1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $ 8 * 9 * Fixes: 10 * Alan Cox : Fixed the worst of the load 11 * balancer bugs. 12 * Dave Platt : Interrupt stacking fix. 13 * Richard Kooijman : Timestamp fixes. 14 * Alan Cox : Changed buffer format. 15 * Alan Cox : destructor hook for AF_UNIX etc. 16 * Linus Torvalds : Better skb_clone. 17 * Alan Cox : Added skb_copy. 18 * Alan Cox : Added all the changed routines Linus 19 * only put in the headers 20 * Ray VanTassle : Fixed --skb->lock in free 21 * Alan Cox : skb_copy copy arp field 22 * Andi Kleen : slabified it. 23 * Robert Olsson : Removed skb_head_pool 24 * 25 * NOTE: 26 * The __skb_ routines should be called with interrupts 27 * disabled, or you better be *real* sure that the operation is atomic 28 * with respect to whatever list is being frobbed (e.g. via lock_sock() 29 * or via disabling bottom half handlers, etc). 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License 33 * as published by the Free Software Foundation; either version 34 * 2 of the License, or (at your option) any later version. 35 */ 36 37 /* 38 * The functions in this file will not compile correctly with gcc 2.4.x 39 */ 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/mm.h> 45 #include <linux/interrupt.h> 46 #include <linux/in.h> 47 #include <linux/inet.h> 48 #include <linux/slab.h> 49 #include <linux/netdevice.h> 50 #ifdef CONFIG_NET_CLS_ACT 51 #include <net/pkt_sched.h> 52 #endif 53 #include <linux/string.h> 54 #include <linux/skbuff.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 60 #include <net/protocol.h> 61 #include <net/dst.h> 62 #include <net/sock.h> 63 #include <net/checksum.h> 64 #include <net/xfrm.h> 65 66 #include <asm/uaccess.h> 67 #include <asm/system.h> 68 69 #include "kmap_skb.h" 70 71 static struct kmem_cache *skbuff_head_cache __read_mostly; 72 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 73 74 /* 75 * Keep out-of-line to prevent kernel bloat. 76 * __builtin_return_address is not used because it is not always 77 * reliable. 78 */ 79 80 /** 81 * skb_over_panic - private function 82 * @skb: buffer 83 * @sz: size 84 * @here: address 85 * 86 * Out of line support code for skb_put(). Not user callable. 87 */ 88 void skb_over_panic(struct sk_buff *skb, int sz, void *here) 89 { 90 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 91 "data:%p tail:%#lx end:%#lx dev:%s\n", 92 here, skb->len, sz, skb->head, skb->data, 93 (unsigned long)skb->tail, (unsigned long)skb->end, 94 skb->dev ? skb->dev->name : "<NULL>"); 95 BUG(); 96 } 97 98 /** 99 * skb_under_panic - private function 100 * @skb: buffer 101 * @sz: size 102 * @here: address 103 * 104 * Out of line support code for skb_push(). Not user callable. 105 */ 106 107 void skb_under_panic(struct sk_buff *skb, int sz, void *here) 108 { 109 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 110 "data:%p tail:%#lx end:%#lx dev:%s\n", 111 here, skb->len, sz, skb->head, skb->data, 112 (unsigned long)skb->tail, (unsigned long)skb->end, 113 skb->dev ? skb->dev->name : "<NULL>"); 114 BUG(); 115 } 116 117 void skb_truesize_bug(struct sk_buff *skb) 118 { 119 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) " 120 "len=%u, sizeof(sk_buff)=%Zd\n", 121 skb->truesize, skb->len, sizeof(struct sk_buff)); 122 } 123 EXPORT_SYMBOL(skb_truesize_bug); 124 125 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 126 * 'private' fields and also do memory statistics to find all the 127 * [BEEP] leaks. 128 * 129 */ 130 131 /** 132 * __alloc_skb - allocate a network buffer 133 * @size: size to allocate 134 * @gfp_mask: allocation mask 135 * @fclone: allocate from fclone cache instead of head cache 136 * and allocate a cloned (child) skb 137 * @node: numa node to allocate memory on 138 * 139 * Allocate a new &sk_buff. The returned buffer has no headroom and a 140 * tail room of size bytes. The object has a reference count of one. 141 * The return is the buffer. On a failure the return is %NULL. 142 * 143 * Buffers may only be allocated from interrupts using a @gfp_mask of 144 * %GFP_ATOMIC. 145 */ 146 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 147 int fclone, int node) 148 { 149 struct kmem_cache *cache; 150 struct skb_shared_info *shinfo; 151 struct sk_buff *skb; 152 u8 *data; 153 154 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 155 156 /* Get the HEAD */ 157 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 158 if (!skb) 159 goto out; 160 161 size = SKB_DATA_ALIGN(size); 162 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info), 163 gfp_mask, node); 164 if (!data) 165 goto nodata; 166 167 /* 168 * See comment in sk_buff definition, just before the 'tail' member 169 */ 170 memset(skb, 0, offsetof(struct sk_buff, tail)); 171 skb->truesize = size + sizeof(struct sk_buff); 172 atomic_set(&skb->users, 1); 173 skb->head = data; 174 skb->data = data; 175 skb_reset_tail_pointer(skb); 176 skb->end = skb->tail + size; 177 /* make sure we initialize shinfo sequentially */ 178 shinfo = skb_shinfo(skb); 179 atomic_set(&shinfo->dataref, 1); 180 shinfo->nr_frags = 0; 181 shinfo->gso_size = 0; 182 shinfo->gso_segs = 0; 183 shinfo->gso_type = 0; 184 shinfo->ip6_frag_id = 0; 185 shinfo->frag_list = NULL; 186 187 if (fclone) { 188 struct sk_buff *child = skb + 1; 189 atomic_t *fclone_ref = (atomic_t *) (child + 1); 190 191 skb->fclone = SKB_FCLONE_ORIG; 192 atomic_set(fclone_ref, 1); 193 194 child->fclone = SKB_FCLONE_UNAVAILABLE; 195 } 196 out: 197 return skb; 198 nodata: 199 kmem_cache_free(cache, skb); 200 skb = NULL; 201 goto out; 202 } 203 204 /** 205 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 206 * @dev: network device to receive on 207 * @length: length to allocate 208 * @gfp_mask: get_free_pages mask, passed to alloc_skb 209 * 210 * Allocate a new &sk_buff and assign it a usage count of one. The 211 * buffer has unspecified headroom built in. Users should allocate 212 * the headroom they think they need without accounting for the 213 * built in space. The built in space is used for optimisations. 214 * 215 * %NULL is returned if there is no free memory. 216 */ 217 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 218 unsigned int length, gfp_t gfp_mask) 219 { 220 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1; 221 struct sk_buff *skb; 222 223 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node); 224 if (likely(skb)) { 225 skb_reserve(skb, NET_SKB_PAD); 226 skb->dev = dev; 227 } 228 return skb; 229 } 230 231 static void skb_drop_list(struct sk_buff **listp) 232 { 233 struct sk_buff *list = *listp; 234 235 *listp = NULL; 236 237 do { 238 struct sk_buff *this = list; 239 list = list->next; 240 kfree_skb(this); 241 } while (list); 242 } 243 244 static inline void skb_drop_fraglist(struct sk_buff *skb) 245 { 246 skb_drop_list(&skb_shinfo(skb)->frag_list); 247 } 248 249 static void skb_clone_fraglist(struct sk_buff *skb) 250 { 251 struct sk_buff *list; 252 253 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) 254 skb_get(list); 255 } 256 257 static void skb_release_data(struct sk_buff *skb) 258 { 259 if (!skb->cloned || 260 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 261 &skb_shinfo(skb)->dataref)) { 262 if (skb_shinfo(skb)->nr_frags) { 263 int i; 264 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 265 put_page(skb_shinfo(skb)->frags[i].page); 266 } 267 268 if (skb_shinfo(skb)->frag_list) 269 skb_drop_fraglist(skb); 270 271 kfree(skb->head); 272 } 273 } 274 275 /* 276 * Free an skbuff by memory without cleaning the state. 277 */ 278 void kfree_skbmem(struct sk_buff *skb) 279 { 280 struct sk_buff *other; 281 atomic_t *fclone_ref; 282 283 skb_release_data(skb); 284 switch (skb->fclone) { 285 case SKB_FCLONE_UNAVAILABLE: 286 kmem_cache_free(skbuff_head_cache, skb); 287 break; 288 289 case SKB_FCLONE_ORIG: 290 fclone_ref = (atomic_t *) (skb + 2); 291 if (atomic_dec_and_test(fclone_ref)) 292 kmem_cache_free(skbuff_fclone_cache, skb); 293 break; 294 295 case SKB_FCLONE_CLONE: 296 fclone_ref = (atomic_t *) (skb + 1); 297 other = skb - 1; 298 299 /* The clone portion is available for 300 * fast-cloning again. 301 */ 302 skb->fclone = SKB_FCLONE_UNAVAILABLE; 303 304 if (atomic_dec_and_test(fclone_ref)) 305 kmem_cache_free(skbuff_fclone_cache, other); 306 break; 307 } 308 } 309 310 /** 311 * __kfree_skb - private function 312 * @skb: buffer 313 * 314 * Free an sk_buff. Release anything attached to the buffer. 315 * Clean the state. This is an internal helper function. Users should 316 * always call kfree_skb 317 */ 318 319 void __kfree_skb(struct sk_buff *skb) 320 { 321 dst_release(skb->dst); 322 #ifdef CONFIG_XFRM 323 secpath_put(skb->sp); 324 #endif 325 if (skb->destructor) { 326 WARN_ON(in_irq()); 327 skb->destructor(skb); 328 } 329 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 330 nf_conntrack_put(skb->nfct); 331 nf_conntrack_put_reasm(skb->nfct_reasm); 332 #endif 333 #ifdef CONFIG_BRIDGE_NETFILTER 334 nf_bridge_put(skb->nf_bridge); 335 #endif 336 /* XXX: IS this still necessary? - JHS */ 337 #ifdef CONFIG_NET_SCHED 338 skb->tc_index = 0; 339 #ifdef CONFIG_NET_CLS_ACT 340 skb->tc_verd = 0; 341 #endif 342 #endif 343 344 kfree_skbmem(skb); 345 } 346 347 /** 348 * kfree_skb - free an sk_buff 349 * @skb: buffer to free 350 * 351 * Drop a reference to the buffer and free it if the usage count has 352 * hit zero. 353 */ 354 void kfree_skb(struct sk_buff *skb) 355 { 356 if (unlikely(!skb)) 357 return; 358 if (likely(atomic_read(&skb->users) == 1)) 359 smp_rmb(); 360 else if (likely(!atomic_dec_and_test(&skb->users))) 361 return; 362 __kfree_skb(skb); 363 } 364 365 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 366 { 367 new->tstamp = old->tstamp; 368 new->dev = old->dev; 369 new->transport_header = old->transport_header; 370 new->network_header = old->network_header; 371 new->mac_header = old->mac_header; 372 new->dst = dst_clone(old->dst); 373 #ifdef CONFIG_INET 374 new->sp = secpath_get(old->sp); 375 #endif 376 memcpy(new->cb, old->cb, sizeof(old->cb)); 377 new->csum_start = old->csum_start; 378 new->csum_offset = old->csum_offset; 379 new->local_df = old->local_df; 380 new->pkt_type = old->pkt_type; 381 new->ip_summed = old->ip_summed; 382 skb_copy_queue_mapping(new, old); 383 new->priority = old->priority; 384 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 385 new->ipvs_property = old->ipvs_property; 386 #endif 387 new->protocol = old->protocol; 388 new->mark = old->mark; 389 __nf_copy(new, old); 390 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \ 391 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE) 392 new->nf_trace = old->nf_trace; 393 #endif 394 #ifdef CONFIG_NET_SCHED 395 new->tc_index = old->tc_index; 396 #ifdef CONFIG_NET_CLS_ACT 397 new->tc_verd = old->tc_verd; 398 #endif 399 #endif 400 skb_copy_secmark(new, old); 401 } 402 403 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 404 { 405 #define C(x) n->x = skb->x 406 407 n->next = n->prev = NULL; 408 n->sk = NULL; 409 __copy_skb_header(n, skb); 410 411 C(len); 412 C(data_len); 413 C(mac_len); 414 n->cloned = 1; 415 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 416 n->nohdr = 0; 417 n->destructor = NULL; 418 #ifdef CONFIG_NET_CLS_ACT 419 /* FIXME What is this and why don't we do it in copy_skb_header? */ 420 n->tc_verd = SET_TC_VERD(n->tc_verd,0); 421 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd); 422 n->tc_verd = CLR_TC_MUNGED(n->tc_verd); 423 C(iif); 424 #endif 425 C(truesize); 426 atomic_set(&n->users, 1); 427 C(head); 428 C(data); 429 C(tail); 430 C(end); 431 432 atomic_inc(&(skb_shinfo(skb)->dataref)); 433 skb->cloned = 1; 434 435 return n; 436 #undef C 437 } 438 439 /** 440 * skb_morph - morph one skb into another 441 * @dst: the skb to receive the contents 442 * @src: the skb to supply the contents 443 * 444 * This is identical to skb_clone except that the target skb is 445 * supplied by the user. 446 * 447 * The target skb is returned upon exit. 448 */ 449 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 450 { 451 skb_release_data(dst); 452 return __skb_clone(dst, src); 453 } 454 EXPORT_SYMBOL_GPL(skb_morph); 455 456 /** 457 * skb_clone - duplicate an sk_buff 458 * @skb: buffer to clone 459 * @gfp_mask: allocation priority 460 * 461 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 462 * copies share the same packet data but not structure. The new 463 * buffer has a reference count of 1. If the allocation fails the 464 * function returns %NULL otherwise the new buffer is returned. 465 * 466 * If this function is called from an interrupt gfp_mask() must be 467 * %GFP_ATOMIC. 468 */ 469 470 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 471 { 472 struct sk_buff *n; 473 474 n = skb + 1; 475 if (skb->fclone == SKB_FCLONE_ORIG && 476 n->fclone == SKB_FCLONE_UNAVAILABLE) { 477 atomic_t *fclone_ref = (atomic_t *) (n + 1); 478 n->fclone = SKB_FCLONE_CLONE; 479 atomic_inc(fclone_ref); 480 } else { 481 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 482 if (!n) 483 return NULL; 484 n->fclone = SKB_FCLONE_UNAVAILABLE; 485 } 486 487 return __skb_clone(n, skb); 488 } 489 490 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 491 { 492 #ifndef NET_SKBUFF_DATA_USES_OFFSET 493 /* 494 * Shift between the two data areas in bytes 495 */ 496 unsigned long offset = new->data - old->data; 497 #endif 498 499 __copy_skb_header(new, old); 500 501 #ifndef NET_SKBUFF_DATA_USES_OFFSET 502 /* {transport,network,mac}_header are relative to skb->head */ 503 new->transport_header += offset; 504 new->network_header += offset; 505 new->mac_header += offset; 506 #endif 507 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 508 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 509 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 510 } 511 512 /** 513 * skb_copy - create private copy of an sk_buff 514 * @skb: buffer to copy 515 * @gfp_mask: allocation priority 516 * 517 * Make a copy of both an &sk_buff and its data. This is used when the 518 * caller wishes to modify the data and needs a private copy of the 519 * data to alter. Returns %NULL on failure or the pointer to the buffer 520 * on success. The returned buffer has a reference count of 1. 521 * 522 * As by-product this function converts non-linear &sk_buff to linear 523 * one, so that &sk_buff becomes completely private and caller is allowed 524 * to modify all the data of returned buffer. This means that this 525 * function is not recommended for use in circumstances when only 526 * header is going to be modified. Use pskb_copy() instead. 527 */ 528 529 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 530 { 531 int headerlen = skb->data - skb->head; 532 /* 533 * Allocate the copy buffer 534 */ 535 struct sk_buff *n; 536 #ifdef NET_SKBUFF_DATA_USES_OFFSET 537 n = alloc_skb(skb->end + skb->data_len, gfp_mask); 538 #else 539 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask); 540 #endif 541 if (!n) 542 return NULL; 543 544 /* Set the data pointer */ 545 skb_reserve(n, headerlen); 546 /* Set the tail pointer and length */ 547 skb_put(n, skb->len); 548 549 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 550 BUG(); 551 552 copy_skb_header(n, skb); 553 return n; 554 } 555 556 557 /** 558 * pskb_copy - create copy of an sk_buff with private head. 559 * @skb: buffer to copy 560 * @gfp_mask: allocation priority 561 * 562 * Make a copy of both an &sk_buff and part of its data, located 563 * in header. Fragmented data remain shared. This is used when 564 * the caller wishes to modify only header of &sk_buff and needs 565 * private copy of the header to alter. Returns %NULL on failure 566 * or the pointer to the buffer on success. 567 * The returned buffer has a reference count of 1. 568 */ 569 570 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 571 { 572 /* 573 * Allocate the copy buffer 574 */ 575 struct sk_buff *n; 576 #ifdef NET_SKBUFF_DATA_USES_OFFSET 577 n = alloc_skb(skb->end, gfp_mask); 578 #else 579 n = alloc_skb(skb->end - skb->head, gfp_mask); 580 #endif 581 if (!n) 582 goto out; 583 584 /* Set the data pointer */ 585 skb_reserve(n, skb->data - skb->head); 586 /* Set the tail pointer and length */ 587 skb_put(n, skb_headlen(skb)); 588 /* Copy the bytes */ 589 skb_copy_from_linear_data(skb, n->data, n->len); 590 591 n->truesize += skb->data_len; 592 n->data_len = skb->data_len; 593 n->len = skb->len; 594 595 if (skb_shinfo(skb)->nr_frags) { 596 int i; 597 598 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 599 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 600 get_page(skb_shinfo(n)->frags[i].page); 601 } 602 skb_shinfo(n)->nr_frags = i; 603 } 604 605 if (skb_shinfo(skb)->frag_list) { 606 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 607 skb_clone_fraglist(n); 608 } 609 610 copy_skb_header(n, skb); 611 out: 612 return n; 613 } 614 615 /** 616 * pskb_expand_head - reallocate header of &sk_buff 617 * @skb: buffer to reallocate 618 * @nhead: room to add at head 619 * @ntail: room to add at tail 620 * @gfp_mask: allocation priority 621 * 622 * Expands (or creates identical copy, if &nhead and &ntail are zero) 623 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 624 * reference count of 1. Returns zero in the case of success or error, 625 * if expansion failed. In the last case, &sk_buff is not changed. 626 * 627 * All the pointers pointing into skb header may change and must be 628 * reloaded after call to this function. 629 */ 630 631 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 632 gfp_t gfp_mask) 633 { 634 int i; 635 u8 *data; 636 #ifdef NET_SKBUFF_DATA_USES_OFFSET 637 int size = nhead + skb->end + ntail; 638 #else 639 int size = nhead + (skb->end - skb->head) + ntail; 640 #endif 641 long off; 642 643 if (skb_shared(skb)) 644 BUG(); 645 646 size = SKB_DATA_ALIGN(size); 647 648 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 649 if (!data) 650 goto nodata; 651 652 /* Copy only real data... and, alas, header. This should be 653 * optimized for the cases when header is void. */ 654 #ifdef NET_SKBUFF_DATA_USES_OFFSET 655 memcpy(data + nhead, skb->head, skb->tail); 656 #else 657 memcpy(data + nhead, skb->head, skb->tail - skb->head); 658 #endif 659 memcpy(data + size, skb_end_pointer(skb), 660 sizeof(struct skb_shared_info)); 661 662 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 663 get_page(skb_shinfo(skb)->frags[i].page); 664 665 if (skb_shinfo(skb)->frag_list) 666 skb_clone_fraglist(skb); 667 668 skb_release_data(skb); 669 670 off = (data + nhead) - skb->head; 671 672 skb->head = data; 673 skb->data += off; 674 #ifdef NET_SKBUFF_DATA_USES_OFFSET 675 skb->end = size; 676 off = nhead; 677 #else 678 skb->end = skb->head + size; 679 #endif 680 /* {transport,network,mac}_header and tail are relative to skb->head */ 681 skb->tail += off; 682 skb->transport_header += off; 683 skb->network_header += off; 684 skb->mac_header += off; 685 skb->csum_start += nhead; 686 skb->cloned = 0; 687 skb->hdr_len = 0; 688 skb->nohdr = 0; 689 atomic_set(&skb_shinfo(skb)->dataref, 1); 690 return 0; 691 692 nodata: 693 return -ENOMEM; 694 } 695 696 /* Make private copy of skb with writable head and some headroom */ 697 698 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 699 { 700 struct sk_buff *skb2; 701 int delta = headroom - skb_headroom(skb); 702 703 if (delta <= 0) 704 skb2 = pskb_copy(skb, GFP_ATOMIC); 705 else { 706 skb2 = skb_clone(skb, GFP_ATOMIC); 707 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 708 GFP_ATOMIC)) { 709 kfree_skb(skb2); 710 skb2 = NULL; 711 } 712 } 713 return skb2; 714 } 715 716 717 /** 718 * skb_copy_expand - copy and expand sk_buff 719 * @skb: buffer to copy 720 * @newheadroom: new free bytes at head 721 * @newtailroom: new free bytes at tail 722 * @gfp_mask: allocation priority 723 * 724 * Make a copy of both an &sk_buff and its data and while doing so 725 * allocate additional space. 726 * 727 * This is used when the caller wishes to modify the data and needs a 728 * private copy of the data to alter as well as more space for new fields. 729 * Returns %NULL on failure or the pointer to the buffer 730 * on success. The returned buffer has a reference count of 1. 731 * 732 * You must pass %GFP_ATOMIC as the allocation priority if this function 733 * is called from an interrupt. 734 */ 735 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 736 int newheadroom, int newtailroom, 737 gfp_t gfp_mask) 738 { 739 /* 740 * Allocate the copy buffer 741 */ 742 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 743 gfp_mask); 744 int oldheadroom = skb_headroom(skb); 745 int head_copy_len, head_copy_off; 746 int off; 747 748 if (!n) 749 return NULL; 750 751 skb_reserve(n, newheadroom); 752 753 /* Set the tail pointer and length */ 754 skb_put(n, skb->len); 755 756 head_copy_len = oldheadroom; 757 head_copy_off = 0; 758 if (newheadroom <= head_copy_len) 759 head_copy_len = newheadroom; 760 else 761 head_copy_off = newheadroom - head_copy_len; 762 763 /* Copy the linear header and data. */ 764 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 765 skb->len + head_copy_len)) 766 BUG(); 767 768 copy_skb_header(n, skb); 769 770 off = newheadroom - oldheadroom; 771 n->csum_start += off; 772 #ifdef NET_SKBUFF_DATA_USES_OFFSET 773 n->transport_header += off; 774 n->network_header += off; 775 n->mac_header += off; 776 #endif 777 778 return n; 779 } 780 781 /** 782 * skb_pad - zero pad the tail of an skb 783 * @skb: buffer to pad 784 * @pad: space to pad 785 * 786 * Ensure that a buffer is followed by a padding area that is zero 787 * filled. Used by network drivers which may DMA or transfer data 788 * beyond the buffer end onto the wire. 789 * 790 * May return error in out of memory cases. The skb is freed on error. 791 */ 792 793 int skb_pad(struct sk_buff *skb, int pad) 794 { 795 int err; 796 int ntail; 797 798 /* If the skbuff is non linear tailroom is always zero.. */ 799 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 800 memset(skb->data+skb->len, 0, pad); 801 return 0; 802 } 803 804 ntail = skb->data_len + pad - (skb->end - skb->tail); 805 if (likely(skb_cloned(skb) || ntail > 0)) { 806 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 807 if (unlikely(err)) 808 goto free_skb; 809 } 810 811 /* FIXME: The use of this function with non-linear skb's really needs 812 * to be audited. 813 */ 814 err = skb_linearize(skb); 815 if (unlikely(err)) 816 goto free_skb; 817 818 memset(skb->data + skb->len, 0, pad); 819 return 0; 820 821 free_skb: 822 kfree_skb(skb); 823 return err; 824 } 825 826 /* Trims skb to length len. It can change skb pointers. 827 */ 828 829 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 830 { 831 struct sk_buff **fragp; 832 struct sk_buff *frag; 833 int offset = skb_headlen(skb); 834 int nfrags = skb_shinfo(skb)->nr_frags; 835 int i; 836 int err; 837 838 if (skb_cloned(skb) && 839 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 840 return err; 841 842 i = 0; 843 if (offset >= len) 844 goto drop_pages; 845 846 for (; i < nfrags; i++) { 847 int end = offset + skb_shinfo(skb)->frags[i].size; 848 849 if (end < len) { 850 offset = end; 851 continue; 852 } 853 854 skb_shinfo(skb)->frags[i++].size = len - offset; 855 856 drop_pages: 857 skb_shinfo(skb)->nr_frags = i; 858 859 for (; i < nfrags; i++) 860 put_page(skb_shinfo(skb)->frags[i].page); 861 862 if (skb_shinfo(skb)->frag_list) 863 skb_drop_fraglist(skb); 864 goto done; 865 } 866 867 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 868 fragp = &frag->next) { 869 int end = offset + frag->len; 870 871 if (skb_shared(frag)) { 872 struct sk_buff *nfrag; 873 874 nfrag = skb_clone(frag, GFP_ATOMIC); 875 if (unlikely(!nfrag)) 876 return -ENOMEM; 877 878 nfrag->next = frag->next; 879 kfree_skb(frag); 880 frag = nfrag; 881 *fragp = frag; 882 } 883 884 if (end < len) { 885 offset = end; 886 continue; 887 } 888 889 if (end > len && 890 unlikely((err = pskb_trim(frag, len - offset)))) 891 return err; 892 893 if (frag->next) 894 skb_drop_list(&frag->next); 895 break; 896 } 897 898 done: 899 if (len > skb_headlen(skb)) { 900 skb->data_len -= skb->len - len; 901 skb->len = len; 902 } else { 903 skb->len = len; 904 skb->data_len = 0; 905 skb_set_tail_pointer(skb, len); 906 } 907 908 return 0; 909 } 910 911 /** 912 * __pskb_pull_tail - advance tail of skb header 913 * @skb: buffer to reallocate 914 * @delta: number of bytes to advance tail 915 * 916 * The function makes a sense only on a fragmented &sk_buff, 917 * it expands header moving its tail forward and copying necessary 918 * data from fragmented part. 919 * 920 * &sk_buff MUST have reference count of 1. 921 * 922 * Returns %NULL (and &sk_buff does not change) if pull failed 923 * or value of new tail of skb in the case of success. 924 * 925 * All the pointers pointing into skb header may change and must be 926 * reloaded after call to this function. 927 */ 928 929 /* Moves tail of skb head forward, copying data from fragmented part, 930 * when it is necessary. 931 * 1. It may fail due to malloc failure. 932 * 2. It may change skb pointers. 933 * 934 * It is pretty complicated. Luckily, it is called only in exceptional cases. 935 */ 936 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 937 { 938 /* If skb has not enough free space at tail, get new one 939 * plus 128 bytes for future expansions. If we have enough 940 * room at tail, reallocate without expansion only if skb is cloned. 941 */ 942 int i, k, eat = (skb->tail + delta) - skb->end; 943 944 if (eat > 0 || skb_cloned(skb)) { 945 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 946 GFP_ATOMIC)) 947 return NULL; 948 } 949 950 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 951 BUG(); 952 953 /* Optimization: no fragments, no reasons to preestimate 954 * size of pulled pages. Superb. 955 */ 956 if (!skb_shinfo(skb)->frag_list) 957 goto pull_pages; 958 959 /* Estimate size of pulled pages. */ 960 eat = delta; 961 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 962 if (skb_shinfo(skb)->frags[i].size >= eat) 963 goto pull_pages; 964 eat -= skb_shinfo(skb)->frags[i].size; 965 } 966 967 /* If we need update frag list, we are in troubles. 968 * Certainly, it possible to add an offset to skb data, 969 * but taking into account that pulling is expected to 970 * be very rare operation, it is worth to fight against 971 * further bloating skb head and crucify ourselves here instead. 972 * Pure masohism, indeed. 8)8) 973 */ 974 if (eat) { 975 struct sk_buff *list = skb_shinfo(skb)->frag_list; 976 struct sk_buff *clone = NULL; 977 struct sk_buff *insp = NULL; 978 979 do { 980 BUG_ON(!list); 981 982 if (list->len <= eat) { 983 /* Eaten as whole. */ 984 eat -= list->len; 985 list = list->next; 986 insp = list; 987 } else { 988 /* Eaten partially. */ 989 990 if (skb_shared(list)) { 991 /* Sucks! We need to fork list. :-( */ 992 clone = skb_clone(list, GFP_ATOMIC); 993 if (!clone) 994 return NULL; 995 insp = list->next; 996 list = clone; 997 } else { 998 /* This may be pulled without 999 * problems. */ 1000 insp = list; 1001 } 1002 if (!pskb_pull(list, eat)) { 1003 if (clone) 1004 kfree_skb(clone); 1005 return NULL; 1006 } 1007 break; 1008 } 1009 } while (eat); 1010 1011 /* Free pulled out fragments. */ 1012 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1013 skb_shinfo(skb)->frag_list = list->next; 1014 kfree_skb(list); 1015 } 1016 /* And insert new clone at head. */ 1017 if (clone) { 1018 clone->next = list; 1019 skb_shinfo(skb)->frag_list = clone; 1020 } 1021 } 1022 /* Success! Now we may commit changes to skb data. */ 1023 1024 pull_pages: 1025 eat = delta; 1026 k = 0; 1027 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1028 if (skb_shinfo(skb)->frags[i].size <= eat) { 1029 put_page(skb_shinfo(skb)->frags[i].page); 1030 eat -= skb_shinfo(skb)->frags[i].size; 1031 } else { 1032 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1033 if (eat) { 1034 skb_shinfo(skb)->frags[k].page_offset += eat; 1035 skb_shinfo(skb)->frags[k].size -= eat; 1036 eat = 0; 1037 } 1038 k++; 1039 } 1040 } 1041 skb_shinfo(skb)->nr_frags = k; 1042 1043 skb->tail += delta; 1044 skb->data_len -= delta; 1045 1046 return skb_tail_pointer(skb); 1047 } 1048 1049 /* Copy some data bits from skb to kernel buffer. */ 1050 1051 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1052 { 1053 int i, copy; 1054 int start = skb_headlen(skb); 1055 1056 if (offset > (int)skb->len - len) 1057 goto fault; 1058 1059 /* Copy header. */ 1060 if ((copy = start - offset) > 0) { 1061 if (copy > len) 1062 copy = len; 1063 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1064 if ((len -= copy) == 0) 1065 return 0; 1066 offset += copy; 1067 to += copy; 1068 } 1069 1070 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1071 int end; 1072 1073 BUG_TRAP(start <= offset + len); 1074 1075 end = start + skb_shinfo(skb)->frags[i].size; 1076 if ((copy = end - offset) > 0) { 1077 u8 *vaddr; 1078 1079 if (copy > len) 1080 copy = len; 1081 1082 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1083 memcpy(to, 1084 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1085 offset - start, copy); 1086 kunmap_skb_frag(vaddr); 1087 1088 if ((len -= copy) == 0) 1089 return 0; 1090 offset += copy; 1091 to += copy; 1092 } 1093 start = end; 1094 } 1095 1096 if (skb_shinfo(skb)->frag_list) { 1097 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1098 1099 for (; list; list = list->next) { 1100 int end; 1101 1102 BUG_TRAP(start <= offset + len); 1103 1104 end = start + list->len; 1105 if ((copy = end - offset) > 0) { 1106 if (copy > len) 1107 copy = len; 1108 if (skb_copy_bits(list, offset - start, 1109 to, copy)) 1110 goto fault; 1111 if ((len -= copy) == 0) 1112 return 0; 1113 offset += copy; 1114 to += copy; 1115 } 1116 start = end; 1117 } 1118 } 1119 if (!len) 1120 return 0; 1121 1122 fault: 1123 return -EFAULT; 1124 } 1125 1126 /** 1127 * skb_store_bits - store bits from kernel buffer to skb 1128 * @skb: destination buffer 1129 * @offset: offset in destination 1130 * @from: source buffer 1131 * @len: number of bytes to copy 1132 * 1133 * Copy the specified number of bytes from the source buffer to the 1134 * destination skb. This function handles all the messy bits of 1135 * traversing fragment lists and such. 1136 */ 1137 1138 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1139 { 1140 int i, copy; 1141 int start = skb_headlen(skb); 1142 1143 if (offset > (int)skb->len - len) 1144 goto fault; 1145 1146 if ((copy = start - offset) > 0) { 1147 if (copy > len) 1148 copy = len; 1149 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1150 if ((len -= copy) == 0) 1151 return 0; 1152 offset += copy; 1153 from += copy; 1154 } 1155 1156 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1157 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1158 int end; 1159 1160 BUG_TRAP(start <= offset + len); 1161 1162 end = start + frag->size; 1163 if ((copy = end - offset) > 0) { 1164 u8 *vaddr; 1165 1166 if (copy > len) 1167 copy = len; 1168 1169 vaddr = kmap_skb_frag(frag); 1170 memcpy(vaddr + frag->page_offset + offset - start, 1171 from, copy); 1172 kunmap_skb_frag(vaddr); 1173 1174 if ((len -= copy) == 0) 1175 return 0; 1176 offset += copy; 1177 from += copy; 1178 } 1179 start = end; 1180 } 1181 1182 if (skb_shinfo(skb)->frag_list) { 1183 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1184 1185 for (; list; list = list->next) { 1186 int end; 1187 1188 BUG_TRAP(start <= offset + len); 1189 1190 end = start + list->len; 1191 if ((copy = end - offset) > 0) { 1192 if (copy > len) 1193 copy = len; 1194 if (skb_store_bits(list, offset - start, 1195 from, copy)) 1196 goto fault; 1197 if ((len -= copy) == 0) 1198 return 0; 1199 offset += copy; 1200 from += copy; 1201 } 1202 start = end; 1203 } 1204 } 1205 if (!len) 1206 return 0; 1207 1208 fault: 1209 return -EFAULT; 1210 } 1211 1212 EXPORT_SYMBOL(skb_store_bits); 1213 1214 /* Checksum skb data. */ 1215 1216 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1217 int len, __wsum csum) 1218 { 1219 int start = skb_headlen(skb); 1220 int i, copy = start - offset; 1221 int pos = 0; 1222 1223 /* Checksum header. */ 1224 if (copy > 0) { 1225 if (copy > len) 1226 copy = len; 1227 csum = csum_partial(skb->data + offset, copy, csum); 1228 if ((len -= copy) == 0) 1229 return csum; 1230 offset += copy; 1231 pos = copy; 1232 } 1233 1234 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1235 int end; 1236 1237 BUG_TRAP(start <= offset + len); 1238 1239 end = start + skb_shinfo(skb)->frags[i].size; 1240 if ((copy = end - offset) > 0) { 1241 __wsum csum2; 1242 u8 *vaddr; 1243 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1244 1245 if (copy > len) 1246 copy = len; 1247 vaddr = kmap_skb_frag(frag); 1248 csum2 = csum_partial(vaddr + frag->page_offset + 1249 offset - start, copy, 0); 1250 kunmap_skb_frag(vaddr); 1251 csum = csum_block_add(csum, csum2, pos); 1252 if (!(len -= copy)) 1253 return csum; 1254 offset += copy; 1255 pos += copy; 1256 } 1257 start = end; 1258 } 1259 1260 if (skb_shinfo(skb)->frag_list) { 1261 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1262 1263 for (; list; list = list->next) { 1264 int end; 1265 1266 BUG_TRAP(start <= offset + len); 1267 1268 end = start + list->len; 1269 if ((copy = end - offset) > 0) { 1270 __wsum csum2; 1271 if (copy > len) 1272 copy = len; 1273 csum2 = skb_checksum(list, offset - start, 1274 copy, 0); 1275 csum = csum_block_add(csum, csum2, pos); 1276 if ((len -= copy) == 0) 1277 return csum; 1278 offset += copy; 1279 pos += copy; 1280 } 1281 start = end; 1282 } 1283 } 1284 BUG_ON(len); 1285 1286 return csum; 1287 } 1288 1289 /* Both of above in one bottle. */ 1290 1291 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1292 u8 *to, int len, __wsum csum) 1293 { 1294 int start = skb_headlen(skb); 1295 int i, copy = start - offset; 1296 int pos = 0; 1297 1298 /* Copy header. */ 1299 if (copy > 0) { 1300 if (copy > len) 1301 copy = len; 1302 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1303 copy, csum); 1304 if ((len -= copy) == 0) 1305 return csum; 1306 offset += copy; 1307 to += copy; 1308 pos = copy; 1309 } 1310 1311 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1312 int end; 1313 1314 BUG_TRAP(start <= offset + len); 1315 1316 end = start + skb_shinfo(skb)->frags[i].size; 1317 if ((copy = end - offset) > 0) { 1318 __wsum csum2; 1319 u8 *vaddr; 1320 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1321 1322 if (copy > len) 1323 copy = len; 1324 vaddr = kmap_skb_frag(frag); 1325 csum2 = csum_partial_copy_nocheck(vaddr + 1326 frag->page_offset + 1327 offset - start, to, 1328 copy, 0); 1329 kunmap_skb_frag(vaddr); 1330 csum = csum_block_add(csum, csum2, pos); 1331 if (!(len -= copy)) 1332 return csum; 1333 offset += copy; 1334 to += copy; 1335 pos += copy; 1336 } 1337 start = end; 1338 } 1339 1340 if (skb_shinfo(skb)->frag_list) { 1341 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1342 1343 for (; list; list = list->next) { 1344 __wsum csum2; 1345 int end; 1346 1347 BUG_TRAP(start <= offset + len); 1348 1349 end = start + list->len; 1350 if ((copy = end - offset) > 0) { 1351 if (copy > len) 1352 copy = len; 1353 csum2 = skb_copy_and_csum_bits(list, 1354 offset - start, 1355 to, copy, 0); 1356 csum = csum_block_add(csum, csum2, pos); 1357 if ((len -= copy) == 0) 1358 return csum; 1359 offset += copy; 1360 to += copy; 1361 pos += copy; 1362 } 1363 start = end; 1364 } 1365 } 1366 BUG_ON(len); 1367 return csum; 1368 } 1369 1370 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1371 { 1372 __wsum csum; 1373 long csstart; 1374 1375 if (skb->ip_summed == CHECKSUM_PARTIAL) 1376 csstart = skb->csum_start - skb_headroom(skb); 1377 else 1378 csstart = skb_headlen(skb); 1379 1380 BUG_ON(csstart > skb_headlen(skb)); 1381 1382 skb_copy_from_linear_data(skb, to, csstart); 1383 1384 csum = 0; 1385 if (csstart != skb->len) 1386 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1387 skb->len - csstart, 0); 1388 1389 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1390 long csstuff = csstart + skb->csum_offset; 1391 1392 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 1393 } 1394 } 1395 1396 /** 1397 * skb_dequeue - remove from the head of the queue 1398 * @list: list to dequeue from 1399 * 1400 * Remove the head of the list. The list lock is taken so the function 1401 * may be used safely with other locking list functions. The head item is 1402 * returned or %NULL if the list is empty. 1403 */ 1404 1405 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1406 { 1407 unsigned long flags; 1408 struct sk_buff *result; 1409 1410 spin_lock_irqsave(&list->lock, flags); 1411 result = __skb_dequeue(list); 1412 spin_unlock_irqrestore(&list->lock, flags); 1413 return result; 1414 } 1415 1416 /** 1417 * skb_dequeue_tail - remove from the tail of the queue 1418 * @list: list to dequeue from 1419 * 1420 * Remove the tail of the list. The list lock is taken so the function 1421 * may be used safely with other locking list functions. The tail item is 1422 * returned or %NULL if the list is empty. 1423 */ 1424 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1425 { 1426 unsigned long flags; 1427 struct sk_buff *result; 1428 1429 spin_lock_irqsave(&list->lock, flags); 1430 result = __skb_dequeue_tail(list); 1431 spin_unlock_irqrestore(&list->lock, flags); 1432 return result; 1433 } 1434 1435 /** 1436 * skb_queue_purge - empty a list 1437 * @list: list to empty 1438 * 1439 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1440 * the list and one reference dropped. This function takes the list 1441 * lock and is atomic with respect to other list locking functions. 1442 */ 1443 void skb_queue_purge(struct sk_buff_head *list) 1444 { 1445 struct sk_buff *skb; 1446 while ((skb = skb_dequeue(list)) != NULL) 1447 kfree_skb(skb); 1448 } 1449 1450 /** 1451 * skb_queue_head - queue a buffer at the list head 1452 * @list: list to use 1453 * @newsk: buffer to queue 1454 * 1455 * Queue a buffer at the start of the list. This function takes the 1456 * list lock and can be used safely with other locking &sk_buff functions 1457 * safely. 1458 * 1459 * A buffer cannot be placed on two lists at the same time. 1460 */ 1461 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1462 { 1463 unsigned long flags; 1464 1465 spin_lock_irqsave(&list->lock, flags); 1466 __skb_queue_head(list, newsk); 1467 spin_unlock_irqrestore(&list->lock, flags); 1468 } 1469 1470 /** 1471 * skb_queue_tail - queue a buffer at the list tail 1472 * @list: list to use 1473 * @newsk: buffer to queue 1474 * 1475 * Queue a buffer at the tail of the list. This function takes the 1476 * list lock and can be used safely with other locking &sk_buff functions 1477 * safely. 1478 * 1479 * A buffer cannot be placed on two lists at the same time. 1480 */ 1481 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1482 { 1483 unsigned long flags; 1484 1485 spin_lock_irqsave(&list->lock, flags); 1486 __skb_queue_tail(list, newsk); 1487 spin_unlock_irqrestore(&list->lock, flags); 1488 } 1489 1490 /** 1491 * skb_unlink - remove a buffer from a list 1492 * @skb: buffer to remove 1493 * @list: list to use 1494 * 1495 * Remove a packet from a list. The list locks are taken and this 1496 * function is atomic with respect to other list locked calls 1497 * 1498 * You must know what list the SKB is on. 1499 */ 1500 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1501 { 1502 unsigned long flags; 1503 1504 spin_lock_irqsave(&list->lock, flags); 1505 __skb_unlink(skb, list); 1506 spin_unlock_irqrestore(&list->lock, flags); 1507 } 1508 1509 /** 1510 * skb_append - append a buffer 1511 * @old: buffer to insert after 1512 * @newsk: buffer to insert 1513 * @list: list to use 1514 * 1515 * Place a packet after a given packet in a list. The list locks are taken 1516 * and this function is atomic with respect to other list locked calls. 1517 * A buffer cannot be placed on two lists at the same time. 1518 */ 1519 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1520 { 1521 unsigned long flags; 1522 1523 spin_lock_irqsave(&list->lock, flags); 1524 __skb_append(old, newsk, list); 1525 spin_unlock_irqrestore(&list->lock, flags); 1526 } 1527 1528 1529 /** 1530 * skb_insert - insert a buffer 1531 * @old: buffer to insert before 1532 * @newsk: buffer to insert 1533 * @list: list to use 1534 * 1535 * Place a packet before a given packet in a list. The list locks are 1536 * taken and this function is atomic with respect to other list locked 1537 * calls. 1538 * 1539 * A buffer cannot be placed on two lists at the same time. 1540 */ 1541 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1542 { 1543 unsigned long flags; 1544 1545 spin_lock_irqsave(&list->lock, flags); 1546 __skb_insert(newsk, old->prev, old, list); 1547 spin_unlock_irqrestore(&list->lock, flags); 1548 } 1549 1550 static inline void skb_split_inside_header(struct sk_buff *skb, 1551 struct sk_buff* skb1, 1552 const u32 len, const int pos) 1553 { 1554 int i; 1555 1556 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 1557 pos - len); 1558 /* And move data appendix as is. */ 1559 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1560 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 1561 1562 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 1563 skb_shinfo(skb)->nr_frags = 0; 1564 skb1->data_len = skb->data_len; 1565 skb1->len += skb1->data_len; 1566 skb->data_len = 0; 1567 skb->len = len; 1568 skb_set_tail_pointer(skb, len); 1569 } 1570 1571 static inline void skb_split_no_header(struct sk_buff *skb, 1572 struct sk_buff* skb1, 1573 const u32 len, int pos) 1574 { 1575 int i, k = 0; 1576 const int nfrags = skb_shinfo(skb)->nr_frags; 1577 1578 skb_shinfo(skb)->nr_frags = 0; 1579 skb1->len = skb1->data_len = skb->len - len; 1580 skb->len = len; 1581 skb->data_len = len - pos; 1582 1583 for (i = 0; i < nfrags; i++) { 1584 int size = skb_shinfo(skb)->frags[i].size; 1585 1586 if (pos + size > len) { 1587 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 1588 1589 if (pos < len) { 1590 /* Split frag. 1591 * We have two variants in this case: 1592 * 1. Move all the frag to the second 1593 * part, if it is possible. F.e. 1594 * this approach is mandatory for TUX, 1595 * where splitting is expensive. 1596 * 2. Split is accurately. We make this. 1597 */ 1598 get_page(skb_shinfo(skb)->frags[i].page); 1599 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 1600 skb_shinfo(skb1)->frags[0].size -= len - pos; 1601 skb_shinfo(skb)->frags[i].size = len - pos; 1602 skb_shinfo(skb)->nr_frags++; 1603 } 1604 k++; 1605 } else 1606 skb_shinfo(skb)->nr_frags++; 1607 pos += size; 1608 } 1609 skb_shinfo(skb1)->nr_frags = k; 1610 } 1611 1612 /** 1613 * skb_split - Split fragmented skb to two parts at length len. 1614 * @skb: the buffer to split 1615 * @skb1: the buffer to receive the second part 1616 * @len: new length for skb 1617 */ 1618 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 1619 { 1620 int pos = skb_headlen(skb); 1621 1622 if (len < pos) /* Split line is inside header. */ 1623 skb_split_inside_header(skb, skb1, len, pos); 1624 else /* Second chunk has no header, nothing to copy. */ 1625 skb_split_no_header(skb, skb1, len, pos); 1626 } 1627 1628 /** 1629 * skb_prepare_seq_read - Prepare a sequential read of skb data 1630 * @skb: the buffer to read 1631 * @from: lower offset of data to be read 1632 * @to: upper offset of data to be read 1633 * @st: state variable 1634 * 1635 * Initializes the specified state variable. Must be called before 1636 * invoking skb_seq_read() for the first time. 1637 */ 1638 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1639 unsigned int to, struct skb_seq_state *st) 1640 { 1641 st->lower_offset = from; 1642 st->upper_offset = to; 1643 st->root_skb = st->cur_skb = skb; 1644 st->frag_idx = st->stepped_offset = 0; 1645 st->frag_data = NULL; 1646 } 1647 1648 /** 1649 * skb_seq_read - Sequentially read skb data 1650 * @consumed: number of bytes consumed by the caller so far 1651 * @data: destination pointer for data to be returned 1652 * @st: state variable 1653 * 1654 * Reads a block of skb data at &consumed relative to the 1655 * lower offset specified to skb_prepare_seq_read(). Assigns 1656 * the head of the data block to &data and returns the length 1657 * of the block or 0 if the end of the skb data or the upper 1658 * offset has been reached. 1659 * 1660 * The caller is not required to consume all of the data 1661 * returned, i.e. &consumed is typically set to the number 1662 * of bytes already consumed and the next call to 1663 * skb_seq_read() will return the remaining part of the block. 1664 * 1665 * Note: The size of each block of data returned can be arbitary, 1666 * this limitation is the cost for zerocopy seqeuental 1667 * reads of potentially non linear data. 1668 * 1669 * Note: Fragment lists within fragments are not implemented 1670 * at the moment, state->root_skb could be replaced with 1671 * a stack for this purpose. 1672 */ 1673 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1674 struct skb_seq_state *st) 1675 { 1676 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 1677 skb_frag_t *frag; 1678 1679 if (unlikely(abs_offset >= st->upper_offset)) 1680 return 0; 1681 1682 next_skb: 1683 block_limit = skb_headlen(st->cur_skb); 1684 1685 if (abs_offset < block_limit) { 1686 *data = st->cur_skb->data + abs_offset; 1687 return block_limit - abs_offset; 1688 } 1689 1690 if (st->frag_idx == 0 && !st->frag_data) 1691 st->stepped_offset += skb_headlen(st->cur_skb); 1692 1693 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 1694 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 1695 block_limit = frag->size + st->stepped_offset; 1696 1697 if (abs_offset < block_limit) { 1698 if (!st->frag_data) 1699 st->frag_data = kmap_skb_frag(frag); 1700 1701 *data = (u8 *) st->frag_data + frag->page_offset + 1702 (abs_offset - st->stepped_offset); 1703 1704 return block_limit - abs_offset; 1705 } 1706 1707 if (st->frag_data) { 1708 kunmap_skb_frag(st->frag_data); 1709 st->frag_data = NULL; 1710 } 1711 1712 st->frag_idx++; 1713 st->stepped_offset += frag->size; 1714 } 1715 1716 if (st->frag_data) { 1717 kunmap_skb_frag(st->frag_data); 1718 st->frag_data = NULL; 1719 } 1720 1721 if (st->cur_skb->next) { 1722 st->cur_skb = st->cur_skb->next; 1723 st->frag_idx = 0; 1724 goto next_skb; 1725 } else if (st->root_skb == st->cur_skb && 1726 skb_shinfo(st->root_skb)->frag_list) { 1727 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 1728 goto next_skb; 1729 } 1730 1731 return 0; 1732 } 1733 1734 /** 1735 * skb_abort_seq_read - Abort a sequential read of skb data 1736 * @st: state variable 1737 * 1738 * Must be called if skb_seq_read() was not called until it 1739 * returned 0. 1740 */ 1741 void skb_abort_seq_read(struct skb_seq_state *st) 1742 { 1743 if (st->frag_data) 1744 kunmap_skb_frag(st->frag_data); 1745 } 1746 1747 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 1748 1749 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 1750 struct ts_config *conf, 1751 struct ts_state *state) 1752 { 1753 return skb_seq_read(offset, text, TS_SKB_CB(state)); 1754 } 1755 1756 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 1757 { 1758 skb_abort_seq_read(TS_SKB_CB(state)); 1759 } 1760 1761 /** 1762 * skb_find_text - Find a text pattern in skb data 1763 * @skb: the buffer to look in 1764 * @from: search offset 1765 * @to: search limit 1766 * @config: textsearch configuration 1767 * @state: uninitialized textsearch state variable 1768 * 1769 * Finds a pattern in the skb data according to the specified 1770 * textsearch configuration. Use textsearch_next() to retrieve 1771 * subsequent occurrences of the pattern. Returns the offset 1772 * to the first occurrence or UINT_MAX if no match was found. 1773 */ 1774 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1775 unsigned int to, struct ts_config *config, 1776 struct ts_state *state) 1777 { 1778 unsigned int ret; 1779 1780 config->get_next_block = skb_ts_get_next_block; 1781 config->finish = skb_ts_finish; 1782 1783 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 1784 1785 ret = textsearch_find(config, state); 1786 return (ret <= to - from ? ret : UINT_MAX); 1787 } 1788 1789 /** 1790 * skb_append_datato_frags: - append the user data to a skb 1791 * @sk: sock structure 1792 * @skb: skb structure to be appened with user data. 1793 * @getfrag: call back function to be used for getting the user data 1794 * @from: pointer to user message iov 1795 * @length: length of the iov message 1796 * 1797 * Description: This procedure append the user data in the fragment part 1798 * of the skb if any page alloc fails user this procedure returns -ENOMEM 1799 */ 1800 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 1801 int (*getfrag)(void *from, char *to, int offset, 1802 int len, int odd, struct sk_buff *skb), 1803 void *from, int length) 1804 { 1805 int frg_cnt = 0; 1806 skb_frag_t *frag = NULL; 1807 struct page *page = NULL; 1808 int copy, left; 1809 int offset = 0; 1810 int ret; 1811 1812 do { 1813 /* Return error if we don't have space for new frag */ 1814 frg_cnt = skb_shinfo(skb)->nr_frags; 1815 if (frg_cnt >= MAX_SKB_FRAGS) 1816 return -EFAULT; 1817 1818 /* allocate a new page for next frag */ 1819 page = alloc_pages(sk->sk_allocation, 0); 1820 1821 /* If alloc_page fails just return failure and caller will 1822 * free previous allocated pages by doing kfree_skb() 1823 */ 1824 if (page == NULL) 1825 return -ENOMEM; 1826 1827 /* initialize the next frag */ 1828 sk->sk_sndmsg_page = page; 1829 sk->sk_sndmsg_off = 0; 1830 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 1831 skb->truesize += PAGE_SIZE; 1832 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 1833 1834 /* get the new initialized frag */ 1835 frg_cnt = skb_shinfo(skb)->nr_frags; 1836 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 1837 1838 /* copy the user data to page */ 1839 left = PAGE_SIZE - frag->page_offset; 1840 copy = (length > left)? left : length; 1841 1842 ret = getfrag(from, (page_address(frag->page) + 1843 frag->page_offset + frag->size), 1844 offset, copy, 0, skb); 1845 if (ret < 0) 1846 return -EFAULT; 1847 1848 /* copy was successful so update the size parameters */ 1849 sk->sk_sndmsg_off += copy; 1850 frag->size += copy; 1851 skb->len += copy; 1852 skb->data_len += copy; 1853 offset += copy; 1854 length -= copy; 1855 1856 } while (length > 0); 1857 1858 return 0; 1859 } 1860 1861 /** 1862 * skb_pull_rcsum - pull skb and update receive checksum 1863 * @skb: buffer to update 1864 * @start: start of data before pull 1865 * @len: length of data pulled 1866 * 1867 * This function performs an skb_pull on the packet and updates 1868 * update the CHECKSUM_COMPLETE checksum. It should be used on 1869 * receive path processing instead of skb_pull unless you know 1870 * that the checksum difference is zero (e.g., a valid IP header) 1871 * or you are setting ip_summed to CHECKSUM_NONE. 1872 */ 1873 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 1874 { 1875 BUG_ON(len > skb->len); 1876 skb->len -= len; 1877 BUG_ON(skb->len < skb->data_len); 1878 skb_postpull_rcsum(skb, skb->data, len); 1879 return skb->data += len; 1880 } 1881 1882 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 1883 1884 /** 1885 * skb_segment - Perform protocol segmentation on skb. 1886 * @skb: buffer to segment 1887 * @features: features for the output path (see dev->features) 1888 * 1889 * This function performs segmentation on the given skb. It returns 1890 * the segment at the given position. It returns NULL if there are 1891 * no more segments to generate, or when an error is encountered. 1892 */ 1893 struct sk_buff *skb_segment(struct sk_buff *skb, int features) 1894 { 1895 struct sk_buff *segs = NULL; 1896 struct sk_buff *tail = NULL; 1897 unsigned int mss = skb_shinfo(skb)->gso_size; 1898 unsigned int doffset = skb->data - skb_mac_header(skb); 1899 unsigned int offset = doffset; 1900 unsigned int headroom; 1901 unsigned int len; 1902 int sg = features & NETIF_F_SG; 1903 int nfrags = skb_shinfo(skb)->nr_frags; 1904 int err = -ENOMEM; 1905 int i = 0; 1906 int pos; 1907 1908 __skb_push(skb, doffset); 1909 headroom = skb_headroom(skb); 1910 pos = skb_headlen(skb); 1911 1912 do { 1913 struct sk_buff *nskb; 1914 skb_frag_t *frag; 1915 int hsize; 1916 int k; 1917 int size; 1918 1919 len = skb->len - offset; 1920 if (len > mss) 1921 len = mss; 1922 1923 hsize = skb_headlen(skb) - offset; 1924 if (hsize < 0) 1925 hsize = 0; 1926 if (hsize > len || !sg) 1927 hsize = len; 1928 1929 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC); 1930 if (unlikely(!nskb)) 1931 goto err; 1932 1933 if (segs) 1934 tail->next = nskb; 1935 else 1936 segs = nskb; 1937 tail = nskb; 1938 1939 nskb->dev = skb->dev; 1940 skb_copy_queue_mapping(nskb, skb); 1941 nskb->priority = skb->priority; 1942 nskb->protocol = skb->protocol; 1943 nskb->dst = dst_clone(skb->dst); 1944 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 1945 nskb->pkt_type = skb->pkt_type; 1946 nskb->mac_len = skb->mac_len; 1947 1948 skb_reserve(nskb, headroom); 1949 skb_reset_mac_header(nskb); 1950 skb_set_network_header(nskb, skb->mac_len); 1951 nskb->transport_header = (nskb->network_header + 1952 skb_network_header_len(skb)); 1953 skb_copy_from_linear_data(skb, skb_put(nskb, doffset), 1954 doffset); 1955 if (!sg) { 1956 nskb->csum = skb_copy_and_csum_bits(skb, offset, 1957 skb_put(nskb, len), 1958 len, 0); 1959 continue; 1960 } 1961 1962 frag = skb_shinfo(nskb)->frags; 1963 k = 0; 1964 1965 nskb->ip_summed = CHECKSUM_PARTIAL; 1966 nskb->csum = skb->csum; 1967 skb_copy_from_linear_data_offset(skb, offset, 1968 skb_put(nskb, hsize), hsize); 1969 1970 while (pos < offset + len) { 1971 BUG_ON(i >= nfrags); 1972 1973 *frag = skb_shinfo(skb)->frags[i]; 1974 get_page(frag->page); 1975 size = frag->size; 1976 1977 if (pos < offset) { 1978 frag->page_offset += offset - pos; 1979 frag->size -= offset - pos; 1980 } 1981 1982 k++; 1983 1984 if (pos + size <= offset + len) { 1985 i++; 1986 pos += size; 1987 } else { 1988 frag->size -= pos + size - (offset + len); 1989 break; 1990 } 1991 1992 frag++; 1993 } 1994 1995 skb_shinfo(nskb)->nr_frags = k; 1996 nskb->data_len = len - hsize; 1997 nskb->len += nskb->data_len; 1998 nskb->truesize += nskb->data_len; 1999 } while ((offset += len) < skb->len); 2000 2001 return segs; 2002 2003 err: 2004 while ((skb = segs)) { 2005 segs = skb->next; 2006 kfree_skb(skb); 2007 } 2008 return ERR_PTR(err); 2009 } 2010 2011 EXPORT_SYMBOL_GPL(skb_segment); 2012 2013 void __init skb_init(void) 2014 { 2015 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 2016 sizeof(struct sk_buff), 2017 0, 2018 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2019 NULL); 2020 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 2021 (2*sizeof(struct sk_buff)) + 2022 sizeof(atomic_t), 2023 0, 2024 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2025 NULL); 2026 } 2027 2028 /** 2029 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 2030 * @skb: Socket buffer containing the buffers to be mapped 2031 * @sg: The scatter-gather list to map into 2032 * @offset: The offset into the buffer's contents to start mapping 2033 * @len: Length of buffer space to be mapped 2034 * 2035 * Fill the specified scatter-gather list with mappings/pointers into a 2036 * region of the buffer space attached to a socket buffer. 2037 */ 2038 int 2039 skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2040 { 2041 int start = skb_headlen(skb); 2042 int i, copy = start - offset; 2043 int elt = 0; 2044 2045 if (copy > 0) { 2046 if (copy > len) 2047 copy = len; 2048 sg[elt].page = virt_to_page(skb->data + offset); 2049 sg[elt].offset = (unsigned long)(skb->data + offset) % PAGE_SIZE; 2050 sg[elt].length = copy; 2051 elt++; 2052 if ((len -= copy) == 0) 2053 return elt; 2054 offset += copy; 2055 } 2056 2057 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2058 int end; 2059 2060 BUG_TRAP(start <= offset + len); 2061 2062 end = start + skb_shinfo(skb)->frags[i].size; 2063 if ((copy = end - offset) > 0) { 2064 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2065 2066 if (copy > len) 2067 copy = len; 2068 sg[elt].page = frag->page; 2069 sg[elt].offset = frag->page_offset+offset-start; 2070 sg[elt].length = copy; 2071 elt++; 2072 if (!(len -= copy)) 2073 return elt; 2074 offset += copy; 2075 } 2076 start = end; 2077 } 2078 2079 if (skb_shinfo(skb)->frag_list) { 2080 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2081 2082 for (; list; list = list->next) { 2083 int end; 2084 2085 BUG_TRAP(start <= offset + len); 2086 2087 end = start + list->len; 2088 if ((copy = end - offset) > 0) { 2089 if (copy > len) 2090 copy = len; 2091 elt += skb_to_sgvec(list, sg+elt, offset - start, copy); 2092 if ((len -= copy) == 0) 2093 return elt; 2094 offset += copy; 2095 } 2096 start = end; 2097 } 2098 } 2099 BUG_ON(len); 2100 return elt; 2101 } 2102 2103 /** 2104 * skb_cow_data - Check that a socket buffer's data buffers are writable 2105 * @skb: The socket buffer to check. 2106 * @tailbits: Amount of trailing space to be added 2107 * @trailer: Returned pointer to the skb where the @tailbits space begins 2108 * 2109 * Make sure that the data buffers attached to a socket buffer are 2110 * writable. If they are not, private copies are made of the data buffers 2111 * and the socket buffer is set to use these instead. 2112 * 2113 * If @tailbits is given, make sure that there is space to write @tailbits 2114 * bytes of data beyond current end of socket buffer. @trailer will be 2115 * set to point to the skb in which this space begins. 2116 * 2117 * The number of scatterlist elements required to completely map the 2118 * COW'd and extended socket buffer will be returned. 2119 */ 2120 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 2121 { 2122 int copyflag; 2123 int elt; 2124 struct sk_buff *skb1, **skb_p; 2125 2126 /* If skb is cloned or its head is paged, reallocate 2127 * head pulling out all the pages (pages are considered not writable 2128 * at the moment even if they are anonymous). 2129 */ 2130 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 2131 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 2132 return -ENOMEM; 2133 2134 /* Easy case. Most of packets will go this way. */ 2135 if (!skb_shinfo(skb)->frag_list) { 2136 /* A little of trouble, not enough of space for trailer. 2137 * This should not happen, when stack is tuned to generate 2138 * good frames. OK, on miss we reallocate and reserve even more 2139 * space, 128 bytes is fair. */ 2140 2141 if (skb_tailroom(skb) < tailbits && 2142 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 2143 return -ENOMEM; 2144 2145 /* Voila! */ 2146 *trailer = skb; 2147 return 1; 2148 } 2149 2150 /* Misery. We are in troubles, going to mincer fragments... */ 2151 2152 elt = 1; 2153 skb_p = &skb_shinfo(skb)->frag_list; 2154 copyflag = 0; 2155 2156 while ((skb1 = *skb_p) != NULL) { 2157 int ntail = 0; 2158 2159 /* The fragment is partially pulled by someone, 2160 * this can happen on input. Copy it and everything 2161 * after it. */ 2162 2163 if (skb_shared(skb1)) 2164 copyflag = 1; 2165 2166 /* If the skb is the last, worry about trailer. */ 2167 2168 if (skb1->next == NULL && tailbits) { 2169 if (skb_shinfo(skb1)->nr_frags || 2170 skb_shinfo(skb1)->frag_list || 2171 skb_tailroom(skb1) < tailbits) 2172 ntail = tailbits + 128; 2173 } 2174 2175 if (copyflag || 2176 skb_cloned(skb1) || 2177 ntail || 2178 skb_shinfo(skb1)->nr_frags || 2179 skb_shinfo(skb1)->frag_list) { 2180 struct sk_buff *skb2; 2181 2182 /* Fuck, we are miserable poor guys... */ 2183 if (ntail == 0) 2184 skb2 = skb_copy(skb1, GFP_ATOMIC); 2185 else 2186 skb2 = skb_copy_expand(skb1, 2187 skb_headroom(skb1), 2188 ntail, 2189 GFP_ATOMIC); 2190 if (unlikely(skb2 == NULL)) 2191 return -ENOMEM; 2192 2193 if (skb1->sk) 2194 skb_set_owner_w(skb2, skb1->sk); 2195 2196 /* Looking around. Are we still alive? 2197 * OK, link new skb, drop old one */ 2198 2199 skb2->next = skb1->next; 2200 *skb_p = skb2; 2201 kfree_skb(skb1); 2202 skb1 = skb2; 2203 } 2204 elt++; 2205 *trailer = skb1; 2206 skb_p = &skb1->next; 2207 } 2208 2209 return elt; 2210 } 2211 2212 EXPORT_SYMBOL(___pskb_trim); 2213 EXPORT_SYMBOL(__kfree_skb); 2214 EXPORT_SYMBOL(kfree_skb); 2215 EXPORT_SYMBOL(__pskb_pull_tail); 2216 EXPORT_SYMBOL(__alloc_skb); 2217 EXPORT_SYMBOL(__netdev_alloc_skb); 2218 EXPORT_SYMBOL(pskb_copy); 2219 EXPORT_SYMBOL(pskb_expand_head); 2220 EXPORT_SYMBOL(skb_checksum); 2221 EXPORT_SYMBOL(skb_clone); 2222 EXPORT_SYMBOL(skb_copy); 2223 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2224 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2225 EXPORT_SYMBOL(skb_copy_bits); 2226 EXPORT_SYMBOL(skb_copy_expand); 2227 EXPORT_SYMBOL(skb_over_panic); 2228 EXPORT_SYMBOL(skb_pad); 2229 EXPORT_SYMBOL(skb_realloc_headroom); 2230 EXPORT_SYMBOL(skb_under_panic); 2231 EXPORT_SYMBOL(skb_dequeue); 2232 EXPORT_SYMBOL(skb_dequeue_tail); 2233 EXPORT_SYMBOL(skb_insert); 2234 EXPORT_SYMBOL(skb_queue_purge); 2235 EXPORT_SYMBOL(skb_queue_head); 2236 EXPORT_SYMBOL(skb_queue_tail); 2237 EXPORT_SYMBOL(skb_unlink); 2238 EXPORT_SYMBOL(skb_append); 2239 EXPORT_SYMBOL(skb_split); 2240 EXPORT_SYMBOL(skb_prepare_seq_read); 2241 EXPORT_SYMBOL(skb_seq_read); 2242 EXPORT_SYMBOL(skb_abort_seq_read); 2243 EXPORT_SYMBOL(skb_find_text); 2244 EXPORT_SYMBOL(skb_append_datato_frags); 2245 2246 EXPORT_SYMBOL_GPL(skb_to_sgvec); 2247 EXPORT_SYMBOL_GPL(skb_cow_data); 2248