1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/mm.h> 45 #include <linux/interrupt.h> 46 #include <linux/in.h> 47 #include <linux/inet.h> 48 #include <linux/slab.h> 49 #include <linux/tcp.h> 50 #include <linux/udp.h> 51 #include <linux/sctp.h> 52 #include <linux/netdevice.h> 53 #ifdef CONFIG_NET_CLS_ACT 54 #include <net/pkt_sched.h> 55 #endif 56 #include <linux/string.h> 57 #include <linux/skbuff.h> 58 #include <linux/splice.h> 59 #include <linux/cache.h> 60 #include <linux/rtnetlink.h> 61 #include <linux/init.h> 62 #include <linux/scatterlist.h> 63 #include <linux/errqueue.h> 64 #include <linux/prefetch.h> 65 #include <linux/if_vlan.h> 66 67 #include <net/protocol.h> 68 #include <net/dst.h> 69 #include <net/sock.h> 70 #include <net/checksum.h> 71 #include <net/ip6_checksum.h> 72 #include <net/xfrm.h> 73 74 #include <linux/uaccess.h> 75 #include <trace/events/skb.h> 76 #include <linux/highmem.h> 77 #include <linux/capability.h> 78 #include <linux/user_namespace.h> 79 80 struct kmem_cache *skbuff_head_cache __ro_after_init; 81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 83 EXPORT_SYMBOL(sysctl_max_skb_frags); 84 85 /** 86 * skb_panic - private function for out-of-line support 87 * @skb: buffer 88 * @sz: size 89 * @addr: address 90 * @msg: skb_over_panic or skb_under_panic 91 * 92 * Out-of-line support for skb_put() and skb_push(). 93 * Called via the wrapper skb_over_panic() or skb_under_panic(). 94 * Keep out of line to prevent kernel bloat. 95 * __builtin_return_address is not used because it is not always reliable. 96 */ 97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 98 const char msg[]) 99 { 100 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 101 msg, addr, skb->len, sz, skb->head, skb->data, 102 (unsigned long)skb->tail, (unsigned long)skb->end, 103 skb->dev ? skb->dev->name : "<NULL>"); 104 BUG(); 105 } 106 107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 108 { 109 skb_panic(skb, sz, addr, __func__); 110 } 111 112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 113 { 114 skb_panic(skb, sz, addr, __func__); 115 } 116 117 /* 118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 119 * the caller if emergency pfmemalloc reserves are being used. If it is and 120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 121 * may be used. Otherwise, the packet data may be discarded until enough 122 * memory is free 123 */ 124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 125 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 126 127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 128 unsigned long ip, bool *pfmemalloc) 129 { 130 void *obj; 131 bool ret_pfmemalloc = false; 132 133 /* 134 * Try a regular allocation, when that fails and we're not entitled 135 * to the reserves, fail. 136 */ 137 obj = kmalloc_node_track_caller(size, 138 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 139 node); 140 if (obj || !(gfp_pfmemalloc_allowed(flags))) 141 goto out; 142 143 /* Try again but now we are using pfmemalloc reserves */ 144 ret_pfmemalloc = true; 145 obj = kmalloc_node_track_caller(size, flags, node); 146 147 out: 148 if (pfmemalloc) 149 *pfmemalloc = ret_pfmemalloc; 150 151 return obj; 152 } 153 154 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 155 * 'private' fields and also do memory statistics to find all the 156 * [BEEP] leaks. 157 * 158 */ 159 160 /** 161 * __alloc_skb - allocate a network buffer 162 * @size: size to allocate 163 * @gfp_mask: allocation mask 164 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 165 * instead of head cache and allocate a cloned (child) skb. 166 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 167 * allocations in case the data is required for writeback 168 * @node: numa node to allocate memory on 169 * 170 * Allocate a new &sk_buff. The returned buffer has no headroom and a 171 * tail room of at least size bytes. The object has a reference count 172 * of one. The return is the buffer. On a failure the return is %NULL. 173 * 174 * Buffers may only be allocated from interrupts using a @gfp_mask of 175 * %GFP_ATOMIC. 176 */ 177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 178 int flags, int node) 179 { 180 struct kmem_cache *cache; 181 struct skb_shared_info *shinfo; 182 struct sk_buff *skb; 183 u8 *data; 184 bool pfmemalloc; 185 186 cache = (flags & SKB_ALLOC_FCLONE) 187 ? skbuff_fclone_cache : skbuff_head_cache; 188 189 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 190 gfp_mask |= __GFP_MEMALLOC; 191 192 /* Get the HEAD */ 193 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 194 if (!skb) 195 goto out; 196 prefetchw(skb); 197 198 /* We do our best to align skb_shared_info on a separate cache 199 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 200 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 201 * Both skb->head and skb_shared_info are cache line aligned. 202 */ 203 size = SKB_DATA_ALIGN(size); 204 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 205 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 206 if (!data) 207 goto nodata; 208 /* kmalloc(size) might give us more room than requested. 209 * Put skb_shared_info exactly at the end of allocated zone, 210 * to allow max possible filling before reallocation. 211 */ 212 size = SKB_WITH_OVERHEAD(ksize(data)); 213 prefetchw(data + size); 214 215 /* 216 * Only clear those fields we need to clear, not those that we will 217 * actually initialise below. Hence, don't put any more fields after 218 * the tail pointer in struct sk_buff! 219 */ 220 memset(skb, 0, offsetof(struct sk_buff, tail)); 221 /* Account for allocated memory : skb + skb->head */ 222 skb->truesize = SKB_TRUESIZE(size); 223 skb->pfmemalloc = pfmemalloc; 224 refcount_set(&skb->users, 1); 225 skb->head = data; 226 skb->data = data; 227 skb_reset_tail_pointer(skb); 228 skb->end = skb->tail + size; 229 skb->mac_header = (typeof(skb->mac_header))~0U; 230 skb->transport_header = (typeof(skb->transport_header))~0U; 231 232 /* make sure we initialize shinfo sequentially */ 233 shinfo = skb_shinfo(skb); 234 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 235 atomic_set(&shinfo->dataref, 1); 236 237 if (flags & SKB_ALLOC_FCLONE) { 238 struct sk_buff_fclones *fclones; 239 240 fclones = container_of(skb, struct sk_buff_fclones, skb1); 241 242 skb->fclone = SKB_FCLONE_ORIG; 243 refcount_set(&fclones->fclone_ref, 1); 244 245 fclones->skb2.fclone = SKB_FCLONE_CLONE; 246 } 247 out: 248 return skb; 249 nodata: 250 kmem_cache_free(cache, skb); 251 skb = NULL; 252 goto out; 253 } 254 EXPORT_SYMBOL(__alloc_skb); 255 256 /** 257 * __build_skb - build a network buffer 258 * @data: data buffer provided by caller 259 * @frag_size: size of data, or 0 if head was kmalloced 260 * 261 * Allocate a new &sk_buff. Caller provides space holding head and 262 * skb_shared_info. @data must have been allocated by kmalloc() only if 263 * @frag_size is 0, otherwise data should come from the page allocator 264 * or vmalloc() 265 * The return is the new skb buffer. 266 * On a failure the return is %NULL, and @data is not freed. 267 * Notes : 268 * Before IO, driver allocates only data buffer where NIC put incoming frame 269 * Driver should add room at head (NET_SKB_PAD) and 270 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 271 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 272 * before giving packet to stack. 273 * RX rings only contains data buffers, not full skbs. 274 */ 275 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 276 { 277 struct skb_shared_info *shinfo; 278 struct sk_buff *skb; 279 unsigned int size = frag_size ? : ksize(data); 280 281 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 282 if (!skb) 283 return NULL; 284 285 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 286 287 memset(skb, 0, offsetof(struct sk_buff, tail)); 288 skb->truesize = SKB_TRUESIZE(size); 289 refcount_set(&skb->users, 1); 290 skb->head = data; 291 skb->data = data; 292 skb_reset_tail_pointer(skb); 293 skb->end = skb->tail + size; 294 skb->mac_header = (typeof(skb->mac_header))~0U; 295 skb->transport_header = (typeof(skb->transport_header))~0U; 296 297 /* make sure we initialize shinfo sequentially */ 298 shinfo = skb_shinfo(skb); 299 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 300 atomic_set(&shinfo->dataref, 1); 301 302 return skb; 303 } 304 305 /* build_skb() is wrapper over __build_skb(), that specifically 306 * takes care of skb->head and skb->pfmemalloc 307 * This means that if @frag_size is not zero, then @data must be backed 308 * by a page fragment, not kmalloc() or vmalloc() 309 */ 310 struct sk_buff *build_skb(void *data, unsigned int frag_size) 311 { 312 struct sk_buff *skb = __build_skb(data, frag_size); 313 314 if (skb && frag_size) { 315 skb->head_frag = 1; 316 if (page_is_pfmemalloc(virt_to_head_page(data))) 317 skb->pfmemalloc = 1; 318 } 319 return skb; 320 } 321 EXPORT_SYMBOL(build_skb); 322 323 #define NAPI_SKB_CACHE_SIZE 64 324 325 struct napi_alloc_cache { 326 struct page_frag_cache page; 327 unsigned int skb_count; 328 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 329 }; 330 331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 333 334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 335 { 336 struct page_frag_cache *nc; 337 unsigned long flags; 338 void *data; 339 340 local_irq_save(flags); 341 nc = this_cpu_ptr(&netdev_alloc_cache); 342 data = page_frag_alloc(nc, fragsz, gfp_mask); 343 local_irq_restore(flags); 344 return data; 345 } 346 347 /** 348 * netdev_alloc_frag - allocate a page fragment 349 * @fragsz: fragment size 350 * 351 * Allocates a frag from a page for receive buffer. 352 * Uses GFP_ATOMIC allocations. 353 */ 354 void *netdev_alloc_frag(unsigned int fragsz) 355 { 356 return __netdev_alloc_frag(fragsz, GFP_ATOMIC); 357 } 358 EXPORT_SYMBOL(netdev_alloc_frag); 359 360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 361 { 362 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 363 364 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 365 } 366 367 void *napi_alloc_frag(unsigned int fragsz) 368 { 369 return __napi_alloc_frag(fragsz, GFP_ATOMIC); 370 } 371 EXPORT_SYMBOL(napi_alloc_frag); 372 373 /** 374 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 375 * @dev: network device to receive on 376 * @len: length to allocate 377 * @gfp_mask: get_free_pages mask, passed to alloc_skb 378 * 379 * Allocate a new &sk_buff and assign it a usage count of one. The 380 * buffer has NET_SKB_PAD headroom built in. Users should allocate 381 * the headroom they think they need without accounting for the 382 * built in space. The built in space is used for optimisations. 383 * 384 * %NULL is returned if there is no free memory. 385 */ 386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 387 gfp_t gfp_mask) 388 { 389 struct page_frag_cache *nc; 390 unsigned long flags; 391 struct sk_buff *skb; 392 bool pfmemalloc; 393 void *data; 394 395 len += NET_SKB_PAD; 396 397 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 398 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 399 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 400 if (!skb) 401 goto skb_fail; 402 goto skb_success; 403 } 404 405 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 406 len = SKB_DATA_ALIGN(len); 407 408 if (sk_memalloc_socks()) 409 gfp_mask |= __GFP_MEMALLOC; 410 411 local_irq_save(flags); 412 413 nc = this_cpu_ptr(&netdev_alloc_cache); 414 data = page_frag_alloc(nc, len, gfp_mask); 415 pfmemalloc = nc->pfmemalloc; 416 417 local_irq_restore(flags); 418 419 if (unlikely(!data)) 420 return NULL; 421 422 skb = __build_skb(data, len); 423 if (unlikely(!skb)) { 424 skb_free_frag(data); 425 return NULL; 426 } 427 428 /* use OR instead of assignment to avoid clearing of bits in mask */ 429 if (pfmemalloc) 430 skb->pfmemalloc = 1; 431 skb->head_frag = 1; 432 433 skb_success: 434 skb_reserve(skb, NET_SKB_PAD); 435 skb->dev = dev; 436 437 skb_fail: 438 return skb; 439 } 440 EXPORT_SYMBOL(__netdev_alloc_skb); 441 442 /** 443 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 444 * @napi: napi instance this buffer was allocated for 445 * @len: length to allocate 446 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 447 * 448 * Allocate a new sk_buff for use in NAPI receive. This buffer will 449 * attempt to allocate the head from a special reserved region used 450 * only for NAPI Rx allocation. By doing this we can save several 451 * CPU cycles by avoiding having to disable and re-enable IRQs. 452 * 453 * %NULL is returned if there is no free memory. 454 */ 455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 456 gfp_t gfp_mask) 457 { 458 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 459 struct sk_buff *skb; 460 void *data; 461 462 len += NET_SKB_PAD + NET_IP_ALIGN; 463 464 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 465 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 466 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 467 if (!skb) 468 goto skb_fail; 469 goto skb_success; 470 } 471 472 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 473 len = SKB_DATA_ALIGN(len); 474 475 if (sk_memalloc_socks()) 476 gfp_mask |= __GFP_MEMALLOC; 477 478 data = page_frag_alloc(&nc->page, len, gfp_mask); 479 if (unlikely(!data)) 480 return NULL; 481 482 skb = __build_skb(data, len); 483 if (unlikely(!skb)) { 484 skb_free_frag(data); 485 return NULL; 486 } 487 488 /* use OR instead of assignment to avoid clearing of bits in mask */ 489 if (nc->page.pfmemalloc) 490 skb->pfmemalloc = 1; 491 skb->head_frag = 1; 492 493 skb_success: 494 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 495 skb->dev = napi->dev; 496 497 skb_fail: 498 return skb; 499 } 500 EXPORT_SYMBOL(__napi_alloc_skb); 501 502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 503 int size, unsigned int truesize) 504 { 505 skb_fill_page_desc(skb, i, page, off, size); 506 skb->len += size; 507 skb->data_len += size; 508 skb->truesize += truesize; 509 } 510 EXPORT_SYMBOL(skb_add_rx_frag); 511 512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 513 unsigned int truesize) 514 { 515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 516 517 skb_frag_size_add(frag, size); 518 skb->len += size; 519 skb->data_len += size; 520 skb->truesize += truesize; 521 } 522 EXPORT_SYMBOL(skb_coalesce_rx_frag); 523 524 static void skb_drop_list(struct sk_buff **listp) 525 { 526 kfree_skb_list(*listp); 527 *listp = NULL; 528 } 529 530 static inline void skb_drop_fraglist(struct sk_buff *skb) 531 { 532 skb_drop_list(&skb_shinfo(skb)->frag_list); 533 } 534 535 static void skb_clone_fraglist(struct sk_buff *skb) 536 { 537 struct sk_buff *list; 538 539 skb_walk_frags(skb, list) 540 skb_get(list); 541 } 542 543 static void skb_free_head(struct sk_buff *skb) 544 { 545 unsigned char *head = skb->head; 546 547 if (skb->head_frag) 548 skb_free_frag(head); 549 else 550 kfree(head); 551 } 552 553 static void skb_release_data(struct sk_buff *skb) 554 { 555 struct skb_shared_info *shinfo = skb_shinfo(skb); 556 int i; 557 558 if (skb->cloned && 559 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 560 &shinfo->dataref)) 561 return; 562 563 for (i = 0; i < shinfo->nr_frags; i++) 564 __skb_frag_unref(&shinfo->frags[i]); 565 566 if (shinfo->frag_list) 567 kfree_skb_list(shinfo->frag_list); 568 569 skb_zcopy_clear(skb, true); 570 skb_free_head(skb); 571 } 572 573 /* 574 * Free an skbuff by memory without cleaning the state. 575 */ 576 static void kfree_skbmem(struct sk_buff *skb) 577 { 578 struct sk_buff_fclones *fclones; 579 580 switch (skb->fclone) { 581 case SKB_FCLONE_UNAVAILABLE: 582 kmem_cache_free(skbuff_head_cache, skb); 583 return; 584 585 case SKB_FCLONE_ORIG: 586 fclones = container_of(skb, struct sk_buff_fclones, skb1); 587 588 /* We usually free the clone (TX completion) before original skb 589 * This test would have no chance to be true for the clone, 590 * while here, branch prediction will be good. 591 */ 592 if (refcount_read(&fclones->fclone_ref) == 1) 593 goto fastpath; 594 break; 595 596 default: /* SKB_FCLONE_CLONE */ 597 fclones = container_of(skb, struct sk_buff_fclones, skb2); 598 break; 599 } 600 if (!refcount_dec_and_test(&fclones->fclone_ref)) 601 return; 602 fastpath: 603 kmem_cache_free(skbuff_fclone_cache, fclones); 604 } 605 606 void skb_release_head_state(struct sk_buff *skb) 607 { 608 skb_dst_drop(skb); 609 secpath_reset(skb); 610 if (skb->destructor) { 611 WARN_ON(in_irq()); 612 skb->destructor(skb); 613 } 614 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 615 nf_conntrack_put(skb_nfct(skb)); 616 #endif 617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 618 nf_bridge_put(skb->nf_bridge); 619 #endif 620 } 621 622 /* Free everything but the sk_buff shell. */ 623 static void skb_release_all(struct sk_buff *skb) 624 { 625 skb_release_head_state(skb); 626 if (likely(skb->head)) 627 skb_release_data(skb); 628 } 629 630 /** 631 * __kfree_skb - private function 632 * @skb: buffer 633 * 634 * Free an sk_buff. Release anything attached to the buffer. 635 * Clean the state. This is an internal helper function. Users should 636 * always call kfree_skb 637 */ 638 639 void __kfree_skb(struct sk_buff *skb) 640 { 641 skb_release_all(skb); 642 kfree_skbmem(skb); 643 } 644 EXPORT_SYMBOL(__kfree_skb); 645 646 /** 647 * kfree_skb - free an sk_buff 648 * @skb: buffer to free 649 * 650 * Drop a reference to the buffer and free it if the usage count has 651 * hit zero. 652 */ 653 void kfree_skb(struct sk_buff *skb) 654 { 655 if (!skb_unref(skb)) 656 return; 657 658 trace_kfree_skb(skb, __builtin_return_address(0)); 659 __kfree_skb(skb); 660 } 661 EXPORT_SYMBOL(kfree_skb); 662 663 void kfree_skb_list(struct sk_buff *segs) 664 { 665 while (segs) { 666 struct sk_buff *next = segs->next; 667 668 kfree_skb(segs); 669 segs = next; 670 } 671 } 672 EXPORT_SYMBOL(kfree_skb_list); 673 674 /** 675 * skb_tx_error - report an sk_buff xmit error 676 * @skb: buffer that triggered an error 677 * 678 * Report xmit error if a device callback is tracking this skb. 679 * skb must be freed afterwards. 680 */ 681 void skb_tx_error(struct sk_buff *skb) 682 { 683 skb_zcopy_clear(skb, true); 684 } 685 EXPORT_SYMBOL(skb_tx_error); 686 687 /** 688 * consume_skb - free an skbuff 689 * @skb: buffer to free 690 * 691 * Drop a ref to the buffer and free it if the usage count has hit zero 692 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 693 * is being dropped after a failure and notes that 694 */ 695 void consume_skb(struct sk_buff *skb) 696 { 697 if (!skb_unref(skb)) 698 return; 699 700 trace_consume_skb(skb); 701 __kfree_skb(skb); 702 } 703 EXPORT_SYMBOL(consume_skb); 704 705 /** 706 * consume_stateless_skb - free an skbuff, assuming it is stateless 707 * @skb: buffer to free 708 * 709 * Alike consume_skb(), but this variant assumes that this is the last 710 * skb reference and all the head states have been already dropped 711 */ 712 void __consume_stateless_skb(struct sk_buff *skb) 713 { 714 trace_consume_skb(skb); 715 skb_release_data(skb); 716 kfree_skbmem(skb); 717 } 718 719 void __kfree_skb_flush(void) 720 { 721 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 722 723 /* flush skb_cache if containing objects */ 724 if (nc->skb_count) { 725 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 726 nc->skb_cache); 727 nc->skb_count = 0; 728 } 729 } 730 731 static inline void _kfree_skb_defer(struct sk_buff *skb) 732 { 733 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 734 735 /* drop skb->head and call any destructors for packet */ 736 skb_release_all(skb); 737 738 /* record skb to CPU local list */ 739 nc->skb_cache[nc->skb_count++] = skb; 740 741 #ifdef CONFIG_SLUB 742 /* SLUB writes into objects when freeing */ 743 prefetchw(skb); 744 #endif 745 746 /* flush skb_cache if it is filled */ 747 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 748 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 749 nc->skb_cache); 750 nc->skb_count = 0; 751 } 752 } 753 void __kfree_skb_defer(struct sk_buff *skb) 754 { 755 _kfree_skb_defer(skb); 756 } 757 758 void napi_consume_skb(struct sk_buff *skb, int budget) 759 { 760 if (unlikely(!skb)) 761 return; 762 763 /* Zero budget indicate non-NAPI context called us, like netpoll */ 764 if (unlikely(!budget)) { 765 dev_consume_skb_any(skb); 766 return; 767 } 768 769 if (!skb_unref(skb)) 770 return; 771 772 /* if reaching here SKB is ready to free */ 773 trace_consume_skb(skb); 774 775 /* if SKB is a clone, don't handle this case */ 776 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 777 __kfree_skb(skb); 778 return; 779 } 780 781 _kfree_skb_defer(skb); 782 } 783 EXPORT_SYMBOL(napi_consume_skb); 784 785 /* Make sure a field is enclosed inside headers_start/headers_end section */ 786 #define CHECK_SKB_FIELD(field) \ 787 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 788 offsetof(struct sk_buff, headers_start)); \ 789 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 790 offsetof(struct sk_buff, headers_end)); \ 791 792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 793 { 794 new->tstamp = old->tstamp; 795 /* We do not copy old->sk */ 796 new->dev = old->dev; 797 memcpy(new->cb, old->cb, sizeof(old->cb)); 798 skb_dst_copy(new, old); 799 #ifdef CONFIG_XFRM 800 new->sp = secpath_get(old->sp); 801 #endif 802 __nf_copy(new, old, false); 803 804 /* Note : this field could be in headers_start/headers_end section 805 * It is not yet because we do not want to have a 16 bit hole 806 */ 807 new->queue_mapping = old->queue_mapping; 808 809 memcpy(&new->headers_start, &old->headers_start, 810 offsetof(struct sk_buff, headers_end) - 811 offsetof(struct sk_buff, headers_start)); 812 CHECK_SKB_FIELD(protocol); 813 CHECK_SKB_FIELD(csum); 814 CHECK_SKB_FIELD(hash); 815 CHECK_SKB_FIELD(priority); 816 CHECK_SKB_FIELD(skb_iif); 817 CHECK_SKB_FIELD(vlan_proto); 818 CHECK_SKB_FIELD(vlan_tci); 819 CHECK_SKB_FIELD(transport_header); 820 CHECK_SKB_FIELD(network_header); 821 CHECK_SKB_FIELD(mac_header); 822 CHECK_SKB_FIELD(inner_protocol); 823 CHECK_SKB_FIELD(inner_transport_header); 824 CHECK_SKB_FIELD(inner_network_header); 825 CHECK_SKB_FIELD(inner_mac_header); 826 CHECK_SKB_FIELD(mark); 827 #ifdef CONFIG_NETWORK_SECMARK 828 CHECK_SKB_FIELD(secmark); 829 #endif 830 #ifdef CONFIG_NET_RX_BUSY_POLL 831 CHECK_SKB_FIELD(napi_id); 832 #endif 833 #ifdef CONFIG_XPS 834 CHECK_SKB_FIELD(sender_cpu); 835 #endif 836 #ifdef CONFIG_NET_SCHED 837 CHECK_SKB_FIELD(tc_index); 838 #endif 839 840 } 841 842 /* 843 * You should not add any new code to this function. Add it to 844 * __copy_skb_header above instead. 845 */ 846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 847 { 848 #define C(x) n->x = skb->x 849 850 n->next = n->prev = NULL; 851 n->sk = NULL; 852 __copy_skb_header(n, skb); 853 854 C(len); 855 C(data_len); 856 C(mac_len); 857 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 858 n->cloned = 1; 859 n->nohdr = 0; 860 n->destructor = NULL; 861 C(tail); 862 C(end); 863 C(head); 864 C(head_frag); 865 C(data); 866 C(truesize); 867 refcount_set(&n->users, 1); 868 869 atomic_inc(&(skb_shinfo(skb)->dataref)); 870 skb->cloned = 1; 871 872 return n; 873 #undef C 874 } 875 876 /** 877 * skb_morph - morph one skb into another 878 * @dst: the skb to receive the contents 879 * @src: the skb to supply the contents 880 * 881 * This is identical to skb_clone except that the target skb is 882 * supplied by the user. 883 * 884 * The target skb is returned upon exit. 885 */ 886 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 887 { 888 skb_release_all(dst); 889 return __skb_clone(dst, src); 890 } 891 EXPORT_SYMBOL_GPL(skb_morph); 892 893 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 894 { 895 unsigned long max_pg, num_pg, new_pg, old_pg; 896 struct user_struct *user; 897 898 if (capable(CAP_IPC_LOCK) || !size) 899 return 0; 900 901 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 902 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 903 user = mmp->user ? : current_user(); 904 905 do { 906 old_pg = atomic_long_read(&user->locked_vm); 907 new_pg = old_pg + num_pg; 908 if (new_pg > max_pg) 909 return -ENOBUFS; 910 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 911 old_pg); 912 913 if (!mmp->user) { 914 mmp->user = get_uid(user); 915 mmp->num_pg = num_pg; 916 } else { 917 mmp->num_pg += num_pg; 918 } 919 920 return 0; 921 } 922 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 923 924 void mm_unaccount_pinned_pages(struct mmpin *mmp) 925 { 926 if (mmp->user) { 927 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 928 free_uid(mmp->user); 929 } 930 } 931 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 932 933 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 934 { 935 struct ubuf_info *uarg; 936 struct sk_buff *skb; 937 938 WARN_ON_ONCE(!in_task()); 939 940 if (!sock_flag(sk, SOCK_ZEROCOPY)) 941 return NULL; 942 943 skb = sock_omalloc(sk, 0, GFP_KERNEL); 944 if (!skb) 945 return NULL; 946 947 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 948 uarg = (void *)skb->cb; 949 uarg->mmp.user = NULL; 950 951 if (mm_account_pinned_pages(&uarg->mmp, size)) { 952 kfree_skb(skb); 953 return NULL; 954 } 955 956 uarg->callback = sock_zerocopy_callback; 957 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 958 uarg->len = 1; 959 uarg->bytelen = size; 960 uarg->zerocopy = 1; 961 refcount_set(&uarg->refcnt, 1); 962 sock_hold(sk); 963 964 return uarg; 965 } 966 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 967 968 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 969 { 970 return container_of((void *)uarg, struct sk_buff, cb); 971 } 972 973 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 974 struct ubuf_info *uarg) 975 { 976 if (uarg) { 977 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 978 u32 bytelen, next; 979 980 /* realloc only when socket is locked (TCP, UDP cork), 981 * so uarg->len and sk_zckey access is serialized 982 */ 983 if (!sock_owned_by_user(sk)) { 984 WARN_ON_ONCE(1); 985 return NULL; 986 } 987 988 bytelen = uarg->bytelen + size; 989 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 990 /* TCP can create new skb to attach new uarg */ 991 if (sk->sk_type == SOCK_STREAM) 992 goto new_alloc; 993 return NULL; 994 } 995 996 next = (u32)atomic_read(&sk->sk_zckey); 997 if ((u32)(uarg->id + uarg->len) == next) { 998 if (mm_account_pinned_pages(&uarg->mmp, size)) 999 return NULL; 1000 uarg->len++; 1001 uarg->bytelen = bytelen; 1002 atomic_set(&sk->sk_zckey, ++next); 1003 sock_zerocopy_get(uarg); 1004 return uarg; 1005 } 1006 } 1007 1008 new_alloc: 1009 return sock_zerocopy_alloc(sk, size); 1010 } 1011 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1012 1013 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1014 { 1015 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1016 u32 old_lo, old_hi; 1017 u64 sum_len; 1018 1019 old_lo = serr->ee.ee_info; 1020 old_hi = serr->ee.ee_data; 1021 sum_len = old_hi - old_lo + 1ULL + len; 1022 1023 if (sum_len >= (1ULL << 32)) 1024 return false; 1025 1026 if (lo != old_hi + 1) 1027 return false; 1028 1029 serr->ee.ee_data += len; 1030 return true; 1031 } 1032 1033 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1034 { 1035 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1036 struct sock_exterr_skb *serr; 1037 struct sock *sk = skb->sk; 1038 struct sk_buff_head *q; 1039 unsigned long flags; 1040 u32 lo, hi; 1041 u16 len; 1042 1043 mm_unaccount_pinned_pages(&uarg->mmp); 1044 1045 /* if !len, there was only 1 call, and it was aborted 1046 * so do not queue a completion notification 1047 */ 1048 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1049 goto release; 1050 1051 len = uarg->len; 1052 lo = uarg->id; 1053 hi = uarg->id + len - 1; 1054 1055 serr = SKB_EXT_ERR(skb); 1056 memset(serr, 0, sizeof(*serr)); 1057 serr->ee.ee_errno = 0; 1058 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1059 serr->ee.ee_data = hi; 1060 serr->ee.ee_info = lo; 1061 if (!success) 1062 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1063 1064 q = &sk->sk_error_queue; 1065 spin_lock_irqsave(&q->lock, flags); 1066 tail = skb_peek_tail(q); 1067 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1068 !skb_zerocopy_notify_extend(tail, lo, len)) { 1069 __skb_queue_tail(q, skb); 1070 skb = NULL; 1071 } 1072 spin_unlock_irqrestore(&q->lock, flags); 1073 1074 sk->sk_error_report(sk); 1075 1076 release: 1077 consume_skb(skb); 1078 sock_put(sk); 1079 } 1080 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1081 1082 void sock_zerocopy_put(struct ubuf_info *uarg) 1083 { 1084 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1085 if (uarg->callback) 1086 uarg->callback(uarg, uarg->zerocopy); 1087 else 1088 consume_skb(skb_from_uarg(uarg)); 1089 } 1090 } 1091 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1092 1093 void sock_zerocopy_put_abort(struct ubuf_info *uarg) 1094 { 1095 if (uarg) { 1096 struct sock *sk = skb_from_uarg(uarg)->sk; 1097 1098 atomic_dec(&sk->sk_zckey); 1099 uarg->len--; 1100 1101 sock_zerocopy_put(uarg); 1102 } 1103 } 1104 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1105 1106 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb, 1107 struct iov_iter *from, size_t length); 1108 1109 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1110 struct msghdr *msg, int len, 1111 struct ubuf_info *uarg) 1112 { 1113 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1114 struct iov_iter orig_iter = msg->msg_iter; 1115 int err, orig_len = skb->len; 1116 1117 /* An skb can only point to one uarg. This edge case happens when 1118 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1119 */ 1120 if (orig_uarg && uarg != orig_uarg) 1121 return -EEXIST; 1122 1123 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1124 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1125 struct sock *save_sk = skb->sk; 1126 1127 /* Streams do not free skb on error. Reset to prev state. */ 1128 msg->msg_iter = orig_iter; 1129 skb->sk = sk; 1130 ___pskb_trim(skb, orig_len); 1131 skb->sk = save_sk; 1132 return err; 1133 } 1134 1135 skb_zcopy_set(skb, uarg); 1136 return skb->len - orig_len; 1137 } 1138 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1139 1140 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1141 gfp_t gfp_mask) 1142 { 1143 if (skb_zcopy(orig)) { 1144 if (skb_zcopy(nskb)) { 1145 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1146 if (!gfp_mask) { 1147 WARN_ON_ONCE(1); 1148 return -ENOMEM; 1149 } 1150 if (skb_uarg(nskb) == skb_uarg(orig)) 1151 return 0; 1152 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1153 return -EIO; 1154 } 1155 skb_zcopy_set(nskb, skb_uarg(orig)); 1156 } 1157 return 0; 1158 } 1159 1160 /** 1161 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1162 * @skb: the skb to modify 1163 * @gfp_mask: allocation priority 1164 * 1165 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1166 * It will copy all frags into kernel and drop the reference 1167 * to userspace pages. 1168 * 1169 * If this function is called from an interrupt gfp_mask() must be 1170 * %GFP_ATOMIC. 1171 * 1172 * Returns 0 on success or a negative error code on failure 1173 * to allocate kernel memory to copy to. 1174 */ 1175 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1176 { 1177 int num_frags = skb_shinfo(skb)->nr_frags; 1178 struct page *page, *head = NULL; 1179 int i, new_frags; 1180 u32 d_off; 1181 1182 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1183 return -EINVAL; 1184 1185 if (!num_frags) 1186 goto release; 1187 1188 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1189 for (i = 0; i < new_frags; i++) { 1190 page = alloc_page(gfp_mask); 1191 if (!page) { 1192 while (head) { 1193 struct page *next = (struct page *)page_private(head); 1194 put_page(head); 1195 head = next; 1196 } 1197 return -ENOMEM; 1198 } 1199 set_page_private(page, (unsigned long)head); 1200 head = page; 1201 } 1202 1203 page = head; 1204 d_off = 0; 1205 for (i = 0; i < num_frags; i++) { 1206 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1207 u32 p_off, p_len, copied; 1208 struct page *p; 1209 u8 *vaddr; 1210 1211 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f), 1212 p, p_off, p_len, copied) { 1213 u32 copy, done = 0; 1214 vaddr = kmap_atomic(p); 1215 1216 while (done < p_len) { 1217 if (d_off == PAGE_SIZE) { 1218 d_off = 0; 1219 page = (struct page *)page_private(page); 1220 } 1221 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1222 memcpy(page_address(page) + d_off, 1223 vaddr + p_off + done, copy); 1224 done += copy; 1225 d_off += copy; 1226 } 1227 kunmap_atomic(vaddr); 1228 } 1229 } 1230 1231 /* skb frags release userspace buffers */ 1232 for (i = 0; i < num_frags; i++) 1233 skb_frag_unref(skb, i); 1234 1235 /* skb frags point to kernel buffers */ 1236 for (i = 0; i < new_frags - 1; i++) { 1237 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1238 head = (struct page *)page_private(head); 1239 } 1240 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1241 skb_shinfo(skb)->nr_frags = new_frags; 1242 1243 release: 1244 skb_zcopy_clear(skb, false); 1245 return 0; 1246 } 1247 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1248 1249 /** 1250 * skb_clone - duplicate an sk_buff 1251 * @skb: buffer to clone 1252 * @gfp_mask: allocation priority 1253 * 1254 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1255 * copies share the same packet data but not structure. The new 1256 * buffer has a reference count of 1. If the allocation fails the 1257 * function returns %NULL otherwise the new buffer is returned. 1258 * 1259 * If this function is called from an interrupt gfp_mask() must be 1260 * %GFP_ATOMIC. 1261 */ 1262 1263 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1264 { 1265 struct sk_buff_fclones *fclones = container_of(skb, 1266 struct sk_buff_fclones, 1267 skb1); 1268 struct sk_buff *n; 1269 1270 if (skb_orphan_frags(skb, gfp_mask)) 1271 return NULL; 1272 1273 if (skb->fclone == SKB_FCLONE_ORIG && 1274 refcount_read(&fclones->fclone_ref) == 1) { 1275 n = &fclones->skb2; 1276 refcount_set(&fclones->fclone_ref, 2); 1277 } else { 1278 if (skb_pfmemalloc(skb)) 1279 gfp_mask |= __GFP_MEMALLOC; 1280 1281 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1282 if (!n) 1283 return NULL; 1284 1285 n->fclone = SKB_FCLONE_UNAVAILABLE; 1286 } 1287 1288 return __skb_clone(n, skb); 1289 } 1290 EXPORT_SYMBOL(skb_clone); 1291 1292 static void skb_headers_offset_update(struct sk_buff *skb, int off) 1293 { 1294 /* Only adjust this if it actually is csum_start rather than csum */ 1295 if (skb->ip_summed == CHECKSUM_PARTIAL) 1296 skb->csum_start += off; 1297 /* {transport,network,mac}_header and tail are relative to skb->head */ 1298 skb->transport_header += off; 1299 skb->network_header += off; 1300 if (skb_mac_header_was_set(skb)) 1301 skb->mac_header += off; 1302 skb->inner_transport_header += off; 1303 skb->inner_network_header += off; 1304 skb->inner_mac_header += off; 1305 } 1306 1307 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1308 { 1309 __copy_skb_header(new, old); 1310 1311 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1312 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1313 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1314 } 1315 1316 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1317 { 1318 if (skb_pfmemalloc(skb)) 1319 return SKB_ALLOC_RX; 1320 return 0; 1321 } 1322 1323 /** 1324 * skb_copy - create private copy of an sk_buff 1325 * @skb: buffer to copy 1326 * @gfp_mask: allocation priority 1327 * 1328 * Make a copy of both an &sk_buff and its data. This is used when the 1329 * caller wishes to modify the data and needs a private copy of the 1330 * data to alter. Returns %NULL on failure or the pointer to the buffer 1331 * on success. The returned buffer has a reference count of 1. 1332 * 1333 * As by-product this function converts non-linear &sk_buff to linear 1334 * one, so that &sk_buff becomes completely private and caller is allowed 1335 * to modify all the data of returned buffer. This means that this 1336 * function is not recommended for use in circumstances when only 1337 * header is going to be modified. Use pskb_copy() instead. 1338 */ 1339 1340 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1341 { 1342 int headerlen = skb_headroom(skb); 1343 unsigned int size = skb_end_offset(skb) + skb->data_len; 1344 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1345 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1346 1347 if (!n) 1348 return NULL; 1349 1350 /* Set the data pointer */ 1351 skb_reserve(n, headerlen); 1352 /* Set the tail pointer and length */ 1353 skb_put(n, skb->len); 1354 1355 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1356 1357 copy_skb_header(n, skb); 1358 return n; 1359 } 1360 EXPORT_SYMBOL(skb_copy); 1361 1362 /** 1363 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1364 * @skb: buffer to copy 1365 * @headroom: headroom of new skb 1366 * @gfp_mask: allocation priority 1367 * @fclone: if true allocate the copy of the skb from the fclone 1368 * cache instead of the head cache; it is recommended to set this 1369 * to true for the cases where the copy will likely be cloned 1370 * 1371 * Make a copy of both an &sk_buff and part of its data, located 1372 * in header. Fragmented data remain shared. This is used when 1373 * the caller wishes to modify only header of &sk_buff and needs 1374 * private copy of the header to alter. Returns %NULL on failure 1375 * or the pointer to the buffer on success. 1376 * The returned buffer has a reference count of 1. 1377 */ 1378 1379 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1380 gfp_t gfp_mask, bool fclone) 1381 { 1382 unsigned int size = skb_headlen(skb) + headroom; 1383 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1384 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1385 1386 if (!n) 1387 goto out; 1388 1389 /* Set the data pointer */ 1390 skb_reserve(n, headroom); 1391 /* Set the tail pointer and length */ 1392 skb_put(n, skb_headlen(skb)); 1393 /* Copy the bytes */ 1394 skb_copy_from_linear_data(skb, n->data, n->len); 1395 1396 n->truesize += skb->data_len; 1397 n->data_len = skb->data_len; 1398 n->len = skb->len; 1399 1400 if (skb_shinfo(skb)->nr_frags) { 1401 int i; 1402 1403 if (skb_orphan_frags(skb, gfp_mask) || 1404 skb_zerocopy_clone(n, skb, gfp_mask)) { 1405 kfree_skb(n); 1406 n = NULL; 1407 goto out; 1408 } 1409 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1410 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1411 skb_frag_ref(skb, i); 1412 } 1413 skb_shinfo(n)->nr_frags = i; 1414 } 1415 1416 if (skb_has_frag_list(skb)) { 1417 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1418 skb_clone_fraglist(n); 1419 } 1420 1421 copy_skb_header(n, skb); 1422 out: 1423 return n; 1424 } 1425 EXPORT_SYMBOL(__pskb_copy_fclone); 1426 1427 /** 1428 * pskb_expand_head - reallocate header of &sk_buff 1429 * @skb: buffer to reallocate 1430 * @nhead: room to add at head 1431 * @ntail: room to add at tail 1432 * @gfp_mask: allocation priority 1433 * 1434 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1435 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1436 * reference count of 1. Returns zero in the case of success or error, 1437 * if expansion failed. In the last case, &sk_buff is not changed. 1438 * 1439 * All the pointers pointing into skb header may change and must be 1440 * reloaded after call to this function. 1441 */ 1442 1443 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1444 gfp_t gfp_mask) 1445 { 1446 int i, osize = skb_end_offset(skb); 1447 int size = osize + nhead + ntail; 1448 long off; 1449 u8 *data; 1450 1451 BUG_ON(nhead < 0); 1452 1453 BUG_ON(skb_shared(skb)); 1454 1455 size = SKB_DATA_ALIGN(size); 1456 1457 if (skb_pfmemalloc(skb)) 1458 gfp_mask |= __GFP_MEMALLOC; 1459 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1460 gfp_mask, NUMA_NO_NODE, NULL); 1461 if (!data) 1462 goto nodata; 1463 size = SKB_WITH_OVERHEAD(ksize(data)); 1464 1465 /* Copy only real data... and, alas, header. This should be 1466 * optimized for the cases when header is void. 1467 */ 1468 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1469 1470 memcpy((struct skb_shared_info *)(data + size), 1471 skb_shinfo(skb), 1472 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1473 1474 /* 1475 * if shinfo is shared we must drop the old head gracefully, but if it 1476 * is not we can just drop the old head and let the existing refcount 1477 * be since all we did is relocate the values 1478 */ 1479 if (skb_cloned(skb)) { 1480 if (skb_orphan_frags(skb, gfp_mask)) 1481 goto nofrags; 1482 if (skb_zcopy(skb)) 1483 refcount_inc(&skb_uarg(skb)->refcnt); 1484 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1485 skb_frag_ref(skb, i); 1486 1487 if (skb_has_frag_list(skb)) 1488 skb_clone_fraglist(skb); 1489 1490 skb_release_data(skb); 1491 } else { 1492 skb_free_head(skb); 1493 } 1494 off = (data + nhead) - skb->head; 1495 1496 skb->head = data; 1497 skb->head_frag = 0; 1498 skb->data += off; 1499 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1500 skb->end = size; 1501 off = nhead; 1502 #else 1503 skb->end = skb->head + size; 1504 #endif 1505 skb->tail += off; 1506 skb_headers_offset_update(skb, nhead); 1507 skb->cloned = 0; 1508 skb->hdr_len = 0; 1509 skb->nohdr = 0; 1510 atomic_set(&skb_shinfo(skb)->dataref, 1); 1511 1512 skb_metadata_clear(skb); 1513 1514 /* It is not generally safe to change skb->truesize. 1515 * For the moment, we really care of rx path, or 1516 * when skb is orphaned (not attached to a socket). 1517 */ 1518 if (!skb->sk || skb->destructor == sock_edemux) 1519 skb->truesize += size - osize; 1520 1521 return 0; 1522 1523 nofrags: 1524 kfree(data); 1525 nodata: 1526 return -ENOMEM; 1527 } 1528 EXPORT_SYMBOL(pskb_expand_head); 1529 1530 /* Make private copy of skb with writable head and some headroom */ 1531 1532 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1533 { 1534 struct sk_buff *skb2; 1535 int delta = headroom - skb_headroom(skb); 1536 1537 if (delta <= 0) 1538 skb2 = pskb_copy(skb, GFP_ATOMIC); 1539 else { 1540 skb2 = skb_clone(skb, GFP_ATOMIC); 1541 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1542 GFP_ATOMIC)) { 1543 kfree_skb(skb2); 1544 skb2 = NULL; 1545 } 1546 } 1547 return skb2; 1548 } 1549 EXPORT_SYMBOL(skb_realloc_headroom); 1550 1551 /** 1552 * skb_copy_expand - copy and expand sk_buff 1553 * @skb: buffer to copy 1554 * @newheadroom: new free bytes at head 1555 * @newtailroom: new free bytes at tail 1556 * @gfp_mask: allocation priority 1557 * 1558 * Make a copy of both an &sk_buff and its data and while doing so 1559 * allocate additional space. 1560 * 1561 * This is used when the caller wishes to modify the data and needs a 1562 * private copy of the data to alter as well as more space for new fields. 1563 * Returns %NULL on failure or the pointer to the buffer 1564 * on success. The returned buffer has a reference count of 1. 1565 * 1566 * You must pass %GFP_ATOMIC as the allocation priority if this function 1567 * is called from an interrupt. 1568 */ 1569 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1570 int newheadroom, int newtailroom, 1571 gfp_t gfp_mask) 1572 { 1573 /* 1574 * Allocate the copy buffer 1575 */ 1576 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1577 gfp_mask, skb_alloc_rx_flag(skb), 1578 NUMA_NO_NODE); 1579 int oldheadroom = skb_headroom(skb); 1580 int head_copy_len, head_copy_off; 1581 1582 if (!n) 1583 return NULL; 1584 1585 skb_reserve(n, newheadroom); 1586 1587 /* Set the tail pointer and length */ 1588 skb_put(n, skb->len); 1589 1590 head_copy_len = oldheadroom; 1591 head_copy_off = 0; 1592 if (newheadroom <= head_copy_len) 1593 head_copy_len = newheadroom; 1594 else 1595 head_copy_off = newheadroom - head_copy_len; 1596 1597 /* Copy the linear header and data. */ 1598 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1599 skb->len + head_copy_len)); 1600 1601 copy_skb_header(n, skb); 1602 1603 skb_headers_offset_update(n, newheadroom - oldheadroom); 1604 1605 return n; 1606 } 1607 EXPORT_SYMBOL(skb_copy_expand); 1608 1609 /** 1610 * __skb_pad - zero pad the tail of an skb 1611 * @skb: buffer to pad 1612 * @pad: space to pad 1613 * @free_on_error: free buffer on error 1614 * 1615 * Ensure that a buffer is followed by a padding area that is zero 1616 * filled. Used by network drivers which may DMA or transfer data 1617 * beyond the buffer end onto the wire. 1618 * 1619 * May return error in out of memory cases. The skb is freed on error 1620 * if @free_on_error is true. 1621 */ 1622 1623 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1624 { 1625 int err; 1626 int ntail; 1627 1628 /* If the skbuff is non linear tailroom is always zero.. */ 1629 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1630 memset(skb->data+skb->len, 0, pad); 1631 return 0; 1632 } 1633 1634 ntail = skb->data_len + pad - (skb->end - skb->tail); 1635 if (likely(skb_cloned(skb) || ntail > 0)) { 1636 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1637 if (unlikely(err)) 1638 goto free_skb; 1639 } 1640 1641 /* FIXME: The use of this function with non-linear skb's really needs 1642 * to be audited. 1643 */ 1644 err = skb_linearize(skb); 1645 if (unlikely(err)) 1646 goto free_skb; 1647 1648 memset(skb->data + skb->len, 0, pad); 1649 return 0; 1650 1651 free_skb: 1652 if (free_on_error) 1653 kfree_skb(skb); 1654 return err; 1655 } 1656 EXPORT_SYMBOL(__skb_pad); 1657 1658 /** 1659 * pskb_put - add data to the tail of a potentially fragmented buffer 1660 * @skb: start of the buffer to use 1661 * @tail: tail fragment of the buffer to use 1662 * @len: amount of data to add 1663 * 1664 * This function extends the used data area of the potentially 1665 * fragmented buffer. @tail must be the last fragment of @skb -- or 1666 * @skb itself. If this would exceed the total buffer size the kernel 1667 * will panic. A pointer to the first byte of the extra data is 1668 * returned. 1669 */ 1670 1671 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1672 { 1673 if (tail != skb) { 1674 skb->data_len += len; 1675 skb->len += len; 1676 } 1677 return skb_put(tail, len); 1678 } 1679 EXPORT_SYMBOL_GPL(pskb_put); 1680 1681 /** 1682 * skb_put - add data to a buffer 1683 * @skb: buffer to use 1684 * @len: amount of data to add 1685 * 1686 * This function extends the used data area of the buffer. If this would 1687 * exceed the total buffer size the kernel will panic. A pointer to the 1688 * first byte of the extra data is returned. 1689 */ 1690 void *skb_put(struct sk_buff *skb, unsigned int len) 1691 { 1692 void *tmp = skb_tail_pointer(skb); 1693 SKB_LINEAR_ASSERT(skb); 1694 skb->tail += len; 1695 skb->len += len; 1696 if (unlikely(skb->tail > skb->end)) 1697 skb_over_panic(skb, len, __builtin_return_address(0)); 1698 return tmp; 1699 } 1700 EXPORT_SYMBOL(skb_put); 1701 1702 /** 1703 * skb_push - add data to the start of a buffer 1704 * @skb: buffer to use 1705 * @len: amount of data to add 1706 * 1707 * This function extends the used data area of the buffer at the buffer 1708 * start. If this would exceed the total buffer headroom the kernel will 1709 * panic. A pointer to the first byte of the extra data is returned. 1710 */ 1711 void *skb_push(struct sk_buff *skb, unsigned int len) 1712 { 1713 skb->data -= len; 1714 skb->len += len; 1715 if (unlikely(skb->data<skb->head)) 1716 skb_under_panic(skb, len, __builtin_return_address(0)); 1717 return skb->data; 1718 } 1719 EXPORT_SYMBOL(skb_push); 1720 1721 /** 1722 * skb_pull - remove data from the start of a buffer 1723 * @skb: buffer to use 1724 * @len: amount of data to remove 1725 * 1726 * This function removes data from the start of a buffer, returning 1727 * the memory to the headroom. A pointer to the next data in the buffer 1728 * is returned. Once the data has been pulled future pushes will overwrite 1729 * the old data. 1730 */ 1731 void *skb_pull(struct sk_buff *skb, unsigned int len) 1732 { 1733 return skb_pull_inline(skb, len); 1734 } 1735 EXPORT_SYMBOL(skb_pull); 1736 1737 /** 1738 * skb_trim - remove end from a buffer 1739 * @skb: buffer to alter 1740 * @len: new length 1741 * 1742 * Cut the length of a buffer down by removing data from the tail. If 1743 * the buffer is already under the length specified it is not modified. 1744 * The skb must be linear. 1745 */ 1746 void skb_trim(struct sk_buff *skb, unsigned int len) 1747 { 1748 if (skb->len > len) 1749 __skb_trim(skb, len); 1750 } 1751 EXPORT_SYMBOL(skb_trim); 1752 1753 /* Trims skb to length len. It can change skb pointers. 1754 */ 1755 1756 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1757 { 1758 struct sk_buff **fragp; 1759 struct sk_buff *frag; 1760 int offset = skb_headlen(skb); 1761 int nfrags = skb_shinfo(skb)->nr_frags; 1762 int i; 1763 int err; 1764 1765 if (skb_cloned(skb) && 1766 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1767 return err; 1768 1769 i = 0; 1770 if (offset >= len) 1771 goto drop_pages; 1772 1773 for (; i < nfrags; i++) { 1774 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1775 1776 if (end < len) { 1777 offset = end; 1778 continue; 1779 } 1780 1781 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1782 1783 drop_pages: 1784 skb_shinfo(skb)->nr_frags = i; 1785 1786 for (; i < nfrags; i++) 1787 skb_frag_unref(skb, i); 1788 1789 if (skb_has_frag_list(skb)) 1790 skb_drop_fraglist(skb); 1791 goto done; 1792 } 1793 1794 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1795 fragp = &frag->next) { 1796 int end = offset + frag->len; 1797 1798 if (skb_shared(frag)) { 1799 struct sk_buff *nfrag; 1800 1801 nfrag = skb_clone(frag, GFP_ATOMIC); 1802 if (unlikely(!nfrag)) 1803 return -ENOMEM; 1804 1805 nfrag->next = frag->next; 1806 consume_skb(frag); 1807 frag = nfrag; 1808 *fragp = frag; 1809 } 1810 1811 if (end < len) { 1812 offset = end; 1813 continue; 1814 } 1815 1816 if (end > len && 1817 unlikely((err = pskb_trim(frag, len - offset)))) 1818 return err; 1819 1820 if (frag->next) 1821 skb_drop_list(&frag->next); 1822 break; 1823 } 1824 1825 done: 1826 if (len > skb_headlen(skb)) { 1827 skb->data_len -= skb->len - len; 1828 skb->len = len; 1829 } else { 1830 skb->len = len; 1831 skb->data_len = 0; 1832 skb_set_tail_pointer(skb, len); 1833 } 1834 1835 if (!skb->sk || skb->destructor == sock_edemux) 1836 skb_condense(skb); 1837 return 0; 1838 } 1839 EXPORT_SYMBOL(___pskb_trim); 1840 1841 /** 1842 * __pskb_pull_tail - advance tail of skb header 1843 * @skb: buffer to reallocate 1844 * @delta: number of bytes to advance tail 1845 * 1846 * The function makes a sense only on a fragmented &sk_buff, 1847 * it expands header moving its tail forward and copying necessary 1848 * data from fragmented part. 1849 * 1850 * &sk_buff MUST have reference count of 1. 1851 * 1852 * Returns %NULL (and &sk_buff does not change) if pull failed 1853 * or value of new tail of skb in the case of success. 1854 * 1855 * All the pointers pointing into skb header may change and must be 1856 * reloaded after call to this function. 1857 */ 1858 1859 /* Moves tail of skb head forward, copying data from fragmented part, 1860 * when it is necessary. 1861 * 1. It may fail due to malloc failure. 1862 * 2. It may change skb pointers. 1863 * 1864 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1865 */ 1866 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 1867 { 1868 /* If skb has not enough free space at tail, get new one 1869 * plus 128 bytes for future expansions. If we have enough 1870 * room at tail, reallocate without expansion only if skb is cloned. 1871 */ 1872 int i, k, eat = (skb->tail + delta) - skb->end; 1873 1874 if (eat > 0 || skb_cloned(skb)) { 1875 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1876 GFP_ATOMIC)) 1877 return NULL; 1878 } 1879 1880 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 1881 skb_tail_pointer(skb), delta)); 1882 1883 /* Optimization: no fragments, no reasons to preestimate 1884 * size of pulled pages. Superb. 1885 */ 1886 if (!skb_has_frag_list(skb)) 1887 goto pull_pages; 1888 1889 /* Estimate size of pulled pages. */ 1890 eat = delta; 1891 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1892 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1893 1894 if (size >= eat) 1895 goto pull_pages; 1896 eat -= size; 1897 } 1898 1899 /* If we need update frag list, we are in troubles. 1900 * Certainly, it is possible to add an offset to skb data, 1901 * but taking into account that pulling is expected to 1902 * be very rare operation, it is worth to fight against 1903 * further bloating skb head and crucify ourselves here instead. 1904 * Pure masohism, indeed. 8)8) 1905 */ 1906 if (eat) { 1907 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1908 struct sk_buff *clone = NULL; 1909 struct sk_buff *insp = NULL; 1910 1911 do { 1912 BUG_ON(!list); 1913 1914 if (list->len <= eat) { 1915 /* Eaten as whole. */ 1916 eat -= list->len; 1917 list = list->next; 1918 insp = list; 1919 } else { 1920 /* Eaten partially. */ 1921 1922 if (skb_shared(list)) { 1923 /* Sucks! We need to fork list. :-( */ 1924 clone = skb_clone(list, GFP_ATOMIC); 1925 if (!clone) 1926 return NULL; 1927 insp = list->next; 1928 list = clone; 1929 } else { 1930 /* This may be pulled without 1931 * problems. */ 1932 insp = list; 1933 } 1934 if (!pskb_pull(list, eat)) { 1935 kfree_skb(clone); 1936 return NULL; 1937 } 1938 break; 1939 } 1940 } while (eat); 1941 1942 /* Free pulled out fragments. */ 1943 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1944 skb_shinfo(skb)->frag_list = list->next; 1945 kfree_skb(list); 1946 } 1947 /* And insert new clone at head. */ 1948 if (clone) { 1949 clone->next = list; 1950 skb_shinfo(skb)->frag_list = clone; 1951 } 1952 } 1953 /* Success! Now we may commit changes to skb data. */ 1954 1955 pull_pages: 1956 eat = delta; 1957 k = 0; 1958 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1959 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1960 1961 if (size <= eat) { 1962 skb_frag_unref(skb, i); 1963 eat -= size; 1964 } else { 1965 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1966 if (eat) { 1967 skb_shinfo(skb)->frags[k].page_offset += eat; 1968 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1969 if (!i) 1970 goto end; 1971 eat = 0; 1972 } 1973 k++; 1974 } 1975 } 1976 skb_shinfo(skb)->nr_frags = k; 1977 1978 end: 1979 skb->tail += delta; 1980 skb->data_len -= delta; 1981 1982 if (!skb->data_len) 1983 skb_zcopy_clear(skb, false); 1984 1985 return skb_tail_pointer(skb); 1986 } 1987 EXPORT_SYMBOL(__pskb_pull_tail); 1988 1989 /** 1990 * skb_copy_bits - copy bits from skb to kernel buffer 1991 * @skb: source skb 1992 * @offset: offset in source 1993 * @to: destination buffer 1994 * @len: number of bytes to copy 1995 * 1996 * Copy the specified number of bytes from the source skb to the 1997 * destination buffer. 1998 * 1999 * CAUTION ! : 2000 * If its prototype is ever changed, 2001 * check arch/{*}/net/{*}.S files, 2002 * since it is called from BPF assembly code. 2003 */ 2004 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2005 { 2006 int start = skb_headlen(skb); 2007 struct sk_buff *frag_iter; 2008 int i, copy; 2009 2010 if (offset > (int)skb->len - len) 2011 goto fault; 2012 2013 /* Copy header. */ 2014 if ((copy = start - offset) > 0) { 2015 if (copy > len) 2016 copy = len; 2017 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2018 if ((len -= copy) == 0) 2019 return 0; 2020 offset += copy; 2021 to += copy; 2022 } 2023 2024 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2025 int end; 2026 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2027 2028 WARN_ON(start > offset + len); 2029 2030 end = start + skb_frag_size(f); 2031 if ((copy = end - offset) > 0) { 2032 u32 p_off, p_len, copied; 2033 struct page *p; 2034 u8 *vaddr; 2035 2036 if (copy > len) 2037 copy = len; 2038 2039 skb_frag_foreach_page(f, 2040 f->page_offset + offset - start, 2041 copy, p, p_off, p_len, copied) { 2042 vaddr = kmap_atomic(p); 2043 memcpy(to + copied, vaddr + p_off, p_len); 2044 kunmap_atomic(vaddr); 2045 } 2046 2047 if ((len -= copy) == 0) 2048 return 0; 2049 offset += copy; 2050 to += copy; 2051 } 2052 start = end; 2053 } 2054 2055 skb_walk_frags(skb, frag_iter) { 2056 int end; 2057 2058 WARN_ON(start > offset + len); 2059 2060 end = start + frag_iter->len; 2061 if ((copy = end - offset) > 0) { 2062 if (copy > len) 2063 copy = len; 2064 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2065 goto fault; 2066 if ((len -= copy) == 0) 2067 return 0; 2068 offset += copy; 2069 to += copy; 2070 } 2071 start = end; 2072 } 2073 2074 if (!len) 2075 return 0; 2076 2077 fault: 2078 return -EFAULT; 2079 } 2080 EXPORT_SYMBOL(skb_copy_bits); 2081 2082 /* 2083 * Callback from splice_to_pipe(), if we need to release some pages 2084 * at the end of the spd in case we error'ed out in filling the pipe. 2085 */ 2086 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2087 { 2088 put_page(spd->pages[i]); 2089 } 2090 2091 static struct page *linear_to_page(struct page *page, unsigned int *len, 2092 unsigned int *offset, 2093 struct sock *sk) 2094 { 2095 struct page_frag *pfrag = sk_page_frag(sk); 2096 2097 if (!sk_page_frag_refill(sk, pfrag)) 2098 return NULL; 2099 2100 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2101 2102 memcpy(page_address(pfrag->page) + pfrag->offset, 2103 page_address(page) + *offset, *len); 2104 *offset = pfrag->offset; 2105 pfrag->offset += *len; 2106 2107 return pfrag->page; 2108 } 2109 2110 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2111 struct page *page, 2112 unsigned int offset) 2113 { 2114 return spd->nr_pages && 2115 spd->pages[spd->nr_pages - 1] == page && 2116 (spd->partial[spd->nr_pages - 1].offset + 2117 spd->partial[spd->nr_pages - 1].len == offset); 2118 } 2119 2120 /* 2121 * Fill page/offset/length into spd, if it can hold more pages. 2122 */ 2123 static bool spd_fill_page(struct splice_pipe_desc *spd, 2124 struct pipe_inode_info *pipe, struct page *page, 2125 unsigned int *len, unsigned int offset, 2126 bool linear, 2127 struct sock *sk) 2128 { 2129 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2130 return true; 2131 2132 if (linear) { 2133 page = linear_to_page(page, len, &offset, sk); 2134 if (!page) 2135 return true; 2136 } 2137 if (spd_can_coalesce(spd, page, offset)) { 2138 spd->partial[spd->nr_pages - 1].len += *len; 2139 return false; 2140 } 2141 get_page(page); 2142 spd->pages[spd->nr_pages] = page; 2143 spd->partial[spd->nr_pages].len = *len; 2144 spd->partial[spd->nr_pages].offset = offset; 2145 spd->nr_pages++; 2146 2147 return false; 2148 } 2149 2150 static bool __splice_segment(struct page *page, unsigned int poff, 2151 unsigned int plen, unsigned int *off, 2152 unsigned int *len, 2153 struct splice_pipe_desc *spd, bool linear, 2154 struct sock *sk, 2155 struct pipe_inode_info *pipe) 2156 { 2157 if (!*len) 2158 return true; 2159 2160 /* skip this segment if already processed */ 2161 if (*off >= plen) { 2162 *off -= plen; 2163 return false; 2164 } 2165 2166 /* ignore any bits we already processed */ 2167 poff += *off; 2168 plen -= *off; 2169 *off = 0; 2170 2171 do { 2172 unsigned int flen = min(*len, plen); 2173 2174 if (spd_fill_page(spd, pipe, page, &flen, poff, 2175 linear, sk)) 2176 return true; 2177 poff += flen; 2178 plen -= flen; 2179 *len -= flen; 2180 } while (*len && plen); 2181 2182 return false; 2183 } 2184 2185 /* 2186 * Map linear and fragment data from the skb to spd. It reports true if the 2187 * pipe is full or if we already spliced the requested length. 2188 */ 2189 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2190 unsigned int *offset, unsigned int *len, 2191 struct splice_pipe_desc *spd, struct sock *sk) 2192 { 2193 int seg; 2194 struct sk_buff *iter; 2195 2196 /* map the linear part : 2197 * If skb->head_frag is set, this 'linear' part is backed by a 2198 * fragment, and if the head is not shared with any clones then 2199 * we can avoid a copy since we own the head portion of this page. 2200 */ 2201 if (__splice_segment(virt_to_page(skb->data), 2202 (unsigned long) skb->data & (PAGE_SIZE - 1), 2203 skb_headlen(skb), 2204 offset, len, spd, 2205 skb_head_is_locked(skb), 2206 sk, pipe)) 2207 return true; 2208 2209 /* 2210 * then map the fragments 2211 */ 2212 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2213 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2214 2215 if (__splice_segment(skb_frag_page(f), 2216 f->page_offset, skb_frag_size(f), 2217 offset, len, spd, false, sk, pipe)) 2218 return true; 2219 } 2220 2221 skb_walk_frags(skb, iter) { 2222 if (*offset >= iter->len) { 2223 *offset -= iter->len; 2224 continue; 2225 } 2226 /* __skb_splice_bits() only fails if the output has no room 2227 * left, so no point in going over the frag_list for the error 2228 * case. 2229 */ 2230 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2231 return true; 2232 } 2233 2234 return false; 2235 } 2236 2237 /* 2238 * Map data from the skb to a pipe. Should handle both the linear part, 2239 * the fragments, and the frag list. 2240 */ 2241 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2242 struct pipe_inode_info *pipe, unsigned int tlen, 2243 unsigned int flags) 2244 { 2245 struct partial_page partial[MAX_SKB_FRAGS]; 2246 struct page *pages[MAX_SKB_FRAGS]; 2247 struct splice_pipe_desc spd = { 2248 .pages = pages, 2249 .partial = partial, 2250 .nr_pages_max = MAX_SKB_FRAGS, 2251 .ops = &nosteal_pipe_buf_ops, 2252 .spd_release = sock_spd_release, 2253 }; 2254 int ret = 0; 2255 2256 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2257 2258 if (spd.nr_pages) 2259 ret = splice_to_pipe(pipe, &spd); 2260 2261 return ret; 2262 } 2263 EXPORT_SYMBOL_GPL(skb_splice_bits); 2264 2265 /* Send skb data on a socket. Socket must be locked. */ 2266 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2267 int len) 2268 { 2269 unsigned int orig_len = len; 2270 struct sk_buff *head = skb; 2271 unsigned short fragidx; 2272 int slen, ret; 2273 2274 do_frag_list: 2275 2276 /* Deal with head data */ 2277 while (offset < skb_headlen(skb) && len) { 2278 struct kvec kv; 2279 struct msghdr msg; 2280 2281 slen = min_t(int, len, skb_headlen(skb) - offset); 2282 kv.iov_base = skb->data + offset; 2283 kv.iov_len = slen; 2284 memset(&msg, 0, sizeof(msg)); 2285 2286 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2287 if (ret <= 0) 2288 goto error; 2289 2290 offset += ret; 2291 len -= ret; 2292 } 2293 2294 /* All the data was skb head? */ 2295 if (!len) 2296 goto out; 2297 2298 /* Make offset relative to start of frags */ 2299 offset -= skb_headlen(skb); 2300 2301 /* Find where we are in frag list */ 2302 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2303 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2304 2305 if (offset < frag->size) 2306 break; 2307 2308 offset -= frag->size; 2309 } 2310 2311 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2312 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2313 2314 slen = min_t(size_t, len, frag->size - offset); 2315 2316 while (slen) { 2317 ret = kernel_sendpage_locked(sk, frag->page.p, 2318 frag->page_offset + offset, 2319 slen, MSG_DONTWAIT); 2320 if (ret <= 0) 2321 goto error; 2322 2323 len -= ret; 2324 offset += ret; 2325 slen -= ret; 2326 } 2327 2328 offset = 0; 2329 } 2330 2331 if (len) { 2332 /* Process any frag lists */ 2333 2334 if (skb == head) { 2335 if (skb_has_frag_list(skb)) { 2336 skb = skb_shinfo(skb)->frag_list; 2337 goto do_frag_list; 2338 } 2339 } else if (skb->next) { 2340 skb = skb->next; 2341 goto do_frag_list; 2342 } 2343 } 2344 2345 out: 2346 return orig_len - len; 2347 2348 error: 2349 return orig_len == len ? ret : orig_len - len; 2350 } 2351 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2352 2353 /* Send skb data on a socket. */ 2354 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2355 { 2356 int ret = 0; 2357 2358 lock_sock(sk); 2359 ret = skb_send_sock_locked(sk, skb, offset, len); 2360 release_sock(sk); 2361 2362 return ret; 2363 } 2364 EXPORT_SYMBOL_GPL(skb_send_sock); 2365 2366 /** 2367 * skb_store_bits - store bits from kernel buffer to skb 2368 * @skb: destination buffer 2369 * @offset: offset in destination 2370 * @from: source buffer 2371 * @len: number of bytes to copy 2372 * 2373 * Copy the specified number of bytes from the source buffer to the 2374 * destination skb. This function handles all the messy bits of 2375 * traversing fragment lists and such. 2376 */ 2377 2378 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2379 { 2380 int start = skb_headlen(skb); 2381 struct sk_buff *frag_iter; 2382 int i, copy; 2383 2384 if (offset > (int)skb->len - len) 2385 goto fault; 2386 2387 if ((copy = start - offset) > 0) { 2388 if (copy > len) 2389 copy = len; 2390 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2391 if ((len -= copy) == 0) 2392 return 0; 2393 offset += copy; 2394 from += copy; 2395 } 2396 2397 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2398 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2399 int end; 2400 2401 WARN_ON(start > offset + len); 2402 2403 end = start + skb_frag_size(frag); 2404 if ((copy = end - offset) > 0) { 2405 u32 p_off, p_len, copied; 2406 struct page *p; 2407 u8 *vaddr; 2408 2409 if (copy > len) 2410 copy = len; 2411 2412 skb_frag_foreach_page(frag, 2413 frag->page_offset + offset - start, 2414 copy, p, p_off, p_len, copied) { 2415 vaddr = kmap_atomic(p); 2416 memcpy(vaddr + p_off, from + copied, p_len); 2417 kunmap_atomic(vaddr); 2418 } 2419 2420 if ((len -= copy) == 0) 2421 return 0; 2422 offset += copy; 2423 from += copy; 2424 } 2425 start = end; 2426 } 2427 2428 skb_walk_frags(skb, frag_iter) { 2429 int end; 2430 2431 WARN_ON(start > offset + len); 2432 2433 end = start + frag_iter->len; 2434 if ((copy = end - offset) > 0) { 2435 if (copy > len) 2436 copy = len; 2437 if (skb_store_bits(frag_iter, offset - start, 2438 from, copy)) 2439 goto fault; 2440 if ((len -= copy) == 0) 2441 return 0; 2442 offset += copy; 2443 from += copy; 2444 } 2445 start = end; 2446 } 2447 if (!len) 2448 return 0; 2449 2450 fault: 2451 return -EFAULT; 2452 } 2453 EXPORT_SYMBOL(skb_store_bits); 2454 2455 /* Checksum skb data. */ 2456 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2457 __wsum csum, const struct skb_checksum_ops *ops) 2458 { 2459 int start = skb_headlen(skb); 2460 int i, copy = start - offset; 2461 struct sk_buff *frag_iter; 2462 int pos = 0; 2463 2464 /* Checksum header. */ 2465 if (copy > 0) { 2466 if (copy > len) 2467 copy = len; 2468 csum = ops->update(skb->data + offset, copy, csum); 2469 if ((len -= copy) == 0) 2470 return csum; 2471 offset += copy; 2472 pos = copy; 2473 } 2474 2475 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2476 int end; 2477 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2478 2479 WARN_ON(start > offset + len); 2480 2481 end = start + skb_frag_size(frag); 2482 if ((copy = end - offset) > 0) { 2483 u32 p_off, p_len, copied; 2484 struct page *p; 2485 __wsum csum2; 2486 u8 *vaddr; 2487 2488 if (copy > len) 2489 copy = len; 2490 2491 skb_frag_foreach_page(frag, 2492 frag->page_offset + offset - start, 2493 copy, p, p_off, p_len, copied) { 2494 vaddr = kmap_atomic(p); 2495 csum2 = ops->update(vaddr + p_off, p_len, 0); 2496 kunmap_atomic(vaddr); 2497 csum = ops->combine(csum, csum2, pos, p_len); 2498 pos += p_len; 2499 } 2500 2501 if (!(len -= copy)) 2502 return csum; 2503 offset += copy; 2504 } 2505 start = end; 2506 } 2507 2508 skb_walk_frags(skb, frag_iter) { 2509 int end; 2510 2511 WARN_ON(start > offset + len); 2512 2513 end = start + frag_iter->len; 2514 if ((copy = end - offset) > 0) { 2515 __wsum csum2; 2516 if (copy > len) 2517 copy = len; 2518 csum2 = __skb_checksum(frag_iter, offset - start, 2519 copy, 0, ops); 2520 csum = ops->combine(csum, csum2, pos, copy); 2521 if ((len -= copy) == 0) 2522 return csum; 2523 offset += copy; 2524 pos += copy; 2525 } 2526 start = end; 2527 } 2528 BUG_ON(len); 2529 2530 return csum; 2531 } 2532 EXPORT_SYMBOL(__skb_checksum); 2533 2534 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2535 int len, __wsum csum) 2536 { 2537 const struct skb_checksum_ops ops = { 2538 .update = csum_partial_ext, 2539 .combine = csum_block_add_ext, 2540 }; 2541 2542 return __skb_checksum(skb, offset, len, csum, &ops); 2543 } 2544 EXPORT_SYMBOL(skb_checksum); 2545 2546 /* Both of above in one bottle. */ 2547 2548 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2549 u8 *to, int len, __wsum csum) 2550 { 2551 int start = skb_headlen(skb); 2552 int i, copy = start - offset; 2553 struct sk_buff *frag_iter; 2554 int pos = 0; 2555 2556 /* Copy header. */ 2557 if (copy > 0) { 2558 if (copy > len) 2559 copy = len; 2560 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2561 copy, csum); 2562 if ((len -= copy) == 0) 2563 return csum; 2564 offset += copy; 2565 to += copy; 2566 pos = copy; 2567 } 2568 2569 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2570 int end; 2571 2572 WARN_ON(start > offset + len); 2573 2574 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2575 if ((copy = end - offset) > 0) { 2576 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2577 u32 p_off, p_len, copied; 2578 struct page *p; 2579 __wsum csum2; 2580 u8 *vaddr; 2581 2582 if (copy > len) 2583 copy = len; 2584 2585 skb_frag_foreach_page(frag, 2586 frag->page_offset + offset - start, 2587 copy, p, p_off, p_len, copied) { 2588 vaddr = kmap_atomic(p); 2589 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2590 to + copied, 2591 p_len, 0); 2592 kunmap_atomic(vaddr); 2593 csum = csum_block_add(csum, csum2, pos); 2594 pos += p_len; 2595 } 2596 2597 if (!(len -= copy)) 2598 return csum; 2599 offset += copy; 2600 to += copy; 2601 } 2602 start = end; 2603 } 2604 2605 skb_walk_frags(skb, frag_iter) { 2606 __wsum csum2; 2607 int end; 2608 2609 WARN_ON(start > offset + len); 2610 2611 end = start + frag_iter->len; 2612 if ((copy = end - offset) > 0) { 2613 if (copy > len) 2614 copy = len; 2615 csum2 = skb_copy_and_csum_bits(frag_iter, 2616 offset - start, 2617 to, copy, 0); 2618 csum = csum_block_add(csum, csum2, pos); 2619 if ((len -= copy) == 0) 2620 return csum; 2621 offset += copy; 2622 to += copy; 2623 pos += copy; 2624 } 2625 start = end; 2626 } 2627 BUG_ON(len); 2628 return csum; 2629 } 2630 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2631 2632 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2633 { 2634 net_warn_ratelimited( 2635 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2636 __func__); 2637 return 0; 2638 } 2639 2640 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2641 int offset, int len) 2642 { 2643 net_warn_ratelimited( 2644 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2645 __func__); 2646 return 0; 2647 } 2648 2649 static const struct skb_checksum_ops default_crc32c_ops = { 2650 .update = warn_crc32c_csum_update, 2651 .combine = warn_crc32c_csum_combine, 2652 }; 2653 2654 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2655 &default_crc32c_ops; 2656 EXPORT_SYMBOL(crc32c_csum_stub); 2657 2658 /** 2659 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2660 * @from: source buffer 2661 * 2662 * Calculates the amount of linear headroom needed in the 'to' skb passed 2663 * into skb_zerocopy(). 2664 */ 2665 unsigned int 2666 skb_zerocopy_headlen(const struct sk_buff *from) 2667 { 2668 unsigned int hlen = 0; 2669 2670 if (!from->head_frag || 2671 skb_headlen(from) < L1_CACHE_BYTES || 2672 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2673 hlen = skb_headlen(from); 2674 2675 if (skb_has_frag_list(from)) 2676 hlen = from->len; 2677 2678 return hlen; 2679 } 2680 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2681 2682 /** 2683 * skb_zerocopy - Zero copy skb to skb 2684 * @to: destination buffer 2685 * @from: source buffer 2686 * @len: number of bytes to copy from source buffer 2687 * @hlen: size of linear headroom in destination buffer 2688 * 2689 * Copies up to `len` bytes from `from` to `to` by creating references 2690 * to the frags in the source buffer. 2691 * 2692 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2693 * headroom in the `to` buffer. 2694 * 2695 * Return value: 2696 * 0: everything is OK 2697 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2698 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2699 */ 2700 int 2701 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2702 { 2703 int i, j = 0; 2704 int plen = 0; /* length of skb->head fragment */ 2705 int ret; 2706 struct page *page; 2707 unsigned int offset; 2708 2709 BUG_ON(!from->head_frag && !hlen); 2710 2711 /* dont bother with small payloads */ 2712 if (len <= skb_tailroom(to)) 2713 return skb_copy_bits(from, 0, skb_put(to, len), len); 2714 2715 if (hlen) { 2716 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2717 if (unlikely(ret)) 2718 return ret; 2719 len -= hlen; 2720 } else { 2721 plen = min_t(int, skb_headlen(from), len); 2722 if (plen) { 2723 page = virt_to_head_page(from->head); 2724 offset = from->data - (unsigned char *)page_address(page); 2725 __skb_fill_page_desc(to, 0, page, offset, plen); 2726 get_page(page); 2727 j = 1; 2728 len -= plen; 2729 } 2730 } 2731 2732 to->truesize += len + plen; 2733 to->len += len + plen; 2734 to->data_len += len + plen; 2735 2736 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2737 skb_tx_error(from); 2738 return -ENOMEM; 2739 } 2740 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2741 2742 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2743 if (!len) 2744 break; 2745 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2746 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2747 len -= skb_shinfo(to)->frags[j].size; 2748 skb_frag_ref(to, j); 2749 j++; 2750 } 2751 skb_shinfo(to)->nr_frags = j; 2752 2753 return 0; 2754 } 2755 EXPORT_SYMBOL_GPL(skb_zerocopy); 2756 2757 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2758 { 2759 __wsum csum; 2760 long csstart; 2761 2762 if (skb->ip_summed == CHECKSUM_PARTIAL) 2763 csstart = skb_checksum_start_offset(skb); 2764 else 2765 csstart = skb_headlen(skb); 2766 2767 BUG_ON(csstart > skb_headlen(skb)); 2768 2769 skb_copy_from_linear_data(skb, to, csstart); 2770 2771 csum = 0; 2772 if (csstart != skb->len) 2773 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2774 skb->len - csstart, 0); 2775 2776 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2777 long csstuff = csstart + skb->csum_offset; 2778 2779 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2780 } 2781 } 2782 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2783 2784 /** 2785 * skb_dequeue - remove from the head of the queue 2786 * @list: list to dequeue from 2787 * 2788 * Remove the head of the list. The list lock is taken so the function 2789 * may be used safely with other locking list functions. The head item is 2790 * returned or %NULL if the list is empty. 2791 */ 2792 2793 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2794 { 2795 unsigned long flags; 2796 struct sk_buff *result; 2797 2798 spin_lock_irqsave(&list->lock, flags); 2799 result = __skb_dequeue(list); 2800 spin_unlock_irqrestore(&list->lock, flags); 2801 return result; 2802 } 2803 EXPORT_SYMBOL(skb_dequeue); 2804 2805 /** 2806 * skb_dequeue_tail - remove from the tail of the queue 2807 * @list: list to dequeue from 2808 * 2809 * Remove the tail of the list. The list lock is taken so the function 2810 * may be used safely with other locking list functions. The tail item is 2811 * returned or %NULL if the list is empty. 2812 */ 2813 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2814 { 2815 unsigned long flags; 2816 struct sk_buff *result; 2817 2818 spin_lock_irqsave(&list->lock, flags); 2819 result = __skb_dequeue_tail(list); 2820 spin_unlock_irqrestore(&list->lock, flags); 2821 return result; 2822 } 2823 EXPORT_SYMBOL(skb_dequeue_tail); 2824 2825 /** 2826 * skb_queue_purge - empty a list 2827 * @list: list to empty 2828 * 2829 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2830 * the list and one reference dropped. This function takes the list 2831 * lock and is atomic with respect to other list locking functions. 2832 */ 2833 void skb_queue_purge(struct sk_buff_head *list) 2834 { 2835 struct sk_buff *skb; 2836 while ((skb = skb_dequeue(list)) != NULL) 2837 kfree_skb(skb); 2838 } 2839 EXPORT_SYMBOL(skb_queue_purge); 2840 2841 /** 2842 * skb_rbtree_purge - empty a skb rbtree 2843 * @root: root of the rbtree to empty 2844 * 2845 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 2846 * the list and one reference dropped. This function does not take 2847 * any lock. Synchronization should be handled by the caller (e.g., TCP 2848 * out-of-order queue is protected by the socket lock). 2849 */ 2850 void skb_rbtree_purge(struct rb_root *root) 2851 { 2852 struct rb_node *p = rb_first(root); 2853 2854 while (p) { 2855 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 2856 2857 p = rb_next(p); 2858 rb_erase(&skb->rbnode, root); 2859 kfree_skb(skb); 2860 } 2861 } 2862 2863 /** 2864 * skb_queue_head - queue a buffer at the list head 2865 * @list: list to use 2866 * @newsk: buffer to queue 2867 * 2868 * Queue a buffer at the start of the list. This function takes the 2869 * list lock and can be used safely with other locking &sk_buff functions 2870 * safely. 2871 * 2872 * A buffer cannot be placed on two lists at the same time. 2873 */ 2874 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2875 { 2876 unsigned long flags; 2877 2878 spin_lock_irqsave(&list->lock, flags); 2879 __skb_queue_head(list, newsk); 2880 spin_unlock_irqrestore(&list->lock, flags); 2881 } 2882 EXPORT_SYMBOL(skb_queue_head); 2883 2884 /** 2885 * skb_queue_tail - queue a buffer at the list tail 2886 * @list: list to use 2887 * @newsk: buffer to queue 2888 * 2889 * Queue a buffer at the tail of the list. This function takes the 2890 * list lock and can be used safely with other locking &sk_buff functions 2891 * safely. 2892 * 2893 * A buffer cannot be placed on two lists at the same time. 2894 */ 2895 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2896 { 2897 unsigned long flags; 2898 2899 spin_lock_irqsave(&list->lock, flags); 2900 __skb_queue_tail(list, newsk); 2901 spin_unlock_irqrestore(&list->lock, flags); 2902 } 2903 EXPORT_SYMBOL(skb_queue_tail); 2904 2905 /** 2906 * skb_unlink - remove a buffer from a list 2907 * @skb: buffer to remove 2908 * @list: list to use 2909 * 2910 * Remove a packet from a list. The list locks are taken and this 2911 * function is atomic with respect to other list locked calls 2912 * 2913 * You must know what list the SKB is on. 2914 */ 2915 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2916 { 2917 unsigned long flags; 2918 2919 spin_lock_irqsave(&list->lock, flags); 2920 __skb_unlink(skb, list); 2921 spin_unlock_irqrestore(&list->lock, flags); 2922 } 2923 EXPORT_SYMBOL(skb_unlink); 2924 2925 /** 2926 * skb_append - append a buffer 2927 * @old: buffer to insert after 2928 * @newsk: buffer to insert 2929 * @list: list to use 2930 * 2931 * Place a packet after a given packet in a list. The list locks are taken 2932 * and this function is atomic with respect to other list locked calls. 2933 * A buffer cannot be placed on two lists at the same time. 2934 */ 2935 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2936 { 2937 unsigned long flags; 2938 2939 spin_lock_irqsave(&list->lock, flags); 2940 __skb_queue_after(list, old, newsk); 2941 spin_unlock_irqrestore(&list->lock, flags); 2942 } 2943 EXPORT_SYMBOL(skb_append); 2944 2945 /** 2946 * skb_insert - insert a buffer 2947 * @old: buffer to insert before 2948 * @newsk: buffer to insert 2949 * @list: list to use 2950 * 2951 * Place a packet before a given packet in a list. The list locks are 2952 * taken and this function is atomic with respect to other list locked 2953 * calls. 2954 * 2955 * A buffer cannot be placed on two lists at the same time. 2956 */ 2957 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2958 { 2959 unsigned long flags; 2960 2961 spin_lock_irqsave(&list->lock, flags); 2962 __skb_insert(newsk, old->prev, old, list); 2963 spin_unlock_irqrestore(&list->lock, flags); 2964 } 2965 EXPORT_SYMBOL(skb_insert); 2966 2967 static inline void skb_split_inside_header(struct sk_buff *skb, 2968 struct sk_buff* skb1, 2969 const u32 len, const int pos) 2970 { 2971 int i; 2972 2973 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2974 pos - len); 2975 /* And move data appendix as is. */ 2976 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2977 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2978 2979 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2980 skb_shinfo(skb)->nr_frags = 0; 2981 skb1->data_len = skb->data_len; 2982 skb1->len += skb1->data_len; 2983 skb->data_len = 0; 2984 skb->len = len; 2985 skb_set_tail_pointer(skb, len); 2986 } 2987 2988 static inline void skb_split_no_header(struct sk_buff *skb, 2989 struct sk_buff* skb1, 2990 const u32 len, int pos) 2991 { 2992 int i, k = 0; 2993 const int nfrags = skb_shinfo(skb)->nr_frags; 2994 2995 skb_shinfo(skb)->nr_frags = 0; 2996 skb1->len = skb1->data_len = skb->len - len; 2997 skb->len = len; 2998 skb->data_len = len - pos; 2999 3000 for (i = 0; i < nfrags; i++) { 3001 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3002 3003 if (pos + size > len) { 3004 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3005 3006 if (pos < len) { 3007 /* Split frag. 3008 * We have two variants in this case: 3009 * 1. Move all the frag to the second 3010 * part, if it is possible. F.e. 3011 * this approach is mandatory for TUX, 3012 * where splitting is expensive. 3013 * 2. Split is accurately. We make this. 3014 */ 3015 skb_frag_ref(skb, i); 3016 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 3017 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3018 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3019 skb_shinfo(skb)->nr_frags++; 3020 } 3021 k++; 3022 } else 3023 skb_shinfo(skb)->nr_frags++; 3024 pos += size; 3025 } 3026 skb_shinfo(skb1)->nr_frags = k; 3027 } 3028 3029 /** 3030 * skb_split - Split fragmented skb to two parts at length len. 3031 * @skb: the buffer to split 3032 * @skb1: the buffer to receive the second part 3033 * @len: new length for skb 3034 */ 3035 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3036 { 3037 int pos = skb_headlen(skb); 3038 3039 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3040 SKBTX_SHARED_FRAG; 3041 skb_zerocopy_clone(skb1, skb, 0); 3042 if (len < pos) /* Split line is inside header. */ 3043 skb_split_inside_header(skb, skb1, len, pos); 3044 else /* Second chunk has no header, nothing to copy. */ 3045 skb_split_no_header(skb, skb1, len, pos); 3046 } 3047 EXPORT_SYMBOL(skb_split); 3048 3049 /* Shifting from/to a cloned skb is a no-go. 3050 * 3051 * Caller cannot keep skb_shinfo related pointers past calling here! 3052 */ 3053 static int skb_prepare_for_shift(struct sk_buff *skb) 3054 { 3055 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3056 } 3057 3058 /** 3059 * skb_shift - Shifts paged data partially from skb to another 3060 * @tgt: buffer into which tail data gets added 3061 * @skb: buffer from which the paged data comes from 3062 * @shiftlen: shift up to this many bytes 3063 * 3064 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3065 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3066 * It's up to caller to free skb if everything was shifted. 3067 * 3068 * If @tgt runs out of frags, the whole operation is aborted. 3069 * 3070 * Skb cannot include anything else but paged data while tgt is allowed 3071 * to have non-paged data as well. 3072 * 3073 * TODO: full sized shift could be optimized but that would need 3074 * specialized skb free'er to handle frags without up-to-date nr_frags. 3075 */ 3076 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3077 { 3078 int from, to, merge, todo; 3079 struct skb_frag_struct *fragfrom, *fragto; 3080 3081 BUG_ON(shiftlen > skb->len); 3082 3083 if (skb_headlen(skb)) 3084 return 0; 3085 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3086 return 0; 3087 3088 todo = shiftlen; 3089 from = 0; 3090 to = skb_shinfo(tgt)->nr_frags; 3091 fragfrom = &skb_shinfo(skb)->frags[from]; 3092 3093 /* Actual merge is delayed until the point when we know we can 3094 * commit all, so that we don't have to undo partial changes 3095 */ 3096 if (!to || 3097 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3098 fragfrom->page_offset)) { 3099 merge = -1; 3100 } else { 3101 merge = to - 1; 3102 3103 todo -= skb_frag_size(fragfrom); 3104 if (todo < 0) { 3105 if (skb_prepare_for_shift(skb) || 3106 skb_prepare_for_shift(tgt)) 3107 return 0; 3108 3109 /* All previous frag pointers might be stale! */ 3110 fragfrom = &skb_shinfo(skb)->frags[from]; 3111 fragto = &skb_shinfo(tgt)->frags[merge]; 3112 3113 skb_frag_size_add(fragto, shiftlen); 3114 skb_frag_size_sub(fragfrom, shiftlen); 3115 fragfrom->page_offset += shiftlen; 3116 3117 goto onlymerged; 3118 } 3119 3120 from++; 3121 } 3122 3123 /* Skip full, not-fitting skb to avoid expensive operations */ 3124 if ((shiftlen == skb->len) && 3125 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3126 return 0; 3127 3128 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3129 return 0; 3130 3131 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3132 if (to == MAX_SKB_FRAGS) 3133 return 0; 3134 3135 fragfrom = &skb_shinfo(skb)->frags[from]; 3136 fragto = &skb_shinfo(tgt)->frags[to]; 3137 3138 if (todo >= skb_frag_size(fragfrom)) { 3139 *fragto = *fragfrom; 3140 todo -= skb_frag_size(fragfrom); 3141 from++; 3142 to++; 3143 3144 } else { 3145 __skb_frag_ref(fragfrom); 3146 fragto->page = fragfrom->page; 3147 fragto->page_offset = fragfrom->page_offset; 3148 skb_frag_size_set(fragto, todo); 3149 3150 fragfrom->page_offset += todo; 3151 skb_frag_size_sub(fragfrom, todo); 3152 todo = 0; 3153 3154 to++; 3155 break; 3156 } 3157 } 3158 3159 /* Ready to "commit" this state change to tgt */ 3160 skb_shinfo(tgt)->nr_frags = to; 3161 3162 if (merge >= 0) { 3163 fragfrom = &skb_shinfo(skb)->frags[0]; 3164 fragto = &skb_shinfo(tgt)->frags[merge]; 3165 3166 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3167 __skb_frag_unref(fragfrom); 3168 } 3169 3170 /* Reposition in the original skb */ 3171 to = 0; 3172 while (from < skb_shinfo(skb)->nr_frags) 3173 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3174 skb_shinfo(skb)->nr_frags = to; 3175 3176 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3177 3178 onlymerged: 3179 /* Most likely the tgt won't ever need its checksum anymore, skb on 3180 * the other hand might need it if it needs to be resent 3181 */ 3182 tgt->ip_summed = CHECKSUM_PARTIAL; 3183 skb->ip_summed = CHECKSUM_PARTIAL; 3184 3185 /* Yak, is it really working this way? Some helper please? */ 3186 skb->len -= shiftlen; 3187 skb->data_len -= shiftlen; 3188 skb->truesize -= shiftlen; 3189 tgt->len += shiftlen; 3190 tgt->data_len += shiftlen; 3191 tgt->truesize += shiftlen; 3192 3193 return shiftlen; 3194 } 3195 3196 /** 3197 * skb_prepare_seq_read - Prepare a sequential read of skb data 3198 * @skb: the buffer to read 3199 * @from: lower offset of data to be read 3200 * @to: upper offset of data to be read 3201 * @st: state variable 3202 * 3203 * Initializes the specified state variable. Must be called before 3204 * invoking skb_seq_read() for the first time. 3205 */ 3206 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3207 unsigned int to, struct skb_seq_state *st) 3208 { 3209 st->lower_offset = from; 3210 st->upper_offset = to; 3211 st->root_skb = st->cur_skb = skb; 3212 st->frag_idx = st->stepped_offset = 0; 3213 st->frag_data = NULL; 3214 } 3215 EXPORT_SYMBOL(skb_prepare_seq_read); 3216 3217 /** 3218 * skb_seq_read - Sequentially read skb data 3219 * @consumed: number of bytes consumed by the caller so far 3220 * @data: destination pointer for data to be returned 3221 * @st: state variable 3222 * 3223 * Reads a block of skb data at @consumed relative to the 3224 * lower offset specified to skb_prepare_seq_read(). Assigns 3225 * the head of the data block to @data and returns the length 3226 * of the block or 0 if the end of the skb data or the upper 3227 * offset has been reached. 3228 * 3229 * The caller is not required to consume all of the data 3230 * returned, i.e. @consumed is typically set to the number 3231 * of bytes already consumed and the next call to 3232 * skb_seq_read() will return the remaining part of the block. 3233 * 3234 * Note 1: The size of each block of data returned can be arbitrary, 3235 * this limitation is the cost for zerocopy sequential 3236 * reads of potentially non linear data. 3237 * 3238 * Note 2: Fragment lists within fragments are not implemented 3239 * at the moment, state->root_skb could be replaced with 3240 * a stack for this purpose. 3241 */ 3242 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3243 struct skb_seq_state *st) 3244 { 3245 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3246 skb_frag_t *frag; 3247 3248 if (unlikely(abs_offset >= st->upper_offset)) { 3249 if (st->frag_data) { 3250 kunmap_atomic(st->frag_data); 3251 st->frag_data = NULL; 3252 } 3253 return 0; 3254 } 3255 3256 next_skb: 3257 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3258 3259 if (abs_offset < block_limit && !st->frag_data) { 3260 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3261 return block_limit - abs_offset; 3262 } 3263 3264 if (st->frag_idx == 0 && !st->frag_data) 3265 st->stepped_offset += skb_headlen(st->cur_skb); 3266 3267 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3268 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3269 block_limit = skb_frag_size(frag) + st->stepped_offset; 3270 3271 if (abs_offset < block_limit) { 3272 if (!st->frag_data) 3273 st->frag_data = kmap_atomic(skb_frag_page(frag)); 3274 3275 *data = (u8 *) st->frag_data + frag->page_offset + 3276 (abs_offset - st->stepped_offset); 3277 3278 return block_limit - abs_offset; 3279 } 3280 3281 if (st->frag_data) { 3282 kunmap_atomic(st->frag_data); 3283 st->frag_data = NULL; 3284 } 3285 3286 st->frag_idx++; 3287 st->stepped_offset += skb_frag_size(frag); 3288 } 3289 3290 if (st->frag_data) { 3291 kunmap_atomic(st->frag_data); 3292 st->frag_data = NULL; 3293 } 3294 3295 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3296 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3297 st->frag_idx = 0; 3298 goto next_skb; 3299 } else if (st->cur_skb->next) { 3300 st->cur_skb = st->cur_skb->next; 3301 st->frag_idx = 0; 3302 goto next_skb; 3303 } 3304 3305 return 0; 3306 } 3307 EXPORT_SYMBOL(skb_seq_read); 3308 3309 /** 3310 * skb_abort_seq_read - Abort a sequential read of skb data 3311 * @st: state variable 3312 * 3313 * Must be called if skb_seq_read() was not called until it 3314 * returned 0. 3315 */ 3316 void skb_abort_seq_read(struct skb_seq_state *st) 3317 { 3318 if (st->frag_data) 3319 kunmap_atomic(st->frag_data); 3320 } 3321 EXPORT_SYMBOL(skb_abort_seq_read); 3322 3323 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3324 3325 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3326 struct ts_config *conf, 3327 struct ts_state *state) 3328 { 3329 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3330 } 3331 3332 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3333 { 3334 skb_abort_seq_read(TS_SKB_CB(state)); 3335 } 3336 3337 /** 3338 * skb_find_text - Find a text pattern in skb data 3339 * @skb: the buffer to look in 3340 * @from: search offset 3341 * @to: search limit 3342 * @config: textsearch configuration 3343 * 3344 * Finds a pattern in the skb data according to the specified 3345 * textsearch configuration. Use textsearch_next() to retrieve 3346 * subsequent occurrences of the pattern. Returns the offset 3347 * to the first occurrence or UINT_MAX if no match was found. 3348 */ 3349 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3350 unsigned int to, struct ts_config *config) 3351 { 3352 struct ts_state state; 3353 unsigned int ret; 3354 3355 config->get_next_block = skb_ts_get_next_block; 3356 config->finish = skb_ts_finish; 3357 3358 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3359 3360 ret = textsearch_find(config, &state); 3361 return (ret <= to - from ? ret : UINT_MAX); 3362 } 3363 EXPORT_SYMBOL(skb_find_text); 3364 3365 /** 3366 * skb_append_datato_frags - append the user data to a skb 3367 * @sk: sock structure 3368 * @skb: skb structure to be appended with user data. 3369 * @getfrag: call back function to be used for getting the user data 3370 * @from: pointer to user message iov 3371 * @length: length of the iov message 3372 * 3373 * Description: This procedure append the user data in the fragment part 3374 * of the skb if any page alloc fails user this procedure returns -ENOMEM 3375 */ 3376 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 3377 int (*getfrag)(void *from, char *to, int offset, 3378 int len, int odd, struct sk_buff *skb), 3379 void *from, int length) 3380 { 3381 int frg_cnt = skb_shinfo(skb)->nr_frags; 3382 int copy; 3383 int offset = 0; 3384 int ret; 3385 struct page_frag *pfrag = ¤t->task_frag; 3386 3387 do { 3388 /* Return error if we don't have space for new frag */ 3389 if (frg_cnt >= MAX_SKB_FRAGS) 3390 return -EMSGSIZE; 3391 3392 if (!sk_page_frag_refill(sk, pfrag)) 3393 return -ENOMEM; 3394 3395 /* copy the user data to page */ 3396 copy = min_t(int, length, pfrag->size - pfrag->offset); 3397 3398 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, 3399 offset, copy, 0, skb); 3400 if (ret < 0) 3401 return -EFAULT; 3402 3403 /* copy was successful so update the size parameters */ 3404 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, 3405 copy); 3406 frg_cnt++; 3407 pfrag->offset += copy; 3408 get_page(pfrag->page); 3409 3410 skb->truesize += copy; 3411 refcount_add(copy, &sk->sk_wmem_alloc); 3412 skb->len += copy; 3413 skb->data_len += copy; 3414 offset += copy; 3415 length -= copy; 3416 3417 } while (length > 0); 3418 3419 return 0; 3420 } 3421 EXPORT_SYMBOL(skb_append_datato_frags); 3422 3423 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3424 int offset, size_t size) 3425 { 3426 int i = skb_shinfo(skb)->nr_frags; 3427 3428 if (skb_can_coalesce(skb, i, page, offset)) { 3429 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3430 } else if (i < MAX_SKB_FRAGS) { 3431 get_page(page); 3432 skb_fill_page_desc(skb, i, page, offset, size); 3433 } else { 3434 return -EMSGSIZE; 3435 } 3436 3437 return 0; 3438 } 3439 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3440 3441 /** 3442 * skb_pull_rcsum - pull skb and update receive checksum 3443 * @skb: buffer to update 3444 * @len: length of data pulled 3445 * 3446 * This function performs an skb_pull on the packet and updates 3447 * the CHECKSUM_COMPLETE checksum. It should be used on 3448 * receive path processing instead of skb_pull unless you know 3449 * that the checksum difference is zero (e.g., a valid IP header) 3450 * or you are setting ip_summed to CHECKSUM_NONE. 3451 */ 3452 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3453 { 3454 unsigned char *data = skb->data; 3455 3456 BUG_ON(len > skb->len); 3457 __skb_pull(skb, len); 3458 skb_postpull_rcsum(skb, data, len); 3459 return skb->data; 3460 } 3461 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3462 3463 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3464 { 3465 skb_frag_t head_frag; 3466 struct page *page; 3467 3468 page = virt_to_head_page(frag_skb->head); 3469 head_frag.page.p = page; 3470 head_frag.page_offset = frag_skb->data - 3471 (unsigned char *)page_address(page); 3472 head_frag.size = skb_headlen(frag_skb); 3473 return head_frag; 3474 } 3475 3476 /** 3477 * skb_segment - Perform protocol segmentation on skb. 3478 * @head_skb: buffer to segment 3479 * @features: features for the output path (see dev->features) 3480 * 3481 * This function performs segmentation on the given skb. It returns 3482 * a pointer to the first in a list of new skbs for the segments. 3483 * In case of error it returns ERR_PTR(err). 3484 */ 3485 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3486 netdev_features_t features) 3487 { 3488 struct sk_buff *segs = NULL; 3489 struct sk_buff *tail = NULL; 3490 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3491 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3492 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3493 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3494 struct sk_buff *frag_skb = head_skb; 3495 unsigned int offset = doffset; 3496 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3497 unsigned int partial_segs = 0; 3498 unsigned int headroom; 3499 unsigned int len = head_skb->len; 3500 __be16 proto; 3501 bool csum, sg; 3502 int nfrags = skb_shinfo(head_skb)->nr_frags; 3503 int err = -ENOMEM; 3504 int i = 0; 3505 int pos; 3506 int dummy; 3507 3508 __skb_push(head_skb, doffset); 3509 proto = skb_network_protocol(head_skb, &dummy); 3510 if (unlikely(!proto)) 3511 return ERR_PTR(-EINVAL); 3512 3513 sg = !!(features & NETIF_F_SG); 3514 csum = !!can_checksum_protocol(features, proto); 3515 3516 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3517 if (!(features & NETIF_F_GSO_PARTIAL)) { 3518 struct sk_buff *iter; 3519 unsigned int frag_len; 3520 3521 if (!list_skb || 3522 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3523 goto normal; 3524 3525 /* If we get here then all the required 3526 * GSO features except frag_list are supported. 3527 * Try to split the SKB to multiple GSO SKBs 3528 * with no frag_list. 3529 * Currently we can do that only when the buffers don't 3530 * have a linear part and all the buffers except 3531 * the last are of the same length. 3532 */ 3533 frag_len = list_skb->len; 3534 skb_walk_frags(head_skb, iter) { 3535 if (frag_len != iter->len && iter->next) 3536 goto normal; 3537 if (skb_headlen(iter) && !iter->head_frag) 3538 goto normal; 3539 3540 len -= iter->len; 3541 } 3542 3543 if (len != frag_len) 3544 goto normal; 3545 } 3546 3547 /* GSO partial only requires that we trim off any excess that 3548 * doesn't fit into an MSS sized block, so take care of that 3549 * now. 3550 */ 3551 partial_segs = len / mss; 3552 if (partial_segs > 1) 3553 mss *= partial_segs; 3554 else 3555 partial_segs = 0; 3556 } 3557 3558 normal: 3559 headroom = skb_headroom(head_skb); 3560 pos = skb_headlen(head_skb); 3561 3562 do { 3563 struct sk_buff *nskb; 3564 skb_frag_t *nskb_frag; 3565 int hsize; 3566 int size; 3567 3568 if (unlikely(mss == GSO_BY_FRAGS)) { 3569 len = list_skb->len; 3570 } else { 3571 len = head_skb->len - offset; 3572 if (len > mss) 3573 len = mss; 3574 } 3575 3576 hsize = skb_headlen(head_skb) - offset; 3577 if (hsize < 0) 3578 hsize = 0; 3579 if (hsize > len || !sg) 3580 hsize = len; 3581 3582 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3583 (skb_headlen(list_skb) == len || sg)) { 3584 BUG_ON(skb_headlen(list_skb) > len); 3585 3586 i = 0; 3587 nfrags = skb_shinfo(list_skb)->nr_frags; 3588 frag = skb_shinfo(list_skb)->frags; 3589 frag_skb = list_skb; 3590 pos += skb_headlen(list_skb); 3591 3592 while (pos < offset + len) { 3593 BUG_ON(i >= nfrags); 3594 3595 size = skb_frag_size(frag); 3596 if (pos + size > offset + len) 3597 break; 3598 3599 i++; 3600 pos += size; 3601 frag++; 3602 } 3603 3604 nskb = skb_clone(list_skb, GFP_ATOMIC); 3605 list_skb = list_skb->next; 3606 3607 if (unlikely(!nskb)) 3608 goto err; 3609 3610 if (unlikely(pskb_trim(nskb, len))) { 3611 kfree_skb(nskb); 3612 goto err; 3613 } 3614 3615 hsize = skb_end_offset(nskb); 3616 if (skb_cow_head(nskb, doffset + headroom)) { 3617 kfree_skb(nskb); 3618 goto err; 3619 } 3620 3621 nskb->truesize += skb_end_offset(nskb) - hsize; 3622 skb_release_head_state(nskb); 3623 __skb_push(nskb, doffset); 3624 } else { 3625 nskb = __alloc_skb(hsize + doffset + headroom, 3626 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3627 NUMA_NO_NODE); 3628 3629 if (unlikely(!nskb)) 3630 goto err; 3631 3632 skb_reserve(nskb, headroom); 3633 __skb_put(nskb, doffset); 3634 } 3635 3636 if (segs) 3637 tail->next = nskb; 3638 else 3639 segs = nskb; 3640 tail = nskb; 3641 3642 __copy_skb_header(nskb, head_skb); 3643 3644 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3645 skb_reset_mac_len(nskb); 3646 3647 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3648 nskb->data - tnl_hlen, 3649 doffset + tnl_hlen); 3650 3651 if (nskb->len == len + doffset) 3652 goto perform_csum_check; 3653 3654 if (!sg) { 3655 if (!nskb->remcsum_offload) 3656 nskb->ip_summed = CHECKSUM_NONE; 3657 SKB_GSO_CB(nskb)->csum = 3658 skb_copy_and_csum_bits(head_skb, offset, 3659 skb_put(nskb, len), 3660 len, 0); 3661 SKB_GSO_CB(nskb)->csum_start = 3662 skb_headroom(nskb) + doffset; 3663 continue; 3664 } 3665 3666 nskb_frag = skb_shinfo(nskb)->frags; 3667 3668 skb_copy_from_linear_data_offset(head_skb, offset, 3669 skb_put(nskb, hsize), hsize); 3670 3671 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 3672 SKBTX_SHARED_FRAG; 3673 3674 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3675 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 3676 goto err; 3677 3678 while (pos < offset + len) { 3679 if (i >= nfrags) { 3680 i = 0; 3681 nfrags = skb_shinfo(list_skb)->nr_frags; 3682 frag = skb_shinfo(list_skb)->frags; 3683 frag_skb = list_skb; 3684 if (!skb_headlen(list_skb)) { 3685 BUG_ON(!nfrags); 3686 } else { 3687 BUG_ON(!list_skb->head_frag); 3688 3689 /* to make room for head_frag. */ 3690 i--; 3691 frag--; 3692 } 3693 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3694 skb_zerocopy_clone(nskb, frag_skb, 3695 GFP_ATOMIC)) 3696 goto err; 3697 3698 list_skb = list_skb->next; 3699 } 3700 3701 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3702 MAX_SKB_FRAGS)) { 3703 net_warn_ratelimited( 3704 "skb_segment: too many frags: %u %u\n", 3705 pos, mss); 3706 goto err; 3707 } 3708 3709 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 3710 __skb_frag_ref(nskb_frag); 3711 size = skb_frag_size(nskb_frag); 3712 3713 if (pos < offset) { 3714 nskb_frag->page_offset += offset - pos; 3715 skb_frag_size_sub(nskb_frag, offset - pos); 3716 } 3717 3718 skb_shinfo(nskb)->nr_frags++; 3719 3720 if (pos + size <= offset + len) { 3721 i++; 3722 frag++; 3723 pos += size; 3724 } else { 3725 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3726 goto skip_fraglist; 3727 } 3728 3729 nskb_frag++; 3730 } 3731 3732 skip_fraglist: 3733 nskb->data_len = len - hsize; 3734 nskb->len += nskb->data_len; 3735 nskb->truesize += nskb->data_len; 3736 3737 perform_csum_check: 3738 if (!csum) { 3739 if (skb_has_shared_frag(nskb)) { 3740 err = __skb_linearize(nskb); 3741 if (err) 3742 goto err; 3743 } 3744 if (!nskb->remcsum_offload) 3745 nskb->ip_summed = CHECKSUM_NONE; 3746 SKB_GSO_CB(nskb)->csum = 3747 skb_checksum(nskb, doffset, 3748 nskb->len - doffset, 0); 3749 SKB_GSO_CB(nskb)->csum_start = 3750 skb_headroom(nskb) + doffset; 3751 } 3752 } while ((offset += len) < head_skb->len); 3753 3754 /* Some callers want to get the end of the list. 3755 * Put it in segs->prev to avoid walking the list. 3756 * (see validate_xmit_skb_list() for example) 3757 */ 3758 segs->prev = tail; 3759 3760 if (partial_segs) { 3761 struct sk_buff *iter; 3762 int type = skb_shinfo(head_skb)->gso_type; 3763 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 3764 3765 /* Update type to add partial and then remove dodgy if set */ 3766 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 3767 type &= ~SKB_GSO_DODGY; 3768 3769 /* Update GSO info and prepare to start updating headers on 3770 * our way back down the stack of protocols. 3771 */ 3772 for (iter = segs; iter; iter = iter->next) { 3773 skb_shinfo(iter)->gso_size = gso_size; 3774 skb_shinfo(iter)->gso_segs = partial_segs; 3775 skb_shinfo(iter)->gso_type = type; 3776 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 3777 } 3778 3779 if (tail->len - doffset <= gso_size) 3780 skb_shinfo(tail)->gso_size = 0; 3781 else if (tail != segs) 3782 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 3783 } 3784 3785 /* Following permits correct backpressure, for protocols 3786 * using skb_set_owner_w(). 3787 * Idea is to tranfert ownership from head_skb to last segment. 3788 */ 3789 if (head_skb->destructor == sock_wfree) { 3790 swap(tail->truesize, head_skb->truesize); 3791 swap(tail->destructor, head_skb->destructor); 3792 swap(tail->sk, head_skb->sk); 3793 } 3794 return segs; 3795 3796 err: 3797 kfree_skb_list(segs); 3798 return ERR_PTR(err); 3799 } 3800 EXPORT_SYMBOL_GPL(skb_segment); 3801 3802 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 3803 { 3804 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3805 unsigned int offset = skb_gro_offset(skb); 3806 unsigned int headlen = skb_headlen(skb); 3807 unsigned int len = skb_gro_len(skb); 3808 struct sk_buff *lp, *p = *head; 3809 unsigned int delta_truesize; 3810 3811 if (unlikely(p->len + len >= 65536)) 3812 return -E2BIG; 3813 3814 lp = NAPI_GRO_CB(p)->last; 3815 pinfo = skb_shinfo(lp); 3816 3817 if (headlen <= offset) { 3818 skb_frag_t *frag; 3819 skb_frag_t *frag2; 3820 int i = skbinfo->nr_frags; 3821 int nr_frags = pinfo->nr_frags + i; 3822 3823 if (nr_frags > MAX_SKB_FRAGS) 3824 goto merge; 3825 3826 offset -= headlen; 3827 pinfo->nr_frags = nr_frags; 3828 skbinfo->nr_frags = 0; 3829 3830 frag = pinfo->frags + nr_frags; 3831 frag2 = skbinfo->frags + i; 3832 do { 3833 *--frag = *--frag2; 3834 } while (--i); 3835 3836 frag->page_offset += offset; 3837 skb_frag_size_sub(frag, offset); 3838 3839 /* all fragments truesize : remove (head size + sk_buff) */ 3840 delta_truesize = skb->truesize - 3841 SKB_TRUESIZE(skb_end_offset(skb)); 3842 3843 skb->truesize -= skb->data_len; 3844 skb->len -= skb->data_len; 3845 skb->data_len = 0; 3846 3847 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3848 goto done; 3849 } else if (skb->head_frag) { 3850 int nr_frags = pinfo->nr_frags; 3851 skb_frag_t *frag = pinfo->frags + nr_frags; 3852 struct page *page = virt_to_head_page(skb->head); 3853 unsigned int first_size = headlen - offset; 3854 unsigned int first_offset; 3855 3856 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3857 goto merge; 3858 3859 first_offset = skb->data - 3860 (unsigned char *)page_address(page) + 3861 offset; 3862 3863 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3864 3865 frag->page.p = page; 3866 frag->page_offset = first_offset; 3867 skb_frag_size_set(frag, first_size); 3868 3869 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3870 /* We dont need to clear skbinfo->nr_frags here */ 3871 3872 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3873 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3874 goto done; 3875 } 3876 3877 merge: 3878 delta_truesize = skb->truesize; 3879 if (offset > headlen) { 3880 unsigned int eat = offset - headlen; 3881 3882 skbinfo->frags[0].page_offset += eat; 3883 skb_frag_size_sub(&skbinfo->frags[0], eat); 3884 skb->data_len -= eat; 3885 skb->len -= eat; 3886 offset = headlen; 3887 } 3888 3889 __skb_pull(skb, offset); 3890 3891 if (NAPI_GRO_CB(p)->last == p) 3892 skb_shinfo(p)->frag_list = skb; 3893 else 3894 NAPI_GRO_CB(p)->last->next = skb; 3895 NAPI_GRO_CB(p)->last = skb; 3896 __skb_header_release(skb); 3897 lp = p; 3898 3899 done: 3900 NAPI_GRO_CB(p)->count++; 3901 p->data_len += len; 3902 p->truesize += delta_truesize; 3903 p->len += len; 3904 if (lp != p) { 3905 lp->data_len += len; 3906 lp->truesize += delta_truesize; 3907 lp->len += len; 3908 } 3909 NAPI_GRO_CB(skb)->same_flow = 1; 3910 return 0; 3911 } 3912 EXPORT_SYMBOL_GPL(skb_gro_receive); 3913 3914 void __init skb_init(void) 3915 { 3916 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 3917 sizeof(struct sk_buff), 3918 0, 3919 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3920 offsetof(struct sk_buff, cb), 3921 sizeof_field(struct sk_buff, cb), 3922 NULL); 3923 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3924 sizeof(struct sk_buff_fclones), 3925 0, 3926 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3927 NULL); 3928 } 3929 3930 static int 3931 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 3932 unsigned int recursion_level) 3933 { 3934 int start = skb_headlen(skb); 3935 int i, copy = start - offset; 3936 struct sk_buff *frag_iter; 3937 int elt = 0; 3938 3939 if (unlikely(recursion_level >= 24)) 3940 return -EMSGSIZE; 3941 3942 if (copy > 0) { 3943 if (copy > len) 3944 copy = len; 3945 sg_set_buf(sg, skb->data + offset, copy); 3946 elt++; 3947 if ((len -= copy) == 0) 3948 return elt; 3949 offset += copy; 3950 } 3951 3952 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3953 int end; 3954 3955 WARN_ON(start > offset + len); 3956 3957 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3958 if ((copy = end - offset) > 0) { 3959 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3960 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3961 return -EMSGSIZE; 3962 3963 if (copy > len) 3964 copy = len; 3965 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3966 frag->page_offset+offset-start); 3967 elt++; 3968 if (!(len -= copy)) 3969 return elt; 3970 offset += copy; 3971 } 3972 start = end; 3973 } 3974 3975 skb_walk_frags(skb, frag_iter) { 3976 int end, ret; 3977 3978 WARN_ON(start > offset + len); 3979 3980 end = start + frag_iter->len; 3981 if ((copy = end - offset) > 0) { 3982 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3983 return -EMSGSIZE; 3984 3985 if (copy > len) 3986 copy = len; 3987 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 3988 copy, recursion_level + 1); 3989 if (unlikely(ret < 0)) 3990 return ret; 3991 elt += ret; 3992 if ((len -= copy) == 0) 3993 return elt; 3994 offset += copy; 3995 } 3996 start = end; 3997 } 3998 BUG_ON(len); 3999 return elt; 4000 } 4001 4002 /** 4003 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4004 * @skb: Socket buffer containing the buffers to be mapped 4005 * @sg: The scatter-gather list to map into 4006 * @offset: The offset into the buffer's contents to start mapping 4007 * @len: Length of buffer space to be mapped 4008 * 4009 * Fill the specified scatter-gather list with mappings/pointers into a 4010 * region of the buffer space attached to a socket buffer. Returns either 4011 * the number of scatterlist items used, or -EMSGSIZE if the contents 4012 * could not fit. 4013 */ 4014 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4015 { 4016 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4017 4018 if (nsg <= 0) 4019 return nsg; 4020 4021 sg_mark_end(&sg[nsg - 1]); 4022 4023 return nsg; 4024 } 4025 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4026 4027 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4028 * sglist without mark the sg which contain last skb data as the end. 4029 * So the caller can mannipulate sg list as will when padding new data after 4030 * the first call without calling sg_unmark_end to expend sg list. 4031 * 4032 * Scenario to use skb_to_sgvec_nomark: 4033 * 1. sg_init_table 4034 * 2. skb_to_sgvec_nomark(payload1) 4035 * 3. skb_to_sgvec_nomark(payload2) 4036 * 4037 * This is equivalent to: 4038 * 1. sg_init_table 4039 * 2. skb_to_sgvec(payload1) 4040 * 3. sg_unmark_end 4041 * 4. skb_to_sgvec(payload2) 4042 * 4043 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4044 * is more preferable. 4045 */ 4046 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4047 int offset, int len) 4048 { 4049 return __skb_to_sgvec(skb, sg, offset, len, 0); 4050 } 4051 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4052 4053 4054 4055 /** 4056 * skb_cow_data - Check that a socket buffer's data buffers are writable 4057 * @skb: The socket buffer to check. 4058 * @tailbits: Amount of trailing space to be added 4059 * @trailer: Returned pointer to the skb where the @tailbits space begins 4060 * 4061 * Make sure that the data buffers attached to a socket buffer are 4062 * writable. If they are not, private copies are made of the data buffers 4063 * and the socket buffer is set to use these instead. 4064 * 4065 * If @tailbits is given, make sure that there is space to write @tailbits 4066 * bytes of data beyond current end of socket buffer. @trailer will be 4067 * set to point to the skb in which this space begins. 4068 * 4069 * The number of scatterlist elements required to completely map the 4070 * COW'd and extended socket buffer will be returned. 4071 */ 4072 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4073 { 4074 int copyflag; 4075 int elt; 4076 struct sk_buff *skb1, **skb_p; 4077 4078 /* If skb is cloned or its head is paged, reallocate 4079 * head pulling out all the pages (pages are considered not writable 4080 * at the moment even if they are anonymous). 4081 */ 4082 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4083 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 4084 return -ENOMEM; 4085 4086 /* Easy case. Most of packets will go this way. */ 4087 if (!skb_has_frag_list(skb)) { 4088 /* A little of trouble, not enough of space for trailer. 4089 * This should not happen, when stack is tuned to generate 4090 * good frames. OK, on miss we reallocate and reserve even more 4091 * space, 128 bytes is fair. */ 4092 4093 if (skb_tailroom(skb) < tailbits && 4094 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4095 return -ENOMEM; 4096 4097 /* Voila! */ 4098 *trailer = skb; 4099 return 1; 4100 } 4101 4102 /* Misery. We are in troubles, going to mincer fragments... */ 4103 4104 elt = 1; 4105 skb_p = &skb_shinfo(skb)->frag_list; 4106 copyflag = 0; 4107 4108 while ((skb1 = *skb_p) != NULL) { 4109 int ntail = 0; 4110 4111 /* The fragment is partially pulled by someone, 4112 * this can happen on input. Copy it and everything 4113 * after it. */ 4114 4115 if (skb_shared(skb1)) 4116 copyflag = 1; 4117 4118 /* If the skb is the last, worry about trailer. */ 4119 4120 if (skb1->next == NULL && tailbits) { 4121 if (skb_shinfo(skb1)->nr_frags || 4122 skb_has_frag_list(skb1) || 4123 skb_tailroom(skb1) < tailbits) 4124 ntail = tailbits + 128; 4125 } 4126 4127 if (copyflag || 4128 skb_cloned(skb1) || 4129 ntail || 4130 skb_shinfo(skb1)->nr_frags || 4131 skb_has_frag_list(skb1)) { 4132 struct sk_buff *skb2; 4133 4134 /* Fuck, we are miserable poor guys... */ 4135 if (ntail == 0) 4136 skb2 = skb_copy(skb1, GFP_ATOMIC); 4137 else 4138 skb2 = skb_copy_expand(skb1, 4139 skb_headroom(skb1), 4140 ntail, 4141 GFP_ATOMIC); 4142 if (unlikely(skb2 == NULL)) 4143 return -ENOMEM; 4144 4145 if (skb1->sk) 4146 skb_set_owner_w(skb2, skb1->sk); 4147 4148 /* Looking around. Are we still alive? 4149 * OK, link new skb, drop old one */ 4150 4151 skb2->next = skb1->next; 4152 *skb_p = skb2; 4153 kfree_skb(skb1); 4154 skb1 = skb2; 4155 } 4156 elt++; 4157 *trailer = skb1; 4158 skb_p = &skb1->next; 4159 } 4160 4161 return elt; 4162 } 4163 EXPORT_SYMBOL_GPL(skb_cow_data); 4164 4165 static void sock_rmem_free(struct sk_buff *skb) 4166 { 4167 struct sock *sk = skb->sk; 4168 4169 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4170 } 4171 4172 static void skb_set_err_queue(struct sk_buff *skb) 4173 { 4174 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4175 * So, it is safe to (mis)use it to mark skbs on the error queue. 4176 */ 4177 skb->pkt_type = PACKET_OUTGOING; 4178 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4179 } 4180 4181 /* 4182 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4183 */ 4184 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4185 { 4186 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4187 (unsigned int)sk->sk_rcvbuf) 4188 return -ENOMEM; 4189 4190 skb_orphan(skb); 4191 skb->sk = sk; 4192 skb->destructor = sock_rmem_free; 4193 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4194 skb_set_err_queue(skb); 4195 4196 /* before exiting rcu section, make sure dst is refcounted */ 4197 skb_dst_force(skb); 4198 4199 skb_queue_tail(&sk->sk_error_queue, skb); 4200 if (!sock_flag(sk, SOCK_DEAD)) 4201 sk->sk_error_report(sk); 4202 return 0; 4203 } 4204 EXPORT_SYMBOL(sock_queue_err_skb); 4205 4206 static bool is_icmp_err_skb(const struct sk_buff *skb) 4207 { 4208 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4209 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4210 } 4211 4212 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4213 { 4214 struct sk_buff_head *q = &sk->sk_error_queue; 4215 struct sk_buff *skb, *skb_next = NULL; 4216 bool icmp_next = false; 4217 unsigned long flags; 4218 4219 spin_lock_irqsave(&q->lock, flags); 4220 skb = __skb_dequeue(q); 4221 if (skb && (skb_next = skb_peek(q))) { 4222 icmp_next = is_icmp_err_skb(skb_next); 4223 if (icmp_next) 4224 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin; 4225 } 4226 spin_unlock_irqrestore(&q->lock, flags); 4227 4228 if (is_icmp_err_skb(skb) && !icmp_next) 4229 sk->sk_err = 0; 4230 4231 if (skb_next) 4232 sk->sk_error_report(sk); 4233 4234 return skb; 4235 } 4236 EXPORT_SYMBOL(sock_dequeue_err_skb); 4237 4238 /** 4239 * skb_clone_sk - create clone of skb, and take reference to socket 4240 * @skb: the skb to clone 4241 * 4242 * This function creates a clone of a buffer that holds a reference on 4243 * sk_refcnt. Buffers created via this function are meant to be 4244 * returned using sock_queue_err_skb, or free via kfree_skb. 4245 * 4246 * When passing buffers allocated with this function to sock_queue_err_skb 4247 * it is necessary to wrap the call with sock_hold/sock_put in order to 4248 * prevent the socket from being released prior to being enqueued on 4249 * the sk_error_queue. 4250 */ 4251 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4252 { 4253 struct sock *sk = skb->sk; 4254 struct sk_buff *clone; 4255 4256 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4257 return NULL; 4258 4259 clone = skb_clone(skb, GFP_ATOMIC); 4260 if (!clone) { 4261 sock_put(sk); 4262 return NULL; 4263 } 4264 4265 clone->sk = sk; 4266 clone->destructor = sock_efree; 4267 4268 return clone; 4269 } 4270 EXPORT_SYMBOL(skb_clone_sk); 4271 4272 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4273 struct sock *sk, 4274 int tstype, 4275 bool opt_stats) 4276 { 4277 struct sock_exterr_skb *serr; 4278 int err; 4279 4280 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4281 4282 serr = SKB_EXT_ERR(skb); 4283 memset(serr, 0, sizeof(*serr)); 4284 serr->ee.ee_errno = ENOMSG; 4285 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4286 serr->ee.ee_info = tstype; 4287 serr->opt_stats = opt_stats; 4288 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4289 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4290 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4291 if (sk->sk_protocol == IPPROTO_TCP && 4292 sk->sk_type == SOCK_STREAM) 4293 serr->ee.ee_data -= sk->sk_tskey; 4294 } 4295 4296 err = sock_queue_err_skb(sk, skb); 4297 4298 if (err) 4299 kfree_skb(skb); 4300 } 4301 4302 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4303 { 4304 bool ret; 4305 4306 if (likely(sysctl_tstamp_allow_data || tsonly)) 4307 return true; 4308 4309 read_lock_bh(&sk->sk_callback_lock); 4310 ret = sk->sk_socket && sk->sk_socket->file && 4311 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4312 read_unlock_bh(&sk->sk_callback_lock); 4313 return ret; 4314 } 4315 4316 void skb_complete_tx_timestamp(struct sk_buff *skb, 4317 struct skb_shared_hwtstamps *hwtstamps) 4318 { 4319 struct sock *sk = skb->sk; 4320 4321 if (!skb_may_tx_timestamp(sk, false)) 4322 goto err; 4323 4324 /* Take a reference to prevent skb_orphan() from freeing the socket, 4325 * but only if the socket refcount is not zero. 4326 */ 4327 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4328 *skb_hwtstamps(skb) = *hwtstamps; 4329 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4330 sock_put(sk); 4331 return; 4332 } 4333 4334 err: 4335 kfree_skb(skb); 4336 } 4337 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4338 4339 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4340 struct skb_shared_hwtstamps *hwtstamps, 4341 struct sock *sk, int tstype) 4342 { 4343 struct sk_buff *skb; 4344 bool tsonly, opt_stats = false; 4345 4346 if (!sk) 4347 return; 4348 4349 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4350 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4351 return; 4352 4353 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4354 if (!skb_may_tx_timestamp(sk, tsonly)) 4355 return; 4356 4357 if (tsonly) { 4358 #ifdef CONFIG_INET 4359 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4360 sk->sk_protocol == IPPROTO_TCP && 4361 sk->sk_type == SOCK_STREAM) { 4362 skb = tcp_get_timestamping_opt_stats(sk); 4363 opt_stats = true; 4364 } else 4365 #endif 4366 skb = alloc_skb(0, GFP_ATOMIC); 4367 } else { 4368 skb = skb_clone(orig_skb, GFP_ATOMIC); 4369 } 4370 if (!skb) 4371 return; 4372 4373 if (tsonly) { 4374 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4375 SKBTX_ANY_TSTAMP; 4376 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4377 } 4378 4379 if (hwtstamps) 4380 *skb_hwtstamps(skb) = *hwtstamps; 4381 else 4382 skb->tstamp = ktime_get_real(); 4383 4384 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4385 } 4386 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4387 4388 void skb_tstamp_tx(struct sk_buff *orig_skb, 4389 struct skb_shared_hwtstamps *hwtstamps) 4390 { 4391 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4392 SCM_TSTAMP_SND); 4393 } 4394 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4395 4396 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4397 { 4398 struct sock *sk = skb->sk; 4399 struct sock_exterr_skb *serr; 4400 int err = 1; 4401 4402 skb->wifi_acked_valid = 1; 4403 skb->wifi_acked = acked; 4404 4405 serr = SKB_EXT_ERR(skb); 4406 memset(serr, 0, sizeof(*serr)); 4407 serr->ee.ee_errno = ENOMSG; 4408 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4409 4410 /* Take a reference to prevent skb_orphan() from freeing the socket, 4411 * but only if the socket refcount is not zero. 4412 */ 4413 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4414 err = sock_queue_err_skb(sk, skb); 4415 sock_put(sk); 4416 } 4417 if (err) 4418 kfree_skb(skb); 4419 } 4420 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4421 4422 /** 4423 * skb_partial_csum_set - set up and verify partial csum values for packet 4424 * @skb: the skb to set 4425 * @start: the number of bytes after skb->data to start checksumming. 4426 * @off: the offset from start to place the checksum. 4427 * 4428 * For untrusted partially-checksummed packets, we need to make sure the values 4429 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4430 * 4431 * This function checks and sets those values and skb->ip_summed: if this 4432 * returns false you should drop the packet. 4433 */ 4434 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4435 { 4436 if (unlikely(start > skb_headlen(skb)) || 4437 unlikely((int)start + off > skb_headlen(skb) - 2)) { 4438 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 4439 start, off, skb_headlen(skb)); 4440 return false; 4441 } 4442 skb->ip_summed = CHECKSUM_PARTIAL; 4443 skb->csum_start = skb_headroom(skb) + start; 4444 skb->csum_offset = off; 4445 skb_set_transport_header(skb, start); 4446 return true; 4447 } 4448 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4449 4450 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4451 unsigned int max) 4452 { 4453 if (skb_headlen(skb) >= len) 4454 return 0; 4455 4456 /* If we need to pullup then pullup to the max, so we 4457 * won't need to do it again. 4458 */ 4459 if (max > skb->len) 4460 max = skb->len; 4461 4462 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4463 return -ENOMEM; 4464 4465 if (skb_headlen(skb) < len) 4466 return -EPROTO; 4467 4468 return 0; 4469 } 4470 4471 #define MAX_TCP_HDR_LEN (15 * 4) 4472 4473 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4474 typeof(IPPROTO_IP) proto, 4475 unsigned int off) 4476 { 4477 switch (proto) { 4478 int err; 4479 4480 case IPPROTO_TCP: 4481 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4482 off + MAX_TCP_HDR_LEN); 4483 if (!err && !skb_partial_csum_set(skb, off, 4484 offsetof(struct tcphdr, 4485 check))) 4486 err = -EPROTO; 4487 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4488 4489 case IPPROTO_UDP: 4490 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4491 off + sizeof(struct udphdr)); 4492 if (!err && !skb_partial_csum_set(skb, off, 4493 offsetof(struct udphdr, 4494 check))) 4495 err = -EPROTO; 4496 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4497 } 4498 4499 return ERR_PTR(-EPROTO); 4500 } 4501 4502 /* This value should be large enough to cover a tagged ethernet header plus 4503 * maximally sized IP and TCP or UDP headers. 4504 */ 4505 #define MAX_IP_HDR_LEN 128 4506 4507 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4508 { 4509 unsigned int off; 4510 bool fragment; 4511 __sum16 *csum; 4512 int err; 4513 4514 fragment = false; 4515 4516 err = skb_maybe_pull_tail(skb, 4517 sizeof(struct iphdr), 4518 MAX_IP_HDR_LEN); 4519 if (err < 0) 4520 goto out; 4521 4522 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 4523 fragment = true; 4524 4525 off = ip_hdrlen(skb); 4526 4527 err = -EPROTO; 4528 4529 if (fragment) 4530 goto out; 4531 4532 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4533 if (IS_ERR(csum)) 4534 return PTR_ERR(csum); 4535 4536 if (recalculate) 4537 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4538 ip_hdr(skb)->daddr, 4539 skb->len - off, 4540 ip_hdr(skb)->protocol, 0); 4541 err = 0; 4542 4543 out: 4544 return err; 4545 } 4546 4547 /* This value should be large enough to cover a tagged ethernet header plus 4548 * an IPv6 header, all options, and a maximal TCP or UDP header. 4549 */ 4550 #define MAX_IPV6_HDR_LEN 256 4551 4552 #define OPT_HDR(type, skb, off) \ 4553 (type *)(skb_network_header(skb) + (off)) 4554 4555 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4556 { 4557 int err; 4558 u8 nexthdr; 4559 unsigned int off; 4560 unsigned int len; 4561 bool fragment; 4562 bool done; 4563 __sum16 *csum; 4564 4565 fragment = false; 4566 done = false; 4567 4568 off = sizeof(struct ipv6hdr); 4569 4570 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4571 if (err < 0) 4572 goto out; 4573 4574 nexthdr = ipv6_hdr(skb)->nexthdr; 4575 4576 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4577 while (off <= len && !done) { 4578 switch (nexthdr) { 4579 case IPPROTO_DSTOPTS: 4580 case IPPROTO_HOPOPTS: 4581 case IPPROTO_ROUTING: { 4582 struct ipv6_opt_hdr *hp; 4583 4584 err = skb_maybe_pull_tail(skb, 4585 off + 4586 sizeof(struct ipv6_opt_hdr), 4587 MAX_IPV6_HDR_LEN); 4588 if (err < 0) 4589 goto out; 4590 4591 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4592 nexthdr = hp->nexthdr; 4593 off += ipv6_optlen(hp); 4594 break; 4595 } 4596 case IPPROTO_AH: { 4597 struct ip_auth_hdr *hp; 4598 4599 err = skb_maybe_pull_tail(skb, 4600 off + 4601 sizeof(struct ip_auth_hdr), 4602 MAX_IPV6_HDR_LEN); 4603 if (err < 0) 4604 goto out; 4605 4606 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4607 nexthdr = hp->nexthdr; 4608 off += ipv6_authlen(hp); 4609 break; 4610 } 4611 case IPPROTO_FRAGMENT: { 4612 struct frag_hdr *hp; 4613 4614 err = skb_maybe_pull_tail(skb, 4615 off + 4616 sizeof(struct frag_hdr), 4617 MAX_IPV6_HDR_LEN); 4618 if (err < 0) 4619 goto out; 4620 4621 hp = OPT_HDR(struct frag_hdr, skb, off); 4622 4623 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4624 fragment = true; 4625 4626 nexthdr = hp->nexthdr; 4627 off += sizeof(struct frag_hdr); 4628 break; 4629 } 4630 default: 4631 done = true; 4632 break; 4633 } 4634 } 4635 4636 err = -EPROTO; 4637 4638 if (!done || fragment) 4639 goto out; 4640 4641 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4642 if (IS_ERR(csum)) 4643 return PTR_ERR(csum); 4644 4645 if (recalculate) 4646 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4647 &ipv6_hdr(skb)->daddr, 4648 skb->len - off, nexthdr, 0); 4649 err = 0; 4650 4651 out: 4652 return err; 4653 } 4654 4655 /** 4656 * skb_checksum_setup - set up partial checksum offset 4657 * @skb: the skb to set up 4658 * @recalculate: if true the pseudo-header checksum will be recalculated 4659 */ 4660 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 4661 { 4662 int err; 4663 4664 switch (skb->protocol) { 4665 case htons(ETH_P_IP): 4666 err = skb_checksum_setup_ipv4(skb, recalculate); 4667 break; 4668 4669 case htons(ETH_P_IPV6): 4670 err = skb_checksum_setup_ipv6(skb, recalculate); 4671 break; 4672 4673 default: 4674 err = -EPROTO; 4675 break; 4676 } 4677 4678 return err; 4679 } 4680 EXPORT_SYMBOL(skb_checksum_setup); 4681 4682 /** 4683 * skb_checksum_maybe_trim - maybe trims the given skb 4684 * @skb: the skb to check 4685 * @transport_len: the data length beyond the network header 4686 * 4687 * Checks whether the given skb has data beyond the given transport length. 4688 * If so, returns a cloned skb trimmed to this transport length. 4689 * Otherwise returns the provided skb. Returns NULL in error cases 4690 * (e.g. transport_len exceeds skb length or out-of-memory). 4691 * 4692 * Caller needs to set the skb transport header and free any returned skb if it 4693 * differs from the provided skb. 4694 */ 4695 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 4696 unsigned int transport_len) 4697 { 4698 struct sk_buff *skb_chk; 4699 unsigned int len = skb_transport_offset(skb) + transport_len; 4700 int ret; 4701 4702 if (skb->len < len) 4703 return NULL; 4704 else if (skb->len == len) 4705 return skb; 4706 4707 skb_chk = skb_clone(skb, GFP_ATOMIC); 4708 if (!skb_chk) 4709 return NULL; 4710 4711 ret = pskb_trim_rcsum(skb_chk, len); 4712 if (ret) { 4713 kfree_skb(skb_chk); 4714 return NULL; 4715 } 4716 4717 return skb_chk; 4718 } 4719 4720 /** 4721 * skb_checksum_trimmed - validate checksum of an skb 4722 * @skb: the skb to check 4723 * @transport_len: the data length beyond the network header 4724 * @skb_chkf: checksum function to use 4725 * 4726 * Applies the given checksum function skb_chkf to the provided skb. 4727 * Returns a checked and maybe trimmed skb. Returns NULL on error. 4728 * 4729 * If the skb has data beyond the given transport length, then a 4730 * trimmed & cloned skb is checked and returned. 4731 * 4732 * Caller needs to set the skb transport header and free any returned skb if it 4733 * differs from the provided skb. 4734 */ 4735 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4736 unsigned int transport_len, 4737 __sum16(*skb_chkf)(struct sk_buff *skb)) 4738 { 4739 struct sk_buff *skb_chk; 4740 unsigned int offset = skb_transport_offset(skb); 4741 __sum16 ret; 4742 4743 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 4744 if (!skb_chk) 4745 goto err; 4746 4747 if (!pskb_may_pull(skb_chk, offset)) 4748 goto err; 4749 4750 skb_pull_rcsum(skb_chk, offset); 4751 ret = skb_chkf(skb_chk); 4752 skb_push_rcsum(skb_chk, offset); 4753 4754 if (ret) 4755 goto err; 4756 4757 return skb_chk; 4758 4759 err: 4760 if (skb_chk && skb_chk != skb) 4761 kfree_skb(skb_chk); 4762 4763 return NULL; 4764 4765 } 4766 EXPORT_SYMBOL(skb_checksum_trimmed); 4767 4768 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 4769 { 4770 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 4771 skb->dev->name); 4772 } 4773 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 4774 4775 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 4776 { 4777 if (head_stolen) { 4778 skb_release_head_state(skb); 4779 kmem_cache_free(skbuff_head_cache, skb); 4780 } else { 4781 __kfree_skb(skb); 4782 } 4783 } 4784 EXPORT_SYMBOL(kfree_skb_partial); 4785 4786 /** 4787 * skb_try_coalesce - try to merge skb to prior one 4788 * @to: prior buffer 4789 * @from: buffer to add 4790 * @fragstolen: pointer to boolean 4791 * @delta_truesize: how much more was allocated than was requested 4792 */ 4793 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 4794 bool *fragstolen, int *delta_truesize) 4795 { 4796 struct skb_shared_info *to_shinfo, *from_shinfo; 4797 int i, delta, len = from->len; 4798 4799 *fragstolen = false; 4800 4801 if (skb_cloned(to)) 4802 return false; 4803 4804 if (len <= skb_tailroom(to)) { 4805 if (len) 4806 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 4807 *delta_truesize = 0; 4808 return true; 4809 } 4810 4811 to_shinfo = skb_shinfo(to); 4812 from_shinfo = skb_shinfo(from); 4813 if (to_shinfo->frag_list || from_shinfo->frag_list) 4814 return false; 4815 if (skb_zcopy(to) || skb_zcopy(from)) 4816 return false; 4817 4818 if (skb_headlen(from) != 0) { 4819 struct page *page; 4820 unsigned int offset; 4821 4822 if (to_shinfo->nr_frags + 4823 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 4824 return false; 4825 4826 if (skb_head_is_locked(from)) 4827 return false; 4828 4829 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4830 4831 page = virt_to_head_page(from->head); 4832 offset = from->data - (unsigned char *)page_address(page); 4833 4834 skb_fill_page_desc(to, to_shinfo->nr_frags, 4835 page, offset, skb_headlen(from)); 4836 *fragstolen = true; 4837 } else { 4838 if (to_shinfo->nr_frags + 4839 from_shinfo->nr_frags > MAX_SKB_FRAGS) 4840 return false; 4841 4842 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 4843 } 4844 4845 WARN_ON_ONCE(delta < len); 4846 4847 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 4848 from_shinfo->frags, 4849 from_shinfo->nr_frags * sizeof(skb_frag_t)); 4850 to_shinfo->nr_frags += from_shinfo->nr_frags; 4851 4852 if (!skb_cloned(from)) 4853 from_shinfo->nr_frags = 0; 4854 4855 /* if the skb is not cloned this does nothing 4856 * since we set nr_frags to 0. 4857 */ 4858 for (i = 0; i < from_shinfo->nr_frags; i++) 4859 __skb_frag_ref(&from_shinfo->frags[i]); 4860 4861 to->truesize += delta; 4862 to->len += len; 4863 to->data_len += len; 4864 4865 *delta_truesize = delta; 4866 return true; 4867 } 4868 EXPORT_SYMBOL(skb_try_coalesce); 4869 4870 /** 4871 * skb_scrub_packet - scrub an skb 4872 * 4873 * @skb: buffer to clean 4874 * @xnet: packet is crossing netns 4875 * 4876 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 4877 * into/from a tunnel. Some information have to be cleared during these 4878 * operations. 4879 * skb_scrub_packet can also be used to clean a skb before injecting it in 4880 * another namespace (@xnet == true). We have to clear all information in the 4881 * skb that could impact namespace isolation. 4882 */ 4883 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 4884 { 4885 skb->tstamp = 0; 4886 skb->pkt_type = PACKET_HOST; 4887 skb->skb_iif = 0; 4888 skb->ignore_df = 0; 4889 skb_dst_drop(skb); 4890 secpath_reset(skb); 4891 nf_reset(skb); 4892 nf_reset_trace(skb); 4893 4894 if (!xnet) 4895 return; 4896 4897 ipvs_reset(skb); 4898 skb_orphan(skb); 4899 skb->mark = 0; 4900 } 4901 EXPORT_SYMBOL_GPL(skb_scrub_packet); 4902 4903 /** 4904 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 4905 * 4906 * @skb: GSO skb 4907 * 4908 * skb_gso_transport_seglen is used to determine the real size of the 4909 * individual segments, including Layer4 headers (TCP/UDP). 4910 * 4911 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 4912 */ 4913 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 4914 { 4915 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4916 unsigned int thlen = 0; 4917 4918 if (skb->encapsulation) { 4919 thlen = skb_inner_transport_header(skb) - 4920 skb_transport_header(skb); 4921 4922 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 4923 thlen += inner_tcp_hdrlen(skb); 4924 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4925 thlen = tcp_hdrlen(skb); 4926 } else if (unlikely(skb_is_gso_sctp(skb))) { 4927 thlen = sizeof(struct sctphdr); 4928 } 4929 /* UFO sets gso_size to the size of the fragmentation 4930 * payload, i.e. the size of the L4 (UDP) header is already 4931 * accounted for. 4932 */ 4933 return thlen + shinfo->gso_size; 4934 } 4935 4936 /** 4937 * skb_gso_network_seglen - Return length of individual segments of a gso packet 4938 * 4939 * @skb: GSO skb 4940 * 4941 * skb_gso_network_seglen is used to determine the real size of the 4942 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 4943 * 4944 * The MAC/L2 header is not accounted for. 4945 */ 4946 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 4947 { 4948 unsigned int hdr_len = skb_transport_header(skb) - 4949 skb_network_header(skb); 4950 4951 return hdr_len + skb_gso_transport_seglen(skb); 4952 } 4953 4954 /** 4955 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 4956 * 4957 * @skb: GSO skb 4958 * 4959 * skb_gso_mac_seglen is used to determine the real size of the 4960 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 4961 * headers (TCP/UDP). 4962 */ 4963 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 4964 { 4965 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 4966 4967 return hdr_len + skb_gso_transport_seglen(skb); 4968 } 4969 4970 /** 4971 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 4972 * 4973 * There are a couple of instances where we have a GSO skb, and we 4974 * want to determine what size it would be after it is segmented. 4975 * 4976 * We might want to check: 4977 * - L3+L4+payload size (e.g. IP forwarding) 4978 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 4979 * 4980 * This is a helper to do that correctly considering GSO_BY_FRAGS. 4981 * 4982 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 4983 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 4984 * 4985 * @max_len: The maximum permissible length. 4986 * 4987 * Returns true if the segmented length <= max length. 4988 */ 4989 static inline bool skb_gso_size_check(const struct sk_buff *skb, 4990 unsigned int seg_len, 4991 unsigned int max_len) { 4992 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4993 const struct sk_buff *iter; 4994 4995 if (shinfo->gso_size != GSO_BY_FRAGS) 4996 return seg_len <= max_len; 4997 4998 /* Undo this so we can re-use header sizes */ 4999 seg_len -= GSO_BY_FRAGS; 5000 5001 skb_walk_frags(skb, iter) { 5002 if (seg_len + skb_headlen(iter) > max_len) 5003 return false; 5004 } 5005 5006 return true; 5007 } 5008 5009 /** 5010 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5011 * 5012 * @skb: GSO skb 5013 * @mtu: MTU to validate against 5014 * 5015 * skb_gso_validate_network_len validates if a given skb will fit a 5016 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5017 * payload. 5018 */ 5019 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5020 { 5021 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5022 } 5023 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5024 5025 /** 5026 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5027 * 5028 * @skb: GSO skb 5029 * @len: length to validate against 5030 * 5031 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5032 * length once split, including L2, L3 and L4 headers and the payload. 5033 */ 5034 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5035 { 5036 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5037 } 5038 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5039 5040 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5041 { 5042 int mac_len; 5043 5044 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5045 kfree_skb(skb); 5046 return NULL; 5047 } 5048 5049 mac_len = skb->data - skb_mac_header(skb); 5050 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5051 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5052 mac_len - VLAN_HLEN - ETH_TLEN); 5053 } 5054 skb->mac_header += VLAN_HLEN; 5055 return skb; 5056 } 5057 5058 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5059 { 5060 struct vlan_hdr *vhdr; 5061 u16 vlan_tci; 5062 5063 if (unlikely(skb_vlan_tag_present(skb))) { 5064 /* vlan_tci is already set-up so leave this for another time */ 5065 return skb; 5066 } 5067 5068 skb = skb_share_check(skb, GFP_ATOMIC); 5069 if (unlikely(!skb)) 5070 goto err_free; 5071 5072 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 5073 goto err_free; 5074 5075 vhdr = (struct vlan_hdr *)skb->data; 5076 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5077 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5078 5079 skb_pull_rcsum(skb, VLAN_HLEN); 5080 vlan_set_encap_proto(skb, vhdr); 5081 5082 skb = skb_reorder_vlan_header(skb); 5083 if (unlikely(!skb)) 5084 goto err_free; 5085 5086 skb_reset_network_header(skb); 5087 skb_reset_transport_header(skb); 5088 skb_reset_mac_len(skb); 5089 5090 return skb; 5091 5092 err_free: 5093 kfree_skb(skb); 5094 return NULL; 5095 } 5096 EXPORT_SYMBOL(skb_vlan_untag); 5097 5098 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5099 { 5100 if (!pskb_may_pull(skb, write_len)) 5101 return -ENOMEM; 5102 5103 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5104 return 0; 5105 5106 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5107 } 5108 EXPORT_SYMBOL(skb_ensure_writable); 5109 5110 /* remove VLAN header from packet and update csum accordingly. 5111 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5112 */ 5113 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5114 { 5115 struct vlan_hdr *vhdr; 5116 int offset = skb->data - skb_mac_header(skb); 5117 int err; 5118 5119 if (WARN_ONCE(offset, 5120 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5121 offset)) { 5122 return -EINVAL; 5123 } 5124 5125 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5126 if (unlikely(err)) 5127 return err; 5128 5129 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5130 5131 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5132 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5133 5134 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5135 __skb_pull(skb, VLAN_HLEN); 5136 5137 vlan_set_encap_proto(skb, vhdr); 5138 skb->mac_header += VLAN_HLEN; 5139 5140 if (skb_network_offset(skb) < ETH_HLEN) 5141 skb_set_network_header(skb, ETH_HLEN); 5142 5143 skb_reset_mac_len(skb); 5144 5145 return err; 5146 } 5147 EXPORT_SYMBOL(__skb_vlan_pop); 5148 5149 /* Pop a vlan tag either from hwaccel or from payload. 5150 * Expects skb->data at mac header. 5151 */ 5152 int skb_vlan_pop(struct sk_buff *skb) 5153 { 5154 u16 vlan_tci; 5155 __be16 vlan_proto; 5156 int err; 5157 5158 if (likely(skb_vlan_tag_present(skb))) { 5159 skb->vlan_tci = 0; 5160 } else { 5161 if (unlikely(!eth_type_vlan(skb->protocol))) 5162 return 0; 5163 5164 err = __skb_vlan_pop(skb, &vlan_tci); 5165 if (err) 5166 return err; 5167 } 5168 /* move next vlan tag to hw accel tag */ 5169 if (likely(!eth_type_vlan(skb->protocol))) 5170 return 0; 5171 5172 vlan_proto = skb->protocol; 5173 err = __skb_vlan_pop(skb, &vlan_tci); 5174 if (unlikely(err)) 5175 return err; 5176 5177 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5178 return 0; 5179 } 5180 EXPORT_SYMBOL(skb_vlan_pop); 5181 5182 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5183 * Expects skb->data at mac header. 5184 */ 5185 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5186 { 5187 if (skb_vlan_tag_present(skb)) { 5188 int offset = skb->data - skb_mac_header(skb); 5189 int err; 5190 5191 if (WARN_ONCE(offset, 5192 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5193 offset)) { 5194 return -EINVAL; 5195 } 5196 5197 err = __vlan_insert_tag(skb, skb->vlan_proto, 5198 skb_vlan_tag_get(skb)); 5199 if (err) 5200 return err; 5201 5202 skb->protocol = skb->vlan_proto; 5203 skb->mac_len += VLAN_HLEN; 5204 5205 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5206 } 5207 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5208 return 0; 5209 } 5210 EXPORT_SYMBOL(skb_vlan_push); 5211 5212 /** 5213 * alloc_skb_with_frags - allocate skb with page frags 5214 * 5215 * @header_len: size of linear part 5216 * @data_len: needed length in frags 5217 * @max_page_order: max page order desired. 5218 * @errcode: pointer to error code if any 5219 * @gfp_mask: allocation mask 5220 * 5221 * This can be used to allocate a paged skb, given a maximal order for frags. 5222 */ 5223 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5224 unsigned long data_len, 5225 int max_page_order, 5226 int *errcode, 5227 gfp_t gfp_mask) 5228 { 5229 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5230 unsigned long chunk; 5231 struct sk_buff *skb; 5232 struct page *page; 5233 gfp_t gfp_head; 5234 int i; 5235 5236 *errcode = -EMSGSIZE; 5237 /* Note this test could be relaxed, if we succeed to allocate 5238 * high order pages... 5239 */ 5240 if (npages > MAX_SKB_FRAGS) 5241 return NULL; 5242 5243 gfp_head = gfp_mask; 5244 if (gfp_head & __GFP_DIRECT_RECLAIM) 5245 gfp_head |= __GFP_RETRY_MAYFAIL; 5246 5247 *errcode = -ENOBUFS; 5248 skb = alloc_skb(header_len, gfp_head); 5249 if (!skb) 5250 return NULL; 5251 5252 skb->truesize += npages << PAGE_SHIFT; 5253 5254 for (i = 0; npages > 0; i++) { 5255 int order = max_page_order; 5256 5257 while (order) { 5258 if (npages >= 1 << order) { 5259 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5260 __GFP_COMP | 5261 __GFP_NOWARN | 5262 __GFP_NORETRY, 5263 order); 5264 if (page) 5265 goto fill_page; 5266 /* Do not retry other high order allocations */ 5267 order = 1; 5268 max_page_order = 0; 5269 } 5270 order--; 5271 } 5272 page = alloc_page(gfp_mask); 5273 if (!page) 5274 goto failure; 5275 fill_page: 5276 chunk = min_t(unsigned long, data_len, 5277 PAGE_SIZE << order); 5278 skb_fill_page_desc(skb, i, page, 0, chunk); 5279 data_len -= chunk; 5280 npages -= 1 << order; 5281 } 5282 return skb; 5283 5284 failure: 5285 kfree_skb(skb); 5286 return NULL; 5287 } 5288 EXPORT_SYMBOL(alloc_skb_with_frags); 5289 5290 /* carve out the first off bytes from skb when off < headlen */ 5291 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5292 const int headlen, gfp_t gfp_mask) 5293 { 5294 int i; 5295 int size = skb_end_offset(skb); 5296 int new_hlen = headlen - off; 5297 u8 *data; 5298 5299 size = SKB_DATA_ALIGN(size); 5300 5301 if (skb_pfmemalloc(skb)) 5302 gfp_mask |= __GFP_MEMALLOC; 5303 data = kmalloc_reserve(size + 5304 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5305 gfp_mask, NUMA_NO_NODE, NULL); 5306 if (!data) 5307 return -ENOMEM; 5308 5309 size = SKB_WITH_OVERHEAD(ksize(data)); 5310 5311 /* Copy real data, and all frags */ 5312 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5313 skb->len -= off; 5314 5315 memcpy((struct skb_shared_info *)(data + size), 5316 skb_shinfo(skb), 5317 offsetof(struct skb_shared_info, 5318 frags[skb_shinfo(skb)->nr_frags])); 5319 if (skb_cloned(skb)) { 5320 /* drop the old head gracefully */ 5321 if (skb_orphan_frags(skb, gfp_mask)) { 5322 kfree(data); 5323 return -ENOMEM; 5324 } 5325 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5326 skb_frag_ref(skb, i); 5327 if (skb_has_frag_list(skb)) 5328 skb_clone_fraglist(skb); 5329 skb_release_data(skb); 5330 } else { 5331 /* we can reuse existing recount- all we did was 5332 * relocate values 5333 */ 5334 skb_free_head(skb); 5335 } 5336 5337 skb->head = data; 5338 skb->data = data; 5339 skb->head_frag = 0; 5340 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5341 skb->end = size; 5342 #else 5343 skb->end = skb->head + size; 5344 #endif 5345 skb_set_tail_pointer(skb, skb_headlen(skb)); 5346 skb_headers_offset_update(skb, 0); 5347 skb->cloned = 0; 5348 skb->hdr_len = 0; 5349 skb->nohdr = 0; 5350 atomic_set(&skb_shinfo(skb)->dataref, 1); 5351 5352 return 0; 5353 } 5354 5355 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 5356 5357 /* carve out the first eat bytes from skb's frag_list. May recurse into 5358 * pskb_carve() 5359 */ 5360 static int pskb_carve_frag_list(struct sk_buff *skb, 5361 struct skb_shared_info *shinfo, int eat, 5362 gfp_t gfp_mask) 5363 { 5364 struct sk_buff *list = shinfo->frag_list; 5365 struct sk_buff *clone = NULL; 5366 struct sk_buff *insp = NULL; 5367 5368 do { 5369 if (!list) { 5370 pr_err("Not enough bytes to eat. Want %d\n", eat); 5371 return -EFAULT; 5372 } 5373 if (list->len <= eat) { 5374 /* Eaten as whole. */ 5375 eat -= list->len; 5376 list = list->next; 5377 insp = list; 5378 } else { 5379 /* Eaten partially. */ 5380 if (skb_shared(list)) { 5381 clone = skb_clone(list, gfp_mask); 5382 if (!clone) 5383 return -ENOMEM; 5384 insp = list->next; 5385 list = clone; 5386 } else { 5387 /* This may be pulled without problems. */ 5388 insp = list; 5389 } 5390 if (pskb_carve(list, eat, gfp_mask) < 0) { 5391 kfree_skb(clone); 5392 return -ENOMEM; 5393 } 5394 break; 5395 } 5396 } while (eat); 5397 5398 /* Free pulled out fragments. */ 5399 while ((list = shinfo->frag_list) != insp) { 5400 shinfo->frag_list = list->next; 5401 kfree_skb(list); 5402 } 5403 /* And insert new clone at head. */ 5404 if (clone) { 5405 clone->next = list; 5406 shinfo->frag_list = clone; 5407 } 5408 return 0; 5409 } 5410 5411 /* carve off first len bytes from skb. Split line (off) is in the 5412 * non-linear part of skb 5413 */ 5414 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 5415 int pos, gfp_t gfp_mask) 5416 { 5417 int i, k = 0; 5418 int size = skb_end_offset(skb); 5419 u8 *data; 5420 const int nfrags = skb_shinfo(skb)->nr_frags; 5421 struct skb_shared_info *shinfo; 5422 5423 size = SKB_DATA_ALIGN(size); 5424 5425 if (skb_pfmemalloc(skb)) 5426 gfp_mask |= __GFP_MEMALLOC; 5427 data = kmalloc_reserve(size + 5428 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5429 gfp_mask, NUMA_NO_NODE, NULL); 5430 if (!data) 5431 return -ENOMEM; 5432 5433 size = SKB_WITH_OVERHEAD(ksize(data)); 5434 5435 memcpy((struct skb_shared_info *)(data + size), 5436 skb_shinfo(skb), offsetof(struct skb_shared_info, 5437 frags[skb_shinfo(skb)->nr_frags])); 5438 if (skb_orphan_frags(skb, gfp_mask)) { 5439 kfree(data); 5440 return -ENOMEM; 5441 } 5442 shinfo = (struct skb_shared_info *)(data + size); 5443 for (i = 0; i < nfrags; i++) { 5444 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 5445 5446 if (pos + fsize > off) { 5447 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 5448 5449 if (pos < off) { 5450 /* Split frag. 5451 * We have two variants in this case: 5452 * 1. Move all the frag to the second 5453 * part, if it is possible. F.e. 5454 * this approach is mandatory for TUX, 5455 * where splitting is expensive. 5456 * 2. Split is accurately. We make this. 5457 */ 5458 shinfo->frags[0].page_offset += off - pos; 5459 skb_frag_size_sub(&shinfo->frags[0], off - pos); 5460 } 5461 skb_frag_ref(skb, i); 5462 k++; 5463 } 5464 pos += fsize; 5465 } 5466 shinfo->nr_frags = k; 5467 if (skb_has_frag_list(skb)) 5468 skb_clone_fraglist(skb); 5469 5470 if (k == 0) { 5471 /* split line is in frag list */ 5472 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask); 5473 } 5474 skb_release_data(skb); 5475 5476 skb->head = data; 5477 skb->head_frag = 0; 5478 skb->data = data; 5479 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5480 skb->end = size; 5481 #else 5482 skb->end = skb->head + size; 5483 #endif 5484 skb_reset_tail_pointer(skb); 5485 skb_headers_offset_update(skb, 0); 5486 skb->cloned = 0; 5487 skb->hdr_len = 0; 5488 skb->nohdr = 0; 5489 skb->len -= off; 5490 skb->data_len = skb->len; 5491 atomic_set(&skb_shinfo(skb)->dataref, 1); 5492 return 0; 5493 } 5494 5495 /* remove len bytes from the beginning of the skb */ 5496 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 5497 { 5498 int headlen = skb_headlen(skb); 5499 5500 if (len < headlen) 5501 return pskb_carve_inside_header(skb, len, headlen, gfp); 5502 else 5503 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 5504 } 5505 5506 /* Extract to_copy bytes starting at off from skb, and return this in 5507 * a new skb 5508 */ 5509 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 5510 int to_copy, gfp_t gfp) 5511 { 5512 struct sk_buff *clone = skb_clone(skb, gfp); 5513 5514 if (!clone) 5515 return NULL; 5516 5517 if (pskb_carve(clone, off, gfp) < 0 || 5518 pskb_trim(clone, to_copy)) { 5519 kfree_skb(clone); 5520 return NULL; 5521 } 5522 return clone; 5523 } 5524 EXPORT_SYMBOL(pskb_extract); 5525 5526 /** 5527 * skb_condense - try to get rid of fragments/frag_list if possible 5528 * @skb: buffer 5529 * 5530 * Can be used to save memory before skb is added to a busy queue. 5531 * If packet has bytes in frags and enough tail room in skb->head, 5532 * pull all of them, so that we can free the frags right now and adjust 5533 * truesize. 5534 * Notes: 5535 * We do not reallocate skb->head thus can not fail. 5536 * Caller must re-evaluate skb->truesize if needed. 5537 */ 5538 void skb_condense(struct sk_buff *skb) 5539 { 5540 if (skb->data_len) { 5541 if (skb->data_len > skb->end - skb->tail || 5542 skb_cloned(skb)) 5543 return; 5544 5545 /* Nice, we can free page frag(s) right now */ 5546 __pskb_pull_tail(skb, skb->data_len); 5547 } 5548 /* At this point, skb->truesize might be over estimated, 5549 * because skb had a fragment, and fragments do not tell 5550 * their truesize. 5551 * When we pulled its content into skb->head, fragment 5552 * was freed, but __pskb_pull_tail() could not possibly 5553 * adjust skb->truesize, not knowing the frag truesize. 5554 */ 5555 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5556 } 5557