xref: /linux/net/core/skbuff.c (revision 4e0ae876f77bc01a7e77724dea57b4b82bd53244)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/tcp.h>
50 #include <linux/udp.h>
51 #include <linux/sctp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 
74 #include <linux/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79 
80 struct kmem_cache *skbuff_head_cache __ro_after_init;
81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
82 #ifdef CONFIG_SKB_EXTENSIONS
83 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
84 #endif
85 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
86 EXPORT_SYMBOL(sysctl_max_skb_frags);
87 
88 /**
89  *	skb_panic - private function for out-of-line support
90  *	@skb:	buffer
91  *	@sz:	size
92  *	@addr:	address
93  *	@msg:	skb_over_panic or skb_under_panic
94  *
95  *	Out-of-line support for skb_put() and skb_push().
96  *	Called via the wrapper skb_over_panic() or skb_under_panic().
97  *	Keep out of line to prevent kernel bloat.
98  *	__builtin_return_address is not used because it is not always reliable.
99  */
100 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
101 		      const char msg[])
102 {
103 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
104 		 msg, addr, skb->len, sz, skb->head, skb->data,
105 		 (unsigned long)skb->tail, (unsigned long)skb->end,
106 		 skb->dev ? skb->dev->name : "<NULL>");
107 	BUG();
108 }
109 
110 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
111 {
112 	skb_panic(skb, sz, addr, __func__);
113 }
114 
115 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
116 {
117 	skb_panic(skb, sz, addr, __func__);
118 }
119 
120 /*
121  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
122  * the caller if emergency pfmemalloc reserves are being used. If it is and
123  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
124  * may be used. Otherwise, the packet data may be discarded until enough
125  * memory is free
126  */
127 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
128 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
129 
130 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
131 			       unsigned long ip, bool *pfmemalloc)
132 {
133 	void *obj;
134 	bool ret_pfmemalloc = false;
135 
136 	/*
137 	 * Try a regular allocation, when that fails and we're not entitled
138 	 * to the reserves, fail.
139 	 */
140 	obj = kmalloc_node_track_caller(size,
141 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
142 					node);
143 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
144 		goto out;
145 
146 	/* Try again but now we are using pfmemalloc reserves */
147 	ret_pfmemalloc = true;
148 	obj = kmalloc_node_track_caller(size, flags, node);
149 
150 out:
151 	if (pfmemalloc)
152 		*pfmemalloc = ret_pfmemalloc;
153 
154 	return obj;
155 }
156 
157 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
158  *	'private' fields and also do memory statistics to find all the
159  *	[BEEP] leaks.
160  *
161  */
162 
163 /**
164  *	__alloc_skb	-	allocate a network buffer
165  *	@size: size to allocate
166  *	@gfp_mask: allocation mask
167  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
168  *		instead of head cache and allocate a cloned (child) skb.
169  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
170  *		allocations in case the data is required for writeback
171  *	@node: numa node to allocate memory on
172  *
173  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
174  *	tail room of at least size bytes. The object has a reference count
175  *	of one. The return is the buffer. On a failure the return is %NULL.
176  *
177  *	Buffers may only be allocated from interrupts using a @gfp_mask of
178  *	%GFP_ATOMIC.
179  */
180 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
181 			    int flags, int node)
182 {
183 	struct kmem_cache *cache;
184 	struct skb_shared_info *shinfo;
185 	struct sk_buff *skb;
186 	u8 *data;
187 	bool pfmemalloc;
188 
189 	cache = (flags & SKB_ALLOC_FCLONE)
190 		? skbuff_fclone_cache : skbuff_head_cache;
191 
192 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
193 		gfp_mask |= __GFP_MEMALLOC;
194 
195 	/* Get the HEAD */
196 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
197 	if (!skb)
198 		goto out;
199 	prefetchw(skb);
200 
201 	/* We do our best to align skb_shared_info on a separate cache
202 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
203 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
204 	 * Both skb->head and skb_shared_info are cache line aligned.
205 	 */
206 	size = SKB_DATA_ALIGN(size);
207 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
208 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
209 	if (!data)
210 		goto nodata;
211 	/* kmalloc(size) might give us more room than requested.
212 	 * Put skb_shared_info exactly at the end of allocated zone,
213 	 * to allow max possible filling before reallocation.
214 	 */
215 	size = SKB_WITH_OVERHEAD(ksize(data));
216 	prefetchw(data + size);
217 
218 	/*
219 	 * Only clear those fields we need to clear, not those that we will
220 	 * actually initialise below. Hence, don't put any more fields after
221 	 * the tail pointer in struct sk_buff!
222 	 */
223 	memset(skb, 0, offsetof(struct sk_buff, tail));
224 	/* Account for allocated memory : skb + skb->head */
225 	skb->truesize = SKB_TRUESIZE(size);
226 	skb->pfmemalloc = pfmemalloc;
227 	refcount_set(&skb->users, 1);
228 	skb->head = data;
229 	skb->data = data;
230 	skb_reset_tail_pointer(skb);
231 	skb->end = skb->tail + size;
232 	skb->mac_header = (typeof(skb->mac_header))~0U;
233 	skb->transport_header = (typeof(skb->transport_header))~0U;
234 
235 	/* make sure we initialize shinfo sequentially */
236 	shinfo = skb_shinfo(skb);
237 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
238 	atomic_set(&shinfo->dataref, 1);
239 
240 	if (flags & SKB_ALLOC_FCLONE) {
241 		struct sk_buff_fclones *fclones;
242 
243 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
244 
245 		skb->fclone = SKB_FCLONE_ORIG;
246 		refcount_set(&fclones->fclone_ref, 1);
247 
248 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
249 	}
250 out:
251 	return skb;
252 nodata:
253 	kmem_cache_free(cache, skb);
254 	skb = NULL;
255 	goto out;
256 }
257 EXPORT_SYMBOL(__alloc_skb);
258 
259 /**
260  * __build_skb - build a network buffer
261  * @data: data buffer provided by caller
262  * @frag_size: size of data, or 0 if head was kmalloced
263  *
264  * Allocate a new &sk_buff. Caller provides space holding head and
265  * skb_shared_info. @data must have been allocated by kmalloc() only if
266  * @frag_size is 0, otherwise data should come from the page allocator
267  *  or vmalloc()
268  * The return is the new skb buffer.
269  * On a failure the return is %NULL, and @data is not freed.
270  * Notes :
271  *  Before IO, driver allocates only data buffer where NIC put incoming frame
272  *  Driver should add room at head (NET_SKB_PAD) and
273  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
274  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
275  *  before giving packet to stack.
276  *  RX rings only contains data buffers, not full skbs.
277  */
278 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
279 {
280 	struct skb_shared_info *shinfo;
281 	struct sk_buff *skb;
282 	unsigned int size = frag_size ? : ksize(data);
283 
284 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
285 	if (!skb)
286 		return NULL;
287 
288 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
289 
290 	memset(skb, 0, offsetof(struct sk_buff, tail));
291 	skb->truesize = SKB_TRUESIZE(size);
292 	refcount_set(&skb->users, 1);
293 	skb->head = data;
294 	skb->data = data;
295 	skb_reset_tail_pointer(skb);
296 	skb->end = skb->tail + size;
297 	skb->mac_header = (typeof(skb->mac_header))~0U;
298 	skb->transport_header = (typeof(skb->transport_header))~0U;
299 
300 	/* make sure we initialize shinfo sequentially */
301 	shinfo = skb_shinfo(skb);
302 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
303 	atomic_set(&shinfo->dataref, 1);
304 
305 	return skb;
306 }
307 
308 /* build_skb() is wrapper over __build_skb(), that specifically
309  * takes care of skb->head and skb->pfmemalloc
310  * This means that if @frag_size is not zero, then @data must be backed
311  * by a page fragment, not kmalloc() or vmalloc()
312  */
313 struct sk_buff *build_skb(void *data, unsigned int frag_size)
314 {
315 	struct sk_buff *skb = __build_skb(data, frag_size);
316 
317 	if (skb && frag_size) {
318 		skb->head_frag = 1;
319 		if (page_is_pfmemalloc(virt_to_head_page(data)))
320 			skb->pfmemalloc = 1;
321 	}
322 	return skb;
323 }
324 EXPORT_SYMBOL(build_skb);
325 
326 #define NAPI_SKB_CACHE_SIZE	64
327 
328 struct napi_alloc_cache {
329 	struct page_frag_cache page;
330 	unsigned int skb_count;
331 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
332 };
333 
334 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
335 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
336 
337 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
338 {
339 	struct page_frag_cache *nc;
340 	unsigned long flags;
341 	void *data;
342 
343 	local_irq_save(flags);
344 	nc = this_cpu_ptr(&netdev_alloc_cache);
345 	data = page_frag_alloc(nc, fragsz, gfp_mask);
346 	local_irq_restore(flags);
347 	return data;
348 }
349 
350 /**
351  * netdev_alloc_frag - allocate a page fragment
352  * @fragsz: fragment size
353  *
354  * Allocates a frag from a page for receive buffer.
355  * Uses GFP_ATOMIC allocations.
356  */
357 void *netdev_alloc_frag(unsigned int fragsz)
358 {
359 	fragsz = SKB_DATA_ALIGN(fragsz);
360 
361 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
362 }
363 EXPORT_SYMBOL(netdev_alloc_frag);
364 
365 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
366 {
367 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
368 
369 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
370 }
371 
372 void *napi_alloc_frag(unsigned int fragsz)
373 {
374 	fragsz = SKB_DATA_ALIGN(fragsz);
375 
376 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
377 }
378 EXPORT_SYMBOL(napi_alloc_frag);
379 
380 /**
381  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
382  *	@dev: network device to receive on
383  *	@len: length to allocate
384  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
385  *
386  *	Allocate a new &sk_buff and assign it a usage count of one. The
387  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
388  *	the headroom they think they need without accounting for the
389  *	built in space. The built in space is used for optimisations.
390  *
391  *	%NULL is returned if there is no free memory.
392  */
393 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
394 				   gfp_t gfp_mask)
395 {
396 	struct page_frag_cache *nc;
397 	unsigned long flags;
398 	struct sk_buff *skb;
399 	bool pfmemalloc;
400 	void *data;
401 
402 	len += NET_SKB_PAD;
403 
404 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
405 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
406 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
407 		if (!skb)
408 			goto skb_fail;
409 		goto skb_success;
410 	}
411 
412 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
413 	len = SKB_DATA_ALIGN(len);
414 
415 	if (sk_memalloc_socks())
416 		gfp_mask |= __GFP_MEMALLOC;
417 
418 	local_irq_save(flags);
419 
420 	nc = this_cpu_ptr(&netdev_alloc_cache);
421 	data = page_frag_alloc(nc, len, gfp_mask);
422 	pfmemalloc = nc->pfmemalloc;
423 
424 	local_irq_restore(flags);
425 
426 	if (unlikely(!data))
427 		return NULL;
428 
429 	skb = __build_skb(data, len);
430 	if (unlikely(!skb)) {
431 		skb_free_frag(data);
432 		return NULL;
433 	}
434 
435 	/* use OR instead of assignment to avoid clearing of bits in mask */
436 	if (pfmemalloc)
437 		skb->pfmemalloc = 1;
438 	skb->head_frag = 1;
439 
440 skb_success:
441 	skb_reserve(skb, NET_SKB_PAD);
442 	skb->dev = dev;
443 
444 skb_fail:
445 	return skb;
446 }
447 EXPORT_SYMBOL(__netdev_alloc_skb);
448 
449 /**
450  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
451  *	@napi: napi instance this buffer was allocated for
452  *	@len: length to allocate
453  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
454  *
455  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
456  *	attempt to allocate the head from a special reserved region used
457  *	only for NAPI Rx allocation.  By doing this we can save several
458  *	CPU cycles by avoiding having to disable and re-enable IRQs.
459  *
460  *	%NULL is returned if there is no free memory.
461  */
462 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
463 				 gfp_t gfp_mask)
464 {
465 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
466 	struct sk_buff *skb;
467 	void *data;
468 
469 	len += NET_SKB_PAD + NET_IP_ALIGN;
470 
471 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
472 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
473 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
474 		if (!skb)
475 			goto skb_fail;
476 		goto skb_success;
477 	}
478 
479 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
480 	len = SKB_DATA_ALIGN(len);
481 
482 	if (sk_memalloc_socks())
483 		gfp_mask |= __GFP_MEMALLOC;
484 
485 	data = page_frag_alloc(&nc->page, len, gfp_mask);
486 	if (unlikely(!data))
487 		return NULL;
488 
489 	skb = __build_skb(data, len);
490 	if (unlikely(!skb)) {
491 		skb_free_frag(data);
492 		return NULL;
493 	}
494 
495 	/* use OR instead of assignment to avoid clearing of bits in mask */
496 	if (nc->page.pfmemalloc)
497 		skb->pfmemalloc = 1;
498 	skb->head_frag = 1;
499 
500 skb_success:
501 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
502 	skb->dev = napi->dev;
503 
504 skb_fail:
505 	return skb;
506 }
507 EXPORT_SYMBOL(__napi_alloc_skb);
508 
509 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
510 		     int size, unsigned int truesize)
511 {
512 	skb_fill_page_desc(skb, i, page, off, size);
513 	skb->len += size;
514 	skb->data_len += size;
515 	skb->truesize += truesize;
516 }
517 EXPORT_SYMBOL(skb_add_rx_frag);
518 
519 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
520 			  unsigned int truesize)
521 {
522 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
523 
524 	skb_frag_size_add(frag, size);
525 	skb->len += size;
526 	skb->data_len += size;
527 	skb->truesize += truesize;
528 }
529 EXPORT_SYMBOL(skb_coalesce_rx_frag);
530 
531 static void skb_drop_list(struct sk_buff **listp)
532 {
533 	kfree_skb_list(*listp);
534 	*listp = NULL;
535 }
536 
537 static inline void skb_drop_fraglist(struct sk_buff *skb)
538 {
539 	skb_drop_list(&skb_shinfo(skb)->frag_list);
540 }
541 
542 static void skb_clone_fraglist(struct sk_buff *skb)
543 {
544 	struct sk_buff *list;
545 
546 	skb_walk_frags(skb, list)
547 		skb_get(list);
548 }
549 
550 static void skb_free_head(struct sk_buff *skb)
551 {
552 	unsigned char *head = skb->head;
553 
554 	if (skb->head_frag)
555 		skb_free_frag(head);
556 	else
557 		kfree(head);
558 }
559 
560 static void skb_release_data(struct sk_buff *skb)
561 {
562 	struct skb_shared_info *shinfo = skb_shinfo(skb);
563 	int i;
564 
565 	if (skb->cloned &&
566 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
567 			      &shinfo->dataref))
568 		return;
569 
570 	for (i = 0; i < shinfo->nr_frags; i++)
571 		__skb_frag_unref(&shinfo->frags[i]);
572 
573 	if (shinfo->frag_list)
574 		kfree_skb_list(shinfo->frag_list);
575 
576 	skb_zcopy_clear(skb, true);
577 	skb_free_head(skb);
578 }
579 
580 /*
581  *	Free an skbuff by memory without cleaning the state.
582  */
583 static void kfree_skbmem(struct sk_buff *skb)
584 {
585 	struct sk_buff_fclones *fclones;
586 
587 	switch (skb->fclone) {
588 	case SKB_FCLONE_UNAVAILABLE:
589 		kmem_cache_free(skbuff_head_cache, skb);
590 		return;
591 
592 	case SKB_FCLONE_ORIG:
593 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
594 
595 		/* We usually free the clone (TX completion) before original skb
596 		 * This test would have no chance to be true for the clone,
597 		 * while here, branch prediction will be good.
598 		 */
599 		if (refcount_read(&fclones->fclone_ref) == 1)
600 			goto fastpath;
601 		break;
602 
603 	default: /* SKB_FCLONE_CLONE */
604 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
605 		break;
606 	}
607 	if (!refcount_dec_and_test(&fclones->fclone_ref))
608 		return;
609 fastpath:
610 	kmem_cache_free(skbuff_fclone_cache, fclones);
611 }
612 
613 void skb_release_head_state(struct sk_buff *skb)
614 {
615 	skb_dst_drop(skb);
616 	if (skb->destructor) {
617 		WARN_ON(in_irq());
618 		skb->destructor(skb);
619 	}
620 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
621 	nf_conntrack_put(skb_nfct(skb));
622 #endif
623 	skb_ext_put(skb);
624 }
625 
626 /* Free everything but the sk_buff shell. */
627 static void skb_release_all(struct sk_buff *skb)
628 {
629 	skb_release_head_state(skb);
630 	if (likely(skb->head))
631 		skb_release_data(skb);
632 }
633 
634 /**
635  *	__kfree_skb - private function
636  *	@skb: buffer
637  *
638  *	Free an sk_buff. Release anything attached to the buffer.
639  *	Clean the state. This is an internal helper function. Users should
640  *	always call kfree_skb
641  */
642 
643 void __kfree_skb(struct sk_buff *skb)
644 {
645 	skb_release_all(skb);
646 	kfree_skbmem(skb);
647 }
648 EXPORT_SYMBOL(__kfree_skb);
649 
650 /**
651  *	kfree_skb - free an sk_buff
652  *	@skb: buffer to free
653  *
654  *	Drop a reference to the buffer and free it if the usage count has
655  *	hit zero.
656  */
657 void kfree_skb(struct sk_buff *skb)
658 {
659 	if (!skb_unref(skb))
660 		return;
661 
662 	trace_kfree_skb(skb, __builtin_return_address(0));
663 	__kfree_skb(skb);
664 }
665 EXPORT_SYMBOL(kfree_skb);
666 
667 void kfree_skb_list(struct sk_buff *segs)
668 {
669 	while (segs) {
670 		struct sk_buff *next = segs->next;
671 
672 		kfree_skb(segs);
673 		segs = next;
674 	}
675 }
676 EXPORT_SYMBOL(kfree_skb_list);
677 
678 /**
679  *	skb_tx_error - report an sk_buff xmit error
680  *	@skb: buffer that triggered an error
681  *
682  *	Report xmit error if a device callback is tracking this skb.
683  *	skb must be freed afterwards.
684  */
685 void skb_tx_error(struct sk_buff *skb)
686 {
687 	skb_zcopy_clear(skb, true);
688 }
689 EXPORT_SYMBOL(skb_tx_error);
690 
691 /**
692  *	consume_skb - free an skbuff
693  *	@skb: buffer to free
694  *
695  *	Drop a ref to the buffer and free it if the usage count has hit zero
696  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
697  *	is being dropped after a failure and notes that
698  */
699 void consume_skb(struct sk_buff *skb)
700 {
701 	if (!skb_unref(skb))
702 		return;
703 
704 	trace_consume_skb(skb);
705 	__kfree_skb(skb);
706 }
707 EXPORT_SYMBOL(consume_skb);
708 
709 /**
710  *	consume_stateless_skb - free an skbuff, assuming it is stateless
711  *	@skb: buffer to free
712  *
713  *	Alike consume_skb(), but this variant assumes that this is the last
714  *	skb reference and all the head states have been already dropped
715  */
716 void __consume_stateless_skb(struct sk_buff *skb)
717 {
718 	trace_consume_skb(skb);
719 	skb_release_data(skb);
720 	kfree_skbmem(skb);
721 }
722 
723 void __kfree_skb_flush(void)
724 {
725 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
726 
727 	/* flush skb_cache if containing objects */
728 	if (nc->skb_count) {
729 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
730 				     nc->skb_cache);
731 		nc->skb_count = 0;
732 	}
733 }
734 
735 static inline void _kfree_skb_defer(struct sk_buff *skb)
736 {
737 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
738 
739 	/* drop skb->head and call any destructors for packet */
740 	skb_release_all(skb);
741 
742 	/* record skb to CPU local list */
743 	nc->skb_cache[nc->skb_count++] = skb;
744 
745 #ifdef CONFIG_SLUB
746 	/* SLUB writes into objects when freeing */
747 	prefetchw(skb);
748 #endif
749 
750 	/* flush skb_cache if it is filled */
751 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
752 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
753 				     nc->skb_cache);
754 		nc->skb_count = 0;
755 	}
756 }
757 void __kfree_skb_defer(struct sk_buff *skb)
758 {
759 	_kfree_skb_defer(skb);
760 }
761 
762 void napi_consume_skb(struct sk_buff *skb, int budget)
763 {
764 	if (unlikely(!skb))
765 		return;
766 
767 	/* Zero budget indicate non-NAPI context called us, like netpoll */
768 	if (unlikely(!budget)) {
769 		dev_consume_skb_any(skb);
770 		return;
771 	}
772 
773 	if (!skb_unref(skb))
774 		return;
775 
776 	/* if reaching here SKB is ready to free */
777 	trace_consume_skb(skb);
778 
779 	/* if SKB is a clone, don't handle this case */
780 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
781 		__kfree_skb(skb);
782 		return;
783 	}
784 
785 	_kfree_skb_defer(skb);
786 }
787 EXPORT_SYMBOL(napi_consume_skb);
788 
789 /* Make sure a field is enclosed inside headers_start/headers_end section */
790 #define CHECK_SKB_FIELD(field) \
791 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
792 		     offsetof(struct sk_buff, headers_start));	\
793 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
794 		     offsetof(struct sk_buff, headers_end));	\
795 
796 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
797 {
798 	new->tstamp		= old->tstamp;
799 	/* We do not copy old->sk */
800 	new->dev		= old->dev;
801 	memcpy(new->cb, old->cb, sizeof(old->cb));
802 	skb_dst_copy(new, old);
803 	__skb_ext_copy(new, old);
804 	__nf_copy(new, old, false);
805 
806 	/* Note : this field could be in headers_start/headers_end section
807 	 * It is not yet because we do not want to have a 16 bit hole
808 	 */
809 	new->queue_mapping = old->queue_mapping;
810 
811 	memcpy(&new->headers_start, &old->headers_start,
812 	       offsetof(struct sk_buff, headers_end) -
813 	       offsetof(struct sk_buff, headers_start));
814 	CHECK_SKB_FIELD(protocol);
815 	CHECK_SKB_FIELD(csum);
816 	CHECK_SKB_FIELD(hash);
817 	CHECK_SKB_FIELD(priority);
818 	CHECK_SKB_FIELD(skb_iif);
819 	CHECK_SKB_FIELD(vlan_proto);
820 	CHECK_SKB_FIELD(vlan_tci);
821 	CHECK_SKB_FIELD(transport_header);
822 	CHECK_SKB_FIELD(network_header);
823 	CHECK_SKB_FIELD(mac_header);
824 	CHECK_SKB_FIELD(inner_protocol);
825 	CHECK_SKB_FIELD(inner_transport_header);
826 	CHECK_SKB_FIELD(inner_network_header);
827 	CHECK_SKB_FIELD(inner_mac_header);
828 	CHECK_SKB_FIELD(mark);
829 #ifdef CONFIG_NETWORK_SECMARK
830 	CHECK_SKB_FIELD(secmark);
831 #endif
832 #ifdef CONFIG_NET_RX_BUSY_POLL
833 	CHECK_SKB_FIELD(napi_id);
834 #endif
835 #ifdef CONFIG_XPS
836 	CHECK_SKB_FIELD(sender_cpu);
837 #endif
838 #ifdef CONFIG_NET_SCHED
839 	CHECK_SKB_FIELD(tc_index);
840 #endif
841 
842 }
843 
844 /*
845  * You should not add any new code to this function.  Add it to
846  * __copy_skb_header above instead.
847  */
848 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
849 {
850 #define C(x) n->x = skb->x
851 
852 	n->next = n->prev = NULL;
853 	n->sk = NULL;
854 	__copy_skb_header(n, skb);
855 
856 	C(len);
857 	C(data_len);
858 	C(mac_len);
859 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
860 	n->cloned = 1;
861 	n->nohdr = 0;
862 	n->peeked = 0;
863 	C(pfmemalloc);
864 	n->destructor = NULL;
865 	C(tail);
866 	C(end);
867 	C(head);
868 	C(head_frag);
869 	C(data);
870 	C(truesize);
871 	refcount_set(&n->users, 1);
872 
873 	atomic_inc(&(skb_shinfo(skb)->dataref));
874 	skb->cloned = 1;
875 
876 	return n;
877 #undef C
878 }
879 
880 /**
881  *	skb_morph	-	morph one skb into another
882  *	@dst: the skb to receive the contents
883  *	@src: the skb to supply the contents
884  *
885  *	This is identical to skb_clone except that the target skb is
886  *	supplied by the user.
887  *
888  *	The target skb is returned upon exit.
889  */
890 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
891 {
892 	skb_release_all(dst);
893 	return __skb_clone(dst, src);
894 }
895 EXPORT_SYMBOL_GPL(skb_morph);
896 
897 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
898 {
899 	unsigned long max_pg, num_pg, new_pg, old_pg;
900 	struct user_struct *user;
901 
902 	if (capable(CAP_IPC_LOCK) || !size)
903 		return 0;
904 
905 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
906 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
907 	user = mmp->user ? : current_user();
908 
909 	do {
910 		old_pg = atomic_long_read(&user->locked_vm);
911 		new_pg = old_pg + num_pg;
912 		if (new_pg > max_pg)
913 			return -ENOBUFS;
914 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
915 		 old_pg);
916 
917 	if (!mmp->user) {
918 		mmp->user = get_uid(user);
919 		mmp->num_pg = num_pg;
920 	} else {
921 		mmp->num_pg += num_pg;
922 	}
923 
924 	return 0;
925 }
926 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
927 
928 void mm_unaccount_pinned_pages(struct mmpin *mmp)
929 {
930 	if (mmp->user) {
931 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
932 		free_uid(mmp->user);
933 	}
934 }
935 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
936 
937 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
938 {
939 	struct ubuf_info *uarg;
940 	struct sk_buff *skb;
941 
942 	WARN_ON_ONCE(!in_task());
943 
944 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
945 	if (!skb)
946 		return NULL;
947 
948 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
949 	uarg = (void *)skb->cb;
950 	uarg->mmp.user = NULL;
951 
952 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
953 		kfree_skb(skb);
954 		return NULL;
955 	}
956 
957 	uarg->callback = sock_zerocopy_callback;
958 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
959 	uarg->len = 1;
960 	uarg->bytelen = size;
961 	uarg->zerocopy = 1;
962 	refcount_set(&uarg->refcnt, 1);
963 	sock_hold(sk);
964 
965 	return uarg;
966 }
967 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
968 
969 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
970 {
971 	return container_of((void *)uarg, struct sk_buff, cb);
972 }
973 
974 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
975 					struct ubuf_info *uarg)
976 {
977 	if (uarg) {
978 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
979 		u32 bytelen, next;
980 
981 		/* realloc only when socket is locked (TCP, UDP cork),
982 		 * so uarg->len and sk_zckey access is serialized
983 		 */
984 		if (!sock_owned_by_user(sk)) {
985 			WARN_ON_ONCE(1);
986 			return NULL;
987 		}
988 
989 		bytelen = uarg->bytelen + size;
990 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
991 			/* TCP can create new skb to attach new uarg */
992 			if (sk->sk_type == SOCK_STREAM)
993 				goto new_alloc;
994 			return NULL;
995 		}
996 
997 		next = (u32)atomic_read(&sk->sk_zckey);
998 		if ((u32)(uarg->id + uarg->len) == next) {
999 			if (mm_account_pinned_pages(&uarg->mmp, size))
1000 				return NULL;
1001 			uarg->len++;
1002 			uarg->bytelen = bytelen;
1003 			atomic_set(&sk->sk_zckey, ++next);
1004 			sock_zerocopy_get(uarg);
1005 			return uarg;
1006 		}
1007 	}
1008 
1009 new_alloc:
1010 	return sock_zerocopy_alloc(sk, size);
1011 }
1012 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1013 
1014 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1015 {
1016 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1017 	u32 old_lo, old_hi;
1018 	u64 sum_len;
1019 
1020 	old_lo = serr->ee.ee_info;
1021 	old_hi = serr->ee.ee_data;
1022 	sum_len = old_hi - old_lo + 1ULL + len;
1023 
1024 	if (sum_len >= (1ULL << 32))
1025 		return false;
1026 
1027 	if (lo != old_hi + 1)
1028 		return false;
1029 
1030 	serr->ee.ee_data += len;
1031 	return true;
1032 }
1033 
1034 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1035 {
1036 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1037 	struct sock_exterr_skb *serr;
1038 	struct sock *sk = skb->sk;
1039 	struct sk_buff_head *q;
1040 	unsigned long flags;
1041 	u32 lo, hi;
1042 	u16 len;
1043 
1044 	mm_unaccount_pinned_pages(&uarg->mmp);
1045 
1046 	/* if !len, there was only 1 call, and it was aborted
1047 	 * so do not queue a completion notification
1048 	 */
1049 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1050 		goto release;
1051 
1052 	len = uarg->len;
1053 	lo = uarg->id;
1054 	hi = uarg->id + len - 1;
1055 
1056 	serr = SKB_EXT_ERR(skb);
1057 	memset(serr, 0, sizeof(*serr));
1058 	serr->ee.ee_errno = 0;
1059 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1060 	serr->ee.ee_data = hi;
1061 	serr->ee.ee_info = lo;
1062 	if (!success)
1063 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1064 
1065 	q = &sk->sk_error_queue;
1066 	spin_lock_irqsave(&q->lock, flags);
1067 	tail = skb_peek_tail(q);
1068 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1069 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1070 		__skb_queue_tail(q, skb);
1071 		skb = NULL;
1072 	}
1073 	spin_unlock_irqrestore(&q->lock, flags);
1074 
1075 	sk->sk_error_report(sk);
1076 
1077 release:
1078 	consume_skb(skb);
1079 	sock_put(sk);
1080 }
1081 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1082 
1083 void sock_zerocopy_put(struct ubuf_info *uarg)
1084 {
1085 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1086 		if (uarg->callback)
1087 			uarg->callback(uarg, uarg->zerocopy);
1088 		else
1089 			consume_skb(skb_from_uarg(uarg));
1090 	}
1091 }
1092 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1093 
1094 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1095 {
1096 	if (uarg) {
1097 		struct sock *sk = skb_from_uarg(uarg)->sk;
1098 
1099 		atomic_dec(&sk->sk_zckey);
1100 		uarg->len--;
1101 
1102 		if (have_uref)
1103 			sock_zerocopy_put(uarg);
1104 	}
1105 }
1106 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1107 
1108 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1109 				   struct iov_iter *from, size_t length);
1110 
1111 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1112 {
1113 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1114 }
1115 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1116 
1117 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1118 			     struct msghdr *msg, int len,
1119 			     struct ubuf_info *uarg)
1120 {
1121 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1122 	struct iov_iter orig_iter = msg->msg_iter;
1123 	int err, orig_len = skb->len;
1124 
1125 	/* An skb can only point to one uarg. This edge case happens when
1126 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1127 	 */
1128 	if (orig_uarg && uarg != orig_uarg)
1129 		return -EEXIST;
1130 
1131 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1132 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1133 		struct sock *save_sk = skb->sk;
1134 
1135 		/* Streams do not free skb on error. Reset to prev state. */
1136 		msg->msg_iter = orig_iter;
1137 		skb->sk = sk;
1138 		___pskb_trim(skb, orig_len);
1139 		skb->sk = save_sk;
1140 		return err;
1141 	}
1142 
1143 	skb_zcopy_set(skb, uarg, NULL);
1144 	return skb->len - orig_len;
1145 }
1146 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1147 
1148 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1149 			      gfp_t gfp_mask)
1150 {
1151 	if (skb_zcopy(orig)) {
1152 		if (skb_zcopy(nskb)) {
1153 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1154 			if (!gfp_mask) {
1155 				WARN_ON_ONCE(1);
1156 				return -ENOMEM;
1157 			}
1158 			if (skb_uarg(nskb) == skb_uarg(orig))
1159 				return 0;
1160 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1161 				return -EIO;
1162 		}
1163 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1164 	}
1165 	return 0;
1166 }
1167 
1168 /**
1169  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1170  *	@skb: the skb to modify
1171  *	@gfp_mask: allocation priority
1172  *
1173  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1174  *	It will copy all frags into kernel and drop the reference
1175  *	to userspace pages.
1176  *
1177  *	If this function is called from an interrupt gfp_mask() must be
1178  *	%GFP_ATOMIC.
1179  *
1180  *	Returns 0 on success or a negative error code on failure
1181  *	to allocate kernel memory to copy to.
1182  */
1183 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1184 {
1185 	int num_frags = skb_shinfo(skb)->nr_frags;
1186 	struct page *page, *head = NULL;
1187 	int i, new_frags;
1188 	u32 d_off;
1189 
1190 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1191 		return -EINVAL;
1192 
1193 	if (!num_frags)
1194 		goto release;
1195 
1196 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1197 	for (i = 0; i < new_frags; i++) {
1198 		page = alloc_page(gfp_mask);
1199 		if (!page) {
1200 			while (head) {
1201 				struct page *next = (struct page *)page_private(head);
1202 				put_page(head);
1203 				head = next;
1204 			}
1205 			return -ENOMEM;
1206 		}
1207 		set_page_private(page, (unsigned long)head);
1208 		head = page;
1209 	}
1210 
1211 	page = head;
1212 	d_off = 0;
1213 	for (i = 0; i < num_frags; i++) {
1214 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1215 		u32 p_off, p_len, copied;
1216 		struct page *p;
1217 		u8 *vaddr;
1218 
1219 		skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1220 				      p, p_off, p_len, copied) {
1221 			u32 copy, done = 0;
1222 			vaddr = kmap_atomic(p);
1223 
1224 			while (done < p_len) {
1225 				if (d_off == PAGE_SIZE) {
1226 					d_off = 0;
1227 					page = (struct page *)page_private(page);
1228 				}
1229 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1230 				memcpy(page_address(page) + d_off,
1231 				       vaddr + p_off + done, copy);
1232 				done += copy;
1233 				d_off += copy;
1234 			}
1235 			kunmap_atomic(vaddr);
1236 		}
1237 	}
1238 
1239 	/* skb frags release userspace buffers */
1240 	for (i = 0; i < num_frags; i++)
1241 		skb_frag_unref(skb, i);
1242 
1243 	/* skb frags point to kernel buffers */
1244 	for (i = 0; i < new_frags - 1; i++) {
1245 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1246 		head = (struct page *)page_private(head);
1247 	}
1248 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1249 	skb_shinfo(skb)->nr_frags = new_frags;
1250 
1251 release:
1252 	skb_zcopy_clear(skb, false);
1253 	return 0;
1254 }
1255 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1256 
1257 /**
1258  *	skb_clone	-	duplicate an sk_buff
1259  *	@skb: buffer to clone
1260  *	@gfp_mask: allocation priority
1261  *
1262  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1263  *	copies share the same packet data but not structure. The new
1264  *	buffer has a reference count of 1. If the allocation fails the
1265  *	function returns %NULL otherwise the new buffer is returned.
1266  *
1267  *	If this function is called from an interrupt gfp_mask() must be
1268  *	%GFP_ATOMIC.
1269  */
1270 
1271 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1272 {
1273 	struct sk_buff_fclones *fclones = container_of(skb,
1274 						       struct sk_buff_fclones,
1275 						       skb1);
1276 	struct sk_buff *n;
1277 
1278 	if (skb_orphan_frags(skb, gfp_mask))
1279 		return NULL;
1280 
1281 	if (skb->fclone == SKB_FCLONE_ORIG &&
1282 	    refcount_read(&fclones->fclone_ref) == 1) {
1283 		n = &fclones->skb2;
1284 		refcount_set(&fclones->fclone_ref, 2);
1285 	} else {
1286 		if (skb_pfmemalloc(skb))
1287 			gfp_mask |= __GFP_MEMALLOC;
1288 
1289 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1290 		if (!n)
1291 			return NULL;
1292 
1293 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1294 	}
1295 
1296 	return __skb_clone(n, skb);
1297 }
1298 EXPORT_SYMBOL(skb_clone);
1299 
1300 void skb_headers_offset_update(struct sk_buff *skb, int off)
1301 {
1302 	/* Only adjust this if it actually is csum_start rather than csum */
1303 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1304 		skb->csum_start += off;
1305 	/* {transport,network,mac}_header and tail are relative to skb->head */
1306 	skb->transport_header += off;
1307 	skb->network_header   += off;
1308 	if (skb_mac_header_was_set(skb))
1309 		skb->mac_header += off;
1310 	skb->inner_transport_header += off;
1311 	skb->inner_network_header += off;
1312 	skb->inner_mac_header += off;
1313 }
1314 EXPORT_SYMBOL(skb_headers_offset_update);
1315 
1316 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1317 {
1318 	__copy_skb_header(new, old);
1319 
1320 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1321 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1322 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1323 }
1324 EXPORT_SYMBOL(skb_copy_header);
1325 
1326 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1327 {
1328 	if (skb_pfmemalloc(skb))
1329 		return SKB_ALLOC_RX;
1330 	return 0;
1331 }
1332 
1333 /**
1334  *	skb_copy	-	create private copy of an sk_buff
1335  *	@skb: buffer to copy
1336  *	@gfp_mask: allocation priority
1337  *
1338  *	Make a copy of both an &sk_buff and its data. This is used when the
1339  *	caller wishes to modify the data and needs a private copy of the
1340  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1341  *	on success. The returned buffer has a reference count of 1.
1342  *
1343  *	As by-product this function converts non-linear &sk_buff to linear
1344  *	one, so that &sk_buff becomes completely private and caller is allowed
1345  *	to modify all the data of returned buffer. This means that this
1346  *	function is not recommended for use in circumstances when only
1347  *	header is going to be modified. Use pskb_copy() instead.
1348  */
1349 
1350 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1351 {
1352 	int headerlen = skb_headroom(skb);
1353 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1354 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1355 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1356 
1357 	if (!n)
1358 		return NULL;
1359 
1360 	/* Set the data pointer */
1361 	skb_reserve(n, headerlen);
1362 	/* Set the tail pointer and length */
1363 	skb_put(n, skb->len);
1364 
1365 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1366 
1367 	skb_copy_header(n, skb);
1368 	return n;
1369 }
1370 EXPORT_SYMBOL(skb_copy);
1371 
1372 /**
1373  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1374  *	@skb: buffer to copy
1375  *	@headroom: headroom of new skb
1376  *	@gfp_mask: allocation priority
1377  *	@fclone: if true allocate the copy of the skb from the fclone
1378  *	cache instead of the head cache; it is recommended to set this
1379  *	to true for the cases where the copy will likely be cloned
1380  *
1381  *	Make a copy of both an &sk_buff and part of its data, located
1382  *	in header. Fragmented data remain shared. This is used when
1383  *	the caller wishes to modify only header of &sk_buff and needs
1384  *	private copy of the header to alter. Returns %NULL on failure
1385  *	or the pointer to the buffer on success.
1386  *	The returned buffer has a reference count of 1.
1387  */
1388 
1389 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1390 				   gfp_t gfp_mask, bool fclone)
1391 {
1392 	unsigned int size = skb_headlen(skb) + headroom;
1393 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1394 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1395 
1396 	if (!n)
1397 		goto out;
1398 
1399 	/* Set the data pointer */
1400 	skb_reserve(n, headroom);
1401 	/* Set the tail pointer and length */
1402 	skb_put(n, skb_headlen(skb));
1403 	/* Copy the bytes */
1404 	skb_copy_from_linear_data(skb, n->data, n->len);
1405 
1406 	n->truesize += skb->data_len;
1407 	n->data_len  = skb->data_len;
1408 	n->len	     = skb->len;
1409 
1410 	if (skb_shinfo(skb)->nr_frags) {
1411 		int i;
1412 
1413 		if (skb_orphan_frags(skb, gfp_mask) ||
1414 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1415 			kfree_skb(n);
1416 			n = NULL;
1417 			goto out;
1418 		}
1419 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1420 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1421 			skb_frag_ref(skb, i);
1422 		}
1423 		skb_shinfo(n)->nr_frags = i;
1424 	}
1425 
1426 	if (skb_has_frag_list(skb)) {
1427 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1428 		skb_clone_fraglist(n);
1429 	}
1430 
1431 	skb_copy_header(n, skb);
1432 out:
1433 	return n;
1434 }
1435 EXPORT_SYMBOL(__pskb_copy_fclone);
1436 
1437 /**
1438  *	pskb_expand_head - reallocate header of &sk_buff
1439  *	@skb: buffer to reallocate
1440  *	@nhead: room to add at head
1441  *	@ntail: room to add at tail
1442  *	@gfp_mask: allocation priority
1443  *
1444  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1445  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1446  *	reference count of 1. Returns zero in the case of success or error,
1447  *	if expansion failed. In the last case, &sk_buff is not changed.
1448  *
1449  *	All the pointers pointing into skb header may change and must be
1450  *	reloaded after call to this function.
1451  */
1452 
1453 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1454 		     gfp_t gfp_mask)
1455 {
1456 	int i, osize = skb_end_offset(skb);
1457 	int size = osize + nhead + ntail;
1458 	long off;
1459 	u8 *data;
1460 
1461 	BUG_ON(nhead < 0);
1462 
1463 	BUG_ON(skb_shared(skb));
1464 
1465 	size = SKB_DATA_ALIGN(size);
1466 
1467 	if (skb_pfmemalloc(skb))
1468 		gfp_mask |= __GFP_MEMALLOC;
1469 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1470 			       gfp_mask, NUMA_NO_NODE, NULL);
1471 	if (!data)
1472 		goto nodata;
1473 	size = SKB_WITH_OVERHEAD(ksize(data));
1474 
1475 	/* Copy only real data... and, alas, header. This should be
1476 	 * optimized for the cases when header is void.
1477 	 */
1478 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1479 
1480 	memcpy((struct skb_shared_info *)(data + size),
1481 	       skb_shinfo(skb),
1482 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1483 
1484 	/*
1485 	 * if shinfo is shared we must drop the old head gracefully, but if it
1486 	 * is not we can just drop the old head and let the existing refcount
1487 	 * be since all we did is relocate the values
1488 	 */
1489 	if (skb_cloned(skb)) {
1490 		if (skb_orphan_frags(skb, gfp_mask))
1491 			goto nofrags;
1492 		if (skb_zcopy(skb))
1493 			refcount_inc(&skb_uarg(skb)->refcnt);
1494 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1495 			skb_frag_ref(skb, i);
1496 
1497 		if (skb_has_frag_list(skb))
1498 			skb_clone_fraglist(skb);
1499 
1500 		skb_release_data(skb);
1501 	} else {
1502 		skb_free_head(skb);
1503 	}
1504 	off = (data + nhead) - skb->head;
1505 
1506 	skb->head     = data;
1507 	skb->head_frag = 0;
1508 	skb->data    += off;
1509 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1510 	skb->end      = size;
1511 	off           = nhead;
1512 #else
1513 	skb->end      = skb->head + size;
1514 #endif
1515 	skb->tail	      += off;
1516 	skb_headers_offset_update(skb, nhead);
1517 	skb->cloned   = 0;
1518 	skb->hdr_len  = 0;
1519 	skb->nohdr    = 0;
1520 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1521 
1522 	skb_metadata_clear(skb);
1523 
1524 	/* It is not generally safe to change skb->truesize.
1525 	 * For the moment, we really care of rx path, or
1526 	 * when skb is orphaned (not attached to a socket).
1527 	 */
1528 	if (!skb->sk || skb->destructor == sock_edemux)
1529 		skb->truesize += size - osize;
1530 
1531 	return 0;
1532 
1533 nofrags:
1534 	kfree(data);
1535 nodata:
1536 	return -ENOMEM;
1537 }
1538 EXPORT_SYMBOL(pskb_expand_head);
1539 
1540 /* Make private copy of skb with writable head and some headroom */
1541 
1542 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1543 {
1544 	struct sk_buff *skb2;
1545 	int delta = headroom - skb_headroom(skb);
1546 
1547 	if (delta <= 0)
1548 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1549 	else {
1550 		skb2 = skb_clone(skb, GFP_ATOMIC);
1551 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1552 					     GFP_ATOMIC)) {
1553 			kfree_skb(skb2);
1554 			skb2 = NULL;
1555 		}
1556 	}
1557 	return skb2;
1558 }
1559 EXPORT_SYMBOL(skb_realloc_headroom);
1560 
1561 /**
1562  *	skb_copy_expand	-	copy and expand sk_buff
1563  *	@skb: buffer to copy
1564  *	@newheadroom: new free bytes at head
1565  *	@newtailroom: new free bytes at tail
1566  *	@gfp_mask: allocation priority
1567  *
1568  *	Make a copy of both an &sk_buff and its data and while doing so
1569  *	allocate additional space.
1570  *
1571  *	This is used when the caller wishes to modify the data and needs a
1572  *	private copy of the data to alter as well as more space for new fields.
1573  *	Returns %NULL on failure or the pointer to the buffer
1574  *	on success. The returned buffer has a reference count of 1.
1575  *
1576  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1577  *	is called from an interrupt.
1578  */
1579 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1580 				int newheadroom, int newtailroom,
1581 				gfp_t gfp_mask)
1582 {
1583 	/*
1584 	 *	Allocate the copy buffer
1585 	 */
1586 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1587 					gfp_mask, skb_alloc_rx_flag(skb),
1588 					NUMA_NO_NODE);
1589 	int oldheadroom = skb_headroom(skb);
1590 	int head_copy_len, head_copy_off;
1591 
1592 	if (!n)
1593 		return NULL;
1594 
1595 	skb_reserve(n, newheadroom);
1596 
1597 	/* Set the tail pointer and length */
1598 	skb_put(n, skb->len);
1599 
1600 	head_copy_len = oldheadroom;
1601 	head_copy_off = 0;
1602 	if (newheadroom <= head_copy_len)
1603 		head_copy_len = newheadroom;
1604 	else
1605 		head_copy_off = newheadroom - head_copy_len;
1606 
1607 	/* Copy the linear header and data. */
1608 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1609 			     skb->len + head_copy_len));
1610 
1611 	skb_copy_header(n, skb);
1612 
1613 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1614 
1615 	return n;
1616 }
1617 EXPORT_SYMBOL(skb_copy_expand);
1618 
1619 /**
1620  *	__skb_pad		-	zero pad the tail of an skb
1621  *	@skb: buffer to pad
1622  *	@pad: space to pad
1623  *	@free_on_error: free buffer on error
1624  *
1625  *	Ensure that a buffer is followed by a padding area that is zero
1626  *	filled. Used by network drivers which may DMA or transfer data
1627  *	beyond the buffer end onto the wire.
1628  *
1629  *	May return error in out of memory cases. The skb is freed on error
1630  *	if @free_on_error is true.
1631  */
1632 
1633 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1634 {
1635 	int err;
1636 	int ntail;
1637 
1638 	/* If the skbuff is non linear tailroom is always zero.. */
1639 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1640 		memset(skb->data+skb->len, 0, pad);
1641 		return 0;
1642 	}
1643 
1644 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1645 	if (likely(skb_cloned(skb) || ntail > 0)) {
1646 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1647 		if (unlikely(err))
1648 			goto free_skb;
1649 	}
1650 
1651 	/* FIXME: The use of this function with non-linear skb's really needs
1652 	 * to be audited.
1653 	 */
1654 	err = skb_linearize(skb);
1655 	if (unlikely(err))
1656 		goto free_skb;
1657 
1658 	memset(skb->data + skb->len, 0, pad);
1659 	return 0;
1660 
1661 free_skb:
1662 	if (free_on_error)
1663 		kfree_skb(skb);
1664 	return err;
1665 }
1666 EXPORT_SYMBOL(__skb_pad);
1667 
1668 /**
1669  *	pskb_put - add data to the tail of a potentially fragmented buffer
1670  *	@skb: start of the buffer to use
1671  *	@tail: tail fragment of the buffer to use
1672  *	@len: amount of data to add
1673  *
1674  *	This function extends the used data area of the potentially
1675  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1676  *	@skb itself. If this would exceed the total buffer size the kernel
1677  *	will panic. A pointer to the first byte of the extra data is
1678  *	returned.
1679  */
1680 
1681 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1682 {
1683 	if (tail != skb) {
1684 		skb->data_len += len;
1685 		skb->len += len;
1686 	}
1687 	return skb_put(tail, len);
1688 }
1689 EXPORT_SYMBOL_GPL(pskb_put);
1690 
1691 /**
1692  *	skb_put - add data to a buffer
1693  *	@skb: buffer to use
1694  *	@len: amount of data to add
1695  *
1696  *	This function extends the used data area of the buffer. If this would
1697  *	exceed the total buffer size the kernel will panic. A pointer to the
1698  *	first byte of the extra data is returned.
1699  */
1700 void *skb_put(struct sk_buff *skb, unsigned int len)
1701 {
1702 	void *tmp = skb_tail_pointer(skb);
1703 	SKB_LINEAR_ASSERT(skb);
1704 	skb->tail += len;
1705 	skb->len  += len;
1706 	if (unlikely(skb->tail > skb->end))
1707 		skb_over_panic(skb, len, __builtin_return_address(0));
1708 	return tmp;
1709 }
1710 EXPORT_SYMBOL(skb_put);
1711 
1712 /**
1713  *	skb_push - add data to the start of a buffer
1714  *	@skb: buffer to use
1715  *	@len: amount of data to add
1716  *
1717  *	This function extends the used data area of the buffer at the buffer
1718  *	start. If this would exceed the total buffer headroom the kernel will
1719  *	panic. A pointer to the first byte of the extra data is returned.
1720  */
1721 void *skb_push(struct sk_buff *skb, unsigned int len)
1722 {
1723 	skb->data -= len;
1724 	skb->len  += len;
1725 	if (unlikely(skb->data < skb->head))
1726 		skb_under_panic(skb, len, __builtin_return_address(0));
1727 	return skb->data;
1728 }
1729 EXPORT_SYMBOL(skb_push);
1730 
1731 /**
1732  *	skb_pull - remove data from the start of a buffer
1733  *	@skb: buffer to use
1734  *	@len: amount of data to remove
1735  *
1736  *	This function removes data from the start of a buffer, returning
1737  *	the memory to the headroom. A pointer to the next data in the buffer
1738  *	is returned. Once the data has been pulled future pushes will overwrite
1739  *	the old data.
1740  */
1741 void *skb_pull(struct sk_buff *skb, unsigned int len)
1742 {
1743 	return skb_pull_inline(skb, len);
1744 }
1745 EXPORT_SYMBOL(skb_pull);
1746 
1747 /**
1748  *	skb_trim - remove end from a buffer
1749  *	@skb: buffer to alter
1750  *	@len: new length
1751  *
1752  *	Cut the length of a buffer down by removing data from the tail. If
1753  *	the buffer is already under the length specified it is not modified.
1754  *	The skb must be linear.
1755  */
1756 void skb_trim(struct sk_buff *skb, unsigned int len)
1757 {
1758 	if (skb->len > len)
1759 		__skb_trim(skb, len);
1760 }
1761 EXPORT_SYMBOL(skb_trim);
1762 
1763 /* Trims skb to length len. It can change skb pointers.
1764  */
1765 
1766 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1767 {
1768 	struct sk_buff **fragp;
1769 	struct sk_buff *frag;
1770 	int offset = skb_headlen(skb);
1771 	int nfrags = skb_shinfo(skb)->nr_frags;
1772 	int i;
1773 	int err;
1774 
1775 	if (skb_cloned(skb) &&
1776 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1777 		return err;
1778 
1779 	i = 0;
1780 	if (offset >= len)
1781 		goto drop_pages;
1782 
1783 	for (; i < nfrags; i++) {
1784 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1785 
1786 		if (end < len) {
1787 			offset = end;
1788 			continue;
1789 		}
1790 
1791 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1792 
1793 drop_pages:
1794 		skb_shinfo(skb)->nr_frags = i;
1795 
1796 		for (; i < nfrags; i++)
1797 			skb_frag_unref(skb, i);
1798 
1799 		if (skb_has_frag_list(skb))
1800 			skb_drop_fraglist(skb);
1801 		goto done;
1802 	}
1803 
1804 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1805 	     fragp = &frag->next) {
1806 		int end = offset + frag->len;
1807 
1808 		if (skb_shared(frag)) {
1809 			struct sk_buff *nfrag;
1810 
1811 			nfrag = skb_clone(frag, GFP_ATOMIC);
1812 			if (unlikely(!nfrag))
1813 				return -ENOMEM;
1814 
1815 			nfrag->next = frag->next;
1816 			consume_skb(frag);
1817 			frag = nfrag;
1818 			*fragp = frag;
1819 		}
1820 
1821 		if (end < len) {
1822 			offset = end;
1823 			continue;
1824 		}
1825 
1826 		if (end > len &&
1827 		    unlikely((err = pskb_trim(frag, len - offset))))
1828 			return err;
1829 
1830 		if (frag->next)
1831 			skb_drop_list(&frag->next);
1832 		break;
1833 	}
1834 
1835 done:
1836 	if (len > skb_headlen(skb)) {
1837 		skb->data_len -= skb->len - len;
1838 		skb->len       = len;
1839 	} else {
1840 		skb->len       = len;
1841 		skb->data_len  = 0;
1842 		skb_set_tail_pointer(skb, len);
1843 	}
1844 
1845 	if (!skb->sk || skb->destructor == sock_edemux)
1846 		skb_condense(skb);
1847 	return 0;
1848 }
1849 EXPORT_SYMBOL(___pskb_trim);
1850 
1851 /* Note : use pskb_trim_rcsum() instead of calling this directly
1852  */
1853 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
1854 {
1855 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1856 		int delta = skb->len - len;
1857 
1858 		skb->csum = csum_block_sub(skb->csum,
1859 					   skb_checksum(skb, len, delta, 0),
1860 					   len);
1861 	}
1862 	return __pskb_trim(skb, len);
1863 }
1864 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
1865 
1866 /**
1867  *	__pskb_pull_tail - advance tail of skb header
1868  *	@skb: buffer to reallocate
1869  *	@delta: number of bytes to advance tail
1870  *
1871  *	The function makes a sense only on a fragmented &sk_buff,
1872  *	it expands header moving its tail forward and copying necessary
1873  *	data from fragmented part.
1874  *
1875  *	&sk_buff MUST have reference count of 1.
1876  *
1877  *	Returns %NULL (and &sk_buff does not change) if pull failed
1878  *	or value of new tail of skb in the case of success.
1879  *
1880  *	All the pointers pointing into skb header may change and must be
1881  *	reloaded after call to this function.
1882  */
1883 
1884 /* Moves tail of skb head forward, copying data from fragmented part,
1885  * when it is necessary.
1886  * 1. It may fail due to malloc failure.
1887  * 2. It may change skb pointers.
1888  *
1889  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1890  */
1891 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1892 {
1893 	/* If skb has not enough free space at tail, get new one
1894 	 * plus 128 bytes for future expansions. If we have enough
1895 	 * room at tail, reallocate without expansion only if skb is cloned.
1896 	 */
1897 	int i, k, eat = (skb->tail + delta) - skb->end;
1898 
1899 	if (eat > 0 || skb_cloned(skb)) {
1900 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1901 				     GFP_ATOMIC))
1902 			return NULL;
1903 	}
1904 
1905 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1906 			     skb_tail_pointer(skb), delta));
1907 
1908 	/* Optimization: no fragments, no reasons to preestimate
1909 	 * size of pulled pages. Superb.
1910 	 */
1911 	if (!skb_has_frag_list(skb))
1912 		goto pull_pages;
1913 
1914 	/* Estimate size of pulled pages. */
1915 	eat = delta;
1916 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1917 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1918 
1919 		if (size >= eat)
1920 			goto pull_pages;
1921 		eat -= size;
1922 	}
1923 
1924 	/* If we need update frag list, we are in troubles.
1925 	 * Certainly, it is possible to add an offset to skb data,
1926 	 * but taking into account that pulling is expected to
1927 	 * be very rare operation, it is worth to fight against
1928 	 * further bloating skb head and crucify ourselves here instead.
1929 	 * Pure masohism, indeed. 8)8)
1930 	 */
1931 	if (eat) {
1932 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1933 		struct sk_buff *clone = NULL;
1934 		struct sk_buff *insp = NULL;
1935 
1936 		do {
1937 			if (list->len <= eat) {
1938 				/* Eaten as whole. */
1939 				eat -= list->len;
1940 				list = list->next;
1941 				insp = list;
1942 			} else {
1943 				/* Eaten partially. */
1944 
1945 				if (skb_shared(list)) {
1946 					/* Sucks! We need to fork list. :-( */
1947 					clone = skb_clone(list, GFP_ATOMIC);
1948 					if (!clone)
1949 						return NULL;
1950 					insp = list->next;
1951 					list = clone;
1952 				} else {
1953 					/* This may be pulled without
1954 					 * problems. */
1955 					insp = list;
1956 				}
1957 				if (!pskb_pull(list, eat)) {
1958 					kfree_skb(clone);
1959 					return NULL;
1960 				}
1961 				break;
1962 			}
1963 		} while (eat);
1964 
1965 		/* Free pulled out fragments. */
1966 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1967 			skb_shinfo(skb)->frag_list = list->next;
1968 			kfree_skb(list);
1969 		}
1970 		/* And insert new clone at head. */
1971 		if (clone) {
1972 			clone->next = list;
1973 			skb_shinfo(skb)->frag_list = clone;
1974 		}
1975 	}
1976 	/* Success! Now we may commit changes to skb data. */
1977 
1978 pull_pages:
1979 	eat = delta;
1980 	k = 0;
1981 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1982 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1983 
1984 		if (size <= eat) {
1985 			skb_frag_unref(skb, i);
1986 			eat -= size;
1987 		} else {
1988 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1989 			if (eat) {
1990 				skb_shinfo(skb)->frags[k].page_offset += eat;
1991 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1992 				if (!i)
1993 					goto end;
1994 				eat = 0;
1995 			}
1996 			k++;
1997 		}
1998 	}
1999 	skb_shinfo(skb)->nr_frags = k;
2000 
2001 end:
2002 	skb->tail     += delta;
2003 	skb->data_len -= delta;
2004 
2005 	if (!skb->data_len)
2006 		skb_zcopy_clear(skb, false);
2007 
2008 	return skb_tail_pointer(skb);
2009 }
2010 EXPORT_SYMBOL(__pskb_pull_tail);
2011 
2012 /**
2013  *	skb_copy_bits - copy bits from skb to kernel buffer
2014  *	@skb: source skb
2015  *	@offset: offset in source
2016  *	@to: destination buffer
2017  *	@len: number of bytes to copy
2018  *
2019  *	Copy the specified number of bytes from the source skb to the
2020  *	destination buffer.
2021  *
2022  *	CAUTION ! :
2023  *		If its prototype is ever changed,
2024  *		check arch/{*}/net/{*}.S files,
2025  *		since it is called from BPF assembly code.
2026  */
2027 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2028 {
2029 	int start = skb_headlen(skb);
2030 	struct sk_buff *frag_iter;
2031 	int i, copy;
2032 
2033 	if (offset > (int)skb->len - len)
2034 		goto fault;
2035 
2036 	/* Copy header. */
2037 	if ((copy = start - offset) > 0) {
2038 		if (copy > len)
2039 			copy = len;
2040 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2041 		if ((len -= copy) == 0)
2042 			return 0;
2043 		offset += copy;
2044 		to     += copy;
2045 	}
2046 
2047 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2048 		int end;
2049 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2050 
2051 		WARN_ON(start > offset + len);
2052 
2053 		end = start + skb_frag_size(f);
2054 		if ((copy = end - offset) > 0) {
2055 			u32 p_off, p_len, copied;
2056 			struct page *p;
2057 			u8 *vaddr;
2058 
2059 			if (copy > len)
2060 				copy = len;
2061 
2062 			skb_frag_foreach_page(f,
2063 					      f->page_offset + offset - start,
2064 					      copy, p, p_off, p_len, copied) {
2065 				vaddr = kmap_atomic(p);
2066 				memcpy(to + copied, vaddr + p_off, p_len);
2067 				kunmap_atomic(vaddr);
2068 			}
2069 
2070 			if ((len -= copy) == 0)
2071 				return 0;
2072 			offset += copy;
2073 			to     += copy;
2074 		}
2075 		start = end;
2076 	}
2077 
2078 	skb_walk_frags(skb, frag_iter) {
2079 		int end;
2080 
2081 		WARN_ON(start > offset + len);
2082 
2083 		end = start + frag_iter->len;
2084 		if ((copy = end - offset) > 0) {
2085 			if (copy > len)
2086 				copy = len;
2087 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2088 				goto fault;
2089 			if ((len -= copy) == 0)
2090 				return 0;
2091 			offset += copy;
2092 			to     += copy;
2093 		}
2094 		start = end;
2095 	}
2096 
2097 	if (!len)
2098 		return 0;
2099 
2100 fault:
2101 	return -EFAULT;
2102 }
2103 EXPORT_SYMBOL(skb_copy_bits);
2104 
2105 /*
2106  * Callback from splice_to_pipe(), if we need to release some pages
2107  * at the end of the spd in case we error'ed out in filling the pipe.
2108  */
2109 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2110 {
2111 	put_page(spd->pages[i]);
2112 }
2113 
2114 static struct page *linear_to_page(struct page *page, unsigned int *len,
2115 				   unsigned int *offset,
2116 				   struct sock *sk)
2117 {
2118 	struct page_frag *pfrag = sk_page_frag(sk);
2119 
2120 	if (!sk_page_frag_refill(sk, pfrag))
2121 		return NULL;
2122 
2123 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2124 
2125 	memcpy(page_address(pfrag->page) + pfrag->offset,
2126 	       page_address(page) + *offset, *len);
2127 	*offset = pfrag->offset;
2128 	pfrag->offset += *len;
2129 
2130 	return pfrag->page;
2131 }
2132 
2133 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2134 			     struct page *page,
2135 			     unsigned int offset)
2136 {
2137 	return	spd->nr_pages &&
2138 		spd->pages[spd->nr_pages - 1] == page &&
2139 		(spd->partial[spd->nr_pages - 1].offset +
2140 		 spd->partial[spd->nr_pages - 1].len == offset);
2141 }
2142 
2143 /*
2144  * Fill page/offset/length into spd, if it can hold more pages.
2145  */
2146 static bool spd_fill_page(struct splice_pipe_desc *spd,
2147 			  struct pipe_inode_info *pipe, struct page *page,
2148 			  unsigned int *len, unsigned int offset,
2149 			  bool linear,
2150 			  struct sock *sk)
2151 {
2152 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2153 		return true;
2154 
2155 	if (linear) {
2156 		page = linear_to_page(page, len, &offset, sk);
2157 		if (!page)
2158 			return true;
2159 	}
2160 	if (spd_can_coalesce(spd, page, offset)) {
2161 		spd->partial[spd->nr_pages - 1].len += *len;
2162 		return false;
2163 	}
2164 	get_page(page);
2165 	spd->pages[spd->nr_pages] = page;
2166 	spd->partial[spd->nr_pages].len = *len;
2167 	spd->partial[spd->nr_pages].offset = offset;
2168 	spd->nr_pages++;
2169 
2170 	return false;
2171 }
2172 
2173 static bool __splice_segment(struct page *page, unsigned int poff,
2174 			     unsigned int plen, unsigned int *off,
2175 			     unsigned int *len,
2176 			     struct splice_pipe_desc *spd, bool linear,
2177 			     struct sock *sk,
2178 			     struct pipe_inode_info *pipe)
2179 {
2180 	if (!*len)
2181 		return true;
2182 
2183 	/* skip this segment if already processed */
2184 	if (*off >= plen) {
2185 		*off -= plen;
2186 		return false;
2187 	}
2188 
2189 	/* ignore any bits we already processed */
2190 	poff += *off;
2191 	plen -= *off;
2192 	*off = 0;
2193 
2194 	do {
2195 		unsigned int flen = min(*len, plen);
2196 
2197 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2198 				  linear, sk))
2199 			return true;
2200 		poff += flen;
2201 		plen -= flen;
2202 		*len -= flen;
2203 	} while (*len && plen);
2204 
2205 	return false;
2206 }
2207 
2208 /*
2209  * Map linear and fragment data from the skb to spd. It reports true if the
2210  * pipe is full or if we already spliced the requested length.
2211  */
2212 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2213 			      unsigned int *offset, unsigned int *len,
2214 			      struct splice_pipe_desc *spd, struct sock *sk)
2215 {
2216 	int seg;
2217 	struct sk_buff *iter;
2218 
2219 	/* map the linear part :
2220 	 * If skb->head_frag is set, this 'linear' part is backed by a
2221 	 * fragment, and if the head is not shared with any clones then
2222 	 * we can avoid a copy since we own the head portion of this page.
2223 	 */
2224 	if (__splice_segment(virt_to_page(skb->data),
2225 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2226 			     skb_headlen(skb),
2227 			     offset, len, spd,
2228 			     skb_head_is_locked(skb),
2229 			     sk, pipe))
2230 		return true;
2231 
2232 	/*
2233 	 * then map the fragments
2234 	 */
2235 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2236 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2237 
2238 		if (__splice_segment(skb_frag_page(f),
2239 				     f->page_offset, skb_frag_size(f),
2240 				     offset, len, spd, false, sk, pipe))
2241 			return true;
2242 	}
2243 
2244 	skb_walk_frags(skb, iter) {
2245 		if (*offset >= iter->len) {
2246 			*offset -= iter->len;
2247 			continue;
2248 		}
2249 		/* __skb_splice_bits() only fails if the output has no room
2250 		 * left, so no point in going over the frag_list for the error
2251 		 * case.
2252 		 */
2253 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2254 			return true;
2255 	}
2256 
2257 	return false;
2258 }
2259 
2260 /*
2261  * Map data from the skb to a pipe. Should handle both the linear part,
2262  * the fragments, and the frag list.
2263  */
2264 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2265 		    struct pipe_inode_info *pipe, unsigned int tlen,
2266 		    unsigned int flags)
2267 {
2268 	struct partial_page partial[MAX_SKB_FRAGS];
2269 	struct page *pages[MAX_SKB_FRAGS];
2270 	struct splice_pipe_desc spd = {
2271 		.pages = pages,
2272 		.partial = partial,
2273 		.nr_pages_max = MAX_SKB_FRAGS,
2274 		.ops = &nosteal_pipe_buf_ops,
2275 		.spd_release = sock_spd_release,
2276 	};
2277 	int ret = 0;
2278 
2279 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2280 
2281 	if (spd.nr_pages)
2282 		ret = splice_to_pipe(pipe, &spd);
2283 
2284 	return ret;
2285 }
2286 EXPORT_SYMBOL_GPL(skb_splice_bits);
2287 
2288 /* Send skb data on a socket. Socket must be locked. */
2289 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2290 			 int len)
2291 {
2292 	unsigned int orig_len = len;
2293 	struct sk_buff *head = skb;
2294 	unsigned short fragidx;
2295 	int slen, ret;
2296 
2297 do_frag_list:
2298 
2299 	/* Deal with head data */
2300 	while (offset < skb_headlen(skb) && len) {
2301 		struct kvec kv;
2302 		struct msghdr msg;
2303 
2304 		slen = min_t(int, len, skb_headlen(skb) - offset);
2305 		kv.iov_base = skb->data + offset;
2306 		kv.iov_len = slen;
2307 		memset(&msg, 0, sizeof(msg));
2308 
2309 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2310 		if (ret <= 0)
2311 			goto error;
2312 
2313 		offset += ret;
2314 		len -= ret;
2315 	}
2316 
2317 	/* All the data was skb head? */
2318 	if (!len)
2319 		goto out;
2320 
2321 	/* Make offset relative to start of frags */
2322 	offset -= skb_headlen(skb);
2323 
2324 	/* Find where we are in frag list */
2325 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2326 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2327 
2328 		if (offset < frag->size)
2329 			break;
2330 
2331 		offset -= frag->size;
2332 	}
2333 
2334 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2335 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2336 
2337 		slen = min_t(size_t, len, frag->size - offset);
2338 
2339 		while (slen) {
2340 			ret = kernel_sendpage_locked(sk, frag->page.p,
2341 						     frag->page_offset + offset,
2342 						     slen, MSG_DONTWAIT);
2343 			if (ret <= 0)
2344 				goto error;
2345 
2346 			len -= ret;
2347 			offset += ret;
2348 			slen -= ret;
2349 		}
2350 
2351 		offset = 0;
2352 	}
2353 
2354 	if (len) {
2355 		/* Process any frag lists */
2356 
2357 		if (skb == head) {
2358 			if (skb_has_frag_list(skb)) {
2359 				skb = skb_shinfo(skb)->frag_list;
2360 				goto do_frag_list;
2361 			}
2362 		} else if (skb->next) {
2363 			skb = skb->next;
2364 			goto do_frag_list;
2365 		}
2366 	}
2367 
2368 out:
2369 	return orig_len - len;
2370 
2371 error:
2372 	return orig_len == len ? ret : orig_len - len;
2373 }
2374 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2375 
2376 /**
2377  *	skb_store_bits - store bits from kernel buffer to skb
2378  *	@skb: destination buffer
2379  *	@offset: offset in destination
2380  *	@from: source buffer
2381  *	@len: number of bytes to copy
2382  *
2383  *	Copy the specified number of bytes from the source buffer to the
2384  *	destination skb.  This function handles all the messy bits of
2385  *	traversing fragment lists and such.
2386  */
2387 
2388 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2389 {
2390 	int start = skb_headlen(skb);
2391 	struct sk_buff *frag_iter;
2392 	int i, copy;
2393 
2394 	if (offset > (int)skb->len - len)
2395 		goto fault;
2396 
2397 	if ((copy = start - offset) > 0) {
2398 		if (copy > len)
2399 			copy = len;
2400 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2401 		if ((len -= copy) == 0)
2402 			return 0;
2403 		offset += copy;
2404 		from += copy;
2405 	}
2406 
2407 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2408 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2409 		int end;
2410 
2411 		WARN_ON(start > offset + len);
2412 
2413 		end = start + skb_frag_size(frag);
2414 		if ((copy = end - offset) > 0) {
2415 			u32 p_off, p_len, copied;
2416 			struct page *p;
2417 			u8 *vaddr;
2418 
2419 			if (copy > len)
2420 				copy = len;
2421 
2422 			skb_frag_foreach_page(frag,
2423 					      frag->page_offset + offset - start,
2424 					      copy, p, p_off, p_len, copied) {
2425 				vaddr = kmap_atomic(p);
2426 				memcpy(vaddr + p_off, from + copied, p_len);
2427 				kunmap_atomic(vaddr);
2428 			}
2429 
2430 			if ((len -= copy) == 0)
2431 				return 0;
2432 			offset += copy;
2433 			from += copy;
2434 		}
2435 		start = end;
2436 	}
2437 
2438 	skb_walk_frags(skb, frag_iter) {
2439 		int end;
2440 
2441 		WARN_ON(start > offset + len);
2442 
2443 		end = start + frag_iter->len;
2444 		if ((copy = end - offset) > 0) {
2445 			if (copy > len)
2446 				copy = len;
2447 			if (skb_store_bits(frag_iter, offset - start,
2448 					   from, copy))
2449 				goto fault;
2450 			if ((len -= copy) == 0)
2451 				return 0;
2452 			offset += copy;
2453 			from += copy;
2454 		}
2455 		start = end;
2456 	}
2457 	if (!len)
2458 		return 0;
2459 
2460 fault:
2461 	return -EFAULT;
2462 }
2463 EXPORT_SYMBOL(skb_store_bits);
2464 
2465 /* Checksum skb data. */
2466 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2467 		      __wsum csum, const struct skb_checksum_ops *ops)
2468 {
2469 	int start = skb_headlen(skb);
2470 	int i, copy = start - offset;
2471 	struct sk_buff *frag_iter;
2472 	int pos = 0;
2473 
2474 	/* Checksum header. */
2475 	if (copy > 0) {
2476 		if (copy > len)
2477 			copy = len;
2478 		csum = ops->update(skb->data + offset, copy, csum);
2479 		if ((len -= copy) == 0)
2480 			return csum;
2481 		offset += copy;
2482 		pos	= copy;
2483 	}
2484 
2485 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2486 		int end;
2487 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2488 
2489 		WARN_ON(start > offset + len);
2490 
2491 		end = start + skb_frag_size(frag);
2492 		if ((copy = end - offset) > 0) {
2493 			u32 p_off, p_len, copied;
2494 			struct page *p;
2495 			__wsum csum2;
2496 			u8 *vaddr;
2497 
2498 			if (copy > len)
2499 				copy = len;
2500 
2501 			skb_frag_foreach_page(frag,
2502 					      frag->page_offset + offset - start,
2503 					      copy, p, p_off, p_len, copied) {
2504 				vaddr = kmap_atomic(p);
2505 				csum2 = ops->update(vaddr + p_off, p_len, 0);
2506 				kunmap_atomic(vaddr);
2507 				csum = ops->combine(csum, csum2, pos, p_len);
2508 				pos += p_len;
2509 			}
2510 
2511 			if (!(len -= copy))
2512 				return csum;
2513 			offset += copy;
2514 		}
2515 		start = end;
2516 	}
2517 
2518 	skb_walk_frags(skb, frag_iter) {
2519 		int end;
2520 
2521 		WARN_ON(start > offset + len);
2522 
2523 		end = start + frag_iter->len;
2524 		if ((copy = end - offset) > 0) {
2525 			__wsum csum2;
2526 			if (copy > len)
2527 				copy = len;
2528 			csum2 = __skb_checksum(frag_iter, offset - start,
2529 					       copy, 0, ops);
2530 			csum = ops->combine(csum, csum2, pos, copy);
2531 			if ((len -= copy) == 0)
2532 				return csum;
2533 			offset += copy;
2534 			pos    += copy;
2535 		}
2536 		start = end;
2537 	}
2538 	BUG_ON(len);
2539 
2540 	return csum;
2541 }
2542 EXPORT_SYMBOL(__skb_checksum);
2543 
2544 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2545 		    int len, __wsum csum)
2546 {
2547 	const struct skb_checksum_ops ops = {
2548 		.update  = csum_partial_ext,
2549 		.combine = csum_block_add_ext,
2550 	};
2551 
2552 	return __skb_checksum(skb, offset, len, csum, &ops);
2553 }
2554 EXPORT_SYMBOL(skb_checksum);
2555 
2556 /* Both of above in one bottle. */
2557 
2558 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2559 				    u8 *to, int len, __wsum csum)
2560 {
2561 	int start = skb_headlen(skb);
2562 	int i, copy = start - offset;
2563 	struct sk_buff *frag_iter;
2564 	int pos = 0;
2565 
2566 	/* Copy header. */
2567 	if (copy > 0) {
2568 		if (copy > len)
2569 			copy = len;
2570 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2571 						 copy, csum);
2572 		if ((len -= copy) == 0)
2573 			return csum;
2574 		offset += copy;
2575 		to     += copy;
2576 		pos	= copy;
2577 	}
2578 
2579 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2580 		int end;
2581 
2582 		WARN_ON(start > offset + len);
2583 
2584 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2585 		if ((copy = end - offset) > 0) {
2586 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2587 			u32 p_off, p_len, copied;
2588 			struct page *p;
2589 			__wsum csum2;
2590 			u8 *vaddr;
2591 
2592 			if (copy > len)
2593 				copy = len;
2594 
2595 			skb_frag_foreach_page(frag,
2596 					      frag->page_offset + offset - start,
2597 					      copy, p, p_off, p_len, copied) {
2598 				vaddr = kmap_atomic(p);
2599 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2600 								  to + copied,
2601 								  p_len, 0);
2602 				kunmap_atomic(vaddr);
2603 				csum = csum_block_add(csum, csum2, pos);
2604 				pos += p_len;
2605 			}
2606 
2607 			if (!(len -= copy))
2608 				return csum;
2609 			offset += copy;
2610 			to     += copy;
2611 		}
2612 		start = end;
2613 	}
2614 
2615 	skb_walk_frags(skb, frag_iter) {
2616 		__wsum csum2;
2617 		int end;
2618 
2619 		WARN_ON(start > offset + len);
2620 
2621 		end = start + frag_iter->len;
2622 		if ((copy = end - offset) > 0) {
2623 			if (copy > len)
2624 				copy = len;
2625 			csum2 = skb_copy_and_csum_bits(frag_iter,
2626 						       offset - start,
2627 						       to, copy, 0);
2628 			csum = csum_block_add(csum, csum2, pos);
2629 			if ((len -= copy) == 0)
2630 				return csum;
2631 			offset += copy;
2632 			to     += copy;
2633 			pos    += copy;
2634 		}
2635 		start = end;
2636 	}
2637 	BUG_ON(len);
2638 	return csum;
2639 }
2640 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2641 
2642 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2643 {
2644 	__sum16 sum;
2645 
2646 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2647 	/* See comments in __skb_checksum_complete(). */
2648 	if (likely(!sum)) {
2649 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2650 		    !skb->csum_complete_sw)
2651 			netdev_rx_csum_fault(skb->dev, skb);
2652 	}
2653 	if (!skb_shared(skb))
2654 		skb->csum_valid = !sum;
2655 	return sum;
2656 }
2657 EXPORT_SYMBOL(__skb_checksum_complete_head);
2658 
2659 /* This function assumes skb->csum already holds pseudo header's checksum,
2660  * which has been changed from the hardware checksum, for example, by
2661  * __skb_checksum_validate_complete(). And, the original skb->csum must
2662  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2663  *
2664  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2665  * zero. The new checksum is stored back into skb->csum unless the skb is
2666  * shared.
2667  */
2668 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2669 {
2670 	__wsum csum;
2671 	__sum16 sum;
2672 
2673 	csum = skb_checksum(skb, 0, skb->len, 0);
2674 
2675 	sum = csum_fold(csum_add(skb->csum, csum));
2676 	/* This check is inverted, because we already knew the hardware
2677 	 * checksum is invalid before calling this function. So, if the
2678 	 * re-computed checksum is valid instead, then we have a mismatch
2679 	 * between the original skb->csum and skb_checksum(). This means either
2680 	 * the original hardware checksum is incorrect or we screw up skb->csum
2681 	 * when moving skb->data around.
2682 	 */
2683 	if (likely(!sum)) {
2684 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2685 		    !skb->csum_complete_sw)
2686 			netdev_rx_csum_fault(skb->dev, skb);
2687 	}
2688 
2689 	if (!skb_shared(skb)) {
2690 		/* Save full packet checksum */
2691 		skb->csum = csum;
2692 		skb->ip_summed = CHECKSUM_COMPLETE;
2693 		skb->csum_complete_sw = 1;
2694 		skb->csum_valid = !sum;
2695 	}
2696 
2697 	return sum;
2698 }
2699 EXPORT_SYMBOL(__skb_checksum_complete);
2700 
2701 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2702 {
2703 	net_warn_ratelimited(
2704 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2705 		__func__);
2706 	return 0;
2707 }
2708 
2709 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2710 				       int offset, int len)
2711 {
2712 	net_warn_ratelimited(
2713 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2714 		__func__);
2715 	return 0;
2716 }
2717 
2718 static const struct skb_checksum_ops default_crc32c_ops = {
2719 	.update  = warn_crc32c_csum_update,
2720 	.combine = warn_crc32c_csum_combine,
2721 };
2722 
2723 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2724 	&default_crc32c_ops;
2725 EXPORT_SYMBOL(crc32c_csum_stub);
2726 
2727  /**
2728  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2729  *	@from: source buffer
2730  *
2731  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2732  *	into skb_zerocopy().
2733  */
2734 unsigned int
2735 skb_zerocopy_headlen(const struct sk_buff *from)
2736 {
2737 	unsigned int hlen = 0;
2738 
2739 	if (!from->head_frag ||
2740 	    skb_headlen(from) < L1_CACHE_BYTES ||
2741 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2742 		hlen = skb_headlen(from);
2743 
2744 	if (skb_has_frag_list(from))
2745 		hlen = from->len;
2746 
2747 	return hlen;
2748 }
2749 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2750 
2751 /**
2752  *	skb_zerocopy - Zero copy skb to skb
2753  *	@to: destination buffer
2754  *	@from: source buffer
2755  *	@len: number of bytes to copy from source buffer
2756  *	@hlen: size of linear headroom in destination buffer
2757  *
2758  *	Copies up to `len` bytes from `from` to `to` by creating references
2759  *	to the frags in the source buffer.
2760  *
2761  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2762  *	headroom in the `to` buffer.
2763  *
2764  *	Return value:
2765  *	0: everything is OK
2766  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2767  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2768  */
2769 int
2770 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2771 {
2772 	int i, j = 0;
2773 	int plen = 0; /* length of skb->head fragment */
2774 	int ret;
2775 	struct page *page;
2776 	unsigned int offset;
2777 
2778 	BUG_ON(!from->head_frag && !hlen);
2779 
2780 	/* dont bother with small payloads */
2781 	if (len <= skb_tailroom(to))
2782 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2783 
2784 	if (hlen) {
2785 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2786 		if (unlikely(ret))
2787 			return ret;
2788 		len -= hlen;
2789 	} else {
2790 		plen = min_t(int, skb_headlen(from), len);
2791 		if (plen) {
2792 			page = virt_to_head_page(from->head);
2793 			offset = from->data - (unsigned char *)page_address(page);
2794 			__skb_fill_page_desc(to, 0, page, offset, plen);
2795 			get_page(page);
2796 			j = 1;
2797 			len -= plen;
2798 		}
2799 	}
2800 
2801 	to->truesize += len + plen;
2802 	to->len += len + plen;
2803 	to->data_len += len + plen;
2804 
2805 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2806 		skb_tx_error(from);
2807 		return -ENOMEM;
2808 	}
2809 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2810 
2811 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2812 		if (!len)
2813 			break;
2814 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2815 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2816 		len -= skb_shinfo(to)->frags[j].size;
2817 		skb_frag_ref(to, j);
2818 		j++;
2819 	}
2820 	skb_shinfo(to)->nr_frags = j;
2821 
2822 	return 0;
2823 }
2824 EXPORT_SYMBOL_GPL(skb_zerocopy);
2825 
2826 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2827 {
2828 	__wsum csum;
2829 	long csstart;
2830 
2831 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2832 		csstart = skb_checksum_start_offset(skb);
2833 	else
2834 		csstart = skb_headlen(skb);
2835 
2836 	BUG_ON(csstart > skb_headlen(skb));
2837 
2838 	skb_copy_from_linear_data(skb, to, csstart);
2839 
2840 	csum = 0;
2841 	if (csstart != skb->len)
2842 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2843 					      skb->len - csstart, 0);
2844 
2845 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2846 		long csstuff = csstart + skb->csum_offset;
2847 
2848 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2849 	}
2850 }
2851 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2852 
2853 /**
2854  *	skb_dequeue - remove from the head of the queue
2855  *	@list: list to dequeue from
2856  *
2857  *	Remove the head of the list. The list lock is taken so the function
2858  *	may be used safely with other locking list functions. The head item is
2859  *	returned or %NULL if the list is empty.
2860  */
2861 
2862 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2863 {
2864 	unsigned long flags;
2865 	struct sk_buff *result;
2866 
2867 	spin_lock_irqsave(&list->lock, flags);
2868 	result = __skb_dequeue(list);
2869 	spin_unlock_irqrestore(&list->lock, flags);
2870 	return result;
2871 }
2872 EXPORT_SYMBOL(skb_dequeue);
2873 
2874 /**
2875  *	skb_dequeue_tail - remove from the tail of the queue
2876  *	@list: list to dequeue from
2877  *
2878  *	Remove the tail of the list. The list lock is taken so the function
2879  *	may be used safely with other locking list functions. The tail item is
2880  *	returned or %NULL if the list is empty.
2881  */
2882 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2883 {
2884 	unsigned long flags;
2885 	struct sk_buff *result;
2886 
2887 	spin_lock_irqsave(&list->lock, flags);
2888 	result = __skb_dequeue_tail(list);
2889 	spin_unlock_irqrestore(&list->lock, flags);
2890 	return result;
2891 }
2892 EXPORT_SYMBOL(skb_dequeue_tail);
2893 
2894 /**
2895  *	skb_queue_purge - empty a list
2896  *	@list: list to empty
2897  *
2898  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2899  *	the list and one reference dropped. This function takes the list
2900  *	lock and is atomic with respect to other list locking functions.
2901  */
2902 void skb_queue_purge(struct sk_buff_head *list)
2903 {
2904 	struct sk_buff *skb;
2905 	while ((skb = skb_dequeue(list)) != NULL)
2906 		kfree_skb(skb);
2907 }
2908 EXPORT_SYMBOL(skb_queue_purge);
2909 
2910 /**
2911  *	skb_rbtree_purge - empty a skb rbtree
2912  *	@root: root of the rbtree to empty
2913  *	Return value: the sum of truesizes of all purged skbs.
2914  *
2915  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2916  *	the list and one reference dropped. This function does not take
2917  *	any lock. Synchronization should be handled by the caller (e.g., TCP
2918  *	out-of-order queue is protected by the socket lock).
2919  */
2920 unsigned int skb_rbtree_purge(struct rb_root *root)
2921 {
2922 	struct rb_node *p = rb_first(root);
2923 	unsigned int sum = 0;
2924 
2925 	while (p) {
2926 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2927 
2928 		p = rb_next(p);
2929 		rb_erase(&skb->rbnode, root);
2930 		sum += skb->truesize;
2931 		kfree_skb(skb);
2932 	}
2933 	return sum;
2934 }
2935 
2936 /**
2937  *	skb_queue_head - queue a buffer at the list head
2938  *	@list: list to use
2939  *	@newsk: buffer to queue
2940  *
2941  *	Queue a buffer at the start of the list. This function takes the
2942  *	list lock and can be used safely with other locking &sk_buff functions
2943  *	safely.
2944  *
2945  *	A buffer cannot be placed on two lists at the same time.
2946  */
2947 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2948 {
2949 	unsigned long flags;
2950 
2951 	spin_lock_irqsave(&list->lock, flags);
2952 	__skb_queue_head(list, newsk);
2953 	spin_unlock_irqrestore(&list->lock, flags);
2954 }
2955 EXPORT_SYMBOL(skb_queue_head);
2956 
2957 /**
2958  *	skb_queue_tail - queue a buffer at the list tail
2959  *	@list: list to use
2960  *	@newsk: buffer to queue
2961  *
2962  *	Queue a buffer at the tail of the list. This function takes the
2963  *	list lock and can be used safely with other locking &sk_buff functions
2964  *	safely.
2965  *
2966  *	A buffer cannot be placed on two lists at the same time.
2967  */
2968 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2969 {
2970 	unsigned long flags;
2971 
2972 	spin_lock_irqsave(&list->lock, flags);
2973 	__skb_queue_tail(list, newsk);
2974 	spin_unlock_irqrestore(&list->lock, flags);
2975 }
2976 EXPORT_SYMBOL(skb_queue_tail);
2977 
2978 /**
2979  *	skb_unlink	-	remove a buffer from a list
2980  *	@skb: buffer to remove
2981  *	@list: list to use
2982  *
2983  *	Remove a packet from a list. The list locks are taken and this
2984  *	function is atomic with respect to other list locked calls
2985  *
2986  *	You must know what list the SKB is on.
2987  */
2988 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2989 {
2990 	unsigned long flags;
2991 
2992 	spin_lock_irqsave(&list->lock, flags);
2993 	__skb_unlink(skb, list);
2994 	spin_unlock_irqrestore(&list->lock, flags);
2995 }
2996 EXPORT_SYMBOL(skb_unlink);
2997 
2998 /**
2999  *	skb_append	-	append a buffer
3000  *	@old: buffer to insert after
3001  *	@newsk: buffer to insert
3002  *	@list: list to use
3003  *
3004  *	Place a packet after a given packet in a list. The list locks are taken
3005  *	and this function is atomic with respect to other list locked calls.
3006  *	A buffer cannot be placed on two lists at the same time.
3007  */
3008 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3009 {
3010 	unsigned long flags;
3011 
3012 	spin_lock_irqsave(&list->lock, flags);
3013 	__skb_queue_after(list, old, newsk);
3014 	spin_unlock_irqrestore(&list->lock, flags);
3015 }
3016 EXPORT_SYMBOL(skb_append);
3017 
3018 static inline void skb_split_inside_header(struct sk_buff *skb,
3019 					   struct sk_buff* skb1,
3020 					   const u32 len, const int pos)
3021 {
3022 	int i;
3023 
3024 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3025 					 pos - len);
3026 	/* And move data appendix as is. */
3027 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3028 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3029 
3030 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3031 	skb_shinfo(skb)->nr_frags  = 0;
3032 	skb1->data_len		   = skb->data_len;
3033 	skb1->len		   += skb1->data_len;
3034 	skb->data_len		   = 0;
3035 	skb->len		   = len;
3036 	skb_set_tail_pointer(skb, len);
3037 }
3038 
3039 static inline void skb_split_no_header(struct sk_buff *skb,
3040 				       struct sk_buff* skb1,
3041 				       const u32 len, int pos)
3042 {
3043 	int i, k = 0;
3044 	const int nfrags = skb_shinfo(skb)->nr_frags;
3045 
3046 	skb_shinfo(skb)->nr_frags = 0;
3047 	skb1->len		  = skb1->data_len = skb->len - len;
3048 	skb->len		  = len;
3049 	skb->data_len		  = len - pos;
3050 
3051 	for (i = 0; i < nfrags; i++) {
3052 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3053 
3054 		if (pos + size > len) {
3055 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3056 
3057 			if (pos < len) {
3058 				/* Split frag.
3059 				 * We have two variants in this case:
3060 				 * 1. Move all the frag to the second
3061 				 *    part, if it is possible. F.e.
3062 				 *    this approach is mandatory for TUX,
3063 				 *    where splitting is expensive.
3064 				 * 2. Split is accurately. We make this.
3065 				 */
3066 				skb_frag_ref(skb, i);
3067 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3068 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3069 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3070 				skb_shinfo(skb)->nr_frags++;
3071 			}
3072 			k++;
3073 		} else
3074 			skb_shinfo(skb)->nr_frags++;
3075 		pos += size;
3076 	}
3077 	skb_shinfo(skb1)->nr_frags = k;
3078 }
3079 
3080 /**
3081  * skb_split - Split fragmented skb to two parts at length len.
3082  * @skb: the buffer to split
3083  * @skb1: the buffer to receive the second part
3084  * @len: new length for skb
3085  */
3086 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3087 {
3088 	int pos = skb_headlen(skb);
3089 
3090 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3091 				      SKBTX_SHARED_FRAG;
3092 	skb_zerocopy_clone(skb1, skb, 0);
3093 	if (len < pos)	/* Split line is inside header. */
3094 		skb_split_inside_header(skb, skb1, len, pos);
3095 	else		/* Second chunk has no header, nothing to copy. */
3096 		skb_split_no_header(skb, skb1, len, pos);
3097 }
3098 EXPORT_SYMBOL(skb_split);
3099 
3100 /* Shifting from/to a cloned skb is a no-go.
3101  *
3102  * Caller cannot keep skb_shinfo related pointers past calling here!
3103  */
3104 static int skb_prepare_for_shift(struct sk_buff *skb)
3105 {
3106 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3107 }
3108 
3109 /**
3110  * skb_shift - Shifts paged data partially from skb to another
3111  * @tgt: buffer into which tail data gets added
3112  * @skb: buffer from which the paged data comes from
3113  * @shiftlen: shift up to this many bytes
3114  *
3115  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3116  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3117  * It's up to caller to free skb if everything was shifted.
3118  *
3119  * If @tgt runs out of frags, the whole operation is aborted.
3120  *
3121  * Skb cannot include anything else but paged data while tgt is allowed
3122  * to have non-paged data as well.
3123  *
3124  * TODO: full sized shift could be optimized but that would need
3125  * specialized skb free'er to handle frags without up-to-date nr_frags.
3126  */
3127 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3128 {
3129 	int from, to, merge, todo;
3130 	struct skb_frag_struct *fragfrom, *fragto;
3131 
3132 	BUG_ON(shiftlen > skb->len);
3133 
3134 	if (skb_headlen(skb))
3135 		return 0;
3136 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3137 		return 0;
3138 
3139 	todo = shiftlen;
3140 	from = 0;
3141 	to = skb_shinfo(tgt)->nr_frags;
3142 	fragfrom = &skb_shinfo(skb)->frags[from];
3143 
3144 	/* Actual merge is delayed until the point when we know we can
3145 	 * commit all, so that we don't have to undo partial changes
3146 	 */
3147 	if (!to ||
3148 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3149 			      fragfrom->page_offset)) {
3150 		merge = -1;
3151 	} else {
3152 		merge = to - 1;
3153 
3154 		todo -= skb_frag_size(fragfrom);
3155 		if (todo < 0) {
3156 			if (skb_prepare_for_shift(skb) ||
3157 			    skb_prepare_for_shift(tgt))
3158 				return 0;
3159 
3160 			/* All previous frag pointers might be stale! */
3161 			fragfrom = &skb_shinfo(skb)->frags[from];
3162 			fragto = &skb_shinfo(tgt)->frags[merge];
3163 
3164 			skb_frag_size_add(fragto, shiftlen);
3165 			skb_frag_size_sub(fragfrom, shiftlen);
3166 			fragfrom->page_offset += shiftlen;
3167 
3168 			goto onlymerged;
3169 		}
3170 
3171 		from++;
3172 	}
3173 
3174 	/* Skip full, not-fitting skb to avoid expensive operations */
3175 	if ((shiftlen == skb->len) &&
3176 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3177 		return 0;
3178 
3179 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3180 		return 0;
3181 
3182 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3183 		if (to == MAX_SKB_FRAGS)
3184 			return 0;
3185 
3186 		fragfrom = &skb_shinfo(skb)->frags[from];
3187 		fragto = &skb_shinfo(tgt)->frags[to];
3188 
3189 		if (todo >= skb_frag_size(fragfrom)) {
3190 			*fragto = *fragfrom;
3191 			todo -= skb_frag_size(fragfrom);
3192 			from++;
3193 			to++;
3194 
3195 		} else {
3196 			__skb_frag_ref(fragfrom);
3197 			fragto->page = fragfrom->page;
3198 			fragto->page_offset = fragfrom->page_offset;
3199 			skb_frag_size_set(fragto, todo);
3200 
3201 			fragfrom->page_offset += todo;
3202 			skb_frag_size_sub(fragfrom, todo);
3203 			todo = 0;
3204 
3205 			to++;
3206 			break;
3207 		}
3208 	}
3209 
3210 	/* Ready to "commit" this state change to tgt */
3211 	skb_shinfo(tgt)->nr_frags = to;
3212 
3213 	if (merge >= 0) {
3214 		fragfrom = &skb_shinfo(skb)->frags[0];
3215 		fragto = &skb_shinfo(tgt)->frags[merge];
3216 
3217 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3218 		__skb_frag_unref(fragfrom);
3219 	}
3220 
3221 	/* Reposition in the original skb */
3222 	to = 0;
3223 	while (from < skb_shinfo(skb)->nr_frags)
3224 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3225 	skb_shinfo(skb)->nr_frags = to;
3226 
3227 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3228 
3229 onlymerged:
3230 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3231 	 * the other hand might need it if it needs to be resent
3232 	 */
3233 	tgt->ip_summed = CHECKSUM_PARTIAL;
3234 	skb->ip_summed = CHECKSUM_PARTIAL;
3235 
3236 	/* Yak, is it really working this way? Some helper please? */
3237 	skb->len -= shiftlen;
3238 	skb->data_len -= shiftlen;
3239 	skb->truesize -= shiftlen;
3240 	tgt->len += shiftlen;
3241 	tgt->data_len += shiftlen;
3242 	tgt->truesize += shiftlen;
3243 
3244 	return shiftlen;
3245 }
3246 
3247 /**
3248  * skb_prepare_seq_read - Prepare a sequential read of skb data
3249  * @skb: the buffer to read
3250  * @from: lower offset of data to be read
3251  * @to: upper offset of data to be read
3252  * @st: state variable
3253  *
3254  * Initializes the specified state variable. Must be called before
3255  * invoking skb_seq_read() for the first time.
3256  */
3257 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3258 			  unsigned int to, struct skb_seq_state *st)
3259 {
3260 	st->lower_offset = from;
3261 	st->upper_offset = to;
3262 	st->root_skb = st->cur_skb = skb;
3263 	st->frag_idx = st->stepped_offset = 0;
3264 	st->frag_data = NULL;
3265 }
3266 EXPORT_SYMBOL(skb_prepare_seq_read);
3267 
3268 /**
3269  * skb_seq_read - Sequentially read skb data
3270  * @consumed: number of bytes consumed by the caller so far
3271  * @data: destination pointer for data to be returned
3272  * @st: state variable
3273  *
3274  * Reads a block of skb data at @consumed relative to the
3275  * lower offset specified to skb_prepare_seq_read(). Assigns
3276  * the head of the data block to @data and returns the length
3277  * of the block or 0 if the end of the skb data or the upper
3278  * offset has been reached.
3279  *
3280  * The caller is not required to consume all of the data
3281  * returned, i.e. @consumed is typically set to the number
3282  * of bytes already consumed and the next call to
3283  * skb_seq_read() will return the remaining part of the block.
3284  *
3285  * Note 1: The size of each block of data returned can be arbitrary,
3286  *       this limitation is the cost for zerocopy sequential
3287  *       reads of potentially non linear data.
3288  *
3289  * Note 2: Fragment lists within fragments are not implemented
3290  *       at the moment, state->root_skb could be replaced with
3291  *       a stack for this purpose.
3292  */
3293 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3294 			  struct skb_seq_state *st)
3295 {
3296 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3297 	skb_frag_t *frag;
3298 
3299 	if (unlikely(abs_offset >= st->upper_offset)) {
3300 		if (st->frag_data) {
3301 			kunmap_atomic(st->frag_data);
3302 			st->frag_data = NULL;
3303 		}
3304 		return 0;
3305 	}
3306 
3307 next_skb:
3308 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3309 
3310 	if (abs_offset < block_limit && !st->frag_data) {
3311 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3312 		return block_limit - abs_offset;
3313 	}
3314 
3315 	if (st->frag_idx == 0 && !st->frag_data)
3316 		st->stepped_offset += skb_headlen(st->cur_skb);
3317 
3318 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3319 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3320 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3321 
3322 		if (abs_offset < block_limit) {
3323 			if (!st->frag_data)
3324 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3325 
3326 			*data = (u8 *) st->frag_data + frag->page_offset +
3327 				(abs_offset - st->stepped_offset);
3328 
3329 			return block_limit - abs_offset;
3330 		}
3331 
3332 		if (st->frag_data) {
3333 			kunmap_atomic(st->frag_data);
3334 			st->frag_data = NULL;
3335 		}
3336 
3337 		st->frag_idx++;
3338 		st->stepped_offset += skb_frag_size(frag);
3339 	}
3340 
3341 	if (st->frag_data) {
3342 		kunmap_atomic(st->frag_data);
3343 		st->frag_data = NULL;
3344 	}
3345 
3346 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3347 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3348 		st->frag_idx = 0;
3349 		goto next_skb;
3350 	} else if (st->cur_skb->next) {
3351 		st->cur_skb = st->cur_skb->next;
3352 		st->frag_idx = 0;
3353 		goto next_skb;
3354 	}
3355 
3356 	return 0;
3357 }
3358 EXPORT_SYMBOL(skb_seq_read);
3359 
3360 /**
3361  * skb_abort_seq_read - Abort a sequential read of skb data
3362  * @st: state variable
3363  *
3364  * Must be called if skb_seq_read() was not called until it
3365  * returned 0.
3366  */
3367 void skb_abort_seq_read(struct skb_seq_state *st)
3368 {
3369 	if (st->frag_data)
3370 		kunmap_atomic(st->frag_data);
3371 }
3372 EXPORT_SYMBOL(skb_abort_seq_read);
3373 
3374 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3375 
3376 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3377 					  struct ts_config *conf,
3378 					  struct ts_state *state)
3379 {
3380 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3381 }
3382 
3383 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3384 {
3385 	skb_abort_seq_read(TS_SKB_CB(state));
3386 }
3387 
3388 /**
3389  * skb_find_text - Find a text pattern in skb data
3390  * @skb: the buffer to look in
3391  * @from: search offset
3392  * @to: search limit
3393  * @config: textsearch configuration
3394  *
3395  * Finds a pattern in the skb data according to the specified
3396  * textsearch configuration. Use textsearch_next() to retrieve
3397  * subsequent occurrences of the pattern. Returns the offset
3398  * to the first occurrence or UINT_MAX if no match was found.
3399  */
3400 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3401 			   unsigned int to, struct ts_config *config)
3402 {
3403 	struct ts_state state;
3404 	unsigned int ret;
3405 
3406 	config->get_next_block = skb_ts_get_next_block;
3407 	config->finish = skb_ts_finish;
3408 
3409 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3410 
3411 	ret = textsearch_find(config, &state);
3412 	return (ret <= to - from ? ret : UINT_MAX);
3413 }
3414 EXPORT_SYMBOL(skb_find_text);
3415 
3416 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3417 			 int offset, size_t size)
3418 {
3419 	int i = skb_shinfo(skb)->nr_frags;
3420 
3421 	if (skb_can_coalesce(skb, i, page, offset)) {
3422 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3423 	} else if (i < MAX_SKB_FRAGS) {
3424 		get_page(page);
3425 		skb_fill_page_desc(skb, i, page, offset, size);
3426 	} else {
3427 		return -EMSGSIZE;
3428 	}
3429 
3430 	return 0;
3431 }
3432 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3433 
3434 /**
3435  *	skb_pull_rcsum - pull skb and update receive checksum
3436  *	@skb: buffer to update
3437  *	@len: length of data pulled
3438  *
3439  *	This function performs an skb_pull on the packet and updates
3440  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3441  *	receive path processing instead of skb_pull unless you know
3442  *	that the checksum difference is zero (e.g., a valid IP header)
3443  *	or you are setting ip_summed to CHECKSUM_NONE.
3444  */
3445 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3446 {
3447 	unsigned char *data = skb->data;
3448 
3449 	BUG_ON(len > skb->len);
3450 	__skb_pull(skb, len);
3451 	skb_postpull_rcsum(skb, data, len);
3452 	return skb->data;
3453 }
3454 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3455 
3456 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3457 {
3458 	skb_frag_t head_frag;
3459 	struct page *page;
3460 
3461 	page = virt_to_head_page(frag_skb->head);
3462 	head_frag.page.p = page;
3463 	head_frag.page_offset = frag_skb->data -
3464 		(unsigned char *)page_address(page);
3465 	head_frag.size = skb_headlen(frag_skb);
3466 	return head_frag;
3467 }
3468 
3469 /**
3470  *	skb_segment - Perform protocol segmentation on skb.
3471  *	@head_skb: buffer to segment
3472  *	@features: features for the output path (see dev->features)
3473  *
3474  *	This function performs segmentation on the given skb.  It returns
3475  *	a pointer to the first in a list of new skbs for the segments.
3476  *	In case of error it returns ERR_PTR(err).
3477  */
3478 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3479 			    netdev_features_t features)
3480 {
3481 	struct sk_buff *segs = NULL;
3482 	struct sk_buff *tail = NULL;
3483 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3484 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3485 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3486 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3487 	struct sk_buff *frag_skb = head_skb;
3488 	unsigned int offset = doffset;
3489 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3490 	unsigned int partial_segs = 0;
3491 	unsigned int headroom;
3492 	unsigned int len = head_skb->len;
3493 	__be16 proto;
3494 	bool csum, sg;
3495 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3496 	int err = -ENOMEM;
3497 	int i = 0;
3498 	int pos;
3499 	int dummy;
3500 
3501 	__skb_push(head_skb, doffset);
3502 	proto = skb_network_protocol(head_skb, &dummy);
3503 	if (unlikely(!proto))
3504 		return ERR_PTR(-EINVAL);
3505 
3506 	sg = !!(features & NETIF_F_SG);
3507 	csum = !!can_checksum_protocol(features, proto);
3508 
3509 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3510 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3511 			struct sk_buff *iter;
3512 			unsigned int frag_len;
3513 
3514 			if (!list_skb ||
3515 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3516 				goto normal;
3517 
3518 			/* If we get here then all the required
3519 			 * GSO features except frag_list are supported.
3520 			 * Try to split the SKB to multiple GSO SKBs
3521 			 * with no frag_list.
3522 			 * Currently we can do that only when the buffers don't
3523 			 * have a linear part and all the buffers except
3524 			 * the last are of the same length.
3525 			 */
3526 			frag_len = list_skb->len;
3527 			skb_walk_frags(head_skb, iter) {
3528 				if (frag_len != iter->len && iter->next)
3529 					goto normal;
3530 				if (skb_headlen(iter) && !iter->head_frag)
3531 					goto normal;
3532 
3533 				len -= iter->len;
3534 			}
3535 
3536 			if (len != frag_len)
3537 				goto normal;
3538 		}
3539 
3540 		/* GSO partial only requires that we trim off any excess that
3541 		 * doesn't fit into an MSS sized block, so take care of that
3542 		 * now.
3543 		 */
3544 		partial_segs = len / mss;
3545 		if (partial_segs > 1)
3546 			mss *= partial_segs;
3547 		else
3548 			partial_segs = 0;
3549 	}
3550 
3551 normal:
3552 	headroom = skb_headroom(head_skb);
3553 	pos = skb_headlen(head_skb);
3554 
3555 	do {
3556 		struct sk_buff *nskb;
3557 		skb_frag_t *nskb_frag;
3558 		int hsize;
3559 		int size;
3560 
3561 		if (unlikely(mss == GSO_BY_FRAGS)) {
3562 			len = list_skb->len;
3563 		} else {
3564 			len = head_skb->len - offset;
3565 			if (len > mss)
3566 				len = mss;
3567 		}
3568 
3569 		hsize = skb_headlen(head_skb) - offset;
3570 		if (hsize < 0)
3571 			hsize = 0;
3572 		if (hsize > len || !sg)
3573 			hsize = len;
3574 
3575 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3576 		    (skb_headlen(list_skb) == len || sg)) {
3577 			BUG_ON(skb_headlen(list_skb) > len);
3578 
3579 			i = 0;
3580 			nfrags = skb_shinfo(list_skb)->nr_frags;
3581 			frag = skb_shinfo(list_skb)->frags;
3582 			frag_skb = list_skb;
3583 			pos += skb_headlen(list_skb);
3584 
3585 			while (pos < offset + len) {
3586 				BUG_ON(i >= nfrags);
3587 
3588 				size = skb_frag_size(frag);
3589 				if (pos + size > offset + len)
3590 					break;
3591 
3592 				i++;
3593 				pos += size;
3594 				frag++;
3595 			}
3596 
3597 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3598 			list_skb = list_skb->next;
3599 
3600 			if (unlikely(!nskb))
3601 				goto err;
3602 
3603 			if (unlikely(pskb_trim(nskb, len))) {
3604 				kfree_skb(nskb);
3605 				goto err;
3606 			}
3607 
3608 			hsize = skb_end_offset(nskb);
3609 			if (skb_cow_head(nskb, doffset + headroom)) {
3610 				kfree_skb(nskb);
3611 				goto err;
3612 			}
3613 
3614 			nskb->truesize += skb_end_offset(nskb) - hsize;
3615 			skb_release_head_state(nskb);
3616 			__skb_push(nskb, doffset);
3617 		} else {
3618 			nskb = __alloc_skb(hsize + doffset + headroom,
3619 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3620 					   NUMA_NO_NODE);
3621 
3622 			if (unlikely(!nskb))
3623 				goto err;
3624 
3625 			skb_reserve(nskb, headroom);
3626 			__skb_put(nskb, doffset);
3627 		}
3628 
3629 		if (segs)
3630 			tail->next = nskb;
3631 		else
3632 			segs = nskb;
3633 		tail = nskb;
3634 
3635 		__copy_skb_header(nskb, head_skb);
3636 
3637 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3638 		skb_reset_mac_len(nskb);
3639 
3640 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3641 						 nskb->data - tnl_hlen,
3642 						 doffset + tnl_hlen);
3643 
3644 		if (nskb->len == len + doffset)
3645 			goto perform_csum_check;
3646 
3647 		if (!sg) {
3648 			if (!nskb->remcsum_offload)
3649 				nskb->ip_summed = CHECKSUM_NONE;
3650 			SKB_GSO_CB(nskb)->csum =
3651 				skb_copy_and_csum_bits(head_skb, offset,
3652 						       skb_put(nskb, len),
3653 						       len, 0);
3654 			SKB_GSO_CB(nskb)->csum_start =
3655 				skb_headroom(nskb) + doffset;
3656 			continue;
3657 		}
3658 
3659 		nskb_frag = skb_shinfo(nskb)->frags;
3660 
3661 		skb_copy_from_linear_data_offset(head_skb, offset,
3662 						 skb_put(nskb, hsize), hsize);
3663 
3664 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3665 					      SKBTX_SHARED_FRAG;
3666 
3667 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3668 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3669 			goto err;
3670 
3671 		while (pos < offset + len) {
3672 			if (i >= nfrags) {
3673 				i = 0;
3674 				nfrags = skb_shinfo(list_skb)->nr_frags;
3675 				frag = skb_shinfo(list_skb)->frags;
3676 				frag_skb = list_skb;
3677 				if (!skb_headlen(list_skb)) {
3678 					BUG_ON(!nfrags);
3679 				} else {
3680 					BUG_ON(!list_skb->head_frag);
3681 
3682 					/* to make room for head_frag. */
3683 					i--;
3684 					frag--;
3685 				}
3686 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3687 				    skb_zerocopy_clone(nskb, frag_skb,
3688 						       GFP_ATOMIC))
3689 					goto err;
3690 
3691 				list_skb = list_skb->next;
3692 			}
3693 
3694 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3695 				     MAX_SKB_FRAGS)) {
3696 				net_warn_ratelimited(
3697 					"skb_segment: too many frags: %u %u\n",
3698 					pos, mss);
3699 				err = -EINVAL;
3700 				goto err;
3701 			}
3702 
3703 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3704 			__skb_frag_ref(nskb_frag);
3705 			size = skb_frag_size(nskb_frag);
3706 
3707 			if (pos < offset) {
3708 				nskb_frag->page_offset += offset - pos;
3709 				skb_frag_size_sub(nskb_frag, offset - pos);
3710 			}
3711 
3712 			skb_shinfo(nskb)->nr_frags++;
3713 
3714 			if (pos + size <= offset + len) {
3715 				i++;
3716 				frag++;
3717 				pos += size;
3718 			} else {
3719 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3720 				goto skip_fraglist;
3721 			}
3722 
3723 			nskb_frag++;
3724 		}
3725 
3726 skip_fraglist:
3727 		nskb->data_len = len - hsize;
3728 		nskb->len += nskb->data_len;
3729 		nskb->truesize += nskb->data_len;
3730 
3731 perform_csum_check:
3732 		if (!csum) {
3733 			if (skb_has_shared_frag(nskb) &&
3734 			    __skb_linearize(nskb))
3735 				goto err;
3736 
3737 			if (!nskb->remcsum_offload)
3738 				nskb->ip_summed = CHECKSUM_NONE;
3739 			SKB_GSO_CB(nskb)->csum =
3740 				skb_checksum(nskb, doffset,
3741 					     nskb->len - doffset, 0);
3742 			SKB_GSO_CB(nskb)->csum_start =
3743 				skb_headroom(nskb) + doffset;
3744 		}
3745 	} while ((offset += len) < head_skb->len);
3746 
3747 	/* Some callers want to get the end of the list.
3748 	 * Put it in segs->prev to avoid walking the list.
3749 	 * (see validate_xmit_skb_list() for example)
3750 	 */
3751 	segs->prev = tail;
3752 
3753 	if (partial_segs) {
3754 		struct sk_buff *iter;
3755 		int type = skb_shinfo(head_skb)->gso_type;
3756 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3757 
3758 		/* Update type to add partial and then remove dodgy if set */
3759 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3760 		type &= ~SKB_GSO_DODGY;
3761 
3762 		/* Update GSO info and prepare to start updating headers on
3763 		 * our way back down the stack of protocols.
3764 		 */
3765 		for (iter = segs; iter; iter = iter->next) {
3766 			skb_shinfo(iter)->gso_size = gso_size;
3767 			skb_shinfo(iter)->gso_segs = partial_segs;
3768 			skb_shinfo(iter)->gso_type = type;
3769 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3770 		}
3771 
3772 		if (tail->len - doffset <= gso_size)
3773 			skb_shinfo(tail)->gso_size = 0;
3774 		else if (tail != segs)
3775 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3776 	}
3777 
3778 	/* Following permits correct backpressure, for protocols
3779 	 * using skb_set_owner_w().
3780 	 * Idea is to tranfert ownership from head_skb to last segment.
3781 	 */
3782 	if (head_skb->destructor == sock_wfree) {
3783 		swap(tail->truesize, head_skb->truesize);
3784 		swap(tail->destructor, head_skb->destructor);
3785 		swap(tail->sk, head_skb->sk);
3786 	}
3787 	return segs;
3788 
3789 err:
3790 	kfree_skb_list(segs);
3791 	return ERR_PTR(err);
3792 }
3793 EXPORT_SYMBOL_GPL(skb_segment);
3794 
3795 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
3796 {
3797 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3798 	unsigned int offset = skb_gro_offset(skb);
3799 	unsigned int headlen = skb_headlen(skb);
3800 	unsigned int len = skb_gro_len(skb);
3801 	unsigned int delta_truesize;
3802 	struct sk_buff *lp;
3803 
3804 	if (unlikely(p->len + len >= 65536))
3805 		return -E2BIG;
3806 
3807 	lp = NAPI_GRO_CB(p)->last;
3808 	pinfo = skb_shinfo(lp);
3809 
3810 	if (headlen <= offset) {
3811 		skb_frag_t *frag;
3812 		skb_frag_t *frag2;
3813 		int i = skbinfo->nr_frags;
3814 		int nr_frags = pinfo->nr_frags + i;
3815 
3816 		if (nr_frags > MAX_SKB_FRAGS)
3817 			goto merge;
3818 
3819 		offset -= headlen;
3820 		pinfo->nr_frags = nr_frags;
3821 		skbinfo->nr_frags = 0;
3822 
3823 		frag = pinfo->frags + nr_frags;
3824 		frag2 = skbinfo->frags + i;
3825 		do {
3826 			*--frag = *--frag2;
3827 		} while (--i);
3828 
3829 		frag->page_offset += offset;
3830 		skb_frag_size_sub(frag, offset);
3831 
3832 		/* all fragments truesize : remove (head size + sk_buff) */
3833 		delta_truesize = skb->truesize -
3834 				 SKB_TRUESIZE(skb_end_offset(skb));
3835 
3836 		skb->truesize -= skb->data_len;
3837 		skb->len -= skb->data_len;
3838 		skb->data_len = 0;
3839 
3840 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3841 		goto done;
3842 	} else if (skb->head_frag) {
3843 		int nr_frags = pinfo->nr_frags;
3844 		skb_frag_t *frag = pinfo->frags + nr_frags;
3845 		struct page *page = virt_to_head_page(skb->head);
3846 		unsigned int first_size = headlen - offset;
3847 		unsigned int first_offset;
3848 
3849 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3850 			goto merge;
3851 
3852 		first_offset = skb->data -
3853 			       (unsigned char *)page_address(page) +
3854 			       offset;
3855 
3856 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3857 
3858 		frag->page.p	  = page;
3859 		frag->page_offset = first_offset;
3860 		skb_frag_size_set(frag, first_size);
3861 
3862 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3863 		/* We dont need to clear skbinfo->nr_frags here */
3864 
3865 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3866 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3867 		goto done;
3868 	}
3869 
3870 merge:
3871 	delta_truesize = skb->truesize;
3872 	if (offset > headlen) {
3873 		unsigned int eat = offset - headlen;
3874 
3875 		skbinfo->frags[0].page_offset += eat;
3876 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3877 		skb->data_len -= eat;
3878 		skb->len -= eat;
3879 		offset = headlen;
3880 	}
3881 
3882 	__skb_pull(skb, offset);
3883 
3884 	if (NAPI_GRO_CB(p)->last == p)
3885 		skb_shinfo(p)->frag_list = skb;
3886 	else
3887 		NAPI_GRO_CB(p)->last->next = skb;
3888 	NAPI_GRO_CB(p)->last = skb;
3889 	__skb_header_release(skb);
3890 	lp = p;
3891 
3892 done:
3893 	NAPI_GRO_CB(p)->count++;
3894 	p->data_len += len;
3895 	p->truesize += delta_truesize;
3896 	p->len += len;
3897 	if (lp != p) {
3898 		lp->data_len += len;
3899 		lp->truesize += delta_truesize;
3900 		lp->len += len;
3901 	}
3902 	NAPI_GRO_CB(skb)->same_flow = 1;
3903 	return 0;
3904 }
3905 EXPORT_SYMBOL_GPL(skb_gro_receive);
3906 
3907 #ifdef CONFIG_SKB_EXTENSIONS
3908 #define SKB_EXT_ALIGN_VALUE	8
3909 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
3910 
3911 static const u8 skb_ext_type_len[] = {
3912 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3913 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
3914 #endif
3915 #ifdef CONFIG_XFRM
3916 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
3917 #endif
3918 };
3919 
3920 static __always_inline unsigned int skb_ext_total_length(void)
3921 {
3922 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
3923 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3924 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
3925 #endif
3926 #ifdef CONFIG_XFRM
3927 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
3928 #endif
3929 		0;
3930 }
3931 
3932 static void skb_extensions_init(void)
3933 {
3934 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
3935 	BUILD_BUG_ON(skb_ext_total_length() > 255);
3936 
3937 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
3938 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
3939 					     0,
3940 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3941 					     NULL);
3942 }
3943 #else
3944 static void skb_extensions_init(void) {}
3945 #endif
3946 
3947 void __init skb_init(void)
3948 {
3949 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
3950 					      sizeof(struct sk_buff),
3951 					      0,
3952 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3953 					      offsetof(struct sk_buff, cb),
3954 					      sizeof_field(struct sk_buff, cb),
3955 					      NULL);
3956 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3957 						sizeof(struct sk_buff_fclones),
3958 						0,
3959 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3960 						NULL);
3961 	skb_extensions_init();
3962 }
3963 
3964 static int
3965 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3966 	       unsigned int recursion_level)
3967 {
3968 	int start = skb_headlen(skb);
3969 	int i, copy = start - offset;
3970 	struct sk_buff *frag_iter;
3971 	int elt = 0;
3972 
3973 	if (unlikely(recursion_level >= 24))
3974 		return -EMSGSIZE;
3975 
3976 	if (copy > 0) {
3977 		if (copy > len)
3978 			copy = len;
3979 		sg_set_buf(sg, skb->data + offset, copy);
3980 		elt++;
3981 		if ((len -= copy) == 0)
3982 			return elt;
3983 		offset += copy;
3984 	}
3985 
3986 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3987 		int end;
3988 
3989 		WARN_ON(start > offset + len);
3990 
3991 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3992 		if ((copy = end - offset) > 0) {
3993 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3994 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3995 				return -EMSGSIZE;
3996 
3997 			if (copy > len)
3998 				copy = len;
3999 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4000 					frag->page_offset+offset-start);
4001 			elt++;
4002 			if (!(len -= copy))
4003 				return elt;
4004 			offset += copy;
4005 		}
4006 		start = end;
4007 	}
4008 
4009 	skb_walk_frags(skb, frag_iter) {
4010 		int end, ret;
4011 
4012 		WARN_ON(start > offset + len);
4013 
4014 		end = start + frag_iter->len;
4015 		if ((copy = end - offset) > 0) {
4016 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4017 				return -EMSGSIZE;
4018 
4019 			if (copy > len)
4020 				copy = len;
4021 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4022 					      copy, recursion_level + 1);
4023 			if (unlikely(ret < 0))
4024 				return ret;
4025 			elt += ret;
4026 			if ((len -= copy) == 0)
4027 				return elt;
4028 			offset += copy;
4029 		}
4030 		start = end;
4031 	}
4032 	BUG_ON(len);
4033 	return elt;
4034 }
4035 
4036 /**
4037  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4038  *	@skb: Socket buffer containing the buffers to be mapped
4039  *	@sg: The scatter-gather list to map into
4040  *	@offset: The offset into the buffer's contents to start mapping
4041  *	@len: Length of buffer space to be mapped
4042  *
4043  *	Fill the specified scatter-gather list with mappings/pointers into a
4044  *	region of the buffer space attached to a socket buffer. Returns either
4045  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4046  *	could not fit.
4047  */
4048 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4049 {
4050 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4051 
4052 	if (nsg <= 0)
4053 		return nsg;
4054 
4055 	sg_mark_end(&sg[nsg - 1]);
4056 
4057 	return nsg;
4058 }
4059 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4060 
4061 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4062  * sglist without mark the sg which contain last skb data as the end.
4063  * So the caller can mannipulate sg list as will when padding new data after
4064  * the first call without calling sg_unmark_end to expend sg list.
4065  *
4066  * Scenario to use skb_to_sgvec_nomark:
4067  * 1. sg_init_table
4068  * 2. skb_to_sgvec_nomark(payload1)
4069  * 3. skb_to_sgvec_nomark(payload2)
4070  *
4071  * This is equivalent to:
4072  * 1. sg_init_table
4073  * 2. skb_to_sgvec(payload1)
4074  * 3. sg_unmark_end
4075  * 4. skb_to_sgvec(payload2)
4076  *
4077  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4078  * is more preferable.
4079  */
4080 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4081 			int offset, int len)
4082 {
4083 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4084 }
4085 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4086 
4087 
4088 
4089 /**
4090  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4091  *	@skb: The socket buffer to check.
4092  *	@tailbits: Amount of trailing space to be added
4093  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4094  *
4095  *	Make sure that the data buffers attached to a socket buffer are
4096  *	writable. If they are not, private copies are made of the data buffers
4097  *	and the socket buffer is set to use these instead.
4098  *
4099  *	If @tailbits is given, make sure that there is space to write @tailbits
4100  *	bytes of data beyond current end of socket buffer.  @trailer will be
4101  *	set to point to the skb in which this space begins.
4102  *
4103  *	The number of scatterlist elements required to completely map the
4104  *	COW'd and extended socket buffer will be returned.
4105  */
4106 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4107 {
4108 	int copyflag;
4109 	int elt;
4110 	struct sk_buff *skb1, **skb_p;
4111 
4112 	/* If skb is cloned or its head is paged, reallocate
4113 	 * head pulling out all the pages (pages are considered not writable
4114 	 * at the moment even if they are anonymous).
4115 	 */
4116 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4117 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4118 		return -ENOMEM;
4119 
4120 	/* Easy case. Most of packets will go this way. */
4121 	if (!skb_has_frag_list(skb)) {
4122 		/* A little of trouble, not enough of space for trailer.
4123 		 * This should not happen, when stack is tuned to generate
4124 		 * good frames. OK, on miss we reallocate and reserve even more
4125 		 * space, 128 bytes is fair. */
4126 
4127 		if (skb_tailroom(skb) < tailbits &&
4128 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4129 			return -ENOMEM;
4130 
4131 		/* Voila! */
4132 		*trailer = skb;
4133 		return 1;
4134 	}
4135 
4136 	/* Misery. We are in troubles, going to mincer fragments... */
4137 
4138 	elt = 1;
4139 	skb_p = &skb_shinfo(skb)->frag_list;
4140 	copyflag = 0;
4141 
4142 	while ((skb1 = *skb_p) != NULL) {
4143 		int ntail = 0;
4144 
4145 		/* The fragment is partially pulled by someone,
4146 		 * this can happen on input. Copy it and everything
4147 		 * after it. */
4148 
4149 		if (skb_shared(skb1))
4150 			copyflag = 1;
4151 
4152 		/* If the skb is the last, worry about trailer. */
4153 
4154 		if (skb1->next == NULL && tailbits) {
4155 			if (skb_shinfo(skb1)->nr_frags ||
4156 			    skb_has_frag_list(skb1) ||
4157 			    skb_tailroom(skb1) < tailbits)
4158 				ntail = tailbits + 128;
4159 		}
4160 
4161 		if (copyflag ||
4162 		    skb_cloned(skb1) ||
4163 		    ntail ||
4164 		    skb_shinfo(skb1)->nr_frags ||
4165 		    skb_has_frag_list(skb1)) {
4166 			struct sk_buff *skb2;
4167 
4168 			/* Fuck, we are miserable poor guys... */
4169 			if (ntail == 0)
4170 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4171 			else
4172 				skb2 = skb_copy_expand(skb1,
4173 						       skb_headroom(skb1),
4174 						       ntail,
4175 						       GFP_ATOMIC);
4176 			if (unlikely(skb2 == NULL))
4177 				return -ENOMEM;
4178 
4179 			if (skb1->sk)
4180 				skb_set_owner_w(skb2, skb1->sk);
4181 
4182 			/* Looking around. Are we still alive?
4183 			 * OK, link new skb, drop old one */
4184 
4185 			skb2->next = skb1->next;
4186 			*skb_p = skb2;
4187 			kfree_skb(skb1);
4188 			skb1 = skb2;
4189 		}
4190 		elt++;
4191 		*trailer = skb1;
4192 		skb_p = &skb1->next;
4193 	}
4194 
4195 	return elt;
4196 }
4197 EXPORT_SYMBOL_GPL(skb_cow_data);
4198 
4199 static void sock_rmem_free(struct sk_buff *skb)
4200 {
4201 	struct sock *sk = skb->sk;
4202 
4203 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4204 }
4205 
4206 static void skb_set_err_queue(struct sk_buff *skb)
4207 {
4208 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4209 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4210 	 */
4211 	skb->pkt_type = PACKET_OUTGOING;
4212 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4213 }
4214 
4215 /*
4216  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4217  */
4218 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4219 {
4220 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4221 	    (unsigned int)sk->sk_rcvbuf)
4222 		return -ENOMEM;
4223 
4224 	skb_orphan(skb);
4225 	skb->sk = sk;
4226 	skb->destructor = sock_rmem_free;
4227 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4228 	skb_set_err_queue(skb);
4229 
4230 	/* before exiting rcu section, make sure dst is refcounted */
4231 	skb_dst_force(skb);
4232 
4233 	skb_queue_tail(&sk->sk_error_queue, skb);
4234 	if (!sock_flag(sk, SOCK_DEAD))
4235 		sk->sk_error_report(sk);
4236 	return 0;
4237 }
4238 EXPORT_SYMBOL(sock_queue_err_skb);
4239 
4240 static bool is_icmp_err_skb(const struct sk_buff *skb)
4241 {
4242 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4243 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4244 }
4245 
4246 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4247 {
4248 	struct sk_buff_head *q = &sk->sk_error_queue;
4249 	struct sk_buff *skb, *skb_next = NULL;
4250 	bool icmp_next = false;
4251 	unsigned long flags;
4252 
4253 	spin_lock_irqsave(&q->lock, flags);
4254 	skb = __skb_dequeue(q);
4255 	if (skb && (skb_next = skb_peek(q))) {
4256 		icmp_next = is_icmp_err_skb(skb_next);
4257 		if (icmp_next)
4258 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4259 	}
4260 	spin_unlock_irqrestore(&q->lock, flags);
4261 
4262 	if (is_icmp_err_skb(skb) && !icmp_next)
4263 		sk->sk_err = 0;
4264 
4265 	if (skb_next)
4266 		sk->sk_error_report(sk);
4267 
4268 	return skb;
4269 }
4270 EXPORT_SYMBOL(sock_dequeue_err_skb);
4271 
4272 /**
4273  * skb_clone_sk - create clone of skb, and take reference to socket
4274  * @skb: the skb to clone
4275  *
4276  * This function creates a clone of a buffer that holds a reference on
4277  * sk_refcnt.  Buffers created via this function are meant to be
4278  * returned using sock_queue_err_skb, or free via kfree_skb.
4279  *
4280  * When passing buffers allocated with this function to sock_queue_err_skb
4281  * it is necessary to wrap the call with sock_hold/sock_put in order to
4282  * prevent the socket from being released prior to being enqueued on
4283  * the sk_error_queue.
4284  */
4285 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4286 {
4287 	struct sock *sk = skb->sk;
4288 	struct sk_buff *clone;
4289 
4290 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4291 		return NULL;
4292 
4293 	clone = skb_clone(skb, GFP_ATOMIC);
4294 	if (!clone) {
4295 		sock_put(sk);
4296 		return NULL;
4297 	}
4298 
4299 	clone->sk = sk;
4300 	clone->destructor = sock_efree;
4301 
4302 	return clone;
4303 }
4304 EXPORT_SYMBOL(skb_clone_sk);
4305 
4306 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4307 					struct sock *sk,
4308 					int tstype,
4309 					bool opt_stats)
4310 {
4311 	struct sock_exterr_skb *serr;
4312 	int err;
4313 
4314 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4315 
4316 	serr = SKB_EXT_ERR(skb);
4317 	memset(serr, 0, sizeof(*serr));
4318 	serr->ee.ee_errno = ENOMSG;
4319 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4320 	serr->ee.ee_info = tstype;
4321 	serr->opt_stats = opt_stats;
4322 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4323 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4324 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4325 		if (sk->sk_protocol == IPPROTO_TCP &&
4326 		    sk->sk_type == SOCK_STREAM)
4327 			serr->ee.ee_data -= sk->sk_tskey;
4328 	}
4329 
4330 	err = sock_queue_err_skb(sk, skb);
4331 
4332 	if (err)
4333 		kfree_skb(skb);
4334 }
4335 
4336 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4337 {
4338 	bool ret;
4339 
4340 	if (likely(sysctl_tstamp_allow_data || tsonly))
4341 		return true;
4342 
4343 	read_lock_bh(&sk->sk_callback_lock);
4344 	ret = sk->sk_socket && sk->sk_socket->file &&
4345 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4346 	read_unlock_bh(&sk->sk_callback_lock);
4347 	return ret;
4348 }
4349 
4350 void skb_complete_tx_timestamp(struct sk_buff *skb,
4351 			       struct skb_shared_hwtstamps *hwtstamps)
4352 {
4353 	struct sock *sk = skb->sk;
4354 
4355 	if (!skb_may_tx_timestamp(sk, false))
4356 		goto err;
4357 
4358 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4359 	 * but only if the socket refcount is not zero.
4360 	 */
4361 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4362 		*skb_hwtstamps(skb) = *hwtstamps;
4363 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4364 		sock_put(sk);
4365 		return;
4366 	}
4367 
4368 err:
4369 	kfree_skb(skb);
4370 }
4371 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4372 
4373 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4374 		     struct skb_shared_hwtstamps *hwtstamps,
4375 		     struct sock *sk, int tstype)
4376 {
4377 	struct sk_buff *skb;
4378 	bool tsonly, opt_stats = false;
4379 
4380 	if (!sk)
4381 		return;
4382 
4383 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4384 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4385 		return;
4386 
4387 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4388 	if (!skb_may_tx_timestamp(sk, tsonly))
4389 		return;
4390 
4391 	if (tsonly) {
4392 #ifdef CONFIG_INET
4393 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4394 		    sk->sk_protocol == IPPROTO_TCP &&
4395 		    sk->sk_type == SOCK_STREAM) {
4396 			skb = tcp_get_timestamping_opt_stats(sk);
4397 			opt_stats = true;
4398 		} else
4399 #endif
4400 			skb = alloc_skb(0, GFP_ATOMIC);
4401 	} else {
4402 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4403 	}
4404 	if (!skb)
4405 		return;
4406 
4407 	if (tsonly) {
4408 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4409 					     SKBTX_ANY_TSTAMP;
4410 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4411 	}
4412 
4413 	if (hwtstamps)
4414 		*skb_hwtstamps(skb) = *hwtstamps;
4415 	else
4416 		skb->tstamp = ktime_get_real();
4417 
4418 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4419 }
4420 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4421 
4422 void skb_tstamp_tx(struct sk_buff *orig_skb,
4423 		   struct skb_shared_hwtstamps *hwtstamps)
4424 {
4425 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4426 			       SCM_TSTAMP_SND);
4427 }
4428 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4429 
4430 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4431 {
4432 	struct sock *sk = skb->sk;
4433 	struct sock_exterr_skb *serr;
4434 	int err = 1;
4435 
4436 	skb->wifi_acked_valid = 1;
4437 	skb->wifi_acked = acked;
4438 
4439 	serr = SKB_EXT_ERR(skb);
4440 	memset(serr, 0, sizeof(*serr));
4441 	serr->ee.ee_errno = ENOMSG;
4442 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4443 
4444 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4445 	 * but only if the socket refcount is not zero.
4446 	 */
4447 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4448 		err = sock_queue_err_skb(sk, skb);
4449 		sock_put(sk);
4450 	}
4451 	if (err)
4452 		kfree_skb(skb);
4453 }
4454 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4455 
4456 /**
4457  * skb_partial_csum_set - set up and verify partial csum values for packet
4458  * @skb: the skb to set
4459  * @start: the number of bytes after skb->data to start checksumming.
4460  * @off: the offset from start to place the checksum.
4461  *
4462  * For untrusted partially-checksummed packets, we need to make sure the values
4463  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4464  *
4465  * This function checks and sets those values and skb->ip_summed: if this
4466  * returns false you should drop the packet.
4467  */
4468 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4469 {
4470 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4471 	u32 csum_start = skb_headroom(skb) + (u32)start;
4472 
4473 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4474 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4475 				     start, off, skb_headroom(skb), skb_headlen(skb));
4476 		return false;
4477 	}
4478 	skb->ip_summed = CHECKSUM_PARTIAL;
4479 	skb->csum_start = csum_start;
4480 	skb->csum_offset = off;
4481 	skb_set_transport_header(skb, start);
4482 	return true;
4483 }
4484 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4485 
4486 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4487 			       unsigned int max)
4488 {
4489 	if (skb_headlen(skb) >= len)
4490 		return 0;
4491 
4492 	/* If we need to pullup then pullup to the max, so we
4493 	 * won't need to do it again.
4494 	 */
4495 	if (max > skb->len)
4496 		max = skb->len;
4497 
4498 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4499 		return -ENOMEM;
4500 
4501 	if (skb_headlen(skb) < len)
4502 		return -EPROTO;
4503 
4504 	return 0;
4505 }
4506 
4507 #define MAX_TCP_HDR_LEN (15 * 4)
4508 
4509 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4510 				      typeof(IPPROTO_IP) proto,
4511 				      unsigned int off)
4512 {
4513 	switch (proto) {
4514 		int err;
4515 
4516 	case IPPROTO_TCP:
4517 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4518 					  off + MAX_TCP_HDR_LEN);
4519 		if (!err && !skb_partial_csum_set(skb, off,
4520 						  offsetof(struct tcphdr,
4521 							   check)))
4522 			err = -EPROTO;
4523 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4524 
4525 	case IPPROTO_UDP:
4526 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4527 					  off + sizeof(struct udphdr));
4528 		if (!err && !skb_partial_csum_set(skb, off,
4529 						  offsetof(struct udphdr,
4530 							   check)))
4531 			err = -EPROTO;
4532 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4533 	}
4534 
4535 	return ERR_PTR(-EPROTO);
4536 }
4537 
4538 /* This value should be large enough to cover a tagged ethernet header plus
4539  * maximally sized IP and TCP or UDP headers.
4540  */
4541 #define MAX_IP_HDR_LEN 128
4542 
4543 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4544 {
4545 	unsigned int off;
4546 	bool fragment;
4547 	__sum16 *csum;
4548 	int err;
4549 
4550 	fragment = false;
4551 
4552 	err = skb_maybe_pull_tail(skb,
4553 				  sizeof(struct iphdr),
4554 				  MAX_IP_HDR_LEN);
4555 	if (err < 0)
4556 		goto out;
4557 
4558 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4559 		fragment = true;
4560 
4561 	off = ip_hdrlen(skb);
4562 
4563 	err = -EPROTO;
4564 
4565 	if (fragment)
4566 		goto out;
4567 
4568 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4569 	if (IS_ERR(csum))
4570 		return PTR_ERR(csum);
4571 
4572 	if (recalculate)
4573 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4574 					   ip_hdr(skb)->daddr,
4575 					   skb->len - off,
4576 					   ip_hdr(skb)->protocol, 0);
4577 	err = 0;
4578 
4579 out:
4580 	return err;
4581 }
4582 
4583 /* This value should be large enough to cover a tagged ethernet header plus
4584  * an IPv6 header, all options, and a maximal TCP or UDP header.
4585  */
4586 #define MAX_IPV6_HDR_LEN 256
4587 
4588 #define OPT_HDR(type, skb, off) \
4589 	(type *)(skb_network_header(skb) + (off))
4590 
4591 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4592 {
4593 	int err;
4594 	u8 nexthdr;
4595 	unsigned int off;
4596 	unsigned int len;
4597 	bool fragment;
4598 	bool done;
4599 	__sum16 *csum;
4600 
4601 	fragment = false;
4602 	done = false;
4603 
4604 	off = sizeof(struct ipv6hdr);
4605 
4606 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4607 	if (err < 0)
4608 		goto out;
4609 
4610 	nexthdr = ipv6_hdr(skb)->nexthdr;
4611 
4612 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4613 	while (off <= len && !done) {
4614 		switch (nexthdr) {
4615 		case IPPROTO_DSTOPTS:
4616 		case IPPROTO_HOPOPTS:
4617 		case IPPROTO_ROUTING: {
4618 			struct ipv6_opt_hdr *hp;
4619 
4620 			err = skb_maybe_pull_tail(skb,
4621 						  off +
4622 						  sizeof(struct ipv6_opt_hdr),
4623 						  MAX_IPV6_HDR_LEN);
4624 			if (err < 0)
4625 				goto out;
4626 
4627 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4628 			nexthdr = hp->nexthdr;
4629 			off += ipv6_optlen(hp);
4630 			break;
4631 		}
4632 		case IPPROTO_AH: {
4633 			struct ip_auth_hdr *hp;
4634 
4635 			err = skb_maybe_pull_tail(skb,
4636 						  off +
4637 						  sizeof(struct ip_auth_hdr),
4638 						  MAX_IPV6_HDR_LEN);
4639 			if (err < 0)
4640 				goto out;
4641 
4642 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4643 			nexthdr = hp->nexthdr;
4644 			off += ipv6_authlen(hp);
4645 			break;
4646 		}
4647 		case IPPROTO_FRAGMENT: {
4648 			struct frag_hdr *hp;
4649 
4650 			err = skb_maybe_pull_tail(skb,
4651 						  off +
4652 						  sizeof(struct frag_hdr),
4653 						  MAX_IPV6_HDR_LEN);
4654 			if (err < 0)
4655 				goto out;
4656 
4657 			hp = OPT_HDR(struct frag_hdr, skb, off);
4658 
4659 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4660 				fragment = true;
4661 
4662 			nexthdr = hp->nexthdr;
4663 			off += sizeof(struct frag_hdr);
4664 			break;
4665 		}
4666 		default:
4667 			done = true;
4668 			break;
4669 		}
4670 	}
4671 
4672 	err = -EPROTO;
4673 
4674 	if (!done || fragment)
4675 		goto out;
4676 
4677 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4678 	if (IS_ERR(csum))
4679 		return PTR_ERR(csum);
4680 
4681 	if (recalculate)
4682 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4683 					 &ipv6_hdr(skb)->daddr,
4684 					 skb->len - off, nexthdr, 0);
4685 	err = 0;
4686 
4687 out:
4688 	return err;
4689 }
4690 
4691 /**
4692  * skb_checksum_setup - set up partial checksum offset
4693  * @skb: the skb to set up
4694  * @recalculate: if true the pseudo-header checksum will be recalculated
4695  */
4696 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4697 {
4698 	int err;
4699 
4700 	switch (skb->protocol) {
4701 	case htons(ETH_P_IP):
4702 		err = skb_checksum_setup_ipv4(skb, recalculate);
4703 		break;
4704 
4705 	case htons(ETH_P_IPV6):
4706 		err = skb_checksum_setup_ipv6(skb, recalculate);
4707 		break;
4708 
4709 	default:
4710 		err = -EPROTO;
4711 		break;
4712 	}
4713 
4714 	return err;
4715 }
4716 EXPORT_SYMBOL(skb_checksum_setup);
4717 
4718 /**
4719  * skb_checksum_maybe_trim - maybe trims the given skb
4720  * @skb: the skb to check
4721  * @transport_len: the data length beyond the network header
4722  *
4723  * Checks whether the given skb has data beyond the given transport length.
4724  * If so, returns a cloned skb trimmed to this transport length.
4725  * Otherwise returns the provided skb. Returns NULL in error cases
4726  * (e.g. transport_len exceeds skb length or out-of-memory).
4727  *
4728  * Caller needs to set the skb transport header and free any returned skb if it
4729  * differs from the provided skb.
4730  */
4731 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4732 					       unsigned int transport_len)
4733 {
4734 	struct sk_buff *skb_chk;
4735 	unsigned int len = skb_transport_offset(skb) + transport_len;
4736 	int ret;
4737 
4738 	if (skb->len < len)
4739 		return NULL;
4740 	else if (skb->len == len)
4741 		return skb;
4742 
4743 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4744 	if (!skb_chk)
4745 		return NULL;
4746 
4747 	ret = pskb_trim_rcsum(skb_chk, len);
4748 	if (ret) {
4749 		kfree_skb(skb_chk);
4750 		return NULL;
4751 	}
4752 
4753 	return skb_chk;
4754 }
4755 
4756 /**
4757  * skb_checksum_trimmed - validate checksum of an skb
4758  * @skb: the skb to check
4759  * @transport_len: the data length beyond the network header
4760  * @skb_chkf: checksum function to use
4761  *
4762  * Applies the given checksum function skb_chkf to the provided skb.
4763  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4764  *
4765  * If the skb has data beyond the given transport length, then a
4766  * trimmed & cloned skb is checked and returned.
4767  *
4768  * Caller needs to set the skb transport header and free any returned skb if it
4769  * differs from the provided skb.
4770  */
4771 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4772 				     unsigned int transport_len,
4773 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4774 {
4775 	struct sk_buff *skb_chk;
4776 	unsigned int offset = skb_transport_offset(skb);
4777 	__sum16 ret;
4778 
4779 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4780 	if (!skb_chk)
4781 		goto err;
4782 
4783 	if (!pskb_may_pull(skb_chk, offset))
4784 		goto err;
4785 
4786 	skb_pull_rcsum(skb_chk, offset);
4787 	ret = skb_chkf(skb_chk);
4788 	skb_push_rcsum(skb_chk, offset);
4789 
4790 	if (ret)
4791 		goto err;
4792 
4793 	return skb_chk;
4794 
4795 err:
4796 	if (skb_chk && skb_chk != skb)
4797 		kfree_skb(skb_chk);
4798 
4799 	return NULL;
4800 
4801 }
4802 EXPORT_SYMBOL(skb_checksum_trimmed);
4803 
4804 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4805 {
4806 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4807 			     skb->dev->name);
4808 }
4809 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4810 
4811 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4812 {
4813 	if (head_stolen) {
4814 		skb_release_head_state(skb);
4815 		kmem_cache_free(skbuff_head_cache, skb);
4816 	} else {
4817 		__kfree_skb(skb);
4818 	}
4819 }
4820 EXPORT_SYMBOL(kfree_skb_partial);
4821 
4822 /**
4823  * skb_try_coalesce - try to merge skb to prior one
4824  * @to: prior buffer
4825  * @from: buffer to add
4826  * @fragstolen: pointer to boolean
4827  * @delta_truesize: how much more was allocated than was requested
4828  */
4829 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4830 		      bool *fragstolen, int *delta_truesize)
4831 {
4832 	struct skb_shared_info *to_shinfo, *from_shinfo;
4833 	int i, delta, len = from->len;
4834 
4835 	*fragstolen = false;
4836 
4837 	if (skb_cloned(to))
4838 		return false;
4839 
4840 	if (len <= skb_tailroom(to)) {
4841 		if (len)
4842 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4843 		*delta_truesize = 0;
4844 		return true;
4845 	}
4846 
4847 	to_shinfo = skb_shinfo(to);
4848 	from_shinfo = skb_shinfo(from);
4849 	if (to_shinfo->frag_list || from_shinfo->frag_list)
4850 		return false;
4851 	if (skb_zcopy(to) || skb_zcopy(from))
4852 		return false;
4853 
4854 	if (skb_headlen(from) != 0) {
4855 		struct page *page;
4856 		unsigned int offset;
4857 
4858 		if (to_shinfo->nr_frags +
4859 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4860 			return false;
4861 
4862 		if (skb_head_is_locked(from))
4863 			return false;
4864 
4865 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4866 
4867 		page = virt_to_head_page(from->head);
4868 		offset = from->data - (unsigned char *)page_address(page);
4869 
4870 		skb_fill_page_desc(to, to_shinfo->nr_frags,
4871 				   page, offset, skb_headlen(from));
4872 		*fragstolen = true;
4873 	} else {
4874 		if (to_shinfo->nr_frags +
4875 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
4876 			return false;
4877 
4878 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4879 	}
4880 
4881 	WARN_ON_ONCE(delta < len);
4882 
4883 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4884 	       from_shinfo->frags,
4885 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
4886 	to_shinfo->nr_frags += from_shinfo->nr_frags;
4887 
4888 	if (!skb_cloned(from))
4889 		from_shinfo->nr_frags = 0;
4890 
4891 	/* if the skb is not cloned this does nothing
4892 	 * since we set nr_frags to 0.
4893 	 */
4894 	for (i = 0; i < from_shinfo->nr_frags; i++)
4895 		__skb_frag_ref(&from_shinfo->frags[i]);
4896 
4897 	to->truesize += delta;
4898 	to->len += len;
4899 	to->data_len += len;
4900 
4901 	*delta_truesize = delta;
4902 	return true;
4903 }
4904 EXPORT_SYMBOL(skb_try_coalesce);
4905 
4906 /**
4907  * skb_scrub_packet - scrub an skb
4908  *
4909  * @skb: buffer to clean
4910  * @xnet: packet is crossing netns
4911  *
4912  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4913  * into/from a tunnel. Some information have to be cleared during these
4914  * operations.
4915  * skb_scrub_packet can also be used to clean a skb before injecting it in
4916  * another namespace (@xnet == true). We have to clear all information in the
4917  * skb that could impact namespace isolation.
4918  */
4919 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4920 {
4921 	skb->pkt_type = PACKET_HOST;
4922 	skb->skb_iif = 0;
4923 	skb->ignore_df = 0;
4924 	skb_dst_drop(skb);
4925 	secpath_reset(skb);
4926 	nf_reset(skb);
4927 	nf_reset_trace(skb);
4928 
4929 #ifdef CONFIG_NET_SWITCHDEV
4930 	skb->offload_fwd_mark = 0;
4931 	skb->offload_l3_fwd_mark = 0;
4932 #endif
4933 
4934 	if (!xnet)
4935 		return;
4936 
4937 	ipvs_reset(skb);
4938 	skb->mark = 0;
4939 	skb->tstamp = 0;
4940 }
4941 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4942 
4943 /**
4944  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4945  *
4946  * @skb: GSO skb
4947  *
4948  * skb_gso_transport_seglen is used to determine the real size of the
4949  * individual segments, including Layer4 headers (TCP/UDP).
4950  *
4951  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4952  */
4953 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4954 {
4955 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4956 	unsigned int thlen = 0;
4957 
4958 	if (skb->encapsulation) {
4959 		thlen = skb_inner_transport_header(skb) -
4960 			skb_transport_header(skb);
4961 
4962 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4963 			thlen += inner_tcp_hdrlen(skb);
4964 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4965 		thlen = tcp_hdrlen(skb);
4966 	} else if (unlikely(skb_is_gso_sctp(skb))) {
4967 		thlen = sizeof(struct sctphdr);
4968 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4969 		thlen = sizeof(struct udphdr);
4970 	}
4971 	/* UFO sets gso_size to the size of the fragmentation
4972 	 * payload, i.e. the size of the L4 (UDP) header is already
4973 	 * accounted for.
4974 	 */
4975 	return thlen + shinfo->gso_size;
4976 }
4977 
4978 /**
4979  * skb_gso_network_seglen - Return length of individual segments of a gso packet
4980  *
4981  * @skb: GSO skb
4982  *
4983  * skb_gso_network_seglen is used to determine the real size of the
4984  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4985  *
4986  * The MAC/L2 header is not accounted for.
4987  */
4988 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4989 {
4990 	unsigned int hdr_len = skb_transport_header(skb) -
4991 			       skb_network_header(skb);
4992 
4993 	return hdr_len + skb_gso_transport_seglen(skb);
4994 }
4995 
4996 /**
4997  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4998  *
4999  * @skb: GSO skb
5000  *
5001  * skb_gso_mac_seglen is used to determine the real size of the
5002  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5003  * headers (TCP/UDP).
5004  */
5005 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5006 {
5007 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5008 
5009 	return hdr_len + skb_gso_transport_seglen(skb);
5010 }
5011 
5012 /**
5013  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5014  *
5015  * There are a couple of instances where we have a GSO skb, and we
5016  * want to determine what size it would be after it is segmented.
5017  *
5018  * We might want to check:
5019  * -    L3+L4+payload size (e.g. IP forwarding)
5020  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5021  *
5022  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5023  *
5024  * @skb: GSO skb
5025  *
5026  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5027  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5028  *
5029  * @max_len: The maximum permissible length.
5030  *
5031  * Returns true if the segmented length <= max length.
5032  */
5033 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5034 				      unsigned int seg_len,
5035 				      unsigned int max_len) {
5036 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5037 	const struct sk_buff *iter;
5038 
5039 	if (shinfo->gso_size != GSO_BY_FRAGS)
5040 		return seg_len <= max_len;
5041 
5042 	/* Undo this so we can re-use header sizes */
5043 	seg_len -= GSO_BY_FRAGS;
5044 
5045 	skb_walk_frags(skb, iter) {
5046 		if (seg_len + skb_headlen(iter) > max_len)
5047 			return false;
5048 	}
5049 
5050 	return true;
5051 }
5052 
5053 /**
5054  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5055  *
5056  * @skb: GSO skb
5057  * @mtu: MTU to validate against
5058  *
5059  * skb_gso_validate_network_len validates if a given skb will fit a
5060  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5061  * payload.
5062  */
5063 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5064 {
5065 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5066 }
5067 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5068 
5069 /**
5070  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5071  *
5072  * @skb: GSO skb
5073  * @len: length to validate against
5074  *
5075  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5076  * length once split, including L2, L3 and L4 headers and the payload.
5077  */
5078 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5079 {
5080 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5081 }
5082 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5083 
5084 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5085 {
5086 	int mac_len;
5087 
5088 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5089 		kfree_skb(skb);
5090 		return NULL;
5091 	}
5092 
5093 	mac_len = skb->data - skb_mac_header(skb);
5094 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5095 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5096 			mac_len - VLAN_HLEN - ETH_TLEN);
5097 	}
5098 	skb->mac_header += VLAN_HLEN;
5099 	return skb;
5100 }
5101 
5102 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5103 {
5104 	struct vlan_hdr *vhdr;
5105 	u16 vlan_tci;
5106 
5107 	if (unlikely(skb_vlan_tag_present(skb))) {
5108 		/* vlan_tci is already set-up so leave this for another time */
5109 		return skb;
5110 	}
5111 
5112 	skb = skb_share_check(skb, GFP_ATOMIC);
5113 	if (unlikely(!skb))
5114 		goto err_free;
5115 
5116 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5117 		goto err_free;
5118 
5119 	vhdr = (struct vlan_hdr *)skb->data;
5120 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5121 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5122 
5123 	skb_pull_rcsum(skb, VLAN_HLEN);
5124 	vlan_set_encap_proto(skb, vhdr);
5125 
5126 	skb = skb_reorder_vlan_header(skb);
5127 	if (unlikely(!skb))
5128 		goto err_free;
5129 
5130 	skb_reset_network_header(skb);
5131 	skb_reset_transport_header(skb);
5132 	skb_reset_mac_len(skb);
5133 
5134 	return skb;
5135 
5136 err_free:
5137 	kfree_skb(skb);
5138 	return NULL;
5139 }
5140 EXPORT_SYMBOL(skb_vlan_untag);
5141 
5142 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5143 {
5144 	if (!pskb_may_pull(skb, write_len))
5145 		return -ENOMEM;
5146 
5147 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5148 		return 0;
5149 
5150 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5151 }
5152 EXPORT_SYMBOL(skb_ensure_writable);
5153 
5154 /* remove VLAN header from packet and update csum accordingly.
5155  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5156  */
5157 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5158 {
5159 	struct vlan_hdr *vhdr;
5160 	int offset = skb->data - skb_mac_header(skb);
5161 	int err;
5162 
5163 	if (WARN_ONCE(offset,
5164 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5165 		      offset)) {
5166 		return -EINVAL;
5167 	}
5168 
5169 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5170 	if (unlikely(err))
5171 		return err;
5172 
5173 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5174 
5175 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5176 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5177 
5178 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5179 	__skb_pull(skb, VLAN_HLEN);
5180 
5181 	vlan_set_encap_proto(skb, vhdr);
5182 	skb->mac_header += VLAN_HLEN;
5183 
5184 	if (skb_network_offset(skb) < ETH_HLEN)
5185 		skb_set_network_header(skb, ETH_HLEN);
5186 
5187 	skb_reset_mac_len(skb);
5188 
5189 	return err;
5190 }
5191 EXPORT_SYMBOL(__skb_vlan_pop);
5192 
5193 /* Pop a vlan tag either from hwaccel or from payload.
5194  * Expects skb->data at mac header.
5195  */
5196 int skb_vlan_pop(struct sk_buff *skb)
5197 {
5198 	u16 vlan_tci;
5199 	__be16 vlan_proto;
5200 	int err;
5201 
5202 	if (likely(skb_vlan_tag_present(skb))) {
5203 		__vlan_hwaccel_clear_tag(skb);
5204 	} else {
5205 		if (unlikely(!eth_type_vlan(skb->protocol)))
5206 			return 0;
5207 
5208 		err = __skb_vlan_pop(skb, &vlan_tci);
5209 		if (err)
5210 			return err;
5211 	}
5212 	/* move next vlan tag to hw accel tag */
5213 	if (likely(!eth_type_vlan(skb->protocol)))
5214 		return 0;
5215 
5216 	vlan_proto = skb->protocol;
5217 	err = __skb_vlan_pop(skb, &vlan_tci);
5218 	if (unlikely(err))
5219 		return err;
5220 
5221 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5222 	return 0;
5223 }
5224 EXPORT_SYMBOL(skb_vlan_pop);
5225 
5226 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5227  * Expects skb->data at mac header.
5228  */
5229 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5230 {
5231 	if (skb_vlan_tag_present(skb)) {
5232 		int offset = skb->data - skb_mac_header(skb);
5233 		int err;
5234 
5235 		if (WARN_ONCE(offset,
5236 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5237 			      offset)) {
5238 			return -EINVAL;
5239 		}
5240 
5241 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5242 					skb_vlan_tag_get(skb));
5243 		if (err)
5244 			return err;
5245 
5246 		skb->protocol = skb->vlan_proto;
5247 		skb->mac_len += VLAN_HLEN;
5248 
5249 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5250 	}
5251 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5252 	return 0;
5253 }
5254 EXPORT_SYMBOL(skb_vlan_push);
5255 
5256 /**
5257  * alloc_skb_with_frags - allocate skb with page frags
5258  *
5259  * @header_len: size of linear part
5260  * @data_len: needed length in frags
5261  * @max_page_order: max page order desired.
5262  * @errcode: pointer to error code if any
5263  * @gfp_mask: allocation mask
5264  *
5265  * This can be used to allocate a paged skb, given a maximal order for frags.
5266  */
5267 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5268 				     unsigned long data_len,
5269 				     int max_page_order,
5270 				     int *errcode,
5271 				     gfp_t gfp_mask)
5272 {
5273 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5274 	unsigned long chunk;
5275 	struct sk_buff *skb;
5276 	struct page *page;
5277 	int i;
5278 
5279 	*errcode = -EMSGSIZE;
5280 	/* Note this test could be relaxed, if we succeed to allocate
5281 	 * high order pages...
5282 	 */
5283 	if (npages > MAX_SKB_FRAGS)
5284 		return NULL;
5285 
5286 	*errcode = -ENOBUFS;
5287 	skb = alloc_skb(header_len, gfp_mask);
5288 	if (!skb)
5289 		return NULL;
5290 
5291 	skb->truesize += npages << PAGE_SHIFT;
5292 
5293 	for (i = 0; npages > 0; i++) {
5294 		int order = max_page_order;
5295 
5296 		while (order) {
5297 			if (npages >= 1 << order) {
5298 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5299 						   __GFP_COMP |
5300 						   __GFP_NOWARN,
5301 						   order);
5302 				if (page)
5303 					goto fill_page;
5304 				/* Do not retry other high order allocations */
5305 				order = 1;
5306 				max_page_order = 0;
5307 			}
5308 			order--;
5309 		}
5310 		page = alloc_page(gfp_mask);
5311 		if (!page)
5312 			goto failure;
5313 fill_page:
5314 		chunk = min_t(unsigned long, data_len,
5315 			      PAGE_SIZE << order);
5316 		skb_fill_page_desc(skb, i, page, 0, chunk);
5317 		data_len -= chunk;
5318 		npages -= 1 << order;
5319 	}
5320 	return skb;
5321 
5322 failure:
5323 	kfree_skb(skb);
5324 	return NULL;
5325 }
5326 EXPORT_SYMBOL(alloc_skb_with_frags);
5327 
5328 /* carve out the first off bytes from skb when off < headlen */
5329 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5330 				    const int headlen, gfp_t gfp_mask)
5331 {
5332 	int i;
5333 	int size = skb_end_offset(skb);
5334 	int new_hlen = headlen - off;
5335 	u8 *data;
5336 
5337 	size = SKB_DATA_ALIGN(size);
5338 
5339 	if (skb_pfmemalloc(skb))
5340 		gfp_mask |= __GFP_MEMALLOC;
5341 	data = kmalloc_reserve(size +
5342 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5343 			       gfp_mask, NUMA_NO_NODE, NULL);
5344 	if (!data)
5345 		return -ENOMEM;
5346 
5347 	size = SKB_WITH_OVERHEAD(ksize(data));
5348 
5349 	/* Copy real data, and all frags */
5350 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5351 	skb->len -= off;
5352 
5353 	memcpy((struct skb_shared_info *)(data + size),
5354 	       skb_shinfo(skb),
5355 	       offsetof(struct skb_shared_info,
5356 			frags[skb_shinfo(skb)->nr_frags]));
5357 	if (skb_cloned(skb)) {
5358 		/* drop the old head gracefully */
5359 		if (skb_orphan_frags(skb, gfp_mask)) {
5360 			kfree(data);
5361 			return -ENOMEM;
5362 		}
5363 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5364 			skb_frag_ref(skb, i);
5365 		if (skb_has_frag_list(skb))
5366 			skb_clone_fraglist(skb);
5367 		skb_release_data(skb);
5368 	} else {
5369 		/* we can reuse existing recount- all we did was
5370 		 * relocate values
5371 		 */
5372 		skb_free_head(skb);
5373 	}
5374 
5375 	skb->head = data;
5376 	skb->data = data;
5377 	skb->head_frag = 0;
5378 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5379 	skb->end = size;
5380 #else
5381 	skb->end = skb->head + size;
5382 #endif
5383 	skb_set_tail_pointer(skb, skb_headlen(skb));
5384 	skb_headers_offset_update(skb, 0);
5385 	skb->cloned = 0;
5386 	skb->hdr_len = 0;
5387 	skb->nohdr = 0;
5388 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5389 
5390 	return 0;
5391 }
5392 
5393 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5394 
5395 /* carve out the first eat bytes from skb's frag_list. May recurse into
5396  * pskb_carve()
5397  */
5398 static int pskb_carve_frag_list(struct sk_buff *skb,
5399 				struct skb_shared_info *shinfo, int eat,
5400 				gfp_t gfp_mask)
5401 {
5402 	struct sk_buff *list = shinfo->frag_list;
5403 	struct sk_buff *clone = NULL;
5404 	struct sk_buff *insp = NULL;
5405 
5406 	do {
5407 		if (!list) {
5408 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5409 			return -EFAULT;
5410 		}
5411 		if (list->len <= eat) {
5412 			/* Eaten as whole. */
5413 			eat -= list->len;
5414 			list = list->next;
5415 			insp = list;
5416 		} else {
5417 			/* Eaten partially. */
5418 			if (skb_shared(list)) {
5419 				clone = skb_clone(list, gfp_mask);
5420 				if (!clone)
5421 					return -ENOMEM;
5422 				insp = list->next;
5423 				list = clone;
5424 			} else {
5425 				/* This may be pulled without problems. */
5426 				insp = list;
5427 			}
5428 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5429 				kfree_skb(clone);
5430 				return -ENOMEM;
5431 			}
5432 			break;
5433 		}
5434 	} while (eat);
5435 
5436 	/* Free pulled out fragments. */
5437 	while ((list = shinfo->frag_list) != insp) {
5438 		shinfo->frag_list = list->next;
5439 		kfree_skb(list);
5440 	}
5441 	/* And insert new clone at head. */
5442 	if (clone) {
5443 		clone->next = list;
5444 		shinfo->frag_list = clone;
5445 	}
5446 	return 0;
5447 }
5448 
5449 /* carve off first len bytes from skb. Split line (off) is in the
5450  * non-linear part of skb
5451  */
5452 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5453 				       int pos, gfp_t gfp_mask)
5454 {
5455 	int i, k = 0;
5456 	int size = skb_end_offset(skb);
5457 	u8 *data;
5458 	const int nfrags = skb_shinfo(skb)->nr_frags;
5459 	struct skb_shared_info *shinfo;
5460 
5461 	size = SKB_DATA_ALIGN(size);
5462 
5463 	if (skb_pfmemalloc(skb))
5464 		gfp_mask |= __GFP_MEMALLOC;
5465 	data = kmalloc_reserve(size +
5466 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5467 			       gfp_mask, NUMA_NO_NODE, NULL);
5468 	if (!data)
5469 		return -ENOMEM;
5470 
5471 	size = SKB_WITH_OVERHEAD(ksize(data));
5472 
5473 	memcpy((struct skb_shared_info *)(data + size),
5474 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5475 					 frags[skb_shinfo(skb)->nr_frags]));
5476 	if (skb_orphan_frags(skb, gfp_mask)) {
5477 		kfree(data);
5478 		return -ENOMEM;
5479 	}
5480 	shinfo = (struct skb_shared_info *)(data + size);
5481 	for (i = 0; i < nfrags; i++) {
5482 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5483 
5484 		if (pos + fsize > off) {
5485 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5486 
5487 			if (pos < off) {
5488 				/* Split frag.
5489 				 * We have two variants in this case:
5490 				 * 1. Move all the frag to the second
5491 				 *    part, if it is possible. F.e.
5492 				 *    this approach is mandatory for TUX,
5493 				 *    where splitting is expensive.
5494 				 * 2. Split is accurately. We make this.
5495 				 */
5496 				shinfo->frags[0].page_offset += off - pos;
5497 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5498 			}
5499 			skb_frag_ref(skb, i);
5500 			k++;
5501 		}
5502 		pos += fsize;
5503 	}
5504 	shinfo->nr_frags = k;
5505 	if (skb_has_frag_list(skb))
5506 		skb_clone_fraglist(skb);
5507 
5508 	if (k == 0) {
5509 		/* split line is in frag list */
5510 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5511 	}
5512 	skb_release_data(skb);
5513 
5514 	skb->head = data;
5515 	skb->head_frag = 0;
5516 	skb->data = data;
5517 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5518 	skb->end = size;
5519 #else
5520 	skb->end = skb->head + size;
5521 #endif
5522 	skb_reset_tail_pointer(skb);
5523 	skb_headers_offset_update(skb, 0);
5524 	skb->cloned   = 0;
5525 	skb->hdr_len  = 0;
5526 	skb->nohdr    = 0;
5527 	skb->len -= off;
5528 	skb->data_len = skb->len;
5529 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5530 	return 0;
5531 }
5532 
5533 /* remove len bytes from the beginning of the skb */
5534 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5535 {
5536 	int headlen = skb_headlen(skb);
5537 
5538 	if (len < headlen)
5539 		return pskb_carve_inside_header(skb, len, headlen, gfp);
5540 	else
5541 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5542 }
5543 
5544 /* Extract to_copy bytes starting at off from skb, and return this in
5545  * a new skb
5546  */
5547 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5548 			     int to_copy, gfp_t gfp)
5549 {
5550 	struct sk_buff  *clone = skb_clone(skb, gfp);
5551 
5552 	if (!clone)
5553 		return NULL;
5554 
5555 	if (pskb_carve(clone, off, gfp) < 0 ||
5556 	    pskb_trim(clone, to_copy)) {
5557 		kfree_skb(clone);
5558 		return NULL;
5559 	}
5560 	return clone;
5561 }
5562 EXPORT_SYMBOL(pskb_extract);
5563 
5564 /**
5565  * skb_condense - try to get rid of fragments/frag_list if possible
5566  * @skb: buffer
5567  *
5568  * Can be used to save memory before skb is added to a busy queue.
5569  * If packet has bytes in frags and enough tail room in skb->head,
5570  * pull all of them, so that we can free the frags right now and adjust
5571  * truesize.
5572  * Notes:
5573  *	We do not reallocate skb->head thus can not fail.
5574  *	Caller must re-evaluate skb->truesize if needed.
5575  */
5576 void skb_condense(struct sk_buff *skb)
5577 {
5578 	if (skb->data_len) {
5579 		if (skb->data_len > skb->end - skb->tail ||
5580 		    skb_cloned(skb))
5581 			return;
5582 
5583 		/* Nice, we can free page frag(s) right now */
5584 		__pskb_pull_tail(skb, skb->data_len);
5585 	}
5586 	/* At this point, skb->truesize might be over estimated,
5587 	 * because skb had a fragment, and fragments do not tell
5588 	 * their truesize.
5589 	 * When we pulled its content into skb->head, fragment
5590 	 * was freed, but __pskb_pull_tail() could not possibly
5591 	 * adjust skb->truesize, not knowing the frag truesize.
5592 	 */
5593 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5594 }
5595 
5596 #ifdef CONFIG_SKB_EXTENSIONS
5597 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
5598 {
5599 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
5600 }
5601 
5602 static struct skb_ext *skb_ext_alloc(void)
5603 {
5604 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
5605 
5606 	if (new) {
5607 		memset(new->offset, 0, sizeof(new->offset));
5608 		refcount_set(&new->refcnt, 1);
5609 	}
5610 
5611 	return new;
5612 }
5613 
5614 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
5615 					 unsigned int old_active)
5616 {
5617 	struct skb_ext *new;
5618 
5619 	if (refcount_read(&old->refcnt) == 1)
5620 		return old;
5621 
5622 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
5623 	if (!new)
5624 		return NULL;
5625 
5626 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
5627 	refcount_set(&new->refcnt, 1);
5628 
5629 #ifdef CONFIG_XFRM
5630 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
5631 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
5632 		unsigned int i;
5633 
5634 		for (i = 0; i < sp->len; i++)
5635 			xfrm_state_hold(sp->xvec[i]);
5636 	}
5637 #endif
5638 	__skb_ext_put(old);
5639 	return new;
5640 }
5641 
5642 /**
5643  * skb_ext_add - allocate space for given extension, COW if needed
5644  * @skb: buffer
5645  * @id: extension to allocate space for
5646  *
5647  * Allocates enough space for the given extension.
5648  * If the extension is already present, a pointer to that extension
5649  * is returned.
5650  *
5651  * If the skb was cloned, COW applies and the returned memory can be
5652  * modified without changing the extension space of clones buffers.
5653  *
5654  * Returns pointer to the extension or NULL on allocation failure.
5655  */
5656 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
5657 {
5658 	struct skb_ext *new, *old = NULL;
5659 	unsigned int newlen, newoff;
5660 
5661 	if (skb->active_extensions) {
5662 		old = skb->extensions;
5663 
5664 		new = skb_ext_maybe_cow(old, skb->active_extensions);
5665 		if (!new)
5666 			return NULL;
5667 
5668 		if (__skb_ext_exist(new, id))
5669 			goto set_active;
5670 
5671 		newoff = new->chunks;
5672 	} else {
5673 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
5674 
5675 		new = skb_ext_alloc();
5676 		if (!new)
5677 			return NULL;
5678 	}
5679 
5680 	newlen = newoff + skb_ext_type_len[id];
5681 	new->chunks = newlen;
5682 	new->offset[id] = newoff;
5683 set_active:
5684 	skb->extensions = new;
5685 	skb->active_extensions |= 1 << id;
5686 	return skb_ext_get_ptr(new, id);
5687 }
5688 EXPORT_SYMBOL(skb_ext_add);
5689 
5690 #ifdef CONFIG_XFRM
5691 static void skb_ext_put_sp(struct sec_path *sp)
5692 {
5693 	unsigned int i;
5694 
5695 	for (i = 0; i < sp->len; i++)
5696 		xfrm_state_put(sp->xvec[i]);
5697 }
5698 #endif
5699 
5700 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
5701 {
5702 	struct skb_ext *ext = skb->extensions;
5703 
5704 	skb->active_extensions &= ~(1 << id);
5705 	if (skb->active_extensions == 0) {
5706 		skb->extensions = NULL;
5707 		__skb_ext_put(ext);
5708 #ifdef CONFIG_XFRM
5709 	} else if (id == SKB_EXT_SEC_PATH &&
5710 		   refcount_read(&ext->refcnt) == 1) {
5711 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
5712 
5713 		skb_ext_put_sp(sp);
5714 		sp->len = 0;
5715 #endif
5716 	}
5717 }
5718 EXPORT_SYMBOL(__skb_ext_del);
5719 
5720 void __skb_ext_put(struct skb_ext *ext)
5721 {
5722 	/* If this is last clone, nothing can increment
5723 	 * it after check passes.  Avoids one atomic op.
5724 	 */
5725 	if (refcount_read(&ext->refcnt) == 1)
5726 		goto free_now;
5727 
5728 	if (!refcount_dec_and_test(&ext->refcnt))
5729 		return;
5730 free_now:
5731 #ifdef CONFIG_XFRM
5732 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
5733 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
5734 #endif
5735 
5736 	kmem_cache_free(skbuff_ext_cache, ext);
5737 }
5738 EXPORT_SYMBOL(__skb_ext_put);
5739 #endif /* CONFIG_SKB_EXTENSIONS */
5740