xref: /linux/net/core/skbuff.c (revision 48ba00da2eb4b54a7e6ed2ca3a9f2e575dff48c9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/bitfield.h>
62 #include <linux/if_vlan.h>
63 #include <linux/mpls.h>
64 #include <linux/kcov.h>
65 #include <linux/iov_iter.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/gso.h>
72 #include <net/hotdata.h>
73 #include <net/ip6_checksum.h>
74 #include <net/xfrm.h>
75 #include <net/mpls.h>
76 #include <net/mptcp.h>
77 #include <net/mctp.h>
78 #include <net/page_pool/helpers.h>
79 #include <net/dropreason.h>
80 
81 #include <linux/uaccess.h>
82 #include <trace/events/skb.h>
83 #include <linux/highmem.h>
84 #include <linux/capability.h>
85 #include <linux/user_namespace.h>
86 #include <linux/indirect_call_wrapper.h>
87 #include <linux/textsearch.h>
88 
89 #include "dev.h"
90 #include "sock_destructor.h"
91 
92 #ifdef CONFIG_SKB_EXTENSIONS
93 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
94 #endif
95 
96 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
97 
98 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
99  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
100  * size, and we can differentiate heads from skb_small_head_cache
101  * vs system slabs by looking at their size (skb_end_offset()).
102  */
103 #define SKB_SMALL_HEAD_CACHE_SIZE					\
104 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
105 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
106 		SKB_SMALL_HEAD_SIZE)
107 
108 #define SKB_SMALL_HEAD_HEADROOM						\
109 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
110 
111 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
112 EXPORT_SYMBOL(sysctl_max_skb_frags);
113 
114 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
115  * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
116  * netmem is a page.
117  */
118 static_assert(offsetof(struct bio_vec, bv_page) ==
119 	      offsetof(skb_frag_t, netmem));
120 static_assert(sizeof_field(struct bio_vec, bv_page) ==
121 	      sizeof_field(skb_frag_t, netmem));
122 
123 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
124 static_assert(sizeof_field(struct bio_vec, bv_len) ==
125 	      sizeof_field(skb_frag_t, len));
126 
127 static_assert(offsetof(struct bio_vec, bv_offset) ==
128 	      offsetof(skb_frag_t, offset));
129 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
130 	      sizeof_field(skb_frag_t, offset));
131 
132 #undef FN
133 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
134 static const char * const drop_reasons[] = {
135 	[SKB_CONSUMED] = "CONSUMED",
136 	DEFINE_DROP_REASON(FN, FN)
137 };
138 
139 static const struct drop_reason_list drop_reasons_core = {
140 	.reasons = drop_reasons,
141 	.n_reasons = ARRAY_SIZE(drop_reasons),
142 };
143 
144 const struct drop_reason_list __rcu *
145 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
146 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
147 };
148 EXPORT_SYMBOL(drop_reasons_by_subsys);
149 
150 /**
151  * drop_reasons_register_subsys - register another drop reason subsystem
152  * @subsys: the subsystem to register, must not be the core
153  * @list: the list of drop reasons within the subsystem, must point to
154  *	a statically initialized list
155  */
156 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
157 				  const struct drop_reason_list *list)
158 {
159 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
160 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
161 		 "invalid subsystem %d\n", subsys))
162 		return;
163 
164 	/* must point to statically allocated memory, so INIT is OK */
165 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
166 }
167 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
168 
169 /**
170  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
171  * @subsys: the subsystem to remove, must not be the core
172  *
173  * Note: This will synchronize_rcu() to ensure no users when it returns.
174  */
175 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
176 {
177 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
178 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
179 		 "invalid subsystem %d\n", subsys))
180 		return;
181 
182 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
183 
184 	synchronize_rcu();
185 }
186 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
187 
188 /**
189  *	skb_panic - private function for out-of-line support
190  *	@skb:	buffer
191  *	@sz:	size
192  *	@addr:	address
193  *	@msg:	skb_over_panic or skb_under_panic
194  *
195  *	Out-of-line support for skb_put() and skb_push().
196  *	Called via the wrapper skb_over_panic() or skb_under_panic().
197  *	Keep out of line to prevent kernel bloat.
198  *	__builtin_return_address is not used because it is not always reliable.
199  */
200 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
201 		      const char msg[])
202 {
203 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
204 		 msg, addr, skb->len, sz, skb->head, skb->data,
205 		 (unsigned long)skb->tail, (unsigned long)skb->end,
206 		 skb->dev ? skb->dev->name : "<NULL>");
207 	BUG();
208 }
209 
210 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
211 {
212 	skb_panic(skb, sz, addr, __func__);
213 }
214 
215 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
216 {
217 	skb_panic(skb, sz, addr, __func__);
218 }
219 
220 #define NAPI_SKB_CACHE_SIZE	64
221 #define NAPI_SKB_CACHE_BULK	16
222 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
223 
224 #if PAGE_SIZE == SZ_4K
225 
226 #define NAPI_HAS_SMALL_PAGE_FRAG	1
227 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
228 
229 /* specialized page frag allocator using a single order 0 page
230  * and slicing it into 1K sized fragment. Constrained to systems
231  * with a very limited amount of 1K fragments fitting a single
232  * page - to avoid excessive truesize underestimation
233  */
234 
235 struct page_frag_1k {
236 	void *va;
237 	u16 offset;
238 	bool pfmemalloc;
239 };
240 
241 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
242 {
243 	struct page *page;
244 	int offset;
245 
246 	offset = nc->offset - SZ_1K;
247 	if (likely(offset >= 0))
248 		goto use_frag;
249 
250 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
251 	if (!page)
252 		return NULL;
253 
254 	nc->va = page_address(page);
255 	nc->pfmemalloc = page_is_pfmemalloc(page);
256 	offset = PAGE_SIZE - SZ_1K;
257 	page_ref_add(page, offset / SZ_1K);
258 
259 use_frag:
260 	nc->offset = offset;
261 	return nc->va + offset;
262 }
263 #else
264 
265 /* the small page is actually unused in this build; add dummy helpers
266  * to please the compiler and avoid later preprocessor's conditionals
267  */
268 #define NAPI_HAS_SMALL_PAGE_FRAG	0
269 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
270 
271 struct page_frag_1k {
272 };
273 
274 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
275 {
276 	return NULL;
277 }
278 
279 #endif
280 
281 struct napi_alloc_cache {
282 	struct page_frag_cache page;
283 	struct page_frag_1k page_small;
284 	unsigned int skb_count;
285 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
286 };
287 
288 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
289 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
290 
291 /* Double check that napi_get_frags() allocates skbs with
292  * skb->head being backed by slab, not a page fragment.
293  * This is to make sure bug fixed in 3226b158e67c
294  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
295  * does not accidentally come back.
296  */
297 void napi_get_frags_check(struct napi_struct *napi)
298 {
299 	struct sk_buff *skb;
300 
301 	local_bh_disable();
302 	skb = napi_get_frags(napi);
303 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
304 	napi_free_frags(napi);
305 	local_bh_enable();
306 }
307 
308 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
309 {
310 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
311 
312 	fragsz = SKB_DATA_ALIGN(fragsz);
313 
314 	return __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
315 				       align_mask);
316 }
317 EXPORT_SYMBOL(__napi_alloc_frag_align);
318 
319 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
320 {
321 	void *data;
322 
323 	fragsz = SKB_DATA_ALIGN(fragsz);
324 	if (in_hardirq() || irqs_disabled()) {
325 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
326 
327 		data = __page_frag_alloc_align(nc, fragsz, GFP_ATOMIC,
328 					       align_mask);
329 	} else {
330 		struct napi_alloc_cache *nc;
331 
332 		local_bh_disable();
333 		nc = this_cpu_ptr(&napi_alloc_cache);
334 		data = __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
335 					       align_mask);
336 		local_bh_enable();
337 	}
338 	return data;
339 }
340 EXPORT_SYMBOL(__netdev_alloc_frag_align);
341 
342 static struct sk_buff *napi_skb_cache_get(void)
343 {
344 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
345 	struct sk_buff *skb;
346 
347 	if (unlikely(!nc->skb_count)) {
348 		nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
349 						      GFP_ATOMIC,
350 						      NAPI_SKB_CACHE_BULK,
351 						      nc->skb_cache);
352 		if (unlikely(!nc->skb_count))
353 			return NULL;
354 	}
355 
356 	skb = nc->skb_cache[--nc->skb_count];
357 	kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
358 
359 	return skb;
360 }
361 
362 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
363 					 unsigned int size)
364 {
365 	struct skb_shared_info *shinfo;
366 
367 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
368 
369 	/* Assumes caller memset cleared SKB */
370 	skb->truesize = SKB_TRUESIZE(size);
371 	refcount_set(&skb->users, 1);
372 	skb->head = data;
373 	skb->data = data;
374 	skb_reset_tail_pointer(skb);
375 	skb_set_end_offset(skb, size);
376 	skb->mac_header = (typeof(skb->mac_header))~0U;
377 	skb->transport_header = (typeof(skb->transport_header))~0U;
378 	skb->alloc_cpu = raw_smp_processor_id();
379 	/* make sure we initialize shinfo sequentially */
380 	shinfo = skb_shinfo(skb);
381 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
382 	atomic_set(&shinfo->dataref, 1);
383 
384 	skb_set_kcov_handle(skb, kcov_common_handle());
385 }
386 
387 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
388 				     unsigned int *size)
389 {
390 	void *resized;
391 
392 	/* Must find the allocation size (and grow it to match). */
393 	*size = ksize(data);
394 	/* krealloc() will immediately return "data" when
395 	 * "ksize(data)" is requested: it is the existing upper
396 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
397 	 * that this "new" pointer needs to be passed back to the
398 	 * caller for use so the __alloc_size hinting will be
399 	 * tracked correctly.
400 	 */
401 	resized = krealloc(data, *size, GFP_ATOMIC);
402 	WARN_ON_ONCE(resized != data);
403 	return resized;
404 }
405 
406 /* build_skb() variant which can operate on slab buffers.
407  * Note that this should be used sparingly as slab buffers
408  * cannot be combined efficiently by GRO!
409  */
410 struct sk_buff *slab_build_skb(void *data)
411 {
412 	struct sk_buff *skb;
413 	unsigned int size;
414 
415 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
416 	if (unlikely(!skb))
417 		return NULL;
418 
419 	memset(skb, 0, offsetof(struct sk_buff, tail));
420 	data = __slab_build_skb(skb, data, &size);
421 	__finalize_skb_around(skb, data, size);
422 
423 	return skb;
424 }
425 EXPORT_SYMBOL(slab_build_skb);
426 
427 /* Caller must provide SKB that is memset cleared */
428 static void __build_skb_around(struct sk_buff *skb, void *data,
429 			       unsigned int frag_size)
430 {
431 	unsigned int size = frag_size;
432 
433 	/* frag_size == 0 is considered deprecated now. Callers
434 	 * using slab buffer should use slab_build_skb() instead.
435 	 */
436 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
437 		data = __slab_build_skb(skb, data, &size);
438 
439 	__finalize_skb_around(skb, data, size);
440 }
441 
442 /**
443  * __build_skb - build a network buffer
444  * @data: data buffer provided by caller
445  * @frag_size: size of data (must not be 0)
446  *
447  * Allocate a new &sk_buff. Caller provides space holding head and
448  * skb_shared_info. @data must have been allocated from the page
449  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
450  * allocation is deprecated, and callers should use slab_build_skb()
451  * instead.)
452  * The return is the new skb buffer.
453  * On a failure the return is %NULL, and @data is not freed.
454  * Notes :
455  *  Before IO, driver allocates only data buffer where NIC put incoming frame
456  *  Driver should add room at head (NET_SKB_PAD) and
457  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
458  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
459  *  before giving packet to stack.
460  *  RX rings only contains data buffers, not full skbs.
461  */
462 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
463 {
464 	struct sk_buff *skb;
465 
466 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
467 	if (unlikely(!skb))
468 		return NULL;
469 
470 	memset(skb, 0, offsetof(struct sk_buff, tail));
471 	__build_skb_around(skb, data, frag_size);
472 
473 	return skb;
474 }
475 
476 /* build_skb() is wrapper over __build_skb(), that specifically
477  * takes care of skb->head and skb->pfmemalloc
478  */
479 struct sk_buff *build_skb(void *data, unsigned int frag_size)
480 {
481 	struct sk_buff *skb = __build_skb(data, frag_size);
482 
483 	if (likely(skb && frag_size)) {
484 		skb->head_frag = 1;
485 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
486 	}
487 	return skb;
488 }
489 EXPORT_SYMBOL(build_skb);
490 
491 /**
492  * build_skb_around - build a network buffer around provided skb
493  * @skb: sk_buff provide by caller, must be memset cleared
494  * @data: data buffer provided by caller
495  * @frag_size: size of data
496  */
497 struct sk_buff *build_skb_around(struct sk_buff *skb,
498 				 void *data, unsigned int frag_size)
499 {
500 	if (unlikely(!skb))
501 		return NULL;
502 
503 	__build_skb_around(skb, data, frag_size);
504 
505 	if (frag_size) {
506 		skb->head_frag = 1;
507 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
508 	}
509 	return skb;
510 }
511 EXPORT_SYMBOL(build_skb_around);
512 
513 /**
514  * __napi_build_skb - build a network buffer
515  * @data: data buffer provided by caller
516  * @frag_size: size of data
517  *
518  * Version of __build_skb() that uses NAPI percpu caches to obtain
519  * skbuff_head instead of inplace allocation.
520  *
521  * Returns a new &sk_buff on success, %NULL on allocation failure.
522  */
523 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
524 {
525 	struct sk_buff *skb;
526 
527 	skb = napi_skb_cache_get();
528 	if (unlikely(!skb))
529 		return NULL;
530 
531 	memset(skb, 0, offsetof(struct sk_buff, tail));
532 	__build_skb_around(skb, data, frag_size);
533 
534 	return skb;
535 }
536 
537 /**
538  * napi_build_skb - build a network buffer
539  * @data: data buffer provided by caller
540  * @frag_size: size of data
541  *
542  * Version of __napi_build_skb() that takes care of skb->head_frag
543  * and skb->pfmemalloc when the data is a page or page fragment.
544  *
545  * Returns a new &sk_buff on success, %NULL on allocation failure.
546  */
547 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
548 {
549 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
550 
551 	if (likely(skb) && frag_size) {
552 		skb->head_frag = 1;
553 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
554 	}
555 
556 	return skb;
557 }
558 EXPORT_SYMBOL(napi_build_skb);
559 
560 /*
561  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
562  * the caller if emergency pfmemalloc reserves are being used. If it is and
563  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
564  * may be used. Otherwise, the packet data may be discarded until enough
565  * memory is free
566  */
567 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
568 			     bool *pfmemalloc)
569 {
570 	bool ret_pfmemalloc = false;
571 	size_t obj_size;
572 	void *obj;
573 
574 	obj_size = SKB_HEAD_ALIGN(*size);
575 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
576 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
577 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
578 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
579 				node);
580 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
581 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
582 			goto out;
583 		/* Try again but now we are using pfmemalloc reserves */
584 		ret_pfmemalloc = true;
585 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
586 		goto out;
587 	}
588 
589 	obj_size = kmalloc_size_roundup(obj_size);
590 	/* The following cast might truncate high-order bits of obj_size, this
591 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
592 	 */
593 	*size = (unsigned int)obj_size;
594 
595 	/*
596 	 * Try a regular allocation, when that fails and we're not entitled
597 	 * to the reserves, fail.
598 	 */
599 	obj = kmalloc_node_track_caller(obj_size,
600 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
601 					node);
602 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
603 		goto out;
604 
605 	/* Try again but now we are using pfmemalloc reserves */
606 	ret_pfmemalloc = true;
607 	obj = kmalloc_node_track_caller(obj_size, flags, node);
608 
609 out:
610 	if (pfmemalloc)
611 		*pfmemalloc = ret_pfmemalloc;
612 
613 	return obj;
614 }
615 
616 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
617  *	'private' fields and also do memory statistics to find all the
618  *	[BEEP] leaks.
619  *
620  */
621 
622 /**
623  *	__alloc_skb	-	allocate a network buffer
624  *	@size: size to allocate
625  *	@gfp_mask: allocation mask
626  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
627  *		instead of head cache and allocate a cloned (child) skb.
628  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
629  *		allocations in case the data is required for writeback
630  *	@node: numa node to allocate memory on
631  *
632  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
633  *	tail room of at least size bytes. The object has a reference count
634  *	of one. The return is the buffer. On a failure the return is %NULL.
635  *
636  *	Buffers may only be allocated from interrupts using a @gfp_mask of
637  *	%GFP_ATOMIC.
638  */
639 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
640 			    int flags, int node)
641 {
642 	struct kmem_cache *cache;
643 	struct sk_buff *skb;
644 	bool pfmemalloc;
645 	u8 *data;
646 
647 	cache = (flags & SKB_ALLOC_FCLONE)
648 		? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
649 
650 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
651 		gfp_mask |= __GFP_MEMALLOC;
652 
653 	/* Get the HEAD */
654 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
655 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
656 		skb = napi_skb_cache_get();
657 	else
658 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
659 	if (unlikely(!skb))
660 		return NULL;
661 	prefetchw(skb);
662 
663 	/* We do our best to align skb_shared_info on a separate cache
664 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
665 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
666 	 * Both skb->head and skb_shared_info are cache line aligned.
667 	 */
668 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
669 	if (unlikely(!data))
670 		goto nodata;
671 	/* kmalloc_size_roundup() might give us more room than requested.
672 	 * Put skb_shared_info exactly at the end of allocated zone,
673 	 * to allow max possible filling before reallocation.
674 	 */
675 	prefetchw(data + SKB_WITH_OVERHEAD(size));
676 
677 	/*
678 	 * Only clear those fields we need to clear, not those that we will
679 	 * actually initialise below. Hence, don't put any more fields after
680 	 * the tail pointer in struct sk_buff!
681 	 */
682 	memset(skb, 0, offsetof(struct sk_buff, tail));
683 	__build_skb_around(skb, data, size);
684 	skb->pfmemalloc = pfmemalloc;
685 
686 	if (flags & SKB_ALLOC_FCLONE) {
687 		struct sk_buff_fclones *fclones;
688 
689 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
690 
691 		skb->fclone = SKB_FCLONE_ORIG;
692 		refcount_set(&fclones->fclone_ref, 1);
693 	}
694 
695 	return skb;
696 
697 nodata:
698 	kmem_cache_free(cache, skb);
699 	return NULL;
700 }
701 EXPORT_SYMBOL(__alloc_skb);
702 
703 /**
704  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
705  *	@dev: network device to receive on
706  *	@len: length to allocate
707  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
708  *
709  *	Allocate a new &sk_buff and assign it a usage count of one. The
710  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
711  *	the headroom they think they need without accounting for the
712  *	built in space. The built in space is used for optimisations.
713  *
714  *	%NULL is returned if there is no free memory.
715  */
716 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
717 				   gfp_t gfp_mask)
718 {
719 	struct page_frag_cache *nc;
720 	struct sk_buff *skb;
721 	bool pfmemalloc;
722 	void *data;
723 
724 	len += NET_SKB_PAD;
725 
726 	/* If requested length is either too small or too big,
727 	 * we use kmalloc() for skb->head allocation.
728 	 */
729 	if (len <= SKB_WITH_OVERHEAD(1024) ||
730 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
731 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
732 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
733 		if (!skb)
734 			goto skb_fail;
735 		goto skb_success;
736 	}
737 
738 	len = SKB_HEAD_ALIGN(len);
739 
740 	if (sk_memalloc_socks())
741 		gfp_mask |= __GFP_MEMALLOC;
742 
743 	if (in_hardirq() || irqs_disabled()) {
744 		nc = this_cpu_ptr(&netdev_alloc_cache);
745 		data = page_frag_alloc(nc, len, gfp_mask);
746 		pfmemalloc = nc->pfmemalloc;
747 	} else {
748 		local_bh_disable();
749 		nc = this_cpu_ptr(&napi_alloc_cache.page);
750 		data = page_frag_alloc(nc, len, gfp_mask);
751 		pfmemalloc = nc->pfmemalloc;
752 		local_bh_enable();
753 	}
754 
755 	if (unlikely(!data))
756 		return NULL;
757 
758 	skb = __build_skb(data, len);
759 	if (unlikely(!skb)) {
760 		skb_free_frag(data);
761 		return NULL;
762 	}
763 
764 	if (pfmemalloc)
765 		skb->pfmemalloc = 1;
766 	skb->head_frag = 1;
767 
768 skb_success:
769 	skb_reserve(skb, NET_SKB_PAD);
770 	skb->dev = dev;
771 
772 skb_fail:
773 	return skb;
774 }
775 EXPORT_SYMBOL(__netdev_alloc_skb);
776 
777 /**
778  *	napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
779  *	@napi: napi instance this buffer was allocated for
780  *	@len: length to allocate
781  *
782  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
783  *	attempt to allocate the head from a special reserved region used
784  *	only for NAPI Rx allocation.  By doing this we can save several
785  *	CPU cycles by avoiding having to disable and re-enable IRQs.
786  *
787  *	%NULL is returned if there is no free memory.
788  */
789 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
790 {
791 	gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
792 	struct napi_alloc_cache *nc;
793 	struct sk_buff *skb;
794 	bool pfmemalloc;
795 	void *data;
796 
797 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
798 	len += NET_SKB_PAD + NET_IP_ALIGN;
799 
800 	/* If requested length is either too small or too big,
801 	 * we use kmalloc() for skb->head allocation.
802 	 * When the small frag allocator is available, prefer it over kmalloc
803 	 * for small fragments
804 	 */
805 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
806 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
807 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
808 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
809 				  NUMA_NO_NODE);
810 		if (!skb)
811 			goto skb_fail;
812 		goto skb_success;
813 	}
814 
815 	nc = this_cpu_ptr(&napi_alloc_cache);
816 
817 	if (sk_memalloc_socks())
818 		gfp_mask |= __GFP_MEMALLOC;
819 
820 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
821 		/* we are artificially inflating the allocation size, but
822 		 * that is not as bad as it may look like, as:
823 		 * - 'len' less than GRO_MAX_HEAD makes little sense
824 		 * - On most systems, larger 'len' values lead to fragment
825 		 *   size above 512 bytes
826 		 * - kmalloc would use the kmalloc-1k slab for such values
827 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
828 		 *   little networking, as that implies no WiFi and no
829 		 *   tunnels support, and 32 bits arches.
830 		 */
831 		len = SZ_1K;
832 
833 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
834 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
835 	} else {
836 		len = SKB_HEAD_ALIGN(len);
837 
838 		data = page_frag_alloc(&nc->page, len, gfp_mask);
839 		pfmemalloc = nc->page.pfmemalloc;
840 	}
841 
842 	if (unlikely(!data))
843 		return NULL;
844 
845 	skb = __napi_build_skb(data, len);
846 	if (unlikely(!skb)) {
847 		skb_free_frag(data);
848 		return NULL;
849 	}
850 
851 	if (pfmemalloc)
852 		skb->pfmemalloc = 1;
853 	skb->head_frag = 1;
854 
855 skb_success:
856 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
857 	skb->dev = napi->dev;
858 
859 skb_fail:
860 	return skb;
861 }
862 EXPORT_SYMBOL(napi_alloc_skb);
863 
864 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
865 			    int off, int size, unsigned int truesize)
866 {
867 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
868 
869 	skb_fill_netmem_desc(skb, i, netmem, off, size);
870 	skb->len += size;
871 	skb->data_len += size;
872 	skb->truesize += truesize;
873 }
874 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
875 
876 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
877 			  unsigned int truesize)
878 {
879 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
880 
881 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
882 
883 	skb_frag_size_add(frag, size);
884 	skb->len += size;
885 	skb->data_len += size;
886 	skb->truesize += truesize;
887 }
888 EXPORT_SYMBOL(skb_coalesce_rx_frag);
889 
890 static void skb_drop_list(struct sk_buff **listp)
891 {
892 	kfree_skb_list(*listp);
893 	*listp = NULL;
894 }
895 
896 static inline void skb_drop_fraglist(struct sk_buff *skb)
897 {
898 	skb_drop_list(&skb_shinfo(skb)->frag_list);
899 }
900 
901 static void skb_clone_fraglist(struct sk_buff *skb)
902 {
903 	struct sk_buff *list;
904 
905 	skb_walk_frags(skb, list)
906 		skb_get(list);
907 }
908 
909 static bool is_pp_page(struct page *page)
910 {
911 	return (page->pp_magic & ~0x3UL) == PP_SIGNATURE;
912 }
913 
914 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
915 		    unsigned int headroom)
916 {
917 #if IS_ENABLED(CONFIG_PAGE_POOL)
918 	u32 size, truesize, len, max_head_size, off;
919 	struct sk_buff *skb = *pskb, *nskb;
920 	int err, i, head_off;
921 	void *data;
922 
923 	/* XDP does not support fraglist so we need to linearize
924 	 * the skb.
925 	 */
926 	if (skb_has_frag_list(skb))
927 		return -EOPNOTSUPP;
928 
929 	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
930 	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
931 		return -ENOMEM;
932 
933 	size = min_t(u32, skb->len, max_head_size);
934 	truesize = SKB_HEAD_ALIGN(size) + headroom;
935 	data = page_pool_dev_alloc_va(pool, &truesize);
936 	if (!data)
937 		return -ENOMEM;
938 
939 	nskb = napi_build_skb(data, truesize);
940 	if (!nskb) {
941 		page_pool_free_va(pool, data, true);
942 		return -ENOMEM;
943 	}
944 
945 	skb_reserve(nskb, headroom);
946 	skb_copy_header(nskb, skb);
947 	skb_mark_for_recycle(nskb);
948 
949 	err = skb_copy_bits(skb, 0, nskb->data, size);
950 	if (err) {
951 		consume_skb(nskb);
952 		return err;
953 	}
954 	skb_put(nskb, size);
955 
956 	head_off = skb_headroom(nskb) - skb_headroom(skb);
957 	skb_headers_offset_update(nskb, head_off);
958 
959 	off = size;
960 	len = skb->len - off;
961 	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
962 		struct page *page;
963 		u32 page_off;
964 
965 		size = min_t(u32, len, PAGE_SIZE);
966 		truesize = size;
967 
968 		page = page_pool_dev_alloc(pool, &page_off, &truesize);
969 		if (!page) {
970 			consume_skb(nskb);
971 			return -ENOMEM;
972 		}
973 
974 		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
975 		err = skb_copy_bits(skb, off, page_address(page) + page_off,
976 				    size);
977 		if (err) {
978 			consume_skb(nskb);
979 			return err;
980 		}
981 
982 		len -= size;
983 		off += size;
984 	}
985 
986 	consume_skb(skb);
987 	*pskb = nskb;
988 
989 	return 0;
990 #else
991 	return -EOPNOTSUPP;
992 #endif
993 }
994 EXPORT_SYMBOL(skb_pp_cow_data);
995 
996 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
997 			 struct bpf_prog *prog)
998 {
999 	if (!prog->aux->xdp_has_frags)
1000 		return -EINVAL;
1001 
1002 	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
1003 }
1004 EXPORT_SYMBOL(skb_cow_data_for_xdp);
1005 
1006 #if IS_ENABLED(CONFIG_PAGE_POOL)
1007 bool napi_pp_put_page(struct page *page)
1008 {
1009 	page = compound_head(page);
1010 
1011 	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
1012 	 * in order to preserve any existing bits, such as bit 0 for the
1013 	 * head page of compound page and bit 1 for pfmemalloc page, so
1014 	 * mask those bits for freeing side when doing below checking,
1015 	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
1016 	 * to avoid recycling the pfmemalloc page.
1017 	 */
1018 	if (unlikely(!is_pp_page(page)))
1019 		return false;
1020 
1021 	page_pool_put_full_page(page->pp, page, false);
1022 
1023 	return true;
1024 }
1025 EXPORT_SYMBOL(napi_pp_put_page);
1026 #endif
1027 
1028 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
1029 {
1030 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1031 		return false;
1032 	return napi_pp_put_page(virt_to_page(data));
1033 }
1034 
1035 /**
1036  * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1037  * @skb:	page pool aware skb
1038  *
1039  * Increase the fragment reference count (pp_ref_count) of a skb. This is
1040  * intended to gain fragment references only for page pool aware skbs,
1041  * i.e. when skb->pp_recycle is true, and not for fragments in a
1042  * non-pp-recycling skb. It has a fallback to increase references on normal
1043  * pages, as page pool aware skbs may also have normal page fragments.
1044  */
1045 static int skb_pp_frag_ref(struct sk_buff *skb)
1046 {
1047 	struct skb_shared_info *shinfo;
1048 	struct page *head_page;
1049 	int i;
1050 
1051 	if (!skb->pp_recycle)
1052 		return -EINVAL;
1053 
1054 	shinfo = skb_shinfo(skb);
1055 
1056 	for (i = 0; i < shinfo->nr_frags; i++) {
1057 		head_page = compound_head(skb_frag_page(&shinfo->frags[i]));
1058 		if (likely(is_pp_page(head_page)))
1059 			page_pool_ref_page(head_page);
1060 		else
1061 			page_ref_inc(head_page);
1062 	}
1063 	return 0;
1064 }
1065 
1066 static void skb_kfree_head(void *head, unsigned int end_offset)
1067 {
1068 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1069 		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1070 	else
1071 		kfree(head);
1072 }
1073 
1074 static void skb_free_head(struct sk_buff *skb)
1075 {
1076 	unsigned char *head = skb->head;
1077 
1078 	if (skb->head_frag) {
1079 		if (skb_pp_recycle(skb, head))
1080 			return;
1081 		skb_free_frag(head);
1082 	} else {
1083 		skb_kfree_head(head, skb_end_offset(skb));
1084 	}
1085 }
1086 
1087 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1088 {
1089 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1090 	int i;
1091 
1092 	if (!skb_data_unref(skb, shinfo))
1093 		goto exit;
1094 
1095 	if (skb_zcopy(skb)) {
1096 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1097 
1098 		skb_zcopy_clear(skb, true);
1099 		if (skip_unref)
1100 			goto free_head;
1101 	}
1102 
1103 	for (i = 0; i < shinfo->nr_frags; i++)
1104 		napi_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1105 
1106 free_head:
1107 	if (shinfo->frag_list)
1108 		kfree_skb_list_reason(shinfo->frag_list, reason);
1109 
1110 	skb_free_head(skb);
1111 exit:
1112 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1113 	 * bit is only set on the head though, so in order to avoid races
1114 	 * while trying to recycle fragments on __skb_frag_unref() we need
1115 	 * to make one SKB responsible for triggering the recycle path.
1116 	 * So disable the recycling bit if an SKB is cloned and we have
1117 	 * additional references to the fragmented part of the SKB.
1118 	 * Eventually the last SKB will have the recycling bit set and it's
1119 	 * dataref set to 0, which will trigger the recycling
1120 	 */
1121 	skb->pp_recycle = 0;
1122 }
1123 
1124 /*
1125  *	Free an skbuff by memory without cleaning the state.
1126  */
1127 static void kfree_skbmem(struct sk_buff *skb)
1128 {
1129 	struct sk_buff_fclones *fclones;
1130 
1131 	switch (skb->fclone) {
1132 	case SKB_FCLONE_UNAVAILABLE:
1133 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1134 		return;
1135 
1136 	case SKB_FCLONE_ORIG:
1137 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1138 
1139 		/* We usually free the clone (TX completion) before original skb
1140 		 * This test would have no chance to be true for the clone,
1141 		 * while here, branch prediction will be good.
1142 		 */
1143 		if (refcount_read(&fclones->fclone_ref) == 1)
1144 			goto fastpath;
1145 		break;
1146 
1147 	default: /* SKB_FCLONE_CLONE */
1148 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1149 		break;
1150 	}
1151 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1152 		return;
1153 fastpath:
1154 	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1155 }
1156 
1157 void skb_release_head_state(struct sk_buff *skb)
1158 {
1159 	skb_dst_drop(skb);
1160 	if (skb->destructor) {
1161 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1162 		skb->destructor(skb);
1163 	}
1164 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1165 	nf_conntrack_put(skb_nfct(skb));
1166 #endif
1167 	skb_ext_put(skb);
1168 }
1169 
1170 /* Free everything but the sk_buff shell. */
1171 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1172 {
1173 	skb_release_head_state(skb);
1174 	if (likely(skb->head))
1175 		skb_release_data(skb, reason);
1176 }
1177 
1178 /**
1179  *	__kfree_skb - private function
1180  *	@skb: buffer
1181  *
1182  *	Free an sk_buff. Release anything attached to the buffer.
1183  *	Clean the state. This is an internal helper function. Users should
1184  *	always call kfree_skb
1185  */
1186 
1187 void __kfree_skb(struct sk_buff *skb)
1188 {
1189 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1190 	kfree_skbmem(skb);
1191 }
1192 EXPORT_SYMBOL(__kfree_skb);
1193 
1194 static __always_inline
1195 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1196 {
1197 	if (unlikely(!skb_unref(skb)))
1198 		return false;
1199 
1200 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1201 			       u32_get_bits(reason,
1202 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1203 				SKB_DROP_REASON_SUBSYS_NUM);
1204 
1205 	if (reason == SKB_CONSUMED)
1206 		trace_consume_skb(skb, __builtin_return_address(0));
1207 	else
1208 		trace_kfree_skb(skb, __builtin_return_address(0), reason);
1209 	return true;
1210 }
1211 
1212 /**
1213  *	kfree_skb_reason - free an sk_buff with special reason
1214  *	@skb: buffer to free
1215  *	@reason: reason why this skb is dropped
1216  *
1217  *	Drop a reference to the buffer and free it if the usage count has
1218  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1219  *	tracepoint.
1220  */
1221 void __fix_address
1222 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1223 {
1224 	if (__kfree_skb_reason(skb, reason))
1225 		__kfree_skb(skb);
1226 }
1227 EXPORT_SYMBOL(kfree_skb_reason);
1228 
1229 #define KFREE_SKB_BULK_SIZE	16
1230 
1231 struct skb_free_array {
1232 	unsigned int skb_count;
1233 	void *skb_array[KFREE_SKB_BULK_SIZE];
1234 };
1235 
1236 static void kfree_skb_add_bulk(struct sk_buff *skb,
1237 			       struct skb_free_array *sa,
1238 			       enum skb_drop_reason reason)
1239 {
1240 	/* if SKB is a clone, don't handle this case */
1241 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1242 		__kfree_skb(skb);
1243 		return;
1244 	}
1245 
1246 	skb_release_all(skb, reason);
1247 	sa->skb_array[sa->skb_count++] = skb;
1248 
1249 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1250 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1251 				     sa->skb_array);
1252 		sa->skb_count = 0;
1253 	}
1254 }
1255 
1256 void __fix_address
1257 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1258 {
1259 	struct skb_free_array sa;
1260 
1261 	sa.skb_count = 0;
1262 
1263 	while (segs) {
1264 		struct sk_buff *next = segs->next;
1265 
1266 		if (__kfree_skb_reason(segs, reason)) {
1267 			skb_poison_list(segs);
1268 			kfree_skb_add_bulk(segs, &sa, reason);
1269 		}
1270 
1271 		segs = next;
1272 	}
1273 
1274 	if (sa.skb_count)
1275 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1276 }
1277 EXPORT_SYMBOL(kfree_skb_list_reason);
1278 
1279 /* Dump skb information and contents.
1280  *
1281  * Must only be called from net_ratelimit()-ed paths.
1282  *
1283  * Dumps whole packets if full_pkt, only headers otherwise.
1284  */
1285 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1286 {
1287 	struct skb_shared_info *sh = skb_shinfo(skb);
1288 	struct net_device *dev = skb->dev;
1289 	struct sock *sk = skb->sk;
1290 	struct sk_buff *list_skb;
1291 	bool has_mac, has_trans;
1292 	int headroom, tailroom;
1293 	int i, len, seg_len;
1294 
1295 	if (full_pkt)
1296 		len = skb->len;
1297 	else
1298 		len = min_t(int, skb->len, MAX_HEADER + 128);
1299 
1300 	headroom = skb_headroom(skb);
1301 	tailroom = skb_tailroom(skb);
1302 
1303 	has_mac = skb_mac_header_was_set(skb);
1304 	has_trans = skb_transport_header_was_set(skb);
1305 
1306 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1307 	       "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n"
1308 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1309 	       "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1310 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n"
1311 	       "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n"
1312 	       "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n",
1313 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1314 	       has_mac ? skb->mac_header : -1,
1315 	       has_mac ? skb_mac_header_len(skb) : -1,
1316 	       skb->mac_len,
1317 	       skb->network_header,
1318 	       has_trans ? skb_network_header_len(skb) : -1,
1319 	       has_trans ? skb->transport_header : -1,
1320 	       sh->tx_flags, sh->nr_frags,
1321 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1322 	       skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed,
1323 	       skb->csum_complete_sw, skb->csum_valid, skb->csum_level,
1324 	       skb->hash, skb->sw_hash, skb->l4_hash,
1325 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif,
1326 	       skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all,
1327 	       skb->encapsulation, skb->inner_protocol, skb->inner_mac_header,
1328 	       skb->inner_network_header, skb->inner_transport_header);
1329 
1330 	if (dev)
1331 		printk("%sdev name=%s feat=%pNF\n",
1332 		       level, dev->name, &dev->features);
1333 	if (sk)
1334 		printk("%ssk family=%hu type=%u proto=%u\n",
1335 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1336 
1337 	if (full_pkt && headroom)
1338 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1339 			       16, 1, skb->head, headroom, false);
1340 
1341 	seg_len = min_t(int, skb_headlen(skb), len);
1342 	if (seg_len)
1343 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1344 			       16, 1, skb->data, seg_len, false);
1345 	len -= seg_len;
1346 
1347 	if (full_pkt && tailroom)
1348 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1349 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1350 
1351 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1352 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1353 		u32 p_off, p_len, copied;
1354 		struct page *p;
1355 		u8 *vaddr;
1356 
1357 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1358 				      skb_frag_size(frag), p, p_off, p_len,
1359 				      copied) {
1360 			seg_len = min_t(int, p_len, len);
1361 			vaddr = kmap_atomic(p);
1362 			print_hex_dump(level, "skb frag:     ",
1363 				       DUMP_PREFIX_OFFSET,
1364 				       16, 1, vaddr + p_off, seg_len, false);
1365 			kunmap_atomic(vaddr);
1366 			len -= seg_len;
1367 			if (!len)
1368 				break;
1369 		}
1370 	}
1371 
1372 	if (full_pkt && skb_has_frag_list(skb)) {
1373 		printk("skb fraglist:\n");
1374 		skb_walk_frags(skb, list_skb)
1375 			skb_dump(level, list_skb, true);
1376 	}
1377 }
1378 EXPORT_SYMBOL(skb_dump);
1379 
1380 /**
1381  *	skb_tx_error - report an sk_buff xmit error
1382  *	@skb: buffer that triggered an error
1383  *
1384  *	Report xmit error if a device callback is tracking this skb.
1385  *	skb must be freed afterwards.
1386  */
1387 void skb_tx_error(struct sk_buff *skb)
1388 {
1389 	if (skb) {
1390 		skb_zcopy_downgrade_managed(skb);
1391 		skb_zcopy_clear(skb, true);
1392 	}
1393 }
1394 EXPORT_SYMBOL(skb_tx_error);
1395 
1396 #ifdef CONFIG_TRACEPOINTS
1397 /**
1398  *	consume_skb - free an skbuff
1399  *	@skb: buffer to free
1400  *
1401  *	Drop a ref to the buffer and free it if the usage count has hit zero
1402  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1403  *	is being dropped after a failure and notes that
1404  */
1405 void consume_skb(struct sk_buff *skb)
1406 {
1407 	if (!skb_unref(skb))
1408 		return;
1409 
1410 	trace_consume_skb(skb, __builtin_return_address(0));
1411 	__kfree_skb(skb);
1412 }
1413 EXPORT_SYMBOL(consume_skb);
1414 #endif
1415 
1416 /**
1417  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1418  *	@skb: buffer to free
1419  *
1420  *	Alike consume_skb(), but this variant assumes that this is the last
1421  *	skb reference and all the head states have been already dropped
1422  */
1423 void __consume_stateless_skb(struct sk_buff *skb)
1424 {
1425 	trace_consume_skb(skb, __builtin_return_address(0));
1426 	skb_release_data(skb, SKB_CONSUMED);
1427 	kfree_skbmem(skb);
1428 }
1429 
1430 static void napi_skb_cache_put(struct sk_buff *skb)
1431 {
1432 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1433 	u32 i;
1434 
1435 	if (!kasan_mempool_poison_object(skb))
1436 		return;
1437 
1438 	nc->skb_cache[nc->skb_count++] = skb;
1439 
1440 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1441 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1442 			kasan_mempool_unpoison_object(nc->skb_cache[i],
1443 						kmem_cache_size(net_hotdata.skbuff_cache));
1444 
1445 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1446 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1447 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1448 	}
1449 }
1450 
1451 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1452 {
1453 	skb_release_all(skb, reason);
1454 	napi_skb_cache_put(skb);
1455 }
1456 
1457 void napi_skb_free_stolen_head(struct sk_buff *skb)
1458 {
1459 	if (unlikely(skb->slow_gro)) {
1460 		nf_reset_ct(skb);
1461 		skb_dst_drop(skb);
1462 		skb_ext_put(skb);
1463 		skb_orphan(skb);
1464 		skb->slow_gro = 0;
1465 	}
1466 	napi_skb_cache_put(skb);
1467 }
1468 
1469 void napi_consume_skb(struct sk_buff *skb, int budget)
1470 {
1471 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1472 	if (unlikely(!budget)) {
1473 		dev_consume_skb_any(skb);
1474 		return;
1475 	}
1476 
1477 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1478 
1479 	if (!skb_unref(skb))
1480 		return;
1481 
1482 	/* if reaching here SKB is ready to free */
1483 	trace_consume_skb(skb, __builtin_return_address(0));
1484 
1485 	/* if SKB is a clone, don't handle this case */
1486 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1487 		__kfree_skb(skb);
1488 		return;
1489 	}
1490 
1491 	skb_release_all(skb, SKB_CONSUMED);
1492 	napi_skb_cache_put(skb);
1493 }
1494 EXPORT_SYMBOL(napi_consume_skb);
1495 
1496 /* Make sure a field is contained by headers group */
1497 #define CHECK_SKB_FIELD(field) \
1498 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1499 		     offsetof(struct sk_buff, headers.field));	\
1500 
1501 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1502 {
1503 	new->tstamp		= old->tstamp;
1504 	/* We do not copy old->sk */
1505 	new->dev		= old->dev;
1506 	memcpy(new->cb, old->cb, sizeof(old->cb));
1507 	skb_dst_copy(new, old);
1508 	__skb_ext_copy(new, old);
1509 	__nf_copy(new, old, false);
1510 
1511 	/* Note : this field could be in the headers group.
1512 	 * It is not yet because we do not want to have a 16 bit hole
1513 	 */
1514 	new->queue_mapping = old->queue_mapping;
1515 
1516 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1517 	CHECK_SKB_FIELD(protocol);
1518 	CHECK_SKB_FIELD(csum);
1519 	CHECK_SKB_FIELD(hash);
1520 	CHECK_SKB_FIELD(priority);
1521 	CHECK_SKB_FIELD(skb_iif);
1522 	CHECK_SKB_FIELD(vlan_proto);
1523 	CHECK_SKB_FIELD(vlan_tci);
1524 	CHECK_SKB_FIELD(transport_header);
1525 	CHECK_SKB_FIELD(network_header);
1526 	CHECK_SKB_FIELD(mac_header);
1527 	CHECK_SKB_FIELD(inner_protocol);
1528 	CHECK_SKB_FIELD(inner_transport_header);
1529 	CHECK_SKB_FIELD(inner_network_header);
1530 	CHECK_SKB_FIELD(inner_mac_header);
1531 	CHECK_SKB_FIELD(mark);
1532 #ifdef CONFIG_NETWORK_SECMARK
1533 	CHECK_SKB_FIELD(secmark);
1534 #endif
1535 #ifdef CONFIG_NET_RX_BUSY_POLL
1536 	CHECK_SKB_FIELD(napi_id);
1537 #endif
1538 	CHECK_SKB_FIELD(alloc_cpu);
1539 #ifdef CONFIG_XPS
1540 	CHECK_SKB_FIELD(sender_cpu);
1541 #endif
1542 #ifdef CONFIG_NET_SCHED
1543 	CHECK_SKB_FIELD(tc_index);
1544 #endif
1545 
1546 }
1547 
1548 /*
1549  * You should not add any new code to this function.  Add it to
1550  * __copy_skb_header above instead.
1551  */
1552 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1553 {
1554 #define C(x) n->x = skb->x
1555 
1556 	n->next = n->prev = NULL;
1557 	n->sk = NULL;
1558 	__copy_skb_header(n, skb);
1559 
1560 	C(len);
1561 	C(data_len);
1562 	C(mac_len);
1563 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1564 	n->cloned = 1;
1565 	n->nohdr = 0;
1566 	n->peeked = 0;
1567 	C(pfmemalloc);
1568 	C(pp_recycle);
1569 	n->destructor = NULL;
1570 	C(tail);
1571 	C(end);
1572 	C(head);
1573 	C(head_frag);
1574 	C(data);
1575 	C(truesize);
1576 	refcount_set(&n->users, 1);
1577 
1578 	atomic_inc(&(skb_shinfo(skb)->dataref));
1579 	skb->cloned = 1;
1580 
1581 	return n;
1582 #undef C
1583 }
1584 
1585 /**
1586  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1587  * @first: first sk_buff of the msg
1588  */
1589 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1590 {
1591 	struct sk_buff *n;
1592 
1593 	n = alloc_skb(0, GFP_ATOMIC);
1594 	if (!n)
1595 		return NULL;
1596 
1597 	n->len = first->len;
1598 	n->data_len = first->len;
1599 	n->truesize = first->truesize;
1600 
1601 	skb_shinfo(n)->frag_list = first;
1602 
1603 	__copy_skb_header(n, first);
1604 	n->destructor = NULL;
1605 
1606 	return n;
1607 }
1608 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1609 
1610 /**
1611  *	skb_morph	-	morph one skb into another
1612  *	@dst: the skb to receive the contents
1613  *	@src: the skb to supply the contents
1614  *
1615  *	This is identical to skb_clone except that the target skb is
1616  *	supplied by the user.
1617  *
1618  *	The target skb is returned upon exit.
1619  */
1620 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1621 {
1622 	skb_release_all(dst, SKB_CONSUMED);
1623 	return __skb_clone(dst, src);
1624 }
1625 EXPORT_SYMBOL_GPL(skb_morph);
1626 
1627 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1628 {
1629 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1630 	struct user_struct *user;
1631 
1632 	if (capable(CAP_IPC_LOCK) || !size)
1633 		return 0;
1634 
1635 	rlim = rlimit(RLIMIT_MEMLOCK);
1636 	if (rlim == RLIM_INFINITY)
1637 		return 0;
1638 
1639 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1640 	max_pg = rlim >> PAGE_SHIFT;
1641 	user = mmp->user ? : current_user();
1642 
1643 	old_pg = atomic_long_read(&user->locked_vm);
1644 	do {
1645 		new_pg = old_pg + num_pg;
1646 		if (new_pg > max_pg)
1647 			return -ENOBUFS;
1648 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1649 
1650 	if (!mmp->user) {
1651 		mmp->user = get_uid(user);
1652 		mmp->num_pg = num_pg;
1653 	} else {
1654 		mmp->num_pg += num_pg;
1655 	}
1656 
1657 	return 0;
1658 }
1659 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1660 
1661 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1662 {
1663 	if (mmp->user) {
1664 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1665 		free_uid(mmp->user);
1666 	}
1667 }
1668 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1669 
1670 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1671 {
1672 	struct ubuf_info_msgzc *uarg;
1673 	struct sk_buff *skb;
1674 
1675 	WARN_ON_ONCE(!in_task());
1676 
1677 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1678 	if (!skb)
1679 		return NULL;
1680 
1681 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1682 	uarg = (void *)skb->cb;
1683 	uarg->mmp.user = NULL;
1684 
1685 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1686 		kfree_skb(skb);
1687 		return NULL;
1688 	}
1689 
1690 	uarg->ubuf.callback = msg_zerocopy_callback;
1691 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1692 	uarg->len = 1;
1693 	uarg->bytelen = size;
1694 	uarg->zerocopy = 1;
1695 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1696 	refcount_set(&uarg->ubuf.refcnt, 1);
1697 	sock_hold(sk);
1698 
1699 	return &uarg->ubuf;
1700 }
1701 
1702 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1703 {
1704 	return container_of((void *)uarg, struct sk_buff, cb);
1705 }
1706 
1707 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1708 				       struct ubuf_info *uarg)
1709 {
1710 	if (uarg) {
1711 		struct ubuf_info_msgzc *uarg_zc;
1712 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1713 		u32 bytelen, next;
1714 
1715 		/* there might be non MSG_ZEROCOPY users */
1716 		if (uarg->callback != msg_zerocopy_callback)
1717 			return NULL;
1718 
1719 		/* realloc only when socket is locked (TCP, UDP cork),
1720 		 * so uarg->len and sk_zckey access is serialized
1721 		 */
1722 		if (!sock_owned_by_user(sk)) {
1723 			WARN_ON_ONCE(1);
1724 			return NULL;
1725 		}
1726 
1727 		uarg_zc = uarg_to_msgzc(uarg);
1728 		bytelen = uarg_zc->bytelen + size;
1729 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1730 			/* TCP can create new skb to attach new uarg */
1731 			if (sk->sk_type == SOCK_STREAM)
1732 				goto new_alloc;
1733 			return NULL;
1734 		}
1735 
1736 		next = (u32)atomic_read(&sk->sk_zckey);
1737 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1738 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1739 				return NULL;
1740 			uarg_zc->len++;
1741 			uarg_zc->bytelen = bytelen;
1742 			atomic_set(&sk->sk_zckey, ++next);
1743 
1744 			/* no extra ref when appending to datagram (MSG_MORE) */
1745 			if (sk->sk_type == SOCK_STREAM)
1746 				net_zcopy_get(uarg);
1747 
1748 			return uarg;
1749 		}
1750 	}
1751 
1752 new_alloc:
1753 	return msg_zerocopy_alloc(sk, size);
1754 }
1755 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1756 
1757 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1758 {
1759 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1760 	u32 old_lo, old_hi;
1761 	u64 sum_len;
1762 
1763 	old_lo = serr->ee.ee_info;
1764 	old_hi = serr->ee.ee_data;
1765 	sum_len = old_hi - old_lo + 1ULL + len;
1766 
1767 	if (sum_len >= (1ULL << 32))
1768 		return false;
1769 
1770 	if (lo != old_hi + 1)
1771 		return false;
1772 
1773 	serr->ee.ee_data += len;
1774 	return true;
1775 }
1776 
1777 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1778 {
1779 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1780 	struct sock_exterr_skb *serr;
1781 	struct sock *sk = skb->sk;
1782 	struct sk_buff_head *q;
1783 	unsigned long flags;
1784 	bool is_zerocopy;
1785 	u32 lo, hi;
1786 	u16 len;
1787 
1788 	mm_unaccount_pinned_pages(&uarg->mmp);
1789 
1790 	/* if !len, there was only 1 call, and it was aborted
1791 	 * so do not queue a completion notification
1792 	 */
1793 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1794 		goto release;
1795 
1796 	len = uarg->len;
1797 	lo = uarg->id;
1798 	hi = uarg->id + len - 1;
1799 	is_zerocopy = uarg->zerocopy;
1800 
1801 	serr = SKB_EXT_ERR(skb);
1802 	memset(serr, 0, sizeof(*serr));
1803 	serr->ee.ee_errno = 0;
1804 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1805 	serr->ee.ee_data = hi;
1806 	serr->ee.ee_info = lo;
1807 	if (!is_zerocopy)
1808 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1809 
1810 	q = &sk->sk_error_queue;
1811 	spin_lock_irqsave(&q->lock, flags);
1812 	tail = skb_peek_tail(q);
1813 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1814 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1815 		__skb_queue_tail(q, skb);
1816 		skb = NULL;
1817 	}
1818 	spin_unlock_irqrestore(&q->lock, flags);
1819 
1820 	sk_error_report(sk);
1821 
1822 release:
1823 	consume_skb(skb);
1824 	sock_put(sk);
1825 }
1826 
1827 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1828 			   bool success)
1829 {
1830 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1831 
1832 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1833 
1834 	if (refcount_dec_and_test(&uarg->refcnt))
1835 		__msg_zerocopy_callback(uarg_zc);
1836 }
1837 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1838 
1839 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1840 {
1841 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1842 
1843 	atomic_dec(&sk->sk_zckey);
1844 	uarg_to_msgzc(uarg)->len--;
1845 
1846 	if (have_uref)
1847 		msg_zerocopy_callback(NULL, uarg, true);
1848 }
1849 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1850 
1851 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1852 			     struct msghdr *msg, int len,
1853 			     struct ubuf_info *uarg)
1854 {
1855 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1856 	int err, orig_len = skb->len;
1857 
1858 	/* An skb can only point to one uarg. This edge case happens when
1859 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1860 	 */
1861 	if (orig_uarg && uarg != orig_uarg)
1862 		return -EEXIST;
1863 
1864 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1865 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1866 		struct sock *save_sk = skb->sk;
1867 
1868 		/* Streams do not free skb on error. Reset to prev state. */
1869 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1870 		skb->sk = sk;
1871 		___pskb_trim(skb, orig_len);
1872 		skb->sk = save_sk;
1873 		return err;
1874 	}
1875 
1876 	skb_zcopy_set(skb, uarg, NULL);
1877 	return skb->len - orig_len;
1878 }
1879 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1880 
1881 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1882 {
1883 	int i;
1884 
1885 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1886 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1887 		skb_frag_ref(skb, i);
1888 }
1889 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1890 
1891 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1892 			      gfp_t gfp_mask)
1893 {
1894 	if (skb_zcopy(orig)) {
1895 		if (skb_zcopy(nskb)) {
1896 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1897 			if (!gfp_mask) {
1898 				WARN_ON_ONCE(1);
1899 				return -ENOMEM;
1900 			}
1901 			if (skb_uarg(nskb) == skb_uarg(orig))
1902 				return 0;
1903 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1904 				return -EIO;
1905 		}
1906 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1907 	}
1908 	return 0;
1909 }
1910 
1911 /**
1912  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1913  *	@skb: the skb to modify
1914  *	@gfp_mask: allocation priority
1915  *
1916  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1917  *	It will copy all frags into kernel and drop the reference
1918  *	to userspace pages.
1919  *
1920  *	If this function is called from an interrupt gfp_mask() must be
1921  *	%GFP_ATOMIC.
1922  *
1923  *	Returns 0 on success or a negative error code on failure
1924  *	to allocate kernel memory to copy to.
1925  */
1926 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1927 {
1928 	int num_frags = skb_shinfo(skb)->nr_frags;
1929 	struct page *page, *head = NULL;
1930 	int i, order, psize, new_frags;
1931 	u32 d_off;
1932 
1933 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1934 		return -EINVAL;
1935 
1936 	if (!num_frags)
1937 		goto release;
1938 
1939 	/* We might have to allocate high order pages, so compute what minimum
1940 	 * page order is needed.
1941 	 */
1942 	order = 0;
1943 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1944 		order++;
1945 	psize = (PAGE_SIZE << order);
1946 
1947 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1948 	for (i = 0; i < new_frags; i++) {
1949 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1950 		if (!page) {
1951 			while (head) {
1952 				struct page *next = (struct page *)page_private(head);
1953 				put_page(head);
1954 				head = next;
1955 			}
1956 			return -ENOMEM;
1957 		}
1958 		set_page_private(page, (unsigned long)head);
1959 		head = page;
1960 	}
1961 
1962 	page = head;
1963 	d_off = 0;
1964 	for (i = 0; i < num_frags; i++) {
1965 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1966 		u32 p_off, p_len, copied;
1967 		struct page *p;
1968 		u8 *vaddr;
1969 
1970 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1971 				      p, p_off, p_len, copied) {
1972 			u32 copy, done = 0;
1973 			vaddr = kmap_atomic(p);
1974 
1975 			while (done < p_len) {
1976 				if (d_off == psize) {
1977 					d_off = 0;
1978 					page = (struct page *)page_private(page);
1979 				}
1980 				copy = min_t(u32, psize - d_off, p_len - done);
1981 				memcpy(page_address(page) + d_off,
1982 				       vaddr + p_off + done, copy);
1983 				done += copy;
1984 				d_off += copy;
1985 			}
1986 			kunmap_atomic(vaddr);
1987 		}
1988 	}
1989 
1990 	/* skb frags release userspace buffers */
1991 	for (i = 0; i < num_frags; i++)
1992 		skb_frag_unref(skb, i);
1993 
1994 	/* skb frags point to kernel buffers */
1995 	for (i = 0; i < new_frags - 1; i++) {
1996 		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
1997 		head = (struct page *)page_private(head);
1998 	}
1999 	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2000 			       d_off);
2001 	skb_shinfo(skb)->nr_frags = new_frags;
2002 
2003 release:
2004 	skb_zcopy_clear(skb, false);
2005 	return 0;
2006 }
2007 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2008 
2009 /**
2010  *	skb_clone	-	duplicate an sk_buff
2011  *	@skb: buffer to clone
2012  *	@gfp_mask: allocation priority
2013  *
2014  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
2015  *	copies share the same packet data but not structure. The new
2016  *	buffer has a reference count of 1. If the allocation fails the
2017  *	function returns %NULL otherwise the new buffer is returned.
2018  *
2019  *	If this function is called from an interrupt gfp_mask() must be
2020  *	%GFP_ATOMIC.
2021  */
2022 
2023 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2024 {
2025 	struct sk_buff_fclones *fclones = container_of(skb,
2026 						       struct sk_buff_fclones,
2027 						       skb1);
2028 	struct sk_buff *n;
2029 
2030 	if (skb_orphan_frags(skb, gfp_mask))
2031 		return NULL;
2032 
2033 	if (skb->fclone == SKB_FCLONE_ORIG &&
2034 	    refcount_read(&fclones->fclone_ref) == 1) {
2035 		n = &fclones->skb2;
2036 		refcount_set(&fclones->fclone_ref, 2);
2037 		n->fclone = SKB_FCLONE_CLONE;
2038 	} else {
2039 		if (skb_pfmemalloc(skb))
2040 			gfp_mask |= __GFP_MEMALLOC;
2041 
2042 		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2043 		if (!n)
2044 			return NULL;
2045 
2046 		n->fclone = SKB_FCLONE_UNAVAILABLE;
2047 	}
2048 
2049 	return __skb_clone(n, skb);
2050 }
2051 EXPORT_SYMBOL(skb_clone);
2052 
2053 void skb_headers_offset_update(struct sk_buff *skb, int off)
2054 {
2055 	/* Only adjust this if it actually is csum_start rather than csum */
2056 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2057 		skb->csum_start += off;
2058 	/* {transport,network,mac}_header and tail are relative to skb->head */
2059 	skb->transport_header += off;
2060 	skb->network_header   += off;
2061 	if (skb_mac_header_was_set(skb))
2062 		skb->mac_header += off;
2063 	skb->inner_transport_header += off;
2064 	skb->inner_network_header += off;
2065 	skb->inner_mac_header += off;
2066 }
2067 EXPORT_SYMBOL(skb_headers_offset_update);
2068 
2069 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2070 {
2071 	__copy_skb_header(new, old);
2072 
2073 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2074 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2075 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2076 }
2077 EXPORT_SYMBOL(skb_copy_header);
2078 
2079 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2080 {
2081 	if (skb_pfmemalloc(skb))
2082 		return SKB_ALLOC_RX;
2083 	return 0;
2084 }
2085 
2086 /**
2087  *	skb_copy	-	create private copy of an sk_buff
2088  *	@skb: buffer to copy
2089  *	@gfp_mask: allocation priority
2090  *
2091  *	Make a copy of both an &sk_buff and its data. This is used when the
2092  *	caller wishes to modify the data and needs a private copy of the
2093  *	data to alter. Returns %NULL on failure or the pointer to the buffer
2094  *	on success. The returned buffer has a reference count of 1.
2095  *
2096  *	As by-product this function converts non-linear &sk_buff to linear
2097  *	one, so that &sk_buff becomes completely private and caller is allowed
2098  *	to modify all the data of returned buffer. This means that this
2099  *	function is not recommended for use in circumstances when only
2100  *	header is going to be modified. Use pskb_copy() instead.
2101  */
2102 
2103 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2104 {
2105 	int headerlen = skb_headroom(skb);
2106 	unsigned int size = skb_end_offset(skb) + skb->data_len;
2107 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
2108 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2109 
2110 	if (!n)
2111 		return NULL;
2112 
2113 	/* Set the data pointer */
2114 	skb_reserve(n, headerlen);
2115 	/* Set the tail pointer and length */
2116 	skb_put(n, skb->len);
2117 
2118 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2119 
2120 	skb_copy_header(n, skb);
2121 	return n;
2122 }
2123 EXPORT_SYMBOL(skb_copy);
2124 
2125 /**
2126  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2127  *	@skb: buffer to copy
2128  *	@headroom: headroom of new skb
2129  *	@gfp_mask: allocation priority
2130  *	@fclone: if true allocate the copy of the skb from the fclone
2131  *	cache instead of the head cache; it is recommended to set this
2132  *	to true for the cases where the copy will likely be cloned
2133  *
2134  *	Make a copy of both an &sk_buff and part of its data, located
2135  *	in header. Fragmented data remain shared. This is used when
2136  *	the caller wishes to modify only header of &sk_buff and needs
2137  *	private copy of the header to alter. Returns %NULL on failure
2138  *	or the pointer to the buffer on success.
2139  *	The returned buffer has a reference count of 1.
2140  */
2141 
2142 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2143 				   gfp_t gfp_mask, bool fclone)
2144 {
2145 	unsigned int size = skb_headlen(skb) + headroom;
2146 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2147 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2148 
2149 	if (!n)
2150 		goto out;
2151 
2152 	/* Set the data pointer */
2153 	skb_reserve(n, headroom);
2154 	/* Set the tail pointer and length */
2155 	skb_put(n, skb_headlen(skb));
2156 	/* Copy the bytes */
2157 	skb_copy_from_linear_data(skb, n->data, n->len);
2158 
2159 	n->truesize += skb->data_len;
2160 	n->data_len  = skb->data_len;
2161 	n->len	     = skb->len;
2162 
2163 	if (skb_shinfo(skb)->nr_frags) {
2164 		int i;
2165 
2166 		if (skb_orphan_frags(skb, gfp_mask) ||
2167 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2168 			kfree_skb(n);
2169 			n = NULL;
2170 			goto out;
2171 		}
2172 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2173 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2174 			skb_frag_ref(skb, i);
2175 		}
2176 		skb_shinfo(n)->nr_frags = i;
2177 	}
2178 
2179 	if (skb_has_frag_list(skb)) {
2180 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2181 		skb_clone_fraglist(n);
2182 	}
2183 
2184 	skb_copy_header(n, skb);
2185 out:
2186 	return n;
2187 }
2188 EXPORT_SYMBOL(__pskb_copy_fclone);
2189 
2190 /**
2191  *	pskb_expand_head - reallocate header of &sk_buff
2192  *	@skb: buffer to reallocate
2193  *	@nhead: room to add at head
2194  *	@ntail: room to add at tail
2195  *	@gfp_mask: allocation priority
2196  *
2197  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2198  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2199  *	reference count of 1. Returns zero in the case of success or error,
2200  *	if expansion failed. In the last case, &sk_buff is not changed.
2201  *
2202  *	All the pointers pointing into skb header may change and must be
2203  *	reloaded after call to this function.
2204  */
2205 
2206 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2207 		     gfp_t gfp_mask)
2208 {
2209 	unsigned int osize = skb_end_offset(skb);
2210 	unsigned int size = osize + nhead + ntail;
2211 	long off;
2212 	u8 *data;
2213 	int i;
2214 
2215 	BUG_ON(nhead < 0);
2216 
2217 	BUG_ON(skb_shared(skb));
2218 
2219 	skb_zcopy_downgrade_managed(skb);
2220 
2221 	if (skb_pfmemalloc(skb))
2222 		gfp_mask |= __GFP_MEMALLOC;
2223 
2224 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2225 	if (!data)
2226 		goto nodata;
2227 	size = SKB_WITH_OVERHEAD(size);
2228 
2229 	/* Copy only real data... and, alas, header. This should be
2230 	 * optimized for the cases when header is void.
2231 	 */
2232 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2233 
2234 	memcpy((struct skb_shared_info *)(data + size),
2235 	       skb_shinfo(skb),
2236 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2237 
2238 	/*
2239 	 * if shinfo is shared we must drop the old head gracefully, but if it
2240 	 * is not we can just drop the old head and let the existing refcount
2241 	 * be since all we did is relocate the values
2242 	 */
2243 	if (skb_cloned(skb)) {
2244 		if (skb_orphan_frags(skb, gfp_mask))
2245 			goto nofrags;
2246 		if (skb_zcopy(skb))
2247 			refcount_inc(&skb_uarg(skb)->refcnt);
2248 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2249 			skb_frag_ref(skb, i);
2250 
2251 		if (skb_has_frag_list(skb))
2252 			skb_clone_fraglist(skb);
2253 
2254 		skb_release_data(skb, SKB_CONSUMED);
2255 	} else {
2256 		skb_free_head(skb);
2257 	}
2258 	off = (data + nhead) - skb->head;
2259 
2260 	skb->head     = data;
2261 	skb->head_frag = 0;
2262 	skb->data    += off;
2263 
2264 	skb_set_end_offset(skb, size);
2265 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2266 	off           = nhead;
2267 #endif
2268 	skb->tail	      += off;
2269 	skb_headers_offset_update(skb, nhead);
2270 	skb->cloned   = 0;
2271 	skb->hdr_len  = 0;
2272 	skb->nohdr    = 0;
2273 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2274 
2275 	skb_metadata_clear(skb);
2276 
2277 	/* It is not generally safe to change skb->truesize.
2278 	 * For the moment, we really care of rx path, or
2279 	 * when skb is orphaned (not attached to a socket).
2280 	 */
2281 	if (!skb->sk || skb->destructor == sock_edemux)
2282 		skb->truesize += size - osize;
2283 
2284 	return 0;
2285 
2286 nofrags:
2287 	skb_kfree_head(data, size);
2288 nodata:
2289 	return -ENOMEM;
2290 }
2291 EXPORT_SYMBOL(pskb_expand_head);
2292 
2293 /* Make private copy of skb with writable head and some headroom */
2294 
2295 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2296 {
2297 	struct sk_buff *skb2;
2298 	int delta = headroom - skb_headroom(skb);
2299 
2300 	if (delta <= 0)
2301 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2302 	else {
2303 		skb2 = skb_clone(skb, GFP_ATOMIC);
2304 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2305 					     GFP_ATOMIC)) {
2306 			kfree_skb(skb2);
2307 			skb2 = NULL;
2308 		}
2309 	}
2310 	return skb2;
2311 }
2312 EXPORT_SYMBOL(skb_realloc_headroom);
2313 
2314 /* Note: We plan to rework this in linux-6.4 */
2315 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2316 {
2317 	unsigned int saved_end_offset, saved_truesize;
2318 	struct skb_shared_info *shinfo;
2319 	int res;
2320 
2321 	saved_end_offset = skb_end_offset(skb);
2322 	saved_truesize = skb->truesize;
2323 
2324 	res = pskb_expand_head(skb, 0, 0, pri);
2325 	if (res)
2326 		return res;
2327 
2328 	skb->truesize = saved_truesize;
2329 
2330 	if (likely(skb_end_offset(skb) == saved_end_offset))
2331 		return 0;
2332 
2333 	/* We can not change skb->end if the original or new value
2334 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2335 	 */
2336 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2337 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2338 		/* We think this path should not be taken.
2339 		 * Add a temporary trace to warn us just in case.
2340 		 */
2341 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2342 			    saved_end_offset, skb_end_offset(skb));
2343 		WARN_ON_ONCE(1);
2344 		return 0;
2345 	}
2346 
2347 	shinfo = skb_shinfo(skb);
2348 
2349 	/* We are about to change back skb->end,
2350 	 * we need to move skb_shinfo() to its new location.
2351 	 */
2352 	memmove(skb->head + saved_end_offset,
2353 		shinfo,
2354 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2355 
2356 	skb_set_end_offset(skb, saved_end_offset);
2357 
2358 	return 0;
2359 }
2360 
2361 /**
2362  *	skb_expand_head - reallocate header of &sk_buff
2363  *	@skb: buffer to reallocate
2364  *	@headroom: needed headroom
2365  *
2366  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2367  *	if possible; copies skb->sk to new skb as needed
2368  *	and frees original skb in case of failures.
2369  *
2370  *	It expect increased headroom and generates warning otherwise.
2371  */
2372 
2373 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2374 {
2375 	int delta = headroom - skb_headroom(skb);
2376 	int osize = skb_end_offset(skb);
2377 	struct sock *sk = skb->sk;
2378 
2379 	if (WARN_ONCE(delta <= 0,
2380 		      "%s is expecting an increase in the headroom", __func__))
2381 		return skb;
2382 
2383 	delta = SKB_DATA_ALIGN(delta);
2384 	/* pskb_expand_head() might crash, if skb is shared. */
2385 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2386 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2387 
2388 		if (unlikely(!nskb))
2389 			goto fail;
2390 
2391 		if (sk)
2392 			skb_set_owner_w(nskb, sk);
2393 		consume_skb(skb);
2394 		skb = nskb;
2395 	}
2396 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2397 		goto fail;
2398 
2399 	if (sk && is_skb_wmem(skb)) {
2400 		delta = skb_end_offset(skb) - osize;
2401 		refcount_add(delta, &sk->sk_wmem_alloc);
2402 		skb->truesize += delta;
2403 	}
2404 	return skb;
2405 
2406 fail:
2407 	kfree_skb(skb);
2408 	return NULL;
2409 }
2410 EXPORT_SYMBOL(skb_expand_head);
2411 
2412 /**
2413  *	skb_copy_expand	-	copy and expand sk_buff
2414  *	@skb: buffer to copy
2415  *	@newheadroom: new free bytes at head
2416  *	@newtailroom: new free bytes at tail
2417  *	@gfp_mask: allocation priority
2418  *
2419  *	Make a copy of both an &sk_buff and its data and while doing so
2420  *	allocate additional space.
2421  *
2422  *	This is used when the caller wishes to modify the data and needs a
2423  *	private copy of the data to alter as well as more space for new fields.
2424  *	Returns %NULL on failure or the pointer to the buffer
2425  *	on success. The returned buffer has a reference count of 1.
2426  *
2427  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2428  *	is called from an interrupt.
2429  */
2430 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2431 				int newheadroom, int newtailroom,
2432 				gfp_t gfp_mask)
2433 {
2434 	/*
2435 	 *	Allocate the copy buffer
2436 	 */
2437 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2438 					gfp_mask, skb_alloc_rx_flag(skb),
2439 					NUMA_NO_NODE);
2440 	int oldheadroom = skb_headroom(skb);
2441 	int head_copy_len, head_copy_off;
2442 
2443 	if (!n)
2444 		return NULL;
2445 
2446 	skb_reserve(n, newheadroom);
2447 
2448 	/* Set the tail pointer and length */
2449 	skb_put(n, skb->len);
2450 
2451 	head_copy_len = oldheadroom;
2452 	head_copy_off = 0;
2453 	if (newheadroom <= head_copy_len)
2454 		head_copy_len = newheadroom;
2455 	else
2456 		head_copy_off = newheadroom - head_copy_len;
2457 
2458 	/* Copy the linear header and data. */
2459 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2460 			     skb->len + head_copy_len));
2461 
2462 	skb_copy_header(n, skb);
2463 
2464 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2465 
2466 	return n;
2467 }
2468 EXPORT_SYMBOL(skb_copy_expand);
2469 
2470 /**
2471  *	__skb_pad		-	zero pad the tail of an skb
2472  *	@skb: buffer to pad
2473  *	@pad: space to pad
2474  *	@free_on_error: free buffer on error
2475  *
2476  *	Ensure that a buffer is followed by a padding area that is zero
2477  *	filled. Used by network drivers which may DMA or transfer data
2478  *	beyond the buffer end onto the wire.
2479  *
2480  *	May return error in out of memory cases. The skb is freed on error
2481  *	if @free_on_error is true.
2482  */
2483 
2484 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2485 {
2486 	int err;
2487 	int ntail;
2488 
2489 	/* If the skbuff is non linear tailroom is always zero.. */
2490 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2491 		memset(skb->data+skb->len, 0, pad);
2492 		return 0;
2493 	}
2494 
2495 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2496 	if (likely(skb_cloned(skb) || ntail > 0)) {
2497 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2498 		if (unlikely(err))
2499 			goto free_skb;
2500 	}
2501 
2502 	/* FIXME: The use of this function with non-linear skb's really needs
2503 	 * to be audited.
2504 	 */
2505 	err = skb_linearize(skb);
2506 	if (unlikely(err))
2507 		goto free_skb;
2508 
2509 	memset(skb->data + skb->len, 0, pad);
2510 	return 0;
2511 
2512 free_skb:
2513 	if (free_on_error)
2514 		kfree_skb(skb);
2515 	return err;
2516 }
2517 EXPORT_SYMBOL(__skb_pad);
2518 
2519 /**
2520  *	pskb_put - add data to the tail of a potentially fragmented buffer
2521  *	@skb: start of the buffer to use
2522  *	@tail: tail fragment of the buffer to use
2523  *	@len: amount of data to add
2524  *
2525  *	This function extends the used data area of the potentially
2526  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2527  *	@skb itself. If this would exceed the total buffer size the kernel
2528  *	will panic. A pointer to the first byte of the extra data is
2529  *	returned.
2530  */
2531 
2532 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2533 {
2534 	if (tail != skb) {
2535 		skb->data_len += len;
2536 		skb->len += len;
2537 	}
2538 	return skb_put(tail, len);
2539 }
2540 EXPORT_SYMBOL_GPL(pskb_put);
2541 
2542 /**
2543  *	skb_put - add data to a buffer
2544  *	@skb: buffer to use
2545  *	@len: amount of data to add
2546  *
2547  *	This function extends the used data area of the buffer. If this would
2548  *	exceed the total buffer size the kernel will panic. A pointer to the
2549  *	first byte of the extra data is returned.
2550  */
2551 void *skb_put(struct sk_buff *skb, unsigned int len)
2552 {
2553 	void *tmp = skb_tail_pointer(skb);
2554 	SKB_LINEAR_ASSERT(skb);
2555 	skb->tail += len;
2556 	skb->len  += len;
2557 	if (unlikely(skb->tail > skb->end))
2558 		skb_over_panic(skb, len, __builtin_return_address(0));
2559 	return tmp;
2560 }
2561 EXPORT_SYMBOL(skb_put);
2562 
2563 /**
2564  *	skb_push - add data to the start of a buffer
2565  *	@skb: buffer to use
2566  *	@len: amount of data to add
2567  *
2568  *	This function extends the used data area of the buffer at the buffer
2569  *	start. If this would exceed the total buffer headroom the kernel will
2570  *	panic. A pointer to the first byte of the extra data is returned.
2571  */
2572 void *skb_push(struct sk_buff *skb, unsigned int len)
2573 {
2574 	skb->data -= len;
2575 	skb->len  += len;
2576 	if (unlikely(skb->data < skb->head))
2577 		skb_under_panic(skb, len, __builtin_return_address(0));
2578 	return skb->data;
2579 }
2580 EXPORT_SYMBOL(skb_push);
2581 
2582 /**
2583  *	skb_pull - remove data from the start of a buffer
2584  *	@skb: buffer to use
2585  *	@len: amount of data to remove
2586  *
2587  *	This function removes data from the start of a buffer, returning
2588  *	the memory to the headroom. A pointer to the next data in the buffer
2589  *	is returned. Once the data has been pulled future pushes will overwrite
2590  *	the old data.
2591  */
2592 void *skb_pull(struct sk_buff *skb, unsigned int len)
2593 {
2594 	return skb_pull_inline(skb, len);
2595 }
2596 EXPORT_SYMBOL(skb_pull);
2597 
2598 /**
2599  *	skb_pull_data - remove data from the start of a buffer returning its
2600  *	original position.
2601  *	@skb: buffer to use
2602  *	@len: amount of data to remove
2603  *
2604  *	This function removes data from the start of a buffer, returning
2605  *	the memory to the headroom. A pointer to the original data in the buffer
2606  *	is returned after checking if there is enough data to pull. Once the
2607  *	data has been pulled future pushes will overwrite the old data.
2608  */
2609 void *skb_pull_data(struct sk_buff *skb, size_t len)
2610 {
2611 	void *data = skb->data;
2612 
2613 	if (skb->len < len)
2614 		return NULL;
2615 
2616 	skb_pull(skb, len);
2617 
2618 	return data;
2619 }
2620 EXPORT_SYMBOL(skb_pull_data);
2621 
2622 /**
2623  *	skb_trim - remove end from a buffer
2624  *	@skb: buffer to alter
2625  *	@len: new length
2626  *
2627  *	Cut the length of a buffer down by removing data from the tail. If
2628  *	the buffer is already under the length specified it is not modified.
2629  *	The skb must be linear.
2630  */
2631 void skb_trim(struct sk_buff *skb, unsigned int len)
2632 {
2633 	if (skb->len > len)
2634 		__skb_trim(skb, len);
2635 }
2636 EXPORT_SYMBOL(skb_trim);
2637 
2638 /* Trims skb to length len. It can change skb pointers.
2639  */
2640 
2641 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2642 {
2643 	struct sk_buff **fragp;
2644 	struct sk_buff *frag;
2645 	int offset = skb_headlen(skb);
2646 	int nfrags = skb_shinfo(skb)->nr_frags;
2647 	int i;
2648 	int err;
2649 
2650 	if (skb_cloned(skb) &&
2651 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2652 		return err;
2653 
2654 	i = 0;
2655 	if (offset >= len)
2656 		goto drop_pages;
2657 
2658 	for (; i < nfrags; i++) {
2659 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2660 
2661 		if (end < len) {
2662 			offset = end;
2663 			continue;
2664 		}
2665 
2666 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2667 
2668 drop_pages:
2669 		skb_shinfo(skb)->nr_frags = i;
2670 
2671 		for (; i < nfrags; i++)
2672 			skb_frag_unref(skb, i);
2673 
2674 		if (skb_has_frag_list(skb))
2675 			skb_drop_fraglist(skb);
2676 		goto done;
2677 	}
2678 
2679 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2680 	     fragp = &frag->next) {
2681 		int end = offset + frag->len;
2682 
2683 		if (skb_shared(frag)) {
2684 			struct sk_buff *nfrag;
2685 
2686 			nfrag = skb_clone(frag, GFP_ATOMIC);
2687 			if (unlikely(!nfrag))
2688 				return -ENOMEM;
2689 
2690 			nfrag->next = frag->next;
2691 			consume_skb(frag);
2692 			frag = nfrag;
2693 			*fragp = frag;
2694 		}
2695 
2696 		if (end < len) {
2697 			offset = end;
2698 			continue;
2699 		}
2700 
2701 		if (end > len &&
2702 		    unlikely((err = pskb_trim(frag, len - offset))))
2703 			return err;
2704 
2705 		if (frag->next)
2706 			skb_drop_list(&frag->next);
2707 		break;
2708 	}
2709 
2710 done:
2711 	if (len > skb_headlen(skb)) {
2712 		skb->data_len -= skb->len - len;
2713 		skb->len       = len;
2714 	} else {
2715 		skb->len       = len;
2716 		skb->data_len  = 0;
2717 		skb_set_tail_pointer(skb, len);
2718 	}
2719 
2720 	if (!skb->sk || skb->destructor == sock_edemux)
2721 		skb_condense(skb);
2722 	return 0;
2723 }
2724 EXPORT_SYMBOL(___pskb_trim);
2725 
2726 /* Note : use pskb_trim_rcsum() instead of calling this directly
2727  */
2728 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2729 {
2730 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2731 		int delta = skb->len - len;
2732 
2733 		skb->csum = csum_block_sub(skb->csum,
2734 					   skb_checksum(skb, len, delta, 0),
2735 					   len);
2736 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2737 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2738 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2739 
2740 		if (offset + sizeof(__sum16) > hdlen)
2741 			return -EINVAL;
2742 	}
2743 	return __pskb_trim(skb, len);
2744 }
2745 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2746 
2747 /**
2748  *	__pskb_pull_tail - advance tail of skb header
2749  *	@skb: buffer to reallocate
2750  *	@delta: number of bytes to advance tail
2751  *
2752  *	The function makes a sense only on a fragmented &sk_buff,
2753  *	it expands header moving its tail forward and copying necessary
2754  *	data from fragmented part.
2755  *
2756  *	&sk_buff MUST have reference count of 1.
2757  *
2758  *	Returns %NULL (and &sk_buff does not change) if pull failed
2759  *	or value of new tail of skb in the case of success.
2760  *
2761  *	All the pointers pointing into skb header may change and must be
2762  *	reloaded after call to this function.
2763  */
2764 
2765 /* Moves tail of skb head forward, copying data from fragmented part,
2766  * when it is necessary.
2767  * 1. It may fail due to malloc failure.
2768  * 2. It may change skb pointers.
2769  *
2770  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2771  */
2772 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2773 {
2774 	/* If skb has not enough free space at tail, get new one
2775 	 * plus 128 bytes for future expansions. If we have enough
2776 	 * room at tail, reallocate without expansion only if skb is cloned.
2777 	 */
2778 	int i, k, eat = (skb->tail + delta) - skb->end;
2779 
2780 	if (eat > 0 || skb_cloned(skb)) {
2781 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2782 				     GFP_ATOMIC))
2783 			return NULL;
2784 	}
2785 
2786 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2787 			     skb_tail_pointer(skb), delta));
2788 
2789 	/* Optimization: no fragments, no reasons to preestimate
2790 	 * size of pulled pages. Superb.
2791 	 */
2792 	if (!skb_has_frag_list(skb))
2793 		goto pull_pages;
2794 
2795 	/* Estimate size of pulled pages. */
2796 	eat = delta;
2797 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2798 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2799 
2800 		if (size >= eat)
2801 			goto pull_pages;
2802 		eat -= size;
2803 	}
2804 
2805 	/* If we need update frag list, we are in troubles.
2806 	 * Certainly, it is possible to add an offset to skb data,
2807 	 * but taking into account that pulling is expected to
2808 	 * be very rare operation, it is worth to fight against
2809 	 * further bloating skb head and crucify ourselves here instead.
2810 	 * Pure masohism, indeed. 8)8)
2811 	 */
2812 	if (eat) {
2813 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2814 		struct sk_buff *clone = NULL;
2815 		struct sk_buff *insp = NULL;
2816 
2817 		do {
2818 			if (list->len <= eat) {
2819 				/* Eaten as whole. */
2820 				eat -= list->len;
2821 				list = list->next;
2822 				insp = list;
2823 			} else {
2824 				/* Eaten partially. */
2825 				if (skb_is_gso(skb) && !list->head_frag &&
2826 				    skb_headlen(list))
2827 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2828 
2829 				if (skb_shared(list)) {
2830 					/* Sucks! We need to fork list. :-( */
2831 					clone = skb_clone(list, GFP_ATOMIC);
2832 					if (!clone)
2833 						return NULL;
2834 					insp = list->next;
2835 					list = clone;
2836 				} else {
2837 					/* This may be pulled without
2838 					 * problems. */
2839 					insp = list;
2840 				}
2841 				if (!pskb_pull(list, eat)) {
2842 					kfree_skb(clone);
2843 					return NULL;
2844 				}
2845 				break;
2846 			}
2847 		} while (eat);
2848 
2849 		/* Free pulled out fragments. */
2850 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2851 			skb_shinfo(skb)->frag_list = list->next;
2852 			consume_skb(list);
2853 		}
2854 		/* And insert new clone at head. */
2855 		if (clone) {
2856 			clone->next = list;
2857 			skb_shinfo(skb)->frag_list = clone;
2858 		}
2859 	}
2860 	/* Success! Now we may commit changes to skb data. */
2861 
2862 pull_pages:
2863 	eat = delta;
2864 	k = 0;
2865 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2866 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2867 
2868 		if (size <= eat) {
2869 			skb_frag_unref(skb, i);
2870 			eat -= size;
2871 		} else {
2872 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2873 
2874 			*frag = skb_shinfo(skb)->frags[i];
2875 			if (eat) {
2876 				skb_frag_off_add(frag, eat);
2877 				skb_frag_size_sub(frag, eat);
2878 				if (!i)
2879 					goto end;
2880 				eat = 0;
2881 			}
2882 			k++;
2883 		}
2884 	}
2885 	skb_shinfo(skb)->nr_frags = k;
2886 
2887 end:
2888 	skb->tail     += delta;
2889 	skb->data_len -= delta;
2890 
2891 	if (!skb->data_len)
2892 		skb_zcopy_clear(skb, false);
2893 
2894 	return skb_tail_pointer(skb);
2895 }
2896 EXPORT_SYMBOL(__pskb_pull_tail);
2897 
2898 /**
2899  *	skb_copy_bits - copy bits from skb to kernel buffer
2900  *	@skb: source skb
2901  *	@offset: offset in source
2902  *	@to: destination buffer
2903  *	@len: number of bytes to copy
2904  *
2905  *	Copy the specified number of bytes from the source skb to the
2906  *	destination buffer.
2907  *
2908  *	CAUTION ! :
2909  *		If its prototype is ever changed,
2910  *		check arch/{*}/net/{*}.S files,
2911  *		since it is called from BPF assembly code.
2912  */
2913 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2914 {
2915 	int start = skb_headlen(skb);
2916 	struct sk_buff *frag_iter;
2917 	int i, copy;
2918 
2919 	if (offset > (int)skb->len - len)
2920 		goto fault;
2921 
2922 	/* Copy header. */
2923 	if ((copy = start - offset) > 0) {
2924 		if (copy > len)
2925 			copy = len;
2926 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2927 		if ((len -= copy) == 0)
2928 			return 0;
2929 		offset += copy;
2930 		to     += copy;
2931 	}
2932 
2933 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2934 		int end;
2935 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2936 
2937 		WARN_ON(start > offset + len);
2938 
2939 		end = start + skb_frag_size(f);
2940 		if ((copy = end - offset) > 0) {
2941 			u32 p_off, p_len, copied;
2942 			struct page *p;
2943 			u8 *vaddr;
2944 
2945 			if (copy > len)
2946 				copy = len;
2947 
2948 			skb_frag_foreach_page(f,
2949 					      skb_frag_off(f) + offset - start,
2950 					      copy, p, p_off, p_len, copied) {
2951 				vaddr = kmap_atomic(p);
2952 				memcpy(to + copied, vaddr + p_off, p_len);
2953 				kunmap_atomic(vaddr);
2954 			}
2955 
2956 			if ((len -= copy) == 0)
2957 				return 0;
2958 			offset += copy;
2959 			to     += copy;
2960 		}
2961 		start = end;
2962 	}
2963 
2964 	skb_walk_frags(skb, frag_iter) {
2965 		int end;
2966 
2967 		WARN_ON(start > offset + len);
2968 
2969 		end = start + frag_iter->len;
2970 		if ((copy = end - offset) > 0) {
2971 			if (copy > len)
2972 				copy = len;
2973 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2974 				goto fault;
2975 			if ((len -= copy) == 0)
2976 				return 0;
2977 			offset += copy;
2978 			to     += copy;
2979 		}
2980 		start = end;
2981 	}
2982 
2983 	if (!len)
2984 		return 0;
2985 
2986 fault:
2987 	return -EFAULT;
2988 }
2989 EXPORT_SYMBOL(skb_copy_bits);
2990 
2991 /*
2992  * Callback from splice_to_pipe(), if we need to release some pages
2993  * at the end of the spd in case we error'ed out in filling the pipe.
2994  */
2995 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2996 {
2997 	put_page(spd->pages[i]);
2998 }
2999 
3000 static struct page *linear_to_page(struct page *page, unsigned int *len,
3001 				   unsigned int *offset,
3002 				   struct sock *sk)
3003 {
3004 	struct page_frag *pfrag = sk_page_frag(sk);
3005 
3006 	if (!sk_page_frag_refill(sk, pfrag))
3007 		return NULL;
3008 
3009 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3010 
3011 	memcpy(page_address(pfrag->page) + pfrag->offset,
3012 	       page_address(page) + *offset, *len);
3013 	*offset = pfrag->offset;
3014 	pfrag->offset += *len;
3015 
3016 	return pfrag->page;
3017 }
3018 
3019 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3020 			     struct page *page,
3021 			     unsigned int offset)
3022 {
3023 	return	spd->nr_pages &&
3024 		spd->pages[spd->nr_pages - 1] == page &&
3025 		(spd->partial[spd->nr_pages - 1].offset +
3026 		 spd->partial[spd->nr_pages - 1].len == offset);
3027 }
3028 
3029 /*
3030  * Fill page/offset/length into spd, if it can hold more pages.
3031  */
3032 static bool spd_fill_page(struct splice_pipe_desc *spd,
3033 			  struct pipe_inode_info *pipe, struct page *page,
3034 			  unsigned int *len, unsigned int offset,
3035 			  bool linear,
3036 			  struct sock *sk)
3037 {
3038 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3039 		return true;
3040 
3041 	if (linear) {
3042 		page = linear_to_page(page, len, &offset, sk);
3043 		if (!page)
3044 			return true;
3045 	}
3046 	if (spd_can_coalesce(spd, page, offset)) {
3047 		spd->partial[spd->nr_pages - 1].len += *len;
3048 		return false;
3049 	}
3050 	get_page(page);
3051 	spd->pages[spd->nr_pages] = page;
3052 	spd->partial[spd->nr_pages].len = *len;
3053 	spd->partial[spd->nr_pages].offset = offset;
3054 	spd->nr_pages++;
3055 
3056 	return false;
3057 }
3058 
3059 static bool __splice_segment(struct page *page, unsigned int poff,
3060 			     unsigned int plen, unsigned int *off,
3061 			     unsigned int *len,
3062 			     struct splice_pipe_desc *spd, bool linear,
3063 			     struct sock *sk,
3064 			     struct pipe_inode_info *pipe)
3065 {
3066 	if (!*len)
3067 		return true;
3068 
3069 	/* skip this segment if already processed */
3070 	if (*off >= plen) {
3071 		*off -= plen;
3072 		return false;
3073 	}
3074 
3075 	/* ignore any bits we already processed */
3076 	poff += *off;
3077 	plen -= *off;
3078 	*off = 0;
3079 
3080 	do {
3081 		unsigned int flen = min(*len, plen);
3082 
3083 		if (spd_fill_page(spd, pipe, page, &flen, poff,
3084 				  linear, sk))
3085 			return true;
3086 		poff += flen;
3087 		plen -= flen;
3088 		*len -= flen;
3089 	} while (*len && plen);
3090 
3091 	return false;
3092 }
3093 
3094 /*
3095  * Map linear and fragment data from the skb to spd. It reports true if the
3096  * pipe is full or if we already spliced the requested length.
3097  */
3098 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3099 			      unsigned int *offset, unsigned int *len,
3100 			      struct splice_pipe_desc *spd, struct sock *sk)
3101 {
3102 	int seg;
3103 	struct sk_buff *iter;
3104 
3105 	/* map the linear part :
3106 	 * If skb->head_frag is set, this 'linear' part is backed by a
3107 	 * fragment, and if the head is not shared with any clones then
3108 	 * we can avoid a copy since we own the head portion of this page.
3109 	 */
3110 	if (__splice_segment(virt_to_page(skb->data),
3111 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3112 			     skb_headlen(skb),
3113 			     offset, len, spd,
3114 			     skb_head_is_locked(skb),
3115 			     sk, pipe))
3116 		return true;
3117 
3118 	/*
3119 	 * then map the fragments
3120 	 */
3121 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3122 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3123 
3124 		if (__splice_segment(skb_frag_page(f),
3125 				     skb_frag_off(f), skb_frag_size(f),
3126 				     offset, len, spd, false, sk, pipe))
3127 			return true;
3128 	}
3129 
3130 	skb_walk_frags(skb, iter) {
3131 		if (*offset >= iter->len) {
3132 			*offset -= iter->len;
3133 			continue;
3134 		}
3135 		/* __skb_splice_bits() only fails if the output has no room
3136 		 * left, so no point in going over the frag_list for the error
3137 		 * case.
3138 		 */
3139 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3140 			return true;
3141 	}
3142 
3143 	return false;
3144 }
3145 
3146 /*
3147  * Map data from the skb to a pipe. Should handle both the linear part,
3148  * the fragments, and the frag list.
3149  */
3150 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3151 		    struct pipe_inode_info *pipe, unsigned int tlen,
3152 		    unsigned int flags)
3153 {
3154 	struct partial_page partial[MAX_SKB_FRAGS];
3155 	struct page *pages[MAX_SKB_FRAGS];
3156 	struct splice_pipe_desc spd = {
3157 		.pages = pages,
3158 		.partial = partial,
3159 		.nr_pages_max = MAX_SKB_FRAGS,
3160 		.ops = &nosteal_pipe_buf_ops,
3161 		.spd_release = sock_spd_release,
3162 	};
3163 	int ret = 0;
3164 
3165 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3166 
3167 	if (spd.nr_pages)
3168 		ret = splice_to_pipe(pipe, &spd);
3169 
3170 	return ret;
3171 }
3172 EXPORT_SYMBOL_GPL(skb_splice_bits);
3173 
3174 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3175 {
3176 	struct socket *sock = sk->sk_socket;
3177 	size_t size = msg_data_left(msg);
3178 
3179 	if (!sock)
3180 		return -EINVAL;
3181 
3182 	if (!sock->ops->sendmsg_locked)
3183 		return sock_no_sendmsg_locked(sk, msg, size);
3184 
3185 	return sock->ops->sendmsg_locked(sk, msg, size);
3186 }
3187 
3188 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3189 {
3190 	struct socket *sock = sk->sk_socket;
3191 
3192 	if (!sock)
3193 		return -EINVAL;
3194 	return sock_sendmsg(sock, msg);
3195 }
3196 
3197 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3198 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3199 			   int len, sendmsg_func sendmsg)
3200 {
3201 	unsigned int orig_len = len;
3202 	struct sk_buff *head = skb;
3203 	unsigned short fragidx;
3204 	int slen, ret;
3205 
3206 do_frag_list:
3207 
3208 	/* Deal with head data */
3209 	while (offset < skb_headlen(skb) && len) {
3210 		struct kvec kv;
3211 		struct msghdr msg;
3212 
3213 		slen = min_t(int, len, skb_headlen(skb) - offset);
3214 		kv.iov_base = skb->data + offset;
3215 		kv.iov_len = slen;
3216 		memset(&msg, 0, sizeof(msg));
3217 		msg.msg_flags = MSG_DONTWAIT;
3218 
3219 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3220 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3221 				      sendmsg_unlocked, sk, &msg);
3222 		if (ret <= 0)
3223 			goto error;
3224 
3225 		offset += ret;
3226 		len -= ret;
3227 	}
3228 
3229 	/* All the data was skb head? */
3230 	if (!len)
3231 		goto out;
3232 
3233 	/* Make offset relative to start of frags */
3234 	offset -= skb_headlen(skb);
3235 
3236 	/* Find where we are in frag list */
3237 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3238 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3239 
3240 		if (offset < skb_frag_size(frag))
3241 			break;
3242 
3243 		offset -= skb_frag_size(frag);
3244 	}
3245 
3246 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3247 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3248 
3249 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3250 
3251 		while (slen) {
3252 			struct bio_vec bvec;
3253 			struct msghdr msg = {
3254 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3255 			};
3256 
3257 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3258 				      skb_frag_off(frag) + offset);
3259 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3260 				      slen);
3261 
3262 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3263 					      sendmsg_unlocked, sk, &msg);
3264 			if (ret <= 0)
3265 				goto error;
3266 
3267 			len -= ret;
3268 			offset += ret;
3269 			slen -= ret;
3270 		}
3271 
3272 		offset = 0;
3273 	}
3274 
3275 	if (len) {
3276 		/* Process any frag lists */
3277 
3278 		if (skb == head) {
3279 			if (skb_has_frag_list(skb)) {
3280 				skb = skb_shinfo(skb)->frag_list;
3281 				goto do_frag_list;
3282 			}
3283 		} else if (skb->next) {
3284 			skb = skb->next;
3285 			goto do_frag_list;
3286 		}
3287 	}
3288 
3289 out:
3290 	return orig_len - len;
3291 
3292 error:
3293 	return orig_len == len ? ret : orig_len - len;
3294 }
3295 
3296 /* Send skb data on a socket. Socket must be locked. */
3297 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3298 			 int len)
3299 {
3300 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3301 }
3302 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3303 
3304 /* Send skb data on a socket. Socket must be unlocked. */
3305 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3306 {
3307 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3308 }
3309 
3310 /**
3311  *	skb_store_bits - store bits from kernel buffer to skb
3312  *	@skb: destination buffer
3313  *	@offset: offset in destination
3314  *	@from: source buffer
3315  *	@len: number of bytes to copy
3316  *
3317  *	Copy the specified number of bytes from the source buffer to the
3318  *	destination skb.  This function handles all the messy bits of
3319  *	traversing fragment lists and such.
3320  */
3321 
3322 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3323 {
3324 	int start = skb_headlen(skb);
3325 	struct sk_buff *frag_iter;
3326 	int i, copy;
3327 
3328 	if (offset > (int)skb->len - len)
3329 		goto fault;
3330 
3331 	if ((copy = start - offset) > 0) {
3332 		if (copy > len)
3333 			copy = len;
3334 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3335 		if ((len -= copy) == 0)
3336 			return 0;
3337 		offset += copy;
3338 		from += copy;
3339 	}
3340 
3341 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3342 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3343 		int end;
3344 
3345 		WARN_ON(start > offset + len);
3346 
3347 		end = start + skb_frag_size(frag);
3348 		if ((copy = end - offset) > 0) {
3349 			u32 p_off, p_len, copied;
3350 			struct page *p;
3351 			u8 *vaddr;
3352 
3353 			if (copy > len)
3354 				copy = len;
3355 
3356 			skb_frag_foreach_page(frag,
3357 					      skb_frag_off(frag) + offset - start,
3358 					      copy, p, p_off, p_len, copied) {
3359 				vaddr = kmap_atomic(p);
3360 				memcpy(vaddr + p_off, from + copied, p_len);
3361 				kunmap_atomic(vaddr);
3362 			}
3363 
3364 			if ((len -= copy) == 0)
3365 				return 0;
3366 			offset += copy;
3367 			from += copy;
3368 		}
3369 		start = end;
3370 	}
3371 
3372 	skb_walk_frags(skb, frag_iter) {
3373 		int end;
3374 
3375 		WARN_ON(start > offset + len);
3376 
3377 		end = start + frag_iter->len;
3378 		if ((copy = end - offset) > 0) {
3379 			if (copy > len)
3380 				copy = len;
3381 			if (skb_store_bits(frag_iter, offset - start,
3382 					   from, copy))
3383 				goto fault;
3384 			if ((len -= copy) == 0)
3385 				return 0;
3386 			offset += copy;
3387 			from += copy;
3388 		}
3389 		start = end;
3390 	}
3391 	if (!len)
3392 		return 0;
3393 
3394 fault:
3395 	return -EFAULT;
3396 }
3397 EXPORT_SYMBOL(skb_store_bits);
3398 
3399 /* Checksum skb data. */
3400 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3401 		      __wsum csum, const struct skb_checksum_ops *ops)
3402 {
3403 	int start = skb_headlen(skb);
3404 	int i, copy = start - offset;
3405 	struct sk_buff *frag_iter;
3406 	int pos = 0;
3407 
3408 	/* Checksum header. */
3409 	if (copy > 0) {
3410 		if (copy > len)
3411 			copy = len;
3412 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3413 				       skb->data + offset, copy, csum);
3414 		if ((len -= copy) == 0)
3415 			return csum;
3416 		offset += copy;
3417 		pos	= copy;
3418 	}
3419 
3420 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3421 		int end;
3422 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3423 
3424 		WARN_ON(start > offset + len);
3425 
3426 		end = start + skb_frag_size(frag);
3427 		if ((copy = end - offset) > 0) {
3428 			u32 p_off, p_len, copied;
3429 			struct page *p;
3430 			__wsum csum2;
3431 			u8 *vaddr;
3432 
3433 			if (copy > len)
3434 				copy = len;
3435 
3436 			skb_frag_foreach_page(frag,
3437 					      skb_frag_off(frag) + offset - start,
3438 					      copy, p, p_off, p_len, copied) {
3439 				vaddr = kmap_atomic(p);
3440 				csum2 = INDIRECT_CALL_1(ops->update,
3441 							csum_partial_ext,
3442 							vaddr + p_off, p_len, 0);
3443 				kunmap_atomic(vaddr);
3444 				csum = INDIRECT_CALL_1(ops->combine,
3445 						       csum_block_add_ext, csum,
3446 						       csum2, pos, p_len);
3447 				pos += p_len;
3448 			}
3449 
3450 			if (!(len -= copy))
3451 				return csum;
3452 			offset += copy;
3453 		}
3454 		start = end;
3455 	}
3456 
3457 	skb_walk_frags(skb, frag_iter) {
3458 		int end;
3459 
3460 		WARN_ON(start > offset + len);
3461 
3462 		end = start + frag_iter->len;
3463 		if ((copy = end - offset) > 0) {
3464 			__wsum csum2;
3465 			if (copy > len)
3466 				copy = len;
3467 			csum2 = __skb_checksum(frag_iter, offset - start,
3468 					       copy, 0, ops);
3469 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3470 					       csum, csum2, pos, copy);
3471 			if ((len -= copy) == 0)
3472 				return csum;
3473 			offset += copy;
3474 			pos    += copy;
3475 		}
3476 		start = end;
3477 	}
3478 	BUG_ON(len);
3479 
3480 	return csum;
3481 }
3482 EXPORT_SYMBOL(__skb_checksum);
3483 
3484 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3485 		    int len, __wsum csum)
3486 {
3487 	const struct skb_checksum_ops ops = {
3488 		.update  = csum_partial_ext,
3489 		.combine = csum_block_add_ext,
3490 	};
3491 
3492 	return __skb_checksum(skb, offset, len, csum, &ops);
3493 }
3494 EXPORT_SYMBOL(skb_checksum);
3495 
3496 /* Both of above in one bottle. */
3497 
3498 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3499 				    u8 *to, int len)
3500 {
3501 	int start = skb_headlen(skb);
3502 	int i, copy = start - offset;
3503 	struct sk_buff *frag_iter;
3504 	int pos = 0;
3505 	__wsum csum = 0;
3506 
3507 	/* Copy header. */
3508 	if (copy > 0) {
3509 		if (copy > len)
3510 			copy = len;
3511 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3512 						 copy);
3513 		if ((len -= copy) == 0)
3514 			return csum;
3515 		offset += copy;
3516 		to     += copy;
3517 		pos	= copy;
3518 	}
3519 
3520 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3521 		int end;
3522 
3523 		WARN_ON(start > offset + len);
3524 
3525 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3526 		if ((copy = end - offset) > 0) {
3527 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3528 			u32 p_off, p_len, copied;
3529 			struct page *p;
3530 			__wsum csum2;
3531 			u8 *vaddr;
3532 
3533 			if (copy > len)
3534 				copy = len;
3535 
3536 			skb_frag_foreach_page(frag,
3537 					      skb_frag_off(frag) + offset - start,
3538 					      copy, p, p_off, p_len, copied) {
3539 				vaddr = kmap_atomic(p);
3540 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3541 								  to + copied,
3542 								  p_len);
3543 				kunmap_atomic(vaddr);
3544 				csum = csum_block_add(csum, csum2, pos);
3545 				pos += p_len;
3546 			}
3547 
3548 			if (!(len -= copy))
3549 				return csum;
3550 			offset += copy;
3551 			to     += copy;
3552 		}
3553 		start = end;
3554 	}
3555 
3556 	skb_walk_frags(skb, frag_iter) {
3557 		__wsum csum2;
3558 		int end;
3559 
3560 		WARN_ON(start > offset + len);
3561 
3562 		end = start + frag_iter->len;
3563 		if ((copy = end - offset) > 0) {
3564 			if (copy > len)
3565 				copy = len;
3566 			csum2 = skb_copy_and_csum_bits(frag_iter,
3567 						       offset - start,
3568 						       to, copy);
3569 			csum = csum_block_add(csum, csum2, pos);
3570 			if ((len -= copy) == 0)
3571 				return csum;
3572 			offset += copy;
3573 			to     += copy;
3574 			pos    += copy;
3575 		}
3576 		start = end;
3577 	}
3578 	BUG_ON(len);
3579 	return csum;
3580 }
3581 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3582 
3583 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3584 {
3585 	__sum16 sum;
3586 
3587 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3588 	/* See comments in __skb_checksum_complete(). */
3589 	if (likely(!sum)) {
3590 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3591 		    !skb->csum_complete_sw)
3592 			netdev_rx_csum_fault(skb->dev, skb);
3593 	}
3594 	if (!skb_shared(skb))
3595 		skb->csum_valid = !sum;
3596 	return sum;
3597 }
3598 EXPORT_SYMBOL(__skb_checksum_complete_head);
3599 
3600 /* This function assumes skb->csum already holds pseudo header's checksum,
3601  * which has been changed from the hardware checksum, for example, by
3602  * __skb_checksum_validate_complete(). And, the original skb->csum must
3603  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3604  *
3605  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3606  * zero. The new checksum is stored back into skb->csum unless the skb is
3607  * shared.
3608  */
3609 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3610 {
3611 	__wsum csum;
3612 	__sum16 sum;
3613 
3614 	csum = skb_checksum(skb, 0, skb->len, 0);
3615 
3616 	sum = csum_fold(csum_add(skb->csum, csum));
3617 	/* This check is inverted, because we already knew the hardware
3618 	 * checksum is invalid before calling this function. So, if the
3619 	 * re-computed checksum is valid instead, then we have a mismatch
3620 	 * between the original skb->csum and skb_checksum(). This means either
3621 	 * the original hardware checksum is incorrect or we screw up skb->csum
3622 	 * when moving skb->data around.
3623 	 */
3624 	if (likely(!sum)) {
3625 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3626 		    !skb->csum_complete_sw)
3627 			netdev_rx_csum_fault(skb->dev, skb);
3628 	}
3629 
3630 	if (!skb_shared(skb)) {
3631 		/* Save full packet checksum */
3632 		skb->csum = csum;
3633 		skb->ip_summed = CHECKSUM_COMPLETE;
3634 		skb->csum_complete_sw = 1;
3635 		skb->csum_valid = !sum;
3636 	}
3637 
3638 	return sum;
3639 }
3640 EXPORT_SYMBOL(__skb_checksum_complete);
3641 
3642 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3643 {
3644 	net_warn_ratelimited(
3645 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3646 		__func__);
3647 	return 0;
3648 }
3649 
3650 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3651 				       int offset, int len)
3652 {
3653 	net_warn_ratelimited(
3654 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3655 		__func__);
3656 	return 0;
3657 }
3658 
3659 static const struct skb_checksum_ops default_crc32c_ops = {
3660 	.update  = warn_crc32c_csum_update,
3661 	.combine = warn_crc32c_csum_combine,
3662 };
3663 
3664 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3665 	&default_crc32c_ops;
3666 EXPORT_SYMBOL(crc32c_csum_stub);
3667 
3668  /**
3669  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3670  *	@from: source buffer
3671  *
3672  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3673  *	into skb_zerocopy().
3674  */
3675 unsigned int
3676 skb_zerocopy_headlen(const struct sk_buff *from)
3677 {
3678 	unsigned int hlen = 0;
3679 
3680 	if (!from->head_frag ||
3681 	    skb_headlen(from) < L1_CACHE_BYTES ||
3682 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3683 		hlen = skb_headlen(from);
3684 		if (!hlen)
3685 			hlen = from->len;
3686 	}
3687 
3688 	if (skb_has_frag_list(from))
3689 		hlen = from->len;
3690 
3691 	return hlen;
3692 }
3693 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3694 
3695 /**
3696  *	skb_zerocopy - Zero copy skb to skb
3697  *	@to: destination buffer
3698  *	@from: source buffer
3699  *	@len: number of bytes to copy from source buffer
3700  *	@hlen: size of linear headroom in destination buffer
3701  *
3702  *	Copies up to `len` bytes from `from` to `to` by creating references
3703  *	to the frags in the source buffer.
3704  *
3705  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3706  *	headroom in the `to` buffer.
3707  *
3708  *	Return value:
3709  *	0: everything is OK
3710  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3711  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3712  */
3713 int
3714 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3715 {
3716 	int i, j = 0;
3717 	int plen = 0; /* length of skb->head fragment */
3718 	int ret;
3719 	struct page *page;
3720 	unsigned int offset;
3721 
3722 	BUG_ON(!from->head_frag && !hlen);
3723 
3724 	/* dont bother with small payloads */
3725 	if (len <= skb_tailroom(to))
3726 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3727 
3728 	if (hlen) {
3729 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3730 		if (unlikely(ret))
3731 			return ret;
3732 		len -= hlen;
3733 	} else {
3734 		plen = min_t(int, skb_headlen(from), len);
3735 		if (plen) {
3736 			page = virt_to_head_page(from->head);
3737 			offset = from->data - (unsigned char *)page_address(page);
3738 			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3739 					       offset, plen);
3740 			get_page(page);
3741 			j = 1;
3742 			len -= plen;
3743 		}
3744 	}
3745 
3746 	skb_len_add(to, len + plen);
3747 
3748 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3749 		skb_tx_error(from);
3750 		return -ENOMEM;
3751 	}
3752 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3753 
3754 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3755 		int size;
3756 
3757 		if (!len)
3758 			break;
3759 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3760 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3761 					len);
3762 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3763 		len -= size;
3764 		skb_frag_ref(to, j);
3765 		j++;
3766 	}
3767 	skb_shinfo(to)->nr_frags = j;
3768 
3769 	return 0;
3770 }
3771 EXPORT_SYMBOL_GPL(skb_zerocopy);
3772 
3773 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3774 {
3775 	__wsum csum;
3776 	long csstart;
3777 
3778 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3779 		csstart = skb_checksum_start_offset(skb);
3780 	else
3781 		csstart = skb_headlen(skb);
3782 
3783 	BUG_ON(csstart > skb_headlen(skb));
3784 
3785 	skb_copy_from_linear_data(skb, to, csstart);
3786 
3787 	csum = 0;
3788 	if (csstart != skb->len)
3789 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3790 					      skb->len - csstart);
3791 
3792 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3793 		long csstuff = csstart + skb->csum_offset;
3794 
3795 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3796 	}
3797 }
3798 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3799 
3800 /**
3801  *	skb_dequeue - remove from the head of the queue
3802  *	@list: list to dequeue from
3803  *
3804  *	Remove the head of the list. The list lock is taken so the function
3805  *	may be used safely with other locking list functions. The head item is
3806  *	returned or %NULL if the list is empty.
3807  */
3808 
3809 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3810 {
3811 	unsigned long flags;
3812 	struct sk_buff *result;
3813 
3814 	spin_lock_irqsave(&list->lock, flags);
3815 	result = __skb_dequeue(list);
3816 	spin_unlock_irqrestore(&list->lock, flags);
3817 	return result;
3818 }
3819 EXPORT_SYMBOL(skb_dequeue);
3820 
3821 /**
3822  *	skb_dequeue_tail - remove from the tail of the queue
3823  *	@list: list to dequeue from
3824  *
3825  *	Remove the tail of the list. The list lock is taken so the function
3826  *	may be used safely with other locking list functions. The tail item is
3827  *	returned or %NULL if the list is empty.
3828  */
3829 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3830 {
3831 	unsigned long flags;
3832 	struct sk_buff *result;
3833 
3834 	spin_lock_irqsave(&list->lock, flags);
3835 	result = __skb_dequeue_tail(list);
3836 	spin_unlock_irqrestore(&list->lock, flags);
3837 	return result;
3838 }
3839 EXPORT_SYMBOL(skb_dequeue_tail);
3840 
3841 /**
3842  *	skb_queue_purge_reason - empty a list
3843  *	@list: list to empty
3844  *	@reason: drop reason
3845  *
3846  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3847  *	the list and one reference dropped. This function takes the list
3848  *	lock and is atomic with respect to other list locking functions.
3849  */
3850 void skb_queue_purge_reason(struct sk_buff_head *list,
3851 			    enum skb_drop_reason reason)
3852 {
3853 	struct sk_buff_head tmp;
3854 	unsigned long flags;
3855 
3856 	if (skb_queue_empty_lockless(list))
3857 		return;
3858 
3859 	__skb_queue_head_init(&tmp);
3860 
3861 	spin_lock_irqsave(&list->lock, flags);
3862 	skb_queue_splice_init(list, &tmp);
3863 	spin_unlock_irqrestore(&list->lock, flags);
3864 
3865 	__skb_queue_purge_reason(&tmp, reason);
3866 }
3867 EXPORT_SYMBOL(skb_queue_purge_reason);
3868 
3869 /**
3870  *	skb_rbtree_purge - empty a skb rbtree
3871  *	@root: root of the rbtree to empty
3872  *	Return value: the sum of truesizes of all purged skbs.
3873  *
3874  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3875  *	the list and one reference dropped. This function does not take
3876  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3877  *	out-of-order queue is protected by the socket lock).
3878  */
3879 unsigned int skb_rbtree_purge(struct rb_root *root)
3880 {
3881 	struct rb_node *p = rb_first(root);
3882 	unsigned int sum = 0;
3883 
3884 	while (p) {
3885 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3886 
3887 		p = rb_next(p);
3888 		rb_erase(&skb->rbnode, root);
3889 		sum += skb->truesize;
3890 		kfree_skb(skb);
3891 	}
3892 	return sum;
3893 }
3894 
3895 void skb_errqueue_purge(struct sk_buff_head *list)
3896 {
3897 	struct sk_buff *skb, *next;
3898 	struct sk_buff_head kill;
3899 	unsigned long flags;
3900 
3901 	__skb_queue_head_init(&kill);
3902 
3903 	spin_lock_irqsave(&list->lock, flags);
3904 	skb_queue_walk_safe(list, skb, next) {
3905 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3906 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3907 			continue;
3908 		__skb_unlink(skb, list);
3909 		__skb_queue_tail(&kill, skb);
3910 	}
3911 	spin_unlock_irqrestore(&list->lock, flags);
3912 	__skb_queue_purge(&kill);
3913 }
3914 EXPORT_SYMBOL(skb_errqueue_purge);
3915 
3916 /**
3917  *	skb_queue_head - queue a buffer at the list head
3918  *	@list: list to use
3919  *	@newsk: buffer to queue
3920  *
3921  *	Queue a buffer at the start of the list. This function takes the
3922  *	list lock and can be used safely with other locking &sk_buff functions
3923  *	safely.
3924  *
3925  *	A buffer cannot be placed on two lists at the same time.
3926  */
3927 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3928 {
3929 	unsigned long flags;
3930 
3931 	spin_lock_irqsave(&list->lock, flags);
3932 	__skb_queue_head(list, newsk);
3933 	spin_unlock_irqrestore(&list->lock, flags);
3934 }
3935 EXPORT_SYMBOL(skb_queue_head);
3936 
3937 /**
3938  *	skb_queue_tail - queue a buffer at the list tail
3939  *	@list: list to use
3940  *	@newsk: buffer to queue
3941  *
3942  *	Queue a buffer at the tail of the list. This function takes the
3943  *	list lock and can be used safely with other locking &sk_buff functions
3944  *	safely.
3945  *
3946  *	A buffer cannot be placed on two lists at the same time.
3947  */
3948 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3949 {
3950 	unsigned long flags;
3951 
3952 	spin_lock_irqsave(&list->lock, flags);
3953 	__skb_queue_tail(list, newsk);
3954 	spin_unlock_irqrestore(&list->lock, flags);
3955 }
3956 EXPORT_SYMBOL(skb_queue_tail);
3957 
3958 /**
3959  *	skb_unlink	-	remove a buffer from a list
3960  *	@skb: buffer to remove
3961  *	@list: list to use
3962  *
3963  *	Remove a packet from a list. The list locks are taken and this
3964  *	function is atomic with respect to other list locked calls
3965  *
3966  *	You must know what list the SKB is on.
3967  */
3968 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3969 {
3970 	unsigned long flags;
3971 
3972 	spin_lock_irqsave(&list->lock, flags);
3973 	__skb_unlink(skb, list);
3974 	spin_unlock_irqrestore(&list->lock, flags);
3975 }
3976 EXPORT_SYMBOL(skb_unlink);
3977 
3978 /**
3979  *	skb_append	-	append a buffer
3980  *	@old: buffer to insert after
3981  *	@newsk: buffer to insert
3982  *	@list: list to use
3983  *
3984  *	Place a packet after a given packet in a list. The list locks are taken
3985  *	and this function is atomic with respect to other list locked calls.
3986  *	A buffer cannot be placed on two lists at the same time.
3987  */
3988 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3989 {
3990 	unsigned long flags;
3991 
3992 	spin_lock_irqsave(&list->lock, flags);
3993 	__skb_queue_after(list, old, newsk);
3994 	spin_unlock_irqrestore(&list->lock, flags);
3995 }
3996 EXPORT_SYMBOL(skb_append);
3997 
3998 static inline void skb_split_inside_header(struct sk_buff *skb,
3999 					   struct sk_buff* skb1,
4000 					   const u32 len, const int pos)
4001 {
4002 	int i;
4003 
4004 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4005 					 pos - len);
4006 	/* And move data appendix as is. */
4007 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4008 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4009 
4010 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4011 	skb_shinfo(skb)->nr_frags  = 0;
4012 	skb1->data_len		   = skb->data_len;
4013 	skb1->len		   += skb1->data_len;
4014 	skb->data_len		   = 0;
4015 	skb->len		   = len;
4016 	skb_set_tail_pointer(skb, len);
4017 }
4018 
4019 static inline void skb_split_no_header(struct sk_buff *skb,
4020 				       struct sk_buff* skb1,
4021 				       const u32 len, int pos)
4022 {
4023 	int i, k = 0;
4024 	const int nfrags = skb_shinfo(skb)->nr_frags;
4025 
4026 	skb_shinfo(skb)->nr_frags = 0;
4027 	skb1->len		  = skb1->data_len = skb->len - len;
4028 	skb->len		  = len;
4029 	skb->data_len		  = len - pos;
4030 
4031 	for (i = 0; i < nfrags; i++) {
4032 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4033 
4034 		if (pos + size > len) {
4035 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4036 
4037 			if (pos < len) {
4038 				/* Split frag.
4039 				 * We have two variants in this case:
4040 				 * 1. Move all the frag to the second
4041 				 *    part, if it is possible. F.e.
4042 				 *    this approach is mandatory for TUX,
4043 				 *    where splitting is expensive.
4044 				 * 2. Split is accurately. We make this.
4045 				 */
4046 				skb_frag_ref(skb, i);
4047 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4048 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4049 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4050 				skb_shinfo(skb)->nr_frags++;
4051 			}
4052 			k++;
4053 		} else
4054 			skb_shinfo(skb)->nr_frags++;
4055 		pos += size;
4056 	}
4057 	skb_shinfo(skb1)->nr_frags = k;
4058 }
4059 
4060 /**
4061  * skb_split - Split fragmented skb to two parts at length len.
4062  * @skb: the buffer to split
4063  * @skb1: the buffer to receive the second part
4064  * @len: new length for skb
4065  */
4066 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4067 {
4068 	int pos = skb_headlen(skb);
4069 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4070 
4071 	skb_zcopy_downgrade_managed(skb);
4072 
4073 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4074 	skb_zerocopy_clone(skb1, skb, 0);
4075 	if (len < pos)	/* Split line is inside header. */
4076 		skb_split_inside_header(skb, skb1, len, pos);
4077 	else		/* Second chunk has no header, nothing to copy. */
4078 		skb_split_no_header(skb, skb1, len, pos);
4079 }
4080 EXPORT_SYMBOL(skb_split);
4081 
4082 /* Shifting from/to a cloned skb is a no-go.
4083  *
4084  * Caller cannot keep skb_shinfo related pointers past calling here!
4085  */
4086 static int skb_prepare_for_shift(struct sk_buff *skb)
4087 {
4088 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4089 }
4090 
4091 /**
4092  * skb_shift - Shifts paged data partially from skb to another
4093  * @tgt: buffer into which tail data gets added
4094  * @skb: buffer from which the paged data comes from
4095  * @shiftlen: shift up to this many bytes
4096  *
4097  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4098  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4099  * It's up to caller to free skb if everything was shifted.
4100  *
4101  * If @tgt runs out of frags, the whole operation is aborted.
4102  *
4103  * Skb cannot include anything else but paged data while tgt is allowed
4104  * to have non-paged data as well.
4105  *
4106  * TODO: full sized shift could be optimized but that would need
4107  * specialized skb free'er to handle frags without up-to-date nr_frags.
4108  */
4109 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4110 {
4111 	int from, to, merge, todo;
4112 	skb_frag_t *fragfrom, *fragto;
4113 
4114 	BUG_ON(shiftlen > skb->len);
4115 
4116 	if (skb_headlen(skb))
4117 		return 0;
4118 	if (skb_zcopy(tgt) || skb_zcopy(skb))
4119 		return 0;
4120 
4121 	todo = shiftlen;
4122 	from = 0;
4123 	to = skb_shinfo(tgt)->nr_frags;
4124 	fragfrom = &skb_shinfo(skb)->frags[from];
4125 
4126 	/* Actual merge is delayed until the point when we know we can
4127 	 * commit all, so that we don't have to undo partial changes
4128 	 */
4129 	if (!to ||
4130 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4131 			      skb_frag_off(fragfrom))) {
4132 		merge = -1;
4133 	} else {
4134 		merge = to - 1;
4135 
4136 		todo -= skb_frag_size(fragfrom);
4137 		if (todo < 0) {
4138 			if (skb_prepare_for_shift(skb) ||
4139 			    skb_prepare_for_shift(tgt))
4140 				return 0;
4141 
4142 			/* All previous frag pointers might be stale! */
4143 			fragfrom = &skb_shinfo(skb)->frags[from];
4144 			fragto = &skb_shinfo(tgt)->frags[merge];
4145 
4146 			skb_frag_size_add(fragto, shiftlen);
4147 			skb_frag_size_sub(fragfrom, shiftlen);
4148 			skb_frag_off_add(fragfrom, shiftlen);
4149 
4150 			goto onlymerged;
4151 		}
4152 
4153 		from++;
4154 	}
4155 
4156 	/* Skip full, not-fitting skb to avoid expensive operations */
4157 	if ((shiftlen == skb->len) &&
4158 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4159 		return 0;
4160 
4161 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4162 		return 0;
4163 
4164 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4165 		if (to == MAX_SKB_FRAGS)
4166 			return 0;
4167 
4168 		fragfrom = &skb_shinfo(skb)->frags[from];
4169 		fragto = &skb_shinfo(tgt)->frags[to];
4170 
4171 		if (todo >= skb_frag_size(fragfrom)) {
4172 			*fragto = *fragfrom;
4173 			todo -= skb_frag_size(fragfrom);
4174 			from++;
4175 			to++;
4176 
4177 		} else {
4178 			__skb_frag_ref(fragfrom);
4179 			skb_frag_page_copy(fragto, fragfrom);
4180 			skb_frag_off_copy(fragto, fragfrom);
4181 			skb_frag_size_set(fragto, todo);
4182 
4183 			skb_frag_off_add(fragfrom, todo);
4184 			skb_frag_size_sub(fragfrom, todo);
4185 			todo = 0;
4186 
4187 			to++;
4188 			break;
4189 		}
4190 	}
4191 
4192 	/* Ready to "commit" this state change to tgt */
4193 	skb_shinfo(tgt)->nr_frags = to;
4194 
4195 	if (merge >= 0) {
4196 		fragfrom = &skb_shinfo(skb)->frags[0];
4197 		fragto = &skb_shinfo(tgt)->frags[merge];
4198 
4199 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4200 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4201 	}
4202 
4203 	/* Reposition in the original skb */
4204 	to = 0;
4205 	while (from < skb_shinfo(skb)->nr_frags)
4206 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4207 	skb_shinfo(skb)->nr_frags = to;
4208 
4209 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4210 
4211 onlymerged:
4212 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4213 	 * the other hand might need it if it needs to be resent
4214 	 */
4215 	tgt->ip_summed = CHECKSUM_PARTIAL;
4216 	skb->ip_summed = CHECKSUM_PARTIAL;
4217 
4218 	skb_len_add(skb, -shiftlen);
4219 	skb_len_add(tgt, shiftlen);
4220 
4221 	return shiftlen;
4222 }
4223 
4224 /**
4225  * skb_prepare_seq_read - Prepare a sequential read of skb data
4226  * @skb: the buffer to read
4227  * @from: lower offset of data to be read
4228  * @to: upper offset of data to be read
4229  * @st: state variable
4230  *
4231  * Initializes the specified state variable. Must be called before
4232  * invoking skb_seq_read() for the first time.
4233  */
4234 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4235 			  unsigned int to, struct skb_seq_state *st)
4236 {
4237 	st->lower_offset = from;
4238 	st->upper_offset = to;
4239 	st->root_skb = st->cur_skb = skb;
4240 	st->frag_idx = st->stepped_offset = 0;
4241 	st->frag_data = NULL;
4242 	st->frag_off = 0;
4243 }
4244 EXPORT_SYMBOL(skb_prepare_seq_read);
4245 
4246 /**
4247  * skb_seq_read - Sequentially read skb data
4248  * @consumed: number of bytes consumed by the caller so far
4249  * @data: destination pointer for data to be returned
4250  * @st: state variable
4251  *
4252  * Reads a block of skb data at @consumed relative to the
4253  * lower offset specified to skb_prepare_seq_read(). Assigns
4254  * the head of the data block to @data and returns the length
4255  * of the block or 0 if the end of the skb data or the upper
4256  * offset has been reached.
4257  *
4258  * The caller is not required to consume all of the data
4259  * returned, i.e. @consumed is typically set to the number
4260  * of bytes already consumed and the next call to
4261  * skb_seq_read() will return the remaining part of the block.
4262  *
4263  * Note 1: The size of each block of data returned can be arbitrary,
4264  *       this limitation is the cost for zerocopy sequential
4265  *       reads of potentially non linear data.
4266  *
4267  * Note 2: Fragment lists within fragments are not implemented
4268  *       at the moment, state->root_skb could be replaced with
4269  *       a stack for this purpose.
4270  */
4271 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4272 			  struct skb_seq_state *st)
4273 {
4274 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4275 	skb_frag_t *frag;
4276 
4277 	if (unlikely(abs_offset >= st->upper_offset)) {
4278 		if (st->frag_data) {
4279 			kunmap_atomic(st->frag_data);
4280 			st->frag_data = NULL;
4281 		}
4282 		return 0;
4283 	}
4284 
4285 next_skb:
4286 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4287 
4288 	if (abs_offset < block_limit && !st->frag_data) {
4289 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4290 		return block_limit - abs_offset;
4291 	}
4292 
4293 	if (st->frag_idx == 0 && !st->frag_data)
4294 		st->stepped_offset += skb_headlen(st->cur_skb);
4295 
4296 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4297 		unsigned int pg_idx, pg_off, pg_sz;
4298 
4299 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4300 
4301 		pg_idx = 0;
4302 		pg_off = skb_frag_off(frag);
4303 		pg_sz = skb_frag_size(frag);
4304 
4305 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4306 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4307 			pg_off = offset_in_page(pg_off + st->frag_off);
4308 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4309 						    PAGE_SIZE - pg_off);
4310 		}
4311 
4312 		block_limit = pg_sz + st->stepped_offset;
4313 		if (abs_offset < block_limit) {
4314 			if (!st->frag_data)
4315 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4316 
4317 			*data = (u8 *)st->frag_data + pg_off +
4318 				(abs_offset - st->stepped_offset);
4319 
4320 			return block_limit - abs_offset;
4321 		}
4322 
4323 		if (st->frag_data) {
4324 			kunmap_atomic(st->frag_data);
4325 			st->frag_data = NULL;
4326 		}
4327 
4328 		st->stepped_offset += pg_sz;
4329 		st->frag_off += pg_sz;
4330 		if (st->frag_off == skb_frag_size(frag)) {
4331 			st->frag_off = 0;
4332 			st->frag_idx++;
4333 		}
4334 	}
4335 
4336 	if (st->frag_data) {
4337 		kunmap_atomic(st->frag_data);
4338 		st->frag_data = NULL;
4339 	}
4340 
4341 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4342 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4343 		st->frag_idx = 0;
4344 		goto next_skb;
4345 	} else if (st->cur_skb->next) {
4346 		st->cur_skb = st->cur_skb->next;
4347 		st->frag_idx = 0;
4348 		goto next_skb;
4349 	}
4350 
4351 	return 0;
4352 }
4353 EXPORT_SYMBOL(skb_seq_read);
4354 
4355 /**
4356  * skb_abort_seq_read - Abort a sequential read of skb data
4357  * @st: state variable
4358  *
4359  * Must be called if skb_seq_read() was not called until it
4360  * returned 0.
4361  */
4362 void skb_abort_seq_read(struct skb_seq_state *st)
4363 {
4364 	if (st->frag_data)
4365 		kunmap_atomic(st->frag_data);
4366 }
4367 EXPORT_SYMBOL(skb_abort_seq_read);
4368 
4369 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4370 
4371 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4372 					  struct ts_config *conf,
4373 					  struct ts_state *state)
4374 {
4375 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4376 }
4377 
4378 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4379 {
4380 	skb_abort_seq_read(TS_SKB_CB(state));
4381 }
4382 
4383 /**
4384  * skb_find_text - Find a text pattern in skb data
4385  * @skb: the buffer to look in
4386  * @from: search offset
4387  * @to: search limit
4388  * @config: textsearch configuration
4389  *
4390  * Finds a pattern in the skb data according to the specified
4391  * textsearch configuration. Use textsearch_next() to retrieve
4392  * subsequent occurrences of the pattern. Returns the offset
4393  * to the first occurrence or UINT_MAX if no match was found.
4394  */
4395 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4396 			   unsigned int to, struct ts_config *config)
4397 {
4398 	unsigned int patlen = config->ops->get_pattern_len(config);
4399 	struct ts_state state;
4400 	unsigned int ret;
4401 
4402 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4403 
4404 	config->get_next_block = skb_ts_get_next_block;
4405 	config->finish = skb_ts_finish;
4406 
4407 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4408 
4409 	ret = textsearch_find(config, &state);
4410 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4411 }
4412 EXPORT_SYMBOL(skb_find_text);
4413 
4414 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4415 			 int offset, size_t size, size_t max_frags)
4416 {
4417 	int i = skb_shinfo(skb)->nr_frags;
4418 
4419 	if (skb_can_coalesce(skb, i, page, offset)) {
4420 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4421 	} else if (i < max_frags) {
4422 		skb_zcopy_downgrade_managed(skb);
4423 		get_page(page);
4424 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4425 	} else {
4426 		return -EMSGSIZE;
4427 	}
4428 
4429 	return 0;
4430 }
4431 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4432 
4433 /**
4434  *	skb_pull_rcsum - pull skb and update receive checksum
4435  *	@skb: buffer to update
4436  *	@len: length of data pulled
4437  *
4438  *	This function performs an skb_pull on the packet and updates
4439  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4440  *	receive path processing instead of skb_pull unless you know
4441  *	that the checksum difference is zero (e.g., a valid IP header)
4442  *	or you are setting ip_summed to CHECKSUM_NONE.
4443  */
4444 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4445 {
4446 	unsigned char *data = skb->data;
4447 
4448 	BUG_ON(len > skb->len);
4449 	__skb_pull(skb, len);
4450 	skb_postpull_rcsum(skb, data, len);
4451 	return skb->data;
4452 }
4453 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4454 
4455 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4456 {
4457 	skb_frag_t head_frag;
4458 	struct page *page;
4459 
4460 	page = virt_to_head_page(frag_skb->head);
4461 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4462 				(unsigned char *)page_address(page),
4463 				skb_headlen(frag_skb));
4464 	return head_frag;
4465 }
4466 
4467 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4468 				 netdev_features_t features,
4469 				 unsigned int offset)
4470 {
4471 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4472 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4473 	unsigned int delta_truesize = 0;
4474 	unsigned int delta_len = 0;
4475 	struct sk_buff *tail = NULL;
4476 	struct sk_buff *nskb, *tmp;
4477 	int len_diff, err;
4478 
4479 	skb_push(skb, -skb_network_offset(skb) + offset);
4480 
4481 	/* Ensure the head is writeable before touching the shared info */
4482 	err = skb_unclone(skb, GFP_ATOMIC);
4483 	if (err)
4484 		goto err_linearize;
4485 
4486 	skb_shinfo(skb)->frag_list = NULL;
4487 
4488 	while (list_skb) {
4489 		nskb = list_skb;
4490 		list_skb = list_skb->next;
4491 
4492 		err = 0;
4493 		delta_truesize += nskb->truesize;
4494 		if (skb_shared(nskb)) {
4495 			tmp = skb_clone(nskb, GFP_ATOMIC);
4496 			if (tmp) {
4497 				consume_skb(nskb);
4498 				nskb = tmp;
4499 				err = skb_unclone(nskb, GFP_ATOMIC);
4500 			} else {
4501 				err = -ENOMEM;
4502 			}
4503 		}
4504 
4505 		if (!tail)
4506 			skb->next = nskb;
4507 		else
4508 			tail->next = nskb;
4509 
4510 		if (unlikely(err)) {
4511 			nskb->next = list_skb;
4512 			goto err_linearize;
4513 		}
4514 
4515 		tail = nskb;
4516 
4517 		delta_len += nskb->len;
4518 
4519 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4520 
4521 		skb_release_head_state(nskb);
4522 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4523 		__copy_skb_header(nskb, skb);
4524 
4525 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4526 		nskb->transport_header += len_diff;
4527 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4528 						 nskb->data - tnl_hlen,
4529 						 offset + tnl_hlen);
4530 
4531 		if (skb_needs_linearize(nskb, features) &&
4532 		    __skb_linearize(nskb))
4533 			goto err_linearize;
4534 	}
4535 
4536 	skb->truesize = skb->truesize - delta_truesize;
4537 	skb->data_len = skb->data_len - delta_len;
4538 	skb->len = skb->len - delta_len;
4539 
4540 	skb_gso_reset(skb);
4541 
4542 	skb->prev = tail;
4543 
4544 	if (skb_needs_linearize(skb, features) &&
4545 	    __skb_linearize(skb))
4546 		goto err_linearize;
4547 
4548 	skb_get(skb);
4549 
4550 	return skb;
4551 
4552 err_linearize:
4553 	kfree_skb_list(skb->next);
4554 	skb->next = NULL;
4555 	return ERR_PTR(-ENOMEM);
4556 }
4557 EXPORT_SYMBOL_GPL(skb_segment_list);
4558 
4559 /**
4560  *	skb_segment - Perform protocol segmentation on skb.
4561  *	@head_skb: buffer to segment
4562  *	@features: features for the output path (see dev->features)
4563  *
4564  *	This function performs segmentation on the given skb.  It returns
4565  *	a pointer to the first in a list of new skbs for the segments.
4566  *	In case of error it returns ERR_PTR(err).
4567  */
4568 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4569 			    netdev_features_t features)
4570 {
4571 	struct sk_buff *segs = NULL;
4572 	struct sk_buff *tail = NULL;
4573 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4574 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4575 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4576 	unsigned int offset = doffset;
4577 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4578 	unsigned int partial_segs = 0;
4579 	unsigned int headroom;
4580 	unsigned int len = head_skb->len;
4581 	struct sk_buff *frag_skb;
4582 	skb_frag_t *frag;
4583 	__be16 proto;
4584 	bool csum, sg;
4585 	int err = -ENOMEM;
4586 	int i = 0;
4587 	int nfrags, pos;
4588 
4589 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4590 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4591 		struct sk_buff *check_skb;
4592 
4593 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4594 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4595 				/* gso_size is untrusted, and we have a frag_list with
4596 				 * a linear non head_frag item.
4597 				 *
4598 				 * If head_skb's headlen does not fit requested gso_size,
4599 				 * it means that the frag_list members do NOT terminate
4600 				 * on exact gso_size boundaries. Hence we cannot perform
4601 				 * skb_frag_t page sharing. Therefore we must fallback to
4602 				 * copying the frag_list skbs; we do so by disabling SG.
4603 				 */
4604 				features &= ~NETIF_F_SG;
4605 				break;
4606 			}
4607 		}
4608 	}
4609 
4610 	__skb_push(head_skb, doffset);
4611 	proto = skb_network_protocol(head_skb, NULL);
4612 	if (unlikely(!proto))
4613 		return ERR_PTR(-EINVAL);
4614 
4615 	sg = !!(features & NETIF_F_SG);
4616 	csum = !!can_checksum_protocol(features, proto);
4617 
4618 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4619 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4620 			struct sk_buff *iter;
4621 			unsigned int frag_len;
4622 
4623 			if (!list_skb ||
4624 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4625 				goto normal;
4626 
4627 			/* If we get here then all the required
4628 			 * GSO features except frag_list are supported.
4629 			 * Try to split the SKB to multiple GSO SKBs
4630 			 * with no frag_list.
4631 			 * Currently we can do that only when the buffers don't
4632 			 * have a linear part and all the buffers except
4633 			 * the last are of the same length.
4634 			 */
4635 			frag_len = list_skb->len;
4636 			skb_walk_frags(head_skb, iter) {
4637 				if (frag_len != iter->len && iter->next)
4638 					goto normal;
4639 				if (skb_headlen(iter) && !iter->head_frag)
4640 					goto normal;
4641 
4642 				len -= iter->len;
4643 			}
4644 
4645 			if (len != frag_len)
4646 				goto normal;
4647 		}
4648 
4649 		/* GSO partial only requires that we trim off any excess that
4650 		 * doesn't fit into an MSS sized block, so take care of that
4651 		 * now.
4652 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4653 		 */
4654 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4655 		if (partial_segs > 1)
4656 			mss *= partial_segs;
4657 		else
4658 			partial_segs = 0;
4659 	}
4660 
4661 normal:
4662 	headroom = skb_headroom(head_skb);
4663 	pos = skb_headlen(head_skb);
4664 
4665 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4666 		return ERR_PTR(-ENOMEM);
4667 
4668 	nfrags = skb_shinfo(head_skb)->nr_frags;
4669 	frag = skb_shinfo(head_skb)->frags;
4670 	frag_skb = head_skb;
4671 
4672 	do {
4673 		struct sk_buff *nskb;
4674 		skb_frag_t *nskb_frag;
4675 		int hsize;
4676 		int size;
4677 
4678 		if (unlikely(mss == GSO_BY_FRAGS)) {
4679 			len = list_skb->len;
4680 		} else {
4681 			len = head_skb->len - offset;
4682 			if (len > mss)
4683 				len = mss;
4684 		}
4685 
4686 		hsize = skb_headlen(head_skb) - offset;
4687 
4688 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4689 		    (skb_headlen(list_skb) == len || sg)) {
4690 			BUG_ON(skb_headlen(list_skb) > len);
4691 
4692 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4693 			if (unlikely(!nskb))
4694 				goto err;
4695 
4696 			i = 0;
4697 			nfrags = skb_shinfo(list_skb)->nr_frags;
4698 			frag = skb_shinfo(list_skb)->frags;
4699 			frag_skb = list_skb;
4700 			pos += skb_headlen(list_skb);
4701 
4702 			while (pos < offset + len) {
4703 				BUG_ON(i >= nfrags);
4704 
4705 				size = skb_frag_size(frag);
4706 				if (pos + size > offset + len)
4707 					break;
4708 
4709 				i++;
4710 				pos += size;
4711 				frag++;
4712 			}
4713 
4714 			list_skb = list_skb->next;
4715 
4716 			if (unlikely(pskb_trim(nskb, len))) {
4717 				kfree_skb(nskb);
4718 				goto err;
4719 			}
4720 
4721 			hsize = skb_end_offset(nskb);
4722 			if (skb_cow_head(nskb, doffset + headroom)) {
4723 				kfree_skb(nskb);
4724 				goto err;
4725 			}
4726 
4727 			nskb->truesize += skb_end_offset(nskb) - hsize;
4728 			skb_release_head_state(nskb);
4729 			__skb_push(nskb, doffset);
4730 		} else {
4731 			if (hsize < 0)
4732 				hsize = 0;
4733 			if (hsize > len || !sg)
4734 				hsize = len;
4735 
4736 			nskb = __alloc_skb(hsize + doffset + headroom,
4737 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4738 					   NUMA_NO_NODE);
4739 
4740 			if (unlikely(!nskb))
4741 				goto err;
4742 
4743 			skb_reserve(nskb, headroom);
4744 			__skb_put(nskb, doffset);
4745 		}
4746 
4747 		if (segs)
4748 			tail->next = nskb;
4749 		else
4750 			segs = nskb;
4751 		tail = nskb;
4752 
4753 		__copy_skb_header(nskb, head_skb);
4754 
4755 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4756 		skb_reset_mac_len(nskb);
4757 
4758 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4759 						 nskb->data - tnl_hlen,
4760 						 doffset + tnl_hlen);
4761 
4762 		if (nskb->len == len + doffset)
4763 			goto perform_csum_check;
4764 
4765 		if (!sg) {
4766 			if (!csum) {
4767 				if (!nskb->remcsum_offload)
4768 					nskb->ip_summed = CHECKSUM_NONE;
4769 				SKB_GSO_CB(nskb)->csum =
4770 					skb_copy_and_csum_bits(head_skb, offset,
4771 							       skb_put(nskb,
4772 								       len),
4773 							       len);
4774 				SKB_GSO_CB(nskb)->csum_start =
4775 					skb_headroom(nskb) + doffset;
4776 			} else {
4777 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4778 					goto err;
4779 			}
4780 			continue;
4781 		}
4782 
4783 		nskb_frag = skb_shinfo(nskb)->frags;
4784 
4785 		skb_copy_from_linear_data_offset(head_skb, offset,
4786 						 skb_put(nskb, hsize), hsize);
4787 
4788 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4789 					   SKBFL_SHARED_FRAG;
4790 
4791 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4792 			goto err;
4793 
4794 		while (pos < offset + len) {
4795 			if (i >= nfrags) {
4796 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4797 				    skb_zerocopy_clone(nskb, list_skb,
4798 						       GFP_ATOMIC))
4799 					goto err;
4800 
4801 				i = 0;
4802 				nfrags = skb_shinfo(list_skb)->nr_frags;
4803 				frag = skb_shinfo(list_skb)->frags;
4804 				frag_skb = list_skb;
4805 				if (!skb_headlen(list_skb)) {
4806 					BUG_ON(!nfrags);
4807 				} else {
4808 					BUG_ON(!list_skb->head_frag);
4809 
4810 					/* to make room for head_frag. */
4811 					i--;
4812 					frag--;
4813 				}
4814 
4815 				list_skb = list_skb->next;
4816 			}
4817 
4818 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4819 				     MAX_SKB_FRAGS)) {
4820 				net_warn_ratelimited(
4821 					"skb_segment: too many frags: %u %u\n",
4822 					pos, mss);
4823 				err = -EINVAL;
4824 				goto err;
4825 			}
4826 
4827 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4828 			__skb_frag_ref(nskb_frag);
4829 			size = skb_frag_size(nskb_frag);
4830 
4831 			if (pos < offset) {
4832 				skb_frag_off_add(nskb_frag, offset - pos);
4833 				skb_frag_size_sub(nskb_frag, offset - pos);
4834 			}
4835 
4836 			skb_shinfo(nskb)->nr_frags++;
4837 
4838 			if (pos + size <= offset + len) {
4839 				i++;
4840 				frag++;
4841 				pos += size;
4842 			} else {
4843 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4844 				goto skip_fraglist;
4845 			}
4846 
4847 			nskb_frag++;
4848 		}
4849 
4850 skip_fraglist:
4851 		nskb->data_len = len - hsize;
4852 		nskb->len += nskb->data_len;
4853 		nskb->truesize += nskb->data_len;
4854 
4855 perform_csum_check:
4856 		if (!csum) {
4857 			if (skb_has_shared_frag(nskb) &&
4858 			    __skb_linearize(nskb))
4859 				goto err;
4860 
4861 			if (!nskb->remcsum_offload)
4862 				nskb->ip_summed = CHECKSUM_NONE;
4863 			SKB_GSO_CB(nskb)->csum =
4864 				skb_checksum(nskb, doffset,
4865 					     nskb->len - doffset, 0);
4866 			SKB_GSO_CB(nskb)->csum_start =
4867 				skb_headroom(nskb) + doffset;
4868 		}
4869 	} while ((offset += len) < head_skb->len);
4870 
4871 	/* Some callers want to get the end of the list.
4872 	 * Put it in segs->prev to avoid walking the list.
4873 	 * (see validate_xmit_skb_list() for example)
4874 	 */
4875 	segs->prev = tail;
4876 
4877 	if (partial_segs) {
4878 		struct sk_buff *iter;
4879 		int type = skb_shinfo(head_skb)->gso_type;
4880 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4881 
4882 		/* Update type to add partial and then remove dodgy if set */
4883 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4884 		type &= ~SKB_GSO_DODGY;
4885 
4886 		/* Update GSO info and prepare to start updating headers on
4887 		 * our way back down the stack of protocols.
4888 		 */
4889 		for (iter = segs; iter; iter = iter->next) {
4890 			skb_shinfo(iter)->gso_size = gso_size;
4891 			skb_shinfo(iter)->gso_segs = partial_segs;
4892 			skb_shinfo(iter)->gso_type = type;
4893 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4894 		}
4895 
4896 		if (tail->len - doffset <= gso_size)
4897 			skb_shinfo(tail)->gso_size = 0;
4898 		else if (tail != segs)
4899 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4900 	}
4901 
4902 	/* Following permits correct backpressure, for protocols
4903 	 * using skb_set_owner_w().
4904 	 * Idea is to tranfert ownership from head_skb to last segment.
4905 	 */
4906 	if (head_skb->destructor == sock_wfree) {
4907 		swap(tail->truesize, head_skb->truesize);
4908 		swap(tail->destructor, head_skb->destructor);
4909 		swap(tail->sk, head_skb->sk);
4910 	}
4911 	return segs;
4912 
4913 err:
4914 	kfree_skb_list(segs);
4915 	return ERR_PTR(err);
4916 }
4917 EXPORT_SYMBOL_GPL(skb_segment);
4918 
4919 #ifdef CONFIG_SKB_EXTENSIONS
4920 #define SKB_EXT_ALIGN_VALUE	8
4921 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4922 
4923 static const u8 skb_ext_type_len[] = {
4924 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4925 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4926 #endif
4927 #ifdef CONFIG_XFRM
4928 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4929 #endif
4930 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4931 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4932 #endif
4933 #if IS_ENABLED(CONFIG_MPTCP)
4934 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4935 #endif
4936 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4937 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4938 #endif
4939 };
4940 
4941 static __always_inline unsigned int skb_ext_total_length(void)
4942 {
4943 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4944 	int i;
4945 
4946 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4947 		l += skb_ext_type_len[i];
4948 
4949 	return l;
4950 }
4951 
4952 static void skb_extensions_init(void)
4953 {
4954 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4955 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4956 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4957 #endif
4958 
4959 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4960 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4961 					     0,
4962 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4963 					     NULL);
4964 }
4965 #else
4966 static void skb_extensions_init(void) {}
4967 #endif
4968 
4969 /* The SKB kmem_cache slab is critical for network performance.  Never
4970  * merge/alias the slab with similar sized objects.  This avoids fragmentation
4971  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
4972  */
4973 #ifndef CONFIG_SLUB_TINY
4974 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
4975 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
4976 #define FLAG_SKB_NO_MERGE	0
4977 #endif
4978 
4979 void __init skb_init(void)
4980 {
4981 	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4982 					      sizeof(struct sk_buff),
4983 					      0,
4984 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
4985 						FLAG_SKB_NO_MERGE,
4986 					      offsetof(struct sk_buff, cb),
4987 					      sizeof_field(struct sk_buff, cb),
4988 					      NULL);
4989 	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4990 						sizeof(struct sk_buff_fclones),
4991 						0,
4992 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4993 						NULL);
4994 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
4995 	 * struct skb_shared_info is located at the end of skb->head,
4996 	 * and should not be copied to/from user.
4997 	 */
4998 	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
4999 						SKB_SMALL_HEAD_CACHE_SIZE,
5000 						0,
5001 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5002 						0,
5003 						SKB_SMALL_HEAD_HEADROOM,
5004 						NULL);
5005 	skb_extensions_init();
5006 }
5007 
5008 static int
5009 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5010 	       unsigned int recursion_level)
5011 {
5012 	int start = skb_headlen(skb);
5013 	int i, copy = start - offset;
5014 	struct sk_buff *frag_iter;
5015 	int elt = 0;
5016 
5017 	if (unlikely(recursion_level >= 24))
5018 		return -EMSGSIZE;
5019 
5020 	if (copy > 0) {
5021 		if (copy > len)
5022 			copy = len;
5023 		sg_set_buf(sg, skb->data + offset, copy);
5024 		elt++;
5025 		if ((len -= copy) == 0)
5026 			return elt;
5027 		offset += copy;
5028 	}
5029 
5030 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5031 		int end;
5032 
5033 		WARN_ON(start > offset + len);
5034 
5035 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5036 		if ((copy = end - offset) > 0) {
5037 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5038 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5039 				return -EMSGSIZE;
5040 
5041 			if (copy > len)
5042 				copy = len;
5043 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5044 				    skb_frag_off(frag) + offset - start);
5045 			elt++;
5046 			if (!(len -= copy))
5047 				return elt;
5048 			offset += copy;
5049 		}
5050 		start = end;
5051 	}
5052 
5053 	skb_walk_frags(skb, frag_iter) {
5054 		int end, ret;
5055 
5056 		WARN_ON(start > offset + len);
5057 
5058 		end = start + frag_iter->len;
5059 		if ((copy = end - offset) > 0) {
5060 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5061 				return -EMSGSIZE;
5062 
5063 			if (copy > len)
5064 				copy = len;
5065 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5066 					      copy, recursion_level + 1);
5067 			if (unlikely(ret < 0))
5068 				return ret;
5069 			elt += ret;
5070 			if ((len -= copy) == 0)
5071 				return elt;
5072 			offset += copy;
5073 		}
5074 		start = end;
5075 	}
5076 	BUG_ON(len);
5077 	return elt;
5078 }
5079 
5080 /**
5081  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5082  *	@skb: Socket buffer containing the buffers to be mapped
5083  *	@sg: The scatter-gather list to map into
5084  *	@offset: The offset into the buffer's contents to start mapping
5085  *	@len: Length of buffer space to be mapped
5086  *
5087  *	Fill the specified scatter-gather list with mappings/pointers into a
5088  *	region of the buffer space attached to a socket buffer. Returns either
5089  *	the number of scatterlist items used, or -EMSGSIZE if the contents
5090  *	could not fit.
5091  */
5092 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5093 {
5094 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5095 
5096 	if (nsg <= 0)
5097 		return nsg;
5098 
5099 	sg_mark_end(&sg[nsg - 1]);
5100 
5101 	return nsg;
5102 }
5103 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5104 
5105 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5106  * sglist without mark the sg which contain last skb data as the end.
5107  * So the caller can mannipulate sg list as will when padding new data after
5108  * the first call without calling sg_unmark_end to expend sg list.
5109  *
5110  * Scenario to use skb_to_sgvec_nomark:
5111  * 1. sg_init_table
5112  * 2. skb_to_sgvec_nomark(payload1)
5113  * 3. skb_to_sgvec_nomark(payload2)
5114  *
5115  * This is equivalent to:
5116  * 1. sg_init_table
5117  * 2. skb_to_sgvec(payload1)
5118  * 3. sg_unmark_end
5119  * 4. skb_to_sgvec(payload2)
5120  *
5121  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
5122  * is more preferable.
5123  */
5124 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5125 			int offset, int len)
5126 {
5127 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5128 }
5129 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5130 
5131 
5132 
5133 /**
5134  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5135  *	@skb: The socket buffer to check.
5136  *	@tailbits: Amount of trailing space to be added
5137  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5138  *
5139  *	Make sure that the data buffers attached to a socket buffer are
5140  *	writable. If they are not, private copies are made of the data buffers
5141  *	and the socket buffer is set to use these instead.
5142  *
5143  *	If @tailbits is given, make sure that there is space to write @tailbits
5144  *	bytes of data beyond current end of socket buffer.  @trailer will be
5145  *	set to point to the skb in which this space begins.
5146  *
5147  *	The number of scatterlist elements required to completely map the
5148  *	COW'd and extended socket buffer will be returned.
5149  */
5150 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5151 {
5152 	int copyflag;
5153 	int elt;
5154 	struct sk_buff *skb1, **skb_p;
5155 
5156 	/* If skb is cloned or its head is paged, reallocate
5157 	 * head pulling out all the pages (pages are considered not writable
5158 	 * at the moment even if they are anonymous).
5159 	 */
5160 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5161 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5162 		return -ENOMEM;
5163 
5164 	/* Easy case. Most of packets will go this way. */
5165 	if (!skb_has_frag_list(skb)) {
5166 		/* A little of trouble, not enough of space for trailer.
5167 		 * This should not happen, when stack is tuned to generate
5168 		 * good frames. OK, on miss we reallocate and reserve even more
5169 		 * space, 128 bytes is fair. */
5170 
5171 		if (skb_tailroom(skb) < tailbits &&
5172 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5173 			return -ENOMEM;
5174 
5175 		/* Voila! */
5176 		*trailer = skb;
5177 		return 1;
5178 	}
5179 
5180 	/* Misery. We are in troubles, going to mincer fragments... */
5181 
5182 	elt = 1;
5183 	skb_p = &skb_shinfo(skb)->frag_list;
5184 	copyflag = 0;
5185 
5186 	while ((skb1 = *skb_p) != NULL) {
5187 		int ntail = 0;
5188 
5189 		/* The fragment is partially pulled by someone,
5190 		 * this can happen on input. Copy it and everything
5191 		 * after it. */
5192 
5193 		if (skb_shared(skb1))
5194 			copyflag = 1;
5195 
5196 		/* If the skb is the last, worry about trailer. */
5197 
5198 		if (skb1->next == NULL && tailbits) {
5199 			if (skb_shinfo(skb1)->nr_frags ||
5200 			    skb_has_frag_list(skb1) ||
5201 			    skb_tailroom(skb1) < tailbits)
5202 				ntail = tailbits + 128;
5203 		}
5204 
5205 		if (copyflag ||
5206 		    skb_cloned(skb1) ||
5207 		    ntail ||
5208 		    skb_shinfo(skb1)->nr_frags ||
5209 		    skb_has_frag_list(skb1)) {
5210 			struct sk_buff *skb2;
5211 
5212 			/* Fuck, we are miserable poor guys... */
5213 			if (ntail == 0)
5214 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5215 			else
5216 				skb2 = skb_copy_expand(skb1,
5217 						       skb_headroom(skb1),
5218 						       ntail,
5219 						       GFP_ATOMIC);
5220 			if (unlikely(skb2 == NULL))
5221 				return -ENOMEM;
5222 
5223 			if (skb1->sk)
5224 				skb_set_owner_w(skb2, skb1->sk);
5225 
5226 			/* Looking around. Are we still alive?
5227 			 * OK, link new skb, drop old one */
5228 
5229 			skb2->next = skb1->next;
5230 			*skb_p = skb2;
5231 			kfree_skb(skb1);
5232 			skb1 = skb2;
5233 		}
5234 		elt++;
5235 		*trailer = skb1;
5236 		skb_p = &skb1->next;
5237 	}
5238 
5239 	return elt;
5240 }
5241 EXPORT_SYMBOL_GPL(skb_cow_data);
5242 
5243 static void sock_rmem_free(struct sk_buff *skb)
5244 {
5245 	struct sock *sk = skb->sk;
5246 
5247 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5248 }
5249 
5250 static void skb_set_err_queue(struct sk_buff *skb)
5251 {
5252 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5253 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5254 	 */
5255 	skb->pkt_type = PACKET_OUTGOING;
5256 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5257 }
5258 
5259 /*
5260  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5261  */
5262 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5263 {
5264 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5265 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5266 		return -ENOMEM;
5267 
5268 	skb_orphan(skb);
5269 	skb->sk = sk;
5270 	skb->destructor = sock_rmem_free;
5271 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5272 	skb_set_err_queue(skb);
5273 
5274 	/* before exiting rcu section, make sure dst is refcounted */
5275 	skb_dst_force(skb);
5276 
5277 	skb_queue_tail(&sk->sk_error_queue, skb);
5278 	if (!sock_flag(sk, SOCK_DEAD))
5279 		sk_error_report(sk);
5280 	return 0;
5281 }
5282 EXPORT_SYMBOL(sock_queue_err_skb);
5283 
5284 static bool is_icmp_err_skb(const struct sk_buff *skb)
5285 {
5286 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5287 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5288 }
5289 
5290 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5291 {
5292 	struct sk_buff_head *q = &sk->sk_error_queue;
5293 	struct sk_buff *skb, *skb_next = NULL;
5294 	bool icmp_next = false;
5295 	unsigned long flags;
5296 
5297 	if (skb_queue_empty_lockless(q))
5298 		return NULL;
5299 
5300 	spin_lock_irqsave(&q->lock, flags);
5301 	skb = __skb_dequeue(q);
5302 	if (skb && (skb_next = skb_peek(q))) {
5303 		icmp_next = is_icmp_err_skb(skb_next);
5304 		if (icmp_next)
5305 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5306 	}
5307 	spin_unlock_irqrestore(&q->lock, flags);
5308 
5309 	if (is_icmp_err_skb(skb) && !icmp_next)
5310 		sk->sk_err = 0;
5311 
5312 	if (skb_next)
5313 		sk_error_report(sk);
5314 
5315 	return skb;
5316 }
5317 EXPORT_SYMBOL(sock_dequeue_err_skb);
5318 
5319 /**
5320  * skb_clone_sk - create clone of skb, and take reference to socket
5321  * @skb: the skb to clone
5322  *
5323  * This function creates a clone of a buffer that holds a reference on
5324  * sk_refcnt.  Buffers created via this function are meant to be
5325  * returned using sock_queue_err_skb, or free via kfree_skb.
5326  *
5327  * When passing buffers allocated with this function to sock_queue_err_skb
5328  * it is necessary to wrap the call with sock_hold/sock_put in order to
5329  * prevent the socket from being released prior to being enqueued on
5330  * the sk_error_queue.
5331  */
5332 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5333 {
5334 	struct sock *sk = skb->sk;
5335 	struct sk_buff *clone;
5336 
5337 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5338 		return NULL;
5339 
5340 	clone = skb_clone(skb, GFP_ATOMIC);
5341 	if (!clone) {
5342 		sock_put(sk);
5343 		return NULL;
5344 	}
5345 
5346 	clone->sk = sk;
5347 	clone->destructor = sock_efree;
5348 
5349 	return clone;
5350 }
5351 EXPORT_SYMBOL(skb_clone_sk);
5352 
5353 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5354 					struct sock *sk,
5355 					int tstype,
5356 					bool opt_stats)
5357 {
5358 	struct sock_exterr_skb *serr;
5359 	int err;
5360 
5361 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5362 
5363 	serr = SKB_EXT_ERR(skb);
5364 	memset(serr, 0, sizeof(*serr));
5365 	serr->ee.ee_errno = ENOMSG;
5366 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5367 	serr->ee.ee_info = tstype;
5368 	serr->opt_stats = opt_stats;
5369 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5370 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5371 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5372 		if (sk_is_tcp(sk))
5373 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5374 	}
5375 
5376 	err = sock_queue_err_skb(sk, skb);
5377 
5378 	if (err)
5379 		kfree_skb(skb);
5380 }
5381 
5382 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5383 {
5384 	bool ret;
5385 
5386 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5387 		return true;
5388 
5389 	read_lock_bh(&sk->sk_callback_lock);
5390 	ret = sk->sk_socket && sk->sk_socket->file &&
5391 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5392 	read_unlock_bh(&sk->sk_callback_lock);
5393 	return ret;
5394 }
5395 
5396 void skb_complete_tx_timestamp(struct sk_buff *skb,
5397 			       struct skb_shared_hwtstamps *hwtstamps)
5398 {
5399 	struct sock *sk = skb->sk;
5400 
5401 	if (!skb_may_tx_timestamp(sk, false))
5402 		goto err;
5403 
5404 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5405 	 * but only if the socket refcount is not zero.
5406 	 */
5407 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5408 		*skb_hwtstamps(skb) = *hwtstamps;
5409 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5410 		sock_put(sk);
5411 		return;
5412 	}
5413 
5414 err:
5415 	kfree_skb(skb);
5416 }
5417 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5418 
5419 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5420 		     const struct sk_buff *ack_skb,
5421 		     struct skb_shared_hwtstamps *hwtstamps,
5422 		     struct sock *sk, int tstype)
5423 {
5424 	struct sk_buff *skb;
5425 	bool tsonly, opt_stats = false;
5426 	u32 tsflags;
5427 
5428 	if (!sk)
5429 		return;
5430 
5431 	tsflags = READ_ONCE(sk->sk_tsflags);
5432 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5433 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5434 		return;
5435 
5436 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5437 	if (!skb_may_tx_timestamp(sk, tsonly))
5438 		return;
5439 
5440 	if (tsonly) {
5441 #ifdef CONFIG_INET
5442 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5443 		    sk_is_tcp(sk)) {
5444 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5445 							     ack_skb);
5446 			opt_stats = true;
5447 		} else
5448 #endif
5449 			skb = alloc_skb(0, GFP_ATOMIC);
5450 	} else {
5451 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5452 
5453 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5454 			kfree_skb(skb);
5455 			return;
5456 		}
5457 	}
5458 	if (!skb)
5459 		return;
5460 
5461 	if (tsonly) {
5462 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5463 					     SKBTX_ANY_TSTAMP;
5464 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5465 	}
5466 
5467 	if (hwtstamps)
5468 		*skb_hwtstamps(skb) = *hwtstamps;
5469 	else
5470 		__net_timestamp(skb);
5471 
5472 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5473 }
5474 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5475 
5476 void skb_tstamp_tx(struct sk_buff *orig_skb,
5477 		   struct skb_shared_hwtstamps *hwtstamps)
5478 {
5479 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5480 			       SCM_TSTAMP_SND);
5481 }
5482 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5483 
5484 #ifdef CONFIG_WIRELESS
5485 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5486 {
5487 	struct sock *sk = skb->sk;
5488 	struct sock_exterr_skb *serr;
5489 	int err = 1;
5490 
5491 	skb->wifi_acked_valid = 1;
5492 	skb->wifi_acked = acked;
5493 
5494 	serr = SKB_EXT_ERR(skb);
5495 	memset(serr, 0, sizeof(*serr));
5496 	serr->ee.ee_errno = ENOMSG;
5497 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5498 
5499 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5500 	 * but only if the socket refcount is not zero.
5501 	 */
5502 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5503 		err = sock_queue_err_skb(sk, skb);
5504 		sock_put(sk);
5505 	}
5506 	if (err)
5507 		kfree_skb(skb);
5508 }
5509 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5510 #endif /* CONFIG_WIRELESS */
5511 
5512 /**
5513  * skb_partial_csum_set - set up and verify partial csum values for packet
5514  * @skb: the skb to set
5515  * @start: the number of bytes after skb->data to start checksumming.
5516  * @off: the offset from start to place the checksum.
5517  *
5518  * For untrusted partially-checksummed packets, we need to make sure the values
5519  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5520  *
5521  * This function checks and sets those values and skb->ip_summed: if this
5522  * returns false you should drop the packet.
5523  */
5524 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5525 {
5526 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5527 	u32 csum_start = skb_headroom(skb) + (u32)start;
5528 
5529 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5530 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5531 				     start, off, skb_headroom(skb), skb_headlen(skb));
5532 		return false;
5533 	}
5534 	skb->ip_summed = CHECKSUM_PARTIAL;
5535 	skb->csum_start = csum_start;
5536 	skb->csum_offset = off;
5537 	skb->transport_header = csum_start;
5538 	return true;
5539 }
5540 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5541 
5542 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5543 			       unsigned int max)
5544 {
5545 	if (skb_headlen(skb) >= len)
5546 		return 0;
5547 
5548 	/* If we need to pullup then pullup to the max, so we
5549 	 * won't need to do it again.
5550 	 */
5551 	if (max > skb->len)
5552 		max = skb->len;
5553 
5554 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5555 		return -ENOMEM;
5556 
5557 	if (skb_headlen(skb) < len)
5558 		return -EPROTO;
5559 
5560 	return 0;
5561 }
5562 
5563 #define MAX_TCP_HDR_LEN (15 * 4)
5564 
5565 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5566 				      typeof(IPPROTO_IP) proto,
5567 				      unsigned int off)
5568 {
5569 	int err;
5570 
5571 	switch (proto) {
5572 	case IPPROTO_TCP:
5573 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5574 					  off + MAX_TCP_HDR_LEN);
5575 		if (!err && !skb_partial_csum_set(skb, off,
5576 						  offsetof(struct tcphdr,
5577 							   check)))
5578 			err = -EPROTO;
5579 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5580 
5581 	case IPPROTO_UDP:
5582 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5583 					  off + sizeof(struct udphdr));
5584 		if (!err && !skb_partial_csum_set(skb, off,
5585 						  offsetof(struct udphdr,
5586 							   check)))
5587 			err = -EPROTO;
5588 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5589 	}
5590 
5591 	return ERR_PTR(-EPROTO);
5592 }
5593 
5594 /* This value should be large enough to cover a tagged ethernet header plus
5595  * maximally sized IP and TCP or UDP headers.
5596  */
5597 #define MAX_IP_HDR_LEN 128
5598 
5599 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5600 {
5601 	unsigned int off;
5602 	bool fragment;
5603 	__sum16 *csum;
5604 	int err;
5605 
5606 	fragment = false;
5607 
5608 	err = skb_maybe_pull_tail(skb,
5609 				  sizeof(struct iphdr),
5610 				  MAX_IP_HDR_LEN);
5611 	if (err < 0)
5612 		goto out;
5613 
5614 	if (ip_is_fragment(ip_hdr(skb)))
5615 		fragment = true;
5616 
5617 	off = ip_hdrlen(skb);
5618 
5619 	err = -EPROTO;
5620 
5621 	if (fragment)
5622 		goto out;
5623 
5624 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5625 	if (IS_ERR(csum))
5626 		return PTR_ERR(csum);
5627 
5628 	if (recalculate)
5629 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5630 					   ip_hdr(skb)->daddr,
5631 					   skb->len - off,
5632 					   ip_hdr(skb)->protocol, 0);
5633 	err = 0;
5634 
5635 out:
5636 	return err;
5637 }
5638 
5639 /* This value should be large enough to cover a tagged ethernet header plus
5640  * an IPv6 header, all options, and a maximal TCP or UDP header.
5641  */
5642 #define MAX_IPV6_HDR_LEN 256
5643 
5644 #define OPT_HDR(type, skb, off) \
5645 	(type *)(skb_network_header(skb) + (off))
5646 
5647 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5648 {
5649 	int err;
5650 	u8 nexthdr;
5651 	unsigned int off;
5652 	unsigned int len;
5653 	bool fragment;
5654 	bool done;
5655 	__sum16 *csum;
5656 
5657 	fragment = false;
5658 	done = false;
5659 
5660 	off = sizeof(struct ipv6hdr);
5661 
5662 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5663 	if (err < 0)
5664 		goto out;
5665 
5666 	nexthdr = ipv6_hdr(skb)->nexthdr;
5667 
5668 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5669 	while (off <= len && !done) {
5670 		switch (nexthdr) {
5671 		case IPPROTO_DSTOPTS:
5672 		case IPPROTO_HOPOPTS:
5673 		case IPPROTO_ROUTING: {
5674 			struct ipv6_opt_hdr *hp;
5675 
5676 			err = skb_maybe_pull_tail(skb,
5677 						  off +
5678 						  sizeof(struct ipv6_opt_hdr),
5679 						  MAX_IPV6_HDR_LEN);
5680 			if (err < 0)
5681 				goto out;
5682 
5683 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5684 			nexthdr = hp->nexthdr;
5685 			off += ipv6_optlen(hp);
5686 			break;
5687 		}
5688 		case IPPROTO_AH: {
5689 			struct ip_auth_hdr *hp;
5690 
5691 			err = skb_maybe_pull_tail(skb,
5692 						  off +
5693 						  sizeof(struct ip_auth_hdr),
5694 						  MAX_IPV6_HDR_LEN);
5695 			if (err < 0)
5696 				goto out;
5697 
5698 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5699 			nexthdr = hp->nexthdr;
5700 			off += ipv6_authlen(hp);
5701 			break;
5702 		}
5703 		case IPPROTO_FRAGMENT: {
5704 			struct frag_hdr *hp;
5705 
5706 			err = skb_maybe_pull_tail(skb,
5707 						  off +
5708 						  sizeof(struct frag_hdr),
5709 						  MAX_IPV6_HDR_LEN);
5710 			if (err < 0)
5711 				goto out;
5712 
5713 			hp = OPT_HDR(struct frag_hdr, skb, off);
5714 
5715 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5716 				fragment = true;
5717 
5718 			nexthdr = hp->nexthdr;
5719 			off += sizeof(struct frag_hdr);
5720 			break;
5721 		}
5722 		default:
5723 			done = true;
5724 			break;
5725 		}
5726 	}
5727 
5728 	err = -EPROTO;
5729 
5730 	if (!done || fragment)
5731 		goto out;
5732 
5733 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5734 	if (IS_ERR(csum))
5735 		return PTR_ERR(csum);
5736 
5737 	if (recalculate)
5738 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5739 					 &ipv6_hdr(skb)->daddr,
5740 					 skb->len - off, nexthdr, 0);
5741 	err = 0;
5742 
5743 out:
5744 	return err;
5745 }
5746 
5747 /**
5748  * skb_checksum_setup - set up partial checksum offset
5749  * @skb: the skb to set up
5750  * @recalculate: if true the pseudo-header checksum will be recalculated
5751  */
5752 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5753 {
5754 	int err;
5755 
5756 	switch (skb->protocol) {
5757 	case htons(ETH_P_IP):
5758 		err = skb_checksum_setup_ipv4(skb, recalculate);
5759 		break;
5760 
5761 	case htons(ETH_P_IPV6):
5762 		err = skb_checksum_setup_ipv6(skb, recalculate);
5763 		break;
5764 
5765 	default:
5766 		err = -EPROTO;
5767 		break;
5768 	}
5769 
5770 	return err;
5771 }
5772 EXPORT_SYMBOL(skb_checksum_setup);
5773 
5774 /**
5775  * skb_checksum_maybe_trim - maybe trims the given skb
5776  * @skb: the skb to check
5777  * @transport_len: the data length beyond the network header
5778  *
5779  * Checks whether the given skb has data beyond the given transport length.
5780  * If so, returns a cloned skb trimmed to this transport length.
5781  * Otherwise returns the provided skb. Returns NULL in error cases
5782  * (e.g. transport_len exceeds skb length or out-of-memory).
5783  *
5784  * Caller needs to set the skb transport header and free any returned skb if it
5785  * differs from the provided skb.
5786  */
5787 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5788 					       unsigned int transport_len)
5789 {
5790 	struct sk_buff *skb_chk;
5791 	unsigned int len = skb_transport_offset(skb) + transport_len;
5792 	int ret;
5793 
5794 	if (skb->len < len)
5795 		return NULL;
5796 	else if (skb->len == len)
5797 		return skb;
5798 
5799 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5800 	if (!skb_chk)
5801 		return NULL;
5802 
5803 	ret = pskb_trim_rcsum(skb_chk, len);
5804 	if (ret) {
5805 		kfree_skb(skb_chk);
5806 		return NULL;
5807 	}
5808 
5809 	return skb_chk;
5810 }
5811 
5812 /**
5813  * skb_checksum_trimmed - validate checksum of an skb
5814  * @skb: the skb to check
5815  * @transport_len: the data length beyond the network header
5816  * @skb_chkf: checksum function to use
5817  *
5818  * Applies the given checksum function skb_chkf to the provided skb.
5819  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5820  *
5821  * If the skb has data beyond the given transport length, then a
5822  * trimmed & cloned skb is checked and returned.
5823  *
5824  * Caller needs to set the skb transport header and free any returned skb if it
5825  * differs from the provided skb.
5826  */
5827 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5828 				     unsigned int transport_len,
5829 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5830 {
5831 	struct sk_buff *skb_chk;
5832 	unsigned int offset = skb_transport_offset(skb);
5833 	__sum16 ret;
5834 
5835 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5836 	if (!skb_chk)
5837 		goto err;
5838 
5839 	if (!pskb_may_pull(skb_chk, offset))
5840 		goto err;
5841 
5842 	skb_pull_rcsum(skb_chk, offset);
5843 	ret = skb_chkf(skb_chk);
5844 	skb_push_rcsum(skb_chk, offset);
5845 
5846 	if (ret)
5847 		goto err;
5848 
5849 	return skb_chk;
5850 
5851 err:
5852 	if (skb_chk && skb_chk != skb)
5853 		kfree_skb(skb_chk);
5854 
5855 	return NULL;
5856 
5857 }
5858 EXPORT_SYMBOL(skb_checksum_trimmed);
5859 
5860 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5861 {
5862 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5863 			     skb->dev->name);
5864 }
5865 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5866 
5867 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5868 {
5869 	if (head_stolen) {
5870 		skb_release_head_state(skb);
5871 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
5872 	} else {
5873 		__kfree_skb(skb);
5874 	}
5875 }
5876 EXPORT_SYMBOL(kfree_skb_partial);
5877 
5878 /**
5879  * skb_try_coalesce - try to merge skb to prior one
5880  * @to: prior buffer
5881  * @from: buffer to add
5882  * @fragstolen: pointer to boolean
5883  * @delta_truesize: how much more was allocated than was requested
5884  */
5885 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5886 		      bool *fragstolen, int *delta_truesize)
5887 {
5888 	struct skb_shared_info *to_shinfo, *from_shinfo;
5889 	int i, delta, len = from->len;
5890 
5891 	*fragstolen = false;
5892 
5893 	if (skb_cloned(to))
5894 		return false;
5895 
5896 	/* In general, avoid mixing page_pool and non-page_pool allocated
5897 	 * pages within the same SKB. In theory we could take full
5898 	 * references if @from is cloned and !@to->pp_recycle but its
5899 	 * tricky (due to potential race with the clone disappearing) and
5900 	 * rare, so not worth dealing with.
5901 	 */
5902 	if (to->pp_recycle != from->pp_recycle)
5903 		return false;
5904 
5905 	if (len <= skb_tailroom(to)) {
5906 		if (len)
5907 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5908 		*delta_truesize = 0;
5909 		return true;
5910 	}
5911 
5912 	to_shinfo = skb_shinfo(to);
5913 	from_shinfo = skb_shinfo(from);
5914 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5915 		return false;
5916 	if (skb_zcopy(to) || skb_zcopy(from))
5917 		return false;
5918 
5919 	if (skb_headlen(from) != 0) {
5920 		struct page *page;
5921 		unsigned int offset;
5922 
5923 		if (to_shinfo->nr_frags +
5924 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5925 			return false;
5926 
5927 		if (skb_head_is_locked(from))
5928 			return false;
5929 
5930 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5931 
5932 		page = virt_to_head_page(from->head);
5933 		offset = from->data - (unsigned char *)page_address(page);
5934 
5935 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5936 				   page, offset, skb_headlen(from));
5937 		*fragstolen = true;
5938 	} else {
5939 		if (to_shinfo->nr_frags +
5940 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5941 			return false;
5942 
5943 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5944 	}
5945 
5946 	WARN_ON_ONCE(delta < len);
5947 
5948 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5949 	       from_shinfo->frags,
5950 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5951 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5952 
5953 	if (!skb_cloned(from))
5954 		from_shinfo->nr_frags = 0;
5955 
5956 	/* if the skb is not cloned this does nothing
5957 	 * since we set nr_frags to 0.
5958 	 */
5959 	if (skb_pp_frag_ref(from)) {
5960 		for (i = 0; i < from_shinfo->nr_frags; i++)
5961 			__skb_frag_ref(&from_shinfo->frags[i]);
5962 	}
5963 
5964 	to->truesize += delta;
5965 	to->len += len;
5966 	to->data_len += len;
5967 
5968 	*delta_truesize = delta;
5969 	return true;
5970 }
5971 EXPORT_SYMBOL(skb_try_coalesce);
5972 
5973 /**
5974  * skb_scrub_packet - scrub an skb
5975  *
5976  * @skb: buffer to clean
5977  * @xnet: packet is crossing netns
5978  *
5979  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5980  * into/from a tunnel. Some information have to be cleared during these
5981  * operations.
5982  * skb_scrub_packet can also be used to clean a skb before injecting it in
5983  * another namespace (@xnet == true). We have to clear all information in the
5984  * skb that could impact namespace isolation.
5985  */
5986 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5987 {
5988 	skb->pkt_type = PACKET_HOST;
5989 	skb->skb_iif = 0;
5990 	skb->ignore_df = 0;
5991 	skb_dst_drop(skb);
5992 	skb_ext_reset(skb);
5993 	nf_reset_ct(skb);
5994 	nf_reset_trace(skb);
5995 
5996 #ifdef CONFIG_NET_SWITCHDEV
5997 	skb->offload_fwd_mark = 0;
5998 	skb->offload_l3_fwd_mark = 0;
5999 #endif
6000 
6001 	if (!xnet)
6002 		return;
6003 
6004 	ipvs_reset(skb);
6005 	skb->mark = 0;
6006 	skb_clear_tstamp(skb);
6007 }
6008 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6009 
6010 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6011 {
6012 	int mac_len, meta_len;
6013 	void *meta;
6014 
6015 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
6016 		kfree_skb(skb);
6017 		return NULL;
6018 	}
6019 
6020 	mac_len = skb->data - skb_mac_header(skb);
6021 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6022 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6023 			mac_len - VLAN_HLEN - ETH_TLEN);
6024 	}
6025 
6026 	meta_len = skb_metadata_len(skb);
6027 	if (meta_len) {
6028 		meta = skb_metadata_end(skb) - meta_len;
6029 		memmove(meta + VLAN_HLEN, meta, meta_len);
6030 	}
6031 
6032 	skb->mac_header += VLAN_HLEN;
6033 	return skb;
6034 }
6035 
6036 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6037 {
6038 	struct vlan_hdr *vhdr;
6039 	u16 vlan_tci;
6040 
6041 	if (unlikely(skb_vlan_tag_present(skb))) {
6042 		/* vlan_tci is already set-up so leave this for another time */
6043 		return skb;
6044 	}
6045 
6046 	skb = skb_share_check(skb, GFP_ATOMIC);
6047 	if (unlikely(!skb))
6048 		goto err_free;
6049 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6050 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6051 		goto err_free;
6052 
6053 	vhdr = (struct vlan_hdr *)skb->data;
6054 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6055 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6056 
6057 	skb_pull_rcsum(skb, VLAN_HLEN);
6058 	vlan_set_encap_proto(skb, vhdr);
6059 
6060 	skb = skb_reorder_vlan_header(skb);
6061 	if (unlikely(!skb))
6062 		goto err_free;
6063 
6064 	skb_reset_network_header(skb);
6065 	if (!skb_transport_header_was_set(skb))
6066 		skb_reset_transport_header(skb);
6067 	skb_reset_mac_len(skb);
6068 
6069 	return skb;
6070 
6071 err_free:
6072 	kfree_skb(skb);
6073 	return NULL;
6074 }
6075 EXPORT_SYMBOL(skb_vlan_untag);
6076 
6077 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6078 {
6079 	if (!pskb_may_pull(skb, write_len))
6080 		return -ENOMEM;
6081 
6082 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6083 		return 0;
6084 
6085 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6086 }
6087 EXPORT_SYMBOL(skb_ensure_writable);
6088 
6089 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6090 {
6091 	int needed_headroom = dev->needed_headroom;
6092 	int needed_tailroom = dev->needed_tailroom;
6093 
6094 	/* For tail taggers, we need to pad short frames ourselves, to ensure
6095 	 * that the tail tag does not fail at its role of being at the end of
6096 	 * the packet, once the conduit interface pads the frame. Account for
6097 	 * that pad length here, and pad later.
6098 	 */
6099 	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6100 		needed_tailroom += ETH_ZLEN - skb->len;
6101 	/* skb_headroom() returns unsigned int... */
6102 	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6103 	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6104 
6105 	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6106 		/* No reallocation needed, yay! */
6107 		return 0;
6108 
6109 	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6110 				GFP_ATOMIC);
6111 }
6112 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6113 
6114 /* remove VLAN header from packet and update csum accordingly.
6115  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6116  */
6117 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6118 {
6119 	int offset = skb->data - skb_mac_header(skb);
6120 	int err;
6121 
6122 	if (WARN_ONCE(offset,
6123 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6124 		      offset)) {
6125 		return -EINVAL;
6126 	}
6127 
6128 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6129 	if (unlikely(err))
6130 		return err;
6131 
6132 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6133 
6134 	vlan_remove_tag(skb, vlan_tci);
6135 
6136 	skb->mac_header += VLAN_HLEN;
6137 
6138 	if (skb_network_offset(skb) < ETH_HLEN)
6139 		skb_set_network_header(skb, ETH_HLEN);
6140 
6141 	skb_reset_mac_len(skb);
6142 
6143 	return err;
6144 }
6145 EXPORT_SYMBOL(__skb_vlan_pop);
6146 
6147 /* Pop a vlan tag either from hwaccel or from payload.
6148  * Expects skb->data at mac header.
6149  */
6150 int skb_vlan_pop(struct sk_buff *skb)
6151 {
6152 	u16 vlan_tci;
6153 	__be16 vlan_proto;
6154 	int err;
6155 
6156 	if (likely(skb_vlan_tag_present(skb))) {
6157 		__vlan_hwaccel_clear_tag(skb);
6158 	} else {
6159 		if (unlikely(!eth_type_vlan(skb->protocol)))
6160 			return 0;
6161 
6162 		err = __skb_vlan_pop(skb, &vlan_tci);
6163 		if (err)
6164 			return err;
6165 	}
6166 	/* move next vlan tag to hw accel tag */
6167 	if (likely(!eth_type_vlan(skb->protocol)))
6168 		return 0;
6169 
6170 	vlan_proto = skb->protocol;
6171 	err = __skb_vlan_pop(skb, &vlan_tci);
6172 	if (unlikely(err))
6173 		return err;
6174 
6175 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6176 	return 0;
6177 }
6178 EXPORT_SYMBOL(skb_vlan_pop);
6179 
6180 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6181  * Expects skb->data at mac header.
6182  */
6183 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6184 {
6185 	if (skb_vlan_tag_present(skb)) {
6186 		int offset = skb->data - skb_mac_header(skb);
6187 		int err;
6188 
6189 		if (WARN_ONCE(offset,
6190 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6191 			      offset)) {
6192 			return -EINVAL;
6193 		}
6194 
6195 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6196 					skb_vlan_tag_get(skb));
6197 		if (err)
6198 			return err;
6199 
6200 		skb->protocol = skb->vlan_proto;
6201 		skb->mac_len += VLAN_HLEN;
6202 
6203 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6204 	}
6205 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6206 	return 0;
6207 }
6208 EXPORT_SYMBOL(skb_vlan_push);
6209 
6210 /**
6211  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6212  *
6213  * @skb: Socket buffer to modify
6214  *
6215  * Drop the Ethernet header of @skb.
6216  *
6217  * Expects that skb->data points to the mac header and that no VLAN tags are
6218  * present.
6219  *
6220  * Returns 0 on success, -errno otherwise.
6221  */
6222 int skb_eth_pop(struct sk_buff *skb)
6223 {
6224 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6225 	    skb_network_offset(skb) < ETH_HLEN)
6226 		return -EPROTO;
6227 
6228 	skb_pull_rcsum(skb, ETH_HLEN);
6229 	skb_reset_mac_header(skb);
6230 	skb_reset_mac_len(skb);
6231 
6232 	return 0;
6233 }
6234 EXPORT_SYMBOL(skb_eth_pop);
6235 
6236 /**
6237  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6238  *
6239  * @skb: Socket buffer to modify
6240  * @dst: Destination MAC address of the new header
6241  * @src: Source MAC address of the new header
6242  *
6243  * Prepend @skb with a new Ethernet header.
6244  *
6245  * Expects that skb->data points to the mac header, which must be empty.
6246  *
6247  * Returns 0 on success, -errno otherwise.
6248  */
6249 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6250 		 const unsigned char *src)
6251 {
6252 	struct ethhdr *eth;
6253 	int err;
6254 
6255 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6256 		return -EPROTO;
6257 
6258 	err = skb_cow_head(skb, sizeof(*eth));
6259 	if (err < 0)
6260 		return err;
6261 
6262 	skb_push(skb, sizeof(*eth));
6263 	skb_reset_mac_header(skb);
6264 	skb_reset_mac_len(skb);
6265 
6266 	eth = eth_hdr(skb);
6267 	ether_addr_copy(eth->h_dest, dst);
6268 	ether_addr_copy(eth->h_source, src);
6269 	eth->h_proto = skb->protocol;
6270 
6271 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6272 
6273 	return 0;
6274 }
6275 EXPORT_SYMBOL(skb_eth_push);
6276 
6277 /* Update the ethertype of hdr and the skb csum value if required. */
6278 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6279 			     __be16 ethertype)
6280 {
6281 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6282 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6283 
6284 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6285 	}
6286 
6287 	hdr->h_proto = ethertype;
6288 }
6289 
6290 /**
6291  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6292  *                   the packet
6293  *
6294  * @skb: buffer
6295  * @mpls_lse: MPLS label stack entry to push
6296  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6297  * @mac_len: length of the MAC header
6298  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6299  *            ethernet
6300  *
6301  * Expects skb->data at mac header.
6302  *
6303  * Returns 0 on success, -errno otherwise.
6304  */
6305 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6306 		  int mac_len, bool ethernet)
6307 {
6308 	struct mpls_shim_hdr *lse;
6309 	int err;
6310 
6311 	if (unlikely(!eth_p_mpls(mpls_proto)))
6312 		return -EINVAL;
6313 
6314 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6315 	if (skb->encapsulation)
6316 		return -EINVAL;
6317 
6318 	err = skb_cow_head(skb, MPLS_HLEN);
6319 	if (unlikely(err))
6320 		return err;
6321 
6322 	if (!skb->inner_protocol) {
6323 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6324 		skb_set_inner_protocol(skb, skb->protocol);
6325 	}
6326 
6327 	skb_push(skb, MPLS_HLEN);
6328 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6329 		mac_len);
6330 	skb_reset_mac_header(skb);
6331 	skb_set_network_header(skb, mac_len);
6332 	skb_reset_mac_len(skb);
6333 
6334 	lse = mpls_hdr(skb);
6335 	lse->label_stack_entry = mpls_lse;
6336 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6337 
6338 	if (ethernet && mac_len >= ETH_HLEN)
6339 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6340 	skb->protocol = mpls_proto;
6341 
6342 	return 0;
6343 }
6344 EXPORT_SYMBOL_GPL(skb_mpls_push);
6345 
6346 /**
6347  * skb_mpls_pop() - pop the outermost MPLS header
6348  *
6349  * @skb: buffer
6350  * @next_proto: ethertype of header after popped MPLS header
6351  * @mac_len: length of the MAC header
6352  * @ethernet: flag to indicate if the packet is ethernet
6353  *
6354  * Expects skb->data at mac header.
6355  *
6356  * Returns 0 on success, -errno otherwise.
6357  */
6358 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6359 		 bool ethernet)
6360 {
6361 	int err;
6362 
6363 	if (unlikely(!eth_p_mpls(skb->protocol)))
6364 		return 0;
6365 
6366 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6367 	if (unlikely(err))
6368 		return err;
6369 
6370 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6371 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6372 		mac_len);
6373 
6374 	__skb_pull(skb, MPLS_HLEN);
6375 	skb_reset_mac_header(skb);
6376 	skb_set_network_header(skb, mac_len);
6377 
6378 	if (ethernet && mac_len >= ETH_HLEN) {
6379 		struct ethhdr *hdr;
6380 
6381 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6382 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6383 		skb_mod_eth_type(skb, hdr, next_proto);
6384 	}
6385 	skb->protocol = next_proto;
6386 
6387 	return 0;
6388 }
6389 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6390 
6391 /**
6392  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6393  *
6394  * @skb: buffer
6395  * @mpls_lse: new MPLS label stack entry to update to
6396  *
6397  * Expects skb->data at mac header.
6398  *
6399  * Returns 0 on success, -errno otherwise.
6400  */
6401 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6402 {
6403 	int err;
6404 
6405 	if (unlikely(!eth_p_mpls(skb->protocol)))
6406 		return -EINVAL;
6407 
6408 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6409 	if (unlikely(err))
6410 		return err;
6411 
6412 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6413 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6414 
6415 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6416 	}
6417 
6418 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6419 
6420 	return 0;
6421 }
6422 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6423 
6424 /**
6425  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6426  *
6427  * @skb: buffer
6428  *
6429  * Expects skb->data at mac header.
6430  *
6431  * Returns 0 on success, -errno otherwise.
6432  */
6433 int skb_mpls_dec_ttl(struct sk_buff *skb)
6434 {
6435 	u32 lse;
6436 	u8 ttl;
6437 
6438 	if (unlikely(!eth_p_mpls(skb->protocol)))
6439 		return -EINVAL;
6440 
6441 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6442 		return -ENOMEM;
6443 
6444 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6445 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6446 	if (!--ttl)
6447 		return -EINVAL;
6448 
6449 	lse &= ~MPLS_LS_TTL_MASK;
6450 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6451 
6452 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6453 }
6454 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6455 
6456 /**
6457  * alloc_skb_with_frags - allocate skb with page frags
6458  *
6459  * @header_len: size of linear part
6460  * @data_len: needed length in frags
6461  * @order: max page order desired.
6462  * @errcode: pointer to error code if any
6463  * @gfp_mask: allocation mask
6464  *
6465  * This can be used to allocate a paged skb, given a maximal order for frags.
6466  */
6467 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6468 				     unsigned long data_len,
6469 				     int order,
6470 				     int *errcode,
6471 				     gfp_t gfp_mask)
6472 {
6473 	unsigned long chunk;
6474 	struct sk_buff *skb;
6475 	struct page *page;
6476 	int nr_frags = 0;
6477 
6478 	*errcode = -EMSGSIZE;
6479 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6480 		return NULL;
6481 
6482 	*errcode = -ENOBUFS;
6483 	skb = alloc_skb(header_len, gfp_mask);
6484 	if (!skb)
6485 		return NULL;
6486 
6487 	while (data_len) {
6488 		if (nr_frags == MAX_SKB_FRAGS - 1)
6489 			goto failure;
6490 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6491 			order--;
6492 
6493 		if (order) {
6494 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6495 					   __GFP_COMP |
6496 					   __GFP_NOWARN,
6497 					   order);
6498 			if (!page) {
6499 				order--;
6500 				continue;
6501 			}
6502 		} else {
6503 			page = alloc_page(gfp_mask);
6504 			if (!page)
6505 				goto failure;
6506 		}
6507 		chunk = min_t(unsigned long, data_len,
6508 			      PAGE_SIZE << order);
6509 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6510 		nr_frags++;
6511 		skb->truesize += (PAGE_SIZE << order);
6512 		data_len -= chunk;
6513 	}
6514 	return skb;
6515 
6516 failure:
6517 	kfree_skb(skb);
6518 	return NULL;
6519 }
6520 EXPORT_SYMBOL(alloc_skb_with_frags);
6521 
6522 /* carve out the first off bytes from skb when off < headlen */
6523 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6524 				    const int headlen, gfp_t gfp_mask)
6525 {
6526 	int i;
6527 	unsigned int size = skb_end_offset(skb);
6528 	int new_hlen = headlen - off;
6529 	u8 *data;
6530 
6531 	if (skb_pfmemalloc(skb))
6532 		gfp_mask |= __GFP_MEMALLOC;
6533 
6534 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6535 	if (!data)
6536 		return -ENOMEM;
6537 	size = SKB_WITH_OVERHEAD(size);
6538 
6539 	/* Copy real data, and all frags */
6540 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6541 	skb->len -= off;
6542 
6543 	memcpy((struct skb_shared_info *)(data + size),
6544 	       skb_shinfo(skb),
6545 	       offsetof(struct skb_shared_info,
6546 			frags[skb_shinfo(skb)->nr_frags]));
6547 	if (skb_cloned(skb)) {
6548 		/* drop the old head gracefully */
6549 		if (skb_orphan_frags(skb, gfp_mask)) {
6550 			skb_kfree_head(data, size);
6551 			return -ENOMEM;
6552 		}
6553 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6554 			skb_frag_ref(skb, i);
6555 		if (skb_has_frag_list(skb))
6556 			skb_clone_fraglist(skb);
6557 		skb_release_data(skb, SKB_CONSUMED);
6558 	} else {
6559 		/* we can reuse existing recount- all we did was
6560 		 * relocate values
6561 		 */
6562 		skb_free_head(skb);
6563 	}
6564 
6565 	skb->head = data;
6566 	skb->data = data;
6567 	skb->head_frag = 0;
6568 	skb_set_end_offset(skb, size);
6569 	skb_set_tail_pointer(skb, skb_headlen(skb));
6570 	skb_headers_offset_update(skb, 0);
6571 	skb->cloned = 0;
6572 	skb->hdr_len = 0;
6573 	skb->nohdr = 0;
6574 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6575 
6576 	return 0;
6577 }
6578 
6579 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6580 
6581 /* carve out the first eat bytes from skb's frag_list. May recurse into
6582  * pskb_carve()
6583  */
6584 static int pskb_carve_frag_list(struct sk_buff *skb,
6585 				struct skb_shared_info *shinfo, int eat,
6586 				gfp_t gfp_mask)
6587 {
6588 	struct sk_buff *list = shinfo->frag_list;
6589 	struct sk_buff *clone = NULL;
6590 	struct sk_buff *insp = NULL;
6591 
6592 	do {
6593 		if (!list) {
6594 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6595 			return -EFAULT;
6596 		}
6597 		if (list->len <= eat) {
6598 			/* Eaten as whole. */
6599 			eat -= list->len;
6600 			list = list->next;
6601 			insp = list;
6602 		} else {
6603 			/* Eaten partially. */
6604 			if (skb_shared(list)) {
6605 				clone = skb_clone(list, gfp_mask);
6606 				if (!clone)
6607 					return -ENOMEM;
6608 				insp = list->next;
6609 				list = clone;
6610 			} else {
6611 				/* This may be pulled without problems. */
6612 				insp = list;
6613 			}
6614 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6615 				kfree_skb(clone);
6616 				return -ENOMEM;
6617 			}
6618 			break;
6619 		}
6620 	} while (eat);
6621 
6622 	/* Free pulled out fragments. */
6623 	while ((list = shinfo->frag_list) != insp) {
6624 		shinfo->frag_list = list->next;
6625 		consume_skb(list);
6626 	}
6627 	/* And insert new clone at head. */
6628 	if (clone) {
6629 		clone->next = list;
6630 		shinfo->frag_list = clone;
6631 	}
6632 	return 0;
6633 }
6634 
6635 /* carve off first len bytes from skb. Split line (off) is in the
6636  * non-linear part of skb
6637  */
6638 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6639 				       int pos, gfp_t gfp_mask)
6640 {
6641 	int i, k = 0;
6642 	unsigned int size = skb_end_offset(skb);
6643 	u8 *data;
6644 	const int nfrags = skb_shinfo(skb)->nr_frags;
6645 	struct skb_shared_info *shinfo;
6646 
6647 	if (skb_pfmemalloc(skb))
6648 		gfp_mask |= __GFP_MEMALLOC;
6649 
6650 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6651 	if (!data)
6652 		return -ENOMEM;
6653 	size = SKB_WITH_OVERHEAD(size);
6654 
6655 	memcpy((struct skb_shared_info *)(data + size),
6656 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6657 	if (skb_orphan_frags(skb, gfp_mask)) {
6658 		skb_kfree_head(data, size);
6659 		return -ENOMEM;
6660 	}
6661 	shinfo = (struct skb_shared_info *)(data + size);
6662 	for (i = 0; i < nfrags; i++) {
6663 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6664 
6665 		if (pos + fsize > off) {
6666 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6667 
6668 			if (pos < off) {
6669 				/* Split frag.
6670 				 * We have two variants in this case:
6671 				 * 1. Move all the frag to the second
6672 				 *    part, if it is possible. F.e.
6673 				 *    this approach is mandatory for TUX,
6674 				 *    where splitting is expensive.
6675 				 * 2. Split is accurately. We make this.
6676 				 */
6677 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6678 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6679 			}
6680 			skb_frag_ref(skb, i);
6681 			k++;
6682 		}
6683 		pos += fsize;
6684 	}
6685 	shinfo->nr_frags = k;
6686 	if (skb_has_frag_list(skb))
6687 		skb_clone_fraglist(skb);
6688 
6689 	/* split line is in frag list */
6690 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6691 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6692 		if (skb_has_frag_list(skb))
6693 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6694 		skb_kfree_head(data, size);
6695 		return -ENOMEM;
6696 	}
6697 	skb_release_data(skb, SKB_CONSUMED);
6698 
6699 	skb->head = data;
6700 	skb->head_frag = 0;
6701 	skb->data = data;
6702 	skb_set_end_offset(skb, size);
6703 	skb_reset_tail_pointer(skb);
6704 	skb_headers_offset_update(skb, 0);
6705 	skb->cloned   = 0;
6706 	skb->hdr_len  = 0;
6707 	skb->nohdr    = 0;
6708 	skb->len -= off;
6709 	skb->data_len = skb->len;
6710 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6711 	return 0;
6712 }
6713 
6714 /* remove len bytes from the beginning of the skb */
6715 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6716 {
6717 	int headlen = skb_headlen(skb);
6718 
6719 	if (len < headlen)
6720 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6721 	else
6722 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6723 }
6724 
6725 /* Extract to_copy bytes starting at off from skb, and return this in
6726  * a new skb
6727  */
6728 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6729 			     int to_copy, gfp_t gfp)
6730 {
6731 	struct sk_buff  *clone = skb_clone(skb, gfp);
6732 
6733 	if (!clone)
6734 		return NULL;
6735 
6736 	if (pskb_carve(clone, off, gfp) < 0 ||
6737 	    pskb_trim(clone, to_copy)) {
6738 		kfree_skb(clone);
6739 		return NULL;
6740 	}
6741 	return clone;
6742 }
6743 EXPORT_SYMBOL(pskb_extract);
6744 
6745 /**
6746  * skb_condense - try to get rid of fragments/frag_list if possible
6747  * @skb: buffer
6748  *
6749  * Can be used to save memory before skb is added to a busy queue.
6750  * If packet has bytes in frags and enough tail room in skb->head,
6751  * pull all of them, so that we can free the frags right now and adjust
6752  * truesize.
6753  * Notes:
6754  *	We do not reallocate skb->head thus can not fail.
6755  *	Caller must re-evaluate skb->truesize if needed.
6756  */
6757 void skb_condense(struct sk_buff *skb)
6758 {
6759 	if (skb->data_len) {
6760 		if (skb->data_len > skb->end - skb->tail ||
6761 		    skb_cloned(skb))
6762 			return;
6763 
6764 		/* Nice, we can free page frag(s) right now */
6765 		__pskb_pull_tail(skb, skb->data_len);
6766 	}
6767 	/* At this point, skb->truesize might be over estimated,
6768 	 * because skb had a fragment, and fragments do not tell
6769 	 * their truesize.
6770 	 * When we pulled its content into skb->head, fragment
6771 	 * was freed, but __pskb_pull_tail() could not possibly
6772 	 * adjust skb->truesize, not knowing the frag truesize.
6773 	 */
6774 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6775 }
6776 EXPORT_SYMBOL(skb_condense);
6777 
6778 #ifdef CONFIG_SKB_EXTENSIONS
6779 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6780 {
6781 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6782 }
6783 
6784 /**
6785  * __skb_ext_alloc - allocate a new skb extensions storage
6786  *
6787  * @flags: See kmalloc().
6788  *
6789  * Returns the newly allocated pointer. The pointer can later attached to a
6790  * skb via __skb_ext_set().
6791  * Note: caller must handle the skb_ext as an opaque data.
6792  */
6793 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6794 {
6795 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6796 
6797 	if (new) {
6798 		memset(new->offset, 0, sizeof(new->offset));
6799 		refcount_set(&new->refcnt, 1);
6800 	}
6801 
6802 	return new;
6803 }
6804 
6805 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6806 					 unsigned int old_active)
6807 {
6808 	struct skb_ext *new;
6809 
6810 	if (refcount_read(&old->refcnt) == 1)
6811 		return old;
6812 
6813 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6814 	if (!new)
6815 		return NULL;
6816 
6817 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6818 	refcount_set(&new->refcnt, 1);
6819 
6820 #ifdef CONFIG_XFRM
6821 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6822 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6823 		unsigned int i;
6824 
6825 		for (i = 0; i < sp->len; i++)
6826 			xfrm_state_hold(sp->xvec[i]);
6827 	}
6828 #endif
6829 #ifdef CONFIG_MCTP_FLOWS
6830 	if (old_active & (1 << SKB_EXT_MCTP)) {
6831 		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6832 
6833 		if (flow->key)
6834 			refcount_inc(&flow->key->refs);
6835 	}
6836 #endif
6837 	__skb_ext_put(old);
6838 	return new;
6839 }
6840 
6841 /**
6842  * __skb_ext_set - attach the specified extension storage to this skb
6843  * @skb: buffer
6844  * @id: extension id
6845  * @ext: extension storage previously allocated via __skb_ext_alloc()
6846  *
6847  * Existing extensions, if any, are cleared.
6848  *
6849  * Returns the pointer to the extension.
6850  */
6851 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6852 		    struct skb_ext *ext)
6853 {
6854 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6855 
6856 	skb_ext_put(skb);
6857 	newlen = newoff + skb_ext_type_len[id];
6858 	ext->chunks = newlen;
6859 	ext->offset[id] = newoff;
6860 	skb->extensions = ext;
6861 	skb->active_extensions = 1 << id;
6862 	return skb_ext_get_ptr(ext, id);
6863 }
6864 
6865 /**
6866  * skb_ext_add - allocate space for given extension, COW if needed
6867  * @skb: buffer
6868  * @id: extension to allocate space for
6869  *
6870  * Allocates enough space for the given extension.
6871  * If the extension is already present, a pointer to that extension
6872  * is returned.
6873  *
6874  * If the skb was cloned, COW applies and the returned memory can be
6875  * modified without changing the extension space of clones buffers.
6876  *
6877  * Returns pointer to the extension or NULL on allocation failure.
6878  */
6879 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6880 {
6881 	struct skb_ext *new, *old = NULL;
6882 	unsigned int newlen, newoff;
6883 
6884 	if (skb->active_extensions) {
6885 		old = skb->extensions;
6886 
6887 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6888 		if (!new)
6889 			return NULL;
6890 
6891 		if (__skb_ext_exist(new, id))
6892 			goto set_active;
6893 
6894 		newoff = new->chunks;
6895 	} else {
6896 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6897 
6898 		new = __skb_ext_alloc(GFP_ATOMIC);
6899 		if (!new)
6900 			return NULL;
6901 	}
6902 
6903 	newlen = newoff + skb_ext_type_len[id];
6904 	new->chunks = newlen;
6905 	new->offset[id] = newoff;
6906 set_active:
6907 	skb->slow_gro = 1;
6908 	skb->extensions = new;
6909 	skb->active_extensions |= 1 << id;
6910 	return skb_ext_get_ptr(new, id);
6911 }
6912 EXPORT_SYMBOL(skb_ext_add);
6913 
6914 #ifdef CONFIG_XFRM
6915 static void skb_ext_put_sp(struct sec_path *sp)
6916 {
6917 	unsigned int i;
6918 
6919 	for (i = 0; i < sp->len; i++)
6920 		xfrm_state_put(sp->xvec[i]);
6921 }
6922 #endif
6923 
6924 #ifdef CONFIG_MCTP_FLOWS
6925 static void skb_ext_put_mctp(struct mctp_flow *flow)
6926 {
6927 	if (flow->key)
6928 		mctp_key_unref(flow->key);
6929 }
6930 #endif
6931 
6932 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6933 {
6934 	struct skb_ext *ext = skb->extensions;
6935 
6936 	skb->active_extensions &= ~(1 << id);
6937 	if (skb->active_extensions == 0) {
6938 		skb->extensions = NULL;
6939 		__skb_ext_put(ext);
6940 #ifdef CONFIG_XFRM
6941 	} else if (id == SKB_EXT_SEC_PATH &&
6942 		   refcount_read(&ext->refcnt) == 1) {
6943 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6944 
6945 		skb_ext_put_sp(sp);
6946 		sp->len = 0;
6947 #endif
6948 	}
6949 }
6950 EXPORT_SYMBOL(__skb_ext_del);
6951 
6952 void __skb_ext_put(struct skb_ext *ext)
6953 {
6954 	/* If this is last clone, nothing can increment
6955 	 * it after check passes.  Avoids one atomic op.
6956 	 */
6957 	if (refcount_read(&ext->refcnt) == 1)
6958 		goto free_now;
6959 
6960 	if (!refcount_dec_and_test(&ext->refcnt))
6961 		return;
6962 free_now:
6963 #ifdef CONFIG_XFRM
6964 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6965 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6966 #endif
6967 #ifdef CONFIG_MCTP_FLOWS
6968 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6969 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6970 #endif
6971 
6972 	kmem_cache_free(skbuff_ext_cache, ext);
6973 }
6974 EXPORT_SYMBOL(__skb_ext_put);
6975 #endif /* CONFIG_SKB_EXTENSIONS */
6976 
6977 /**
6978  * skb_attempt_defer_free - queue skb for remote freeing
6979  * @skb: buffer
6980  *
6981  * Put @skb in a per-cpu list, using the cpu which
6982  * allocated the skb/pages to reduce false sharing
6983  * and memory zone spinlock contention.
6984  */
6985 void skb_attempt_defer_free(struct sk_buff *skb)
6986 {
6987 	int cpu = skb->alloc_cpu;
6988 	struct softnet_data *sd;
6989 	unsigned int defer_max;
6990 	bool kick;
6991 
6992 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6993 	    !cpu_online(cpu) ||
6994 	    cpu == raw_smp_processor_id()) {
6995 nodefer:	__kfree_skb(skb);
6996 		return;
6997 	}
6998 
6999 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7000 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7001 
7002 	sd = &per_cpu(softnet_data, cpu);
7003 	defer_max = READ_ONCE(sysctl_skb_defer_max);
7004 	if (READ_ONCE(sd->defer_count) >= defer_max)
7005 		goto nodefer;
7006 
7007 	spin_lock_bh(&sd->defer_lock);
7008 	/* Send an IPI every time queue reaches half capacity. */
7009 	kick = sd->defer_count == (defer_max >> 1);
7010 	/* Paired with the READ_ONCE() few lines above */
7011 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7012 
7013 	skb->next = sd->defer_list;
7014 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
7015 	WRITE_ONCE(sd->defer_list, skb);
7016 	spin_unlock_bh(&sd->defer_lock);
7017 
7018 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7019 	 * if we are unlucky enough (this seems very unlikely).
7020 	 */
7021 	if (unlikely(kick))
7022 		kick_defer_list_purge(sd, cpu);
7023 }
7024 
7025 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7026 				 size_t offset, size_t len)
7027 {
7028 	const char *kaddr;
7029 	__wsum csum;
7030 
7031 	kaddr = kmap_local_page(page);
7032 	csum = csum_partial(kaddr + offset, len, 0);
7033 	kunmap_local(kaddr);
7034 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7035 }
7036 
7037 /**
7038  * skb_splice_from_iter - Splice (or copy) pages to skbuff
7039  * @skb: The buffer to add pages to
7040  * @iter: Iterator representing the pages to be added
7041  * @maxsize: Maximum amount of pages to be added
7042  * @gfp: Allocation flags
7043  *
7044  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7045  * extracts pages from an iterator and adds them to the socket buffer if
7046  * possible, copying them to fragments if not possible (such as if they're slab
7047  * pages).
7048  *
7049  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7050  * insufficient space in the buffer to transfer anything.
7051  */
7052 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7053 			     ssize_t maxsize, gfp_t gfp)
7054 {
7055 	size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
7056 	struct page *pages[8], **ppages = pages;
7057 	ssize_t spliced = 0, ret = 0;
7058 	unsigned int i;
7059 
7060 	while (iter->count > 0) {
7061 		ssize_t space, nr, len;
7062 		size_t off;
7063 
7064 		ret = -EMSGSIZE;
7065 		space = frag_limit - skb_shinfo(skb)->nr_frags;
7066 		if (space < 0)
7067 			break;
7068 
7069 		/* We might be able to coalesce without increasing nr_frags */
7070 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7071 
7072 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7073 		if (len <= 0) {
7074 			ret = len ?: -EIO;
7075 			break;
7076 		}
7077 
7078 		i = 0;
7079 		do {
7080 			struct page *page = pages[i++];
7081 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7082 
7083 			ret = -EIO;
7084 			if (WARN_ON_ONCE(!sendpage_ok(page)))
7085 				goto out;
7086 
7087 			ret = skb_append_pagefrags(skb, page, off, part,
7088 						   frag_limit);
7089 			if (ret < 0) {
7090 				iov_iter_revert(iter, len);
7091 				goto out;
7092 			}
7093 
7094 			if (skb->ip_summed == CHECKSUM_NONE)
7095 				skb_splice_csum_page(skb, page, off, part);
7096 
7097 			off = 0;
7098 			spliced += part;
7099 			maxsize -= part;
7100 			len -= part;
7101 		} while (len > 0);
7102 
7103 		if (maxsize <= 0)
7104 			break;
7105 	}
7106 
7107 out:
7108 	skb_len_add(skb, spliced);
7109 	return spliced ?: ret;
7110 }
7111 EXPORT_SYMBOL(skb_splice_from_iter);
7112 
7113 static __always_inline
7114 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7115 			     size_t len, void *to, void *priv2)
7116 {
7117 	__wsum *csum = priv2;
7118 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7119 
7120 	*csum = csum_block_add(*csum, next, progress);
7121 	return 0;
7122 }
7123 
7124 static __always_inline
7125 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7126 				size_t len, void *to, void *priv2)
7127 {
7128 	__wsum next, *csum = priv2;
7129 
7130 	next = csum_and_copy_from_user(iter_from, to + progress, len);
7131 	*csum = csum_block_add(*csum, next, progress);
7132 	return next ? 0 : len;
7133 }
7134 
7135 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7136 				  __wsum *csum, struct iov_iter *i)
7137 {
7138 	size_t copied;
7139 
7140 	if (WARN_ON_ONCE(!i->data_source))
7141 		return false;
7142 	copied = iterate_and_advance2(i, bytes, addr, csum,
7143 				      copy_from_user_iter_csum,
7144 				      memcpy_from_iter_csum);
7145 	if (likely(copied == bytes))
7146 		return true;
7147 	iov_iter_revert(i, copied);
7148 	return false;
7149 }
7150 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7151