xref: /linux/net/core/skbuff.c (revision 49a695ba723224875df50e327bd7b0b65dd9a56b)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/tcp.h>
50 #include <linux/udp.h>
51 #include <linux/sctp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 
74 #include <linux/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79 
80 struct kmem_cache *skbuff_head_cache __ro_after_init;
81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83 EXPORT_SYMBOL(sysctl_max_skb_frags);
84 
85 /**
86  *	skb_panic - private function for out-of-line support
87  *	@skb:	buffer
88  *	@sz:	size
89  *	@addr:	address
90  *	@msg:	skb_over_panic or skb_under_panic
91  *
92  *	Out-of-line support for skb_put() and skb_push().
93  *	Called via the wrapper skb_over_panic() or skb_under_panic().
94  *	Keep out of line to prevent kernel bloat.
95  *	__builtin_return_address is not used because it is not always reliable.
96  */
97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 		      const char msg[])
99 {
100 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 		 msg, addr, skb->len, sz, skb->head, skb->data,
102 		 (unsigned long)skb->tail, (unsigned long)skb->end,
103 		 skb->dev ? skb->dev->name : "<NULL>");
104 	BUG();
105 }
106 
107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 	skb_panic(skb, sz, addr, __func__);
110 }
111 
112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
117 /*
118  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119  * the caller if emergency pfmemalloc reserves are being used. If it is and
120  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121  * may be used. Otherwise, the packet data may be discarded until enough
122  * memory is free
123  */
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126 
127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 			       unsigned long ip, bool *pfmemalloc)
129 {
130 	void *obj;
131 	bool ret_pfmemalloc = false;
132 
133 	/*
134 	 * Try a regular allocation, when that fails and we're not entitled
135 	 * to the reserves, fail.
136 	 */
137 	obj = kmalloc_node_track_caller(size,
138 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 					node);
140 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 		goto out;
142 
143 	/* Try again but now we are using pfmemalloc reserves */
144 	ret_pfmemalloc = true;
145 	obj = kmalloc_node_track_caller(size, flags, node);
146 
147 out:
148 	if (pfmemalloc)
149 		*pfmemalloc = ret_pfmemalloc;
150 
151 	return obj;
152 }
153 
154 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
155  *	'private' fields and also do memory statistics to find all the
156  *	[BEEP] leaks.
157  *
158  */
159 
160 /**
161  *	__alloc_skb	-	allocate a network buffer
162  *	@size: size to allocate
163  *	@gfp_mask: allocation mask
164  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
165  *		instead of head cache and allocate a cloned (child) skb.
166  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
167  *		allocations in case the data is required for writeback
168  *	@node: numa node to allocate memory on
169  *
170  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
171  *	tail room of at least size bytes. The object has a reference count
172  *	of one. The return is the buffer. On a failure the return is %NULL.
173  *
174  *	Buffers may only be allocated from interrupts using a @gfp_mask of
175  *	%GFP_ATOMIC.
176  */
177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
178 			    int flags, int node)
179 {
180 	struct kmem_cache *cache;
181 	struct skb_shared_info *shinfo;
182 	struct sk_buff *skb;
183 	u8 *data;
184 	bool pfmemalloc;
185 
186 	cache = (flags & SKB_ALLOC_FCLONE)
187 		? skbuff_fclone_cache : skbuff_head_cache;
188 
189 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
190 		gfp_mask |= __GFP_MEMALLOC;
191 
192 	/* Get the HEAD */
193 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
194 	if (!skb)
195 		goto out;
196 	prefetchw(skb);
197 
198 	/* We do our best to align skb_shared_info on a separate cache
199 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
200 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
201 	 * Both skb->head and skb_shared_info are cache line aligned.
202 	 */
203 	size = SKB_DATA_ALIGN(size);
204 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
205 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
206 	if (!data)
207 		goto nodata;
208 	/* kmalloc(size) might give us more room than requested.
209 	 * Put skb_shared_info exactly at the end of allocated zone,
210 	 * to allow max possible filling before reallocation.
211 	 */
212 	size = SKB_WITH_OVERHEAD(ksize(data));
213 	prefetchw(data + size);
214 
215 	/*
216 	 * Only clear those fields we need to clear, not those that we will
217 	 * actually initialise below. Hence, don't put any more fields after
218 	 * the tail pointer in struct sk_buff!
219 	 */
220 	memset(skb, 0, offsetof(struct sk_buff, tail));
221 	/* Account for allocated memory : skb + skb->head */
222 	skb->truesize = SKB_TRUESIZE(size);
223 	skb->pfmemalloc = pfmemalloc;
224 	refcount_set(&skb->users, 1);
225 	skb->head = data;
226 	skb->data = data;
227 	skb_reset_tail_pointer(skb);
228 	skb->end = skb->tail + size;
229 	skb->mac_header = (typeof(skb->mac_header))~0U;
230 	skb->transport_header = (typeof(skb->transport_header))~0U;
231 
232 	/* make sure we initialize shinfo sequentially */
233 	shinfo = skb_shinfo(skb);
234 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
235 	atomic_set(&shinfo->dataref, 1);
236 
237 	if (flags & SKB_ALLOC_FCLONE) {
238 		struct sk_buff_fclones *fclones;
239 
240 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
241 
242 		skb->fclone = SKB_FCLONE_ORIG;
243 		refcount_set(&fclones->fclone_ref, 1);
244 
245 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
246 	}
247 out:
248 	return skb;
249 nodata:
250 	kmem_cache_free(cache, skb);
251 	skb = NULL;
252 	goto out;
253 }
254 EXPORT_SYMBOL(__alloc_skb);
255 
256 /**
257  * __build_skb - build a network buffer
258  * @data: data buffer provided by caller
259  * @frag_size: size of data, or 0 if head was kmalloced
260  *
261  * Allocate a new &sk_buff. Caller provides space holding head and
262  * skb_shared_info. @data must have been allocated by kmalloc() only if
263  * @frag_size is 0, otherwise data should come from the page allocator
264  *  or vmalloc()
265  * The return is the new skb buffer.
266  * On a failure the return is %NULL, and @data is not freed.
267  * Notes :
268  *  Before IO, driver allocates only data buffer where NIC put incoming frame
269  *  Driver should add room at head (NET_SKB_PAD) and
270  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
271  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
272  *  before giving packet to stack.
273  *  RX rings only contains data buffers, not full skbs.
274  */
275 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
276 {
277 	struct skb_shared_info *shinfo;
278 	struct sk_buff *skb;
279 	unsigned int size = frag_size ? : ksize(data);
280 
281 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
282 	if (!skb)
283 		return NULL;
284 
285 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
286 
287 	memset(skb, 0, offsetof(struct sk_buff, tail));
288 	skb->truesize = SKB_TRUESIZE(size);
289 	refcount_set(&skb->users, 1);
290 	skb->head = data;
291 	skb->data = data;
292 	skb_reset_tail_pointer(skb);
293 	skb->end = skb->tail + size;
294 	skb->mac_header = (typeof(skb->mac_header))~0U;
295 	skb->transport_header = (typeof(skb->transport_header))~0U;
296 
297 	/* make sure we initialize shinfo sequentially */
298 	shinfo = skb_shinfo(skb);
299 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
300 	atomic_set(&shinfo->dataref, 1);
301 
302 	return skb;
303 }
304 
305 /* build_skb() is wrapper over __build_skb(), that specifically
306  * takes care of skb->head and skb->pfmemalloc
307  * This means that if @frag_size is not zero, then @data must be backed
308  * by a page fragment, not kmalloc() or vmalloc()
309  */
310 struct sk_buff *build_skb(void *data, unsigned int frag_size)
311 {
312 	struct sk_buff *skb = __build_skb(data, frag_size);
313 
314 	if (skb && frag_size) {
315 		skb->head_frag = 1;
316 		if (page_is_pfmemalloc(virt_to_head_page(data)))
317 			skb->pfmemalloc = 1;
318 	}
319 	return skb;
320 }
321 EXPORT_SYMBOL(build_skb);
322 
323 #define NAPI_SKB_CACHE_SIZE	64
324 
325 struct napi_alloc_cache {
326 	struct page_frag_cache page;
327 	unsigned int skb_count;
328 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
329 };
330 
331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
333 
334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
335 {
336 	struct page_frag_cache *nc;
337 	unsigned long flags;
338 	void *data;
339 
340 	local_irq_save(flags);
341 	nc = this_cpu_ptr(&netdev_alloc_cache);
342 	data = page_frag_alloc(nc, fragsz, gfp_mask);
343 	local_irq_restore(flags);
344 	return data;
345 }
346 
347 /**
348  * netdev_alloc_frag - allocate a page fragment
349  * @fragsz: fragment size
350  *
351  * Allocates a frag from a page for receive buffer.
352  * Uses GFP_ATOMIC allocations.
353  */
354 void *netdev_alloc_frag(unsigned int fragsz)
355 {
356 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
357 }
358 EXPORT_SYMBOL(netdev_alloc_frag);
359 
360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
361 {
362 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
363 
364 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
365 }
366 
367 void *napi_alloc_frag(unsigned int fragsz)
368 {
369 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
370 }
371 EXPORT_SYMBOL(napi_alloc_frag);
372 
373 /**
374  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
375  *	@dev: network device to receive on
376  *	@len: length to allocate
377  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
378  *
379  *	Allocate a new &sk_buff and assign it a usage count of one. The
380  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
381  *	the headroom they think they need without accounting for the
382  *	built in space. The built in space is used for optimisations.
383  *
384  *	%NULL is returned if there is no free memory.
385  */
386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
387 				   gfp_t gfp_mask)
388 {
389 	struct page_frag_cache *nc;
390 	unsigned long flags;
391 	struct sk_buff *skb;
392 	bool pfmemalloc;
393 	void *data;
394 
395 	len += NET_SKB_PAD;
396 
397 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
398 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
399 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
400 		if (!skb)
401 			goto skb_fail;
402 		goto skb_success;
403 	}
404 
405 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
406 	len = SKB_DATA_ALIGN(len);
407 
408 	if (sk_memalloc_socks())
409 		gfp_mask |= __GFP_MEMALLOC;
410 
411 	local_irq_save(flags);
412 
413 	nc = this_cpu_ptr(&netdev_alloc_cache);
414 	data = page_frag_alloc(nc, len, gfp_mask);
415 	pfmemalloc = nc->pfmemalloc;
416 
417 	local_irq_restore(flags);
418 
419 	if (unlikely(!data))
420 		return NULL;
421 
422 	skb = __build_skb(data, len);
423 	if (unlikely(!skb)) {
424 		skb_free_frag(data);
425 		return NULL;
426 	}
427 
428 	/* use OR instead of assignment to avoid clearing of bits in mask */
429 	if (pfmemalloc)
430 		skb->pfmemalloc = 1;
431 	skb->head_frag = 1;
432 
433 skb_success:
434 	skb_reserve(skb, NET_SKB_PAD);
435 	skb->dev = dev;
436 
437 skb_fail:
438 	return skb;
439 }
440 EXPORT_SYMBOL(__netdev_alloc_skb);
441 
442 /**
443  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
444  *	@napi: napi instance this buffer was allocated for
445  *	@len: length to allocate
446  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
447  *
448  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
449  *	attempt to allocate the head from a special reserved region used
450  *	only for NAPI Rx allocation.  By doing this we can save several
451  *	CPU cycles by avoiding having to disable and re-enable IRQs.
452  *
453  *	%NULL is returned if there is no free memory.
454  */
455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
456 				 gfp_t gfp_mask)
457 {
458 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
459 	struct sk_buff *skb;
460 	void *data;
461 
462 	len += NET_SKB_PAD + NET_IP_ALIGN;
463 
464 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
465 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
466 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
467 		if (!skb)
468 			goto skb_fail;
469 		goto skb_success;
470 	}
471 
472 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
473 	len = SKB_DATA_ALIGN(len);
474 
475 	if (sk_memalloc_socks())
476 		gfp_mask |= __GFP_MEMALLOC;
477 
478 	data = page_frag_alloc(&nc->page, len, gfp_mask);
479 	if (unlikely(!data))
480 		return NULL;
481 
482 	skb = __build_skb(data, len);
483 	if (unlikely(!skb)) {
484 		skb_free_frag(data);
485 		return NULL;
486 	}
487 
488 	/* use OR instead of assignment to avoid clearing of bits in mask */
489 	if (nc->page.pfmemalloc)
490 		skb->pfmemalloc = 1;
491 	skb->head_frag = 1;
492 
493 skb_success:
494 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
495 	skb->dev = napi->dev;
496 
497 skb_fail:
498 	return skb;
499 }
500 EXPORT_SYMBOL(__napi_alloc_skb);
501 
502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
503 		     int size, unsigned int truesize)
504 {
505 	skb_fill_page_desc(skb, i, page, off, size);
506 	skb->len += size;
507 	skb->data_len += size;
508 	skb->truesize += truesize;
509 }
510 EXPORT_SYMBOL(skb_add_rx_frag);
511 
512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
513 			  unsigned int truesize)
514 {
515 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
516 
517 	skb_frag_size_add(frag, size);
518 	skb->len += size;
519 	skb->data_len += size;
520 	skb->truesize += truesize;
521 }
522 EXPORT_SYMBOL(skb_coalesce_rx_frag);
523 
524 static void skb_drop_list(struct sk_buff **listp)
525 {
526 	kfree_skb_list(*listp);
527 	*listp = NULL;
528 }
529 
530 static inline void skb_drop_fraglist(struct sk_buff *skb)
531 {
532 	skb_drop_list(&skb_shinfo(skb)->frag_list);
533 }
534 
535 static void skb_clone_fraglist(struct sk_buff *skb)
536 {
537 	struct sk_buff *list;
538 
539 	skb_walk_frags(skb, list)
540 		skb_get(list);
541 }
542 
543 static void skb_free_head(struct sk_buff *skb)
544 {
545 	unsigned char *head = skb->head;
546 
547 	if (skb->head_frag)
548 		skb_free_frag(head);
549 	else
550 		kfree(head);
551 }
552 
553 static void skb_release_data(struct sk_buff *skb)
554 {
555 	struct skb_shared_info *shinfo = skb_shinfo(skb);
556 	int i;
557 
558 	if (skb->cloned &&
559 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
560 			      &shinfo->dataref))
561 		return;
562 
563 	for (i = 0; i < shinfo->nr_frags; i++)
564 		__skb_frag_unref(&shinfo->frags[i]);
565 
566 	if (shinfo->frag_list)
567 		kfree_skb_list(shinfo->frag_list);
568 
569 	skb_zcopy_clear(skb, true);
570 	skb_free_head(skb);
571 }
572 
573 /*
574  *	Free an skbuff by memory without cleaning the state.
575  */
576 static void kfree_skbmem(struct sk_buff *skb)
577 {
578 	struct sk_buff_fclones *fclones;
579 
580 	switch (skb->fclone) {
581 	case SKB_FCLONE_UNAVAILABLE:
582 		kmem_cache_free(skbuff_head_cache, skb);
583 		return;
584 
585 	case SKB_FCLONE_ORIG:
586 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
587 
588 		/* We usually free the clone (TX completion) before original skb
589 		 * This test would have no chance to be true for the clone,
590 		 * while here, branch prediction will be good.
591 		 */
592 		if (refcount_read(&fclones->fclone_ref) == 1)
593 			goto fastpath;
594 		break;
595 
596 	default: /* SKB_FCLONE_CLONE */
597 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
598 		break;
599 	}
600 	if (!refcount_dec_and_test(&fclones->fclone_ref))
601 		return;
602 fastpath:
603 	kmem_cache_free(skbuff_fclone_cache, fclones);
604 }
605 
606 void skb_release_head_state(struct sk_buff *skb)
607 {
608 	skb_dst_drop(skb);
609 	secpath_reset(skb);
610 	if (skb->destructor) {
611 		WARN_ON(in_irq());
612 		skb->destructor(skb);
613 	}
614 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
615 	nf_conntrack_put(skb_nfct(skb));
616 #endif
617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
618 	nf_bridge_put(skb->nf_bridge);
619 #endif
620 }
621 
622 /* Free everything but the sk_buff shell. */
623 static void skb_release_all(struct sk_buff *skb)
624 {
625 	skb_release_head_state(skb);
626 	if (likely(skb->head))
627 		skb_release_data(skb);
628 }
629 
630 /**
631  *	__kfree_skb - private function
632  *	@skb: buffer
633  *
634  *	Free an sk_buff. Release anything attached to the buffer.
635  *	Clean the state. This is an internal helper function. Users should
636  *	always call kfree_skb
637  */
638 
639 void __kfree_skb(struct sk_buff *skb)
640 {
641 	skb_release_all(skb);
642 	kfree_skbmem(skb);
643 }
644 EXPORT_SYMBOL(__kfree_skb);
645 
646 /**
647  *	kfree_skb - free an sk_buff
648  *	@skb: buffer to free
649  *
650  *	Drop a reference to the buffer and free it if the usage count has
651  *	hit zero.
652  */
653 void kfree_skb(struct sk_buff *skb)
654 {
655 	if (!skb_unref(skb))
656 		return;
657 
658 	trace_kfree_skb(skb, __builtin_return_address(0));
659 	__kfree_skb(skb);
660 }
661 EXPORT_SYMBOL(kfree_skb);
662 
663 void kfree_skb_list(struct sk_buff *segs)
664 {
665 	while (segs) {
666 		struct sk_buff *next = segs->next;
667 
668 		kfree_skb(segs);
669 		segs = next;
670 	}
671 }
672 EXPORT_SYMBOL(kfree_skb_list);
673 
674 /**
675  *	skb_tx_error - report an sk_buff xmit error
676  *	@skb: buffer that triggered an error
677  *
678  *	Report xmit error if a device callback is tracking this skb.
679  *	skb must be freed afterwards.
680  */
681 void skb_tx_error(struct sk_buff *skb)
682 {
683 	skb_zcopy_clear(skb, true);
684 }
685 EXPORT_SYMBOL(skb_tx_error);
686 
687 /**
688  *	consume_skb - free an skbuff
689  *	@skb: buffer to free
690  *
691  *	Drop a ref to the buffer and free it if the usage count has hit zero
692  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
693  *	is being dropped after a failure and notes that
694  */
695 void consume_skb(struct sk_buff *skb)
696 {
697 	if (!skb_unref(skb))
698 		return;
699 
700 	trace_consume_skb(skb);
701 	__kfree_skb(skb);
702 }
703 EXPORT_SYMBOL(consume_skb);
704 
705 /**
706  *	consume_stateless_skb - free an skbuff, assuming it is stateless
707  *	@skb: buffer to free
708  *
709  *	Alike consume_skb(), but this variant assumes that this is the last
710  *	skb reference and all the head states have been already dropped
711  */
712 void __consume_stateless_skb(struct sk_buff *skb)
713 {
714 	trace_consume_skb(skb);
715 	skb_release_data(skb);
716 	kfree_skbmem(skb);
717 }
718 
719 void __kfree_skb_flush(void)
720 {
721 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
722 
723 	/* flush skb_cache if containing objects */
724 	if (nc->skb_count) {
725 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
726 				     nc->skb_cache);
727 		nc->skb_count = 0;
728 	}
729 }
730 
731 static inline void _kfree_skb_defer(struct sk_buff *skb)
732 {
733 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
734 
735 	/* drop skb->head and call any destructors for packet */
736 	skb_release_all(skb);
737 
738 	/* record skb to CPU local list */
739 	nc->skb_cache[nc->skb_count++] = skb;
740 
741 #ifdef CONFIG_SLUB
742 	/* SLUB writes into objects when freeing */
743 	prefetchw(skb);
744 #endif
745 
746 	/* flush skb_cache if it is filled */
747 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
748 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
749 				     nc->skb_cache);
750 		nc->skb_count = 0;
751 	}
752 }
753 void __kfree_skb_defer(struct sk_buff *skb)
754 {
755 	_kfree_skb_defer(skb);
756 }
757 
758 void napi_consume_skb(struct sk_buff *skb, int budget)
759 {
760 	if (unlikely(!skb))
761 		return;
762 
763 	/* Zero budget indicate non-NAPI context called us, like netpoll */
764 	if (unlikely(!budget)) {
765 		dev_consume_skb_any(skb);
766 		return;
767 	}
768 
769 	if (!skb_unref(skb))
770 		return;
771 
772 	/* if reaching here SKB is ready to free */
773 	trace_consume_skb(skb);
774 
775 	/* if SKB is a clone, don't handle this case */
776 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
777 		__kfree_skb(skb);
778 		return;
779 	}
780 
781 	_kfree_skb_defer(skb);
782 }
783 EXPORT_SYMBOL(napi_consume_skb);
784 
785 /* Make sure a field is enclosed inside headers_start/headers_end section */
786 #define CHECK_SKB_FIELD(field) \
787 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
788 		     offsetof(struct sk_buff, headers_start));	\
789 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
790 		     offsetof(struct sk_buff, headers_end));	\
791 
792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
793 {
794 	new->tstamp		= old->tstamp;
795 	/* We do not copy old->sk */
796 	new->dev		= old->dev;
797 	memcpy(new->cb, old->cb, sizeof(old->cb));
798 	skb_dst_copy(new, old);
799 #ifdef CONFIG_XFRM
800 	new->sp			= secpath_get(old->sp);
801 #endif
802 	__nf_copy(new, old, false);
803 
804 	/* Note : this field could be in headers_start/headers_end section
805 	 * It is not yet because we do not want to have a 16 bit hole
806 	 */
807 	new->queue_mapping = old->queue_mapping;
808 
809 	memcpy(&new->headers_start, &old->headers_start,
810 	       offsetof(struct sk_buff, headers_end) -
811 	       offsetof(struct sk_buff, headers_start));
812 	CHECK_SKB_FIELD(protocol);
813 	CHECK_SKB_FIELD(csum);
814 	CHECK_SKB_FIELD(hash);
815 	CHECK_SKB_FIELD(priority);
816 	CHECK_SKB_FIELD(skb_iif);
817 	CHECK_SKB_FIELD(vlan_proto);
818 	CHECK_SKB_FIELD(vlan_tci);
819 	CHECK_SKB_FIELD(transport_header);
820 	CHECK_SKB_FIELD(network_header);
821 	CHECK_SKB_FIELD(mac_header);
822 	CHECK_SKB_FIELD(inner_protocol);
823 	CHECK_SKB_FIELD(inner_transport_header);
824 	CHECK_SKB_FIELD(inner_network_header);
825 	CHECK_SKB_FIELD(inner_mac_header);
826 	CHECK_SKB_FIELD(mark);
827 #ifdef CONFIG_NETWORK_SECMARK
828 	CHECK_SKB_FIELD(secmark);
829 #endif
830 #ifdef CONFIG_NET_RX_BUSY_POLL
831 	CHECK_SKB_FIELD(napi_id);
832 #endif
833 #ifdef CONFIG_XPS
834 	CHECK_SKB_FIELD(sender_cpu);
835 #endif
836 #ifdef CONFIG_NET_SCHED
837 	CHECK_SKB_FIELD(tc_index);
838 #endif
839 
840 }
841 
842 /*
843  * You should not add any new code to this function.  Add it to
844  * __copy_skb_header above instead.
845  */
846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
847 {
848 #define C(x) n->x = skb->x
849 
850 	n->next = n->prev = NULL;
851 	n->sk = NULL;
852 	__copy_skb_header(n, skb);
853 
854 	C(len);
855 	C(data_len);
856 	C(mac_len);
857 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
858 	n->cloned = 1;
859 	n->nohdr = 0;
860 	n->destructor = NULL;
861 	C(tail);
862 	C(end);
863 	C(head);
864 	C(head_frag);
865 	C(data);
866 	C(truesize);
867 	refcount_set(&n->users, 1);
868 
869 	atomic_inc(&(skb_shinfo(skb)->dataref));
870 	skb->cloned = 1;
871 
872 	return n;
873 #undef C
874 }
875 
876 /**
877  *	skb_morph	-	morph one skb into another
878  *	@dst: the skb to receive the contents
879  *	@src: the skb to supply the contents
880  *
881  *	This is identical to skb_clone except that the target skb is
882  *	supplied by the user.
883  *
884  *	The target skb is returned upon exit.
885  */
886 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
887 {
888 	skb_release_all(dst);
889 	return __skb_clone(dst, src);
890 }
891 EXPORT_SYMBOL_GPL(skb_morph);
892 
893 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
894 {
895 	unsigned long max_pg, num_pg, new_pg, old_pg;
896 	struct user_struct *user;
897 
898 	if (capable(CAP_IPC_LOCK) || !size)
899 		return 0;
900 
901 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
902 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
903 	user = mmp->user ? : current_user();
904 
905 	do {
906 		old_pg = atomic_long_read(&user->locked_vm);
907 		new_pg = old_pg + num_pg;
908 		if (new_pg > max_pg)
909 			return -ENOBUFS;
910 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
911 		 old_pg);
912 
913 	if (!mmp->user) {
914 		mmp->user = get_uid(user);
915 		mmp->num_pg = num_pg;
916 	} else {
917 		mmp->num_pg += num_pg;
918 	}
919 
920 	return 0;
921 }
922 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
923 
924 void mm_unaccount_pinned_pages(struct mmpin *mmp)
925 {
926 	if (mmp->user) {
927 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
928 		free_uid(mmp->user);
929 	}
930 }
931 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
932 
933 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
934 {
935 	struct ubuf_info *uarg;
936 	struct sk_buff *skb;
937 
938 	WARN_ON_ONCE(!in_task());
939 
940 	if (!sock_flag(sk, SOCK_ZEROCOPY))
941 		return NULL;
942 
943 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
944 	if (!skb)
945 		return NULL;
946 
947 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
948 	uarg = (void *)skb->cb;
949 	uarg->mmp.user = NULL;
950 
951 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
952 		kfree_skb(skb);
953 		return NULL;
954 	}
955 
956 	uarg->callback = sock_zerocopy_callback;
957 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
958 	uarg->len = 1;
959 	uarg->bytelen = size;
960 	uarg->zerocopy = 1;
961 	refcount_set(&uarg->refcnt, 1);
962 	sock_hold(sk);
963 
964 	return uarg;
965 }
966 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
967 
968 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
969 {
970 	return container_of((void *)uarg, struct sk_buff, cb);
971 }
972 
973 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
974 					struct ubuf_info *uarg)
975 {
976 	if (uarg) {
977 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
978 		u32 bytelen, next;
979 
980 		/* realloc only when socket is locked (TCP, UDP cork),
981 		 * so uarg->len and sk_zckey access is serialized
982 		 */
983 		if (!sock_owned_by_user(sk)) {
984 			WARN_ON_ONCE(1);
985 			return NULL;
986 		}
987 
988 		bytelen = uarg->bytelen + size;
989 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
990 			/* TCP can create new skb to attach new uarg */
991 			if (sk->sk_type == SOCK_STREAM)
992 				goto new_alloc;
993 			return NULL;
994 		}
995 
996 		next = (u32)atomic_read(&sk->sk_zckey);
997 		if ((u32)(uarg->id + uarg->len) == next) {
998 			if (mm_account_pinned_pages(&uarg->mmp, size))
999 				return NULL;
1000 			uarg->len++;
1001 			uarg->bytelen = bytelen;
1002 			atomic_set(&sk->sk_zckey, ++next);
1003 			sock_zerocopy_get(uarg);
1004 			return uarg;
1005 		}
1006 	}
1007 
1008 new_alloc:
1009 	return sock_zerocopy_alloc(sk, size);
1010 }
1011 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1012 
1013 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1014 {
1015 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1016 	u32 old_lo, old_hi;
1017 	u64 sum_len;
1018 
1019 	old_lo = serr->ee.ee_info;
1020 	old_hi = serr->ee.ee_data;
1021 	sum_len = old_hi - old_lo + 1ULL + len;
1022 
1023 	if (sum_len >= (1ULL << 32))
1024 		return false;
1025 
1026 	if (lo != old_hi + 1)
1027 		return false;
1028 
1029 	serr->ee.ee_data += len;
1030 	return true;
1031 }
1032 
1033 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1034 {
1035 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1036 	struct sock_exterr_skb *serr;
1037 	struct sock *sk = skb->sk;
1038 	struct sk_buff_head *q;
1039 	unsigned long flags;
1040 	u32 lo, hi;
1041 	u16 len;
1042 
1043 	mm_unaccount_pinned_pages(&uarg->mmp);
1044 
1045 	/* if !len, there was only 1 call, and it was aborted
1046 	 * so do not queue a completion notification
1047 	 */
1048 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1049 		goto release;
1050 
1051 	len = uarg->len;
1052 	lo = uarg->id;
1053 	hi = uarg->id + len - 1;
1054 
1055 	serr = SKB_EXT_ERR(skb);
1056 	memset(serr, 0, sizeof(*serr));
1057 	serr->ee.ee_errno = 0;
1058 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1059 	serr->ee.ee_data = hi;
1060 	serr->ee.ee_info = lo;
1061 	if (!success)
1062 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1063 
1064 	q = &sk->sk_error_queue;
1065 	spin_lock_irqsave(&q->lock, flags);
1066 	tail = skb_peek_tail(q);
1067 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1068 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1069 		__skb_queue_tail(q, skb);
1070 		skb = NULL;
1071 	}
1072 	spin_unlock_irqrestore(&q->lock, flags);
1073 
1074 	sk->sk_error_report(sk);
1075 
1076 release:
1077 	consume_skb(skb);
1078 	sock_put(sk);
1079 }
1080 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1081 
1082 void sock_zerocopy_put(struct ubuf_info *uarg)
1083 {
1084 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1085 		if (uarg->callback)
1086 			uarg->callback(uarg, uarg->zerocopy);
1087 		else
1088 			consume_skb(skb_from_uarg(uarg));
1089 	}
1090 }
1091 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1092 
1093 void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1094 {
1095 	if (uarg) {
1096 		struct sock *sk = skb_from_uarg(uarg)->sk;
1097 
1098 		atomic_dec(&sk->sk_zckey);
1099 		uarg->len--;
1100 
1101 		sock_zerocopy_put(uarg);
1102 	}
1103 }
1104 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1105 
1106 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1107 				   struct iov_iter *from, size_t length);
1108 
1109 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1110 			     struct msghdr *msg, int len,
1111 			     struct ubuf_info *uarg)
1112 {
1113 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1114 	struct iov_iter orig_iter = msg->msg_iter;
1115 	int err, orig_len = skb->len;
1116 
1117 	/* An skb can only point to one uarg. This edge case happens when
1118 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1119 	 */
1120 	if (orig_uarg && uarg != orig_uarg)
1121 		return -EEXIST;
1122 
1123 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1124 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1125 		struct sock *save_sk = skb->sk;
1126 
1127 		/* Streams do not free skb on error. Reset to prev state. */
1128 		msg->msg_iter = orig_iter;
1129 		skb->sk = sk;
1130 		___pskb_trim(skb, orig_len);
1131 		skb->sk = save_sk;
1132 		return err;
1133 	}
1134 
1135 	skb_zcopy_set(skb, uarg);
1136 	return skb->len - orig_len;
1137 }
1138 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1139 
1140 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1141 			      gfp_t gfp_mask)
1142 {
1143 	if (skb_zcopy(orig)) {
1144 		if (skb_zcopy(nskb)) {
1145 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1146 			if (!gfp_mask) {
1147 				WARN_ON_ONCE(1);
1148 				return -ENOMEM;
1149 			}
1150 			if (skb_uarg(nskb) == skb_uarg(orig))
1151 				return 0;
1152 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1153 				return -EIO;
1154 		}
1155 		skb_zcopy_set(nskb, skb_uarg(orig));
1156 	}
1157 	return 0;
1158 }
1159 
1160 /**
1161  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1162  *	@skb: the skb to modify
1163  *	@gfp_mask: allocation priority
1164  *
1165  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1166  *	It will copy all frags into kernel and drop the reference
1167  *	to userspace pages.
1168  *
1169  *	If this function is called from an interrupt gfp_mask() must be
1170  *	%GFP_ATOMIC.
1171  *
1172  *	Returns 0 on success or a negative error code on failure
1173  *	to allocate kernel memory to copy to.
1174  */
1175 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1176 {
1177 	int num_frags = skb_shinfo(skb)->nr_frags;
1178 	struct page *page, *head = NULL;
1179 	int i, new_frags;
1180 	u32 d_off;
1181 
1182 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1183 		return -EINVAL;
1184 
1185 	if (!num_frags)
1186 		goto release;
1187 
1188 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1189 	for (i = 0; i < new_frags; i++) {
1190 		page = alloc_page(gfp_mask);
1191 		if (!page) {
1192 			while (head) {
1193 				struct page *next = (struct page *)page_private(head);
1194 				put_page(head);
1195 				head = next;
1196 			}
1197 			return -ENOMEM;
1198 		}
1199 		set_page_private(page, (unsigned long)head);
1200 		head = page;
1201 	}
1202 
1203 	page = head;
1204 	d_off = 0;
1205 	for (i = 0; i < num_frags; i++) {
1206 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1207 		u32 p_off, p_len, copied;
1208 		struct page *p;
1209 		u8 *vaddr;
1210 
1211 		skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1212 				      p, p_off, p_len, copied) {
1213 			u32 copy, done = 0;
1214 			vaddr = kmap_atomic(p);
1215 
1216 			while (done < p_len) {
1217 				if (d_off == PAGE_SIZE) {
1218 					d_off = 0;
1219 					page = (struct page *)page_private(page);
1220 				}
1221 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1222 				memcpy(page_address(page) + d_off,
1223 				       vaddr + p_off + done, copy);
1224 				done += copy;
1225 				d_off += copy;
1226 			}
1227 			kunmap_atomic(vaddr);
1228 		}
1229 	}
1230 
1231 	/* skb frags release userspace buffers */
1232 	for (i = 0; i < num_frags; i++)
1233 		skb_frag_unref(skb, i);
1234 
1235 	/* skb frags point to kernel buffers */
1236 	for (i = 0; i < new_frags - 1; i++) {
1237 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1238 		head = (struct page *)page_private(head);
1239 	}
1240 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1241 	skb_shinfo(skb)->nr_frags = new_frags;
1242 
1243 release:
1244 	skb_zcopy_clear(skb, false);
1245 	return 0;
1246 }
1247 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1248 
1249 /**
1250  *	skb_clone	-	duplicate an sk_buff
1251  *	@skb: buffer to clone
1252  *	@gfp_mask: allocation priority
1253  *
1254  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1255  *	copies share the same packet data but not structure. The new
1256  *	buffer has a reference count of 1. If the allocation fails the
1257  *	function returns %NULL otherwise the new buffer is returned.
1258  *
1259  *	If this function is called from an interrupt gfp_mask() must be
1260  *	%GFP_ATOMIC.
1261  */
1262 
1263 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1264 {
1265 	struct sk_buff_fclones *fclones = container_of(skb,
1266 						       struct sk_buff_fclones,
1267 						       skb1);
1268 	struct sk_buff *n;
1269 
1270 	if (skb_orphan_frags(skb, gfp_mask))
1271 		return NULL;
1272 
1273 	if (skb->fclone == SKB_FCLONE_ORIG &&
1274 	    refcount_read(&fclones->fclone_ref) == 1) {
1275 		n = &fclones->skb2;
1276 		refcount_set(&fclones->fclone_ref, 2);
1277 	} else {
1278 		if (skb_pfmemalloc(skb))
1279 			gfp_mask |= __GFP_MEMALLOC;
1280 
1281 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1282 		if (!n)
1283 			return NULL;
1284 
1285 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1286 	}
1287 
1288 	return __skb_clone(n, skb);
1289 }
1290 EXPORT_SYMBOL(skb_clone);
1291 
1292 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1293 {
1294 	/* Only adjust this if it actually is csum_start rather than csum */
1295 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1296 		skb->csum_start += off;
1297 	/* {transport,network,mac}_header and tail are relative to skb->head */
1298 	skb->transport_header += off;
1299 	skb->network_header   += off;
1300 	if (skb_mac_header_was_set(skb))
1301 		skb->mac_header += off;
1302 	skb->inner_transport_header += off;
1303 	skb->inner_network_header += off;
1304 	skb->inner_mac_header += off;
1305 }
1306 
1307 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1308 {
1309 	__copy_skb_header(new, old);
1310 
1311 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1312 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1313 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1314 }
1315 
1316 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1317 {
1318 	if (skb_pfmemalloc(skb))
1319 		return SKB_ALLOC_RX;
1320 	return 0;
1321 }
1322 
1323 /**
1324  *	skb_copy	-	create private copy of an sk_buff
1325  *	@skb: buffer to copy
1326  *	@gfp_mask: allocation priority
1327  *
1328  *	Make a copy of both an &sk_buff and its data. This is used when the
1329  *	caller wishes to modify the data and needs a private copy of the
1330  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1331  *	on success. The returned buffer has a reference count of 1.
1332  *
1333  *	As by-product this function converts non-linear &sk_buff to linear
1334  *	one, so that &sk_buff becomes completely private and caller is allowed
1335  *	to modify all the data of returned buffer. This means that this
1336  *	function is not recommended for use in circumstances when only
1337  *	header is going to be modified. Use pskb_copy() instead.
1338  */
1339 
1340 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1341 {
1342 	int headerlen = skb_headroom(skb);
1343 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1344 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1345 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1346 
1347 	if (!n)
1348 		return NULL;
1349 
1350 	/* Set the data pointer */
1351 	skb_reserve(n, headerlen);
1352 	/* Set the tail pointer and length */
1353 	skb_put(n, skb->len);
1354 
1355 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1356 
1357 	copy_skb_header(n, skb);
1358 	return n;
1359 }
1360 EXPORT_SYMBOL(skb_copy);
1361 
1362 /**
1363  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1364  *	@skb: buffer to copy
1365  *	@headroom: headroom of new skb
1366  *	@gfp_mask: allocation priority
1367  *	@fclone: if true allocate the copy of the skb from the fclone
1368  *	cache instead of the head cache; it is recommended to set this
1369  *	to true for the cases where the copy will likely be cloned
1370  *
1371  *	Make a copy of both an &sk_buff and part of its data, located
1372  *	in header. Fragmented data remain shared. This is used when
1373  *	the caller wishes to modify only header of &sk_buff and needs
1374  *	private copy of the header to alter. Returns %NULL on failure
1375  *	or the pointer to the buffer on success.
1376  *	The returned buffer has a reference count of 1.
1377  */
1378 
1379 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1380 				   gfp_t gfp_mask, bool fclone)
1381 {
1382 	unsigned int size = skb_headlen(skb) + headroom;
1383 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1384 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1385 
1386 	if (!n)
1387 		goto out;
1388 
1389 	/* Set the data pointer */
1390 	skb_reserve(n, headroom);
1391 	/* Set the tail pointer and length */
1392 	skb_put(n, skb_headlen(skb));
1393 	/* Copy the bytes */
1394 	skb_copy_from_linear_data(skb, n->data, n->len);
1395 
1396 	n->truesize += skb->data_len;
1397 	n->data_len  = skb->data_len;
1398 	n->len	     = skb->len;
1399 
1400 	if (skb_shinfo(skb)->nr_frags) {
1401 		int i;
1402 
1403 		if (skb_orphan_frags(skb, gfp_mask) ||
1404 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1405 			kfree_skb(n);
1406 			n = NULL;
1407 			goto out;
1408 		}
1409 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1410 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1411 			skb_frag_ref(skb, i);
1412 		}
1413 		skb_shinfo(n)->nr_frags = i;
1414 	}
1415 
1416 	if (skb_has_frag_list(skb)) {
1417 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1418 		skb_clone_fraglist(n);
1419 	}
1420 
1421 	copy_skb_header(n, skb);
1422 out:
1423 	return n;
1424 }
1425 EXPORT_SYMBOL(__pskb_copy_fclone);
1426 
1427 /**
1428  *	pskb_expand_head - reallocate header of &sk_buff
1429  *	@skb: buffer to reallocate
1430  *	@nhead: room to add at head
1431  *	@ntail: room to add at tail
1432  *	@gfp_mask: allocation priority
1433  *
1434  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1435  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1436  *	reference count of 1. Returns zero in the case of success or error,
1437  *	if expansion failed. In the last case, &sk_buff is not changed.
1438  *
1439  *	All the pointers pointing into skb header may change and must be
1440  *	reloaded after call to this function.
1441  */
1442 
1443 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1444 		     gfp_t gfp_mask)
1445 {
1446 	int i, osize = skb_end_offset(skb);
1447 	int size = osize + nhead + ntail;
1448 	long off;
1449 	u8 *data;
1450 
1451 	BUG_ON(nhead < 0);
1452 
1453 	BUG_ON(skb_shared(skb));
1454 
1455 	size = SKB_DATA_ALIGN(size);
1456 
1457 	if (skb_pfmemalloc(skb))
1458 		gfp_mask |= __GFP_MEMALLOC;
1459 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1460 			       gfp_mask, NUMA_NO_NODE, NULL);
1461 	if (!data)
1462 		goto nodata;
1463 	size = SKB_WITH_OVERHEAD(ksize(data));
1464 
1465 	/* Copy only real data... and, alas, header. This should be
1466 	 * optimized for the cases when header is void.
1467 	 */
1468 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1469 
1470 	memcpy((struct skb_shared_info *)(data + size),
1471 	       skb_shinfo(skb),
1472 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1473 
1474 	/*
1475 	 * if shinfo is shared we must drop the old head gracefully, but if it
1476 	 * is not we can just drop the old head and let the existing refcount
1477 	 * be since all we did is relocate the values
1478 	 */
1479 	if (skb_cloned(skb)) {
1480 		if (skb_orphan_frags(skb, gfp_mask))
1481 			goto nofrags;
1482 		if (skb_zcopy(skb))
1483 			refcount_inc(&skb_uarg(skb)->refcnt);
1484 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1485 			skb_frag_ref(skb, i);
1486 
1487 		if (skb_has_frag_list(skb))
1488 			skb_clone_fraglist(skb);
1489 
1490 		skb_release_data(skb);
1491 	} else {
1492 		skb_free_head(skb);
1493 	}
1494 	off = (data + nhead) - skb->head;
1495 
1496 	skb->head     = data;
1497 	skb->head_frag = 0;
1498 	skb->data    += off;
1499 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1500 	skb->end      = size;
1501 	off           = nhead;
1502 #else
1503 	skb->end      = skb->head + size;
1504 #endif
1505 	skb->tail	      += off;
1506 	skb_headers_offset_update(skb, nhead);
1507 	skb->cloned   = 0;
1508 	skb->hdr_len  = 0;
1509 	skb->nohdr    = 0;
1510 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1511 
1512 	skb_metadata_clear(skb);
1513 
1514 	/* It is not generally safe to change skb->truesize.
1515 	 * For the moment, we really care of rx path, or
1516 	 * when skb is orphaned (not attached to a socket).
1517 	 */
1518 	if (!skb->sk || skb->destructor == sock_edemux)
1519 		skb->truesize += size - osize;
1520 
1521 	return 0;
1522 
1523 nofrags:
1524 	kfree(data);
1525 nodata:
1526 	return -ENOMEM;
1527 }
1528 EXPORT_SYMBOL(pskb_expand_head);
1529 
1530 /* Make private copy of skb with writable head and some headroom */
1531 
1532 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1533 {
1534 	struct sk_buff *skb2;
1535 	int delta = headroom - skb_headroom(skb);
1536 
1537 	if (delta <= 0)
1538 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1539 	else {
1540 		skb2 = skb_clone(skb, GFP_ATOMIC);
1541 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1542 					     GFP_ATOMIC)) {
1543 			kfree_skb(skb2);
1544 			skb2 = NULL;
1545 		}
1546 	}
1547 	return skb2;
1548 }
1549 EXPORT_SYMBOL(skb_realloc_headroom);
1550 
1551 /**
1552  *	skb_copy_expand	-	copy and expand sk_buff
1553  *	@skb: buffer to copy
1554  *	@newheadroom: new free bytes at head
1555  *	@newtailroom: new free bytes at tail
1556  *	@gfp_mask: allocation priority
1557  *
1558  *	Make a copy of both an &sk_buff and its data and while doing so
1559  *	allocate additional space.
1560  *
1561  *	This is used when the caller wishes to modify the data and needs a
1562  *	private copy of the data to alter as well as more space for new fields.
1563  *	Returns %NULL on failure or the pointer to the buffer
1564  *	on success. The returned buffer has a reference count of 1.
1565  *
1566  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1567  *	is called from an interrupt.
1568  */
1569 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1570 				int newheadroom, int newtailroom,
1571 				gfp_t gfp_mask)
1572 {
1573 	/*
1574 	 *	Allocate the copy buffer
1575 	 */
1576 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1577 					gfp_mask, skb_alloc_rx_flag(skb),
1578 					NUMA_NO_NODE);
1579 	int oldheadroom = skb_headroom(skb);
1580 	int head_copy_len, head_copy_off;
1581 
1582 	if (!n)
1583 		return NULL;
1584 
1585 	skb_reserve(n, newheadroom);
1586 
1587 	/* Set the tail pointer and length */
1588 	skb_put(n, skb->len);
1589 
1590 	head_copy_len = oldheadroom;
1591 	head_copy_off = 0;
1592 	if (newheadroom <= head_copy_len)
1593 		head_copy_len = newheadroom;
1594 	else
1595 		head_copy_off = newheadroom - head_copy_len;
1596 
1597 	/* Copy the linear header and data. */
1598 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1599 			     skb->len + head_copy_len));
1600 
1601 	copy_skb_header(n, skb);
1602 
1603 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1604 
1605 	return n;
1606 }
1607 EXPORT_SYMBOL(skb_copy_expand);
1608 
1609 /**
1610  *	__skb_pad		-	zero pad the tail of an skb
1611  *	@skb: buffer to pad
1612  *	@pad: space to pad
1613  *	@free_on_error: free buffer on error
1614  *
1615  *	Ensure that a buffer is followed by a padding area that is zero
1616  *	filled. Used by network drivers which may DMA or transfer data
1617  *	beyond the buffer end onto the wire.
1618  *
1619  *	May return error in out of memory cases. The skb is freed on error
1620  *	if @free_on_error is true.
1621  */
1622 
1623 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1624 {
1625 	int err;
1626 	int ntail;
1627 
1628 	/* If the skbuff is non linear tailroom is always zero.. */
1629 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1630 		memset(skb->data+skb->len, 0, pad);
1631 		return 0;
1632 	}
1633 
1634 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1635 	if (likely(skb_cloned(skb) || ntail > 0)) {
1636 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1637 		if (unlikely(err))
1638 			goto free_skb;
1639 	}
1640 
1641 	/* FIXME: The use of this function with non-linear skb's really needs
1642 	 * to be audited.
1643 	 */
1644 	err = skb_linearize(skb);
1645 	if (unlikely(err))
1646 		goto free_skb;
1647 
1648 	memset(skb->data + skb->len, 0, pad);
1649 	return 0;
1650 
1651 free_skb:
1652 	if (free_on_error)
1653 		kfree_skb(skb);
1654 	return err;
1655 }
1656 EXPORT_SYMBOL(__skb_pad);
1657 
1658 /**
1659  *	pskb_put - add data to the tail of a potentially fragmented buffer
1660  *	@skb: start of the buffer to use
1661  *	@tail: tail fragment of the buffer to use
1662  *	@len: amount of data to add
1663  *
1664  *	This function extends the used data area of the potentially
1665  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1666  *	@skb itself. If this would exceed the total buffer size the kernel
1667  *	will panic. A pointer to the first byte of the extra data is
1668  *	returned.
1669  */
1670 
1671 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1672 {
1673 	if (tail != skb) {
1674 		skb->data_len += len;
1675 		skb->len += len;
1676 	}
1677 	return skb_put(tail, len);
1678 }
1679 EXPORT_SYMBOL_GPL(pskb_put);
1680 
1681 /**
1682  *	skb_put - add data to a buffer
1683  *	@skb: buffer to use
1684  *	@len: amount of data to add
1685  *
1686  *	This function extends the used data area of the buffer. If this would
1687  *	exceed the total buffer size the kernel will panic. A pointer to the
1688  *	first byte of the extra data is returned.
1689  */
1690 void *skb_put(struct sk_buff *skb, unsigned int len)
1691 {
1692 	void *tmp = skb_tail_pointer(skb);
1693 	SKB_LINEAR_ASSERT(skb);
1694 	skb->tail += len;
1695 	skb->len  += len;
1696 	if (unlikely(skb->tail > skb->end))
1697 		skb_over_panic(skb, len, __builtin_return_address(0));
1698 	return tmp;
1699 }
1700 EXPORT_SYMBOL(skb_put);
1701 
1702 /**
1703  *	skb_push - add data to the start of a buffer
1704  *	@skb: buffer to use
1705  *	@len: amount of data to add
1706  *
1707  *	This function extends the used data area of the buffer at the buffer
1708  *	start. If this would exceed the total buffer headroom the kernel will
1709  *	panic. A pointer to the first byte of the extra data is returned.
1710  */
1711 void *skb_push(struct sk_buff *skb, unsigned int len)
1712 {
1713 	skb->data -= len;
1714 	skb->len  += len;
1715 	if (unlikely(skb->data<skb->head))
1716 		skb_under_panic(skb, len, __builtin_return_address(0));
1717 	return skb->data;
1718 }
1719 EXPORT_SYMBOL(skb_push);
1720 
1721 /**
1722  *	skb_pull - remove data from the start of a buffer
1723  *	@skb: buffer to use
1724  *	@len: amount of data to remove
1725  *
1726  *	This function removes data from the start of a buffer, returning
1727  *	the memory to the headroom. A pointer to the next data in the buffer
1728  *	is returned. Once the data has been pulled future pushes will overwrite
1729  *	the old data.
1730  */
1731 void *skb_pull(struct sk_buff *skb, unsigned int len)
1732 {
1733 	return skb_pull_inline(skb, len);
1734 }
1735 EXPORT_SYMBOL(skb_pull);
1736 
1737 /**
1738  *	skb_trim - remove end from a buffer
1739  *	@skb: buffer to alter
1740  *	@len: new length
1741  *
1742  *	Cut the length of a buffer down by removing data from the tail. If
1743  *	the buffer is already under the length specified it is not modified.
1744  *	The skb must be linear.
1745  */
1746 void skb_trim(struct sk_buff *skb, unsigned int len)
1747 {
1748 	if (skb->len > len)
1749 		__skb_trim(skb, len);
1750 }
1751 EXPORT_SYMBOL(skb_trim);
1752 
1753 /* Trims skb to length len. It can change skb pointers.
1754  */
1755 
1756 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1757 {
1758 	struct sk_buff **fragp;
1759 	struct sk_buff *frag;
1760 	int offset = skb_headlen(skb);
1761 	int nfrags = skb_shinfo(skb)->nr_frags;
1762 	int i;
1763 	int err;
1764 
1765 	if (skb_cloned(skb) &&
1766 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1767 		return err;
1768 
1769 	i = 0;
1770 	if (offset >= len)
1771 		goto drop_pages;
1772 
1773 	for (; i < nfrags; i++) {
1774 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1775 
1776 		if (end < len) {
1777 			offset = end;
1778 			continue;
1779 		}
1780 
1781 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1782 
1783 drop_pages:
1784 		skb_shinfo(skb)->nr_frags = i;
1785 
1786 		for (; i < nfrags; i++)
1787 			skb_frag_unref(skb, i);
1788 
1789 		if (skb_has_frag_list(skb))
1790 			skb_drop_fraglist(skb);
1791 		goto done;
1792 	}
1793 
1794 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1795 	     fragp = &frag->next) {
1796 		int end = offset + frag->len;
1797 
1798 		if (skb_shared(frag)) {
1799 			struct sk_buff *nfrag;
1800 
1801 			nfrag = skb_clone(frag, GFP_ATOMIC);
1802 			if (unlikely(!nfrag))
1803 				return -ENOMEM;
1804 
1805 			nfrag->next = frag->next;
1806 			consume_skb(frag);
1807 			frag = nfrag;
1808 			*fragp = frag;
1809 		}
1810 
1811 		if (end < len) {
1812 			offset = end;
1813 			continue;
1814 		}
1815 
1816 		if (end > len &&
1817 		    unlikely((err = pskb_trim(frag, len - offset))))
1818 			return err;
1819 
1820 		if (frag->next)
1821 			skb_drop_list(&frag->next);
1822 		break;
1823 	}
1824 
1825 done:
1826 	if (len > skb_headlen(skb)) {
1827 		skb->data_len -= skb->len - len;
1828 		skb->len       = len;
1829 	} else {
1830 		skb->len       = len;
1831 		skb->data_len  = 0;
1832 		skb_set_tail_pointer(skb, len);
1833 	}
1834 
1835 	if (!skb->sk || skb->destructor == sock_edemux)
1836 		skb_condense(skb);
1837 	return 0;
1838 }
1839 EXPORT_SYMBOL(___pskb_trim);
1840 
1841 /**
1842  *	__pskb_pull_tail - advance tail of skb header
1843  *	@skb: buffer to reallocate
1844  *	@delta: number of bytes to advance tail
1845  *
1846  *	The function makes a sense only on a fragmented &sk_buff,
1847  *	it expands header moving its tail forward and copying necessary
1848  *	data from fragmented part.
1849  *
1850  *	&sk_buff MUST have reference count of 1.
1851  *
1852  *	Returns %NULL (and &sk_buff does not change) if pull failed
1853  *	or value of new tail of skb in the case of success.
1854  *
1855  *	All the pointers pointing into skb header may change and must be
1856  *	reloaded after call to this function.
1857  */
1858 
1859 /* Moves tail of skb head forward, copying data from fragmented part,
1860  * when it is necessary.
1861  * 1. It may fail due to malloc failure.
1862  * 2. It may change skb pointers.
1863  *
1864  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1865  */
1866 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1867 {
1868 	/* If skb has not enough free space at tail, get new one
1869 	 * plus 128 bytes for future expansions. If we have enough
1870 	 * room at tail, reallocate without expansion only if skb is cloned.
1871 	 */
1872 	int i, k, eat = (skb->tail + delta) - skb->end;
1873 
1874 	if (eat > 0 || skb_cloned(skb)) {
1875 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1876 				     GFP_ATOMIC))
1877 			return NULL;
1878 	}
1879 
1880 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1881 			     skb_tail_pointer(skb), delta));
1882 
1883 	/* Optimization: no fragments, no reasons to preestimate
1884 	 * size of pulled pages. Superb.
1885 	 */
1886 	if (!skb_has_frag_list(skb))
1887 		goto pull_pages;
1888 
1889 	/* Estimate size of pulled pages. */
1890 	eat = delta;
1891 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1892 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1893 
1894 		if (size >= eat)
1895 			goto pull_pages;
1896 		eat -= size;
1897 	}
1898 
1899 	/* If we need update frag list, we are in troubles.
1900 	 * Certainly, it is possible to add an offset to skb data,
1901 	 * but taking into account that pulling is expected to
1902 	 * be very rare operation, it is worth to fight against
1903 	 * further bloating skb head and crucify ourselves here instead.
1904 	 * Pure masohism, indeed. 8)8)
1905 	 */
1906 	if (eat) {
1907 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1908 		struct sk_buff *clone = NULL;
1909 		struct sk_buff *insp = NULL;
1910 
1911 		do {
1912 			BUG_ON(!list);
1913 
1914 			if (list->len <= eat) {
1915 				/* Eaten as whole. */
1916 				eat -= list->len;
1917 				list = list->next;
1918 				insp = list;
1919 			} else {
1920 				/* Eaten partially. */
1921 
1922 				if (skb_shared(list)) {
1923 					/* Sucks! We need to fork list. :-( */
1924 					clone = skb_clone(list, GFP_ATOMIC);
1925 					if (!clone)
1926 						return NULL;
1927 					insp = list->next;
1928 					list = clone;
1929 				} else {
1930 					/* This may be pulled without
1931 					 * problems. */
1932 					insp = list;
1933 				}
1934 				if (!pskb_pull(list, eat)) {
1935 					kfree_skb(clone);
1936 					return NULL;
1937 				}
1938 				break;
1939 			}
1940 		} while (eat);
1941 
1942 		/* Free pulled out fragments. */
1943 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1944 			skb_shinfo(skb)->frag_list = list->next;
1945 			kfree_skb(list);
1946 		}
1947 		/* And insert new clone at head. */
1948 		if (clone) {
1949 			clone->next = list;
1950 			skb_shinfo(skb)->frag_list = clone;
1951 		}
1952 	}
1953 	/* Success! Now we may commit changes to skb data. */
1954 
1955 pull_pages:
1956 	eat = delta;
1957 	k = 0;
1958 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1959 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1960 
1961 		if (size <= eat) {
1962 			skb_frag_unref(skb, i);
1963 			eat -= size;
1964 		} else {
1965 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1966 			if (eat) {
1967 				skb_shinfo(skb)->frags[k].page_offset += eat;
1968 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1969 				if (!i)
1970 					goto end;
1971 				eat = 0;
1972 			}
1973 			k++;
1974 		}
1975 	}
1976 	skb_shinfo(skb)->nr_frags = k;
1977 
1978 end:
1979 	skb->tail     += delta;
1980 	skb->data_len -= delta;
1981 
1982 	if (!skb->data_len)
1983 		skb_zcopy_clear(skb, false);
1984 
1985 	return skb_tail_pointer(skb);
1986 }
1987 EXPORT_SYMBOL(__pskb_pull_tail);
1988 
1989 /**
1990  *	skb_copy_bits - copy bits from skb to kernel buffer
1991  *	@skb: source skb
1992  *	@offset: offset in source
1993  *	@to: destination buffer
1994  *	@len: number of bytes to copy
1995  *
1996  *	Copy the specified number of bytes from the source skb to the
1997  *	destination buffer.
1998  *
1999  *	CAUTION ! :
2000  *		If its prototype is ever changed,
2001  *		check arch/{*}/net/{*}.S files,
2002  *		since it is called from BPF assembly code.
2003  */
2004 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2005 {
2006 	int start = skb_headlen(skb);
2007 	struct sk_buff *frag_iter;
2008 	int i, copy;
2009 
2010 	if (offset > (int)skb->len - len)
2011 		goto fault;
2012 
2013 	/* Copy header. */
2014 	if ((copy = start - offset) > 0) {
2015 		if (copy > len)
2016 			copy = len;
2017 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2018 		if ((len -= copy) == 0)
2019 			return 0;
2020 		offset += copy;
2021 		to     += copy;
2022 	}
2023 
2024 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2025 		int end;
2026 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2027 
2028 		WARN_ON(start > offset + len);
2029 
2030 		end = start + skb_frag_size(f);
2031 		if ((copy = end - offset) > 0) {
2032 			u32 p_off, p_len, copied;
2033 			struct page *p;
2034 			u8 *vaddr;
2035 
2036 			if (copy > len)
2037 				copy = len;
2038 
2039 			skb_frag_foreach_page(f,
2040 					      f->page_offset + offset - start,
2041 					      copy, p, p_off, p_len, copied) {
2042 				vaddr = kmap_atomic(p);
2043 				memcpy(to + copied, vaddr + p_off, p_len);
2044 				kunmap_atomic(vaddr);
2045 			}
2046 
2047 			if ((len -= copy) == 0)
2048 				return 0;
2049 			offset += copy;
2050 			to     += copy;
2051 		}
2052 		start = end;
2053 	}
2054 
2055 	skb_walk_frags(skb, frag_iter) {
2056 		int end;
2057 
2058 		WARN_ON(start > offset + len);
2059 
2060 		end = start + frag_iter->len;
2061 		if ((copy = end - offset) > 0) {
2062 			if (copy > len)
2063 				copy = len;
2064 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2065 				goto fault;
2066 			if ((len -= copy) == 0)
2067 				return 0;
2068 			offset += copy;
2069 			to     += copy;
2070 		}
2071 		start = end;
2072 	}
2073 
2074 	if (!len)
2075 		return 0;
2076 
2077 fault:
2078 	return -EFAULT;
2079 }
2080 EXPORT_SYMBOL(skb_copy_bits);
2081 
2082 /*
2083  * Callback from splice_to_pipe(), if we need to release some pages
2084  * at the end of the spd in case we error'ed out in filling the pipe.
2085  */
2086 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2087 {
2088 	put_page(spd->pages[i]);
2089 }
2090 
2091 static struct page *linear_to_page(struct page *page, unsigned int *len,
2092 				   unsigned int *offset,
2093 				   struct sock *sk)
2094 {
2095 	struct page_frag *pfrag = sk_page_frag(sk);
2096 
2097 	if (!sk_page_frag_refill(sk, pfrag))
2098 		return NULL;
2099 
2100 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2101 
2102 	memcpy(page_address(pfrag->page) + pfrag->offset,
2103 	       page_address(page) + *offset, *len);
2104 	*offset = pfrag->offset;
2105 	pfrag->offset += *len;
2106 
2107 	return pfrag->page;
2108 }
2109 
2110 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2111 			     struct page *page,
2112 			     unsigned int offset)
2113 {
2114 	return	spd->nr_pages &&
2115 		spd->pages[spd->nr_pages - 1] == page &&
2116 		(spd->partial[spd->nr_pages - 1].offset +
2117 		 spd->partial[spd->nr_pages - 1].len == offset);
2118 }
2119 
2120 /*
2121  * Fill page/offset/length into spd, if it can hold more pages.
2122  */
2123 static bool spd_fill_page(struct splice_pipe_desc *spd,
2124 			  struct pipe_inode_info *pipe, struct page *page,
2125 			  unsigned int *len, unsigned int offset,
2126 			  bool linear,
2127 			  struct sock *sk)
2128 {
2129 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2130 		return true;
2131 
2132 	if (linear) {
2133 		page = linear_to_page(page, len, &offset, sk);
2134 		if (!page)
2135 			return true;
2136 	}
2137 	if (spd_can_coalesce(spd, page, offset)) {
2138 		spd->partial[spd->nr_pages - 1].len += *len;
2139 		return false;
2140 	}
2141 	get_page(page);
2142 	spd->pages[spd->nr_pages] = page;
2143 	spd->partial[spd->nr_pages].len = *len;
2144 	spd->partial[spd->nr_pages].offset = offset;
2145 	spd->nr_pages++;
2146 
2147 	return false;
2148 }
2149 
2150 static bool __splice_segment(struct page *page, unsigned int poff,
2151 			     unsigned int plen, unsigned int *off,
2152 			     unsigned int *len,
2153 			     struct splice_pipe_desc *spd, bool linear,
2154 			     struct sock *sk,
2155 			     struct pipe_inode_info *pipe)
2156 {
2157 	if (!*len)
2158 		return true;
2159 
2160 	/* skip this segment if already processed */
2161 	if (*off >= plen) {
2162 		*off -= plen;
2163 		return false;
2164 	}
2165 
2166 	/* ignore any bits we already processed */
2167 	poff += *off;
2168 	plen -= *off;
2169 	*off = 0;
2170 
2171 	do {
2172 		unsigned int flen = min(*len, plen);
2173 
2174 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2175 				  linear, sk))
2176 			return true;
2177 		poff += flen;
2178 		plen -= flen;
2179 		*len -= flen;
2180 	} while (*len && plen);
2181 
2182 	return false;
2183 }
2184 
2185 /*
2186  * Map linear and fragment data from the skb to spd. It reports true if the
2187  * pipe is full or if we already spliced the requested length.
2188  */
2189 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2190 			      unsigned int *offset, unsigned int *len,
2191 			      struct splice_pipe_desc *spd, struct sock *sk)
2192 {
2193 	int seg;
2194 	struct sk_buff *iter;
2195 
2196 	/* map the linear part :
2197 	 * If skb->head_frag is set, this 'linear' part is backed by a
2198 	 * fragment, and if the head is not shared with any clones then
2199 	 * we can avoid a copy since we own the head portion of this page.
2200 	 */
2201 	if (__splice_segment(virt_to_page(skb->data),
2202 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2203 			     skb_headlen(skb),
2204 			     offset, len, spd,
2205 			     skb_head_is_locked(skb),
2206 			     sk, pipe))
2207 		return true;
2208 
2209 	/*
2210 	 * then map the fragments
2211 	 */
2212 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2213 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2214 
2215 		if (__splice_segment(skb_frag_page(f),
2216 				     f->page_offset, skb_frag_size(f),
2217 				     offset, len, spd, false, sk, pipe))
2218 			return true;
2219 	}
2220 
2221 	skb_walk_frags(skb, iter) {
2222 		if (*offset >= iter->len) {
2223 			*offset -= iter->len;
2224 			continue;
2225 		}
2226 		/* __skb_splice_bits() only fails if the output has no room
2227 		 * left, so no point in going over the frag_list for the error
2228 		 * case.
2229 		 */
2230 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2231 			return true;
2232 	}
2233 
2234 	return false;
2235 }
2236 
2237 /*
2238  * Map data from the skb to a pipe. Should handle both the linear part,
2239  * the fragments, and the frag list.
2240  */
2241 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2242 		    struct pipe_inode_info *pipe, unsigned int tlen,
2243 		    unsigned int flags)
2244 {
2245 	struct partial_page partial[MAX_SKB_FRAGS];
2246 	struct page *pages[MAX_SKB_FRAGS];
2247 	struct splice_pipe_desc spd = {
2248 		.pages = pages,
2249 		.partial = partial,
2250 		.nr_pages_max = MAX_SKB_FRAGS,
2251 		.ops = &nosteal_pipe_buf_ops,
2252 		.spd_release = sock_spd_release,
2253 	};
2254 	int ret = 0;
2255 
2256 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2257 
2258 	if (spd.nr_pages)
2259 		ret = splice_to_pipe(pipe, &spd);
2260 
2261 	return ret;
2262 }
2263 EXPORT_SYMBOL_GPL(skb_splice_bits);
2264 
2265 /* Send skb data on a socket. Socket must be locked. */
2266 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2267 			 int len)
2268 {
2269 	unsigned int orig_len = len;
2270 	struct sk_buff *head = skb;
2271 	unsigned short fragidx;
2272 	int slen, ret;
2273 
2274 do_frag_list:
2275 
2276 	/* Deal with head data */
2277 	while (offset < skb_headlen(skb) && len) {
2278 		struct kvec kv;
2279 		struct msghdr msg;
2280 
2281 		slen = min_t(int, len, skb_headlen(skb) - offset);
2282 		kv.iov_base = skb->data + offset;
2283 		kv.iov_len = slen;
2284 		memset(&msg, 0, sizeof(msg));
2285 
2286 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2287 		if (ret <= 0)
2288 			goto error;
2289 
2290 		offset += ret;
2291 		len -= ret;
2292 	}
2293 
2294 	/* All the data was skb head? */
2295 	if (!len)
2296 		goto out;
2297 
2298 	/* Make offset relative to start of frags */
2299 	offset -= skb_headlen(skb);
2300 
2301 	/* Find where we are in frag list */
2302 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2303 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2304 
2305 		if (offset < frag->size)
2306 			break;
2307 
2308 		offset -= frag->size;
2309 	}
2310 
2311 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2312 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2313 
2314 		slen = min_t(size_t, len, frag->size - offset);
2315 
2316 		while (slen) {
2317 			ret = kernel_sendpage_locked(sk, frag->page.p,
2318 						     frag->page_offset + offset,
2319 						     slen, MSG_DONTWAIT);
2320 			if (ret <= 0)
2321 				goto error;
2322 
2323 			len -= ret;
2324 			offset += ret;
2325 			slen -= ret;
2326 		}
2327 
2328 		offset = 0;
2329 	}
2330 
2331 	if (len) {
2332 		/* Process any frag lists */
2333 
2334 		if (skb == head) {
2335 			if (skb_has_frag_list(skb)) {
2336 				skb = skb_shinfo(skb)->frag_list;
2337 				goto do_frag_list;
2338 			}
2339 		} else if (skb->next) {
2340 			skb = skb->next;
2341 			goto do_frag_list;
2342 		}
2343 	}
2344 
2345 out:
2346 	return orig_len - len;
2347 
2348 error:
2349 	return orig_len == len ? ret : orig_len - len;
2350 }
2351 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2352 
2353 /* Send skb data on a socket. */
2354 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2355 {
2356 	int ret = 0;
2357 
2358 	lock_sock(sk);
2359 	ret = skb_send_sock_locked(sk, skb, offset, len);
2360 	release_sock(sk);
2361 
2362 	return ret;
2363 }
2364 EXPORT_SYMBOL_GPL(skb_send_sock);
2365 
2366 /**
2367  *	skb_store_bits - store bits from kernel buffer to skb
2368  *	@skb: destination buffer
2369  *	@offset: offset in destination
2370  *	@from: source buffer
2371  *	@len: number of bytes to copy
2372  *
2373  *	Copy the specified number of bytes from the source buffer to the
2374  *	destination skb.  This function handles all the messy bits of
2375  *	traversing fragment lists and such.
2376  */
2377 
2378 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2379 {
2380 	int start = skb_headlen(skb);
2381 	struct sk_buff *frag_iter;
2382 	int i, copy;
2383 
2384 	if (offset > (int)skb->len - len)
2385 		goto fault;
2386 
2387 	if ((copy = start - offset) > 0) {
2388 		if (copy > len)
2389 			copy = len;
2390 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2391 		if ((len -= copy) == 0)
2392 			return 0;
2393 		offset += copy;
2394 		from += copy;
2395 	}
2396 
2397 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2398 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2399 		int end;
2400 
2401 		WARN_ON(start > offset + len);
2402 
2403 		end = start + skb_frag_size(frag);
2404 		if ((copy = end - offset) > 0) {
2405 			u32 p_off, p_len, copied;
2406 			struct page *p;
2407 			u8 *vaddr;
2408 
2409 			if (copy > len)
2410 				copy = len;
2411 
2412 			skb_frag_foreach_page(frag,
2413 					      frag->page_offset + offset - start,
2414 					      copy, p, p_off, p_len, copied) {
2415 				vaddr = kmap_atomic(p);
2416 				memcpy(vaddr + p_off, from + copied, p_len);
2417 				kunmap_atomic(vaddr);
2418 			}
2419 
2420 			if ((len -= copy) == 0)
2421 				return 0;
2422 			offset += copy;
2423 			from += copy;
2424 		}
2425 		start = end;
2426 	}
2427 
2428 	skb_walk_frags(skb, frag_iter) {
2429 		int end;
2430 
2431 		WARN_ON(start > offset + len);
2432 
2433 		end = start + frag_iter->len;
2434 		if ((copy = end - offset) > 0) {
2435 			if (copy > len)
2436 				copy = len;
2437 			if (skb_store_bits(frag_iter, offset - start,
2438 					   from, copy))
2439 				goto fault;
2440 			if ((len -= copy) == 0)
2441 				return 0;
2442 			offset += copy;
2443 			from += copy;
2444 		}
2445 		start = end;
2446 	}
2447 	if (!len)
2448 		return 0;
2449 
2450 fault:
2451 	return -EFAULT;
2452 }
2453 EXPORT_SYMBOL(skb_store_bits);
2454 
2455 /* Checksum skb data. */
2456 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2457 		      __wsum csum, const struct skb_checksum_ops *ops)
2458 {
2459 	int start = skb_headlen(skb);
2460 	int i, copy = start - offset;
2461 	struct sk_buff *frag_iter;
2462 	int pos = 0;
2463 
2464 	/* Checksum header. */
2465 	if (copy > 0) {
2466 		if (copy > len)
2467 			copy = len;
2468 		csum = ops->update(skb->data + offset, copy, csum);
2469 		if ((len -= copy) == 0)
2470 			return csum;
2471 		offset += copy;
2472 		pos	= copy;
2473 	}
2474 
2475 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2476 		int end;
2477 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2478 
2479 		WARN_ON(start > offset + len);
2480 
2481 		end = start + skb_frag_size(frag);
2482 		if ((copy = end - offset) > 0) {
2483 			u32 p_off, p_len, copied;
2484 			struct page *p;
2485 			__wsum csum2;
2486 			u8 *vaddr;
2487 
2488 			if (copy > len)
2489 				copy = len;
2490 
2491 			skb_frag_foreach_page(frag,
2492 					      frag->page_offset + offset - start,
2493 					      copy, p, p_off, p_len, copied) {
2494 				vaddr = kmap_atomic(p);
2495 				csum2 = ops->update(vaddr + p_off, p_len, 0);
2496 				kunmap_atomic(vaddr);
2497 				csum = ops->combine(csum, csum2, pos, p_len);
2498 				pos += p_len;
2499 			}
2500 
2501 			if (!(len -= copy))
2502 				return csum;
2503 			offset += copy;
2504 		}
2505 		start = end;
2506 	}
2507 
2508 	skb_walk_frags(skb, frag_iter) {
2509 		int end;
2510 
2511 		WARN_ON(start > offset + len);
2512 
2513 		end = start + frag_iter->len;
2514 		if ((copy = end - offset) > 0) {
2515 			__wsum csum2;
2516 			if (copy > len)
2517 				copy = len;
2518 			csum2 = __skb_checksum(frag_iter, offset - start,
2519 					       copy, 0, ops);
2520 			csum = ops->combine(csum, csum2, pos, copy);
2521 			if ((len -= copy) == 0)
2522 				return csum;
2523 			offset += copy;
2524 			pos    += copy;
2525 		}
2526 		start = end;
2527 	}
2528 	BUG_ON(len);
2529 
2530 	return csum;
2531 }
2532 EXPORT_SYMBOL(__skb_checksum);
2533 
2534 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2535 		    int len, __wsum csum)
2536 {
2537 	const struct skb_checksum_ops ops = {
2538 		.update  = csum_partial_ext,
2539 		.combine = csum_block_add_ext,
2540 	};
2541 
2542 	return __skb_checksum(skb, offset, len, csum, &ops);
2543 }
2544 EXPORT_SYMBOL(skb_checksum);
2545 
2546 /* Both of above in one bottle. */
2547 
2548 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2549 				    u8 *to, int len, __wsum csum)
2550 {
2551 	int start = skb_headlen(skb);
2552 	int i, copy = start - offset;
2553 	struct sk_buff *frag_iter;
2554 	int pos = 0;
2555 
2556 	/* Copy header. */
2557 	if (copy > 0) {
2558 		if (copy > len)
2559 			copy = len;
2560 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2561 						 copy, csum);
2562 		if ((len -= copy) == 0)
2563 			return csum;
2564 		offset += copy;
2565 		to     += copy;
2566 		pos	= copy;
2567 	}
2568 
2569 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2570 		int end;
2571 
2572 		WARN_ON(start > offset + len);
2573 
2574 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2575 		if ((copy = end - offset) > 0) {
2576 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2577 			u32 p_off, p_len, copied;
2578 			struct page *p;
2579 			__wsum csum2;
2580 			u8 *vaddr;
2581 
2582 			if (copy > len)
2583 				copy = len;
2584 
2585 			skb_frag_foreach_page(frag,
2586 					      frag->page_offset + offset - start,
2587 					      copy, p, p_off, p_len, copied) {
2588 				vaddr = kmap_atomic(p);
2589 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2590 								  to + copied,
2591 								  p_len, 0);
2592 				kunmap_atomic(vaddr);
2593 				csum = csum_block_add(csum, csum2, pos);
2594 				pos += p_len;
2595 			}
2596 
2597 			if (!(len -= copy))
2598 				return csum;
2599 			offset += copy;
2600 			to     += copy;
2601 		}
2602 		start = end;
2603 	}
2604 
2605 	skb_walk_frags(skb, frag_iter) {
2606 		__wsum csum2;
2607 		int end;
2608 
2609 		WARN_ON(start > offset + len);
2610 
2611 		end = start + frag_iter->len;
2612 		if ((copy = end - offset) > 0) {
2613 			if (copy > len)
2614 				copy = len;
2615 			csum2 = skb_copy_and_csum_bits(frag_iter,
2616 						       offset - start,
2617 						       to, copy, 0);
2618 			csum = csum_block_add(csum, csum2, pos);
2619 			if ((len -= copy) == 0)
2620 				return csum;
2621 			offset += copy;
2622 			to     += copy;
2623 			pos    += copy;
2624 		}
2625 		start = end;
2626 	}
2627 	BUG_ON(len);
2628 	return csum;
2629 }
2630 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2631 
2632 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2633 {
2634 	net_warn_ratelimited(
2635 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2636 		__func__);
2637 	return 0;
2638 }
2639 
2640 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2641 				       int offset, int len)
2642 {
2643 	net_warn_ratelimited(
2644 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2645 		__func__);
2646 	return 0;
2647 }
2648 
2649 static const struct skb_checksum_ops default_crc32c_ops = {
2650 	.update  = warn_crc32c_csum_update,
2651 	.combine = warn_crc32c_csum_combine,
2652 };
2653 
2654 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2655 	&default_crc32c_ops;
2656 EXPORT_SYMBOL(crc32c_csum_stub);
2657 
2658  /**
2659  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2660  *	@from: source buffer
2661  *
2662  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2663  *	into skb_zerocopy().
2664  */
2665 unsigned int
2666 skb_zerocopy_headlen(const struct sk_buff *from)
2667 {
2668 	unsigned int hlen = 0;
2669 
2670 	if (!from->head_frag ||
2671 	    skb_headlen(from) < L1_CACHE_BYTES ||
2672 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2673 		hlen = skb_headlen(from);
2674 
2675 	if (skb_has_frag_list(from))
2676 		hlen = from->len;
2677 
2678 	return hlen;
2679 }
2680 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2681 
2682 /**
2683  *	skb_zerocopy - Zero copy skb to skb
2684  *	@to: destination buffer
2685  *	@from: source buffer
2686  *	@len: number of bytes to copy from source buffer
2687  *	@hlen: size of linear headroom in destination buffer
2688  *
2689  *	Copies up to `len` bytes from `from` to `to` by creating references
2690  *	to the frags in the source buffer.
2691  *
2692  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2693  *	headroom in the `to` buffer.
2694  *
2695  *	Return value:
2696  *	0: everything is OK
2697  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2698  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2699  */
2700 int
2701 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2702 {
2703 	int i, j = 0;
2704 	int plen = 0; /* length of skb->head fragment */
2705 	int ret;
2706 	struct page *page;
2707 	unsigned int offset;
2708 
2709 	BUG_ON(!from->head_frag && !hlen);
2710 
2711 	/* dont bother with small payloads */
2712 	if (len <= skb_tailroom(to))
2713 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2714 
2715 	if (hlen) {
2716 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2717 		if (unlikely(ret))
2718 			return ret;
2719 		len -= hlen;
2720 	} else {
2721 		plen = min_t(int, skb_headlen(from), len);
2722 		if (plen) {
2723 			page = virt_to_head_page(from->head);
2724 			offset = from->data - (unsigned char *)page_address(page);
2725 			__skb_fill_page_desc(to, 0, page, offset, plen);
2726 			get_page(page);
2727 			j = 1;
2728 			len -= plen;
2729 		}
2730 	}
2731 
2732 	to->truesize += len + plen;
2733 	to->len += len + plen;
2734 	to->data_len += len + plen;
2735 
2736 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2737 		skb_tx_error(from);
2738 		return -ENOMEM;
2739 	}
2740 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2741 
2742 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2743 		if (!len)
2744 			break;
2745 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2746 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2747 		len -= skb_shinfo(to)->frags[j].size;
2748 		skb_frag_ref(to, j);
2749 		j++;
2750 	}
2751 	skb_shinfo(to)->nr_frags = j;
2752 
2753 	return 0;
2754 }
2755 EXPORT_SYMBOL_GPL(skb_zerocopy);
2756 
2757 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2758 {
2759 	__wsum csum;
2760 	long csstart;
2761 
2762 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2763 		csstart = skb_checksum_start_offset(skb);
2764 	else
2765 		csstart = skb_headlen(skb);
2766 
2767 	BUG_ON(csstart > skb_headlen(skb));
2768 
2769 	skb_copy_from_linear_data(skb, to, csstart);
2770 
2771 	csum = 0;
2772 	if (csstart != skb->len)
2773 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2774 					      skb->len - csstart, 0);
2775 
2776 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2777 		long csstuff = csstart + skb->csum_offset;
2778 
2779 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2780 	}
2781 }
2782 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2783 
2784 /**
2785  *	skb_dequeue - remove from the head of the queue
2786  *	@list: list to dequeue from
2787  *
2788  *	Remove the head of the list. The list lock is taken so the function
2789  *	may be used safely with other locking list functions. The head item is
2790  *	returned or %NULL if the list is empty.
2791  */
2792 
2793 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2794 {
2795 	unsigned long flags;
2796 	struct sk_buff *result;
2797 
2798 	spin_lock_irqsave(&list->lock, flags);
2799 	result = __skb_dequeue(list);
2800 	spin_unlock_irqrestore(&list->lock, flags);
2801 	return result;
2802 }
2803 EXPORT_SYMBOL(skb_dequeue);
2804 
2805 /**
2806  *	skb_dequeue_tail - remove from the tail of the queue
2807  *	@list: list to dequeue from
2808  *
2809  *	Remove the tail of the list. The list lock is taken so the function
2810  *	may be used safely with other locking list functions. The tail item is
2811  *	returned or %NULL if the list is empty.
2812  */
2813 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2814 {
2815 	unsigned long flags;
2816 	struct sk_buff *result;
2817 
2818 	spin_lock_irqsave(&list->lock, flags);
2819 	result = __skb_dequeue_tail(list);
2820 	spin_unlock_irqrestore(&list->lock, flags);
2821 	return result;
2822 }
2823 EXPORT_SYMBOL(skb_dequeue_tail);
2824 
2825 /**
2826  *	skb_queue_purge - empty a list
2827  *	@list: list to empty
2828  *
2829  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2830  *	the list and one reference dropped. This function takes the list
2831  *	lock and is atomic with respect to other list locking functions.
2832  */
2833 void skb_queue_purge(struct sk_buff_head *list)
2834 {
2835 	struct sk_buff *skb;
2836 	while ((skb = skb_dequeue(list)) != NULL)
2837 		kfree_skb(skb);
2838 }
2839 EXPORT_SYMBOL(skb_queue_purge);
2840 
2841 /**
2842  *	skb_rbtree_purge - empty a skb rbtree
2843  *	@root: root of the rbtree to empty
2844  *
2845  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2846  *	the list and one reference dropped. This function does not take
2847  *	any lock. Synchronization should be handled by the caller (e.g., TCP
2848  *	out-of-order queue is protected by the socket lock).
2849  */
2850 void skb_rbtree_purge(struct rb_root *root)
2851 {
2852 	struct rb_node *p = rb_first(root);
2853 
2854 	while (p) {
2855 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2856 
2857 		p = rb_next(p);
2858 		rb_erase(&skb->rbnode, root);
2859 		kfree_skb(skb);
2860 	}
2861 }
2862 
2863 /**
2864  *	skb_queue_head - queue a buffer at the list head
2865  *	@list: list to use
2866  *	@newsk: buffer to queue
2867  *
2868  *	Queue a buffer at the start of the list. This function takes the
2869  *	list lock and can be used safely with other locking &sk_buff functions
2870  *	safely.
2871  *
2872  *	A buffer cannot be placed on two lists at the same time.
2873  */
2874 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2875 {
2876 	unsigned long flags;
2877 
2878 	spin_lock_irqsave(&list->lock, flags);
2879 	__skb_queue_head(list, newsk);
2880 	spin_unlock_irqrestore(&list->lock, flags);
2881 }
2882 EXPORT_SYMBOL(skb_queue_head);
2883 
2884 /**
2885  *	skb_queue_tail - queue a buffer at the list tail
2886  *	@list: list to use
2887  *	@newsk: buffer to queue
2888  *
2889  *	Queue a buffer at the tail of the list. This function takes the
2890  *	list lock and can be used safely with other locking &sk_buff functions
2891  *	safely.
2892  *
2893  *	A buffer cannot be placed on two lists at the same time.
2894  */
2895 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2896 {
2897 	unsigned long flags;
2898 
2899 	spin_lock_irqsave(&list->lock, flags);
2900 	__skb_queue_tail(list, newsk);
2901 	spin_unlock_irqrestore(&list->lock, flags);
2902 }
2903 EXPORT_SYMBOL(skb_queue_tail);
2904 
2905 /**
2906  *	skb_unlink	-	remove a buffer from a list
2907  *	@skb: buffer to remove
2908  *	@list: list to use
2909  *
2910  *	Remove a packet from a list. The list locks are taken and this
2911  *	function is atomic with respect to other list locked calls
2912  *
2913  *	You must know what list the SKB is on.
2914  */
2915 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2916 {
2917 	unsigned long flags;
2918 
2919 	spin_lock_irqsave(&list->lock, flags);
2920 	__skb_unlink(skb, list);
2921 	spin_unlock_irqrestore(&list->lock, flags);
2922 }
2923 EXPORT_SYMBOL(skb_unlink);
2924 
2925 /**
2926  *	skb_append	-	append a buffer
2927  *	@old: buffer to insert after
2928  *	@newsk: buffer to insert
2929  *	@list: list to use
2930  *
2931  *	Place a packet after a given packet in a list. The list locks are taken
2932  *	and this function is atomic with respect to other list locked calls.
2933  *	A buffer cannot be placed on two lists at the same time.
2934  */
2935 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2936 {
2937 	unsigned long flags;
2938 
2939 	spin_lock_irqsave(&list->lock, flags);
2940 	__skb_queue_after(list, old, newsk);
2941 	spin_unlock_irqrestore(&list->lock, flags);
2942 }
2943 EXPORT_SYMBOL(skb_append);
2944 
2945 /**
2946  *	skb_insert	-	insert a buffer
2947  *	@old: buffer to insert before
2948  *	@newsk: buffer to insert
2949  *	@list: list to use
2950  *
2951  *	Place a packet before a given packet in a list. The list locks are
2952  * 	taken and this function is atomic with respect to other list locked
2953  *	calls.
2954  *
2955  *	A buffer cannot be placed on two lists at the same time.
2956  */
2957 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2958 {
2959 	unsigned long flags;
2960 
2961 	spin_lock_irqsave(&list->lock, flags);
2962 	__skb_insert(newsk, old->prev, old, list);
2963 	spin_unlock_irqrestore(&list->lock, flags);
2964 }
2965 EXPORT_SYMBOL(skb_insert);
2966 
2967 static inline void skb_split_inside_header(struct sk_buff *skb,
2968 					   struct sk_buff* skb1,
2969 					   const u32 len, const int pos)
2970 {
2971 	int i;
2972 
2973 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2974 					 pos - len);
2975 	/* And move data appendix as is. */
2976 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2977 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2978 
2979 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2980 	skb_shinfo(skb)->nr_frags  = 0;
2981 	skb1->data_len		   = skb->data_len;
2982 	skb1->len		   += skb1->data_len;
2983 	skb->data_len		   = 0;
2984 	skb->len		   = len;
2985 	skb_set_tail_pointer(skb, len);
2986 }
2987 
2988 static inline void skb_split_no_header(struct sk_buff *skb,
2989 				       struct sk_buff* skb1,
2990 				       const u32 len, int pos)
2991 {
2992 	int i, k = 0;
2993 	const int nfrags = skb_shinfo(skb)->nr_frags;
2994 
2995 	skb_shinfo(skb)->nr_frags = 0;
2996 	skb1->len		  = skb1->data_len = skb->len - len;
2997 	skb->len		  = len;
2998 	skb->data_len		  = len - pos;
2999 
3000 	for (i = 0; i < nfrags; i++) {
3001 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3002 
3003 		if (pos + size > len) {
3004 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3005 
3006 			if (pos < len) {
3007 				/* Split frag.
3008 				 * We have two variants in this case:
3009 				 * 1. Move all the frag to the second
3010 				 *    part, if it is possible. F.e.
3011 				 *    this approach is mandatory for TUX,
3012 				 *    where splitting is expensive.
3013 				 * 2. Split is accurately. We make this.
3014 				 */
3015 				skb_frag_ref(skb, i);
3016 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3017 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3018 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3019 				skb_shinfo(skb)->nr_frags++;
3020 			}
3021 			k++;
3022 		} else
3023 			skb_shinfo(skb)->nr_frags++;
3024 		pos += size;
3025 	}
3026 	skb_shinfo(skb1)->nr_frags = k;
3027 }
3028 
3029 /**
3030  * skb_split - Split fragmented skb to two parts at length len.
3031  * @skb: the buffer to split
3032  * @skb1: the buffer to receive the second part
3033  * @len: new length for skb
3034  */
3035 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3036 {
3037 	int pos = skb_headlen(skb);
3038 
3039 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3040 				      SKBTX_SHARED_FRAG;
3041 	skb_zerocopy_clone(skb1, skb, 0);
3042 	if (len < pos)	/* Split line is inside header. */
3043 		skb_split_inside_header(skb, skb1, len, pos);
3044 	else		/* Second chunk has no header, nothing to copy. */
3045 		skb_split_no_header(skb, skb1, len, pos);
3046 }
3047 EXPORT_SYMBOL(skb_split);
3048 
3049 /* Shifting from/to a cloned skb is a no-go.
3050  *
3051  * Caller cannot keep skb_shinfo related pointers past calling here!
3052  */
3053 static int skb_prepare_for_shift(struct sk_buff *skb)
3054 {
3055 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3056 }
3057 
3058 /**
3059  * skb_shift - Shifts paged data partially from skb to another
3060  * @tgt: buffer into which tail data gets added
3061  * @skb: buffer from which the paged data comes from
3062  * @shiftlen: shift up to this many bytes
3063  *
3064  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3065  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3066  * It's up to caller to free skb if everything was shifted.
3067  *
3068  * If @tgt runs out of frags, the whole operation is aborted.
3069  *
3070  * Skb cannot include anything else but paged data while tgt is allowed
3071  * to have non-paged data as well.
3072  *
3073  * TODO: full sized shift could be optimized but that would need
3074  * specialized skb free'er to handle frags without up-to-date nr_frags.
3075  */
3076 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3077 {
3078 	int from, to, merge, todo;
3079 	struct skb_frag_struct *fragfrom, *fragto;
3080 
3081 	BUG_ON(shiftlen > skb->len);
3082 
3083 	if (skb_headlen(skb))
3084 		return 0;
3085 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3086 		return 0;
3087 
3088 	todo = shiftlen;
3089 	from = 0;
3090 	to = skb_shinfo(tgt)->nr_frags;
3091 	fragfrom = &skb_shinfo(skb)->frags[from];
3092 
3093 	/* Actual merge is delayed until the point when we know we can
3094 	 * commit all, so that we don't have to undo partial changes
3095 	 */
3096 	if (!to ||
3097 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3098 			      fragfrom->page_offset)) {
3099 		merge = -1;
3100 	} else {
3101 		merge = to - 1;
3102 
3103 		todo -= skb_frag_size(fragfrom);
3104 		if (todo < 0) {
3105 			if (skb_prepare_for_shift(skb) ||
3106 			    skb_prepare_for_shift(tgt))
3107 				return 0;
3108 
3109 			/* All previous frag pointers might be stale! */
3110 			fragfrom = &skb_shinfo(skb)->frags[from];
3111 			fragto = &skb_shinfo(tgt)->frags[merge];
3112 
3113 			skb_frag_size_add(fragto, shiftlen);
3114 			skb_frag_size_sub(fragfrom, shiftlen);
3115 			fragfrom->page_offset += shiftlen;
3116 
3117 			goto onlymerged;
3118 		}
3119 
3120 		from++;
3121 	}
3122 
3123 	/* Skip full, not-fitting skb to avoid expensive operations */
3124 	if ((shiftlen == skb->len) &&
3125 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3126 		return 0;
3127 
3128 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3129 		return 0;
3130 
3131 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3132 		if (to == MAX_SKB_FRAGS)
3133 			return 0;
3134 
3135 		fragfrom = &skb_shinfo(skb)->frags[from];
3136 		fragto = &skb_shinfo(tgt)->frags[to];
3137 
3138 		if (todo >= skb_frag_size(fragfrom)) {
3139 			*fragto = *fragfrom;
3140 			todo -= skb_frag_size(fragfrom);
3141 			from++;
3142 			to++;
3143 
3144 		} else {
3145 			__skb_frag_ref(fragfrom);
3146 			fragto->page = fragfrom->page;
3147 			fragto->page_offset = fragfrom->page_offset;
3148 			skb_frag_size_set(fragto, todo);
3149 
3150 			fragfrom->page_offset += todo;
3151 			skb_frag_size_sub(fragfrom, todo);
3152 			todo = 0;
3153 
3154 			to++;
3155 			break;
3156 		}
3157 	}
3158 
3159 	/* Ready to "commit" this state change to tgt */
3160 	skb_shinfo(tgt)->nr_frags = to;
3161 
3162 	if (merge >= 0) {
3163 		fragfrom = &skb_shinfo(skb)->frags[0];
3164 		fragto = &skb_shinfo(tgt)->frags[merge];
3165 
3166 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3167 		__skb_frag_unref(fragfrom);
3168 	}
3169 
3170 	/* Reposition in the original skb */
3171 	to = 0;
3172 	while (from < skb_shinfo(skb)->nr_frags)
3173 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3174 	skb_shinfo(skb)->nr_frags = to;
3175 
3176 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3177 
3178 onlymerged:
3179 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3180 	 * the other hand might need it if it needs to be resent
3181 	 */
3182 	tgt->ip_summed = CHECKSUM_PARTIAL;
3183 	skb->ip_summed = CHECKSUM_PARTIAL;
3184 
3185 	/* Yak, is it really working this way? Some helper please? */
3186 	skb->len -= shiftlen;
3187 	skb->data_len -= shiftlen;
3188 	skb->truesize -= shiftlen;
3189 	tgt->len += shiftlen;
3190 	tgt->data_len += shiftlen;
3191 	tgt->truesize += shiftlen;
3192 
3193 	return shiftlen;
3194 }
3195 
3196 /**
3197  * skb_prepare_seq_read - Prepare a sequential read of skb data
3198  * @skb: the buffer to read
3199  * @from: lower offset of data to be read
3200  * @to: upper offset of data to be read
3201  * @st: state variable
3202  *
3203  * Initializes the specified state variable. Must be called before
3204  * invoking skb_seq_read() for the first time.
3205  */
3206 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3207 			  unsigned int to, struct skb_seq_state *st)
3208 {
3209 	st->lower_offset = from;
3210 	st->upper_offset = to;
3211 	st->root_skb = st->cur_skb = skb;
3212 	st->frag_idx = st->stepped_offset = 0;
3213 	st->frag_data = NULL;
3214 }
3215 EXPORT_SYMBOL(skb_prepare_seq_read);
3216 
3217 /**
3218  * skb_seq_read - Sequentially read skb data
3219  * @consumed: number of bytes consumed by the caller so far
3220  * @data: destination pointer for data to be returned
3221  * @st: state variable
3222  *
3223  * Reads a block of skb data at @consumed relative to the
3224  * lower offset specified to skb_prepare_seq_read(). Assigns
3225  * the head of the data block to @data and returns the length
3226  * of the block or 0 if the end of the skb data or the upper
3227  * offset has been reached.
3228  *
3229  * The caller is not required to consume all of the data
3230  * returned, i.e. @consumed is typically set to the number
3231  * of bytes already consumed and the next call to
3232  * skb_seq_read() will return the remaining part of the block.
3233  *
3234  * Note 1: The size of each block of data returned can be arbitrary,
3235  *       this limitation is the cost for zerocopy sequential
3236  *       reads of potentially non linear data.
3237  *
3238  * Note 2: Fragment lists within fragments are not implemented
3239  *       at the moment, state->root_skb could be replaced with
3240  *       a stack for this purpose.
3241  */
3242 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3243 			  struct skb_seq_state *st)
3244 {
3245 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3246 	skb_frag_t *frag;
3247 
3248 	if (unlikely(abs_offset >= st->upper_offset)) {
3249 		if (st->frag_data) {
3250 			kunmap_atomic(st->frag_data);
3251 			st->frag_data = NULL;
3252 		}
3253 		return 0;
3254 	}
3255 
3256 next_skb:
3257 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3258 
3259 	if (abs_offset < block_limit && !st->frag_data) {
3260 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3261 		return block_limit - abs_offset;
3262 	}
3263 
3264 	if (st->frag_idx == 0 && !st->frag_data)
3265 		st->stepped_offset += skb_headlen(st->cur_skb);
3266 
3267 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3268 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3269 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3270 
3271 		if (abs_offset < block_limit) {
3272 			if (!st->frag_data)
3273 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3274 
3275 			*data = (u8 *) st->frag_data + frag->page_offset +
3276 				(abs_offset - st->stepped_offset);
3277 
3278 			return block_limit - abs_offset;
3279 		}
3280 
3281 		if (st->frag_data) {
3282 			kunmap_atomic(st->frag_data);
3283 			st->frag_data = NULL;
3284 		}
3285 
3286 		st->frag_idx++;
3287 		st->stepped_offset += skb_frag_size(frag);
3288 	}
3289 
3290 	if (st->frag_data) {
3291 		kunmap_atomic(st->frag_data);
3292 		st->frag_data = NULL;
3293 	}
3294 
3295 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3296 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3297 		st->frag_idx = 0;
3298 		goto next_skb;
3299 	} else if (st->cur_skb->next) {
3300 		st->cur_skb = st->cur_skb->next;
3301 		st->frag_idx = 0;
3302 		goto next_skb;
3303 	}
3304 
3305 	return 0;
3306 }
3307 EXPORT_SYMBOL(skb_seq_read);
3308 
3309 /**
3310  * skb_abort_seq_read - Abort a sequential read of skb data
3311  * @st: state variable
3312  *
3313  * Must be called if skb_seq_read() was not called until it
3314  * returned 0.
3315  */
3316 void skb_abort_seq_read(struct skb_seq_state *st)
3317 {
3318 	if (st->frag_data)
3319 		kunmap_atomic(st->frag_data);
3320 }
3321 EXPORT_SYMBOL(skb_abort_seq_read);
3322 
3323 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3324 
3325 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3326 					  struct ts_config *conf,
3327 					  struct ts_state *state)
3328 {
3329 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3330 }
3331 
3332 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3333 {
3334 	skb_abort_seq_read(TS_SKB_CB(state));
3335 }
3336 
3337 /**
3338  * skb_find_text - Find a text pattern in skb data
3339  * @skb: the buffer to look in
3340  * @from: search offset
3341  * @to: search limit
3342  * @config: textsearch configuration
3343  *
3344  * Finds a pattern in the skb data according to the specified
3345  * textsearch configuration. Use textsearch_next() to retrieve
3346  * subsequent occurrences of the pattern. Returns the offset
3347  * to the first occurrence or UINT_MAX if no match was found.
3348  */
3349 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3350 			   unsigned int to, struct ts_config *config)
3351 {
3352 	struct ts_state state;
3353 	unsigned int ret;
3354 
3355 	config->get_next_block = skb_ts_get_next_block;
3356 	config->finish = skb_ts_finish;
3357 
3358 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3359 
3360 	ret = textsearch_find(config, &state);
3361 	return (ret <= to - from ? ret : UINT_MAX);
3362 }
3363 EXPORT_SYMBOL(skb_find_text);
3364 
3365 /**
3366  * skb_append_datato_frags - append the user data to a skb
3367  * @sk: sock  structure
3368  * @skb: skb structure to be appended with user data.
3369  * @getfrag: call back function to be used for getting the user data
3370  * @from: pointer to user message iov
3371  * @length: length of the iov message
3372  *
3373  * Description: This procedure append the user data in the fragment part
3374  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
3375  */
3376 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
3377 			int (*getfrag)(void *from, char *to, int offset,
3378 					int len, int odd, struct sk_buff *skb),
3379 			void *from, int length)
3380 {
3381 	int frg_cnt = skb_shinfo(skb)->nr_frags;
3382 	int copy;
3383 	int offset = 0;
3384 	int ret;
3385 	struct page_frag *pfrag = &current->task_frag;
3386 
3387 	do {
3388 		/* Return error if we don't have space for new frag */
3389 		if (frg_cnt >= MAX_SKB_FRAGS)
3390 			return -EMSGSIZE;
3391 
3392 		if (!sk_page_frag_refill(sk, pfrag))
3393 			return -ENOMEM;
3394 
3395 		/* copy the user data to page */
3396 		copy = min_t(int, length, pfrag->size - pfrag->offset);
3397 
3398 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3399 			      offset, copy, 0, skb);
3400 		if (ret < 0)
3401 			return -EFAULT;
3402 
3403 		/* copy was successful so update the size parameters */
3404 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3405 				   copy);
3406 		frg_cnt++;
3407 		pfrag->offset += copy;
3408 		get_page(pfrag->page);
3409 
3410 		skb->truesize += copy;
3411 		refcount_add(copy, &sk->sk_wmem_alloc);
3412 		skb->len += copy;
3413 		skb->data_len += copy;
3414 		offset += copy;
3415 		length -= copy;
3416 
3417 	} while (length > 0);
3418 
3419 	return 0;
3420 }
3421 EXPORT_SYMBOL(skb_append_datato_frags);
3422 
3423 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3424 			 int offset, size_t size)
3425 {
3426 	int i = skb_shinfo(skb)->nr_frags;
3427 
3428 	if (skb_can_coalesce(skb, i, page, offset)) {
3429 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3430 	} else if (i < MAX_SKB_FRAGS) {
3431 		get_page(page);
3432 		skb_fill_page_desc(skb, i, page, offset, size);
3433 	} else {
3434 		return -EMSGSIZE;
3435 	}
3436 
3437 	return 0;
3438 }
3439 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3440 
3441 /**
3442  *	skb_pull_rcsum - pull skb and update receive checksum
3443  *	@skb: buffer to update
3444  *	@len: length of data pulled
3445  *
3446  *	This function performs an skb_pull on the packet and updates
3447  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3448  *	receive path processing instead of skb_pull unless you know
3449  *	that the checksum difference is zero (e.g., a valid IP header)
3450  *	or you are setting ip_summed to CHECKSUM_NONE.
3451  */
3452 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3453 {
3454 	unsigned char *data = skb->data;
3455 
3456 	BUG_ON(len > skb->len);
3457 	__skb_pull(skb, len);
3458 	skb_postpull_rcsum(skb, data, len);
3459 	return skb->data;
3460 }
3461 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3462 
3463 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3464 {
3465 	skb_frag_t head_frag;
3466 	struct page *page;
3467 
3468 	page = virt_to_head_page(frag_skb->head);
3469 	head_frag.page.p = page;
3470 	head_frag.page_offset = frag_skb->data -
3471 		(unsigned char *)page_address(page);
3472 	head_frag.size = skb_headlen(frag_skb);
3473 	return head_frag;
3474 }
3475 
3476 /**
3477  *	skb_segment - Perform protocol segmentation on skb.
3478  *	@head_skb: buffer to segment
3479  *	@features: features for the output path (see dev->features)
3480  *
3481  *	This function performs segmentation on the given skb.  It returns
3482  *	a pointer to the first in a list of new skbs for the segments.
3483  *	In case of error it returns ERR_PTR(err).
3484  */
3485 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3486 			    netdev_features_t features)
3487 {
3488 	struct sk_buff *segs = NULL;
3489 	struct sk_buff *tail = NULL;
3490 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3491 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3492 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3493 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3494 	struct sk_buff *frag_skb = head_skb;
3495 	unsigned int offset = doffset;
3496 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3497 	unsigned int partial_segs = 0;
3498 	unsigned int headroom;
3499 	unsigned int len = head_skb->len;
3500 	__be16 proto;
3501 	bool csum, sg;
3502 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3503 	int err = -ENOMEM;
3504 	int i = 0;
3505 	int pos;
3506 	int dummy;
3507 
3508 	__skb_push(head_skb, doffset);
3509 	proto = skb_network_protocol(head_skb, &dummy);
3510 	if (unlikely(!proto))
3511 		return ERR_PTR(-EINVAL);
3512 
3513 	sg = !!(features & NETIF_F_SG);
3514 	csum = !!can_checksum_protocol(features, proto);
3515 
3516 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3517 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3518 			struct sk_buff *iter;
3519 			unsigned int frag_len;
3520 
3521 			if (!list_skb ||
3522 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3523 				goto normal;
3524 
3525 			/* If we get here then all the required
3526 			 * GSO features except frag_list are supported.
3527 			 * Try to split the SKB to multiple GSO SKBs
3528 			 * with no frag_list.
3529 			 * Currently we can do that only when the buffers don't
3530 			 * have a linear part and all the buffers except
3531 			 * the last are of the same length.
3532 			 */
3533 			frag_len = list_skb->len;
3534 			skb_walk_frags(head_skb, iter) {
3535 				if (frag_len != iter->len && iter->next)
3536 					goto normal;
3537 				if (skb_headlen(iter) && !iter->head_frag)
3538 					goto normal;
3539 
3540 				len -= iter->len;
3541 			}
3542 
3543 			if (len != frag_len)
3544 				goto normal;
3545 		}
3546 
3547 		/* GSO partial only requires that we trim off any excess that
3548 		 * doesn't fit into an MSS sized block, so take care of that
3549 		 * now.
3550 		 */
3551 		partial_segs = len / mss;
3552 		if (partial_segs > 1)
3553 			mss *= partial_segs;
3554 		else
3555 			partial_segs = 0;
3556 	}
3557 
3558 normal:
3559 	headroom = skb_headroom(head_skb);
3560 	pos = skb_headlen(head_skb);
3561 
3562 	do {
3563 		struct sk_buff *nskb;
3564 		skb_frag_t *nskb_frag;
3565 		int hsize;
3566 		int size;
3567 
3568 		if (unlikely(mss == GSO_BY_FRAGS)) {
3569 			len = list_skb->len;
3570 		} else {
3571 			len = head_skb->len - offset;
3572 			if (len > mss)
3573 				len = mss;
3574 		}
3575 
3576 		hsize = skb_headlen(head_skb) - offset;
3577 		if (hsize < 0)
3578 			hsize = 0;
3579 		if (hsize > len || !sg)
3580 			hsize = len;
3581 
3582 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3583 		    (skb_headlen(list_skb) == len || sg)) {
3584 			BUG_ON(skb_headlen(list_skb) > len);
3585 
3586 			i = 0;
3587 			nfrags = skb_shinfo(list_skb)->nr_frags;
3588 			frag = skb_shinfo(list_skb)->frags;
3589 			frag_skb = list_skb;
3590 			pos += skb_headlen(list_skb);
3591 
3592 			while (pos < offset + len) {
3593 				BUG_ON(i >= nfrags);
3594 
3595 				size = skb_frag_size(frag);
3596 				if (pos + size > offset + len)
3597 					break;
3598 
3599 				i++;
3600 				pos += size;
3601 				frag++;
3602 			}
3603 
3604 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3605 			list_skb = list_skb->next;
3606 
3607 			if (unlikely(!nskb))
3608 				goto err;
3609 
3610 			if (unlikely(pskb_trim(nskb, len))) {
3611 				kfree_skb(nskb);
3612 				goto err;
3613 			}
3614 
3615 			hsize = skb_end_offset(nskb);
3616 			if (skb_cow_head(nskb, doffset + headroom)) {
3617 				kfree_skb(nskb);
3618 				goto err;
3619 			}
3620 
3621 			nskb->truesize += skb_end_offset(nskb) - hsize;
3622 			skb_release_head_state(nskb);
3623 			__skb_push(nskb, doffset);
3624 		} else {
3625 			nskb = __alloc_skb(hsize + doffset + headroom,
3626 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3627 					   NUMA_NO_NODE);
3628 
3629 			if (unlikely(!nskb))
3630 				goto err;
3631 
3632 			skb_reserve(nskb, headroom);
3633 			__skb_put(nskb, doffset);
3634 		}
3635 
3636 		if (segs)
3637 			tail->next = nskb;
3638 		else
3639 			segs = nskb;
3640 		tail = nskb;
3641 
3642 		__copy_skb_header(nskb, head_skb);
3643 
3644 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3645 		skb_reset_mac_len(nskb);
3646 
3647 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3648 						 nskb->data - tnl_hlen,
3649 						 doffset + tnl_hlen);
3650 
3651 		if (nskb->len == len + doffset)
3652 			goto perform_csum_check;
3653 
3654 		if (!sg) {
3655 			if (!nskb->remcsum_offload)
3656 				nskb->ip_summed = CHECKSUM_NONE;
3657 			SKB_GSO_CB(nskb)->csum =
3658 				skb_copy_and_csum_bits(head_skb, offset,
3659 						       skb_put(nskb, len),
3660 						       len, 0);
3661 			SKB_GSO_CB(nskb)->csum_start =
3662 				skb_headroom(nskb) + doffset;
3663 			continue;
3664 		}
3665 
3666 		nskb_frag = skb_shinfo(nskb)->frags;
3667 
3668 		skb_copy_from_linear_data_offset(head_skb, offset,
3669 						 skb_put(nskb, hsize), hsize);
3670 
3671 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3672 					      SKBTX_SHARED_FRAG;
3673 
3674 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3675 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3676 			goto err;
3677 
3678 		while (pos < offset + len) {
3679 			if (i >= nfrags) {
3680 				i = 0;
3681 				nfrags = skb_shinfo(list_skb)->nr_frags;
3682 				frag = skb_shinfo(list_skb)->frags;
3683 				frag_skb = list_skb;
3684 				if (!skb_headlen(list_skb)) {
3685 					BUG_ON(!nfrags);
3686 				} else {
3687 					BUG_ON(!list_skb->head_frag);
3688 
3689 					/* to make room for head_frag. */
3690 					i--;
3691 					frag--;
3692 				}
3693 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3694 				    skb_zerocopy_clone(nskb, frag_skb,
3695 						       GFP_ATOMIC))
3696 					goto err;
3697 
3698 				list_skb = list_skb->next;
3699 			}
3700 
3701 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3702 				     MAX_SKB_FRAGS)) {
3703 				net_warn_ratelimited(
3704 					"skb_segment: too many frags: %u %u\n",
3705 					pos, mss);
3706 				goto err;
3707 			}
3708 
3709 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3710 			__skb_frag_ref(nskb_frag);
3711 			size = skb_frag_size(nskb_frag);
3712 
3713 			if (pos < offset) {
3714 				nskb_frag->page_offset += offset - pos;
3715 				skb_frag_size_sub(nskb_frag, offset - pos);
3716 			}
3717 
3718 			skb_shinfo(nskb)->nr_frags++;
3719 
3720 			if (pos + size <= offset + len) {
3721 				i++;
3722 				frag++;
3723 				pos += size;
3724 			} else {
3725 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3726 				goto skip_fraglist;
3727 			}
3728 
3729 			nskb_frag++;
3730 		}
3731 
3732 skip_fraglist:
3733 		nskb->data_len = len - hsize;
3734 		nskb->len += nskb->data_len;
3735 		nskb->truesize += nskb->data_len;
3736 
3737 perform_csum_check:
3738 		if (!csum) {
3739 			if (skb_has_shared_frag(nskb)) {
3740 				err = __skb_linearize(nskb);
3741 				if (err)
3742 					goto err;
3743 			}
3744 			if (!nskb->remcsum_offload)
3745 				nskb->ip_summed = CHECKSUM_NONE;
3746 			SKB_GSO_CB(nskb)->csum =
3747 				skb_checksum(nskb, doffset,
3748 					     nskb->len - doffset, 0);
3749 			SKB_GSO_CB(nskb)->csum_start =
3750 				skb_headroom(nskb) + doffset;
3751 		}
3752 	} while ((offset += len) < head_skb->len);
3753 
3754 	/* Some callers want to get the end of the list.
3755 	 * Put it in segs->prev to avoid walking the list.
3756 	 * (see validate_xmit_skb_list() for example)
3757 	 */
3758 	segs->prev = tail;
3759 
3760 	if (partial_segs) {
3761 		struct sk_buff *iter;
3762 		int type = skb_shinfo(head_skb)->gso_type;
3763 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3764 
3765 		/* Update type to add partial and then remove dodgy if set */
3766 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3767 		type &= ~SKB_GSO_DODGY;
3768 
3769 		/* Update GSO info and prepare to start updating headers on
3770 		 * our way back down the stack of protocols.
3771 		 */
3772 		for (iter = segs; iter; iter = iter->next) {
3773 			skb_shinfo(iter)->gso_size = gso_size;
3774 			skb_shinfo(iter)->gso_segs = partial_segs;
3775 			skb_shinfo(iter)->gso_type = type;
3776 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3777 		}
3778 
3779 		if (tail->len - doffset <= gso_size)
3780 			skb_shinfo(tail)->gso_size = 0;
3781 		else if (tail != segs)
3782 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3783 	}
3784 
3785 	/* Following permits correct backpressure, for protocols
3786 	 * using skb_set_owner_w().
3787 	 * Idea is to tranfert ownership from head_skb to last segment.
3788 	 */
3789 	if (head_skb->destructor == sock_wfree) {
3790 		swap(tail->truesize, head_skb->truesize);
3791 		swap(tail->destructor, head_skb->destructor);
3792 		swap(tail->sk, head_skb->sk);
3793 	}
3794 	return segs;
3795 
3796 err:
3797 	kfree_skb_list(segs);
3798 	return ERR_PTR(err);
3799 }
3800 EXPORT_SYMBOL_GPL(skb_segment);
3801 
3802 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3803 {
3804 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3805 	unsigned int offset = skb_gro_offset(skb);
3806 	unsigned int headlen = skb_headlen(skb);
3807 	unsigned int len = skb_gro_len(skb);
3808 	struct sk_buff *lp, *p = *head;
3809 	unsigned int delta_truesize;
3810 
3811 	if (unlikely(p->len + len >= 65536))
3812 		return -E2BIG;
3813 
3814 	lp = NAPI_GRO_CB(p)->last;
3815 	pinfo = skb_shinfo(lp);
3816 
3817 	if (headlen <= offset) {
3818 		skb_frag_t *frag;
3819 		skb_frag_t *frag2;
3820 		int i = skbinfo->nr_frags;
3821 		int nr_frags = pinfo->nr_frags + i;
3822 
3823 		if (nr_frags > MAX_SKB_FRAGS)
3824 			goto merge;
3825 
3826 		offset -= headlen;
3827 		pinfo->nr_frags = nr_frags;
3828 		skbinfo->nr_frags = 0;
3829 
3830 		frag = pinfo->frags + nr_frags;
3831 		frag2 = skbinfo->frags + i;
3832 		do {
3833 			*--frag = *--frag2;
3834 		} while (--i);
3835 
3836 		frag->page_offset += offset;
3837 		skb_frag_size_sub(frag, offset);
3838 
3839 		/* all fragments truesize : remove (head size + sk_buff) */
3840 		delta_truesize = skb->truesize -
3841 				 SKB_TRUESIZE(skb_end_offset(skb));
3842 
3843 		skb->truesize -= skb->data_len;
3844 		skb->len -= skb->data_len;
3845 		skb->data_len = 0;
3846 
3847 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3848 		goto done;
3849 	} else if (skb->head_frag) {
3850 		int nr_frags = pinfo->nr_frags;
3851 		skb_frag_t *frag = pinfo->frags + nr_frags;
3852 		struct page *page = virt_to_head_page(skb->head);
3853 		unsigned int first_size = headlen - offset;
3854 		unsigned int first_offset;
3855 
3856 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3857 			goto merge;
3858 
3859 		first_offset = skb->data -
3860 			       (unsigned char *)page_address(page) +
3861 			       offset;
3862 
3863 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3864 
3865 		frag->page.p	  = page;
3866 		frag->page_offset = first_offset;
3867 		skb_frag_size_set(frag, first_size);
3868 
3869 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3870 		/* We dont need to clear skbinfo->nr_frags here */
3871 
3872 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3873 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3874 		goto done;
3875 	}
3876 
3877 merge:
3878 	delta_truesize = skb->truesize;
3879 	if (offset > headlen) {
3880 		unsigned int eat = offset - headlen;
3881 
3882 		skbinfo->frags[0].page_offset += eat;
3883 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3884 		skb->data_len -= eat;
3885 		skb->len -= eat;
3886 		offset = headlen;
3887 	}
3888 
3889 	__skb_pull(skb, offset);
3890 
3891 	if (NAPI_GRO_CB(p)->last == p)
3892 		skb_shinfo(p)->frag_list = skb;
3893 	else
3894 		NAPI_GRO_CB(p)->last->next = skb;
3895 	NAPI_GRO_CB(p)->last = skb;
3896 	__skb_header_release(skb);
3897 	lp = p;
3898 
3899 done:
3900 	NAPI_GRO_CB(p)->count++;
3901 	p->data_len += len;
3902 	p->truesize += delta_truesize;
3903 	p->len += len;
3904 	if (lp != p) {
3905 		lp->data_len += len;
3906 		lp->truesize += delta_truesize;
3907 		lp->len += len;
3908 	}
3909 	NAPI_GRO_CB(skb)->same_flow = 1;
3910 	return 0;
3911 }
3912 EXPORT_SYMBOL_GPL(skb_gro_receive);
3913 
3914 void __init skb_init(void)
3915 {
3916 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
3917 					      sizeof(struct sk_buff),
3918 					      0,
3919 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3920 					      offsetof(struct sk_buff, cb),
3921 					      sizeof_field(struct sk_buff, cb),
3922 					      NULL);
3923 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3924 						sizeof(struct sk_buff_fclones),
3925 						0,
3926 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3927 						NULL);
3928 }
3929 
3930 static int
3931 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3932 	       unsigned int recursion_level)
3933 {
3934 	int start = skb_headlen(skb);
3935 	int i, copy = start - offset;
3936 	struct sk_buff *frag_iter;
3937 	int elt = 0;
3938 
3939 	if (unlikely(recursion_level >= 24))
3940 		return -EMSGSIZE;
3941 
3942 	if (copy > 0) {
3943 		if (copy > len)
3944 			copy = len;
3945 		sg_set_buf(sg, skb->data + offset, copy);
3946 		elt++;
3947 		if ((len -= copy) == 0)
3948 			return elt;
3949 		offset += copy;
3950 	}
3951 
3952 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3953 		int end;
3954 
3955 		WARN_ON(start > offset + len);
3956 
3957 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3958 		if ((copy = end - offset) > 0) {
3959 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3960 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3961 				return -EMSGSIZE;
3962 
3963 			if (copy > len)
3964 				copy = len;
3965 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3966 					frag->page_offset+offset-start);
3967 			elt++;
3968 			if (!(len -= copy))
3969 				return elt;
3970 			offset += copy;
3971 		}
3972 		start = end;
3973 	}
3974 
3975 	skb_walk_frags(skb, frag_iter) {
3976 		int end, ret;
3977 
3978 		WARN_ON(start > offset + len);
3979 
3980 		end = start + frag_iter->len;
3981 		if ((copy = end - offset) > 0) {
3982 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3983 				return -EMSGSIZE;
3984 
3985 			if (copy > len)
3986 				copy = len;
3987 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3988 					      copy, recursion_level + 1);
3989 			if (unlikely(ret < 0))
3990 				return ret;
3991 			elt += ret;
3992 			if ((len -= copy) == 0)
3993 				return elt;
3994 			offset += copy;
3995 		}
3996 		start = end;
3997 	}
3998 	BUG_ON(len);
3999 	return elt;
4000 }
4001 
4002 /**
4003  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4004  *	@skb: Socket buffer containing the buffers to be mapped
4005  *	@sg: The scatter-gather list to map into
4006  *	@offset: The offset into the buffer's contents to start mapping
4007  *	@len: Length of buffer space to be mapped
4008  *
4009  *	Fill the specified scatter-gather list with mappings/pointers into a
4010  *	region of the buffer space attached to a socket buffer. Returns either
4011  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4012  *	could not fit.
4013  */
4014 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4015 {
4016 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4017 
4018 	if (nsg <= 0)
4019 		return nsg;
4020 
4021 	sg_mark_end(&sg[nsg - 1]);
4022 
4023 	return nsg;
4024 }
4025 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4026 
4027 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4028  * sglist without mark the sg which contain last skb data as the end.
4029  * So the caller can mannipulate sg list as will when padding new data after
4030  * the first call without calling sg_unmark_end to expend sg list.
4031  *
4032  * Scenario to use skb_to_sgvec_nomark:
4033  * 1. sg_init_table
4034  * 2. skb_to_sgvec_nomark(payload1)
4035  * 3. skb_to_sgvec_nomark(payload2)
4036  *
4037  * This is equivalent to:
4038  * 1. sg_init_table
4039  * 2. skb_to_sgvec(payload1)
4040  * 3. sg_unmark_end
4041  * 4. skb_to_sgvec(payload2)
4042  *
4043  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4044  * is more preferable.
4045  */
4046 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4047 			int offset, int len)
4048 {
4049 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4050 }
4051 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4052 
4053 
4054 
4055 /**
4056  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4057  *	@skb: The socket buffer to check.
4058  *	@tailbits: Amount of trailing space to be added
4059  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4060  *
4061  *	Make sure that the data buffers attached to a socket buffer are
4062  *	writable. If they are not, private copies are made of the data buffers
4063  *	and the socket buffer is set to use these instead.
4064  *
4065  *	If @tailbits is given, make sure that there is space to write @tailbits
4066  *	bytes of data beyond current end of socket buffer.  @trailer will be
4067  *	set to point to the skb in which this space begins.
4068  *
4069  *	The number of scatterlist elements required to completely map the
4070  *	COW'd and extended socket buffer will be returned.
4071  */
4072 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4073 {
4074 	int copyflag;
4075 	int elt;
4076 	struct sk_buff *skb1, **skb_p;
4077 
4078 	/* If skb is cloned or its head is paged, reallocate
4079 	 * head pulling out all the pages (pages are considered not writable
4080 	 * at the moment even if they are anonymous).
4081 	 */
4082 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4083 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4084 		return -ENOMEM;
4085 
4086 	/* Easy case. Most of packets will go this way. */
4087 	if (!skb_has_frag_list(skb)) {
4088 		/* A little of trouble, not enough of space for trailer.
4089 		 * This should not happen, when stack is tuned to generate
4090 		 * good frames. OK, on miss we reallocate and reserve even more
4091 		 * space, 128 bytes is fair. */
4092 
4093 		if (skb_tailroom(skb) < tailbits &&
4094 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4095 			return -ENOMEM;
4096 
4097 		/* Voila! */
4098 		*trailer = skb;
4099 		return 1;
4100 	}
4101 
4102 	/* Misery. We are in troubles, going to mincer fragments... */
4103 
4104 	elt = 1;
4105 	skb_p = &skb_shinfo(skb)->frag_list;
4106 	copyflag = 0;
4107 
4108 	while ((skb1 = *skb_p) != NULL) {
4109 		int ntail = 0;
4110 
4111 		/* The fragment is partially pulled by someone,
4112 		 * this can happen on input. Copy it and everything
4113 		 * after it. */
4114 
4115 		if (skb_shared(skb1))
4116 			copyflag = 1;
4117 
4118 		/* If the skb is the last, worry about trailer. */
4119 
4120 		if (skb1->next == NULL && tailbits) {
4121 			if (skb_shinfo(skb1)->nr_frags ||
4122 			    skb_has_frag_list(skb1) ||
4123 			    skb_tailroom(skb1) < tailbits)
4124 				ntail = tailbits + 128;
4125 		}
4126 
4127 		if (copyflag ||
4128 		    skb_cloned(skb1) ||
4129 		    ntail ||
4130 		    skb_shinfo(skb1)->nr_frags ||
4131 		    skb_has_frag_list(skb1)) {
4132 			struct sk_buff *skb2;
4133 
4134 			/* Fuck, we are miserable poor guys... */
4135 			if (ntail == 0)
4136 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4137 			else
4138 				skb2 = skb_copy_expand(skb1,
4139 						       skb_headroom(skb1),
4140 						       ntail,
4141 						       GFP_ATOMIC);
4142 			if (unlikely(skb2 == NULL))
4143 				return -ENOMEM;
4144 
4145 			if (skb1->sk)
4146 				skb_set_owner_w(skb2, skb1->sk);
4147 
4148 			/* Looking around. Are we still alive?
4149 			 * OK, link new skb, drop old one */
4150 
4151 			skb2->next = skb1->next;
4152 			*skb_p = skb2;
4153 			kfree_skb(skb1);
4154 			skb1 = skb2;
4155 		}
4156 		elt++;
4157 		*trailer = skb1;
4158 		skb_p = &skb1->next;
4159 	}
4160 
4161 	return elt;
4162 }
4163 EXPORT_SYMBOL_GPL(skb_cow_data);
4164 
4165 static void sock_rmem_free(struct sk_buff *skb)
4166 {
4167 	struct sock *sk = skb->sk;
4168 
4169 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4170 }
4171 
4172 static void skb_set_err_queue(struct sk_buff *skb)
4173 {
4174 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4175 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4176 	 */
4177 	skb->pkt_type = PACKET_OUTGOING;
4178 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4179 }
4180 
4181 /*
4182  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4183  */
4184 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4185 {
4186 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4187 	    (unsigned int)sk->sk_rcvbuf)
4188 		return -ENOMEM;
4189 
4190 	skb_orphan(skb);
4191 	skb->sk = sk;
4192 	skb->destructor = sock_rmem_free;
4193 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4194 	skb_set_err_queue(skb);
4195 
4196 	/* before exiting rcu section, make sure dst is refcounted */
4197 	skb_dst_force(skb);
4198 
4199 	skb_queue_tail(&sk->sk_error_queue, skb);
4200 	if (!sock_flag(sk, SOCK_DEAD))
4201 		sk->sk_error_report(sk);
4202 	return 0;
4203 }
4204 EXPORT_SYMBOL(sock_queue_err_skb);
4205 
4206 static bool is_icmp_err_skb(const struct sk_buff *skb)
4207 {
4208 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4209 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4210 }
4211 
4212 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4213 {
4214 	struct sk_buff_head *q = &sk->sk_error_queue;
4215 	struct sk_buff *skb, *skb_next = NULL;
4216 	bool icmp_next = false;
4217 	unsigned long flags;
4218 
4219 	spin_lock_irqsave(&q->lock, flags);
4220 	skb = __skb_dequeue(q);
4221 	if (skb && (skb_next = skb_peek(q))) {
4222 		icmp_next = is_icmp_err_skb(skb_next);
4223 		if (icmp_next)
4224 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4225 	}
4226 	spin_unlock_irqrestore(&q->lock, flags);
4227 
4228 	if (is_icmp_err_skb(skb) && !icmp_next)
4229 		sk->sk_err = 0;
4230 
4231 	if (skb_next)
4232 		sk->sk_error_report(sk);
4233 
4234 	return skb;
4235 }
4236 EXPORT_SYMBOL(sock_dequeue_err_skb);
4237 
4238 /**
4239  * skb_clone_sk - create clone of skb, and take reference to socket
4240  * @skb: the skb to clone
4241  *
4242  * This function creates a clone of a buffer that holds a reference on
4243  * sk_refcnt.  Buffers created via this function are meant to be
4244  * returned using sock_queue_err_skb, or free via kfree_skb.
4245  *
4246  * When passing buffers allocated with this function to sock_queue_err_skb
4247  * it is necessary to wrap the call with sock_hold/sock_put in order to
4248  * prevent the socket from being released prior to being enqueued on
4249  * the sk_error_queue.
4250  */
4251 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4252 {
4253 	struct sock *sk = skb->sk;
4254 	struct sk_buff *clone;
4255 
4256 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4257 		return NULL;
4258 
4259 	clone = skb_clone(skb, GFP_ATOMIC);
4260 	if (!clone) {
4261 		sock_put(sk);
4262 		return NULL;
4263 	}
4264 
4265 	clone->sk = sk;
4266 	clone->destructor = sock_efree;
4267 
4268 	return clone;
4269 }
4270 EXPORT_SYMBOL(skb_clone_sk);
4271 
4272 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4273 					struct sock *sk,
4274 					int tstype,
4275 					bool opt_stats)
4276 {
4277 	struct sock_exterr_skb *serr;
4278 	int err;
4279 
4280 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4281 
4282 	serr = SKB_EXT_ERR(skb);
4283 	memset(serr, 0, sizeof(*serr));
4284 	serr->ee.ee_errno = ENOMSG;
4285 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4286 	serr->ee.ee_info = tstype;
4287 	serr->opt_stats = opt_stats;
4288 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4289 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4290 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4291 		if (sk->sk_protocol == IPPROTO_TCP &&
4292 		    sk->sk_type == SOCK_STREAM)
4293 			serr->ee.ee_data -= sk->sk_tskey;
4294 	}
4295 
4296 	err = sock_queue_err_skb(sk, skb);
4297 
4298 	if (err)
4299 		kfree_skb(skb);
4300 }
4301 
4302 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4303 {
4304 	bool ret;
4305 
4306 	if (likely(sysctl_tstamp_allow_data || tsonly))
4307 		return true;
4308 
4309 	read_lock_bh(&sk->sk_callback_lock);
4310 	ret = sk->sk_socket && sk->sk_socket->file &&
4311 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4312 	read_unlock_bh(&sk->sk_callback_lock);
4313 	return ret;
4314 }
4315 
4316 void skb_complete_tx_timestamp(struct sk_buff *skb,
4317 			       struct skb_shared_hwtstamps *hwtstamps)
4318 {
4319 	struct sock *sk = skb->sk;
4320 
4321 	if (!skb_may_tx_timestamp(sk, false))
4322 		goto err;
4323 
4324 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4325 	 * but only if the socket refcount is not zero.
4326 	 */
4327 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4328 		*skb_hwtstamps(skb) = *hwtstamps;
4329 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4330 		sock_put(sk);
4331 		return;
4332 	}
4333 
4334 err:
4335 	kfree_skb(skb);
4336 }
4337 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4338 
4339 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4340 		     struct skb_shared_hwtstamps *hwtstamps,
4341 		     struct sock *sk, int tstype)
4342 {
4343 	struct sk_buff *skb;
4344 	bool tsonly, opt_stats = false;
4345 
4346 	if (!sk)
4347 		return;
4348 
4349 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4350 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4351 		return;
4352 
4353 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4354 	if (!skb_may_tx_timestamp(sk, tsonly))
4355 		return;
4356 
4357 	if (tsonly) {
4358 #ifdef CONFIG_INET
4359 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4360 		    sk->sk_protocol == IPPROTO_TCP &&
4361 		    sk->sk_type == SOCK_STREAM) {
4362 			skb = tcp_get_timestamping_opt_stats(sk);
4363 			opt_stats = true;
4364 		} else
4365 #endif
4366 			skb = alloc_skb(0, GFP_ATOMIC);
4367 	} else {
4368 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4369 	}
4370 	if (!skb)
4371 		return;
4372 
4373 	if (tsonly) {
4374 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4375 					     SKBTX_ANY_TSTAMP;
4376 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4377 	}
4378 
4379 	if (hwtstamps)
4380 		*skb_hwtstamps(skb) = *hwtstamps;
4381 	else
4382 		skb->tstamp = ktime_get_real();
4383 
4384 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4385 }
4386 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4387 
4388 void skb_tstamp_tx(struct sk_buff *orig_skb,
4389 		   struct skb_shared_hwtstamps *hwtstamps)
4390 {
4391 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4392 			       SCM_TSTAMP_SND);
4393 }
4394 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4395 
4396 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4397 {
4398 	struct sock *sk = skb->sk;
4399 	struct sock_exterr_skb *serr;
4400 	int err = 1;
4401 
4402 	skb->wifi_acked_valid = 1;
4403 	skb->wifi_acked = acked;
4404 
4405 	serr = SKB_EXT_ERR(skb);
4406 	memset(serr, 0, sizeof(*serr));
4407 	serr->ee.ee_errno = ENOMSG;
4408 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4409 
4410 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4411 	 * but only if the socket refcount is not zero.
4412 	 */
4413 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4414 		err = sock_queue_err_skb(sk, skb);
4415 		sock_put(sk);
4416 	}
4417 	if (err)
4418 		kfree_skb(skb);
4419 }
4420 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4421 
4422 /**
4423  * skb_partial_csum_set - set up and verify partial csum values for packet
4424  * @skb: the skb to set
4425  * @start: the number of bytes after skb->data to start checksumming.
4426  * @off: the offset from start to place the checksum.
4427  *
4428  * For untrusted partially-checksummed packets, we need to make sure the values
4429  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4430  *
4431  * This function checks and sets those values and skb->ip_summed: if this
4432  * returns false you should drop the packet.
4433  */
4434 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4435 {
4436 	if (unlikely(start > skb_headlen(skb)) ||
4437 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
4438 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4439 				     start, off, skb_headlen(skb));
4440 		return false;
4441 	}
4442 	skb->ip_summed = CHECKSUM_PARTIAL;
4443 	skb->csum_start = skb_headroom(skb) + start;
4444 	skb->csum_offset = off;
4445 	skb_set_transport_header(skb, start);
4446 	return true;
4447 }
4448 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4449 
4450 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4451 			       unsigned int max)
4452 {
4453 	if (skb_headlen(skb) >= len)
4454 		return 0;
4455 
4456 	/* If we need to pullup then pullup to the max, so we
4457 	 * won't need to do it again.
4458 	 */
4459 	if (max > skb->len)
4460 		max = skb->len;
4461 
4462 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4463 		return -ENOMEM;
4464 
4465 	if (skb_headlen(skb) < len)
4466 		return -EPROTO;
4467 
4468 	return 0;
4469 }
4470 
4471 #define MAX_TCP_HDR_LEN (15 * 4)
4472 
4473 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4474 				      typeof(IPPROTO_IP) proto,
4475 				      unsigned int off)
4476 {
4477 	switch (proto) {
4478 		int err;
4479 
4480 	case IPPROTO_TCP:
4481 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4482 					  off + MAX_TCP_HDR_LEN);
4483 		if (!err && !skb_partial_csum_set(skb, off,
4484 						  offsetof(struct tcphdr,
4485 							   check)))
4486 			err = -EPROTO;
4487 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4488 
4489 	case IPPROTO_UDP:
4490 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4491 					  off + sizeof(struct udphdr));
4492 		if (!err && !skb_partial_csum_set(skb, off,
4493 						  offsetof(struct udphdr,
4494 							   check)))
4495 			err = -EPROTO;
4496 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4497 	}
4498 
4499 	return ERR_PTR(-EPROTO);
4500 }
4501 
4502 /* This value should be large enough to cover a tagged ethernet header plus
4503  * maximally sized IP and TCP or UDP headers.
4504  */
4505 #define MAX_IP_HDR_LEN 128
4506 
4507 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4508 {
4509 	unsigned int off;
4510 	bool fragment;
4511 	__sum16 *csum;
4512 	int err;
4513 
4514 	fragment = false;
4515 
4516 	err = skb_maybe_pull_tail(skb,
4517 				  sizeof(struct iphdr),
4518 				  MAX_IP_HDR_LEN);
4519 	if (err < 0)
4520 		goto out;
4521 
4522 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4523 		fragment = true;
4524 
4525 	off = ip_hdrlen(skb);
4526 
4527 	err = -EPROTO;
4528 
4529 	if (fragment)
4530 		goto out;
4531 
4532 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4533 	if (IS_ERR(csum))
4534 		return PTR_ERR(csum);
4535 
4536 	if (recalculate)
4537 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4538 					   ip_hdr(skb)->daddr,
4539 					   skb->len - off,
4540 					   ip_hdr(skb)->protocol, 0);
4541 	err = 0;
4542 
4543 out:
4544 	return err;
4545 }
4546 
4547 /* This value should be large enough to cover a tagged ethernet header plus
4548  * an IPv6 header, all options, and a maximal TCP or UDP header.
4549  */
4550 #define MAX_IPV6_HDR_LEN 256
4551 
4552 #define OPT_HDR(type, skb, off) \
4553 	(type *)(skb_network_header(skb) + (off))
4554 
4555 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4556 {
4557 	int err;
4558 	u8 nexthdr;
4559 	unsigned int off;
4560 	unsigned int len;
4561 	bool fragment;
4562 	bool done;
4563 	__sum16 *csum;
4564 
4565 	fragment = false;
4566 	done = false;
4567 
4568 	off = sizeof(struct ipv6hdr);
4569 
4570 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4571 	if (err < 0)
4572 		goto out;
4573 
4574 	nexthdr = ipv6_hdr(skb)->nexthdr;
4575 
4576 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4577 	while (off <= len && !done) {
4578 		switch (nexthdr) {
4579 		case IPPROTO_DSTOPTS:
4580 		case IPPROTO_HOPOPTS:
4581 		case IPPROTO_ROUTING: {
4582 			struct ipv6_opt_hdr *hp;
4583 
4584 			err = skb_maybe_pull_tail(skb,
4585 						  off +
4586 						  sizeof(struct ipv6_opt_hdr),
4587 						  MAX_IPV6_HDR_LEN);
4588 			if (err < 0)
4589 				goto out;
4590 
4591 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4592 			nexthdr = hp->nexthdr;
4593 			off += ipv6_optlen(hp);
4594 			break;
4595 		}
4596 		case IPPROTO_AH: {
4597 			struct ip_auth_hdr *hp;
4598 
4599 			err = skb_maybe_pull_tail(skb,
4600 						  off +
4601 						  sizeof(struct ip_auth_hdr),
4602 						  MAX_IPV6_HDR_LEN);
4603 			if (err < 0)
4604 				goto out;
4605 
4606 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4607 			nexthdr = hp->nexthdr;
4608 			off += ipv6_authlen(hp);
4609 			break;
4610 		}
4611 		case IPPROTO_FRAGMENT: {
4612 			struct frag_hdr *hp;
4613 
4614 			err = skb_maybe_pull_tail(skb,
4615 						  off +
4616 						  sizeof(struct frag_hdr),
4617 						  MAX_IPV6_HDR_LEN);
4618 			if (err < 0)
4619 				goto out;
4620 
4621 			hp = OPT_HDR(struct frag_hdr, skb, off);
4622 
4623 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4624 				fragment = true;
4625 
4626 			nexthdr = hp->nexthdr;
4627 			off += sizeof(struct frag_hdr);
4628 			break;
4629 		}
4630 		default:
4631 			done = true;
4632 			break;
4633 		}
4634 	}
4635 
4636 	err = -EPROTO;
4637 
4638 	if (!done || fragment)
4639 		goto out;
4640 
4641 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4642 	if (IS_ERR(csum))
4643 		return PTR_ERR(csum);
4644 
4645 	if (recalculate)
4646 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4647 					 &ipv6_hdr(skb)->daddr,
4648 					 skb->len - off, nexthdr, 0);
4649 	err = 0;
4650 
4651 out:
4652 	return err;
4653 }
4654 
4655 /**
4656  * skb_checksum_setup - set up partial checksum offset
4657  * @skb: the skb to set up
4658  * @recalculate: if true the pseudo-header checksum will be recalculated
4659  */
4660 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4661 {
4662 	int err;
4663 
4664 	switch (skb->protocol) {
4665 	case htons(ETH_P_IP):
4666 		err = skb_checksum_setup_ipv4(skb, recalculate);
4667 		break;
4668 
4669 	case htons(ETH_P_IPV6):
4670 		err = skb_checksum_setup_ipv6(skb, recalculate);
4671 		break;
4672 
4673 	default:
4674 		err = -EPROTO;
4675 		break;
4676 	}
4677 
4678 	return err;
4679 }
4680 EXPORT_SYMBOL(skb_checksum_setup);
4681 
4682 /**
4683  * skb_checksum_maybe_trim - maybe trims the given skb
4684  * @skb: the skb to check
4685  * @transport_len: the data length beyond the network header
4686  *
4687  * Checks whether the given skb has data beyond the given transport length.
4688  * If so, returns a cloned skb trimmed to this transport length.
4689  * Otherwise returns the provided skb. Returns NULL in error cases
4690  * (e.g. transport_len exceeds skb length or out-of-memory).
4691  *
4692  * Caller needs to set the skb transport header and free any returned skb if it
4693  * differs from the provided skb.
4694  */
4695 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4696 					       unsigned int transport_len)
4697 {
4698 	struct sk_buff *skb_chk;
4699 	unsigned int len = skb_transport_offset(skb) + transport_len;
4700 	int ret;
4701 
4702 	if (skb->len < len)
4703 		return NULL;
4704 	else if (skb->len == len)
4705 		return skb;
4706 
4707 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4708 	if (!skb_chk)
4709 		return NULL;
4710 
4711 	ret = pskb_trim_rcsum(skb_chk, len);
4712 	if (ret) {
4713 		kfree_skb(skb_chk);
4714 		return NULL;
4715 	}
4716 
4717 	return skb_chk;
4718 }
4719 
4720 /**
4721  * skb_checksum_trimmed - validate checksum of an skb
4722  * @skb: the skb to check
4723  * @transport_len: the data length beyond the network header
4724  * @skb_chkf: checksum function to use
4725  *
4726  * Applies the given checksum function skb_chkf to the provided skb.
4727  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4728  *
4729  * If the skb has data beyond the given transport length, then a
4730  * trimmed & cloned skb is checked and returned.
4731  *
4732  * Caller needs to set the skb transport header and free any returned skb if it
4733  * differs from the provided skb.
4734  */
4735 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4736 				     unsigned int transport_len,
4737 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4738 {
4739 	struct sk_buff *skb_chk;
4740 	unsigned int offset = skb_transport_offset(skb);
4741 	__sum16 ret;
4742 
4743 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4744 	if (!skb_chk)
4745 		goto err;
4746 
4747 	if (!pskb_may_pull(skb_chk, offset))
4748 		goto err;
4749 
4750 	skb_pull_rcsum(skb_chk, offset);
4751 	ret = skb_chkf(skb_chk);
4752 	skb_push_rcsum(skb_chk, offset);
4753 
4754 	if (ret)
4755 		goto err;
4756 
4757 	return skb_chk;
4758 
4759 err:
4760 	if (skb_chk && skb_chk != skb)
4761 		kfree_skb(skb_chk);
4762 
4763 	return NULL;
4764 
4765 }
4766 EXPORT_SYMBOL(skb_checksum_trimmed);
4767 
4768 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4769 {
4770 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4771 			     skb->dev->name);
4772 }
4773 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4774 
4775 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4776 {
4777 	if (head_stolen) {
4778 		skb_release_head_state(skb);
4779 		kmem_cache_free(skbuff_head_cache, skb);
4780 	} else {
4781 		__kfree_skb(skb);
4782 	}
4783 }
4784 EXPORT_SYMBOL(kfree_skb_partial);
4785 
4786 /**
4787  * skb_try_coalesce - try to merge skb to prior one
4788  * @to: prior buffer
4789  * @from: buffer to add
4790  * @fragstolen: pointer to boolean
4791  * @delta_truesize: how much more was allocated than was requested
4792  */
4793 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4794 		      bool *fragstolen, int *delta_truesize)
4795 {
4796 	struct skb_shared_info *to_shinfo, *from_shinfo;
4797 	int i, delta, len = from->len;
4798 
4799 	*fragstolen = false;
4800 
4801 	if (skb_cloned(to))
4802 		return false;
4803 
4804 	if (len <= skb_tailroom(to)) {
4805 		if (len)
4806 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4807 		*delta_truesize = 0;
4808 		return true;
4809 	}
4810 
4811 	to_shinfo = skb_shinfo(to);
4812 	from_shinfo = skb_shinfo(from);
4813 	if (to_shinfo->frag_list || from_shinfo->frag_list)
4814 		return false;
4815 	if (skb_zcopy(to) || skb_zcopy(from))
4816 		return false;
4817 
4818 	if (skb_headlen(from) != 0) {
4819 		struct page *page;
4820 		unsigned int offset;
4821 
4822 		if (to_shinfo->nr_frags +
4823 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4824 			return false;
4825 
4826 		if (skb_head_is_locked(from))
4827 			return false;
4828 
4829 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4830 
4831 		page = virt_to_head_page(from->head);
4832 		offset = from->data - (unsigned char *)page_address(page);
4833 
4834 		skb_fill_page_desc(to, to_shinfo->nr_frags,
4835 				   page, offset, skb_headlen(from));
4836 		*fragstolen = true;
4837 	} else {
4838 		if (to_shinfo->nr_frags +
4839 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
4840 			return false;
4841 
4842 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4843 	}
4844 
4845 	WARN_ON_ONCE(delta < len);
4846 
4847 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4848 	       from_shinfo->frags,
4849 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
4850 	to_shinfo->nr_frags += from_shinfo->nr_frags;
4851 
4852 	if (!skb_cloned(from))
4853 		from_shinfo->nr_frags = 0;
4854 
4855 	/* if the skb is not cloned this does nothing
4856 	 * since we set nr_frags to 0.
4857 	 */
4858 	for (i = 0; i < from_shinfo->nr_frags; i++)
4859 		__skb_frag_ref(&from_shinfo->frags[i]);
4860 
4861 	to->truesize += delta;
4862 	to->len += len;
4863 	to->data_len += len;
4864 
4865 	*delta_truesize = delta;
4866 	return true;
4867 }
4868 EXPORT_SYMBOL(skb_try_coalesce);
4869 
4870 /**
4871  * skb_scrub_packet - scrub an skb
4872  *
4873  * @skb: buffer to clean
4874  * @xnet: packet is crossing netns
4875  *
4876  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4877  * into/from a tunnel. Some information have to be cleared during these
4878  * operations.
4879  * skb_scrub_packet can also be used to clean a skb before injecting it in
4880  * another namespace (@xnet == true). We have to clear all information in the
4881  * skb that could impact namespace isolation.
4882  */
4883 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4884 {
4885 	skb->tstamp = 0;
4886 	skb->pkt_type = PACKET_HOST;
4887 	skb->skb_iif = 0;
4888 	skb->ignore_df = 0;
4889 	skb_dst_drop(skb);
4890 	secpath_reset(skb);
4891 	nf_reset(skb);
4892 	nf_reset_trace(skb);
4893 
4894 	if (!xnet)
4895 		return;
4896 
4897 	ipvs_reset(skb);
4898 	skb_orphan(skb);
4899 	skb->mark = 0;
4900 }
4901 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4902 
4903 /**
4904  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4905  *
4906  * @skb: GSO skb
4907  *
4908  * skb_gso_transport_seglen is used to determine the real size of the
4909  * individual segments, including Layer4 headers (TCP/UDP).
4910  *
4911  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4912  */
4913 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4914 {
4915 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4916 	unsigned int thlen = 0;
4917 
4918 	if (skb->encapsulation) {
4919 		thlen = skb_inner_transport_header(skb) -
4920 			skb_transport_header(skb);
4921 
4922 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4923 			thlen += inner_tcp_hdrlen(skb);
4924 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4925 		thlen = tcp_hdrlen(skb);
4926 	} else if (unlikely(skb_is_gso_sctp(skb))) {
4927 		thlen = sizeof(struct sctphdr);
4928 	}
4929 	/* UFO sets gso_size to the size of the fragmentation
4930 	 * payload, i.e. the size of the L4 (UDP) header is already
4931 	 * accounted for.
4932 	 */
4933 	return thlen + shinfo->gso_size;
4934 }
4935 
4936 /**
4937  * skb_gso_network_seglen - Return length of individual segments of a gso packet
4938  *
4939  * @skb: GSO skb
4940  *
4941  * skb_gso_network_seglen is used to determine the real size of the
4942  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4943  *
4944  * The MAC/L2 header is not accounted for.
4945  */
4946 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4947 {
4948 	unsigned int hdr_len = skb_transport_header(skb) -
4949 			       skb_network_header(skb);
4950 
4951 	return hdr_len + skb_gso_transport_seglen(skb);
4952 }
4953 
4954 /**
4955  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4956  *
4957  * @skb: GSO skb
4958  *
4959  * skb_gso_mac_seglen is used to determine the real size of the
4960  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4961  * headers (TCP/UDP).
4962  */
4963 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
4964 {
4965 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
4966 
4967 	return hdr_len + skb_gso_transport_seglen(skb);
4968 }
4969 
4970 /**
4971  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
4972  *
4973  * There are a couple of instances where we have a GSO skb, and we
4974  * want to determine what size it would be after it is segmented.
4975  *
4976  * We might want to check:
4977  * -    L3+L4+payload size (e.g. IP forwarding)
4978  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
4979  *
4980  * This is a helper to do that correctly considering GSO_BY_FRAGS.
4981  *
4982  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
4983  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
4984  *
4985  * @max_len: The maximum permissible length.
4986  *
4987  * Returns true if the segmented length <= max length.
4988  */
4989 static inline bool skb_gso_size_check(const struct sk_buff *skb,
4990 				      unsigned int seg_len,
4991 				      unsigned int max_len) {
4992 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4993 	const struct sk_buff *iter;
4994 
4995 	if (shinfo->gso_size != GSO_BY_FRAGS)
4996 		return seg_len <= max_len;
4997 
4998 	/* Undo this so we can re-use header sizes */
4999 	seg_len -= GSO_BY_FRAGS;
5000 
5001 	skb_walk_frags(skb, iter) {
5002 		if (seg_len + skb_headlen(iter) > max_len)
5003 			return false;
5004 	}
5005 
5006 	return true;
5007 }
5008 
5009 /**
5010  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5011  *
5012  * @skb: GSO skb
5013  * @mtu: MTU to validate against
5014  *
5015  * skb_gso_validate_network_len validates if a given skb will fit a
5016  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5017  * payload.
5018  */
5019 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5020 {
5021 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5022 }
5023 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5024 
5025 /**
5026  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5027  *
5028  * @skb: GSO skb
5029  * @len: length to validate against
5030  *
5031  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5032  * length once split, including L2, L3 and L4 headers and the payload.
5033  */
5034 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5035 {
5036 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5037 }
5038 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5039 
5040 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5041 {
5042 	int mac_len;
5043 
5044 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5045 		kfree_skb(skb);
5046 		return NULL;
5047 	}
5048 
5049 	mac_len = skb->data - skb_mac_header(skb);
5050 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5051 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5052 			mac_len - VLAN_HLEN - ETH_TLEN);
5053 	}
5054 	skb->mac_header += VLAN_HLEN;
5055 	return skb;
5056 }
5057 
5058 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5059 {
5060 	struct vlan_hdr *vhdr;
5061 	u16 vlan_tci;
5062 
5063 	if (unlikely(skb_vlan_tag_present(skb))) {
5064 		/* vlan_tci is already set-up so leave this for another time */
5065 		return skb;
5066 	}
5067 
5068 	skb = skb_share_check(skb, GFP_ATOMIC);
5069 	if (unlikely(!skb))
5070 		goto err_free;
5071 
5072 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5073 		goto err_free;
5074 
5075 	vhdr = (struct vlan_hdr *)skb->data;
5076 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5077 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5078 
5079 	skb_pull_rcsum(skb, VLAN_HLEN);
5080 	vlan_set_encap_proto(skb, vhdr);
5081 
5082 	skb = skb_reorder_vlan_header(skb);
5083 	if (unlikely(!skb))
5084 		goto err_free;
5085 
5086 	skb_reset_network_header(skb);
5087 	skb_reset_transport_header(skb);
5088 	skb_reset_mac_len(skb);
5089 
5090 	return skb;
5091 
5092 err_free:
5093 	kfree_skb(skb);
5094 	return NULL;
5095 }
5096 EXPORT_SYMBOL(skb_vlan_untag);
5097 
5098 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5099 {
5100 	if (!pskb_may_pull(skb, write_len))
5101 		return -ENOMEM;
5102 
5103 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5104 		return 0;
5105 
5106 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5107 }
5108 EXPORT_SYMBOL(skb_ensure_writable);
5109 
5110 /* remove VLAN header from packet and update csum accordingly.
5111  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5112  */
5113 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5114 {
5115 	struct vlan_hdr *vhdr;
5116 	int offset = skb->data - skb_mac_header(skb);
5117 	int err;
5118 
5119 	if (WARN_ONCE(offset,
5120 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5121 		      offset)) {
5122 		return -EINVAL;
5123 	}
5124 
5125 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5126 	if (unlikely(err))
5127 		return err;
5128 
5129 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5130 
5131 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5132 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5133 
5134 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5135 	__skb_pull(skb, VLAN_HLEN);
5136 
5137 	vlan_set_encap_proto(skb, vhdr);
5138 	skb->mac_header += VLAN_HLEN;
5139 
5140 	if (skb_network_offset(skb) < ETH_HLEN)
5141 		skb_set_network_header(skb, ETH_HLEN);
5142 
5143 	skb_reset_mac_len(skb);
5144 
5145 	return err;
5146 }
5147 EXPORT_SYMBOL(__skb_vlan_pop);
5148 
5149 /* Pop a vlan tag either from hwaccel or from payload.
5150  * Expects skb->data at mac header.
5151  */
5152 int skb_vlan_pop(struct sk_buff *skb)
5153 {
5154 	u16 vlan_tci;
5155 	__be16 vlan_proto;
5156 	int err;
5157 
5158 	if (likely(skb_vlan_tag_present(skb))) {
5159 		skb->vlan_tci = 0;
5160 	} else {
5161 		if (unlikely(!eth_type_vlan(skb->protocol)))
5162 			return 0;
5163 
5164 		err = __skb_vlan_pop(skb, &vlan_tci);
5165 		if (err)
5166 			return err;
5167 	}
5168 	/* move next vlan tag to hw accel tag */
5169 	if (likely(!eth_type_vlan(skb->protocol)))
5170 		return 0;
5171 
5172 	vlan_proto = skb->protocol;
5173 	err = __skb_vlan_pop(skb, &vlan_tci);
5174 	if (unlikely(err))
5175 		return err;
5176 
5177 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5178 	return 0;
5179 }
5180 EXPORT_SYMBOL(skb_vlan_pop);
5181 
5182 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5183  * Expects skb->data at mac header.
5184  */
5185 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5186 {
5187 	if (skb_vlan_tag_present(skb)) {
5188 		int offset = skb->data - skb_mac_header(skb);
5189 		int err;
5190 
5191 		if (WARN_ONCE(offset,
5192 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5193 			      offset)) {
5194 			return -EINVAL;
5195 		}
5196 
5197 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5198 					skb_vlan_tag_get(skb));
5199 		if (err)
5200 			return err;
5201 
5202 		skb->protocol = skb->vlan_proto;
5203 		skb->mac_len += VLAN_HLEN;
5204 
5205 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5206 	}
5207 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5208 	return 0;
5209 }
5210 EXPORT_SYMBOL(skb_vlan_push);
5211 
5212 /**
5213  * alloc_skb_with_frags - allocate skb with page frags
5214  *
5215  * @header_len: size of linear part
5216  * @data_len: needed length in frags
5217  * @max_page_order: max page order desired.
5218  * @errcode: pointer to error code if any
5219  * @gfp_mask: allocation mask
5220  *
5221  * This can be used to allocate a paged skb, given a maximal order for frags.
5222  */
5223 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5224 				     unsigned long data_len,
5225 				     int max_page_order,
5226 				     int *errcode,
5227 				     gfp_t gfp_mask)
5228 {
5229 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5230 	unsigned long chunk;
5231 	struct sk_buff *skb;
5232 	struct page *page;
5233 	gfp_t gfp_head;
5234 	int i;
5235 
5236 	*errcode = -EMSGSIZE;
5237 	/* Note this test could be relaxed, if we succeed to allocate
5238 	 * high order pages...
5239 	 */
5240 	if (npages > MAX_SKB_FRAGS)
5241 		return NULL;
5242 
5243 	gfp_head = gfp_mask;
5244 	if (gfp_head & __GFP_DIRECT_RECLAIM)
5245 		gfp_head |= __GFP_RETRY_MAYFAIL;
5246 
5247 	*errcode = -ENOBUFS;
5248 	skb = alloc_skb(header_len, gfp_head);
5249 	if (!skb)
5250 		return NULL;
5251 
5252 	skb->truesize += npages << PAGE_SHIFT;
5253 
5254 	for (i = 0; npages > 0; i++) {
5255 		int order = max_page_order;
5256 
5257 		while (order) {
5258 			if (npages >= 1 << order) {
5259 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5260 						   __GFP_COMP |
5261 						   __GFP_NOWARN |
5262 						   __GFP_NORETRY,
5263 						   order);
5264 				if (page)
5265 					goto fill_page;
5266 				/* Do not retry other high order allocations */
5267 				order = 1;
5268 				max_page_order = 0;
5269 			}
5270 			order--;
5271 		}
5272 		page = alloc_page(gfp_mask);
5273 		if (!page)
5274 			goto failure;
5275 fill_page:
5276 		chunk = min_t(unsigned long, data_len,
5277 			      PAGE_SIZE << order);
5278 		skb_fill_page_desc(skb, i, page, 0, chunk);
5279 		data_len -= chunk;
5280 		npages -= 1 << order;
5281 	}
5282 	return skb;
5283 
5284 failure:
5285 	kfree_skb(skb);
5286 	return NULL;
5287 }
5288 EXPORT_SYMBOL(alloc_skb_with_frags);
5289 
5290 /* carve out the first off bytes from skb when off < headlen */
5291 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5292 				    const int headlen, gfp_t gfp_mask)
5293 {
5294 	int i;
5295 	int size = skb_end_offset(skb);
5296 	int new_hlen = headlen - off;
5297 	u8 *data;
5298 
5299 	size = SKB_DATA_ALIGN(size);
5300 
5301 	if (skb_pfmemalloc(skb))
5302 		gfp_mask |= __GFP_MEMALLOC;
5303 	data = kmalloc_reserve(size +
5304 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5305 			       gfp_mask, NUMA_NO_NODE, NULL);
5306 	if (!data)
5307 		return -ENOMEM;
5308 
5309 	size = SKB_WITH_OVERHEAD(ksize(data));
5310 
5311 	/* Copy real data, and all frags */
5312 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5313 	skb->len -= off;
5314 
5315 	memcpy((struct skb_shared_info *)(data + size),
5316 	       skb_shinfo(skb),
5317 	       offsetof(struct skb_shared_info,
5318 			frags[skb_shinfo(skb)->nr_frags]));
5319 	if (skb_cloned(skb)) {
5320 		/* drop the old head gracefully */
5321 		if (skb_orphan_frags(skb, gfp_mask)) {
5322 			kfree(data);
5323 			return -ENOMEM;
5324 		}
5325 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5326 			skb_frag_ref(skb, i);
5327 		if (skb_has_frag_list(skb))
5328 			skb_clone_fraglist(skb);
5329 		skb_release_data(skb);
5330 	} else {
5331 		/* we can reuse existing recount- all we did was
5332 		 * relocate values
5333 		 */
5334 		skb_free_head(skb);
5335 	}
5336 
5337 	skb->head = data;
5338 	skb->data = data;
5339 	skb->head_frag = 0;
5340 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5341 	skb->end = size;
5342 #else
5343 	skb->end = skb->head + size;
5344 #endif
5345 	skb_set_tail_pointer(skb, skb_headlen(skb));
5346 	skb_headers_offset_update(skb, 0);
5347 	skb->cloned = 0;
5348 	skb->hdr_len = 0;
5349 	skb->nohdr = 0;
5350 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5351 
5352 	return 0;
5353 }
5354 
5355 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5356 
5357 /* carve out the first eat bytes from skb's frag_list. May recurse into
5358  * pskb_carve()
5359  */
5360 static int pskb_carve_frag_list(struct sk_buff *skb,
5361 				struct skb_shared_info *shinfo, int eat,
5362 				gfp_t gfp_mask)
5363 {
5364 	struct sk_buff *list = shinfo->frag_list;
5365 	struct sk_buff *clone = NULL;
5366 	struct sk_buff *insp = NULL;
5367 
5368 	do {
5369 		if (!list) {
5370 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5371 			return -EFAULT;
5372 		}
5373 		if (list->len <= eat) {
5374 			/* Eaten as whole. */
5375 			eat -= list->len;
5376 			list = list->next;
5377 			insp = list;
5378 		} else {
5379 			/* Eaten partially. */
5380 			if (skb_shared(list)) {
5381 				clone = skb_clone(list, gfp_mask);
5382 				if (!clone)
5383 					return -ENOMEM;
5384 				insp = list->next;
5385 				list = clone;
5386 			} else {
5387 				/* This may be pulled without problems. */
5388 				insp = list;
5389 			}
5390 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5391 				kfree_skb(clone);
5392 				return -ENOMEM;
5393 			}
5394 			break;
5395 		}
5396 	} while (eat);
5397 
5398 	/* Free pulled out fragments. */
5399 	while ((list = shinfo->frag_list) != insp) {
5400 		shinfo->frag_list = list->next;
5401 		kfree_skb(list);
5402 	}
5403 	/* And insert new clone at head. */
5404 	if (clone) {
5405 		clone->next = list;
5406 		shinfo->frag_list = clone;
5407 	}
5408 	return 0;
5409 }
5410 
5411 /* carve off first len bytes from skb. Split line (off) is in the
5412  * non-linear part of skb
5413  */
5414 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5415 				       int pos, gfp_t gfp_mask)
5416 {
5417 	int i, k = 0;
5418 	int size = skb_end_offset(skb);
5419 	u8 *data;
5420 	const int nfrags = skb_shinfo(skb)->nr_frags;
5421 	struct skb_shared_info *shinfo;
5422 
5423 	size = SKB_DATA_ALIGN(size);
5424 
5425 	if (skb_pfmemalloc(skb))
5426 		gfp_mask |= __GFP_MEMALLOC;
5427 	data = kmalloc_reserve(size +
5428 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5429 			       gfp_mask, NUMA_NO_NODE, NULL);
5430 	if (!data)
5431 		return -ENOMEM;
5432 
5433 	size = SKB_WITH_OVERHEAD(ksize(data));
5434 
5435 	memcpy((struct skb_shared_info *)(data + size),
5436 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5437 					 frags[skb_shinfo(skb)->nr_frags]));
5438 	if (skb_orphan_frags(skb, gfp_mask)) {
5439 		kfree(data);
5440 		return -ENOMEM;
5441 	}
5442 	shinfo = (struct skb_shared_info *)(data + size);
5443 	for (i = 0; i < nfrags; i++) {
5444 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5445 
5446 		if (pos + fsize > off) {
5447 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5448 
5449 			if (pos < off) {
5450 				/* Split frag.
5451 				 * We have two variants in this case:
5452 				 * 1. Move all the frag to the second
5453 				 *    part, if it is possible. F.e.
5454 				 *    this approach is mandatory for TUX,
5455 				 *    where splitting is expensive.
5456 				 * 2. Split is accurately. We make this.
5457 				 */
5458 				shinfo->frags[0].page_offset += off - pos;
5459 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5460 			}
5461 			skb_frag_ref(skb, i);
5462 			k++;
5463 		}
5464 		pos += fsize;
5465 	}
5466 	shinfo->nr_frags = k;
5467 	if (skb_has_frag_list(skb))
5468 		skb_clone_fraglist(skb);
5469 
5470 	if (k == 0) {
5471 		/* split line is in frag list */
5472 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5473 	}
5474 	skb_release_data(skb);
5475 
5476 	skb->head = data;
5477 	skb->head_frag = 0;
5478 	skb->data = data;
5479 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5480 	skb->end = size;
5481 #else
5482 	skb->end = skb->head + size;
5483 #endif
5484 	skb_reset_tail_pointer(skb);
5485 	skb_headers_offset_update(skb, 0);
5486 	skb->cloned   = 0;
5487 	skb->hdr_len  = 0;
5488 	skb->nohdr    = 0;
5489 	skb->len -= off;
5490 	skb->data_len = skb->len;
5491 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5492 	return 0;
5493 }
5494 
5495 /* remove len bytes from the beginning of the skb */
5496 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5497 {
5498 	int headlen = skb_headlen(skb);
5499 
5500 	if (len < headlen)
5501 		return pskb_carve_inside_header(skb, len, headlen, gfp);
5502 	else
5503 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5504 }
5505 
5506 /* Extract to_copy bytes starting at off from skb, and return this in
5507  * a new skb
5508  */
5509 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5510 			     int to_copy, gfp_t gfp)
5511 {
5512 	struct sk_buff  *clone = skb_clone(skb, gfp);
5513 
5514 	if (!clone)
5515 		return NULL;
5516 
5517 	if (pskb_carve(clone, off, gfp) < 0 ||
5518 	    pskb_trim(clone, to_copy)) {
5519 		kfree_skb(clone);
5520 		return NULL;
5521 	}
5522 	return clone;
5523 }
5524 EXPORT_SYMBOL(pskb_extract);
5525 
5526 /**
5527  * skb_condense - try to get rid of fragments/frag_list if possible
5528  * @skb: buffer
5529  *
5530  * Can be used to save memory before skb is added to a busy queue.
5531  * If packet has bytes in frags and enough tail room in skb->head,
5532  * pull all of them, so that we can free the frags right now and adjust
5533  * truesize.
5534  * Notes:
5535  *	We do not reallocate skb->head thus can not fail.
5536  *	Caller must re-evaluate skb->truesize if needed.
5537  */
5538 void skb_condense(struct sk_buff *skb)
5539 {
5540 	if (skb->data_len) {
5541 		if (skb->data_len > skb->end - skb->tail ||
5542 		    skb_cloned(skb))
5543 			return;
5544 
5545 		/* Nice, we can free page frag(s) right now */
5546 		__pskb_pull_tail(skb, skb->data_len);
5547 	}
5548 	/* At this point, skb->truesize might be over estimated,
5549 	 * because skb had a fragment, and fragments do not tell
5550 	 * their truesize.
5551 	 * When we pulled its content into skb->head, fragment
5552 	 * was freed, but __pskb_pull_tail() could not possibly
5553 	 * adjust skb->truesize, not knowing the frag truesize.
5554 	 */
5555 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5556 }
5557