xref: /linux/net/core/skbuff.c (revision 4c62e9764ab403d42f9b8871b1241fe7812f19d4)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/xfrm.h>
69 
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
73 
74 struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76 
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 				  struct pipe_buffer *buf)
79 {
80 	put_page(buf->page);
81 }
82 
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 				struct pipe_buffer *buf)
85 {
86 	get_page(buf->page);
87 }
88 
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 			       struct pipe_buffer *buf)
91 {
92 	return 1;
93 }
94 
95 
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 	.can_merge = 0,
99 	.map = generic_pipe_buf_map,
100 	.unmap = generic_pipe_buf_unmap,
101 	.confirm = generic_pipe_buf_confirm,
102 	.release = sock_pipe_buf_release,
103 	.steal = sock_pipe_buf_steal,
104 	.get = sock_pipe_buf_get,
105 };
106 
107 /*
108  *	Keep out-of-line to prevent kernel bloat.
109  *	__builtin_return_address is not used because it is not always
110  *	reliable.
111  */
112 
113 /**
114  *	skb_over_panic	- 	private function
115  *	@skb: buffer
116  *	@sz: size
117  *	@here: address
118  *
119  *	Out of line support code for skb_put(). Not user callable.
120  */
121 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
122 {
123 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
124 		 __func__, here, skb->len, sz, skb->head, skb->data,
125 		 (unsigned long)skb->tail, (unsigned long)skb->end,
126 		 skb->dev ? skb->dev->name : "<NULL>");
127 	BUG();
128 }
129 
130 /**
131  *	skb_under_panic	- 	private function
132  *	@skb: buffer
133  *	@sz: size
134  *	@here: address
135  *
136  *	Out of line support code for skb_push(). Not user callable.
137  */
138 
139 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
140 {
141 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
142 		 __func__, here, skb->len, sz, skb->head, skb->data,
143 		 (unsigned long)skb->tail, (unsigned long)skb->end,
144 		 skb->dev ? skb->dev->name : "<NULL>");
145 	BUG();
146 }
147 
148 
149 /*
150  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
151  * the caller if emergency pfmemalloc reserves are being used. If it is and
152  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
153  * may be used. Otherwise, the packet data may be discarded until enough
154  * memory is free
155  */
156 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
157 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
158 void *__kmalloc_reserve(size_t size, gfp_t flags, int node, unsigned long ip,
159 			 bool *pfmemalloc)
160 {
161 	void *obj;
162 	bool ret_pfmemalloc = false;
163 
164 	/*
165 	 * Try a regular allocation, when that fails and we're not entitled
166 	 * to the reserves, fail.
167 	 */
168 	obj = kmalloc_node_track_caller(size,
169 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
170 					node);
171 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
172 		goto out;
173 
174 	/* Try again but now we are using pfmemalloc reserves */
175 	ret_pfmemalloc = true;
176 	obj = kmalloc_node_track_caller(size, flags, node);
177 
178 out:
179 	if (pfmemalloc)
180 		*pfmemalloc = ret_pfmemalloc;
181 
182 	return obj;
183 }
184 
185 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
186  *	'private' fields and also do memory statistics to find all the
187  *	[BEEP] leaks.
188  *
189  */
190 
191 /**
192  *	__alloc_skb	-	allocate a network buffer
193  *	@size: size to allocate
194  *	@gfp_mask: allocation mask
195  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
196  *		instead of head cache and allocate a cloned (child) skb.
197  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
198  *		allocations in case the data is required for writeback
199  *	@node: numa node to allocate memory on
200  *
201  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
202  *	tail room of at least size bytes. The object has a reference count
203  *	of one. The return is the buffer. On a failure the return is %NULL.
204  *
205  *	Buffers may only be allocated from interrupts using a @gfp_mask of
206  *	%GFP_ATOMIC.
207  */
208 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
209 			    int flags, int node)
210 {
211 	struct kmem_cache *cache;
212 	struct skb_shared_info *shinfo;
213 	struct sk_buff *skb;
214 	u8 *data;
215 	bool pfmemalloc;
216 
217 	cache = (flags & SKB_ALLOC_FCLONE)
218 		? skbuff_fclone_cache : skbuff_head_cache;
219 
220 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
221 		gfp_mask |= __GFP_MEMALLOC;
222 
223 	/* Get the HEAD */
224 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
225 	if (!skb)
226 		goto out;
227 	prefetchw(skb);
228 
229 	/* We do our best to align skb_shared_info on a separate cache
230 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
231 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
232 	 * Both skb->head and skb_shared_info are cache line aligned.
233 	 */
234 	size = SKB_DATA_ALIGN(size);
235 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
236 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
237 	if (!data)
238 		goto nodata;
239 	/* kmalloc(size) might give us more room than requested.
240 	 * Put skb_shared_info exactly at the end of allocated zone,
241 	 * to allow max possible filling before reallocation.
242 	 */
243 	size = SKB_WITH_OVERHEAD(ksize(data));
244 	prefetchw(data + size);
245 
246 	/*
247 	 * Only clear those fields we need to clear, not those that we will
248 	 * actually initialise below. Hence, don't put any more fields after
249 	 * the tail pointer in struct sk_buff!
250 	 */
251 	memset(skb, 0, offsetof(struct sk_buff, tail));
252 	/* Account for allocated memory : skb + skb->head */
253 	skb->truesize = SKB_TRUESIZE(size);
254 	skb->pfmemalloc = pfmemalloc;
255 	atomic_set(&skb->users, 1);
256 	skb->head = data;
257 	skb->data = data;
258 	skb_reset_tail_pointer(skb);
259 	skb->end = skb->tail + size;
260 #ifdef NET_SKBUFF_DATA_USES_OFFSET
261 	skb->mac_header = ~0U;
262 #endif
263 
264 	/* make sure we initialize shinfo sequentially */
265 	shinfo = skb_shinfo(skb);
266 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
267 	atomic_set(&shinfo->dataref, 1);
268 	kmemcheck_annotate_variable(shinfo->destructor_arg);
269 
270 	if (flags & SKB_ALLOC_FCLONE) {
271 		struct sk_buff *child = skb + 1;
272 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
273 
274 		kmemcheck_annotate_bitfield(child, flags1);
275 		kmemcheck_annotate_bitfield(child, flags2);
276 		skb->fclone = SKB_FCLONE_ORIG;
277 		atomic_set(fclone_ref, 1);
278 
279 		child->fclone = SKB_FCLONE_UNAVAILABLE;
280 		child->pfmemalloc = pfmemalloc;
281 	}
282 out:
283 	return skb;
284 nodata:
285 	kmem_cache_free(cache, skb);
286 	skb = NULL;
287 	goto out;
288 }
289 EXPORT_SYMBOL(__alloc_skb);
290 
291 /**
292  * build_skb - build a network buffer
293  * @data: data buffer provided by caller
294  * @frag_size: size of fragment, or 0 if head was kmalloced
295  *
296  * Allocate a new &sk_buff. Caller provides space holding head and
297  * skb_shared_info. @data must have been allocated by kmalloc()
298  * The return is the new skb buffer.
299  * On a failure the return is %NULL, and @data is not freed.
300  * Notes :
301  *  Before IO, driver allocates only data buffer where NIC put incoming frame
302  *  Driver should add room at head (NET_SKB_PAD) and
303  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
304  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
305  *  before giving packet to stack.
306  *  RX rings only contains data buffers, not full skbs.
307  */
308 struct sk_buff *build_skb(void *data, unsigned int frag_size)
309 {
310 	struct skb_shared_info *shinfo;
311 	struct sk_buff *skb;
312 	unsigned int size = frag_size ? : ksize(data);
313 
314 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
315 	if (!skb)
316 		return NULL;
317 
318 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
319 
320 	memset(skb, 0, offsetof(struct sk_buff, tail));
321 	skb->truesize = SKB_TRUESIZE(size);
322 	skb->head_frag = frag_size != 0;
323 	atomic_set(&skb->users, 1);
324 	skb->head = data;
325 	skb->data = data;
326 	skb_reset_tail_pointer(skb);
327 	skb->end = skb->tail + size;
328 #ifdef NET_SKBUFF_DATA_USES_OFFSET
329 	skb->mac_header = ~0U;
330 #endif
331 
332 	/* make sure we initialize shinfo sequentially */
333 	shinfo = skb_shinfo(skb);
334 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
335 	atomic_set(&shinfo->dataref, 1);
336 	kmemcheck_annotate_variable(shinfo->destructor_arg);
337 
338 	return skb;
339 }
340 EXPORT_SYMBOL(build_skb);
341 
342 struct netdev_alloc_cache {
343 	struct page_frag	frag;
344 	/* we maintain a pagecount bias, so that we dont dirty cache line
345 	 * containing page->_count every time we allocate a fragment.
346 	 */
347 	unsigned int		pagecnt_bias;
348 };
349 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
350 
351 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
352 #define NETDEV_FRAG_PAGE_MAX_SIZE  (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
353 #define NETDEV_PAGECNT_MAX_BIAS	   NETDEV_FRAG_PAGE_MAX_SIZE
354 
355 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
356 {
357 	struct netdev_alloc_cache *nc;
358 	void *data = NULL;
359 	int order;
360 	unsigned long flags;
361 
362 	local_irq_save(flags);
363 	nc = &__get_cpu_var(netdev_alloc_cache);
364 	if (unlikely(!nc->frag.page)) {
365 refill:
366 		for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
367 			gfp_t gfp = gfp_mask;
368 
369 			if (order)
370 				gfp |= __GFP_COMP | __GFP_NOWARN;
371 			nc->frag.page = alloc_pages(gfp, order);
372 			if (likely(nc->frag.page))
373 				break;
374 			if (--order < 0)
375 				goto end;
376 		}
377 		nc->frag.size = PAGE_SIZE << order;
378 recycle:
379 		atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
380 		nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
381 		nc->frag.offset = 0;
382 	}
383 
384 	if (nc->frag.offset + fragsz > nc->frag.size) {
385 		/* avoid unnecessary locked operations if possible */
386 		if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
387 		    atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
388 			goto recycle;
389 		goto refill;
390 	}
391 
392 	data = page_address(nc->frag.page) + nc->frag.offset;
393 	nc->frag.offset += fragsz;
394 	nc->pagecnt_bias--;
395 end:
396 	local_irq_restore(flags);
397 	return data;
398 }
399 
400 /**
401  * netdev_alloc_frag - allocate a page fragment
402  * @fragsz: fragment size
403  *
404  * Allocates a frag from a page for receive buffer.
405  * Uses GFP_ATOMIC allocations.
406  */
407 void *netdev_alloc_frag(unsigned int fragsz)
408 {
409 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
410 }
411 EXPORT_SYMBOL(netdev_alloc_frag);
412 
413 /**
414  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
415  *	@dev: network device to receive on
416  *	@length: length to allocate
417  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
418  *
419  *	Allocate a new &sk_buff and assign it a usage count of one. The
420  *	buffer has unspecified headroom built in. Users should allocate
421  *	the headroom they think they need without accounting for the
422  *	built in space. The built in space is used for optimisations.
423  *
424  *	%NULL is returned if there is no free memory.
425  */
426 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
427 				   unsigned int length, gfp_t gfp_mask)
428 {
429 	struct sk_buff *skb = NULL;
430 	unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
431 			      SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
432 
433 	if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
434 		void *data;
435 
436 		if (sk_memalloc_socks())
437 			gfp_mask |= __GFP_MEMALLOC;
438 
439 		data = __netdev_alloc_frag(fragsz, gfp_mask);
440 
441 		if (likely(data)) {
442 			skb = build_skb(data, fragsz);
443 			if (unlikely(!skb))
444 				put_page(virt_to_head_page(data));
445 		}
446 	} else {
447 		skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
448 				  SKB_ALLOC_RX, NUMA_NO_NODE);
449 	}
450 	if (likely(skb)) {
451 		skb_reserve(skb, NET_SKB_PAD);
452 		skb->dev = dev;
453 	}
454 	return skb;
455 }
456 EXPORT_SYMBOL(__netdev_alloc_skb);
457 
458 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
459 		     int size, unsigned int truesize)
460 {
461 	skb_fill_page_desc(skb, i, page, off, size);
462 	skb->len += size;
463 	skb->data_len += size;
464 	skb->truesize += truesize;
465 }
466 EXPORT_SYMBOL(skb_add_rx_frag);
467 
468 static void skb_drop_list(struct sk_buff **listp)
469 {
470 	struct sk_buff *list = *listp;
471 
472 	*listp = NULL;
473 
474 	do {
475 		struct sk_buff *this = list;
476 		list = list->next;
477 		kfree_skb(this);
478 	} while (list);
479 }
480 
481 static inline void skb_drop_fraglist(struct sk_buff *skb)
482 {
483 	skb_drop_list(&skb_shinfo(skb)->frag_list);
484 }
485 
486 static void skb_clone_fraglist(struct sk_buff *skb)
487 {
488 	struct sk_buff *list;
489 
490 	skb_walk_frags(skb, list)
491 		skb_get(list);
492 }
493 
494 static void skb_free_head(struct sk_buff *skb)
495 {
496 	if (skb->head_frag)
497 		put_page(virt_to_head_page(skb->head));
498 	else
499 		kfree(skb->head);
500 }
501 
502 static void skb_release_data(struct sk_buff *skb)
503 {
504 	if (!skb->cloned ||
505 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
506 			       &skb_shinfo(skb)->dataref)) {
507 		if (skb_shinfo(skb)->nr_frags) {
508 			int i;
509 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
510 				skb_frag_unref(skb, i);
511 		}
512 
513 		/*
514 		 * If skb buf is from userspace, we need to notify the caller
515 		 * the lower device DMA has done;
516 		 */
517 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
518 			struct ubuf_info *uarg;
519 
520 			uarg = skb_shinfo(skb)->destructor_arg;
521 			if (uarg->callback)
522 				uarg->callback(uarg, true);
523 		}
524 
525 		if (skb_has_frag_list(skb))
526 			skb_drop_fraglist(skb);
527 
528 		skb_free_head(skb);
529 	}
530 }
531 
532 /*
533  *	Free an skbuff by memory without cleaning the state.
534  */
535 static void kfree_skbmem(struct sk_buff *skb)
536 {
537 	struct sk_buff *other;
538 	atomic_t *fclone_ref;
539 
540 	switch (skb->fclone) {
541 	case SKB_FCLONE_UNAVAILABLE:
542 		kmem_cache_free(skbuff_head_cache, skb);
543 		break;
544 
545 	case SKB_FCLONE_ORIG:
546 		fclone_ref = (atomic_t *) (skb + 2);
547 		if (atomic_dec_and_test(fclone_ref))
548 			kmem_cache_free(skbuff_fclone_cache, skb);
549 		break;
550 
551 	case SKB_FCLONE_CLONE:
552 		fclone_ref = (atomic_t *) (skb + 1);
553 		other = skb - 1;
554 
555 		/* The clone portion is available for
556 		 * fast-cloning again.
557 		 */
558 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
559 
560 		if (atomic_dec_and_test(fclone_ref))
561 			kmem_cache_free(skbuff_fclone_cache, other);
562 		break;
563 	}
564 }
565 
566 static void skb_release_head_state(struct sk_buff *skb)
567 {
568 	skb_dst_drop(skb);
569 #ifdef CONFIG_XFRM
570 	secpath_put(skb->sp);
571 #endif
572 	if (skb->destructor) {
573 		WARN_ON(in_irq());
574 		skb->destructor(skb);
575 	}
576 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
577 	nf_conntrack_put(skb->nfct);
578 #endif
579 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
580 	nf_conntrack_put_reasm(skb->nfct_reasm);
581 #endif
582 #ifdef CONFIG_BRIDGE_NETFILTER
583 	nf_bridge_put(skb->nf_bridge);
584 #endif
585 /* XXX: IS this still necessary? - JHS */
586 #ifdef CONFIG_NET_SCHED
587 	skb->tc_index = 0;
588 #ifdef CONFIG_NET_CLS_ACT
589 	skb->tc_verd = 0;
590 #endif
591 #endif
592 }
593 
594 /* Free everything but the sk_buff shell. */
595 static void skb_release_all(struct sk_buff *skb)
596 {
597 	skb_release_head_state(skb);
598 	skb_release_data(skb);
599 }
600 
601 /**
602  *	__kfree_skb - private function
603  *	@skb: buffer
604  *
605  *	Free an sk_buff. Release anything attached to the buffer.
606  *	Clean the state. This is an internal helper function. Users should
607  *	always call kfree_skb
608  */
609 
610 void __kfree_skb(struct sk_buff *skb)
611 {
612 	skb_release_all(skb);
613 	kfree_skbmem(skb);
614 }
615 EXPORT_SYMBOL(__kfree_skb);
616 
617 /**
618  *	kfree_skb - free an sk_buff
619  *	@skb: buffer to free
620  *
621  *	Drop a reference to the buffer and free it if the usage count has
622  *	hit zero.
623  */
624 void kfree_skb(struct sk_buff *skb)
625 {
626 	if (unlikely(!skb))
627 		return;
628 	if (likely(atomic_read(&skb->users) == 1))
629 		smp_rmb();
630 	else if (likely(!atomic_dec_and_test(&skb->users)))
631 		return;
632 	trace_kfree_skb(skb, __builtin_return_address(0));
633 	__kfree_skb(skb);
634 }
635 EXPORT_SYMBOL(kfree_skb);
636 
637 /**
638  *	skb_tx_error - report an sk_buff xmit error
639  *	@skb: buffer that triggered an error
640  *
641  *	Report xmit error if a device callback is tracking this skb.
642  *	skb must be freed afterwards.
643  */
644 void skb_tx_error(struct sk_buff *skb)
645 {
646 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
647 		struct ubuf_info *uarg;
648 
649 		uarg = skb_shinfo(skb)->destructor_arg;
650 		if (uarg->callback)
651 			uarg->callback(uarg, false);
652 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
653 	}
654 }
655 EXPORT_SYMBOL(skb_tx_error);
656 
657 /**
658  *	consume_skb - free an skbuff
659  *	@skb: buffer to free
660  *
661  *	Drop a ref to the buffer and free it if the usage count has hit zero
662  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
663  *	is being dropped after a failure and notes that
664  */
665 void consume_skb(struct sk_buff *skb)
666 {
667 	if (unlikely(!skb))
668 		return;
669 	if (likely(atomic_read(&skb->users) == 1))
670 		smp_rmb();
671 	else if (likely(!atomic_dec_and_test(&skb->users)))
672 		return;
673 	trace_consume_skb(skb);
674 	__kfree_skb(skb);
675 }
676 EXPORT_SYMBOL(consume_skb);
677 
678 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
679 {
680 	new->tstamp		= old->tstamp;
681 	new->dev		= old->dev;
682 	new->transport_header	= old->transport_header;
683 	new->network_header	= old->network_header;
684 	new->mac_header		= old->mac_header;
685 	new->inner_transport_header = old->inner_transport_header;
686 	new->inner_network_header = old->inner_transport_header;
687 	skb_dst_copy(new, old);
688 	new->rxhash		= old->rxhash;
689 	new->ooo_okay		= old->ooo_okay;
690 	new->l4_rxhash		= old->l4_rxhash;
691 	new->no_fcs		= old->no_fcs;
692 	new->encapsulation	= old->encapsulation;
693 #ifdef CONFIG_XFRM
694 	new->sp			= secpath_get(old->sp);
695 #endif
696 	memcpy(new->cb, old->cb, sizeof(old->cb));
697 	new->csum		= old->csum;
698 	new->local_df		= old->local_df;
699 	new->pkt_type		= old->pkt_type;
700 	new->ip_summed		= old->ip_summed;
701 	skb_copy_queue_mapping(new, old);
702 	new->priority		= old->priority;
703 #if IS_ENABLED(CONFIG_IP_VS)
704 	new->ipvs_property	= old->ipvs_property;
705 #endif
706 	new->pfmemalloc		= old->pfmemalloc;
707 	new->protocol		= old->protocol;
708 	new->mark		= old->mark;
709 	new->skb_iif		= old->skb_iif;
710 	__nf_copy(new, old);
711 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
712 	new->nf_trace		= old->nf_trace;
713 #endif
714 #ifdef CONFIG_NET_SCHED
715 	new->tc_index		= old->tc_index;
716 #ifdef CONFIG_NET_CLS_ACT
717 	new->tc_verd		= old->tc_verd;
718 #endif
719 #endif
720 	new->vlan_tci		= old->vlan_tci;
721 
722 	skb_copy_secmark(new, old);
723 }
724 
725 /*
726  * You should not add any new code to this function.  Add it to
727  * __copy_skb_header above instead.
728  */
729 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
730 {
731 #define C(x) n->x = skb->x
732 
733 	n->next = n->prev = NULL;
734 	n->sk = NULL;
735 	__copy_skb_header(n, skb);
736 
737 	C(len);
738 	C(data_len);
739 	C(mac_len);
740 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
741 	n->cloned = 1;
742 	n->nohdr = 0;
743 	n->destructor = NULL;
744 	C(tail);
745 	C(end);
746 	C(head);
747 	C(head_frag);
748 	C(data);
749 	C(truesize);
750 	atomic_set(&n->users, 1);
751 
752 	atomic_inc(&(skb_shinfo(skb)->dataref));
753 	skb->cloned = 1;
754 
755 	return n;
756 #undef C
757 }
758 
759 /**
760  *	skb_morph	-	morph one skb into another
761  *	@dst: the skb to receive the contents
762  *	@src: the skb to supply the contents
763  *
764  *	This is identical to skb_clone except that the target skb is
765  *	supplied by the user.
766  *
767  *	The target skb is returned upon exit.
768  */
769 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
770 {
771 	skb_release_all(dst);
772 	return __skb_clone(dst, src);
773 }
774 EXPORT_SYMBOL_GPL(skb_morph);
775 
776 /**
777  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
778  *	@skb: the skb to modify
779  *	@gfp_mask: allocation priority
780  *
781  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
782  *	It will copy all frags into kernel and drop the reference
783  *	to userspace pages.
784  *
785  *	If this function is called from an interrupt gfp_mask() must be
786  *	%GFP_ATOMIC.
787  *
788  *	Returns 0 on success or a negative error code on failure
789  *	to allocate kernel memory to copy to.
790  */
791 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
792 {
793 	int i;
794 	int num_frags = skb_shinfo(skb)->nr_frags;
795 	struct page *page, *head = NULL;
796 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
797 
798 	for (i = 0; i < num_frags; i++) {
799 		u8 *vaddr;
800 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
801 
802 		page = alloc_page(gfp_mask);
803 		if (!page) {
804 			while (head) {
805 				struct page *next = (struct page *)head->private;
806 				put_page(head);
807 				head = next;
808 			}
809 			return -ENOMEM;
810 		}
811 		vaddr = kmap_atomic(skb_frag_page(f));
812 		memcpy(page_address(page),
813 		       vaddr + f->page_offset, skb_frag_size(f));
814 		kunmap_atomic(vaddr);
815 		page->private = (unsigned long)head;
816 		head = page;
817 	}
818 
819 	/* skb frags release userspace buffers */
820 	for (i = 0; i < num_frags; i++)
821 		skb_frag_unref(skb, i);
822 
823 	uarg->callback(uarg, false);
824 
825 	/* skb frags point to kernel buffers */
826 	for (i = num_frags - 1; i >= 0; i--) {
827 		__skb_fill_page_desc(skb, i, head, 0,
828 				     skb_shinfo(skb)->frags[i].size);
829 		head = (struct page *)head->private;
830 	}
831 
832 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
833 	return 0;
834 }
835 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
836 
837 /**
838  *	skb_clone	-	duplicate an sk_buff
839  *	@skb: buffer to clone
840  *	@gfp_mask: allocation priority
841  *
842  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
843  *	copies share the same packet data but not structure. The new
844  *	buffer has a reference count of 1. If the allocation fails the
845  *	function returns %NULL otherwise the new buffer is returned.
846  *
847  *	If this function is called from an interrupt gfp_mask() must be
848  *	%GFP_ATOMIC.
849  */
850 
851 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
852 {
853 	struct sk_buff *n;
854 
855 	if (skb_orphan_frags(skb, gfp_mask))
856 		return NULL;
857 
858 	n = skb + 1;
859 	if (skb->fclone == SKB_FCLONE_ORIG &&
860 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
861 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
862 		n->fclone = SKB_FCLONE_CLONE;
863 		atomic_inc(fclone_ref);
864 	} else {
865 		if (skb_pfmemalloc(skb))
866 			gfp_mask |= __GFP_MEMALLOC;
867 
868 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
869 		if (!n)
870 			return NULL;
871 
872 		kmemcheck_annotate_bitfield(n, flags1);
873 		kmemcheck_annotate_bitfield(n, flags2);
874 		n->fclone = SKB_FCLONE_UNAVAILABLE;
875 	}
876 
877 	return __skb_clone(n, skb);
878 }
879 EXPORT_SYMBOL(skb_clone);
880 
881 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
882 {
883 #ifndef NET_SKBUFF_DATA_USES_OFFSET
884 	/*
885 	 *	Shift between the two data areas in bytes
886 	 */
887 	unsigned long offset = new->data - old->data;
888 #endif
889 
890 	__copy_skb_header(new, old);
891 
892 #ifndef NET_SKBUFF_DATA_USES_OFFSET
893 	/* {transport,network,mac}_header are relative to skb->head */
894 	new->transport_header += offset;
895 	new->network_header   += offset;
896 	if (skb_mac_header_was_set(new))
897 		new->mac_header	      += offset;
898 	new->inner_transport_header += offset;
899 	new->inner_network_header   += offset;
900 #endif
901 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
902 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
903 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
904 }
905 
906 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
907 {
908 	if (skb_pfmemalloc(skb))
909 		return SKB_ALLOC_RX;
910 	return 0;
911 }
912 
913 /**
914  *	skb_copy	-	create private copy of an sk_buff
915  *	@skb: buffer to copy
916  *	@gfp_mask: allocation priority
917  *
918  *	Make a copy of both an &sk_buff and its data. This is used when the
919  *	caller wishes to modify the data and needs a private copy of the
920  *	data to alter. Returns %NULL on failure or the pointer to the buffer
921  *	on success. The returned buffer has a reference count of 1.
922  *
923  *	As by-product this function converts non-linear &sk_buff to linear
924  *	one, so that &sk_buff becomes completely private and caller is allowed
925  *	to modify all the data of returned buffer. This means that this
926  *	function is not recommended for use in circumstances when only
927  *	header is going to be modified. Use pskb_copy() instead.
928  */
929 
930 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
931 {
932 	int headerlen = skb_headroom(skb);
933 	unsigned int size = skb_end_offset(skb) + skb->data_len;
934 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
935 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
936 
937 	if (!n)
938 		return NULL;
939 
940 	/* Set the data pointer */
941 	skb_reserve(n, headerlen);
942 	/* Set the tail pointer and length */
943 	skb_put(n, skb->len);
944 
945 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
946 		BUG();
947 
948 	copy_skb_header(n, skb);
949 	return n;
950 }
951 EXPORT_SYMBOL(skb_copy);
952 
953 /**
954  *	__pskb_copy	-	create copy of an sk_buff with private head.
955  *	@skb: buffer to copy
956  *	@headroom: headroom of new skb
957  *	@gfp_mask: allocation priority
958  *
959  *	Make a copy of both an &sk_buff and part of its data, located
960  *	in header. Fragmented data remain shared. This is used when
961  *	the caller wishes to modify only header of &sk_buff and needs
962  *	private copy of the header to alter. Returns %NULL on failure
963  *	or the pointer to the buffer on success.
964  *	The returned buffer has a reference count of 1.
965  */
966 
967 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
968 {
969 	unsigned int size = skb_headlen(skb) + headroom;
970 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
971 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
972 
973 	if (!n)
974 		goto out;
975 
976 	/* Set the data pointer */
977 	skb_reserve(n, headroom);
978 	/* Set the tail pointer and length */
979 	skb_put(n, skb_headlen(skb));
980 	/* Copy the bytes */
981 	skb_copy_from_linear_data(skb, n->data, n->len);
982 
983 	n->truesize += skb->data_len;
984 	n->data_len  = skb->data_len;
985 	n->len	     = skb->len;
986 
987 	if (skb_shinfo(skb)->nr_frags) {
988 		int i;
989 
990 		if (skb_orphan_frags(skb, gfp_mask)) {
991 			kfree_skb(n);
992 			n = NULL;
993 			goto out;
994 		}
995 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
996 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
997 			skb_frag_ref(skb, i);
998 		}
999 		skb_shinfo(n)->nr_frags = i;
1000 	}
1001 
1002 	if (skb_has_frag_list(skb)) {
1003 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1004 		skb_clone_fraglist(n);
1005 	}
1006 
1007 	copy_skb_header(n, skb);
1008 out:
1009 	return n;
1010 }
1011 EXPORT_SYMBOL(__pskb_copy);
1012 
1013 /**
1014  *	pskb_expand_head - reallocate header of &sk_buff
1015  *	@skb: buffer to reallocate
1016  *	@nhead: room to add at head
1017  *	@ntail: room to add at tail
1018  *	@gfp_mask: allocation priority
1019  *
1020  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
1021  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
1022  *	reference count of 1. Returns zero in the case of success or error,
1023  *	if expansion failed. In the last case, &sk_buff is not changed.
1024  *
1025  *	All the pointers pointing into skb header may change and must be
1026  *	reloaded after call to this function.
1027  */
1028 
1029 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1030 		     gfp_t gfp_mask)
1031 {
1032 	int i;
1033 	u8 *data;
1034 	int size = nhead + skb_end_offset(skb) + ntail;
1035 	long off;
1036 
1037 	BUG_ON(nhead < 0);
1038 
1039 	if (skb_shared(skb))
1040 		BUG();
1041 
1042 	size = SKB_DATA_ALIGN(size);
1043 
1044 	if (skb_pfmemalloc(skb))
1045 		gfp_mask |= __GFP_MEMALLOC;
1046 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1047 			       gfp_mask, NUMA_NO_NODE, NULL);
1048 	if (!data)
1049 		goto nodata;
1050 	size = SKB_WITH_OVERHEAD(ksize(data));
1051 
1052 	/* Copy only real data... and, alas, header. This should be
1053 	 * optimized for the cases when header is void.
1054 	 */
1055 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1056 
1057 	memcpy((struct skb_shared_info *)(data + size),
1058 	       skb_shinfo(skb),
1059 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1060 
1061 	/*
1062 	 * if shinfo is shared we must drop the old head gracefully, but if it
1063 	 * is not we can just drop the old head and let the existing refcount
1064 	 * be since all we did is relocate the values
1065 	 */
1066 	if (skb_cloned(skb)) {
1067 		/* copy this zero copy skb frags */
1068 		if (skb_orphan_frags(skb, gfp_mask))
1069 			goto nofrags;
1070 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1071 			skb_frag_ref(skb, i);
1072 
1073 		if (skb_has_frag_list(skb))
1074 			skb_clone_fraglist(skb);
1075 
1076 		skb_release_data(skb);
1077 	} else {
1078 		skb_free_head(skb);
1079 	}
1080 	off = (data + nhead) - skb->head;
1081 
1082 	skb->head     = data;
1083 	skb->head_frag = 0;
1084 	skb->data    += off;
1085 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1086 	skb->end      = size;
1087 	off           = nhead;
1088 #else
1089 	skb->end      = skb->head + size;
1090 #endif
1091 	/* {transport,network,mac}_header and tail are relative to skb->head */
1092 	skb->tail	      += off;
1093 	skb->transport_header += off;
1094 	skb->network_header   += off;
1095 	if (skb_mac_header_was_set(skb))
1096 		skb->mac_header += off;
1097 	skb->inner_transport_header += off;
1098 	skb->inner_network_header += off;
1099 	/* Only adjust this if it actually is csum_start rather than csum */
1100 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1101 		skb->csum_start += nhead;
1102 	skb->cloned   = 0;
1103 	skb->hdr_len  = 0;
1104 	skb->nohdr    = 0;
1105 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1106 	return 0;
1107 
1108 nofrags:
1109 	kfree(data);
1110 nodata:
1111 	return -ENOMEM;
1112 }
1113 EXPORT_SYMBOL(pskb_expand_head);
1114 
1115 /* Make private copy of skb with writable head and some headroom */
1116 
1117 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1118 {
1119 	struct sk_buff *skb2;
1120 	int delta = headroom - skb_headroom(skb);
1121 
1122 	if (delta <= 0)
1123 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1124 	else {
1125 		skb2 = skb_clone(skb, GFP_ATOMIC);
1126 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1127 					     GFP_ATOMIC)) {
1128 			kfree_skb(skb2);
1129 			skb2 = NULL;
1130 		}
1131 	}
1132 	return skb2;
1133 }
1134 EXPORT_SYMBOL(skb_realloc_headroom);
1135 
1136 /**
1137  *	skb_copy_expand	-	copy and expand sk_buff
1138  *	@skb: buffer to copy
1139  *	@newheadroom: new free bytes at head
1140  *	@newtailroom: new free bytes at tail
1141  *	@gfp_mask: allocation priority
1142  *
1143  *	Make a copy of both an &sk_buff and its data and while doing so
1144  *	allocate additional space.
1145  *
1146  *	This is used when the caller wishes to modify the data and needs a
1147  *	private copy of the data to alter as well as more space for new fields.
1148  *	Returns %NULL on failure or the pointer to the buffer
1149  *	on success. The returned buffer has a reference count of 1.
1150  *
1151  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1152  *	is called from an interrupt.
1153  */
1154 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1155 				int newheadroom, int newtailroom,
1156 				gfp_t gfp_mask)
1157 {
1158 	/*
1159 	 *	Allocate the copy buffer
1160 	 */
1161 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1162 					gfp_mask, skb_alloc_rx_flag(skb),
1163 					NUMA_NO_NODE);
1164 	int oldheadroom = skb_headroom(skb);
1165 	int head_copy_len, head_copy_off;
1166 	int off;
1167 
1168 	if (!n)
1169 		return NULL;
1170 
1171 	skb_reserve(n, newheadroom);
1172 
1173 	/* Set the tail pointer and length */
1174 	skb_put(n, skb->len);
1175 
1176 	head_copy_len = oldheadroom;
1177 	head_copy_off = 0;
1178 	if (newheadroom <= head_copy_len)
1179 		head_copy_len = newheadroom;
1180 	else
1181 		head_copy_off = newheadroom - head_copy_len;
1182 
1183 	/* Copy the linear header and data. */
1184 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1185 			  skb->len + head_copy_len))
1186 		BUG();
1187 
1188 	copy_skb_header(n, skb);
1189 
1190 	off                  = newheadroom - oldheadroom;
1191 	if (n->ip_summed == CHECKSUM_PARTIAL)
1192 		n->csum_start += off;
1193 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1194 	n->transport_header += off;
1195 	n->network_header   += off;
1196 	if (skb_mac_header_was_set(skb))
1197 		n->mac_header += off;
1198 	n->inner_transport_header += off;
1199 	n->inner_network_header	   += off;
1200 #endif
1201 
1202 	return n;
1203 }
1204 EXPORT_SYMBOL(skb_copy_expand);
1205 
1206 /**
1207  *	skb_pad			-	zero pad the tail of an skb
1208  *	@skb: buffer to pad
1209  *	@pad: space to pad
1210  *
1211  *	Ensure that a buffer is followed by a padding area that is zero
1212  *	filled. Used by network drivers which may DMA or transfer data
1213  *	beyond the buffer end onto the wire.
1214  *
1215  *	May return error in out of memory cases. The skb is freed on error.
1216  */
1217 
1218 int skb_pad(struct sk_buff *skb, int pad)
1219 {
1220 	int err;
1221 	int ntail;
1222 
1223 	/* If the skbuff is non linear tailroom is always zero.. */
1224 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1225 		memset(skb->data+skb->len, 0, pad);
1226 		return 0;
1227 	}
1228 
1229 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1230 	if (likely(skb_cloned(skb) || ntail > 0)) {
1231 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1232 		if (unlikely(err))
1233 			goto free_skb;
1234 	}
1235 
1236 	/* FIXME: The use of this function with non-linear skb's really needs
1237 	 * to be audited.
1238 	 */
1239 	err = skb_linearize(skb);
1240 	if (unlikely(err))
1241 		goto free_skb;
1242 
1243 	memset(skb->data + skb->len, 0, pad);
1244 	return 0;
1245 
1246 free_skb:
1247 	kfree_skb(skb);
1248 	return err;
1249 }
1250 EXPORT_SYMBOL(skb_pad);
1251 
1252 /**
1253  *	skb_put - add data to a buffer
1254  *	@skb: buffer to use
1255  *	@len: amount of data to add
1256  *
1257  *	This function extends the used data area of the buffer. If this would
1258  *	exceed the total buffer size the kernel will panic. A pointer to the
1259  *	first byte of the extra data is returned.
1260  */
1261 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1262 {
1263 	unsigned char *tmp = skb_tail_pointer(skb);
1264 	SKB_LINEAR_ASSERT(skb);
1265 	skb->tail += len;
1266 	skb->len  += len;
1267 	if (unlikely(skb->tail > skb->end))
1268 		skb_over_panic(skb, len, __builtin_return_address(0));
1269 	return tmp;
1270 }
1271 EXPORT_SYMBOL(skb_put);
1272 
1273 /**
1274  *	skb_push - add data to the start of a buffer
1275  *	@skb: buffer to use
1276  *	@len: amount of data to add
1277  *
1278  *	This function extends the used data area of the buffer at the buffer
1279  *	start. If this would exceed the total buffer headroom the kernel will
1280  *	panic. A pointer to the first byte of the extra data is returned.
1281  */
1282 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1283 {
1284 	skb->data -= len;
1285 	skb->len  += len;
1286 	if (unlikely(skb->data<skb->head))
1287 		skb_under_panic(skb, len, __builtin_return_address(0));
1288 	return skb->data;
1289 }
1290 EXPORT_SYMBOL(skb_push);
1291 
1292 /**
1293  *	skb_pull - remove data from the start of a buffer
1294  *	@skb: buffer to use
1295  *	@len: amount of data to remove
1296  *
1297  *	This function removes data from the start of a buffer, returning
1298  *	the memory to the headroom. A pointer to the next data in the buffer
1299  *	is returned. Once the data has been pulled future pushes will overwrite
1300  *	the old data.
1301  */
1302 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1303 {
1304 	return skb_pull_inline(skb, len);
1305 }
1306 EXPORT_SYMBOL(skb_pull);
1307 
1308 /**
1309  *	skb_trim - remove end from a buffer
1310  *	@skb: buffer to alter
1311  *	@len: new length
1312  *
1313  *	Cut the length of a buffer down by removing data from the tail. If
1314  *	the buffer is already under the length specified it is not modified.
1315  *	The skb must be linear.
1316  */
1317 void skb_trim(struct sk_buff *skb, unsigned int len)
1318 {
1319 	if (skb->len > len)
1320 		__skb_trim(skb, len);
1321 }
1322 EXPORT_SYMBOL(skb_trim);
1323 
1324 /* Trims skb to length len. It can change skb pointers.
1325  */
1326 
1327 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1328 {
1329 	struct sk_buff **fragp;
1330 	struct sk_buff *frag;
1331 	int offset = skb_headlen(skb);
1332 	int nfrags = skb_shinfo(skb)->nr_frags;
1333 	int i;
1334 	int err;
1335 
1336 	if (skb_cloned(skb) &&
1337 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1338 		return err;
1339 
1340 	i = 0;
1341 	if (offset >= len)
1342 		goto drop_pages;
1343 
1344 	for (; i < nfrags; i++) {
1345 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1346 
1347 		if (end < len) {
1348 			offset = end;
1349 			continue;
1350 		}
1351 
1352 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1353 
1354 drop_pages:
1355 		skb_shinfo(skb)->nr_frags = i;
1356 
1357 		for (; i < nfrags; i++)
1358 			skb_frag_unref(skb, i);
1359 
1360 		if (skb_has_frag_list(skb))
1361 			skb_drop_fraglist(skb);
1362 		goto done;
1363 	}
1364 
1365 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1366 	     fragp = &frag->next) {
1367 		int end = offset + frag->len;
1368 
1369 		if (skb_shared(frag)) {
1370 			struct sk_buff *nfrag;
1371 
1372 			nfrag = skb_clone(frag, GFP_ATOMIC);
1373 			if (unlikely(!nfrag))
1374 				return -ENOMEM;
1375 
1376 			nfrag->next = frag->next;
1377 			consume_skb(frag);
1378 			frag = nfrag;
1379 			*fragp = frag;
1380 		}
1381 
1382 		if (end < len) {
1383 			offset = end;
1384 			continue;
1385 		}
1386 
1387 		if (end > len &&
1388 		    unlikely((err = pskb_trim(frag, len - offset))))
1389 			return err;
1390 
1391 		if (frag->next)
1392 			skb_drop_list(&frag->next);
1393 		break;
1394 	}
1395 
1396 done:
1397 	if (len > skb_headlen(skb)) {
1398 		skb->data_len -= skb->len - len;
1399 		skb->len       = len;
1400 	} else {
1401 		skb->len       = len;
1402 		skb->data_len  = 0;
1403 		skb_set_tail_pointer(skb, len);
1404 	}
1405 
1406 	return 0;
1407 }
1408 EXPORT_SYMBOL(___pskb_trim);
1409 
1410 /**
1411  *	__pskb_pull_tail - advance tail of skb header
1412  *	@skb: buffer to reallocate
1413  *	@delta: number of bytes to advance tail
1414  *
1415  *	The function makes a sense only on a fragmented &sk_buff,
1416  *	it expands header moving its tail forward and copying necessary
1417  *	data from fragmented part.
1418  *
1419  *	&sk_buff MUST have reference count of 1.
1420  *
1421  *	Returns %NULL (and &sk_buff does not change) if pull failed
1422  *	or value of new tail of skb in the case of success.
1423  *
1424  *	All the pointers pointing into skb header may change and must be
1425  *	reloaded after call to this function.
1426  */
1427 
1428 /* Moves tail of skb head forward, copying data from fragmented part,
1429  * when it is necessary.
1430  * 1. It may fail due to malloc failure.
1431  * 2. It may change skb pointers.
1432  *
1433  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1434  */
1435 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1436 {
1437 	/* If skb has not enough free space at tail, get new one
1438 	 * plus 128 bytes for future expansions. If we have enough
1439 	 * room at tail, reallocate without expansion only if skb is cloned.
1440 	 */
1441 	int i, k, eat = (skb->tail + delta) - skb->end;
1442 
1443 	if (eat > 0 || skb_cloned(skb)) {
1444 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1445 				     GFP_ATOMIC))
1446 			return NULL;
1447 	}
1448 
1449 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1450 		BUG();
1451 
1452 	/* Optimization: no fragments, no reasons to preestimate
1453 	 * size of pulled pages. Superb.
1454 	 */
1455 	if (!skb_has_frag_list(skb))
1456 		goto pull_pages;
1457 
1458 	/* Estimate size of pulled pages. */
1459 	eat = delta;
1460 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1461 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1462 
1463 		if (size >= eat)
1464 			goto pull_pages;
1465 		eat -= size;
1466 	}
1467 
1468 	/* If we need update frag list, we are in troubles.
1469 	 * Certainly, it possible to add an offset to skb data,
1470 	 * but taking into account that pulling is expected to
1471 	 * be very rare operation, it is worth to fight against
1472 	 * further bloating skb head and crucify ourselves here instead.
1473 	 * Pure masohism, indeed. 8)8)
1474 	 */
1475 	if (eat) {
1476 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1477 		struct sk_buff *clone = NULL;
1478 		struct sk_buff *insp = NULL;
1479 
1480 		do {
1481 			BUG_ON(!list);
1482 
1483 			if (list->len <= eat) {
1484 				/* Eaten as whole. */
1485 				eat -= list->len;
1486 				list = list->next;
1487 				insp = list;
1488 			} else {
1489 				/* Eaten partially. */
1490 
1491 				if (skb_shared(list)) {
1492 					/* Sucks! We need to fork list. :-( */
1493 					clone = skb_clone(list, GFP_ATOMIC);
1494 					if (!clone)
1495 						return NULL;
1496 					insp = list->next;
1497 					list = clone;
1498 				} else {
1499 					/* This may be pulled without
1500 					 * problems. */
1501 					insp = list;
1502 				}
1503 				if (!pskb_pull(list, eat)) {
1504 					kfree_skb(clone);
1505 					return NULL;
1506 				}
1507 				break;
1508 			}
1509 		} while (eat);
1510 
1511 		/* Free pulled out fragments. */
1512 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1513 			skb_shinfo(skb)->frag_list = list->next;
1514 			kfree_skb(list);
1515 		}
1516 		/* And insert new clone at head. */
1517 		if (clone) {
1518 			clone->next = list;
1519 			skb_shinfo(skb)->frag_list = clone;
1520 		}
1521 	}
1522 	/* Success! Now we may commit changes to skb data. */
1523 
1524 pull_pages:
1525 	eat = delta;
1526 	k = 0;
1527 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1528 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1529 
1530 		if (size <= eat) {
1531 			skb_frag_unref(skb, i);
1532 			eat -= size;
1533 		} else {
1534 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1535 			if (eat) {
1536 				skb_shinfo(skb)->frags[k].page_offset += eat;
1537 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1538 				eat = 0;
1539 			}
1540 			k++;
1541 		}
1542 	}
1543 	skb_shinfo(skb)->nr_frags = k;
1544 
1545 	skb->tail     += delta;
1546 	skb->data_len -= delta;
1547 
1548 	return skb_tail_pointer(skb);
1549 }
1550 EXPORT_SYMBOL(__pskb_pull_tail);
1551 
1552 /**
1553  *	skb_copy_bits - copy bits from skb to kernel buffer
1554  *	@skb: source skb
1555  *	@offset: offset in source
1556  *	@to: destination buffer
1557  *	@len: number of bytes to copy
1558  *
1559  *	Copy the specified number of bytes from the source skb to the
1560  *	destination buffer.
1561  *
1562  *	CAUTION ! :
1563  *		If its prototype is ever changed,
1564  *		check arch/{*}/net/{*}.S files,
1565  *		since it is called from BPF assembly code.
1566  */
1567 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1568 {
1569 	int start = skb_headlen(skb);
1570 	struct sk_buff *frag_iter;
1571 	int i, copy;
1572 
1573 	if (offset > (int)skb->len - len)
1574 		goto fault;
1575 
1576 	/* Copy header. */
1577 	if ((copy = start - offset) > 0) {
1578 		if (copy > len)
1579 			copy = len;
1580 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1581 		if ((len -= copy) == 0)
1582 			return 0;
1583 		offset += copy;
1584 		to     += copy;
1585 	}
1586 
1587 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1588 		int end;
1589 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1590 
1591 		WARN_ON(start > offset + len);
1592 
1593 		end = start + skb_frag_size(f);
1594 		if ((copy = end - offset) > 0) {
1595 			u8 *vaddr;
1596 
1597 			if (copy > len)
1598 				copy = len;
1599 
1600 			vaddr = kmap_atomic(skb_frag_page(f));
1601 			memcpy(to,
1602 			       vaddr + f->page_offset + offset - start,
1603 			       copy);
1604 			kunmap_atomic(vaddr);
1605 
1606 			if ((len -= copy) == 0)
1607 				return 0;
1608 			offset += copy;
1609 			to     += copy;
1610 		}
1611 		start = end;
1612 	}
1613 
1614 	skb_walk_frags(skb, frag_iter) {
1615 		int end;
1616 
1617 		WARN_ON(start > offset + len);
1618 
1619 		end = start + frag_iter->len;
1620 		if ((copy = end - offset) > 0) {
1621 			if (copy > len)
1622 				copy = len;
1623 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1624 				goto fault;
1625 			if ((len -= copy) == 0)
1626 				return 0;
1627 			offset += copy;
1628 			to     += copy;
1629 		}
1630 		start = end;
1631 	}
1632 
1633 	if (!len)
1634 		return 0;
1635 
1636 fault:
1637 	return -EFAULT;
1638 }
1639 EXPORT_SYMBOL(skb_copy_bits);
1640 
1641 /*
1642  * Callback from splice_to_pipe(), if we need to release some pages
1643  * at the end of the spd in case we error'ed out in filling the pipe.
1644  */
1645 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1646 {
1647 	put_page(spd->pages[i]);
1648 }
1649 
1650 static struct page *linear_to_page(struct page *page, unsigned int *len,
1651 				   unsigned int *offset,
1652 				   struct sk_buff *skb, struct sock *sk)
1653 {
1654 	struct page_frag *pfrag = sk_page_frag(sk);
1655 
1656 	if (!sk_page_frag_refill(sk, pfrag))
1657 		return NULL;
1658 
1659 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1660 
1661 	memcpy(page_address(pfrag->page) + pfrag->offset,
1662 	       page_address(page) + *offset, *len);
1663 	*offset = pfrag->offset;
1664 	pfrag->offset += *len;
1665 
1666 	return pfrag->page;
1667 }
1668 
1669 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1670 			     struct page *page,
1671 			     unsigned int offset)
1672 {
1673 	return	spd->nr_pages &&
1674 		spd->pages[spd->nr_pages - 1] == page &&
1675 		(spd->partial[spd->nr_pages - 1].offset +
1676 		 spd->partial[spd->nr_pages - 1].len == offset);
1677 }
1678 
1679 /*
1680  * Fill page/offset/length into spd, if it can hold more pages.
1681  */
1682 static bool spd_fill_page(struct splice_pipe_desc *spd,
1683 			  struct pipe_inode_info *pipe, struct page *page,
1684 			  unsigned int *len, unsigned int offset,
1685 			  struct sk_buff *skb, bool linear,
1686 			  struct sock *sk)
1687 {
1688 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1689 		return true;
1690 
1691 	if (linear) {
1692 		page = linear_to_page(page, len, &offset, skb, sk);
1693 		if (!page)
1694 			return true;
1695 	}
1696 	if (spd_can_coalesce(spd, page, offset)) {
1697 		spd->partial[spd->nr_pages - 1].len += *len;
1698 		return false;
1699 	}
1700 	get_page(page);
1701 	spd->pages[spd->nr_pages] = page;
1702 	spd->partial[spd->nr_pages].len = *len;
1703 	spd->partial[spd->nr_pages].offset = offset;
1704 	spd->nr_pages++;
1705 
1706 	return false;
1707 }
1708 
1709 static inline void __segment_seek(struct page **page, unsigned int *poff,
1710 				  unsigned int *plen, unsigned int off)
1711 {
1712 	unsigned long n;
1713 
1714 	*poff += off;
1715 	n = *poff / PAGE_SIZE;
1716 	if (n)
1717 		*page = nth_page(*page, n);
1718 
1719 	*poff = *poff % PAGE_SIZE;
1720 	*plen -= off;
1721 }
1722 
1723 static bool __splice_segment(struct page *page, unsigned int poff,
1724 			     unsigned int plen, unsigned int *off,
1725 			     unsigned int *len, struct sk_buff *skb,
1726 			     struct splice_pipe_desc *spd, bool linear,
1727 			     struct sock *sk,
1728 			     struct pipe_inode_info *pipe)
1729 {
1730 	if (!*len)
1731 		return true;
1732 
1733 	/* skip this segment if already processed */
1734 	if (*off >= plen) {
1735 		*off -= plen;
1736 		return false;
1737 	}
1738 
1739 	/* ignore any bits we already processed */
1740 	if (*off) {
1741 		__segment_seek(&page, &poff, &plen, *off);
1742 		*off = 0;
1743 	}
1744 
1745 	do {
1746 		unsigned int flen = min(*len, plen);
1747 
1748 		/* the linear region may spread across several pages  */
1749 		flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1750 
1751 		if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1752 			return true;
1753 
1754 		__segment_seek(&page, &poff, &plen, flen);
1755 		*len -= flen;
1756 
1757 	} while (*len && plen);
1758 
1759 	return false;
1760 }
1761 
1762 /*
1763  * Map linear and fragment data from the skb to spd. It reports true if the
1764  * pipe is full or if we already spliced the requested length.
1765  */
1766 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1767 			      unsigned int *offset, unsigned int *len,
1768 			      struct splice_pipe_desc *spd, struct sock *sk)
1769 {
1770 	int seg;
1771 
1772 	/* map the linear part :
1773 	 * If skb->head_frag is set, this 'linear' part is backed by a
1774 	 * fragment, and if the head is not shared with any clones then
1775 	 * we can avoid a copy since we own the head portion of this page.
1776 	 */
1777 	if (__splice_segment(virt_to_page(skb->data),
1778 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1779 			     skb_headlen(skb),
1780 			     offset, len, skb, spd,
1781 			     skb_head_is_locked(skb),
1782 			     sk, pipe))
1783 		return true;
1784 
1785 	/*
1786 	 * then map the fragments
1787 	 */
1788 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1789 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1790 
1791 		if (__splice_segment(skb_frag_page(f),
1792 				     f->page_offset, skb_frag_size(f),
1793 				     offset, len, skb, spd, false, sk, pipe))
1794 			return true;
1795 	}
1796 
1797 	return false;
1798 }
1799 
1800 /*
1801  * Map data from the skb to a pipe. Should handle both the linear part,
1802  * the fragments, and the frag list. It does NOT handle frag lists within
1803  * the frag list, if such a thing exists. We'd probably need to recurse to
1804  * handle that cleanly.
1805  */
1806 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1807 		    struct pipe_inode_info *pipe, unsigned int tlen,
1808 		    unsigned int flags)
1809 {
1810 	struct partial_page partial[MAX_SKB_FRAGS];
1811 	struct page *pages[MAX_SKB_FRAGS];
1812 	struct splice_pipe_desc spd = {
1813 		.pages = pages,
1814 		.partial = partial,
1815 		.nr_pages_max = MAX_SKB_FRAGS,
1816 		.flags = flags,
1817 		.ops = &sock_pipe_buf_ops,
1818 		.spd_release = sock_spd_release,
1819 	};
1820 	struct sk_buff *frag_iter;
1821 	struct sock *sk = skb->sk;
1822 	int ret = 0;
1823 
1824 	/*
1825 	 * __skb_splice_bits() only fails if the output has no room left,
1826 	 * so no point in going over the frag_list for the error case.
1827 	 */
1828 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1829 		goto done;
1830 	else if (!tlen)
1831 		goto done;
1832 
1833 	/*
1834 	 * now see if we have a frag_list to map
1835 	 */
1836 	skb_walk_frags(skb, frag_iter) {
1837 		if (!tlen)
1838 			break;
1839 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1840 			break;
1841 	}
1842 
1843 done:
1844 	if (spd.nr_pages) {
1845 		/*
1846 		 * Drop the socket lock, otherwise we have reverse
1847 		 * locking dependencies between sk_lock and i_mutex
1848 		 * here as compared to sendfile(). We enter here
1849 		 * with the socket lock held, and splice_to_pipe() will
1850 		 * grab the pipe inode lock. For sendfile() emulation,
1851 		 * we call into ->sendpage() with the i_mutex lock held
1852 		 * and networking will grab the socket lock.
1853 		 */
1854 		release_sock(sk);
1855 		ret = splice_to_pipe(pipe, &spd);
1856 		lock_sock(sk);
1857 	}
1858 
1859 	return ret;
1860 }
1861 
1862 /**
1863  *	skb_store_bits - store bits from kernel buffer to skb
1864  *	@skb: destination buffer
1865  *	@offset: offset in destination
1866  *	@from: source buffer
1867  *	@len: number of bytes to copy
1868  *
1869  *	Copy the specified number of bytes from the source buffer to the
1870  *	destination skb.  This function handles all the messy bits of
1871  *	traversing fragment lists and such.
1872  */
1873 
1874 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1875 {
1876 	int start = skb_headlen(skb);
1877 	struct sk_buff *frag_iter;
1878 	int i, copy;
1879 
1880 	if (offset > (int)skb->len - len)
1881 		goto fault;
1882 
1883 	if ((copy = start - offset) > 0) {
1884 		if (copy > len)
1885 			copy = len;
1886 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1887 		if ((len -= copy) == 0)
1888 			return 0;
1889 		offset += copy;
1890 		from += copy;
1891 	}
1892 
1893 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1894 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1895 		int end;
1896 
1897 		WARN_ON(start > offset + len);
1898 
1899 		end = start + skb_frag_size(frag);
1900 		if ((copy = end - offset) > 0) {
1901 			u8 *vaddr;
1902 
1903 			if (copy > len)
1904 				copy = len;
1905 
1906 			vaddr = kmap_atomic(skb_frag_page(frag));
1907 			memcpy(vaddr + frag->page_offset + offset - start,
1908 			       from, copy);
1909 			kunmap_atomic(vaddr);
1910 
1911 			if ((len -= copy) == 0)
1912 				return 0;
1913 			offset += copy;
1914 			from += copy;
1915 		}
1916 		start = end;
1917 	}
1918 
1919 	skb_walk_frags(skb, frag_iter) {
1920 		int end;
1921 
1922 		WARN_ON(start > offset + len);
1923 
1924 		end = start + frag_iter->len;
1925 		if ((copy = end - offset) > 0) {
1926 			if (copy > len)
1927 				copy = len;
1928 			if (skb_store_bits(frag_iter, offset - start,
1929 					   from, copy))
1930 				goto fault;
1931 			if ((len -= copy) == 0)
1932 				return 0;
1933 			offset += copy;
1934 			from += copy;
1935 		}
1936 		start = end;
1937 	}
1938 	if (!len)
1939 		return 0;
1940 
1941 fault:
1942 	return -EFAULT;
1943 }
1944 EXPORT_SYMBOL(skb_store_bits);
1945 
1946 /* Checksum skb data. */
1947 
1948 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1949 			  int len, __wsum csum)
1950 {
1951 	int start = skb_headlen(skb);
1952 	int i, copy = start - offset;
1953 	struct sk_buff *frag_iter;
1954 	int pos = 0;
1955 
1956 	/* Checksum header. */
1957 	if (copy > 0) {
1958 		if (copy > len)
1959 			copy = len;
1960 		csum = csum_partial(skb->data + offset, copy, csum);
1961 		if ((len -= copy) == 0)
1962 			return csum;
1963 		offset += copy;
1964 		pos	= copy;
1965 	}
1966 
1967 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1968 		int end;
1969 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1970 
1971 		WARN_ON(start > offset + len);
1972 
1973 		end = start + skb_frag_size(frag);
1974 		if ((copy = end - offset) > 0) {
1975 			__wsum csum2;
1976 			u8 *vaddr;
1977 
1978 			if (copy > len)
1979 				copy = len;
1980 			vaddr = kmap_atomic(skb_frag_page(frag));
1981 			csum2 = csum_partial(vaddr + frag->page_offset +
1982 					     offset - start, copy, 0);
1983 			kunmap_atomic(vaddr);
1984 			csum = csum_block_add(csum, csum2, pos);
1985 			if (!(len -= copy))
1986 				return csum;
1987 			offset += copy;
1988 			pos    += copy;
1989 		}
1990 		start = end;
1991 	}
1992 
1993 	skb_walk_frags(skb, frag_iter) {
1994 		int end;
1995 
1996 		WARN_ON(start > offset + len);
1997 
1998 		end = start + frag_iter->len;
1999 		if ((copy = end - offset) > 0) {
2000 			__wsum csum2;
2001 			if (copy > len)
2002 				copy = len;
2003 			csum2 = skb_checksum(frag_iter, offset - start,
2004 					     copy, 0);
2005 			csum = csum_block_add(csum, csum2, pos);
2006 			if ((len -= copy) == 0)
2007 				return csum;
2008 			offset += copy;
2009 			pos    += copy;
2010 		}
2011 		start = end;
2012 	}
2013 	BUG_ON(len);
2014 
2015 	return csum;
2016 }
2017 EXPORT_SYMBOL(skb_checksum);
2018 
2019 /* Both of above in one bottle. */
2020 
2021 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2022 				    u8 *to, int len, __wsum csum)
2023 {
2024 	int start = skb_headlen(skb);
2025 	int i, copy = start - offset;
2026 	struct sk_buff *frag_iter;
2027 	int pos = 0;
2028 
2029 	/* Copy header. */
2030 	if (copy > 0) {
2031 		if (copy > len)
2032 			copy = len;
2033 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2034 						 copy, csum);
2035 		if ((len -= copy) == 0)
2036 			return csum;
2037 		offset += copy;
2038 		to     += copy;
2039 		pos	= copy;
2040 	}
2041 
2042 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2043 		int end;
2044 
2045 		WARN_ON(start > offset + len);
2046 
2047 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2048 		if ((copy = end - offset) > 0) {
2049 			__wsum csum2;
2050 			u8 *vaddr;
2051 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2052 
2053 			if (copy > len)
2054 				copy = len;
2055 			vaddr = kmap_atomic(skb_frag_page(frag));
2056 			csum2 = csum_partial_copy_nocheck(vaddr +
2057 							  frag->page_offset +
2058 							  offset - start, to,
2059 							  copy, 0);
2060 			kunmap_atomic(vaddr);
2061 			csum = csum_block_add(csum, csum2, pos);
2062 			if (!(len -= copy))
2063 				return csum;
2064 			offset += copy;
2065 			to     += copy;
2066 			pos    += copy;
2067 		}
2068 		start = end;
2069 	}
2070 
2071 	skb_walk_frags(skb, frag_iter) {
2072 		__wsum csum2;
2073 		int end;
2074 
2075 		WARN_ON(start > offset + len);
2076 
2077 		end = start + frag_iter->len;
2078 		if ((copy = end - offset) > 0) {
2079 			if (copy > len)
2080 				copy = len;
2081 			csum2 = skb_copy_and_csum_bits(frag_iter,
2082 						       offset - start,
2083 						       to, copy, 0);
2084 			csum = csum_block_add(csum, csum2, pos);
2085 			if ((len -= copy) == 0)
2086 				return csum;
2087 			offset += copy;
2088 			to     += copy;
2089 			pos    += copy;
2090 		}
2091 		start = end;
2092 	}
2093 	BUG_ON(len);
2094 	return csum;
2095 }
2096 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2097 
2098 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2099 {
2100 	__wsum csum;
2101 	long csstart;
2102 
2103 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2104 		csstart = skb_checksum_start_offset(skb);
2105 	else
2106 		csstart = skb_headlen(skb);
2107 
2108 	BUG_ON(csstart > skb_headlen(skb));
2109 
2110 	skb_copy_from_linear_data(skb, to, csstart);
2111 
2112 	csum = 0;
2113 	if (csstart != skb->len)
2114 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2115 					      skb->len - csstart, 0);
2116 
2117 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2118 		long csstuff = csstart + skb->csum_offset;
2119 
2120 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2121 	}
2122 }
2123 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2124 
2125 /**
2126  *	skb_dequeue - remove from the head of the queue
2127  *	@list: list to dequeue from
2128  *
2129  *	Remove the head of the list. The list lock is taken so the function
2130  *	may be used safely with other locking list functions. The head item is
2131  *	returned or %NULL if the list is empty.
2132  */
2133 
2134 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2135 {
2136 	unsigned long flags;
2137 	struct sk_buff *result;
2138 
2139 	spin_lock_irqsave(&list->lock, flags);
2140 	result = __skb_dequeue(list);
2141 	spin_unlock_irqrestore(&list->lock, flags);
2142 	return result;
2143 }
2144 EXPORT_SYMBOL(skb_dequeue);
2145 
2146 /**
2147  *	skb_dequeue_tail - remove from the tail of the queue
2148  *	@list: list to dequeue from
2149  *
2150  *	Remove the tail of the list. The list lock is taken so the function
2151  *	may be used safely with other locking list functions. The tail item is
2152  *	returned or %NULL if the list is empty.
2153  */
2154 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2155 {
2156 	unsigned long flags;
2157 	struct sk_buff *result;
2158 
2159 	spin_lock_irqsave(&list->lock, flags);
2160 	result = __skb_dequeue_tail(list);
2161 	spin_unlock_irqrestore(&list->lock, flags);
2162 	return result;
2163 }
2164 EXPORT_SYMBOL(skb_dequeue_tail);
2165 
2166 /**
2167  *	skb_queue_purge - empty a list
2168  *	@list: list to empty
2169  *
2170  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2171  *	the list and one reference dropped. This function takes the list
2172  *	lock and is atomic with respect to other list locking functions.
2173  */
2174 void skb_queue_purge(struct sk_buff_head *list)
2175 {
2176 	struct sk_buff *skb;
2177 	while ((skb = skb_dequeue(list)) != NULL)
2178 		kfree_skb(skb);
2179 }
2180 EXPORT_SYMBOL(skb_queue_purge);
2181 
2182 /**
2183  *	skb_queue_head - queue a buffer at the list head
2184  *	@list: list to use
2185  *	@newsk: buffer to queue
2186  *
2187  *	Queue a buffer at the start of the list. This function takes the
2188  *	list lock and can be used safely with other locking &sk_buff functions
2189  *	safely.
2190  *
2191  *	A buffer cannot be placed on two lists at the same time.
2192  */
2193 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2194 {
2195 	unsigned long flags;
2196 
2197 	spin_lock_irqsave(&list->lock, flags);
2198 	__skb_queue_head(list, newsk);
2199 	spin_unlock_irqrestore(&list->lock, flags);
2200 }
2201 EXPORT_SYMBOL(skb_queue_head);
2202 
2203 /**
2204  *	skb_queue_tail - queue a buffer at the list tail
2205  *	@list: list to use
2206  *	@newsk: buffer to queue
2207  *
2208  *	Queue a buffer at the tail of the list. This function takes the
2209  *	list lock and can be used safely with other locking &sk_buff functions
2210  *	safely.
2211  *
2212  *	A buffer cannot be placed on two lists at the same time.
2213  */
2214 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2215 {
2216 	unsigned long flags;
2217 
2218 	spin_lock_irqsave(&list->lock, flags);
2219 	__skb_queue_tail(list, newsk);
2220 	spin_unlock_irqrestore(&list->lock, flags);
2221 }
2222 EXPORT_SYMBOL(skb_queue_tail);
2223 
2224 /**
2225  *	skb_unlink	-	remove a buffer from a list
2226  *	@skb: buffer to remove
2227  *	@list: list to use
2228  *
2229  *	Remove a packet from a list. The list locks are taken and this
2230  *	function is atomic with respect to other list locked calls
2231  *
2232  *	You must know what list the SKB is on.
2233  */
2234 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2235 {
2236 	unsigned long flags;
2237 
2238 	spin_lock_irqsave(&list->lock, flags);
2239 	__skb_unlink(skb, list);
2240 	spin_unlock_irqrestore(&list->lock, flags);
2241 }
2242 EXPORT_SYMBOL(skb_unlink);
2243 
2244 /**
2245  *	skb_append	-	append a buffer
2246  *	@old: buffer to insert after
2247  *	@newsk: buffer to insert
2248  *	@list: list to use
2249  *
2250  *	Place a packet after a given packet in a list. The list locks are taken
2251  *	and this function is atomic with respect to other list locked calls.
2252  *	A buffer cannot be placed on two lists at the same time.
2253  */
2254 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2255 {
2256 	unsigned long flags;
2257 
2258 	spin_lock_irqsave(&list->lock, flags);
2259 	__skb_queue_after(list, old, newsk);
2260 	spin_unlock_irqrestore(&list->lock, flags);
2261 }
2262 EXPORT_SYMBOL(skb_append);
2263 
2264 /**
2265  *	skb_insert	-	insert a buffer
2266  *	@old: buffer to insert before
2267  *	@newsk: buffer to insert
2268  *	@list: list to use
2269  *
2270  *	Place a packet before a given packet in a list. The list locks are
2271  * 	taken and this function is atomic with respect to other list locked
2272  *	calls.
2273  *
2274  *	A buffer cannot be placed on two lists at the same time.
2275  */
2276 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2277 {
2278 	unsigned long flags;
2279 
2280 	spin_lock_irqsave(&list->lock, flags);
2281 	__skb_insert(newsk, old->prev, old, list);
2282 	spin_unlock_irqrestore(&list->lock, flags);
2283 }
2284 EXPORT_SYMBOL(skb_insert);
2285 
2286 static inline void skb_split_inside_header(struct sk_buff *skb,
2287 					   struct sk_buff* skb1,
2288 					   const u32 len, const int pos)
2289 {
2290 	int i;
2291 
2292 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2293 					 pos - len);
2294 	/* And move data appendix as is. */
2295 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2296 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2297 
2298 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2299 	skb_shinfo(skb)->nr_frags  = 0;
2300 	skb1->data_len		   = skb->data_len;
2301 	skb1->len		   += skb1->data_len;
2302 	skb->data_len		   = 0;
2303 	skb->len		   = len;
2304 	skb_set_tail_pointer(skb, len);
2305 }
2306 
2307 static inline void skb_split_no_header(struct sk_buff *skb,
2308 				       struct sk_buff* skb1,
2309 				       const u32 len, int pos)
2310 {
2311 	int i, k = 0;
2312 	const int nfrags = skb_shinfo(skb)->nr_frags;
2313 
2314 	skb_shinfo(skb)->nr_frags = 0;
2315 	skb1->len		  = skb1->data_len = skb->len - len;
2316 	skb->len		  = len;
2317 	skb->data_len		  = len - pos;
2318 
2319 	for (i = 0; i < nfrags; i++) {
2320 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2321 
2322 		if (pos + size > len) {
2323 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2324 
2325 			if (pos < len) {
2326 				/* Split frag.
2327 				 * We have two variants in this case:
2328 				 * 1. Move all the frag to the second
2329 				 *    part, if it is possible. F.e.
2330 				 *    this approach is mandatory for TUX,
2331 				 *    where splitting is expensive.
2332 				 * 2. Split is accurately. We make this.
2333 				 */
2334 				skb_frag_ref(skb, i);
2335 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2336 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2337 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2338 				skb_shinfo(skb)->nr_frags++;
2339 			}
2340 			k++;
2341 		} else
2342 			skb_shinfo(skb)->nr_frags++;
2343 		pos += size;
2344 	}
2345 	skb_shinfo(skb1)->nr_frags = k;
2346 }
2347 
2348 /**
2349  * skb_split - Split fragmented skb to two parts at length len.
2350  * @skb: the buffer to split
2351  * @skb1: the buffer to receive the second part
2352  * @len: new length for skb
2353  */
2354 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2355 {
2356 	int pos = skb_headlen(skb);
2357 
2358 	if (len < pos)	/* Split line is inside header. */
2359 		skb_split_inside_header(skb, skb1, len, pos);
2360 	else		/* Second chunk has no header, nothing to copy. */
2361 		skb_split_no_header(skb, skb1, len, pos);
2362 }
2363 EXPORT_SYMBOL(skb_split);
2364 
2365 /* Shifting from/to a cloned skb is a no-go.
2366  *
2367  * Caller cannot keep skb_shinfo related pointers past calling here!
2368  */
2369 static int skb_prepare_for_shift(struct sk_buff *skb)
2370 {
2371 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2372 }
2373 
2374 /**
2375  * skb_shift - Shifts paged data partially from skb to another
2376  * @tgt: buffer into which tail data gets added
2377  * @skb: buffer from which the paged data comes from
2378  * @shiftlen: shift up to this many bytes
2379  *
2380  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2381  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2382  * It's up to caller to free skb if everything was shifted.
2383  *
2384  * If @tgt runs out of frags, the whole operation is aborted.
2385  *
2386  * Skb cannot include anything else but paged data while tgt is allowed
2387  * to have non-paged data as well.
2388  *
2389  * TODO: full sized shift could be optimized but that would need
2390  * specialized skb free'er to handle frags without up-to-date nr_frags.
2391  */
2392 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2393 {
2394 	int from, to, merge, todo;
2395 	struct skb_frag_struct *fragfrom, *fragto;
2396 
2397 	BUG_ON(shiftlen > skb->len);
2398 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2399 
2400 	todo = shiftlen;
2401 	from = 0;
2402 	to = skb_shinfo(tgt)->nr_frags;
2403 	fragfrom = &skb_shinfo(skb)->frags[from];
2404 
2405 	/* Actual merge is delayed until the point when we know we can
2406 	 * commit all, so that we don't have to undo partial changes
2407 	 */
2408 	if (!to ||
2409 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2410 			      fragfrom->page_offset)) {
2411 		merge = -1;
2412 	} else {
2413 		merge = to - 1;
2414 
2415 		todo -= skb_frag_size(fragfrom);
2416 		if (todo < 0) {
2417 			if (skb_prepare_for_shift(skb) ||
2418 			    skb_prepare_for_shift(tgt))
2419 				return 0;
2420 
2421 			/* All previous frag pointers might be stale! */
2422 			fragfrom = &skb_shinfo(skb)->frags[from];
2423 			fragto = &skb_shinfo(tgt)->frags[merge];
2424 
2425 			skb_frag_size_add(fragto, shiftlen);
2426 			skb_frag_size_sub(fragfrom, shiftlen);
2427 			fragfrom->page_offset += shiftlen;
2428 
2429 			goto onlymerged;
2430 		}
2431 
2432 		from++;
2433 	}
2434 
2435 	/* Skip full, not-fitting skb to avoid expensive operations */
2436 	if ((shiftlen == skb->len) &&
2437 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2438 		return 0;
2439 
2440 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2441 		return 0;
2442 
2443 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2444 		if (to == MAX_SKB_FRAGS)
2445 			return 0;
2446 
2447 		fragfrom = &skb_shinfo(skb)->frags[from];
2448 		fragto = &skb_shinfo(tgt)->frags[to];
2449 
2450 		if (todo >= skb_frag_size(fragfrom)) {
2451 			*fragto = *fragfrom;
2452 			todo -= skb_frag_size(fragfrom);
2453 			from++;
2454 			to++;
2455 
2456 		} else {
2457 			__skb_frag_ref(fragfrom);
2458 			fragto->page = fragfrom->page;
2459 			fragto->page_offset = fragfrom->page_offset;
2460 			skb_frag_size_set(fragto, todo);
2461 
2462 			fragfrom->page_offset += todo;
2463 			skb_frag_size_sub(fragfrom, todo);
2464 			todo = 0;
2465 
2466 			to++;
2467 			break;
2468 		}
2469 	}
2470 
2471 	/* Ready to "commit" this state change to tgt */
2472 	skb_shinfo(tgt)->nr_frags = to;
2473 
2474 	if (merge >= 0) {
2475 		fragfrom = &skb_shinfo(skb)->frags[0];
2476 		fragto = &skb_shinfo(tgt)->frags[merge];
2477 
2478 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2479 		__skb_frag_unref(fragfrom);
2480 	}
2481 
2482 	/* Reposition in the original skb */
2483 	to = 0;
2484 	while (from < skb_shinfo(skb)->nr_frags)
2485 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2486 	skb_shinfo(skb)->nr_frags = to;
2487 
2488 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2489 
2490 onlymerged:
2491 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2492 	 * the other hand might need it if it needs to be resent
2493 	 */
2494 	tgt->ip_summed = CHECKSUM_PARTIAL;
2495 	skb->ip_summed = CHECKSUM_PARTIAL;
2496 
2497 	/* Yak, is it really working this way? Some helper please? */
2498 	skb->len -= shiftlen;
2499 	skb->data_len -= shiftlen;
2500 	skb->truesize -= shiftlen;
2501 	tgt->len += shiftlen;
2502 	tgt->data_len += shiftlen;
2503 	tgt->truesize += shiftlen;
2504 
2505 	return shiftlen;
2506 }
2507 
2508 /**
2509  * skb_prepare_seq_read - Prepare a sequential read of skb data
2510  * @skb: the buffer to read
2511  * @from: lower offset of data to be read
2512  * @to: upper offset of data to be read
2513  * @st: state variable
2514  *
2515  * Initializes the specified state variable. Must be called before
2516  * invoking skb_seq_read() for the first time.
2517  */
2518 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2519 			  unsigned int to, struct skb_seq_state *st)
2520 {
2521 	st->lower_offset = from;
2522 	st->upper_offset = to;
2523 	st->root_skb = st->cur_skb = skb;
2524 	st->frag_idx = st->stepped_offset = 0;
2525 	st->frag_data = NULL;
2526 }
2527 EXPORT_SYMBOL(skb_prepare_seq_read);
2528 
2529 /**
2530  * skb_seq_read - Sequentially read skb data
2531  * @consumed: number of bytes consumed by the caller so far
2532  * @data: destination pointer for data to be returned
2533  * @st: state variable
2534  *
2535  * Reads a block of skb data at &consumed relative to the
2536  * lower offset specified to skb_prepare_seq_read(). Assigns
2537  * the head of the data block to &data and returns the length
2538  * of the block or 0 if the end of the skb data or the upper
2539  * offset has been reached.
2540  *
2541  * The caller is not required to consume all of the data
2542  * returned, i.e. &consumed is typically set to the number
2543  * of bytes already consumed and the next call to
2544  * skb_seq_read() will return the remaining part of the block.
2545  *
2546  * Note 1: The size of each block of data returned can be arbitrary,
2547  *       this limitation is the cost for zerocopy seqeuental
2548  *       reads of potentially non linear data.
2549  *
2550  * Note 2: Fragment lists within fragments are not implemented
2551  *       at the moment, state->root_skb could be replaced with
2552  *       a stack for this purpose.
2553  */
2554 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2555 			  struct skb_seq_state *st)
2556 {
2557 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2558 	skb_frag_t *frag;
2559 
2560 	if (unlikely(abs_offset >= st->upper_offset))
2561 		return 0;
2562 
2563 next_skb:
2564 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2565 
2566 	if (abs_offset < block_limit && !st->frag_data) {
2567 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2568 		return block_limit - abs_offset;
2569 	}
2570 
2571 	if (st->frag_idx == 0 && !st->frag_data)
2572 		st->stepped_offset += skb_headlen(st->cur_skb);
2573 
2574 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2575 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2576 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2577 
2578 		if (abs_offset < block_limit) {
2579 			if (!st->frag_data)
2580 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2581 
2582 			*data = (u8 *) st->frag_data + frag->page_offset +
2583 				(abs_offset - st->stepped_offset);
2584 
2585 			return block_limit - abs_offset;
2586 		}
2587 
2588 		if (st->frag_data) {
2589 			kunmap_atomic(st->frag_data);
2590 			st->frag_data = NULL;
2591 		}
2592 
2593 		st->frag_idx++;
2594 		st->stepped_offset += skb_frag_size(frag);
2595 	}
2596 
2597 	if (st->frag_data) {
2598 		kunmap_atomic(st->frag_data);
2599 		st->frag_data = NULL;
2600 	}
2601 
2602 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2603 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2604 		st->frag_idx = 0;
2605 		goto next_skb;
2606 	} else if (st->cur_skb->next) {
2607 		st->cur_skb = st->cur_skb->next;
2608 		st->frag_idx = 0;
2609 		goto next_skb;
2610 	}
2611 
2612 	return 0;
2613 }
2614 EXPORT_SYMBOL(skb_seq_read);
2615 
2616 /**
2617  * skb_abort_seq_read - Abort a sequential read of skb data
2618  * @st: state variable
2619  *
2620  * Must be called if skb_seq_read() was not called until it
2621  * returned 0.
2622  */
2623 void skb_abort_seq_read(struct skb_seq_state *st)
2624 {
2625 	if (st->frag_data)
2626 		kunmap_atomic(st->frag_data);
2627 }
2628 EXPORT_SYMBOL(skb_abort_seq_read);
2629 
2630 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2631 
2632 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2633 					  struct ts_config *conf,
2634 					  struct ts_state *state)
2635 {
2636 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2637 }
2638 
2639 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2640 {
2641 	skb_abort_seq_read(TS_SKB_CB(state));
2642 }
2643 
2644 /**
2645  * skb_find_text - Find a text pattern in skb data
2646  * @skb: the buffer to look in
2647  * @from: search offset
2648  * @to: search limit
2649  * @config: textsearch configuration
2650  * @state: uninitialized textsearch state variable
2651  *
2652  * Finds a pattern in the skb data according to the specified
2653  * textsearch configuration. Use textsearch_next() to retrieve
2654  * subsequent occurrences of the pattern. Returns the offset
2655  * to the first occurrence or UINT_MAX if no match was found.
2656  */
2657 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2658 			   unsigned int to, struct ts_config *config,
2659 			   struct ts_state *state)
2660 {
2661 	unsigned int ret;
2662 
2663 	config->get_next_block = skb_ts_get_next_block;
2664 	config->finish = skb_ts_finish;
2665 
2666 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2667 
2668 	ret = textsearch_find(config, state);
2669 	return (ret <= to - from ? ret : UINT_MAX);
2670 }
2671 EXPORT_SYMBOL(skb_find_text);
2672 
2673 /**
2674  * skb_append_datato_frags - append the user data to a skb
2675  * @sk: sock  structure
2676  * @skb: skb structure to be appened with user data.
2677  * @getfrag: call back function to be used for getting the user data
2678  * @from: pointer to user message iov
2679  * @length: length of the iov message
2680  *
2681  * Description: This procedure append the user data in the fragment part
2682  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2683  */
2684 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2685 			int (*getfrag)(void *from, char *to, int offset,
2686 					int len, int odd, struct sk_buff *skb),
2687 			void *from, int length)
2688 {
2689 	int frg_cnt = 0;
2690 	skb_frag_t *frag = NULL;
2691 	struct page *page = NULL;
2692 	int copy, left;
2693 	int offset = 0;
2694 	int ret;
2695 
2696 	do {
2697 		/* Return error if we don't have space for new frag */
2698 		frg_cnt = skb_shinfo(skb)->nr_frags;
2699 		if (frg_cnt >= MAX_SKB_FRAGS)
2700 			return -EFAULT;
2701 
2702 		/* allocate a new page for next frag */
2703 		page = alloc_pages(sk->sk_allocation, 0);
2704 
2705 		/* If alloc_page fails just return failure and caller will
2706 		 * free previous allocated pages by doing kfree_skb()
2707 		 */
2708 		if (page == NULL)
2709 			return -ENOMEM;
2710 
2711 		/* initialize the next frag */
2712 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2713 		skb->truesize += PAGE_SIZE;
2714 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2715 
2716 		/* get the new initialized frag */
2717 		frg_cnt = skb_shinfo(skb)->nr_frags;
2718 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2719 
2720 		/* copy the user data to page */
2721 		left = PAGE_SIZE - frag->page_offset;
2722 		copy = (length > left)? left : length;
2723 
2724 		ret = getfrag(from, skb_frag_address(frag) + skb_frag_size(frag),
2725 			    offset, copy, 0, skb);
2726 		if (ret < 0)
2727 			return -EFAULT;
2728 
2729 		/* copy was successful so update the size parameters */
2730 		skb_frag_size_add(frag, copy);
2731 		skb->len += copy;
2732 		skb->data_len += copy;
2733 		offset += copy;
2734 		length -= copy;
2735 
2736 	} while (length > 0);
2737 
2738 	return 0;
2739 }
2740 EXPORT_SYMBOL(skb_append_datato_frags);
2741 
2742 /**
2743  *	skb_pull_rcsum - pull skb and update receive checksum
2744  *	@skb: buffer to update
2745  *	@len: length of data pulled
2746  *
2747  *	This function performs an skb_pull on the packet and updates
2748  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2749  *	receive path processing instead of skb_pull unless you know
2750  *	that the checksum difference is zero (e.g., a valid IP header)
2751  *	or you are setting ip_summed to CHECKSUM_NONE.
2752  */
2753 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2754 {
2755 	BUG_ON(len > skb->len);
2756 	skb->len -= len;
2757 	BUG_ON(skb->len < skb->data_len);
2758 	skb_postpull_rcsum(skb, skb->data, len);
2759 	return skb->data += len;
2760 }
2761 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2762 
2763 /**
2764  *	skb_segment - Perform protocol segmentation on skb.
2765  *	@skb: buffer to segment
2766  *	@features: features for the output path (see dev->features)
2767  *
2768  *	This function performs segmentation on the given skb.  It returns
2769  *	a pointer to the first in a list of new skbs for the segments.
2770  *	In case of error it returns ERR_PTR(err).
2771  */
2772 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2773 {
2774 	struct sk_buff *segs = NULL;
2775 	struct sk_buff *tail = NULL;
2776 	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2777 	unsigned int mss = skb_shinfo(skb)->gso_size;
2778 	unsigned int doffset = skb->data - skb_mac_header(skb);
2779 	unsigned int offset = doffset;
2780 	unsigned int headroom;
2781 	unsigned int len;
2782 	int sg = !!(features & NETIF_F_SG);
2783 	int nfrags = skb_shinfo(skb)->nr_frags;
2784 	int err = -ENOMEM;
2785 	int i = 0;
2786 	int pos;
2787 
2788 	__skb_push(skb, doffset);
2789 	headroom = skb_headroom(skb);
2790 	pos = skb_headlen(skb);
2791 
2792 	do {
2793 		struct sk_buff *nskb;
2794 		skb_frag_t *frag;
2795 		int hsize;
2796 		int size;
2797 
2798 		len = skb->len - offset;
2799 		if (len > mss)
2800 			len = mss;
2801 
2802 		hsize = skb_headlen(skb) - offset;
2803 		if (hsize < 0)
2804 			hsize = 0;
2805 		if (hsize > len || !sg)
2806 			hsize = len;
2807 
2808 		if (!hsize && i >= nfrags) {
2809 			BUG_ON(fskb->len != len);
2810 
2811 			pos += len;
2812 			nskb = skb_clone(fskb, GFP_ATOMIC);
2813 			fskb = fskb->next;
2814 
2815 			if (unlikely(!nskb))
2816 				goto err;
2817 
2818 			hsize = skb_end_offset(nskb);
2819 			if (skb_cow_head(nskb, doffset + headroom)) {
2820 				kfree_skb(nskb);
2821 				goto err;
2822 			}
2823 
2824 			nskb->truesize += skb_end_offset(nskb) - hsize;
2825 			skb_release_head_state(nskb);
2826 			__skb_push(nskb, doffset);
2827 		} else {
2828 			nskb = __alloc_skb(hsize + doffset + headroom,
2829 					   GFP_ATOMIC, skb_alloc_rx_flag(skb),
2830 					   NUMA_NO_NODE);
2831 
2832 			if (unlikely(!nskb))
2833 				goto err;
2834 
2835 			skb_reserve(nskb, headroom);
2836 			__skb_put(nskb, doffset);
2837 		}
2838 
2839 		if (segs)
2840 			tail->next = nskb;
2841 		else
2842 			segs = nskb;
2843 		tail = nskb;
2844 
2845 		__copy_skb_header(nskb, skb);
2846 		nskb->mac_len = skb->mac_len;
2847 
2848 		/* nskb and skb might have different headroom */
2849 		if (nskb->ip_summed == CHECKSUM_PARTIAL)
2850 			nskb->csum_start += skb_headroom(nskb) - headroom;
2851 
2852 		skb_reset_mac_header(nskb);
2853 		skb_set_network_header(nskb, skb->mac_len);
2854 		nskb->transport_header = (nskb->network_header +
2855 					  skb_network_header_len(skb));
2856 		skb_copy_from_linear_data(skb, nskb->data, doffset);
2857 
2858 		if (fskb != skb_shinfo(skb)->frag_list)
2859 			continue;
2860 
2861 		if (!sg) {
2862 			nskb->ip_summed = CHECKSUM_NONE;
2863 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2864 							    skb_put(nskb, len),
2865 							    len, 0);
2866 			continue;
2867 		}
2868 
2869 		frag = skb_shinfo(nskb)->frags;
2870 
2871 		skb_copy_from_linear_data_offset(skb, offset,
2872 						 skb_put(nskb, hsize), hsize);
2873 
2874 		while (pos < offset + len && i < nfrags) {
2875 			*frag = skb_shinfo(skb)->frags[i];
2876 			__skb_frag_ref(frag);
2877 			size = skb_frag_size(frag);
2878 
2879 			if (pos < offset) {
2880 				frag->page_offset += offset - pos;
2881 				skb_frag_size_sub(frag, offset - pos);
2882 			}
2883 
2884 			skb_shinfo(nskb)->nr_frags++;
2885 
2886 			if (pos + size <= offset + len) {
2887 				i++;
2888 				pos += size;
2889 			} else {
2890 				skb_frag_size_sub(frag, pos + size - (offset + len));
2891 				goto skip_fraglist;
2892 			}
2893 
2894 			frag++;
2895 		}
2896 
2897 		if (pos < offset + len) {
2898 			struct sk_buff *fskb2 = fskb;
2899 
2900 			BUG_ON(pos + fskb->len != offset + len);
2901 
2902 			pos += fskb->len;
2903 			fskb = fskb->next;
2904 
2905 			if (fskb2->next) {
2906 				fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2907 				if (!fskb2)
2908 					goto err;
2909 			} else
2910 				skb_get(fskb2);
2911 
2912 			SKB_FRAG_ASSERT(nskb);
2913 			skb_shinfo(nskb)->frag_list = fskb2;
2914 		}
2915 
2916 skip_fraglist:
2917 		nskb->data_len = len - hsize;
2918 		nskb->len += nskb->data_len;
2919 		nskb->truesize += nskb->data_len;
2920 	} while ((offset += len) < skb->len);
2921 
2922 	return segs;
2923 
2924 err:
2925 	while ((skb = segs)) {
2926 		segs = skb->next;
2927 		kfree_skb(skb);
2928 	}
2929 	return ERR_PTR(err);
2930 }
2931 EXPORT_SYMBOL_GPL(skb_segment);
2932 
2933 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2934 {
2935 	struct sk_buff *p = *head;
2936 	struct sk_buff *nskb;
2937 	struct skb_shared_info *skbinfo = skb_shinfo(skb);
2938 	struct skb_shared_info *pinfo = skb_shinfo(p);
2939 	unsigned int headroom;
2940 	unsigned int len = skb_gro_len(skb);
2941 	unsigned int offset = skb_gro_offset(skb);
2942 	unsigned int headlen = skb_headlen(skb);
2943 	unsigned int delta_truesize;
2944 
2945 	if (p->len + len >= 65536)
2946 		return -E2BIG;
2947 
2948 	if (pinfo->frag_list)
2949 		goto merge;
2950 	else if (headlen <= offset) {
2951 		skb_frag_t *frag;
2952 		skb_frag_t *frag2;
2953 		int i = skbinfo->nr_frags;
2954 		int nr_frags = pinfo->nr_frags + i;
2955 
2956 		offset -= headlen;
2957 
2958 		if (nr_frags > MAX_SKB_FRAGS)
2959 			return -E2BIG;
2960 
2961 		pinfo->nr_frags = nr_frags;
2962 		skbinfo->nr_frags = 0;
2963 
2964 		frag = pinfo->frags + nr_frags;
2965 		frag2 = skbinfo->frags + i;
2966 		do {
2967 			*--frag = *--frag2;
2968 		} while (--i);
2969 
2970 		frag->page_offset += offset;
2971 		skb_frag_size_sub(frag, offset);
2972 
2973 		/* all fragments truesize : remove (head size + sk_buff) */
2974 		delta_truesize = skb->truesize -
2975 				 SKB_TRUESIZE(skb_end_offset(skb));
2976 
2977 		skb->truesize -= skb->data_len;
2978 		skb->len -= skb->data_len;
2979 		skb->data_len = 0;
2980 
2981 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
2982 		goto done;
2983 	} else if (skb->head_frag) {
2984 		int nr_frags = pinfo->nr_frags;
2985 		skb_frag_t *frag = pinfo->frags + nr_frags;
2986 		struct page *page = virt_to_head_page(skb->head);
2987 		unsigned int first_size = headlen - offset;
2988 		unsigned int first_offset;
2989 
2990 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
2991 			return -E2BIG;
2992 
2993 		first_offset = skb->data -
2994 			       (unsigned char *)page_address(page) +
2995 			       offset;
2996 
2997 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
2998 
2999 		frag->page.p	  = page;
3000 		frag->page_offset = first_offset;
3001 		skb_frag_size_set(frag, first_size);
3002 
3003 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3004 		/* We dont need to clear skbinfo->nr_frags here */
3005 
3006 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3007 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3008 		goto done;
3009 	} else if (skb_gro_len(p) != pinfo->gso_size)
3010 		return -E2BIG;
3011 
3012 	headroom = skb_headroom(p);
3013 	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3014 	if (unlikely(!nskb))
3015 		return -ENOMEM;
3016 
3017 	__copy_skb_header(nskb, p);
3018 	nskb->mac_len = p->mac_len;
3019 
3020 	skb_reserve(nskb, headroom);
3021 	__skb_put(nskb, skb_gro_offset(p));
3022 
3023 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3024 	skb_set_network_header(nskb, skb_network_offset(p));
3025 	skb_set_transport_header(nskb, skb_transport_offset(p));
3026 
3027 	__skb_pull(p, skb_gro_offset(p));
3028 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
3029 	       p->data - skb_mac_header(p));
3030 
3031 	skb_shinfo(nskb)->frag_list = p;
3032 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3033 	pinfo->gso_size = 0;
3034 	skb_header_release(p);
3035 	NAPI_GRO_CB(nskb)->last = p;
3036 
3037 	nskb->data_len += p->len;
3038 	nskb->truesize += p->truesize;
3039 	nskb->len += p->len;
3040 
3041 	*head = nskb;
3042 	nskb->next = p->next;
3043 	p->next = NULL;
3044 
3045 	p = nskb;
3046 
3047 merge:
3048 	delta_truesize = skb->truesize;
3049 	if (offset > headlen) {
3050 		unsigned int eat = offset - headlen;
3051 
3052 		skbinfo->frags[0].page_offset += eat;
3053 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3054 		skb->data_len -= eat;
3055 		skb->len -= eat;
3056 		offset = headlen;
3057 	}
3058 
3059 	__skb_pull(skb, offset);
3060 
3061 	NAPI_GRO_CB(p)->last->next = skb;
3062 	NAPI_GRO_CB(p)->last = skb;
3063 	skb_header_release(skb);
3064 
3065 done:
3066 	NAPI_GRO_CB(p)->count++;
3067 	p->data_len += len;
3068 	p->truesize += delta_truesize;
3069 	p->len += len;
3070 
3071 	NAPI_GRO_CB(skb)->same_flow = 1;
3072 	return 0;
3073 }
3074 EXPORT_SYMBOL_GPL(skb_gro_receive);
3075 
3076 void __init skb_init(void)
3077 {
3078 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3079 					      sizeof(struct sk_buff),
3080 					      0,
3081 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3082 					      NULL);
3083 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3084 						(2*sizeof(struct sk_buff)) +
3085 						sizeof(atomic_t),
3086 						0,
3087 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3088 						NULL);
3089 }
3090 
3091 /**
3092  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3093  *	@skb: Socket buffer containing the buffers to be mapped
3094  *	@sg: The scatter-gather list to map into
3095  *	@offset: The offset into the buffer's contents to start mapping
3096  *	@len: Length of buffer space to be mapped
3097  *
3098  *	Fill the specified scatter-gather list with mappings/pointers into a
3099  *	region of the buffer space attached to a socket buffer.
3100  */
3101 static int
3102 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3103 {
3104 	int start = skb_headlen(skb);
3105 	int i, copy = start - offset;
3106 	struct sk_buff *frag_iter;
3107 	int elt = 0;
3108 
3109 	if (copy > 0) {
3110 		if (copy > len)
3111 			copy = len;
3112 		sg_set_buf(sg, skb->data + offset, copy);
3113 		elt++;
3114 		if ((len -= copy) == 0)
3115 			return elt;
3116 		offset += copy;
3117 	}
3118 
3119 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3120 		int end;
3121 
3122 		WARN_ON(start > offset + len);
3123 
3124 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3125 		if ((copy = end - offset) > 0) {
3126 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3127 
3128 			if (copy > len)
3129 				copy = len;
3130 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3131 					frag->page_offset+offset-start);
3132 			elt++;
3133 			if (!(len -= copy))
3134 				return elt;
3135 			offset += copy;
3136 		}
3137 		start = end;
3138 	}
3139 
3140 	skb_walk_frags(skb, frag_iter) {
3141 		int end;
3142 
3143 		WARN_ON(start > offset + len);
3144 
3145 		end = start + frag_iter->len;
3146 		if ((copy = end - offset) > 0) {
3147 			if (copy > len)
3148 				copy = len;
3149 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3150 					      copy);
3151 			if ((len -= copy) == 0)
3152 				return elt;
3153 			offset += copy;
3154 		}
3155 		start = end;
3156 	}
3157 	BUG_ON(len);
3158 	return elt;
3159 }
3160 
3161 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3162 {
3163 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3164 
3165 	sg_mark_end(&sg[nsg - 1]);
3166 
3167 	return nsg;
3168 }
3169 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3170 
3171 /**
3172  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3173  *	@skb: The socket buffer to check.
3174  *	@tailbits: Amount of trailing space to be added
3175  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3176  *
3177  *	Make sure that the data buffers attached to a socket buffer are
3178  *	writable. If they are not, private copies are made of the data buffers
3179  *	and the socket buffer is set to use these instead.
3180  *
3181  *	If @tailbits is given, make sure that there is space to write @tailbits
3182  *	bytes of data beyond current end of socket buffer.  @trailer will be
3183  *	set to point to the skb in which this space begins.
3184  *
3185  *	The number of scatterlist elements required to completely map the
3186  *	COW'd and extended socket buffer will be returned.
3187  */
3188 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3189 {
3190 	int copyflag;
3191 	int elt;
3192 	struct sk_buff *skb1, **skb_p;
3193 
3194 	/* If skb is cloned or its head is paged, reallocate
3195 	 * head pulling out all the pages (pages are considered not writable
3196 	 * at the moment even if they are anonymous).
3197 	 */
3198 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3199 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3200 		return -ENOMEM;
3201 
3202 	/* Easy case. Most of packets will go this way. */
3203 	if (!skb_has_frag_list(skb)) {
3204 		/* A little of trouble, not enough of space for trailer.
3205 		 * This should not happen, when stack is tuned to generate
3206 		 * good frames. OK, on miss we reallocate and reserve even more
3207 		 * space, 128 bytes is fair. */
3208 
3209 		if (skb_tailroom(skb) < tailbits &&
3210 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3211 			return -ENOMEM;
3212 
3213 		/* Voila! */
3214 		*trailer = skb;
3215 		return 1;
3216 	}
3217 
3218 	/* Misery. We are in troubles, going to mincer fragments... */
3219 
3220 	elt = 1;
3221 	skb_p = &skb_shinfo(skb)->frag_list;
3222 	copyflag = 0;
3223 
3224 	while ((skb1 = *skb_p) != NULL) {
3225 		int ntail = 0;
3226 
3227 		/* The fragment is partially pulled by someone,
3228 		 * this can happen on input. Copy it and everything
3229 		 * after it. */
3230 
3231 		if (skb_shared(skb1))
3232 			copyflag = 1;
3233 
3234 		/* If the skb is the last, worry about trailer. */
3235 
3236 		if (skb1->next == NULL && tailbits) {
3237 			if (skb_shinfo(skb1)->nr_frags ||
3238 			    skb_has_frag_list(skb1) ||
3239 			    skb_tailroom(skb1) < tailbits)
3240 				ntail = tailbits + 128;
3241 		}
3242 
3243 		if (copyflag ||
3244 		    skb_cloned(skb1) ||
3245 		    ntail ||
3246 		    skb_shinfo(skb1)->nr_frags ||
3247 		    skb_has_frag_list(skb1)) {
3248 			struct sk_buff *skb2;
3249 
3250 			/* Fuck, we are miserable poor guys... */
3251 			if (ntail == 0)
3252 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3253 			else
3254 				skb2 = skb_copy_expand(skb1,
3255 						       skb_headroom(skb1),
3256 						       ntail,
3257 						       GFP_ATOMIC);
3258 			if (unlikely(skb2 == NULL))
3259 				return -ENOMEM;
3260 
3261 			if (skb1->sk)
3262 				skb_set_owner_w(skb2, skb1->sk);
3263 
3264 			/* Looking around. Are we still alive?
3265 			 * OK, link new skb, drop old one */
3266 
3267 			skb2->next = skb1->next;
3268 			*skb_p = skb2;
3269 			kfree_skb(skb1);
3270 			skb1 = skb2;
3271 		}
3272 		elt++;
3273 		*trailer = skb1;
3274 		skb_p = &skb1->next;
3275 	}
3276 
3277 	return elt;
3278 }
3279 EXPORT_SYMBOL_GPL(skb_cow_data);
3280 
3281 static void sock_rmem_free(struct sk_buff *skb)
3282 {
3283 	struct sock *sk = skb->sk;
3284 
3285 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3286 }
3287 
3288 /*
3289  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3290  */
3291 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3292 {
3293 	int len = skb->len;
3294 
3295 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3296 	    (unsigned int)sk->sk_rcvbuf)
3297 		return -ENOMEM;
3298 
3299 	skb_orphan(skb);
3300 	skb->sk = sk;
3301 	skb->destructor = sock_rmem_free;
3302 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3303 
3304 	/* before exiting rcu section, make sure dst is refcounted */
3305 	skb_dst_force(skb);
3306 
3307 	skb_queue_tail(&sk->sk_error_queue, skb);
3308 	if (!sock_flag(sk, SOCK_DEAD))
3309 		sk->sk_data_ready(sk, len);
3310 	return 0;
3311 }
3312 EXPORT_SYMBOL(sock_queue_err_skb);
3313 
3314 void skb_tstamp_tx(struct sk_buff *orig_skb,
3315 		struct skb_shared_hwtstamps *hwtstamps)
3316 {
3317 	struct sock *sk = orig_skb->sk;
3318 	struct sock_exterr_skb *serr;
3319 	struct sk_buff *skb;
3320 	int err;
3321 
3322 	if (!sk)
3323 		return;
3324 
3325 	skb = skb_clone(orig_skb, GFP_ATOMIC);
3326 	if (!skb)
3327 		return;
3328 
3329 	if (hwtstamps) {
3330 		*skb_hwtstamps(skb) =
3331 			*hwtstamps;
3332 	} else {
3333 		/*
3334 		 * no hardware time stamps available,
3335 		 * so keep the shared tx_flags and only
3336 		 * store software time stamp
3337 		 */
3338 		skb->tstamp = ktime_get_real();
3339 	}
3340 
3341 	serr = SKB_EXT_ERR(skb);
3342 	memset(serr, 0, sizeof(*serr));
3343 	serr->ee.ee_errno = ENOMSG;
3344 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3345 
3346 	err = sock_queue_err_skb(sk, skb);
3347 
3348 	if (err)
3349 		kfree_skb(skb);
3350 }
3351 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3352 
3353 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3354 {
3355 	struct sock *sk = skb->sk;
3356 	struct sock_exterr_skb *serr;
3357 	int err;
3358 
3359 	skb->wifi_acked_valid = 1;
3360 	skb->wifi_acked = acked;
3361 
3362 	serr = SKB_EXT_ERR(skb);
3363 	memset(serr, 0, sizeof(*serr));
3364 	serr->ee.ee_errno = ENOMSG;
3365 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3366 
3367 	err = sock_queue_err_skb(sk, skb);
3368 	if (err)
3369 		kfree_skb(skb);
3370 }
3371 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3372 
3373 
3374 /**
3375  * skb_partial_csum_set - set up and verify partial csum values for packet
3376  * @skb: the skb to set
3377  * @start: the number of bytes after skb->data to start checksumming.
3378  * @off: the offset from start to place the checksum.
3379  *
3380  * For untrusted partially-checksummed packets, we need to make sure the values
3381  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3382  *
3383  * This function checks and sets those values and skb->ip_summed: if this
3384  * returns false you should drop the packet.
3385  */
3386 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3387 {
3388 	if (unlikely(start > skb_headlen(skb)) ||
3389 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3390 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3391 				     start, off, skb_headlen(skb));
3392 		return false;
3393 	}
3394 	skb->ip_summed = CHECKSUM_PARTIAL;
3395 	skb->csum_start = skb_headroom(skb) + start;
3396 	skb->csum_offset = off;
3397 	return true;
3398 }
3399 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3400 
3401 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3402 {
3403 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3404 			     skb->dev->name);
3405 }
3406 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3407 
3408 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3409 {
3410 	if (head_stolen) {
3411 		skb_release_head_state(skb);
3412 		kmem_cache_free(skbuff_head_cache, skb);
3413 	} else {
3414 		__kfree_skb(skb);
3415 	}
3416 }
3417 EXPORT_SYMBOL(kfree_skb_partial);
3418 
3419 /**
3420  * skb_try_coalesce - try to merge skb to prior one
3421  * @to: prior buffer
3422  * @from: buffer to add
3423  * @fragstolen: pointer to boolean
3424  * @delta_truesize: how much more was allocated than was requested
3425  */
3426 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3427 		      bool *fragstolen, int *delta_truesize)
3428 {
3429 	int i, delta, len = from->len;
3430 
3431 	*fragstolen = false;
3432 
3433 	if (skb_cloned(to))
3434 		return false;
3435 
3436 	if (len <= skb_tailroom(to)) {
3437 		BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3438 		*delta_truesize = 0;
3439 		return true;
3440 	}
3441 
3442 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
3443 		return false;
3444 
3445 	if (skb_headlen(from) != 0) {
3446 		struct page *page;
3447 		unsigned int offset;
3448 
3449 		if (skb_shinfo(to)->nr_frags +
3450 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3451 			return false;
3452 
3453 		if (skb_head_is_locked(from))
3454 			return false;
3455 
3456 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3457 
3458 		page = virt_to_head_page(from->head);
3459 		offset = from->data - (unsigned char *)page_address(page);
3460 
3461 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3462 				   page, offset, skb_headlen(from));
3463 		*fragstolen = true;
3464 	} else {
3465 		if (skb_shinfo(to)->nr_frags +
3466 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3467 			return false;
3468 
3469 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3470 	}
3471 
3472 	WARN_ON_ONCE(delta < len);
3473 
3474 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3475 	       skb_shinfo(from)->frags,
3476 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3477 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3478 
3479 	if (!skb_cloned(from))
3480 		skb_shinfo(from)->nr_frags = 0;
3481 
3482 	/* if the skb is not cloned this does nothing
3483 	 * since we set nr_frags to 0.
3484 	 */
3485 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3486 		skb_frag_ref(from, i);
3487 
3488 	to->truesize += delta;
3489 	to->len += len;
3490 	to->data_len += len;
3491 
3492 	*delta_truesize = delta;
3493 	return true;
3494 }
3495 EXPORT_SYMBOL(skb_try_coalesce);
3496