMEM; 5560 5561 if (skb_headlen(skb) < len) 5562 return -EPROTO; 5563 5564 return 0; 5565 } 5566 5567 #define MAX_TCP_HDR_LEN (15 * 4) 5568 5569 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5570 typeof(IPPROTO_IP) proto, 5571 unsigned int off) 5572 { 5573 int err; 5574 5575 switch (proto) { 5576 case IPPROTO_TCP: 5577 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5578 off + MAX_TCP_HDR_LEN); 5579 if (!err && !skb_partial_csum_set(skb, off, 5580 offsetof(struct tcphdr, 5581 check))) 5582 err = -EPROTO; 5583 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5584 5585 case IPPROTO_UDP: 5586 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5587 off + sizeof(struct udphdr)); 5588 if (!err && !skb_partial_csum_set(skb, off, 5589 offsetof(struct udphdr, 5590 check))) 5591 err = -EPROTO; 5592 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5593 } 5594 5595 return ERR_PTR(-EPROTO); 5596 } 5597 5598 /* This value should be large enough to cover a tagged ethernet header plus 5599 * maximally sized IP and TCP or UDP headers. 5600 */ 5601 #define MAX_IP_HDR_LEN 128 5602 5603 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5604 { 5605 unsigned int off; 5606 bool fragment; 5607 __sum16 *csum; 5608 int err; 5609 5610 fragment = false; 5611 5612 err = skb_maybe_pull_tail(skb, 5613 sizeof(struct iphdr), 5614 MAX_IP_HDR_LEN); 5615 if (err < 0) 5616 goto out; 5617 5618 if (ip_is_fragment(ip_hdr(skb))) 5619 fragment = true; 5620 5621 off = ip_hdrlen(skb); 5622 5623 err = -EPROTO; 5624 5625 if (fragment) 5626 goto out; 5627 5628 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5629 if (IS_ERR(csum)) 5630 return PTR_ERR(csum); 5631 5632 if (recalculate) 5633 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5634 ip_hdr(skb)->daddr, 5635 skb->len - off, 5636 ip_hdr(skb)->protocol, 0); 5637 err = 0; 5638 5639 out: 5640 return err; 5641 } 5642 5643 /* This value should be large enough to cover a tagged ethernet header plus 5644 * an IPv6 header, all options, and a maximal TCP or UDP header. 5645 */ 5646 #define MAX_IPV6_HDR_LEN 256 5647 5648 #define OPT_HDR(type, skb, off) \ 5649 (type *)(skb_network_header(skb) + (off)) 5650 5651 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5652 { 5653 int err; 5654 u8 nexthdr; 5655 unsigned int off; 5656 unsigned int len; 5657 bool fragment; 5658 bool done; 5659 __sum16 *csum; 5660 5661 fragment = false; 5662 done = false; 5663 5664 off = sizeof(struct ipv6hdr); 5665 5666 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5667 if (err < 0) 5668 goto out; 5669 5670 nexthdr = ipv6_hdr(skb)->nexthdr; 5671 5672 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5673 while (off <= len && !done) { 5674 switch (nexthdr) { 5675 case IPPROTO_DSTOPTS: 5676 case IPPROTO_HOPOPTS: 5677 case IPPROTO_ROUTING: { 5678 struct ipv6_opt_hdr *hp; 5679 5680 err = skb_maybe_pull_tail(skb, 5681 off + 5682 sizeof(struct ipv6_opt_hdr), 5683 MAX_IPV6_HDR_LEN); 5684 if (err < 0) 5685 goto out; 5686 5687 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5688 nexthdr = hp->nexthdr; 5689 off += ipv6_optlen(hp); 5690 break; 5691 } 5692 case IPPROTO_AH: { 5693 struct ip_auth_hdr *hp; 5694 5695 err = skb_maybe_pull_tail(skb, 5696 off + 5697 sizeof(struct ip_auth_hdr), 5698 MAX_IPV6_HDR_LEN); 5699 if (err < 0) 5700 goto out; 5701 5702 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5703 nexthdr = hp->nexthdr; 5704 off += ipv6_authlen(hp); 5705 break; 5706 } 5707 case IPPROTO_FRAGMENT: { 5708 struct frag_hdr *hp; 5709 5710 err = skb_maybe_pull_tail(skb, 5711 off + 5712 sizeof(struct frag_hdr), 5713 MAX_IPV6_HDR_LEN); 5714 if (err < 0) 5715 goto out; 5716 5717 hp = OPT_HDR(struct frag_hdr, skb, off); 5718 5719 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5720 fragment = true; 5721 5722 nexthdr = hp->nexthdr; 5723 off += sizeof(struct frag_hdr); 5724 break; 5725 } 5726 default: 5727 done = true; 5728 break; 5729 } 5730 } 5731 5732 err = -EPROTO; 5733 5734 if (!done || fragment) 5735 goto out; 5736 5737 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5738 if (IS_ERR(csum)) 5739 return PTR_ERR(csum); 5740 5741 if (recalculate) 5742 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5743 &ipv6_hdr(skb)->daddr, 5744 skb->len - off, nexthdr, 0); 5745 err = 0; 5746 5747 out: 5748 return err; 5749 } 5750 5751 /** 5752 * skb_checksum_setup - set up partial checksum offset 5753 * @skb: the skb to set up 5754 * @recalculate: if true the pseudo-header checksum will be recalculated 5755 */ 5756 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5757 { 5758 int err; 5759 5760 switch (skb->protocol) { 5761 case htons(ETH_P_IP): 5762 err = skb_checksum_setup_ipv4(skb, recalculate); 5763 break; 5764 5765 case htons(ETH_P_IPV6): 5766 err = skb_checksum_setup_ipv6(skb, recalculate); 5767 break; 5768 5769 default: 5770 err = -EPROTO; 5771 break; 5772 } 5773 5774 return err; 5775 } 5776 EXPORT_SYMBOL(skb_checksum_setup); 5777 5778 /** 5779 * skb_checksum_maybe_trim - maybe trims the given skb 5780 * @skb: the skb to check 5781 * @transport_len: the data length beyond the network header 5782 * 5783 * Checks whether the given skb has data beyond the given transport length. 5784 * If so, returns a cloned skb trimmed to this transport length. 5785 * Otherwise returns the provided skb. Returns NULL in error cases 5786 * (e.g. transport_len exceeds skb length or out-of-memory). 5787 * 5788 * Caller needs to set the skb transport header and free any returned skb if it 5789 * differs from the provided skb. 5790 */ 5791 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5792 unsigned int transport_len) 5793 { 5794 struct sk_buff *skb_chk; 5795 unsigned int len = skb_transport_offset(skb) + transport_len; 5796 int ret; 5797 5798 if (skb->len < len) 5799 return NULL; 5800 else if (skb->len == len) 5801 return skb; 5802 5803 skb_chk = skb_clone(skb, GFP_ATOMIC); 5804 if (!skb_chk) 5805 return NULL; 5806 5807 ret = pskb_trim_rcsum(skb_chk, len); 5808 if (ret) { 5809 kfree_skb(skb_chk); 5810 return NULL; 5811 } 5812 5813 return skb_chk; 5814 } 5815 5816 /** 5817 * skb_checksum_trimmed - validate checksum of an skb 5818 * @skb: the skb to check 5819 * @transport_len: the data length beyond the network header 5820 * @skb_chkf: checksum function to use 5821 * 5822 * Applies the given checksum function skb_chkf to the provided skb. 5823 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5824 * 5825 * If the skb has data beyond the given transport length, then a 5826 * trimmed & cloned skb is checked and returned. 5827 * 5828 * Caller needs to set the skb transport header and free any returned skb if it 5829 * differs from the provided skb. 5830 */ 5831 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5832 unsigned int transport_len, 5833 __sum16(*skb_chkf)(struct sk_buff *skb)) 5834 { 5835 struct sk_buff *skb_chk; 5836 unsigned int offset = skb_transport_offset(skb); 5837 __sum16 ret; 5838 5839 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5840 if (!skb_chk) 5841 goto err; 5842 5843 if (!pskb_may_pull(skb_chk, offset)) 5844 goto err; 5845 5846 skb_pull_rcsum(skb_chk, offset); 5847 ret = skb_chkf(skb_chk); 5848 skb_push_rcsum(skb_chk, offset); 5849 5850 if (ret) 5851 goto err; 5852 5853 return skb_chk; 5854 5855 err: 5856 if (skb_chk && skb_chk != skb) 5857 kfree_skb(skb_chk); 5858 5859 return NULL; 5860 5861 } 5862 EXPORT_SYMBOL(skb_checksum_trimmed); 5863 5864 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5865 { 5866 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5867 skb->dev->name); 5868 } 5869 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5870 5871 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5872 { 5873 if (head_stolen) { 5874 skb_release_head_state(skb); 5875 kmem_cache_free(skbuff_cache, skb); 5876 } else { 5877 __kfree_skb(skb); 5878 } 5879 } 5880 EXPORT_SYMBOL(kfree_skb_partial); 5881 5882 /** 5883 * skb_try_coalesce - try to merge skb to prior one 5884 * @to: prior buffer 5885 * @from: buffer to add 5886 * @fragstolen: pointer to boolean 5887 * @delta_truesize: how much more was allocated than was requested 5888 */ 5889 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5890 bool *fragstolen, int *delta_truesize) 5891 { 5892 struct skb_shared_info *to_shinfo, *from_shinfo; 5893 int i, delta, len = from->len; 5894 5895 *fragstolen = false; 5896 5897 if (skb_cloned(to)) 5898 return false; 5899 5900 /* In general, avoid mixing page_pool and non-page_pool allocated 5901 * pages within the same SKB. In theory we could take full 5902 * references if @from is cloned and !@to->pp_recycle but its 5903 * tricky (due to potential race with the clone disappearing) and 5904 * rare, so not worth dealing with. 5905 */ 5906 if (to->pp_recycle != from->pp_recycle) 5907 return false; 5908 5909 if (len <= skb_tailroom(to)) { 5910 if (len) 5911 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5912 *delta_truesize = 0; 5913 return true; 5914 } 5915 5916 to_shinfo = skb_shinfo(to); 5917 from_shinfo = skb_shinfo(from); 5918 if (to_shinfo->frag_list || from_shinfo->frag_list) 5919 return false; 5920 if (skb_zcopy(to) || skb_zcopy(from)) 5921 return false; 5922 5923 if (skb_headlen(from) != 0) { 5924 struct page *page; 5925 unsigned int offset; 5926 5927 if (to_shinfo->nr_frags + 5928 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5929 return false; 5930 5931 if (skb_head_is_locked(from)) 5932 return false; 5933 5934 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5935 5936 page = virt_to_head_page(from->head); 5937 offset = from->data - (unsigned char *)page_address(page); 5938 5939 skb_fill_page_desc(to, to_shinfo->nr_frags, 5940 page, offset, skb_headlen(from)); 5941 *fragstolen = true; 5942 } else { 5943 if (to_shinfo->nr_frags + 5944 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5945 return false; 5946 5947 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5948 } 5949 5950 WARN_ON_ONCE(delta < len); 5951 5952 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5953 from_shinfo->frags, 5954 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5955 to_shinfo->nr_frags += from_shinfo->nr_frags; 5956 5957 if (!skb_cloned(from)) 5958 from_shinfo->nr_frags = 0; 5959 5960 /* if the skb is not cloned this does nothing 5961 * since we set nr_frags to 0. 5962 */ 5963 if (skb_pp_frag_ref(from)) { 5964 for (i = 0; i < from_shinfo->nr_frags; i++) 5965 __skb_frag_ref(&from_shinfo->frags[i]); 5966 } 5967 5968 to->truesize += delta; 5969 to->len += len; 5970 to->data_len += len; 5971 5972 *delta_truesize = delta; 5973 return true; 5974 } 5975 EXPORT_SYMBOL(skb_try_coalesce); 5976 5977 /** 5978 * skb_scrub_packet - scrub an skb 5979 * 5980 * @skb: buffer to clean 5981 * @xnet: packet is crossing netns 5982 * 5983 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5984 * into/from a tunnel. Some information have to be cleared during these 5985 * operations. 5986 * skb_scrub_packet can also be used to clean a skb before injecting it in 5987 * another namespace (@xnet == true). We have to clear all information in the 5988 * skb that could impact namespace isolation. 5989 */ 5990 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5991 { 5992 skb->pkt_type = PACKET_HOST; 5993 skb->skb_iif = 0; 5994 skb->ignore_df = 0; 5995 skb_dst_drop(skb); 5996 skb_ext_reset(skb); 5997 nf_reset_ct(skb); 5998 nf_reset_trace(skb); 5999 6000 #ifdef CONFIG_NET_SWITCHDEV 6001 skb->offload_fwd_mark = 0; 6002 skb->offload_l3_fwd_mark = 0; 6003 #endif 6004 6005 if (!xnet) 6006 return; 6007 6008 ipvs_reset(skb); 6009 skb->mark = 0; 6010 skb_clear_tstamp(skb); 6011 } 6012 EXPORT_SYMBOL_GPL(skb_scrub_packet); 6013 6014 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 6015 { 6016 int mac_len, meta_len; 6017 void *meta; 6018 6019 if (skb_cow(skb, skb_headroom(skb)) < 0) { 6020 kfree_skb(skb); 6021 return NULL; 6022 } 6023 6024 mac_len = skb->data - skb_mac_header(skb); 6025 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 6026 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 6027 mac_len - VLAN_HLEN - ETH_TLEN); 6028 } 6029 6030 meta_len = skb_metadata_len(skb); 6031 if (meta_len) { 6032 meta = skb_metadata_end(skb) - meta_len; 6033 memmove(meta + VLAN_HLEN, meta, meta_len); 6034 } 6035 6036 skb->mac_header += VLAN_HLEN; 6037 return skb; 6038 } 6039 6040 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 6041 { 6042 struct vlan_hdr *vhdr; 6043 u16 vlan_tci; 6044 6045 if (unlikely(skb_vlan_tag_present(skb))) { 6046 /* vlan_tci is already set-up so leave this for another time */ 6047 return skb; 6048 } 6049 6050 skb = skb_share_check(skb, GFP_ATOMIC); 6051 if (unlikely(!skb)) 6052 goto err_free; 6053 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 6054 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 6055 goto err_free; 6056 6057 vhdr = (struct vlan_hdr *)skb->data; 6058 vlan_tci = ntohs(vhdr->h_vlan_TCI); 6059 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 6060 6061 skb_pull_rcsum(skb, VLAN_HLEN); 6062 vlan_set_encap_proto(skb, vhdr); 6063 6064 skb = skb_reorder_vlan_header(skb); 6065 if (unlikely(!skb)) 6066 goto err_free; 6067 6068 skb_reset_network_header(skb); 6069 if (!skb_transport_header_was_set(skb)) 6070 skb_reset_transport_header(skb); 6071 skb_reset_mac_len(skb); 6072 6073 return skb; 6074 6075 err_free: 6076 kfree_skb(skb); 6077 return NULL; 6078 } 6079 EXPORT_SYMBOL(skb_vlan_untag); 6080 6081 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 6082 { 6083 if (!pskb_may_pull(skb, write_len)) 6084 return -ENOMEM; 6085 6086 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 6087 return 0; 6088 6089 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 6090 } 6091 EXPORT_SYMBOL(skb_ensure_writable); 6092 6093 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev) 6094 { 6095 int needed_headroom = dev->needed_headroom; 6096 int needed_tailroom = dev->needed_tailroom; 6097 6098 /* For tail taggers, we need to pad short frames ourselves, to ensure 6099 * that the tail tag does not fail at its role of being at the end of 6100 * the packet, once the conduit interface pads the frame. Account for 6101 * that pad length here, and pad later. 6102 */ 6103 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN)) 6104 needed_tailroom += ETH_ZLEN - skb->len; 6105 /* skb_headroom() returns unsigned int... */ 6106 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0); 6107 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0); 6108 6109 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb))) 6110 /* No reallocation needed, yay! */ 6111 return 0; 6112 6113 return pskb_expand_head(skb, needed_headroom, needed_tailroom, 6114 GFP_ATOMIC); 6115 } 6116 EXPORT_SYMBOL(skb_ensure_writable_head_tail); 6117 6118 /* remove VLAN header from packet and update csum accordingly. 6119 * expects a non skb_vlan_tag_present skb with a vlan tag payload 6120 */ 6121 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 6122 { 6123 int offset = skb->data - skb_mac_header(skb); 6124 int err; 6125 6126 if (WARN_ONCE(offset, 6127 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 6128 offset)) { 6129 return -EINVAL; 6130 } 6131 6132 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 6133 if (unlikely(err)) 6134 return err; 6135 6136 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6137 6138 vlan_remove_tag(skb, vlan_tci); 6139 6140 skb->mac_header += VLAN_HLEN; 6141 6142 if (skb_network_offset(skb) < ETH_HLEN) 6143 skb_set_network_header(skb, ETH_HLEN); 6144 6145 skb_reset_mac_len(skb); 6146 6147 return err; 6148 } 6149 EXPORT_SYMBOL(__skb_vlan_pop); 6150 6151 /* Pop a vlan tag either from hwaccel or from payload. 6152 * Expects skb->data at mac header. 6153 */ 6154 int skb_vlan_pop(struct sk_buff *skb) 6155 { 6156 u16 vlan_tci; 6157 __be16 vlan_proto; 6158 int err; 6159 6160 if (likely(skb_vlan_tag_present(skb))) { 6161 __vlan_hwaccel_clear_tag(skb); 6162 } else { 6163 if (unlikely(!eth_type_vlan(skb->protocol))) 6164 return 0; 6165 6166 err = __skb_vlan_pop(skb, &vlan_tci); 6167 if (err) 6168 return err; 6169 } 6170 /* move next vlan tag to hw accel tag */ 6171 if (likely(!eth_type_vlan(skb->protocol))) 6172 return 0; 6173 6174 vlan_proto = skb->protocol; 6175 err = __skb_vlan_pop(skb, &vlan_tci); 6176 if (unlikely(err)) 6177 return err; 6178 6179 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6180 return 0; 6181 } 6182 EXPORT_SYMBOL(skb_vlan_pop); 6183 6184 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 6185 * Expects skb->data at mac header. 6186 */ 6187 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6188 { 6189 if (skb_vlan_tag_present(skb)) { 6190 int offset = skb->data - skb_mac_header(skb); 6191 int err; 6192 6193 if (WARN_ONCE(offset, 6194 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6195 offset)) { 6196 return -EINVAL; 6197 } 6198 6199 err = __vlan_insert_tag(skb, skb->vlan_proto, 6200 skb_vlan_tag_get(skb)); 6201 if (err) 6202 return err; 6203 6204 skb->protocol = skb->vlan_proto; 6205 skb->mac_len += VLAN_HLEN; 6206 6207 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6208 } 6209 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6210 return 0; 6211 } 6212 EXPORT_SYMBOL(skb_vlan_push); 6213 6214 /** 6215 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6216 * 6217 * @skb: Socket buffer to modify 6218 * 6219 * Drop the Ethernet header of @skb. 6220 * 6221 * Expects that skb->data points to the mac header and that no VLAN tags are 6222 * present. 6223 * 6224 * Returns 0 on success, -errno otherwise. 6225 */ 6226 int skb_eth_pop(struct sk_buff *skb) 6227 { 6228 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6229 skb_network_offset(skb) < ETH_HLEN) 6230 return -EPROTO; 6231 6232 skb_pull_rcsum(skb, ETH_HLEN); 6233 skb_reset_mac_header(skb); 6234 skb_reset_mac_len(skb); 6235 6236 return 0; 6237 } 6238 EXPORT_SYMBOL(skb_eth_pop); 6239 6240 /** 6241 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6242 * 6243 * @skb: Socket buffer to modify 6244 * @dst: Destination MAC address of the new header 6245 * @src: Source MAC address of the new header 6246 * 6247 * Prepend @skb with a new Ethernet header. 6248 * 6249 * Expects that skb->data points to the mac header, which must be empty. 6250 * 6251 * Returns 0 on success, -errno otherwise. 6252 */ 6253 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6254 const unsigned char *src) 6255 { 6256 struct ethhdr *eth; 6257 int err; 6258 6259 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6260 return -EPROTO; 6261 6262 err = skb_cow_head(skb, sizeof(*eth)); 6263 if (err < 0) 6264 return err; 6265 6266 skb_push(skb, sizeof(*eth)); 6267 skb_reset_mac_header(skb); 6268 skb_reset_mac_len(skb); 6269 6270 eth = eth_hdr(skb); 6271 ether_addr_copy(eth->h_dest, dst); 6272 ether_addr_copy(eth->h_source, src); 6273 eth->h_proto = skb->protocol; 6274 6275 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6276 6277 return 0; 6278 } 6279 EXPORT_SYMBOL(skb_eth_push); 6280 6281 /* Update the ethertype of hdr and the skb csum value if required. */ 6282 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6283 __be16 ethertype) 6284 { 6285 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6286 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6287 6288 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6289 } 6290 6291 hdr->h_proto = ethertype; 6292 } 6293 6294 /** 6295 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6296 * the packet 6297 * 6298 * @skb: buffer 6299 * @mpls_lse: MPLS label stack entry to push 6300 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6301 * @mac_len: length of the MAC header 6302 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6303 * ethernet 6304 * 6305 * Expects skb->data at mac header. 6306 * 6307 * Returns 0 on success, -errno otherwise. 6308 */ 6309 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6310 int mac_len, bool ethernet) 6311 { 6312 struct mpls_shim_hdr *lse; 6313 int err; 6314 6315 if (unlikely(!eth_p_mpls(mpls_proto))) 6316 return -EINVAL; 6317 6318 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6319 if (skb->encapsulation) 6320 return -EINVAL; 6321 6322 err = skb_cow_head(skb, MPLS_HLEN); 6323 if (unlikely(err)) 6324 return err; 6325 6326 if (!skb->inner_protocol) { 6327 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6328 skb_set_inner_protocol(skb, skb->protocol); 6329 } 6330 6331 skb_push(skb, MPLS_HLEN); 6332 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6333 mac_len); 6334 skb_reset_mac_header(skb); 6335 skb_set_network_header(skb, mac_len); 6336 skb_reset_mac_len(skb); 6337 6338 lse = mpls_hdr(skb); 6339 lse->label_stack_entry = mpls_lse; 6340 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6341 6342 if (ethernet && mac_len >= ETH_HLEN) 6343 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6344 skb->protocol = mpls_proto; 6345 6346 return 0; 6347 } 6348 EXPORT_SYMBOL_GPL(skb_mpls_push); 6349 6350 /** 6351 * skb_mpls_pop() - pop the outermost MPLS header 6352 * 6353 * @skb: buffer 6354 * @next_proto: ethertype of header after popped MPLS header 6355 * @mac_len: length of the MAC header 6356 * @ethernet: flag to indicate if the packet is ethernet 6357 * 6358 * Expects skb->data at mac header. 6359 * 6360 * Returns 0 on success, -errno otherwise. 6361 */ 6362 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6363 bool ethernet) 6364 { 6365 int err; 6366 6367 if (unlikely(!eth_p_mpls(skb->protocol))) 6368 return 0; 6369 6370 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6371 if (unlikely(err)) 6372 return err; 6373 6374 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6375 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6376 mac_len); 6377 6378 __skb_pull(skb, MPLS_HLEN); 6379 skb_reset_mac_header(skb); 6380 skb_set_network_header(skb, mac_len); 6381 6382 if (ethernet && mac_len >= ETH_HLEN) { 6383 struct ethhdr *hdr; 6384 6385 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6386 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6387 skb_mod_eth_type(skb, hdr, next_proto); 6388 } 6389 skb->protocol = next_proto; 6390 6391 return 0; 6392 } 6393 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6394 6395 /** 6396 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6397 * 6398 * @skb: buffer 6399 * @mpls_lse: new MPLS label stack entry to update to 6400 * 6401 * Expects skb->data at mac header. 6402 * 6403 * Returns 0 on success, -errno otherwise. 6404 */ 6405 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6406 { 6407 int err; 6408 6409 if (unlikely(!eth_p_mpls(skb->protocol))) 6410 return -EINVAL; 6411 6412 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6413 if (unlikely(err)) 6414 return err; 6415 6416 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6417 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6418 6419 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6420 } 6421 6422 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6423 6424 return 0; 6425 } 6426 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6427 6428 /** 6429 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6430 * 6431 * @skb: buffer 6432 * 6433 * Expects skb->data at mac header. 6434 * 6435 * Returns 0 on success, -errno otherwise. 6436 */ 6437 int skb_mpls_dec_ttl(struct sk_buff *skb) 6438 { 6439 u32 lse; 6440 u8 ttl; 6441 6442 if (unlikely(!eth_p_mpls(skb->protocol))) 6443 return -EINVAL; 6444 6445 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6446 return -ENOMEM; 6447 6448 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6449 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6450 if (!--ttl) 6451 return -EINVAL; 6452 6453 lse &= ~MPLS_LS_TTL_MASK; 6454 lse |= ttl << MPLS_LS_TTL_SHIFT; 6455 6456 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6457 } 6458 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6459 6460 /** 6461 * alloc_skb_with_frags - allocate skb with page frags 6462 * 6463 * @header_len: size of linear part 6464 * @data_len: needed length in frags 6465 * @order: max page order desired. 6466 * @errcode: pointer to error code if any 6467 * @gfp_mask: allocation mask 6468 * 6469 * This can be used to allocate a paged skb, given a maximal order for frags. 6470 */ 6471 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6472 unsigned long data_len, 6473 int order, 6474 int *errcode, 6475 gfp_t gfp_mask) 6476 { 6477 unsigned long chunk; 6478 struct sk_buff *skb; 6479 struct page *page; 6480 int nr_frags = 0; 6481 6482 *errcode = -EMSGSIZE; 6483 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6484 return NULL; 6485 6486 *errcode = -ENOBUFS; 6487 skb = alloc_skb(header_len, gfp_mask); 6488 if (!skb) 6489 return NULL; 6490 6491 while (data_len) { 6492 if (nr_frags == MAX_SKB_FRAGS - 1) 6493 goto failure; 6494 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6495 order--; 6496 6497 if (order) { 6498 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6499 __GFP_COMP | 6500 __GFP_NOWARN, 6501 order); 6502 if (!page) { 6503 order--; 6504 continue; 6505 } 6506 } else { 6507 page = alloc_page(gfp_mask); 6508 if (!page) 6509 goto failure; 6510 } 6511 chunk = min_t(unsigned long, data_len, 6512 PAGE_SIZE << order); 6513 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6514 nr_frags++; 6515 skb->truesize += (PAGE_SIZE << order); 6516 data_len -= chunk; 6517 } 6518 return skb; 6519 6520 failure: 6521 kfree_skb(skb); 6522 return NULL; 6523 } 6524 EXPORT_SYMBOL(alloc_skb_with_frags); 6525 6526 /* carve out the first off bytes from skb when off < headlen */ 6527 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6528 const int headlen, gfp_t gfp_mask) 6529 { 6530 int i; 6531 unsigned int size = skb_end_offset(skb); 6532 int new_hlen = headlen - off; 6533 u8 *data; 6534 6535 if (skb_pfmemalloc(skb)) 6536 gfp_mask |= __GFP_MEMALLOC; 6537 6538 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6539 if (!data) 6540 return -ENOMEM; 6541 size = SKB_WITH_OVERHEAD(size); 6542 6543 /* Copy real data, and all frags */ 6544 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6545 skb->len -= off; 6546 6547 memcpy((struct skb_shared_info *)(data + size), 6548 skb_shinfo(skb), 6549 offsetof(struct skb_shared_info, 6550 frags[skb_shinfo(skb)->nr_frags])); 6551 if (skb_cloned(skb)) { 6552 /* drop the old head gracefully */ 6553 if (skb_orphan_frags(skb, gfp_mask)) { 6554 skb_kfree_head(data, size); 6555 return -ENOMEM; 6556 } 6557 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6558 skb_frag_ref(skb, i); 6559 if (skb_has_frag_list(skb)) 6560 skb_clone_fraglist(skb); 6561 skb_release_data(skb, SKB_CONSUMED, false); 6562 } else { 6563 /* we can reuse existing recount- all we did was 6564 * relocate values 6565 */ 6566 skb_free_head(skb, false); 6567 } 6568 6569 skb->head = data; 6570 skb->data = data; 6571 skb->head_frag = 0; 6572 skb_set_end_offset(skb, size); 6573 skb_set_tail_pointer(skb, skb_headlen(skb)); 6574 skb_headers_offset_update(skb, 0); 6575 skb->cloned = 0; 6576 skb->hdr_len = 0; 6577 skb->nohdr = 0; 6578 atomic_set(&skb_shinfo(skb)->dataref, 1); 6579 6580 return 0; 6581 } 6582 6583 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6584 6585 /* carve out the first eat bytes from skb's frag_list. May recurse into 6586 * pskb_carve() 6587 */ 6588 static int pskb_carve_frag_list(struct sk_buff *skb, 6589 struct skb_shared_info *shinfo, int eat, 6590 gfp_t gfp_mask) 6591 { 6592 struct sk_buff *list = shinfo->frag_list; 6593 struct sk_buff *clone = NULL; 6594 struct sk_buff *insp = NULL; 6595 6596 do { 6597 if (!list) { 6598 pr_err("Not enough bytes to eat. Want %d\n", eat); 6599 return -EFAULT; 6600 } 6601 if (list->len <= eat) { 6602 /* Eaten as whole. */ 6603 eat -= list->len; 6604 list = list->next; 6605 insp = list; 6606 } else { 6607 /* Eaten partially. */ 6608 if (skb_shared(list)) { 6609 clone = skb_clone(list, gfp_mask); 6610 if (!clone) 6611 return -ENOMEM; 6612 insp = list->next; 6613 list = clone; 6614 } else { 6615 /* This may be pulled without problems. */ 6616 insp = list; 6617 } 6618 if (pskb_carve(list, eat, gfp_mask) < 0) { 6619 kfree_skb(clone); 6620 return -ENOMEM; 6621 } 6622 break; 6623 } 6624 } while (eat); 6625 6626 /* Free pulled out fragments. */ 6627 while ((list = shinfo->frag_list) != insp) { 6628 shinfo->frag_list = list->next; 6629 consume_skb(list); 6630 } 6631 /* And insert new clone at head. */ 6632 if (clone) { 6633 clone->next = list; 6634 shinfo->frag_list = clone; 6635 } 6636 return 0; 6637 } 6638 6639 /* carve off first len bytes from skb. Split line (off) is in the 6640 * non-linear part of skb 6641 */ 6642 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6643 int pos, gfp_t gfp_mask) 6644 { 6645 int i, k = 0; 6646 unsigned int size = skb_end_offset(skb); 6647 u8 *data; 6648 const int nfrags = skb_shinfo(skb)->nr_frags; 6649 struct skb_shared_info *shinfo; 6650 6651 if (skb_pfmemalloc(skb)) 6652 gfp_mask |= __GFP_MEMALLOC; 6653 6654 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6655 if (!data) 6656 return -ENOMEM; 6657 size = SKB_WITH_OVERHEAD(size); 6658 6659 memcpy((struct skb_shared_info *)(data + size), 6660 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6661 if (skb_orphan_frags(skb, gfp_mask)) { 6662 skb_kfree_head(data, size); 6663 return -ENOMEM; 6664 } 6665 shinfo = (struct skb_shared_info *)(data + size); 6666 for (i = 0; i < nfrags; i++) { 6667 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6668 6669 if (pos + fsize > off) { 6670 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6671 6672 if (pos < off) { 6673 /* Split frag. 6674 * We have two variants in this case: 6675 * 1. Move all the frag to the second 6676 * part, if it is possible. F.e. 6677 * this approach is mandatory for TUX, 6678 * where splitting is expensive. 6679 * 2. Split is accurately. We make this. 6680 */ 6681 skb_frag_off_add(&shinfo->frags[0], off - pos); 6682 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6683 } 6684 skb_frag_ref(skb, i); 6685 k++; 6686 } 6687 pos += fsize; 6688 } 6689 shinfo->nr_frags = k; 6690 if (skb_has_frag_list(skb)) 6691 skb_clone_fraglist(skb); 6692 6693 /* split line is in frag list */ 6694 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6695 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6696 if (skb_has_frag_list(skb)) 6697 kfree_skb_list(skb_shinfo(skb)->frag_list); 6698 skb_kfree_head(data, size); 6699 return -ENOMEM; 6700 } 6701 skb_release_data(skb, SKB_CONSUMED, false); 6702 6703 skb->head = data; 6704 skb->head_frag = 0; 6705 skb->data = data; 6706 skb_set_end_offset(skb, size); 6707 skb_reset_tail_pointer(skb); 6708 skb_headers_offset_update(skb, 0); 6709 skb->cloned = 0; 6710 skb->hdr_len = 0; 6711 skb->nohdr = 0; 6712 skb->len -= off; 6713 skb->data_len = skb->len; 6714 atomic_set(&skb_shinfo(skb)->dataref, 1); 6715 return 0; 6716 } 6717 6718 /* remove len bytes from the beginning of the skb */ 6719 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6720 { 6721 int headlen = skb_headlen(skb); 6722 6723 if (len < headlen) 6724 return pskb_carve_inside_header(skb, len, headlen, gfp); 6725 else 6726 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6727 } 6728 6729 /* Extract to_copy bytes starting at off from skb, and return this in 6730 * a new skb 6731 */ 6732 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6733 int to_copy, gfp_t gfp) 6734 { 6735 struct sk_buff *clone = skb_clone(skb, gfp); 6736 6737 if (!clone) 6738 return NULL; 6739 6740 if (pskb_carve(clone, off, gfp) < 0 || 6741 pskb_trim(clone, to_copy)) { 6742 kfree_skb(clone); 6743 return NULL; 6744 } 6745 return clone; 6746 } 6747 EXPORT_SYMBOL(pskb_extract); 6748 6749 /** 6750 * skb_condense - try to get rid of fragments/frag_list if possible 6751 * @skb: buffer 6752 * 6753 * Can be used to save memory before skb is added to a busy queue. 6754 * If packet has bytes in frags and enough tail room in skb->head, 6755 * pull all of them, so that we can free the frags right now and adjust 6756 * truesize. 6757 * Notes: 6758 * We do not reallocate skb->head thus can not fail. 6759 * Caller must re-evaluate skb->truesize if needed. 6760 */ 6761 void skb_condense(struct sk_buff *skb) 6762 { 6763 if (skb->data_len) { 6764 if (skb->data_len > skb->end - skb->tail || 6765 skb_cloned(skb)) 6766 return; 6767 6768 /* Nice, we can free page frag(s) right now */ 6769 __pskb_pull_tail(skb, skb->data_len); 6770 } 6771 /* At this point, skb->truesize might be over estimated, 6772 * because skb had a fragment, and fragments do not tell 6773 * their truesize. 6774 * When we pulled its content into skb->head, fragment 6775 * was freed, but __pskb_pull_tail() could not possibly 6776 * adjust skb->truesize, not knowing the frag truesize. 6777 */ 6778 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6779 } 6780 EXPORT_SYMBOL(skb_condense); 6781 6782 #ifdef CONFIG_SKB_EXTENSIONS 6783 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6784 { 6785 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6786 } 6787 6788 /** 6789 * __skb_ext_alloc - allocate a new skb extensions storage 6790 * 6791 * @flags: See kmalloc(). 6792 * 6793 * Returns the newly allocated pointer. The pointer can later attached to a 6794 * skb via __skb_ext_set(). 6795 * Note: caller must handle the skb_ext as an opaque data. 6796 */ 6797 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6798 { 6799 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6800 6801 if (new) { 6802 memset(new->offset, 0, sizeof(new->offset)); 6803 refcount_set(&new->refcnt, 1); 6804 } 6805 6806 return new; 6807 } 6808 6809 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6810 unsigned int old_active) 6811 { 6812 struct skb_ext *new; 6813 6814 if (refcount_read(&old->refcnt) == 1) 6815 return old; 6816 6817 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6818 if (!new) 6819 return NULL; 6820 6821 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6822 refcount_set(&new->refcnt, 1); 6823 6824 #ifdef CONFIG_XFRM 6825 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6826 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6827 unsigned int i; 6828 6829 for (i = 0; i < sp->len; i++) 6830 xfrm_state_hold(sp->xvec[i]); 6831 } 6832 #endif 6833 __skb_ext_put(old); 6834 return new; 6835 } 6836 6837 /** 6838 * __skb_ext_set - attach the specified extension storage to this skb 6839 * @skb: buffer 6840 * @id: extension id 6841 * @ext: extension storage previously allocated via __skb_ext_alloc() 6842 * 6843 * Existing extensions, if any, are cleared. 6844 * 6845 * Returns the pointer to the extension. 6846 */ 6847 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6848 struct skb_ext *ext) 6849 { 6850 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6851 6852 skb_ext_put(skb); 6853 newlen = newoff + skb_ext_type_len[id]; 6854 ext->chunks = newlen; 6855 ext->offset[id] = newoff; 6856 skb->extensions = ext; 6857 skb->active_extensions = 1 << id; 6858 return skb_ext_get_ptr(ext, id); 6859 } 6860 6861 /** 6862 * skb_ext_add - allocate space for given extension, COW if needed 6863 * @skb: buffer 6864 * @id: extension to allocate space for 6865 * 6866 * Allocates enough space for the given extension. 6867 * If the extension is already present, a pointer to that extension 6868 * is returned. 6869 * 6870 * If the skb was cloned, COW applies and the returned memory can be 6871 * modified without changing the extension space of clones buffers. 6872 * 6873 * Returns pointer to the extension or NULL on allocation failure. 6874 */ 6875 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6876 { 6877 struct skb_ext *new, *old = NULL; 6878 unsigned int newlen, newoff; 6879 6880 if (skb->active_extensions) { 6881 old = skb->extensions; 6882 6883 new = skb_ext_maybe_cow(old, skb->active_extensions); 6884 if (!new) 6885 return NULL; 6886 6887 if (__skb_ext_exist(new, id)) 6888 goto set_active; 6889 6890 newoff = new->chunks; 6891 } else { 6892 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6893 6894 new = __skb_ext_alloc(GFP_ATOMIC); 6895 if (!new) 6896 return NULL; 6897 } 6898 6899 newlen = newoff + skb_ext_type_len[id]; 6900 new->chunks = newlen; 6901 new->offset[id] = newoff; 6902 set_active: 6903 skb->slow_gro = 1; 6904 skb->extensions = new; 6905 skb->active_extensions |= 1 << id; 6906 return skb_ext_get_ptr(new, id); 6907 } 6908 EXPORT_SYMBOL(skb_ext_add); 6909 6910 #ifdef CONFIG_XFRM 6911 static void skb_ext_put_sp(struct sec_path *sp) 6912 { 6913 unsigned int i; 6914 6915 for (i = 0; i < sp->len; i++) 6916 xfrm_state_put(sp->xvec[i]); 6917 } 6918 #endif 6919 6920 #ifdef CONFIG_MCTP_FLOWS 6921 static void skb_ext_put_mctp(struct mctp_flow *flow) 6922 { 6923 if (flow->key) 6924 mctp_key_unref(flow->key); 6925 } 6926 #endif 6927 6928 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6929 { 6930 struct skb_ext *ext = skb->extensions; 6931 6932 skb->active_extensions &= ~(1 << id); 6933 if (skb->active_extensions == 0) { 6934 skb->extensions = NULL; 6935 __skb_ext_put(ext); 6936 #ifdef CONFIG_XFRM 6937 } else if (id == SKB_EXT_SEC_PATH && 6938 refcount_read(&ext->refcnt) == 1) { 6939 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6940 6941 skb_ext_put_sp(sp); 6942 sp->len = 0; 6943 #endif 6944 } 6945 } 6946 EXPORT_SYMBOL(__skb_ext_del); 6947 6948 void __skb_ext_put(struct skb_ext *ext) 6949 { 6950 /* If this is last clone, nothing can increment 6951 * it after check passes. Avoids one atomic op. 6952 */ 6953 if (refcount_read(&ext->refcnt) == 1) 6954 goto free_now; 6955 6956 if (!refcount_dec_and_test(&ext->refcnt)) 6957 return; 6958 free_now: 6959 #ifdef CONFIG_XFRM 6960 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6961 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6962 #endif 6963 #ifdef CONFIG_MCTP_FLOWS 6964 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6965 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6966 #endif 6967 6968 kmem_cache_free(skbuff_ext_cache, ext); 6969 } 6970 EXPORT_SYMBOL(__skb_ext_put); 6971 #endif /* CONFIG_SKB_EXTENSIONS */ 6972 6973 /** 6974 * skb_attempt_defer_free - queue skb for remote freeing 6975 * @skb: buffer 6976 * 6977 * Put @skb in a per-cpu list, using the cpu which 6978 * allocated the skb/pages to reduce false sharing 6979 * and memory zone spinlock contention. 6980 */ 6981 void skb_attempt_defer_free(struct sk_buff *skb) 6982 { 6983 int cpu = skb->alloc_cpu; 6984 struct softnet_data *sd; 6985 unsigned int defer_max; 6986 bool kick; 6987 6988 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 6989 !cpu_online(cpu) || 6990 cpu == raw_smp_processor_id()) { 6991 nodefer: __kfree_skb(skb); 6992 return; 6993 } 6994 6995 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 6996 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 6997 6998 sd = &per_cpu(softnet_data, cpu); 6999 defer_max = READ_ONCE(sysctl_skb_defer_max); 7000 if (READ_ONCE(sd->defer_count) >= defer_max) 7001 goto nodefer; 7002 7003 spin_lock_bh(&sd->defer_lock); 7004 /* Send an IPI every time queue reaches half capacity. */ 7005 kick = sd->defer_count == (defer_max >> 1); 7006 /* Paired with the READ_ONCE() few lines above */ 7007 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 7008 7009 skb->next = sd->defer_list; 7010 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 7011 WRITE_ONCE(sd->defer_list, skb); 7012 spin_unlock_bh(&sd->defer_lock); 7013 7014 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 7015 * if we are unlucky enough (this seems very unlikely). 7016 */ 7017 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) 7018 smp_call_function_single_async(cpu, &sd->defer_csd); 7019 } 7020 7021 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 7022 size_t offset, size_t len) 7023 { 7024 const char *kaddr; 7025 __wsum csum; 7026 7027 kaddr = kmap_local_page(page); 7028 csum = csum_partial(kaddr + offset, len, 0); 7029 kunmap_local(kaddr); 7030 skb->csum = csum_block_add(skb->csum, csum, skb->len); 7031 } 7032 7033 /** 7034 * skb_splice_from_iter - Splice (or copy) pages to skbuff 7035 * @skb: The buffer to add pages to 7036 * @iter: Iterator representing the pages to be added 7037 * @maxsize: Maximum amount of pages to be added 7038 * @gfp: Allocation flags 7039 * 7040 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 7041 * extracts pages from an iterator and adds them to the socket buffer if 7042 * possible, copying them to fragments if not possible (such as if they're slab 7043 * pages). 7044 * 7045 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 7046 * insufficient space in the buffer to transfer anything. 7047 */ 7048 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 7049 ssize_t maxsize, gfp_t gfp) 7050 { 7051 size_t frag_limit = READ_ONCE(sysctl_max_skb_frags); 7052 struct page *pages[8], **ppages = pages; 7053 ssize_t spliced = 0, ret = 0; 7054 unsigned int i; 7055 7056 while (iter->count > 0) { 7057 ssize_t space, nr, len; 7058 size_t off; 7059 7060 ret = -EMSGSIZE; 7061 space = frag_limit - skb_shinfo(skb)->nr_frags; 7062 if (space < 0) 7063 break; 7064 7065 /* We might be able to coalesce without increasing nr_frags */ 7066 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 7067 7068 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 7069 if (len <= 0) { 7070 ret = len ?: -EIO; 7071 break; 7072 } 7073 7074 i = 0; 7075 do { 7076 struct page *page = pages[i++]; 7077 size_t part = min_t(size_t, PAGE_SIZE - off, len); 7078 7079 ret = -EIO; 7080 if (WARN_ON_ONCE(!sendpage_ok(page))) 7081 goto out; 7082 7083 ret = skb_append_pagefrags(skb, page, off, part, 7084 frag_limit); 7085 if (ret < 0) { 7086 iov_iter_revert(iter, len); 7087 goto out; 7088 } 7089 7090 if (skb->ip_summed == CHECKSUM_NONE) 7091 skb_splice_csum_page(skb, page, off, part); 7092 7093 off = 0; 7094 spliced += part; 7095 maxsize -= part; 7096 len -= part; 7097 } while (len > 0); 7098 7099 if (maxsize <= 0) 7100 break; 7101 } 7102 7103 out: 7104 skb_len_add(skb, spliced); 7105 return spliced ?: ret; 7106 } 7107 EXPORT_SYMBOL(skb_splice_from_iter); 7108 7109 static __always_inline 7110 size_t memcpy_from_iter_csum(void *iter_from, size_t progress, 7111 size_t len, void *to, void *priv2) 7112 { 7113 __wsum *csum = priv2; 7114 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len); 7115 7116 *csum = csum_block_add(*csum, next, progress); 7117 return 0; 7118 } 7119 7120 static __always_inline 7121 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress, 7122 size_t len, void *to, void *priv2) 7123 { 7124 __wsum next, *csum = priv2; 7125 7126 next = csum_and_copy_from_user(iter_from, to + progress, len); 7127 *csum = csum_block_add(*csum, next, progress); 7128 return next ? 0 : len; 7129 } 7130 7131 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, 7132 __wsum *csum, struct iov_iter *i) 7133 { 7134 size_t copied; 7135 7136 if (WARN_ON_ONCE(!i->data_source)) 7137 return false; 7138 copied = iterate_and_advance2(i, bytes, addr, csum, 7139 copy_from_user_iter_csum, 7140 memcpy_from_iter_csum); 7141 if (likely(copied == bytes)) 7142 return true; 7143 iov_iter_revert(i, copied); 7144 return false; 7145 } 7146 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 7147