xref: /linux/net/core/skbuff.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/bitfield.h>
62 #include <linux/if_vlan.h>
63 #include <linux/mpls.h>
64 #include <linux/kcov.h>
65 #include <linux/iov_iter.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/gso.h>
72 #include <net/hotdata.h>
73 #include <net/ip6_checksum.h>
74 #include <net/xfrm.h>
75 #include <net/mpls.h>
76 #include <net/mptcp.h>
77 #include <net/mctp.h>
78 #include <net/page_pool/helpers.h>
79 #include <net/dropreason.h>
80 
81 #include <linux/uaccess.h>
82 #include <trace/events/skb.h>
83 #include <linux/highmem.h>
84 #include <linux/capability.h>
85 #include <linux/user_namespace.h>
86 #include <linux/indirect_call_wrapper.h>
87 #include <linux/textsearch.h>
88 
89 #include "dev.h"
90 #include "sock_destructor.h"
91 
92 #ifdef CONFIG_SKB_EXTENSIONS
93 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
94 #endif
95 
96 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
97 
98 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
99  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
100  * size, and we can differentiate heads from skb_small_head_cache
101  * vs system slabs by looking at their size (skb_end_offset()).
102  */
103 #define SKB_SMALL_HEAD_CACHE_SIZE					\
104 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
105 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
106 		SKB_SMALL_HEAD_SIZE)
107 
108 #define SKB_SMALL_HEAD_HEADROOM						\
109 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
110 
111 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
112 EXPORT_SYMBOL(sysctl_max_skb_frags);
113 
114 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
115  * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
116  * netmem is a page.
117  */
118 static_assert(offsetof(struct bio_vec, bv_page) ==
119 	      offsetof(skb_frag_t, netmem));
120 static_assert(sizeof_field(struct bio_vec, bv_page) ==
121 	      sizeof_field(skb_frag_t, netmem));
122 
123 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
124 static_assert(sizeof_field(struct bio_vec, bv_len) ==
125 	      sizeof_field(skb_frag_t, len));
126 
127 static_assert(offsetof(struct bio_vec, bv_offset) ==
128 	      offsetof(skb_frag_t, offset));
129 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
130 	      sizeof_field(skb_frag_t, offset));
131 
132 #undef FN
133 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
134 static const char * const drop_reasons[] = {
135 	[SKB_CONSUMED] = "CONSUMED",
136 	DEFINE_DROP_REASON(FN, FN)
137 };
138 
139 static const struct drop_reason_list drop_reasons_core = {
140 	.reasons = drop_reasons,
141 	.n_reasons = ARRAY_SIZE(drop_reasons),
142 };
143 
144 const struct drop_reason_list __rcu *
145 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
146 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
147 };
148 EXPORT_SYMBOL(drop_reasons_by_subsys);
149 
150 /**
151  * drop_reasons_register_subsys - register another drop reason subsystem
152  * @subsys: the subsystem to register, must not be the core
153  * @list: the list of drop reasons within the subsystem, must point to
154  *	a statically initialized list
155  */
156 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
157 				  const struct drop_reason_list *list)
158 {
159 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
160 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
161 		 "invalid subsystem %d\n", subsys))
162 		return;
163 
164 	/* must point to statically allocated memory, so INIT is OK */
165 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
166 }
167 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
168 
169 /**
170  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
171  * @subsys: the subsystem to remove, must not be the core
172  *
173  * Note: This will synchronize_rcu() to ensure no users when it returns.
174  */
175 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
176 {
177 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
178 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
179 		 "invalid subsystem %d\n", subsys))
180 		return;
181 
182 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
183 
184 	synchronize_rcu();
185 }
186 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
187 
188 /**
189  *	skb_panic - private function for out-of-line support
190  *	@skb:	buffer
191  *	@sz:	size
192  *	@addr:	address
193  *	@msg:	skb_over_panic or skb_under_panic
194  *
195  *	Out-of-line support for skb_put() and skb_push().
196  *	Called via the wrapper skb_over_panic() or skb_under_panic().
197  *	Keep out of line to prevent kernel bloat.
198  *	__builtin_return_address is not used because it is not always reliable.
199  */
200 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
201 		      const char msg[])
202 {
203 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
204 		 msg, addr, skb->len, sz, skb->head, skb->data,
205 		 (unsigned long)skb->tail, (unsigned long)skb->end,
206 		 skb->dev ? skb->dev->name : "<NULL>");
207 	BUG();
208 }
209 
210 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
211 {
212 	skb_panic(skb, sz, addr, __func__);
213 }
214 
215 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
216 {
217 	skb_panic(skb, sz, addr, __func__);
218 }
219 
220 #define NAPI_SKB_CACHE_SIZE	64
221 #define NAPI_SKB_CACHE_BULK	16
222 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
223 
224 #if PAGE_SIZE == SZ_4K
225 
226 #define NAPI_HAS_SMALL_PAGE_FRAG	1
227 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
228 
229 /* specialized page frag allocator using a single order 0 page
230  * and slicing it into 1K sized fragment. Constrained to systems
231  * with a very limited amount of 1K fragments fitting a single
232  * page - to avoid excessive truesize underestimation
233  */
234 
235 struct page_frag_1k {
236 	void *va;
237 	u16 offset;
238 	bool pfmemalloc;
239 };
240 
241 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
242 {
243 	struct page *page;
244 	int offset;
245 
246 	offset = nc->offset - SZ_1K;
247 	if (likely(offset >= 0))
248 		goto use_frag;
249 
250 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
251 	if (!page)
252 		return NULL;
253 
254 	nc->va = page_address(page);
255 	nc->pfmemalloc = page_is_pfmemalloc(page);
256 	offset = PAGE_SIZE - SZ_1K;
257 	page_ref_add(page, offset / SZ_1K);
258 
259 use_frag:
260 	nc->offset = offset;
261 	return nc->va + offset;
262 }
263 #else
264 
265 /* the small page is actually unused in this build; add dummy helpers
266  * to please the compiler and avoid later preprocessor's conditionals
267  */
268 #define NAPI_HAS_SMALL_PAGE_FRAG	0
269 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
270 
271 struct page_frag_1k {
272 };
273 
274 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
275 {
276 	return NULL;
277 }
278 
279 #endif
280 
281 struct napi_alloc_cache {
282 	struct page_frag_cache page;
283 	struct page_frag_1k page_small;
284 	unsigned int skb_count;
285 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
286 };
287 
288 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
289 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
290 
291 /* Double check that napi_get_frags() allocates skbs with
292  * skb->head being backed by slab, not a page fragment.
293  * This is to make sure bug fixed in 3226b158e67c
294  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
295  * does not accidentally come back.
296  */
297 void napi_get_frags_check(struct napi_struct *napi)
298 {
299 	struct sk_buff *skb;
300 
301 	local_bh_disable();
302 	skb = napi_get_frags(napi);
303 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
304 	napi_free_frags(napi);
305 	local_bh_enable();
306 }
307 
308 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
309 {
310 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
311 
312 	fragsz = SKB_DATA_ALIGN(fragsz);
313 
314 	return __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
315 				       align_mask);
316 }
317 EXPORT_SYMBOL(__napi_alloc_frag_align);
318 
319 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
320 {
321 	void *data;
322 
323 	fragsz = SKB_DATA_ALIGN(fragsz);
324 	if (in_hardirq() || irqs_disabled()) {
325 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
326 
327 		data = __page_frag_alloc_align(nc, fragsz, GFP_ATOMIC,
328 					       align_mask);
329 	} else {
330 		struct napi_alloc_cache *nc;
331 
332 		local_bh_disable();
333 		nc = this_cpu_ptr(&napi_alloc_cache);
334 		data = __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
335 					       align_mask);
336 		local_bh_enable();
337 	}
338 	return data;
339 }
340 EXPORT_SYMBOL(__netdev_alloc_frag_align);
341 
342 static struct sk_buff *napi_skb_cache_get(void)
343 {
344 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
345 	struct sk_buff *skb;
346 
347 	if (unlikely(!nc->skb_count)) {
348 		nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
349 						      GFP_ATOMIC,
350 						      NAPI_SKB_CACHE_BULK,
351 						      nc->skb_cache);
352 		if (unlikely(!nc->skb_count))
353 			return NULL;
354 	}
355 
356 	skb = nc->skb_cache[--nc->skb_count];
357 	kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
358 
359 	return skb;
360 }
361 
362 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
363 					 unsigned int size)
364 {
365 	struct skb_shared_info *shinfo;
366 
367 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
368 
369 	/* Assumes caller memset cleared SKB */
370 	skb->truesize = SKB_TRUESIZE(size);
371 	refcount_set(&skb->users, 1);
372 	skb->head = data;
373 	skb->data = data;
374 	skb_reset_tail_pointer(skb);
375 	skb_set_end_offset(skb, size);
376 	skb->mac_header = (typeof(skb->mac_header))~0U;
377 	skb->transport_header = (typeof(skb->transport_header))~0U;
378 	skb->alloc_cpu = raw_smp_processor_id();
379 	/* make sure we initialize shinfo sequentially */
380 	shinfo = skb_shinfo(skb);
381 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
382 	atomic_set(&shinfo->dataref, 1);
383 
384 	skb_set_kcov_handle(skb, kcov_common_handle());
385 }
386 
387 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
388 				     unsigned int *size)
389 {
390 	void *resized;
391 
392 	/* Must find the allocation size (and grow it to match). */
393 	*size = ksize(data);
394 	/* krealloc() will immediately return "data" when
395 	 * "ksize(data)" is requested: it is the existing upper
396 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
397 	 * that this "new" pointer needs to be passed back to the
398 	 * caller for use so the __alloc_size hinting will be
399 	 * tracked correctly.
400 	 */
401 	resized = krealloc(data, *size, GFP_ATOMIC);
402 	WARN_ON_ONCE(resized != data);
403 	return resized;
404 }
405 
406 /* build_skb() variant which can operate on slab buffers.
407  * Note that this should be used sparingly as slab buffers
408  * cannot be combined efficiently by GRO!
409  */
410 struct sk_buff *slab_build_skb(void *data)
411 {
412 	struct sk_buff *skb;
413 	unsigned int size;
414 
415 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
416 	if (unlikely(!skb))
417 		return NULL;
418 
419 	memset(skb, 0, offsetof(struct sk_buff, tail));
420 	data = __slab_build_skb(skb, data, &size);
421 	__finalize_skb_around(skb, data, size);
422 
423 	return skb;
424 }
425 EXPORT_SYMBOL(slab_build_skb);
426 
427 /* Caller must provide SKB that is memset cleared */
428 static void __build_skb_around(struct sk_buff *skb, void *data,
429 			       unsigned int frag_size)
430 {
431 	unsigned int size = frag_size;
432 
433 	/* frag_size == 0 is considered deprecated now. Callers
434 	 * using slab buffer should use slab_build_skb() instead.
435 	 */
436 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
437 		data = __slab_build_skb(skb, data, &size);
438 
439 	__finalize_skb_around(skb, data, size);
440 }
441 
442 /**
443  * __build_skb - build a network buffer
444  * @data: data buffer provided by caller
445  * @frag_size: size of data (must not be 0)
446  *
447  * Allocate a new &sk_buff. Caller provides space holding head and
448  * skb_shared_info. @data must have been allocated from the page
449  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
450  * allocation is deprecated, and callers should use slab_build_skb()
451  * instead.)
452  * The return is the new skb buffer.
453  * On a failure the return is %NULL, and @data is not freed.
454  * Notes :
455  *  Before IO, driver allocates only data buffer where NIC put incoming frame
456  *  Driver should add room at head (NET_SKB_PAD) and
457  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
458  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
459  *  before giving packet to stack.
460  *  RX rings only contains data buffers, not full skbs.
461  */
462 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
463 {
464 	struct sk_buff *skb;
465 
466 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
467 	if (unlikely(!skb))
468 		return NULL;
469 
470 	memset(skb, 0, offsetof(struct sk_buff, tail));
471 	__build_skb_around(skb, data, frag_size);
472 
473 	return skb;
474 }
475 
476 /* build_skb() is wrapper over __build_skb(), that specifically
477  * takes care of skb->head and skb->pfmemalloc
478  */
479 struct sk_buff *build_skb(void *data, unsigned int frag_size)
480 {
481 	struct sk_buff *skb = __build_skb(data, frag_size);
482 
483 	if (likely(skb && frag_size)) {
484 		skb->head_frag = 1;
485 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
486 	}
487 	return skb;
488 }
489 EXPORT_SYMBOL(build_skb);
490 
491 /**
492  * build_skb_around - build a network buffer around provided skb
493  * @skb: sk_buff provide by caller, must be memset cleared
494  * @data: data buffer provided by caller
495  * @frag_size: size of data
496  */
497 struct sk_buff *build_skb_around(struct sk_buff *skb,
498 				 void *data, unsigned int frag_size)
499 {
500 	if (unlikely(!skb))
501 		return NULL;
502 
503 	__build_skb_around(skb, data, frag_size);
504 
505 	if (frag_size) {
506 		skb->head_frag = 1;
507 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
508 	}
509 	return skb;
510 }
511 EXPORT_SYMBOL(build_skb_around);
512 
513 /**
514  * __napi_build_skb - build a network buffer
515  * @data: data buffer provided by caller
516  * @frag_size: size of data
517  *
518  * Version of __build_skb() that uses NAPI percpu caches to obtain
519  * skbuff_head instead of inplace allocation.
520  *
521  * Returns a new &sk_buff on success, %NULL on allocation failure.
522  */
523 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
524 {
525 	struct sk_buff *skb;
526 
527 	skb = napi_skb_cache_get();
528 	if (unlikely(!skb))
529 		return NULL;
530 
531 	memset(skb, 0, offsetof(struct sk_buff, tail));
532 	__build_skb_around(skb, data, frag_size);
533 
534 	return skb;
535 }
536 
537 /**
538  * napi_build_skb - build a network buffer
539  * @data: data buffer provided by caller
540  * @frag_size: size of data
541  *
542  * Version of __napi_build_skb() that takes care of skb->head_frag
543  * and skb->pfmemalloc when the data is a page or page fragment.
544  *
545  * Returns a new &sk_buff on success, %NULL on allocation failure.
546  */
547 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
548 {
549 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
550 
551 	if (likely(skb) && frag_size) {
552 		skb->head_frag = 1;
553 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
554 	}
555 
556 	return skb;
557 }
558 EXPORT_SYMBOL(napi_build_skb);
559 
560 /*
561  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
562  * the caller if emergency pfmemalloc reserves are being used. If it is and
563  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
564  * may be used. Otherwise, the packet data may be discarded until enough
565  * memory is free
566  */
567 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
568 			     bool *pfmemalloc)
569 {
570 	bool ret_pfmemalloc = false;
571 	size_t obj_size;
572 	void *obj;
573 
574 	obj_size = SKB_HEAD_ALIGN(*size);
575 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
576 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
577 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
578 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
579 				node);
580 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
581 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
582 			goto out;
583 		/* Try again but now we are using pfmemalloc reserves */
584 		ret_pfmemalloc = true;
585 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
586 		goto out;
587 	}
588 
589 	obj_size = kmalloc_size_roundup(obj_size);
590 	/* The following cast might truncate high-order bits of obj_size, this
591 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
592 	 */
593 	*size = (unsigned int)obj_size;
594 
595 	/*
596 	 * Try a regular allocation, when that fails and we're not entitled
597 	 * to the reserves, fail.
598 	 */
599 	obj = kmalloc_node_track_caller(obj_size,
600 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
601 					node);
602 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
603 		goto out;
604 
605 	/* Try again but now we are using pfmemalloc reserves */
606 	ret_pfmemalloc = true;
607 	obj = kmalloc_node_track_caller(obj_size, flags, node);
608 
609 out:
610 	if (pfmemalloc)
611 		*pfmemalloc = ret_pfmemalloc;
612 
613 	return obj;
614 }
615 
616 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
617  *	'private' fields and also do memory statistics to find all the
618  *	[BEEP] leaks.
619  *
620  */
621 
622 /**
623  *	__alloc_skb	-	allocate a network buffer
624  *	@size: size to allocate
625  *	@gfp_mask: allocation mask
626  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
627  *		instead of head cache and allocate a cloned (child) skb.
628  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
629  *		allocations in case the data is required for writeback
630  *	@node: numa node to allocate memory on
631  *
632  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
633  *	tail room of at least size bytes. The object has a reference count
634  *	of one. The return is the buffer. On a failure the return is %NULL.
635  *
636  *	Buffers may only be allocated from interrupts using a @gfp_mask of
637  *	%GFP_ATOMIC.
638  */
639 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
640 			    int flags, int node)
641 {
642 	struct kmem_cache *cache;
643 	struct sk_buff *skb;
644 	bool pfmemalloc;
645 	u8 *data;
646 
647 	cache = (flags & SKB_ALLOC_FCLONE)
648 		? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
649 
650 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
651 		gfp_mask |= __GFP_MEMALLOC;
652 
653 	/* Get the HEAD */
654 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
655 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
656 		skb = napi_skb_cache_get();
657 	else
658 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
659 	if (unlikely(!skb))
660 		return NULL;
661 	prefetchw(skb);
662 
663 	/* We do our best to align skb_shared_info on a separate cache
664 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
665 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
666 	 * Both skb->head and skb_shared_info are cache line aligned.
667 	 */
668 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
669 	if (unlikely(!data))
670 		goto nodata;
671 	/* kmalloc_size_roundup() might give us more room than requested.
672 	 * Put skb_shared_info exactly at the end of allocated zone,
673 	 * to allow max possible filling before reallocation.
674 	 */
675 	prefetchw(data + SKB_WITH_OVERHEAD(size));
676 
677 	/*
678 	 * Only clear those fields we need to clear, not those that we will
679 	 * actually initialise below. Hence, don't put any more fields after
680 	 * the tail pointer in struct sk_buff!
681 	 */
682 	memset(skb, 0, offsetof(struct sk_buff, tail));
683 	__build_skb_around(skb, data, size);
684 	skb->pfmemalloc = pfmemalloc;
685 
686 	if (flags & SKB_ALLOC_FCLONE) {
687 		struct sk_buff_fclones *fclones;
688 
689 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
690 
691 		skb->fclone = SKB_FCLONE_ORIG;
692 		refcount_set(&fclones->fclone_ref, 1);
693 	}
694 
695 	return skb;
696 
697 nodata:
698 	kmem_cache_free(cache, skb);
699 	return NULL;
700 }
701 EXPORT_SYMBOL(__alloc_skb);
702 
703 /**
704  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
705  *	@dev: network device to receive on
706  *	@len: length to allocate
707  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
708  *
709  *	Allocate a new &sk_buff and assign it a usage count of one. The
710  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
711  *	the headroom they think they need without accounting for the
712  *	built in space. The built in space is used for optimisations.
713  *
714  *	%NULL is returned if there is no free memory.
715  */
716 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
717 				   gfp_t gfp_mask)
718 {
719 	struct page_frag_cache *nc;
720 	struct sk_buff *skb;
721 	bool pfmemalloc;
722 	void *data;
723 
724 	len += NET_SKB_PAD;
725 
726 	/* If requested length is either too small or too big,
727 	 * we use kmalloc() for skb->head allocation.
728 	 */
729 	if (len <= SKB_WITH_OVERHEAD(1024) ||
730 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
731 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
732 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
733 		if (!skb)
734 			goto skb_fail;
735 		goto skb_success;
736 	}
737 
738 	len = SKB_HEAD_ALIGN(len);
739 
740 	if (sk_memalloc_socks())
741 		gfp_mask |= __GFP_MEMALLOC;
742 
743 	if (in_hardirq() || irqs_disabled()) {
744 		nc = this_cpu_ptr(&netdev_alloc_cache);
745 		data = page_frag_alloc(nc, len, gfp_mask);
746 		pfmemalloc = nc->pfmemalloc;
747 	} else {
748 		local_bh_disable();
749 		nc = this_cpu_ptr(&napi_alloc_cache.page);
750 		data = page_frag_alloc(nc, len, gfp_mask);
751 		pfmemalloc = nc->pfmemalloc;
752 		local_bh_enable();
753 	}
754 
755 	if (unlikely(!data))
756 		return NULL;
757 
758 	skb = __build_skb(data, len);
759 	if (unlikely(!skb)) {
760 		skb_free_frag(data);
761 		return NULL;
762 	}
763 
764 	if (pfmemalloc)
765 		skb->pfmemalloc = 1;
766 	skb->head_frag = 1;
767 
768 skb_success:
769 	skb_reserve(skb, NET_SKB_PAD);
770 	skb->dev = dev;
771 
772 skb_fail:
773 	return skb;
774 }
775 EXPORT_SYMBOL(__netdev_alloc_skb);
776 
777 /**
778  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
779  *	@napi: napi instance this buffer was allocated for
780  *	@len: length to allocate
781  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
782  *
783  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
784  *	attempt to allocate the head from a special reserved region used
785  *	only for NAPI Rx allocation.  By doing this we can save several
786  *	CPU cycles by avoiding having to disable and re-enable IRQs.
787  *
788  *	%NULL is returned if there is no free memory.
789  */
790 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
791 				 gfp_t gfp_mask)
792 {
793 	struct napi_alloc_cache *nc;
794 	struct sk_buff *skb;
795 	bool pfmemalloc;
796 	void *data;
797 
798 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
799 	len += NET_SKB_PAD + NET_IP_ALIGN;
800 
801 	/* If requested length is either too small or too big,
802 	 * we use kmalloc() for skb->head allocation.
803 	 * When the small frag allocator is available, prefer it over kmalloc
804 	 * for small fragments
805 	 */
806 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
807 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
808 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
809 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
810 				  NUMA_NO_NODE);
811 		if (!skb)
812 			goto skb_fail;
813 		goto skb_success;
814 	}
815 
816 	nc = this_cpu_ptr(&napi_alloc_cache);
817 
818 	if (sk_memalloc_socks())
819 		gfp_mask |= __GFP_MEMALLOC;
820 
821 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
822 		/* we are artificially inflating the allocation size, but
823 		 * that is not as bad as it may look like, as:
824 		 * - 'len' less than GRO_MAX_HEAD makes little sense
825 		 * - On most systems, larger 'len' values lead to fragment
826 		 *   size above 512 bytes
827 		 * - kmalloc would use the kmalloc-1k slab for such values
828 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
829 		 *   little networking, as that implies no WiFi and no
830 		 *   tunnels support, and 32 bits arches.
831 		 */
832 		len = SZ_1K;
833 
834 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
835 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
836 	} else {
837 		len = SKB_HEAD_ALIGN(len);
838 
839 		data = page_frag_alloc(&nc->page, len, gfp_mask);
840 		pfmemalloc = nc->page.pfmemalloc;
841 	}
842 
843 	if (unlikely(!data))
844 		return NULL;
845 
846 	skb = __napi_build_skb(data, len);
847 	if (unlikely(!skb)) {
848 		skb_free_frag(data);
849 		return NULL;
850 	}
851 
852 	if (pfmemalloc)
853 		skb->pfmemalloc = 1;
854 	skb->head_frag = 1;
855 
856 skb_success:
857 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
858 	skb->dev = napi->dev;
859 
860 skb_fail:
861 	return skb;
862 }
863 EXPORT_SYMBOL(__napi_alloc_skb);
864 
865 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
866 			    int off, int size, unsigned int truesize)
867 {
868 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
869 
870 	skb_fill_netmem_desc(skb, i, netmem, off, size);
871 	skb->len += size;
872 	skb->data_len += size;
873 	skb->truesize += truesize;
874 }
875 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
876 
877 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
878 			  unsigned int truesize)
879 {
880 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
881 
882 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
883 
884 	skb_frag_size_add(frag, size);
885 	skb->len += size;
886 	skb->data_len += size;
887 	skb->truesize += truesize;
888 }
889 EXPORT_SYMBOL(skb_coalesce_rx_frag);
890 
891 static void skb_drop_list(struct sk_buff **listp)
892 {
893 	kfree_skb_list(*listp);
894 	*listp = NULL;
895 }
896 
897 static inline void skb_drop_fraglist(struct sk_buff *skb)
898 {
899 	skb_drop_list(&skb_shinfo(skb)->frag_list);
900 }
901 
902 static void skb_clone_fraglist(struct sk_buff *skb)
903 {
904 	struct sk_buff *list;
905 
906 	skb_walk_frags(skb, list)
907 		skb_get(list);
908 }
909 
910 static bool is_pp_page(struct page *page)
911 {
912 	return (page->pp_magic & ~0x3UL) == PP_SIGNATURE;
913 }
914 
915 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
916 		    unsigned int headroom)
917 {
918 #if IS_ENABLED(CONFIG_PAGE_POOL)
919 	u32 size, truesize, len, max_head_size, off;
920 	struct sk_buff *skb = *pskb, *nskb;
921 	int err, i, head_off;
922 	void *data;
923 
924 	/* XDP does not support fraglist so we need to linearize
925 	 * the skb.
926 	 */
927 	if (skb_has_frag_list(skb))
928 		return -EOPNOTSUPP;
929 
930 	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
931 	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
932 		return -ENOMEM;
933 
934 	size = min_t(u32, skb->len, max_head_size);
935 	truesize = SKB_HEAD_ALIGN(size) + headroom;
936 	data = page_pool_dev_alloc_va(pool, &truesize);
937 	if (!data)
938 		return -ENOMEM;
939 
940 	nskb = napi_build_skb(data, truesize);
941 	if (!nskb) {
942 		page_pool_free_va(pool, data, true);
943 		return -ENOMEM;
944 	}
945 
946 	skb_reserve(nskb, headroom);
947 	skb_copy_header(nskb, skb);
948 	skb_mark_for_recycle(nskb);
949 
950 	err = skb_copy_bits(skb, 0, nskb->data, size);
951 	if (err) {
952 		consume_skb(nskb);
953 		return err;
954 	}
955 	skb_put(nskb, size);
956 
957 	head_off = skb_headroom(nskb) - skb_headroom(skb);
958 	skb_headers_offset_update(nskb, head_off);
959 
960 	off = size;
961 	len = skb->len - off;
962 	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
963 		struct page *page;
964 		u32 page_off;
965 
966 		size = min_t(u32, len, PAGE_SIZE);
967 		truesize = size;
968 
969 		page = page_pool_dev_alloc(pool, &page_off, &truesize);
970 		if (!page) {
971 			consume_skb(nskb);
972 			return -ENOMEM;
973 		}
974 
975 		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
976 		err = skb_copy_bits(skb, off, page_address(page) + page_off,
977 				    size);
978 		if (err) {
979 			consume_skb(nskb);
980 			return err;
981 		}
982 
983 		len -= size;
984 		off += size;
985 	}
986 
987 	consume_skb(skb);
988 	*pskb = nskb;
989 
990 	return 0;
991 #else
992 	return -EOPNOTSUPP;
993 #endif
994 }
995 EXPORT_SYMBOL(skb_pp_cow_data);
996 
997 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
998 			 struct bpf_prog *prog)
999 {
1000 	if (!prog->aux->xdp_has_frags)
1001 		return -EINVAL;
1002 
1003 	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
1004 }
1005 EXPORT_SYMBOL(skb_cow_data_for_xdp);
1006 
1007 #if IS_ENABLED(CONFIG_PAGE_POOL)
1008 bool napi_pp_put_page(struct page *page, bool napi_safe)
1009 {
1010 	bool allow_direct = false;
1011 	struct page_pool *pp;
1012 
1013 	page = compound_head(page);
1014 
1015 	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
1016 	 * in order to preserve any existing bits, such as bit 0 for the
1017 	 * head page of compound page and bit 1 for pfmemalloc page, so
1018 	 * mask those bits for freeing side when doing below checking,
1019 	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
1020 	 * to avoid recycling the pfmemalloc page.
1021 	 */
1022 	if (unlikely(!is_pp_page(page)))
1023 		return false;
1024 
1025 	pp = page->pp;
1026 
1027 	/* Allow direct recycle if we have reasons to believe that we are
1028 	 * in the same context as the consumer would run, so there's
1029 	 * no possible race.
1030 	 * __page_pool_put_page() makes sure we're not in hardirq context
1031 	 * and interrupts are enabled prior to accessing the cache.
1032 	 */
1033 	if (napi_safe || in_softirq()) {
1034 		const struct napi_struct *napi = READ_ONCE(pp->p.napi);
1035 		unsigned int cpuid = smp_processor_id();
1036 
1037 		allow_direct = napi && READ_ONCE(napi->list_owner) == cpuid;
1038 		allow_direct |= READ_ONCE(pp->cpuid) == cpuid;
1039 	}
1040 
1041 	/* Driver set this to memory recycling info. Reset it on recycle.
1042 	 * This will *not* work for NIC using a split-page memory model.
1043 	 * The page will be returned to the pool here regardless of the
1044 	 * 'flipped' fragment being in use or not.
1045 	 */
1046 	page_pool_put_full_page(pp, page, allow_direct);
1047 
1048 	return true;
1049 }
1050 EXPORT_SYMBOL(napi_pp_put_page);
1051 #endif
1052 
1053 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
1054 {
1055 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1056 		return false;
1057 	return napi_pp_put_page(virt_to_page(data), napi_safe);
1058 }
1059 
1060 /**
1061  * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1062  * @skb:	page pool aware skb
1063  *
1064  * Increase the fragment reference count (pp_ref_count) of a skb. This is
1065  * intended to gain fragment references only for page pool aware skbs,
1066  * i.e. when skb->pp_recycle is true, and not for fragments in a
1067  * non-pp-recycling skb. It has a fallback to increase references on normal
1068  * pages, as page pool aware skbs may also have normal page fragments.
1069  */
1070 static int skb_pp_frag_ref(struct sk_buff *skb)
1071 {
1072 	struct skb_shared_info *shinfo;
1073 	struct page *head_page;
1074 	int i;
1075 
1076 	if (!skb->pp_recycle)
1077 		return -EINVAL;
1078 
1079 	shinfo = skb_shinfo(skb);
1080 
1081 	for (i = 0; i < shinfo->nr_frags; i++) {
1082 		head_page = compound_head(skb_frag_page(&shinfo->frags[i]));
1083 		if (likely(is_pp_page(head_page)))
1084 			page_pool_ref_page(head_page);
1085 		else
1086 			page_ref_inc(head_page);
1087 	}
1088 	return 0;
1089 }
1090 
1091 static void skb_kfree_head(void *head, unsigned int end_offset)
1092 {
1093 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1094 		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1095 	else
1096 		kfree(head);
1097 }
1098 
1099 static void skb_free_head(struct sk_buff *skb, bool napi_safe)
1100 {
1101 	unsigned char *head = skb->head;
1102 
1103 	if (skb->head_frag) {
1104 		if (skb_pp_recycle(skb, head, napi_safe))
1105 			return;
1106 		skb_free_frag(head);
1107 	} else {
1108 		skb_kfree_head(head, skb_end_offset(skb));
1109 	}
1110 }
1111 
1112 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
1113 			     bool napi_safe)
1114 {
1115 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1116 	int i;
1117 
1118 	if (!skb_data_unref(skb, shinfo))
1119 		goto exit;
1120 
1121 	if (skb_zcopy(skb)) {
1122 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1123 
1124 		skb_zcopy_clear(skb, true);
1125 		if (skip_unref)
1126 			goto free_head;
1127 	}
1128 
1129 	for (i = 0; i < shinfo->nr_frags; i++)
1130 		napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
1131 
1132 free_head:
1133 	if (shinfo->frag_list)
1134 		kfree_skb_list_reason(shinfo->frag_list, reason);
1135 
1136 	skb_free_head(skb, napi_safe);
1137 exit:
1138 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1139 	 * bit is only set on the head though, so in order to avoid races
1140 	 * while trying to recycle fragments on __skb_frag_unref() we need
1141 	 * to make one SKB responsible for triggering the recycle path.
1142 	 * So disable the recycling bit if an SKB is cloned and we have
1143 	 * additional references to the fragmented part of the SKB.
1144 	 * Eventually the last SKB will have the recycling bit set and it's
1145 	 * dataref set to 0, which will trigger the recycling
1146 	 */
1147 	skb->pp_recycle = 0;
1148 }
1149 
1150 /*
1151  *	Free an skbuff by memory without cleaning the state.
1152  */
1153 static void kfree_skbmem(struct sk_buff *skb)
1154 {
1155 	struct sk_buff_fclones *fclones;
1156 
1157 	switch (skb->fclone) {
1158 	case SKB_FCLONE_UNAVAILABLE:
1159 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1160 		return;
1161 
1162 	case SKB_FCLONE_ORIG:
1163 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1164 
1165 		/* We usually free the clone (TX completion) before original skb
1166 		 * This test would have no chance to be true for the clone,
1167 		 * while here, branch prediction will be good.
1168 		 */
1169 		if (refcount_read(&fclones->fclone_ref) == 1)
1170 			goto fastpath;
1171 		break;
1172 
1173 	default: /* SKB_FCLONE_CLONE */
1174 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1175 		break;
1176 	}
1177 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1178 		return;
1179 fastpath:
1180 	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1181 }
1182 
1183 void skb_release_head_state(struct sk_buff *skb)
1184 {
1185 	skb_dst_drop(skb);
1186 	if (skb->destructor) {
1187 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1188 		skb->destructor(skb);
1189 	}
1190 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1191 	nf_conntrack_put(skb_nfct(skb));
1192 #endif
1193 	skb_ext_put(skb);
1194 }
1195 
1196 /* Free everything but the sk_buff shell. */
1197 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
1198 			    bool napi_safe)
1199 {
1200 	skb_release_head_state(skb);
1201 	if (likely(skb->head))
1202 		skb_release_data(skb, reason, napi_safe);
1203 }
1204 
1205 /**
1206  *	__kfree_skb - private function
1207  *	@skb: buffer
1208  *
1209  *	Free an sk_buff. Release anything attached to the buffer.
1210  *	Clean the state. This is an internal helper function. Users should
1211  *	always call kfree_skb
1212  */
1213 
1214 void __kfree_skb(struct sk_buff *skb)
1215 {
1216 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1217 	kfree_skbmem(skb);
1218 }
1219 EXPORT_SYMBOL(__kfree_skb);
1220 
1221 static __always_inline
1222 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1223 {
1224 	if (unlikely(!skb_unref(skb)))
1225 		return false;
1226 
1227 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1228 			       u32_get_bits(reason,
1229 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1230 				SKB_DROP_REASON_SUBSYS_NUM);
1231 
1232 	if (reason == SKB_CONSUMED)
1233 		trace_consume_skb(skb, __builtin_return_address(0));
1234 	else
1235 		trace_kfree_skb(skb, __builtin_return_address(0), reason);
1236 	return true;
1237 }
1238 
1239 /**
1240  *	kfree_skb_reason - free an sk_buff with special reason
1241  *	@skb: buffer to free
1242  *	@reason: reason why this skb is dropped
1243  *
1244  *	Drop a reference to the buffer and free it if the usage count has
1245  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1246  *	tracepoint.
1247  */
1248 void __fix_address
1249 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1250 {
1251 	if (__kfree_skb_reason(skb, reason))
1252 		__kfree_skb(skb);
1253 }
1254 EXPORT_SYMBOL(kfree_skb_reason);
1255 
1256 #define KFREE_SKB_BULK_SIZE	16
1257 
1258 struct skb_free_array {
1259 	unsigned int skb_count;
1260 	void *skb_array[KFREE_SKB_BULK_SIZE];
1261 };
1262 
1263 static void kfree_skb_add_bulk(struct sk_buff *skb,
1264 			       struct skb_free_array *sa,
1265 			       enum skb_drop_reason reason)
1266 {
1267 	/* if SKB is a clone, don't handle this case */
1268 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1269 		__kfree_skb(skb);
1270 		return;
1271 	}
1272 
1273 	skb_release_all(skb, reason, false);
1274 	sa->skb_array[sa->skb_count++] = skb;
1275 
1276 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1277 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1278 				     sa->skb_array);
1279 		sa->skb_count = 0;
1280 	}
1281 }
1282 
1283 void __fix_address
1284 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1285 {
1286 	struct skb_free_array sa;
1287 
1288 	sa.skb_count = 0;
1289 
1290 	while (segs) {
1291 		struct sk_buff *next = segs->next;
1292 
1293 		if (__kfree_skb_reason(segs, reason)) {
1294 			skb_poison_list(segs);
1295 			kfree_skb_add_bulk(segs, &sa, reason);
1296 		}
1297 
1298 		segs = next;
1299 	}
1300 
1301 	if (sa.skb_count)
1302 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1303 }
1304 EXPORT_SYMBOL(kfree_skb_list_reason);
1305 
1306 /* Dump skb information and contents.
1307  *
1308  * Must only be called from net_ratelimit()-ed paths.
1309  *
1310  * Dumps whole packets if full_pkt, only headers otherwise.
1311  */
1312 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1313 {
1314 	struct skb_shared_info *sh = skb_shinfo(skb);
1315 	struct net_device *dev = skb->dev;
1316 	struct sock *sk = skb->sk;
1317 	struct sk_buff *list_skb;
1318 	bool has_mac, has_trans;
1319 	int headroom, tailroom;
1320 	int i, len, seg_len;
1321 
1322 	if (full_pkt)
1323 		len = skb->len;
1324 	else
1325 		len = min_t(int, skb->len, MAX_HEADER + 128);
1326 
1327 	headroom = skb_headroom(skb);
1328 	tailroom = skb_tailroom(skb);
1329 
1330 	has_mac = skb_mac_header_was_set(skb);
1331 	has_trans = skb_transport_header_was_set(skb);
1332 
1333 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1334 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1335 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1336 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1337 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1338 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1339 	       has_mac ? skb->mac_header : -1,
1340 	       has_mac ? skb_mac_header_len(skb) : -1,
1341 	       skb->network_header,
1342 	       has_trans ? skb_network_header_len(skb) : -1,
1343 	       has_trans ? skb->transport_header : -1,
1344 	       sh->tx_flags, sh->nr_frags,
1345 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1346 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
1347 	       skb->csum_valid, skb->csum_level,
1348 	       skb->hash, skb->sw_hash, skb->l4_hash,
1349 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1350 
1351 	if (dev)
1352 		printk("%sdev name=%s feat=%pNF\n",
1353 		       level, dev->name, &dev->features);
1354 	if (sk)
1355 		printk("%ssk family=%hu type=%u proto=%u\n",
1356 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1357 
1358 	if (full_pkt && headroom)
1359 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1360 			       16, 1, skb->head, headroom, false);
1361 
1362 	seg_len = min_t(int, skb_headlen(skb), len);
1363 	if (seg_len)
1364 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1365 			       16, 1, skb->data, seg_len, false);
1366 	len -= seg_len;
1367 
1368 	if (full_pkt && tailroom)
1369 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1370 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1371 
1372 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1373 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1374 		u32 p_off, p_len, copied;
1375 		struct page *p;
1376 		u8 *vaddr;
1377 
1378 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1379 				      skb_frag_size(frag), p, p_off, p_len,
1380 				      copied) {
1381 			seg_len = min_t(int, p_len, len);
1382 			vaddr = kmap_atomic(p);
1383 			print_hex_dump(level, "skb frag:     ",
1384 				       DUMP_PREFIX_OFFSET,
1385 				       16, 1, vaddr + p_off, seg_len, false);
1386 			kunmap_atomic(vaddr);
1387 			len -= seg_len;
1388 			if (!len)
1389 				break;
1390 		}
1391 	}
1392 
1393 	if (full_pkt && skb_has_frag_list(skb)) {
1394 		printk("skb fraglist:\n");
1395 		skb_walk_frags(skb, list_skb)
1396 			skb_dump(level, list_skb, true);
1397 	}
1398 }
1399 EXPORT_SYMBOL(skb_dump);
1400 
1401 /**
1402  *	skb_tx_error - report an sk_buff xmit error
1403  *	@skb: buffer that triggered an error
1404  *
1405  *	Report xmit error if a device callback is tracking this skb.
1406  *	skb must be freed afterwards.
1407  */
1408 void skb_tx_error(struct sk_buff *skb)
1409 {
1410 	if (skb) {
1411 		skb_zcopy_downgrade_managed(skb);
1412 		skb_zcopy_clear(skb, true);
1413 	}
1414 }
1415 EXPORT_SYMBOL(skb_tx_error);
1416 
1417 #ifdef CONFIG_TRACEPOINTS
1418 /**
1419  *	consume_skb - free an skbuff
1420  *	@skb: buffer to free
1421  *
1422  *	Drop a ref to the buffer and free it if the usage count has hit zero
1423  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1424  *	is being dropped after a failure and notes that
1425  */
1426 void consume_skb(struct sk_buff *skb)
1427 {
1428 	if (!skb_unref(skb))
1429 		return;
1430 
1431 	trace_consume_skb(skb, __builtin_return_address(0));
1432 	__kfree_skb(skb);
1433 }
1434 EXPORT_SYMBOL(consume_skb);
1435 #endif
1436 
1437 /**
1438  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1439  *	@skb: buffer to free
1440  *
1441  *	Alike consume_skb(), but this variant assumes that this is the last
1442  *	skb reference and all the head states have been already dropped
1443  */
1444 void __consume_stateless_skb(struct sk_buff *skb)
1445 {
1446 	trace_consume_skb(skb, __builtin_return_address(0));
1447 	skb_release_data(skb, SKB_CONSUMED, false);
1448 	kfree_skbmem(skb);
1449 }
1450 
1451 static void napi_skb_cache_put(struct sk_buff *skb)
1452 {
1453 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1454 	u32 i;
1455 
1456 	if (!kasan_mempool_poison_object(skb))
1457 		return;
1458 
1459 	nc->skb_cache[nc->skb_count++] = skb;
1460 
1461 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1462 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1463 			kasan_mempool_unpoison_object(nc->skb_cache[i],
1464 						kmem_cache_size(net_hotdata.skbuff_cache));
1465 
1466 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1467 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1468 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1469 	}
1470 }
1471 
1472 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1473 {
1474 	skb_release_all(skb, reason, true);
1475 	napi_skb_cache_put(skb);
1476 }
1477 
1478 void napi_skb_free_stolen_head(struct sk_buff *skb)
1479 {
1480 	if (unlikely(skb->slow_gro)) {
1481 		nf_reset_ct(skb);
1482 		skb_dst_drop(skb);
1483 		skb_ext_put(skb);
1484 		skb_orphan(skb);
1485 		skb->slow_gro = 0;
1486 	}
1487 	napi_skb_cache_put(skb);
1488 }
1489 
1490 void napi_consume_skb(struct sk_buff *skb, int budget)
1491 {
1492 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1493 	if (unlikely(!budget)) {
1494 		dev_consume_skb_any(skb);
1495 		return;
1496 	}
1497 
1498 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1499 
1500 	if (!skb_unref(skb))
1501 		return;
1502 
1503 	/* if reaching here SKB is ready to free */
1504 	trace_consume_skb(skb, __builtin_return_address(0));
1505 
1506 	/* if SKB is a clone, don't handle this case */
1507 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1508 		__kfree_skb(skb);
1509 		return;
1510 	}
1511 
1512 	skb_release_all(skb, SKB_CONSUMED, !!budget);
1513 	napi_skb_cache_put(skb);
1514 }
1515 EXPORT_SYMBOL(napi_consume_skb);
1516 
1517 /* Make sure a field is contained by headers group */
1518 #define CHECK_SKB_FIELD(field) \
1519 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1520 		     offsetof(struct sk_buff, headers.field));	\
1521 
1522 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1523 {
1524 	new->tstamp		= old->tstamp;
1525 	/* We do not copy old->sk */
1526 	new->dev		= old->dev;
1527 	memcpy(new->cb, old->cb, sizeof(old->cb));
1528 	skb_dst_copy(new, old);
1529 	__skb_ext_copy(new, old);
1530 	__nf_copy(new, old, false);
1531 
1532 	/* Note : this field could be in the headers group.
1533 	 * It is not yet because we do not want to have a 16 bit hole
1534 	 */
1535 	new->queue_mapping = old->queue_mapping;
1536 
1537 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1538 	CHECK_SKB_FIELD(protocol);
1539 	CHECK_SKB_FIELD(csum);
1540 	CHECK_SKB_FIELD(hash);
1541 	CHECK_SKB_FIELD(priority);
1542 	CHECK_SKB_FIELD(skb_iif);
1543 	CHECK_SKB_FIELD(vlan_proto);
1544 	CHECK_SKB_FIELD(vlan_tci);
1545 	CHECK_SKB_FIELD(transport_header);
1546 	CHECK_SKB_FIELD(network_header);
1547 	CHECK_SKB_FIELD(mac_header);
1548 	CHECK_SKB_FIELD(inner_protocol);
1549 	CHECK_SKB_FIELD(inner_transport_header);
1550 	CHECK_SKB_FIELD(inner_network_header);
1551 	CHECK_SKB_FIELD(inner_mac_header);
1552 	CHECK_SKB_FIELD(mark);
1553 #ifdef CONFIG_NETWORK_SECMARK
1554 	CHECK_SKB_FIELD(secmark);
1555 #endif
1556 #ifdef CONFIG_NET_RX_BUSY_POLL
1557 	CHECK_SKB_FIELD(napi_id);
1558 #endif
1559 	CHECK_SKB_FIELD(alloc_cpu);
1560 #ifdef CONFIG_XPS
1561 	CHECK_SKB_FIELD(sender_cpu);
1562 #endif
1563 #ifdef CONFIG_NET_SCHED
1564 	CHECK_SKB_FIELD(tc_index);
1565 #endif
1566 
1567 }
1568 
1569 /*
1570  * You should not add any new code to this function.  Add it to
1571  * __copy_skb_header above instead.
1572  */
1573 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1574 {
1575 #define C(x) n->x = skb->x
1576 
1577 	n->next = n->prev = NULL;
1578 	n->sk = NULL;
1579 	__copy_skb_header(n, skb);
1580 
1581 	C(len);
1582 	C(data_len);
1583 	C(mac_len);
1584 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1585 	n->cloned = 1;
1586 	n->nohdr = 0;
1587 	n->peeked = 0;
1588 	C(pfmemalloc);
1589 	C(pp_recycle);
1590 	n->destructor = NULL;
1591 	C(tail);
1592 	C(end);
1593 	C(head);
1594 	C(head_frag);
1595 	C(data);
1596 	C(truesize);
1597 	refcount_set(&n->users, 1);
1598 
1599 	atomic_inc(&(skb_shinfo(skb)->dataref));
1600 	skb->cloned = 1;
1601 
1602 	return n;
1603 #undef C
1604 }
1605 
1606 /**
1607  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1608  * @first: first sk_buff of the msg
1609  */
1610 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1611 {
1612 	struct sk_buff *n;
1613 
1614 	n = alloc_skb(0, GFP_ATOMIC);
1615 	if (!n)
1616 		return NULL;
1617 
1618 	n->len = first->len;
1619 	n->data_len = first->len;
1620 	n->truesize = first->truesize;
1621 
1622 	skb_shinfo(n)->frag_list = first;
1623 
1624 	__copy_skb_header(n, first);
1625 	n->destructor = NULL;
1626 
1627 	return n;
1628 }
1629 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1630 
1631 /**
1632  *	skb_morph	-	morph one skb into another
1633  *	@dst: the skb to receive the contents
1634  *	@src: the skb to supply the contents
1635  *
1636  *	This is identical to skb_clone except that the target skb is
1637  *	supplied by the user.
1638  *
1639  *	The target skb is returned upon exit.
1640  */
1641 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1642 {
1643 	skb_release_all(dst, SKB_CONSUMED, false);
1644 	return __skb_clone(dst, src);
1645 }
1646 EXPORT_SYMBOL_GPL(skb_morph);
1647 
1648 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1649 {
1650 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1651 	struct user_struct *user;
1652 
1653 	if (capable(CAP_IPC_LOCK) || !size)
1654 		return 0;
1655 
1656 	rlim = rlimit(RLIMIT_MEMLOCK);
1657 	if (rlim == RLIM_INFINITY)
1658 		return 0;
1659 
1660 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1661 	max_pg = rlim >> PAGE_SHIFT;
1662 	user = mmp->user ? : current_user();
1663 
1664 	old_pg = atomic_long_read(&user->locked_vm);
1665 	do {
1666 		new_pg = old_pg + num_pg;
1667 		if (new_pg > max_pg)
1668 			return -ENOBUFS;
1669 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1670 
1671 	if (!mmp->user) {
1672 		mmp->user = get_uid(user);
1673 		mmp->num_pg = num_pg;
1674 	} else {
1675 		mmp->num_pg += num_pg;
1676 	}
1677 
1678 	return 0;
1679 }
1680 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1681 
1682 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1683 {
1684 	if (mmp->user) {
1685 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1686 		free_uid(mmp->user);
1687 	}
1688 }
1689 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1690 
1691 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1692 {
1693 	struct ubuf_info_msgzc *uarg;
1694 	struct sk_buff *skb;
1695 
1696 	WARN_ON_ONCE(!in_task());
1697 
1698 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1699 	if (!skb)
1700 		return NULL;
1701 
1702 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1703 	uarg = (void *)skb->cb;
1704 	uarg->mmp.user = NULL;
1705 
1706 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1707 		kfree_skb(skb);
1708 		return NULL;
1709 	}
1710 
1711 	uarg->ubuf.callback = msg_zerocopy_callback;
1712 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1713 	uarg->len = 1;
1714 	uarg->bytelen = size;
1715 	uarg->zerocopy = 1;
1716 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1717 	refcount_set(&uarg->ubuf.refcnt, 1);
1718 	sock_hold(sk);
1719 
1720 	return &uarg->ubuf;
1721 }
1722 
1723 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1724 {
1725 	return container_of((void *)uarg, struct sk_buff, cb);
1726 }
1727 
1728 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1729 				       struct ubuf_info *uarg)
1730 {
1731 	if (uarg) {
1732 		struct ubuf_info_msgzc *uarg_zc;
1733 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1734 		u32 bytelen, next;
1735 
1736 		/* there might be non MSG_ZEROCOPY users */
1737 		if (uarg->callback != msg_zerocopy_callback)
1738 			return NULL;
1739 
1740 		/* realloc only when socket is locked (TCP, UDP cork),
1741 		 * so uarg->len and sk_zckey access is serialized
1742 		 */
1743 		if (!sock_owned_by_user(sk)) {
1744 			WARN_ON_ONCE(1);
1745 			return NULL;
1746 		}
1747 
1748 		uarg_zc = uarg_to_msgzc(uarg);
1749 		bytelen = uarg_zc->bytelen + size;
1750 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1751 			/* TCP can create new skb to attach new uarg */
1752 			if (sk->sk_type == SOCK_STREAM)
1753 				goto new_alloc;
1754 			return NULL;
1755 		}
1756 
1757 		next = (u32)atomic_read(&sk->sk_zckey);
1758 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1759 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1760 				return NULL;
1761 			uarg_zc->len++;
1762 			uarg_zc->bytelen = bytelen;
1763 			atomic_set(&sk->sk_zckey, ++next);
1764 
1765 			/* no extra ref when appending to datagram (MSG_MORE) */
1766 			if (sk->sk_type == SOCK_STREAM)
1767 				net_zcopy_get(uarg);
1768 
1769 			return uarg;
1770 		}
1771 	}
1772 
1773 new_alloc:
1774 	return msg_zerocopy_alloc(sk, size);
1775 }
1776 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1777 
1778 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1779 {
1780 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1781 	u32 old_lo, old_hi;
1782 	u64 sum_len;
1783 
1784 	old_lo = serr->ee.ee_info;
1785 	old_hi = serr->ee.ee_data;
1786 	sum_len = old_hi - old_lo + 1ULL + len;
1787 
1788 	if (sum_len >= (1ULL << 32))
1789 		return false;
1790 
1791 	if (lo != old_hi + 1)
1792 		return false;
1793 
1794 	serr->ee.ee_data += len;
1795 	return true;
1796 }
1797 
1798 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1799 {
1800 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1801 	struct sock_exterr_skb *serr;
1802 	struct sock *sk = skb->sk;
1803 	struct sk_buff_head *q;
1804 	unsigned long flags;
1805 	bool is_zerocopy;
1806 	u32 lo, hi;
1807 	u16 len;
1808 
1809 	mm_unaccount_pinned_pages(&uarg->mmp);
1810 
1811 	/* if !len, there was only 1 call, and it was aborted
1812 	 * so do not queue a completion notification
1813 	 */
1814 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1815 		goto release;
1816 
1817 	len = uarg->len;
1818 	lo = uarg->id;
1819 	hi = uarg->id + len - 1;
1820 	is_zerocopy = uarg->zerocopy;
1821 
1822 	serr = SKB_EXT_ERR(skb);
1823 	memset(serr, 0, sizeof(*serr));
1824 	serr->ee.ee_errno = 0;
1825 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1826 	serr->ee.ee_data = hi;
1827 	serr->ee.ee_info = lo;
1828 	if (!is_zerocopy)
1829 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1830 
1831 	q = &sk->sk_error_queue;
1832 	spin_lock_irqsave(&q->lock, flags);
1833 	tail = skb_peek_tail(q);
1834 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1835 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1836 		__skb_queue_tail(q, skb);
1837 		skb = NULL;
1838 	}
1839 	spin_unlock_irqrestore(&q->lock, flags);
1840 
1841 	sk_error_report(sk);
1842 
1843 release:
1844 	consume_skb(skb);
1845 	sock_put(sk);
1846 }
1847 
1848 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1849 			   bool success)
1850 {
1851 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1852 
1853 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1854 
1855 	if (refcount_dec_and_test(&uarg->refcnt))
1856 		__msg_zerocopy_callback(uarg_zc);
1857 }
1858 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1859 
1860 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1861 {
1862 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1863 
1864 	atomic_dec(&sk->sk_zckey);
1865 	uarg_to_msgzc(uarg)->len--;
1866 
1867 	if (have_uref)
1868 		msg_zerocopy_callback(NULL, uarg, true);
1869 }
1870 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1871 
1872 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1873 			     struct msghdr *msg, int len,
1874 			     struct ubuf_info *uarg)
1875 {
1876 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1877 	int err, orig_len = skb->len;
1878 
1879 	/* An skb can only point to one uarg. This edge case happens when
1880 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1881 	 */
1882 	if (orig_uarg && uarg != orig_uarg)
1883 		return -EEXIST;
1884 
1885 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1886 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1887 		struct sock *save_sk = skb->sk;
1888 
1889 		/* Streams do not free skb on error. Reset to prev state. */
1890 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1891 		skb->sk = sk;
1892 		___pskb_trim(skb, orig_len);
1893 		skb->sk = save_sk;
1894 		return err;
1895 	}
1896 
1897 	skb_zcopy_set(skb, uarg, NULL);
1898 	return skb->len - orig_len;
1899 }
1900 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1901 
1902 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1903 {
1904 	int i;
1905 
1906 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1907 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1908 		skb_frag_ref(skb, i);
1909 }
1910 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1911 
1912 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1913 			      gfp_t gfp_mask)
1914 {
1915 	if (skb_zcopy(orig)) {
1916 		if (skb_zcopy(nskb)) {
1917 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1918 			if (!gfp_mask) {
1919 				WARN_ON_ONCE(1);
1920 				return -ENOMEM;
1921 			}
1922 			if (skb_uarg(nskb) == skb_uarg(orig))
1923 				return 0;
1924 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1925 				return -EIO;
1926 		}
1927 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1928 	}
1929 	return 0;
1930 }
1931 
1932 /**
1933  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1934  *	@skb: the skb to modify
1935  *	@gfp_mask: allocation priority
1936  *
1937  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1938  *	It will copy all frags into kernel and drop the reference
1939  *	to userspace pages.
1940  *
1941  *	If this function is called from an interrupt gfp_mask() must be
1942  *	%GFP_ATOMIC.
1943  *
1944  *	Returns 0 on success or a negative error code on failure
1945  *	to allocate kernel memory to copy to.
1946  */
1947 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1948 {
1949 	int num_frags = skb_shinfo(skb)->nr_frags;
1950 	struct page *page, *head = NULL;
1951 	int i, order, psize, new_frags;
1952 	u32 d_off;
1953 
1954 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1955 		return -EINVAL;
1956 
1957 	if (!num_frags)
1958 		goto release;
1959 
1960 	/* We might have to allocate high order pages, so compute what minimum
1961 	 * page order is needed.
1962 	 */
1963 	order = 0;
1964 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1965 		order++;
1966 	psize = (PAGE_SIZE << order);
1967 
1968 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1969 	for (i = 0; i < new_frags; i++) {
1970 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1971 		if (!page) {
1972 			while (head) {
1973 				struct page *next = (struct page *)page_private(head);
1974 				put_page(head);
1975 				head = next;
1976 			}
1977 			return -ENOMEM;
1978 		}
1979 		set_page_private(page, (unsigned long)head);
1980 		head = page;
1981 	}
1982 
1983 	page = head;
1984 	d_off = 0;
1985 	for (i = 0; i < num_frags; i++) {
1986 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1987 		u32 p_off, p_len, copied;
1988 		struct page *p;
1989 		u8 *vaddr;
1990 
1991 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1992 				      p, p_off, p_len, copied) {
1993 			u32 copy, done = 0;
1994 			vaddr = kmap_atomic(p);
1995 
1996 			while (done < p_len) {
1997 				if (d_off == psize) {
1998 					d_off = 0;
1999 					page = (struct page *)page_private(page);
2000 				}
2001 				copy = min_t(u32, psize - d_off, p_len - done);
2002 				memcpy(page_address(page) + d_off,
2003 				       vaddr + p_off + done, copy);
2004 				done += copy;
2005 				d_off += copy;
2006 			}
2007 			kunmap_atomic(vaddr);
2008 		}
2009 	}
2010 
2011 	/* skb frags release userspace buffers */
2012 	for (i = 0; i < num_frags; i++)
2013 		skb_frag_unref(skb, i);
2014 
2015 	/* skb frags point to kernel buffers */
2016 	for (i = 0; i < new_frags - 1; i++) {
2017 		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
2018 		head = (struct page *)page_private(head);
2019 	}
2020 	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2021 			       d_off);
2022 	skb_shinfo(skb)->nr_frags = new_frags;
2023 
2024 release:
2025 	skb_zcopy_clear(skb, false);
2026 	return 0;
2027 }
2028 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2029 
2030 /**
2031  *	skb_clone	-	duplicate an sk_buff
2032  *	@skb: buffer to clone
2033  *	@gfp_mask: allocation priority
2034  *
2035  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
2036  *	copies share the same packet data but not structure. The new
2037  *	buffer has a reference count of 1. If the allocation fails the
2038  *	function returns %NULL otherwise the new buffer is returned.
2039  *
2040  *	If this function is called from an interrupt gfp_mask() must be
2041  *	%GFP_ATOMIC.
2042  */
2043 
2044 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2045 {
2046 	struct sk_buff_fclones *fclones = container_of(skb,
2047 						       struct sk_buff_fclones,
2048 						       skb1);
2049 	struct sk_buff *n;
2050 
2051 	if (skb_orphan_frags(skb, gfp_mask))
2052 		return NULL;
2053 
2054 	if (skb->fclone == SKB_FCLONE_ORIG &&
2055 	    refcount_read(&fclones->fclone_ref) == 1) {
2056 		n = &fclones->skb2;
2057 		refcount_set(&fclones->fclone_ref, 2);
2058 		n->fclone = SKB_FCLONE_CLONE;
2059 	} else {
2060 		if (skb_pfmemalloc(skb))
2061 			gfp_mask |= __GFP_MEMALLOC;
2062 
2063 		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2064 		if (!n)
2065 			return NULL;
2066 
2067 		n->fclone = SKB_FCLONE_UNAVAILABLE;
2068 	}
2069 
2070 	return __skb_clone(n, skb);
2071 }
2072 EXPORT_SYMBOL(skb_clone);
2073 
2074 void skb_headers_offset_update(struct sk_buff *skb, int off)
2075 {
2076 	/* Only adjust this if it actually is csum_start rather than csum */
2077 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2078 		skb->csum_start += off;
2079 	/* {transport,network,mac}_header and tail are relative to skb->head */
2080 	skb->transport_header += off;
2081 	skb->network_header   += off;
2082 	if (skb_mac_header_was_set(skb))
2083 		skb->mac_header += off;
2084 	skb->inner_transport_header += off;
2085 	skb->inner_network_header += off;
2086 	skb->inner_mac_header += off;
2087 }
2088 EXPORT_SYMBOL(skb_headers_offset_update);
2089 
2090 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2091 {
2092 	__copy_skb_header(new, old);
2093 
2094 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2095 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2096 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2097 }
2098 EXPORT_SYMBOL(skb_copy_header);
2099 
2100 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2101 {
2102 	if (skb_pfmemalloc(skb))
2103 		return SKB_ALLOC_RX;
2104 	return 0;
2105 }
2106 
2107 /**
2108  *	skb_copy	-	create private copy of an sk_buff
2109  *	@skb: buffer to copy
2110  *	@gfp_mask: allocation priority
2111  *
2112  *	Make a copy of both an &sk_buff and its data. This is used when the
2113  *	caller wishes to modify the data and needs a private copy of the
2114  *	data to alter. Returns %NULL on failure or the pointer to the buffer
2115  *	on success. The returned buffer has a reference count of 1.
2116  *
2117  *	As by-product this function converts non-linear &sk_buff to linear
2118  *	one, so that &sk_buff becomes completely private and caller is allowed
2119  *	to modify all the data of returned buffer. This means that this
2120  *	function is not recommended for use in circumstances when only
2121  *	header is going to be modified. Use pskb_copy() instead.
2122  */
2123 
2124 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2125 {
2126 	int headerlen = skb_headroom(skb);
2127 	unsigned int size = skb_end_offset(skb) + skb->data_len;
2128 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
2129 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2130 
2131 	if (!n)
2132 		return NULL;
2133 
2134 	/* Set the data pointer */
2135 	skb_reserve(n, headerlen);
2136 	/* Set the tail pointer and length */
2137 	skb_put(n, skb->len);
2138 
2139 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2140 
2141 	skb_copy_header(n, skb);
2142 	return n;
2143 }
2144 EXPORT_SYMBOL(skb_copy);
2145 
2146 /**
2147  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2148  *	@skb: buffer to copy
2149  *	@headroom: headroom of new skb
2150  *	@gfp_mask: allocation priority
2151  *	@fclone: if true allocate the copy of the skb from the fclone
2152  *	cache instead of the head cache; it is recommended to set this
2153  *	to true for the cases where the copy will likely be cloned
2154  *
2155  *	Make a copy of both an &sk_buff and part of its data, located
2156  *	in header. Fragmented data remain shared. This is used when
2157  *	the caller wishes to modify only header of &sk_buff and needs
2158  *	private copy of the header to alter. Returns %NULL on failure
2159  *	or the pointer to the buffer on success.
2160  *	The returned buffer has a reference count of 1.
2161  */
2162 
2163 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2164 				   gfp_t gfp_mask, bool fclone)
2165 {
2166 	unsigned int size = skb_headlen(skb) + headroom;
2167 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2168 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2169 
2170 	if (!n)
2171 		goto out;
2172 
2173 	/* Set the data pointer */
2174 	skb_reserve(n, headroom);
2175 	/* Set the tail pointer and length */
2176 	skb_put(n, skb_headlen(skb));
2177 	/* Copy the bytes */
2178 	skb_copy_from_linear_data(skb, n->data, n->len);
2179 
2180 	n->truesize += skb->data_len;
2181 	n->data_len  = skb->data_len;
2182 	n->len	     = skb->len;
2183 
2184 	if (skb_shinfo(skb)->nr_frags) {
2185 		int i;
2186 
2187 		if (skb_orphan_frags(skb, gfp_mask) ||
2188 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2189 			kfree_skb(n);
2190 			n = NULL;
2191 			goto out;
2192 		}
2193 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2194 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2195 			skb_frag_ref(skb, i);
2196 		}
2197 		skb_shinfo(n)->nr_frags = i;
2198 	}
2199 
2200 	if (skb_has_frag_list(skb)) {
2201 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2202 		skb_clone_fraglist(n);
2203 	}
2204 
2205 	skb_copy_header(n, skb);
2206 out:
2207 	return n;
2208 }
2209 EXPORT_SYMBOL(__pskb_copy_fclone);
2210 
2211 /**
2212  *	pskb_expand_head - reallocate header of &sk_buff
2213  *	@skb: buffer to reallocate
2214  *	@nhead: room to add at head
2215  *	@ntail: room to add at tail
2216  *	@gfp_mask: allocation priority
2217  *
2218  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2219  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2220  *	reference count of 1. Returns zero in the case of success or error,
2221  *	if expansion failed. In the last case, &sk_buff is not changed.
2222  *
2223  *	All the pointers pointing into skb header may change and must be
2224  *	reloaded after call to this function.
2225  */
2226 
2227 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2228 		     gfp_t gfp_mask)
2229 {
2230 	unsigned int osize = skb_end_offset(skb);
2231 	unsigned int size = osize + nhead + ntail;
2232 	long off;
2233 	u8 *data;
2234 	int i;
2235 
2236 	BUG_ON(nhead < 0);
2237 
2238 	BUG_ON(skb_shared(skb));
2239 
2240 	skb_zcopy_downgrade_managed(skb);
2241 
2242 	if (skb_pfmemalloc(skb))
2243 		gfp_mask |= __GFP_MEMALLOC;
2244 
2245 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2246 	if (!data)
2247 		goto nodata;
2248 	size = SKB_WITH_OVERHEAD(size);
2249 
2250 	/* Copy only real data... and, alas, header. This should be
2251 	 * optimized for the cases when header is void.
2252 	 */
2253 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2254 
2255 	memcpy((struct skb_shared_info *)(data + size),
2256 	       skb_shinfo(skb),
2257 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2258 
2259 	/*
2260 	 * if shinfo is shared we must drop the old head gracefully, but if it
2261 	 * is not we can just drop the old head and let the existing refcount
2262 	 * be since all we did is relocate the values
2263 	 */
2264 	if (skb_cloned(skb)) {
2265 		if (skb_orphan_frags(skb, gfp_mask))
2266 			goto nofrags;
2267 		if (skb_zcopy(skb))
2268 			refcount_inc(&skb_uarg(skb)->refcnt);
2269 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2270 			skb_frag_ref(skb, i);
2271 
2272 		if (skb_has_frag_list(skb))
2273 			skb_clone_fraglist(skb);
2274 
2275 		skb_release_data(skb, SKB_CONSUMED, false);
2276 	} else {
2277 		skb_free_head(skb, false);
2278 	}
2279 	off = (data + nhead) - skb->head;
2280 
2281 	skb->head     = data;
2282 	skb->head_frag = 0;
2283 	skb->data    += off;
2284 
2285 	skb_set_end_offset(skb, size);
2286 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2287 	off           = nhead;
2288 #endif
2289 	skb->tail	      += off;
2290 	skb_headers_offset_update(skb, nhead);
2291 	skb->cloned   = 0;
2292 	skb->hdr_len  = 0;
2293 	skb->nohdr    = 0;
2294 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2295 
2296 	skb_metadata_clear(skb);
2297 
2298 	/* It is not generally safe to change skb->truesize.
2299 	 * For the moment, we really care of rx path, or
2300 	 * when skb is orphaned (not attached to a socket).
2301 	 */
2302 	if (!skb->sk || skb->destructor == sock_edemux)
2303 		skb->truesize += size - osize;
2304 
2305 	return 0;
2306 
2307 nofrags:
2308 	skb_kfree_head(data, size);
2309 nodata:
2310 	return -ENOMEM;
2311 }
2312 EXPORT_SYMBOL(pskb_expand_head);
2313 
2314 /* Make private copy of skb with writable head and some headroom */
2315 
2316 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2317 {
2318 	struct sk_buff *skb2;
2319 	int delta = headroom - skb_headroom(skb);
2320 
2321 	if (delta <= 0)
2322 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2323 	else {
2324 		skb2 = skb_clone(skb, GFP_ATOMIC);
2325 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2326 					     GFP_ATOMIC)) {
2327 			kfree_skb(skb2);
2328 			skb2 = NULL;
2329 		}
2330 	}
2331 	return skb2;
2332 }
2333 EXPORT_SYMBOL(skb_realloc_headroom);
2334 
2335 /* Note: We plan to rework this in linux-6.4 */
2336 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2337 {
2338 	unsigned int saved_end_offset, saved_truesize;
2339 	struct skb_shared_info *shinfo;
2340 	int res;
2341 
2342 	saved_end_offset = skb_end_offset(skb);
2343 	saved_truesize = skb->truesize;
2344 
2345 	res = pskb_expand_head(skb, 0, 0, pri);
2346 	if (res)
2347 		return res;
2348 
2349 	skb->truesize = saved_truesize;
2350 
2351 	if (likely(skb_end_offset(skb) == saved_end_offset))
2352 		return 0;
2353 
2354 	/* We can not change skb->end if the original or new value
2355 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2356 	 */
2357 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2358 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2359 		/* We think this path should not be taken.
2360 		 * Add a temporary trace to warn us just in case.
2361 		 */
2362 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2363 			    saved_end_offset, skb_end_offset(skb));
2364 		WARN_ON_ONCE(1);
2365 		return 0;
2366 	}
2367 
2368 	shinfo = skb_shinfo(skb);
2369 
2370 	/* We are about to change back skb->end,
2371 	 * we need to move skb_shinfo() to its new location.
2372 	 */
2373 	memmove(skb->head + saved_end_offset,
2374 		shinfo,
2375 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2376 
2377 	skb_set_end_offset(skb, saved_end_offset);
2378 
2379 	return 0;
2380 }
2381 
2382 /**
2383  *	skb_expand_head - reallocate header of &sk_buff
2384  *	@skb: buffer to reallocate
2385  *	@headroom: needed headroom
2386  *
2387  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2388  *	if possible; copies skb->sk to new skb as needed
2389  *	and frees original skb in case of failures.
2390  *
2391  *	It expect increased headroom and generates warning otherwise.
2392  */
2393 
2394 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2395 {
2396 	int delta = headroom - skb_headroom(skb);
2397 	int osize = skb_end_offset(skb);
2398 	struct sock *sk = skb->sk;
2399 
2400 	if (WARN_ONCE(delta <= 0,
2401 		      "%s is expecting an increase in the headroom", __func__))
2402 		return skb;
2403 
2404 	delta = SKB_DATA_ALIGN(delta);
2405 	/* pskb_expand_head() might crash, if skb is shared. */
2406 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2407 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2408 
2409 		if (unlikely(!nskb))
2410 			goto fail;
2411 
2412 		if (sk)
2413 			skb_set_owner_w(nskb, sk);
2414 		consume_skb(skb);
2415 		skb = nskb;
2416 	}
2417 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2418 		goto fail;
2419 
2420 	if (sk && is_skb_wmem(skb)) {
2421 		delta = skb_end_offset(skb) - osize;
2422 		refcount_add(delta, &sk->sk_wmem_alloc);
2423 		skb->truesize += delta;
2424 	}
2425 	return skb;
2426 
2427 fail:
2428 	kfree_skb(skb);
2429 	return NULL;
2430 }
2431 EXPORT_SYMBOL(skb_expand_head);
2432 
2433 /**
2434  *	skb_copy_expand	-	copy and expand sk_buff
2435  *	@skb: buffer to copy
2436  *	@newheadroom: new free bytes at head
2437  *	@newtailroom: new free bytes at tail
2438  *	@gfp_mask: allocation priority
2439  *
2440  *	Make a copy of both an &sk_buff and its data and while doing so
2441  *	allocate additional space.
2442  *
2443  *	This is used when the caller wishes to modify the data and needs a
2444  *	private copy of the data to alter as well as more space for new fields.
2445  *	Returns %NULL on failure or the pointer to the buffer
2446  *	on success. The returned buffer has a reference count of 1.
2447  *
2448  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2449  *	is called from an interrupt.
2450  */
2451 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2452 				int newheadroom, int newtailroom,
2453 				gfp_t gfp_mask)
2454 {
2455 	/*
2456 	 *	Allocate the copy buffer
2457 	 */
2458 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2459 					gfp_mask, skb_alloc_rx_flag(skb),
2460 					NUMA_NO_NODE);
2461 	int oldheadroom = skb_headroom(skb);
2462 	int head_copy_len, head_copy_off;
2463 
2464 	if (!n)
2465 		return NULL;
2466 
2467 	skb_reserve(n, newheadroom);
2468 
2469 	/* Set the tail pointer and length */
2470 	skb_put(n, skb->len);
2471 
2472 	head_copy_len = oldheadroom;
2473 	head_copy_off = 0;
2474 	if (newheadroom <= head_copy_len)
2475 		head_copy_len = newheadroom;
2476 	else
2477 		head_copy_off = newheadroom - head_copy_len;
2478 
2479 	/* Copy the linear header and data. */
2480 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2481 			     skb->len + head_copy_len));
2482 
2483 	skb_copy_header(n, skb);
2484 
2485 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2486 
2487 	return n;
2488 }
2489 EXPORT_SYMBOL(skb_copy_expand);
2490 
2491 /**
2492  *	__skb_pad		-	zero pad the tail of an skb
2493  *	@skb: buffer to pad
2494  *	@pad: space to pad
2495  *	@free_on_error: free buffer on error
2496  *
2497  *	Ensure that a buffer is followed by a padding area that is zero
2498  *	filled. Used by network drivers which may DMA or transfer data
2499  *	beyond the buffer end onto the wire.
2500  *
2501  *	May return error in out of memory cases. The skb is freed on error
2502  *	if @free_on_error is true.
2503  */
2504 
2505 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2506 {
2507 	int err;
2508 	int ntail;
2509 
2510 	/* If the skbuff is non linear tailroom is always zero.. */
2511 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2512 		memset(skb->data+skb->len, 0, pad);
2513 		return 0;
2514 	}
2515 
2516 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2517 	if (likely(skb_cloned(skb) || ntail > 0)) {
2518 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2519 		if (unlikely(err))
2520 			goto free_skb;
2521 	}
2522 
2523 	/* FIXME: The use of this function with non-linear skb's really needs
2524 	 * to be audited.
2525 	 */
2526 	err = skb_linearize(skb);
2527 	if (unlikely(err))
2528 		goto free_skb;
2529 
2530 	memset(skb->data + skb->len, 0, pad);
2531 	return 0;
2532 
2533 free_skb:
2534 	if (free_on_error)
2535 		kfree_skb(skb);
2536 	return err;
2537 }
2538 EXPORT_SYMBOL(__skb_pad);
2539 
2540 /**
2541  *	pskb_put - add data to the tail of a potentially fragmented buffer
2542  *	@skb: start of the buffer to use
2543  *	@tail: tail fragment of the buffer to use
2544  *	@len: amount of data to add
2545  *
2546  *	This function extends the used data area of the potentially
2547  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2548  *	@skb itself. If this would exceed the total buffer size the kernel
2549  *	will panic. A pointer to the first byte of the extra data is
2550  *	returned.
2551  */
2552 
2553 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2554 {
2555 	if (tail != skb) {
2556 		skb->data_len += len;
2557 		skb->len += len;
2558 	}
2559 	return skb_put(tail, len);
2560 }
2561 EXPORT_SYMBOL_GPL(pskb_put);
2562 
2563 /**
2564  *	skb_put - add data to a buffer
2565  *	@skb: buffer to use
2566  *	@len: amount of data to add
2567  *
2568  *	This function extends the used data area of the buffer. If this would
2569  *	exceed the total buffer size the kernel will panic. A pointer to the
2570  *	first byte of the extra data is returned.
2571  */
2572 void *skb_put(struct sk_buff *skb, unsigned int len)
2573 {
2574 	void *tmp = skb_tail_pointer(skb);
2575 	SKB_LINEAR_ASSERT(skb);
2576 	skb->tail += len;
2577 	skb->len  += len;
2578 	if (unlikely(skb->tail > skb->end))
2579 		skb_over_panic(skb, len, __builtin_return_address(0));
2580 	return tmp;
2581 }
2582 EXPORT_SYMBOL(skb_put);
2583 
2584 /**
2585  *	skb_push - add data to the start of a buffer
2586  *	@skb: buffer to use
2587  *	@len: amount of data to add
2588  *
2589  *	This function extends the used data area of the buffer at the buffer
2590  *	start. If this would exceed the total buffer headroom the kernel will
2591  *	panic. A pointer to the first byte of the extra data is returned.
2592  */
2593 void *skb_push(struct sk_buff *skb, unsigned int len)
2594 {
2595 	skb->data -= len;
2596 	skb->len  += len;
2597 	if (unlikely(skb->data < skb->head))
2598 		skb_under_panic(skb, len, __builtin_return_address(0));
2599 	return skb->data;
2600 }
2601 EXPORT_SYMBOL(skb_push);
2602 
2603 /**
2604  *	skb_pull - remove data from the start of a buffer
2605  *	@skb: buffer to use
2606  *	@len: amount of data to remove
2607  *
2608  *	This function removes data from the start of a buffer, returning
2609  *	the memory to the headroom. A pointer to the next data in the buffer
2610  *	is returned. Once the data has been pulled future pushes will overwrite
2611  *	the old data.
2612  */
2613 void *skb_pull(struct sk_buff *skb, unsigned int len)
2614 {
2615 	return skb_pull_inline(skb, len);
2616 }
2617 EXPORT_SYMBOL(skb_pull);
2618 
2619 /**
2620  *	skb_pull_data - remove data from the start of a buffer returning its
2621  *	original position.
2622  *	@skb: buffer to use
2623  *	@len: amount of data to remove
2624  *
2625  *	This function removes data from the start of a buffer, returning
2626  *	the memory to the headroom. A pointer to the original data in the buffer
2627  *	is returned after checking if there is enough data to pull. Once the
2628  *	data has been pulled future pushes will overwrite the old data.
2629  */
2630 void *skb_pull_data(struct sk_buff *skb, size_t len)
2631 {
2632 	void *data = skb->data;
2633 
2634 	if (skb->len < len)
2635 		return NULL;
2636 
2637 	skb_pull(skb, len);
2638 
2639 	return data;
2640 }
2641 EXPORT_SYMBOL(skb_pull_data);
2642 
2643 /**
2644  *	skb_trim - remove end from a buffer
2645  *	@skb: buffer to alter
2646  *	@len: new length
2647  *
2648  *	Cut the length of a buffer down by removing data from the tail. If
2649  *	the buffer is already under the length specified it is not modified.
2650  *	The skb must be linear.
2651  */
2652 void skb_trim(struct sk_buff *skb, unsigned int len)
2653 {
2654 	if (skb->len > len)
2655 		__skb_trim(skb, len);
2656 }
2657 EXPORT_SYMBOL(skb_trim);
2658 
2659 /* Trims skb to length len. It can change skb pointers.
2660  */
2661 
2662 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2663 {
2664 	struct sk_buff **fragp;
2665 	struct sk_buff *frag;
2666 	int offset = skb_headlen(skb);
2667 	int nfrags = skb_shinfo(skb)->nr_frags;
2668 	int i;
2669 	int err;
2670 
2671 	if (skb_cloned(skb) &&
2672 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2673 		return err;
2674 
2675 	i = 0;
2676 	if (offset >= len)
2677 		goto drop_pages;
2678 
2679 	for (; i < nfrags; i++) {
2680 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2681 
2682 		if (end < len) {
2683 			offset = end;
2684 			continue;
2685 		}
2686 
2687 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2688 
2689 drop_pages:
2690 		skb_shinfo(skb)->nr_frags = i;
2691 
2692 		for (; i < nfrags; i++)
2693 			skb_frag_unref(skb, i);
2694 
2695 		if (skb_has_frag_list(skb))
2696 			skb_drop_fraglist(skb);
2697 		goto done;
2698 	}
2699 
2700 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2701 	     fragp = &frag->next) {
2702 		int end = offset + frag->len;
2703 
2704 		if (skb_shared(frag)) {
2705 			struct sk_buff *nfrag;
2706 
2707 			nfrag = skb_clone(frag, GFP_ATOMIC);
2708 			if (unlikely(!nfrag))
2709 				return -ENOMEM;
2710 
2711 			nfrag->next = frag->next;
2712 			consume_skb(frag);
2713 			frag = nfrag;
2714 			*fragp = frag;
2715 		}
2716 
2717 		if (end < len) {
2718 			offset = end;
2719 			continue;
2720 		}
2721 
2722 		if (end > len &&
2723 		    unlikely((err = pskb_trim(frag, len - offset))))
2724 			return err;
2725 
2726 		if (frag->next)
2727 			skb_drop_list(&frag->next);
2728 		break;
2729 	}
2730 
2731 done:
2732 	if (len > skb_headlen(skb)) {
2733 		skb->data_len -= skb->len - len;
2734 		skb->len       = len;
2735 	} else {
2736 		skb->len       = len;
2737 		skb->data_len  = 0;
2738 		skb_set_tail_pointer(skb, len);
2739 	}
2740 
2741 	if (!skb->sk || skb->destructor == sock_edemux)
2742 		skb_condense(skb);
2743 	return 0;
2744 }
2745 EXPORT_SYMBOL(___pskb_trim);
2746 
2747 /* Note : use pskb_trim_rcsum() instead of calling this directly
2748  */
2749 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2750 {
2751 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2752 		int delta = skb->len - len;
2753 
2754 		skb->csum = csum_block_sub(skb->csum,
2755 					   skb_checksum(skb, len, delta, 0),
2756 					   len);
2757 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2758 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2759 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2760 
2761 		if (offset + sizeof(__sum16) > hdlen)
2762 			return -EINVAL;
2763 	}
2764 	return __pskb_trim(skb, len);
2765 }
2766 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2767 
2768 /**
2769  *	__pskb_pull_tail - advance tail of skb header
2770  *	@skb: buffer to reallocate
2771  *	@delta: number of bytes to advance tail
2772  *
2773  *	The function makes a sense only on a fragmented &sk_buff,
2774  *	it expands header moving its tail forward and copying necessary
2775  *	data from fragmented part.
2776  *
2777  *	&sk_buff MUST have reference count of 1.
2778  *
2779  *	Returns %NULL (and &sk_buff does not change) if pull failed
2780  *	or value of new tail of skb in the case of success.
2781  *
2782  *	All the pointers pointing into skb header may change and must be
2783  *	reloaded after call to this function.
2784  */
2785 
2786 /* Moves tail of skb head forward, copying data from fragmented part,
2787  * when it is necessary.
2788  * 1. It may fail due to malloc failure.
2789  * 2. It may change skb pointers.
2790  *
2791  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2792  */
2793 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2794 {
2795 	/* If skb has not enough free space at tail, get new one
2796 	 * plus 128 bytes for future expansions. If we have enough
2797 	 * room at tail, reallocate without expansion only if skb is cloned.
2798 	 */
2799 	int i, k, eat = (skb->tail + delta) - skb->end;
2800 
2801 	if (eat > 0 || skb_cloned(skb)) {
2802 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2803 				     GFP_ATOMIC))
2804 			return NULL;
2805 	}
2806 
2807 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2808 			     skb_tail_pointer(skb), delta));
2809 
2810 	/* Optimization: no fragments, no reasons to preestimate
2811 	 * size of pulled pages. Superb.
2812 	 */
2813 	if (!skb_has_frag_list(skb))
2814 		goto pull_pages;
2815 
2816 	/* Estimate size of pulled pages. */
2817 	eat = delta;
2818 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2819 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2820 
2821 		if (size >= eat)
2822 			goto pull_pages;
2823 		eat -= size;
2824 	}
2825 
2826 	/* If we need update frag list, we are in troubles.
2827 	 * Certainly, it is possible to add an offset to skb data,
2828 	 * but taking into account that pulling is expected to
2829 	 * be very rare operation, it is worth to fight against
2830 	 * further bloating skb head and crucify ourselves here instead.
2831 	 * Pure masohism, indeed. 8)8)
2832 	 */
2833 	if (eat) {
2834 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2835 		struct sk_buff *clone = NULL;
2836 		struct sk_buff *insp = NULL;
2837 
2838 		do {
2839 			if (list->len <= eat) {
2840 				/* Eaten as whole. */
2841 				eat -= list->len;
2842 				list = list->next;
2843 				insp = list;
2844 			} else {
2845 				/* Eaten partially. */
2846 				if (skb_is_gso(skb) && !list->head_frag &&
2847 				    skb_headlen(list))
2848 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2849 
2850 				if (skb_shared(list)) {
2851 					/* Sucks! We need to fork list. :-( */
2852 					clone = skb_clone(list, GFP_ATOMIC);
2853 					if (!clone)
2854 						return NULL;
2855 					insp = list->next;
2856 					list = clone;
2857 				} else {
2858 					/* This may be pulled without
2859 					 * problems. */
2860 					insp = list;
2861 				}
2862 				if (!pskb_pull(list, eat)) {
2863 					kfree_skb(clone);
2864 					return NULL;
2865 				}
2866 				break;
2867 			}
2868 		} while (eat);
2869 
2870 		/* Free pulled out fragments. */
2871 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2872 			skb_shinfo(skb)->frag_list = list->next;
2873 			consume_skb(list);
2874 		}
2875 		/* And insert new clone at head. */
2876 		if (clone) {
2877 			clone->next = list;
2878 			skb_shinfo(skb)->frag_list = clone;
2879 		}
2880 	}
2881 	/* Success! Now we may commit changes to skb data. */
2882 
2883 pull_pages:
2884 	eat = delta;
2885 	k = 0;
2886 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2887 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2888 
2889 		if (size <= eat) {
2890 			skb_frag_unref(skb, i);
2891 			eat -= size;
2892 		} else {
2893 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2894 
2895 			*frag = skb_shinfo(skb)->frags[i];
2896 			if (eat) {
2897 				skb_frag_off_add(frag, eat);
2898 				skb_frag_size_sub(frag, eat);
2899 				if (!i)
2900 					goto end;
2901 				eat = 0;
2902 			}
2903 			k++;
2904 		}
2905 	}
2906 	skb_shinfo(skb)->nr_frags = k;
2907 
2908 end:
2909 	skb->tail     += delta;
2910 	skb->data_len -= delta;
2911 
2912 	if (!skb->data_len)
2913 		skb_zcopy_clear(skb, false);
2914 
2915 	return skb_tail_pointer(skb);
2916 }
2917 EXPORT_SYMBOL(__pskb_pull_tail);
2918 
2919 /**
2920  *	skb_copy_bits - copy bits from skb to kernel buffer
2921  *	@skb: source skb
2922  *	@offset: offset in source
2923  *	@to: destination buffer
2924  *	@len: number of bytes to copy
2925  *
2926  *	Copy the specified number of bytes from the source skb to the
2927  *	destination buffer.
2928  *
2929  *	CAUTION ! :
2930  *		If its prototype is ever changed,
2931  *		check arch/{*}/net/{*}.S files,
2932  *		since it is called from BPF assembly code.
2933  */
2934 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2935 {
2936 	int start = skb_headlen(skb);
2937 	struct sk_buff *frag_iter;
2938 	int i, copy;
2939 
2940 	if (offset > (int)skb->len - len)
2941 		goto fault;
2942 
2943 	/* Copy header. */
2944 	if ((copy = start - offset) > 0) {
2945 		if (copy > len)
2946 			copy = len;
2947 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2948 		if ((len -= copy) == 0)
2949 			return 0;
2950 		offset += copy;
2951 		to     += copy;
2952 	}
2953 
2954 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2955 		int end;
2956 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2957 
2958 		WARN_ON(start > offset + len);
2959 
2960 		end = start + skb_frag_size(f);
2961 		if ((copy = end - offset) > 0) {
2962 			u32 p_off, p_len, copied;
2963 			struct page *p;
2964 			u8 *vaddr;
2965 
2966 			if (copy > len)
2967 				copy = len;
2968 
2969 			skb_frag_foreach_page(f,
2970 					      skb_frag_off(f) + offset - start,
2971 					      copy, p, p_off, p_len, copied) {
2972 				vaddr = kmap_atomic(p);
2973 				memcpy(to + copied, vaddr + p_off, p_len);
2974 				kunmap_atomic(vaddr);
2975 			}
2976 
2977 			if ((len -= copy) == 0)
2978 				return 0;
2979 			offset += copy;
2980 			to     += copy;
2981 		}
2982 		start = end;
2983 	}
2984 
2985 	skb_walk_frags(skb, frag_iter) {
2986 		int end;
2987 
2988 		WARN_ON(start > offset + len);
2989 
2990 		end = start + frag_iter->len;
2991 		if ((copy = end - offset) > 0) {
2992 			if (copy > len)
2993 				copy = len;
2994 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2995 				goto fault;
2996 			if ((len -= copy) == 0)
2997 				return 0;
2998 			offset += copy;
2999 			to     += copy;
3000 		}
3001 		start = end;
3002 	}
3003 
3004 	if (!len)
3005 		return 0;
3006 
3007 fault:
3008 	return -EFAULT;
3009 }
3010 EXPORT_SYMBOL(skb_copy_bits);
3011 
3012 /*
3013  * Callback from splice_to_pipe(), if we need to release some pages
3014  * at the end of the spd in case we error'ed out in filling the pipe.
3015  */
3016 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3017 {
3018 	put_page(spd->pages[i]);
3019 }
3020 
3021 static struct page *linear_to_page(struct page *page, unsigned int *len,
3022 				   unsigned int *offset,
3023 				   struct sock *sk)
3024 {
3025 	struct page_frag *pfrag = sk_page_frag(sk);
3026 
3027 	if (!sk_page_frag_refill(sk, pfrag))
3028 		return NULL;
3029 
3030 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3031 
3032 	memcpy(page_address(pfrag->page) + pfrag->offset,
3033 	       page_address(page) + *offset, *len);
3034 	*offset = pfrag->offset;
3035 	pfrag->offset += *len;
3036 
3037 	return pfrag->page;
3038 }
3039 
3040 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3041 			     struct page *page,
3042 			     unsigned int offset)
3043 {
3044 	return	spd->nr_pages &&
3045 		spd->pages[spd->nr_pages - 1] == page &&
3046 		(spd->partial[spd->nr_pages - 1].offset +
3047 		 spd->partial[spd->nr_pages - 1].len == offset);
3048 }
3049 
3050 /*
3051  * Fill page/offset/length into spd, if it can hold more pages.
3052  */
3053 static bool spd_fill_page(struct splice_pipe_desc *spd,
3054 			  struct pipe_inode_info *pipe, struct page *page,
3055 			  unsigned int *len, unsigned int offset,
3056 			  bool linear,
3057 			  struct sock *sk)
3058 {
3059 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3060 		return true;
3061 
3062 	if (linear) {
3063 		page = linear_to_page(page, len, &offset, sk);
3064 		if (!page)
3065 			return true;
3066 	}
3067 	if (spd_can_coalesce(spd, page, offset)) {
3068 		spd->partial[spd->nr_pages - 1].len += *len;
3069 		return false;
3070 	}
3071 	get_page(page);
3072 	spd->pages[spd->nr_pages] = page;
3073 	spd->partial[spd->nr_pages].len = *len;
3074 	spd->partial[spd->nr_pages].offset = offset;
3075 	spd->nr_pages++;
3076 
3077 	return false;
3078 }
3079 
3080 static bool __splice_segment(struct page *page, unsigned int poff,
3081 			     unsigned int plen, unsigned int *off,
3082 			     unsigned int *len,
3083 			     struct splice_pipe_desc *spd, bool linear,
3084 			     struct sock *sk,
3085 			     struct pipe_inode_info *pipe)
3086 {
3087 	if (!*len)
3088 		return true;
3089 
3090 	/* skip this segment if already processed */
3091 	if (*off >= plen) {
3092 		*off -= plen;
3093 		return false;
3094 	}
3095 
3096 	/* ignore any bits we already processed */
3097 	poff += *off;
3098 	plen -= *off;
3099 	*off = 0;
3100 
3101 	do {
3102 		unsigned int flen = min(*len, plen);
3103 
3104 		if (spd_fill_page(spd, pipe, page, &flen, poff,
3105 				  linear, sk))
3106 			return true;
3107 		poff += flen;
3108 		plen -= flen;
3109 		*len -= flen;
3110 	} while (*len && plen);
3111 
3112 	return false;
3113 }
3114 
3115 /*
3116  * Map linear and fragment data from the skb to spd. It reports true if the
3117  * pipe is full or if we already spliced the requested length.
3118  */
3119 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3120 			      unsigned int *offset, unsigned int *len,
3121 			      struct splice_pipe_desc *spd, struct sock *sk)
3122 {
3123 	int seg;
3124 	struct sk_buff *iter;
3125 
3126 	/* map the linear part :
3127 	 * If skb->head_frag is set, this 'linear' part is backed by a
3128 	 * fragment, and if the head is not shared with any clones then
3129 	 * we can avoid a copy since we own the head portion of this page.
3130 	 */
3131 	if (__splice_segment(virt_to_page(skb->data),
3132 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3133 			     skb_headlen(skb),
3134 			     offset, len, spd,
3135 			     skb_head_is_locked(skb),
3136 			     sk, pipe))
3137 		return true;
3138 
3139 	/*
3140 	 * then map the fragments
3141 	 */
3142 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3143 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3144 
3145 		if (__splice_segment(skb_frag_page(f),
3146 				     skb_frag_off(f), skb_frag_size(f),
3147 				     offset, len, spd, false, sk, pipe))
3148 			return true;
3149 	}
3150 
3151 	skb_walk_frags(skb, iter) {
3152 		if (*offset >= iter->len) {
3153 			*offset -= iter->len;
3154 			continue;
3155 		}
3156 		/* __skb_splice_bits() only fails if the output has no room
3157 		 * left, so no point in going over the frag_list for the error
3158 		 * case.
3159 		 */
3160 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3161 			return true;
3162 	}
3163 
3164 	return false;
3165 }
3166 
3167 /*
3168  * Map data from the skb to a pipe. Should handle both the linear part,
3169  * the fragments, and the frag list.
3170  */
3171 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3172 		    struct pipe_inode_info *pipe, unsigned int tlen,
3173 		    unsigned int flags)
3174 {
3175 	struct partial_page partial[MAX_SKB_FRAGS];
3176 	struct page *pages[MAX_SKB_FRAGS];
3177 	struct splice_pipe_desc spd = {
3178 		.pages = pages,
3179 		.partial = partial,
3180 		.nr_pages_max = MAX_SKB_FRAGS,
3181 		.ops = &nosteal_pipe_buf_ops,
3182 		.spd_release = sock_spd_release,
3183 	};
3184 	int ret = 0;
3185 
3186 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3187 
3188 	if (spd.nr_pages)
3189 		ret = splice_to_pipe(pipe, &spd);
3190 
3191 	return ret;
3192 }
3193 EXPORT_SYMBOL_GPL(skb_splice_bits);
3194 
3195 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3196 {
3197 	struct socket *sock = sk->sk_socket;
3198 	size_t size = msg_data_left(msg);
3199 
3200 	if (!sock)
3201 		return -EINVAL;
3202 
3203 	if (!sock->ops->sendmsg_locked)
3204 		return sock_no_sendmsg_locked(sk, msg, size);
3205 
3206 	return sock->ops->sendmsg_locked(sk, msg, size);
3207 }
3208 
3209 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3210 {
3211 	struct socket *sock = sk->sk_socket;
3212 
3213 	if (!sock)
3214 		return -EINVAL;
3215 	return sock_sendmsg(sock, msg);
3216 }
3217 
3218 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3219 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3220 			   int len, sendmsg_func sendmsg)
3221 {
3222 	unsigned int orig_len = len;
3223 	struct sk_buff *head = skb;
3224 	unsigned short fragidx;
3225 	int slen, ret;
3226 
3227 do_frag_list:
3228 
3229 	/* Deal with head data */
3230 	while (offset < skb_headlen(skb) && len) {
3231 		struct kvec kv;
3232 		struct msghdr msg;
3233 
3234 		slen = min_t(int, len, skb_headlen(skb) - offset);
3235 		kv.iov_base = skb->data + offset;
3236 		kv.iov_len = slen;
3237 		memset(&msg, 0, sizeof(msg));
3238 		msg.msg_flags = MSG_DONTWAIT;
3239 
3240 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3241 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3242 				      sendmsg_unlocked, sk, &msg);
3243 		if (ret <= 0)
3244 			goto error;
3245 
3246 		offset += ret;
3247 		len -= ret;
3248 	}
3249 
3250 	/* All the data was skb head? */
3251 	if (!len)
3252 		goto out;
3253 
3254 	/* Make offset relative to start of frags */
3255 	offset -= skb_headlen(skb);
3256 
3257 	/* Find where we are in frag list */
3258 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3259 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3260 
3261 		if (offset < skb_frag_size(frag))
3262 			break;
3263 
3264 		offset -= skb_frag_size(frag);
3265 	}
3266 
3267 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3268 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3269 
3270 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3271 
3272 		while (slen) {
3273 			struct bio_vec bvec;
3274 			struct msghdr msg = {
3275 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3276 			};
3277 
3278 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3279 				      skb_frag_off(frag) + offset);
3280 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3281 				      slen);
3282 
3283 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3284 					      sendmsg_unlocked, sk, &msg);
3285 			if (ret <= 0)
3286 				goto error;
3287 
3288 			len -= ret;
3289 			offset += ret;
3290 			slen -= ret;
3291 		}
3292 
3293 		offset = 0;
3294 	}
3295 
3296 	if (len) {
3297 		/* Process any frag lists */
3298 
3299 		if (skb == head) {
3300 			if (skb_has_frag_list(skb)) {
3301 				skb = skb_shinfo(skb)->frag_list;
3302 				goto do_frag_list;
3303 			}
3304 		} else if (skb->next) {
3305 			skb = skb->next;
3306 			goto do_frag_list;
3307 		}
3308 	}
3309 
3310 out:
3311 	return orig_len - len;
3312 
3313 error:
3314 	return orig_len == len ? ret : orig_len - len;
3315 }
3316 
3317 /* Send skb data on a socket. Socket must be locked. */
3318 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3319 			 int len)
3320 {
3321 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3322 }
3323 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3324 
3325 /* Send skb data on a socket. Socket must be unlocked. */
3326 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3327 {
3328 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3329 }
3330 
3331 /**
3332  *	skb_store_bits - store bits from kernel buffer to skb
3333  *	@skb: destination buffer
3334  *	@offset: offset in destination
3335  *	@from: source buffer
3336  *	@len: number of bytes to copy
3337  *
3338  *	Copy the specified number of bytes from the source buffer to the
3339  *	destination skb.  This function handles all the messy bits of
3340  *	traversing fragment lists and such.
3341  */
3342 
3343 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3344 {
3345 	int start = skb_headlen(skb);
3346 	struct sk_buff *frag_iter;
3347 	int i, copy;
3348 
3349 	if (offset > (int)skb->len - len)
3350 		goto fault;
3351 
3352 	if ((copy = start - offset) > 0) {
3353 		if (copy > len)
3354 			copy = len;
3355 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3356 		if ((len -= copy) == 0)
3357 			return 0;
3358 		offset += copy;
3359 		from += copy;
3360 	}
3361 
3362 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3363 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3364 		int end;
3365 
3366 		WARN_ON(start > offset + len);
3367 
3368 		end = start + skb_frag_size(frag);
3369 		if ((copy = end - offset) > 0) {
3370 			u32 p_off, p_len, copied;
3371 			struct page *p;
3372 			u8 *vaddr;
3373 
3374 			if (copy > len)
3375 				copy = len;
3376 
3377 			skb_frag_foreach_page(frag,
3378 					      skb_frag_off(frag) + offset - start,
3379 					      copy, p, p_off, p_len, copied) {
3380 				vaddr = kmap_atomic(p);
3381 				memcpy(vaddr + p_off, from + copied, p_len);
3382 				kunmap_atomic(vaddr);
3383 			}
3384 
3385 			if ((len -= copy) == 0)
3386 				return 0;
3387 			offset += copy;
3388 			from += copy;
3389 		}
3390 		start = end;
3391 	}
3392 
3393 	skb_walk_frags(skb, frag_iter) {
3394 		int end;
3395 
3396 		WARN_ON(start > offset + len);
3397 
3398 		end = start + frag_iter->len;
3399 		if ((copy = end - offset) > 0) {
3400 			if (copy > len)
3401 				copy = len;
3402 			if (skb_store_bits(frag_iter, offset - start,
3403 					   from, copy))
3404 				goto fault;
3405 			if ((len -= copy) == 0)
3406 				return 0;
3407 			offset += copy;
3408 			from += copy;
3409 		}
3410 		start = end;
3411 	}
3412 	if (!len)
3413 		return 0;
3414 
3415 fault:
3416 	return -EFAULT;
3417 }
3418 EXPORT_SYMBOL(skb_store_bits);
3419 
3420 /* Checksum skb data. */
3421 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3422 		      __wsum csum, const struct skb_checksum_ops *ops)
3423 {
3424 	int start = skb_headlen(skb);
3425 	int i, copy = start - offset;
3426 	struct sk_buff *frag_iter;
3427 	int pos = 0;
3428 
3429 	/* Checksum header. */
3430 	if (copy > 0) {
3431 		if (copy > len)
3432 			copy = len;
3433 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3434 				       skb->data + offset, copy, csum);
3435 		if ((len -= copy) == 0)
3436 			return csum;
3437 		offset += copy;
3438 		pos	= copy;
3439 	}
3440 
3441 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3442 		int end;
3443 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3444 
3445 		WARN_ON(start > offset + len);
3446 
3447 		end = start + skb_frag_size(frag);
3448 		if ((copy = end - offset) > 0) {
3449 			u32 p_off, p_len, copied;
3450 			struct page *p;
3451 			__wsum csum2;
3452 			u8 *vaddr;
3453 
3454 			if (copy > len)
3455 				copy = len;
3456 
3457 			skb_frag_foreach_page(frag,
3458 					      skb_frag_off(frag) + offset - start,
3459 					      copy, p, p_off, p_len, copied) {
3460 				vaddr = kmap_atomic(p);
3461 				csum2 = INDIRECT_CALL_1(ops->update,
3462 							csum_partial_ext,
3463 							vaddr + p_off, p_len, 0);
3464 				kunmap_atomic(vaddr);
3465 				csum = INDIRECT_CALL_1(ops->combine,
3466 						       csum_block_add_ext, csum,
3467 						       csum2, pos, p_len);
3468 				pos += p_len;
3469 			}
3470 
3471 			if (!(len -= copy))
3472 				return csum;
3473 			offset += copy;
3474 		}
3475 		start = end;
3476 	}
3477 
3478 	skb_walk_frags(skb, frag_iter) {
3479 		int end;
3480 
3481 		WARN_ON(start > offset + len);
3482 
3483 		end = start + frag_iter->len;
3484 		if ((copy = end - offset) > 0) {
3485 			__wsum csum2;
3486 			if (copy > len)
3487 				copy = len;
3488 			csum2 = __skb_checksum(frag_iter, offset - start,
3489 					       copy, 0, ops);
3490 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3491 					       csum, csum2, pos, copy);
3492 			if ((len -= copy) == 0)
3493 				return csum;
3494 			offset += copy;
3495 			pos    += copy;
3496 		}
3497 		start = end;
3498 	}
3499 	BUG_ON(len);
3500 
3501 	return csum;
3502 }
3503 EXPORT_SYMBOL(__skb_checksum);
3504 
3505 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3506 		    int len, __wsum csum)
3507 {
3508 	const struct skb_checksum_ops ops = {
3509 		.update  = csum_partial_ext,
3510 		.combine = csum_block_add_ext,
3511 	};
3512 
3513 	return __skb_checksum(skb, offset, len, csum, &ops);
3514 }
3515 EXPORT_SYMBOL(skb_checksum);
3516 
3517 /* Both of above in one bottle. */
3518 
3519 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3520 				    u8 *to, int len)
3521 {
3522 	int start = skb_headlen(skb);
3523 	int i, copy = start - offset;
3524 	struct sk_buff *frag_iter;
3525 	int pos = 0;
3526 	__wsum csum = 0;
3527 
3528 	/* Copy header. */
3529 	if (copy > 0) {
3530 		if (copy > len)
3531 			copy = len;
3532 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3533 						 copy);
3534 		if ((len -= copy) == 0)
3535 			return csum;
3536 		offset += copy;
3537 		to     += copy;
3538 		pos	= copy;
3539 	}
3540 
3541 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3542 		int end;
3543 
3544 		WARN_ON(start > offset + len);
3545 
3546 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3547 		if ((copy = end - offset) > 0) {
3548 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3549 			u32 p_off, p_len, copied;
3550 			struct page *p;
3551 			__wsum csum2;
3552 			u8 *vaddr;
3553 
3554 			if (copy > len)
3555 				copy = len;
3556 
3557 			skb_frag_foreach_page(frag,
3558 					      skb_frag_off(frag) + offset - start,
3559 					      copy, p, p_off, p_len, copied) {
3560 				vaddr = kmap_atomic(p);
3561 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3562 								  to + copied,
3563 								  p_len);
3564 				kunmap_atomic(vaddr);
3565 				csum = csum_block_add(csum, csum2, pos);
3566 				pos += p_len;
3567 			}
3568 
3569 			if (!(len -= copy))
3570 				return csum;
3571 			offset += copy;
3572 			to     += copy;
3573 		}
3574 		start = end;
3575 	}
3576 
3577 	skb_walk_frags(skb, frag_iter) {
3578 		__wsum csum2;
3579 		int end;
3580 
3581 		WARN_ON(start > offset + len);
3582 
3583 		end = start + frag_iter->len;
3584 		if ((copy = end - offset) > 0) {
3585 			if (copy > len)
3586 				copy = len;
3587 			csum2 = skb_copy_and_csum_bits(frag_iter,
3588 						       offset - start,
3589 						       to, copy);
3590 			csum = csum_block_add(csum, csum2, pos);
3591 			if ((len -= copy) == 0)
3592 				return csum;
3593 			offset += copy;
3594 			to     += copy;
3595 			pos    += copy;
3596 		}
3597 		start = end;
3598 	}
3599 	BUG_ON(len);
3600 	return csum;
3601 }
3602 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3603 
3604 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3605 {
3606 	__sum16 sum;
3607 
3608 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3609 	/* See comments in __skb_checksum_complete(). */
3610 	if (likely(!sum)) {
3611 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3612 		    !skb->csum_complete_sw)
3613 			netdev_rx_csum_fault(skb->dev, skb);
3614 	}
3615 	if (!skb_shared(skb))
3616 		skb->csum_valid = !sum;
3617 	return sum;
3618 }
3619 EXPORT_SYMBOL(__skb_checksum_complete_head);
3620 
3621 /* This function assumes skb->csum already holds pseudo header's checksum,
3622  * which has been changed from the hardware checksum, for example, by
3623  * __skb_checksum_validate_complete(). And, the original skb->csum must
3624  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3625  *
3626  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3627  * zero. The new checksum is stored back into skb->csum unless the skb is
3628  * shared.
3629  */
3630 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3631 {
3632 	__wsum csum;
3633 	__sum16 sum;
3634 
3635 	csum = skb_checksum(skb, 0, skb->len, 0);
3636 
3637 	sum = csum_fold(csum_add(skb->csum, csum));
3638 	/* This check is inverted, because we already knew the hardware
3639 	 * checksum is invalid before calling this function. So, if the
3640 	 * re-computed checksum is valid instead, then we have a mismatch
3641 	 * between the original skb->csum and skb_checksum(). This means either
3642 	 * the original hardware checksum is incorrect or we screw up skb->csum
3643 	 * when moving skb->data around.
3644 	 */
3645 	if (likely(!sum)) {
3646 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3647 		    !skb->csum_complete_sw)
3648 			netdev_rx_csum_fault(skb->dev, skb);
3649 	}
3650 
3651 	if (!skb_shared(skb)) {
3652 		/* Save full packet checksum */
3653 		skb->csum = csum;
3654 		skb->ip_summed = CHECKSUM_COMPLETE;
3655 		skb->csum_complete_sw = 1;
3656 		skb->csum_valid = !sum;
3657 	}
3658 
3659 	return sum;
3660 }
3661 EXPORT_SYMBOL(__skb_checksum_complete);
3662 
3663 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3664 {
3665 	net_warn_ratelimited(
3666 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3667 		__func__);
3668 	return 0;
3669 }
3670 
3671 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3672 				       int offset, int len)
3673 {
3674 	net_warn_ratelimited(
3675 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3676 		__func__);
3677 	return 0;
3678 }
3679 
3680 static const struct skb_checksum_ops default_crc32c_ops = {
3681 	.update  = warn_crc32c_csum_update,
3682 	.combine = warn_crc32c_csum_combine,
3683 };
3684 
3685 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3686 	&default_crc32c_ops;
3687 EXPORT_SYMBOL(crc32c_csum_stub);
3688 
3689  /**
3690  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3691  *	@from: source buffer
3692  *
3693  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3694  *	into skb_zerocopy().
3695  */
3696 unsigned int
3697 skb_zerocopy_headlen(const struct sk_buff *from)
3698 {
3699 	unsigned int hlen = 0;
3700 
3701 	if (!from->head_frag ||
3702 	    skb_headlen(from) < L1_CACHE_BYTES ||
3703 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3704 		hlen = skb_headlen(from);
3705 		if (!hlen)
3706 			hlen = from->len;
3707 	}
3708 
3709 	if (skb_has_frag_list(from))
3710 		hlen = from->len;
3711 
3712 	return hlen;
3713 }
3714 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3715 
3716 /**
3717  *	skb_zerocopy - Zero copy skb to skb
3718  *	@to: destination buffer
3719  *	@from: source buffer
3720  *	@len: number of bytes to copy from source buffer
3721  *	@hlen: size of linear headroom in destination buffer
3722  *
3723  *	Copies up to `len` bytes from `from` to `to` by creating references
3724  *	to the frags in the source buffer.
3725  *
3726  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3727  *	headroom in the `to` buffer.
3728  *
3729  *	Return value:
3730  *	0: everything is OK
3731  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3732  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3733  */
3734 int
3735 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3736 {
3737 	int i, j = 0;
3738 	int plen = 0; /* length of skb->head fragment */
3739 	int ret;
3740 	struct page *page;
3741 	unsigned int offset;
3742 
3743 	BUG_ON(!from->head_frag && !hlen);
3744 
3745 	/* dont bother with small payloads */
3746 	if (len <= skb_tailroom(to))
3747 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3748 
3749 	if (hlen) {
3750 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3751 		if (unlikely(ret))
3752 			return ret;
3753 		len -= hlen;
3754 	} else {
3755 		plen = min_t(int, skb_headlen(from), len);
3756 		if (plen) {
3757 			page = virt_to_head_page(from->head);
3758 			offset = from->data - (unsigned char *)page_address(page);
3759 			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3760 					       offset, plen);
3761 			get_page(page);
3762 			j = 1;
3763 			len -= plen;
3764 		}
3765 	}
3766 
3767 	skb_len_add(to, len + plen);
3768 
3769 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3770 		skb_tx_error(from);
3771 		return -ENOMEM;
3772 	}
3773 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3774 
3775 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3776 		int size;
3777 
3778 		if (!len)
3779 			break;
3780 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3781 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3782 					len);
3783 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3784 		len -= size;
3785 		skb_frag_ref(to, j);
3786 		j++;
3787 	}
3788 	skb_shinfo(to)->nr_frags = j;
3789 
3790 	return 0;
3791 }
3792 EXPORT_SYMBOL_GPL(skb_zerocopy);
3793 
3794 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3795 {
3796 	__wsum csum;
3797 	long csstart;
3798 
3799 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3800 		csstart = skb_checksum_start_offset(skb);
3801 	else
3802 		csstart = skb_headlen(skb);
3803 
3804 	BUG_ON(csstart > skb_headlen(skb));
3805 
3806 	skb_copy_from_linear_data(skb, to, csstart);
3807 
3808 	csum = 0;
3809 	if (csstart != skb->len)
3810 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3811 					      skb->len - csstart);
3812 
3813 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3814 		long csstuff = csstart + skb->csum_offset;
3815 
3816 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3817 	}
3818 }
3819 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3820 
3821 /**
3822  *	skb_dequeue - remove from the head of the queue
3823  *	@list: list to dequeue from
3824  *
3825  *	Remove the head of the list. The list lock is taken so the function
3826  *	may be used safely with other locking list functions. The head item is
3827  *	returned or %NULL if the list is empty.
3828  */
3829 
3830 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3831 {
3832 	unsigned long flags;
3833 	struct sk_buff *result;
3834 
3835 	spin_lock_irqsave(&list->lock, flags);
3836 	result = __skb_dequeue(list);
3837 	spin_unlock_irqrestore(&list->lock, flags);
3838 	return result;
3839 }
3840 EXPORT_SYMBOL(skb_dequeue);
3841 
3842 /**
3843  *	skb_dequeue_tail - remove from the tail of the queue
3844  *	@list: list to dequeue from
3845  *
3846  *	Remove the tail of the list. The list lock is taken so the function
3847  *	may be used safely with other locking list functions. The tail item is
3848  *	returned or %NULL if the list is empty.
3849  */
3850 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3851 {
3852 	unsigned long flags;
3853 	struct sk_buff *result;
3854 
3855 	spin_lock_irqsave(&list->lock, flags);
3856 	result = __skb_dequeue_tail(list);
3857 	spin_unlock_irqrestore(&list->lock, flags);
3858 	return result;
3859 }
3860 EXPORT_SYMBOL(skb_dequeue_tail);
3861 
3862 /**
3863  *	skb_queue_purge_reason - empty a list
3864  *	@list: list to empty
3865  *	@reason: drop reason
3866  *
3867  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3868  *	the list and one reference dropped. This function takes the list
3869  *	lock and is atomic with respect to other list locking functions.
3870  */
3871 void skb_queue_purge_reason(struct sk_buff_head *list,
3872 			    enum skb_drop_reason reason)
3873 {
3874 	struct sk_buff_head tmp;
3875 	unsigned long flags;
3876 
3877 	if (skb_queue_empty_lockless(list))
3878 		return;
3879 
3880 	__skb_queue_head_init(&tmp);
3881 
3882 	spin_lock_irqsave(&list->lock, flags);
3883 	skb_queue_splice_init(list, &tmp);
3884 	spin_unlock_irqrestore(&list->lock, flags);
3885 
3886 	__skb_queue_purge_reason(&tmp, reason);
3887 }
3888 EXPORT_SYMBOL(skb_queue_purge_reason);
3889 
3890 /**
3891  *	skb_rbtree_purge - empty a skb rbtree
3892  *	@root: root of the rbtree to empty
3893  *	Return value: the sum of truesizes of all purged skbs.
3894  *
3895  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3896  *	the list and one reference dropped. This function does not take
3897  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3898  *	out-of-order queue is protected by the socket lock).
3899  */
3900 unsigned int skb_rbtree_purge(struct rb_root *root)
3901 {
3902 	struct rb_node *p = rb_first(root);
3903 	unsigned int sum = 0;
3904 
3905 	while (p) {
3906 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3907 
3908 		p = rb_next(p);
3909 		rb_erase(&skb->rbnode, root);
3910 		sum += skb->truesize;
3911 		kfree_skb(skb);
3912 	}
3913 	return sum;
3914 }
3915 
3916 void skb_errqueue_purge(struct sk_buff_head *list)
3917 {
3918 	struct sk_buff *skb, *next;
3919 	struct sk_buff_head kill;
3920 	unsigned long flags;
3921 
3922 	__skb_queue_head_init(&kill);
3923 
3924 	spin_lock_irqsave(&list->lock, flags);
3925 	skb_queue_walk_safe(list, skb, next) {
3926 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3927 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3928 			continue;
3929 		__skb_unlink(skb, list);
3930 		__skb_queue_tail(&kill, skb);
3931 	}
3932 	spin_unlock_irqrestore(&list->lock, flags);
3933 	__skb_queue_purge(&kill);
3934 }
3935 EXPORT_SYMBOL(skb_errqueue_purge);
3936 
3937 /**
3938  *	skb_queue_head - queue a buffer at the list head
3939  *	@list: list to use
3940  *	@newsk: buffer to queue
3941  *
3942  *	Queue a buffer at the start of the list. This function takes the
3943  *	list lock and can be used safely with other locking &sk_buff functions
3944  *	safely.
3945  *
3946  *	A buffer cannot be placed on two lists at the same time.
3947  */
3948 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3949 {
3950 	unsigned long flags;
3951 
3952 	spin_lock_irqsave(&list->lock, flags);
3953 	__skb_queue_head(list, newsk);
3954 	spin_unlock_irqrestore(&list->lock, flags);
3955 }
3956 EXPORT_SYMBOL(skb_queue_head);
3957 
3958 /**
3959  *	skb_queue_tail - queue a buffer at the list tail
3960  *	@list: list to use
3961  *	@newsk: buffer to queue
3962  *
3963  *	Queue a buffer at the tail of the list. This function takes the
3964  *	list lock and can be used safely with other locking &sk_buff functions
3965  *	safely.
3966  *
3967  *	A buffer cannot be placed on two lists at the same time.
3968  */
3969 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3970 {
3971 	unsigned long flags;
3972 
3973 	spin_lock_irqsave(&list->lock, flags);
3974 	__skb_queue_tail(list, newsk);
3975 	spin_unlock_irqrestore(&list->lock, flags);
3976 }
3977 EXPORT_SYMBOL(skb_queue_tail);
3978 
3979 /**
3980  *	skb_unlink	-	remove a buffer from a list
3981  *	@skb: buffer to remove
3982  *	@list: list to use
3983  *
3984  *	Remove a packet from a list. The list locks are taken and this
3985  *	function is atomic with respect to other list locked calls
3986  *
3987  *	You must know what list the SKB is on.
3988  */
3989 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3990 {
3991 	unsigned long flags;
3992 
3993 	spin_lock_irqsave(&list->lock, flags);
3994 	__skb_unlink(skb, list);
3995 	spin_unlock_irqrestore(&list->lock, flags);
3996 }
3997 EXPORT_SYMBOL(skb_unlink);
3998 
3999 /**
4000  *	skb_append	-	append a buffer
4001  *	@old: buffer to insert after
4002  *	@newsk: buffer to insert
4003  *	@list: list to use
4004  *
4005  *	Place a packet after a given packet in a list. The list locks are taken
4006  *	and this function is atomic with respect to other list locked calls.
4007  *	A buffer cannot be placed on two lists at the same time.
4008  */
4009 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4010 {
4011 	unsigned long flags;
4012 
4013 	spin_lock_irqsave(&list->lock, flags);
4014 	__skb_queue_after(list, old, newsk);
4015 	spin_unlock_irqrestore(&list->lock, flags);
4016 }
4017 EXPORT_SYMBOL(skb_append);
4018 
4019 static inline void skb_split_inside_header(struct sk_buff *skb,
4020 					   struct sk_buff* skb1,
4021 					   const u32 len, const int pos)
4022 {
4023 	int i;
4024 
4025 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4026 					 pos - len);
4027 	/* And move data appendix as is. */
4028 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4029 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4030 
4031 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4032 	skb_shinfo(skb)->nr_frags  = 0;
4033 	skb1->data_len		   = skb->data_len;
4034 	skb1->len		   += skb1->data_len;
4035 	skb->data_len		   = 0;
4036 	skb->len		   = len;
4037 	skb_set_tail_pointer(skb, len);
4038 }
4039 
4040 static inline void skb_split_no_header(struct sk_buff *skb,
4041 				       struct sk_buff* skb1,
4042 				       const u32 len, int pos)
4043 {
4044 	int i, k = 0;
4045 	const int nfrags = skb_shinfo(skb)->nr_frags;
4046 
4047 	skb_shinfo(skb)->nr_frags = 0;
4048 	skb1->len		  = skb1->data_len = skb->len - len;
4049 	skb->len		  = len;
4050 	skb->data_len		  = len - pos;
4051 
4052 	for (i = 0; i < nfrags; i++) {
4053 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4054 
4055 		if (pos + size > len) {
4056 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4057 
4058 			if (pos < len) {
4059 				/* Split frag.
4060 				 * We have two variants in this case:
4061 				 * 1. Move all the frag to the second
4062 				 *    part, if it is possible. F.e.
4063 				 *    this approach is mandatory for TUX,
4064 				 *    where splitting is expensive.
4065 				 * 2. Split is accurately. We make this.
4066 				 */
4067 				skb_frag_ref(skb, i);
4068 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4069 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4070 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4071 				skb_shinfo(skb)->nr_frags++;
4072 			}
4073 			k++;
4074 		} else
4075 			skb_shinfo(skb)->nr_frags++;
4076 		pos += size;
4077 	}
4078 	skb_shinfo(skb1)->nr_frags = k;
4079 }
4080 
4081 /**
4082  * skb_split - Split fragmented skb to two parts at length len.
4083  * @skb: the buffer to split
4084  * @skb1: the buffer to receive the second part
4085  * @len: new length for skb
4086  */
4087 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4088 {
4089 	int pos = skb_headlen(skb);
4090 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4091 
4092 	skb_zcopy_downgrade_managed(skb);
4093 
4094 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4095 	skb_zerocopy_clone(skb1, skb, 0);
4096 	if (len < pos)	/* Split line is inside header. */
4097 		skb_split_inside_header(skb, skb1, len, pos);
4098 	else		/* Second chunk has no header, nothing to copy. */
4099 		skb_split_no_header(skb, skb1, len, pos);
4100 }
4101 EXPORT_SYMBOL(skb_split);
4102 
4103 /* Shifting from/to a cloned skb is a no-go.
4104  *
4105  * Caller cannot keep skb_shinfo related pointers past calling here!
4106  */
4107 static int skb_prepare_for_shift(struct sk_buff *skb)
4108 {
4109 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4110 }
4111 
4112 /**
4113  * skb_shift - Shifts paged data partially from skb to another
4114  * @tgt: buffer into which tail data gets added
4115  * @skb: buffer from which the paged data comes from
4116  * @shiftlen: shift up to this many bytes
4117  *
4118  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4119  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4120  * It's up to caller to free skb if everything was shifted.
4121  *
4122  * If @tgt runs out of frags, the whole operation is aborted.
4123  *
4124  * Skb cannot include anything else but paged data while tgt is allowed
4125  * to have non-paged data as well.
4126  *
4127  * TODO: full sized shift could be optimized but that would need
4128  * specialized skb free'er to handle frags without up-to-date nr_frags.
4129  */
4130 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4131 {
4132 	int from, to, merge, todo;
4133 	skb_frag_t *fragfrom, *fragto;
4134 
4135 	BUG_ON(shiftlen > skb->len);
4136 
4137 	if (skb_headlen(skb))
4138 		return 0;
4139 	if (skb_zcopy(tgt) || skb_zcopy(skb))
4140 		return 0;
4141 
4142 	todo = shiftlen;
4143 	from = 0;
4144 	to = skb_shinfo(tgt)->nr_frags;
4145 	fragfrom = &skb_shinfo(skb)->frags[from];
4146 
4147 	/* Actual merge is delayed until the point when we know we can
4148 	 * commit all, so that we don't have to undo partial changes
4149 	 */
4150 	if (!to ||
4151 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4152 			      skb_frag_off(fragfrom))) {
4153 		merge = -1;
4154 	} else {
4155 		merge = to - 1;
4156 
4157 		todo -= skb_frag_size(fragfrom);
4158 		if (todo < 0) {
4159 			if (skb_prepare_for_shift(skb) ||
4160 			    skb_prepare_for_shift(tgt))
4161 				return 0;
4162 
4163 			/* All previous frag pointers might be stale! */
4164 			fragfrom = &skb_shinfo(skb)->frags[from];
4165 			fragto = &skb_shinfo(tgt)->frags[merge];
4166 
4167 			skb_frag_size_add(fragto, shiftlen);
4168 			skb_frag_size_sub(fragfrom, shiftlen);
4169 			skb_frag_off_add(fragfrom, shiftlen);
4170 
4171 			goto onlymerged;
4172 		}
4173 
4174 		from++;
4175 	}
4176 
4177 	/* Skip full, not-fitting skb to avoid expensive operations */
4178 	if ((shiftlen == skb->len) &&
4179 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4180 		return 0;
4181 
4182 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4183 		return 0;
4184 
4185 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4186 		if (to == MAX_SKB_FRAGS)
4187 			return 0;
4188 
4189 		fragfrom = &skb_shinfo(skb)->frags[from];
4190 		fragto = &skb_shinfo(tgt)->frags[to];
4191 
4192 		if (todo >= skb_frag_size(fragfrom)) {
4193 			*fragto = *fragfrom;
4194 			todo -= skb_frag_size(fragfrom);
4195 			from++;
4196 			to++;
4197 
4198 		} else {
4199 			__skb_frag_ref(fragfrom);
4200 			skb_frag_page_copy(fragto, fragfrom);
4201 			skb_frag_off_copy(fragto, fragfrom);
4202 			skb_frag_size_set(fragto, todo);
4203 
4204 			skb_frag_off_add(fragfrom, todo);
4205 			skb_frag_size_sub(fragfrom, todo);
4206 			todo = 0;
4207 
4208 			to++;
4209 			break;
4210 		}
4211 	}
4212 
4213 	/* Ready to "commit" this state change to tgt */
4214 	skb_shinfo(tgt)->nr_frags = to;
4215 
4216 	if (merge >= 0) {
4217 		fragfrom = &skb_shinfo(skb)->frags[0];
4218 		fragto = &skb_shinfo(tgt)->frags[merge];
4219 
4220 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4221 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4222 	}
4223 
4224 	/* Reposition in the original skb */
4225 	to = 0;
4226 	while (from < skb_shinfo(skb)->nr_frags)
4227 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4228 	skb_shinfo(skb)->nr_frags = to;
4229 
4230 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4231 
4232 onlymerged:
4233 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4234 	 * the other hand might need it if it needs to be resent
4235 	 */
4236 	tgt->ip_summed = CHECKSUM_PARTIAL;
4237 	skb->ip_summed = CHECKSUM_PARTIAL;
4238 
4239 	skb_len_add(skb, -shiftlen);
4240 	skb_len_add(tgt, shiftlen);
4241 
4242 	return shiftlen;
4243 }
4244 
4245 /**
4246  * skb_prepare_seq_read - Prepare a sequential read of skb data
4247  * @skb: the buffer to read
4248  * @from: lower offset of data to be read
4249  * @to: upper offset of data to be read
4250  * @st: state variable
4251  *
4252  * Initializes the specified state variable. Must be called before
4253  * invoking skb_seq_read() for the first time.
4254  */
4255 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4256 			  unsigned int to, struct skb_seq_state *st)
4257 {
4258 	st->lower_offset = from;
4259 	st->upper_offset = to;
4260 	st->root_skb = st->cur_skb = skb;
4261 	st->frag_idx = st->stepped_offset = 0;
4262 	st->frag_data = NULL;
4263 	st->frag_off = 0;
4264 }
4265 EXPORT_SYMBOL(skb_prepare_seq_read);
4266 
4267 /**
4268  * skb_seq_read - Sequentially read skb data
4269  * @consumed: number of bytes consumed by the caller so far
4270  * @data: destination pointer for data to be returned
4271  * @st: state variable
4272  *
4273  * Reads a block of skb data at @consumed relative to the
4274  * lower offset specified to skb_prepare_seq_read(). Assigns
4275  * the head of the data block to @data and returns the length
4276  * of the block or 0 if the end of the skb data or the upper
4277  * offset has been reached.
4278  *
4279  * The caller is not required to consume all of the data
4280  * returned, i.e. @consumed is typically set to the number
4281  * of bytes already consumed and the next call to
4282  * skb_seq_read() will return the remaining part of the block.
4283  *
4284  * Note 1: The size of each block of data returned can be arbitrary,
4285  *       this limitation is the cost for zerocopy sequential
4286  *       reads of potentially non linear data.
4287  *
4288  * Note 2: Fragment lists within fragments are not implemented
4289  *       at the moment, state->root_skb could be replaced with
4290  *       a stack for this purpose.
4291  */
4292 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4293 			  struct skb_seq_state *st)
4294 {
4295 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4296 	skb_frag_t *frag;
4297 
4298 	if (unlikely(abs_offset >= st->upper_offset)) {
4299 		if (st->frag_data) {
4300 			kunmap_atomic(st->frag_data);
4301 			st->frag_data = NULL;
4302 		}
4303 		return 0;
4304 	}
4305 
4306 next_skb:
4307 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4308 
4309 	if (abs_offset < block_limit && !st->frag_data) {
4310 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4311 		return block_limit - abs_offset;
4312 	}
4313 
4314 	if (st->frag_idx == 0 && !st->frag_data)
4315 		st->stepped_offset += skb_headlen(st->cur_skb);
4316 
4317 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4318 		unsigned int pg_idx, pg_off, pg_sz;
4319 
4320 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4321 
4322 		pg_idx = 0;
4323 		pg_off = skb_frag_off(frag);
4324 		pg_sz = skb_frag_size(frag);
4325 
4326 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4327 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4328 			pg_off = offset_in_page(pg_off + st->frag_off);
4329 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4330 						    PAGE_SIZE - pg_off);
4331 		}
4332 
4333 		block_limit = pg_sz + st->stepped_offset;
4334 		if (abs_offset < block_limit) {
4335 			if (!st->frag_data)
4336 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4337 
4338 			*data = (u8 *)st->frag_data + pg_off +
4339 				(abs_offset - st->stepped_offset);
4340 
4341 			return block_limit - abs_offset;
4342 		}
4343 
4344 		if (st->frag_data) {
4345 			kunmap_atomic(st->frag_data);
4346 			st->frag_data = NULL;
4347 		}
4348 
4349 		st->stepped_offset += pg_sz;
4350 		st->frag_off += pg_sz;
4351 		if (st->frag_off == skb_frag_size(frag)) {
4352 			st->frag_off = 0;
4353 			st->frag_idx++;
4354 		}
4355 	}
4356 
4357 	if (st->frag_data) {
4358 		kunmap_atomic(st->frag_data);
4359 		st->frag_data = NULL;
4360 	}
4361 
4362 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4363 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4364 		st->frag_idx = 0;
4365 		goto next_skb;
4366 	} else if (st->cur_skb->next) {
4367 		st->cur_skb = st->cur_skb->next;
4368 		st->frag_idx = 0;
4369 		goto next_skb;
4370 	}
4371 
4372 	return 0;
4373 }
4374 EXPORT_SYMBOL(skb_seq_read);
4375 
4376 /**
4377  * skb_abort_seq_read - Abort a sequential read of skb data
4378  * @st: state variable
4379  *
4380  * Must be called if skb_seq_read() was not called until it
4381  * returned 0.
4382  */
4383 void skb_abort_seq_read(struct skb_seq_state *st)
4384 {
4385 	if (st->frag_data)
4386 		kunmap_atomic(st->frag_data);
4387 }
4388 EXPORT_SYMBOL(skb_abort_seq_read);
4389 
4390 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4391 
4392 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4393 					  struct ts_config *conf,
4394 					  struct ts_state *state)
4395 {
4396 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4397 }
4398 
4399 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4400 {
4401 	skb_abort_seq_read(TS_SKB_CB(state));
4402 }
4403 
4404 /**
4405  * skb_find_text - Find a text pattern in skb data
4406  * @skb: the buffer to look in
4407  * @from: search offset
4408  * @to: search limit
4409  * @config: textsearch configuration
4410  *
4411  * Finds a pattern in the skb data according to the specified
4412  * textsearch configuration. Use textsearch_next() to retrieve
4413  * subsequent occurrences of the pattern. Returns the offset
4414  * to the first occurrence or UINT_MAX if no match was found.
4415  */
4416 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4417 			   unsigned int to, struct ts_config *config)
4418 {
4419 	unsigned int patlen = config->ops->get_pattern_len(config);
4420 	struct ts_state state;
4421 	unsigned int ret;
4422 
4423 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4424 
4425 	config->get_next_block = skb_ts_get_next_block;
4426 	config->finish = skb_ts_finish;
4427 
4428 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4429 
4430 	ret = textsearch_find(config, &state);
4431 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4432 }
4433 EXPORT_SYMBOL(skb_find_text);
4434 
4435 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4436 			 int offset, size_t size, size_t max_frags)
4437 {
4438 	int i = skb_shinfo(skb)->nr_frags;
4439 
4440 	if (skb_can_coalesce(skb, i, page, offset)) {
4441 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4442 	} else if (i < max_frags) {
4443 		skb_zcopy_downgrade_managed(skb);
4444 		get_page(page);
4445 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4446 	} else {
4447 		return -EMSGSIZE;
4448 	}
4449 
4450 	return 0;
4451 }
4452 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4453 
4454 /**
4455  *	skb_pull_rcsum - pull skb and update receive checksum
4456  *	@skb: buffer to update
4457  *	@len: length of data pulled
4458  *
4459  *	This function performs an skb_pull on the packet and updates
4460  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4461  *	receive path processing instead of skb_pull unless you know
4462  *	that the checksum difference is zero (e.g., a valid IP header)
4463  *	or you are setting ip_summed to CHECKSUM_NONE.
4464  */
4465 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4466 {
4467 	unsigned char *data = skb->data;
4468 
4469 	BUG_ON(len > skb->len);
4470 	__skb_pull(skb, len);
4471 	skb_postpull_rcsum(skb, data, len);
4472 	return skb->data;
4473 }
4474 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4475 
4476 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4477 {
4478 	skb_frag_t head_frag;
4479 	struct page *page;
4480 
4481 	page = virt_to_head_page(frag_skb->head);
4482 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4483 				(unsigned char *)page_address(page),
4484 				skb_headlen(frag_skb));
4485 	return head_frag;
4486 }
4487 
4488 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4489 				 netdev_features_t features,
4490 				 unsigned int offset)
4491 {
4492 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4493 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4494 	unsigned int delta_truesize = 0;
4495 	unsigned int delta_len = 0;
4496 	struct sk_buff *tail = NULL;
4497 	struct sk_buff *nskb, *tmp;
4498 	int len_diff, err;
4499 
4500 	skb_push(skb, -skb_network_offset(skb) + offset);
4501 
4502 	/* Ensure the head is writeable before touching the shared info */
4503 	err = skb_unclone(skb, GFP_ATOMIC);
4504 	if (err)
4505 		goto err_linearize;
4506 
4507 	skb_shinfo(skb)->frag_list = NULL;
4508 
4509 	while (list_skb) {
4510 		nskb = list_skb;
4511 		list_skb = list_skb->next;
4512 
4513 		err = 0;
4514 		delta_truesize += nskb->truesize;
4515 		if (skb_shared(nskb)) {
4516 			tmp = skb_clone(nskb, GFP_ATOMIC);
4517 			if (tmp) {
4518 				consume_skb(nskb);
4519 				nskb = tmp;
4520 				err = skb_unclone(nskb, GFP_ATOMIC);
4521 			} else {
4522 				err = -ENOMEM;
4523 			}
4524 		}
4525 
4526 		if (!tail)
4527 			skb->next = nskb;
4528 		else
4529 			tail->next = nskb;
4530 
4531 		if (unlikely(err)) {
4532 			nskb->next = list_skb;
4533 			goto err_linearize;
4534 		}
4535 
4536 		tail = nskb;
4537 
4538 		delta_len += nskb->len;
4539 
4540 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4541 
4542 		skb_release_head_state(nskb);
4543 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4544 		__copy_skb_header(nskb, skb);
4545 
4546 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4547 		nskb->transport_header += len_diff;
4548 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4549 						 nskb->data - tnl_hlen,
4550 						 offset + tnl_hlen);
4551 
4552 		if (skb_needs_linearize(nskb, features) &&
4553 		    __skb_linearize(nskb))
4554 			goto err_linearize;
4555 	}
4556 
4557 	skb->truesize = skb->truesize - delta_truesize;
4558 	skb->data_len = skb->data_len - delta_len;
4559 	skb->len = skb->len - delta_len;
4560 
4561 	skb_gso_reset(skb);
4562 
4563 	skb->prev = tail;
4564 
4565 	if (skb_needs_linearize(skb, features) &&
4566 	    __skb_linearize(skb))
4567 		goto err_linearize;
4568 
4569 	skb_get(skb);
4570 
4571 	return skb;
4572 
4573 err_linearize:
4574 	kfree_skb_list(skb->next);
4575 	skb->next = NULL;
4576 	return ERR_PTR(-ENOMEM);
4577 }
4578 EXPORT_SYMBOL_GPL(skb_segment_list);
4579 
4580 /**
4581  *	skb_segment - Perform protocol segmentation on skb.
4582  *	@head_skb: buffer to segment
4583  *	@features: features for the output path (see dev->features)
4584  *
4585  *	This function performs segmentation on the given skb.  It returns
4586  *	a pointer to the first in a list of new skbs for the segments.
4587  *	In case of error it returns ERR_PTR(err).
4588  */
4589 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4590 			    netdev_features_t features)
4591 {
4592 	struct sk_buff *segs = NULL;
4593 	struct sk_buff *tail = NULL;
4594 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4595 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4596 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4597 	unsigned int offset = doffset;
4598 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4599 	unsigned int partial_segs = 0;
4600 	unsigned int headroom;
4601 	unsigned int len = head_skb->len;
4602 	struct sk_buff *frag_skb;
4603 	skb_frag_t *frag;
4604 	__be16 proto;
4605 	bool csum, sg;
4606 	int err = -ENOMEM;
4607 	int i = 0;
4608 	int nfrags, pos;
4609 
4610 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4611 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4612 		struct sk_buff *check_skb;
4613 
4614 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4615 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4616 				/* gso_size is untrusted, and we have a frag_list with
4617 				 * a linear non head_frag item.
4618 				 *
4619 				 * If head_skb's headlen does not fit requested gso_size,
4620 				 * it means that the frag_list members do NOT terminate
4621 				 * on exact gso_size boundaries. Hence we cannot perform
4622 				 * skb_frag_t page sharing. Therefore we must fallback to
4623 				 * copying the frag_list skbs; we do so by disabling SG.
4624 				 */
4625 				features &= ~NETIF_F_SG;
4626 				break;
4627 			}
4628 		}
4629 	}
4630 
4631 	__skb_push(head_skb, doffset);
4632 	proto = skb_network_protocol(head_skb, NULL);
4633 	if (unlikely(!proto))
4634 		return ERR_PTR(-EINVAL);
4635 
4636 	sg = !!(features & NETIF_F_SG);
4637 	csum = !!can_checksum_protocol(features, proto);
4638 
4639 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4640 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4641 			struct sk_buff *iter;
4642 			unsigned int frag_len;
4643 
4644 			if (!list_skb ||
4645 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4646 				goto normal;
4647 
4648 			/* If we get here then all the required
4649 			 * GSO features except frag_list are supported.
4650 			 * Try to split the SKB to multiple GSO SKBs
4651 			 * with no frag_list.
4652 			 * Currently we can do that only when the buffers don't
4653 			 * have a linear part and all the buffers except
4654 			 * the last are of the same length.
4655 			 */
4656 			frag_len = list_skb->len;
4657 			skb_walk_frags(head_skb, iter) {
4658 				if (frag_len != iter->len && iter->next)
4659 					goto normal;
4660 				if (skb_headlen(iter) && !iter->head_frag)
4661 					goto normal;
4662 
4663 				len -= iter->len;
4664 			}
4665 
4666 			if (len != frag_len)
4667 				goto normal;
4668 		}
4669 
4670 		/* GSO partial only requires that we trim off any excess that
4671 		 * doesn't fit into an MSS sized block, so take care of that
4672 		 * now.
4673 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4674 		 */
4675 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4676 		if (partial_segs > 1)
4677 			mss *= partial_segs;
4678 		else
4679 			partial_segs = 0;
4680 	}
4681 
4682 normal:
4683 	headroom = skb_headroom(head_skb);
4684 	pos = skb_headlen(head_skb);
4685 
4686 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4687 		return ERR_PTR(-ENOMEM);
4688 
4689 	nfrags = skb_shinfo(head_skb)->nr_frags;
4690 	frag = skb_shinfo(head_skb)->frags;
4691 	frag_skb = head_skb;
4692 
4693 	do {
4694 		struct sk_buff *nskb;
4695 		skb_frag_t *nskb_frag;
4696 		int hsize;
4697 		int size;
4698 
4699 		if (unlikely(mss == GSO_BY_FRAGS)) {
4700 			len = list_skb->len;
4701 		} else {
4702 			len = head_skb->len - offset;
4703 			if (len > mss)
4704 				len = mss;
4705 		}
4706 
4707 		hsize = skb_headlen(head_skb) - offset;
4708 
4709 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4710 		    (skb_headlen(list_skb) == len || sg)) {
4711 			BUG_ON(skb_headlen(list_skb) > len);
4712 
4713 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4714 			if (unlikely(!nskb))
4715 				goto err;
4716 
4717 			i = 0;
4718 			nfrags = skb_shinfo(list_skb)->nr_frags;
4719 			frag = skb_shinfo(list_skb)->frags;
4720 			frag_skb = list_skb;
4721 			pos += skb_headlen(list_skb);
4722 
4723 			while (pos < offset + len) {
4724 				BUG_ON(i >= nfrags);
4725 
4726 				size = skb_frag_size(frag);
4727 				if (pos + size > offset + len)
4728 					break;
4729 
4730 				i++;
4731 				pos += size;
4732 				frag++;
4733 			}
4734 
4735 			list_skb = list_skb->next;
4736 
4737 			if (unlikely(pskb_trim(nskb, len))) {
4738 				kfree_skb(nskb);
4739 				goto err;
4740 			}
4741 
4742 			hsize = skb_end_offset(nskb);
4743 			if (skb_cow_head(nskb, doffset + headroom)) {
4744 				kfree_skb(nskb);
4745 				goto err;
4746 			}
4747 
4748 			nskb->truesize += skb_end_offset(nskb) - hsize;
4749 			skb_release_head_state(nskb);
4750 			__skb_push(nskb, doffset);
4751 		} else {
4752 			if (hsize < 0)
4753 				hsize = 0;
4754 			if (hsize > len || !sg)
4755 				hsize = len;
4756 
4757 			nskb = __alloc_skb(hsize + doffset + headroom,
4758 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4759 					   NUMA_NO_NODE);
4760 
4761 			if (unlikely(!nskb))
4762 				goto err;
4763 
4764 			skb_reserve(nskb, headroom);
4765 			__skb_put(nskb, doffset);
4766 		}
4767 
4768 		if (segs)
4769 			tail->next = nskb;
4770 		else
4771 			segs = nskb;
4772 		tail = nskb;
4773 
4774 		__copy_skb_header(nskb, head_skb);
4775 
4776 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4777 		skb_reset_mac_len(nskb);
4778 
4779 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4780 						 nskb->data - tnl_hlen,
4781 						 doffset + tnl_hlen);
4782 
4783 		if (nskb->len == len + doffset)
4784 			goto perform_csum_check;
4785 
4786 		if (!sg) {
4787 			if (!csum) {
4788 				if (!nskb->remcsum_offload)
4789 					nskb->ip_summed = CHECKSUM_NONE;
4790 				SKB_GSO_CB(nskb)->csum =
4791 					skb_copy_and_csum_bits(head_skb, offset,
4792 							       skb_put(nskb,
4793 								       len),
4794 							       len);
4795 				SKB_GSO_CB(nskb)->csum_start =
4796 					skb_headroom(nskb) + doffset;
4797 			} else {
4798 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4799 					goto err;
4800 			}
4801 			continue;
4802 		}
4803 
4804 		nskb_frag = skb_shinfo(nskb)->frags;
4805 
4806 		skb_copy_from_linear_data_offset(head_skb, offset,
4807 						 skb_put(nskb, hsize), hsize);
4808 
4809 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4810 					   SKBFL_SHARED_FRAG;
4811 
4812 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4813 			goto err;
4814 
4815 		while (pos < offset + len) {
4816 			if (i >= nfrags) {
4817 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4818 				    skb_zerocopy_clone(nskb, list_skb,
4819 						       GFP_ATOMIC))
4820 					goto err;
4821 
4822 				i = 0;
4823 				nfrags = skb_shinfo(list_skb)->nr_frags;
4824 				frag = skb_shinfo(list_skb)->frags;
4825 				frag_skb = list_skb;
4826 				if (!skb_headlen(list_skb)) {
4827 					BUG_ON(!nfrags);
4828 				} else {
4829 					BUG_ON(!list_skb->head_frag);
4830 
4831 					/* to make room for head_frag. */
4832 					i--;
4833 					frag--;
4834 				}
4835 
4836 				list_skb = list_skb->next;
4837 			}
4838 
4839 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4840 				     MAX_SKB_FRAGS)) {
4841 				net_warn_ratelimited(
4842 					"skb_segment: too many frags: %u %u\n",
4843 					pos, mss);
4844 				err = -EINVAL;
4845 				goto err;
4846 			}
4847 
4848 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4849 			__skb_frag_ref(nskb_frag);
4850 			size = skb_frag_size(nskb_frag);
4851 
4852 			if (pos < offset) {
4853 				skb_frag_off_add(nskb_frag, offset - pos);
4854 				skb_frag_size_sub(nskb_frag, offset - pos);
4855 			}
4856 
4857 			skb_shinfo(nskb)->nr_frags++;
4858 
4859 			if (pos + size <= offset + len) {
4860 				i++;
4861 				frag++;
4862 				pos += size;
4863 			} else {
4864 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4865 				goto skip_fraglist;
4866 			}
4867 
4868 			nskb_frag++;
4869 		}
4870 
4871 skip_fraglist:
4872 		nskb->data_len = len - hsize;
4873 		nskb->len += nskb->data_len;
4874 		nskb->truesize += nskb->data_len;
4875 
4876 perform_csum_check:
4877 		if (!csum) {
4878 			if (skb_has_shared_frag(nskb) &&
4879 			    __skb_linearize(nskb))
4880 				goto err;
4881 
4882 			if (!nskb->remcsum_offload)
4883 				nskb->ip_summed = CHECKSUM_NONE;
4884 			SKB_GSO_CB(nskb)->csum =
4885 				skb_checksum(nskb, doffset,
4886 					     nskb->len - doffset, 0);
4887 			SKB_GSO_CB(nskb)->csum_start =
4888 				skb_headroom(nskb) + doffset;
4889 		}
4890 	} while ((offset += len) < head_skb->len);
4891 
4892 	/* Some callers want to get the end of the list.
4893 	 * Put it in segs->prev to avoid walking the list.
4894 	 * (see validate_xmit_skb_list() for example)
4895 	 */
4896 	segs->prev = tail;
4897 
4898 	if (partial_segs) {
4899 		struct sk_buff *iter;
4900 		int type = skb_shinfo(head_skb)->gso_type;
4901 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4902 
4903 		/* Update type to add partial and then remove dodgy if set */
4904 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4905 		type &= ~SKB_GSO_DODGY;
4906 
4907 		/* Update GSO info and prepare to start updating headers on
4908 		 * our way back down the stack of protocols.
4909 		 */
4910 		for (iter = segs; iter; iter = iter->next) {
4911 			skb_shinfo(iter)->gso_size = gso_size;
4912 			skb_shinfo(iter)->gso_segs = partial_segs;
4913 			skb_shinfo(iter)->gso_type = type;
4914 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4915 		}
4916 
4917 		if (tail->len - doffset <= gso_size)
4918 			skb_shinfo(tail)->gso_size = 0;
4919 		else if (tail != segs)
4920 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4921 	}
4922 
4923 	/* Following permits correct backpressure, for protocols
4924 	 * using skb_set_owner_w().
4925 	 * Idea is to tranfert ownership from head_skb to last segment.
4926 	 */
4927 	if (head_skb->destructor == sock_wfree) {
4928 		swap(tail->truesize, head_skb->truesize);
4929 		swap(tail->destructor, head_skb->destructor);
4930 		swap(tail->sk, head_skb->sk);
4931 	}
4932 	return segs;
4933 
4934 err:
4935 	kfree_skb_list(segs);
4936 	return ERR_PTR(err);
4937 }
4938 EXPORT_SYMBOL_GPL(skb_segment);
4939 
4940 #ifdef CONFIG_SKB_EXTENSIONS
4941 #define SKB_EXT_ALIGN_VALUE	8
4942 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4943 
4944 static const u8 skb_ext_type_len[] = {
4945 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4946 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4947 #endif
4948 #ifdef CONFIG_XFRM
4949 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4950 #endif
4951 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4952 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4953 #endif
4954 #if IS_ENABLED(CONFIG_MPTCP)
4955 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4956 #endif
4957 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4958 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4959 #endif
4960 };
4961 
4962 static __always_inline unsigned int skb_ext_total_length(void)
4963 {
4964 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4965 	int i;
4966 
4967 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4968 		l += skb_ext_type_len[i];
4969 
4970 	return l;
4971 }
4972 
4973 static void skb_extensions_init(void)
4974 {
4975 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4976 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4977 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4978 #endif
4979 
4980 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4981 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4982 					     0,
4983 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4984 					     NULL);
4985 }
4986 #else
4987 static void skb_extensions_init(void) {}
4988 #endif
4989 
4990 /* The SKB kmem_cache slab is critical for network performance.  Never
4991  * merge/alias the slab with similar sized objects.  This avoids fragmentation
4992  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
4993  */
4994 #ifndef CONFIG_SLUB_TINY
4995 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
4996 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
4997 #define FLAG_SKB_NO_MERGE	0
4998 #endif
4999 
5000 void __init skb_init(void)
5001 {
5002 	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5003 					      sizeof(struct sk_buff),
5004 					      0,
5005 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5006 						FLAG_SKB_NO_MERGE,
5007 					      offsetof(struct sk_buff, cb),
5008 					      sizeof_field(struct sk_buff, cb),
5009 					      NULL);
5010 	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5011 						sizeof(struct sk_buff_fclones),
5012 						0,
5013 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5014 						NULL);
5015 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5016 	 * struct skb_shared_info is located at the end of skb->head,
5017 	 * and should not be copied to/from user.
5018 	 */
5019 	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5020 						SKB_SMALL_HEAD_CACHE_SIZE,
5021 						0,
5022 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5023 						0,
5024 						SKB_SMALL_HEAD_HEADROOM,
5025 						NULL);
5026 	skb_extensions_init();
5027 }
5028 
5029 static int
5030 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5031 	       unsigned int recursion_level)
5032 {
5033 	int start = skb_headlen(skb);
5034 	int i, copy = start - offset;
5035 	struct sk_buff *frag_iter;
5036 	int elt = 0;
5037 
5038 	if (unlikely(recursion_level >= 24))
5039 		return -EMSGSIZE;
5040 
5041 	if (copy > 0) {
5042 		if (copy > len)
5043 			copy = len;
5044 		sg_set_buf(sg, skb->data + offset, copy);
5045 		elt++;
5046 		if ((len -= copy) == 0)
5047 			return elt;
5048 		offset += copy;
5049 	}
5050 
5051 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5052 		int end;
5053 
5054 		WARN_ON(start > offset + len);
5055 
5056 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5057 		if ((copy = end - offset) > 0) {
5058 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5059 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5060 				return -EMSGSIZE;
5061 
5062 			if (copy > len)
5063 				copy = len;
5064 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5065 				    skb_frag_off(frag) + offset - start);
5066 			elt++;
5067 			if (!(len -= copy))
5068 				return elt;
5069 			offset += copy;
5070 		}
5071 		start = end;
5072 	}
5073 
5074 	skb_walk_frags(skb, frag_iter) {
5075 		int end, ret;
5076 
5077 		WARN_ON(start > offset + len);
5078 
5079 		end = start + frag_iter->len;
5080 		if ((copy = end - offset) > 0) {
5081 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5082 				return -EMSGSIZE;
5083 
5084 			if (copy > len)
5085 				copy = len;
5086 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5087 					      copy, recursion_level + 1);
5088 			if (unlikely(ret < 0))
5089 				return ret;
5090 			elt += ret;
5091 			if ((len -= copy) == 0)
5092 				return elt;
5093 			offset += copy;
5094 		}
5095 		start = end;
5096 	}
5097 	BUG_ON(len);
5098 	return elt;
5099 }
5100 
5101 /**
5102  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5103  *	@skb: Socket buffer containing the buffers to be mapped
5104  *	@sg: The scatter-gather list to map into
5105  *	@offset: The offset into the buffer's contents to start mapping
5106  *	@len: Length of buffer space to be mapped
5107  *
5108  *	Fill the specified scatter-gather list with mappings/pointers into a
5109  *	region of the buffer space attached to a socket buffer. Returns either
5110  *	the number of scatterlist items used, or -EMSGSIZE if the contents
5111  *	could not fit.
5112  */
5113 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5114 {
5115 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5116 
5117 	if (nsg <= 0)
5118 		return nsg;
5119 
5120 	sg_mark_end(&sg[nsg - 1]);
5121 
5122 	return nsg;
5123 }
5124 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5125 
5126 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5127  * sglist without mark the sg which contain last skb data as the end.
5128  * So the caller can mannipulate sg list as will when padding new data after
5129  * the first call without calling sg_unmark_end to expend sg list.
5130  *
5131  * Scenario to use skb_to_sgvec_nomark:
5132  * 1. sg_init_table
5133  * 2. skb_to_sgvec_nomark(payload1)
5134  * 3. skb_to_sgvec_nomark(payload2)
5135  *
5136  * This is equivalent to:
5137  * 1. sg_init_table
5138  * 2. skb_to_sgvec(payload1)
5139  * 3. sg_unmark_end
5140  * 4. skb_to_sgvec(payload2)
5141  *
5142  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
5143  * is more preferable.
5144  */
5145 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5146 			int offset, int len)
5147 {
5148 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5149 }
5150 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5151 
5152 
5153 
5154 /**
5155  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5156  *	@skb: The socket buffer to check.
5157  *	@tailbits: Amount of trailing space to be added
5158  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5159  *
5160  *	Make sure that the data buffers attached to a socket buffer are
5161  *	writable. If they are not, private copies are made of the data buffers
5162  *	and the socket buffer is set to use these instead.
5163  *
5164  *	If @tailbits is given, make sure that there is space to write @tailbits
5165  *	bytes of data beyond current end of socket buffer.  @trailer will be
5166  *	set to point to the skb in which this space begins.
5167  *
5168  *	The number of scatterlist elements required to completely map the
5169  *	COW'd and extended socket buffer will be returned.
5170  */
5171 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5172 {
5173 	int copyflag;
5174 	int elt;
5175 	struct sk_buff *skb1, **skb_p;
5176 
5177 	/* If skb is cloned or its head is paged, reallocate
5178 	 * head pulling out all the pages (pages are considered not writable
5179 	 * at the moment even if they are anonymous).
5180 	 */
5181 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5182 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5183 		return -ENOMEM;
5184 
5185 	/* Easy case. Most of packets will go this way. */
5186 	if (!skb_has_frag_list(skb)) {
5187 		/* A little of trouble, not enough of space for trailer.
5188 		 * This should not happen, when stack is tuned to generate
5189 		 * good frames. OK, on miss we reallocate and reserve even more
5190 		 * space, 128 bytes is fair. */
5191 
5192 		if (skb_tailroom(skb) < tailbits &&
5193 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5194 			return -ENOMEM;
5195 
5196 		/* Voila! */
5197 		*trailer = skb;
5198 		return 1;
5199 	}
5200 
5201 	/* Misery. We are in troubles, going to mincer fragments... */
5202 
5203 	elt = 1;
5204 	skb_p = &skb_shinfo(skb)->frag_list;
5205 	copyflag = 0;
5206 
5207 	while ((skb1 = *skb_p) != NULL) {
5208 		int ntail = 0;
5209 
5210 		/* The fragment is partially pulled by someone,
5211 		 * this can happen on input. Copy it and everything
5212 		 * after it. */
5213 
5214 		if (skb_shared(skb1))
5215 			copyflag = 1;
5216 
5217 		/* If the skb is the last, worry about trailer. */
5218 
5219 		if (skb1->next == NULL && tailbits) {
5220 			if (skb_shinfo(skb1)->nr_frags ||
5221 			    skb_has_frag_list(skb1) ||
5222 			    skb_tailroom(skb1) < tailbits)
5223 				ntail = tailbits + 128;
5224 		}
5225 
5226 		if (copyflag ||
5227 		    skb_cloned(skb1) ||
5228 		    ntail ||
5229 		    skb_shinfo(skb1)->nr_frags ||
5230 		    skb_has_frag_list(skb1)) {
5231 			struct sk_buff *skb2;
5232 
5233 			/* Fuck, we are miserable poor guys... */
5234 			if (ntail == 0)
5235 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5236 			else
5237 				skb2 = skb_copy_expand(skb1,
5238 						       skb_headroom(skb1),
5239 						       ntail,
5240 						       GFP_ATOMIC);
5241 			if (unlikely(skb2 == NULL))
5242 				return -ENOMEM;
5243 
5244 			if (skb1->sk)
5245 				skb_set_owner_w(skb2, skb1->sk);
5246 
5247 			/* Looking around. Are we still alive?
5248 			 * OK, link new skb, drop old one */
5249 
5250 			skb2->next = skb1->next;
5251 			*skb_p = skb2;
5252 			kfree_skb(skb1);
5253 			skb1 = skb2;
5254 		}
5255 		elt++;
5256 		*trailer = skb1;
5257 		skb_p = &skb1->next;
5258 	}
5259 
5260 	return elt;
5261 }
5262 EXPORT_SYMBOL_GPL(skb_cow_data);
5263 
5264 static void sock_rmem_free(struct sk_buff *skb)
5265 {
5266 	struct sock *sk = skb->sk;
5267 
5268 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5269 }
5270 
5271 static void skb_set_err_queue(struct sk_buff *skb)
5272 {
5273 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5274 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5275 	 */
5276 	skb->pkt_type = PACKET_OUTGOING;
5277 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5278 }
5279 
5280 /*
5281  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5282  */
5283 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5284 {
5285 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5286 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5287 		return -ENOMEM;
5288 
5289 	skb_orphan(skb);
5290 	skb->sk = sk;
5291 	skb->destructor = sock_rmem_free;
5292 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5293 	skb_set_err_queue(skb);
5294 
5295 	/* before exiting rcu section, make sure dst is refcounted */
5296 	skb_dst_force(skb);
5297 
5298 	skb_queue_tail(&sk->sk_error_queue, skb);
5299 	if (!sock_flag(sk, SOCK_DEAD))
5300 		sk_error_report(sk);
5301 	return 0;
5302 }
5303 EXPORT_SYMBOL(sock_queue_err_skb);
5304 
5305 static bool is_icmp_err_skb(const struct sk_buff *skb)
5306 {
5307 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5308 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5309 }
5310 
5311 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5312 {
5313 	struct sk_buff_head *q = &sk->sk_error_queue;
5314 	struct sk_buff *skb, *skb_next = NULL;
5315 	bool icmp_next = false;
5316 	unsigned long flags;
5317 
5318 	if (skb_queue_empty_lockless(q))
5319 		return NULL;
5320 
5321 	spin_lock_irqsave(&q->lock, flags);
5322 	skb = __skb_dequeue(q);
5323 	if (skb && (skb_next = skb_peek(q))) {
5324 		icmp_next = is_icmp_err_skb(skb_next);
5325 		if (icmp_next)
5326 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5327 	}
5328 	spin_unlock_irqrestore(&q->lock, flags);
5329 
5330 	if (is_icmp_err_skb(skb) && !icmp_next)
5331 		sk->sk_err = 0;
5332 
5333 	if (skb_next)
5334 		sk_error_report(sk);
5335 
5336 	return skb;
5337 }
5338 EXPORT_SYMBOL(sock_dequeue_err_skb);
5339 
5340 /**
5341  * skb_clone_sk - create clone of skb, and take reference to socket
5342  * @skb: the skb to clone
5343  *
5344  * This function creates a clone of a buffer that holds a reference on
5345  * sk_refcnt.  Buffers created via this function are meant to be
5346  * returned using sock_queue_err_skb, or free via kfree_skb.
5347  *
5348  * When passing buffers allocated with this function to sock_queue_err_skb
5349  * it is necessary to wrap the call with sock_hold/sock_put in order to
5350  * prevent the socket from being released prior to being enqueued on
5351  * the sk_error_queue.
5352  */
5353 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5354 {
5355 	struct sock *sk = skb->sk;
5356 	struct sk_buff *clone;
5357 
5358 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5359 		return NULL;
5360 
5361 	clone = skb_clone(skb, GFP_ATOMIC);
5362 	if (!clone) {
5363 		sock_put(sk);
5364 		return NULL;
5365 	}
5366 
5367 	clone->sk = sk;
5368 	clone->destructor = sock_efree;
5369 
5370 	return clone;
5371 }
5372 EXPORT_SYMBOL(skb_clone_sk);
5373 
5374 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5375 					struct sock *sk,
5376 					int tstype,
5377 					bool opt_stats)
5378 {
5379 	struct sock_exterr_skb *serr;
5380 	int err;
5381 
5382 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5383 
5384 	serr = SKB_EXT_ERR(skb);
5385 	memset(serr, 0, sizeof(*serr));
5386 	serr->ee.ee_errno = ENOMSG;
5387 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5388 	serr->ee.ee_info = tstype;
5389 	serr->opt_stats = opt_stats;
5390 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5391 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5392 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5393 		if (sk_is_tcp(sk))
5394 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5395 	}
5396 
5397 	err = sock_queue_err_skb(sk, skb);
5398 
5399 	if (err)
5400 		kfree_skb(skb);
5401 }
5402 
5403 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5404 {
5405 	bool ret;
5406 
5407 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5408 		return true;
5409 
5410 	read_lock_bh(&sk->sk_callback_lock);
5411 	ret = sk->sk_socket && sk->sk_socket->file &&
5412 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5413 	read_unlock_bh(&sk->sk_callback_lock);
5414 	return ret;
5415 }
5416 
5417 void skb_complete_tx_timestamp(struct sk_buff *skb,
5418 			       struct skb_shared_hwtstamps *hwtstamps)
5419 {
5420 	struct sock *sk = skb->sk;
5421 
5422 	if (!skb_may_tx_timestamp(sk, false))
5423 		goto err;
5424 
5425 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5426 	 * but only if the socket refcount is not zero.
5427 	 */
5428 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5429 		*skb_hwtstamps(skb) = *hwtstamps;
5430 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5431 		sock_put(sk);
5432 		return;
5433 	}
5434 
5435 err:
5436 	kfree_skb(skb);
5437 }
5438 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5439 
5440 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5441 		     const struct sk_buff *ack_skb,
5442 		     struct skb_shared_hwtstamps *hwtstamps,
5443 		     struct sock *sk, int tstype)
5444 {
5445 	struct sk_buff *skb;
5446 	bool tsonly, opt_stats = false;
5447 	u32 tsflags;
5448 
5449 	if (!sk)
5450 		return;
5451 
5452 	tsflags = READ_ONCE(sk->sk_tsflags);
5453 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5454 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5455 		return;
5456 
5457 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5458 	if (!skb_may_tx_timestamp(sk, tsonly))
5459 		return;
5460 
5461 	if (tsonly) {
5462 #ifdef CONFIG_INET
5463 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5464 		    sk_is_tcp(sk)) {
5465 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5466 							     ack_skb);
5467 			opt_stats = true;
5468 		} else
5469 #endif
5470 			skb = alloc_skb(0, GFP_ATOMIC);
5471 	} else {
5472 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5473 
5474 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5475 			kfree_skb(skb);
5476 			return;
5477 		}
5478 	}
5479 	if (!skb)
5480 		return;
5481 
5482 	if (tsonly) {
5483 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5484 					     SKBTX_ANY_TSTAMP;
5485 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5486 	}
5487 
5488 	if (hwtstamps)
5489 		*skb_hwtstamps(skb) = *hwtstamps;
5490 	else
5491 		__net_timestamp(skb);
5492 
5493 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5494 }
5495 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5496 
5497 void skb_tstamp_tx(struct sk_buff *orig_skb,
5498 		   struct skb_shared_hwtstamps *hwtstamps)
5499 {
5500 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5501 			       SCM_TSTAMP_SND);
5502 }
5503 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5504 
5505 #ifdef CONFIG_WIRELESS
5506 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5507 {
5508 	struct sock *sk = skb->sk;
5509 	struct sock_exterr_skb *serr;
5510 	int err = 1;
5511 
5512 	skb->wifi_acked_valid = 1;
5513 	skb->wifi_acked = acked;
5514 
5515 	serr = SKB_EXT_ERR(skb);
5516 	memset(serr, 0, sizeof(*serr));
5517 	serr->ee.ee_errno = ENOMSG;
5518 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5519 
5520 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5521 	 * but only if the socket refcount is not zero.
5522 	 */
5523 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5524 		err = sock_queue_err_skb(sk, skb);
5525 		sock_put(sk);
5526 	}
5527 	if (err)
5528 		kfree_skb(skb);
5529 }
5530 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5531 #endif /* CONFIG_WIRELESS */
5532 
5533 /**
5534  * skb_partial_csum_set - set up and verify partial csum values for packet
5535  * @skb: the skb to set
5536  * @start: the number of bytes after skb->data to start checksumming.
5537  * @off: the offset from start to place the checksum.
5538  *
5539  * For untrusted partially-checksummed packets, we need to make sure the values
5540  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5541  *
5542  * This function checks and sets those values and skb->ip_summed: if this
5543  * returns false you should drop the packet.
5544  */
5545 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5546 {
5547 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5548 	u32 csum_start = skb_headroom(skb) + (u32)start;
5549 
5550 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5551 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5552 				     start, off, skb_headroom(skb), skb_headlen(skb));
5553 		return false;
5554 	}
5555 	skb->ip_summed = CHECKSUM_PARTIAL;
5556 	skb->csum_start = csum_start;
5557 	skb->csum_offset = off;
5558 	skb->transport_header = csum_start;
5559 	return true;
5560 }
5561 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5562 
5563 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5564 			       unsigned int max)
5565 {
5566 	if (skb_headlen(skb) >= len)
5567 		return 0;
5568 
5569 	/* If we need to pullup then pullup to the max, so we
5570 	 * won't need to do it again.
5571 	 */
5572 	if (max > skb->len)
5573 		max = skb->len;
5574 
5575 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5576 		return -ENOMEM;
5577 
5578 	if (skb_headlen(skb) < len)
5579 		return -EPROTO;
5580 
5581 	return 0;
5582 }
5583 
5584 #define MAX_TCP_HDR_LEN (15 * 4)
5585 
5586 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5587 				      typeof(IPPROTO_IP) proto,
5588 				      unsigned int off)
5589 {
5590 	int err;
5591 
5592 	switch (proto) {
5593 	case IPPROTO_TCP:
5594 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5595 					  off + MAX_TCP_HDR_LEN);
5596 		if (!err && !skb_partial_csum_set(skb, off,
5597 						  offsetof(struct tcphdr,
5598 							   check)))
5599 			err = -EPROTO;
5600 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5601 
5602 	case IPPROTO_UDP:
5603 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5604 					  off + sizeof(struct udphdr));
5605 		if (!err && !skb_partial_csum_set(skb, off,
5606 						  offsetof(struct udphdr,
5607 							   check)))
5608 			err = -EPROTO;
5609 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5610 	}
5611 
5612 	return ERR_PTR(-EPROTO);
5613 }
5614 
5615 /* This value should be large enough to cover a tagged ethernet header plus
5616  * maximally sized IP and TCP or UDP headers.
5617  */
5618 #define MAX_IP_HDR_LEN 128
5619 
5620 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5621 {
5622 	unsigned int off;
5623 	bool fragment;
5624 	__sum16 *csum;
5625 	int err;
5626 
5627 	fragment = false;
5628 
5629 	err = skb_maybe_pull_tail(skb,
5630 				  sizeof(struct iphdr),
5631 				  MAX_IP_HDR_LEN);
5632 	if (err < 0)
5633 		goto out;
5634 
5635 	if (ip_is_fragment(ip_hdr(skb)))
5636 		fragment = true;
5637 
5638 	off = ip_hdrlen(skb);
5639 
5640 	err = -EPROTO;
5641 
5642 	if (fragment)
5643 		goto out;
5644 
5645 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5646 	if (IS_ERR(csum))
5647 		return PTR_ERR(csum);
5648 
5649 	if (recalculate)
5650 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5651 					   ip_hdr(skb)->daddr,
5652 					   skb->len - off,
5653 					   ip_hdr(skb)->protocol, 0);
5654 	err = 0;
5655 
5656 out:
5657 	return err;
5658 }
5659 
5660 /* This value should be large enough to cover a tagged ethernet header plus
5661  * an IPv6 header, all options, and a maximal TCP or UDP header.
5662  */
5663 #define MAX_IPV6_HDR_LEN 256
5664 
5665 #define OPT_HDR(type, skb, off) \
5666 	(type *)(skb_network_header(skb) + (off))
5667 
5668 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5669 {
5670 	int err;
5671 	u8 nexthdr;
5672 	unsigned int off;
5673 	unsigned int len;
5674 	bool fragment;
5675 	bool done;
5676 	__sum16 *csum;
5677 
5678 	fragment = false;
5679 	done = false;
5680 
5681 	off = sizeof(struct ipv6hdr);
5682 
5683 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5684 	if (err < 0)
5685 		goto out;
5686 
5687 	nexthdr = ipv6_hdr(skb)->nexthdr;
5688 
5689 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5690 	while (off <= len && !done) {
5691 		switch (nexthdr) {
5692 		case IPPROTO_DSTOPTS:
5693 		case IPPROTO_HOPOPTS:
5694 		case IPPROTO_ROUTING: {
5695 			struct ipv6_opt_hdr *hp;
5696 
5697 			err = skb_maybe_pull_tail(skb,
5698 						  off +
5699 						  sizeof(struct ipv6_opt_hdr),
5700 						  MAX_IPV6_HDR_LEN);
5701 			if (err < 0)
5702 				goto out;
5703 
5704 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5705 			nexthdr = hp->nexthdr;
5706 			off += ipv6_optlen(hp);
5707 			break;
5708 		}
5709 		case IPPROTO_AH: {
5710 			struct ip_auth_hdr *hp;
5711 
5712 			err = skb_maybe_pull_tail(skb,
5713 						  off +
5714 						  sizeof(struct ip_auth_hdr),
5715 						  MAX_IPV6_HDR_LEN);
5716 			if (err < 0)
5717 				goto out;
5718 
5719 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5720 			nexthdr = hp->nexthdr;
5721 			off += ipv6_authlen(hp);
5722 			break;
5723 		}
5724 		case IPPROTO_FRAGMENT: {
5725 			struct frag_hdr *hp;
5726 
5727 			err = skb_maybe_pull_tail(skb,
5728 						  off +
5729 						  sizeof(struct frag_hdr),
5730 						  MAX_IPV6_HDR_LEN);
5731 			if (err < 0)
5732 				goto out;
5733 
5734 			hp = OPT_HDR(struct frag_hdr, skb, off);
5735 
5736 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5737 				fragment = true;
5738 
5739 			nexthdr = hp->nexthdr;
5740 			off += sizeof(struct frag_hdr);
5741 			break;
5742 		}
5743 		default:
5744 			done = true;
5745 			break;
5746 		}
5747 	}
5748 
5749 	err = -EPROTO;
5750 
5751 	if (!done || fragment)
5752 		goto out;
5753 
5754 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5755 	if (IS_ERR(csum))
5756 		return PTR_ERR(csum);
5757 
5758 	if (recalculate)
5759 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5760 					 &ipv6_hdr(skb)->daddr,
5761 					 skb->len - off, nexthdr, 0);
5762 	err = 0;
5763 
5764 out:
5765 	return err;
5766 }
5767 
5768 /**
5769  * skb_checksum_setup - set up partial checksum offset
5770  * @skb: the skb to set up
5771  * @recalculate: if true the pseudo-header checksum will be recalculated
5772  */
5773 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5774 {
5775 	int err;
5776 
5777 	switch (skb->protocol) {
5778 	case htons(ETH_P_IP):
5779 		err = skb_checksum_setup_ipv4(skb, recalculate);
5780 		break;
5781 
5782 	case htons(ETH_P_IPV6):
5783 		err = skb_checksum_setup_ipv6(skb, recalculate);
5784 		break;
5785 
5786 	default:
5787 		err = -EPROTO;
5788 		break;
5789 	}
5790 
5791 	return err;
5792 }
5793 EXPORT_SYMBOL(skb_checksum_setup);
5794 
5795 /**
5796  * skb_checksum_maybe_trim - maybe trims the given skb
5797  * @skb: the skb to check
5798  * @transport_len: the data length beyond the network header
5799  *
5800  * Checks whether the given skb has data beyond the given transport length.
5801  * If so, returns a cloned skb trimmed to this transport length.
5802  * Otherwise returns the provided skb. Returns NULL in error cases
5803  * (e.g. transport_len exceeds skb length or out-of-memory).
5804  *
5805  * Caller needs to set the skb transport header and free any returned skb if it
5806  * differs from the provided skb.
5807  */
5808 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5809 					       unsigned int transport_len)
5810 {
5811 	struct sk_buff *skb_chk;
5812 	unsigned int len = skb_transport_offset(skb) + transport_len;
5813 	int ret;
5814 
5815 	if (skb->len < len)
5816 		return NULL;
5817 	else if (skb->len == len)
5818 		return skb;
5819 
5820 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5821 	if (!skb_chk)
5822 		return NULL;
5823 
5824 	ret = pskb_trim_rcsum(skb_chk, len);
5825 	if (ret) {
5826 		kfree_skb(skb_chk);
5827 		return NULL;
5828 	}
5829 
5830 	return skb_chk;
5831 }
5832 
5833 /**
5834  * skb_checksum_trimmed - validate checksum of an skb
5835  * @skb: the skb to check
5836  * @transport_len: the data length beyond the network header
5837  * @skb_chkf: checksum function to use
5838  *
5839  * Applies the given checksum function skb_chkf to the provided skb.
5840  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5841  *
5842  * If the skb has data beyond the given transport length, then a
5843  * trimmed & cloned skb is checked and returned.
5844  *
5845  * Caller needs to set the skb transport header and free any returned skb if it
5846  * differs from the provided skb.
5847  */
5848 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5849 				     unsigned int transport_len,
5850 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5851 {
5852 	struct sk_buff *skb_chk;
5853 	unsigned int offset = skb_transport_offset(skb);
5854 	__sum16 ret;
5855 
5856 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5857 	if (!skb_chk)
5858 		goto err;
5859 
5860 	if (!pskb_may_pull(skb_chk, offset))
5861 		goto err;
5862 
5863 	skb_pull_rcsum(skb_chk, offset);
5864 	ret = skb_chkf(skb_chk);
5865 	skb_push_rcsum(skb_chk, offset);
5866 
5867 	if (ret)
5868 		goto err;
5869 
5870 	return skb_chk;
5871 
5872 err:
5873 	if (skb_chk && skb_chk != skb)
5874 		kfree_skb(skb_chk);
5875 
5876 	return NULL;
5877 
5878 }
5879 EXPORT_SYMBOL(skb_checksum_trimmed);
5880 
5881 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5882 {
5883 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5884 			     skb->dev->name);
5885 }
5886 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5887 
5888 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5889 {
5890 	if (head_stolen) {
5891 		skb_release_head_state(skb);
5892 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
5893 	} else {
5894 		__kfree_skb(skb);
5895 	}
5896 }
5897 EXPORT_SYMBOL(kfree_skb_partial);
5898 
5899 /**
5900  * skb_try_coalesce - try to merge skb to prior one
5901  * @to: prior buffer
5902  * @from: buffer to add
5903  * @fragstolen: pointer to boolean
5904  * @delta_truesize: how much more was allocated than was requested
5905  */
5906 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5907 		      bool *fragstolen, int *delta_truesize)
5908 {
5909 	struct skb_shared_info *to_shinfo, *from_shinfo;
5910 	int i, delta, len = from->len;
5911 
5912 	*fragstolen = false;
5913 
5914 	if (skb_cloned(to))
5915 		return false;
5916 
5917 	/* In general, avoid mixing page_pool and non-page_pool allocated
5918 	 * pages within the same SKB. In theory we could take full
5919 	 * references if @from is cloned and !@to->pp_recycle but its
5920 	 * tricky (due to potential race with the clone disappearing) and
5921 	 * rare, so not worth dealing with.
5922 	 */
5923 	if (to->pp_recycle != from->pp_recycle)
5924 		return false;
5925 
5926 	if (len <= skb_tailroom(to)) {
5927 		if (len)
5928 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5929 		*delta_truesize = 0;
5930 		return true;
5931 	}
5932 
5933 	to_shinfo = skb_shinfo(to);
5934 	from_shinfo = skb_shinfo(from);
5935 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5936 		return false;
5937 	if (skb_zcopy(to) || skb_zcopy(from))
5938 		return false;
5939 
5940 	if (skb_headlen(from) != 0) {
5941 		struct page *page;
5942 		unsigned int offset;
5943 
5944 		if (to_shinfo->nr_frags +
5945 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5946 			return false;
5947 
5948 		if (skb_head_is_locked(from))
5949 			return false;
5950 
5951 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5952 
5953 		page = virt_to_head_page(from->head);
5954 		offset = from->data - (unsigned char *)page_address(page);
5955 
5956 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5957 				   page, offset, skb_headlen(from));
5958 		*fragstolen = true;
5959 	} else {
5960 		if (to_shinfo->nr_frags +
5961 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5962 			return false;
5963 
5964 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5965 	}
5966 
5967 	WARN_ON_ONCE(delta < len);
5968 
5969 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5970 	       from_shinfo->frags,
5971 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5972 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5973 
5974 	if (!skb_cloned(from))
5975 		from_shinfo->nr_frags = 0;
5976 
5977 	/* if the skb is not cloned this does nothing
5978 	 * since we set nr_frags to 0.
5979 	 */
5980 	if (skb_pp_frag_ref(from)) {
5981 		for (i = 0; i < from_shinfo->nr_frags; i++)
5982 			__skb_frag_ref(&from_shinfo->frags[i]);
5983 	}
5984 
5985 	to->truesize += delta;
5986 	to->len += len;
5987 	to->data_len += len;
5988 
5989 	*delta_truesize = delta;
5990 	return true;
5991 }
5992 EXPORT_SYMBOL(skb_try_coalesce);
5993 
5994 /**
5995  * skb_scrub_packet - scrub an skb
5996  *
5997  * @skb: buffer to clean
5998  * @xnet: packet is crossing netns
5999  *
6000  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
6001  * into/from a tunnel. Some information have to be cleared during these
6002  * operations.
6003  * skb_scrub_packet can also be used to clean a skb before injecting it in
6004  * another namespace (@xnet == true). We have to clear all information in the
6005  * skb that could impact namespace isolation.
6006  */
6007 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6008 {
6009 	skb->pkt_type = PACKET_HOST;
6010 	skb->skb_iif = 0;
6011 	skb->ignore_df = 0;
6012 	skb_dst_drop(skb);
6013 	skb_ext_reset(skb);
6014 	nf_reset_ct(skb);
6015 	nf_reset_trace(skb);
6016 
6017 #ifdef CONFIG_NET_SWITCHDEV
6018 	skb->offload_fwd_mark = 0;
6019 	skb->offload_l3_fwd_mark = 0;
6020 #endif
6021 
6022 	if (!xnet)
6023 		return;
6024 
6025 	ipvs_reset(skb);
6026 	skb->mark = 0;
6027 	skb_clear_tstamp(skb);
6028 }
6029 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6030 
6031 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6032 {
6033 	int mac_len, meta_len;
6034 	void *meta;
6035 
6036 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
6037 		kfree_skb(skb);
6038 		return NULL;
6039 	}
6040 
6041 	mac_len = skb->data - skb_mac_header(skb);
6042 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6043 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6044 			mac_len - VLAN_HLEN - ETH_TLEN);
6045 	}
6046 
6047 	meta_len = skb_metadata_len(skb);
6048 	if (meta_len) {
6049 		meta = skb_metadata_end(skb) - meta_len;
6050 		memmove(meta + VLAN_HLEN, meta, meta_len);
6051 	}
6052 
6053 	skb->mac_header += VLAN_HLEN;
6054 	return skb;
6055 }
6056 
6057 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6058 {
6059 	struct vlan_hdr *vhdr;
6060 	u16 vlan_tci;
6061 
6062 	if (unlikely(skb_vlan_tag_present(skb))) {
6063 		/* vlan_tci is already set-up so leave this for another time */
6064 		return skb;
6065 	}
6066 
6067 	skb = skb_share_check(skb, GFP_ATOMIC);
6068 	if (unlikely(!skb))
6069 		goto err_free;
6070 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6071 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6072 		goto err_free;
6073 
6074 	vhdr = (struct vlan_hdr *)skb->data;
6075 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6076 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6077 
6078 	skb_pull_rcsum(skb, VLAN_HLEN);
6079 	vlan_set_encap_proto(skb, vhdr);
6080 
6081 	skb = skb_reorder_vlan_header(skb);
6082 	if (unlikely(!skb))
6083 		goto err_free;
6084 
6085 	skb_reset_network_header(skb);
6086 	if (!skb_transport_header_was_set(skb))
6087 		skb_reset_transport_header(skb);
6088 	skb_reset_mac_len(skb);
6089 
6090 	return skb;
6091 
6092 err_free:
6093 	kfree_skb(skb);
6094 	return NULL;
6095 }
6096 EXPORT_SYMBOL(skb_vlan_untag);
6097 
6098 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6099 {
6100 	if (!pskb_may_pull(skb, write_len))
6101 		return -ENOMEM;
6102 
6103 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6104 		return 0;
6105 
6106 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6107 }
6108 EXPORT_SYMBOL(skb_ensure_writable);
6109 
6110 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6111 {
6112 	int needed_headroom = dev->needed_headroom;
6113 	int needed_tailroom = dev->needed_tailroom;
6114 
6115 	/* For tail taggers, we need to pad short frames ourselves, to ensure
6116 	 * that the tail tag does not fail at its role of being at the end of
6117 	 * the packet, once the conduit interface pads the frame. Account for
6118 	 * that pad length here, and pad later.
6119 	 */
6120 	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6121 		needed_tailroom += ETH_ZLEN - skb->len;
6122 	/* skb_headroom() returns unsigned int... */
6123 	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6124 	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6125 
6126 	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6127 		/* No reallocation needed, yay! */
6128 		return 0;
6129 
6130 	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6131 				GFP_ATOMIC);
6132 }
6133 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6134 
6135 /* remove VLAN header from packet and update csum accordingly.
6136  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6137  */
6138 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6139 {
6140 	int offset = skb->data - skb_mac_header(skb);
6141 	int err;
6142 
6143 	if (WARN_ONCE(offset,
6144 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6145 		      offset)) {
6146 		return -EINVAL;
6147 	}
6148 
6149 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6150 	if (unlikely(err))
6151 		return err;
6152 
6153 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6154 
6155 	vlan_remove_tag(skb, vlan_tci);
6156 
6157 	skb->mac_header += VLAN_HLEN;
6158 
6159 	if (skb_network_offset(skb) < ETH_HLEN)
6160 		skb_set_network_header(skb, ETH_HLEN);
6161 
6162 	skb_reset_mac_len(skb);
6163 
6164 	return err;
6165 }
6166 EXPORT_SYMBOL(__skb_vlan_pop);
6167 
6168 /* Pop a vlan tag either from hwaccel or from payload.
6169  * Expects skb->data at mac header.
6170  */
6171 int skb_vlan_pop(struct sk_buff *skb)
6172 {
6173 	u16 vlan_tci;
6174 	__be16 vlan_proto;
6175 	int err;
6176 
6177 	if (likely(skb_vlan_tag_present(skb))) {
6178 		__vlan_hwaccel_clear_tag(skb);
6179 	} else {
6180 		if (unlikely(!eth_type_vlan(skb->protocol)))
6181 			return 0;
6182 
6183 		err = __skb_vlan_pop(skb, &vlan_tci);
6184 		if (err)
6185 			return err;
6186 	}
6187 	/* move next vlan tag to hw accel tag */
6188 	if (likely(!eth_type_vlan(skb->protocol)))
6189 		return 0;
6190 
6191 	vlan_proto = skb->protocol;
6192 	err = __skb_vlan_pop(skb, &vlan_tci);
6193 	if (unlikely(err))
6194 		return err;
6195 
6196 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6197 	return 0;
6198 }
6199 EXPORT_SYMBOL(skb_vlan_pop);
6200 
6201 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6202  * Expects skb->data at mac header.
6203  */
6204 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6205 {
6206 	if (skb_vlan_tag_present(skb)) {
6207 		int offset = skb->data - skb_mac_header(skb);
6208 		int err;
6209 
6210 		if (WARN_ONCE(offset,
6211 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6212 			      offset)) {
6213 			return -EINVAL;
6214 		}
6215 
6216 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6217 					skb_vlan_tag_get(skb));
6218 		if (err)
6219 			return err;
6220 
6221 		skb->protocol = skb->vlan_proto;
6222 		skb->mac_len += VLAN_HLEN;
6223 
6224 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6225 	}
6226 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6227 	return 0;
6228 }
6229 EXPORT_SYMBOL(skb_vlan_push);
6230 
6231 /**
6232  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6233  *
6234  * @skb: Socket buffer to modify
6235  *
6236  * Drop the Ethernet header of @skb.
6237  *
6238  * Expects that skb->data points to the mac header and that no VLAN tags are
6239  * present.
6240  *
6241  * Returns 0 on success, -errno otherwise.
6242  */
6243 int skb_eth_pop(struct sk_buff *skb)
6244 {
6245 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6246 	    skb_network_offset(skb) < ETH_HLEN)
6247 		return -EPROTO;
6248 
6249 	skb_pull_rcsum(skb, ETH_HLEN);
6250 	skb_reset_mac_header(skb);
6251 	skb_reset_mac_len(skb);
6252 
6253 	return 0;
6254 }
6255 EXPORT_SYMBOL(skb_eth_pop);
6256 
6257 /**
6258  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6259  *
6260  * @skb: Socket buffer to modify
6261  * @dst: Destination MAC address of the new header
6262  * @src: Source MAC address of the new header
6263  *
6264  * Prepend @skb with a new Ethernet header.
6265  *
6266  * Expects that skb->data points to the mac header, which must be empty.
6267  *
6268  * Returns 0 on success, -errno otherwise.
6269  */
6270 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6271 		 const unsigned char *src)
6272 {
6273 	struct ethhdr *eth;
6274 	int err;
6275 
6276 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6277 		return -EPROTO;
6278 
6279 	err = skb_cow_head(skb, sizeof(*eth));
6280 	if (err < 0)
6281 		return err;
6282 
6283 	skb_push(skb, sizeof(*eth));
6284 	skb_reset_mac_header(skb);
6285 	skb_reset_mac_len(skb);
6286 
6287 	eth = eth_hdr(skb);
6288 	ether_addr_copy(eth->h_dest, dst);
6289 	ether_addr_copy(eth->h_source, src);
6290 	eth->h_proto = skb->protocol;
6291 
6292 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6293 
6294 	return 0;
6295 }
6296 EXPORT_SYMBOL(skb_eth_push);
6297 
6298 /* Update the ethertype of hdr and the skb csum value if required. */
6299 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6300 			     __be16 ethertype)
6301 {
6302 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6303 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6304 
6305 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6306 	}
6307 
6308 	hdr->h_proto = ethertype;
6309 }
6310 
6311 /**
6312  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6313  *                   the packet
6314  *
6315  * @skb: buffer
6316  * @mpls_lse: MPLS label stack entry to push
6317  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6318  * @mac_len: length of the MAC header
6319  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6320  *            ethernet
6321  *
6322  * Expects skb->data at mac header.
6323  *
6324  * Returns 0 on success, -errno otherwise.
6325  */
6326 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6327 		  int mac_len, bool ethernet)
6328 {
6329 	struct mpls_shim_hdr *lse;
6330 	int err;
6331 
6332 	if (unlikely(!eth_p_mpls(mpls_proto)))
6333 		return -EINVAL;
6334 
6335 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6336 	if (skb->encapsulation)
6337 		return -EINVAL;
6338 
6339 	err = skb_cow_head(skb, MPLS_HLEN);
6340 	if (unlikely(err))
6341 		return err;
6342 
6343 	if (!skb->inner_protocol) {
6344 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6345 		skb_set_inner_protocol(skb, skb->protocol);
6346 	}
6347 
6348 	skb_push(skb, MPLS_HLEN);
6349 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6350 		mac_len);
6351 	skb_reset_mac_header(skb);
6352 	skb_set_network_header(skb, mac_len);
6353 	skb_reset_mac_len(skb);
6354 
6355 	lse = mpls_hdr(skb);
6356 	lse->label_stack_entry = mpls_lse;
6357 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6358 
6359 	if (ethernet && mac_len >= ETH_HLEN)
6360 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6361 	skb->protocol = mpls_proto;
6362 
6363 	return 0;
6364 }
6365 EXPORT_SYMBOL_GPL(skb_mpls_push);
6366 
6367 /**
6368  * skb_mpls_pop() - pop the outermost MPLS header
6369  *
6370  * @skb: buffer
6371  * @next_proto: ethertype of header after popped MPLS header
6372  * @mac_len: length of the MAC header
6373  * @ethernet: flag to indicate if the packet is ethernet
6374  *
6375  * Expects skb->data at mac header.
6376  *
6377  * Returns 0 on success, -errno otherwise.
6378  */
6379 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6380 		 bool ethernet)
6381 {
6382 	int err;
6383 
6384 	if (unlikely(!eth_p_mpls(skb->protocol)))
6385 		return 0;
6386 
6387 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6388 	if (unlikely(err))
6389 		return err;
6390 
6391 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6392 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6393 		mac_len);
6394 
6395 	__skb_pull(skb, MPLS_HLEN);
6396 	skb_reset_mac_header(skb);
6397 	skb_set_network_header(skb, mac_len);
6398 
6399 	if (ethernet && mac_len >= ETH_HLEN) {
6400 		struct ethhdr *hdr;
6401 
6402 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6403 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6404 		skb_mod_eth_type(skb, hdr, next_proto);
6405 	}
6406 	skb->protocol = next_proto;
6407 
6408 	return 0;
6409 }
6410 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6411 
6412 /**
6413  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6414  *
6415  * @skb: buffer
6416  * @mpls_lse: new MPLS label stack entry to update to
6417  *
6418  * Expects skb->data at mac header.
6419  *
6420  * Returns 0 on success, -errno otherwise.
6421  */
6422 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6423 {
6424 	int err;
6425 
6426 	if (unlikely(!eth_p_mpls(skb->protocol)))
6427 		return -EINVAL;
6428 
6429 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6430 	if (unlikely(err))
6431 		return err;
6432 
6433 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6434 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6435 
6436 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6437 	}
6438 
6439 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6440 
6441 	return 0;
6442 }
6443 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6444 
6445 /**
6446  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6447  *
6448  * @skb: buffer
6449  *
6450  * Expects skb->data at mac header.
6451  *
6452  * Returns 0 on success, -errno otherwise.
6453  */
6454 int skb_mpls_dec_ttl(struct sk_buff *skb)
6455 {
6456 	u32 lse;
6457 	u8 ttl;
6458 
6459 	if (unlikely(!eth_p_mpls(skb->protocol)))
6460 		return -EINVAL;
6461 
6462 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6463 		return -ENOMEM;
6464 
6465 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6466 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6467 	if (!--ttl)
6468 		return -EINVAL;
6469 
6470 	lse &= ~MPLS_LS_TTL_MASK;
6471 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6472 
6473 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6474 }
6475 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6476 
6477 /**
6478  * alloc_skb_with_frags - allocate skb with page frags
6479  *
6480  * @header_len: size of linear part
6481  * @data_len: needed length in frags
6482  * @order: max page order desired.
6483  * @errcode: pointer to error code if any
6484  * @gfp_mask: allocation mask
6485  *
6486  * This can be used to allocate a paged skb, given a maximal order for frags.
6487  */
6488 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6489 				     unsigned long data_len,
6490 				     int order,
6491 				     int *errcode,
6492 				     gfp_t gfp_mask)
6493 {
6494 	unsigned long chunk;
6495 	struct sk_buff *skb;
6496 	struct page *page;
6497 	int nr_frags = 0;
6498 
6499 	*errcode = -EMSGSIZE;
6500 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6501 		return NULL;
6502 
6503 	*errcode = -ENOBUFS;
6504 	skb = alloc_skb(header_len, gfp_mask);
6505 	if (!skb)
6506 		return NULL;
6507 
6508 	while (data_len) {
6509 		if (nr_frags == MAX_SKB_FRAGS - 1)
6510 			goto failure;
6511 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6512 			order--;
6513 
6514 		if (order) {
6515 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6516 					   __GFP_COMP |
6517 					   __GFP_NOWARN,
6518 					   order);
6519 			if (!page) {
6520 				order--;
6521 				continue;
6522 			}
6523 		} else {
6524 			page = alloc_page(gfp_mask);
6525 			if (!page)
6526 				goto failure;
6527 		}
6528 		chunk = min_t(unsigned long, data_len,
6529 			      PAGE_SIZE << order);
6530 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6531 		nr_frags++;
6532 		skb->truesize += (PAGE_SIZE << order);
6533 		data_len -= chunk;
6534 	}
6535 	return skb;
6536 
6537 failure:
6538 	kfree_skb(skb);
6539 	return NULL;
6540 }
6541 EXPORT_SYMBOL(alloc_skb_with_frags);
6542 
6543 /* carve out the first off bytes from skb when off < headlen */
6544 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6545 				    const int headlen, gfp_t gfp_mask)
6546 {
6547 	int i;
6548 	unsigned int size = skb_end_offset(skb);
6549 	int new_hlen = headlen - off;
6550 	u8 *data;
6551 
6552 	if (skb_pfmemalloc(skb))
6553 		gfp_mask |= __GFP_MEMALLOC;
6554 
6555 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6556 	if (!data)
6557 		return -ENOMEM;
6558 	size = SKB_WITH_OVERHEAD(size);
6559 
6560 	/* Copy real data, and all frags */
6561 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6562 	skb->len -= off;
6563 
6564 	memcpy((struct skb_shared_info *)(data + size),
6565 	       skb_shinfo(skb),
6566 	       offsetof(struct skb_shared_info,
6567 			frags[skb_shinfo(skb)->nr_frags]));
6568 	if (skb_cloned(skb)) {
6569 		/* drop the old head gracefully */
6570 		if (skb_orphan_frags(skb, gfp_mask)) {
6571 			skb_kfree_head(data, size);
6572 			return -ENOMEM;
6573 		}
6574 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6575 			skb_frag_ref(skb, i);
6576 		if (skb_has_frag_list(skb))
6577 			skb_clone_fraglist(skb);
6578 		skb_release_data(skb, SKB_CONSUMED, false);
6579 	} else {
6580 		/* we can reuse existing recount- all we did was
6581 		 * relocate values
6582 		 */
6583 		skb_free_head(skb, false);
6584 	}
6585 
6586 	skb->head = data;
6587 	skb->data = data;
6588 	skb->head_frag = 0;
6589 	skb_set_end_offset(skb, size);
6590 	skb_set_tail_pointer(skb, skb_headlen(skb));
6591 	skb_headers_offset_update(skb, 0);
6592 	skb->cloned = 0;
6593 	skb->hdr_len = 0;
6594 	skb->nohdr = 0;
6595 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6596 
6597 	return 0;
6598 }
6599 
6600 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6601 
6602 /* carve out the first eat bytes from skb's frag_list. May recurse into
6603  * pskb_carve()
6604  */
6605 static int pskb_carve_frag_list(struct sk_buff *skb,
6606 				struct skb_shared_info *shinfo, int eat,
6607 				gfp_t gfp_mask)
6608 {
6609 	struct sk_buff *list = shinfo->frag_list;
6610 	struct sk_buff *clone = NULL;
6611 	struct sk_buff *insp = NULL;
6612 
6613 	do {
6614 		if (!list) {
6615 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6616 			return -EFAULT;
6617 		}
6618 		if (list->len <= eat) {
6619 			/* Eaten as whole. */
6620 			eat -= list->len;
6621 			list = list->next;
6622 			insp = list;
6623 		} else {
6624 			/* Eaten partially. */
6625 			if (skb_shared(list)) {
6626 				clone = skb_clone(list, gfp_mask);
6627 				if (!clone)
6628 					return -ENOMEM;
6629 				insp = list->next;
6630 				list = clone;
6631 			} else {
6632 				/* This may be pulled without problems. */
6633 				insp = list;
6634 			}
6635 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6636 				kfree_skb(clone);
6637 				return -ENOMEM;
6638 			}
6639 			break;
6640 		}
6641 	} while (eat);
6642 
6643 	/* Free pulled out fragments. */
6644 	while ((list = shinfo->frag_list) != insp) {
6645 		shinfo->frag_list = list->next;
6646 		consume_skb(list);
6647 	}
6648 	/* And insert new clone at head. */
6649 	if (clone) {
6650 		clone->next = list;
6651 		shinfo->frag_list = clone;
6652 	}
6653 	return 0;
6654 }
6655 
6656 /* carve off first len bytes from skb. Split line (off) is in the
6657  * non-linear part of skb
6658  */
6659 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6660 				       int pos, gfp_t gfp_mask)
6661 {
6662 	int i, k = 0;
6663 	unsigned int size = skb_end_offset(skb);
6664 	u8 *data;
6665 	const int nfrags = skb_shinfo(skb)->nr_frags;
6666 	struct skb_shared_info *shinfo;
6667 
6668 	if (skb_pfmemalloc(skb))
6669 		gfp_mask |= __GFP_MEMALLOC;
6670 
6671 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6672 	if (!data)
6673 		return -ENOMEM;
6674 	size = SKB_WITH_OVERHEAD(size);
6675 
6676 	memcpy((struct skb_shared_info *)(data + size),
6677 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6678 	if (skb_orphan_frags(skb, gfp_mask)) {
6679 		skb_kfree_head(data, size);
6680 		return -ENOMEM;
6681 	}
6682 	shinfo = (struct skb_shared_info *)(data + size);
6683 	for (i = 0; i < nfrags; i++) {
6684 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6685 
6686 		if (pos + fsize > off) {
6687 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6688 
6689 			if (pos < off) {
6690 				/* Split frag.
6691 				 * We have two variants in this case:
6692 				 * 1. Move all the frag to the second
6693 				 *    part, if it is possible. F.e.
6694 				 *    this approach is mandatory for TUX,
6695 				 *    where splitting is expensive.
6696 				 * 2. Split is accurately. We make this.
6697 				 */
6698 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6699 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6700 			}
6701 			skb_frag_ref(skb, i);
6702 			k++;
6703 		}
6704 		pos += fsize;
6705 	}
6706 	shinfo->nr_frags = k;
6707 	if (skb_has_frag_list(skb))
6708 		skb_clone_fraglist(skb);
6709 
6710 	/* split line is in frag list */
6711 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6712 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6713 		if (skb_has_frag_list(skb))
6714 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6715 		skb_kfree_head(data, size);
6716 		return -ENOMEM;
6717 	}
6718 	skb_release_data(skb, SKB_CONSUMED, false);
6719 
6720 	skb->head = data;
6721 	skb->head_frag = 0;
6722 	skb->data = data;
6723 	skb_set_end_offset(skb, size);
6724 	skb_reset_tail_pointer(skb);
6725 	skb_headers_offset_update(skb, 0);
6726 	skb->cloned   = 0;
6727 	skb->hdr_len  = 0;
6728 	skb->nohdr    = 0;
6729 	skb->len -= off;
6730 	skb->data_len = skb->len;
6731 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6732 	return 0;
6733 }
6734 
6735 /* remove len bytes from the beginning of the skb */
6736 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6737 {
6738 	int headlen = skb_headlen(skb);
6739 
6740 	if (len < headlen)
6741 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6742 	else
6743 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6744 }
6745 
6746 /* Extract to_copy bytes starting at off from skb, and return this in
6747  * a new skb
6748  */
6749 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6750 			     int to_copy, gfp_t gfp)
6751 {
6752 	struct sk_buff  *clone = skb_clone(skb, gfp);
6753 
6754 	if (!clone)
6755 		return NULL;
6756 
6757 	if (pskb_carve(clone, off, gfp) < 0 ||
6758 	    pskb_trim(clone, to_copy)) {
6759 		kfree_skb(clone);
6760 		return NULL;
6761 	}
6762 	return clone;
6763 }
6764 EXPORT_SYMBOL(pskb_extract);
6765 
6766 /**
6767  * skb_condense - try to get rid of fragments/frag_list if possible
6768  * @skb: buffer
6769  *
6770  * Can be used to save memory before skb is added to a busy queue.
6771  * If packet has bytes in frags and enough tail room in skb->head,
6772  * pull all of them, so that we can free the frags right now and adjust
6773  * truesize.
6774  * Notes:
6775  *	We do not reallocate skb->head thus can not fail.
6776  *	Caller must re-evaluate skb->truesize if needed.
6777  */
6778 void skb_condense(struct sk_buff *skb)
6779 {
6780 	if (skb->data_len) {
6781 		if (skb->data_len > skb->end - skb->tail ||
6782 		    skb_cloned(skb))
6783 			return;
6784 
6785 		/* Nice, we can free page frag(s) right now */
6786 		__pskb_pull_tail(skb, skb->data_len);
6787 	}
6788 	/* At this point, skb->truesize might be over estimated,
6789 	 * because skb had a fragment, and fragments do not tell
6790 	 * their truesize.
6791 	 * When we pulled its content into skb->head, fragment
6792 	 * was freed, but __pskb_pull_tail() could not possibly
6793 	 * adjust skb->truesize, not knowing the frag truesize.
6794 	 */
6795 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6796 }
6797 EXPORT_SYMBOL(skb_condense);
6798 
6799 #ifdef CONFIG_SKB_EXTENSIONS
6800 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6801 {
6802 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6803 }
6804 
6805 /**
6806  * __skb_ext_alloc - allocate a new skb extensions storage
6807  *
6808  * @flags: See kmalloc().
6809  *
6810  * Returns the newly allocated pointer. The pointer can later attached to a
6811  * skb via __skb_ext_set().
6812  * Note: caller must handle the skb_ext as an opaque data.
6813  */
6814 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6815 {
6816 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6817 
6818 	if (new) {
6819 		memset(new->offset, 0, sizeof(new->offset));
6820 		refcount_set(&new->refcnt, 1);
6821 	}
6822 
6823 	return new;
6824 }
6825 
6826 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6827 					 unsigned int old_active)
6828 {
6829 	struct skb_ext *new;
6830 
6831 	if (refcount_read(&old->refcnt) == 1)
6832 		return old;
6833 
6834 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6835 	if (!new)
6836 		return NULL;
6837 
6838 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6839 	refcount_set(&new->refcnt, 1);
6840 
6841 #ifdef CONFIG_XFRM
6842 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6843 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6844 		unsigned int i;
6845 
6846 		for (i = 0; i < sp->len; i++)
6847 			xfrm_state_hold(sp->xvec[i]);
6848 	}
6849 #endif
6850 #ifdef CONFIG_MCTP_FLOWS
6851 	if (old_active & (1 << SKB_EXT_MCTP)) {
6852 		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6853 
6854 		if (flow->key)
6855 			refcount_inc(&flow->key->refs);
6856 	}
6857 #endif
6858 	__skb_ext_put(old);
6859 	return new;
6860 }
6861 
6862 /**
6863  * __skb_ext_set - attach the specified extension storage to this skb
6864  * @skb: buffer
6865  * @id: extension id
6866  * @ext: extension storage previously allocated via __skb_ext_alloc()
6867  *
6868  * Existing extensions, if any, are cleared.
6869  *
6870  * Returns the pointer to the extension.
6871  */
6872 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6873 		    struct skb_ext *ext)
6874 {
6875 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6876 
6877 	skb_ext_put(skb);
6878 	newlen = newoff + skb_ext_type_len[id];
6879 	ext->chunks = newlen;
6880 	ext->offset[id] = newoff;
6881 	skb->extensions = ext;
6882 	skb->active_extensions = 1 << id;
6883 	return skb_ext_get_ptr(ext, id);
6884 }
6885 
6886 /**
6887  * skb_ext_add - allocate space for given extension, COW if needed
6888  * @skb: buffer
6889  * @id: extension to allocate space for
6890  *
6891  * Allocates enough space for the given extension.
6892  * If the extension is already present, a pointer to that extension
6893  * is returned.
6894  *
6895  * If the skb was cloned, COW applies and the returned memory can be
6896  * modified without changing the extension space of clones buffers.
6897  *
6898  * Returns pointer to the extension or NULL on allocation failure.
6899  */
6900 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6901 {
6902 	struct skb_ext *new, *old = NULL;
6903 	unsigned int newlen, newoff;
6904 
6905 	if (skb->active_extensions) {
6906 		old = skb->extensions;
6907 
6908 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6909 		if (!new)
6910 			return NULL;
6911 
6912 		if (__skb_ext_exist(new, id))
6913 			goto set_active;
6914 
6915 		newoff = new->chunks;
6916 	} else {
6917 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6918 
6919 		new = __skb_ext_alloc(GFP_ATOMIC);
6920 		if (!new)
6921 			return NULL;
6922 	}
6923 
6924 	newlen = newoff + skb_ext_type_len[id];
6925 	new->chunks = newlen;
6926 	new->offset[id] = newoff;
6927 set_active:
6928 	skb->slow_gro = 1;
6929 	skb->extensions = new;
6930 	skb->active_extensions |= 1 << id;
6931 	return skb_ext_get_ptr(new, id);
6932 }
6933 EXPORT_SYMBOL(skb_ext_add);
6934 
6935 #ifdef CONFIG_XFRM
6936 static void skb_ext_put_sp(struct sec_path *sp)
6937 {
6938 	unsigned int i;
6939 
6940 	for (i = 0; i < sp->len; i++)
6941 		xfrm_state_put(sp->xvec[i]);
6942 }
6943 #endif
6944 
6945 #ifdef CONFIG_MCTP_FLOWS
6946 static void skb_ext_put_mctp(struct mctp_flow *flow)
6947 {
6948 	if (flow->key)
6949 		mctp_key_unref(flow->key);
6950 }
6951 #endif
6952 
6953 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6954 {
6955 	struct skb_ext *ext = skb->extensions;
6956 
6957 	skb->active_extensions &= ~(1 << id);
6958 	if (skb->active_extensions == 0) {
6959 		skb->extensions = NULL;
6960 		__skb_ext_put(ext);
6961 #ifdef CONFIG_XFRM
6962 	} else if (id == SKB_EXT_SEC_PATH &&
6963 		   refcount_read(&ext->refcnt) == 1) {
6964 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6965 
6966 		skb_ext_put_sp(sp);
6967 		sp->len = 0;
6968 #endif
6969 	}
6970 }
6971 EXPORT_SYMBOL(__skb_ext_del);
6972 
6973 void __skb_ext_put(struct skb_ext *ext)
6974 {
6975 	/* If this is last clone, nothing can increment
6976 	 * it after check passes.  Avoids one atomic op.
6977 	 */
6978 	if (refcount_read(&ext->refcnt) == 1)
6979 		goto free_now;
6980 
6981 	if (!refcount_dec_and_test(&ext->refcnt))
6982 		return;
6983 free_now:
6984 #ifdef CONFIG_XFRM
6985 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6986 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6987 #endif
6988 #ifdef CONFIG_MCTP_FLOWS
6989 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6990 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6991 #endif
6992 
6993 	kmem_cache_free(skbuff_ext_cache, ext);
6994 }
6995 EXPORT_SYMBOL(__skb_ext_put);
6996 #endif /* CONFIG_SKB_EXTENSIONS */
6997 
6998 /**
6999  * skb_attempt_defer_free - queue skb for remote freeing
7000  * @skb: buffer
7001  *
7002  * Put @skb in a per-cpu list, using the cpu which
7003  * allocated the skb/pages to reduce false sharing
7004  * and memory zone spinlock contention.
7005  */
7006 void skb_attempt_defer_free(struct sk_buff *skb)
7007 {
7008 	int cpu = skb->alloc_cpu;
7009 	struct softnet_data *sd;
7010 	unsigned int defer_max;
7011 	bool kick;
7012 
7013 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7014 	    !cpu_online(cpu) ||
7015 	    cpu == raw_smp_processor_id()) {
7016 nodefer:	__kfree_skb(skb);
7017 		return;
7018 	}
7019 
7020 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7021 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7022 
7023 	sd = &per_cpu(softnet_data, cpu);
7024 	defer_max = READ_ONCE(sysctl_skb_defer_max);
7025 	if (READ_ONCE(sd->defer_count) >= defer_max)
7026 		goto nodefer;
7027 
7028 	spin_lock_bh(&sd->defer_lock);
7029 	/* Send an IPI every time queue reaches half capacity. */
7030 	kick = sd->defer_count == (defer_max >> 1);
7031 	/* Paired with the READ_ONCE() few lines above */
7032 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7033 
7034 	skb->next = sd->defer_list;
7035 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
7036 	WRITE_ONCE(sd->defer_list, skb);
7037 	spin_unlock_bh(&sd->defer_lock);
7038 
7039 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7040 	 * if we are unlucky enough (this seems very unlikely).
7041 	 */
7042 	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
7043 		smp_call_function_single_async(cpu, &sd->defer_csd);
7044 }
7045 
7046 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7047 				 size_t offset, size_t len)
7048 {
7049 	const char *kaddr;
7050 	__wsum csum;
7051 
7052 	kaddr = kmap_local_page(page);
7053 	csum = csum_partial(kaddr + offset, len, 0);
7054 	kunmap_local(kaddr);
7055 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7056 }
7057 
7058 /**
7059  * skb_splice_from_iter - Splice (or copy) pages to skbuff
7060  * @skb: The buffer to add pages to
7061  * @iter: Iterator representing the pages to be added
7062  * @maxsize: Maximum amount of pages to be added
7063  * @gfp: Allocation flags
7064  *
7065  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7066  * extracts pages from an iterator and adds them to the socket buffer if
7067  * possible, copying them to fragments if not possible (such as if they're slab
7068  * pages).
7069  *
7070  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7071  * insufficient space in the buffer to transfer anything.
7072  */
7073 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7074 			     ssize_t maxsize, gfp_t gfp)
7075 {
7076 	size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
7077 	struct page *pages[8], **ppages = pages;
7078 	ssize_t spliced = 0, ret = 0;
7079 	unsigned int i;
7080 
7081 	while (iter->count > 0) {
7082 		ssize_t space, nr, len;
7083 		size_t off;
7084 
7085 		ret = -EMSGSIZE;
7086 		space = frag_limit - skb_shinfo(skb)->nr_frags;
7087 		if (space < 0)
7088 			break;
7089 
7090 		/* We might be able to coalesce without increasing nr_frags */
7091 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7092 
7093 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7094 		if (len <= 0) {
7095 			ret = len ?: -EIO;
7096 			break;
7097 		}
7098 
7099 		i = 0;
7100 		do {
7101 			struct page *page = pages[i++];
7102 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7103 
7104 			ret = -EIO;
7105 			if (WARN_ON_ONCE(!sendpage_ok(page)))
7106 				goto out;
7107 
7108 			ret = skb_append_pagefrags(skb, page, off, part,
7109 						   frag_limit);
7110 			if (ret < 0) {
7111 				iov_iter_revert(iter, len);
7112 				goto out;
7113 			}
7114 
7115 			if (skb->ip_summed == CHECKSUM_NONE)
7116 				skb_splice_csum_page(skb, page, off, part);
7117 
7118 			off = 0;
7119 			spliced += part;
7120 			maxsize -= part;
7121 			len -= part;
7122 		} while (len > 0);
7123 
7124 		if (maxsize <= 0)
7125 			break;
7126 	}
7127 
7128 out:
7129 	skb_len_add(skb, spliced);
7130 	return spliced ?: ret;
7131 }
7132 EXPORT_SYMBOL(skb_splice_from_iter);
7133 
7134 static __always_inline
7135 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7136 			     size_t len, void *to, void *priv2)
7137 {
7138 	__wsum *csum = priv2;
7139 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7140 
7141 	*csum = csum_block_add(*csum, next, progress);
7142 	return 0;
7143 }
7144 
7145 static __always_inline
7146 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7147 				size_t len, void *to, void *priv2)
7148 {
7149 	__wsum next, *csum = priv2;
7150 
7151 	next = csum_and_copy_from_user(iter_from, to + progress, len);
7152 	*csum = csum_block_add(*csum, next, progress);
7153 	return next ? 0 : len;
7154 }
7155 
7156 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7157 				  __wsum *csum, struct iov_iter *i)
7158 {
7159 	size_t copied;
7160 
7161 	if (WARN_ON_ONCE(!i->data_source))
7162 		return false;
7163 	copied = iterate_and_advance2(i, bytes, addr, csum,
7164 				      copy_from_user_iter_csum,
7165 				      memcpy_from_iter_csum);
7166 	if (likely(copied == bytes))
7167 		return true;
7168 	iov_iter_revert(i, copied);
7169 	return false;
7170 }
7171 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7172