1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 #include <linux/kcov.h> 64 65 #include <net/protocol.h> 66 #include <net/dst.h> 67 #include <net/sock.h> 68 #include <net/checksum.h> 69 #include <net/ip6_checksum.h> 70 #include <net/xfrm.h> 71 #include <net/mpls.h> 72 #include <net/mptcp.h> 73 #include <net/mctp.h> 74 #include <net/page_pool.h> 75 76 #include <linux/uaccess.h> 77 #include <trace/events/skb.h> 78 #include <linux/highmem.h> 79 #include <linux/capability.h> 80 #include <linux/user_namespace.h> 81 #include <linux/indirect_call_wrapper.h> 82 83 #include "dev.h" 84 #include "sock_destructor.h" 85 86 struct kmem_cache *skbuff_head_cache __ro_after_init; 87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 88 #ifdef CONFIG_SKB_EXTENSIONS 89 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 90 #endif 91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 92 EXPORT_SYMBOL(sysctl_max_skb_frags); 93 94 #undef FN 95 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 96 const char * const drop_reasons[] = { 97 DEFINE_DROP_REASON(FN, FN) 98 }; 99 EXPORT_SYMBOL(drop_reasons); 100 101 /** 102 * skb_panic - private function for out-of-line support 103 * @skb: buffer 104 * @sz: size 105 * @addr: address 106 * @msg: skb_over_panic or skb_under_panic 107 * 108 * Out-of-line support for skb_put() and skb_push(). 109 * Called via the wrapper skb_over_panic() or skb_under_panic(). 110 * Keep out of line to prevent kernel bloat. 111 * __builtin_return_address is not used because it is not always reliable. 112 */ 113 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 114 const char msg[]) 115 { 116 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 117 msg, addr, skb->len, sz, skb->head, skb->data, 118 (unsigned long)skb->tail, (unsigned long)skb->end, 119 skb->dev ? skb->dev->name : "<NULL>"); 120 BUG(); 121 } 122 123 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 124 { 125 skb_panic(skb, sz, addr, __func__); 126 } 127 128 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 129 { 130 skb_panic(skb, sz, addr, __func__); 131 } 132 133 #define NAPI_SKB_CACHE_SIZE 64 134 #define NAPI_SKB_CACHE_BULK 16 135 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 136 137 struct napi_alloc_cache { 138 struct page_frag_cache page; 139 unsigned int skb_count; 140 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 141 }; 142 143 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 144 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 145 146 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 147 { 148 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 149 150 fragsz = SKB_DATA_ALIGN(fragsz); 151 152 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 153 } 154 EXPORT_SYMBOL(__napi_alloc_frag_align); 155 156 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 157 { 158 void *data; 159 160 fragsz = SKB_DATA_ALIGN(fragsz); 161 if (in_hardirq() || irqs_disabled()) { 162 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 163 164 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 165 } else { 166 struct napi_alloc_cache *nc; 167 168 local_bh_disable(); 169 nc = this_cpu_ptr(&napi_alloc_cache); 170 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 171 local_bh_enable(); 172 } 173 return data; 174 } 175 EXPORT_SYMBOL(__netdev_alloc_frag_align); 176 177 static struct sk_buff *napi_skb_cache_get(void) 178 { 179 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 180 struct sk_buff *skb; 181 182 if (unlikely(!nc->skb_count)) { 183 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, 184 GFP_ATOMIC, 185 NAPI_SKB_CACHE_BULK, 186 nc->skb_cache); 187 if (unlikely(!nc->skb_count)) 188 return NULL; 189 } 190 191 skb = nc->skb_cache[--nc->skb_count]; 192 kasan_unpoison_object_data(skbuff_head_cache, skb); 193 194 return skb; 195 } 196 197 /* Caller must provide SKB that is memset cleared */ 198 static void __build_skb_around(struct sk_buff *skb, void *data, 199 unsigned int frag_size) 200 { 201 struct skb_shared_info *shinfo; 202 unsigned int size = frag_size ? : ksize(data); 203 204 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 205 206 /* Assumes caller memset cleared SKB */ 207 skb->truesize = SKB_TRUESIZE(size); 208 refcount_set(&skb->users, 1); 209 skb->head = data; 210 skb->data = data; 211 skb_reset_tail_pointer(skb); 212 skb_set_end_offset(skb, size); 213 skb->mac_header = (typeof(skb->mac_header))~0U; 214 skb->transport_header = (typeof(skb->transport_header))~0U; 215 skb->alloc_cpu = raw_smp_processor_id(); 216 /* make sure we initialize shinfo sequentially */ 217 shinfo = skb_shinfo(skb); 218 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 219 atomic_set(&shinfo->dataref, 1); 220 221 skb_set_kcov_handle(skb, kcov_common_handle()); 222 } 223 224 /** 225 * __build_skb - build a network buffer 226 * @data: data buffer provided by caller 227 * @frag_size: size of data, or 0 if head was kmalloced 228 * 229 * Allocate a new &sk_buff. Caller provides space holding head and 230 * skb_shared_info. @data must have been allocated by kmalloc() only if 231 * @frag_size is 0, otherwise data should come from the page allocator 232 * or vmalloc() 233 * The return is the new skb buffer. 234 * On a failure the return is %NULL, and @data is not freed. 235 * Notes : 236 * Before IO, driver allocates only data buffer where NIC put incoming frame 237 * Driver should add room at head (NET_SKB_PAD) and 238 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 239 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 240 * before giving packet to stack. 241 * RX rings only contains data buffers, not full skbs. 242 */ 243 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 244 { 245 struct sk_buff *skb; 246 247 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 248 if (unlikely(!skb)) 249 return NULL; 250 251 memset(skb, 0, offsetof(struct sk_buff, tail)); 252 __build_skb_around(skb, data, frag_size); 253 254 return skb; 255 } 256 257 /* build_skb() is wrapper over __build_skb(), that specifically 258 * takes care of skb->head and skb->pfmemalloc 259 * This means that if @frag_size is not zero, then @data must be backed 260 * by a page fragment, not kmalloc() or vmalloc() 261 */ 262 struct sk_buff *build_skb(void *data, unsigned int frag_size) 263 { 264 struct sk_buff *skb = __build_skb(data, frag_size); 265 266 if (skb && frag_size) { 267 skb->head_frag = 1; 268 if (page_is_pfmemalloc(virt_to_head_page(data))) 269 skb->pfmemalloc = 1; 270 } 271 return skb; 272 } 273 EXPORT_SYMBOL(build_skb); 274 275 /** 276 * build_skb_around - build a network buffer around provided skb 277 * @skb: sk_buff provide by caller, must be memset cleared 278 * @data: data buffer provided by caller 279 * @frag_size: size of data, or 0 if head was kmalloced 280 */ 281 struct sk_buff *build_skb_around(struct sk_buff *skb, 282 void *data, unsigned int frag_size) 283 { 284 if (unlikely(!skb)) 285 return NULL; 286 287 __build_skb_around(skb, data, frag_size); 288 289 if (frag_size) { 290 skb->head_frag = 1; 291 if (page_is_pfmemalloc(virt_to_head_page(data))) 292 skb->pfmemalloc = 1; 293 } 294 return skb; 295 } 296 EXPORT_SYMBOL(build_skb_around); 297 298 /** 299 * __napi_build_skb - build a network buffer 300 * @data: data buffer provided by caller 301 * @frag_size: size of data, or 0 if head was kmalloced 302 * 303 * Version of __build_skb() that uses NAPI percpu caches to obtain 304 * skbuff_head instead of inplace allocation. 305 * 306 * Returns a new &sk_buff on success, %NULL on allocation failure. 307 */ 308 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 309 { 310 struct sk_buff *skb; 311 312 skb = napi_skb_cache_get(); 313 if (unlikely(!skb)) 314 return NULL; 315 316 memset(skb, 0, offsetof(struct sk_buff, tail)); 317 __build_skb_around(skb, data, frag_size); 318 319 return skb; 320 } 321 322 /** 323 * napi_build_skb - build a network buffer 324 * @data: data buffer provided by caller 325 * @frag_size: size of data, or 0 if head was kmalloced 326 * 327 * Version of __napi_build_skb() that takes care of skb->head_frag 328 * and skb->pfmemalloc when the data is a page or page fragment. 329 * 330 * Returns a new &sk_buff on success, %NULL on allocation failure. 331 */ 332 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 333 { 334 struct sk_buff *skb = __napi_build_skb(data, frag_size); 335 336 if (likely(skb) && frag_size) { 337 skb->head_frag = 1; 338 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 339 } 340 341 return skb; 342 } 343 EXPORT_SYMBOL(napi_build_skb); 344 345 /* 346 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 347 * the caller if emergency pfmemalloc reserves are being used. If it is and 348 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 349 * may be used. Otherwise, the packet data may be discarded until enough 350 * memory is free 351 */ 352 static void *kmalloc_reserve(size_t size, gfp_t flags, int node, 353 bool *pfmemalloc) 354 { 355 void *obj; 356 bool ret_pfmemalloc = false; 357 358 /* 359 * Try a regular allocation, when that fails and we're not entitled 360 * to the reserves, fail. 361 */ 362 obj = kmalloc_node_track_caller(size, 363 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 364 node); 365 if (obj || !(gfp_pfmemalloc_allowed(flags))) 366 goto out; 367 368 /* Try again but now we are using pfmemalloc reserves */ 369 ret_pfmemalloc = true; 370 obj = kmalloc_node_track_caller(size, flags, node); 371 372 out: 373 if (pfmemalloc) 374 *pfmemalloc = ret_pfmemalloc; 375 376 return obj; 377 } 378 379 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 380 * 'private' fields and also do memory statistics to find all the 381 * [BEEP] leaks. 382 * 383 */ 384 385 /** 386 * __alloc_skb - allocate a network buffer 387 * @size: size to allocate 388 * @gfp_mask: allocation mask 389 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 390 * instead of head cache and allocate a cloned (child) skb. 391 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 392 * allocations in case the data is required for writeback 393 * @node: numa node to allocate memory on 394 * 395 * Allocate a new &sk_buff. The returned buffer has no headroom and a 396 * tail room of at least size bytes. The object has a reference count 397 * of one. The return is the buffer. On a failure the return is %NULL. 398 * 399 * Buffers may only be allocated from interrupts using a @gfp_mask of 400 * %GFP_ATOMIC. 401 */ 402 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 403 int flags, int node) 404 { 405 struct kmem_cache *cache; 406 struct sk_buff *skb; 407 unsigned int osize; 408 bool pfmemalloc; 409 u8 *data; 410 411 cache = (flags & SKB_ALLOC_FCLONE) 412 ? skbuff_fclone_cache : skbuff_head_cache; 413 414 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 415 gfp_mask |= __GFP_MEMALLOC; 416 417 /* Get the HEAD */ 418 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 419 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 420 skb = napi_skb_cache_get(); 421 else 422 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 423 if (unlikely(!skb)) 424 return NULL; 425 prefetchw(skb); 426 427 /* We do our best to align skb_shared_info on a separate cache 428 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 429 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 430 * Both skb->head and skb_shared_info are cache line aligned. 431 */ 432 size = SKB_DATA_ALIGN(size); 433 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 434 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 435 if (unlikely(!data)) 436 goto nodata; 437 /* kmalloc(size) might give us more room than requested. 438 * Put skb_shared_info exactly at the end of allocated zone, 439 * to allow max possible filling before reallocation. 440 */ 441 osize = ksize(data); 442 size = SKB_WITH_OVERHEAD(osize); 443 prefetchw(data + size); 444 445 /* 446 * Only clear those fields we need to clear, not those that we will 447 * actually initialise below. Hence, don't put any more fields after 448 * the tail pointer in struct sk_buff! 449 */ 450 memset(skb, 0, offsetof(struct sk_buff, tail)); 451 __build_skb_around(skb, data, osize); 452 skb->pfmemalloc = pfmemalloc; 453 454 if (flags & SKB_ALLOC_FCLONE) { 455 struct sk_buff_fclones *fclones; 456 457 fclones = container_of(skb, struct sk_buff_fclones, skb1); 458 459 skb->fclone = SKB_FCLONE_ORIG; 460 refcount_set(&fclones->fclone_ref, 1); 461 } 462 463 return skb; 464 465 nodata: 466 kmem_cache_free(cache, skb); 467 return NULL; 468 } 469 EXPORT_SYMBOL(__alloc_skb); 470 471 /** 472 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 473 * @dev: network device to receive on 474 * @len: length to allocate 475 * @gfp_mask: get_free_pages mask, passed to alloc_skb 476 * 477 * Allocate a new &sk_buff and assign it a usage count of one. The 478 * buffer has NET_SKB_PAD headroom built in. Users should allocate 479 * the headroom they think they need without accounting for the 480 * built in space. The built in space is used for optimisations. 481 * 482 * %NULL is returned if there is no free memory. 483 */ 484 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 485 gfp_t gfp_mask) 486 { 487 struct page_frag_cache *nc; 488 struct sk_buff *skb; 489 bool pfmemalloc; 490 void *data; 491 492 len += NET_SKB_PAD; 493 494 /* If requested length is either too small or too big, 495 * we use kmalloc() for skb->head allocation. 496 */ 497 if (len <= SKB_WITH_OVERHEAD(1024) || 498 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 499 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 500 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 501 if (!skb) 502 goto skb_fail; 503 goto skb_success; 504 } 505 506 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 507 len = SKB_DATA_ALIGN(len); 508 509 if (sk_memalloc_socks()) 510 gfp_mask |= __GFP_MEMALLOC; 511 512 if (in_hardirq() || irqs_disabled()) { 513 nc = this_cpu_ptr(&netdev_alloc_cache); 514 data = page_frag_alloc(nc, len, gfp_mask); 515 pfmemalloc = nc->pfmemalloc; 516 } else { 517 local_bh_disable(); 518 nc = this_cpu_ptr(&napi_alloc_cache.page); 519 data = page_frag_alloc(nc, len, gfp_mask); 520 pfmemalloc = nc->pfmemalloc; 521 local_bh_enable(); 522 } 523 524 if (unlikely(!data)) 525 return NULL; 526 527 skb = __build_skb(data, len); 528 if (unlikely(!skb)) { 529 skb_free_frag(data); 530 return NULL; 531 } 532 533 if (pfmemalloc) 534 skb->pfmemalloc = 1; 535 skb->head_frag = 1; 536 537 skb_success: 538 skb_reserve(skb, NET_SKB_PAD); 539 skb->dev = dev; 540 541 skb_fail: 542 return skb; 543 } 544 EXPORT_SYMBOL(__netdev_alloc_skb); 545 546 /** 547 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 548 * @napi: napi instance this buffer was allocated for 549 * @len: length to allocate 550 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 551 * 552 * Allocate a new sk_buff for use in NAPI receive. This buffer will 553 * attempt to allocate the head from a special reserved region used 554 * only for NAPI Rx allocation. By doing this we can save several 555 * CPU cycles by avoiding having to disable and re-enable IRQs. 556 * 557 * %NULL is returned if there is no free memory. 558 */ 559 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 560 gfp_t gfp_mask) 561 { 562 struct napi_alloc_cache *nc; 563 struct sk_buff *skb; 564 void *data; 565 566 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 567 len += NET_SKB_PAD + NET_IP_ALIGN; 568 569 /* If requested length is either too small or too big, 570 * we use kmalloc() for skb->head allocation. 571 */ 572 if (len <= SKB_WITH_OVERHEAD(1024) || 573 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 574 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 575 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 576 NUMA_NO_NODE); 577 if (!skb) 578 goto skb_fail; 579 goto skb_success; 580 } 581 582 nc = this_cpu_ptr(&napi_alloc_cache); 583 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 584 len = SKB_DATA_ALIGN(len); 585 586 if (sk_memalloc_socks()) 587 gfp_mask |= __GFP_MEMALLOC; 588 589 data = page_frag_alloc(&nc->page, len, gfp_mask); 590 if (unlikely(!data)) 591 return NULL; 592 593 skb = __napi_build_skb(data, len); 594 if (unlikely(!skb)) { 595 skb_free_frag(data); 596 return NULL; 597 } 598 599 if (nc->page.pfmemalloc) 600 skb->pfmemalloc = 1; 601 skb->head_frag = 1; 602 603 skb_success: 604 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 605 skb->dev = napi->dev; 606 607 skb_fail: 608 return skb; 609 } 610 EXPORT_SYMBOL(__napi_alloc_skb); 611 612 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 613 int size, unsigned int truesize) 614 { 615 skb_fill_page_desc(skb, i, page, off, size); 616 skb->len += size; 617 skb->data_len += size; 618 skb->truesize += truesize; 619 } 620 EXPORT_SYMBOL(skb_add_rx_frag); 621 622 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 623 unsigned int truesize) 624 { 625 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 626 627 skb_frag_size_add(frag, size); 628 skb->len += size; 629 skb->data_len += size; 630 skb->truesize += truesize; 631 } 632 EXPORT_SYMBOL(skb_coalesce_rx_frag); 633 634 static void skb_drop_list(struct sk_buff **listp) 635 { 636 kfree_skb_list(*listp); 637 *listp = NULL; 638 } 639 640 static inline void skb_drop_fraglist(struct sk_buff *skb) 641 { 642 skb_drop_list(&skb_shinfo(skb)->frag_list); 643 } 644 645 static void skb_clone_fraglist(struct sk_buff *skb) 646 { 647 struct sk_buff *list; 648 649 skb_walk_frags(skb, list) 650 skb_get(list); 651 } 652 653 static void skb_free_head(struct sk_buff *skb) 654 { 655 unsigned char *head = skb->head; 656 657 if (skb->head_frag) { 658 if (skb_pp_recycle(skb, head)) 659 return; 660 skb_free_frag(head); 661 } else { 662 kfree(head); 663 } 664 } 665 666 static void skb_release_data(struct sk_buff *skb) 667 { 668 struct skb_shared_info *shinfo = skb_shinfo(skb); 669 int i; 670 671 if (skb->cloned && 672 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 673 &shinfo->dataref)) 674 goto exit; 675 676 if (skb_zcopy(skb)) { 677 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 678 679 skb_zcopy_clear(skb, true); 680 if (skip_unref) 681 goto free_head; 682 } 683 684 for (i = 0; i < shinfo->nr_frags; i++) 685 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 686 687 free_head: 688 if (shinfo->frag_list) 689 kfree_skb_list(shinfo->frag_list); 690 691 skb_free_head(skb); 692 exit: 693 /* When we clone an SKB we copy the reycling bit. The pp_recycle 694 * bit is only set on the head though, so in order to avoid races 695 * while trying to recycle fragments on __skb_frag_unref() we need 696 * to make one SKB responsible for triggering the recycle path. 697 * So disable the recycling bit if an SKB is cloned and we have 698 * additional references to the fragmented part of the SKB. 699 * Eventually the last SKB will have the recycling bit set and it's 700 * dataref set to 0, which will trigger the recycling 701 */ 702 skb->pp_recycle = 0; 703 } 704 705 /* 706 * Free an skbuff by memory without cleaning the state. 707 */ 708 static void kfree_skbmem(struct sk_buff *skb) 709 { 710 struct sk_buff_fclones *fclones; 711 712 switch (skb->fclone) { 713 case SKB_FCLONE_UNAVAILABLE: 714 kmem_cache_free(skbuff_head_cache, skb); 715 return; 716 717 case SKB_FCLONE_ORIG: 718 fclones = container_of(skb, struct sk_buff_fclones, skb1); 719 720 /* We usually free the clone (TX completion) before original skb 721 * This test would have no chance to be true for the clone, 722 * while here, branch prediction will be good. 723 */ 724 if (refcount_read(&fclones->fclone_ref) == 1) 725 goto fastpath; 726 break; 727 728 default: /* SKB_FCLONE_CLONE */ 729 fclones = container_of(skb, struct sk_buff_fclones, skb2); 730 break; 731 } 732 if (!refcount_dec_and_test(&fclones->fclone_ref)) 733 return; 734 fastpath: 735 kmem_cache_free(skbuff_fclone_cache, fclones); 736 } 737 738 void skb_release_head_state(struct sk_buff *skb) 739 { 740 skb_dst_drop(skb); 741 if (skb->destructor) { 742 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 743 skb->destructor(skb); 744 } 745 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 746 nf_conntrack_put(skb_nfct(skb)); 747 #endif 748 skb_ext_put(skb); 749 } 750 751 /* Free everything but the sk_buff shell. */ 752 static void skb_release_all(struct sk_buff *skb) 753 { 754 skb_release_head_state(skb); 755 if (likely(skb->head)) 756 skb_release_data(skb); 757 } 758 759 /** 760 * __kfree_skb - private function 761 * @skb: buffer 762 * 763 * Free an sk_buff. Release anything attached to the buffer. 764 * Clean the state. This is an internal helper function. Users should 765 * always call kfree_skb 766 */ 767 768 void __kfree_skb(struct sk_buff *skb) 769 { 770 skb_release_all(skb); 771 kfree_skbmem(skb); 772 } 773 EXPORT_SYMBOL(__kfree_skb); 774 775 /** 776 * kfree_skb_reason - free an sk_buff with special reason 777 * @skb: buffer to free 778 * @reason: reason why this skb is dropped 779 * 780 * Drop a reference to the buffer and free it if the usage count has 781 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 782 * tracepoint. 783 */ 784 void __fix_address 785 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 786 { 787 if (unlikely(!skb_unref(skb))) 788 return; 789 790 DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX); 791 792 trace_kfree_skb(skb, __builtin_return_address(0), reason); 793 __kfree_skb(skb); 794 } 795 EXPORT_SYMBOL(kfree_skb_reason); 796 797 void kfree_skb_list_reason(struct sk_buff *segs, 798 enum skb_drop_reason reason) 799 { 800 while (segs) { 801 struct sk_buff *next = segs->next; 802 803 kfree_skb_reason(segs, reason); 804 segs = next; 805 } 806 } 807 EXPORT_SYMBOL(kfree_skb_list_reason); 808 809 /* Dump skb information and contents. 810 * 811 * Must only be called from net_ratelimit()-ed paths. 812 * 813 * Dumps whole packets if full_pkt, only headers otherwise. 814 */ 815 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 816 { 817 struct skb_shared_info *sh = skb_shinfo(skb); 818 struct net_device *dev = skb->dev; 819 struct sock *sk = skb->sk; 820 struct sk_buff *list_skb; 821 bool has_mac, has_trans; 822 int headroom, tailroom; 823 int i, len, seg_len; 824 825 if (full_pkt) 826 len = skb->len; 827 else 828 len = min_t(int, skb->len, MAX_HEADER + 128); 829 830 headroom = skb_headroom(skb); 831 tailroom = skb_tailroom(skb); 832 833 has_mac = skb_mac_header_was_set(skb); 834 has_trans = skb_transport_header_was_set(skb); 835 836 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 837 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 838 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 839 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 840 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 841 level, skb->len, headroom, skb_headlen(skb), tailroom, 842 has_mac ? skb->mac_header : -1, 843 has_mac ? skb_mac_header_len(skb) : -1, 844 skb->network_header, 845 has_trans ? skb_network_header_len(skb) : -1, 846 has_trans ? skb->transport_header : -1, 847 sh->tx_flags, sh->nr_frags, 848 sh->gso_size, sh->gso_type, sh->gso_segs, 849 skb->csum, skb->ip_summed, skb->csum_complete_sw, 850 skb->csum_valid, skb->csum_level, 851 skb->hash, skb->sw_hash, skb->l4_hash, 852 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 853 854 if (dev) 855 printk("%sdev name=%s feat=%pNF\n", 856 level, dev->name, &dev->features); 857 if (sk) 858 printk("%ssk family=%hu type=%u proto=%u\n", 859 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 860 861 if (full_pkt && headroom) 862 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 863 16, 1, skb->head, headroom, false); 864 865 seg_len = min_t(int, skb_headlen(skb), len); 866 if (seg_len) 867 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 868 16, 1, skb->data, seg_len, false); 869 len -= seg_len; 870 871 if (full_pkt && tailroom) 872 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 873 16, 1, skb_tail_pointer(skb), tailroom, false); 874 875 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 876 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 877 u32 p_off, p_len, copied; 878 struct page *p; 879 u8 *vaddr; 880 881 skb_frag_foreach_page(frag, skb_frag_off(frag), 882 skb_frag_size(frag), p, p_off, p_len, 883 copied) { 884 seg_len = min_t(int, p_len, len); 885 vaddr = kmap_atomic(p); 886 print_hex_dump(level, "skb frag: ", 887 DUMP_PREFIX_OFFSET, 888 16, 1, vaddr + p_off, seg_len, false); 889 kunmap_atomic(vaddr); 890 len -= seg_len; 891 if (!len) 892 break; 893 } 894 } 895 896 if (full_pkt && skb_has_frag_list(skb)) { 897 printk("skb fraglist:\n"); 898 skb_walk_frags(skb, list_skb) 899 skb_dump(level, list_skb, true); 900 } 901 } 902 EXPORT_SYMBOL(skb_dump); 903 904 /** 905 * skb_tx_error - report an sk_buff xmit error 906 * @skb: buffer that triggered an error 907 * 908 * Report xmit error if a device callback is tracking this skb. 909 * skb must be freed afterwards. 910 */ 911 void skb_tx_error(struct sk_buff *skb) 912 { 913 if (skb) { 914 skb_zcopy_downgrade_managed(skb); 915 skb_zcopy_clear(skb, true); 916 } 917 } 918 EXPORT_SYMBOL(skb_tx_error); 919 920 #ifdef CONFIG_TRACEPOINTS 921 /** 922 * consume_skb - free an skbuff 923 * @skb: buffer to free 924 * 925 * Drop a ref to the buffer and free it if the usage count has hit zero 926 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 927 * is being dropped after a failure and notes that 928 */ 929 void consume_skb(struct sk_buff *skb) 930 { 931 if (!skb_unref(skb)) 932 return; 933 934 trace_consume_skb(skb); 935 __kfree_skb(skb); 936 } 937 EXPORT_SYMBOL(consume_skb); 938 #endif 939 940 /** 941 * __consume_stateless_skb - free an skbuff, assuming it is stateless 942 * @skb: buffer to free 943 * 944 * Alike consume_skb(), but this variant assumes that this is the last 945 * skb reference and all the head states have been already dropped 946 */ 947 void __consume_stateless_skb(struct sk_buff *skb) 948 { 949 trace_consume_skb(skb); 950 skb_release_data(skb); 951 kfree_skbmem(skb); 952 } 953 954 static void napi_skb_cache_put(struct sk_buff *skb) 955 { 956 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 957 u32 i; 958 959 kasan_poison_object_data(skbuff_head_cache, skb); 960 nc->skb_cache[nc->skb_count++] = skb; 961 962 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 963 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 964 kasan_unpoison_object_data(skbuff_head_cache, 965 nc->skb_cache[i]); 966 967 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF, 968 nc->skb_cache + NAPI_SKB_CACHE_HALF); 969 nc->skb_count = NAPI_SKB_CACHE_HALF; 970 } 971 } 972 973 void __kfree_skb_defer(struct sk_buff *skb) 974 { 975 skb_release_all(skb); 976 napi_skb_cache_put(skb); 977 } 978 979 void napi_skb_free_stolen_head(struct sk_buff *skb) 980 { 981 if (unlikely(skb->slow_gro)) { 982 nf_reset_ct(skb); 983 skb_dst_drop(skb); 984 skb_ext_put(skb); 985 skb_orphan(skb); 986 skb->slow_gro = 0; 987 } 988 napi_skb_cache_put(skb); 989 } 990 991 void napi_consume_skb(struct sk_buff *skb, int budget) 992 { 993 /* Zero budget indicate non-NAPI context called us, like netpoll */ 994 if (unlikely(!budget)) { 995 dev_consume_skb_any(skb); 996 return; 997 } 998 999 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1000 1001 if (!skb_unref(skb)) 1002 return; 1003 1004 /* if reaching here SKB is ready to free */ 1005 trace_consume_skb(skb); 1006 1007 /* if SKB is a clone, don't handle this case */ 1008 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1009 __kfree_skb(skb); 1010 return; 1011 } 1012 1013 skb_release_all(skb); 1014 napi_skb_cache_put(skb); 1015 } 1016 EXPORT_SYMBOL(napi_consume_skb); 1017 1018 /* Make sure a field is contained by headers group */ 1019 #define CHECK_SKB_FIELD(field) \ 1020 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1021 offsetof(struct sk_buff, headers.field)); \ 1022 1023 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1024 { 1025 new->tstamp = old->tstamp; 1026 /* We do not copy old->sk */ 1027 new->dev = old->dev; 1028 memcpy(new->cb, old->cb, sizeof(old->cb)); 1029 skb_dst_copy(new, old); 1030 __skb_ext_copy(new, old); 1031 __nf_copy(new, old, false); 1032 1033 /* Note : this field could be in the headers group. 1034 * It is not yet because we do not want to have a 16 bit hole 1035 */ 1036 new->queue_mapping = old->queue_mapping; 1037 1038 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1039 CHECK_SKB_FIELD(protocol); 1040 CHECK_SKB_FIELD(csum); 1041 CHECK_SKB_FIELD(hash); 1042 CHECK_SKB_FIELD(priority); 1043 CHECK_SKB_FIELD(skb_iif); 1044 CHECK_SKB_FIELD(vlan_proto); 1045 CHECK_SKB_FIELD(vlan_tci); 1046 CHECK_SKB_FIELD(transport_header); 1047 CHECK_SKB_FIELD(network_header); 1048 CHECK_SKB_FIELD(mac_header); 1049 CHECK_SKB_FIELD(inner_protocol); 1050 CHECK_SKB_FIELD(inner_transport_header); 1051 CHECK_SKB_FIELD(inner_network_header); 1052 CHECK_SKB_FIELD(inner_mac_header); 1053 CHECK_SKB_FIELD(mark); 1054 #ifdef CONFIG_NETWORK_SECMARK 1055 CHECK_SKB_FIELD(secmark); 1056 #endif 1057 #ifdef CONFIG_NET_RX_BUSY_POLL 1058 CHECK_SKB_FIELD(napi_id); 1059 #endif 1060 CHECK_SKB_FIELD(alloc_cpu); 1061 #ifdef CONFIG_XPS 1062 CHECK_SKB_FIELD(sender_cpu); 1063 #endif 1064 #ifdef CONFIG_NET_SCHED 1065 CHECK_SKB_FIELD(tc_index); 1066 #endif 1067 1068 } 1069 1070 /* 1071 * You should not add any new code to this function. Add it to 1072 * __copy_skb_header above instead. 1073 */ 1074 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1075 { 1076 #define C(x) n->x = skb->x 1077 1078 n->next = n->prev = NULL; 1079 n->sk = NULL; 1080 __copy_skb_header(n, skb); 1081 1082 C(len); 1083 C(data_len); 1084 C(mac_len); 1085 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1086 n->cloned = 1; 1087 n->nohdr = 0; 1088 n->peeked = 0; 1089 C(pfmemalloc); 1090 C(pp_recycle); 1091 n->destructor = NULL; 1092 C(tail); 1093 C(end); 1094 C(head); 1095 C(head_frag); 1096 C(data); 1097 C(truesize); 1098 refcount_set(&n->users, 1); 1099 1100 atomic_inc(&(skb_shinfo(skb)->dataref)); 1101 skb->cloned = 1; 1102 1103 return n; 1104 #undef C 1105 } 1106 1107 /** 1108 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1109 * @first: first sk_buff of the msg 1110 */ 1111 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1112 { 1113 struct sk_buff *n; 1114 1115 n = alloc_skb(0, GFP_ATOMIC); 1116 if (!n) 1117 return NULL; 1118 1119 n->len = first->len; 1120 n->data_len = first->len; 1121 n->truesize = first->truesize; 1122 1123 skb_shinfo(n)->frag_list = first; 1124 1125 __copy_skb_header(n, first); 1126 n->destructor = NULL; 1127 1128 return n; 1129 } 1130 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1131 1132 /** 1133 * skb_morph - morph one skb into another 1134 * @dst: the skb to receive the contents 1135 * @src: the skb to supply the contents 1136 * 1137 * This is identical to skb_clone except that the target skb is 1138 * supplied by the user. 1139 * 1140 * The target skb is returned upon exit. 1141 */ 1142 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1143 { 1144 skb_release_all(dst); 1145 return __skb_clone(dst, src); 1146 } 1147 EXPORT_SYMBOL_GPL(skb_morph); 1148 1149 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1150 { 1151 unsigned long max_pg, num_pg, new_pg, old_pg; 1152 struct user_struct *user; 1153 1154 if (capable(CAP_IPC_LOCK) || !size) 1155 return 0; 1156 1157 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1158 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1159 user = mmp->user ? : current_user(); 1160 1161 do { 1162 old_pg = atomic_long_read(&user->locked_vm); 1163 new_pg = old_pg + num_pg; 1164 if (new_pg > max_pg) 1165 return -ENOBUFS; 1166 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1167 old_pg); 1168 1169 if (!mmp->user) { 1170 mmp->user = get_uid(user); 1171 mmp->num_pg = num_pg; 1172 } else { 1173 mmp->num_pg += num_pg; 1174 } 1175 1176 return 0; 1177 } 1178 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1179 1180 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1181 { 1182 if (mmp->user) { 1183 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1184 free_uid(mmp->user); 1185 } 1186 } 1187 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1188 1189 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1190 { 1191 struct ubuf_info *uarg; 1192 struct sk_buff *skb; 1193 1194 WARN_ON_ONCE(!in_task()); 1195 1196 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1197 if (!skb) 1198 return NULL; 1199 1200 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1201 uarg = (void *)skb->cb; 1202 uarg->mmp.user = NULL; 1203 1204 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1205 kfree_skb(skb); 1206 return NULL; 1207 } 1208 1209 uarg->callback = msg_zerocopy_callback; 1210 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1211 uarg->len = 1; 1212 uarg->bytelen = size; 1213 uarg->zerocopy = 1; 1214 uarg->flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1215 refcount_set(&uarg->refcnt, 1); 1216 sock_hold(sk); 1217 1218 return uarg; 1219 } 1220 1221 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1222 { 1223 return container_of((void *)uarg, struct sk_buff, cb); 1224 } 1225 1226 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1227 struct ubuf_info *uarg) 1228 { 1229 if (uarg) { 1230 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1231 u32 bytelen, next; 1232 1233 /* there might be non MSG_ZEROCOPY users */ 1234 if (uarg->callback != msg_zerocopy_callback) 1235 return NULL; 1236 1237 /* realloc only when socket is locked (TCP, UDP cork), 1238 * so uarg->len and sk_zckey access is serialized 1239 */ 1240 if (!sock_owned_by_user(sk)) { 1241 WARN_ON_ONCE(1); 1242 return NULL; 1243 } 1244 1245 bytelen = uarg->bytelen + size; 1246 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1247 /* TCP can create new skb to attach new uarg */ 1248 if (sk->sk_type == SOCK_STREAM) 1249 goto new_alloc; 1250 return NULL; 1251 } 1252 1253 next = (u32)atomic_read(&sk->sk_zckey); 1254 if ((u32)(uarg->id + uarg->len) == next) { 1255 if (mm_account_pinned_pages(&uarg->mmp, size)) 1256 return NULL; 1257 uarg->len++; 1258 uarg->bytelen = bytelen; 1259 atomic_set(&sk->sk_zckey, ++next); 1260 1261 /* no extra ref when appending to datagram (MSG_MORE) */ 1262 if (sk->sk_type == SOCK_STREAM) 1263 net_zcopy_get(uarg); 1264 1265 return uarg; 1266 } 1267 } 1268 1269 new_alloc: 1270 return msg_zerocopy_alloc(sk, size); 1271 } 1272 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1273 1274 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1275 { 1276 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1277 u32 old_lo, old_hi; 1278 u64 sum_len; 1279 1280 old_lo = serr->ee.ee_info; 1281 old_hi = serr->ee.ee_data; 1282 sum_len = old_hi - old_lo + 1ULL + len; 1283 1284 if (sum_len >= (1ULL << 32)) 1285 return false; 1286 1287 if (lo != old_hi + 1) 1288 return false; 1289 1290 serr->ee.ee_data += len; 1291 return true; 1292 } 1293 1294 static void __msg_zerocopy_callback(struct ubuf_info *uarg) 1295 { 1296 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1297 struct sock_exterr_skb *serr; 1298 struct sock *sk = skb->sk; 1299 struct sk_buff_head *q; 1300 unsigned long flags; 1301 bool is_zerocopy; 1302 u32 lo, hi; 1303 u16 len; 1304 1305 mm_unaccount_pinned_pages(&uarg->mmp); 1306 1307 /* if !len, there was only 1 call, and it was aborted 1308 * so do not queue a completion notification 1309 */ 1310 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1311 goto release; 1312 1313 len = uarg->len; 1314 lo = uarg->id; 1315 hi = uarg->id + len - 1; 1316 is_zerocopy = uarg->zerocopy; 1317 1318 serr = SKB_EXT_ERR(skb); 1319 memset(serr, 0, sizeof(*serr)); 1320 serr->ee.ee_errno = 0; 1321 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1322 serr->ee.ee_data = hi; 1323 serr->ee.ee_info = lo; 1324 if (!is_zerocopy) 1325 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1326 1327 q = &sk->sk_error_queue; 1328 spin_lock_irqsave(&q->lock, flags); 1329 tail = skb_peek_tail(q); 1330 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1331 !skb_zerocopy_notify_extend(tail, lo, len)) { 1332 __skb_queue_tail(q, skb); 1333 skb = NULL; 1334 } 1335 spin_unlock_irqrestore(&q->lock, flags); 1336 1337 sk_error_report(sk); 1338 1339 release: 1340 consume_skb(skb); 1341 sock_put(sk); 1342 } 1343 1344 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1345 bool success) 1346 { 1347 uarg->zerocopy = uarg->zerocopy & success; 1348 1349 if (refcount_dec_and_test(&uarg->refcnt)) 1350 __msg_zerocopy_callback(uarg); 1351 } 1352 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1353 1354 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1355 { 1356 struct sock *sk = skb_from_uarg(uarg)->sk; 1357 1358 atomic_dec(&sk->sk_zckey); 1359 uarg->len--; 1360 1361 if (have_uref) 1362 msg_zerocopy_callback(NULL, uarg, true); 1363 } 1364 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1365 1366 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1367 struct msghdr *msg, int len, 1368 struct ubuf_info *uarg) 1369 { 1370 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1371 int err, orig_len = skb->len; 1372 1373 /* An skb can only point to one uarg. This edge case happens when 1374 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1375 */ 1376 if (orig_uarg && uarg != orig_uarg) 1377 return -EEXIST; 1378 1379 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1380 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1381 struct sock *save_sk = skb->sk; 1382 1383 /* Streams do not free skb on error. Reset to prev state. */ 1384 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1385 skb->sk = sk; 1386 ___pskb_trim(skb, orig_len); 1387 skb->sk = save_sk; 1388 return err; 1389 } 1390 1391 skb_zcopy_set(skb, uarg, NULL); 1392 return skb->len - orig_len; 1393 } 1394 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1395 1396 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1397 { 1398 int i; 1399 1400 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1401 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1402 skb_frag_ref(skb, i); 1403 } 1404 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1405 1406 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1407 gfp_t gfp_mask) 1408 { 1409 if (skb_zcopy(orig)) { 1410 if (skb_zcopy(nskb)) { 1411 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1412 if (!gfp_mask) { 1413 WARN_ON_ONCE(1); 1414 return -ENOMEM; 1415 } 1416 if (skb_uarg(nskb) == skb_uarg(orig)) 1417 return 0; 1418 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1419 return -EIO; 1420 } 1421 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1422 } 1423 return 0; 1424 } 1425 1426 /** 1427 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1428 * @skb: the skb to modify 1429 * @gfp_mask: allocation priority 1430 * 1431 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1432 * It will copy all frags into kernel and drop the reference 1433 * to userspace pages. 1434 * 1435 * If this function is called from an interrupt gfp_mask() must be 1436 * %GFP_ATOMIC. 1437 * 1438 * Returns 0 on success or a negative error code on failure 1439 * to allocate kernel memory to copy to. 1440 */ 1441 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1442 { 1443 int num_frags = skb_shinfo(skb)->nr_frags; 1444 struct page *page, *head = NULL; 1445 int i, new_frags; 1446 u32 d_off; 1447 1448 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1449 return -EINVAL; 1450 1451 if (!num_frags) 1452 goto release; 1453 1454 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1455 for (i = 0; i < new_frags; i++) { 1456 page = alloc_page(gfp_mask); 1457 if (!page) { 1458 while (head) { 1459 struct page *next = (struct page *)page_private(head); 1460 put_page(head); 1461 head = next; 1462 } 1463 return -ENOMEM; 1464 } 1465 set_page_private(page, (unsigned long)head); 1466 head = page; 1467 } 1468 1469 page = head; 1470 d_off = 0; 1471 for (i = 0; i < num_frags; i++) { 1472 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1473 u32 p_off, p_len, copied; 1474 struct page *p; 1475 u8 *vaddr; 1476 1477 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1478 p, p_off, p_len, copied) { 1479 u32 copy, done = 0; 1480 vaddr = kmap_atomic(p); 1481 1482 while (done < p_len) { 1483 if (d_off == PAGE_SIZE) { 1484 d_off = 0; 1485 page = (struct page *)page_private(page); 1486 } 1487 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1488 memcpy(page_address(page) + d_off, 1489 vaddr + p_off + done, copy); 1490 done += copy; 1491 d_off += copy; 1492 } 1493 kunmap_atomic(vaddr); 1494 } 1495 } 1496 1497 /* skb frags release userspace buffers */ 1498 for (i = 0; i < num_frags; i++) 1499 skb_frag_unref(skb, i); 1500 1501 /* skb frags point to kernel buffers */ 1502 for (i = 0; i < new_frags - 1; i++) { 1503 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1504 head = (struct page *)page_private(head); 1505 } 1506 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1507 skb_shinfo(skb)->nr_frags = new_frags; 1508 1509 release: 1510 skb_zcopy_clear(skb, false); 1511 return 0; 1512 } 1513 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1514 1515 /** 1516 * skb_clone - duplicate an sk_buff 1517 * @skb: buffer to clone 1518 * @gfp_mask: allocation priority 1519 * 1520 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1521 * copies share the same packet data but not structure. The new 1522 * buffer has a reference count of 1. If the allocation fails the 1523 * function returns %NULL otherwise the new buffer is returned. 1524 * 1525 * If this function is called from an interrupt gfp_mask() must be 1526 * %GFP_ATOMIC. 1527 */ 1528 1529 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1530 { 1531 struct sk_buff_fclones *fclones = container_of(skb, 1532 struct sk_buff_fclones, 1533 skb1); 1534 struct sk_buff *n; 1535 1536 if (skb_orphan_frags(skb, gfp_mask)) 1537 return NULL; 1538 1539 if (skb->fclone == SKB_FCLONE_ORIG && 1540 refcount_read(&fclones->fclone_ref) == 1) { 1541 n = &fclones->skb2; 1542 refcount_set(&fclones->fclone_ref, 2); 1543 n->fclone = SKB_FCLONE_CLONE; 1544 } else { 1545 if (skb_pfmemalloc(skb)) 1546 gfp_mask |= __GFP_MEMALLOC; 1547 1548 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1549 if (!n) 1550 return NULL; 1551 1552 n->fclone = SKB_FCLONE_UNAVAILABLE; 1553 } 1554 1555 return __skb_clone(n, skb); 1556 } 1557 EXPORT_SYMBOL(skb_clone); 1558 1559 void skb_headers_offset_update(struct sk_buff *skb, int off) 1560 { 1561 /* Only adjust this if it actually is csum_start rather than csum */ 1562 if (skb->ip_summed == CHECKSUM_PARTIAL) 1563 skb->csum_start += off; 1564 /* {transport,network,mac}_header and tail are relative to skb->head */ 1565 skb->transport_header += off; 1566 skb->network_header += off; 1567 if (skb_mac_header_was_set(skb)) 1568 skb->mac_header += off; 1569 skb->inner_transport_header += off; 1570 skb->inner_network_header += off; 1571 skb->inner_mac_header += off; 1572 } 1573 EXPORT_SYMBOL(skb_headers_offset_update); 1574 1575 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1576 { 1577 __copy_skb_header(new, old); 1578 1579 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1580 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1581 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1582 } 1583 EXPORT_SYMBOL(skb_copy_header); 1584 1585 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1586 { 1587 if (skb_pfmemalloc(skb)) 1588 return SKB_ALLOC_RX; 1589 return 0; 1590 } 1591 1592 /** 1593 * skb_copy - create private copy of an sk_buff 1594 * @skb: buffer to copy 1595 * @gfp_mask: allocation priority 1596 * 1597 * Make a copy of both an &sk_buff and its data. This is used when the 1598 * caller wishes to modify the data and needs a private copy of the 1599 * data to alter. Returns %NULL on failure or the pointer to the buffer 1600 * on success. The returned buffer has a reference count of 1. 1601 * 1602 * As by-product this function converts non-linear &sk_buff to linear 1603 * one, so that &sk_buff becomes completely private and caller is allowed 1604 * to modify all the data of returned buffer. This means that this 1605 * function is not recommended for use in circumstances when only 1606 * header is going to be modified. Use pskb_copy() instead. 1607 */ 1608 1609 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1610 { 1611 int headerlen = skb_headroom(skb); 1612 unsigned int size = skb_end_offset(skb) + skb->data_len; 1613 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1614 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1615 1616 if (!n) 1617 return NULL; 1618 1619 /* Set the data pointer */ 1620 skb_reserve(n, headerlen); 1621 /* Set the tail pointer and length */ 1622 skb_put(n, skb->len); 1623 1624 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1625 1626 skb_copy_header(n, skb); 1627 return n; 1628 } 1629 EXPORT_SYMBOL(skb_copy); 1630 1631 /** 1632 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1633 * @skb: buffer to copy 1634 * @headroom: headroom of new skb 1635 * @gfp_mask: allocation priority 1636 * @fclone: if true allocate the copy of the skb from the fclone 1637 * cache instead of the head cache; it is recommended to set this 1638 * to true for the cases where the copy will likely be cloned 1639 * 1640 * Make a copy of both an &sk_buff and part of its data, located 1641 * in header. Fragmented data remain shared. This is used when 1642 * the caller wishes to modify only header of &sk_buff and needs 1643 * private copy of the header to alter. Returns %NULL on failure 1644 * or the pointer to the buffer on success. 1645 * The returned buffer has a reference count of 1. 1646 */ 1647 1648 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1649 gfp_t gfp_mask, bool fclone) 1650 { 1651 unsigned int size = skb_headlen(skb) + headroom; 1652 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1653 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1654 1655 if (!n) 1656 goto out; 1657 1658 /* Set the data pointer */ 1659 skb_reserve(n, headroom); 1660 /* Set the tail pointer and length */ 1661 skb_put(n, skb_headlen(skb)); 1662 /* Copy the bytes */ 1663 skb_copy_from_linear_data(skb, n->data, n->len); 1664 1665 n->truesize += skb->data_len; 1666 n->data_len = skb->data_len; 1667 n->len = skb->len; 1668 1669 if (skb_shinfo(skb)->nr_frags) { 1670 int i; 1671 1672 if (skb_orphan_frags(skb, gfp_mask) || 1673 skb_zerocopy_clone(n, skb, gfp_mask)) { 1674 kfree_skb(n); 1675 n = NULL; 1676 goto out; 1677 } 1678 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1679 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1680 skb_frag_ref(skb, i); 1681 } 1682 skb_shinfo(n)->nr_frags = i; 1683 } 1684 1685 if (skb_has_frag_list(skb)) { 1686 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1687 skb_clone_fraglist(n); 1688 } 1689 1690 skb_copy_header(n, skb); 1691 out: 1692 return n; 1693 } 1694 EXPORT_SYMBOL(__pskb_copy_fclone); 1695 1696 /** 1697 * pskb_expand_head - reallocate header of &sk_buff 1698 * @skb: buffer to reallocate 1699 * @nhead: room to add at head 1700 * @ntail: room to add at tail 1701 * @gfp_mask: allocation priority 1702 * 1703 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1704 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1705 * reference count of 1. Returns zero in the case of success or error, 1706 * if expansion failed. In the last case, &sk_buff is not changed. 1707 * 1708 * All the pointers pointing into skb header may change and must be 1709 * reloaded after call to this function. 1710 */ 1711 1712 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1713 gfp_t gfp_mask) 1714 { 1715 int i, osize = skb_end_offset(skb); 1716 int size = osize + nhead + ntail; 1717 long off; 1718 u8 *data; 1719 1720 BUG_ON(nhead < 0); 1721 1722 BUG_ON(skb_shared(skb)); 1723 1724 skb_zcopy_downgrade_managed(skb); 1725 1726 size = SKB_DATA_ALIGN(size); 1727 1728 if (skb_pfmemalloc(skb)) 1729 gfp_mask |= __GFP_MEMALLOC; 1730 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1731 gfp_mask, NUMA_NO_NODE, NULL); 1732 if (!data) 1733 goto nodata; 1734 size = SKB_WITH_OVERHEAD(ksize(data)); 1735 1736 /* Copy only real data... and, alas, header. This should be 1737 * optimized for the cases when header is void. 1738 */ 1739 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1740 1741 memcpy((struct skb_shared_info *)(data + size), 1742 skb_shinfo(skb), 1743 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1744 1745 /* 1746 * if shinfo is shared we must drop the old head gracefully, but if it 1747 * is not we can just drop the old head and let the existing refcount 1748 * be since all we did is relocate the values 1749 */ 1750 if (skb_cloned(skb)) { 1751 if (skb_orphan_frags(skb, gfp_mask)) 1752 goto nofrags; 1753 if (skb_zcopy(skb)) 1754 refcount_inc(&skb_uarg(skb)->refcnt); 1755 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1756 skb_frag_ref(skb, i); 1757 1758 if (skb_has_frag_list(skb)) 1759 skb_clone_fraglist(skb); 1760 1761 skb_release_data(skb); 1762 } else { 1763 skb_free_head(skb); 1764 } 1765 off = (data + nhead) - skb->head; 1766 1767 skb->head = data; 1768 skb->head_frag = 0; 1769 skb->data += off; 1770 1771 skb_set_end_offset(skb, size); 1772 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1773 off = nhead; 1774 #endif 1775 skb->tail += off; 1776 skb_headers_offset_update(skb, nhead); 1777 skb->cloned = 0; 1778 skb->hdr_len = 0; 1779 skb->nohdr = 0; 1780 atomic_set(&skb_shinfo(skb)->dataref, 1); 1781 1782 skb_metadata_clear(skb); 1783 1784 /* It is not generally safe to change skb->truesize. 1785 * For the moment, we really care of rx path, or 1786 * when skb is orphaned (not attached to a socket). 1787 */ 1788 if (!skb->sk || skb->destructor == sock_edemux) 1789 skb->truesize += size - osize; 1790 1791 return 0; 1792 1793 nofrags: 1794 kfree(data); 1795 nodata: 1796 return -ENOMEM; 1797 } 1798 EXPORT_SYMBOL(pskb_expand_head); 1799 1800 /* Make private copy of skb with writable head and some headroom */ 1801 1802 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1803 { 1804 struct sk_buff *skb2; 1805 int delta = headroom - skb_headroom(skb); 1806 1807 if (delta <= 0) 1808 skb2 = pskb_copy(skb, GFP_ATOMIC); 1809 else { 1810 skb2 = skb_clone(skb, GFP_ATOMIC); 1811 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1812 GFP_ATOMIC)) { 1813 kfree_skb(skb2); 1814 skb2 = NULL; 1815 } 1816 } 1817 return skb2; 1818 } 1819 EXPORT_SYMBOL(skb_realloc_headroom); 1820 1821 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1822 { 1823 unsigned int saved_end_offset, saved_truesize; 1824 struct skb_shared_info *shinfo; 1825 int res; 1826 1827 saved_end_offset = skb_end_offset(skb); 1828 saved_truesize = skb->truesize; 1829 1830 res = pskb_expand_head(skb, 0, 0, pri); 1831 if (res) 1832 return res; 1833 1834 skb->truesize = saved_truesize; 1835 1836 if (likely(skb_end_offset(skb) == saved_end_offset)) 1837 return 0; 1838 1839 shinfo = skb_shinfo(skb); 1840 1841 /* We are about to change back skb->end, 1842 * we need to move skb_shinfo() to its new location. 1843 */ 1844 memmove(skb->head + saved_end_offset, 1845 shinfo, 1846 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 1847 1848 skb_set_end_offset(skb, saved_end_offset); 1849 1850 return 0; 1851 } 1852 1853 /** 1854 * skb_expand_head - reallocate header of &sk_buff 1855 * @skb: buffer to reallocate 1856 * @headroom: needed headroom 1857 * 1858 * Unlike skb_realloc_headroom, this one does not allocate a new skb 1859 * if possible; copies skb->sk to new skb as needed 1860 * and frees original skb in case of failures. 1861 * 1862 * It expect increased headroom and generates warning otherwise. 1863 */ 1864 1865 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 1866 { 1867 int delta = headroom - skb_headroom(skb); 1868 int osize = skb_end_offset(skb); 1869 struct sock *sk = skb->sk; 1870 1871 if (WARN_ONCE(delta <= 0, 1872 "%s is expecting an increase in the headroom", __func__)) 1873 return skb; 1874 1875 delta = SKB_DATA_ALIGN(delta); 1876 /* pskb_expand_head() might crash, if skb is shared. */ 1877 if (skb_shared(skb) || !is_skb_wmem(skb)) { 1878 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 1879 1880 if (unlikely(!nskb)) 1881 goto fail; 1882 1883 if (sk) 1884 skb_set_owner_w(nskb, sk); 1885 consume_skb(skb); 1886 skb = nskb; 1887 } 1888 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 1889 goto fail; 1890 1891 if (sk && is_skb_wmem(skb)) { 1892 delta = skb_end_offset(skb) - osize; 1893 refcount_add(delta, &sk->sk_wmem_alloc); 1894 skb->truesize += delta; 1895 } 1896 return skb; 1897 1898 fail: 1899 kfree_skb(skb); 1900 return NULL; 1901 } 1902 EXPORT_SYMBOL(skb_expand_head); 1903 1904 /** 1905 * skb_copy_expand - copy and expand sk_buff 1906 * @skb: buffer to copy 1907 * @newheadroom: new free bytes at head 1908 * @newtailroom: new free bytes at tail 1909 * @gfp_mask: allocation priority 1910 * 1911 * Make a copy of both an &sk_buff and its data and while doing so 1912 * allocate additional space. 1913 * 1914 * This is used when the caller wishes to modify the data and needs a 1915 * private copy of the data to alter as well as more space for new fields. 1916 * Returns %NULL on failure or the pointer to the buffer 1917 * on success. The returned buffer has a reference count of 1. 1918 * 1919 * You must pass %GFP_ATOMIC as the allocation priority if this function 1920 * is called from an interrupt. 1921 */ 1922 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1923 int newheadroom, int newtailroom, 1924 gfp_t gfp_mask) 1925 { 1926 /* 1927 * Allocate the copy buffer 1928 */ 1929 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1930 gfp_mask, skb_alloc_rx_flag(skb), 1931 NUMA_NO_NODE); 1932 int oldheadroom = skb_headroom(skb); 1933 int head_copy_len, head_copy_off; 1934 1935 if (!n) 1936 return NULL; 1937 1938 skb_reserve(n, newheadroom); 1939 1940 /* Set the tail pointer and length */ 1941 skb_put(n, skb->len); 1942 1943 head_copy_len = oldheadroom; 1944 head_copy_off = 0; 1945 if (newheadroom <= head_copy_len) 1946 head_copy_len = newheadroom; 1947 else 1948 head_copy_off = newheadroom - head_copy_len; 1949 1950 /* Copy the linear header and data. */ 1951 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1952 skb->len + head_copy_len)); 1953 1954 skb_copy_header(n, skb); 1955 1956 skb_headers_offset_update(n, newheadroom - oldheadroom); 1957 1958 return n; 1959 } 1960 EXPORT_SYMBOL(skb_copy_expand); 1961 1962 /** 1963 * __skb_pad - zero pad the tail of an skb 1964 * @skb: buffer to pad 1965 * @pad: space to pad 1966 * @free_on_error: free buffer on error 1967 * 1968 * Ensure that a buffer is followed by a padding area that is zero 1969 * filled. Used by network drivers which may DMA or transfer data 1970 * beyond the buffer end onto the wire. 1971 * 1972 * May return error in out of memory cases. The skb is freed on error 1973 * if @free_on_error is true. 1974 */ 1975 1976 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1977 { 1978 int err; 1979 int ntail; 1980 1981 /* If the skbuff is non linear tailroom is always zero.. */ 1982 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1983 memset(skb->data+skb->len, 0, pad); 1984 return 0; 1985 } 1986 1987 ntail = skb->data_len + pad - (skb->end - skb->tail); 1988 if (likely(skb_cloned(skb) || ntail > 0)) { 1989 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1990 if (unlikely(err)) 1991 goto free_skb; 1992 } 1993 1994 /* FIXME: The use of this function with non-linear skb's really needs 1995 * to be audited. 1996 */ 1997 err = skb_linearize(skb); 1998 if (unlikely(err)) 1999 goto free_skb; 2000 2001 memset(skb->data + skb->len, 0, pad); 2002 return 0; 2003 2004 free_skb: 2005 if (free_on_error) 2006 kfree_skb(skb); 2007 return err; 2008 } 2009 EXPORT_SYMBOL(__skb_pad); 2010 2011 /** 2012 * pskb_put - add data to the tail of a potentially fragmented buffer 2013 * @skb: start of the buffer to use 2014 * @tail: tail fragment of the buffer to use 2015 * @len: amount of data to add 2016 * 2017 * This function extends the used data area of the potentially 2018 * fragmented buffer. @tail must be the last fragment of @skb -- or 2019 * @skb itself. If this would exceed the total buffer size the kernel 2020 * will panic. A pointer to the first byte of the extra data is 2021 * returned. 2022 */ 2023 2024 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2025 { 2026 if (tail != skb) { 2027 skb->data_len += len; 2028 skb->len += len; 2029 } 2030 return skb_put(tail, len); 2031 } 2032 EXPORT_SYMBOL_GPL(pskb_put); 2033 2034 /** 2035 * skb_put - add data to a buffer 2036 * @skb: buffer to use 2037 * @len: amount of data to add 2038 * 2039 * This function extends the used data area of the buffer. If this would 2040 * exceed the total buffer size the kernel will panic. A pointer to the 2041 * first byte of the extra data is returned. 2042 */ 2043 void *skb_put(struct sk_buff *skb, unsigned int len) 2044 { 2045 void *tmp = skb_tail_pointer(skb); 2046 SKB_LINEAR_ASSERT(skb); 2047 skb->tail += len; 2048 skb->len += len; 2049 if (unlikely(skb->tail > skb->end)) 2050 skb_over_panic(skb, len, __builtin_return_address(0)); 2051 return tmp; 2052 } 2053 EXPORT_SYMBOL(skb_put); 2054 2055 /** 2056 * skb_push - add data to the start of a buffer 2057 * @skb: buffer to use 2058 * @len: amount of data to add 2059 * 2060 * This function extends the used data area of the buffer at the buffer 2061 * start. If this would exceed the total buffer headroom the kernel will 2062 * panic. A pointer to the first byte of the extra data is returned. 2063 */ 2064 void *skb_push(struct sk_buff *skb, unsigned int len) 2065 { 2066 skb->data -= len; 2067 skb->len += len; 2068 if (unlikely(skb->data < skb->head)) 2069 skb_under_panic(skb, len, __builtin_return_address(0)); 2070 return skb->data; 2071 } 2072 EXPORT_SYMBOL(skb_push); 2073 2074 /** 2075 * skb_pull - remove data from the start of a buffer 2076 * @skb: buffer to use 2077 * @len: amount of data to remove 2078 * 2079 * This function removes data from the start of a buffer, returning 2080 * the memory to the headroom. A pointer to the next data in the buffer 2081 * is returned. Once the data has been pulled future pushes will overwrite 2082 * the old data. 2083 */ 2084 void *skb_pull(struct sk_buff *skb, unsigned int len) 2085 { 2086 return skb_pull_inline(skb, len); 2087 } 2088 EXPORT_SYMBOL(skb_pull); 2089 2090 /** 2091 * skb_pull_data - remove data from the start of a buffer returning its 2092 * original position. 2093 * @skb: buffer to use 2094 * @len: amount of data to remove 2095 * 2096 * This function removes data from the start of a buffer, returning 2097 * the memory to the headroom. A pointer to the original data in the buffer 2098 * is returned after checking if there is enough data to pull. Once the 2099 * data has been pulled future pushes will overwrite the old data. 2100 */ 2101 void *skb_pull_data(struct sk_buff *skb, size_t len) 2102 { 2103 void *data = skb->data; 2104 2105 if (skb->len < len) 2106 return NULL; 2107 2108 skb_pull(skb, len); 2109 2110 return data; 2111 } 2112 EXPORT_SYMBOL(skb_pull_data); 2113 2114 /** 2115 * skb_trim - remove end from a buffer 2116 * @skb: buffer to alter 2117 * @len: new length 2118 * 2119 * Cut the length of a buffer down by removing data from the tail. If 2120 * the buffer is already under the length specified it is not modified. 2121 * The skb must be linear. 2122 */ 2123 void skb_trim(struct sk_buff *skb, unsigned int len) 2124 { 2125 if (skb->len > len) 2126 __skb_trim(skb, len); 2127 } 2128 EXPORT_SYMBOL(skb_trim); 2129 2130 /* Trims skb to length len. It can change skb pointers. 2131 */ 2132 2133 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2134 { 2135 struct sk_buff **fragp; 2136 struct sk_buff *frag; 2137 int offset = skb_headlen(skb); 2138 int nfrags = skb_shinfo(skb)->nr_frags; 2139 int i; 2140 int err; 2141 2142 if (skb_cloned(skb) && 2143 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2144 return err; 2145 2146 i = 0; 2147 if (offset >= len) 2148 goto drop_pages; 2149 2150 for (; i < nfrags; i++) { 2151 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2152 2153 if (end < len) { 2154 offset = end; 2155 continue; 2156 } 2157 2158 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2159 2160 drop_pages: 2161 skb_shinfo(skb)->nr_frags = i; 2162 2163 for (; i < nfrags; i++) 2164 skb_frag_unref(skb, i); 2165 2166 if (skb_has_frag_list(skb)) 2167 skb_drop_fraglist(skb); 2168 goto done; 2169 } 2170 2171 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2172 fragp = &frag->next) { 2173 int end = offset + frag->len; 2174 2175 if (skb_shared(frag)) { 2176 struct sk_buff *nfrag; 2177 2178 nfrag = skb_clone(frag, GFP_ATOMIC); 2179 if (unlikely(!nfrag)) 2180 return -ENOMEM; 2181 2182 nfrag->next = frag->next; 2183 consume_skb(frag); 2184 frag = nfrag; 2185 *fragp = frag; 2186 } 2187 2188 if (end < len) { 2189 offset = end; 2190 continue; 2191 } 2192 2193 if (end > len && 2194 unlikely((err = pskb_trim(frag, len - offset)))) 2195 return err; 2196 2197 if (frag->next) 2198 skb_drop_list(&frag->next); 2199 break; 2200 } 2201 2202 done: 2203 if (len > skb_headlen(skb)) { 2204 skb->data_len -= skb->len - len; 2205 skb->len = len; 2206 } else { 2207 skb->len = len; 2208 skb->data_len = 0; 2209 skb_set_tail_pointer(skb, len); 2210 } 2211 2212 if (!skb->sk || skb->destructor == sock_edemux) 2213 skb_condense(skb); 2214 return 0; 2215 } 2216 EXPORT_SYMBOL(___pskb_trim); 2217 2218 /* Note : use pskb_trim_rcsum() instead of calling this directly 2219 */ 2220 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2221 { 2222 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2223 int delta = skb->len - len; 2224 2225 skb->csum = csum_block_sub(skb->csum, 2226 skb_checksum(skb, len, delta, 0), 2227 len); 2228 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2229 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2230 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2231 2232 if (offset + sizeof(__sum16) > hdlen) 2233 return -EINVAL; 2234 } 2235 return __pskb_trim(skb, len); 2236 } 2237 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2238 2239 /** 2240 * __pskb_pull_tail - advance tail of skb header 2241 * @skb: buffer to reallocate 2242 * @delta: number of bytes to advance tail 2243 * 2244 * The function makes a sense only on a fragmented &sk_buff, 2245 * it expands header moving its tail forward and copying necessary 2246 * data from fragmented part. 2247 * 2248 * &sk_buff MUST have reference count of 1. 2249 * 2250 * Returns %NULL (and &sk_buff does not change) if pull failed 2251 * or value of new tail of skb in the case of success. 2252 * 2253 * All the pointers pointing into skb header may change and must be 2254 * reloaded after call to this function. 2255 */ 2256 2257 /* Moves tail of skb head forward, copying data from fragmented part, 2258 * when it is necessary. 2259 * 1. It may fail due to malloc failure. 2260 * 2. It may change skb pointers. 2261 * 2262 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2263 */ 2264 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2265 { 2266 /* If skb has not enough free space at tail, get new one 2267 * plus 128 bytes for future expansions. If we have enough 2268 * room at tail, reallocate without expansion only if skb is cloned. 2269 */ 2270 int i, k, eat = (skb->tail + delta) - skb->end; 2271 2272 if (eat > 0 || skb_cloned(skb)) { 2273 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2274 GFP_ATOMIC)) 2275 return NULL; 2276 } 2277 2278 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2279 skb_tail_pointer(skb), delta)); 2280 2281 /* Optimization: no fragments, no reasons to preestimate 2282 * size of pulled pages. Superb. 2283 */ 2284 if (!skb_has_frag_list(skb)) 2285 goto pull_pages; 2286 2287 /* Estimate size of pulled pages. */ 2288 eat = delta; 2289 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2290 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2291 2292 if (size >= eat) 2293 goto pull_pages; 2294 eat -= size; 2295 } 2296 2297 /* If we need update frag list, we are in troubles. 2298 * Certainly, it is possible to add an offset to skb data, 2299 * but taking into account that pulling is expected to 2300 * be very rare operation, it is worth to fight against 2301 * further bloating skb head and crucify ourselves here instead. 2302 * Pure masohism, indeed. 8)8) 2303 */ 2304 if (eat) { 2305 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2306 struct sk_buff *clone = NULL; 2307 struct sk_buff *insp = NULL; 2308 2309 do { 2310 if (list->len <= eat) { 2311 /* Eaten as whole. */ 2312 eat -= list->len; 2313 list = list->next; 2314 insp = list; 2315 } else { 2316 /* Eaten partially. */ 2317 2318 if (skb_shared(list)) { 2319 /* Sucks! We need to fork list. :-( */ 2320 clone = skb_clone(list, GFP_ATOMIC); 2321 if (!clone) 2322 return NULL; 2323 insp = list->next; 2324 list = clone; 2325 } else { 2326 /* This may be pulled without 2327 * problems. */ 2328 insp = list; 2329 } 2330 if (!pskb_pull(list, eat)) { 2331 kfree_skb(clone); 2332 return NULL; 2333 } 2334 break; 2335 } 2336 } while (eat); 2337 2338 /* Free pulled out fragments. */ 2339 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2340 skb_shinfo(skb)->frag_list = list->next; 2341 consume_skb(list); 2342 } 2343 /* And insert new clone at head. */ 2344 if (clone) { 2345 clone->next = list; 2346 skb_shinfo(skb)->frag_list = clone; 2347 } 2348 } 2349 /* Success! Now we may commit changes to skb data. */ 2350 2351 pull_pages: 2352 eat = delta; 2353 k = 0; 2354 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2355 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2356 2357 if (size <= eat) { 2358 skb_frag_unref(skb, i); 2359 eat -= size; 2360 } else { 2361 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2362 2363 *frag = skb_shinfo(skb)->frags[i]; 2364 if (eat) { 2365 skb_frag_off_add(frag, eat); 2366 skb_frag_size_sub(frag, eat); 2367 if (!i) 2368 goto end; 2369 eat = 0; 2370 } 2371 k++; 2372 } 2373 } 2374 skb_shinfo(skb)->nr_frags = k; 2375 2376 end: 2377 skb->tail += delta; 2378 skb->data_len -= delta; 2379 2380 if (!skb->data_len) 2381 skb_zcopy_clear(skb, false); 2382 2383 return skb_tail_pointer(skb); 2384 } 2385 EXPORT_SYMBOL(__pskb_pull_tail); 2386 2387 /** 2388 * skb_copy_bits - copy bits from skb to kernel buffer 2389 * @skb: source skb 2390 * @offset: offset in source 2391 * @to: destination buffer 2392 * @len: number of bytes to copy 2393 * 2394 * Copy the specified number of bytes from the source skb to the 2395 * destination buffer. 2396 * 2397 * CAUTION ! : 2398 * If its prototype is ever changed, 2399 * check arch/{*}/net/{*}.S files, 2400 * since it is called from BPF assembly code. 2401 */ 2402 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2403 { 2404 int start = skb_headlen(skb); 2405 struct sk_buff *frag_iter; 2406 int i, copy; 2407 2408 if (offset > (int)skb->len - len) 2409 goto fault; 2410 2411 /* Copy header. */ 2412 if ((copy = start - offset) > 0) { 2413 if (copy > len) 2414 copy = len; 2415 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2416 if ((len -= copy) == 0) 2417 return 0; 2418 offset += copy; 2419 to += copy; 2420 } 2421 2422 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2423 int end; 2424 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2425 2426 WARN_ON(start > offset + len); 2427 2428 end = start + skb_frag_size(f); 2429 if ((copy = end - offset) > 0) { 2430 u32 p_off, p_len, copied; 2431 struct page *p; 2432 u8 *vaddr; 2433 2434 if (copy > len) 2435 copy = len; 2436 2437 skb_frag_foreach_page(f, 2438 skb_frag_off(f) + offset - start, 2439 copy, p, p_off, p_len, copied) { 2440 vaddr = kmap_atomic(p); 2441 memcpy(to + copied, vaddr + p_off, p_len); 2442 kunmap_atomic(vaddr); 2443 } 2444 2445 if ((len -= copy) == 0) 2446 return 0; 2447 offset += copy; 2448 to += copy; 2449 } 2450 start = end; 2451 } 2452 2453 skb_walk_frags(skb, frag_iter) { 2454 int end; 2455 2456 WARN_ON(start > offset + len); 2457 2458 end = start + frag_iter->len; 2459 if ((copy = end - offset) > 0) { 2460 if (copy > len) 2461 copy = len; 2462 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2463 goto fault; 2464 if ((len -= copy) == 0) 2465 return 0; 2466 offset += copy; 2467 to += copy; 2468 } 2469 start = end; 2470 } 2471 2472 if (!len) 2473 return 0; 2474 2475 fault: 2476 return -EFAULT; 2477 } 2478 EXPORT_SYMBOL(skb_copy_bits); 2479 2480 /* 2481 * Callback from splice_to_pipe(), if we need to release some pages 2482 * at the end of the spd in case we error'ed out in filling the pipe. 2483 */ 2484 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2485 { 2486 put_page(spd->pages[i]); 2487 } 2488 2489 static struct page *linear_to_page(struct page *page, unsigned int *len, 2490 unsigned int *offset, 2491 struct sock *sk) 2492 { 2493 struct page_frag *pfrag = sk_page_frag(sk); 2494 2495 if (!sk_page_frag_refill(sk, pfrag)) 2496 return NULL; 2497 2498 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2499 2500 memcpy(page_address(pfrag->page) + pfrag->offset, 2501 page_address(page) + *offset, *len); 2502 *offset = pfrag->offset; 2503 pfrag->offset += *len; 2504 2505 return pfrag->page; 2506 } 2507 2508 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2509 struct page *page, 2510 unsigned int offset) 2511 { 2512 return spd->nr_pages && 2513 spd->pages[spd->nr_pages - 1] == page && 2514 (spd->partial[spd->nr_pages - 1].offset + 2515 spd->partial[spd->nr_pages - 1].len == offset); 2516 } 2517 2518 /* 2519 * Fill page/offset/length into spd, if it can hold more pages. 2520 */ 2521 static bool spd_fill_page(struct splice_pipe_desc *spd, 2522 struct pipe_inode_info *pipe, struct page *page, 2523 unsigned int *len, unsigned int offset, 2524 bool linear, 2525 struct sock *sk) 2526 { 2527 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2528 return true; 2529 2530 if (linear) { 2531 page = linear_to_page(page, len, &offset, sk); 2532 if (!page) 2533 return true; 2534 } 2535 if (spd_can_coalesce(spd, page, offset)) { 2536 spd->partial[spd->nr_pages - 1].len += *len; 2537 return false; 2538 } 2539 get_page(page); 2540 spd->pages[spd->nr_pages] = page; 2541 spd->partial[spd->nr_pages].len = *len; 2542 spd->partial[spd->nr_pages].offset = offset; 2543 spd->nr_pages++; 2544 2545 return false; 2546 } 2547 2548 static bool __splice_segment(struct page *page, unsigned int poff, 2549 unsigned int plen, unsigned int *off, 2550 unsigned int *len, 2551 struct splice_pipe_desc *spd, bool linear, 2552 struct sock *sk, 2553 struct pipe_inode_info *pipe) 2554 { 2555 if (!*len) 2556 return true; 2557 2558 /* skip this segment if already processed */ 2559 if (*off >= plen) { 2560 *off -= plen; 2561 return false; 2562 } 2563 2564 /* ignore any bits we already processed */ 2565 poff += *off; 2566 plen -= *off; 2567 *off = 0; 2568 2569 do { 2570 unsigned int flen = min(*len, plen); 2571 2572 if (spd_fill_page(spd, pipe, page, &flen, poff, 2573 linear, sk)) 2574 return true; 2575 poff += flen; 2576 plen -= flen; 2577 *len -= flen; 2578 } while (*len && plen); 2579 2580 return false; 2581 } 2582 2583 /* 2584 * Map linear and fragment data from the skb to spd. It reports true if the 2585 * pipe is full or if we already spliced the requested length. 2586 */ 2587 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2588 unsigned int *offset, unsigned int *len, 2589 struct splice_pipe_desc *spd, struct sock *sk) 2590 { 2591 int seg; 2592 struct sk_buff *iter; 2593 2594 /* map the linear part : 2595 * If skb->head_frag is set, this 'linear' part is backed by a 2596 * fragment, and if the head is not shared with any clones then 2597 * we can avoid a copy since we own the head portion of this page. 2598 */ 2599 if (__splice_segment(virt_to_page(skb->data), 2600 (unsigned long) skb->data & (PAGE_SIZE - 1), 2601 skb_headlen(skb), 2602 offset, len, spd, 2603 skb_head_is_locked(skb), 2604 sk, pipe)) 2605 return true; 2606 2607 /* 2608 * then map the fragments 2609 */ 2610 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2611 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2612 2613 if (__splice_segment(skb_frag_page(f), 2614 skb_frag_off(f), skb_frag_size(f), 2615 offset, len, spd, false, sk, pipe)) 2616 return true; 2617 } 2618 2619 skb_walk_frags(skb, iter) { 2620 if (*offset >= iter->len) { 2621 *offset -= iter->len; 2622 continue; 2623 } 2624 /* __skb_splice_bits() only fails if the output has no room 2625 * left, so no point in going over the frag_list for the error 2626 * case. 2627 */ 2628 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2629 return true; 2630 } 2631 2632 return false; 2633 } 2634 2635 /* 2636 * Map data from the skb to a pipe. Should handle both the linear part, 2637 * the fragments, and the frag list. 2638 */ 2639 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2640 struct pipe_inode_info *pipe, unsigned int tlen, 2641 unsigned int flags) 2642 { 2643 struct partial_page partial[MAX_SKB_FRAGS]; 2644 struct page *pages[MAX_SKB_FRAGS]; 2645 struct splice_pipe_desc spd = { 2646 .pages = pages, 2647 .partial = partial, 2648 .nr_pages_max = MAX_SKB_FRAGS, 2649 .ops = &nosteal_pipe_buf_ops, 2650 .spd_release = sock_spd_release, 2651 }; 2652 int ret = 0; 2653 2654 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2655 2656 if (spd.nr_pages) 2657 ret = splice_to_pipe(pipe, &spd); 2658 2659 return ret; 2660 } 2661 EXPORT_SYMBOL_GPL(skb_splice_bits); 2662 2663 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg, 2664 struct kvec *vec, size_t num, size_t size) 2665 { 2666 struct socket *sock = sk->sk_socket; 2667 2668 if (!sock) 2669 return -EINVAL; 2670 return kernel_sendmsg(sock, msg, vec, num, size); 2671 } 2672 2673 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset, 2674 size_t size, int flags) 2675 { 2676 struct socket *sock = sk->sk_socket; 2677 2678 if (!sock) 2679 return -EINVAL; 2680 return kernel_sendpage(sock, page, offset, size, flags); 2681 } 2682 2683 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg, 2684 struct kvec *vec, size_t num, size_t size); 2685 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset, 2686 size_t size, int flags); 2687 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 2688 int len, sendmsg_func sendmsg, sendpage_func sendpage) 2689 { 2690 unsigned int orig_len = len; 2691 struct sk_buff *head = skb; 2692 unsigned short fragidx; 2693 int slen, ret; 2694 2695 do_frag_list: 2696 2697 /* Deal with head data */ 2698 while (offset < skb_headlen(skb) && len) { 2699 struct kvec kv; 2700 struct msghdr msg; 2701 2702 slen = min_t(int, len, skb_headlen(skb) - offset); 2703 kv.iov_base = skb->data + offset; 2704 kv.iov_len = slen; 2705 memset(&msg, 0, sizeof(msg)); 2706 msg.msg_flags = MSG_DONTWAIT; 2707 2708 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked, 2709 sendmsg_unlocked, sk, &msg, &kv, 1, slen); 2710 if (ret <= 0) 2711 goto error; 2712 2713 offset += ret; 2714 len -= ret; 2715 } 2716 2717 /* All the data was skb head? */ 2718 if (!len) 2719 goto out; 2720 2721 /* Make offset relative to start of frags */ 2722 offset -= skb_headlen(skb); 2723 2724 /* Find where we are in frag list */ 2725 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2726 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2727 2728 if (offset < skb_frag_size(frag)) 2729 break; 2730 2731 offset -= skb_frag_size(frag); 2732 } 2733 2734 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2735 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2736 2737 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2738 2739 while (slen) { 2740 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked, 2741 sendpage_unlocked, sk, 2742 skb_frag_page(frag), 2743 skb_frag_off(frag) + offset, 2744 slen, MSG_DONTWAIT); 2745 if (ret <= 0) 2746 goto error; 2747 2748 len -= ret; 2749 offset += ret; 2750 slen -= ret; 2751 } 2752 2753 offset = 0; 2754 } 2755 2756 if (len) { 2757 /* Process any frag lists */ 2758 2759 if (skb == head) { 2760 if (skb_has_frag_list(skb)) { 2761 skb = skb_shinfo(skb)->frag_list; 2762 goto do_frag_list; 2763 } 2764 } else if (skb->next) { 2765 skb = skb->next; 2766 goto do_frag_list; 2767 } 2768 } 2769 2770 out: 2771 return orig_len - len; 2772 2773 error: 2774 return orig_len == len ? ret : orig_len - len; 2775 } 2776 2777 /* Send skb data on a socket. Socket must be locked. */ 2778 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2779 int len) 2780 { 2781 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked, 2782 kernel_sendpage_locked); 2783 } 2784 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2785 2786 /* Send skb data on a socket. Socket must be unlocked. */ 2787 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2788 { 2789 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 2790 sendpage_unlocked); 2791 } 2792 2793 /** 2794 * skb_store_bits - store bits from kernel buffer to skb 2795 * @skb: destination buffer 2796 * @offset: offset in destination 2797 * @from: source buffer 2798 * @len: number of bytes to copy 2799 * 2800 * Copy the specified number of bytes from the source buffer to the 2801 * destination skb. This function handles all the messy bits of 2802 * traversing fragment lists and such. 2803 */ 2804 2805 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2806 { 2807 int start = skb_headlen(skb); 2808 struct sk_buff *frag_iter; 2809 int i, copy; 2810 2811 if (offset > (int)skb->len - len) 2812 goto fault; 2813 2814 if ((copy = start - offset) > 0) { 2815 if (copy > len) 2816 copy = len; 2817 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2818 if ((len -= copy) == 0) 2819 return 0; 2820 offset += copy; 2821 from += copy; 2822 } 2823 2824 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2825 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2826 int end; 2827 2828 WARN_ON(start > offset + len); 2829 2830 end = start + skb_frag_size(frag); 2831 if ((copy = end - offset) > 0) { 2832 u32 p_off, p_len, copied; 2833 struct page *p; 2834 u8 *vaddr; 2835 2836 if (copy > len) 2837 copy = len; 2838 2839 skb_frag_foreach_page(frag, 2840 skb_frag_off(frag) + offset - start, 2841 copy, p, p_off, p_len, copied) { 2842 vaddr = kmap_atomic(p); 2843 memcpy(vaddr + p_off, from + copied, p_len); 2844 kunmap_atomic(vaddr); 2845 } 2846 2847 if ((len -= copy) == 0) 2848 return 0; 2849 offset += copy; 2850 from += copy; 2851 } 2852 start = end; 2853 } 2854 2855 skb_walk_frags(skb, frag_iter) { 2856 int end; 2857 2858 WARN_ON(start > offset + len); 2859 2860 end = start + frag_iter->len; 2861 if ((copy = end - offset) > 0) { 2862 if (copy > len) 2863 copy = len; 2864 if (skb_store_bits(frag_iter, offset - start, 2865 from, copy)) 2866 goto fault; 2867 if ((len -= copy) == 0) 2868 return 0; 2869 offset += copy; 2870 from += copy; 2871 } 2872 start = end; 2873 } 2874 if (!len) 2875 return 0; 2876 2877 fault: 2878 return -EFAULT; 2879 } 2880 EXPORT_SYMBOL(skb_store_bits); 2881 2882 /* Checksum skb data. */ 2883 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2884 __wsum csum, const struct skb_checksum_ops *ops) 2885 { 2886 int start = skb_headlen(skb); 2887 int i, copy = start - offset; 2888 struct sk_buff *frag_iter; 2889 int pos = 0; 2890 2891 /* Checksum header. */ 2892 if (copy > 0) { 2893 if (copy > len) 2894 copy = len; 2895 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2896 skb->data + offset, copy, csum); 2897 if ((len -= copy) == 0) 2898 return csum; 2899 offset += copy; 2900 pos = copy; 2901 } 2902 2903 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2904 int end; 2905 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2906 2907 WARN_ON(start > offset + len); 2908 2909 end = start + skb_frag_size(frag); 2910 if ((copy = end - offset) > 0) { 2911 u32 p_off, p_len, copied; 2912 struct page *p; 2913 __wsum csum2; 2914 u8 *vaddr; 2915 2916 if (copy > len) 2917 copy = len; 2918 2919 skb_frag_foreach_page(frag, 2920 skb_frag_off(frag) + offset - start, 2921 copy, p, p_off, p_len, copied) { 2922 vaddr = kmap_atomic(p); 2923 csum2 = INDIRECT_CALL_1(ops->update, 2924 csum_partial_ext, 2925 vaddr + p_off, p_len, 0); 2926 kunmap_atomic(vaddr); 2927 csum = INDIRECT_CALL_1(ops->combine, 2928 csum_block_add_ext, csum, 2929 csum2, pos, p_len); 2930 pos += p_len; 2931 } 2932 2933 if (!(len -= copy)) 2934 return csum; 2935 offset += copy; 2936 } 2937 start = end; 2938 } 2939 2940 skb_walk_frags(skb, frag_iter) { 2941 int end; 2942 2943 WARN_ON(start > offset + len); 2944 2945 end = start + frag_iter->len; 2946 if ((copy = end - offset) > 0) { 2947 __wsum csum2; 2948 if (copy > len) 2949 copy = len; 2950 csum2 = __skb_checksum(frag_iter, offset - start, 2951 copy, 0, ops); 2952 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2953 csum, csum2, pos, copy); 2954 if ((len -= copy) == 0) 2955 return csum; 2956 offset += copy; 2957 pos += copy; 2958 } 2959 start = end; 2960 } 2961 BUG_ON(len); 2962 2963 return csum; 2964 } 2965 EXPORT_SYMBOL(__skb_checksum); 2966 2967 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2968 int len, __wsum csum) 2969 { 2970 const struct skb_checksum_ops ops = { 2971 .update = csum_partial_ext, 2972 .combine = csum_block_add_ext, 2973 }; 2974 2975 return __skb_checksum(skb, offset, len, csum, &ops); 2976 } 2977 EXPORT_SYMBOL(skb_checksum); 2978 2979 /* Both of above in one bottle. */ 2980 2981 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2982 u8 *to, int len) 2983 { 2984 int start = skb_headlen(skb); 2985 int i, copy = start - offset; 2986 struct sk_buff *frag_iter; 2987 int pos = 0; 2988 __wsum csum = 0; 2989 2990 /* Copy header. */ 2991 if (copy > 0) { 2992 if (copy > len) 2993 copy = len; 2994 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2995 copy); 2996 if ((len -= copy) == 0) 2997 return csum; 2998 offset += copy; 2999 to += copy; 3000 pos = copy; 3001 } 3002 3003 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3004 int end; 3005 3006 WARN_ON(start > offset + len); 3007 3008 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3009 if ((copy = end - offset) > 0) { 3010 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3011 u32 p_off, p_len, copied; 3012 struct page *p; 3013 __wsum csum2; 3014 u8 *vaddr; 3015 3016 if (copy > len) 3017 copy = len; 3018 3019 skb_frag_foreach_page(frag, 3020 skb_frag_off(frag) + offset - start, 3021 copy, p, p_off, p_len, copied) { 3022 vaddr = kmap_atomic(p); 3023 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3024 to + copied, 3025 p_len); 3026 kunmap_atomic(vaddr); 3027 csum = csum_block_add(csum, csum2, pos); 3028 pos += p_len; 3029 } 3030 3031 if (!(len -= copy)) 3032 return csum; 3033 offset += copy; 3034 to += copy; 3035 } 3036 start = end; 3037 } 3038 3039 skb_walk_frags(skb, frag_iter) { 3040 __wsum csum2; 3041 int end; 3042 3043 WARN_ON(start > offset + len); 3044 3045 end = start + frag_iter->len; 3046 if ((copy = end - offset) > 0) { 3047 if (copy > len) 3048 copy = len; 3049 csum2 = skb_copy_and_csum_bits(frag_iter, 3050 offset - start, 3051 to, copy); 3052 csum = csum_block_add(csum, csum2, pos); 3053 if ((len -= copy) == 0) 3054 return csum; 3055 offset += copy; 3056 to += copy; 3057 pos += copy; 3058 } 3059 start = end; 3060 } 3061 BUG_ON(len); 3062 return csum; 3063 } 3064 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3065 3066 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3067 { 3068 __sum16 sum; 3069 3070 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3071 /* See comments in __skb_checksum_complete(). */ 3072 if (likely(!sum)) { 3073 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3074 !skb->csum_complete_sw) 3075 netdev_rx_csum_fault(skb->dev, skb); 3076 } 3077 if (!skb_shared(skb)) 3078 skb->csum_valid = !sum; 3079 return sum; 3080 } 3081 EXPORT_SYMBOL(__skb_checksum_complete_head); 3082 3083 /* This function assumes skb->csum already holds pseudo header's checksum, 3084 * which has been changed from the hardware checksum, for example, by 3085 * __skb_checksum_validate_complete(). And, the original skb->csum must 3086 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3087 * 3088 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3089 * zero. The new checksum is stored back into skb->csum unless the skb is 3090 * shared. 3091 */ 3092 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3093 { 3094 __wsum csum; 3095 __sum16 sum; 3096 3097 csum = skb_checksum(skb, 0, skb->len, 0); 3098 3099 sum = csum_fold(csum_add(skb->csum, csum)); 3100 /* This check is inverted, because we already knew the hardware 3101 * checksum is invalid before calling this function. So, if the 3102 * re-computed checksum is valid instead, then we have a mismatch 3103 * between the original skb->csum and skb_checksum(). This means either 3104 * the original hardware checksum is incorrect or we screw up skb->csum 3105 * when moving skb->data around. 3106 */ 3107 if (likely(!sum)) { 3108 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3109 !skb->csum_complete_sw) 3110 netdev_rx_csum_fault(skb->dev, skb); 3111 } 3112 3113 if (!skb_shared(skb)) { 3114 /* Save full packet checksum */ 3115 skb->csum = csum; 3116 skb->ip_summed = CHECKSUM_COMPLETE; 3117 skb->csum_complete_sw = 1; 3118 skb->csum_valid = !sum; 3119 } 3120 3121 return sum; 3122 } 3123 EXPORT_SYMBOL(__skb_checksum_complete); 3124 3125 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3126 { 3127 net_warn_ratelimited( 3128 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3129 __func__); 3130 return 0; 3131 } 3132 3133 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3134 int offset, int len) 3135 { 3136 net_warn_ratelimited( 3137 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3138 __func__); 3139 return 0; 3140 } 3141 3142 static const struct skb_checksum_ops default_crc32c_ops = { 3143 .update = warn_crc32c_csum_update, 3144 .combine = warn_crc32c_csum_combine, 3145 }; 3146 3147 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3148 &default_crc32c_ops; 3149 EXPORT_SYMBOL(crc32c_csum_stub); 3150 3151 /** 3152 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3153 * @from: source buffer 3154 * 3155 * Calculates the amount of linear headroom needed in the 'to' skb passed 3156 * into skb_zerocopy(). 3157 */ 3158 unsigned int 3159 skb_zerocopy_headlen(const struct sk_buff *from) 3160 { 3161 unsigned int hlen = 0; 3162 3163 if (!from->head_frag || 3164 skb_headlen(from) < L1_CACHE_BYTES || 3165 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3166 hlen = skb_headlen(from); 3167 if (!hlen) 3168 hlen = from->len; 3169 } 3170 3171 if (skb_has_frag_list(from)) 3172 hlen = from->len; 3173 3174 return hlen; 3175 } 3176 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3177 3178 /** 3179 * skb_zerocopy - Zero copy skb to skb 3180 * @to: destination buffer 3181 * @from: source buffer 3182 * @len: number of bytes to copy from source buffer 3183 * @hlen: size of linear headroom in destination buffer 3184 * 3185 * Copies up to `len` bytes from `from` to `to` by creating references 3186 * to the frags in the source buffer. 3187 * 3188 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3189 * headroom in the `to` buffer. 3190 * 3191 * Return value: 3192 * 0: everything is OK 3193 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3194 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3195 */ 3196 int 3197 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3198 { 3199 int i, j = 0; 3200 int plen = 0; /* length of skb->head fragment */ 3201 int ret; 3202 struct page *page; 3203 unsigned int offset; 3204 3205 BUG_ON(!from->head_frag && !hlen); 3206 3207 /* dont bother with small payloads */ 3208 if (len <= skb_tailroom(to)) 3209 return skb_copy_bits(from, 0, skb_put(to, len), len); 3210 3211 if (hlen) { 3212 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3213 if (unlikely(ret)) 3214 return ret; 3215 len -= hlen; 3216 } else { 3217 plen = min_t(int, skb_headlen(from), len); 3218 if (plen) { 3219 page = virt_to_head_page(from->head); 3220 offset = from->data - (unsigned char *)page_address(page); 3221 __skb_fill_page_desc(to, 0, page, offset, plen); 3222 get_page(page); 3223 j = 1; 3224 len -= plen; 3225 } 3226 } 3227 3228 skb_len_add(to, len + plen); 3229 3230 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3231 skb_tx_error(from); 3232 return -ENOMEM; 3233 } 3234 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3235 3236 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3237 int size; 3238 3239 if (!len) 3240 break; 3241 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3242 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3243 len); 3244 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3245 len -= size; 3246 skb_frag_ref(to, j); 3247 j++; 3248 } 3249 skb_shinfo(to)->nr_frags = j; 3250 3251 return 0; 3252 } 3253 EXPORT_SYMBOL_GPL(skb_zerocopy); 3254 3255 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3256 { 3257 __wsum csum; 3258 long csstart; 3259 3260 if (skb->ip_summed == CHECKSUM_PARTIAL) 3261 csstart = skb_checksum_start_offset(skb); 3262 else 3263 csstart = skb_headlen(skb); 3264 3265 BUG_ON(csstart > skb_headlen(skb)); 3266 3267 skb_copy_from_linear_data(skb, to, csstart); 3268 3269 csum = 0; 3270 if (csstart != skb->len) 3271 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3272 skb->len - csstart); 3273 3274 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3275 long csstuff = csstart + skb->csum_offset; 3276 3277 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3278 } 3279 } 3280 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3281 3282 /** 3283 * skb_dequeue - remove from the head of the queue 3284 * @list: list to dequeue from 3285 * 3286 * Remove the head of the list. The list lock is taken so the function 3287 * may be used safely with other locking list functions. The head item is 3288 * returned or %NULL if the list is empty. 3289 */ 3290 3291 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3292 { 3293 unsigned long flags; 3294 struct sk_buff *result; 3295 3296 spin_lock_irqsave(&list->lock, flags); 3297 result = __skb_dequeue(list); 3298 spin_unlock_irqrestore(&list->lock, flags); 3299 return result; 3300 } 3301 EXPORT_SYMBOL(skb_dequeue); 3302 3303 /** 3304 * skb_dequeue_tail - remove from the tail of the queue 3305 * @list: list to dequeue from 3306 * 3307 * Remove the tail of the list. The list lock is taken so the function 3308 * may be used safely with other locking list functions. The tail item is 3309 * returned or %NULL if the list is empty. 3310 */ 3311 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3312 { 3313 unsigned long flags; 3314 struct sk_buff *result; 3315 3316 spin_lock_irqsave(&list->lock, flags); 3317 result = __skb_dequeue_tail(list); 3318 spin_unlock_irqrestore(&list->lock, flags); 3319 return result; 3320 } 3321 EXPORT_SYMBOL(skb_dequeue_tail); 3322 3323 /** 3324 * skb_queue_purge - empty a list 3325 * @list: list to empty 3326 * 3327 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3328 * the list and one reference dropped. This function takes the list 3329 * lock and is atomic with respect to other list locking functions. 3330 */ 3331 void skb_queue_purge(struct sk_buff_head *list) 3332 { 3333 struct sk_buff *skb; 3334 while ((skb = skb_dequeue(list)) != NULL) 3335 kfree_skb(skb); 3336 } 3337 EXPORT_SYMBOL(skb_queue_purge); 3338 3339 /** 3340 * skb_rbtree_purge - empty a skb rbtree 3341 * @root: root of the rbtree to empty 3342 * Return value: the sum of truesizes of all purged skbs. 3343 * 3344 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3345 * the list and one reference dropped. This function does not take 3346 * any lock. Synchronization should be handled by the caller (e.g., TCP 3347 * out-of-order queue is protected by the socket lock). 3348 */ 3349 unsigned int skb_rbtree_purge(struct rb_root *root) 3350 { 3351 struct rb_node *p = rb_first(root); 3352 unsigned int sum = 0; 3353 3354 while (p) { 3355 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3356 3357 p = rb_next(p); 3358 rb_erase(&skb->rbnode, root); 3359 sum += skb->truesize; 3360 kfree_skb(skb); 3361 } 3362 return sum; 3363 } 3364 3365 /** 3366 * skb_queue_head - queue a buffer at the list head 3367 * @list: list to use 3368 * @newsk: buffer to queue 3369 * 3370 * Queue a buffer at the start of the list. This function takes the 3371 * list lock and can be used safely with other locking &sk_buff functions 3372 * safely. 3373 * 3374 * A buffer cannot be placed on two lists at the same time. 3375 */ 3376 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3377 { 3378 unsigned long flags; 3379 3380 spin_lock_irqsave(&list->lock, flags); 3381 __skb_queue_head(list, newsk); 3382 spin_unlock_irqrestore(&list->lock, flags); 3383 } 3384 EXPORT_SYMBOL(skb_queue_head); 3385 3386 /** 3387 * skb_queue_tail - queue a buffer at the list tail 3388 * @list: list to use 3389 * @newsk: buffer to queue 3390 * 3391 * Queue a buffer at the tail of the list. This function takes the 3392 * list lock and can be used safely with other locking &sk_buff functions 3393 * safely. 3394 * 3395 * A buffer cannot be placed on two lists at the same time. 3396 */ 3397 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3398 { 3399 unsigned long flags; 3400 3401 spin_lock_irqsave(&list->lock, flags); 3402 __skb_queue_tail(list, newsk); 3403 spin_unlock_irqrestore(&list->lock, flags); 3404 } 3405 EXPORT_SYMBOL(skb_queue_tail); 3406 3407 /** 3408 * skb_unlink - remove a buffer from a list 3409 * @skb: buffer to remove 3410 * @list: list to use 3411 * 3412 * Remove a packet from a list. The list locks are taken and this 3413 * function is atomic with respect to other list locked calls 3414 * 3415 * You must know what list the SKB is on. 3416 */ 3417 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3418 { 3419 unsigned long flags; 3420 3421 spin_lock_irqsave(&list->lock, flags); 3422 __skb_unlink(skb, list); 3423 spin_unlock_irqrestore(&list->lock, flags); 3424 } 3425 EXPORT_SYMBOL(skb_unlink); 3426 3427 /** 3428 * skb_append - append a buffer 3429 * @old: buffer to insert after 3430 * @newsk: buffer to insert 3431 * @list: list to use 3432 * 3433 * Place a packet after a given packet in a list. The list locks are taken 3434 * and this function is atomic with respect to other list locked calls. 3435 * A buffer cannot be placed on two lists at the same time. 3436 */ 3437 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3438 { 3439 unsigned long flags; 3440 3441 spin_lock_irqsave(&list->lock, flags); 3442 __skb_queue_after(list, old, newsk); 3443 spin_unlock_irqrestore(&list->lock, flags); 3444 } 3445 EXPORT_SYMBOL(skb_append); 3446 3447 static inline void skb_split_inside_header(struct sk_buff *skb, 3448 struct sk_buff* skb1, 3449 const u32 len, const int pos) 3450 { 3451 int i; 3452 3453 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3454 pos - len); 3455 /* And move data appendix as is. */ 3456 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3457 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3458 3459 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3460 skb_shinfo(skb)->nr_frags = 0; 3461 skb1->data_len = skb->data_len; 3462 skb1->len += skb1->data_len; 3463 skb->data_len = 0; 3464 skb->len = len; 3465 skb_set_tail_pointer(skb, len); 3466 } 3467 3468 static inline void skb_split_no_header(struct sk_buff *skb, 3469 struct sk_buff* skb1, 3470 const u32 len, int pos) 3471 { 3472 int i, k = 0; 3473 const int nfrags = skb_shinfo(skb)->nr_frags; 3474 3475 skb_shinfo(skb)->nr_frags = 0; 3476 skb1->len = skb1->data_len = skb->len - len; 3477 skb->len = len; 3478 skb->data_len = len - pos; 3479 3480 for (i = 0; i < nfrags; i++) { 3481 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3482 3483 if (pos + size > len) { 3484 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3485 3486 if (pos < len) { 3487 /* Split frag. 3488 * We have two variants in this case: 3489 * 1. Move all the frag to the second 3490 * part, if it is possible. F.e. 3491 * this approach is mandatory for TUX, 3492 * where splitting is expensive. 3493 * 2. Split is accurately. We make this. 3494 */ 3495 skb_frag_ref(skb, i); 3496 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3497 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3498 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3499 skb_shinfo(skb)->nr_frags++; 3500 } 3501 k++; 3502 } else 3503 skb_shinfo(skb)->nr_frags++; 3504 pos += size; 3505 } 3506 skb_shinfo(skb1)->nr_frags = k; 3507 } 3508 3509 /** 3510 * skb_split - Split fragmented skb to two parts at length len. 3511 * @skb: the buffer to split 3512 * @skb1: the buffer to receive the second part 3513 * @len: new length for skb 3514 */ 3515 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3516 { 3517 int pos = skb_headlen(skb); 3518 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 3519 3520 skb_zcopy_downgrade_managed(skb); 3521 3522 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 3523 skb_zerocopy_clone(skb1, skb, 0); 3524 if (len < pos) /* Split line is inside header. */ 3525 skb_split_inside_header(skb, skb1, len, pos); 3526 else /* Second chunk has no header, nothing to copy. */ 3527 skb_split_no_header(skb, skb1, len, pos); 3528 } 3529 EXPORT_SYMBOL(skb_split); 3530 3531 /* Shifting from/to a cloned skb is a no-go. 3532 * 3533 * Caller cannot keep skb_shinfo related pointers past calling here! 3534 */ 3535 static int skb_prepare_for_shift(struct sk_buff *skb) 3536 { 3537 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 3538 } 3539 3540 /** 3541 * skb_shift - Shifts paged data partially from skb to another 3542 * @tgt: buffer into which tail data gets added 3543 * @skb: buffer from which the paged data comes from 3544 * @shiftlen: shift up to this many bytes 3545 * 3546 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3547 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3548 * It's up to caller to free skb if everything was shifted. 3549 * 3550 * If @tgt runs out of frags, the whole operation is aborted. 3551 * 3552 * Skb cannot include anything else but paged data while tgt is allowed 3553 * to have non-paged data as well. 3554 * 3555 * TODO: full sized shift could be optimized but that would need 3556 * specialized skb free'er to handle frags without up-to-date nr_frags. 3557 */ 3558 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3559 { 3560 int from, to, merge, todo; 3561 skb_frag_t *fragfrom, *fragto; 3562 3563 BUG_ON(shiftlen > skb->len); 3564 3565 if (skb_headlen(skb)) 3566 return 0; 3567 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3568 return 0; 3569 3570 todo = shiftlen; 3571 from = 0; 3572 to = skb_shinfo(tgt)->nr_frags; 3573 fragfrom = &skb_shinfo(skb)->frags[from]; 3574 3575 /* Actual merge is delayed until the point when we know we can 3576 * commit all, so that we don't have to undo partial changes 3577 */ 3578 if (!to || 3579 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3580 skb_frag_off(fragfrom))) { 3581 merge = -1; 3582 } else { 3583 merge = to - 1; 3584 3585 todo -= skb_frag_size(fragfrom); 3586 if (todo < 0) { 3587 if (skb_prepare_for_shift(skb) || 3588 skb_prepare_for_shift(tgt)) 3589 return 0; 3590 3591 /* All previous frag pointers might be stale! */ 3592 fragfrom = &skb_shinfo(skb)->frags[from]; 3593 fragto = &skb_shinfo(tgt)->frags[merge]; 3594 3595 skb_frag_size_add(fragto, shiftlen); 3596 skb_frag_size_sub(fragfrom, shiftlen); 3597 skb_frag_off_add(fragfrom, shiftlen); 3598 3599 goto onlymerged; 3600 } 3601 3602 from++; 3603 } 3604 3605 /* Skip full, not-fitting skb to avoid expensive operations */ 3606 if ((shiftlen == skb->len) && 3607 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3608 return 0; 3609 3610 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3611 return 0; 3612 3613 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3614 if (to == MAX_SKB_FRAGS) 3615 return 0; 3616 3617 fragfrom = &skb_shinfo(skb)->frags[from]; 3618 fragto = &skb_shinfo(tgt)->frags[to]; 3619 3620 if (todo >= skb_frag_size(fragfrom)) { 3621 *fragto = *fragfrom; 3622 todo -= skb_frag_size(fragfrom); 3623 from++; 3624 to++; 3625 3626 } else { 3627 __skb_frag_ref(fragfrom); 3628 skb_frag_page_copy(fragto, fragfrom); 3629 skb_frag_off_copy(fragto, fragfrom); 3630 skb_frag_size_set(fragto, todo); 3631 3632 skb_frag_off_add(fragfrom, todo); 3633 skb_frag_size_sub(fragfrom, todo); 3634 todo = 0; 3635 3636 to++; 3637 break; 3638 } 3639 } 3640 3641 /* Ready to "commit" this state change to tgt */ 3642 skb_shinfo(tgt)->nr_frags = to; 3643 3644 if (merge >= 0) { 3645 fragfrom = &skb_shinfo(skb)->frags[0]; 3646 fragto = &skb_shinfo(tgt)->frags[merge]; 3647 3648 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3649 __skb_frag_unref(fragfrom, skb->pp_recycle); 3650 } 3651 3652 /* Reposition in the original skb */ 3653 to = 0; 3654 while (from < skb_shinfo(skb)->nr_frags) 3655 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3656 skb_shinfo(skb)->nr_frags = to; 3657 3658 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3659 3660 onlymerged: 3661 /* Most likely the tgt won't ever need its checksum anymore, skb on 3662 * the other hand might need it if it needs to be resent 3663 */ 3664 tgt->ip_summed = CHECKSUM_PARTIAL; 3665 skb->ip_summed = CHECKSUM_PARTIAL; 3666 3667 skb_len_add(skb, -shiftlen); 3668 skb_len_add(tgt, shiftlen); 3669 3670 return shiftlen; 3671 } 3672 3673 /** 3674 * skb_prepare_seq_read - Prepare a sequential read of skb data 3675 * @skb: the buffer to read 3676 * @from: lower offset of data to be read 3677 * @to: upper offset of data to be read 3678 * @st: state variable 3679 * 3680 * Initializes the specified state variable. Must be called before 3681 * invoking skb_seq_read() for the first time. 3682 */ 3683 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3684 unsigned int to, struct skb_seq_state *st) 3685 { 3686 st->lower_offset = from; 3687 st->upper_offset = to; 3688 st->root_skb = st->cur_skb = skb; 3689 st->frag_idx = st->stepped_offset = 0; 3690 st->frag_data = NULL; 3691 st->frag_off = 0; 3692 } 3693 EXPORT_SYMBOL(skb_prepare_seq_read); 3694 3695 /** 3696 * skb_seq_read - Sequentially read skb data 3697 * @consumed: number of bytes consumed by the caller so far 3698 * @data: destination pointer for data to be returned 3699 * @st: state variable 3700 * 3701 * Reads a block of skb data at @consumed relative to the 3702 * lower offset specified to skb_prepare_seq_read(). Assigns 3703 * the head of the data block to @data and returns the length 3704 * of the block or 0 if the end of the skb data or the upper 3705 * offset has been reached. 3706 * 3707 * The caller is not required to consume all of the data 3708 * returned, i.e. @consumed is typically set to the number 3709 * of bytes already consumed and the next call to 3710 * skb_seq_read() will return the remaining part of the block. 3711 * 3712 * Note 1: The size of each block of data returned can be arbitrary, 3713 * this limitation is the cost for zerocopy sequential 3714 * reads of potentially non linear data. 3715 * 3716 * Note 2: Fragment lists within fragments are not implemented 3717 * at the moment, state->root_skb could be replaced with 3718 * a stack for this purpose. 3719 */ 3720 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3721 struct skb_seq_state *st) 3722 { 3723 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3724 skb_frag_t *frag; 3725 3726 if (unlikely(abs_offset >= st->upper_offset)) { 3727 if (st->frag_data) { 3728 kunmap_atomic(st->frag_data); 3729 st->frag_data = NULL; 3730 } 3731 return 0; 3732 } 3733 3734 next_skb: 3735 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3736 3737 if (abs_offset < block_limit && !st->frag_data) { 3738 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3739 return block_limit - abs_offset; 3740 } 3741 3742 if (st->frag_idx == 0 && !st->frag_data) 3743 st->stepped_offset += skb_headlen(st->cur_skb); 3744 3745 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3746 unsigned int pg_idx, pg_off, pg_sz; 3747 3748 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3749 3750 pg_idx = 0; 3751 pg_off = skb_frag_off(frag); 3752 pg_sz = skb_frag_size(frag); 3753 3754 if (skb_frag_must_loop(skb_frag_page(frag))) { 3755 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3756 pg_off = offset_in_page(pg_off + st->frag_off); 3757 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3758 PAGE_SIZE - pg_off); 3759 } 3760 3761 block_limit = pg_sz + st->stepped_offset; 3762 if (abs_offset < block_limit) { 3763 if (!st->frag_data) 3764 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3765 3766 *data = (u8 *)st->frag_data + pg_off + 3767 (abs_offset - st->stepped_offset); 3768 3769 return block_limit - abs_offset; 3770 } 3771 3772 if (st->frag_data) { 3773 kunmap_atomic(st->frag_data); 3774 st->frag_data = NULL; 3775 } 3776 3777 st->stepped_offset += pg_sz; 3778 st->frag_off += pg_sz; 3779 if (st->frag_off == skb_frag_size(frag)) { 3780 st->frag_off = 0; 3781 st->frag_idx++; 3782 } 3783 } 3784 3785 if (st->frag_data) { 3786 kunmap_atomic(st->frag_data); 3787 st->frag_data = NULL; 3788 } 3789 3790 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3791 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3792 st->frag_idx = 0; 3793 goto next_skb; 3794 } else if (st->cur_skb->next) { 3795 st->cur_skb = st->cur_skb->next; 3796 st->frag_idx = 0; 3797 goto next_skb; 3798 } 3799 3800 return 0; 3801 } 3802 EXPORT_SYMBOL(skb_seq_read); 3803 3804 /** 3805 * skb_abort_seq_read - Abort a sequential read of skb data 3806 * @st: state variable 3807 * 3808 * Must be called if skb_seq_read() was not called until it 3809 * returned 0. 3810 */ 3811 void skb_abort_seq_read(struct skb_seq_state *st) 3812 { 3813 if (st->frag_data) 3814 kunmap_atomic(st->frag_data); 3815 } 3816 EXPORT_SYMBOL(skb_abort_seq_read); 3817 3818 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3819 3820 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3821 struct ts_config *conf, 3822 struct ts_state *state) 3823 { 3824 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3825 } 3826 3827 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3828 { 3829 skb_abort_seq_read(TS_SKB_CB(state)); 3830 } 3831 3832 /** 3833 * skb_find_text - Find a text pattern in skb data 3834 * @skb: the buffer to look in 3835 * @from: search offset 3836 * @to: search limit 3837 * @config: textsearch configuration 3838 * 3839 * Finds a pattern in the skb data according to the specified 3840 * textsearch configuration. Use textsearch_next() to retrieve 3841 * subsequent occurrences of the pattern. Returns the offset 3842 * to the first occurrence or UINT_MAX if no match was found. 3843 */ 3844 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3845 unsigned int to, struct ts_config *config) 3846 { 3847 struct ts_state state; 3848 unsigned int ret; 3849 3850 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 3851 3852 config->get_next_block = skb_ts_get_next_block; 3853 config->finish = skb_ts_finish; 3854 3855 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3856 3857 ret = textsearch_find(config, &state); 3858 return (ret <= to - from ? ret : UINT_MAX); 3859 } 3860 EXPORT_SYMBOL(skb_find_text); 3861 3862 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3863 int offset, size_t size) 3864 { 3865 int i = skb_shinfo(skb)->nr_frags; 3866 3867 if (skb_can_coalesce(skb, i, page, offset)) { 3868 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3869 } else if (i < MAX_SKB_FRAGS) { 3870 skb_zcopy_downgrade_managed(skb); 3871 get_page(page); 3872 skb_fill_page_desc(skb, i, page, offset, size); 3873 } else { 3874 return -EMSGSIZE; 3875 } 3876 3877 return 0; 3878 } 3879 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3880 3881 /** 3882 * skb_pull_rcsum - pull skb and update receive checksum 3883 * @skb: buffer to update 3884 * @len: length of data pulled 3885 * 3886 * This function performs an skb_pull on the packet and updates 3887 * the CHECKSUM_COMPLETE checksum. It should be used on 3888 * receive path processing instead of skb_pull unless you know 3889 * that the checksum difference is zero (e.g., a valid IP header) 3890 * or you are setting ip_summed to CHECKSUM_NONE. 3891 */ 3892 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3893 { 3894 unsigned char *data = skb->data; 3895 3896 BUG_ON(len > skb->len); 3897 __skb_pull(skb, len); 3898 skb_postpull_rcsum(skb, data, len); 3899 return skb->data; 3900 } 3901 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3902 3903 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3904 { 3905 skb_frag_t head_frag; 3906 struct page *page; 3907 3908 page = virt_to_head_page(frag_skb->head); 3909 __skb_frag_set_page(&head_frag, page); 3910 skb_frag_off_set(&head_frag, frag_skb->data - 3911 (unsigned char *)page_address(page)); 3912 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3913 return head_frag; 3914 } 3915 3916 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3917 netdev_features_t features, 3918 unsigned int offset) 3919 { 3920 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3921 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3922 unsigned int delta_truesize = 0; 3923 unsigned int delta_len = 0; 3924 struct sk_buff *tail = NULL; 3925 struct sk_buff *nskb, *tmp; 3926 int len_diff, err; 3927 3928 skb_push(skb, -skb_network_offset(skb) + offset); 3929 3930 skb_shinfo(skb)->frag_list = NULL; 3931 3932 do { 3933 nskb = list_skb; 3934 list_skb = list_skb->next; 3935 3936 err = 0; 3937 delta_truesize += nskb->truesize; 3938 if (skb_shared(nskb)) { 3939 tmp = skb_clone(nskb, GFP_ATOMIC); 3940 if (tmp) { 3941 consume_skb(nskb); 3942 nskb = tmp; 3943 err = skb_unclone(nskb, GFP_ATOMIC); 3944 } else { 3945 err = -ENOMEM; 3946 } 3947 } 3948 3949 if (!tail) 3950 skb->next = nskb; 3951 else 3952 tail->next = nskb; 3953 3954 if (unlikely(err)) { 3955 nskb->next = list_skb; 3956 goto err_linearize; 3957 } 3958 3959 tail = nskb; 3960 3961 delta_len += nskb->len; 3962 3963 skb_push(nskb, -skb_network_offset(nskb) + offset); 3964 3965 skb_release_head_state(nskb); 3966 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 3967 __copy_skb_header(nskb, skb); 3968 3969 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3970 nskb->transport_header += len_diff; 3971 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3972 nskb->data - tnl_hlen, 3973 offset + tnl_hlen); 3974 3975 if (skb_needs_linearize(nskb, features) && 3976 __skb_linearize(nskb)) 3977 goto err_linearize; 3978 3979 } while (list_skb); 3980 3981 skb->truesize = skb->truesize - delta_truesize; 3982 skb->data_len = skb->data_len - delta_len; 3983 skb->len = skb->len - delta_len; 3984 3985 skb_gso_reset(skb); 3986 3987 skb->prev = tail; 3988 3989 if (skb_needs_linearize(skb, features) && 3990 __skb_linearize(skb)) 3991 goto err_linearize; 3992 3993 skb_get(skb); 3994 3995 return skb; 3996 3997 err_linearize: 3998 kfree_skb_list(skb->next); 3999 skb->next = NULL; 4000 return ERR_PTR(-ENOMEM); 4001 } 4002 EXPORT_SYMBOL_GPL(skb_segment_list); 4003 4004 /** 4005 * skb_segment - Perform protocol segmentation on skb. 4006 * @head_skb: buffer to segment 4007 * @features: features for the output path (see dev->features) 4008 * 4009 * This function performs segmentation on the given skb. It returns 4010 * a pointer to the first in a list of new skbs for the segments. 4011 * In case of error it returns ERR_PTR(err). 4012 */ 4013 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4014 netdev_features_t features) 4015 { 4016 struct sk_buff *segs = NULL; 4017 struct sk_buff *tail = NULL; 4018 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4019 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 4020 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4021 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4022 struct sk_buff *frag_skb = head_skb; 4023 unsigned int offset = doffset; 4024 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4025 unsigned int partial_segs = 0; 4026 unsigned int headroom; 4027 unsigned int len = head_skb->len; 4028 __be16 proto; 4029 bool csum, sg; 4030 int nfrags = skb_shinfo(head_skb)->nr_frags; 4031 int err = -ENOMEM; 4032 int i = 0; 4033 int pos; 4034 4035 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 4036 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 4037 /* gso_size is untrusted, and we have a frag_list with a linear 4038 * non head_frag head. 4039 * 4040 * (we assume checking the first list_skb member suffices; 4041 * i.e if either of the list_skb members have non head_frag 4042 * head, then the first one has too). 4043 * 4044 * If head_skb's headlen does not fit requested gso_size, it 4045 * means that the frag_list members do NOT terminate on exact 4046 * gso_size boundaries. Hence we cannot perform skb_frag_t page 4047 * sharing. Therefore we must fallback to copying the frag_list 4048 * skbs; we do so by disabling SG. 4049 */ 4050 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 4051 features &= ~NETIF_F_SG; 4052 } 4053 4054 __skb_push(head_skb, doffset); 4055 proto = skb_network_protocol(head_skb, NULL); 4056 if (unlikely(!proto)) 4057 return ERR_PTR(-EINVAL); 4058 4059 sg = !!(features & NETIF_F_SG); 4060 csum = !!can_checksum_protocol(features, proto); 4061 4062 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4063 if (!(features & NETIF_F_GSO_PARTIAL)) { 4064 struct sk_buff *iter; 4065 unsigned int frag_len; 4066 4067 if (!list_skb || 4068 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4069 goto normal; 4070 4071 /* If we get here then all the required 4072 * GSO features except frag_list are supported. 4073 * Try to split the SKB to multiple GSO SKBs 4074 * with no frag_list. 4075 * Currently we can do that only when the buffers don't 4076 * have a linear part and all the buffers except 4077 * the last are of the same length. 4078 */ 4079 frag_len = list_skb->len; 4080 skb_walk_frags(head_skb, iter) { 4081 if (frag_len != iter->len && iter->next) 4082 goto normal; 4083 if (skb_headlen(iter) && !iter->head_frag) 4084 goto normal; 4085 4086 len -= iter->len; 4087 } 4088 4089 if (len != frag_len) 4090 goto normal; 4091 } 4092 4093 /* GSO partial only requires that we trim off any excess that 4094 * doesn't fit into an MSS sized block, so take care of that 4095 * now. 4096 */ 4097 partial_segs = len / mss; 4098 if (partial_segs > 1) 4099 mss *= partial_segs; 4100 else 4101 partial_segs = 0; 4102 } 4103 4104 normal: 4105 headroom = skb_headroom(head_skb); 4106 pos = skb_headlen(head_skb); 4107 4108 do { 4109 struct sk_buff *nskb; 4110 skb_frag_t *nskb_frag; 4111 int hsize; 4112 int size; 4113 4114 if (unlikely(mss == GSO_BY_FRAGS)) { 4115 len = list_skb->len; 4116 } else { 4117 len = head_skb->len - offset; 4118 if (len > mss) 4119 len = mss; 4120 } 4121 4122 hsize = skb_headlen(head_skb) - offset; 4123 4124 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4125 (skb_headlen(list_skb) == len || sg)) { 4126 BUG_ON(skb_headlen(list_skb) > len); 4127 4128 i = 0; 4129 nfrags = skb_shinfo(list_skb)->nr_frags; 4130 frag = skb_shinfo(list_skb)->frags; 4131 frag_skb = list_skb; 4132 pos += skb_headlen(list_skb); 4133 4134 while (pos < offset + len) { 4135 BUG_ON(i >= nfrags); 4136 4137 size = skb_frag_size(frag); 4138 if (pos + size > offset + len) 4139 break; 4140 4141 i++; 4142 pos += size; 4143 frag++; 4144 } 4145 4146 nskb = skb_clone(list_skb, GFP_ATOMIC); 4147 list_skb = list_skb->next; 4148 4149 if (unlikely(!nskb)) 4150 goto err; 4151 4152 if (unlikely(pskb_trim(nskb, len))) { 4153 kfree_skb(nskb); 4154 goto err; 4155 } 4156 4157 hsize = skb_end_offset(nskb); 4158 if (skb_cow_head(nskb, doffset + headroom)) { 4159 kfree_skb(nskb); 4160 goto err; 4161 } 4162 4163 nskb->truesize += skb_end_offset(nskb) - hsize; 4164 skb_release_head_state(nskb); 4165 __skb_push(nskb, doffset); 4166 } else { 4167 if (hsize < 0) 4168 hsize = 0; 4169 if (hsize > len || !sg) 4170 hsize = len; 4171 4172 nskb = __alloc_skb(hsize + doffset + headroom, 4173 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4174 NUMA_NO_NODE); 4175 4176 if (unlikely(!nskb)) 4177 goto err; 4178 4179 skb_reserve(nskb, headroom); 4180 __skb_put(nskb, doffset); 4181 } 4182 4183 if (segs) 4184 tail->next = nskb; 4185 else 4186 segs = nskb; 4187 tail = nskb; 4188 4189 __copy_skb_header(nskb, head_skb); 4190 4191 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4192 skb_reset_mac_len(nskb); 4193 4194 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4195 nskb->data - tnl_hlen, 4196 doffset + tnl_hlen); 4197 4198 if (nskb->len == len + doffset) 4199 goto perform_csum_check; 4200 4201 if (!sg) { 4202 if (!csum) { 4203 if (!nskb->remcsum_offload) 4204 nskb->ip_summed = CHECKSUM_NONE; 4205 SKB_GSO_CB(nskb)->csum = 4206 skb_copy_and_csum_bits(head_skb, offset, 4207 skb_put(nskb, 4208 len), 4209 len); 4210 SKB_GSO_CB(nskb)->csum_start = 4211 skb_headroom(nskb) + doffset; 4212 } else { 4213 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4214 goto err; 4215 } 4216 continue; 4217 } 4218 4219 nskb_frag = skb_shinfo(nskb)->frags; 4220 4221 skb_copy_from_linear_data_offset(head_skb, offset, 4222 skb_put(nskb, hsize), hsize); 4223 4224 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4225 SKBFL_SHARED_FRAG; 4226 4227 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4228 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4229 goto err; 4230 4231 while (pos < offset + len) { 4232 if (i >= nfrags) { 4233 i = 0; 4234 nfrags = skb_shinfo(list_skb)->nr_frags; 4235 frag = skb_shinfo(list_skb)->frags; 4236 frag_skb = list_skb; 4237 if (!skb_headlen(list_skb)) { 4238 BUG_ON(!nfrags); 4239 } else { 4240 BUG_ON(!list_skb->head_frag); 4241 4242 /* to make room for head_frag. */ 4243 i--; 4244 frag--; 4245 } 4246 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4247 skb_zerocopy_clone(nskb, frag_skb, 4248 GFP_ATOMIC)) 4249 goto err; 4250 4251 list_skb = list_skb->next; 4252 } 4253 4254 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4255 MAX_SKB_FRAGS)) { 4256 net_warn_ratelimited( 4257 "skb_segment: too many frags: %u %u\n", 4258 pos, mss); 4259 err = -EINVAL; 4260 goto err; 4261 } 4262 4263 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4264 __skb_frag_ref(nskb_frag); 4265 size = skb_frag_size(nskb_frag); 4266 4267 if (pos < offset) { 4268 skb_frag_off_add(nskb_frag, offset - pos); 4269 skb_frag_size_sub(nskb_frag, offset - pos); 4270 } 4271 4272 skb_shinfo(nskb)->nr_frags++; 4273 4274 if (pos + size <= offset + len) { 4275 i++; 4276 frag++; 4277 pos += size; 4278 } else { 4279 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4280 goto skip_fraglist; 4281 } 4282 4283 nskb_frag++; 4284 } 4285 4286 skip_fraglist: 4287 nskb->data_len = len - hsize; 4288 nskb->len += nskb->data_len; 4289 nskb->truesize += nskb->data_len; 4290 4291 perform_csum_check: 4292 if (!csum) { 4293 if (skb_has_shared_frag(nskb) && 4294 __skb_linearize(nskb)) 4295 goto err; 4296 4297 if (!nskb->remcsum_offload) 4298 nskb->ip_summed = CHECKSUM_NONE; 4299 SKB_GSO_CB(nskb)->csum = 4300 skb_checksum(nskb, doffset, 4301 nskb->len - doffset, 0); 4302 SKB_GSO_CB(nskb)->csum_start = 4303 skb_headroom(nskb) + doffset; 4304 } 4305 } while ((offset += len) < head_skb->len); 4306 4307 /* Some callers want to get the end of the list. 4308 * Put it in segs->prev to avoid walking the list. 4309 * (see validate_xmit_skb_list() for example) 4310 */ 4311 segs->prev = tail; 4312 4313 if (partial_segs) { 4314 struct sk_buff *iter; 4315 int type = skb_shinfo(head_skb)->gso_type; 4316 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4317 4318 /* Update type to add partial and then remove dodgy if set */ 4319 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4320 type &= ~SKB_GSO_DODGY; 4321 4322 /* Update GSO info and prepare to start updating headers on 4323 * our way back down the stack of protocols. 4324 */ 4325 for (iter = segs; iter; iter = iter->next) { 4326 skb_shinfo(iter)->gso_size = gso_size; 4327 skb_shinfo(iter)->gso_segs = partial_segs; 4328 skb_shinfo(iter)->gso_type = type; 4329 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4330 } 4331 4332 if (tail->len - doffset <= gso_size) 4333 skb_shinfo(tail)->gso_size = 0; 4334 else if (tail != segs) 4335 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4336 } 4337 4338 /* Following permits correct backpressure, for protocols 4339 * using skb_set_owner_w(). 4340 * Idea is to tranfert ownership from head_skb to last segment. 4341 */ 4342 if (head_skb->destructor == sock_wfree) { 4343 swap(tail->truesize, head_skb->truesize); 4344 swap(tail->destructor, head_skb->destructor); 4345 swap(tail->sk, head_skb->sk); 4346 } 4347 return segs; 4348 4349 err: 4350 kfree_skb_list(segs); 4351 return ERR_PTR(err); 4352 } 4353 EXPORT_SYMBOL_GPL(skb_segment); 4354 4355 #ifdef CONFIG_SKB_EXTENSIONS 4356 #define SKB_EXT_ALIGN_VALUE 8 4357 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4358 4359 static const u8 skb_ext_type_len[] = { 4360 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4361 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4362 #endif 4363 #ifdef CONFIG_XFRM 4364 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4365 #endif 4366 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4367 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4368 #endif 4369 #if IS_ENABLED(CONFIG_MPTCP) 4370 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4371 #endif 4372 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4373 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4374 #endif 4375 }; 4376 4377 static __always_inline unsigned int skb_ext_total_length(void) 4378 { 4379 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4380 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4381 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4382 #endif 4383 #ifdef CONFIG_XFRM 4384 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4385 #endif 4386 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4387 skb_ext_type_len[TC_SKB_EXT] + 4388 #endif 4389 #if IS_ENABLED(CONFIG_MPTCP) 4390 skb_ext_type_len[SKB_EXT_MPTCP] + 4391 #endif 4392 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4393 skb_ext_type_len[SKB_EXT_MCTP] + 4394 #endif 4395 0; 4396 } 4397 4398 static void skb_extensions_init(void) 4399 { 4400 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4401 BUILD_BUG_ON(skb_ext_total_length() > 255); 4402 4403 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4404 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4405 0, 4406 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4407 NULL); 4408 } 4409 #else 4410 static void skb_extensions_init(void) {} 4411 #endif 4412 4413 void __init skb_init(void) 4414 { 4415 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4416 sizeof(struct sk_buff), 4417 0, 4418 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4419 offsetof(struct sk_buff, cb), 4420 sizeof_field(struct sk_buff, cb), 4421 NULL); 4422 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4423 sizeof(struct sk_buff_fclones), 4424 0, 4425 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4426 NULL); 4427 skb_extensions_init(); 4428 } 4429 4430 static int 4431 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4432 unsigned int recursion_level) 4433 { 4434 int start = skb_headlen(skb); 4435 int i, copy = start - offset; 4436 struct sk_buff *frag_iter; 4437 int elt = 0; 4438 4439 if (unlikely(recursion_level >= 24)) 4440 return -EMSGSIZE; 4441 4442 if (copy > 0) { 4443 if (copy > len) 4444 copy = len; 4445 sg_set_buf(sg, skb->data + offset, copy); 4446 elt++; 4447 if ((len -= copy) == 0) 4448 return elt; 4449 offset += copy; 4450 } 4451 4452 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4453 int end; 4454 4455 WARN_ON(start > offset + len); 4456 4457 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4458 if ((copy = end - offset) > 0) { 4459 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4460 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4461 return -EMSGSIZE; 4462 4463 if (copy > len) 4464 copy = len; 4465 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4466 skb_frag_off(frag) + offset - start); 4467 elt++; 4468 if (!(len -= copy)) 4469 return elt; 4470 offset += copy; 4471 } 4472 start = end; 4473 } 4474 4475 skb_walk_frags(skb, frag_iter) { 4476 int end, ret; 4477 4478 WARN_ON(start > offset + len); 4479 4480 end = start + frag_iter->len; 4481 if ((copy = end - offset) > 0) { 4482 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4483 return -EMSGSIZE; 4484 4485 if (copy > len) 4486 copy = len; 4487 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4488 copy, recursion_level + 1); 4489 if (unlikely(ret < 0)) 4490 return ret; 4491 elt += ret; 4492 if ((len -= copy) == 0) 4493 return elt; 4494 offset += copy; 4495 } 4496 start = end; 4497 } 4498 BUG_ON(len); 4499 return elt; 4500 } 4501 4502 /** 4503 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4504 * @skb: Socket buffer containing the buffers to be mapped 4505 * @sg: The scatter-gather list to map into 4506 * @offset: The offset into the buffer's contents to start mapping 4507 * @len: Length of buffer space to be mapped 4508 * 4509 * Fill the specified scatter-gather list with mappings/pointers into a 4510 * region of the buffer space attached to a socket buffer. Returns either 4511 * the number of scatterlist items used, or -EMSGSIZE if the contents 4512 * could not fit. 4513 */ 4514 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4515 { 4516 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4517 4518 if (nsg <= 0) 4519 return nsg; 4520 4521 sg_mark_end(&sg[nsg - 1]); 4522 4523 return nsg; 4524 } 4525 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4526 4527 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4528 * sglist without mark the sg which contain last skb data as the end. 4529 * So the caller can mannipulate sg list as will when padding new data after 4530 * the first call without calling sg_unmark_end to expend sg list. 4531 * 4532 * Scenario to use skb_to_sgvec_nomark: 4533 * 1. sg_init_table 4534 * 2. skb_to_sgvec_nomark(payload1) 4535 * 3. skb_to_sgvec_nomark(payload2) 4536 * 4537 * This is equivalent to: 4538 * 1. sg_init_table 4539 * 2. skb_to_sgvec(payload1) 4540 * 3. sg_unmark_end 4541 * 4. skb_to_sgvec(payload2) 4542 * 4543 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4544 * is more preferable. 4545 */ 4546 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4547 int offset, int len) 4548 { 4549 return __skb_to_sgvec(skb, sg, offset, len, 0); 4550 } 4551 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4552 4553 4554 4555 /** 4556 * skb_cow_data - Check that a socket buffer's data buffers are writable 4557 * @skb: The socket buffer to check. 4558 * @tailbits: Amount of trailing space to be added 4559 * @trailer: Returned pointer to the skb where the @tailbits space begins 4560 * 4561 * Make sure that the data buffers attached to a socket buffer are 4562 * writable. If they are not, private copies are made of the data buffers 4563 * and the socket buffer is set to use these instead. 4564 * 4565 * If @tailbits is given, make sure that there is space to write @tailbits 4566 * bytes of data beyond current end of socket buffer. @trailer will be 4567 * set to point to the skb in which this space begins. 4568 * 4569 * The number of scatterlist elements required to completely map the 4570 * COW'd and extended socket buffer will be returned. 4571 */ 4572 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4573 { 4574 int copyflag; 4575 int elt; 4576 struct sk_buff *skb1, **skb_p; 4577 4578 /* If skb is cloned or its head is paged, reallocate 4579 * head pulling out all the pages (pages are considered not writable 4580 * at the moment even if they are anonymous). 4581 */ 4582 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4583 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4584 return -ENOMEM; 4585 4586 /* Easy case. Most of packets will go this way. */ 4587 if (!skb_has_frag_list(skb)) { 4588 /* A little of trouble, not enough of space for trailer. 4589 * This should not happen, when stack is tuned to generate 4590 * good frames. OK, on miss we reallocate and reserve even more 4591 * space, 128 bytes is fair. */ 4592 4593 if (skb_tailroom(skb) < tailbits && 4594 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4595 return -ENOMEM; 4596 4597 /* Voila! */ 4598 *trailer = skb; 4599 return 1; 4600 } 4601 4602 /* Misery. We are in troubles, going to mincer fragments... */ 4603 4604 elt = 1; 4605 skb_p = &skb_shinfo(skb)->frag_list; 4606 copyflag = 0; 4607 4608 while ((skb1 = *skb_p) != NULL) { 4609 int ntail = 0; 4610 4611 /* The fragment is partially pulled by someone, 4612 * this can happen on input. Copy it and everything 4613 * after it. */ 4614 4615 if (skb_shared(skb1)) 4616 copyflag = 1; 4617 4618 /* If the skb is the last, worry about trailer. */ 4619 4620 if (skb1->next == NULL && tailbits) { 4621 if (skb_shinfo(skb1)->nr_frags || 4622 skb_has_frag_list(skb1) || 4623 skb_tailroom(skb1) < tailbits) 4624 ntail = tailbits + 128; 4625 } 4626 4627 if (copyflag || 4628 skb_cloned(skb1) || 4629 ntail || 4630 skb_shinfo(skb1)->nr_frags || 4631 skb_has_frag_list(skb1)) { 4632 struct sk_buff *skb2; 4633 4634 /* Fuck, we are miserable poor guys... */ 4635 if (ntail == 0) 4636 skb2 = skb_copy(skb1, GFP_ATOMIC); 4637 else 4638 skb2 = skb_copy_expand(skb1, 4639 skb_headroom(skb1), 4640 ntail, 4641 GFP_ATOMIC); 4642 if (unlikely(skb2 == NULL)) 4643 return -ENOMEM; 4644 4645 if (skb1->sk) 4646 skb_set_owner_w(skb2, skb1->sk); 4647 4648 /* Looking around. Are we still alive? 4649 * OK, link new skb, drop old one */ 4650 4651 skb2->next = skb1->next; 4652 *skb_p = skb2; 4653 kfree_skb(skb1); 4654 skb1 = skb2; 4655 } 4656 elt++; 4657 *trailer = skb1; 4658 skb_p = &skb1->next; 4659 } 4660 4661 return elt; 4662 } 4663 EXPORT_SYMBOL_GPL(skb_cow_data); 4664 4665 static void sock_rmem_free(struct sk_buff *skb) 4666 { 4667 struct sock *sk = skb->sk; 4668 4669 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4670 } 4671 4672 static void skb_set_err_queue(struct sk_buff *skb) 4673 { 4674 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4675 * So, it is safe to (mis)use it to mark skbs on the error queue. 4676 */ 4677 skb->pkt_type = PACKET_OUTGOING; 4678 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4679 } 4680 4681 /* 4682 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4683 */ 4684 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4685 { 4686 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4687 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4688 return -ENOMEM; 4689 4690 skb_orphan(skb); 4691 skb->sk = sk; 4692 skb->destructor = sock_rmem_free; 4693 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4694 skb_set_err_queue(skb); 4695 4696 /* before exiting rcu section, make sure dst is refcounted */ 4697 skb_dst_force(skb); 4698 4699 skb_queue_tail(&sk->sk_error_queue, skb); 4700 if (!sock_flag(sk, SOCK_DEAD)) 4701 sk_error_report(sk); 4702 return 0; 4703 } 4704 EXPORT_SYMBOL(sock_queue_err_skb); 4705 4706 static bool is_icmp_err_skb(const struct sk_buff *skb) 4707 { 4708 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4709 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4710 } 4711 4712 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4713 { 4714 struct sk_buff_head *q = &sk->sk_error_queue; 4715 struct sk_buff *skb, *skb_next = NULL; 4716 bool icmp_next = false; 4717 unsigned long flags; 4718 4719 spin_lock_irqsave(&q->lock, flags); 4720 skb = __skb_dequeue(q); 4721 if (skb && (skb_next = skb_peek(q))) { 4722 icmp_next = is_icmp_err_skb(skb_next); 4723 if (icmp_next) 4724 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4725 } 4726 spin_unlock_irqrestore(&q->lock, flags); 4727 4728 if (is_icmp_err_skb(skb) && !icmp_next) 4729 sk->sk_err = 0; 4730 4731 if (skb_next) 4732 sk_error_report(sk); 4733 4734 return skb; 4735 } 4736 EXPORT_SYMBOL(sock_dequeue_err_skb); 4737 4738 /** 4739 * skb_clone_sk - create clone of skb, and take reference to socket 4740 * @skb: the skb to clone 4741 * 4742 * This function creates a clone of a buffer that holds a reference on 4743 * sk_refcnt. Buffers created via this function are meant to be 4744 * returned using sock_queue_err_skb, or free via kfree_skb. 4745 * 4746 * When passing buffers allocated with this function to sock_queue_err_skb 4747 * it is necessary to wrap the call with sock_hold/sock_put in order to 4748 * prevent the socket from being released prior to being enqueued on 4749 * the sk_error_queue. 4750 */ 4751 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4752 { 4753 struct sock *sk = skb->sk; 4754 struct sk_buff *clone; 4755 4756 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4757 return NULL; 4758 4759 clone = skb_clone(skb, GFP_ATOMIC); 4760 if (!clone) { 4761 sock_put(sk); 4762 return NULL; 4763 } 4764 4765 clone->sk = sk; 4766 clone->destructor = sock_efree; 4767 4768 return clone; 4769 } 4770 EXPORT_SYMBOL(skb_clone_sk); 4771 4772 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4773 struct sock *sk, 4774 int tstype, 4775 bool opt_stats) 4776 { 4777 struct sock_exterr_skb *serr; 4778 int err; 4779 4780 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4781 4782 serr = SKB_EXT_ERR(skb); 4783 memset(serr, 0, sizeof(*serr)); 4784 serr->ee.ee_errno = ENOMSG; 4785 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4786 serr->ee.ee_info = tstype; 4787 serr->opt_stats = opt_stats; 4788 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4789 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4790 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4791 if (sk_is_tcp(sk)) 4792 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 4793 } 4794 4795 err = sock_queue_err_skb(sk, skb); 4796 4797 if (err) 4798 kfree_skb(skb); 4799 } 4800 4801 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4802 { 4803 bool ret; 4804 4805 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 4806 return true; 4807 4808 read_lock_bh(&sk->sk_callback_lock); 4809 ret = sk->sk_socket && sk->sk_socket->file && 4810 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4811 read_unlock_bh(&sk->sk_callback_lock); 4812 return ret; 4813 } 4814 4815 void skb_complete_tx_timestamp(struct sk_buff *skb, 4816 struct skb_shared_hwtstamps *hwtstamps) 4817 { 4818 struct sock *sk = skb->sk; 4819 4820 if (!skb_may_tx_timestamp(sk, false)) 4821 goto err; 4822 4823 /* Take a reference to prevent skb_orphan() from freeing the socket, 4824 * but only if the socket refcount is not zero. 4825 */ 4826 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4827 *skb_hwtstamps(skb) = *hwtstamps; 4828 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4829 sock_put(sk); 4830 return; 4831 } 4832 4833 err: 4834 kfree_skb(skb); 4835 } 4836 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4837 4838 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4839 const struct sk_buff *ack_skb, 4840 struct skb_shared_hwtstamps *hwtstamps, 4841 struct sock *sk, int tstype) 4842 { 4843 struct sk_buff *skb; 4844 bool tsonly, opt_stats = false; 4845 4846 if (!sk) 4847 return; 4848 4849 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4850 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4851 return; 4852 4853 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4854 if (!skb_may_tx_timestamp(sk, tsonly)) 4855 return; 4856 4857 if (tsonly) { 4858 #ifdef CONFIG_INET 4859 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4860 sk_is_tcp(sk)) { 4861 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 4862 ack_skb); 4863 opt_stats = true; 4864 } else 4865 #endif 4866 skb = alloc_skb(0, GFP_ATOMIC); 4867 } else { 4868 skb = skb_clone(orig_skb, GFP_ATOMIC); 4869 } 4870 if (!skb) 4871 return; 4872 4873 if (tsonly) { 4874 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4875 SKBTX_ANY_TSTAMP; 4876 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4877 } 4878 4879 if (hwtstamps) 4880 *skb_hwtstamps(skb) = *hwtstamps; 4881 else 4882 __net_timestamp(skb); 4883 4884 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4885 } 4886 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4887 4888 void skb_tstamp_tx(struct sk_buff *orig_skb, 4889 struct skb_shared_hwtstamps *hwtstamps) 4890 { 4891 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 4892 SCM_TSTAMP_SND); 4893 } 4894 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4895 4896 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4897 { 4898 struct sock *sk = skb->sk; 4899 struct sock_exterr_skb *serr; 4900 int err = 1; 4901 4902 skb->wifi_acked_valid = 1; 4903 skb->wifi_acked = acked; 4904 4905 serr = SKB_EXT_ERR(skb); 4906 memset(serr, 0, sizeof(*serr)); 4907 serr->ee.ee_errno = ENOMSG; 4908 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4909 4910 /* Take a reference to prevent skb_orphan() from freeing the socket, 4911 * but only if the socket refcount is not zero. 4912 */ 4913 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4914 err = sock_queue_err_skb(sk, skb); 4915 sock_put(sk); 4916 } 4917 if (err) 4918 kfree_skb(skb); 4919 } 4920 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4921 4922 /** 4923 * skb_partial_csum_set - set up and verify partial csum values for packet 4924 * @skb: the skb to set 4925 * @start: the number of bytes after skb->data to start checksumming. 4926 * @off: the offset from start to place the checksum. 4927 * 4928 * For untrusted partially-checksummed packets, we need to make sure the values 4929 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4930 * 4931 * This function checks and sets those values and skb->ip_summed: if this 4932 * returns false you should drop the packet. 4933 */ 4934 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4935 { 4936 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4937 u32 csum_start = skb_headroom(skb) + (u32)start; 4938 4939 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4940 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4941 start, off, skb_headroom(skb), skb_headlen(skb)); 4942 return false; 4943 } 4944 skb->ip_summed = CHECKSUM_PARTIAL; 4945 skb->csum_start = csum_start; 4946 skb->csum_offset = off; 4947 skb_set_transport_header(skb, start); 4948 return true; 4949 } 4950 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4951 4952 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4953 unsigned int max) 4954 { 4955 if (skb_headlen(skb) >= len) 4956 return 0; 4957 4958 /* If we need to pullup then pullup to the max, so we 4959 * won't need to do it again. 4960 */ 4961 if (max > skb->len) 4962 max = skb->len; 4963 4964 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4965 return -ENOMEM; 4966 4967 if (skb_headlen(skb) < len) 4968 return -EPROTO; 4969 4970 return 0; 4971 } 4972 4973 #define MAX_TCP_HDR_LEN (15 * 4) 4974 4975 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4976 typeof(IPPROTO_IP) proto, 4977 unsigned int off) 4978 { 4979 int err; 4980 4981 switch (proto) { 4982 case IPPROTO_TCP: 4983 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4984 off + MAX_TCP_HDR_LEN); 4985 if (!err && !skb_partial_csum_set(skb, off, 4986 offsetof(struct tcphdr, 4987 check))) 4988 err = -EPROTO; 4989 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4990 4991 case IPPROTO_UDP: 4992 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4993 off + sizeof(struct udphdr)); 4994 if (!err && !skb_partial_csum_set(skb, off, 4995 offsetof(struct udphdr, 4996 check))) 4997 err = -EPROTO; 4998 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4999 } 5000 5001 return ERR_PTR(-EPROTO); 5002 } 5003 5004 /* This value should be large enough to cover a tagged ethernet header plus 5005 * maximally sized IP and TCP or UDP headers. 5006 */ 5007 #define MAX_IP_HDR_LEN 128 5008 5009 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5010 { 5011 unsigned int off; 5012 bool fragment; 5013 __sum16 *csum; 5014 int err; 5015 5016 fragment = false; 5017 5018 err = skb_maybe_pull_tail(skb, 5019 sizeof(struct iphdr), 5020 MAX_IP_HDR_LEN); 5021 if (err < 0) 5022 goto out; 5023 5024 if (ip_is_fragment(ip_hdr(skb))) 5025 fragment = true; 5026 5027 off = ip_hdrlen(skb); 5028 5029 err = -EPROTO; 5030 5031 if (fragment) 5032 goto out; 5033 5034 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5035 if (IS_ERR(csum)) 5036 return PTR_ERR(csum); 5037 5038 if (recalculate) 5039 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5040 ip_hdr(skb)->daddr, 5041 skb->len - off, 5042 ip_hdr(skb)->protocol, 0); 5043 err = 0; 5044 5045 out: 5046 return err; 5047 } 5048 5049 /* This value should be large enough to cover a tagged ethernet header plus 5050 * an IPv6 header, all options, and a maximal TCP or UDP header. 5051 */ 5052 #define MAX_IPV6_HDR_LEN 256 5053 5054 #define OPT_HDR(type, skb, off) \ 5055 (type *)(skb_network_header(skb) + (off)) 5056 5057 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5058 { 5059 int err; 5060 u8 nexthdr; 5061 unsigned int off; 5062 unsigned int len; 5063 bool fragment; 5064 bool done; 5065 __sum16 *csum; 5066 5067 fragment = false; 5068 done = false; 5069 5070 off = sizeof(struct ipv6hdr); 5071 5072 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5073 if (err < 0) 5074 goto out; 5075 5076 nexthdr = ipv6_hdr(skb)->nexthdr; 5077 5078 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5079 while (off <= len && !done) { 5080 switch (nexthdr) { 5081 case IPPROTO_DSTOPTS: 5082 case IPPROTO_HOPOPTS: 5083 case IPPROTO_ROUTING: { 5084 struct ipv6_opt_hdr *hp; 5085 5086 err = skb_maybe_pull_tail(skb, 5087 off + 5088 sizeof(struct ipv6_opt_hdr), 5089 MAX_IPV6_HDR_LEN); 5090 if (err < 0) 5091 goto out; 5092 5093 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5094 nexthdr = hp->nexthdr; 5095 off += ipv6_optlen(hp); 5096 break; 5097 } 5098 case IPPROTO_AH: { 5099 struct ip_auth_hdr *hp; 5100 5101 err = skb_maybe_pull_tail(skb, 5102 off + 5103 sizeof(struct ip_auth_hdr), 5104 MAX_IPV6_HDR_LEN); 5105 if (err < 0) 5106 goto out; 5107 5108 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5109 nexthdr = hp->nexthdr; 5110 off += ipv6_authlen(hp); 5111 break; 5112 } 5113 case IPPROTO_FRAGMENT: { 5114 struct frag_hdr *hp; 5115 5116 err = skb_maybe_pull_tail(skb, 5117 off + 5118 sizeof(struct frag_hdr), 5119 MAX_IPV6_HDR_LEN); 5120 if (err < 0) 5121 goto out; 5122 5123 hp = OPT_HDR(struct frag_hdr, skb, off); 5124 5125 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5126 fragment = true; 5127 5128 nexthdr = hp->nexthdr; 5129 off += sizeof(struct frag_hdr); 5130 break; 5131 } 5132 default: 5133 done = true; 5134 break; 5135 } 5136 } 5137 5138 err = -EPROTO; 5139 5140 if (!done || fragment) 5141 goto out; 5142 5143 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5144 if (IS_ERR(csum)) 5145 return PTR_ERR(csum); 5146 5147 if (recalculate) 5148 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5149 &ipv6_hdr(skb)->daddr, 5150 skb->len - off, nexthdr, 0); 5151 err = 0; 5152 5153 out: 5154 return err; 5155 } 5156 5157 /** 5158 * skb_checksum_setup - set up partial checksum offset 5159 * @skb: the skb to set up 5160 * @recalculate: if true the pseudo-header checksum will be recalculated 5161 */ 5162 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5163 { 5164 int err; 5165 5166 switch (skb->protocol) { 5167 case htons(ETH_P_IP): 5168 err = skb_checksum_setup_ipv4(skb, recalculate); 5169 break; 5170 5171 case htons(ETH_P_IPV6): 5172 err = skb_checksum_setup_ipv6(skb, recalculate); 5173 break; 5174 5175 default: 5176 err = -EPROTO; 5177 break; 5178 } 5179 5180 return err; 5181 } 5182 EXPORT_SYMBOL(skb_checksum_setup); 5183 5184 /** 5185 * skb_checksum_maybe_trim - maybe trims the given skb 5186 * @skb: the skb to check 5187 * @transport_len: the data length beyond the network header 5188 * 5189 * Checks whether the given skb has data beyond the given transport length. 5190 * If so, returns a cloned skb trimmed to this transport length. 5191 * Otherwise returns the provided skb. Returns NULL in error cases 5192 * (e.g. transport_len exceeds skb length or out-of-memory). 5193 * 5194 * Caller needs to set the skb transport header and free any returned skb if it 5195 * differs from the provided skb. 5196 */ 5197 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5198 unsigned int transport_len) 5199 { 5200 struct sk_buff *skb_chk; 5201 unsigned int len = skb_transport_offset(skb) + transport_len; 5202 int ret; 5203 5204 if (skb->len < len) 5205 return NULL; 5206 else if (skb->len == len) 5207 return skb; 5208 5209 skb_chk = skb_clone(skb, GFP_ATOMIC); 5210 if (!skb_chk) 5211 return NULL; 5212 5213 ret = pskb_trim_rcsum(skb_chk, len); 5214 if (ret) { 5215 kfree_skb(skb_chk); 5216 return NULL; 5217 } 5218 5219 return skb_chk; 5220 } 5221 5222 /** 5223 * skb_checksum_trimmed - validate checksum of an skb 5224 * @skb: the skb to check 5225 * @transport_len: the data length beyond the network header 5226 * @skb_chkf: checksum function to use 5227 * 5228 * Applies the given checksum function skb_chkf to the provided skb. 5229 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5230 * 5231 * If the skb has data beyond the given transport length, then a 5232 * trimmed & cloned skb is checked and returned. 5233 * 5234 * Caller needs to set the skb transport header and free any returned skb if it 5235 * differs from the provided skb. 5236 */ 5237 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5238 unsigned int transport_len, 5239 __sum16(*skb_chkf)(struct sk_buff *skb)) 5240 { 5241 struct sk_buff *skb_chk; 5242 unsigned int offset = skb_transport_offset(skb); 5243 __sum16 ret; 5244 5245 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5246 if (!skb_chk) 5247 goto err; 5248 5249 if (!pskb_may_pull(skb_chk, offset)) 5250 goto err; 5251 5252 skb_pull_rcsum(skb_chk, offset); 5253 ret = skb_chkf(skb_chk); 5254 skb_push_rcsum(skb_chk, offset); 5255 5256 if (ret) 5257 goto err; 5258 5259 return skb_chk; 5260 5261 err: 5262 if (skb_chk && skb_chk != skb) 5263 kfree_skb(skb_chk); 5264 5265 return NULL; 5266 5267 } 5268 EXPORT_SYMBOL(skb_checksum_trimmed); 5269 5270 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5271 { 5272 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5273 skb->dev->name); 5274 } 5275 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5276 5277 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5278 { 5279 if (head_stolen) { 5280 skb_release_head_state(skb); 5281 kmem_cache_free(skbuff_head_cache, skb); 5282 } else { 5283 __kfree_skb(skb); 5284 } 5285 } 5286 EXPORT_SYMBOL(kfree_skb_partial); 5287 5288 /** 5289 * skb_try_coalesce - try to merge skb to prior one 5290 * @to: prior buffer 5291 * @from: buffer to add 5292 * @fragstolen: pointer to boolean 5293 * @delta_truesize: how much more was allocated than was requested 5294 */ 5295 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5296 bool *fragstolen, int *delta_truesize) 5297 { 5298 struct skb_shared_info *to_shinfo, *from_shinfo; 5299 int i, delta, len = from->len; 5300 5301 *fragstolen = false; 5302 5303 if (skb_cloned(to)) 5304 return false; 5305 5306 /* In general, avoid mixing slab allocated and page_pool allocated 5307 * pages within the same SKB. However when @to is not pp_recycle and 5308 * @from is cloned, we can transition frag pages from page_pool to 5309 * reference counted. 5310 * 5311 * On the other hand, don't allow coalescing two pp_recycle SKBs if 5312 * @from is cloned, in case the SKB is using page_pool fragment 5313 * references (PP_FLAG_PAGE_FRAG). Since we only take full page 5314 * references for cloned SKBs at the moment that would result in 5315 * inconsistent reference counts. 5316 */ 5317 if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from))) 5318 return false; 5319 5320 if (len <= skb_tailroom(to)) { 5321 if (len) 5322 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5323 *delta_truesize = 0; 5324 return true; 5325 } 5326 5327 to_shinfo = skb_shinfo(to); 5328 from_shinfo = skb_shinfo(from); 5329 if (to_shinfo->frag_list || from_shinfo->frag_list) 5330 return false; 5331 if (skb_zcopy(to) || skb_zcopy(from)) 5332 return false; 5333 5334 if (skb_headlen(from) != 0) { 5335 struct page *page; 5336 unsigned int offset; 5337 5338 if (to_shinfo->nr_frags + 5339 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5340 return false; 5341 5342 if (skb_head_is_locked(from)) 5343 return false; 5344 5345 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5346 5347 page = virt_to_head_page(from->head); 5348 offset = from->data - (unsigned char *)page_address(page); 5349 5350 skb_fill_page_desc(to, to_shinfo->nr_frags, 5351 page, offset, skb_headlen(from)); 5352 *fragstolen = true; 5353 } else { 5354 if (to_shinfo->nr_frags + 5355 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5356 return false; 5357 5358 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5359 } 5360 5361 WARN_ON_ONCE(delta < len); 5362 5363 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5364 from_shinfo->frags, 5365 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5366 to_shinfo->nr_frags += from_shinfo->nr_frags; 5367 5368 if (!skb_cloned(from)) 5369 from_shinfo->nr_frags = 0; 5370 5371 /* if the skb is not cloned this does nothing 5372 * since we set nr_frags to 0. 5373 */ 5374 for (i = 0; i < from_shinfo->nr_frags; i++) 5375 __skb_frag_ref(&from_shinfo->frags[i]); 5376 5377 to->truesize += delta; 5378 to->len += len; 5379 to->data_len += len; 5380 5381 *delta_truesize = delta; 5382 return true; 5383 } 5384 EXPORT_SYMBOL(skb_try_coalesce); 5385 5386 /** 5387 * skb_scrub_packet - scrub an skb 5388 * 5389 * @skb: buffer to clean 5390 * @xnet: packet is crossing netns 5391 * 5392 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5393 * into/from a tunnel. Some information have to be cleared during these 5394 * operations. 5395 * skb_scrub_packet can also be used to clean a skb before injecting it in 5396 * another namespace (@xnet == true). We have to clear all information in the 5397 * skb that could impact namespace isolation. 5398 */ 5399 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5400 { 5401 skb->pkt_type = PACKET_HOST; 5402 skb->skb_iif = 0; 5403 skb->ignore_df = 0; 5404 skb_dst_drop(skb); 5405 skb_ext_reset(skb); 5406 nf_reset_ct(skb); 5407 nf_reset_trace(skb); 5408 5409 #ifdef CONFIG_NET_SWITCHDEV 5410 skb->offload_fwd_mark = 0; 5411 skb->offload_l3_fwd_mark = 0; 5412 #endif 5413 5414 if (!xnet) 5415 return; 5416 5417 ipvs_reset(skb); 5418 skb->mark = 0; 5419 skb_clear_tstamp(skb); 5420 } 5421 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5422 5423 /** 5424 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5425 * 5426 * @skb: GSO skb 5427 * 5428 * skb_gso_transport_seglen is used to determine the real size of the 5429 * individual segments, including Layer4 headers (TCP/UDP). 5430 * 5431 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5432 */ 5433 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5434 { 5435 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5436 unsigned int thlen = 0; 5437 5438 if (skb->encapsulation) { 5439 thlen = skb_inner_transport_header(skb) - 5440 skb_transport_header(skb); 5441 5442 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5443 thlen += inner_tcp_hdrlen(skb); 5444 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5445 thlen = tcp_hdrlen(skb); 5446 } else if (unlikely(skb_is_gso_sctp(skb))) { 5447 thlen = sizeof(struct sctphdr); 5448 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5449 thlen = sizeof(struct udphdr); 5450 } 5451 /* UFO sets gso_size to the size of the fragmentation 5452 * payload, i.e. the size of the L4 (UDP) header is already 5453 * accounted for. 5454 */ 5455 return thlen + shinfo->gso_size; 5456 } 5457 5458 /** 5459 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5460 * 5461 * @skb: GSO skb 5462 * 5463 * skb_gso_network_seglen is used to determine the real size of the 5464 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5465 * 5466 * The MAC/L2 header is not accounted for. 5467 */ 5468 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5469 { 5470 unsigned int hdr_len = skb_transport_header(skb) - 5471 skb_network_header(skb); 5472 5473 return hdr_len + skb_gso_transport_seglen(skb); 5474 } 5475 5476 /** 5477 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5478 * 5479 * @skb: GSO skb 5480 * 5481 * skb_gso_mac_seglen is used to determine the real size of the 5482 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5483 * headers (TCP/UDP). 5484 */ 5485 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5486 { 5487 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5488 5489 return hdr_len + skb_gso_transport_seglen(skb); 5490 } 5491 5492 /** 5493 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5494 * 5495 * There are a couple of instances where we have a GSO skb, and we 5496 * want to determine what size it would be after it is segmented. 5497 * 5498 * We might want to check: 5499 * - L3+L4+payload size (e.g. IP forwarding) 5500 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5501 * 5502 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5503 * 5504 * @skb: GSO skb 5505 * 5506 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5507 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5508 * 5509 * @max_len: The maximum permissible length. 5510 * 5511 * Returns true if the segmented length <= max length. 5512 */ 5513 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5514 unsigned int seg_len, 5515 unsigned int max_len) { 5516 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5517 const struct sk_buff *iter; 5518 5519 if (shinfo->gso_size != GSO_BY_FRAGS) 5520 return seg_len <= max_len; 5521 5522 /* Undo this so we can re-use header sizes */ 5523 seg_len -= GSO_BY_FRAGS; 5524 5525 skb_walk_frags(skb, iter) { 5526 if (seg_len + skb_headlen(iter) > max_len) 5527 return false; 5528 } 5529 5530 return true; 5531 } 5532 5533 /** 5534 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5535 * 5536 * @skb: GSO skb 5537 * @mtu: MTU to validate against 5538 * 5539 * skb_gso_validate_network_len validates if a given skb will fit a 5540 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5541 * payload. 5542 */ 5543 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5544 { 5545 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5546 } 5547 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5548 5549 /** 5550 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5551 * 5552 * @skb: GSO skb 5553 * @len: length to validate against 5554 * 5555 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5556 * length once split, including L2, L3 and L4 headers and the payload. 5557 */ 5558 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5559 { 5560 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5561 } 5562 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5563 5564 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5565 { 5566 int mac_len, meta_len; 5567 void *meta; 5568 5569 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5570 kfree_skb(skb); 5571 return NULL; 5572 } 5573 5574 mac_len = skb->data - skb_mac_header(skb); 5575 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5576 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5577 mac_len - VLAN_HLEN - ETH_TLEN); 5578 } 5579 5580 meta_len = skb_metadata_len(skb); 5581 if (meta_len) { 5582 meta = skb_metadata_end(skb) - meta_len; 5583 memmove(meta + VLAN_HLEN, meta, meta_len); 5584 } 5585 5586 skb->mac_header += VLAN_HLEN; 5587 return skb; 5588 } 5589 5590 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5591 { 5592 struct vlan_hdr *vhdr; 5593 u16 vlan_tci; 5594 5595 if (unlikely(skb_vlan_tag_present(skb))) { 5596 /* vlan_tci is already set-up so leave this for another time */ 5597 return skb; 5598 } 5599 5600 skb = skb_share_check(skb, GFP_ATOMIC); 5601 if (unlikely(!skb)) 5602 goto err_free; 5603 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5604 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5605 goto err_free; 5606 5607 vhdr = (struct vlan_hdr *)skb->data; 5608 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5609 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5610 5611 skb_pull_rcsum(skb, VLAN_HLEN); 5612 vlan_set_encap_proto(skb, vhdr); 5613 5614 skb = skb_reorder_vlan_header(skb); 5615 if (unlikely(!skb)) 5616 goto err_free; 5617 5618 skb_reset_network_header(skb); 5619 if (!skb_transport_header_was_set(skb)) 5620 skb_reset_transport_header(skb); 5621 skb_reset_mac_len(skb); 5622 5623 return skb; 5624 5625 err_free: 5626 kfree_skb(skb); 5627 return NULL; 5628 } 5629 EXPORT_SYMBOL(skb_vlan_untag); 5630 5631 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 5632 { 5633 if (!pskb_may_pull(skb, write_len)) 5634 return -ENOMEM; 5635 5636 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5637 return 0; 5638 5639 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5640 } 5641 EXPORT_SYMBOL(skb_ensure_writable); 5642 5643 /* remove VLAN header from packet and update csum accordingly. 5644 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5645 */ 5646 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5647 { 5648 struct vlan_hdr *vhdr; 5649 int offset = skb->data - skb_mac_header(skb); 5650 int err; 5651 5652 if (WARN_ONCE(offset, 5653 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5654 offset)) { 5655 return -EINVAL; 5656 } 5657 5658 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5659 if (unlikely(err)) 5660 return err; 5661 5662 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5663 5664 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5665 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5666 5667 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5668 __skb_pull(skb, VLAN_HLEN); 5669 5670 vlan_set_encap_proto(skb, vhdr); 5671 skb->mac_header += VLAN_HLEN; 5672 5673 if (skb_network_offset(skb) < ETH_HLEN) 5674 skb_set_network_header(skb, ETH_HLEN); 5675 5676 skb_reset_mac_len(skb); 5677 5678 return err; 5679 } 5680 EXPORT_SYMBOL(__skb_vlan_pop); 5681 5682 /* Pop a vlan tag either from hwaccel or from payload. 5683 * Expects skb->data at mac header. 5684 */ 5685 int skb_vlan_pop(struct sk_buff *skb) 5686 { 5687 u16 vlan_tci; 5688 __be16 vlan_proto; 5689 int err; 5690 5691 if (likely(skb_vlan_tag_present(skb))) { 5692 __vlan_hwaccel_clear_tag(skb); 5693 } else { 5694 if (unlikely(!eth_type_vlan(skb->protocol))) 5695 return 0; 5696 5697 err = __skb_vlan_pop(skb, &vlan_tci); 5698 if (err) 5699 return err; 5700 } 5701 /* move next vlan tag to hw accel tag */ 5702 if (likely(!eth_type_vlan(skb->protocol))) 5703 return 0; 5704 5705 vlan_proto = skb->protocol; 5706 err = __skb_vlan_pop(skb, &vlan_tci); 5707 if (unlikely(err)) 5708 return err; 5709 5710 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5711 return 0; 5712 } 5713 EXPORT_SYMBOL(skb_vlan_pop); 5714 5715 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5716 * Expects skb->data at mac header. 5717 */ 5718 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5719 { 5720 if (skb_vlan_tag_present(skb)) { 5721 int offset = skb->data - skb_mac_header(skb); 5722 int err; 5723 5724 if (WARN_ONCE(offset, 5725 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5726 offset)) { 5727 return -EINVAL; 5728 } 5729 5730 err = __vlan_insert_tag(skb, skb->vlan_proto, 5731 skb_vlan_tag_get(skb)); 5732 if (err) 5733 return err; 5734 5735 skb->protocol = skb->vlan_proto; 5736 skb->mac_len += VLAN_HLEN; 5737 5738 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5739 } 5740 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5741 return 0; 5742 } 5743 EXPORT_SYMBOL(skb_vlan_push); 5744 5745 /** 5746 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5747 * 5748 * @skb: Socket buffer to modify 5749 * 5750 * Drop the Ethernet header of @skb. 5751 * 5752 * Expects that skb->data points to the mac header and that no VLAN tags are 5753 * present. 5754 * 5755 * Returns 0 on success, -errno otherwise. 5756 */ 5757 int skb_eth_pop(struct sk_buff *skb) 5758 { 5759 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5760 skb_network_offset(skb) < ETH_HLEN) 5761 return -EPROTO; 5762 5763 skb_pull_rcsum(skb, ETH_HLEN); 5764 skb_reset_mac_header(skb); 5765 skb_reset_mac_len(skb); 5766 5767 return 0; 5768 } 5769 EXPORT_SYMBOL(skb_eth_pop); 5770 5771 /** 5772 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5773 * 5774 * @skb: Socket buffer to modify 5775 * @dst: Destination MAC address of the new header 5776 * @src: Source MAC address of the new header 5777 * 5778 * Prepend @skb with a new Ethernet header. 5779 * 5780 * Expects that skb->data points to the mac header, which must be empty. 5781 * 5782 * Returns 0 on success, -errno otherwise. 5783 */ 5784 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5785 const unsigned char *src) 5786 { 5787 struct ethhdr *eth; 5788 int err; 5789 5790 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5791 return -EPROTO; 5792 5793 err = skb_cow_head(skb, sizeof(*eth)); 5794 if (err < 0) 5795 return err; 5796 5797 skb_push(skb, sizeof(*eth)); 5798 skb_reset_mac_header(skb); 5799 skb_reset_mac_len(skb); 5800 5801 eth = eth_hdr(skb); 5802 ether_addr_copy(eth->h_dest, dst); 5803 ether_addr_copy(eth->h_source, src); 5804 eth->h_proto = skb->protocol; 5805 5806 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5807 5808 return 0; 5809 } 5810 EXPORT_SYMBOL(skb_eth_push); 5811 5812 /* Update the ethertype of hdr and the skb csum value if required. */ 5813 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5814 __be16 ethertype) 5815 { 5816 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5817 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5818 5819 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5820 } 5821 5822 hdr->h_proto = ethertype; 5823 } 5824 5825 /** 5826 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5827 * the packet 5828 * 5829 * @skb: buffer 5830 * @mpls_lse: MPLS label stack entry to push 5831 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5832 * @mac_len: length of the MAC header 5833 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5834 * ethernet 5835 * 5836 * Expects skb->data at mac header. 5837 * 5838 * Returns 0 on success, -errno otherwise. 5839 */ 5840 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5841 int mac_len, bool ethernet) 5842 { 5843 struct mpls_shim_hdr *lse; 5844 int err; 5845 5846 if (unlikely(!eth_p_mpls(mpls_proto))) 5847 return -EINVAL; 5848 5849 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5850 if (skb->encapsulation) 5851 return -EINVAL; 5852 5853 err = skb_cow_head(skb, MPLS_HLEN); 5854 if (unlikely(err)) 5855 return err; 5856 5857 if (!skb->inner_protocol) { 5858 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5859 skb_set_inner_protocol(skb, skb->protocol); 5860 } 5861 5862 skb_push(skb, MPLS_HLEN); 5863 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5864 mac_len); 5865 skb_reset_mac_header(skb); 5866 skb_set_network_header(skb, mac_len); 5867 skb_reset_mac_len(skb); 5868 5869 lse = mpls_hdr(skb); 5870 lse->label_stack_entry = mpls_lse; 5871 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5872 5873 if (ethernet && mac_len >= ETH_HLEN) 5874 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5875 skb->protocol = mpls_proto; 5876 5877 return 0; 5878 } 5879 EXPORT_SYMBOL_GPL(skb_mpls_push); 5880 5881 /** 5882 * skb_mpls_pop() - pop the outermost MPLS header 5883 * 5884 * @skb: buffer 5885 * @next_proto: ethertype of header after popped MPLS header 5886 * @mac_len: length of the MAC header 5887 * @ethernet: flag to indicate if the packet is ethernet 5888 * 5889 * Expects skb->data at mac header. 5890 * 5891 * Returns 0 on success, -errno otherwise. 5892 */ 5893 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5894 bool ethernet) 5895 { 5896 int err; 5897 5898 if (unlikely(!eth_p_mpls(skb->protocol))) 5899 return 0; 5900 5901 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5902 if (unlikely(err)) 5903 return err; 5904 5905 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5906 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5907 mac_len); 5908 5909 __skb_pull(skb, MPLS_HLEN); 5910 skb_reset_mac_header(skb); 5911 skb_set_network_header(skb, mac_len); 5912 5913 if (ethernet && mac_len >= ETH_HLEN) { 5914 struct ethhdr *hdr; 5915 5916 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5917 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5918 skb_mod_eth_type(skb, hdr, next_proto); 5919 } 5920 skb->protocol = next_proto; 5921 5922 return 0; 5923 } 5924 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5925 5926 /** 5927 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5928 * 5929 * @skb: buffer 5930 * @mpls_lse: new MPLS label stack entry to update to 5931 * 5932 * Expects skb->data at mac header. 5933 * 5934 * Returns 0 on success, -errno otherwise. 5935 */ 5936 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5937 { 5938 int err; 5939 5940 if (unlikely(!eth_p_mpls(skb->protocol))) 5941 return -EINVAL; 5942 5943 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5944 if (unlikely(err)) 5945 return err; 5946 5947 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5948 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5949 5950 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5951 } 5952 5953 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5954 5955 return 0; 5956 } 5957 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5958 5959 /** 5960 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5961 * 5962 * @skb: buffer 5963 * 5964 * Expects skb->data at mac header. 5965 * 5966 * Returns 0 on success, -errno otherwise. 5967 */ 5968 int skb_mpls_dec_ttl(struct sk_buff *skb) 5969 { 5970 u32 lse; 5971 u8 ttl; 5972 5973 if (unlikely(!eth_p_mpls(skb->protocol))) 5974 return -EINVAL; 5975 5976 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 5977 return -ENOMEM; 5978 5979 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5980 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5981 if (!--ttl) 5982 return -EINVAL; 5983 5984 lse &= ~MPLS_LS_TTL_MASK; 5985 lse |= ttl << MPLS_LS_TTL_SHIFT; 5986 5987 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5988 } 5989 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5990 5991 /** 5992 * alloc_skb_with_frags - allocate skb with page frags 5993 * 5994 * @header_len: size of linear part 5995 * @data_len: needed length in frags 5996 * @max_page_order: max page order desired. 5997 * @errcode: pointer to error code if any 5998 * @gfp_mask: allocation mask 5999 * 6000 * This can be used to allocate a paged skb, given a maximal order for frags. 6001 */ 6002 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6003 unsigned long data_len, 6004 int max_page_order, 6005 int *errcode, 6006 gfp_t gfp_mask) 6007 { 6008 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 6009 unsigned long chunk; 6010 struct sk_buff *skb; 6011 struct page *page; 6012 int i; 6013 6014 *errcode = -EMSGSIZE; 6015 /* Note this test could be relaxed, if we succeed to allocate 6016 * high order pages... 6017 */ 6018 if (npages > MAX_SKB_FRAGS) 6019 return NULL; 6020 6021 *errcode = -ENOBUFS; 6022 skb = alloc_skb(header_len, gfp_mask); 6023 if (!skb) 6024 return NULL; 6025 6026 skb->truesize += npages << PAGE_SHIFT; 6027 6028 for (i = 0; npages > 0; i++) { 6029 int order = max_page_order; 6030 6031 while (order) { 6032 if (npages >= 1 << order) { 6033 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6034 __GFP_COMP | 6035 __GFP_NOWARN, 6036 order); 6037 if (page) 6038 goto fill_page; 6039 /* Do not retry other high order allocations */ 6040 order = 1; 6041 max_page_order = 0; 6042 } 6043 order--; 6044 } 6045 page = alloc_page(gfp_mask); 6046 if (!page) 6047 goto failure; 6048 fill_page: 6049 chunk = min_t(unsigned long, data_len, 6050 PAGE_SIZE << order); 6051 skb_fill_page_desc(skb, i, page, 0, chunk); 6052 data_len -= chunk; 6053 npages -= 1 << order; 6054 } 6055 return skb; 6056 6057 failure: 6058 kfree_skb(skb); 6059 return NULL; 6060 } 6061 EXPORT_SYMBOL(alloc_skb_with_frags); 6062 6063 /* carve out the first off bytes from skb when off < headlen */ 6064 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6065 const int headlen, gfp_t gfp_mask) 6066 { 6067 int i; 6068 int size = skb_end_offset(skb); 6069 int new_hlen = headlen - off; 6070 u8 *data; 6071 6072 size = SKB_DATA_ALIGN(size); 6073 6074 if (skb_pfmemalloc(skb)) 6075 gfp_mask |= __GFP_MEMALLOC; 6076 data = kmalloc_reserve(size + 6077 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6078 gfp_mask, NUMA_NO_NODE, NULL); 6079 if (!data) 6080 return -ENOMEM; 6081 6082 size = SKB_WITH_OVERHEAD(ksize(data)); 6083 6084 /* Copy real data, and all frags */ 6085 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6086 skb->len -= off; 6087 6088 memcpy((struct skb_shared_info *)(data + size), 6089 skb_shinfo(skb), 6090 offsetof(struct skb_shared_info, 6091 frags[skb_shinfo(skb)->nr_frags])); 6092 if (skb_cloned(skb)) { 6093 /* drop the old head gracefully */ 6094 if (skb_orphan_frags(skb, gfp_mask)) { 6095 kfree(data); 6096 return -ENOMEM; 6097 } 6098 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6099 skb_frag_ref(skb, i); 6100 if (skb_has_frag_list(skb)) 6101 skb_clone_fraglist(skb); 6102 skb_release_data(skb); 6103 } else { 6104 /* we can reuse existing recount- all we did was 6105 * relocate values 6106 */ 6107 skb_free_head(skb); 6108 } 6109 6110 skb->head = data; 6111 skb->data = data; 6112 skb->head_frag = 0; 6113 skb_set_end_offset(skb, size); 6114 skb_set_tail_pointer(skb, skb_headlen(skb)); 6115 skb_headers_offset_update(skb, 0); 6116 skb->cloned = 0; 6117 skb->hdr_len = 0; 6118 skb->nohdr = 0; 6119 atomic_set(&skb_shinfo(skb)->dataref, 1); 6120 6121 return 0; 6122 } 6123 6124 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6125 6126 /* carve out the first eat bytes from skb's frag_list. May recurse into 6127 * pskb_carve() 6128 */ 6129 static int pskb_carve_frag_list(struct sk_buff *skb, 6130 struct skb_shared_info *shinfo, int eat, 6131 gfp_t gfp_mask) 6132 { 6133 struct sk_buff *list = shinfo->frag_list; 6134 struct sk_buff *clone = NULL; 6135 struct sk_buff *insp = NULL; 6136 6137 do { 6138 if (!list) { 6139 pr_err("Not enough bytes to eat. Want %d\n", eat); 6140 return -EFAULT; 6141 } 6142 if (list->len <= eat) { 6143 /* Eaten as whole. */ 6144 eat -= list->len; 6145 list = list->next; 6146 insp = list; 6147 } else { 6148 /* Eaten partially. */ 6149 if (skb_shared(list)) { 6150 clone = skb_clone(list, gfp_mask); 6151 if (!clone) 6152 return -ENOMEM; 6153 insp = list->next; 6154 list = clone; 6155 } else { 6156 /* This may be pulled without problems. */ 6157 insp = list; 6158 } 6159 if (pskb_carve(list, eat, gfp_mask) < 0) { 6160 kfree_skb(clone); 6161 return -ENOMEM; 6162 } 6163 break; 6164 } 6165 } while (eat); 6166 6167 /* Free pulled out fragments. */ 6168 while ((list = shinfo->frag_list) != insp) { 6169 shinfo->frag_list = list->next; 6170 consume_skb(list); 6171 } 6172 /* And insert new clone at head. */ 6173 if (clone) { 6174 clone->next = list; 6175 shinfo->frag_list = clone; 6176 } 6177 return 0; 6178 } 6179 6180 /* carve off first len bytes from skb. Split line (off) is in the 6181 * non-linear part of skb 6182 */ 6183 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6184 int pos, gfp_t gfp_mask) 6185 { 6186 int i, k = 0; 6187 int size = skb_end_offset(skb); 6188 u8 *data; 6189 const int nfrags = skb_shinfo(skb)->nr_frags; 6190 struct skb_shared_info *shinfo; 6191 6192 size = SKB_DATA_ALIGN(size); 6193 6194 if (skb_pfmemalloc(skb)) 6195 gfp_mask |= __GFP_MEMALLOC; 6196 data = kmalloc_reserve(size + 6197 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6198 gfp_mask, NUMA_NO_NODE, NULL); 6199 if (!data) 6200 return -ENOMEM; 6201 6202 size = SKB_WITH_OVERHEAD(ksize(data)); 6203 6204 memcpy((struct skb_shared_info *)(data + size), 6205 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6206 if (skb_orphan_frags(skb, gfp_mask)) { 6207 kfree(data); 6208 return -ENOMEM; 6209 } 6210 shinfo = (struct skb_shared_info *)(data + size); 6211 for (i = 0; i < nfrags; i++) { 6212 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6213 6214 if (pos + fsize > off) { 6215 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6216 6217 if (pos < off) { 6218 /* Split frag. 6219 * We have two variants in this case: 6220 * 1. Move all the frag to the second 6221 * part, if it is possible. F.e. 6222 * this approach is mandatory for TUX, 6223 * where splitting is expensive. 6224 * 2. Split is accurately. We make this. 6225 */ 6226 skb_frag_off_add(&shinfo->frags[0], off - pos); 6227 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6228 } 6229 skb_frag_ref(skb, i); 6230 k++; 6231 } 6232 pos += fsize; 6233 } 6234 shinfo->nr_frags = k; 6235 if (skb_has_frag_list(skb)) 6236 skb_clone_fraglist(skb); 6237 6238 /* split line is in frag list */ 6239 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6240 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6241 if (skb_has_frag_list(skb)) 6242 kfree_skb_list(skb_shinfo(skb)->frag_list); 6243 kfree(data); 6244 return -ENOMEM; 6245 } 6246 skb_release_data(skb); 6247 6248 skb->head = data; 6249 skb->head_frag = 0; 6250 skb->data = data; 6251 skb_set_end_offset(skb, size); 6252 skb_reset_tail_pointer(skb); 6253 skb_headers_offset_update(skb, 0); 6254 skb->cloned = 0; 6255 skb->hdr_len = 0; 6256 skb->nohdr = 0; 6257 skb->len -= off; 6258 skb->data_len = skb->len; 6259 atomic_set(&skb_shinfo(skb)->dataref, 1); 6260 return 0; 6261 } 6262 6263 /* remove len bytes from the beginning of the skb */ 6264 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6265 { 6266 int headlen = skb_headlen(skb); 6267 6268 if (len < headlen) 6269 return pskb_carve_inside_header(skb, len, headlen, gfp); 6270 else 6271 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6272 } 6273 6274 /* Extract to_copy bytes starting at off from skb, and return this in 6275 * a new skb 6276 */ 6277 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6278 int to_copy, gfp_t gfp) 6279 { 6280 struct sk_buff *clone = skb_clone(skb, gfp); 6281 6282 if (!clone) 6283 return NULL; 6284 6285 if (pskb_carve(clone, off, gfp) < 0 || 6286 pskb_trim(clone, to_copy)) { 6287 kfree_skb(clone); 6288 return NULL; 6289 } 6290 return clone; 6291 } 6292 EXPORT_SYMBOL(pskb_extract); 6293 6294 /** 6295 * skb_condense - try to get rid of fragments/frag_list if possible 6296 * @skb: buffer 6297 * 6298 * Can be used to save memory before skb is added to a busy queue. 6299 * If packet has bytes in frags and enough tail room in skb->head, 6300 * pull all of them, so that we can free the frags right now and adjust 6301 * truesize. 6302 * Notes: 6303 * We do not reallocate skb->head thus can not fail. 6304 * Caller must re-evaluate skb->truesize if needed. 6305 */ 6306 void skb_condense(struct sk_buff *skb) 6307 { 6308 if (skb->data_len) { 6309 if (skb->data_len > skb->end - skb->tail || 6310 skb_cloned(skb)) 6311 return; 6312 6313 /* Nice, we can free page frag(s) right now */ 6314 __pskb_pull_tail(skb, skb->data_len); 6315 } 6316 /* At this point, skb->truesize might be over estimated, 6317 * because skb had a fragment, and fragments do not tell 6318 * their truesize. 6319 * When we pulled its content into skb->head, fragment 6320 * was freed, but __pskb_pull_tail() could not possibly 6321 * adjust skb->truesize, not knowing the frag truesize. 6322 */ 6323 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6324 } 6325 6326 #ifdef CONFIG_SKB_EXTENSIONS 6327 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6328 { 6329 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6330 } 6331 6332 /** 6333 * __skb_ext_alloc - allocate a new skb extensions storage 6334 * 6335 * @flags: See kmalloc(). 6336 * 6337 * Returns the newly allocated pointer. The pointer can later attached to a 6338 * skb via __skb_ext_set(). 6339 * Note: caller must handle the skb_ext as an opaque data. 6340 */ 6341 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6342 { 6343 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6344 6345 if (new) { 6346 memset(new->offset, 0, sizeof(new->offset)); 6347 refcount_set(&new->refcnt, 1); 6348 } 6349 6350 return new; 6351 } 6352 6353 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6354 unsigned int old_active) 6355 { 6356 struct skb_ext *new; 6357 6358 if (refcount_read(&old->refcnt) == 1) 6359 return old; 6360 6361 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6362 if (!new) 6363 return NULL; 6364 6365 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6366 refcount_set(&new->refcnt, 1); 6367 6368 #ifdef CONFIG_XFRM 6369 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6370 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6371 unsigned int i; 6372 6373 for (i = 0; i < sp->len; i++) 6374 xfrm_state_hold(sp->xvec[i]); 6375 } 6376 #endif 6377 __skb_ext_put(old); 6378 return new; 6379 } 6380 6381 /** 6382 * __skb_ext_set - attach the specified extension storage to this skb 6383 * @skb: buffer 6384 * @id: extension id 6385 * @ext: extension storage previously allocated via __skb_ext_alloc() 6386 * 6387 * Existing extensions, if any, are cleared. 6388 * 6389 * Returns the pointer to the extension. 6390 */ 6391 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6392 struct skb_ext *ext) 6393 { 6394 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6395 6396 skb_ext_put(skb); 6397 newlen = newoff + skb_ext_type_len[id]; 6398 ext->chunks = newlen; 6399 ext->offset[id] = newoff; 6400 skb->extensions = ext; 6401 skb->active_extensions = 1 << id; 6402 return skb_ext_get_ptr(ext, id); 6403 } 6404 6405 /** 6406 * skb_ext_add - allocate space for given extension, COW if needed 6407 * @skb: buffer 6408 * @id: extension to allocate space for 6409 * 6410 * Allocates enough space for the given extension. 6411 * If the extension is already present, a pointer to that extension 6412 * is returned. 6413 * 6414 * If the skb was cloned, COW applies and the returned memory can be 6415 * modified without changing the extension space of clones buffers. 6416 * 6417 * Returns pointer to the extension or NULL on allocation failure. 6418 */ 6419 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6420 { 6421 struct skb_ext *new, *old = NULL; 6422 unsigned int newlen, newoff; 6423 6424 if (skb->active_extensions) { 6425 old = skb->extensions; 6426 6427 new = skb_ext_maybe_cow(old, skb->active_extensions); 6428 if (!new) 6429 return NULL; 6430 6431 if (__skb_ext_exist(new, id)) 6432 goto set_active; 6433 6434 newoff = new->chunks; 6435 } else { 6436 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6437 6438 new = __skb_ext_alloc(GFP_ATOMIC); 6439 if (!new) 6440 return NULL; 6441 } 6442 6443 newlen = newoff + skb_ext_type_len[id]; 6444 new->chunks = newlen; 6445 new->offset[id] = newoff; 6446 set_active: 6447 skb->slow_gro = 1; 6448 skb->extensions = new; 6449 skb->active_extensions |= 1 << id; 6450 return skb_ext_get_ptr(new, id); 6451 } 6452 EXPORT_SYMBOL(skb_ext_add); 6453 6454 #ifdef CONFIG_XFRM 6455 static void skb_ext_put_sp(struct sec_path *sp) 6456 { 6457 unsigned int i; 6458 6459 for (i = 0; i < sp->len; i++) 6460 xfrm_state_put(sp->xvec[i]); 6461 } 6462 #endif 6463 6464 #ifdef CONFIG_MCTP_FLOWS 6465 static void skb_ext_put_mctp(struct mctp_flow *flow) 6466 { 6467 if (flow->key) 6468 mctp_key_unref(flow->key); 6469 } 6470 #endif 6471 6472 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6473 { 6474 struct skb_ext *ext = skb->extensions; 6475 6476 skb->active_extensions &= ~(1 << id); 6477 if (skb->active_extensions == 0) { 6478 skb->extensions = NULL; 6479 __skb_ext_put(ext); 6480 #ifdef CONFIG_XFRM 6481 } else if (id == SKB_EXT_SEC_PATH && 6482 refcount_read(&ext->refcnt) == 1) { 6483 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6484 6485 skb_ext_put_sp(sp); 6486 sp->len = 0; 6487 #endif 6488 } 6489 } 6490 EXPORT_SYMBOL(__skb_ext_del); 6491 6492 void __skb_ext_put(struct skb_ext *ext) 6493 { 6494 /* If this is last clone, nothing can increment 6495 * it after check passes. Avoids one atomic op. 6496 */ 6497 if (refcount_read(&ext->refcnt) == 1) 6498 goto free_now; 6499 6500 if (!refcount_dec_and_test(&ext->refcnt)) 6501 return; 6502 free_now: 6503 #ifdef CONFIG_XFRM 6504 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6505 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6506 #endif 6507 #ifdef CONFIG_MCTP_FLOWS 6508 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6509 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6510 #endif 6511 6512 kmem_cache_free(skbuff_ext_cache, ext); 6513 } 6514 EXPORT_SYMBOL(__skb_ext_put); 6515 #endif /* CONFIG_SKB_EXTENSIONS */ 6516 6517 /** 6518 * skb_attempt_defer_free - queue skb for remote freeing 6519 * @skb: buffer 6520 * 6521 * Put @skb in a per-cpu list, using the cpu which 6522 * allocated the skb/pages to reduce false sharing 6523 * and memory zone spinlock contention. 6524 */ 6525 void skb_attempt_defer_free(struct sk_buff *skb) 6526 { 6527 int cpu = skb->alloc_cpu; 6528 struct softnet_data *sd; 6529 unsigned long flags; 6530 unsigned int defer_max; 6531 bool kick; 6532 6533 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 6534 !cpu_online(cpu) || 6535 cpu == raw_smp_processor_id()) { 6536 nodefer: __kfree_skb(skb); 6537 return; 6538 } 6539 6540 sd = &per_cpu(softnet_data, cpu); 6541 defer_max = READ_ONCE(sysctl_skb_defer_max); 6542 if (READ_ONCE(sd->defer_count) >= defer_max) 6543 goto nodefer; 6544 6545 spin_lock_irqsave(&sd->defer_lock, flags); 6546 /* Send an IPI every time queue reaches half capacity. */ 6547 kick = sd->defer_count == (defer_max >> 1); 6548 /* Paired with the READ_ONCE() few lines above */ 6549 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 6550 6551 skb->next = sd->defer_list; 6552 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 6553 WRITE_ONCE(sd->defer_list, skb); 6554 spin_unlock_irqrestore(&sd->defer_lock, flags); 6555 6556 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 6557 * if we are unlucky enough (this seems very unlikely). 6558 */ 6559 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) 6560 smp_call_function_single_async(cpu, &sd->defer_csd); 6561 } 6562