xref: /linux/net/core/skbuff.c (revision 4abe51dba69f1d72a13ba3b5d0dcc237cdd71404)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/skbuff_ref.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
60 #include <linux/errqueue.h>
61 #include <linux/prefetch.h>
62 #include <linux/bitfield.h>
63 #include <linux/if_vlan.h>
64 #include <linux/mpls.h>
65 #include <linux/kcov.h>
66 #include <linux/iov_iter.h>
67 #include <linux/crc32.h>
68 
69 #include <net/protocol.h>
70 #include <net/dst.h>
71 #include <net/sock.h>
72 #include <net/checksum.h>
73 #include <net/gro.h>
74 #include <net/gso.h>
75 #include <net/hotdata.h>
76 #include <net/ip6_checksum.h>
77 #include <net/xfrm.h>
78 #include <net/mpls.h>
79 #include <net/mptcp.h>
80 #include <net/mctp.h>
81 #include <net/page_pool/helpers.h>
82 #include <net/psp/types.h>
83 #include <net/dropreason.h>
84 #include <net/xdp_sock.h>
85 
86 #include <linux/uaccess.h>
87 #include <trace/events/skb.h>
88 #include <linux/highmem.h>
89 #include <linux/capability.h>
90 #include <linux/user_namespace.h>
91 #include <linux/indirect_call_wrapper.h>
92 #include <linux/textsearch.h>
93 
94 #include "dev.h"
95 #include "devmem.h"
96 #include "netmem_priv.h"
97 #include "sock_destructor.h"
98 
99 #ifdef CONFIG_SKB_EXTENSIONS
100 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
101 #endif
102 
103 #define GRO_MAX_HEAD_PAD (GRO_MAX_HEAD + NET_SKB_PAD + NET_IP_ALIGN)
104 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(max(MAX_TCP_HEADER, \
105 					       GRO_MAX_HEAD_PAD))
106 
107 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
108  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
109  * size, and we can differentiate heads from skb_small_head_cache
110  * vs system slabs by looking at their size (skb_end_offset()).
111  */
112 #define SKB_SMALL_HEAD_CACHE_SIZE					\
113 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
114 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
115 		SKB_SMALL_HEAD_SIZE)
116 
117 #define SKB_SMALL_HEAD_HEADROOM						\
118 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
119 
120 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
121  * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
122  * netmem is a page.
123  */
124 static_assert(offsetof(struct bio_vec, bv_page) ==
125 	      offsetof(skb_frag_t, netmem));
126 static_assert(sizeof_field(struct bio_vec, bv_page) ==
127 	      sizeof_field(skb_frag_t, netmem));
128 
129 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
130 static_assert(sizeof_field(struct bio_vec, bv_len) ==
131 	      sizeof_field(skb_frag_t, len));
132 
133 static_assert(offsetof(struct bio_vec, bv_offset) ==
134 	      offsetof(skb_frag_t, offset));
135 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
136 	      sizeof_field(skb_frag_t, offset));
137 
138 #undef FN
139 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
140 static const char * const drop_reasons[] = {
141 	[SKB_CONSUMED] = "CONSUMED",
142 	DEFINE_DROP_REASON(FN, FN)
143 };
144 
145 static const struct drop_reason_list drop_reasons_core = {
146 	.reasons = drop_reasons,
147 	.n_reasons = ARRAY_SIZE(drop_reasons),
148 };
149 
150 const struct drop_reason_list __rcu *
151 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
152 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
153 };
154 EXPORT_SYMBOL(drop_reasons_by_subsys);
155 
156 /**
157  * drop_reasons_register_subsys - register another drop reason subsystem
158  * @subsys: the subsystem to register, must not be the core
159  * @list: the list of drop reasons within the subsystem, must point to
160  *	a statically initialized list
161  */
162 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
163 				  const struct drop_reason_list *list)
164 {
165 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
166 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
167 		 "invalid subsystem %d\n", subsys))
168 		return;
169 
170 	/* must point to statically allocated memory, so INIT is OK */
171 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
172 }
173 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
174 
175 /**
176  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
177  * @subsys: the subsystem to remove, must not be the core
178  *
179  * Note: This will synchronize_rcu() to ensure no users when it returns.
180  */
181 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
182 {
183 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
184 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
185 		 "invalid subsystem %d\n", subsys))
186 		return;
187 
188 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
189 
190 	synchronize_rcu();
191 }
192 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
193 
194 /**
195  *	skb_panic - private function for out-of-line support
196  *	@skb:	buffer
197  *	@sz:	size
198  *	@addr:	address
199  *	@msg:	skb_over_panic or skb_under_panic
200  *
201  *	Out-of-line support for skb_put() and skb_push().
202  *	Called via the wrapper skb_over_panic() or skb_under_panic().
203  *	Keep out of line to prevent kernel bloat.
204  *	__builtin_return_address is not used because it is not always reliable.
205  */
206 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
207 		      const char msg[])
208 {
209 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
210 		 msg, addr, skb->len, sz, skb->head, skb->data,
211 		 (unsigned long)skb->tail, (unsigned long)skb->end,
212 		 skb->dev ? skb->dev->name : "<NULL>");
213 	BUG();
214 }
215 
216 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
217 {
218 	skb_panic(skb, sz, addr, __func__);
219 }
220 
221 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
222 {
223 	skb_panic(skb, sz, addr, __func__);
224 }
225 
226 #define NAPI_SKB_CACHE_SIZE	64
227 #define NAPI_SKB_CACHE_BULK	16
228 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
229 
230 struct napi_alloc_cache {
231 	local_lock_t bh_lock;
232 	struct page_frag_cache page;
233 	unsigned int skb_count;
234 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
235 };
236 
237 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
238 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = {
239 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
240 };
241 
242 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
243 {
244 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
245 	void *data;
246 
247 	fragsz = SKB_DATA_ALIGN(fragsz);
248 
249 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
250 	data = __page_frag_alloc_align(&nc->page, fragsz,
251 				       GFP_ATOMIC | __GFP_NOWARN, align_mask);
252 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
253 	return data;
254 
255 }
256 EXPORT_SYMBOL(__napi_alloc_frag_align);
257 
258 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
259 {
260 	void *data;
261 
262 	if (in_hardirq() || irqs_disabled()) {
263 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
264 
265 		fragsz = SKB_DATA_ALIGN(fragsz);
266 		data = __page_frag_alloc_align(nc, fragsz,
267 					       GFP_ATOMIC | __GFP_NOWARN,
268 					       align_mask);
269 	} else {
270 		local_bh_disable();
271 		data = __napi_alloc_frag_align(fragsz, align_mask);
272 		local_bh_enable();
273 	}
274 	return data;
275 }
276 EXPORT_SYMBOL(__netdev_alloc_frag_align);
277 
278 /* Cache kmem_cache_size(net_hotdata.skbuff_cache) to help the compiler
279  * remove dead code (and skbuff_cache_size) when CONFIG_KASAN is unset.
280  */
281 static u32 skbuff_cache_size __read_mostly;
282 
283 static struct sk_buff *napi_skb_cache_get(bool alloc)
284 {
285 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
286 	struct sk_buff *skb;
287 
288 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
289 	if (unlikely(!nc->skb_count)) {
290 		if (alloc)
291 			nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
292 						GFP_ATOMIC | __GFP_NOWARN,
293 						NAPI_SKB_CACHE_BULK,
294 						nc->skb_cache);
295 		if (unlikely(!nc->skb_count)) {
296 			local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
297 			return NULL;
298 		}
299 	}
300 
301 	skb = nc->skb_cache[--nc->skb_count];
302 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
303 	kasan_mempool_unpoison_object(skb, skbuff_cache_size);
304 
305 	return skb;
306 }
307 
308 /**
309  * napi_skb_cache_get_bulk - obtain a number of zeroed skb heads from the cache
310  * @skbs: pointer to an at least @n-sized array to fill with skb pointers
311  * @n: number of entries to provide
312  *
313  * Tries to obtain @n &sk_buff entries from the NAPI percpu cache and writes
314  * the pointers into the provided array @skbs. If there are less entries
315  * available, tries to replenish the cache and bulk-allocates the diff from
316  * the MM layer if needed.
317  * The heads are being zeroed with either memset() or %__GFP_ZERO, so they are
318  * ready for {,__}build_skb_around() and don't have any data buffers attached.
319  * Must be called *only* from the BH context.
320  *
321  * Return: number of successfully allocated skbs (@n if no actual allocation
322  *	   needed or kmem_cache_alloc_bulk() didn't fail).
323  */
324 u32 napi_skb_cache_get_bulk(void **skbs, u32 n)
325 {
326 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
327 	u32 bulk, total = n;
328 
329 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
330 
331 	if (nc->skb_count >= n)
332 		goto get;
333 
334 	/* No enough cached skbs. Try refilling the cache first */
335 	bulk = min(NAPI_SKB_CACHE_SIZE - nc->skb_count, NAPI_SKB_CACHE_BULK);
336 	nc->skb_count += kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
337 					       GFP_ATOMIC | __GFP_NOWARN, bulk,
338 					       &nc->skb_cache[nc->skb_count]);
339 	if (likely(nc->skb_count >= n))
340 		goto get;
341 
342 	/* Still not enough. Bulk-allocate the missing part directly, zeroed */
343 	n -= kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
344 				   GFP_ATOMIC | __GFP_ZERO | __GFP_NOWARN,
345 				   n - nc->skb_count, &skbs[nc->skb_count]);
346 	if (likely(nc->skb_count >= n))
347 		goto get;
348 
349 	/* kmem_cache didn't allocate the number we need, limit the output */
350 	total -= n - nc->skb_count;
351 	n = nc->skb_count;
352 
353 get:
354 	for (u32 base = nc->skb_count - n, i = 0; i < n; i++) {
355 		skbs[i] = nc->skb_cache[base + i];
356 
357 		kasan_mempool_unpoison_object(skbs[i], skbuff_cache_size);
358 		memset(skbs[i], 0, offsetof(struct sk_buff, tail));
359 	}
360 
361 	nc->skb_count -= n;
362 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
363 
364 	return total;
365 }
366 EXPORT_SYMBOL_GPL(napi_skb_cache_get_bulk);
367 
368 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
369 					 unsigned int size)
370 {
371 	struct skb_shared_info *shinfo;
372 
373 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
374 
375 	/* Assumes caller memset cleared SKB */
376 	skb->truesize = SKB_TRUESIZE(size);
377 	refcount_set(&skb->users, 1);
378 	skb->head = data;
379 	skb->data = data;
380 	skb_reset_tail_pointer(skb);
381 	skb_set_end_offset(skb, size);
382 	skb->mac_header = (typeof(skb->mac_header))~0U;
383 	skb->transport_header = (typeof(skb->transport_header))~0U;
384 	skb->alloc_cpu = raw_smp_processor_id();
385 	/* make sure we initialize shinfo sequentially */
386 	shinfo = skb_shinfo(skb);
387 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
388 	atomic_set(&shinfo->dataref, 1);
389 
390 	skb_set_kcov_handle(skb, kcov_common_handle());
391 }
392 
393 static inline void *__slab_build_skb(void *data, unsigned int *size)
394 {
395 	void *resized;
396 
397 	/* Must find the allocation size (and grow it to match). */
398 	*size = ksize(data);
399 	/* krealloc() will immediately return "data" when
400 	 * "ksize(data)" is requested: it is the existing upper
401 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
402 	 * that this "new" pointer needs to be passed back to the
403 	 * caller for use so the __alloc_size hinting will be
404 	 * tracked correctly.
405 	 */
406 	resized = krealloc(data, *size, GFP_ATOMIC);
407 	WARN_ON_ONCE(resized != data);
408 	return resized;
409 }
410 
411 /* build_skb() variant which can operate on slab buffers.
412  * Note that this should be used sparingly as slab buffers
413  * cannot be combined efficiently by GRO!
414  */
415 struct sk_buff *slab_build_skb(void *data)
416 {
417 	struct sk_buff *skb;
418 	unsigned int size;
419 
420 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
421 			       GFP_ATOMIC | __GFP_NOWARN);
422 	if (unlikely(!skb))
423 		return NULL;
424 
425 	memset(skb, 0, offsetof(struct sk_buff, tail));
426 	data = __slab_build_skb(data, &size);
427 	__finalize_skb_around(skb, data, size);
428 
429 	return skb;
430 }
431 EXPORT_SYMBOL(slab_build_skb);
432 
433 /* Caller must provide SKB that is memset cleared */
434 static void __build_skb_around(struct sk_buff *skb, void *data,
435 			       unsigned int frag_size)
436 {
437 	unsigned int size = frag_size;
438 
439 	/* frag_size == 0 is considered deprecated now. Callers
440 	 * using slab buffer should use slab_build_skb() instead.
441 	 */
442 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
443 		data = __slab_build_skb(data, &size);
444 
445 	__finalize_skb_around(skb, data, size);
446 }
447 
448 /**
449  * __build_skb - build a network buffer
450  * @data: data buffer provided by caller
451  * @frag_size: size of data (must not be 0)
452  *
453  * Allocate a new &sk_buff. Caller provides space holding head and
454  * skb_shared_info. @data must have been allocated from the page
455  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
456  * allocation is deprecated, and callers should use slab_build_skb()
457  * instead.)
458  * The return is the new skb buffer.
459  * On a failure the return is %NULL, and @data is not freed.
460  * Notes :
461  *  Before IO, driver allocates only data buffer where NIC put incoming frame
462  *  Driver should add room at head (NET_SKB_PAD) and
463  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
464  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
465  *  before giving packet to stack.
466  *  RX rings only contains data buffers, not full skbs.
467  */
468 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
469 {
470 	struct sk_buff *skb;
471 
472 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
473 			       GFP_ATOMIC | __GFP_NOWARN);
474 	if (unlikely(!skb))
475 		return NULL;
476 
477 	memset(skb, 0, offsetof(struct sk_buff, tail));
478 	__build_skb_around(skb, data, frag_size);
479 
480 	return skb;
481 }
482 
483 /* build_skb() is wrapper over __build_skb(), that specifically
484  * takes care of skb->head and skb->pfmemalloc
485  */
486 struct sk_buff *build_skb(void *data, unsigned int frag_size)
487 {
488 	struct sk_buff *skb = __build_skb(data, frag_size);
489 
490 	if (likely(skb && frag_size)) {
491 		skb->head_frag = 1;
492 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
493 	}
494 	return skb;
495 }
496 EXPORT_SYMBOL(build_skb);
497 
498 /**
499  * build_skb_around - build a network buffer around provided skb
500  * @skb: sk_buff provide by caller, must be memset cleared
501  * @data: data buffer provided by caller
502  * @frag_size: size of data
503  */
504 struct sk_buff *build_skb_around(struct sk_buff *skb,
505 				 void *data, unsigned int frag_size)
506 {
507 	if (unlikely(!skb))
508 		return NULL;
509 
510 	__build_skb_around(skb, data, frag_size);
511 
512 	if (frag_size) {
513 		skb->head_frag = 1;
514 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
515 	}
516 	return skb;
517 }
518 EXPORT_SYMBOL(build_skb_around);
519 
520 /**
521  * __napi_build_skb - build a network buffer
522  * @data: data buffer provided by caller
523  * @frag_size: size of data
524  *
525  * Version of __build_skb() that uses NAPI percpu caches to obtain
526  * skbuff_head instead of inplace allocation.
527  *
528  * Returns a new &sk_buff on success, %NULL on allocation failure.
529  */
530 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
531 {
532 	struct sk_buff *skb;
533 
534 	skb = napi_skb_cache_get(true);
535 	if (unlikely(!skb))
536 		return NULL;
537 
538 	memset(skb, 0, offsetof(struct sk_buff, tail));
539 	__build_skb_around(skb, data, frag_size);
540 
541 	return skb;
542 }
543 
544 /**
545  * napi_build_skb - build a network buffer
546  * @data: data buffer provided by caller
547  * @frag_size: size of data
548  *
549  * Version of __napi_build_skb() that takes care of skb->head_frag
550  * and skb->pfmemalloc when the data is a page or page fragment.
551  *
552  * Returns a new &sk_buff on success, %NULL on allocation failure.
553  */
554 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
555 {
556 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
557 
558 	if (likely(skb) && frag_size) {
559 		skb->head_frag = 1;
560 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
561 	}
562 
563 	return skb;
564 }
565 EXPORT_SYMBOL(napi_build_skb);
566 
567 /*
568  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
569  * the caller if emergency pfmemalloc reserves are being used. If it is and
570  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
571  * may be used. Otherwise, the packet data may be discarded until enough
572  * memory is free
573  */
574 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
575 			     bool *pfmemalloc)
576 {
577 	bool ret_pfmemalloc = false;
578 	size_t obj_size;
579 	void *obj;
580 
581 	obj_size = SKB_HEAD_ALIGN(*size);
582 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
583 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
584 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
585 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
586 				node);
587 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
588 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
589 			goto out;
590 		/* Try again but now we are using pfmemalloc reserves */
591 		ret_pfmemalloc = true;
592 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
593 		goto out;
594 	}
595 
596 	obj_size = kmalloc_size_roundup(obj_size);
597 	/* The following cast might truncate high-order bits of obj_size, this
598 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
599 	 */
600 	*size = (unsigned int)obj_size;
601 
602 	/*
603 	 * Try a regular allocation, when that fails and we're not entitled
604 	 * to the reserves, fail.
605 	 */
606 	obj = kmalloc_node_track_caller(obj_size,
607 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
608 					node);
609 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
610 		goto out;
611 
612 	/* Try again but now we are using pfmemalloc reserves */
613 	ret_pfmemalloc = true;
614 	obj = kmalloc_node_track_caller(obj_size, flags, node);
615 
616 out:
617 	if (pfmemalloc)
618 		*pfmemalloc = ret_pfmemalloc;
619 
620 	return obj;
621 }
622 
623 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
624  *	'private' fields and also do memory statistics to find all the
625  *	[BEEP] leaks.
626  *
627  */
628 
629 /**
630  *	__alloc_skb	-	allocate a network buffer
631  *	@size: size to allocate
632  *	@gfp_mask: allocation mask
633  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
634  *		instead of head cache and allocate a cloned (child) skb.
635  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
636  *		allocations in case the data is required for writeback
637  *	@node: numa node to allocate memory on
638  *
639  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
640  *	tail room of at least size bytes. The object has a reference count
641  *	of one. The return is the buffer. On a failure the return is %NULL.
642  *
643  *	Buffers may only be allocated from interrupts using a @gfp_mask of
644  *	%GFP_ATOMIC.
645  */
646 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
647 			    int flags, int node)
648 {
649 	struct sk_buff *skb = NULL;
650 	struct kmem_cache *cache;
651 	bool pfmemalloc;
652 	u8 *data;
653 
654 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
655 		gfp_mask |= __GFP_MEMALLOC;
656 
657 	if (flags & SKB_ALLOC_FCLONE) {
658 		cache = net_hotdata.skbuff_fclone_cache;
659 		goto fallback;
660 	}
661 	cache = net_hotdata.skbuff_cache;
662 	if (unlikely(node != NUMA_NO_NODE && node != numa_mem_id()))
663 		goto fallback;
664 
665 	if (flags & SKB_ALLOC_NAPI) {
666 		skb = napi_skb_cache_get(true);
667 		if (unlikely(!skb))
668 			return NULL;
669 	} else if (!in_hardirq() && !irqs_disabled()) {
670 		local_bh_disable();
671 		skb = napi_skb_cache_get(false);
672 		local_bh_enable();
673 	}
674 
675 	if (!skb) {
676 fallback:
677 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
678 		if (unlikely(!skb))
679 			return NULL;
680 	}
681 	prefetchw(skb);
682 
683 	/* We do our best to align skb_shared_info on a separate cache
684 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
685 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
686 	 * Both skb->head and skb_shared_info are cache line aligned.
687 	 */
688 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
689 	if (unlikely(!data))
690 		goto nodata;
691 	/* kmalloc_size_roundup() might give us more room than requested.
692 	 * Put skb_shared_info exactly at the end of allocated zone,
693 	 * to allow max possible filling before reallocation.
694 	 */
695 	prefetchw(data + SKB_WITH_OVERHEAD(size));
696 
697 	/*
698 	 * Only clear those fields we need to clear, not those that we will
699 	 * actually initialise below. Hence, don't put any more fields after
700 	 * the tail pointer in struct sk_buff!
701 	 */
702 	memset(skb, 0, offsetof(struct sk_buff, tail));
703 	__build_skb_around(skb, data, size);
704 	skb->pfmemalloc = pfmemalloc;
705 
706 	if (flags & SKB_ALLOC_FCLONE) {
707 		struct sk_buff_fclones *fclones;
708 
709 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
710 
711 		skb->fclone = SKB_FCLONE_ORIG;
712 		refcount_set(&fclones->fclone_ref, 1);
713 	}
714 
715 	return skb;
716 
717 nodata:
718 	kmem_cache_free(cache, skb);
719 	return NULL;
720 }
721 EXPORT_SYMBOL(__alloc_skb);
722 
723 /**
724  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
725  *	@dev: network device to receive on
726  *	@len: length to allocate
727  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
728  *
729  *	Allocate a new &sk_buff and assign it a usage count of one. The
730  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
731  *	the headroom they think they need without accounting for the
732  *	built in space. The built in space is used for optimisations.
733  *
734  *	%NULL is returned if there is no free memory.
735  */
736 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
737 				   gfp_t gfp_mask)
738 {
739 	struct page_frag_cache *nc;
740 	struct sk_buff *skb;
741 	bool pfmemalloc;
742 	void *data;
743 
744 	len += NET_SKB_PAD;
745 
746 	/* If requested length is either too small or too big,
747 	 * we use kmalloc() for skb->head allocation.
748 	 */
749 	if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
750 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
751 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
752 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
753 		if (!skb)
754 			goto skb_fail;
755 		goto skb_success;
756 	}
757 
758 	len = SKB_HEAD_ALIGN(len);
759 
760 	if (sk_memalloc_socks())
761 		gfp_mask |= __GFP_MEMALLOC;
762 
763 	if (in_hardirq() || irqs_disabled()) {
764 		nc = this_cpu_ptr(&netdev_alloc_cache);
765 		data = page_frag_alloc(nc, len, gfp_mask);
766 		pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
767 	} else {
768 		local_bh_disable();
769 		local_lock_nested_bh(&napi_alloc_cache.bh_lock);
770 
771 		nc = this_cpu_ptr(&napi_alloc_cache.page);
772 		data = page_frag_alloc(nc, len, gfp_mask);
773 		pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
774 
775 		local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
776 		local_bh_enable();
777 	}
778 
779 	if (unlikely(!data))
780 		return NULL;
781 
782 	skb = __build_skb(data, len);
783 	if (unlikely(!skb)) {
784 		skb_free_frag(data);
785 		return NULL;
786 	}
787 
788 	if (pfmemalloc)
789 		skb->pfmemalloc = 1;
790 	skb->head_frag = 1;
791 
792 skb_success:
793 	skb_reserve(skb, NET_SKB_PAD);
794 	skb->dev = dev;
795 
796 skb_fail:
797 	return skb;
798 }
799 EXPORT_SYMBOL(__netdev_alloc_skb);
800 
801 /**
802  *	napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
803  *	@napi: napi instance this buffer was allocated for
804  *	@len: length to allocate
805  *
806  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
807  *	attempt to allocate the head from a special reserved region used
808  *	only for NAPI Rx allocation.  By doing this we can save several
809  *	CPU cycles by avoiding having to disable and re-enable IRQs.
810  *
811  *	%NULL is returned if there is no free memory.
812  */
813 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
814 {
815 	gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
816 	struct napi_alloc_cache *nc;
817 	struct sk_buff *skb;
818 	bool pfmemalloc;
819 	void *data;
820 
821 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
822 	len += NET_SKB_PAD + NET_IP_ALIGN;
823 
824 	/* If requested length is either too small or too big,
825 	 * we use kmalloc() for skb->head allocation.
826 	 */
827 	if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
828 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
829 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
830 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
831 				  NUMA_NO_NODE);
832 		if (!skb)
833 			goto skb_fail;
834 		goto skb_success;
835 	}
836 
837 	len = SKB_HEAD_ALIGN(len);
838 
839 	if (sk_memalloc_socks())
840 		gfp_mask |= __GFP_MEMALLOC;
841 
842 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
843 	nc = this_cpu_ptr(&napi_alloc_cache);
844 
845 	data = page_frag_alloc(&nc->page, len, gfp_mask);
846 	pfmemalloc = page_frag_cache_is_pfmemalloc(&nc->page);
847 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
848 
849 	if (unlikely(!data))
850 		return NULL;
851 
852 	skb = __napi_build_skb(data, len);
853 	if (unlikely(!skb)) {
854 		skb_free_frag(data);
855 		return NULL;
856 	}
857 
858 	if (pfmemalloc)
859 		skb->pfmemalloc = 1;
860 	skb->head_frag = 1;
861 
862 skb_success:
863 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
864 	skb->dev = napi->dev;
865 
866 skb_fail:
867 	return skb;
868 }
869 EXPORT_SYMBOL(napi_alloc_skb);
870 
871 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
872 			    int off, int size, unsigned int truesize)
873 {
874 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
875 
876 	skb_fill_netmem_desc(skb, i, netmem, off, size);
877 	skb->len += size;
878 	skb->data_len += size;
879 	skb->truesize += truesize;
880 }
881 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
882 
883 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
884 			  unsigned int truesize)
885 {
886 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
887 
888 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
889 
890 	skb_frag_size_add(frag, size);
891 	skb->len += size;
892 	skb->data_len += size;
893 	skb->truesize += truesize;
894 }
895 EXPORT_SYMBOL(skb_coalesce_rx_frag);
896 
897 static void skb_drop_list(struct sk_buff **listp)
898 {
899 	kfree_skb_list(*listp);
900 	*listp = NULL;
901 }
902 
903 static inline void skb_drop_fraglist(struct sk_buff *skb)
904 {
905 	skb_drop_list(&skb_shinfo(skb)->frag_list);
906 }
907 
908 static void skb_clone_fraglist(struct sk_buff *skb)
909 {
910 	struct sk_buff *list;
911 
912 	skb_walk_frags(skb, list)
913 		skb_get(list);
914 }
915 
916 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
917 		    unsigned int headroom)
918 {
919 #if IS_ENABLED(CONFIG_PAGE_POOL)
920 	u32 size, truesize, len, max_head_size, off;
921 	struct sk_buff *skb = *pskb, *nskb;
922 	int err, i, head_off;
923 	void *data;
924 
925 	/* XDP does not support fraglist so we need to linearize
926 	 * the skb.
927 	 */
928 	if (skb_has_frag_list(skb))
929 		return -EOPNOTSUPP;
930 
931 	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
932 	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
933 		return -ENOMEM;
934 
935 	size = min_t(u32, skb->len, max_head_size);
936 	truesize = SKB_HEAD_ALIGN(size) + headroom;
937 	data = page_pool_dev_alloc_va(pool, &truesize);
938 	if (!data)
939 		return -ENOMEM;
940 
941 	nskb = napi_build_skb(data, truesize);
942 	if (!nskb) {
943 		page_pool_free_va(pool, data, true);
944 		return -ENOMEM;
945 	}
946 
947 	skb_reserve(nskb, headroom);
948 	skb_copy_header(nskb, skb);
949 	skb_mark_for_recycle(nskb);
950 
951 	err = skb_copy_bits(skb, 0, nskb->data, size);
952 	if (err) {
953 		consume_skb(nskb);
954 		return err;
955 	}
956 	skb_put(nskb, size);
957 
958 	head_off = skb_headroom(nskb) - skb_headroom(skb);
959 	skb_headers_offset_update(nskb, head_off);
960 
961 	off = size;
962 	len = skb->len - off;
963 	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
964 		struct page *page;
965 		u32 page_off;
966 
967 		size = min_t(u32, len, PAGE_SIZE);
968 		truesize = size;
969 
970 		page = page_pool_dev_alloc(pool, &page_off, &truesize);
971 		if (!page) {
972 			consume_skb(nskb);
973 			return -ENOMEM;
974 		}
975 
976 		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
977 		err = skb_copy_bits(skb, off, page_address(page) + page_off,
978 				    size);
979 		if (err) {
980 			consume_skb(nskb);
981 			return err;
982 		}
983 
984 		len -= size;
985 		off += size;
986 	}
987 
988 	consume_skb(skb);
989 	*pskb = nskb;
990 
991 	return 0;
992 #else
993 	return -EOPNOTSUPP;
994 #endif
995 }
996 EXPORT_SYMBOL(skb_pp_cow_data);
997 
998 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
999 			 const struct bpf_prog *prog)
1000 {
1001 	if (!prog->aux->xdp_has_frags)
1002 		return -EINVAL;
1003 
1004 	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
1005 }
1006 EXPORT_SYMBOL(skb_cow_data_for_xdp);
1007 
1008 #if IS_ENABLED(CONFIG_PAGE_POOL)
1009 bool napi_pp_put_page(netmem_ref netmem)
1010 {
1011 	netmem = netmem_compound_head(netmem);
1012 
1013 	if (unlikely(!netmem_is_pp(netmem)))
1014 		return false;
1015 
1016 	page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false);
1017 
1018 	return true;
1019 }
1020 EXPORT_SYMBOL(napi_pp_put_page);
1021 #endif
1022 
1023 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
1024 {
1025 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1026 		return false;
1027 	return napi_pp_put_page(page_to_netmem(virt_to_page(data)));
1028 }
1029 
1030 /**
1031  * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1032  * @skb:	page pool aware skb
1033  *
1034  * Increase the fragment reference count (pp_ref_count) of a skb. This is
1035  * intended to gain fragment references only for page pool aware skbs,
1036  * i.e. when skb->pp_recycle is true, and not for fragments in a
1037  * non-pp-recycling skb. It has a fallback to increase references on normal
1038  * pages, as page pool aware skbs may also have normal page fragments.
1039  */
1040 static int skb_pp_frag_ref(struct sk_buff *skb)
1041 {
1042 	struct skb_shared_info *shinfo;
1043 	netmem_ref head_netmem;
1044 	int i;
1045 
1046 	if (!skb->pp_recycle)
1047 		return -EINVAL;
1048 
1049 	shinfo = skb_shinfo(skb);
1050 
1051 	for (i = 0; i < shinfo->nr_frags; i++) {
1052 		head_netmem = netmem_compound_head(shinfo->frags[i].netmem);
1053 		if (likely(netmem_is_pp(head_netmem)))
1054 			page_pool_ref_netmem(head_netmem);
1055 		else
1056 			page_ref_inc(netmem_to_page(head_netmem));
1057 	}
1058 	return 0;
1059 }
1060 
1061 static void skb_kfree_head(void *head, unsigned int end_offset)
1062 {
1063 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1064 		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1065 	else
1066 		kfree(head);
1067 }
1068 
1069 static void skb_free_head(struct sk_buff *skb)
1070 {
1071 	unsigned char *head = skb->head;
1072 
1073 	if (skb->head_frag) {
1074 		if (skb_pp_recycle(skb, head))
1075 			return;
1076 		skb_free_frag(head);
1077 	} else {
1078 		skb_kfree_head(head, skb_end_offset(skb));
1079 	}
1080 }
1081 
1082 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1083 {
1084 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1085 	int i;
1086 
1087 	if (!skb_data_unref(skb, shinfo))
1088 		goto exit;
1089 
1090 	if (skb_zcopy(skb)) {
1091 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1092 
1093 		skb_zcopy_clear(skb, true);
1094 		if (skip_unref)
1095 			goto free_head;
1096 	}
1097 
1098 	for (i = 0; i < shinfo->nr_frags; i++)
1099 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1100 
1101 free_head:
1102 	if (shinfo->frag_list)
1103 		kfree_skb_list_reason(shinfo->frag_list, reason);
1104 
1105 	skb_free_head(skb);
1106 exit:
1107 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1108 	 * bit is only set on the head though, so in order to avoid races
1109 	 * while trying to recycle fragments on __skb_frag_unref() we need
1110 	 * to make one SKB responsible for triggering the recycle path.
1111 	 * So disable the recycling bit if an SKB is cloned and we have
1112 	 * additional references to the fragmented part of the SKB.
1113 	 * Eventually the last SKB will have the recycling bit set and it's
1114 	 * dataref set to 0, which will trigger the recycling
1115 	 */
1116 	skb->pp_recycle = 0;
1117 }
1118 
1119 /*
1120  *	Free an skbuff by memory without cleaning the state.
1121  */
1122 static void kfree_skbmem(struct sk_buff *skb)
1123 {
1124 	struct sk_buff_fclones *fclones;
1125 
1126 	switch (skb->fclone) {
1127 	case SKB_FCLONE_UNAVAILABLE:
1128 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1129 		return;
1130 
1131 	case SKB_FCLONE_ORIG:
1132 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1133 
1134 		/* We usually free the clone (TX completion) before original skb
1135 		 * This test would have no chance to be true for the clone,
1136 		 * while here, branch prediction will be good.
1137 		 */
1138 		if (refcount_read(&fclones->fclone_ref) == 1)
1139 			goto fastpath;
1140 		break;
1141 
1142 	default: /* SKB_FCLONE_CLONE */
1143 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1144 		break;
1145 	}
1146 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1147 		return;
1148 fastpath:
1149 	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1150 }
1151 
1152 void skb_release_head_state(struct sk_buff *skb)
1153 {
1154 	skb_dst_drop(skb);
1155 	if (skb->destructor) {
1156 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1157 #ifdef CONFIG_INET
1158 		INDIRECT_CALL_4(skb->destructor,
1159 				tcp_wfree, __sock_wfree, sock_wfree,
1160 				xsk_destruct_skb,
1161 				skb);
1162 #else
1163 		INDIRECT_CALL_2(skb->destructor,
1164 				sock_wfree, xsk_destruct_skb,
1165 				skb);
1166 
1167 #endif
1168 		skb->destructor = NULL;
1169 		skb->sk = NULL;
1170 	}
1171 	nf_reset_ct(skb);
1172 	skb_ext_reset(skb);
1173 }
1174 
1175 /* Free everything but the sk_buff shell. */
1176 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1177 {
1178 	skb_release_head_state(skb);
1179 	if (likely(skb->head))
1180 		skb_release_data(skb, reason);
1181 }
1182 
1183 /**
1184  *	__kfree_skb - private function
1185  *	@skb: buffer
1186  *
1187  *	Free an sk_buff. Release anything attached to the buffer.
1188  *	Clean the state. This is an internal helper function. Users should
1189  *	always call kfree_skb
1190  */
1191 
1192 void __kfree_skb(struct sk_buff *skb)
1193 {
1194 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1195 	kfree_skbmem(skb);
1196 }
1197 EXPORT_SYMBOL(__kfree_skb);
1198 
1199 static __always_inline
1200 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1201 			  enum skb_drop_reason reason)
1202 {
1203 	if (unlikely(!skb_unref(skb)))
1204 		return false;
1205 
1206 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1207 			       u32_get_bits(reason,
1208 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1209 				SKB_DROP_REASON_SUBSYS_NUM);
1210 
1211 	if (reason == SKB_CONSUMED)
1212 		trace_consume_skb(skb, __builtin_return_address(0));
1213 	else
1214 		trace_kfree_skb(skb, __builtin_return_address(0), reason, sk);
1215 	return true;
1216 }
1217 
1218 /**
1219  *	sk_skb_reason_drop - free an sk_buff with special reason
1220  *	@sk: the socket to receive @skb, or NULL if not applicable
1221  *	@skb: buffer to free
1222  *	@reason: reason why this skb is dropped
1223  *
1224  *	Drop a reference to the buffer and free it if the usage count has hit
1225  *	zero. Meanwhile, pass the receiving socket and drop reason to
1226  *	'kfree_skb' tracepoint.
1227  */
1228 void __fix_address
1229 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
1230 {
1231 	if (__sk_skb_reason_drop(sk, skb, reason))
1232 		__kfree_skb(skb);
1233 }
1234 EXPORT_SYMBOL(sk_skb_reason_drop);
1235 
1236 #define KFREE_SKB_BULK_SIZE	16
1237 
1238 struct skb_free_array {
1239 	unsigned int skb_count;
1240 	void *skb_array[KFREE_SKB_BULK_SIZE];
1241 };
1242 
1243 static void kfree_skb_add_bulk(struct sk_buff *skb,
1244 			       struct skb_free_array *sa,
1245 			       enum skb_drop_reason reason)
1246 {
1247 	/* if SKB is a clone, don't handle this case */
1248 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1249 		__kfree_skb(skb);
1250 		return;
1251 	}
1252 
1253 	skb_release_all(skb, reason);
1254 	sa->skb_array[sa->skb_count++] = skb;
1255 
1256 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1257 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1258 				     sa->skb_array);
1259 		sa->skb_count = 0;
1260 	}
1261 }
1262 
1263 void __fix_address
1264 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1265 {
1266 	struct skb_free_array sa;
1267 
1268 	sa.skb_count = 0;
1269 
1270 	while (segs) {
1271 		struct sk_buff *next = segs->next;
1272 
1273 		if (__sk_skb_reason_drop(NULL, segs, reason)) {
1274 			skb_poison_list(segs);
1275 			kfree_skb_add_bulk(segs, &sa, reason);
1276 		}
1277 
1278 		segs = next;
1279 	}
1280 
1281 	if (sa.skb_count)
1282 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1283 }
1284 EXPORT_SYMBOL(kfree_skb_list_reason);
1285 
1286 /* Dump skb information and contents.
1287  *
1288  * Must only be called from net_ratelimit()-ed paths.
1289  *
1290  * Dumps whole packets if full_pkt, only headers otherwise.
1291  */
1292 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1293 {
1294 	struct skb_shared_info *sh = skb_shinfo(skb);
1295 	struct net_device *dev = skb->dev;
1296 	struct sock *sk = skb->sk;
1297 	struct sk_buff *list_skb;
1298 	bool has_mac, has_trans;
1299 	int headroom, tailroom;
1300 	int i, len, seg_len;
1301 
1302 	if (full_pkt)
1303 		len = skb->len;
1304 	else
1305 		len = min_t(int, skb->len, MAX_HEADER + 128);
1306 
1307 	headroom = skb_headroom(skb);
1308 	tailroom = skb_tailroom(skb);
1309 
1310 	has_mac = skb_mac_header_was_set(skb);
1311 	has_trans = skb_transport_header_was_set(skb);
1312 
1313 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1314 	       "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n"
1315 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1316 	       "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1317 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n"
1318 	       "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n"
1319 	       "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n",
1320 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1321 	       has_mac ? skb->mac_header : -1,
1322 	       has_mac ? skb_mac_header_len(skb) : -1,
1323 	       skb->mac_len,
1324 	       skb->network_header,
1325 	       has_trans ? skb_network_header_len(skb) : -1,
1326 	       has_trans ? skb->transport_header : -1,
1327 	       sh->tx_flags, sh->nr_frags,
1328 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1329 	       skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed,
1330 	       skb->csum_complete_sw, skb->csum_valid, skb->csum_level,
1331 	       skb->hash, skb->sw_hash, skb->l4_hash,
1332 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif,
1333 	       skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all,
1334 	       skb->encapsulation, skb->inner_protocol, skb->inner_mac_header,
1335 	       skb->inner_network_header, skb->inner_transport_header);
1336 
1337 	if (dev)
1338 		printk("%sdev name=%s feat=%pNF\n",
1339 		       level, dev->name, &dev->features);
1340 	if (sk)
1341 		printk("%ssk family=%hu type=%u proto=%u\n",
1342 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1343 
1344 	if (full_pkt && headroom)
1345 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1346 			       16, 1, skb->head, headroom, false);
1347 
1348 	seg_len = min_t(int, skb_headlen(skb), len);
1349 	if (seg_len)
1350 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1351 			       16, 1, skb->data, seg_len, false);
1352 	len -= seg_len;
1353 
1354 	if (full_pkt && tailroom)
1355 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1356 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1357 
1358 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1359 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1360 		u32 p_off, p_len, copied;
1361 		struct page *p;
1362 		u8 *vaddr;
1363 
1364 		if (skb_frag_is_net_iov(frag)) {
1365 			printk("%sskb frag %d: not readable\n", level, i);
1366 			len -= skb_frag_size(frag);
1367 			if (!len)
1368 				break;
1369 			continue;
1370 		}
1371 
1372 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1373 				      skb_frag_size(frag), p, p_off, p_len,
1374 				      copied) {
1375 			seg_len = min_t(int, p_len, len);
1376 			vaddr = kmap_atomic(p);
1377 			print_hex_dump(level, "skb frag:     ",
1378 				       DUMP_PREFIX_OFFSET,
1379 				       16, 1, vaddr + p_off, seg_len, false);
1380 			kunmap_atomic(vaddr);
1381 			len -= seg_len;
1382 			if (!len)
1383 				break;
1384 		}
1385 	}
1386 
1387 	if (full_pkt && skb_has_frag_list(skb)) {
1388 		printk("skb fraglist:\n");
1389 		skb_walk_frags(skb, list_skb)
1390 			skb_dump(level, list_skb, true);
1391 	}
1392 }
1393 EXPORT_SYMBOL(skb_dump);
1394 
1395 /**
1396  *	skb_tx_error - report an sk_buff xmit error
1397  *	@skb: buffer that triggered an error
1398  *
1399  *	Report xmit error if a device callback is tracking this skb.
1400  *	skb must be freed afterwards.
1401  */
1402 void skb_tx_error(struct sk_buff *skb)
1403 {
1404 	if (skb) {
1405 		skb_zcopy_downgrade_managed(skb);
1406 		skb_zcopy_clear(skb, true);
1407 	}
1408 }
1409 EXPORT_SYMBOL(skb_tx_error);
1410 
1411 #ifdef CONFIG_TRACEPOINTS
1412 /**
1413  *	consume_skb - free an skbuff
1414  *	@skb: buffer to free
1415  *
1416  *	Drop a ref to the buffer and free it if the usage count has hit zero
1417  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1418  *	is being dropped after a failure and notes that
1419  */
1420 void consume_skb(struct sk_buff *skb)
1421 {
1422 	if (!skb_unref(skb))
1423 		return;
1424 
1425 	trace_consume_skb(skb, __builtin_return_address(0));
1426 	__kfree_skb(skb);
1427 }
1428 EXPORT_SYMBOL(consume_skb);
1429 #endif
1430 
1431 /**
1432  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1433  *	@skb: buffer to free
1434  *
1435  *	Alike consume_skb(), but this variant assumes that this is the last
1436  *	skb reference and all the head states have been already dropped
1437  */
1438 void __consume_stateless_skb(struct sk_buff *skb)
1439 {
1440 	trace_consume_skb(skb, __builtin_return_address(0));
1441 	skb_release_data(skb, SKB_CONSUMED);
1442 	kfree_skbmem(skb);
1443 }
1444 
1445 static void napi_skb_cache_put(struct sk_buff *skb)
1446 {
1447 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1448 	u32 i;
1449 
1450 	if (!kasan_mempool_poison_object(skb))
1451 		return;
1452 
1453 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
1454 	nc->skb_cache[nc->skb_count++] = skb;
1455 
1456 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1457 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1458 			kasan_mempool_unpoison_object(nc->skb_cache[i],
1459 						skbuff_cache_size);
1460 
1461 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1462 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1463 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1464 	}
1465 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
1466 }
1467 
1468 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1469 {
1470 	skb_release_all(skb, reason);
1471 	napi_skb_cache_put(skb);
1472 }
1473 
1474 void napi_skb_free_stolen_head(struct sk_buff *skb)
1475 {
1476 	if (unlikely(skb->slow_gro)) {
1477 		nf_reset_ct(skb);
1478 		skb_dst_drop(skb);
1479 		skb_ext_put(skb);
1480 		skb_orphan(skb);
1481 		skb->slow_gro = 0;
1482 	}
1483 	napi_skb_cache_put(skb);
1484 }
1485 
1486 void napi_consume_skb(struct sk_buff *skb, int budget)
1487 {
1488 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1489 	if (unlikely(!budget)) {
1490 		dev_consume_skb_any(skb);
1491 		return;
1492 	}
1493 
1494 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1495 
1496 	if (skb->alloc_cpu != smp_processor_id() && !skb_shared(skb)) {
1497 		skb_release_head_state(skb);
1498 		return skb_attempt_defer_free(skb);
1499 	}
1500 
1501 	if (!skb_unref(skb))
1502 		return;
1503 
1504 	/* if reaching here SKB is ready to free */
1505 	trace_consume_skb(skb, __builtin_return_address(0));
1506 
1507 	/* if SKB is a clone, don't handle this case */
1508 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1509 		__kfree_skb(skb);
1510 		return;
1511 	}
1512 
1513 	skb_release_all(skb, SKB_CONSUMED);
1514 	napi_skb_cache_put(skb);
1515 }
1516 EXPORT_SYMBOL(napi_consume_skb);
1517 
1518 /* Make sure a field is contained by headers group */
1519 #define CHECK_SKB_FIELD(field) \
1520 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1521 		     offsetof(struct sk_buff, headers.field));	\
1522 
1523 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1524 {
1525 	new->tstamp		= old->tstamp;
1526 	/* We do not copy old->sk */
1527 	new->dev		= old->dev;
1528 	memcpy(new->cb, old->cb, sizeof(old->cb));
1529 	skb_dst_copy(new, old);
1530 	__skb_ext_copy(new, old);
1531 	__nf_copy(new, old, false);
1532 
1533 	/* Note : this field could be in the headers group.
1534 	 * It is not yet because we do not want to have a 16 bit hole
1535 	 */
1536 	new->queue_mapping = old->queue_mapping;
1537 
1538 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1539 	CHECK_SKB_FIELD(protocol);
1540 	CHECK_SKB_FIELD(csum);
1541 	CHECK_SKB_FIELD(hash);
1542 	CHECK_SKB_FIELD(priority);
1543 	CHECK_SKB_FIELD(skb_iif);
1544 	CHECK_SKB_FIELD(vlan_proto);
1545 	CHECK_SKB_FIELD(vlan_tci);
1546 	CHECK_SKB_FIELD(transport_header);
1547 	CHECK_SKB_FIELD(network_header);
1548 	CHECK_SKB_FIELD(mac_header);
1549 	CHECK_SKB_FIELD(inner_protocol);
1550 	CHECK_SKB_FIELD(inner_transport_header);
1551 	CHECK_SKB_FIELD(inner_network_header);
1552 	CHECK_SKB_FIELD(inner_mac_header);
1553 	CHECK_SKB_FIELD(mark);
1554 #ifdef CONFIG_NETWORK_SECMARK
1555 	CHECK_SKB_FIELD(secmark);
1556 #endif
1557 #ifdef CONFIG_NET_RX_BUSY_POLL
1558 	CHECK_SKB_FIELD(napi_id);
1559 #endif
1560 	CHECK_SKB_FIELD(alloc_cpu);
1561 #ifdef CONFIG_XPS
1562 	CHECK_SKB_FIELD(sender_cpu);
1563 #endif
1564 #ifdef CONFIG_NET_SCHED
1565 	CHECK_SKB_FIELD(tc_index);
1566 #endif
1567 
1568 }
1569 
1570 /*
1571  * You should not add any new code to this function.  Add it to
1572  * __copy_skb_header above instead.
1573  */
1574 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1575 {
1576 #define C(x) n->x = skb->x
1577 
1578 	n->next = n->prev = NULL;
1579 	n->sk = NULL;
1580 	__copy_skb_header(n, skb);
1581 
1582 	C(len);
1583 	C(data_len);
1584 	C(mac_len);
1585 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1586 	n->cloned = 1;
1587 	n->nohdr = 0;
1588 	n->peeked = 0;
1589 	C(pfmemalloc);
1590 	C(pp_recycle);
1591 	n->destructor = NULL;
1592 	C(tail);
1593 	C(end);
1594 	C(head);
1595 	C(head_frag);
1596 	C(data);
1597 	C(truesize);
1598 	refcount_set(&n->users, 1);
1599 
1600 	atomic_inc(&(skb_shinfo(skb)->dataref));
1601 	skb->cloned = 1;
1602 
1603 	return n;
1604 #undef C
1605 }
1606 
1607 /**
1608  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1609  * @first: first sk_buff of the msg
1610  */
1611 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1612 {
1613 	struct sk_buff *n;
1614 
1615 	n = alloc_skb(0, GFP_ATOMIC);
1616 	if (!n)
1617 		return NULL;
1618 
1619 	n->len = first->len;
1620 	n->data_len = first->len;
1621 	n->truesize = first->truesize;
1622 
1623 	skb_shinfo(n)->frag_list = first;
1624 
1625 	__copy_skb_header(n, first);
1626 	n->destructor = NULL;
1627 
1628 	return n;
1629 }
1630 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1631 
1632 /**
1633  *	skb_morph	-	morph one skb into another
1634  *	@dst: the skb to receive the contents
1635  *	@src: the skb to supply the contents
1636  *
1637  *	This is identical to skb_clone except that the target skb is
1638  *	supplied by the user.
1639  *
1640  *	The target skb is returned upon exit.
1641  */
1642 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1643 {
1644 	skb_release_all(dst, SKB_CONSUMED);
1645 	return __skb_clone(dst, src);
1646 }
1647 EXPORT_SYMBOL_GPL(skb_morph);
1648 
1649 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1650 {
1651 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1652 	struct user_struct *user;
1653 
1654 	if (capable(CAP_IPC_LOCK) || !size)
1655 		return 0;
1656 
1657 	rlim = rlimit(RLIMIT_MEMLOCK);
1658 	if (rlim == RLIM_INFINITY)
1659 		return 0;
1660 
1661 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1662 	max_pg = rlim >> PAGE_SHIFT;
1663 	user = mmp->user ? : current_user();
1664 
1665 	old_pg = atomic_long_read(&user->locked_vm);
1666 	do {
1667 		new_pg = old_pg + num_pg;
1668 		if (new_pg > max_pg)
1669 			return -ENOBUFS;
1670 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1671 
1672 	if (!mmp->user) {
1673 		mmp->user = get_uid(user);
1674 		mmp->num_pg = num_pg;
1675 	} else {
1676 		mmp->num_pg += num_pg;
1677 	}
1678 
1679 	return 0;
1680 }
1681 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1682 
1683 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1684 {
1685 	if (mmp->user) {
1686 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1687 		free_uid(mmp->user);
1688 	}
1689 }
1690 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1691 
1692 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size,
1693 					    bool devmem)
1694 {
1695 	struct ubuf_info_msgzc *uarg;
1696 	struct sk_buff *skb;
1697 
1698 	WARN_ON_ONCE(!in_task());
1699 
1700 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1701 	if (!skb)
1702 		return NULL;
1703 
1704 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1705 	uarg = (void *)skb->cb;
1706 	uarg->mmp.user = NULL;
1707 
1708 	if (likely(!devmem) && mm_account_pinned_pages(&uarg->mmp, size)) {
1709 		kfree_skb(skb);
1710 		return NULL;
1711 	}
1712 
1713 	uarg->ubuf.ops = &msg_zerocopy_ubuf_ops;
1714 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1715 	uarg->len = 1;
1716 	uarg->bytelen = size;
1717 	uarg->zerocopy = 1;
1718 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1719 	refcount_set(&uarg->ubuf.refcnt, 1);
1720 	sock_hold(sk);
1721 
1722 	return &uarg->ubuf;
1723 }
1724 
1725 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1726 {
1727 	return container_of((void *)uarg, struct sk_buff, cb);
1728 }
1729 
1730 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1731 				       struct ubuf_info *uarg, bool devmem)
1732 {
1733 	if (uarg) {
1734 		struct ubuf_info_msgzc *uarg_zc;
1735 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1736 		u32 bytelen, next;
1737 
1738 		/* there might be non MSG_ZEROCOPY users */
1739 		if (uarg->ops != &msg_zerocopy_ubuf_ops)
1740 			return NULL;
1741 
1742 		/* realloc only when socket is locked (TCP, UDP cork),
1743 		 * so uarg->len and sk_zckey access is serialized
1744 		 */
1745 		if (!sock_owned_by_user(sk)) {
1746 			WARN_ON_ONCE(1);
1747 			return NULL;
1748 		}
1749 
1750 		uarg_zc = uarg_to_msgzc(uarg);
1751 		bytelen = uarg_zc->bytelen + size;
1752 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1753 			/* TCP can create new skb to attach new uarg */
1754 			if (sk->sk_type == SOCK_STREAM)
1755 				goto new_alloc;
1756 			return NULL;
1757 		}
1758 
1759 		next = (u32)atomic_read(&sk->sk_zckey);
1760 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1761 			if (likely(!devmem) &&
1762 			    mm_account_pinned_pages(&uarg_zc->mmp, size))
1763 				return NULL;
1764 			uarg_zc->len++;
1765 			uarg_zc->bytelen = bytelen;
1766 			atomic_set(&sk->sk_zckey, ++next);
1767 
1768 			/* no extra ref when appending to datagram (MSG_MORE) */
1769 			if (sk->sk_type == SOCK_STREAM)
1770 				net_zcopy_get(uarg);
1771 
1772 			return uarg;
1773 		}
1774 	}
1775 
1776 new_alloc:
1777 	return msg_zerocopy_alloc(sk, size, devmem);
1778 }
1779 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1780 
1781 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1782 {
1783 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1784 	u32 old_lo, old_hi;
1785 	u64 sum_len;
1786 
1787 	old_lo = serr->ee.ee_info;
1788 	old_hi = serr->ee.ee_data;
1789 	sum_len = old_hi - old_lo + 1ULL + len;
1790 
1791 	if (sum_len >= (1ULL << 32))
1792 		return false;
1793 
1794 	if (lo != old_hi + 1)
1795 		return false;
1796 
1797 	serr->ee.ee_data += len;
1798 	return true;
1799 }
1800 
1801 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1802 {
1803 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1804 	struct sock_exterr_skb *serr;
1805 	struct sock *sk = skb->sk;
1806 	struct sk_buff_head *q;
1807 	unsigned long flags;
1808 	bool is_zerocopy;
1809 	u32 lo, hi;
1810 	u16 len;
1811 
1812 	mm_unaccount_pinned_pages(&uarg->mmp);
1813 
1814 	/* if !len, there was only 1 call, and it was aborted
1815 	 * so do not queue a completion notification
1816 	 */
1817 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1818 		goto release;
1819 
1820 	len = uarg->len;
1821 	lo = uarg->id;
1822 	hi = uarg->id + len - 1;
1823 	is_zerocopy = uarg->zerocopy;
1824 
1825 	serr = SKB_EXT_ERR(skb);
1826 	memset(serr, 0, sizeof(*serr));
1827 	serr->ee.ee_errno = 0;
1828 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1829 	serr->ee.ee_data = hi;
1830 	serr->ee.ee_info = lo;
1831 	if (!is_zerocopy)
1832 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1833 
1834 	q = &sk->sk_error_queue;
1835 	spin_lock_irqsave(&q->lock, flags);
1836 	tail = skb_peek_tail(q);
1837 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1838 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1839 		__skb_queue_tail(q, skb);
1840 		skb = NULL;
1841 	}
1842 	spin_unlock_irqrestore(&q->lock, flags);
1843 
1844 	sk_error_report(sk);
1845 
1846 release:
1847 	consume_skb(skb);
1848 	sock_put(sk);
1849 }
1850 
1851 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg,
1852 				  bool success)
1853 {
1854 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1855 
1856 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1857 
1858 	if (refcount_dec_and_test(&uarg->refcnt))
1859 		__msg_zerocopy_callback(uarg_zc);
1860 }
1861 
1862 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1863 {
1864 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1865 
1866 	atomic_dec(&sk->sk_zckey);
1867 	uarg_to_msgzc(uarg)->len--;
1868 
1869 	if (have_uref)
1870 		msg_zerocopy_complete(NULL, uarg, true);
1871 }
1872 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1873 
1874 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = {
1875 	.complete = msg_zerocopy_complete,
1876 };
1877 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops);
1878 
1879 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1880 			     struct msghdr *msg, int len,
1881 			     struct ubuf_info *uarg,
1882 			     struct net_devmem_dmabuf_binding *binding)
1883 {
1884 	int err, orig_len = skb->len;
1885 
1886 	if (uarg->ops->link_skb) {
1887 		err = uarg->ops->link_skb(skb, uarg);
1888 		if (err)
1889 			return err;
1890 	} else {
1891 		struct ubuf_info *orig_uarg = skb_zcopy(skb);
1892 
1893 		/* An skb can only point to one uarg. This edge case happens
1894 		 * when TCP appends to an skb, but zerocopy_realloc triggered
1895 		 * a new alloc.
1896 		 */
1897 		if (orig_uarg && uarg != orig_uarg)
1898 			return -EEXIST;
1899 	}
1900 
1901 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len,
1902 				      binding);
1903 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1904 		struct sock *save_sk = skb->sk;
1905 
1906 		/* Streams do not free skb on error. Reset to prev state. */
1907 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1908 		skb->sk = sk;
1909 		___pskb_trim(skb, orig_len);
1910 		skb->sk = save_sk;
1911 		return err;
1912 	}
1913 
1914 	skb_zcopy_set(skb, uarg, NULL);
1915 	return skb->len - orig_len;
1916 }
1917 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1918 
1919 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1920 {
1921 	int i;
1922 
1923 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1924 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1925 		skb_frag_ref(skb, i);
1926 }
1927 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1928 
1929 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1930 			      gfp_t gfp_mask)
1931 {
1932 	if (skb_zcopy(orig)) {
1933 		if (skb_zcopy(nskb)) {
1934 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1935 			if (!gfp_mask) {
1936 				WARN_ON_ONCE(1);
1937 				return -ENOMEM;
1938 			}
1939 			if (skb_uarg(nskb) == skb_uarg(orig))
1940 				return 0;
1941 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1942 				return -EIO;
1943 		}
1944 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1945 	}
1946 	return 0;
1947 }
1948 
1949 /**
1950  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1951  *	@skb: the skb to modify
1952  *	@gfp_mask: allocation priority
1953  *
1954  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1955  *	It will copy all frags into kernel and drop the reference
1956  *	to userspace pages.
1957  *
1958  *	If this function is called from an interrupt gfp_mask() must be
1959  *	%GFP_ATOMIC.
1960  *
1961  *	Returns 0 on success or a negative error code on failure
1962  *	to allocate kernel memory to copy to.
1963  */
1964 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1965 {
1966 	int num_frags = skb_shinfo(skb)->nr_frags;
1967 	struct page *page, *head = NULL;
1968 	int i, order, psize, new_frags;
1969 	u32 d_off;
1970 
1971 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1972 		return -EINVAL;
1973 
1974 	if (!skb_frags_readable(skb))
1975 		return -EFAULT;
1976 
1977 	if (!num_frags)
1978 		goto release;
1979 
1980 	/* We might have to allocate high order pages, so compute what minimum
1981 	 * page order is needed.
1982 	 */
1983 	order = 0;
1984 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1985 		order++;
1986 	psize = (PAGE_SIZE << order);
1987 
1988 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1989 	for (i = 0; i < new_frags; i++) {
1990 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1991 		if (!page) {
1992 			while (head) {
1993 				struct page *next = (struct page *)page_private(head);
1994 				put_page(head);
1995 				head = next;
1996 			}
1997 			return -ENOMEM;
1998 		}
1999 		set_page_private(page, (unsigned long)head);
2000 		head = page;
2001 	}
2002 
2003 	page = head;
2004 	d_off = 0;
2005 	for (i = 0; i < num_frags; i++) {
2006 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2007 		u32 p_off, p_len, copied;
2008 		struct page *p;
2009 		u8 *vaddr;
2010 
2011 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
2012 				      p, p_off, p_len, copied) {
2013 			u32 copy, done = 0;
2014 			vaddr = kmap_atomic(p);
2015 
2016 			while (done < p_len) {
2017 				if (d_off == psize) {
2018 					d_off = 0;
2019 					page = (struct page *)page_private(page);
2020 				}
2021 				copy = min_t(u32, psize - d_off, p_len - done);
2022 				memcpy(page_address(page) + d_off,
2023 				       vaddr + p_off + done, copy);
2024 				done += copy;
2025 				d_off += copy;
2026 			}
2027 			kunmap_atomic(vaddr);
2028 		}
2029 	}
2030 
2031 	/* skb frags release userspace buffers */
2032 	for (i = 0; i < num_frags; i++)
2033 		skb_frag_unref(skb, i);
2034 
2035 	/* skb frags point to kernel buffers */
2036 	for (i = 0; i < new_frags - 1; i++) {
2037 		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
2038 		head = (struct page *)page_private(head);
2039 	}
2040 	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2041 			       d_off);
2042 	skb_shinfo(skb)->nr_frags = new_frags;
2043 
2044 release:
2045 	skb_zcopy_clear(skb, false);
2046 	return 0;
2047 }
2048 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2049 
2050 /**
2051  *	skb_clone	-	duplicate an sk_buff
2052  *	@skb: buffer to clone
2053  *	@gfp_mask: allocation priority
2054  *
2055  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
2056  *	copies share the same packet data but not structure. The new
2057  *	buffer has a reference count of 1. If the allocation fails the
2058  *	function returns %NULL otherwise the new buffer is returned.
2059  *
2060  *	If this function is called from an interrupt gfp_mask() must be
2061  *	%GFP_ATOMIC.
2062  */
2063 
2064 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2065 {
2066 	struct sk_buff_fclones *fclones = container_of(skb,
2067 						       struct sk_buff_fclones,
2068 						       skb1);
2069 	struct sk_buff *n;
2070 
2071 	if (skb_orphan_frags(skb, gfp_mask))
2072 		return NULL;
2073 
2074 	if (skb->fclone == SKB_FCLONE_ORIG &&
2075 	    refcount_read(&fclones->fclone_ref) == 1) {
2076 		n = &fclones->skb2;
2077 		refcount_set(&fclones->fclone_ref, 2);
2078 		n->fclone = SKB_FCLONE_CLONE;
2079 	} else {
2080 		if (skb_pfmemalloc(skb))
2081 			gfp_mask |= __GFP_MEMALLOC;
2082 
2083 		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2084 		if (!n)
2085 			return NULL;
2086 
2087 		n->fclone = SKB_FCLONE_UNAVAILABLE;
2088 	}
2089 
2090 	return __skb_clone(n, skb);
2091 }
2092 EXPORT_SYMBOL(skb_clone);
2093 
2094 void skb_headers_offset_update(struct sk_buff *skb, int off)
2095 {
2096 	/* Only adjust this if it actually is csum_start rather than csum */
2097 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2098 		skb->csum_start += off;
2099 	/* {transport,network,mac}_header and tail are relative to skb->head */
2100 	skb->transport_header += off;
2101 	skb->network_header   += off;
2102 	if (skb_mac_header_was_set(skb))
2103 		skb->mac_header += off;
2104 	skb->inner_transport_header += off;
2105 	skb->inner_network_header += off;
2106 	skb->inner_mac_header += off;
2107 }
2108 EXPORT_SYMBOL(skb_headers_offset_update);
2109 
2110 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2111 {
2112 	__copy_skb_header(new, old);
2113 
2114 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2115 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2116 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2117 }
2118 EXPORT_SYMBOL(skb_copy_header);
2119 
2120 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2121 {
2122 	if (skb_pfmemalloc(skb))
2123 		return SKB_ALLOC_RX;
2124 	return 0;
2125 }
2126 
2127 /**
2128  *	skb_copy	-	create private copy of an sk_buff
2129  *	@skb: buffer to copy
2130  *	@gfp_mask: allocation priority
2131  *
2132  *	Make a copy of both an &sk_buff and its data. This is used when the
2133  *	caller wishes to modify the data and needs a private copy of the
2134  *	data to alter. Returns %NULL on failure or the pointer to the buffer
2135  *	on success. The returned buffer has a reference count of 1.
2136  *
2137  *	As by-product this function converts non-linear &sk_buff to linear
2138  *	one, so that &sk_buff becomes completely private and caller is allowed
2139  *	to modify all the data of returned buffer. This means that this
2140  *	function is not recommended for use in circumstances when only
2141  *	header is going to be modified. Use pskb_copy() instead.
2142  */
2143 
2144 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2145 {
2146 	struct sk_buff *n;
2147 	unsigned int size;
2148 	int headerlen;
2149 
2150 	if (!skb_frags_readable(skb))
2151 		return NULL;
2152 
2153 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2154 		return NULL;
2155 
2156 	headerlen = skb_headroom(skb);
2157 	size = skb_end_offset(skb) + skb->data_len;
2158 	n = __alloc_skb(size, gfp_mask,
2159 			skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2160 	if (!n)
2161 		return NULL;
2162 
2163 	/* Set the data pointer */
2164 	skb_reserve(n, headerlen);
2165 	/* Set the tail pointer and length */
2166 	skb_put(n, skb->len);
2167 
2168 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2169 
2170 	skb_copy_header(n, skb);
2171 	return n;
2172 }
2173 EXPORT_SYMBOL(skb_copy);
2174 
2175 /**
2176  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2177  *	@skb: buffer to copy
2178  *	@headroom: headroom of new skb
2179  *	@gfp_mask: allocation priority
2180  *	@fclone: if true allocate the copy of the skb from the fclone
2181  *	cache instead of the head cache; it is recommended to set this
2182  *	to true for the cases where the copy will likely be cloned
2183  *
2184  *	Make a copy of both an &sk_buff and part of its data, located
2185  *	in header. Fragmented data remain shared. This is used when
2186  *	the caller wishes to modify only header of &sk_buff and needs
2187  *	private copy of the header to alter. Returns %NULL on failure
2188  *	or the pointer to the buffer on success.
2189  *	The returned buffer has a reference count of 1.
2190  */
2191 
2192 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2193 				   gfp_t gfp_mask, bool fclone)
2194 {
2195 	unsigned int size = skb_headlen(skb) + headroom;
2196 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2197 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2198 
2199 	if (!n)
2200 		goto out;
2201 
2202 	/* Set the data pointer */
2203 	skb_reserve(n, headroom);
2204 	/* Set the tail pointer and length */
2205 	skb_put(n, skb_headlen(skb));
2206 	/* Copy the bytes */
2207 	skb_copy_from_linear_data(skb, n->data, n->len);
2208 
2209 	n->truesize += skb->data_len;
2210 	n->data_len  = skb->data_len;
2211 	n->len	     = skb->len;
2212 
2213 	if (skb_shinfo(skb)->nr_frags) {
2214 		int i;
2215 
2216 		if (skb_orphan_frags(skb, gfp_mask) ||
2217 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2218 			kfree_skb(n);
2219 			n = NULL;
2220 			goto out;
2221 		}
2222 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2223 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2224 			skb_frag_ref(skb, i);
2225 		}
2226 		skb_shinfo(n)->nr_frags = i;
2227 	}
2228 
2229 	if (skb_has_frag_list(skb)) {
2230 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2231 		skb_clone_fraglist(n);
2232 	}
2233 
2234 	skb_copy_header(n, skb);
2235 out:
2236 	return n;
2237 }
2238 EXPORT_SYMBOL(__pskb_copy_fclone);
2239 
2240 /**
2241  *	pskb_expand_head - reallocate header of &sk_buff
2242  *	@skb: buffer to reallocate
2243  *	@nhead: room to add at head
2244  *	@ntail: room to add at tail
2245  *	@gfp_mask: allocation priority
2246  *
2247  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2248  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2249  *	reference count of 1. Returns zero in the case of success or error,
2250  *	if expansion failed. In the last case, &sk_buff is not changed.
2251  *
2252  *	All the pointers pointing into skb header may change and must be
2253  *	reloaded after call to this function.
2254  *
2255  *	Note: If you skb_push() the start of the buffer after reallocating the
2256  *	header, call skb_postpush_data_move() first to move the metadata out of
2257  *	the way before writing to &sk_buff->data.
2258  */
2259 
2260 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2261 		     gfp_t gfp_mask)
2262 {
2263 	unsigned int osize = skb_end_offset(skb);
2264 	unsigned int size = osize + nhead + ntail;
2265 	long off;
2266 	u8 *data;
2267 	int i;
2268 
2269 	BUG_ON(nhead < 0);
2270 
2271 	BUG_ON(skb_shared(skb));
2272 
2273 	skb_zcopy_downgrade_managed(skb);
2274 
2275 	if (skb_pfmemalloc(skb))
2276 		gfp_mask |= __GFP_MEMALLOC;
2277 
2278 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2279 	if (!data)
2280 		goto nodata;
2281 	size = SKB_WITH_OVERHEAD(size);
2282 
2283 	/* Copy only real data... and, alas, header. This should be
2284 	 * optimized for the cases when header is void.
2285 	 */
2286 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2287 
2288 	memcpy((struct skb_shared_info *)(data + size),
2289 	       skb_shinfo(skb),
2290 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2291 
2292 	/*
2293 	 * if shinfo is shared we must drop the old head gracefully, but if it
2294 	 * is not we can just drop the old head and let the existing refcount
2295 	 * be since all we did is relocate the values
2296 	 */
2297 	if (skb_cloned(skb)) {
2298 		if (skb_orphan_frags(skb, gfp_mask))
2299 			goto nofrags;
2300 		if (skb_zcopy(skb))
2301 			refcount_inc(&skb_uarg(skb)->refcnt);
2302 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2303 			skb_frag_ref(skb, i);
2304 
2305 		if (skb_has_frag_list(skb))
2306 			skb_clone_fraglist(skb);
2307 
2308 		skb_release_data(skb, SKB_CONSUMED);
2309 	} else {
2310 		skb_free_head(skb);
2311 	}
2312 	off = (data + nhead) - skb->head;
2313 
2314 	skb->head     = data;
2315 	skb->head_frag = 0;
2316 	skb->data    += off;
2317 
2318 	skb_set_end_offset(skb, size);
2319 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2320 	off           = nhead;
2321 #endif
2322 	skb->tail	      += off;
2323 	skb_headers_offset_update(skb, nhead);
2324 	skb->cloned   = 0;
2325 	skb->hdr_len  = 0;
2326 	skb->nohdr    = 0;
2327 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2328 
2329 	/* It is not generally safe to change skb->truesize.
2330 	 * For the moment, we really care of rx path, or
2331 	 * when skb is orphaned (not attached to a socket).
2332 	 */
2333 	if (!skb->sk || skb->destructor == sock_edemux)
2334 		skb->truesize += size - osize;
2335 
2336 	return 0;
2337 
2338 nofrags:
2339 	skb_kfree_head(data, size);
2340 nodata:
2341 	return -ENOMEM;
2342 }
2343 EXPORT_SYMBOL(pskb_expand_head);
2344 
2345 /* Make private copy of skb with writable head and some headroom */
2346 
2347 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2348 {
2349 	struct sk_buff *skb2;
2350 	int delta = headroom - skb_headroom(skb);
2351 
2352 	if (delta <= 0)
2353 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2354 	else {
2355 		skb2 = skb_clone(skb, GFP_ATOMIC);
2356 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2357 					     GFP_ATOMIC)) {
2358 			kfree_skb(skb2);
2359 			skb2 = NULL;
2360 		}
2361 	}
2362 	return skb2;
2363 }
2364 EXPORT_SYMBOL(skb_realloc_headroom);
2365 
2366 /* Note: We plan to rework this in linux-6.4 */
2367 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2368 {
2369 	unsigned int saved_end_offset, saved_truesize;
2370 	struct skb_shared_info *shinfo;
2371 	int res;
2372 
2373 	saved_end_offset = skb_end_offset(skb);
2374 	saved_truesize = skb->truesize;
2375 
2376 	res = pskb_expand_head(skb, 0, 0, pri);
2377 	if (res)
2378 		return res;
2379 
2380 	skb->truesize = saved_truesize;
2381 
2382 	if (likely(skb_end_offset(skb) == saved_end_offset))
2383 		return 0;
2384 
2385 	/* We can not change skb->end if the original or new value
2386 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2387 	 */
2388 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2389 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2390 		/* We think this path should not be taken.
2391 		 * Add a temporary trace to warn us just in case.
2392 		 */
2393 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2394 			    saved_end_offset, skb_end_offset(skb));
2395 		WARN_ON_ONCE(1);
2396 		return 0;
2397 	}
2398 
2399 	shinfo = skb_shinfo(skb);
2400 
2401 	/* We are about to change back skb->end,
2402 	 * we need to move skb_shinfo() to its new location.
2403 	 */
2404 	memmove(skb->head + saved_end_offset,
2405 		shinfo,
2406 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2407 
2408 	skb_set_end_offset(skb, saved_end_offset);
2409 
2410 	return 0;
2411 }
2412 
2413 /**
2414  *	skb_expand_head - reallocate header of &sk_buff
2415  *	@skb: buffer to reallocate
2416  *	@headroom: needed headroom
2417  *
2418  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2419  *	if possible; copies skb->sk to new skb as needed
2420  *	and frees original skb in case of failures.
2421  *
2422  *	It expect increased headroom and generates warning otherwise.
2423  */
2424 
2425 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2426 {
2427 	int delta = headroom - skb_headroom(skb);
2428 	int osize = skb_end_offset(skb);
2429 	struct sock *sk = skb->sk;
2430 
2431 	if (WARN_ONCE(delta <= 0,
2432 		      "%s is expecting an increase in the headroom", __func__))
2433 		return skb;
2434 
2435 	delta = SKB_DATA_ALIGN(delta);
2436 	/* pskb_expand_head() might crash, if skb is shared. */
2437 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2438 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2439 
2440 		if (unlikely(!nskb))
2441 			goto fail;
2442 
2443 		if (sk)
2444 			skb_set_owner_w(nskb, sk);
2445 		consume_skb(skb);
2446 		skb = nskb;
2447 	}
2448 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2449 		goto fail;
2450 
2451 	if (sk && is_skb_wmem(skb)) {
2452 		delta = skb_end_offset(skb) - osize;
2453 		refcount_add(delta, &sk->sk_wmem_alloc);
2454 		skb->truesize += delta;
2455 	}
2456 	return skb;
2457 
2458 fail:
2459 	kfree_skb(skb);
2460 	return NULL;
2461 }
2462 EXPORT_SYMBOL(skb_expand_head);
2463 
2464 /**
2465  *	skb_copy_expand	-	copy and expand sk_buff
2466  *	@skb: buffer to copy
2467  *	@newheadroom: new free bytes at head
2468  *	@newtailroom: new free bytes at tail
2469  *	@gfp_mask: allocation priority
2470  *
2471  *	Make a copy of both an &sk_buff and its data and while doing so
2472  *	allocate additional space.
2473  *
2474  *	This is used when the caller wishes to modify the data and needs a
2475  *	private copy of the data to alter as well as more space for new fields.
2476  *	Returns %NULL on failure or the pointer to the buffer
2477  *	on success. The returned buffer has a reference count of 1.
2478  *
2479  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2480  *	is called from an interrupt.
2481  */
2482 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2483 				int newheadroom, int newtailroom,
2484 				gfp_t gfp_mask)
2485 {
2486 	/*
2487 	 *	Allocate the copy buffer
2488 	 */
2489 	int head_copy_len, head_copy_off;
2490 	struct sk_buff *n;
2491 	int oldheadroom;
2492 
2493 	if (!skb_frags_readable(skb))
2494 		return NULL;
2495 
2496 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2497 		return NULL;
2498 
2499 	oldheadroom = skb_headroom(skb);
2500 	n = __alloc_skb(newheadroom + skb->len + newtailroom,
2501 			gfp_mask, skb_alloc_rx_flag(skb),
2502 			NUMA_NO_NODE);
2503 	if (!n)
2504 		return NULL;
2505 
2506 	skb_reserve(n, newheadroom);
2507 
2508 	/* Set the tail pointer and length */
2509 	skb_put(n, skb->len);
2510 
2511 	head_copy_len = oldheadroom;
2512 	head_copy_off = 0;
2513 	if (newheadroom <= head_copy_len)
2514 		head_copy_len = newheadroom;
2515 	else
2516 		head_copy_off = newheadroom - head_copy_len;
2517 
2518 	/* Copy the linear header and data. */
2519 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2520 			     skb->len + head_copy_len));
2521 
2522 	skb_copy_header(n, skb);
2523 
2524 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2525 
2526 	return n;
2527 }
2528 EXPORT_SYMBOL(skb_copy_expand);
2529 
2530 /**
2531  *	__skb_pad		-	zero pad the tail of an skb
2532  *	@skb: buffer to pad
2533  *	@pad: space to pad
2534  *	@free_on_error: free buffer on error
2535  *
2536  *	Ensure that a buffer is followed by a padding area that is zero
2537  *	filled. Used by network drivers which may DMA or transfer data
2538  *	beyond the buffer end onto the wire.
2539  *
2540  *	May return error in out of memory cases. The skb is freed on error
2541  *	if @free_on_error is true.
2542  */
2543 
2544 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2545 {
2546 	int err;
2547 	int ntail;
2548 
2549 	/* If the skbuff is non linear tailroom is always zero.. */
2550 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2551 		memset(skb->data+skb->len, 0, pad);
2552 		return 0;
2553 	}
2554 
2555 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2556 	if (likely(skb_cloned(skb) || ntail > 0)) {
2557 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2558 		if (unlikely(err))
2559 			goto free_skb;
2560 	}
2561 
2562 	/* FIXME: The use of this function with non-linear skb's really needs
2563 	 * to be audited.
2564 	 */
2565 	err = skb_linearize(skb);
2566 	if (unlikely(err))
2567 		goto free_skb;
2568 
2569 	memset(skb->data + skb->len, 0, pad);
2570 	return 0;
2571 
2572 free_skb:
2573 	if (free_on_error)
2574 		kfree_skb(skb);
2575 	return err;
2576 }
2577 EXPORT_SYMBOL(__skb_pad);
2578 
2579 /**
2580  *	pskb_put - add data to the tail of a potentially fragmented buffer
2581  *	@skb: start of the buffer to use
2582  *	@tail: tail fragment of the buffer to use
2583  *	@len: amount of data to add
2584  *
2585  *	This function extends the used data area of the potentially
2586  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2587  *	@skb itself. If this would exceed the total buffer size the kernel
2588  *	will panic. A pointer to the first byte of the extra data is
2589  *	returned.
2590  */
2591 
2592 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2593 {
2594 	if (tail != skb) {
2595 		skb->data_len += len;
2596 		skb->len += len;
2597 	}
2598 	return skb_put(tail, len);
2599 }
2600 EXPORT_SYMBOL_GPL(pskb_put);
2601 
2602 /**
2603  *	skb_put - add data to a buffer
2604  *	@skb: buffer to use
2605  *	@len: amount of data to add
2606  *
2607  *	This function extends the used data area of the buffer. If this would
2608  *	exceed the total buffer size the kernel will panic. A pointer to the
2609  *	first byte of the extra data is returned.
2610  */
2611 void *skb_put(struct sk_buff *skb, unsigned int len)
2612 {
2613 	void *tmp = skb_tail_pointer(skb);
2614 	SKB_LINEAR_ASSERT(skb);
2615 	skb->tail += len;
2616 	skb->len  += len;
2617 	if (unlikely(skb->tail > skb->end))
2618 		skb_over_panic(skb, len, __builtin_return_address(0));
2619 	return tmp;
2620 }
2621 EXPORT_SYMBOL(skb_put);
2622 
2623 /**
2624  *	skb_push - add data to the start of a buffer
2625  *	@skb: buffer to use
2626  *	@len: amount of data to add
2627  *
2628  *	This function extends the used data area of the buffer at the buffer
2629  *	start. If this would exceed the total buffer headroom the kernel will
2630  *	panic. A pointer to the first byte of the extra data is returned.
2631  */
2632 void *skb_push(struct sk_buff *skb, unsigned int len)
2633 {
2634 	skb->data -= len;
2635 	skb->len  += len;
2636 	if (unlikely(skb->data < skb->head))
2637 		skb_under_panic(skb, len, __builtin_return_address(0));
2638 	return skb->data;
2639 }
2640 EXPORT_SYMBOL(skb_push);
2641 
2642 /**
2643  *	skb_pull - remove data from the start of a buffer
2644  *	@skb: buffer to use
2645  *	@len: amount of data to remove
2646  *
2647  *	This function removes data from the start of a buffer, returning
2648  *	the memory to the headroom. A pointer to the next data in the buffer
2649  *	is returned. Once the data has been pulled future pushes will overwrite
2650  *	the old data.
2651  */
2652 void *skb_pull(struct sk_buff *skb, unsigned int len)
2653 {
2654 	return skb_pull_inline(skb, len);
2655 }
2656 EXPORT_SYMBOL(skb_pull);
2657 
2658 /**
2659  *	skb_pull_data - remove data from the start of a buffer returning its
2660  *	original position.
2661  *	@skb: buffer to use
2662  *	@len: amount of data to remove
2663  *
2664  *	This function removes data from the start of a buffer, returning
2665  *	the memory to the headroom. A pointer to the original data in the buffer
2666  *	is returned after checking if there is enough data to pull. Once the
2667  *	data has been pulled future pushes will overwrite the old data.
2668  */
2669 void *skb_pull_data(struct sk_buff *skb, size_t len)
2670 {
2671 	void *data = skb->data;
2672 
2673 	if (skb->len < len)
2674 		return NULL;
2675 
2676 	skb_pull(skb, len);
2677 
2678 	return data;
2679 }
2680 EXPORT_SYMBOL(skb_pull_data);
2681 
2682 /**
2683  *	skb_trim - remove end from a buffer
2684  *	@skb: buffer to alter
2685  *	@len: new length
2686  *
2687  *	Cut the length of a buffer down by removing data from the tail. If
2688  *	the buffer is already under the length specified it is not modified.
2689  *	The skb must be linear.
2690  */
2691 void skb_trim(struct sk_buff *skb, unsigned int len)
2692 {
2693 	if (skb->len > len)
2694 		__skb_trim(skb, len);
2695 }
2696 EXPORT_SYMBOL(skb_trim);
2697 
2698 /* Trims skb to length len. It can change skb pointers.
2699  */
2700 
2701 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2702 {
2703 	struct sk_buff **fragp;
2704 	struct sk_buff *frag;
2705 	int offset = skb_headlen(skb);
2706 	int nfrags = skb_shinfo(skb)->nr_frags;
2707 	int i;
2708 	int err;
2709 
2710 	if (skb_cloned(skb) &&
2711 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2712 		return err;
2713 
2714 	i = 0;
2715 	if (offset >= len)
2716 		goto drop_pages;
2717 
2718 	for (; i < nfrags; i++) {
2719 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2720 
2721 		if (end < len) {
2722 			offset = end;
2723 			continue;
2724 		}
2725 
2726 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2727 
2728 drop_pages:
2729 		skb_shinfo(skb)->nr_frags = i;
2730 
2731 		for (; i < nfrags; i++)
2732 			skb_frag_unref(skb, i);
2733 
2734 		if (skb_has_frag_list(skb))
2735 			skb_drop_fraglist(skb);
2736 		goto done;
2737 	}
2738 
2739 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2740 	     fragp = &frag->next) {
2741 		int end = offset + frag->len;
2742 
2743 		if (skb_shared(frag)) {
2744 			struct sk_buff *nfrag;
2745 
2746 			nfrag = skb_clone(frag, GFP_ATOMIC);
2747 			if (unlikely(!nfrag))
2748 				return -ENOMEM;
2749 
2750 			nfrag->next = frag->next;
2751 			consume_skb(frag);
2752 			frag = nfrag;
2753 			*fragp = frag;
2754 		}
2755 
2756 		if (end < len) {
2757 			offset = end;
2758 			continue;
2759 		}
2760 
2761 		if (end > len &&
2762 		    unlikely((err = pskb_trim(frag, len - offset))))
2763 			return err;
2764 
2765 		if (frag->next)
2766 			skb_drop_list(&frag->next);
2767 		break;
2768 	}
2769 
2770 done:
2771 	if (len > skb_headlen(skb)) {
2772 		skb->data_len -= skb->len - len;
2773 		skb->len       = len;
2774 	} else {
2775 		skb->len       = len;
2776 		skb->data_len  = 0;
2777 		skb_set_tail_pointer(skb, len);
2778 	}
2779 
2780 	if (!skb->sk || skb->destructor == sock_edemux)
2781 		skb_condense(skb);
2782 	return 0;
2783 }
2784 EXPORT_SYMBOL(___pskb_trim);
2785 
2786 /* Note : use pskb_trim_rcsum() instead of calling this directly
2787  */
2788 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2789 {
2790 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2791 		int delta = skb->len - len;
2792 
2793 		skb->csum = csum_block_sub(skb->csum,
2794 					   skb_checksum(skb, len, delta, 0),
2795 					   len);
2796 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2797 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2798 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2799 
2800 		if (offset + sizeof(__sum16) > hdlen)
2801 			return -EINVAL;
2802 	}
2803 	return __pskb_trim(skb, len);
2804 }
2805 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2806 
2807 /**
2808  *	__pskb_pull_tail - advance tail of skb header
2809  *	@skb: buffer to reallocate
2810  *	@delta: number of bytes to advance tail
2811  *
2812  *	The function makes a sense only on a fragmented &sk_buff,
2813  *	it expands header moving its tail forward and copying necessary
2814  *	data from fragmented part.
2815  *
2816  *	&sk_buff MUST have reference count of 1.
2817  *
2818  *	Returns %NULL (and &sk_buff does not change) if pull failed
2819  *	or value of new tail of skb in the case of success.
2820  *
2821  *	All the pointers pointing into skb header may change and must be
2822  *	reloaded after call to this function.
2823  */
2824 
2825 /* Moves tail of skb head forward, copying data from fragmented part,
2826  * when it is necessary.
2827  * 1. It may fail due to malloc failure.
2828  * 2. It may change skb pointers.
2829  *
2830  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2831  */
2832 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2833 {
2834 	/* If skb has not enough free space at tail, get new one
2835 	 * plus 128 bytes for future expansions. If we have enough
2836 	 * room at tail, reallocate without expansion only if skb is cloned.
2837 	 */
2838 	int i, k, eat = (skb->tail + delta) - skb->end;
2839 
2840 	if (!skb_frags_readable(skb))
2841 		return NULL;
2842 
2843 	if (eat > 0 || skb_cloned(skb)) {
2844 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2845 				     GFP_ATOMIC))
2846 			return NULL;
2847 	}
2848 
2849 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2850 			     skb_tail_pointer(skb), delta));
2851 
2852 	/* Optimization: no fragments, no reasons to preestimate
2853 	 * size of pulled pages. Superb.
2854 	 */
2855 	if (!skb_has_frag_list(skb))
2856 		goto pull_pages;
2857 
2858 	/* Estimate size of pulled pages. */
2859 	eat = delta;
2860 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2861 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2862 
2863 		if (size >= eat)
2864 			goto pull_pages;
2865 		eat -= size;
2866 	}
2867 
2868 	/* If we need update frag list, we are in troubles.
2869 	 * Certainly, it is possible to add an offset to skb data,
2870 	 * but taking into account that pulling is expected to
2871 	 * be very rare operation, it is worth to fight against
2872 	 * further bloating skb head and crucify ourselves here instead.
2873 	 * Pure masohism, indeed. 8)8)
2874 	 */
2875 	if (eat) {
2876 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2877 		struct sk_buff *clone = NULL;
2878 		struct sk_buff *insp = NULL;
2879 
2880 		do {
2881 			if (list->len <= eat) {
2882 				/* Eaten as whole. */
2883 				eat -= list->len;
2884 				list = list->next;
2885 				insp = list;
2886 			} else {
2887 				/* Eaten partially. */
2888 				if (skb_is_gso(skb) && !list->head_frag &&
2889 				    skb_headlen(list))
2890 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2891 
2892 				if (skb_shared(list)) {
2893 					/* Sucks! We need to fork list. :-( */
2894 					clone = skb_clone(list, GFP_ATOMIC);
2895 					if (!clone)
2896 						return NULL;
2897 					insp = list->next;
2898 					list = clone;
2899 				} else {
2900 					/* This may be pulled without
2901 					 * problems. */
2902 					insp = list;
2903 				}
2904 				if (!pskb_pull(list, eat)) {
2905 					kfree_skb(clone);
2906 					return NULL;
2907 				}
2908 				break;
2909 			}
2910 		} while (eat);
2911 
2912 		/* Free pulled out fragments. */
2913 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2914 			skb_shinfo(skb)->frag_list = list->next;
2915 			consume_skb(list);
2916 		}
2917 		/* And insert new clone at head. */
2918 		if (clone) {
2919 			clone->next = list;
2920 			skb_shinfo(skb)->frag_list = clone;
2921 		}
2922 	}
2923 	/* Success! Now we may commit changes to skb data. */
2924 
2925 pull_pages:
2926 	eat = delta;
2927 	k = 0;
2928 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2929 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2930 
2931 		if (size <= eat) {
2932 			skb_frag_unref(skb, i);
2933 			eat -= size;
2934 		} else {
2935 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2936 
2937 			*frag = skb_shinfo(skb)->frags[i];
2938 			if (eat) {
2939 				skb_frag_off_add(frag, eat);
2940 				skb_frag_size_sub(frag, eat);
2941 				if (!i)
2942 					goto end;
2943 				eat = 0;
2944 			}
2945 			k++;
2946 		}
2947 	}
2948 	skb_shinfo(skb)->nr_frags = k;
2949 
2950 end:
2951 	skb->tail     += delta;
2952 	skb->data_len -= delta;
2953 
2954 	if (!skb->data_len)
2955 		skb_zcopy_clear(skb, false);
2956 
2957 	return skb_tail_pointer(skb);
2958 }
2959 EXPORT_SYMBOL(__pskb_pull_tail);
2960 
2961 /**
2962  *	skb_copy_bits - copy bits from skb to kernel buffer
2963  *	@skb: source skb
2964  *	@offset: offset in source
2965  *	@to: destination buffer
2966  *	@len: number of bytes to copy
2967  *
2968  *	Copy the specified number of bytes from the source skb to the
2969  *	destination buffer.
2970  *
2971  *	CAUTION ! :
2972  *		If its prototype is ever changed,
2973  *		check arch/{*}/net/{*}.S files,
2974  *		since it is called from BPF assembly code.
2975  */
2976 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2977 {
2978 	int start = skb_headlen(skb);
2979 	struct sk_buff *frag_iter;
2980 	int i, copy;
2981 
2982 	if (offset > (int)skb->len - len)
2983 		goto fault;
2984 
2985 	/* Copy header. */
2986 	if ((copy = start - offset) > 0) {
2987 		if (copy > len)
2988 			copy = len;
2989 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2990 		if ((len -= copy) == 0)
2991 			return 0;
2992 		offset += copy;
2993 		to     += copy;
2994 	}
2995 
2996 	if (!skb_frags_readable(skb))
2997 		goto fault;
2998 
2999 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3000 		int end;
3001 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
3002 
3003 		WARN_ON(start > offset + len);
3004 
3005 		end = start + skb_frag_size(f);
3006 		if ((copy = end - offset) > 0) {
3007 			u32 p_off, p_len, copied;
3008 			struct page *p;
3009 			u8 *vaddr;
3010 
3011 			if (copy > len)
3012 				copy = len;
3013 
3014 			skb_frag_foreach_page(f,
3015 					      skb_frag_off(f) + offset - start,
3016 					      copy, p, p_off, p_len, copied) {
3017 				vaddr = kmap_atomic(p);
3018 				memcpy(to + copied, vaddr + p_off, p_len);
3019 				kunmap_atomic(vaddr);
3020 			}
3021 
3022 			if ((len -= copy) == 0)
3023 				return 0;
3024 			offset += copy;
3025 			to     += copy;
3026 		}
3027 		start = end;
3028 	}
3029 
3030 	skb_walk_frags(skb, frag_iter) {
3031 		int end;
3032 
3033 		WARN_ON(start > offset + len);
3034 
3035 		end = start + frag_iter->len;
3036 		if ((copy = end - offset) > 0) {
3037 			if (copy > len)
3038 				copy = len;
3039 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
3040 				goto fault;
3041 			if ((len -= copy) == 0)
3042 				return 0;
3043 			offset += copy;
3044 			to     += copy;
3045 		}
3046 		start = end;
3047 	}
3048 
3049 	if (!len)
3050 		return 0;
3051 
3052 fault:
3053 	return -EFAULT;
3054 }
3055 EXPORT_SYMBOL(skb_copy_bits);
3056 
3057 /*
3058  * Callback from splice_to_pipe(), if we need to release some pages
3059  * at the end of the spd in case we error'ed out in filling the pipe.
3060  */
3061 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3062 {
3063 	put_page(spd->pages[i]);
3064 }
3065 
3066 static struct page *linear_to_page(struct page *page, unsigned int *len,
3067 				   unsigned int *offset,
3068 				   struct sock *sk)
3069 {
3070 	struct page_frag *pfrag = sk_page_frag(sk);
3071 
3072 	if (!sk_page_frag_refill(sk, pfrag))
3073 		return NULL;
3074 
3075 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3076 
3077 	memcpy(page_address(pfrag->page) + pfrag->offset,
3078 	       page_address(page) + *offset, *len);
3079 	*offset = pfrag->offset;
3080 	pfrag->offset += *len;
3081 
3082 	return pfrag->page;
3083 }
3084 
3085 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3086 			     struct page *page,
3087 			     unsigned int offset)
3088 {
3089 	return	spd->nr_pages &&
3090 		spd->pages[spd->nr_pages - 1] == page &&
3091 		(spd->partial[spd->nr_pages - 1].offset +
3092 		 spd->partial[spd->nr_pages - 1].len == offset);
3093 }
3094 
3095 /*
3096  * Fill page/offset/length into spd, if it can hold more pages.
3097  */
3098 static bool spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
3099 			  unsigned int *len, unsigned int offset, bool linear,
3100 			  struct sock *sk)
3101 {
3102 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3103 		return true;
3104 
3105 	if (linear) {
3106 		page = linear_to_page(page, len, &offset, sk);
3107 		if (!page)
3108 			return true;
3109 	}
3110 	if (spd_can_coalesce(spd, page, offset)) {
3111 		spd->partial[spd->nr_pages - 1].len += *len;
3112 		return false;
3113 	}
3114 	get_page(page);
3115 	spd->pages[spd->nr_pages] = page;
3116 	spd->partial[spd->nr_pages].len = *len;
3117 	spd->partial[spd->nr_pages].offset = offset;
3118 	spd->nr_pages++;
3119 
3120 	return false;
3121 }
3122 
3123 static bool __splice_segment(struct page *page, unsigned int poff,
3124 			     unsigned int plen, unsigned int *off,
3125 			     unsigned int *len,
3126 			     struct splice_pipe_desc *spd, bool linear,
3127 			     struct sock *sk)
3128 {
3129 	if (!*len)
3130 		return true;
3131 
3132 	/* skip this segment if already processed */
3133 	if (*off >= plen) {
3134 		*off -= plen;
3135 		return false;
3136 	}
3137 
3138 	/* ignore any bits we already processed */
3139 	poff += *off;
3140 	plen -= *off;
3141 	*off = 0;
3142 
3143 	do {
3144 		unsigned int flen = min(*len, plen);
3145 
3146 		if (spd_fill_page(spd, page, &flen, poff, linear, sk))
3147 			return true;
3148 		poff += flen;
3149 		plen -= flen;
3150 		*len -= flen;
3151 		if (!*len)
3152 			return true;
3153 	} while (plen);
3154 
3155 	return false;
3156 }
3157 
3158 /*
3159  * Map linear and fragment data from the skb to spd. It reports true if the
3160  * pipe is full or if we already spliced the requested length.
3161  */
3162 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3163 			      unsigned int *offset, unsigned int *len,
3164 			      struct splice_pipe_desc *spd, struct sock *sk)
3165 {
3166 	struct sk_buff *iter;
3167 	int seg;
3168 
3169 	/* map the linear part :
3170 	 * If skb->head_frag is set, this 'linear' part is backed by a
3171 	 * fragment, and if the head is not shared with any clones then
3172 	 * we can avoid a copy since we own the head portion of this page.
3173 	 */
3174 	if (__splice_segment(virt_to_page(skb->data),
3175 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3176 			     skb_headlen(skb),
3177 			     offset, len, spd,
3178 			     skb_head_is_locked(skb),
3179 			     sk))
3180 		return true;
3181 
3182 	/*
3183 	 * then map the fragments
3184 	 */
3185 	if (!skb_frags_readable(skb))
3186 		return false;
3187 
3188 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3189 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3190 
3191 		if (WARN_ON_ONCE(!skb_frag_page(f)))
3192 			return false;
3193 
3194 		if (__splice_segment(skb_frag_page(f),
3195 				     skb_frag_off(f), skb_frag_size(f),
3196 				     offset, len, spd, false, sk))
3197 			return true;
3198 	}
3199 
3200 	skb_walk_frags(skb, iter) {
3201 		if (*offset >= iter->len) {
3202 			*offset -= iter->len;
3203 			continue;
3204 		}
3205 		/* __skb_splice_bits() only fails if the output has no room
3206 		 * left, so no point in going over the frag_list for the error
3207 		 * case.
3208 		 */
3209 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3210 			return true;
3211 	}
3212 
3213 	return false;
3214 }
3215 
3216 /*
3217  * Map data from the skb to a pipe. Should handle both the linear part,
3218  * the fragments, and the frag list.
3219  */
3220 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3221 		    struct pipe_inode_info *pipe, unsigned int tlen,
3222 		    unsigned int flags)
3223 {
3224 	struct partial_page partial[MAX_SKB_FRAGS];
3225 	struct page *pages[MAX_SKB_FRAGS];
3226 	struct splice_pipe_desc spd = {
3227 		.pages = pages,
3228 		.partial = partial,
3229 		.nr_pages_max = MAX_SKB_FRAGS,
3230 		.ops = &nosteal_pipe_buf_ops,
3231 		.spd_release = sock_spd_release,
3232 	};
3233 	int ret = 0;
3234 
3235 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3236 
3237 	if (spd.nr_pages)
3238 		ret = splice_to_pipe(pipe, &spd);
3239 
3240 	return ret;
3241 }
3242 EXPORT_SYMBOL_GPL(skb_splice_bits);
3243 
3244 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3245 {
3246 	struct socket *sock = sk->sk_socket;
3247 	size_t size = msg_data_left(msg);
3248 
3249 	if (!sock)
3250 		return -EINVAL;
3251 
3252 	if (!sock->ops->sendmsg_locked)
3253 		return sock_no_sendmsg_locked(sk, msg, size);
3254 
3255 	return sock->ops->sendmsg_locked(sk, msg, size);
3256 }
3257 
3258 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3259 {
3260 	struct socket *sock = sk->sk_socket;
3261 
3262 	if (!sock)
3263 		return -EINVAL;
3264 	return sock_sendmsg(sock, msg);
3265 }
3266 
3267 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3268 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3269 			   int len, sendmsg_func sendmsg, int flags)
3270 {
3271 	int more_hint = sk_is_tcp(sk) ? MSG_MORE : 0;
3272 	unsigned int orig_len = len;
3273 	struct sk_buff *head = skb;
3274 	unsigned short fragidx;
3275 	int slen, ret;
3276 
3277 do_frag_list:
3278 
3279 	/* Deal with head data */
3280 	while (offset < skb_headlen(skb) && len) {
3281 		struct kvec kv;
3282 		struct msghdr msg;
3283 
3284 		slen = min_t(int, len, skb_headlen(skb) - offset);
3285 		kv.iov_base = skb->data + offset;
3286 		kv.iov_len = slen;
3287 		memset(&msg, 0, sizeof(msg));
3288 		msg.msg_flags = MSG_DONTWAIT | flags;
3289 		if (slen < len)
3290 			msg.msg_flags |= more_hint;
3291 
3292 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3293 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3294 				      sendmsg_unlocked, sk, &msg);
3295 		if (ret <= 0)
3296 			goto error;
3297 
3298 		offset += ret;
3299 		len -= ret;
3300 	}
3301 
3302 	/* All the data was skb head? */
3303 	if (!len)
3304 		goto out;
3305 
3306 	/* Make offset relative to start of frags */
3307 	offset -= skb_headlen(skb);
3308 
3309 	/* Find where we are in frag list */
3310 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3311 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3312 
3313 		if (offset < skb_frag_size(frag))
3314 			break;
3315 
3316 		offset -= skb_frag_size(frag);
3317 	}
3318 
3319 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3320 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3321 
3322 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3323 
3324 		while (slen) {
3325 			struct bio_vec bvec;
3326 			struct msghdr msg = {
3327 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT |
3328 					     flags,
3329 			};
3330 
3331 			if (slen < len)
3332 				msg.msg_flags |= more_hint;
3333 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3334 				      skb_frag_off(frag) + offset);
3335 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3336 				      slen);
3337 
3338 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3339 					      sendmsg_unlocked, sk, &msg);
3340 			if (ret <= 0)
3341 				goto error;
3342 
3343 			len -= ret;
3344 			offset += ret;
3345 			slen -= ret;
3346 		}
3347 
3348 		offset = 0;
3349 	}
3350 
3351 	if (len) {
3352 		/* Process any frag lists */
3353 
3354 		if (skb == head) {
3355 			if (skb_has_frag_list(skb)) {
3356 				skb = skb_shinfo(skb)->frag_list;
3357 				goto do_frag_list;
3358 			}
3359 		} else if (skb->next) {
3360 			skb = skb->next;
3361 			goto do_frag_list;
3362 		}
3363 	}
3364 
3365 out:
3366 	return orig_len - len;
3367 
3368 error:
3369 	return orig_len == len ? ret : orig_len - len;
3370 }
3371 
3372 /* Send skb data on a socket. Socket must be locked. */
3373 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3374 			 int len)
3375 {
3376 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, 0);
3377 }
3378 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3379 
3380 int skb_send_sock_locked_with_flags(struct sock *sk, struct sk_buff *skb,
3381 				    int offset, int len, int flags)
3382 {
3383 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, flags);
3384 }
3385 EXPORT_SYMBOL_GPL(skb_send_sock_locked_with_flags);
3386 
3387 /* Send skb data on a socket. Socket must be unlocked. */
3388 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3389 {
3390 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 0);
3391 }
3392 
3393 /**
3394  *	skb_store_bits - store bits from kernel buffer to skb
3395  *	@skb: destination buffer
3396  *	@offset: offset in destination
3397  *	@from: source buffer
3398  *	@len: number of bytes to copy
3399  *
3400  *	Copy the specified number of bytes from the source buffer to the
3401  *	destination skb.  This function handles all the messy bits of
3402  *	traversing fragment lists and such.
3403  */
3404 
3405 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3406 {
3407 	int start = skb_headlen(skb);
3408 	struct sk_buff *frag_iter;
3409 	int i, copy;
3410 
3411 	if (offset > (int)skb->len - len)
3412 		goto fault;
3413 
3414 	if ((copy = start - offset) > 0) {
3415 		if (copy > len)
3416 			copy = len;
3417 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3418 		if ((len -= copy) == 0)
3419 			return 0;
3420 		offset += copy;
3421 		from += copy;
3422 	}
3423 
3424 	if (!skb_frags_readable(skb))
3425 		goto fault;
3426 
3427 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3428 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3429 		int end;
3430 
3431 		WARN_ON(start > offset + len);
3432 
3433 		end = start + skb_frag_size(frag);
3434 		if ((copy = end - offset) > 0) {
3435 			u32 p_off, p_len, copied;
3436 			struct page *p;
3437 			u8 *vaddr;
3438 
3439 			if (copy > len)
3440 				copy = len;
3441 
3442 			skb_frag_foreach_page(frag,
3443 					      skb_frag_off(frag) + offset - start,
3444 					      copy, p, p_off, p_len, copied) {
3445 				vaddr = kmap_atomic(p);
3446 				memcpy(vaddr + p_off, from + copied, p_len);
3447 				kunmap_atomic(vaddr);
3448 			}
3449 
3450 			if ((len -= copy) == 0)
3451 				return 0;
3452 			offset += copy;
3453 			from += copy;
3454 		}
3455 		start = end;
3456 	}
3457 
3458 	skb_walk_frags(skb, frag_iter) {
3459 		int end;
3460 
3461 		WARN_ON(start > offset + len);
3462 
3463 		end = start + frag_iter->len;
3464 		if ((copy = end - offset) > 0) {
3465 			if (copy > len)
3466 				copy = len;
3467 			if (skb_store_bits(frag_iter, offset - start,
3468 					   from, copy))
3469 				goto fault;
3470 			if ((len -= copy) == 0)
3471 				return 0;
3472 			offset += copy;
3473 			from += copy;
3474 		}
3475 		start = end;
3476 	}
3477 	if (!len)
3478 		return 0;
3479 
3480 fault:
3481 	return -EFAULT;
3482 }
3483 EXPORT_SYMBOL(skb_store_bits);
3484 
3485 /* Checksum skb data. */
3486 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum)
3487 {
3488 	int start = skb_headlen(skb);
3489 	int i, copy = start - offset;
3490 	struct sk_buff *frag_iter;
3491 	int pos = 0;
3492 
3493 	/* Checksum header. */
3494 	if (copy > 0) {
3495 		if (copy > len)
3496 			copy = len;
3497 		csum = csum_partial(skb->data + offset, copy, csum);
3498 		if ((len -= copy) == 0)
3499 			return csum;
3500 		offset += copy;
3501 		pos	= copy;
3502 	}
3503 
3504 	if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3505 		return 0;
3506 
3507 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3508 		int end;
3509 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3510 
3511 		WARN_ON(start > offset + len);
3512 
3513 		end = start + skb_frag_size(frag);
3514 		if ((copy = end - offset) > 0) {
3515 			u32 p_off, p_len, copied;
3516 			struct page *p;
3517 			__wsum csum2;
3518 			u8 *vaddr;
3519 
3520 			if (copy > len)
3521 				copy = len;
3522 
3523 			skb_frag_foreach_page(frag,
3524 					      skb_frag_off(frag) + offset - start,
3525 					      copy, p, p_off, p_len, copied) {
3526 				vaddr = kmap_atomic(p);
3527 				csum2 = csum_partial(vaddr + p_off, p_len, 0);
3528 				kunmap_atomic(vaddr);
3529 				csum = csum_block_add(csum, csum2, pos);
3530 				pos += p_len;
3531 			}
3532 
3533 			if (!(len -= copy))
3534 				return csum;
3535 			offset += copy;
3536 		}
3537 		start = end;
3538 	}
3539 
3540 	skb_walk_frags(skb, frag_iter) {
3541 		int end;
3542 
3543 		WARN_ON(start > offset + len);
3544 
3545 		end = start + frag_iter->len;
3546 		if ((copy = end - offset) > 0) {
3547 			__wsum csum2;
3548 			if (copy > len)
3549 				copy = len;
3550 			csum2 = skb_checksum(frag_iter, offset - start, copy,
3551 					     0);
3552 			csum = csum_block_add(csum, csum2, pos);
3553 			if ((len -= copy) == 0)
3554 				return csum;
3555 			offset += copy;
3556 			pos    += copy;
3557 		}
3558 		start = end;
3559 	}
3560 	BUG_ON(len);
3561 
3562 	return csum;
3563 }
3564 EXPORT_SYMBOL(skb_checksum);
3565 
3566 /* Both of above in one bottle. */
3567 
3568 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3569 				    u8 *to, int len)
3570 {
3571 	int start = skb_headlen(skb);
3572 	int i, copy = start - offset;
3573 	struct sk_buff *frag_iter;
3574 	int pos = 0;
3575 	__wsum csum = 0;
3576 
3577 	/* Copy header. */
3578 	if (copy > 0) {
3579 		if (copy > len)
3580 			copy = len;
3581 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3582 						 copy);
3583 		if ((len -= copy) == 0)
3584 			return csum;
3585 		offset += copy;
3586 		to     += copy;
3587 		pos	= copy;
3588 	}
3589 
3590 	if (!skb_frags_readable(skb))
3591 		return 0;
3592 
3593 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3594 		int end;
3595 
3596 		WARN_ON(start > offset + len);
3597 
3598 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3599 		if ((copy = end - offset) > 0) {
3600 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3601 			u32 p_off, p_len, copied;
3602 			struct page *p;
3603 			__wsum csum2;
3604 			u8 *vaddr;
3605 
3606 			if (copy > len)
3607 				copy = len;
3608 
3609 			skb_frag_foreach_page(frag,
3610 					      skb_frag_off(frag) + offset - start,
3611 					      copy, p, p_off, p_len, copied) {
3612 				vaddr = kmap_atomic(p);
3613 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3614 								  to + copied,
3615 								  p_len);
3616 				kunmap_atomic(vaddr);
3617 				csum = csum_block_add(csum, csum2, pos);
3618 				pos += p_len;
3619 			}
3620 
3621 			if (!(len -= copy))
3622 				return csum;
3623 			offset += copy;
3624 			to     += copy;
3625 		}
3626 		start = end;
3627 	}
3628 
3629 	skb_walk_frags(skb, frag_iter) {
3630 		__wsum csum2;
3631 		int end;
3632 
3633 		WARN_ON(start > offset + len);
3634 
3635 		end = start + frag_iter->len;
3636 		if ((copy = end - offset) > 0) {
3637 			if (copy > len)
3638 				copy = len;
3639 			csum2 = skb_copy_and_csum_bits(frag_iter,
3640 						       offset - start,
3641 						       to, copy);
3642 			csum = csum_block_add(csum, csum2, pos);
3643 			if ((len -= copy) == 0)
3644 				return csum;
3645 			offset += copy;
3646 			to     += copy;
3647 			pos    += copy;
3648 		}
3649 		start = end;
3650 	}
3651 	BUG_ON(len);
3652 	return csum;
3653 }
3654 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3655 
3656 #ifdef CONFIG_NET_CRC32C
3657 u32 skb_crc32c(const struct sk_buff *skb, int offset, int len, u32 crc)
3658 {
3659 	int start = skb_headlen(skb);
3660 	int i, copy = start - offset;
3661 	struct sk_buff *frag_iter;
3662 
3663 	if (copy > 0) {
3664 		copy = min(copy, len);
3665 		crc = crc32c(crc, skb->data + offset, copy);
3666 		len -= copy;
3667 		if (len == 0)
3668 			return crc;
3669 		offset += copy;
3670 	}
3671 
3672 	if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3673 		return 0;
3674 
3675 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3676 		int end;
3677 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3678 
3679 		WARN_ON(start > offset + len);
3680 
3681 		end = start + skb_frag_size(frag);
3682 		copy = end - offset;
3683 		if (copy > 0) {
3684 			u32 p_off, p_len, copied;
3685 			struct page *p;
3686 			u8 *vaddr;
3687 
3688 			copy = min(copy, len);
3689 			skb_frag_foreach_page(frag,
3690 					      skb_frag_off(frag) + offset - start,
3691 					      copy, p, p_off, p_len, copied) {
3692 				vaddr = kmap_atomic(p);
3693 				crc = crc32c(crc, vaddr + p_off, p_len);
3694 				kunmap_atomic(vaddr);
3695 			}
3696 			len -= copy;
3697 			if (len == 0)
3698 				return crc;
3699 			offset += copy;
3700 		}
3701 		start = end;
3702 	}
3703 
3704 	skb_walk_frags(skb, frag_iter) {
3705 		int end;
3706 
3707 		WARN_ON(start > offset + len);
3708 
3709 		end = start + frag_iter->len;
3710 		copy = end - offset;
3711 		if (copy > 0) {
3712 			copy = min(copy, len);
3713 			crc = skb_crc32c(frag_iter, offset - start, copy, crc);
3714 			len -= copy;
3715 			if (len == 0)
3716 				return crc;
3717 			offset += copy;
3718 		}
3719 		start = end;
3720 	}
3721 	BUG_ON(len);
3722 
3723 	return crc;
3724 }
3725 EXPORT_SYMBOL(skb_crc32c);
3726 #endif /* CONFIG_NET_CRC32C */
3727 
3728 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3729 {
3730 	__sum16 sum;
3731 
3732 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3733 	/* See comments in __skb_checksum_complete(). */
3734 	if (likely(!sum)) {
3735 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3736 		    !skb->csum_complete_sw)
3737 			netdev_rx_csum_fault(skb->dev, skb);
3738 	}
3739 	if (!skb_shared(skb))
3740 		skb->csum_valid = !sum;
3741 	return sum;
3742 }
3743 EXPORT_SYMBOL(__skb_checksum_complete_head);
3744 
3745 /* This function assumes skb->csum already holds pseudo header's checksum,
3746  * which has been changed from the hardware checksum, for example, by
3747  * __skb_checksum_validate_complete(). And, the original skb->csum must
3748  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3749  *
3750  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3751  * zero. The new checksum is stored back into skb->csum unless the skb is
3752  * shared.
3753  */
3754 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3755 {
3756 	__wsum csum;
3757 	__sum16 sum;
3758 
3759 	csum = skb_checksum(skb, 0, skb->len, 0);
3760 
3761 	sum = csum_fold(csum_add(skb->csum, csum));
3762 	/* This check is inverted, because we already knew the hardware
3763 	 * checksum is invalid before calling this function. So, if the
3764 	 * re-computed checksum is valid instead, then we have a mismatch
3765 	 * between the original skb->csum and skb_checksum(). This means either
3766 	 * the original hardware checksum is incorrect or we screw up skb->csum
3767 	 * when moving skb->data around.
3768 	 */
3769 	if (likely(!sum)) {
3770 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3771 		    !skb->csum_complete_sw)
3772 			netdev_rx_csum_fault(skb->dev, skb);
3773 	}
3774 
3775 	if (!skb_shared(skb)) {
3776 		/* Save full packet checksum */
3777 		skb->csum = csum;
3778 		skb->ip_summed = CHECKSUM_COMPLETE;
3779 		skb->csum_complete_sw = 1;
3780 		skb->csum_valid = !sum;
3781 	}
3782 
3783 	return sum;
3784 }
3785 EXPORT_SYMBOL(__skb_checksum_complete);
3786 
3787  /**
3788  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3789  *	@from: source buffer
3790  *
3791  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3792  *	into skb_zerocopy().
3793  */
3794 unsigned int
3795 skb_zerocopy_headlen(const struct sk_buff *from)
3796 {
3797 	unsigned int hlen = 0;
3798 
3799 	if (!from->head_frag ||
3800 	    skb_headlen(from) < L1_CACHE_BYTES ||
3801 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3802 		hlen = skb_headlen(from);
3803 		if (!hlen)
3804 			hlen = from->len;
3805 	}
3806 
3807 	if (skb_has_frag_list(from))
3808 		hlen = from->len;
3809 
3810 	return hlen;
3811 }
3812 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3813 
3814 /**
3815  *	skb_zerocopy - Zero copy skb to skb
3816  *	@to: destination buffer
3817  *	@from: source buffer
3818  *	@len: number of bytes to copy from source buffer
3819  *	@hlen: size of linear headroom in destination buffer
3820  *
3821  *	Copies up to `len` bytes from `from` to `to` by creating references
3822  *	to the frags in the source buffer.
3823  *
3824  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3825  *	headroom in the `to` buffer.
3826  *
3827  *	Return value:
3828  *	0: everything is OK
3829  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3830  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3831  */
3832 int
3833 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3834 {
3835 	int i, j = 0;
3836 	int plen = 0; /* length of skb->head fragment */
3837 	int ret;
3838 	struct page *page;
3839 	unsigned int offset;
3840 
3841 	BUG_ON(!from->head_frag && !hlen);
3842 
3843 	/* dont bother with small payloads */
3844 	if (len <= skb_tailroom(to))
3845 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3846 
3847 	if (hlen) {
3848 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3849 		if (unlikely(ret))
3850 			return ret;
3851 		len -= hlen;
3852 	} else {
3853 		plen = min_t(int, skb_headlen(from), len);
3854 		if (plen) {
3855 			page = virt_to_head_page(from->head);
3856 			offset = from->data - (unsigned char *)page_address(page);
3857 			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3858 					       offset, plen);
3859 			get_page(page);
3860 			j = 1;
3861 			len -= plen;
3862 		}
3863 	}
3864 
3865 	skb_len_add(to, len + plen);
3866 
3867 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3868 		skb_tx_error(from);
3869 		return -ENOMEM;
3870 	}
3871 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3872 
3873 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3874 		int size;
3875 
3876 		if (!len)
3877 			break;
3878 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3879 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3880 					len);
3881 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3882 		len -= size;
3883 		skb_frag_ref(to, j);
3884 		j++;
3885 	}
3886 	skb_shinfo(to)->nr_frags = j;
3887 
3888 	return 0;
3889 }
3890 EXPORT_SYMBOL_GPL(skb_zerocopy);
3891 
3892 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3893 {
3894 	__wsum csum;
3895 	long csstart;
3896 
3897 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3898 		csstart = skb_checksum_start_offset(skb);
3899 	else
3900 		csstart = skb_headlen(skb);
3901 
3902 	BUG_ON(csstart > skb_headlen(skb));
3903 
3904 	skb_copy_from_linear_data(skb, to, csstart);
3905 
3906 	csum = 0;
3907 	if (csstart != skb->len)
3908 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3909 					      skb->len - csstart);
3910 
3911 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3912 		long csstuff = csstart + skb->csum_offset;
3913 
3914 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3915 	}
3916 }
3917 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3918 
3919 /**
3920  *	skb_dequeue - remove from the head of the queue
3921  *	@list: list to dequeue from
3922  *
3923  *	Remove the head of the list. The list lock is taken so the function
3924  *	may be used safely with other locking list functions. The head item is
3925  *	returned or %NULL if the list is empty.
3926  */
3927 
3928 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3929 {
3930 	unsigned long flags;
3931 	struct sk_buff *result;
3932 
3933 	spin_lock_irqsave(&list->lock, flags);
3934 	result = __skb_dequeue(list);
3935 	spin_unlock_irqrestore(&list->lock, flags);
3936 	return result;
3937 }
3938 EXPORT_SYMBOL(skb_dequeue);
3939 
3940 /**
3941  *	skb_dequeue_tail - remove from the tail of the queue
3942  *	@list: list to dequeue from
3943  *
3944  *	Remove the tail of the list. The list lock is taken so the function
3945  *	may be used safely with other locking list functions. The tail item is
3946  *	returned or %NULL if the list is empty.
3947  */
3948 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3949 {
3950 	unsigned long flags;
3951 	struct sk_buff *result;
3952 
3953 	spin_lock_irqsave(&list->lock, flags);
3954 	result = __skb_dequeue_tail(list);
3955 	spin_unlock_irqrestore(&list->lock, flags);
3956 	return result;
3957 }
3958 EXPORT_SYMBOL(skb_dequeue_tail);
3959 
3960 /**
3961  *	skb_queue_purge_reason - empty a list
3962  *	@list: list to empty
3963  *	@reason: drop reason
3964  *
3965  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3966  *	the list and one reference dropped. This function takes the list
3967  *	lock and is atomic with respect to other list locking functions.
3968  */
3969 void skb_queue_purge_reason(struct sk_buff_head *list,
3970 			    enum skb_drop_reason reason)
3971 {
3972 	struct sk_buff_head tmp;
3973 	unsigned long flags;
3974 
3975 	if (skb_queue_empty_lockless(list))
3976 		return;
3977 
3978 	__skb_queue_head_init(&tmp);
3979 
3980 	spin_lock_irqsave(&list->lock, flags);
3981 	skb_queue_splice_init(list, &tmp);
3982 	spin_unlock_irqrestore(&list->lock, flags);
3983 
3984 	__skb_queue_purge_reason(&tmp, reason);
3985 }
3986 EXPORT_SYMBOL(skb_queue_purge_reason);
3987 
3988 /**
3989  *	skb_rbtree_purge - empty a skb rbtree
3990  *	@root: root of the rbtree to empty
3991  *	Return value: the sum of truesizes of all purged skbs.
3992  *
3993  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3994  *	the list and one reference dropped. This function does not take
3995  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3996  *	out-of-order queue is protected by the socket lock).
3997  */
3998 unsigned int skb_rbtree_purge(struct rb_root *root)
3999 {
4000 	struct rb_node *p = rb_first(root);
4001 	unsigned int sum = 0;
4002 
4003 	while (p) {
4004 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
4005 
4006 		p = rb_next(p);
4007 		rb_erase(&skb->rbnode, root);
4008 		sum += skb->truesize;
4009 		kfree_skb(skb);
4010 	}
4011 	return sum;
4012 }
4013 
4014 void skb_errqueue_purge(struct sk_buff_head *list)
4015 {
4016 	struct sk_buff *skb, *next;
4017 	struct sk_buff_head kill;
4018 	unsigned long flags;
4019 
4020 	__skb_queue_head_init(&kill);
4021 
4022 	spin_lock_irqsave(&list->lock, flags);
4023 	skb_queue_walk_safe(list, skb, next) {
4024 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
4025 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
4026 			continue;
4027 		__skb_unlink(skb, list);
4028 		__skb_queue_tail(&kill, skb);
4029 	}
4030 	spin_unlock_irqrestore(&list->lock, flags);
4031 	__skb_queue_purge(&kill);
4032 }
4033 EXPORT_SYMBOL(skb_errqueue_purge);
4034 
4035 /**
4036  *	skb_queue_head - queue a buffer at the list head
4037  *	@list: list to use
4038  *	@newsk: buffer to queue
4039  *
4040  *	Queue a buffer at the start of the list. This function takes the
4041  *	list lock and can be used safely with other locking &sk_buff functions
4042  *	safely.
4043  *
4044  *	A buffer cannot be placed on two lists at the same time.
4045  */
4046 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
4047 {
4048 	unsigned long flags;
4049 
4050 	spin_lock_irqsave(&list->lock, flags);
4051 	__skb_queue_head(list, newsk);
4052 	spin_unlock_irqrestore(&list->lock, flags);
4053 }
4054 EXPORT_SYMBOL(skb_queue_head);
4055 
4056 /**
4057  *	skb_queue_tail - queue a buffer at the list tail
4058  *	@list: list to use
4059  *	@newsk: buffer to queue
4060  *
4061  *	Queue a buffer at the tail of the list. This function takes the
4062  *	list lock and can be used safely with other locking &sk_buff functions
4063  *	safely.
4064  *
4065  *	A buffer cannot be placed on two lists at the same time.
4066  */
4067 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
4068 {
4069 	unsigned long flags;
4070 
4071 	spin_lock_irqsave(&list->lock, flags);
4072 	__skb_queue_tail(list, newsk);
4073 	spin_unlock_irqrestore(&list->lock, flags);
4074 }
4075 EXPORT_SYMBOL(skb_queue_tail);
4076 
4077 /**
4078  *	skb_unlink	-	remove a buffer from a list
4079  *	@skb: buffer to remove
4080  *	@list: list to use
4081  *
4082  *	Remove a packet from a list. The list locks are taken and this
4083  *	function is atomic with respect to other list locked calls
4084  *
4085  *	You must know what list the SKB is on.
4086  */
4087 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
4088 {
4089 	unsigned long flags;
4090 
4091 	spin_lock_irqsave(&list->lock, flags);
4092 	__skb_unlink(skb, list);
4093 	spin_unlock_irqrestore(&list->lock, flags);
4094 }
4095 EXPORT_SYMBOL(skb_unlink);
4096 
4097 /**
4098  *	skb_append	-	append a buffer
4099  *	@old: buffer to insert after
4100  *	@newsk: buffer to insert
4101  *	@list: list to use
4102  *
4103  *	Place a packet after a given packet in a list. The list locks are taken
4104  *	and this function is atomic with respect to other list locked calls.
4105  *	A buffer cannot be placed on two lists at the same time.
4106  */
4107 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4108 {
4109 	unsigned long flags;
4110 
4111 	spin_lock_irqsave(&list->lock, flags);
4112 	__skb_queue_after(list, old, newsk);
4113 	spin_unlock_irqrestore(&list->lock, flags);
4114 }
4115 EXPORT_SYMBOL(skb_append);
4116 
4117 static inline void skb_split_inside_header(struct sk_buff *skb,
4118 					   struct sk_buff* skb1,
4119 					   const u32 len, const int pos)
4120 {
4121 	int i;
4122 
4123 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4124 					 pos - len);
4125 	/* And move data appendix as is. */
4126 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4127 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4128 
4129 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4130 	skb1->unreadable	   = skb->unreadable;
4131 	skb_shinfo(skb)->nr_frags  = 0;
4132 	skb1->data_len		   = skb->data_len;
4133 	skb1->len		   += skb1->data_len;
4134 	skb->data_len		   = 0;
4135 	skb->len		   = len;
4136 	skb_set_tail_pointer(skb, len);
4137 }
4138 
4139 static inline void skb_split_no_header(struct sk_buff *skb,
4140 				       struct sk_buff* skb1,
4141 				       const u32 len, int pos)
4142 {
4143 	int i, k = 0;
4144 	const int nfrags = skb_shinfo(skb)->nr_frags;
4145 
4146 	skb_shinfo(skb)->nr_frags = 0;
4147 	skb1->len		  = skb1->data_len = skb->len - len;
4148 	skb->len		  = len;
4149 	skb->data_len		  = len - pos;
4150 
4151 	for (i = 0; i < nfrags; i++) {
4152 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4153 
4154 		if (pos + size > len) {
4155 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4156 
4157 			if (pos < len) {
4158 				/* Split frag.
4159 				 * We have two variants in this case:
4160 				 * 1. Move all the frag to the second
4161 				 *    part, if it is possible. F.e.
4162 				 *    this approach is mandatory for TUX,
4163 				 *    where splitting is expensive.
4164 				 * 2. Split is accurately. We make this.
4165 				 */
4166 				skb_frag_ref(skb, i);
4167 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4168 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4169 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4170 				skb_shinfo(skb)->nr_frags++;
4171 			}
4172 			k++;
4173 		} else
4174 			skb_shinfo(skb)->nr_frags++;
4175 		pos += size;
4176 	}
4177 	skb_shinfo(skb1)->nr_frags = k;
4178 
4179 	skb1->unreadable = skb->unreadable;
4180 }
4181 
4182 /**
4183  * skb_split - Split fragmented skb to two parts at length len.
4184  * @skb: the buffer to split
4185  * @skb1: the buffer to receive the second part
4186  * @len: new length for skb
4187  */
4188 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4189 {
4190 	int pos = skb_headlen(skb);
4191 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4192 
4193 	skb_zcopy_downgrade_managed(skb);
4194 
4195 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4196 	skb_zerocopy_clone(skb1, skb, 0);
4197 	if (len < pos)	/* Split line is inside header. */
4198 		skb_split_inside_header(skb, skb1, len, pos);
4199 	else		/* Second chunk has no header, nothing to copy. */
4200 		skb_split_no_header(skb, skb1, len, pos);
4201 }
4202 EXPORT_SYMBOL(skb_split);
4203 
4204 /* Shifting from/to a cloned skb is a no-go.
4205  *
4206  * Caller cannot keep skb_shinfo related pointers past calling here!
4207  */
4208 static int skb_prepare_for_shift(struct sk_buff *skb)
4209 {
4210 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4211 }
4212 
4213 /**
4214  * skb_shift - Shifts paged data partially from skb to another
4215  * @tgt: buffer into which tail data gets added
4216  * @skb: buffer from which the paged data comes from
4217  * @shiftlen: shift up to this many bytes
4218  *
4219  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4220  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4221  * It's up to caller to free skb if everything was shifted.
4222  *
4223  * If @tgt runs out of frags, the whole operation is aborted.
4224  *
4225  * Skb cannot include anything else but paged data while tgt is allowed
4226  * to have non-paged data as well.
4227  *
4228  * TODO: full sized shift could be optimized but that would need
4229  * specialized skb free'er to handle frags without up-to-date nr_frags.
4230  */
4231 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4232 {
4233 	int from, to, merge, todo;
4234 	skb_frag_t *fragfrom, *fragto;
4235 
4236 	BUG_ON(shiftlen > skb->len);
4237 
4238 	if (skb_headlen(skb))
4239 		return 0;
4240 	if (skb_zcopy(tgt) || skb_zcopy(skb))
4241 		return 0;
4242 
4243 	DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle);
4244 	DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb));
4245 
4246 	todo = shiftlen;
4247 	from = 0;
4248 	to = skb_shinfo(tgt)->nr_frags;
4249 	fragfrom = &skb_shinfo(skb)->frags[from];
4250 
4251 	/* Actual merge is delayed until the point when we know we can
4252 	 * commit all, so that we don't have to undo partial changes
4253 	 */
4254 	if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4255 			      skb_frag_off(fragfrom))) {
4256 		merge = -1;
4257 	} else {
4258 		merge = to - 1;
4259 
4260 		todo -= skb_frag_size(fragfrom);
4261 		if (todo < 0) {
4262 			if (skb_prepare_for_shift(skb) ||
4263 			    skb_prepare_for_shift(tgt))
4264 				return 0;
4265 
4266 			/* All previous frag pointers might be stale! */
4267 			fragfrom = &skb_shinfo(skb)->frags[from];
4268 			fragto = &skb_shinfo(tgt)->frags[merge];
4269 
4270 			skb_frag_size_add(fragto, shiftlen);
4271 			skb_frag_size_sub(fragfrom, shiftlen);
4272 			skb_frag_off_add(fragfrom, shiftlen);
4273 
4274 			goto onlymerged;
4275 		}
4276 
4277 		from++;
4278 	}
4279 
4280 	/* Skip full, not-fitting skb to avoid expensive operations */
4281 	if ((shiftlen == skb->len) &&
4282 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4283 		return 0;
4284 
4285 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4286 		return 0;
4287 
4288 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4289 		if (to == MAX_SKB_FRAGS)
4290 			return 0;
4291 
4292 		fragfrom = &skb_shinfo(skb)->frags[from];
4293 		fragto = &skb_shinfo(tgt)->frags[to];
4294 
4295 		if (todo >= skb_frag_size(fragfrom)) {
4296 			*fragto = *fragfrom;
4297 			todo -= skb_frag_size(fragfrom);
4298 			from++;
4299 			to++;
4300 
4301 		} else {
4302 			__skb_frag_ref(fragfrom);
4303 			skb_frag_page_copy(fragto, fragfrom);
4304 			skb_frag_off_copy(fragto, fragfrom);
4305 			skb_frag_size_set(fragto, todo);
4306 
4307 			skb_frag_off_add(fragfrom, todo);
4308 			skb_frag_size_sub(fragfrom, todo);
4309 			todo = 0;
4310 
4311 			to++;
4312 			break;
4313 		}
4314 	}
4315 
4316 	/* Ready to "commit" this state change to tgt */
4317 	skb_shinfo(tgt)->nr_frags = to;
4318 
4319 	if (merge >= 0) {
4320 		fragfrom = &skb_shinfo(skb)->frags[0];
4321 		fragto = &skb_shinfo(tgt)->frags[merge];
4322 
4323 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4324 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4325 	}
4326 
4327 	/* Reposition in the original skb */
4328 	to = 0;
4329 	while (from < skb_shinfo(skb)->nr_frags)
4330 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4331 	skb_shinfo(skb)->nr_frags = to;
4332 
4333 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4334 
4335 onlymerged:
4336 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4337 	 * the other hand might need it if it needs to be resent
4338 	 */
4339 	tgt->ip_summed = CHECKSUM_PARTIAL;
4340 	skb->ip_summed = CHECKSUM_PARTIAL;
4341 
4342 	skb_len_add(skb, -shiftlen);
4343 	skb_len_add(tgt, shiftlen);
4344 
4345 	return shiftlen;
4346 }
4347 
4348 /**
4349  * skb_prepare_seq_read - Prepare a sequential read of skb data
4350  * @skb: the buffer to read
4351  * @from: lower offset of data to be read
4352  * @to: upper offset of data to be read
4353  * @st: state variable
4354  *
4355  * Initializes the specified state variable. Must be called before
4356  * invoking skb_seq_read() for the first time.
4357  */
4358 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4359 			  unsigned int to, struct skb_seq_state *st)
4360 {
4361 	st->lower_offset = from;
4362 	st->upper_offset = to;
4363 	st->root_skb = st->cur_skb = skb;
4364 	st->frag_idx = st->stepped_offset = 0;
4365 	st->frag_data = NULL;
4366 	st->frag_off = 0;
4367 }
4368 EXPORT_SYMBOL(skb_prepare_seq_read);
4369 
4370 /**
4371  * skb_seq_read - Sequentially read skb data
4372  * @consumed: number of bytes consumed by the caller so far
4373  * @data: destination pointer for data to be returned
4374  * @st: state variable
4375  *
4376  * Reads a block of skb data at @consumed relative to the
4377  * lower offset specified to skb_prepare_seq_read(). Assigns
4378  * the head of the data block to @data and returns the length
4379  * of the block or 0 if the end of the skb data or the upper
4380  * offset has been reached.
4381  *
4382  * The caller is not required to consume all of the data
4383  * returned, i.e. @consumed is typically set to the number
4384  * of bytes already consumed and the next call to
4385  * skb_seq_read() will return the remaining part of the block.
4386  *
4387  * Note 1: The size of each block of data returned can be arbitrary,
4388  *       this limitation is the cost for zerocopy sequential
4389  *       reads of potentially non linear data.
4390  *
4391  * Note 2: Fragment lists within fragments are not implemented
4392  *       at the moment, state->root_skb could be replaced with
4393  *       a stack for this purpose.
4394  */
4395 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4396 			  struct skb_seq_state *st)
4397 {
4398 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4399 	skb_frag_t *frag;
4400 
4401 	if (unlikely(abs_offset >= st->upper_offset)) {
4402 		if (st->frag_data) {
4403 			kunmap_atomic(st->frag_data);
4404 			st->frag_data = NULL;
4405 		}
4406 		return 0;
4407 	}
4408 
4409 next_skb:
4410 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4411 
4412 	if (abs_offset < block_limit && !st->frag_data) {
4413 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4414 		return block_limit - abs_offset;
4415 	}
4416 
4417 	if (!skb_frags_readable(st->cur_skb))
4418 		return 0;
4419 
4420 	if (st->frag_idx == 0 && !st->frag_data)
4421 		st->stepped_offset += skb_headlen(st->cur_skb);
4422 
4423 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4424 		unsigned int pg_idx, pg_off, pg_sz;
4425 
4426 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4427 
4428 		pg_idx = 0;
4429 		pg_off = skb_frag_off(frag);
4430 		pg_sz = skb_frag_size(frag);
4431 
4432 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4433 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4434 			pg_off = offset_in_page(pg_off + st->frag_off);
4435 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4436 						    PAGE_SIZE - pg_off);
4437 		}
4438 
4439 		block_limit = pg_sz + st->stepped_offset;
4440 		if (abs_offset < block_limit) {
4441 			if (!st->frag_data)
4442 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4443 
4444 			*data = (u8 *)st->frag_data + pg_off +
4445 				(abs_offset - st->stepped_offset);
4446 
4447 			return block_limit - abs_offset;
4448 		}
4449 
4450 		if (st->frag_data) {
4451 			kunmap_atomic(st->frag_data);
4452 			st->frag_data = NULL;
4453 		}
4454 
4455 		st->stepped_offset += pg_sz;
4456 		st->frag_off += pg_sz;
4457 		if (st->frag_off == skb_frag_size(frag)) {
4458 			st->frag_off = 0;
4459 			st->frag_idx++;
4460 		}
4461 	}
4462 
4463 	if (st->frag_data) {
4464 		kunmap_atomic(st->frag_data);
4465 		st->frag_data = NULL;
4466 	}
4467 
4468 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4469 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4470 		st->frag_idx = 0;
4471 		goto next_skb;
4472 	} else if (st->cur_skb->next) {
4473 		st->cur_skb = st->cur_skb->next;
4474 		st->frag_idx = 0;
4475 		goto next_skb;
4476 	}
4477 
4478 	return 0;
4479 }
4480 EXPORT_SYMBOL(skb_seq_read);
4481 
4482 /**
4483  * skb_abort_seq_read - Abort a sequential read of skb data
4484  * @st: state variable
4485  *
4486  * Must be called if skb_seq_read() was not called until it
4487  * returned 0.
4488  */
4489 void skb_abort_seq_read(struct skb_seq_state *st)
4490 {
4491 	if (st->frag_data)
4492 		kunmap_atomic(st->frag_data);
4493 }
4494 EXPORT_SYMBOL(skb_abort_seq_read);
4495 
4496 /**
4497  * skb_copy_seq_read() - copy from a skb_seq_state to a buffer
4498  * @st: source skb_seq_state
4499  * @offset: offset in source
4500  * @to: destination buffer
4501  * @len: number of bytes to copy
4502  *
4503  * Copy @len bytes from @offset bytes into the source @st to the destination
4504  * buffer @to. `offset` should increase (or be unchanged) with each subsequent
4505  * call to this function. If offset needs to decrease from the previous use `st`
4506  * should be reset first.
4507  *
4508  * Return: 0 on success or -EINVAL if the copy ended early
4509  */
4510 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len)
4511 {
4512 	const u8 *data;
4513 	u32 sqlen;
4514 
4515 	for (;;) {
4516 		sqlen = skb_seq_read(offset, &data, st);
4517 		if (sqlen == 0)
4518 			return -EINVAL;
4519 		if (sqlen >= len) {
4520 			memcpy(to, data, len);
4521 			return 0;
4522 		}
4523 		memcpy(to, data, sqlen);
4524 		to += sqlen;
4525 		offset += sqlen;
4526 		len -= sqlen;
4527 	}
4528 }
4529 EXPORT_SYMBOL(skb_copy_seq_read);
4530 
4531 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4532 
4533 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4534 					  struct ts_config *conf,
4535 					  struct ts_state *state)
4536 {
4537 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4538 }
4539 
4540 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4541 {
4542 	skb_abort_seq_read(TS_SKB_CB(state));
4543 }
4544 
4545 /**
4546  * skb_find_text - Find a text pattern in skb data
4547  * @skb: the buffer to look in
4548  * @from: search offset
4549  * @to: search limit
4550  * @config: textsearch configuration
4551  *
4552  * Finds a pattern in the skb data according to the specified
4553  * textsearch configuration. Use textsearch_next() to retrieve
4554  * subsequent occurrences of the pattern. Returns the offset
4555  * to the first occurrence or UINT_MAX if no match was found.
4556  */
4557 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4558 			   unsigned int to, struct ts_config *config)
4559 {
4560 	unsigned int patlen = config->ops->get_pattern_len(config);
4561 	struct ts_state state;
4562 	unsigned int ret;
4563 
4564 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4565 
4566 	config->get_next_block = skb_ts_get_next_block;
4567 	config->finish = skb_ts_finish;
4568 
4569 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4570 
4571 	ret = textsearch_find(config, &state);
4572 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4573 }
4574 EXPORT_SYMBOL(skb_find_text);
4575 
4576 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4577 			 int offset, size_t size, size_t max_frags)
4578 {
4579 	int i = skb_shinfo(skb)->nr_frags;
4580 
4581 	if (skb_can_coalesce(skb, i, page, offset)) {
4582 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4583 	} else if (i < max_frags) {
4584 		skb_zcopy_downgrade_managed(skb);
4585 		get_page(page);
4586 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4587 	} else {
4588 		return -EMSGSIZE;
4589 	}
4590 
4591 	return 0;
4592 }
4593 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4594 
4595 /**
4596  *	skb_pull_rcsum - pull skb and update receive checksum
4597  *	@skb: buffer to update
4598  *	@len: length of data pulled
4599  *
4600  *	This function performs an skb_pull on the packet and updates
4601  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4602  *	receive path processing instead of skb_pull unless you know
4603  *	that the checksum difference is zero (e.g., a valid IP header)
4604  *	or you are setting ip_summed to CHECKSUM_NONE.
4605  */
4606 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4607 {
4608 	unsigned char *data = skb->data;
4609 
4610 	BUG_ON(len > skb->len);
4611 	__skb_pull(skb, len);
4612 	skb_postpull_rcsum(skb, data, len);
4613 	return skb->data;
4614 }
4615 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4616 
4617 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4618 {
4619 	skb_frag_t head_frag;
4620 	struct page *page;
4621 
4622 	page = virt_to_head_page(frag_skb->head);
4623 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4624 				(unsigned char *)page_address(page),
4625 				skb_headlen(frag_skb));
4626 	return head_frag;
4627 }
4628 
4629 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4630 				 netdev_features_t features,
4631 				 unsigned int offset)
4632 {
4633 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4634 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4635 	unsigned int delta_truesize = 0;
4636 	unsigned int delta_len = 0;
4637 	struct sk_buff *tail = NULL;
4638 	struct sk_buff *nskb, *tmp;
4639 	int len_diff, err;
4640 
4641 	skb_push(skb, -skb_network_offset(skb) + offset);
4642 
4643 	/* Ensure the head is writeable before touching the shared info */
4644 	err = skb_unclone(skb, GFP_ATOMIC);
4645 	if (err)
4646 		goto err_linearize;
4647 
4648 	skb_shinfo(skb)->frag_list = NULL;
4649 
4650 	while (list_skb) {
4651 		nskb = list_skb;
4652 		list_skb = list_skb->next;
4653 
4654 		err = 0;
4655 		delta_truesize += nskb->truesize;
4656 		if (skb_shared(nskb)) {
4657 			tmp = skb_clone(nskb, GFP_ATOMIC);
4658 			if (tmp) {
4659 				consume_skb(nskb);
4660 				nskb = tmp;
4661 				err = skb_unclone(nskb, GFP_ATOMIC);
4662 			} else {
4663 				err = -ENOMEM;
4664 			}
4665 		}
4666 
4667 		if (!tail)
4668 			skb->next = nskb;
4669 		else
4670 			tail->next = nskb;
4671 
4672 		if (unlikely(err)) {
4673 			nskb->next = list_skb;
4674 			goto err_linearize;
4675 		}
4676 
4677 		tail = nskb;
4678 
4679 		delta_len += nskb->len;
4680 
4681 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4682 
4683 		skb_release_head_state(nskb);
4684 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4685 		__copy_skb_header(nskb, skb);
4686 
4687 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4688 		nskb->transport_header += len_diff;
4689 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4690 						 nskb->data - tnl_hlen,
4691 						 offset + tnl_hlen);
4692 
4693 		if (skb_needs_linearize(nskb, features) &&
4694 		    __skb_linearize(nskb))
4695 			goto err_linearize;
4696 	}
4697 
4698 	skb->truesize = skb->truesize - delta_truesize;
4699 	skb->data_len = skb->data_len - delta_len;
4700 	skb->len = skb->len - delta_len;
4701 
4702 	skb_gso_reset(skb);
4703 
4704 	skb->prev = tail;
4705 
4706 	if (skb_needs_linearize(skb, features) &&
4707 	    __skb_linearize(skb))
4708 		goto err_linearize;
4709 
4710 	skb_get(skb);
4711 
4712 	return skb;
4713 
4714 err_linearize:
4715 	kfree_skb_list(skb->next);
4716 	skb->next = NULL;
4717 	return ERR_PTR(-ENOMEM);
4718 }
4719 EXPORT_SYMBOL_GPL(skb_segment_list);
4720 
4721 /**
4722  *	skb_segment - Perform protocol segmentation on skb.
4723  *	@head_skb: buffer to segment
4724  *	@features: features for the output path (see dev->features)
4725  *
4726  *	This function performs segmentation on the given skb.  It returns
4727  *	a pointer to the first in a list of new skbs for the segments.
4728  *	In case of error it returns ERR_PTR(err).
4729  */
4730 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4731 			    netdev_features_t features)
4732 {
4733 	struct sk_buff *segs = NULL;
4734 	struct sk_buff *tail = NULL;
4735 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4736 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4737 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4738 	unsigned int offset = doffset;
4739 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4740 	unsigned int partial_segs = 0;
4741 	unsigned int headroom;
4742 	unsigned int len = head_skb->len;
4743 	struct sk_buff *frag_skb;
4744 	skb_frag_t *frag;
4745 	__be16 proto;
4746 	bool csum, sg;
4747 	int err = -ENOMEM;
4748 	int i = 0;
4749 	int nfrags, pos;
4750 
4751 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4752 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4753 		struct sk_buff *check_skb;
4754 
4755 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4756 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4757 				/* gso_size is untrusted, and we have a frag_list with
4758 				 * a linear non head_frag item.
4759 				 *
4760 				 * If head_skb's headlen does not fit requested gso_size,
4761 				 * it means that the frag_list members do NOT terminate
4762 				 * on exact gso_size boundaries. Hence we cannot perform
4763 				 * skb_frag_t page sharing. Therefore we must fallback to
4764 				 * copying the frag_list skbs; we do so by disabling SG.
4765 				 */
4766 				features &= ~NETIF_F_SG;
4767 				break;
4768 			}
4769 		}
4770 	}
4771 
4772 	__skb_push(head_skb, doffset);
4773 	proto = skb_network_protocol(head_skb, NULL);
4774 	if (unlikely(!proto))
4775 		return ERR_PTR(-EINVAL);
4776 
4777 	sg = !!(features & NETIF_F_SG);
4778 	csum = !!can_checksum_protocol(features, proto);
4779 
4780 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4781 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4782 			struct sk_buff *iter;
4783 			unsigned int frag_len;
4784 
4785 			if (!list_skb ||
4786 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4787 				goto normal;
4788 
4789 			/* If we get here then all the required
4790 			 * GSO features except frag_list are supported.
4791 			 * Try to split the SKB to multiple GSO SKBs
4792 			 * with no frag_list.
4793 			 * Currently we can do that only when the buffers don't
4794 			 * have a linear part and all the buffers except
4795 			 * the last are of the same length.
4796 			 */
4797 			frag_len = list_skb->len;
4798 			skb_walk_frags(head_skb, iter) {
4799 				if (frag_len != iter->len && iter->next)
4800 					goto normal;
4801 				if (skb_headlen(iter) && !iter->head_frag)
4802 					goto normal;
4803 
4804 				len -= iter->len;
4805 			}
4806 
4807 			if (len != frag_len)
4808 				goto normal;
4809 		}
4810 
4811 		/* GSO partial only requires that we trim off any excess that
4812 		 * doesn't fit into an MSS sized block, so take care of that
4813 		 * now.
4814 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4815 		 */
4816 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4817 		if (partial_segs > 1)
4818 			mss *= partial_segs;
4819 		else
4820 			partial_segs = 0;
4821 	}
4822 
4823 normal:
4824 	headroom = skb_headroom(head_skb);
4825 	pos = skb_headlen(head_skb);
4826 
4827 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4828 		return ERR_PTR(-ENOMEM);
4829 
4830 	nfrags = skb_shinfo(head_skb)->nr_frags;
4831 	frag = skb_shinfo(head_skb)->frags;
4832 	frag_skb = head_skb;
4833 
4834 	do {
4835 		struct sk_buff *nskb;
4836 		skb_frag_t *nskb_frag;
4837 		int hsize;
4838 		int size;
4839 
4840 		if (unlikely(mss == GSO_BY_FRAGS)) {
4841 			len = list_skb->len;
4842 		} else {
4843 			len = head_skb->len - offset;
4844 			if (len > mss)
4845 				len = mss;
4846 		}
4847 
4848 		hsize = skb_headlen(head_skb) - offset;
4849 
4850 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4851 		    (skb_headlen(list_skb) == len || sg)) {
4852 			BUG_ON(skb_headlen(list_skb) > len);
4853 
4854 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4855 			if (unlikely(!nskb))
4856 				goto err;
4857 
4858 			i = 0;
4859 			nfrags = skb_shinfo(list_skb)->nr_frags;
4860 			frag = skb_shinfo(list_skb)->frags;
4861 			frag_skb = list_skb;
4862 			pos += skb_headlen(list_skb);
4863 
4864 			while (pos < offset + len) {
4865 				BUG_ON(i >= nfrags);
4866 
4867 				size = skb_frag_size(frag);
4868 				if (pos + size > offset + len)
4869 					break;
4870 
4871 				i++;
4872 				pos += size;
4873 				frag++;
4874 			}
4875 
4876 			list_skb = list_skb->next;
4877 
4878 			if (unlikely(pskb_trim(nskb, len))) {
4879 				kfree_skb(nskb);
4880 				goto err;
4881 			}
4882 
4883 			hsize = skb_end_offset(nskb);
4884 			if (skb_cow_head(nskb, doffset + headroom)) {
4885 				kfree_skb(nskb);
4886 				goto err;
4887 			}
4888 
4889 			nskb->truesize += skb_end_offset(nskb) - hsize;
4890 			skb_release_head_state(nskb);
4891 			__skb_push(nskb, doffset);
4892 		} else {
4893 			if (hsize < 0)
4894 				hsize = 0;
4895 			if (hsize > len || !sg)
4896 				hsize = len;
4897 
4898 			nskb = __alloc_skb(hsize + doffset + headroom,
4899 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4900 					   NUMA_NO_NODE);
4901 
4902 			if (unlikely(!nskb))
4903 				goto err;
4904 
4905 			skb_reserve(nskb, headroom);
4906 			__skb_put(nskb, doffset);
4907 		}
4908 
4909 		if (segs)
4910 			tail->next = nskb;
4911 		else
4912 			segs = nskb;
4913 		tail = nskb;
4914 
4915 		__copy_skb_header(nskb, head_skb);
4916 
4917 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4918 		skb_reset_mac_len(nskb);
4919 
4920 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4921 						 nskb->data - tnl_hlen,
4922 						 doffset + tnl_hlen);
4923 
4924 		if (nskb->len == len + doffset)
4925 			goto perform_csum_check;
4926 
4927 		if (!sg) {
4928 			if (!csum) {
4929 				if (!nskb->remcsum_offload)
4930 					nskb->ip_summed = CHECKSUM_NONE;
4931 				SKB_GSO_CB(nskb)->csum =
4932 					skb_copy_and_csum_bits(head_skb, offset,
4933 							       skb_put(nskb,
4934 								       len),
4935 							       len);
4936 				SKB_GSO_CB(nskb)->csum_start =
4937 					skb_headroom(nskb) + doffset;
4938 			} else {
4939 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4940 					goto err;
4941 			}
4942 			continue;
4943 		}
4944 
4945 		nskb_frag = skb_shinfo(nskb)->frags;
4946 
4947 		skb_copy_from_linear_data_offset(head_skb, offset,
4948 						 skb_put(nskb, hsize), hsize);
4949 
4950 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4951 					   SKBFL_SHARED_FRAG;
4952 
4953 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4954 			goto err;
4955 
4956 		while (pos < offset + len) {
4957 			if (i >= nfrags) {
4958 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4959 				    skb_zerocopy_clone(nskb, list_skb,
4960 						       GFP_ATOMIC))
4961 					goto err;
4962 
4963 				i = 0;
4964 				nfrags = skb_shinfo(list_skb)->nr_frags;
4965 				frag = skb_shinfo(list_skb)->frags;
4966 				frag_skb = list_skb;
4967 				if (!skb_headlen(list_skb)) {
4968 					BUG_ON(!nfrags);
4969 				} else {
4970 					BUG_ON(!list_skb->head_frag);
4971 
4972 					/* to make room for head_frag. */
4973 					i--;
4974 					frag--;
4975 				}
4976 
4977 				list_skb = list_skb->next;
4978 			}
4979 
4980 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4981 				     MAX_SKB_FRAGS)) {
4982 				net_warn_ratelimited(
4983 					"skb_segment: too many frags: %u %u\n",
4984 					pos, mss);
4985 				err = -EINVAL;
4986 				goto err;
4987 			}
4988 
4989 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4990 			__skb_frag_ref(nskb_frag);
4991 			size = skb_frag_size(nskb_frag);
4992 
4993 			if (pos < offset) {
4994 				skb_frag_off_add(nskb_frag, offset - pos);
4995 				skb_frag_size_sub(nskb_frag, offset - pos);
4996 			}
4997 
4998 			skb_shinfo(nskb)->nr_frags++;
4999 
5000 			if (pos + size <= offset + len) {
5001 				i++;
5002 				frag++;
5003 				pos += size;
5004 			} else {
5005 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
5006 				goto skip_fraglist;
5007 			}
5008 
5009 			nskb_frag++;
5010 		}
5011 
5012 skip_fraglist:
5013 		nskb->data_len = len - hsize;
5014 		nskb->len += nskb->data_len;
5015 		nskb->truesize += nskb->data_len;
5016 
5017 perform_csum_check:
5018 		if (!csum) {
5019 			if (skb_has_shared_frag(nskb) &&
5020 			    __skb_linearize(nskb))
5021 				goto err;
5022 
5023 			if (!nskb->remcsum_offload)
5024 				nskb->ip_summed = CHECKSUM_NONE;
5025 			SKB_GSO_CB(nskb)->csum =
5026 				skb_checksum(nskb, doffset,
5027 					     nskb->len - doffset, 0);
5028 			SKB_GSO_CB(nskb)->csum_start =
5029 				skb_headroom(nskb) + doffset;
5030 		}
5031 	} while ((offset += len) < head_skb->len);
5032 
5033 	/* Some callers want to get the end of the list.
5034 	 * Put it in segs->prev to avoid walking the list.
5035 	 * (see validate_xmit_skb_list() for example)
5036 	 */
5037 	segs->prev = tail;
5038 
5039 	if (partial_segs) {
5040 		struct sk_buff *iter;
5041 		int type = skb_shinfo(head_skb)->gso_type;
5042 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
5043 
5044 		/* Update type to add partial and then remove dodgy if set */
5045 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
5046 		type &= ~SKB_GSO_DODGY;
5047 
5048 		/* Update GSO info and prepare to start updating headers on
5049 		 * our way back down the stack of protocols.
5050 		 */
5051 		for (iter = segs; iter; iter = iter->next) {
5052 			skb_shinfo(iter)->gso_size = gso_size;
5053 			skb_shinfo(iter)->gso_segs = partial_segs;
5054 			skb_shinfo(iter)->gso_type = type;
5055 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
5056 		}
5057 
5058 		if (tail->len - doffset <= gso_size)
5059 			skb_shinfo(tail)->gso_size = 0;
5060 		else if (tail != segs)
5061 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
5062 	}
5063 
5064 	/* Following permits correct backpressure, for protocols
5065 	 * using skb_set_owner_w().
5066 	 * Idea is to tranfert ownership from head_skb to last segment.
5067 	 */
5068 	if (head_skb->destructor == sock_wfree) {
5069 		swap(tail->truesize, head_skb->truesize);
5070 		swap(tail->destructor, head_skb->destructor);
5071 		swap(tail->sk, head_skb->sk);
5072 	}
5073 	return segs;
5074 
5075 err:
5076 	kfree_skb_list(segs);
5077 	return ERR_PTR(err);
5078 }
5079 EXPORT_SYMBOL_GPL(skb_segment);
5080 
5081 #ifdef CONFIG_SKB_EXTENSIONS
5082 #define SKB_EXT_ALIGN_VALUE	8
5083 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
5084 
5085 static const u8 skb_ext_type_len[] = {
5086 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
5087 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
5088 #endif
5089 #ifdef CONFIG_XFRM
5090 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
5091 #endif
5092 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5093 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
5094 #endif
5095 #if IS_ENABLED(CONFIG_MPTCP)
5096 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
5097 #endif
5098 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
5099 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
5100 #endif
5101 #if IS_ENABLED(CONFIG_INET_PSP)
5102 	[SKB_EXT_PSP] = SKB_EXT_CHUNKSIZEOF(struct psp_skb_ext),
5103 #endif
5104 };
5105 
5106 static __always_inline unsigned int skb_ext_total_length(void)
5107 {
5108 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
5109 	int i;
5110 
5111 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
5112 		l += skb_ext_type_len[i];
5113 
5114 	return l;
5115 }
5116 
5117 static void skb_extensions_init(void)
5118 {
5119 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
5120 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
5121 	BUILD_BUG_ON(skb_ext_total_length() > 255);
5122 #endif
5123 
5124 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
5125 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
5126 					     0,
5127 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5128 					     NULL);
5129 }
5130 #else
5131 static void skb_extensions_init(void) {}
5132 #endif
5133 
5134 /* The SKB kmem_cache slab is critical for network performance.  Never
5135  * merge/alias the slab with similar sized objects.  This avoids fragmentation
5136  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
5137  */
5138 #ifndef CONFIG_SLUB_TINY
5139 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
5140 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5141 #define FLAG_SKB_NO_MERGE	0
5142 #endif
5143 
5144 void __init skb_init(void)
5145 {
5146 	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5147 					      sizeof(struct sk_buff),
5148 					      0,
5149 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5150 						FLAG_SKB_NO_MERGE,
5151 					      offsetof(struct sk_buff, cb),
5152 					      sizeof_field(struct sk_buff, cb),
5153 					      NULL);
5154 	skbuff_cache_size = kmem_cache_size(net_hotdata.skbuff_cache);
5155 
5156 	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5157 						sizeof(struct sk_buff_fclones),
5158 						0,
5159 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5160 						NULL);
5161 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5162 	 * struct skb_shared_info is located at the end of skb->head,
5163 	 * and should not be copied to/from user.
5164 	 */
5165 	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5166 						SKB_SMALL_HEAD_CACHE_SIZE,
5167 						0,
5168 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5169 						0,
5170 						SKB_SMALL_HEAD_HEADROOM,
5171 						NULL);
5172 	skb_extensions_init();
5173 }
5174 
5175 static int
5176 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5177 	       unsigned int recursion_level)
5178 {
5179 	int start = skb_headlen(skb);
5180 	int i, copy = start - offset;
5181 	struct sk_buff *frag_iter;
5182 	int elt = 0;
5183 
5184 	if (unlikely(recursion_level >= 24))
5185 		return -EMSGSIZE;
5186 
5187 	if (copy > 0) {
5188 		if (copy > len)
5189 			copy = len;
5190 		sg_set_buf(sg, skb->data + offset, copy);
5191 		elt++;
5192 		if ((len -= copy) == 0)
5193 			return elt;
5194 		offset += copy;
5195 	}
5196 
5197 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5198 		int end;
5199 
5200 		WARN_ON(start > offset + len);
5201 
5202 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5203 		if ((copy = end - offset) > 0) {
5204 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5205 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5206 				return -EMSGSIZE;
5207 
5208 			if (copy > len)
5209 				copy = len;
5210 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5211 				    skb_frag_off(frag) + offset - start);
5212 			elt++;
5213 			if (!(len -= copy))
5214 				return elt;
5215 			offset += copy;
5216 		}
5217 		start = end;
5218 	}
5219 
5220 	skb_walk_frags(skb, frag_iter) {
5221 		int end, ret;
5222 
5223 		WARN_ON(start > offset + len);
5224 
5225 		end = start + frag_iter->len;
5226 		if ((copy = end - offset) > 0) {
5227 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5228 				return -EMSGSIZE;
5229 
5230 			if (copy > len)
5231 				copy = len;
5232 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5233 					      copy, recursion_level + 1);
5234 			if (unlikely(ret < 0))
5235 				return ret;
5236 			elt += ret;
5237 			if ((len -= copy) == 0)
5238 				return elt;
5239 			offset += copy;
5240 		}
5241 		start = end;
5242 	}
5243 	BUG_ON(len);
5244 	return elt;
5245 }
5246 
5247 /**
5248  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5249  *	@skb: Socket buffer containing the buffers to be mapped
5250  *	@sg: The scatter-gather list to map into
5251  *	@offset: The offset into the buffer's contents to start mapping
5252  *	@len: Length of buffer space to be mapped
5253  *
5254  *	Fill the specified scatter-gather list with mappings/pointers into a
5255  *	region of the buffer space attached to a socket buffer. Returns either
5256  *	the number of scatterlist items used, or -EMSGSIZE if the contents
5257  *	could not fit.
5258  */
5259 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5260 {
5261 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5262 
5263 	if (nsg <= 0)
5264 		return nsg;
5265 
5266 	sg_mark_end(&sg[nsg - 1]);
5267 
5268 	return nsg;
5269 }
5270 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5271 
5272 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5273  * sglist without mark the sg which contain last skb data as the end.
5274  * So the caller can mannipulate sg list as will when padding new data after
5275  * the first call without calling sg_unmark_end to expend sg list.
5276  *
5277  * Scenario to use skb_to_sgvec_nomark:
5278  * 1. sg_init_table
5279  * 2. skb_to_sgvec_nomark(payload1)
5280  * 3. skb_to_sgvec_nomark(payload2)
5281  *
5282  * This is equivalent to:
5283  * 1. sg_init_table
5284  * 2. skb_to_sgvec(payload1)
5285  * 3. sg_unmark_end
5286  * 4. skb_to_sgvec(payload2)
5287  *
5288  * When mapping multiple payload conditionally, skb_to_sgvec_nomark
5289  * is more preferable.
5290  */
5291 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5292 			int offset, int len)
5293 {
5294 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5295 }
5296 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5297 
5298 
5299 
5300 /**
5301  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5302  *	@skb: The socket buffer to check.
5303  *	@tailbits: Amount of trailing space to be added
5304  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5305  *
5306  *	Make sure that the data buffers attached to a socket buffer are
5307  *	writable. If they are not, private copies are made of the data buffers
5308  *	and the socket buffer is set to use these instead.
5309  *
5310  *	If @tailbits is given, make sure that there is space to write @tailbits
5311  *	bytes of data beyond current end of socket buffer.  @trailer will be
5312  *	set to point to the skb in which this space begins.
5313  *
5314  *	The number of scatterlist elements required to completely map the
5315  *	COW'd and extended socket buffer will be returned.
5316  */
5317 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5318 {
5319 	int copyflag;
5320 	int elt;
5321 	struct sk_buff *skb1, **skb_p;
5322 
5323 	/* If skb is cloned or its head is paged, reallocate
5324 	 * head pulling out all the pages (pages are considered not writable
5325 	 * at the moment even if they are anonymous).
5326 	 */
5327 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5328 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5329 		return -ENOMEM;
5330 
5331 	/* Easy case. Most of packets will go this way. */
5332 	if (!skb_has_frag_list(skb)) {
5333 		/* A little of trouble, not enough of space for trailer.
5334 		 * This should not happen, when stack is tuned to generate
5335 		 * good frames. OK, on miss we reallocate and reserve even more
5336 		 * space, 128 bytes is fair. */
5337 
5338 		if (skb_tailroom(skb) < tailbits &&
5339 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5340 			return -ENOMEM;
5341 
5342 		/* Voila! */
5343 		*trailer = skb;
5344 		return 1;
5345 	}
5346 
5347 	/* Misery. We are in troubles, going to mincer fragments... */
5348 
5349 	elt = 1;
5350 	skb_p = &skb_shinfo(skb)->frag_list;
5351 	copyflag = 0;
5352 
5353 	while ((skb1 = *skb_p) != NULL) {
5354 		int ntail = 0;
5355 
5356 		/* The fragment is partially pulled by someone,
5357 		 * this can happen on input. Copy it and everything
5358 		 * after it. */
5359 
5360 		if (skb_shared(skb1))
5361 			copyflag = 1;
5362 
5363 		/* If the skb is the last, worry about trailer. */
5364 
5365 		if (skb1->next == NULL && tailbits) {
5366 			if (skb_shinfo(skb1)->nr_frags ||
5367 			    skb_has_frag_list(skb1) ||
5368 			    skb_tailroom(skb1) < tailbits)
5369 				ntail = tailbits + 128;
5370 		}
5371 
5372 		if (copyflag ||
5373 		    skb_cloned(skb1) ||
5374 		    ntail ||
5375 		    skb_shinfo(skb1)->nr_frags ||
5376 		    skb_has_frag_list(skb1)) {
5377 			struct sk_buff *skb2;
5378 
5379 			/* Fuck, we are miserable poor guys... */
5380 			if (ntail == 0)
5381 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5382 			else
5383 				skb2 = skb_copy_expand(skb1,
5384 						       skb_headroom(skb1),
5385 						       ntail,
5386 						       GFP_ATOMIC);
5387 			if (unlikely(skb2 == NULL))
5388 				return -ENOMEM;
5389 
5390 			if (skb1->sk)
5391 				skb_set_owner_w(skb2, skb1->sk);
5392 
5393 			/* Looking around. Are we still alive?
5394 			 * OK, link new skb, drop old one */
5395 
5396 			skb2->next = skb1->next;
5397 			*skb_p = skb2;
5398 			kfree_skb(skb1);
5399 			skb1 = skb2;
5400 		}
5401 		elt++;
5402 		*trailer = skb1;
5403 		skb_p = &skb1->next;
5404 	}
5405 
5406 	return elt;
5407 }
5408 EXPORT_SYMBOL_GPL(skb_cow_data);
5409 
5410 static void sock_rmem_free(struct sk_buff *skb)
5411 {
5412 	struct sock *sk = skb->sk;
5413 
5414 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5415 }
5416 
5417 static void skb_set_err_queue(struct sk_buff *skb)
5418 {
5419 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5420 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5421 	 */
5422 	skb->pkt_type = PACKET_OUTGOING;
5423 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5424 }
5425 
5426 /*
5427  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5428  */
5429 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5430 {
5431 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5432 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5433 		return -ENOMEM;
5434 
5435 	skb_orphan(skb);
5436 	skb->sk = sk;
5437 	skb->destructor = sock_rmem_free;
5438 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5439 	skb_set_err_queue(skb);
5440 
5441 	/* before exiting rcu section, make sure dst is refcounted */
5442 	skb_dst_force(skb);
5443 
5444 	skb_queue_tail(&sk->sk_error_queue, skb);
5445 	if (!sock_flag(sk, SOCK_DEAD))
5446 		sk_error_report(sk);
5447 	return 0;
5448 }
5449 EXPORT_SYMBOL(sock_queue_err_skb);
5450 
5451 static bool is_icmp_err_skb(const struct sk_buff *skb)
5452 {
5453 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5454 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5455 }
5456 
5457 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5458 {
5459 	struct sk_buff_head *q = &sk->sk_error_queue;
5460 	struct sk_buff *skb, *skb_next = NULL;
5461 	bool icmp_next = false;
5462 	unsigned long flags;
5463 
5464 	if (skb_queue_empty_lockless(q))
5465 		return NULL;
5466 
5467 	spin_lock_irqsave(&q->lock, flags);
5468 	skb = __skb_dequeue(q);
5469 	if (skb && (skb_next = skb_peek(q))) {
5470 		icmp_next = is_icmp_err_skb(skb_next);
5471 		if (icmp_next)
5472 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5473 	}
5474 	spin_unlock_irqrestore(&q->lock, flags);
5475 
5476 	if (is_icmp_err_skb(skb) && !icmp_next)
5477 		sk->sk_err = 0;
5478 
5479 	if (skb_next)
5480 		sk_error_report(sk);
5481 
5482 	return skb;
5483 }
5484 EXPORT_SYMBOL(sock_dequeue_err_skb);
5485 
5486 /**
5487  * skb_clone_sk - create clone of skb, and take reference to socket
5488  * @skb: the skb to clone
5489  *
5490  * This function creates a clone of a buffer that holds a reference on
5491  * sk_refcnt.  Buffers created via this function are meant to be
5492  * returned using sock_queue_err_skb, or free via kfree_skb.
5493  *
5494  * When passing buffers allocated with this function to sock_queue_err_skb
5495  * it is necessary to wrap the call with sock_hold/sock_put in order to
5496  * prevent the socket from being released prior to being enqueued on
5497  * the sk_error_queue.
5498  */
5499 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5500 {
5501 	struct sock *sk = skb->sk;
5502 	struct sk_buff *clone;
5503 
5504 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5505 		return NULL;
5506 
5507 	clone = skb_clone(skb, GFP_ATOMIC);
5508 	if (!clone) {
5509 		sock_put(sk);
5510 		return NULL;
5511 	}
5512 
5513 	clone->sk = sk;
5514 	clone->destructor = sock_efree;
5515 
5516 	return clone;
5517 }
5518 EXPORT_SYMBOL(skb_clone_sk);
5519 
5520 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5521 					struct sock *sk,
5522 					int tstype,
5523 					bool opt_stats)
5524 {
5525 	struct sock_exterr_skb *serr;
5526 	int err;
5527 
5528 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5529 
5530 	serr = SKB_EXT_ERR(skb);
5531 	memset(serr, 0, sizeof(*serr));
5532 	serr->ee.ee_errno = ENOMSG;
5533 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5534 	serr->ee.ee_info = tstype;
5535 	serr->opt_stats = opt_stats;
5536 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5537 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5538 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5539 		if (sk_is_tcp(sk))
5540 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5541 	}
5542 
5543 	err = sock_queue_err_skb(sk, skb);
5544 
5545 	if (err)
5546 		kfree_skb(skb);
5547 }
5548 
5549 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5550 {
5551 	bool ret;
5552 
5553 	if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data)))
5554 		return true;
5555 
5556 	read_lock_bh(&sk->sk_callback_lock);
5557 	ret = sk->sk_socket && sk->sk_socket->file &&
5558 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5559 	read_unlock_bh(&sk->sk_callback_lock);
5560 	return ret;
5561 }
5562 
5563 void skb_complete_tx_timestamp(struct sk_buff *skb,
5564 			       struct skb_shared_hwtstamps *hwtstamps)
5565 {
5566 	struct sock *sk = skb->sk;
5567 
5568 	if (!skb_may_tx_timestamp(sk, false))
5569 		goto err;
5570 
5571 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5572 	 * but only if the socket refcount is not zero.
5573 	 */
5574 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5575 		*skb_hwtstamps(skb) = *hwtstamps;
5576 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5577 		sock_put(sk);
5578 		return;
5579 	}
5580 
5581 err:
5582 	kfree_skb(skb);
5583 }
5584 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5585 
5586 static bool skb_tstamp_tx_report_so_timestamping(struct sk_buff *skb,
5587 						 struct skb_shared_hwtstamps *hwtstamps,
5588 						 int tstype)
5589 {
5590 	switch (tstype) {
5591 	case SCM_TSTAMP_SCHED:
5592 		return skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP;
5593 	case SCM_TSTAMP_SND:
5594 		return skb_shinfo(skb)->tx_flags & (hwtstamps ? SKBTX_HW_TSTAMP_NOBPF :
5595 						    SKBTX_SW_TSTAMP);
5596 	case SCM_TSTAMP_ACK:
5597 		return TCP_SKB_CB(skb)->txstamp_ack & TSTAMP_ACK_SK;
5598 	case SCM_TSTAMP_COMPLETION:
5599 		return skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP;
5600 	}
5601 
5602 	return false;
5603 }
5604 
5605 static void skb_tstamp_tx_report_bpf_timestamping(struct sk_buff *skb,
5606 						  struct skb_shared_hwtstamps *hwtstamps,
5607 						  struct sock *sk,
5608 						  int tstype)
5609 {
5610 	int op;
5611 
5612 	switch (tstype) {
5613 	case SCM_TSTAMP_SCHED:
5614 		op = BPF_SOCK_OPS_TSTAMP_SCHED_CB;
5615 		break;
5616 	case SCM_TSTAMP_SND:
5617 		if (hwtstamps) {
5618 			op = BPF_SOCK_OPS_TSTAMP_SND_HW_CB;
5619 			*skb_hwtstamps(skb) = *hwtstamps;
5620 		} else {
5621 			op = BPF_SOCK_OPS_TSTAMP_SND_SW_CB;
5622 		}
5623 		break;
5624 	case SCM_TSTAMP_ACK:
5625 		op = BPF_SOCK_OPS_TSTAMP_ACK_CB;
5626 		break;
5627 	default:
5628 		return;
5629 	}
5630 
5631 	bpf_skops_tx_timestamping(sk, skb, op);
5632 }
5633 
5634 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5635 		     const struct sk_buff *ack_skb,
5636 		     struct skb_shared_hwtstamps *hwtstamps,
5637 		     struct sock *sk, int tstype)
5638 {
5639 	struct sk_buff *skb;
5640 	bool tsonly, opt_stats = false;
5641 	u32 tsflags;
5642 
5643 	if (!sk)
5644 		return;
5645 
5646 	if (skb_shinfo(orig_skb)->tx_flags & SKBTX_BPF)
5647 		skb_tstamp_tx_report_bpf_timestamping(orig_skb, hwtstamps,
5648 						      sk, tstype);
5649 
5650 	if (!skb_tstamp_tx_report_so_timestamping(orig_skb, hwtstamps, tstype))
5651 		return;
5652 
5653 	tsflags = READ_ONCE(sk->sk_tsflags);
5654 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5655 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5656 		return;
5657 
5658 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5659 	if (!skb_may_tx_timestamp(sk, tsonly))
5660 		return;
5661 
5662 	if (tsonly) {
5663 #ifdef CONFIG_INET
5664 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5665 		    sk_is_tcp(sk)) {
5666 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5667 							     ack_skb);
5668 			opt_stats = true;
5669 		} else
5670 #endif
5671 			skb = alloc_skb(0, GFP_ATOMIC);
5672 	} else {
5673 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5674 
5675 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5676 			kfree_skb(skb);
5677 			return;
5678 		}
5679 	}
5680 	if (!skb)
5681 		return;
5682 
5683 	if (tsonly) {
5684 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5685 					     SKBTX_ANY_TSTAMP;
5686 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5687 	}
5688 
5689 	if (hwtstamps)
5690 		*skb_hwtstamps(skb) = *hwtstamps;
5691 	else
5692 		__net_timestamp(skb);
5693 
5694 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5695 }
5696 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5697 
5698 void skb_tstamp_tx(struct sk_buff *orig_skb,
5699 		   struct skb_shared_hwtstamps *hwtstamps)
5700 {
5701 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5702 			       SCM_TSTAMP_SND);
5703 }
5704 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5705 
5706 #ifdef CONFIG_WIRELESS
5707 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5708 {
5709 	struct sock *sk = skb->sk;
5710 	struct sock_exterr_skb *serr;
5711 	int err = 1;
5712 
5713 	skb->wifi_acked_valid = 1;
5714 	skb->wifi_acked = acked;
5715 
5716 	serr = SKB_EXT_ERR(skb);
5717 	memset(serr, 0, sizeof(*serr));
5718 	serr->ee.ee_errno = ENOMSG;
5719 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5720 
5721 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5722 	 * but only if the socket refcount is not zero.
5723 	 */
5724 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5725 		err = sock_queue_err_skb(sk, skb);
5726 		sock_put(sk);
5727 	}
5728 	if (err)
5729 		kfree_skb(skb);
5730 }
5731 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5732 #endif /* CONFIG_WIRELESS */
5733 
5734 /**
5735  * skb_partial_csum_set - set up and verify partial csum values for packet
5736  * @skb: the skb to set
5737  * @start: the number of bytes after skb->data to start checksumming.
5738  * @off: the offset from start to place the checksum.
5739  *
5740  * For untrusted partially-checksummed packets, we need to make sure the values
5741  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5742  *
5743  * This function checks and sets those values and skb->ip_summed: if this
5744  * returns false you should drop the packet.
5745  */
5746 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5747 {
5748 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5749 	u32 csum_start = skb_headroom(skb) + (u32)start;
5750 
5751 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5752 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5753 				     start, off, skb_headroom(skb), skb_headlen(skb));
5754 		return false;
5755 	}
5756 	skb->ip_summed = CHECKSUM_PARTIAL;
5757 	skb->csum_start = csum_start;
5758 	skb->csum_offset = off;
5759 	skb->transport_header = csum_start;
5760 	return true;
5761 }
5762 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5763 
5764 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5765 			       unsigned int max)
5766 {
5767 	if (skb_headlen(skb) >= len)
5768 		return 0;
5769 
5770 	/* If we need to pullup then pullup to the max, so we
5771 	 * won't need to do it again.
5772 	 */
5773 	if (max > skb->len)
5774 		max = skb->len;
5775 
5776 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5777 		return -ENOMEM;
5778 
5779 	if (skb_headlen(skb) < len)
5780 		return -EPROTO;
5781 
5782 	return 0;
5783 }
5784 
5785 #define MAX_TCP_HDR_LEN (15 * 4)
5786 
5787 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5788 				      typeof(IPPROTO_IP) proto,
5789 				      unsigned int off)
5790 {
5791 	int err;
5792 
5793 	switch (proto) {
5794 	case IPPROTO_TCP:
5795 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5796 					  off + MAX_TCP_HDR_LEN);
5797 		if (!err && !skb_partial_csum_set(skb, off,
5798 						  offsetof(struct tcphdr,
5799 							   check)))
5800 			err = -EPROTO;
5801 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5802 
5803 	case IPPROTO_UDP:
5804 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5805 					  off + sizeof(struct udphdr));
5806 		if (!err && !skb_partial_csum_set(skb, off,
5807 						  offsetof(struct udphdr,
5808 							   check)))
5809 			err = -EPROTO;
5810 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5811 	}
5812 
5813 	return ERR_PTR(-EPROTO);
5814 }
5815 
5816 /* This value should be large enough to cover a tagged ethernet header plus
5817  * maximally sized IP and TCP or UDP headers.
5818  */
5819 #define MAX_IP_HDR_LEN 128
5820 
5821 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5822 {
5823 	unsigned int off;
5824 	bool fragment;
5825 	__sum16 *csum;
5826 	int err;
5827 
5828 	fragment = false;
5829 
5830 	err = skb_maybe_pull_tail(skb,
5831 				  sizeof(struct iphdr),
5832 				  MAX_IP_HDR_LEN);
5833 	if (err < 0)
5834 		goto out;
5835 
5836 	if (ip_is_fragment(ip_hdr(skb)))
5837 		fragment = true;
5838 
5839 	off = ip_hdrlen(skb);
5840 
5841 	err = -EPROTO;
5842 
5843 	if (fragment)
5844 		goto out;
5845 
5846 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5847 	if (IS_ERR(csum))
5848 		return PTR_ERR(csum);
5849 
5850 	if (recalculate)
5851 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5852 					   ip_hdr(skb)->daddr,
5853 					   skb->len - off,
5854 					   ip_hdr(skb)->protocol, 0);
5855 	err = 0;
5856 
5857 out:
5858 	return err;
5859 }
5860 
5861 /* This value should be large enough to cover a tagged ethernet header plus
5862  * an IPv6 header, all options, and a maximal TCP or UDP header.
5863  */
5864 #define MAX_IPV6_HDR_LEN 256
5865 
5866 #define OPT_HDR(type, skb, off) \
5867 	(type *)(skb_network_header(skb) + (off))
5868 
5869 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5870 {
5871 	int err;
5872 	u8 nexthdr;
5873 	unsigned int off;
5874 	unsigned int len;
5875 	bool fragment;
5876 	bool done;
5877 	__sum16 *csum;
5878 
5879 	fragment = false;
5880 	done = false;
5881 
5882 	off = sizeof(struct ipv6hdr);
5883 
5884 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5885 	if (err < 0)
5886 		goto out;
5887 
5888 	nexthdr = ipv6_hdr(skb)->nexthdr;
5889 
5890 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5891 	while (off <= len && !done) {
5892 		switch (nexthdr) {
5893 		case IPPROTO_DSTOPTS:
5894 		case IPPROTO_HOPOPTS:
5895 		case IPPROTO_ROUTING: {
5896 			struct ipv6_opt_hdr *hp;
5897 
5898 			err = skb_maybe_pull_tail(skb,
5899 						  off +
5900 						  sizeof(struct ipv6_opt_hdr),
5901 						  MAX_IPV6_HDR_LEN);
5902 			if (err < 0)
5903 				goto out;
5904 
5905 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5906 			nexthdr = hp->nexthdr;
5907 			off += ipv6_optlen(hp);
5908 			break;
5909 		}
5910 		case IPPROTO_AH: {
5911 			struct ip_auth_hdr *hp;
5912 
5913 			err = skb_maybe_pull_tail(skb,
5914 						  off +
5915 						  sizeof(struct ip_auth_hdr),
5916 						  MAX_IPV6_HDR_LEN);
5917 			if (err < 0)
5918 				goto out;
5919 
5920 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5921 			nexthdr = hp->nexthdr;
5922 			off += ipv6_authlen(hp);
5923 			break;
5924 		}
5925 		case IPPROTO_FRAGMENT: {
5926 			struct frag_hdr *hp;
5927 
5928 			err = skb_maybe_pull_tail(skb,
5929 						  off +
5930 						  sizeof(struct frag_hdr),
5931 						  MAX_IPV6_HDR_LEN);
5932 			if (err < 0)
5933 				goto out;
5934 
5935 			hp = OPT_HDR(struct frag_hdr, skb, off);
5936 
5937 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5938 				fragment = true;
5939 
5940 			nexthdr = hp->nexthdr;
5941 			off += sizeof(struct frag_hdr);
5942 			break;
5943 		}
5944 		default:
5945 			done = true;
5946 			break;
5947 		}
5948 	}
5949 
5950 	err = -EPROTO;
5951 
5952 	if (!done || fragment)
5953 		goto out;
5954 
5955 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5956 	if (IS_ERR(csum))
5957 		return PTR_ERR(csum);
5958 
5959 	if (recalculate)
5960 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5961 					 &ipv6_hdr(skb)->daddr,
5962 					 skb->len - off, nexthdr, 0);
5963 	err = 0;
5964 
5965 out:
5966 	return err;
5967 }
5968 
5969 /**
5970  * skb_checksum_setup - set up partial checksum offset
5971  * @skb: the skb to set up
5972  * @recalculate: if true the pseudo-header checksum will be recalculated
5973  */
5974 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5975 {
5976 	int err;
5977 
5978 	switch (skb->protocol) {
5979 	case htons(ETH_P_IP):
5980 		err = skb_checksum_setup_ipv4(skb, recalculate);
5981 		break;
5982 
5983 	case htons(ETH_P_IPV6):
5984 		err = skb_checksum_setup_ipv6(skb, recalculate);
5985 		break;
5986 
5987 	default:
5988 		err = -EPROTO;
5989 		break;
5990 	}
5991 
5992 	return err;
5993 }
5994 EXPORT_SYMBOL(skb_checksum_setup);
5995 
5996 /**
5997  * skb_checksum_maybe_trim - maybe trims the given skb
5998  * @skb: the skb to check
5999  * @transport_len: the data length beyond the network header
6000  *
6001  * Checks whether the given skb has data beyond the given transport length.
6002  * If so, returns a cloned skb trimmed to this transport length.
6003  * Otherwise returns the provided skb. Returns NULL in error cases
6004  * (e.g. transport_len exceeds skb length or out-of-memory).
6005  *
6006  * Caller needs to set the skb transport header and free any returned skb if it
6007  * differs from the provided skb.
6008  */
6009 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
6010 					       unsigned int transport_len)
6011 {
6012 	struct sk_buff *skb_chk;
6013 	unsigned int len = skb_transport_offset(skb) + transport_len;
6014 	int ret;
6015 
6016 	if (skb->len < len)
6017 		return NULL;
6018 	else if (skb->len == len)
6019 		return skb;
6020 
6021 	skb_chk = skb_clone(skb, GFP_ATOMIC);
6022 	if (!skb_chk)
6023 		return NULL;
6024 
6025 	ret = pskb_trim_rcsum(skb_chk, len);
6026 	if (ret) {
6027 		kfree_skb(skb_chk);
6028 		return NULL;
6029 	}
6030 
6031 	return skb_chk;
6032 }
6033 
6034 /**
6035  * skb_checksum_trimmed - validate checksum of an skb
6036  * @skb: the skb to check
6037  * @transport_len: the data length beyond the network header
6038  * @skb_chkf: checksum function to use
6039  *
6040  * Applies the given checksum function skb_chkf to the provided skb.
6041  * Returns a checked and maybe trimmed skb. Returns NULL on error.
6042  *
6043  * If the skb has data beyond the given transport length, then a
6044  * trimmed & cloned skb is checked and returned.
6045  *
6046  * Caller needs to set the skb transport header and free any returned skb if it
6047  * differs from the provided skb.
6048  */
6049 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
6050 				     unsigned int transport_len,
6051 				     __sum16(*skb_chkf)(struct sk_buff *skb))
6052 {
6053 	struct sk_buff *skb_chk;
6054 	unsigned int offset = skb_transport_offset(skb);
6055 	__sum16 ret;
6056 
6057 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
6058 	if (!skb_chk)
6059 		goto err;
6060 
6061 	if (!pskb_may_pull(skb_chk, offset))
6062 		goto err;
6063 
6064 	skb_pull_rcsum(skb_chk, offset);
6065 	ret = skb_chkf(skb_chk);
6066 	skb_push_rcsum(skb_chk, offset);
6067 
6068 	if (ret)
6069 		goto err;
6070 
6071 	return skb_chk;
6072 
6073 err:
6074 	if (skb_chk && skb_chk != skb)
6075 		kfree_skb(skb_chk);
6076 
6077 	return NULL;
6078 
6079 }
6080 EXPORT_SYMBOL(skb_checksum_trimmed);
6081 
6082 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
6083 {
6084 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
6085 			     skb->dev->name);
6086 }
6087 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
6088 
6089 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
6090 {
6091 	if (head_stolen) {
6092 		skb_release_head_state(skb);
6093 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
6094 	} else {
6095 		__kfree_skb(skb);
6096 	}
6097 }
6098 EXPORT_SYMBOL(kfree_skb_partial);
6099 
6100 /**
6101  * skb_try_coalesce - try to merge skb to prior one
6102  * @to: prior buffer
6103  * @from: buffer to add
6104  * @fragstolen: pointer to boolean
6105  * @delta_truesize: how much more was allocated than was requested
6106  */
6107 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
6108 		      bool *fragstolen, int *delta_truesize)
6109 {
6110 	struct skb_shared_info *to_shinfo, *from_shinfo;
6111 	int i, delta, len = from->len;
6112 
6113 	*fragstolen = false;
6114 
6115 	if (skb_cloned(to))
6116 		return false;
6117 
6118 	/* In general, avoid mixing page_pool and non-page_pool allocated
6119 	 * pages within the same SKB. In theory we could take full
6120 	 * references if @from is cloned and !@to->pp_recycle but its
6121 	 * tricky (due to potential race with the clone disappearing) and
6122 	 * rare, so not worth dealing with.
6123 	 */
6124 	if (to->pp_recycle != from->pp_recycle)
6125 		return false;
6126 
6127 	if (skb_frags_readable(from) != skb_frags_readable(to))
6128 		return false;
6129 
6130 	if (len <= skb_tailroom(to) && skb_frags_readable(from)) {
6131 		if (len)
6132 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
6133 		*delta_truesize = 0;
6134 		return true;
6135 	}
6136 
6137 	to_shinfo = skb_shinfo(to);
6138 	from_shinfo = skb_shinfo(from);
6139 	if (to_shinfo->frag_list || from_shinfo->frag_list)
6140 		return false;
6141 	if (skb_zcopy(to) || skb_zcopy(from))
6142 		return false;
6143 
6144 	if (skb_headlen(from) != 0) {
6145 		struct page *page;
6146 		unsigned int offset;
6147 
6148 		if (to_shinfo->nr_frags +
6149 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
6150 			return false;
6151 
6152 		if (skb_head_is_locked(from))
6153 			return false;
6154 
6155 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
6156 
6157 		page = virt_to_head_page(from->head);
6158 		offset = from->data - (unsigned char *)page_address(page);
6159 
6160 		skb_fill_page_desc(to, to_shinfo->nr_frags,
6161 				   page, offset, skb_headlen(from));
6162 		*fragstolen = true;
6163 	} else {
6164 		if (to_shinfo->nr_frags +
6165 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
6166 			return false;
6167 
6168 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
6169 	}
6170 
6171 	WARN_ON_ONCE(delta < len);
6172 
6173 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
6174 	       from_shinfo->frags,
6175 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
6176 	to_shinfo->nr_frags += from_shinfo->nr_frags;
6177 
6178 	if (!skb_cloned(from))
6179 		from_shinfo->nr_frags = 0;
6180 
6181 	/* if the skb is not cloned this does nothing
6182 	 * since we set nr_frags to 0.
6183 	 */
6184 	if (skb_pp_frag_ref(from)) {
6185 		for (i = 0; i < from_shinfo->nr_frags; i++)
6186 			__skb_frag_ref(&from_shinfo->frags[i]);
6187 	}
6188 
6189 	to->truesize += delta;
6190 	to->len += len;
6191 	to->data_len += len;
6192 
6193 	*delta_truesize = delta;
6194 	return true;
6195 }
6196 EXPORT_SYMBOL(skb_try_coalesce);
6197 
6198 /**
6199  * skb_scrub_packet - scrub an skb
6200  *
6201  * @skb: buffer to clean
6202  * @xnet: packet is crossing netns
6203  *
6204  * skb_scrub_packet can be used after encapsulating or decapsulating a packet
6205  * into/from a tunnel. Some information have to be cleared during these
6206  * operations.
6207  * skb_scrub_packet can also be used to clean a skb before injecting it in
6208  * another namespace (@xnet == true). We have to clear all information in the
6209  * skb that could impact namespace isolation.
6210  */
6211 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6212 {
6213 	skb->pkt_type = PACKET_HOST;
6214 	skb->skb_iif = 0;
6215 	skb->ignore_df = 0;
6216 	skb_dst_drop(skb);
6217 	skb_ext_reset(skb);
6218 	nf_reset_ct(skb);
6219 	nf_reset_trace(skb);
6220 
6221 #ifdef CONFIG_NET_SWITCHDEV
6222 	skb->offload_fwd_mark = 0;
6223 	skb->offload_l3_fwd_mark = 0;
6224 #endif
6225 	ipvs_reset(skb);
6226 
6227 	if (!xnet)
6228 		return;
6229 
6230 	skb->mark = 0;
6231 	skb_clear_tstamp(skb);
6232 }
6233 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6234 
6235 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6236 {
6237 	int mac_len, meta_len;
6238 	void *meta;
6239 
6240 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
6241 		kfree_skb(skb);
6242 		return NULL;
6243 	}
6244 
6245 	mac_len = skb->data - skb_mac_header(skb);
6246 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6247 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6248 			mac_len - VLAN_HLEN - ETH_TLEN);
6249 	}
6250 
6251 	meta_len = skb_metadata_len(skb);
6252 	if (meta_len) {
6253 		meta = skb_metadata_end(skb) - meta_len;
6254 		memmove(meta + VLAN_HLEN, meta, meta_len);
6255 	}
6256 
6257 	skb->mac_header += VLAN_HLEN;
6258 	return skb;
6259 }
6260 
6261 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6262 {
6263 	struct vlan_hdr *vhdr;
6264 	u16 vlan_tci;
6265 
6266 	if (unlikely(skb_vlan_tag_present(skb))) {
6267 		/* vlan_tci is already set-up so leave this for another time */
6268 		return skb;
6269 	}
6270 
6271 	skb = skb_share_check(skb, GFP_ATOMIC);
6272 	if (unlikely(!skb))
6273 		goto err_free;
6274 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6275 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6276 		goto err_free;
6277 
6278 	vhdr = (struct vlan_hdr *)skb->data;
6279 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6280 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6281 
6282 	skb_pull_rcsum(skb, VLAN_HLEN);
6283 	vlan_set_encap_proto(skb, vhdr);
6284 
6285 	skb = skb_reorder_vlan_header(skb);
6286 	if (unlikely(!skb))
6287 		goto err_free;
6288 
6289 	skb_reset_network_header(skb);
6290 	if (!skb_transport_header_was_set(skb))
6291 		skb_reset_transport_header(skb);
6292 	skb_reset_mac_len(skb);
6293 
6294 	return skb;
6295 
6296 err_free:
6297 	kfree_skb(skb);
6298 	return NULL;
6299 }
6300 EXPORT_SYMBOL(skb_vlan_untag);
6301 
6302 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6303 {
6304 	if (!pskb_may_pull(skb, write_len))
6305 		return -ENOMEM;
6306 
6307 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6308 		return 0;
6309 
6310 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6311 }
6312 EXPORT_SYMBOL(skb_ensure_writable);
6313 
6314 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6315 {
6316 	int needed_headroom = dev->needed_headroom;
6317 	int needed_tailroom = dev->needed_tailroom;
6318 
6319 	/* For tail taggers, we need to pad short frames ourselves, to ensure
6320 	 * that the tail tag does not fail at its role of being at the end of
6321 	 * the packet, once the conduit interface pads the frame. Account for
6322 	 * that pad length here, and pad later.
6323 	 */
6324 	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6325 		needed_tailroom += ETH_ZLEN - skb->len;
6326 	/* skb_headroom() returns unsigned int... */
6327 	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6328 	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6329 
6330 	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6331 		/* No reallocation needed, yay! */
6332 		return 0;
6333 
6334 	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6335 				GFP_ATOMIC);
6336 }
6337 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6338 
6339 /* remove VLAN header from packet and update csum accordingly.
6340  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6341  */
6342 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6343 {
6344 	int offset = skb->data - skb_mac_header(skb);
6345 	int err;
6346 
6347 	if (WARN_ONCE(offset,
6348 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6349 		      offset)) {
6350 		return -EINVAL;
6351 	}
6352 
6353 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6354 	if (unlikely(err))
6355 		return err;
6356 
6357 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6358 
6359 	vlan_remove_tag(skb, vlan_tci);
6360 
6361 	skb->mac_header += VLAN_HLEN;
6362 
6363 	if (skb_network_offset(skb) < ETH_HLEN)
6364 		skb_set_network_header(skb, ETH_HLEN);
6365 
6366 	skb_reset_mac_len(skb);
6367 
6368 	return err;
6369 }
6370 EXPORT_SYMBOL(__skb_vlan_pop);
6371 
6372 /* Pop a vlan tag either from hwaccel or from payload.
6373  * Expects skb->data at mac header.
6374  */
6375 int skb_vlan_pop(struct sk_buff *skb)
6376 {
6377 	u16 vlan_tci;
6378 	__be16 vlan_proto;
6379 	int err;
6380 
6381 	if (likely(skb_vlan_tag_present(skb))) {
6382 		__vlan_hwaccel_clear_tag(skb);
6383 	} else {
6384 		if (unlikely(!eth_type_vlan(skb->protocol)))
6385 			return 0;
6386 
6387 		err = __skb_vlan_pop(skb, &vlan_tci);
6388 		if (err)
6389 			return err;
6390 	}
6391 	/* move next vlan tag to hw accel tag */
6392 	if (likely(!eth_type_vlan(skb->protocol)))
6393 		return 0;
6394 
6395 	vlan_proto = skb->protocol;
6396 	err = __skb_vlan_pop(skb, &vlan_tci);
6397 	if (unlikely(err))
6398 		return err;
6399 
6400 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6401 	return 0;
6402 }
6403 EXPORT_SYMBOL(skb_vlan_pop);
6404 
6405 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6406  * Expects skb->data at mac header.
6407  */
6408 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6409 {
6410 	if (skb_vlan_tag_present(skb)) {
6411 		int offset = skb->data - skb_mac_header(skb);
6412 		int err;
6413 
6414 		if (WARN_ONCE(offset,
6415 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6416 			      offset)) {
6417 			return -EINVAL;
6418 		}
6419 
6420 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6421 					skb_vlan_tag_get(skb));
6422 		if (err)
6423 			return err;
6424 
6425 		skb->protocol = skb->vlan_proto;
6426 		skb->network_header -= VLAN_HLEN;
6427 
6428 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6429 	}
6430 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6431 	return 0;
6432 }
6433 EXPORT_SYMBOL(skb_vlan_push);
6434 
6435 /**
6436  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6437  *
6438  * @skb: Socket buffer to modify
6439  *
6440  * Drop the Ethernet header of @skb.
6441  *
6442  * Expects that skb->data points to the mac header and that no VLAN tags are
6443  * present.
6444  *
6445  * Returns 0 on success, -errno otherwise.
6446  */
6447 int skb_eth_pop(struct sk_buff *skb)
6448 {
6449 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6450 	    skb_network_offset(skb) < ETH_HLEN)
6451 		return -EPROTO;
6452 
6453 	skb_pull_rcsum(skb, ETH_HLEN);
6454 	skb_reset_mac_header(skb);
6455 	skb_reset_mac_len(skb);
6456 
6457 	return 0;
6458 }
6459 EXPORT_SYMBOL(skb_eth_pop);
6460 
6461 /**
6462  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6463  *
6464  * @skb: Socket buffer to modify
6465  * @dst: Destination MAC address of the new header
6466  * @src: Source MAC address of the new header
6467  *
6468  * Prepend @skb with a new Ethernet header.
6469  *
6470  * Expects that skb->data points to the mac header, which must be empty.
6471  *
6472  * Returns 0 on success, -errno otherwise.
6473  */
6474 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6475 		 const unsigned char *src)
6476 {
6477 	struct ethhdr *eth;
6478 	int err;
6479 
6480 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6481 		return -EPROTO;
6482 
6483 	err = skb_cow_head(skb, sizeof(*eth));
6484 	if (err < 0)
6485 		return err;
6486 
6487 	skb_push(skb, sizeof(*eth));
6488 	skb_reset_mac_header(skb);
6489 	skb_reset_mac_len(skb);
6490 
6491 	eth = eth_hdr(skb);
6492 	ether_addr_copy(eth->h_dest, dst);
6493 	ether_addr_copy(eth->h_source, src);
6494 	eth->h_proto = skb->protocol;
6495 
6496 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6497 
6498 	return 0;
6499 }
6500 EXPORT_SYMBOL(skb_eth_push);
6501 
6502 /* Update the ethertype of hdr and the skb csum value if required. */
6503 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6504 			     __be16 ethertype)
6505 {
6506 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6507 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6508 
6509 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6510 	}
6511 
6512 	hdr->h_proto = ethertype;
6513 }
6514 
6515 /**
6516  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6517  *                   the packet
6518  *
6519  * @skb: buffer
6520  * @mpls_lse: MPLS label stack entry to push
6521  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6522  * @mac_len: length of the MAC header
6523  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6524  *            ethernet
6525  *
6526  * Expects skb->data at mac header.
6527  *
6528  * Returns 0 on success, -errno otherwise.
6529  */
6530 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6531 		  int mac_len, bool ethernet)
6532 {
6533 	struct mpls_shim_hdr *lse;
6534 	int err;
6535 
6536 	if (unlikely(!eth_p_mpls(mpls_proto)))
6537 		return -EINVAL;
6538 
6539 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6540 	if (skb->encapsulation)
6541 		return -EINVAL;
6542 
6543 	err = skb_cow_head(skb, MPLS_HLEN);
6544 	if (unlikely(err))
6545 		return err;
6546 
6547 	if (!skb->inner_protocol) {
6548 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6549 		skb_set_inner_protocol(skb, skb->protocol);
6550 	}
6551 
6552 	skb_push(skb, MPLS_HLEN);
6553 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6554 		mac_len);
6555 	skb_reset_mac_header(skb);
6556 	skb_set_network_header(skb, mac_len);
6557 	skb_reset_mac_len(skb);
6558 
6559 	lse = mpls_hdr(skb);
6560 	lse->label_stack_entry = mpls_lse;
6561 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6562 
6563 	if (ethernet && mac_len >= ETH_HLEN)
6564 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6565 	skb->protocol = mpls_proto;
6566 
6567 	return 0;
6568 }
6569 EXPORT_SYMBOL_GPL(skb_mpls_push);
6570 
6571 /**
6572  * skb_mpls_pop() - pop the outermost MPLS header
6573  *
6574  * @skb: buffer
6575  * @next_proto: ethertype of header after popped MPLS header
6576  * @mac_len: length of the MAC header
6577  * @ethernet: flag to indicate if the packet is ethernet
6578  *
6579  * Expects skb->data at mac header.
6580  *
6581  * Returns 0 on success, -errno otherwise.
6582  */
6583 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6584 		 bool ethernet)
6585 {
6586 	int err;
6587 
6588 	if (unlikely(!eth_p_mpls(skb->protocol)))
6589 		return 0;
6590 
6591 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6592 	if (unlikely(err))
6593 		return err;
6594 
6595 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6596 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6597 		mac_len);
6598 
6599 	__skb_pull(skb, MPLS_HLEN);
6600 	skb_reset_mac_header(skb);
6601 	skb_set_network_header(skb, mac_len);
6602 
6603 	if (ethernet && mac_len >= ETH_HLEN) {
6604 		struct ethhdr *hdr;
6605 
6606 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6607 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6608 		skb_mod_eth_type(skb, hdr, next_proto);
6609 	}
6610 	skb->protocol = next_proto;
6611 
6612 	return 0;
6613 }
6614 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6615 
6616 /**
6617  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6618  *
6619  * @skb: buffer
6620  * @mpls_lse: new MPLS label stack entry to update to
6621  *
6622  * Expects skb->data at mac header.
6623  *
6624  * Returns 0 on success, -errno otherwise.
6625  */
6626 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6627 {
6628 	int err;
6629 
6630 	if (unlikely(!eth_p_mpls(skb->protocol)))
6631 		return -EINVAL;
6632 
6633 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6634 	if (unlikely(err))
6635 		return err;
6636 
6637 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6638 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6639 
6640 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6641 	}
6642 
6643 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6644 
6645 	return 0;
6646 }
6647 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6648 
6649 /**
6650  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6651  *
6652  * @skb: buffer
6653  *
6654  * Expects skb->data at mac header.
6655  *
6656  * Returns 0 on success, -errno otherwise.
6657  */
6658 int skb_mpls_dec_ttl(struct sk_buff *skb)
6659 {
6660 	u32 lse;
6661 	u8 ttl;
6662 
6663 	if (unlikely(!eth_p_mpls(skb->protocol)))
6664 		return -EINVAL;
6665 
6666 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6667 		return -ENOMEM;
6668 
6669 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6670 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6671 	if (!--ttl)
6672 		return -EINVAL;
6673 
6674 	lse &= ~MPLS_LS_TTL_MASK;
6675 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6676 
6677 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6678 }
6679 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6680 
6681 /**
6682  * alloc_skb_with_frags - allocate skb with page frags
6683  *
6684  * @header_len: size of linear part
6685  * @data_len: needed length in frags
6686  * @order: max page order desired.
6687  * @errcode: pointer to error code if any
6688  * @gfp_mask: allocation mask
6689  *
6690  * This can be used to allocate a paged skb, given a maximal order for frags.
6691  */
6692 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6693 				     unsigned long data_len,
6694 				     int order,
6695 				     int *errcode,
6696 				     gfp_t gfp_mask)
6697 {
6698 	unsigned long chunk;
6699 	struct sk_buff *skb;
6700 	struct page *page;
6701 	int nr_frags = 0;
6702 
6703 	*errcode = -EMSGSIZE;
6704 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6705 		return NULL;
6706 
6707 	*errcode = -ENOBUFS;
6708 	skb = alloc_skb(header_len, gfp_mask);
6709 	if (!skb)
6710 		return NULL;
6711 
6712 	while (data_len) {
6713 		if (nr_frags == MAX_SKB_FRAGS)
6714 			goto failure;
6715 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6716 			order--;
6717 
6718 		if (order) {
6719 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6720 					   __GFP_COMP |
6721 					   __GFP_NOWARN,
6722 					   order);
6723 			if (!page) {
6724 				order--;
6725 				continue;
6726 			}
6727 		} else {
6728 			page = alloc_page(gfp_mask);
6729 			if (!page)
6730 				goto failure;
6731 		}
6732 		chunk = min_t(unsigned long, data_len,
6733 			      PAGE_SIZE << order);
6734 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6735 		nr_frags++;
6736 		skb->truesize += (PAGE_SIZE << order);
6737 		data_len -= chunk;
6738 	}
6739 	return skb;
6740 
6741 failure:
6742 	kfree_skb(skb);
6743 	return NULL;
6744 }
6745 EXPORT_SYMBOL(alloc_skb_with_frags);
6746 
6747 /* carve out the first off bytes from skb when off < headlen */
6748 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6749 				    const int headlen, gfp_t gfp_mask)
6750 {
6751 	int i;
6752 	unsigned int size = skb_end_offset(skb);
6753 	int new_hlen = headlen - off;
6754 	u8 *data;
6755 
6756 	if (skb_pfmemalloc(skb))
6757 		gfp_mask |= __GFP_MEMALLOC;
6758 
6759 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6760 	if (!data)
6761 		return -ENOMEM;
6762 	size = SKB_WITH_OVERHEAD(size);
6763 
6764 	/* Copy real data, and all frags */
6765 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6766 	skb->len -= off;
6767 
6768 	memcpy((struct skb_shared_info *)(data + size),
6769 	       skb_shinfo(skb),
6770 	       offsetof(struct skb_shared_info,
6771 			frags[skb_shinfo(skb)->nr_frags]));
6772 	if (skb_cloned(skb)) {
6773 		/* drop the old head gracefully */
6774 		if (skb_orphan_frags(skb, gfp_mask)) {
6775 			skb_kfree_head(data, size);
6776 			return -ENOMEM;
6777 		}
6778 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6779 			skb_frag_ref(skb, i);
6780 		if (skb_has_frag_list(skb))
6781 			skb_clone_fraglist(skb);
6782 		skb_release_data(skb, SKB_CONSUMED);
6783 	} else {
6784 		/* we can reuse existing recount- all we did was
6785 		 * relocate values
6786 		 */
6787 		skb_free_head(skb);
6788 	}
6789 
6790 	skb->head = data;
6791 	skb->data = data;
6792 	skb->head_frag = 0;
6793 	skb_set_end_offset(skb, size);
6794 	skb_set_tail_pointer(skb, skb_headlen(skb));
6795 	skb_headers_offset_update(skb, 0);
6796 	skb->cloned = 0;
6797 	skb->hdr_len = 0;
6798 	skb->nohdr = 0;
6799 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6800 
6801 	return 0;
6802 }
6803 
6804 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6805 
6806 /* carve out the first eat bytes from skb's frag_list. May recurse into
6807  * pskb_carve()
6808  */
6809 static int pskb_carve_frag_list(struct skb_shared_info *shinfo, int eat,
6810 				gfp_t gfp_mask)
6811 {
6812 	struct sk_buff *list = shinfo->frag_list;
6813 	struct sk_buff *clone = NULL;
6814 	struct sk_buff *insp = NULL;
6815 
6816 	do {
6817 		if (!list) {
6818 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6819 			return -EFAULT;
6820 		}
6821 		if (list->len <= eat) {
6822 			/* Eaten as whole. */
6823 			eat -= list->len;
6824 			list = list->next;
6825 			insp = list;
6826 		} else {
6827 			/* Eaten partially. */
6828 			if (skb_shared(list)) {
6829 				clone = skb_clone(list, gfp_mask);
6830 				if (!clone)
6831 					return -ENOMEM;
6832 				insp = list->next;
6833 				list = clone;
6834 			} else {
6835 				/* This may be pulled without problems. */
6836 				insp = list;
6837 			}
6838 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6839 				kfree_skb(clone);
6840 				return -ENOMEM;
6841 			}
6842 			break;
6843 		}
6844 	} while (eat);
6845 
6846 	/* Free pulled out fragments. */
6847 	while ((list = shinfo->frag_list) != insp) {
6848 		shinfo->frag_list = list->next;
6849 		consume_skb(list);
6850 	}
6851 	/* And insert new clone at head. */
6852 	if (clone) {
6853 		clone->next = list;
6854 		shinfo->frag_list = clone;
6855 	}
6856 	return 0;
6857 }
6858 
6859 /* carve off first len bytes from skb. Split line (off) is in the
6860  * non-linear part of skb
6861  */
6862 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6863 				       int pos, gfp_t gfp_mask)
6864 {
6865 	int i, k = 0;
6866 	unsigned int size = skb_end_offset(skb);
6867 	u8 *data;
6868 	const int nfrags = skb_shinfo(skb)->nr_frags;
6869 	struct skb_shared_info *shinfo;
6870 
6871 	if (skb_pfmemalloc(skb))
6872 		gfp_mask |= __GFP_MEMALLOC;
6873 
6874 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6875 	if (!data)
6876 		return -ENOMEM;
6877 	size = SKB_WITH_OVERHEAD(size);
6878 
6879 	memcpy((struct skb_shared_info *)(data + size),
6880 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6881 	if (skb_orphan_frags(skb, gfp_mask)) {
6882 		skb_kfree_head(data, size);
6883 		return -ENOMEM;
6884 	}
6885 	shinfo = (struct skb_shared_info *)(data + size);
6886 	for (i = 0; i < nfrags; i++) {
6887 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6888 
6889 		if (pos + fsize > off) {
6890 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6891 
6892 			if (pos < off) {
6893 				/* Split frag.
6894 				 * We have two variants in this case:
6895 				 * 1. Move all the frag to the second
6896 				 *    part, if it is possible. F.e.
6897 				 *    this approach is mandatory for TUX,
6898 				 *    where splitting is expensive.
6899 				 * 2. Split is accurately. We make this.
6900 				 */
6901 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6902 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6903 			}
6904 			skb_frag_ref(skb, i);
6905 			k++;
6906 		}
6907 		pos += fsize;
6908 	}
6909 	shinfo->nr_frags = k;
6910 	if (skb_has_frag_list(skb))
6911 		skb_clone_fraglist(skb);
6912 
6913 	/* split line is in frag list */
6914 	if (k == 0 && pskb_carve_frag_list(shinfo, off - pos, gfp_mask)) {
6915 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6916 		if (skb_has_frag_list(skb))
6917 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6918 		skb_kfree_head(data, size);
6919 		return -ENOMEM;
6920 	}
6921 	skb_release_data(skb, SKB_CONSUMED);
6922 
6923 	skb->head = data;
6924 	skb->head_frag = 0;
6925 	skb->data = data;
6926 	skb_set_end_offset(skb, size);
6927 	skb_reset_tail_pointer(skb);
6928 	skb_headers_offset_update(skb, 0);
6929 	skb->cloned   = 0;
6930 	skb->hdr_len  = 0;
6931 	skb->nohdr    = 0;
6932 	skb->len -= off;
6933 	skb->data_len = skb->len;
6934 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6935 	return 0;
6936 }
6937 
6938 /* remove len bytes from the beginning of the skb */
6939 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6940 {
6941 	int headlen = skb_headlen(skb);
6942 
6943 	if (len < headlen)
6944 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6945 	else
6946 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6947 }
6948 
6949 /* Extract to_copy bytes starting at off from skb, and return this in
6950  * a new skb
6951  */
6952 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6953 			     int to_copy, gfp_t gfp)
6954 {
6955 	struct sk_buff  *clone = skb_clone(skb, gfp);
6956 
6957 	if (!clone)
6958 		return NULL;
6959 
6960 	if (pskb_carve(clone, off, gfp) < 0 ||
6961 	    pskb_trim(clone, to_copy)) {
6962 		kfree_skb(clone);
6963 		return NULL;
6964 	}
6965 	return clone;
6966 }
6967 EXPORT_SYMBOL(pskb_extract);
6968 
6969 /**
6970  * skb_condense - try to get rid of fragments/frag_list if possible
6971  * @skb: buffer
6972  *
6973  * Can be used to save memory before skb is added to a busy queue.
6974  * If packet has bytes in frags and enough tail room in skb->head,
6975  * pull all of them, so that we can free the frags right now and adjust
6976  * truesize.
6977  * Notes:
6978  *	We do not reallocate skb->head thus can not fail.
6979  *	Caller must re-evaluate skb->truesize if needed.
6980  */
6981 void skb_condense(struct sk_buff *skb)
6982 {
6983 	if (skb->data_len) {
6984 		if (skb->data_len > skb->end - skb->tail ||
6985 		    skb_cloned(skb) || !skb_frags_readable(skb))
6986 			return;
6987 
6988 		/* Nice, we can free page frag(s) right now */
6989 		__pskb_pull_tail(skb, skb->data_len);
6990 	}
6991 	/* At this point, skb->truesize might be over estimated,
6992 	 * because skb had a fragment, and fragments do not tell
6993 	 * their truesize.
6994 	 * When we pulled its content into skb->head, fragment
6995 	 * was freed, but __pskb_pull_tail() could not possibly
6996 	 * adjust skb->truesize, not knowing the frag truesize.
6997 	 */
6998 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6999 }
7000 EXPORT_SYMBOL(skb_condense);
7001 
7002 #ifdef CONFIG_SKB_EXTENSIONS
7003 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
7004 {
7005 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
7006 }
7007 
7008 /**
7009  * __skb_ext_alloc - allocate a new skb extensions storage
7010  *
7011  * @flags: See kmalloc().
7012  *
7013  * Returns the newly allocated pointer. The pointer can later attached to a
7014  * skb via __skb_ext_set().
7015  * Note: caller must handle the skb_ext as an opaque data.
7016  */
7017 struct skb_ext *__skb_ext_alloc(gfp_t flags)
7018 {
7019 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
7020 
7021 	if (new) {
7022 		memset(new->offset, 0, sizeof(new->offset));
7023 		refcount_set(&new->refcnt, 1);
7024 	}
7025 
7026 	return new;
7027 }
7028 
7029 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
7030 					 unsigned int old_active)
7031 {
7032 	struct skb_ext *new;
7033 
7034 	if (refcount_read(&old->refcnt) == 1)
7035 		return old;
7036 
7037 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
7038 	if (!new)
7039 		return NULL;
7040 
7041 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
7042 	refcount_set(&new->refcnt, 1);
7043 
7044 #ifdef CONFIG_XFRM
7045 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
7046 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
7047 		unsigned int i;
7048 
7049 		for (i = 0; i < sp->len; i++)
7050 			xfrm_state_hold(sp->xvec[i]);
7051 	}
7052 #endif
7053 #ifdef CONFIG_MCTP_FLOWS
7054 	if (old_active & (1 << SKB_EXT_MCTP)) {
7055 		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
7056 
7057 		if (flow->key)
7058 			refcount_inc(&flow->key->refs);
7059 	}
7060 #endif
7061 	__skb_ext_put(old);
7062 	return new;
7063 }
7064 
7065 /**
7066  * __skb_ext_set - attach the specified extension storage to this skb
7067  * @skb: buffer
7068  * @id: extension id
7069  * @ext: extension storage previously allocated via __skb_ext_alloc()
7070  *
7071  * Existing extensions, if any, are cleared.
7072  *
7073  * Returns the pointer to the extension.
7074  */
7075 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
7076 		    struct skb_ext *ext)
7077 {
7078 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
7079 
7080 	skb_ext_put(skb);
7081 	newlen = newoff + skb_ext_type_len[id];
7082 	ext->chunks = newlen;
7083 	ext->offset[id] = newoff;
7084 	skb->extensions = ext;
7085 	skb->active_extensions = 1 << id;
7086 	return skb_ext_get_ptr(ext, id);
7087 }
7088 EXPORT_SYMBOL_NS_GPL(__skb_ext_set, "NETDEV_INTERNAL");
7089 
7090 /**
7091  * skb_ext_add - allocate space for given extension, COW if needed
7092  * @skb: buffer
7093  * @id: extension to allocate space for
7094  *
7095  * Allocates enough space for the given extension.
7096  * If the extension is already present, a pointer to that extension
7097  * is returned.
7098  *
7099  * If the skb was cloned, COW applies and the returned memory can be
7100  * modified without changing the extension space of clones buffers.
7101  *
7102  * Returns pointer to the extension or NULL on allocation failure.
7103  */
7104 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
7105 {
7106 	struct skb_ext *new, *old = NULL;
7107 	unsigned int newlen, newoff;
7108 
7109 	if (skb->active_extensions) {
7110 		old = skb->extensions;
7111 
7112 		new = skb_ext_maybe_cow(old, skb->active_extensions);
7113 		if (!new)
7114 			return NULL;
7115 
7116 		if (__skb_ext_exist(new, id))
7117 			goto set_active;
7118 
7119 		newoff = new->chunks;
7120 	} else {
7121 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
7122 
7123 		new = __skb_ext_alloc(GFP_ATOMIC);
7124 		if (!new)
7125 			return NULL;
7126 	}
7127 
7128 	newlen = newoff + skb_ext_type_len[id];
7129 	new->chunks = newlen;
7130 	new->offset[id] = newoff;
7131 set_active:
7132 	skb->slow_gro = 1;
7133 	skb->extensions = new;
7134 	skb->active_extensions |= 1 << id;
7135 	return skb_ext_get_ptr(new, id);
7136 }
7137 EXPORT_SYMBOL(skb_ext_add);
7138 
7139 #ifdef CONFIG_XFRM
7140 static void skb_ext_put_sp(struct sec_path *sp)
7141 {
7142 	unsigned int i;
7143 
7144 	for (i = 0; i < sp->len; i++)
7145 		xfrm_state_put(sp->xvec[i]);
7146 }
7147 #endif
7148 
7149 #ifdef CONFIG_MCTP_FLOWS
7150 static void skb_ext_put_mctp(struct mctp_flow *flow)
7151 {
7152 	if (flow->key)
7153 		mctp_key_unref(flow->key);
7154 }
7155 #endif
7156 
7157 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
7158 {
7159 	struct skb_ext *ext = skb->extensions;
7160 
7161 	skb->active_extensions &= ~(1 << id);
7162 	if (skb->active_extensions == 0) {
7163 		skb->extensions = NULL;
7164 		__skb_ext_put(ext);
7165 #ifdef CONFIG_XFRM
7166 	} else if (id == SKB_EXT_SEC_PATH &&
7167 		   refcount_read(&ext->refcnt) == 1) {
7168 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
7169 
7170 		skb_ext_put_sp(sp);
7171 		sp->len = 0;
7172 #endif
7173 	}
7174 }
7175 EXPORT_SYMBOL(__skb_ext_del);
7176 
7177 void __skb_ext_put(struct skb_ext *ext)
7178 {
7179 	/* If this is last clone, nothing can increment
7180 	 * it after check passes.  Avoids one atomic op.
7181 	 */
7182 	if (refcount_read(&ext->refcnt) == 1)
7183 		goto free_now;
7184 
7185 	if (!refcount_dec_and_test(&ext->refcnt))
7186 		return;
7187 free_now:
7188 #ifdef CONFIG_XFRM
7189 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
7190 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
7191 #endif
7192 #ifdef CONFIG_MCTP_FLOWS
7193 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
7194 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
7195 #endif
7196 
7197 	kmem_cache_free(skbuff_ext_cache, ext);
7198 }
7199 EXPORT_SYMBOL(__skb_ext_put);
7200 #endif /* CONFIG_SKB_EXTENSIONS */
7201 
7202 static void kfree_skb_napi_cache(struct sk_buff *skb)
7203 {
7204 	/* if SKB is a clone, don't handle this case */
7205 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
7206 		__kfree_skb(skb);
7207 		return;
7208 	}
7209 
7210 	local_bh_disable();
7211 	__napi_kfree_skb(skb, SKB_CONSUMED);
7212 	local_bh_enable();
7213 }
7214 
7215 /**
7216  * skb_attempt_defer_free - queue skb for remote freeing
7217  * @skb: buffer
7218  *
7219  * Put @skb in a per-cpu list, using the cpu which
7220  * allocated the skb/pages to reduce false sharing
7221  * and memory zone spinlock contention.
7222  */
7223 void skb_attempt_defer_free(struct sk_buff *skb)
7224 {
7225 	struct skb_defer_node *sdn;
7226 	unsigned long defer_count;
7227 	int cpu = skb->alloc_cpu;
7228 	unsigned int defer_max;
7229 	bool kick;
7230 
7231 	if (cpu == raw_smp_processor_id() ||
7232 	    WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7233 	    !cpu_online(cpu)) {
7234 nodefer:	kfree_skb_napi_cache(skb);
7235 		return;
7236 	}
7237 
7238 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7239 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7240 	DEBUG_NET_WARN_ON_ONCE(skb_nfct(skb));
7241 
7242 	sdn = per_cpu_ptr(net_hotdata.skb_defer_nodes, cpu) + numa_node_id();
7243 
7244 	defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max);
7245 	defer_count = atomic_long_inc_return(&sdn->defer_count);
7246 
7247 	if (defer_count >= defer_max)
7248 		goto nodefer;
7249 
7250 	llist_add(&skb->ll_node, &sdn->defer_list);
7251 
7252 	/* Send an IPI every time queue reaches half capacity. */
7253 	kick = (defer_count - 1) == (defer_max >> 1);
7254 
7255 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7256 	 * if we are unlucky enough (this seems very unlikely).
7257 	 */
7258 	if (unlikely(kick))
7259 		kick_defer_list_purge(cpu);
7260 }
7261 
7262 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7263 				 size_t offset, size_t len)
7264 {
7265 	const char *kaddr;
7266 	__wsum csum;
7267 
7268 	kaddr = kmap_local_page(page);
7269 	csum = csum_partial(kaddr + offset, len, 0);
7270 	kunmap_local(kaddr);
7271 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7272 }
7273 
7274 /**
7275  * skb_splice_from_iter - Splice (or copy) pages to skbuff
7276  * @skb: The buffer to add pages to
7277  * @iter: Iterator representing the pages to be added
7278  * @maxsize: Maximum amount of pages to be added
7279  *
7280  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7281  * extracts pages from an iterator and adds them to the socket buffer if
7282  * possible, copying them to fragments if not possible (such as if they're slab
7283  * pages).
7284  *
7285  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7286  * insufficient space in the buffer to transfer anything.
7287  */
7288 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7289 			     ssize_t maxsize)
7290 {
7291 	size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags);
7292 	struct page *pages[8], **ppages = pages;
7293 	ssize_t spliced = 0, ret = 0;
7294 	unsigned int i;
7295 
7296 	while (iter->count > 0) {
7297 		ssize_t space, nr, len;
7298 		size_t off;
7299 
7300 		ret = -EMSGSIZE;
7301 		space = frag_limit - skb_shinfo(skb)->nr_frags;
7302 		if (space < 0)
7303 			break;
7304 
7305 		/* We might be able to coalesce without increasing nr_frags */
7306 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7307 
7308 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7309 		if (len <= 0) {
7310 			ret = len ?: -EIO;
7311 			break;
7312 		}
7313 
7314 		i = 0;
7315 		do {
7316 			struct page *page = pages[i++];
7317 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7318 
7319 			ret = -EIO;
7320 			if (WARN_ON_ONCE(!sendpage_ok(page)))
7321 				goto out;
7322 
7323 			ret = skb_append_pagefrags(skb, page, off, part,
7324 						   frag_limit);
7325 			if (ret < 0) {
7326 				iov_iter_revert(iter, len);
7327 				goto out;
7328 			}
7329 
7330 			if (skb->ip_summed == CHECKSUM_NONE)
7331 				skb_splice_csum_page(skb, page, off, part);
7332 
7333 			off = 0;
7334 			spliced += part;
7335 			maxsize -= part;
7336 			len -= part;
7337 		} while (len > 0);
7338 
7339 		if (maxsize <= 0)
7340 			break;
7341 	}
7342 
7343 out:
7344 	skb_len_add(skb, spliced);
7345 	return spliced ?: ret;
7346 }
7347 EXPORT_SYMBOL(skb_splice_from_iter);
7348 
7349 static __always_inline
7350 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7351 			     size_t len, void *to, void *priv2)
7352 {
7353 	__wsum *csum = priv2;
7354 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7355 
7356 	*csum = csum_block_add(*csum, next, progress);
7357 	return 0;
7358 }
7359 
7360 static __always_inline
7361 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7362 				size_t len, void *to, void *priv2)
7363 {
7364 	__wsum next, *csum = priv2;
7365 
7366 	next = csum_and_copy_from_user(iter_from, to + progress, len);
7367 	*csum = csum_block_add(*csum, next, progress);
7368 	return next ? 0 : len;
7369 }
7370 
7371 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7372 				  __wsum *csum, struct iov_iter *i)
7373 {
7374 	size_t copied;
7375 
7376 	if (WARN_ON_ONCE(!i->data_source))
7377 		return false;
7378 	copied = iterate_and_advance2(i, bytes, addr, csum,
7379 				      copy_from_user_iter_csum,
7380 				      memcpy_from_iter_csum);
7381 	if (likely(copied == bytes))
7382 		return true;
7383 	iov_iter_revert(i, copied);
7384 	return false;
7385 }
7386 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7387 
7388 void get_netmem(netmem_ref netmem)
7389 {
7390 	struct net_iov *niov;
7391 
7392 	if (netmem_is_net_iov(netmem)) {
7393 		niov = netmem_to_net_iov(netmem);
7394 		if (net_is_devmem_iov(niov))
7395 			net_devmem_get_net_iov(netmem_to_net_iov(netmem));
7396 		return;
7397 	}
7398 	get_page(netmem_to_page(netmem));
7399 }
7400 EXPORT_SYMBOL(get_netmem);
7401 
7402 void put_netmem(netmem_ref netmem)
7403 {
7404 	struct net_iov *niov;
7405 
7406 	if (netmem_is_net_iov(netmem)) {
7407 		niov = netmem_to_net_iov(netmem);
7408 		if (net_is_devmem_iov(niov))
7409 			net_devmem_put_net_iov(netmem_to_net_iov(netmem));
7410 		return;
7411 	}
7412 
7413 	put_page(netmem_to_page(netmem));
7414 }
7415 EXPORT_SYMBOL(put_netmem);
7416