xref: /linux/net/core/skbuff.c (revision 42fda66387daa53538ae13a2c858396aaf037158)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <iiitac@pyr.swan.ac.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Version:	$Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
8  *
9  *	Fixes:
10  *		Alan Cox	:	Fixed the worst of the load
11  *					balancer bugs.
12  *		Dave Platt	:	Interrupt stacking fix.
13  *	Richard Kooijman	:	Timestamp fixes.
14  *		Alan Cox	:	Changed buffer format.
15  *		Alan Cox	:	destructor hook for AF_UNIX etc.
16  *		Linus Torvalds	:	Better skb_clone.
17  *		Alan Cox	:	Added skb_copy.
18  *		Alan Cox	:	Added all the changed routines Linus
19  *					only put in the headers
20  *		Ray VanTassle	:	Fixed --skb->lock in free
21  *		Alan Cox	:	skb_copy copy arp field
22  *		Andi Kleen	:	slabified it.
23  *		Robert Olsson	:	Removed skb_head_pool
24  *
25  *	NOTE:
26  *		The __skb_ routines should be called with interrupts
27  *	disabled, or you better be *real* sure that the operation is atomic
28  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
29  *	or via disabling bottom half handlers, etc).
30  *
31  *	This program is free software; you can redistribute it and/or
32  *	modify it under the terms of the GNU General Public License
33  *	as published by the Free Software Foundation; either version
34  *	2 of the License, or (at your option) any later version.
35  */
36 
37 /*
38  *	The functions in this file will not compile correctly with gcc 2.4.x
39  */
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/netdevice.h>
50 #ifdef CONFIG_NET_CLS_ACT
51 #include <net/pkt_sched.h>
52 #endif
53 #include <linux/string.h>
54 #include <linux/skbuff.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 
60 #include <net/protocol.h>
61 #include <net/dst.h>
62 #include <net/sock.h>
63 #include <net/checksum.h>
64 #include <net/xfrm.h>
65 
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 
69 #include "kmap_skb.h"
70 
71 static struct kmem_cache *skbuff_head_cache __read_mostly;
72 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
73 
74 /*
75  *	Keep out-of-line to prevent kernel bloat.
76  *	__builtin_return_address is not used because it is not always
77  *	reliable.
78  */
79 
80 /**
81  *	skb_over_panic	- 	private function
82  *	@skb: buffer
83  *	@sz: size
84  *	@here: address
85  *
86  *	Out of line support code for skb_put(). Not user callable.
87  */
88 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
89 {
90 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
91 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
92 	       here, skb->len, sz, skb->head, skb->data,
93 	       (unsigned long)skb->tail, (unsigned long)skb->end,
94 	       skb->dev ? skb->dev->name : "<NULL>");
95 	BUG();
96 }
97 
98 /**
99  *	skb_under_panic	- 	private function
100  *	@skb: buffer
101  *	@sz: size
102  *	@here: address
103  *
104  *	Out of line support code for skb_push(). Not user callable.
105  */
106 
107 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
108 {
109 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
110 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
111 	       here, skb->len, sz, skb->head, skb->data,
112 	       (unsigned long)skb->tail, (unsigned long)skb->end,
113 	       skb->dev ? skb->dev->name : "<NULL>");
114 	BUG();
115 }
116 
117 void skb_truesize_bug(struct sk_buff *skb)
118 {
119 	printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
120 	       "len=%u, sizeof(sk_buff)=%Zd\n",
121 	       skb->truesize, skb->len, sizeof(struct sk_buff));
122 }
123 EXPORT_SYMBOL(skb_truesize_bug);
124 
125 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
126  *	'private' fields and also do memory statistics to find all the
127  *	[BEEP] leaks.
128  *
129  */
130 
131 /**
132  *	__alloc_skb	-	allocate a network buffer
133  *	@size: size to allocate
134  *	@gfp_mask: allocation mask
135  *	@fclone: allocate from fclone cache instead of head cache
136  *		and allocate a cloned (child) skb
137  *	@node: numa node to allocate memory on
138  *
139  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
140  *	tail room of size bytes. The object has a reference count of one.
141  *	The return is the buffer. On a failure the return is %NULL.
142  *
143  *	Buffers may only be allocated from interrupts using a @gfp_mask of
144  *	%GFP_ATOMIC.
145  */
146 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
147 			    int fclone, int node)
148 {
149 	struct kmem_cache *cache;
150 	struct skb_shared_info *shinfo;
151 	struct sk_buff *skb;
152 	u8 *data;
153 
154 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
155 
156 	/* Get the HEAD */
157 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
158 	if (!skb)
159 		goto out;
160 
161 	size = SKB_DATA_ALIGN(size);
162 	data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
163 			gfp_mask, node);
164 	if (!data)
165 		goto nodata;
166 
167 	/*
168 	 * See comment in sk_buff definition, just before the 'tail' member
169 	 */
170 	memset(skb, 0, offsetof(struct sk_buff, tail));
171 	skb->truesize = size + sizeof(struct sk_buff);
172 	atomic_set(&skb->users, 1);
173 	skb->head = data;
174 	skb->data = data;
175 	skb_reset_tail_pointer(skb);
176 	skb->end = skb->tail + size;
177 	/* make sure we initialize shinfo sequentially */
178 	shinfo = skb_shinfo(skb);
179 	atomic_set(&shinfo->dataref, 1);
180 	shinfo->nr_frags  = 0;
181 	shinfo->gso_size = 0;
182 	shinfo->gso_segs = 0;
183 	shinfo->gso_type = 0;
184 	shinfo->ip6_frag_id = 0;
185 	shinfo->frag_list = NULL;
186 
187 	if (fclone) {
188 		struct sk_buff *child = skb + 1;
189 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
190 
191 		skb->fclone = SKB_FCLONE_ORIG;
192 		atomic_set(fclone_ref, 1);
193 
194 		child->fclone = SKB_FCLONE_UNAVAILABLE;
195 	}
196 out:
197 	return skb;
198 nodata:
199 	kmem_cache_free(cache, skb);
200 	skb = NULL;
201 	goto out;
202 }
203 
204 /**
205  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
206  *	@dev: network device to receive on
207  *	@length: length to allocate
208  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
209  *
210  *	Allocate a new &sk_buff and assign it a usage count of one. The
211  *	buffer has unspecified headroom built in. Users should allocate
212  *	the headroom they think they need without accounting for the
213  *	built in space. The built in space is used for optimisations.
214  *
215  *	%NULL is returned if there is no free memory.
216  */
217 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
218 		unsigned int length, gfp_t gfp_mask)
219 {
220 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
221 	struct sk_buff *skb;
222 
223 	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
224 	if (likely(skb)) {
225 		skb_reserve(skb, NET_SKB_PAD);
226 		skb->dev = dev;
227 	}
228 	return skb;
229 }
230 
231 static void skb_drop_list(struct sk_buff **listp)
232 {
233 	struct sk_buff *list = *listp;
234 
235 	*listp = NULL;
236 
237 	do {
238 		struct sk_buff *this = list;
239 		list = list->next;
240 		kfree_skb(this);
241 	} while (list);
242 }
243 
244 static inline void skb_drop_fraglist(struct sk_buff *skb)
245 {
246 	skb_drop_list(&skb_shinfo(skb)->frag_list);
247 }
248 
249 static void skb_clone_fraglist(struct sk_buff *skb)
250 {
251 	struct sk_buff *list;
252 
253 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
254 		skb_get(list);
255 }
256 
257 static void skb_release_data(struct sk_buff *skb)
258 {
259 	if (!skb->cloned ||
260 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
261 			       &skb_shinfo(skb)->dataref)) {
262 		if (skb_shinfo(skb)->nr_frags) {
263 			int i;
264 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
265 				put_page(skb_shinfo(skb)->frags[i].page);
266 		}
267 
268 		if (skb_shinfo(skb)->frag_list)
269 			skb_drop_fraglist(skb);
270 
271 		kfree(skb->head);
272 	}
273 }
274 
275 /*
276  *	Free an skbuff by memory without cleaning the state.
277  */
278 void kfree_skbmem(struct sk_buff *skb)
279 {
280 	struct sk_buff *other;
281 	atomic_t *fclone_ref;
282 
283 	skb_release_data(skb);
284 	switch (skb->fclone) {
285 	case SKB_FCLONE_UNAVAILABLE:
286 		kmem_cache_free(skbuff_head_cache, skb);
287 		break;
288 
289 	case SKB_FCLONE_ORIG:
290 		fclone_ref = (atomic_t *) (skb + 2);
291 		if (atomic_dec_and_test(fclone_ref))
292 			kmem_cache_free(skbuff_fclone_cache, skb);
293 		break;
294 
295 	case SKB_FCLONE_CLONE:
296 		fclone_ref = (atomic_t *) (skb + 1);
297 		other = skb - 1;
298 
299 		/* The clone portion is available for
300 		 * fast-cloning again.
301 		 */
302 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
303 
304 		if (atomic_dec_and_test(fclone_ref))
305 			kmem_cache_free(skbuff_fclone_cache, other);
306 		break;
307 	}
308 }
309 
310 /**
311  *	__kfree_skb - private function
312  *	@skb: buffer
313  *
314  *	Free an sk_buff. Release anything attached to the buffer.
315  *	Clean the state. This is an internal helper function. Users should
316  *	always call kfree_skb
317  */
318 
319 void __kfree_skb(struct sk_buff *skb)
320 {
321 	dst_release(skb->dst);
322 #ifdef CONFIG_XFRM
323 	secpath_put(skb->sp);
324 #endif
325 	if (skb->destructor) {
326 		WARN_ON(in_irq());
327 		skb->destructor(skb);
328 	}
329 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
330 	nf_conntrack_put(skb->nfct);
331 	nf_conntrack_put_reasm(skb->nfct_reasm);
332 #endif
333 #ifdef CONFIG_BRIDGE_NETFILTER
334 	nf_bridge_put(skb->nf_bridge);
335 #endif
336 /* XXX: IS this still necessary? - JHS */
337 #ifdef CONFIG_NET_SCHED
338 	skb->tc_index = 0;
339 #ifdef CONFIG_NET_CLS_ACT
340 	skb->tc_verd = 0;
341 #endif
342 #endif
343 
344 	kfree_skbmem(skb);
345 }
346 
347 /**
348  *	kfree_skb - free an sk_buff
349  *	@skb: buffer to free
350  *
351  *	Drop a reference to the buffer and free it if the usage count has
352  *	hit zero.
353  */
354 void kfree_skb(struct sk_buff *skb)
355 {
356 	if (unlikely(!skb))
357 		return;
358 	if (likely(atomic_read(&skb->users) == 1))
359 		smp_rmb();
360 	else if (likely(!atomic_dec_and_test(&skb->users)))
361 		return;
362 	__kfree_skb(skb);
363 }
364 
365 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
366 {
367 	new->tstamp		= old->tstamp;
368 	new->dev		= old->dev;
369 	new->transport_header	= old->transport_header;
370 	new->network_header	= old->network_header;
371 	new->mac_header		= old->mac_header;
372 	new->dst		= dst_clone(old->dst);
373 #ifdef CONFIG_INET
374 	new->sp			= secpath_get(old->sp);
375 #endif
376 	memcpy(new->cb, old->cb, sizeof(old->cb));
377 	new->csum_start		= old->csum_start;
378 	new->csum_offset	= old->csum_offset;
379 	new->local_df		= old->local_df;
380 	new->pkt_type		= old->pkt_type;
381 	new->ip_summed		= old->ip_summed;
382 	skb_copy_queue_mapping(new, old);
383 	new->priority		= old->priority;
384 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
385 	new->ipvs_property	= old->ipvs_property;
386 #endif
387 	new->protocol		= old->protocol;
388 	new->mark		= old->mark;
389 	__nf_copy(new, old);
390 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
391     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
392 	new->nf_trace		= old->nf_trace;
393 #endif
394 #ifdef CONFIG_NET_SCHED
395 	new->tc_index		= old->tc_index;
396 #ifdef CONFIG_NET_CLS_ACT
397 	new->tc_verd		= old->tc_verd;
398 #endif
399 #endif
400 	skb_copy_secmark(new, old);
401 }
402 
403 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
404 {
405 #define C(x) n->x = skb->x
406 
407 	n->next = n->prev = NULL;
408 	n->sk = NULL;
409 	__copy_skb_header(n, skb);
410 
411 	C(len);
412 	C(data_len);
413 	C(mac_len);
414 	n->cloned = 1;
415 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
416 	n->nohdr = 0;
417 	n->destructor = NULL;
418 #ifdef CONFIG_NET_CLS_ACT
419 	/* FIXME What is this and why don't we do it in copy_skb_header? */
420 	n->tc_verd = SET_TC_VERD(n->tc_verd,0);
421 	n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
422 	n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
423 	C(iif);
424 #endif
425 	C(truesize);
426 	atomic_set(&n->users, 1);
427 	C(head);
428 	C(data);
429 	C(tail);
430 	C(end);
431 
432 	atomic_inc(&(skb_shinfo(skb)->dataref));
433 	skb->cloned = 1;
434 
435 	return n;
436 #undef C
437 }
438 
439 /**
440  *	skb_morph	-	morph one skb into another
441  *	@dst: the skb to receive the contents
442  *	@src: the skb to supply the contents
443  *
444  *	This is identical to skb_clone except that the target skb is
445  *	supplied by the user.
446  *
447  *	The target skb is returned upon exit.
448  */
449 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
450 {
451 	skb_release_data(dst);
452 	return __skb_clone(dst, src);
453 }
454 EXPORT_SYMBOL_GPL(skb_morph);
455 
456 /**
457  *	skb_clone	-	duplicate an sk_buff
458  *	@skb: buffer to clone
459  *	@gfp_mask: allocation priority
460  *
461  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
462  *	copies share the same packet data but not structure. The new
463  *	buffer has a reference count of 1. If the allocation fails the
464  *	function returns %NULL otherwise the new buffer is returned.
465  *
466  *	If this function is called from an interrupt gfp_mask() must be
467  *	%GFP_ATOMIC.
468  */
469 
470 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
471 {
472 	struct sk_buff *n;
473 
474 	n = skb + 1;
475 	if (skb->fclone == SKB_FCLONE_ORIG &&
476 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
477 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
478 		n->fclone = SKB_FCLONE_CLONE;
479 		atomic_inc(fclone_ref);
480 	} else {
481 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
482 		if (!n)
483 			return NULL;
484 		n->fclone = SKB_FCLONE_UNAVAILABLE;
485 	}
486 
487 	return __skb_clone(n, skb);
488 }
489 
490 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
491 {
492 #ifndef NET_SKBUFF_DATA_USES_OFFSET
493 	/*
494 	 *	Shift between the two data areas in bytes
495 	 */
496 	unsigned long offset = new->data - old->data;
497 #endif
498 
499 	__copy_skb_header(new, old);
500 
501 #ifndef NET_SKBUFF_DATA_USES_OFFSET
502 	/* {transport,network,mac}_header are relative to skb->head */
503 	new->transport_header += offset;
504 	new->network_header   += offset;
505 	new->mac_header	      += offset;
506 #endif
507 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
508 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
509 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
510 }
511 
512 /**
513  *	skb_copy	-	create private copy of an sk_buff
514  *	@skb: buffer to copy
515  *	@gfp_mask: allocation priority
516  *
517  *	Make a copy of both an &sk_buff and its data. This is used when the
518  *	caller wishes to modify the data and needs a private copy of the
519  *	data to alter. Returns %NULL on failure or the pointer to the buffer
520  *	on success. The returned buffer has a reference count of 1.
521  *
522  *	As by-product this function converts non-linear &sk_buff to linear
523  *	one, so that &sk_buff becomes completely private and caller is allowed
524  *	to modify all the data of returned buffer. This means that this
525  *	function is not recommended for use in circumstances when only
526  *	header is going to be modified. Use pskb_copy() instead.
527  */
528 
529 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
530 {
531 	int headerlen = skb->data - skb->head;
532 	/*
533 	 *	Allocate the copy buffer
534 	 */
535 	struct sk_buff *n;
536 #ifdef NET_SKBUFF_DATA_USES_OFFSET
537 	n = alloc_skb(skb->end + skb->data_len, gfp_mask);
538 #else
539 	n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
540 #endif
541 	if (!n)
542 		return NULL;
543 
544 	/* Set the data pointer */
545 	skb_reserve(n, headerlen);
546 	/* Set the tail pointer and length */
547 	skb_put(n, skb->len);
548 
549 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
550 		BUG();
551 
552 	copy_skb_header(n, skb);
553 	return n;
554 }
555 
556 
557 /**
558  *	pskb_copy	-	create copy of an sk_buff with private head.
559  *	@skb: buffer to copy
560  *	@gfp_mask: allocation priority
561  *
562  *	Make a copy of both an &sk_buff and part of its data, located
563  *	in header. Fragmented data remain shared. This is used when
564  *	the caller wishes to modify only header of &sk_buff and needs
565  *	private copy of the header to alter. Returns %NULL on failure
566  *	or the pointer to the buffer on success.
567  *	The returned buffer has a reference count of 1.
568  */
569 
570 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
571 {
572 	/*
573 	 *	Allocate the copy buffer
574 	 */
575 	struct sk_buff *n;
576 #ifdef NET_SKBUFF_DATA_USES_OFFSET
577 	n = alloc_skb(skb->end, gfp_mask);
578 #else
579 	n = alloc_skb(skb->end - skb->head, gfp_mask);
580 #endif
581 	if (!n)
582 		goto out;
583 
584 	/* Set the data pointer */
585 	skb_reserve(n, skb->data - skb->head);
586 	/* Set the tail pointer and length */
587 	skb_put(n, skb_headlen(skb));
588 	/* Copy the bytes */
589 	skb_copy_from_linear_data(skb, n->data, n->len);
590 
591 	n->truesize += skb->data_len;
592 	n->data_len  = skb->data_len;
593 	n->len	     = skb->len;
594 
595 	if (skb_shinfo(skb)->nr_frags) {
596 		int i;
597 
598 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
599 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
600 			get_page(skb_shinfo(n)->frags[i].page);
601 		}
602 		skb_shinfo(n)->nr_frags = i;
603 	}
604 
605 	if (skb_shinfo(skb)->frag_list) {
606 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
607 		skb_clone_fraglist(n);
608 	}
609 
610 	copy_skb_header(n, skb);
611 out:
612 	return n;
613 }
614 
615 /**
616  *	pskb_expand_head - reallocate header of &sk_buff
617  *	@skb: buffer to reallocate
618  *	@nhead: room to add at head
619  *	@ntail: room to add at tail
620  *	@gfp_mask: allocation priority
621  *
622  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
623  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
624  *	reference count of 1. Returns zero in the case of success or error,
625  *	if expansion failed. In the last case, &sk_buff is not changed.
626  *
627  *	All the pointers pointing into skb header may change and must be
628  *	reloaded after call to this function.
629  */
630 
631 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
632 		     gfp_t gfp_mask)
633 {
634 	int i;
635 	u8 *data;
636 #ifdef NET_SKBUFF_DATA_USES_OFFSET
637 	int size = nhead + skb->end + ntail;
638 #else
639 	int size = nhead + (skb->end - skb->head) + ntail;
640 #endif
641 	long off;
642 
643 	if (skb_shared(skb))
644 		BUG();
645 
646 	size = SKB_DATA_ALIGN(size);
647 
648 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
649 	if (!data)
650 		goto nodata;
651 
652 	/* Copy only real data... and, alas, header. This should be
653 	 * optimized for the cases when header is void. */
654 #ifdef NET_SKBUFF_DATA_USES_OFFSET
655 	memcpy(data + nhead, skb->head, skb->tail);
656 #else
657 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
658 #endif
659 	memcpy(data + size, skb_end_pointer(skb),
660 	       sizeof(struct skb_shared_info));
661 
662 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
663 		get_page(skb_shinfo(skb)->frags[i].page);
664 
665 	if (skb_shinfo(skb)->frag_list)
666 		skb_clone_fraglist(skb);
667 
668 	skb_release_data(skb);
669 
670 	off = (data + nhead) - skb->head;
671 
672 	skb->head     = data;
673 	skb->data    += off;
674 #ifdef NET_SKBUFF_DATA_USES_OFFSET
675 	skb->end      = size;
676 	off           = nhead;
677 #else
678 	skb->end      = skb->head + size;
679 #endif
680 	/* {transport,network,mac}_header and tail are relative to skb->head */
681 	skb->tail	      += off;
682 	skb->transport_header += off;
683 	skb->network_header   += off;
684 	skb->mac_header	      += off;
685 	skb->csum_start       += nhead;
686 	skb->cloned   = 0;
687 	skb->hdr_len  = 0;
688 	skb->nohdr    = 0;
689 	atomic_set(&skb_shinfo(skb)->dataref, 1);
690 	return 0;
691 
692 nodata:
693 	return -ENOMEM;
694 }
695 
696 /* Make private copy of skb with writable head and some headroom */
697 
698 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
699 {
700 	struct sk_buff *skb2;
701 	int delta = headroom - skb_headroom(skb);
702 
703 	if (delta <= 0)
704 		skb2 = pskb_copy(skb, GFP_ATOMIC);
705 	else {
706 		skb2 = skb_clone(skb, GFP_ATOMIC);
707 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
708 					     GFP_ATOMIC)) {
709 			kfree_skb(skb2);
710 			skb2 = NULL;
711 		}
712 	}
713 	return skb2;
714 }
715 
716 
717 /**
718  *	skb_copy_expand	-	copy and expand sk_buff
719  *	@skb: buffer to copy
720  *	@newheadroom: new free bytes at head
721  *	@newtailroom: new free bytes at tail
722  *	@gfp_mask: allocation priority
723  *
724  *	Make a copy of both an &sk_buff and its data and while doing so
725  *	allocate additional space.
726  *
727  *	This is used when the caller wishes to modify the data and needs a
728  *	private copy of the data to alter as well as more space for new fields.
729  *	Returns %NULL on failure or the pointer to the buffer
730  *	on success. The returned buffer has a reference count of 1.
731  *
732  *	You must pass %GFP_ATOMIC as the allocation priority if this function
733  *	is called from an interrupt.
734  */
735 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
736 				int newheadroom, int newtailroom,
737 				gfp_t gfp_mask)
738 {
739 	/*
740 	 *	Allocate the copy buffer
741 	 */
742 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
743 				      gfp_mask);
744 	int oldheadroom = skb_headroom(skb);
745 	int head_copy_len, head_copy_off;
746 	int off;
747 
748 	if (!n)
749 		return NULL;
750 
751 	skb_reserve(n, newheadroom);
752 
753 	/* Set the tail pointer and length */
754 	skb_put(n, skb->len);
755 
756 	head_copy_len = oldheadroom;
757 	head_copy_off = 0;
758 	if (newheadroom <= head_copy_len)
759 		head_copy_len = newheadroom;
760 	else
761 		head_copy_off = newheadroom - head_copy_len;
762 
763 	/* Copy the linear header and data. */
764 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
765 			  skb->len + head_copy_len))
766 		BUG();
767 
768 	copy_skb_header(n, skb);
769 
770 	off                  = newheadroom - oldheadroom;
771 	n->csum_start       += off;
772 #ifdef NET_SKBUFF_DATA_USES_OFFSET
773 	n->transport_header += off;
774 	n->network_header   += off;
775 	n->mac_header	    += off;
776 #endif
777 
778 	return n;
779 }
780 
781 /**
782  *	skb_pad			-	zero pad the tail of an skb
783  *	@skb: buffer to pad
784  *	@pad: space to pad
785  *
786  *	Ensure that a buffer is followed by a padding area that is zero
787  *	filled. Used by network drivers which may DMA or transfer data
788  *	beyond the buffer end onto the wire.
789  *
790  *	May return error in out of memory cases. The skb is freed on error.
791  */
792 
793 int skb_pad(struct sk_buff *skb, int pad)
794 {
795 	int err;
796 	int ntail;
797 
798 	/* If the skbuff is non linear tailroom is always zero.. */
799 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
800 		memset(skb->data+skb->len, 0, pad);
801 		return 0;
802 	}
803 
804 	ntail = skb->data_len + pad - (skb->end - skb->tail);
805 	if (likely(skb_cloned(skb) || ntail > 0)) {
806 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
807 		if (unlikely(err))
808 			goto free_skb;
809 	}
810 
811 	/* FIXME: The use of this function with non-linear skb's really needs
812 	 * to be audited.
813 	 */
814 	err = skb_linearize(skb);
815 	if (unlikely(err))
816 		goto free_skb;
817 
818 	memset(skb->data + skb->len, 0, pad);
819 	return 0;
820 
821 free_skb:
822 	kfree_skb(skb);
823 	return err;
824 }
825 
826 /* Trims skb to length len. It can change skb pointers.
827  */
828 
829 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
830 {
831 	struct sk_buff **fragp;
832 	struct sk_buff *frag;
833 	int offset = skb_headlen(skb);
834 	int nfrags = skb_shinfo(skb)->nr_frags;
835 	int i;
836 	int err;
837 
838 	if (skb_cloned(skb) &&
839 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
840 		return err;
841 
842 	i = 0;
843 	if (offset >= len)
844 		goto drop_pages;
845 
846 	for (; i < nfrags; i++) {
847 		int end = offset + skb_shinfo(skb)->frags[i].size;
848 
849 		if (end < len) {
850 			offset = end;
851 			continue;
852 		}
853 
854 		skb_shinfo(skb)->frags[i++].size = len - offset;
855 
856 drop_pages:
857 		skb_shinfo(skb)->nr_frags = i;
858 
859 		for (; i < nfrags; i++)
860 			put_page(skb_shinfo(skb)->frags[i].page);
861 
862 		if (skb_shinfo(skb)->frag_list)
863 			skb_drop_fraglist(skb);
864 		goto done;
865 	}
866 
867 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
868 	     fragp = &frag->next) {
869 		int end = offset + frag->len;
870 
871 		if (skb_shared(frag)) {
872 			struct sk_buff *nfrag;
873 
874 			nfrag = skb_clone(frag, GFP_ATOMIC);
875 			if (unlikely(!nfrag))
876 				return -ENOMEM;
877 
878 			nfrag->next = frag->next;
879 			kfree_skb(frag);
880 			frag = nfrag;
881 			*fragp = frag;
882 		}
883 
884 		if (end < len) {
885 			offset = end;
886 			continue;
887 		}
888 
889 		if (end > len &&
890 		    unlikely((err = pskb_trim(frag, len - offset))))
891 			return err;
892 
893 		if (frag->next)
894 			skb_drop_list(&frag->next);
895 		break;
896 	}
897 
898 done:
899 	if (len > skb_headlen(skb)) {
900 		skb->data_len -= skb->len - len;
901 		skb->len       = len;
902 	} else {
903 		skb->len       = len;
904 		skb->data_len  = 0;
905 		skb_set_tail_pointer(skb, len);
906 	}
907 
908 	return 0;
909 }
910 
911 /**
912  *	__pskb_pull_tail - advance tail of skb header
913  *	@skb: buffer to reallocate
914  *	@delta: number of bytes to advance tail
915  *
916  *	The function makes a sense only on a fragmented &sk_buff,
917  *	it expands header moving its tail forward and copying necessary
918  *	data from fragmented part.
919  *
920  *	&sk_buff MUST have reference count of 1.
921  *
922  *	Returns %NULL (and &sk_buff does not change) if pull failed
923  *	or value of new tail of skb in the case of success.
924  *
925  *	All the pointers pointing into skb header may change and must be
926  *	reloaded after call to this function.
927  */
928 
929 /* Moves tail of skb head forward, copying data from fragmented part,
930  * when it is necessary.
931  * 1. It may fail due to malloc failure.
932  * 2. It may change skb pointers.
933  *
934  * It is pretty complicated. Luckily, it is called only in exceptional cases.
935  */
936 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
937 {
938 	/* If skb has not enough free space at tail, get new one
939 	 * plus 128 bytes for future expansions. If we have enough
940 	 * room at tail, reallocate without expansion only if skb is cloned.
941 	 */
942 	int i, k, eat = (skb->tail + delta) - skb->end;
943 
944 	if (eat > 0 || skb_cloned(skb)) {
945 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
946 				     GFP_ATOMIC))
947 			return NULL;
948 	}
949 
950 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
951 		BUG();
952 
953 	/* Optimization: no fragments, no reasons to preestimate
954 	 * size of pulled pages. Superb.
955 	 */
956 	if (!skb_shinfo(skb)->frag_list)
957 		goto pull_pages;
958 
959 	/* Estimate size of pulled pages. */
960 	eat = delta;
961 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
962 		if (skb_shinfo(skb)->frags[i].size >= eat)
963 			goto pull_pages;
964 		eat -= skb_shinfo(skb)->frags[i].size;
965 	}
966 
967 	/* If we need update frag list, we are in troubles.
968 	 * Certainly, it possible to add an offset to skb data,
969 	 * but taking into account that pulling is expected to
970 	 * be very rare operation, it is worth to fight against
971 	 * further bloating skb head and crucify ourselves here instead.
972 	 * Pure masohism, indeed. 8)8)
973 	 */
974 	if (eat) {
975 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
976 		struct sk_buff *clone = NULL;
977 		struct sk_buff *insp = NULL;
978 
979 		do {
980 			BUG_ON(!list);
981 
982 			if (list->len <= eat) {
983 				/* Eaten as whole. */
984 				eat -= list->len;
985 				list = list->next;
986 				insp = list;
987 			} else {
988 				/* Eaten partially. */
989 
990 				if (skb_shared(list)) {
991 					/* Sucks! We need to fork list. :-( */
992 					clone = skb_clone(list, GFP_ATOMIC);
993 					if (!clone)
994 						return NULL;
995 					insp = list->next;
996 					list = clone;
997 				} else {
998 					/* This may be pulled without
999 					 * problems. */
1000 					insp = list;
1001 				}
1002 				if (!pskb_pull(list, eat)) {
1003 					if (clone)
1004 						kfree_skb(clone);
1005 					return NULL;
1006 				}
1007 				break;
1008 			}
1009 		} while (eat);
1010 
1011 		/* Free pulled out fragments. */
1012 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1013 			skb_shinfo(skb)->frag_list = list->next;
1014 			kfree_skb(list);
1015 		}
1016 		/* And insert new clone at head. */
1017 		if (clone) {
1018 			clone->next = list;
1019 			skb_shinfo(skb)->frag_list = clone;
1020 		}
1021 	}
1022 	/* Success! Now we may commit changes to skb data. */
1023 
1024 pull_pages:
1025 	eat = delta;
1026 	k = 0;
1027 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1028 		if (skb_shinfo(skb)->frags[i].size <= eat) {
1029 			put_page(skb_shinfo(skb)->frags[i].page);
1030 			eat -= skb_shinfo(skb)->frags[i].size;
1031 		} else {
1032 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1033 			if (eat) {
1034 				skb_shinfo(skb)->frags[k].page_offset += eat;
1035 				skb_shinfo(skb)->frags[k].size -= eat;
1036 				eat = 0;
1037 			}
1038 			k++;
1039 		}
1040 	}
1041 	skb_shinfo(skb)->nr_frags = k;
1042 
1043 	skb->tail     += delta;
1044 	skb->data_len -= delta;
1045 
1046 	return skb_tail_pointer(skb);
1047 }
1048 
1049 /* Copy some data bits from skb to kernel buffer. */
1050 
1051 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1052 {
1053 	int i, copy;
1054 	int start = skb_headlen(skb);
1055 
1056 	if (offset > (int)skb->len - len)
1057 		goto fault;
1058 
1059 	/* Copy header. */
1060 	if ((copy = start - offset) > 0) {
1061 		if (copy > len)
1062 			copy = len;
1063 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1064 		if ((len -= copy) == 0)
1065 			return 0;
1066 		offset += copy;
1067 		to     += copy;
1068 	}
1069 
1070 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1071 		int end;
1072 
1073 		BUG_TRAP(start <= offset + len);
1074 
1075 		end = start + skb_shinfo(skb)->frags[i].size;
1076 		if ((copy = end - offset) > 0) {
1077 			u8 *vaddr;
1078 
1079 			if (copy > len)
1080 				copy = len;
1081 
1082 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1083 			memcpy(to,
1084 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1085 			       offset - start, copy);
1086 			kunmap_skb_frag(vaddr);
1087 
1088 			if ((len -= copy) == 0)
1089 				return 0;
1090 			offset += copy;
1091 			to     += copy;
1092 		}
1093 		start = end;
1094 	}
1095 
1096 	if (skb_shinfo(skb)->frag_list) {
1097 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1098 
1099 		for (; list; list = list->next) {
1100 			int end;
1101 
1102 			BUG_TRAP(start <= offset + len);
1103 
1104 			end = start + list->len;
1105 			if ((copy = end - offset) > 0) {
1106 				if (copy > len)
1107 					copy = len;
1108 				if (skb_copy_bits(list, offset - start,
1109 						  to, copy))
1110 					goto fault;
1111 				if ((len -= copy) == 0)
1112 					return 0;
1113 				offset += copy;
1114 				to     += copy;
1115 			}
1116 			start = end;
1117 		}
1118 	}
1119 	if (!len)
1120 		return 0;
1121 
1122 fault:
1123 	return -EFAULT;
1124 }
1125 
1126 /**
1127  *	skb_store_bits - store bits from kernel buffer to skb
1128  *	@skb: destination buffer
1129  *	@offset: offset in destination
1130  *	@from: source buffer
1131  *	@len: number of bytes to copy
1132  *
1133  *	Copy the specified number of bytes from the source buffer to the
1134  *	destination skb.  This function handles all the messy bits of
1135  *	traversing fragment lists and such.
1136  */
1137 
1138 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1139 {
1140 	int i, copy;
1141 	int start = skb_headlen(skb);
1142 
1143 	if (offset > (int)skb->len - len)
1144 		goto fault;
1145 
1146 	if ((copy = start - offset) > 0) {
1147 		if (copy > len)
1148 			copy = len;
1149 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1150 		if ((len -= copy) == 0)
1151 			return 0;
1152 		offset += copy;
1153 		from += copy;
1154 	}
1155 
1156 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1157 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1158 		int end;
1159 
1160 		BUG_TRAP(start <= offset + len);
1161 
1162 		end = start + frag->size;
1163 		if ((copy = end - offset) > 0) {
1164 			u8 *vaddr;
1165 
1166 			if (copy > len)
1167 				copy = len;
1168 
1169 			vaddr = kmap_skb_frag(frag);
1170 			memcpy(vaddr + frag->page_offset + offset - start,
1171 			       from, copy);
1172 			kunmap_skb_frag(vaddr);
1173 
1174 			if ((len -= copy) == 0)
1175 				return 0;
1176 			offset += copy;
1177 			from += copy;
1178 		}
1179 		start = end;
1180 	}
1181 
1182 	if (skb_shinfo(skb)->frag_list) {
1183 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1184 
1185 		for (; list; list = list->next) {
1186 			int end;
1187 
1188 			BUG_TRAP(start <= offset + len);
1189 
1190 			end = start + list->len;
1191 			if ((copy = end - offset) > 0) {
1192 				if (copy > len)
1193 					copy = len;
1194 				if (skb_store_bits(list, offset - start,
1195 						   from, copy))
1196 					goto fault;
1197 				if ((len -= copy) == 0)
1198 					return 0;
1199 				offset += copy;
1200 				from += copy;
1201 			}
1202 			start = end;
1203 		}
1204 	}
1205 	if (!len)
1206 		return 0;
1207 
1208 fault:
1209 	return -EFAULT;
1210 }
1211 
1212 EXPORT_SYMBOL(skb_store_bits);
1213 
1214 /* Checksum skb data. */
1215 
1216 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1217 			  int len, __wsum csum)
1218 {
1219 	int start = skb_headlen(skb);
1220 	int i, copy = start - offset;
1221 	int pos = 0;
1222 
1223 	/* Checksum header. */
1224 	if (copy > 0) {
1225 		if (copy > len)
1226 			copy = len;
1227 		csum = csum_partial(skb->data + offset, copy, csum);
1228 		if ((len -= copy) == 0)
1229 			return csum;
1230 		offset += copy;
1231 		pos	= copy;
1232 	}
1233 
1234 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1235 		int end;
1236 
1237 		BUG_TRAP(start <= offset + len);
1238 
1239 		end = start + skb_shinfo(skb)->frags[i].size;
1240 		if ((copy = end - offset) > 0) {
1241 			__wsum csum2;
1242 			u8 *vaddr;
1243 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1244 
1245 			if (copy > len)
1246 				copy = len;
1247 			vaddr = kmap_skb_frag(frag);
1248 			csum2 = csum_partial(vaddr + frag->page_offset +
1249 					     offset - start, copy, 0);
1250 			kunmap_skb_frag(vaddr);
1251 			csum = csum_block_add(csum, csum2, pos);
1252 			if (!(len -= copy))
1253 				return csum;
1254 			offset += copy;
1255 			pos    += copy;
1256 		}
1257 		start = end;
1258 	}
1259 
1260 	if (skb_shinfo(skb)->frag_list) {
1261 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1262 
1263 		for (; list; list = list->next) {
1264 			int end;
1265 
1266 			BUG_TRAP(start <= offset + len);
1267 
1268 			end = start + list->len;
1269 			if ((copy = end - offset) > 0) {
1270 				__wsum csum2;
1271 				if (copy > len)
1272 					copy = len;
1273 				csum2 = skb_checksum(list, offset - start,
1274 						     copy, 0);
1275 				csum = csum_block_add(csum, csum2, pos);
1276 				if ((len -= copy) == 0)
1277 					return csum;
1278 				offset += copy;
1279 				pos    += copy;
1280 			}
1281 			start = end;
1282 		}
1283 	}
1284 	BUG_ON(len);
1285 
1286 	return csum;
1287 }
1288 
1289 /* Both of above in one bottle. */
1290 
1291 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1292 				    u8 *to, int len, __wsum csum)
1293 {
1294 	int start = skb_headlen(skb);
1295 	int i, copy = start - offset;
1296 	int pos = 0;
1297 
1298 	/* Copy header. */
1299 	if (copy > 0) {
1300 		if (copy > len)
1301 			copy = len;
1302 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1303 						 copy, csum);
1304 		if ((len -= copy) == 0)
1305 			return csum;
1306 		offset += copy;
1307 		to     += copy;
1308 		pos	= copy;
1309 	}
1310 
1311 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1312 		int end;
1313 
1314 		BUG_TRAP(start <= offset + len);
1315 
1316 		end = start + skb_shinfo(skb)->frags[i].size;
1317 		if ((copy = end - offset) > 0) {
1318 			__wsum csum2;
1319 			u8 *vaddr;
1320 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1321 
1322 			if (copy > len)
1323 				copy = len;
1324 			vaddr = kmap_skb_frag(frag);
1325 			csum2 = csum_partial_copy_nocheck(vaddr +
1326 							  frag->page_offset +
1327 							  offset - start, to,
1328 							  copy, 0);
1329 			kunmap_skb_frag(vaddr);
1330 			csum = csum_block_add(csum, csum2, pos);
1331 			if (!(len -= copy))
1332 				return csum;
1333 			offset += copy;
1334 			to     += copy;
1335 			pos    += copy;
1336 		}
1337 		start = end;
1338 	}
1339 
1340 	if (skb_shinfo(skb)->frag_list) {
1341 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1342 
1343 		for (; list; list = list->next) {
1344 			__wsum csum2;
1345 			int end;
1346 
1347 			BUG_TRAP(start <= offset + len);
1348 
1349 			end = start + list->len;
1350 			if ((copy = end - offset) > 0) {
1351 				if (copy > len)
1352 					copy = len;
1353 				csum2 = skb_copy_and_csum_bits(list,
1354 							       offset - start,
1355 							       to, copy, 0);
1356 				csum = csum_block_add(csum, csum2, pos);
1357 				if ((len -= copy) == 0)
1358 					return csum;
1359 				offset += copy;
1360 				to     += copy;
1361 				pos    += copy;
1362 			}
1363 			start = end;
1364 		}
1365 	}
1366 	BUG_ON(len);
1367 	return csum;
1368 }
1369 
1370 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1371 {
1372 	__wsum csum;
1373 	long csstart;
1374 
1375 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1376 		csstart = skb->csum_start - skb_headroom(skb);
1377 	else
1378 		csstart = skb_headlen(skb);
1379 
1380 	BUG_ON(csstart > skb_headlen(skb));
1381 
1382 	skb_copy_from_linear_data(skb, to, csstart);
1383 
1384 	csum = 0;
1385 	if (csstart != skb->len)
1386 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1387 					      skb->len - csstart, 0);
1388 
1389 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1390 		long csstuff = csstart + skb->csum_offset;
1391 
1392 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
1393 	}
1394 }
1395 
1396 /**
1397  *	skb_dequeue - remove from the head of the queue
1398  *	@list: list to dequeue from
1399  *
1400  *	Remove the head of the list. The list lock is taken so the function
1401  *	may be used safely with other locking list functions. The head item is
1402  *	returned or %NULL if the list is empty.
1403  */
1404 
1405 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1406 {
1407 	unsigned long flags;
1408 	struct sk_buff *result;
1409 
1410 	spin_lock_irqsave(&list->lock, flags);
1411 	result = __skb_dequeue(list);
1412 	spin_unlock_irqrestore(&list->lock, flags);
1413 	return result;
1414 }
1415 
1416 /**
1417  *	skb_dequeue_tail - remove from the tail of the queue
1418  *	@list: list to dequeue from
1419  *
1420  *	Remove the tail of the list. The list lock is taken so the function
1421  *	may be used safely with other locking list functions. The tail item is
1422  *	returned or %NULL if the list is empty.
1423  */
1424 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1425 {
1426 	unsigned long flags;
1427 	struct sk_buff *result;
1428 
1429 	spin_lock_irqsave(&list->lock, flags);
1430 	result = __skb_dequeue_tail(list);
1431 	spin_unlock_irqrestore(&list->lock, flags);
1432 	return result;
1433 }
1434 
1435 /**
1436  *	skb_queue_purge - empty a list
1437  *	@list: list to empty
1438  *
1439  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1440  *	the list and one reference dropped. This function takes the list
1441  *	lock and is atomic with respect to other list locking functions.
1442  */
1443 void skb_queue_purge(struct sk_buff_head *list)
1444 {
1445 	struct sk_buff *skb;
1446 	while ((skb = skb_dequeue(list)) != NULL)
1447 		kfree_skb(skb);
1448 }
1449 
1450 /**
1451  *	skb_queue_head - queue a buffer at the list head
1452  *	@list: list to use
1453  *	@newsk: buffer to queue
1454  *
1455  *	Queue a buffer at the start of the list. This function takes the
1456  *	list lock and can be used safely with other locking &sk_buff functions
1457  *	safely.
1458  *
1459  *	A buffer cannot be placed on two lists at the same time.
1460  */
1461 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1462 {
1463 	unsigned long flags;
1464 
1465 	spin_lock_irqsave(&list->lock, flags);
1466 	__skb_queue_head(list, newsk);
1467 	spin_unlock_irqrestore(&list->lock, flags);
1468 }
1469 
1470 /**
1471  *	skb_queue_tail - queue a buffer at the list tail
1472  *	@list: list to use
1473  *	@newsk: buffer to queue
1474  *
1475  *	Queue a buffer at the tail of the list. This function takes the
1476  *	list lock and can be used safely with other locking &sk_buff functions
1477  *	safely.
1478  *
1479  *	A buffer cannot be placed on two lists at the same time.
1480  */
1481 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1482 {
1483 	unsigned long flags;
1484 
1485 	spin_lock_irqsave(&list->lock, flags);
1486 	__skb_queue_tail(list, newsk);
1487 	spin_unlock_irqrestore(&list->lock, flags);
1488 }
1489 
1490 /**
1491  *	skb_unlink	-	remove a buffer from a list
1492  *	@skb: buffer to remove
1493  *	@list: list to use
1494  *
1495  *	Remove a packet from a list. The list locks are taken and this
1496  *	function is atomic with respect to other list locked calls
1497  *
1498  *	You must know what list the SKB is on.
1499  */
1500 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1501 {
1502 	unsigned long flags;
1503 
1504 	spin_lock_irqsave(&list->lock, flags);
1505 	__skb_unlink(skb, list);
1506 	spin_unlock_irqrestore(&list->lock, flags);
1507 }
1508 
1509 /**
1510  *	skb_append	-	append a buffer
1511  *	@old: buffer to insert after
1512  *	@newsk: buffer to insert
1513  *	@list: list to use
1514  *
1515  *	Place a packet after a given packet in a list. The list locks are taken
1516  *	and this function is atomic with respect to other list locked calls.
1517  *	A buffer cannot be placed on two lists at the same time.
1518  */
1519 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1520 {
1521 	unsigned long flags;
1522 
1523 	spin_lock_irqsave(&list->lock, flags);
1524 	__skb_append(old, newsk, list);
1525 	spin_unlock_irqrestore(&list->lock, flags);
1526 }
1527 
1528 
1529 /**
1530  *	skb_insert	-	insert a buffer
1531  *	@old: buffer to insert before
1532  *	@newsk: buffer to insert
1533  *	@list: list to use
1534  *
1535  *	Place a packet before a given packet in a list. The list locks are
1536  * 	taken and this function is atomic with respect to other list locked
1537  *	calls.
1538  *
1539  *	A buffer cannot be placed on two lists at the same time.
1540  */
1541 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1542 {
1543 	unsigned long flags;
1544 
1545 	spin_lock_irqsave(&list->lock, flags);
1546 	__skb_insert(newsk, old->prev, old, list);
1547 	spin_unlock_irqrestore(&list->lock, flags);
1548 }
1549 
1550 static inline void skb_split_inside_header(struct sk_buff *skb,
1551 					   struct sk_buff* skb1,
1552 					   const u32 len, const int pos)
1553 {
1554 	int i;
1555 
1556 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1557 					 pos - len);
1558 	/* And move data appendix as is. */
1559 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1560 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1561 
1562 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1563 	skb_shinfo(skb)->nr_frags  = 0;
1564 	skb1->data_len		   = skb->data_len;
1565 	skb1->len		   += skb1->data_len;
1566 	skb->data_len		   = 0;
1567 	skb->len		   = len;
1568 	skb_set_tail_pointer(skb, len);
1569 }
1570 
1571 static inline void skb_split_no_header(struct sk_buff *skb,
1572 				       struct sk_buff* skb1,
1573 				       const u32 len, int pos)
1574 {
1575 	int i, k = 0;
1576 	const int nfrags = skb_shinfo(skb)->nr_frags;
1577 
1578 	skb_shinfo(skb)->nr_frags = 0;
1579 	skb1->len		  = skb1->data_len = skb->len - len;
1580 	skb->len		  = len;
1581 	skb->data_len		  = len - pos;
1582 
1583 	for (i = 0; i < nfrags; i++) {
1584 		int size = skb_shinfo(skb)->frags[i].size;
1585 
1586 		if (pos + size > len) {
1587 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1588 
1589 			if (pos < len) {
1590 				/* Split frag.
1591 				 * We have two variants in this case:
1592 				 * 1. Move all the frag to the second
1593 				 *    part, if it is possible. F.e.
1594 				 *    this approach is mandatory for TUX,
1595 				 *    where splitting is expensive.
1596 				 * 2. Split is accurately. We make this.
1597 				 */
1598 				get_page(skb_shinfo(skb)->frags[i].page);
1599 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1600 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1601 				skb_shinfo(skb)->frags[i].size	= len - pos;
1602 				skb_shinfo(skb)->nr_frags++;
1603 			}
1604 			k++;
1605 		} else
1606 			skb_shinfo(skb)->nr_frags++;
1607 		pos += size;
1608 	}
1609 	skb_shinfo(skb1)->nr_frags = k;
1610 }
1611 
1612 /**
1613  * skb_split - Split fragmented skb to two parts at length len.
1614  * @skb: the buffer to split
1615  * @skb1: the buffer to receive the second part
1616  * @len: new length for skb
1617  */
1618 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1619 {
1620 	int pos = skb_headlen(skb);
1621 
1622 	if (len < pos)	/* Split line is inside header. */
1623 		skb_split_inside_header(skb, skb1, len, pos);
1624 	else		/* Second chunk has no header, nothing to copy. */
1625 		skb_split_no_header(skb, skb1, len, pos);
1626 }
1627 
1628 /**
1629  * skb_prepare_seq_read - Prepare a sequential read of skb data
1630  * @skb: the buffer to read
1631  * @from: lower offset of data to be read
1632  * @to: upper offset of data to be read
1633  * @st: state variable
1634  *
1635  * Initializes the specified state variable. Must be called before
1636  * invoking skb_seq_read() for the first time.
1637  */
1638 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1639 			  unsigned int to, struct skb_seq_state *st)
1640 {
1641 	st->lower_offset = from;
1642 	st->upper_offset = to;
1643 	st->root_skb = st->cur_skb = skb;
1644 	st->frag_idx = st->stepped_offset = 0;
1645 	st->frag_data = NULL;
1646 }
1647 
1648 /**
1649  * skb_seq_read - Sequentially read skb data
1650  * @consumed: number of bytes consumed by the caller so far
1651  * @data: destination pointer for data to be returned
1652  * @st: state variable
1653  *
1654  * Reads a block of skb data at &consumed relative to the
1655  * lower offset specified to skb_prepare_seq_read(). Assigns
1656  * the head of the data block to &data and returns the length
1657  * of the block or 0 if the end of the skb data or the upper
1658  * offset has been reached.
1659  *
1660  * The caller is not required to consume all of the data
1661  * returned, i.e. &consumed is typically set to the number
1662  * of bytes already consumed and the next call to
1663  * skb_seq_read() will return the remaining part of the block.
1664  *
1665  * Note: The size of each block of data returned can be arbitary,
1666  *       this limitation is the cost for zerocopy seqeuental
1667  *       reads of potentially non linear data.
1668  *
1669  * Note: Fragment lists within fragments are not implemented
1670  *       at the moment, state->root_skb could be replaced with
1671  *       a stack for this purpose.
1672  */
1673 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1674 			  struct skb_seq_state *st)
1675 {
1676 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1677 	skb_frag_t *frag;
1678 
1679 	if (unlikely(abs_offset >= st->upper_offset))
1680 		return 0;
1681 
1682 next_skb:
1683 	block_limit = skb_headlen(st->cur_skb);
1684 
1685 	if (abs_offset < block_limit) {
1686 		*data = st->cur_skb->data + abs_offset;
1687 		return block_limit - abs_offset;
1688 	}
1689 
1690 	if (st->frag_idx == 0 && !st->frag_data)
1691 		st->stepped_offset += skb_headlen(st->cur_skb);
1692 
1693 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1694 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1695 		block_limit = frag->size + st->stepped_offset;
1696 
1697 		if (abs_offset < block_limit) {
1698 			if (!st->frag_data)
1699 				st->frag_data = kmap_skb_frag(frag);
1700 
1701 			*data = (u8 *) st->frag_data + frag->page_offset +
1702 				(abs_offset - st->stepped_offset);
1703 
1704 			return block_limit - abs_offset;
1705 		}
1706 
1707 		if (st->frag_data) {
1708 			kunmap_skb_frag(st->frag_data);
1709 			st->frag_data = NULL;
1710 		}
1711 
1712 		st->frag_idx++;
1713 		st->stepped_offset += frag->size;
1714 	}
1715 
1716 	if (st->frag_data) {
1717 		kunmap_skb_frag(st->frag_data);
1718 		st->frag_data = NULL;
1719 	}
1720 
1721 	if (st->cur_skb->next) {
1722 		st->cur_skb = st->cur_skb->next;
1723 		st->frag_idx = 0;
1724 		goto next_skb;
1725 	} else if (st->root_skb == st->cur_skb &&
1726 		   skb_shinfo(st->root_skb)->frag_list) {
1727 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1728 		goto next_skb;
1729 	}
1730 
1731 	return 0;
1732 }
1733 
1734 /**
1735  * skb_abort_seq_read - Abort a sequential read of skb data
1736  * @st: state variable
1737  *
1738  * Must be called if skb_seq_read() was not called until it
1739  * returned 0.
1740  */
1741 void skb_abort_seq_read(struct skb_seq_state *st)
1742 {
1743 	if (st->frag_data)
1744 		kunmap_skb_frag(st->frag_data);
1745 }
1746 
1747 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
1748 
1749 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1750 					  struct ts_config *conf,
1751 					  struct ts_state *state)
1752 {
1753 	return skb_seq_read(offset, text, TS_SKB_CB(state));
1754 }
1755 
1756 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1757 {
1758 	skb_abort_seq_read(TS_SKB_CB(state));
1759 }
1760 
1761 /**
1762  * skb_find_text - Find a text pattern in skb data
1763  * @skb: the buffer to look in
1764  * @from: search offset
1765  * @to: search limit
1766  * @config: textsearch configuration
1767  * @state: uninitialized textsearch state variable
1768  *
1769  * Finds a pattern in the skb data according to the specified
1770  * textsearch configuration. Use textsearch_next() to retrieve
1771  * subsequent occurrences of the pattern. Returns the offset
1772  * to the first occurrence or UINT_MAX if no match was found.
1773  */
1774 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1775 			   unsigned int to, struct ts_config *config,
1776 			   struct ts_state *state)
1777 {
1778 	unsigned int ret;
1779 
1780 	config->get_next_block = skb_ts_get_next_block;
1781 	config->finish = skb_ts_finish;
1782 
1783 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1784 
1785 	ret = textsearch_find(config, state);
1786 	return (ret <= to - from ? ret : UINT_MAX);
1787 }
1788 
1789 /**
1790  * skb_append_datato_frags: - append the user data to a skb
1791  * @sk: sock  structure
1792  * @skb: skb structure to be appened with user data.
1793  * @getfrag: call back function to be used for getting the user data
1794  * @from: pointer to user message iov
1795  * @length: length of the iov message
1796  *
1797  * Description: This procedure append the user data in the fragment part
1798  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
1799  */
1800 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1801 			int (*getfrag)(void *from, char *to, int offset,
1802 					int len, int odd, struct sk_buff *skb),
1803 			void *from, int length)
1804 {
1805 	int frg_cnt = 0;
1806 	skb_frag_t *frag = NULL;
1807 	struct page *page = NULL;
1808 	int copy, left;
1809 	int offset = 0;
1810 	int ret;
1811 
1812 	do {
1813 		/* Return error if we don't have space for new frag */
1814 		frg_cnt = skb_shinfo(skb)->nr_frags;
1815 		if (frg_cnt >= MAX_SKB_FRAGS)
1816 			return -EFAULT;
1817 
1818 		/* allocate a new page for next frag */
1819 		page = alloc_pages(sk->sk_allocation, 0);
1820 
1821 		/* If alloc_page fails just return failure and caller will
1822 		 * free previous allocated pages by doing kfree_skb()
1823 		 */
1824 		if (page == NULL)
1825 			return -ENOMEM;
1826 
1827 		/* initialize the next frag */
1828 		sk->sk_sndmsg_page = page;
1829 		sk->sk_sndmsg_off = 0;
1830 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1831 		skb->truesize += PAGE_SIZE;
1832 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1833 
1834 		/* get the new initialized frag */
1835 		frg_cnt = skb_shinfo(skb)->nr_frags;
1836 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1837 
1838 		/* copy the user data to page */
1839 		left = PAGE_SIZE - frag->page_offset;
1840 		copy = (length > left)? left : length;
1841 
1842 		ret = getfrag(from, (page_address(frag->page) +
1843 			    frag->page_offset + frag->size),
1844 			    offset, copy, 0, skb);
1845 		if (ret < 0)
1846 			return -EFAULT;
1847 
1848 		/* copy was successful so update the size parameters */
1849 		sk->sk_sndmsg_off += copy;
1850 		frag->size += copy;
1851 		skb->len += copy;
1852 		skb->data_len += copy;
1853 		offset += copy;
1854 		length -= copy;
1855 
1856 	} while (length > 0);
1857 
1858 	return 0;
1859 }
1860 
1861 /**
1862  *	skb_pull_rcsum - pull skb and update receive checksum
1863  *	@skb: buffer to update
1864  *	@start: start of data before pull
1865  *	@len: length of data pulled
1866  *
1867  *	This function performs an skb_pull on the packet and updates
1868  *	update the CHECKSUM_COMPLETE checksum.  It should be used on
1869  *	receive path processing instead of skb_pull unless you know
1870  *	that the checksum difference is zero (e.g., a valid IP header)
1871  *	or you are setting ip_summed to CHECKSUM_NONE.
1872  */
1873 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
1874 {
1875 	BUG_ON(len > skb->len);
1876 	skb->len -= len;
1877 	BUG_ON(skb->len < skb->data_len);
1878 	skb_postpull_rcsum(skb, skb->data, len);
1879 	return skb->data += len;
1880 }
1881 
1882 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
1883 
1884 /**
1885  *	skb_segment - Perform protocol segmentation on skb.
1886  *	@skb: buffer to segment
1887  *	@features: features for the output path (see dev->features)
1888  *
1889  *	This function performs segmentation on the given skb.  It returns
1890  *	the segment at the given position.  It returns NULL if there are
1891  *	no more segments to generate, or when an error is encountered.
1892  */
1893 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
1894 {
1895 	struct sk_buff *segs = NULL;
1896 	struct sk_buff *tail = NULL;
1897 	unsigned int mss = skb_shinfo(skb)->gso_size;
1898 	unsigned int doffset = skb->data - skb_mac_header(skb);
1899 	unsigned int offset = doffset;
1900 	unsigned int headroom;
1901 	unsigned int len;
1902 	int sg = features & NETIF_F_SG;
1903 	int nfrags = skb_shinfo(skb)->nr_frags;
1904 	int err = -ENOMEM;
1905 	int i = 0;
1906 	int pos;
1907 
1908 	__skb_push(skb, doffset);
1909 	headroom = skb_headroom(skb);
1910 	pos = skb_headlen(skb);
1911 
1912 	do {
1913 		struct sk_buff *nskb;
1914 		skb_frag_t *frag;
1915 		int hsize;
1916 		int k;
1917 		int size;
1918 
1919 		len = skb->len - offset;
1920 		if (len > mss)
1921 			len = mss;
1922 
1923 		hsize = skb_headlen(skb) - offset;
1924 		if (hsize < 0)
1925 			hsize = 0;
1926 		if (hsize > len || !sg)
1927 			hsize = len;
1928 
1929 		nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
1930 		if (unlikely(!nskb))
1931 			goto err;
1932 
1933 		if (segs)
1934 			tail->next = nskb;
1935 		else
1936 			segs = nskb;
1937 		tail = nskb;
1938 
1939 		nskb->dev = skb->dev;
1940 		skb_copy_queue_mapping(nskb, skb);
1941 		nskb->priority = skb->priority;
1942 		nskb->protocol = skb->protocol;
1943 		nskb->dst = dst_clone(skb->dst);
1944 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
1945 		nskb->pkt_type = skb->pkt_type;
1946 		nskb->mac_len = skb->mac_len;
1947 
1948 		skb_reserve(nskb, headroom);
1949 		skb_reset_mac_header(nskb);
1950 		skb_set_network_header(nskb, skb->mac_len);
1951 		nskb->transport_header = (nskb->network_header +
1952 					  skb_network_header_len(skb));
1953 		skb_copy_from_linear_data(skb, skb_put(nskb, doffset),
1954 					  doffset);
1955 		if (!sg) {
1956 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
1957 							    skb_put(nskb, len),
1958 							    len, 0);
1959 			continue;
1960 		}
1961 
1962 		frag = skb_shinfo(nskb)->frags;
1963 		k = 0;
1964 
1965 		nskb->ip_summed = CHECKSUM_PARTIAL;
1966 		nskb->csum = skb->csum;
1967 		skb_copy_from_linear_data_offset(skb, offset,
1968 						 skb_put(nskb, hsize), hsize);
1969 
1970 		while (pos < offset + len) {
1971 			BUG_ON(i >= nfrags);
1972 
1973 			*frag = skb_shinfo(skb)->frags[i];
1974 			get_page(frag->page);
1975 			size = frag->size;
1976 
1977 			if (pos < offset) {
1978 				frag->page_offset += offset - pos;
1979 				frag->size -= offset - pos;
1980 			}
1981 
1982 			k++;
1983 
1984 			if (pos + size <= offset + len) {
1985 				i++;
1986 				pos += size;
1987 			} else {
1988 				frag->size -= pos + size - (offset + len);
1989 				break;
1990 			}
1991 
1992 			frag++;
1993 		}
1994 
1995 		skb_shinfo(nskb)->nr_frags = k;
1996 		nskb->data_len = len - hsize;
1997 		nskb->len += nskb->data_len;
1998 		nskb->truesize += nskb->data_len;
1999 	} while ((offset += len) < skb->len);
2000 
2001 	return segs;
2002 
2003 err:
2004 	while ((skb = segs)) {
2005 		segs = skb->next;
2006 		kfree_skb(skb);
2007 	}
2008 	return ERR_PTR(err);
2009 }
2010 
2011 EXPORT_SYMBOL_GPL(skb_segment);
2012 
2013 void __init skb_init(void)
2014 {
2015 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2016 					      sizeof(struct sk_buff),
2017 					      0,
2018 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2019 					      NULL);
2020 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2021 						(2*sizeof(struct sk_buff)) +
2022 						sizeof(atomic_t),
2023 						0,
2024 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2025 						NULL);
2026 }
2027 
2028 /**
2029  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2030  *	@skb: Socket buffer containing the buffers to be mapped
2031  *	@sg: The scatter-gather list to map into
2032  *	@offset: The offset into the buffer's contents to start mapping
2033  *	@len: Length of buffer space to be mapped
2034  *
2035  *	Fill the specified scatter-gather list with mappings/pointers into a
2036  *	region of the buffer space attached to a socket buffer.
2037  */
2038 int
2039 skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2040 {
2041 	int start = skb_headlen(skb);
2042 	int i, copy = start - offset;
2043 	int elt = 0;
2044 
2045 	if (copy > 0) {
2046 		if (copy > len)
2047 			copy = len;
2048 		sg[elt].page = virt_to_page(skb->data + offset);
2049 		sg[elt].offset = (unsigned long)(skb->data + offset) % PAGE_SIZE;
2050 		sg[elt].length = copy;
2051 		elt++;
2052 		if ((len -= copy) == 0)
2053 			return elt;
2054 		offset += copy;
2055 	}
2056 
2057 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2058 		int end;
2059 
2060 		BUG_TRAP(start <= offset + len);
2061 
2062 		end = start + skb_shinfo(skb)->frags[i].size;
2063 		if ((copy = end - offset) > 0) {
2064 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2065 
2066 			if (copy > len)
2067 				copy = len;
2068 			sg[elt].page = frag->page;
2069 			sg[elt].offset = frag->page_offset+offset-start;
2070 			sg[elt].length = copy;
2071 			elt++;
2072 			if (!(len -= copy))
2073 				return elt;
2074 			offset += copy;
2075 		}
2076 		start = end;
2077 	}
2078 
2079 	if (skb_shinfo(skb)->frag_list) {
2080 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2081 
2082 		for (; list; list = list->next) {
2083 			int end;
2084 
2085 			BUG_TRAP(start <= offset + len);
2086 
2087 			end = start + list->len;
2088 			if ((copy = end - offset) > 0) {
2089 				if (copy > len)
2090 					copy = len;
2091 				elt += skb_to_sgvec(list, sg+elt, offset - start, copy);
2092 				if ((len -= copy) == 0)
2093 					return elt;
2094 				offset += copy;
2095 			}
2096 			start = end;
2097 		}
2098 	}
2099 	BUG_ON(len);
2100 	return elt;
2101 }
2102 
2103 /**
2104  *	skb_cow_data - Check that a socket buffer's data buffers are writable
2105  *	@skb: The socket buffer to check.
2106  *	@tailbits: Amount of trailing space to be added
2107  *	@trailer: Returned pointer to the skb where the @tailbits space begins
2108  *
2109  *	Make sure that the data buffers attached to a socket buffer are
2110  *	writable. If they are not, private copies are made of the data buffers
2111  *	and the socket buffer is set to use these instead.
2112  *
2113  *	If @tailbits is given, make sure that there is space to write @tailbits
2114  *	bytes of data beyond current end of socket buffer.  @trailer will be
2115  *	set to point to the skb in which this space begins.
2116  *
2117  *	The number of scatterlist elements required to completely map the
2118  *	COW'd and extended socket buffer will be returned.
2119  */
2120 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2121 {
2122 	int copyflag;
2123 	int elt;
2124 	struct sk_buff *skb1, **skb_p;
2125 
2126 	/* If skb is cloned or its head is paged, reallocate
2127 	 * head pulling out all the pages (pages are considered not writable
2128 	 * at the moment even if they are anonymous).
2129 	 */
2130 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2131 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2132 		return -ENOMEM;
2133 
2134 	/* Easy case. Most of packets will go this way. */
2135 	if (!skb_shinfo(skb)->frag_list) {
2136 		/* A little of trouble, not enough of space for trailer.
2137 		 * This should not happen, when stack is tuned to generate
2138 		 * good frames. OK, on miss we reallocate and reserve even more
2139 		 * space, 128 bytes is fair. */
2140 
2141 		if (skb_tailroom(skb) < tailbits &&
2142 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2143 			return -ENOMEM;
2144 
2145 		/* Voila! */
2146 		*trailer = skb;
2147 		return 1;
2148 	}
2149 
2150 	/* Misery. We are in troubles, going to mincer fragments... */
2151 
2152 	elt = 1;
2153 	skb_p = &skb_shinfo(skb)->frag_list;
2154 	copyflag = 0;
2155 
2156 	while ((skb1 = *skb_p) != NULL) {
2157 		int ntail = 0;
2158 
2159 		/* The fragment is partially pulled by someone,
2160 		 * this can happen on input. Copy it and everything
2161 		 * after it. */
2162 
2163 		if (skb_shared(skb1))
2164 			copyflag = 1;
2165 
2166 		/* If the skb is the last, worry about trailer. */
2167 
2168 		if (skb1->next == NULL && tailbits) {
2169 			if (skb_shinfo(skb1)->nr_frags ||
2170 			    skb_shinfo(skb1)->frag_list ||
2171 			    skb_tailroom(skb1) < tailbits)
2172 				ntail = tailbits + 128;
2173 		}
2174 
2175 		if (copyflag ||
2176 		    skb_cloned(skb1) ||
2177 		    ntail ||
2178 		    skb_shinfo(skb1)->nr_frags ||
2179 		    skb_shinfo(skb1)->frag_list) {
2180 			struct sk_buff *skb2;
2181 
2182 			/* Fuck, we are miserable poor guys... */
2183 			if (ntail == 0)
2184 				skb2 = skb_copy(skb1, GFP_ATOMIC);
2185 			else
2186 				skb2 = skb_copy_expand(skb1,
2187 						       skb_headroom(skb1),
2188 						       ntail,
2189 						       GFP_ATOMIC);
2190 			if (unlikely(skb2 == NULL))
2191 				return -ENOMEM;
2192 
2193 			if (skb1->sk)
2194 				skb_set_owner_w(skb2, skb1->sk);
2195 
2196 			/* Looking around. Are we still alive?
2197 			 * OK, link new skb, drop old one */
2198 
2199 			skb2->next = skb1->next;
2200 			*skb_p = skb2;
2201 			kfree_skb(skb1);
2202 			skb1 = skb2;
2203 		}
2204 		elt++;
2205 		*trailer = skb1;
2206 		skb_p = &skb1->next;
2207 	}
2208 
2209 	return elt;
2210 }
2211 
2212 EXPORT_SYMBOL(___pskb_trim);
2213 EXPORT_SYMBOL(__kfree_skb);
2214 EXPORT_SYMBOL(kfree_skb);
2215 EXPORT_SYMBOL(__pskb_pull_tail);
2216 EXPORT_SYMBOL(__alloc_skb);
2217 EXPORT_SYMBOL(__netdev_alloc_skb);
2218 EXPORT_SYMBOL(pskb_copy);
2219 EXPORT_SYMBOL(pskb_expand_head);
2220 EXPORT_SYMBOL(skb_checksum);
2221 EXPORT_SYMBOL(skb_clone);
2222 EXPORT_SYMBOL(skb_copy);
2223 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2224 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2225 EXPORT_SYMBOL(skb_copy_bits);
2226 EXPORT_SYMBOL(skb_copy_expand);
2227 EXPORT_SYMBOL(skb_over_panic);
2228 EXPORT_SYMBOL(skb_pad);
2229 EXPORT_SYMBOL(skb_realloc_headroom);
2230 EXPORT_SYMBOL(skb_under_panic);
2231 EXPORT_SYMBOL(skb_dequeue);
2232 EXPORT_SYMBOL(skb_dequeue_tail);
2233 EXPORT_SYMBOL(skb_insert);
2234 EXPORT_SYMBOL(skb_queue_purge);
2235 EXPORT_SYMBOL(skb_queue_head);
2236 EXPORT_SYMBOL(skb_queue_tail);
2237 EXPORT_SYMBOL(skb_unlink);
2238 EXPORT_SYMBOL(skb_append);
2239 EXPORT_SYMBOL(skb_split);
2240 EXPORT_SYMBOL(skb_prepare_seq_read);
2241 EXPORT_SYMBOL(skb_seq_read);
2242 EXPORT_SYMBOL(skb_abort_seq_read);
2243 EXPORT_SYMBOL(skb_find_text);
2244 EXPORT_SYMBOL(skb_append_datato_frags);
2245 
2246 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2247 EXPORT_SYMBOL_GPL(skb_cow_data);
2248