xref: /linux/net/core/skbuff.c (revision 4232da23d75d173195c6766729e51947b64f83cd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/bitfield.h>
62 #include <linux/if_vlan.h>
63 #include <linux/mpls.h>
64 #include <linux/kcov.h>
65 #include <linux/iov_iter.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/gso.h>
72 #include <net/hotdata.h>
73 #include <net/ip6_checksum.h>
74 #include <net/xfrm.h>
75 #include <net/mpls.h>
76 #include <net/mptcp.h>
77 #include <net/mctp.h>
78 #include <net/page_pool/helpers.h>
79 #include <net/dropreason.h>
80 
81 #include <linux/uaccess.h>
82 #include <trace/events/skb.h>
83 #include <linux/highmem.h>
84 #include <linux/capability.h>
85 #include <linux/user_namespace.h>
86 #include <linux/indirect_call_wrapper.h>
87 #include <linux/textsearch.h>
88 
89 #include "dev.h"
90 #include "sock_destructor.h"
91 
92 #ifdef CONFIG_SKB_EXTENSIONS
93 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
94 #endif
95 
96 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
97 
98 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
99  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
100  * size, and we can differentiate heads from skb_small_head_cache
101  * vs system slabs by looking at their size (skb_end_offset()).
102  */
103 #define SKB_SMALL_HEAD_CACHE_SIZE					\
104 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
105 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
106 		SKB_SMALL_HEAD_SIZE)
107 
108 #define SKB_SMALL_HEAD_HEADROOM						\
109 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
110 
111 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
112 EXPORT_SYMBOL(sysctl_max_skb_frags);
113 
114 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
115  * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
116  * netmem is a page.
117  */
118 static_assert(offsetof(struct bio_vec, bv_page) ==
119 	      offsetof(skb_frag_t, netmem));
120 static_assert(sizeof_field(struct bio_vec, bv_page) ==
121 	      sizeof_field(skb_frag_t, netmem));
122 
123 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
124 static_assert(sizeof_field(struct bio_vec, bv_len) ==
125 	      sizeof_field(skb_frag_t, len));
126 
127 static_assert(offsetof(struct bio_vec, bv_offset) ==
128 	      offsetof(skb_frag_t, offset));
129 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
130 	      sizeof_field(skb_frag_t, offset));
131 
132 #undef FN
133 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
134 static const char * const drop_reasons[] = {
135 	[SKB_CONSUMED] = "CONSUMED",
136 	DEFINE_DROP_REASON(FN, FN)
137 };
138 
139 static const struct drop_reason_list drop_reasons_core = {
140 	.reasons = drop_reasons,
141 	.n_reasons = ARRAY_SIZE(drop_reasons),
142 };
143 
144 const struct drop_reason_list __rcu *
145 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
146 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
147 };
148 EXPORT_SYMBOL(drop_reasons_by_subsys);
149 
150 /**
151  * drop_reasons_register_subsys - register another drop reason subsystem
152  * @subsys: the subsystem to register, must not be the core
153  * @list: the list of drop reasons within the subsystem, must point to
154  *	a statically initialized list
155  */
156 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
157 				  const struct drop_reason_list *list)
158 {
159 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
160 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
161 		 "invalid subsystem %d\n", subsys))
162 		return;
163 
164 	/* must point to statically allocated memory, so INIT is OK */
165 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
166 }
167 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
168 
169 /**
170  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
171  * @subsys: the subsystem to remove, must not be the core
172  *
173  * Note: This will synchronize_rcu() to ensure no users when it returns.
174  */
175 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
176 {
177 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
178 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
179 		 "invalid subsystem %d\n", subsys))
180 		return;
181 
182 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
183 
184 	synchronize_rcu();
185 }
186 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
187 
188 /**
189  *	skb_panic - private function for out-of-line support
190  *	@skb:	buffer
191  *	@sz:	size
192  *	@addr:	address
193  *	@msg:	skb_over_panic or skb_under_panic
194  *
195  *	Out-of-line support for skb_put() and skb_push().
196  *	Called via the wrapper skb_over_panic() or skb_under_panic().
197  *	Keep out of line to prevent kernel bloat.
198  *	__builtin_return_address is not used because it is not always reliable.
199  */
200 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
201 		      const char msg[])
202 {
203 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
204 		 msg, addr, skb->len, sz, skb->head, skb->data,
205 		 (unsigned long)skb->tail, (unsigned long)skb->end,
206 		 skb->dev ? skb->dev->name : "<NULL>");
207 	BUG();
208 }
209 
210 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
211 {
212 	skb_panic(skb, sz, addr, __func__);
213 }
214 
215 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
216 {
217 	skb_panic(skb, sz, addr, __func__);
218 }
219 
220 #define NAPI_SKB_CACHE_SIZE	64
221 #define NAPI_SKB_CACHE_BULK	16
222 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
223 
224 #if PAGE_SIZE == SZ_4K
225 
226 #define NAPI_HAS_SMALL_PAGE_FRAG	1
227 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
228 
229 /* specialized page frag allocator using a single order 0 page
230  * and slicing it into 1K sized fragment. Constrained to systems
231  * with a very limited amount of 1K fragments fitting a single
232  * page - to avoid excessive truesize underestimation
233  */
234 
235 struct page_frag_1k {
236 	void *va;
237 	u16 offset;
238 	bool pfmemalloc;
239 };
240 
241 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
242 {
243 	struct page *page;
244 	int offset;
245 
246 	offset = nc->offset - SZ_1K;
247 	if (likely(offset >= 0))
248 		goto use_frag;
249 
250 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
251 	if (!page)
252 		return NULL;
253 
254 	nc->va = page_address(page);
255 	nc->pfmemalloc = page_is_pfmemalloc(page);
256 	offset = PAGE_SIZE - SZ_1K;
257 	page_ref_add(page, offset / SZ_1K);
258 
259 use_frag:
260 	nc->offset = offset;
261 	return nc->va + offset;
262 }
263 #else
264 
265 /* the small page is actually unused in this build; add dummy helpers
266  * to please the compiler and avoid later preprocessor's conditionals
267  */
268 #define NAPI_HAS_SMALL_PAGE_FRAG	0
269 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
270 
271 struct page_frag_1k {
272 };
273 
274 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
275 {
276 	return NULL;
277 }
278 
279 #endif
280 
281 struct napi_alloc_cache {
282 	struct page_frag_cache page;
283 	struct page_frag_1k page_small;
284 	unsigned int skb_count;
285 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
286 };
287 
288 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
289 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
290 
291 /* Double check that napi_get_frags() allocates skbs with
292  * skb->head being backed by slab, not a page fragment.
293  * This is to make sure bug fixed in 3226b158e67c
294  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
295  * does not accidentally come back.
296  */
297 void napi_get_frags_check(struct napi_struct *napi)
298 {
299 	struct sk_buff *skb;
300 
301 	local_bh_disable();
302 	skb = napi_get_frags(napi);
303 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
304 	napi_free_frags(napi);
305 	local_bh_enable();
306 }
307 
308 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
309 {
310 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
311 
312 	fragsz = SKB_DATA_ALIGN(fragsz);
313 
314 	return __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
315 				       align_mask);
316 }
317 EXPORT_SYMBOL(__napi_alloc_frag_align);
318 
319 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
320 {
321 	void *data;
322 
323 	fragsz = SKB_DATA_ALIGN(fragsz);
324 	if (in_hardirq() || irqs_disabled()) {
325 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
326 
327 		data = __page_frag_alloc_align(nc, fragsz, GFP_ATOMIC,
328 					       align_mask);
329 	} else {
330 		struct napi_alloc_cache *nc;
331 
332 		local_bh_disable();
333 		nc = this_cpu_ptr(&napi_alloc_cache);
334 		data = __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
335 					       align_mask);
336 		local_bh_enable();
337 	}
338 	return data;
339 }
340 EXPORT_SYMBOL(__netdev_alloc_frag_align);
341 
342 static struct sk_buff *napi_skb_cache_get(void)
343 {
344 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
345 	struct sk_buff *skb;
346 
347 	if (unlikely(!nc->skb_count)) {
348 		nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
349 						      GFP_ATOMIC,
350 						      NAPI_SKB_CACHE_BULK,
351 						      nc->skb_cache);
352 		if (unlikely(!nc->skb_count))
353 			return NULL;
354 	}
355 
356 	skb = nc->skb_cache[--nc->skb_count];
357 	kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
358 
359 	return skb;
360 }
361 
362 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
363 					 unsigned int size)
364 {
365 	struct skb_shared_info *shinfo;
366 
367 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
368 
369 	/* Assumes caller memset cleared SKB */
370 	skb->truesize = SKB_TRUESIZE(size);
371 	refcount_set(&skb->users, 1);
372 	skb->head = data;
373 	skb->data = data;
374 	skb_reset_tail_pointer(skb);
375 	skb_set_end_offset(skb, size);
376 	skb->mac_header = (typeof(skb->mac_header))~0U;
377 	skb->transport_header = (typeof(skb->transport_header))~0U;
378 	skb->alloc_cpu = raw_smp_processor_id();
379 	/* make sure we initialize shinfo sequentially */
380 	shinfo = skb_shinfo(skb);
381 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
382 	atomic_set(&shinfo->dataref, 1);
383 
384 	skb_set_kcov_handle(skb, kcov_common_handle());
385 }
386 
387 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
388 				     unsigned int *size)
389 {
390 	void *resized;
391 
392 	/* Must find the allocation size (and grow it to match). */
393 	*size = ksize(data);
394 	/* krealloc() will immediately return "data" when
395 	 * "ksize(data)" is requested: it is the existing upper
396 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
397 	 * that this "new" pointer needs to be passed back to the
398 	 * caller for use so the __alloc_size hinting will be
399 	 * tracked correctly.
400 	 */
401 	resized = krealloc(data, *size, GFP_ATOMIC);
402 	WARN_ON_ONCE(resized != data);
403 	return resized;
404 }
405 
406 /* build_skb() variant which can operate on slab buffers.
407  * Note that this should be used sparingly as slab buffers
408  * cannot be combined efficiently by GRO!
409  */
410 struct sk_buff *slab_build_skb(void *data)
411 {
412 	struct sk_buff *skb;
413 	unsigned int size;
414 
415 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
416 	if (unlikely(!skb))
417 		return NULL;
418 
419 	memset(skb, 0, offsetof(struct sk_buff, tail));
420 	data = __slab_build_skb(skb, data, &size);
421 	__finalize_skb_around(skb, data, size);
422 
423 	return skb;
424 }
425 EXPORT_SYMBOL(slab_build_skb);
426 
427 /* Caller must provide SKB that is memset cleared */
428 static void __build_skb_around(struct sk_buff *skb, void *data,
429 			       unsigned int frag_size)
430 {
431 	unsigned int size = frag_size;
432 
433 	/* frag_size == 0 is considered deprecated now. Callers
434 	 * using slab buffer should use slab_build_skb() instead.
435 	 */
436 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
437 		data = __slab_build_skb(skb, data, &size);
438 
439 	__finalize_skb_around(skb, data, size);
440 }
441 
442 /**
443  * __build_skb - build a network buffer
444  * @data: data buffer provided by caller
445  * @frag_size: size of data (must not be 0)
446  *
447  * Allocate a new &sk_buff. Caller provides space holding head and
448  * skb_shared_info. @data must have been allocated from the page
449  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
450  * allocation is deprecated, and callers should use slab_build_skb()
451  * instead.)
452  * The return is the new skb buffer.
453  * On a failure the return is %NULL, and @data is not freed.
454  * Notes :
455  *  Before IO, driver allocates only data buffer where NIC put incoming frame
456  *  Driver should add room at head (NET_SKB_PAD) and
457  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
458  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
459  *  before giving packet to stack.
460  *  RX rings only contains data buffers, not full skbs.
461  */
462 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
463 {
464 	struct sk_buff *skb;
465 
466 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
467 	if (unlikely(!skb))
468 		return NULL;
469 
470 	memset(skb, 0, offsetof(struct sk_buff, tail));
471 	__build_skb_around(skb, data, frag_size);
472 
473 	return skb;
474 }
475 
476 /* build_skb() is wrapper over __build_skb(), that specifically
477  * takes care of skb->head and skb->pfmemalloc
478  */
479 struct sk_buff *build_skb(void *data, unsigned int frag_size)
480 {
481 	struct sk_buff *skb = __build_skb(data, frag_size);
482 
483 	if (likely(skb && frag_size)) {
484 		skb->head_frag = 1;
485 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
486 	}
487 	return skb;
488 }
489 EXPORT_SYMBOL(build_skb);
490 
491 /**
492  * build_skb_around - build a network buffer around provided skb
493  * @skb: sk_buff provide by caller, must be memset cleared
494  * @data: data buffer provided by caller
495  * @frag_size: size of data
496  */
497 struct sk_buff *build_skb_around(struct sk_buff *skb,
498 				 void *data, unsigned int frag_size)
499 {
500 	if (unlikely(!skb))
501 		return NULL;
502 
503 	__build_skb_around(skb, data, frag_size);
504 
505 	if (frag_size) {
506 		skb->head_frag = 1;
507 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
508 	}
509 	return skb;
510 }
511 EXPORT_SYMBOL(build_skb_around);
512 
513 /**
514  * __napi_build_skb - build a network buffer
515  * @data: data buffer provided by caller
516  * @frag_size: size of data
517  *
518  * Version of __build_skb() that uses NAPI percpu caches to obtain
519  * skbuff_head instead of inplace allocation.
520  *
521  * Returns a new &sk_buff on success, %NULL on allocation failure.
522  */
523 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
524 {
525 	struct sk_buff *skb;
526 
527 	skb = napi_skb_cache_get();
528 	if (unlikely(!skb))
529 		return NULL;
530 
531 	memset(skb, 0, offsetof(struct sk_buff, tail));
532 	__build_skb_around(skb, data, frag_size);
533 
534 	return skb;
535 }
536 
537 /**
538  * napi_build_skb - build a network buffer
539  * @data: data buffer provided by caller
540  * @frag_size: size of data
541  *
542  * Version of __napi_build_skb() that takes care of skb->head_frag
543  * and skb->pfmemalloc when the data is a page or page fragment.
544  *
545  * Returns a new &sk_buff on success, %NULL on allocation failure.
546  */
547 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
548 {
549 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
550 
551 	if (likely(skb) && frag_size) {
552 		skb->head_frag = 1;
553 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
554 	}
555 
556 	return skb;
557 }
558 EXPORT_SYMBOL(napi_build_skb);
559 
560 /*
561  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
562  * the caller if emergency pfmemalloc reserves are being used. If it is and
563  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
564  * may be used. Otherwise, the packet data may be discarded until enough
565  * memory is free
566  */
567 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
568 			     bool *pfmemalloc)
569 {
570 	bool ret_pfmemalloc = false;
571 	size_t obj_size;
572 	void *obj;
573 
574 	obj_size = SKB_HEAD_ALIGN(*size);
575 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
576 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
577 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
578 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
579 				node);
580 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
581 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
582 			goto out;
583 		/* Try again but now we are using pfmemalloc reserves */
584 		ret_pfmemalloc = true;
585 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
586 		goto out;
587 	}
588 
589 	obj_size = kmalloc_size_roundup(obj_size);
590 	/* The following cast might truncate high-order bits of obj_size, this
591 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
592 	 */
593 	*size = (unsigned int)obj_size;
594 
595 	/*
596 	 * Try a regular allocation, when that fails and we're not entitled
597 	 * to the reserves, fail.
598 	 */
599 	obj = kmalloc_node_track_caller(obj_size,
600 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
601 					node);
602 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
603 		goto out;
604 
605 	/* Try again but now we are using pfmemalloc reserves */
606 	ret_pfmemalloc = true;
607 	obj = kmalloc_node_track_caller(obj_size, flags, node);
608 
609 out:
610 	if (pfmemalloc)
611 		*pfmemalloc = ret_pfmemalloc;
612 
613 	return obj;
614 }
615 
616 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
617  *	'private' fields and also do memory statistics to find all the
618  *	[BEEP] leaks.
619  *
620  */
621 
622 /**
623  *	__alloc_skb	-	allocate a network buffer
624  *	@size: size to allocate
625  *	@gfp_mask: allocation mask
626  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
627  *		instead of head cache and allocate a cloned (child) skb.
628  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
629  *		allocations in case the data is required for writeback
630  *	@node: numa node to allocate memory on
631  *
632  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
633  *	tail room of at least size bytes. The object has a reference count
634  *	of one. The return is the buffer. On a failure the return is %NULL.
635  *
636  *	Buffers may only be allocated from interrupts using a @gfp_mask of
637  *	%GFP_ATOMIC.
638  */
639 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
640 			    int flags, int node)
641 {
642 	struct kmem_cache *cache;
643 	struct sk_buff *skb;
644 	bool pfmemalloc;
645 	u8 *data;
646 
647 	cache = (flags & SKB_ALLOC_FCLONE)
648 		? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
649 
650 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
651 		gfp_mask |= __GFP_MEMALLOC;
652 
653 	/* Get the HEAD */
654 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
655 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
656 		skb = napi_skb_cache_get();
657 	else
658 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
659 	if (unlikely(!skb))
660 		return NULL;
661 	prefetchw(skb);
662 
663 	/* We do our best to align skb_shared_info on a separate cache
664 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
665 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
666 	 * Both skb->head and skb_shared_info are cache line aligned.
667 	 */
668 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
669 	if (unlikely(!data))
670 		goto nodata;
671 	/* kmalloc_size_roundup() might give us more room than requested.
672 	 * Put skb_shared_info exactly at the end of allocated zone,
673 	 * to allow max possible filling before reallocation.
674 	 */
675 	prefetchw(data + SKB_WITH_OVERHEAD(size));
676 
677 	/*
678 	 * Only clear those fields we need to clear, not those that we will
679 	 * actually initialise below. Hence, don't put any more fields after
680 	 * the tail pointer in struct sk_buff!
681 	 */
682 	memset(skb, 0, offsetof(struct sk_buff, tail));
683 	__build_skb_around(skb, data, size);
684 	skb->pfmemalloc = pfmemalloc;
685 
686 	if (flags & SKB_ALLOC_FCLONE) {
687 		struct sk_buff_fclones *fclones;
688 
689 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
690 
691 		skb->fclone = SKB_FCLONE_ORIG;
692 		refcount_set(&fclones->fclone_ref, 1);
693 	}
694 
695 	return skb;
696 
697 nodata:
698 	kmem_cache_free(cache, skb);
699 	return NULL;
700 }
701 EXPORT_SYMBOL(__alloc_skb);
702 
703 /**
704  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
705  *	@dev: network device to receive on
706  *	@len: length to allocate
707  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
708  *
709  *	Allocate a new &sk_buff and assign it a usage count of one. The
710  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
711  *	the headroom they think they need without accounting for the
712  *	built in space. The built in space is used for optimisations.
713  *
714  *	%NULL is returned if there is no free memory.
715  */
716 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
717 				   gfp_t gfp_mask)
718 {
719 	struct page_frag_cache *nc;
720 	struct sk_buff *skb;
721 	bool pfmemalloc;
722 	void *data;
723 
724 	len += NET_SKB_PAD;
725 
726 	/* If requested length is either too small or too big,
727 	 * we use kmalloc() for skb->head allocation.
728 	 */
729 	if (len <= SKB_WITH_OVERHEAD(1024) ||
730 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
731 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
732 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
733 		if (!skb)
734 			goto skb_fail;
735 		goto skb_success;
736 	}
737 
738 	len = SKB_HEAD_ALIGN(len);
739 
740 	if (sk_memalloc_socks())
741 		gfp_mask |= __GFP_MEMALLOC;
742 
743 	if (in_hardirq() || irqs_disabled()) {
744 		nc = this_cpu_ptr(&netdev_alloc_cache);
745 		data = page_frag_alloc(nc, len, gfp_mask);
746 		pfmemalloc = nc->pfmemalloc;
747 	} else {
748 		local_bh_disable();
749 		nc = this_cpu_ptr(&napi_alloc_cache.page);
750 		data = page_frag_alloc(nc, len, gfp_mask);
751 		pfmemalloc = nc->pfmemalloc;
752 		local_bh_enable();
753 	}
754 
755 	if (unlikely(!data))
756 		return NULL;
757 
758 	skb = __build_skb(data, len);
759 	if (unlikely(!skb)) {
760 		skb_free_frag(data);
761 		return NULL;
762 	}
763 
764 	if (pfmemalloc)
765 		skb->pfmemalloc = 1;
766 	skb->head_frag = 1;
767 
768 skb_success:
769 	skb_reserve(skb, NET_SKB_PAD);
770 	skb->dev = dev;
771 
772 skb_fail:
773 	return skb;
774 }
775 EXPORT_SYMBOL(__netdev_alloc_skb);
776 
777 /**
778  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
779  *	@napi: napi instance this buffer was allocated for
780  *	@len: length to allocate
781  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
782  *
783  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
784  *	attempt to allocate the head from a special reserved region used
785  *	only for NAPI Rx allocation.  By doing this we can save several
786  *	CPU cycles by avoiding having to disable and re-enable IRQs.
787  *
788  *	%NULL is returned if there is no free memory.
789  */
790 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
791 				 gfp_t gfp_mask)
792 {
793 	struct napi_alloc_cache *nc;
794 	struct sk_buff *skb;
795 	bool pfmemalloc;
796 	void *data;
797 
798 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
799 	len += NET_SKB_PAD + NET_IP_ALIGN;
800 
801 	/* If requested length is either too small or too big,
802 	 * we use kmalloc() for skb->head allocation.
803 	 * When the small frag allocator is available, prefer it over kmalloc
804 	 * for small fragments
805 	 */
806 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
807 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
808 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
809 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
810 				  NUMA_NO_NODE);
811 		if (!skb)
812 			goto skb_fail;
813 		goto skb_success;
814 	}
815 
816 	nc = this_cpu_ptr(&napi_alloc_cache);
817 
818 	if (sk_memalloc_socks())
819 		gfp_mask |= __GFP_MEMALLOC;
820 
821 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
822 		/* we are artificially inflating the allocation size, but
823 		 * that is not as bad as it may look like, as:
824 		 * - 'len' less than GRO_MAX_HEAD makes little sense
825 		 * - On most systems, larger 'len' values lead to fragment
826 		 *   size above 512 bytes
827 		 * - kmalloc would use the kmalloc-1k slab for such values
828 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
829 		 *   little networking, as that implies no WiFi and no
830 		 *   tunnels support, and 32 bits arches.
831 		 */
832 		len = SZ_1K;
833 
834 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
835 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
836 	} else {
837 		len = SKB_HEAD_ALIGN(len);
838 
839 		data = page_frag_alloc(&nc->page, len, gfp_mask);
840 		pfmemalloc = nc->page.pfmemalloc;
841 	}
842 
843 	if (unlikely(!data))
844 		return NULL;
845 
846 	skb = __napi_build_skb(data, len);
847 	if (unlikely(!skb)) {
848 		skb_free_frag(data);
849 		return NULL;
850 	}
851 
852 	if (pfmemalloc)
853 		skb->pfmemalloc = 1;
854 	skb->head_frag = 1;
855 
856 skb_success:
857 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
858 	skb->dev = napi->dev;
859 
860 skb_fail:
861 	return skb;
862 }
863 EXPORT_SYMBOL(__napi_alloc_skb);
864 
865 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
866 			    int off, int size, unsigned int truesize)
867 {
868 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
869 
870 	skb_fill_netmem_desc(skb, i, netmem, off, size);
871 	skb->len += size;
872 	skb->data_len += size;
873 	skb->truesize += truesize;
874 }
875 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
876 
877 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
878 			  unsigned int truesize)
879 {
880 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
881 
882 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
883 
884 	skb_frag_size_add(frag, size);
885 	skb->len += size;
886 	skb->data_len += size;
887 	skb->truesize += truesize;
888 }
889 EXPORT_SYMBOL(skb_coalesce_rx_frag);
890 
891 static void skb_drop_list(struct sk_buff **listp)
892 {
893 	kfree_skb_list(*listp);
894 	*listp = NULL;
895 }
896 
897 static inline void skb_drop_fraglist(struct sk_buff *skb)
898 {
899 	skb_drop_list(&skb_shinfo(skb)->frag_list);
900 }
901 
902 static void skb_clone_fraglist(struct sk_buff *skb)
903 {
904 	struct sk_buff *list;
905 
906 	skb_walk_frags(skb, list)
907 		skb_get(list);
908 }
909 
910 static bool is_pp_page(struct page *page)
911 {
912 	return (page->pp_magic & ~0x3UL) == PP_SIGNATURE;
913 }
914 
915 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
916 		    unsigned int headroom)
917 {
918 #if IS_ENABLED(CONFIG_PAGE_POOL)
919 	u32 size, truesize, len, max_head_size, off;
920 	struct sk_buff *skb = *pskb, *nskb;
921 	int err, i, head_off;
922 	void *data;
923 
924 	/* XDP does not support fraglist so we need to linearize
925 	 * the skb.
926 	 */
927 	if (skb_has_frag_list(skb))
928 		return -EOPNOTSUPP;
929 
930 	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
931 	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
932 		return -ENOMEM;
933 
934 	size = min_t(u32, skb->len, max_head_size);
935 	truesize = SKB_HEAD_ALIGN(size) + headroom;
936 	data = page_pool_dev_alloc_va(pool, &truesize);
937 	if (!data)
938 		return -ENOMEM;
939 
940 	nskb = napi_build_skb(data, truesize);
941 	if (!nskb) {
942 		page_pool_free_va(pool, data, true);
943 		return -ENOMEM;
944 	}
945 
946 	skb_reserve(nskb, headroom);
947 	skb_copy_header(nskb, skb);
948 	skb_mark_for_recycle(nskb);
949 
950 	err = skb_copy_bits(skb, 0, nskb->data, size);
951 	if (err) {
952 		consume_skb(nskb);
953 		return err;
954 	}
955 	skb_put(nskb, size);
956 
957 	head_off = skb_headroom(nskb) - skb_headroom(skb);
958 	skb_headers_offset_update(nskb, head_off);
959 
960 	off = size;
961 	len = skb->len - off;
962 	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
963 		struct page *page;
964 		u32 page_off;
965 
966 		size = min_t(u32, len, PAGE_SIZE);
967 		truesize = size;
968 
969 		page = page_pool_dev_alloc(pool, &page_off, &truesize);
970 		if (!page) {
971 			consume_skb(nskb);
972 			return -ENOMEM;
973 		}
974 
975 		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
976 		err = skb_copy_bits(skb, off, page_address(page) + page_off,
977 				    size);
978 		if (err) {
979 			consume_skb(nskb);
980 			return err;
981 		}
982 
983 		len -= size;
984 		off += size;
985 	}
986 
987 	consume_skb(skb);
988 	*pskb = nskb;
989 
990 	return 0;
991 #else
992 	return -EOPNOTSUPP;
993 #endif
994 }
995 EXPORT_SYMBOL(skb_pp_cow_data);
996 
997 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
998 			 struct bpf_prog *prog)
999 {
1000 	if (!prog->aux->xdp_has_frags)
1001 		return -EINVAL;
1002 
1003 	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
1004 }
1005 EXPORT_SYMBOL(skb_cow_data_for_xdp);
1006 
1007 #if IS_ENABLED(CONFIG_PAGE_POOL)
1008 bool napi_pp_put_page(struct page *page, bool napi_safe)
1009 {
1010 	bool allow_direct = false;
1011 	struct page_pool *pp;
1012 
1013 	page = compound_head(page);
1014 
1015 	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
1016 	 * in order to preserve any existing bits, such as bit 0 for the
1017 	 * head page of compound page and bit 1 for pfmemalloc page, so
1018 	 * mask those bits for freeing side when doing below checking,
1019 	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
1020 	 * to avoid recycling the pfmemalloc page.
1021 	 */
1022 	if (unlikely(!is_pp_page(page)))
1023 		return false;
1024 
1025 	pp = page->pp;
1026 
1027 	/* Allow direct recycle if we have reasons to believe that we are
1028 	 * in the same context as the consumer would run, so there's
1029 	 * no possible race.
1030 	 * __page_pool_put_page() makes sure we're not in hardirq context
1031 	 * and interrupts are enabled prior to accessing the cache.
1032 	 */
1033 	if (napi_safe || in_softirq()) {
1034 		const struct napi_struct *napi = READ_ONCE(pp->p.napi);
1035 		unsigned int cpuid = smp_processor_id();
1036 
1037 		allow_direct = napi && READ_ONCE(napi->list_owner) == cpuid;
1038 		allow_direct |= READ_ONCE(pp->cpuid) == cpuid;
1039 	}
1040 
1041 	/* Driver set this to memory recycling info. Reset it on recycle.
1042 	 * This will *not* work for NIC using a split-page memory model.
1043 	 * The page will be returned to the pool here regardless of the
1044 	 * 'flipped' fragment being in use or not.
1045 	 */
1046 	page_pool_put_full_page(pp, page, allow_direct);
1047 
1048 	return true;
1049 }
1050 EXPORT_SYMBOL(napi_pp_put_page);
1051 #endif
1052 
1053 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
1054 {
1055 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1056 		return false;
1057 	return napi_pp_put_page(virt_to_page(data), napi_safe);
1058 }
1059 
1060 /**
1061  * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1062  * @skb:	page pool aware skb
1063  *
1064  * Increase the fragment reference count (pp_ref_count) of a skb. This is
1065  * intended to gain fragment references only for page pool aware skbs,
1066  * i.e. when skb->pp_recycle is true, and not for fragments in a
1067  * non-pp-recycling skb. It has a fallback to increase references on normal
1068  * pages, as page pool aware skbs may also have normal page fragments.
1069  */
1070 static int skb_pp_frag_ref(struct sk_buff *skb)
1071 {
1072 	struct skb_shared_info *shinfo;
1073 	struct page *head_page;
1074 	int i;
1075 
1076 	if (!skb->pp_recycle)
1077 		return -EINVAL;
1078 
1079 	shinfo = skb_shinfo(skb);
1080 
1081 	for (i = 0; i < shinfo->nr_frags; i++) {
1082 		head_page = compound_head(skb_frag_page(&shinfo->frags[i]));
1083 		if (likely(is_pp_page(head_page)))
1084 			page_pool_ref_page(head_page);
1085 		else
1086 			page_ref_inc(head_page);
1087 	}
1088 	return 0;
1089 }
1090 
1091 static void skb_kfree_head(void *head, unsigned int end_offset)
1092 {
1093 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1094 		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1095 	else
1096 		kfree(head);
1097 }
1098 
1099 static void skb_free_head(struct sk_buff *skb, bool napi_safe)
1100 {
1101 	unsigned char *head = skb->head;
1102 
1103 	if (skb->head_frag) {
1104 		if (skb_pp_recycle(skb, head, napi_safe))
1105 			return;
1106 		skb_free_frag(head);
1107 	} else {
1108 		skb_kfree_head(head, skb_end_offset(skb));
1109 	}
1110 }
1111 
1112 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
1113 			     bool napi_safe)
1114 {
1115 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1116 	int i;
1117 
1118 	if (!skb_data_unref(skb, shinfo))
1119 		goto exit;
1120 
1121 	if (skb_zcopy(skb)) {
1122 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1123 
1124 		skb_zcopy_clear(skb, true);
1125 		if (skip_unref)
1126 			goto free_head;
1127 	}
1128 
1129 	for (i = 0; i < shinfo->nr_frags; i++)
1130 		napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
1131 
1132 free_head:
1133 	if (shinfo->frag_list)
1134 		kfree_skb_list_reason(shinfo->frag_list, reason);
1135 
1136 	skb_free_head(skb, napi_safe);
1137 exit:
1138 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1139 	 * bit is only set on the head though, so in order to avoid races
1140 	 * while trying to recycle fragments on __skb_frag_unref() we need
1141 	 * to make one SKB responsible for triggering the recycle path.
1142 	 * So disable the recycling bit if an SKB is cloned and we have
1143 	 * additional references to the fragmented part of the SKB.
1144 	 * Eventually the last SKB will have the recycling bit set and it's
1145 	 * dataref set to 0, which will trigger the recycling
1146 	 */
1147 	skb->pp_recycle = 0;
1148 }
1149 
1150 /*
1151  *	Free an skbuff by memory without cleaning the state.
1152  */
1153 static void kfree_skbmem(struct sk_buff *skb)
1154 {
1155 	struct sk_buff_fclones *fclones;
1156 
1157 	switch (skb->fclone) {
1158 	case SKB_FCLONE_UNAVAILABLE:
1159 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1160 		return;
1161 
1162 	case SKB_FCLONE_ORIG:
1163 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1164 
1165 		/* We usually free the clone (TX completion) before original skb
1166 		 * This test would have no chance to be true for the clone,
1167 		 * while here, branch prediction will be good.
1168 		 */
1169 		if (refcount_read(&fclones->fclone_ref) == 1)
1170 			goto fastpath;
1171 		break;
1172 
1173 	default: /* SKB_FCLONE_CLONE */
1174 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1175 		break;
1176 	}
1177 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1178 		return;
1179 fastpath:
1180 	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1181 }
1182 
1183 void skb_release_head_state(struct sk_buff *skb)
1184 {
1185 	skb_dst_drop(skb);
1186 	if (skb->destructor) {
1187 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1188 		skb->destructor(skb);
1189 	}
1190 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1191 	nf_conntrack_put(skb_nfct(skb));
1192 #endif
1193 	skb_ext_put(skb);
1194 }
1195 
1196 /* Free everything but the sk_buff shell. */
1197 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
1198 			    bool napi_safe)
1199 {
1200 	skb_release_head_state(skb);
1201 	if (likely(skb->head))
1202 		skb_release_data(skb, reason, napi_safe);
1203 }
1204 
1205 /**
1206  *	__kfree_skb - private function
1207  *	@skb: buffer
1208  *
1209  *	Free an sk_buff. Release anything attached to the buffer.
1210  *	Clean the state. This is an internal helper function. Users should
1211  *	always call kfree_skb
1212  */
1213 
1214 void __kfree_skb(struct sk_buff *skb)
1215 {
1216 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1217 	kfree_skbmem(skb);
1218 }
1219 EXPORT_SYMBOL(__kfree_skb);
1220 
1221 static __always_inline
1222 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1223 {
1224 	if (unlikely(!skb_unref(skb)))
1225 		return false;
1226 
1227 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1228 			       u32_get_bits(reason,
1229 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1230 				SKB_DROP_REASON_SUBSYS_NUM);
1231 
1232 	if (reason == SKB_CONSUMED)
1233 		trace_consume_skb(skb, __builtin_return_address(0));
1234 	else
1235 		trace_kfree_skb(skb, __builtin_return_address(0), reason);
1236 	return true;
1237 }
1238 
1239 /**
1240  *	kfree_skb_reason - free an sk_buff with special reason
1241  *	@skb: buffer to free
1242  *	@reason: reason why this skb is dropped
1243  *
1244  *	Drop a reference to the buffer and free it if the usage count has
1245  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1246  *	tracepoint.
1247  */
1248 void __fix_address
1249 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1250 {
1251 	if (__kfree_skb_reason(skb, reason))
1252 		__kfree_skb(skb);
1253 }
1254 EXPORT_SYMBOL(kfree_skb_reason);
1255 
1256 #define KFREE_SKB_BULK_SIZE	16
1257 
1258 struct skb_free_array {
1259 	unsigned int skb_count;
1260 	void *skb_array[KFREE_SKB_BULK_SIZE];
1261 };
1262 
1263 static void kfree_skb_add_bulk(struct sk_buff *skb,
1264 			       struct skb_free_array *sa,
1265 			       enum skb_drop_reason reason)
1266 {
1267 	/* if SKB is a clone, don't handle this case */
1268 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1269 		__kfree_skb(skb);
1270 		return;
1271 	}
1272 
1273 	skb_release_all(skb, reason, false);
1274 	sa->skb_array[sa->skb_count++] = skb;
1275 
1276 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1277 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1278 				     sa->skb_array);
1279 		sa->skb_count = 0;
1280 	}
1281 }
1282 
1283 void __fix_address
1284 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1285 {
1286 	struct skb_free_array sa;
1287 
1288 	sa.skb_count = 0;
1289 
1290 	while (segs) {
1291 		struct sk_buff *next = segs->next;
1292 
1293 		if (__kfree_skb_reason(segs, reason)) {
1294 			skb_poison_list(segs);
1295 			kfree_skb_add_bulk(segs, &sa, reason);
1296 		}
1297 
1298 		segs = next;
1299 	}
1300 
1301 	if (sa.skb_count)
1302 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1303 }
1304 EXPORT_SYMBOL(kfree_skb_list_reason);
1305 
1306 /* Dump skb information and contents.
1307  *
1308  * Must only be called from net_ratelimit()-ed paths.
1309  *
1310  * Dumps whole packets if full_pkt, only headers otherwise.
1311  */
1312 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1313 {
1314 	struct skb_shared_info *sh = skb_shinfo(skb);
1315 	struct net_device *dev = skb->dev;
1316 	struct sock *sk = skb->sk;
1317 	struct sk_buff *list_skb;
1318 	bool has_mac, has_trans;
1319 	int headroom, tailroom;
1320 	int i, len, seg_len;
1321 
1322 	if (full_pkt)
1323 		len = skb->len;
1324 	else
1325 		len = min_t(int, skb->len, MAX_HEADER + 128);
1326 
1327 	headroom = skb_headroom(skb);
1328 	tailroom = skb_tailroom(skb);
1329 
1330 	has_mac = skb_mac_header_was_set(skb);
1331 	has_trans = skb_transport_header_was_set(skb);
1332 
1333 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1334 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1335 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1336 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1337 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1338 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1339 	       has_mac ? skb->mac_header : -1,
1340 	       has_mac ? skb_mac_header_len(skb) : -1,
1341 	       skb->network_header,
1342 	       has_trans ? skb_network_header_len(skb) : -1,
1343 	       has_trans ? skb->transport_header : -1,
1344 	       sh->tx_flags, sh->nr_frags,
1345 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1346 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
1347 	       skb->csum_valid, skb->csum_level,
1348 	       skb->hash, skb->sw_hash, skb->l4_hash,
1349 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1350 
1351 	if (dev)
1352 		printk("%sdev name=%s feat=%pNF\n",
1353 		       level, dev->name, &dev->features);
1354 	if (sk)
1355 		printk("%ssk family=%hu type=%u proto=%u\n",
1356 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1357 
1358 	if (full_pkt && headroom)
1359 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1360 			       16, 1, skb->head, headroom, false);
1361 
1362 	seg_len = min_t(int, skb_headlen(skb), len);
1363 	if (seg_len)
1364 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1365 			       16, 1, skb->data, seg_len, false);
1366 	len -= seg_len;
1367 
1368 	if (full_pkt && tailroom)
1369 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1370 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1371 
1372 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1373 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1374 		u32 p_off, p_len, copied;
1375 		struct page *p;
1376 		u8 *vaddr;
1377 
1378 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1379 				      skb_frag_size(frag), p, p_off, p_len,
1380 				      copied) {
1381 			seg_len = min_t(int, p_len, len);
1382 			vaddr = kmap_atomic(p);
1383 			print_hex_dump(level, "skb frag:     ",
1384 				       DUMP_PREFIX_OFFSET,
1385 				       16, 1, vaddr + p_off, seg_len, false);
1386 			kunmap_atomic(vaddr);
1387 			len -= seg_len;
1388 			if (!len)
1389 				break;
1390 		}
1391 	}
1392 
1393 	if (full_pkt && skb_has_frag_list(skb)) {
1394 		printk("skb fraglist:\n");
1395 		skb_walk_frags(skb, list_skb)
1396 			skb_dump(level, list_skb, true);
1397 	}
1398 }
1399 EXPORT_SYMBOL(skb_dump);
1400 
1401 /**
1402  *	skb_tx_error - report an sk_buff xmit error
1403  *	@skb: buffer that triggered an error
1404  *
1405  *	Report xmit error if a device callback is tracking this skb.
1406  *	skb must be freed afterwards.
1407  */
1408 void skb_tx_error(struct sk_buff *skb)
1409 {
1410 	if (skb) {
1411 		skb_zcopy_downgrade_managed(skb);
1412 		skb_zcopy_clear(skb, true);
1413 	}
1414 }
1415 EXPORT_SYMBOL(skb_tx_error);
1416 
1417 #ifdef CONFIG_TRACEPOINTS
1418 /**
1419  *	consume_skb - free an skbuff
1420  *	@skb: buffer to free
1421  *
1422  *	Drop a ref to the buffer and free it if the usage count has hit zero
1423  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1424  *	is being dropped after a failure and notes that
1425  */
1426 void consume_skb(struct sk_buff *skb)
1427 {
1428 	if (!skb_unref(skb))
1429 		return;
1430 
1431 	trace_consume_skb(skb, __builtin_return_address(0));
1432 	__kfree_skb(skb);
1433 }
1434 EXPORT_SYMBOL(consume_skb);
1435 #endif
1436 
1437 /**
1438  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1439  *	@skb: buffer to free
1440  *
1441  *	Alike consume_skb(), but this variant assumes that this is the last
1442  *	skb reference and all the head states have been already dropped
1443  */
1444 void __consume_stateless_skb(struct sk_buff *skb)
1445 {
1446 	trace_consume_skb(skb, __builtin_return_address(0));
1447 	skb_release_data(skb, SKB_CONSUMED, false);
1448 	kfree_skbmem(skb);
1449 }
1450 
1451 static void napi_skb_cache_put(struct sk_buff *skb)
1452 {
1453 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1454 	u32 i;
1455 
1456 	if (!kasan_mempool_poison_object(skb))
1457 		return;
1458 
1459 	nc->skb_cache[nc->skb_count++] = skb;
1460 
1461 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1462 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1463 			kasan_mempool_unpoison_object(nc->skb_cache[i],
1464 						kmem_cache_size(net_hotdata.skbuff_cache));
1465 
1466 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1467 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1468 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1469 	}
1470 }
1471 
1472 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1473 {
1474 	skb_release_all(skb, reason, true);
1475 	napi_skb_cache_put(skb);
1476 }
1477 
1478 void napi_skb_free_stolen_head(struct sk_buff *skb)
1479 {
1480 	if (unlikely(skb->slow_gro)) {
1481 		nf_reset_ct(skb);
1482 		skb_dst_drop(skb);
1483 		skb_ext_put(skb);
1484 		skb_orphan(skb);
1485 		skb->slow_gro = 0;
1486 	}
1487 	napi_skb_cache_put(skb);
1488 }
1489 
1490 void napi_consume_skb(struct sk_buff *skb, int budget)
1491 {
1492 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1493 	if (unlikely(!budget)) {
1494 		dev_consume_skb_any(skb);
1495 		return;
1496 	}
1497 
1498 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1499 
1500 	if (!skb_unref(skb))
1501 		return;
1502 
1503 	/* if reaching here SKB is ready to free */
1504 	trace_consume_skb(skb, __builtin_return_address(0));
1505 
1506 	/* if SKB is a clone, don't handle this case */
1507 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1508 		__kfree_skb(skb);
1509 		return;
1510 	}
1511 
1512 	skb_release_all(skb, SKB_CONSUMED, !!budget);
1513 	napi_skb_cache_put(skb);
1514 }
1515 EXPORT_SYMBOL(napi_consume_skb);
1516 
1517 /* Make sure a field is contained by headers group */
1518 #define CHECK_SKB_FIELD(field) \
1519 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1520 		     offsetof(struct sk_buff, headers.field));	\
1521 
1522 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1523 {
1524 	new->tstamp		= old->tstamp;
1525 	/* We do not copy old->sk */
1526 	new->dev		= old->dev;
1527 	memcpy(new->cb, old->cb, sizeof(old->cb));
1528 	skb_dst_copy(new, old);
1529 	__skb_ext_copy(new, old);
1530 	__nf_copy(new, old, false);
1531 
1532 	/* Note : this field could be in the headers group.
1533 	 * It is not yet because we do not want to have a 16 bit hole
1534 	 */
1535 	new->queue_mapping = old->queue_mapping;
1536 
1537 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1538 	CHECK_SKB_FIELD(protocol);
1539 	CHECK_SKB_FIELD(csum);
1540 	CHECK_SKB_FIELD(hash);
1541 	CHECK_SKB_FIELD(priority);
1542 	CHECK_SKB_FIELD(skb_iif);
1543 	CHECK_SKB_FIELD(vlan_proto);
1544 	CHECK_SKB_FIELD(vlan_tci);
1545 	CHECK_SKB_FIELD(transport_header);
1546 	CHECK_SKB_FIELD(network_header);
1547 	CHECK_SKB_FIELD(mac_header);
1548 	CHECK_SKB_FIELD(inner_protocol);
1549 	CHECK_SKB_FIELD(inner_transport_header);
1550 	CHECK_SKB_FIELD(inner_network_header);
1551 	CHECK_SKB_FIELD(inner_mac_header);
1552 	CHECK_SKB_FIELD(mark);
1553 #ifdef CONFIG_NETWORK_SECMARK
1554 	CHECK_SKB_FIELD(secmark);
1555 #endif
1556 #ifdef CONFIG_NET_RX_BUSY_POLL
1557 	CHECK_SKB_FIELD(napi_id);
1558 #endif
1559 	CHECK_SKB_FIELD(alloc_cpu);
1560 #ifdef CONFIG_XPS
1561 	CHECK_SKB_FIELD(sender_cpu);
1562 #endif
1563 #ifdef CONFIG_NET_SCHED
1564 	CHECK_SKB_FIELD(tc_index);
1565 #endif
1566 
1567 }
1568 
1569 /*
1570  * You should not add any new code to this function.  Add it to
1571  * __copy_skb_header above instead.
1572  */
1573 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1574 {
1575 #define C(x) n->x = skb->x
1576 
1577 	n->next = n->prev = NULL;
1578 	n->sk = NULL;
1579 	__copy_skb_header(n, skb);
1580 
1581 	C(len);
1582 	C(data_len);
1583 	C(mac_len);
1584 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1585 	n->cloned = 1;
1586 	n->nohdr = 0;
1587 	n->peeked = 0;
1588 	C(pfmemalloc);
1589 	C(pp_recycle);
1590 	n->destructor = NULL;
1591 	C(tail);
1592 	C(end);
1593 	C(head);
1594 	C(head_frag);
1595 	C(data);
1596 	C(truesize);
1597 	refcount_set(&n->users, 1);
1598 
1599 	atomic_inc(&(skb_shinfo(skb)->dataref));
1600 	skb->cloned = 1;
1601 
1602 	return n;
1603 #undef C
1604 }
1605 
1606 /**
1607  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1608  * @first: first sk_buff of the msg
1609  */
1610 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1611 {
1612 	struct sk_buff *n;
1613 
1614 	n = alloc_skb(0, GFP_ATOMIC);
1615 	if (!n)
1616 		return NULL;
1617 
1618 	n->len = first->len;
1619 	n->data_len = first->len;
1620 	n->truesize = first->truesize;
1621 
1622 	skb_shinfo(n)->frag_list = first;
1623 
1624 	__copy_skb_header(n, first);
1625 	n->destructor = NULL;
1626 
1627 	return n;
1628 }
1629 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1630 
1631 /**
1632  *	skb_morph	-	morph one skb into another
1633  *	@dst: the skb to receive the contents
1634  *	@src: the skb to supply the contents
1635  *
1636  *	This is identical to skb_clone except that the target skb is
1637  *	supplied by the user.
1638  *
1639  *	The target skb is returned upon exit.
1640  */
1641 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1642 {
1643 	skb_release_all(dst, SKB_CONSUMED, false);
1644 	return __skb_clone(dst, src);
1645 }
1646 EXPORT_SYMBOL_GPL(skb_morph);
1647 
1648 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1649 {
1650 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1651 	struct user_struct *user;
1652 
1653 	if (capable(CAP_IPC_LOCK) || !size)
1654 		return 0;
1655 
1656 	rlim = rlimit(RLIMIT_MEMLOCK);
1657 	if (rlim == RLIM_INFINITY)
1658 		return 0;
1659 
1660 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1661 	max_pg = rlim >> PAGE_SHIFT;
1662 	user = mmp->user ? : current_user();
1663 
1664 	old_pg = atomic_long_read(&user->locked_vm);
1665 	do {
1666 		new_pg = old_pg + num_pg;
1667 		if (new_pg > max_pg)
1668 			return -ENOBUFS;
1669 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1670 
1671 	if (!mmp->user) {
1672 		mmp->user = get_uid(user);
1673 		mmp->num_pg = num_pg;
1674 	} else {
1675 		mmp->num_pg += num_pg;
1676 	}
1677 
1678 	return 0;
1679 }
1680 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1681 
1682 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1683 {
1684 	if (mmp->user) {
1685 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1686 		free_uid(mmp->user);
1687 	}
1688 }
1689 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1690 
1691 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1692 {
1693 	struct ubuf_info_msgzc *uarg;
1694 	struct sk_buff *skb;
1695 
1696 	WARN_ON_ONCE(!in_task());
1697 
1698 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1699 	if (!skb)
1700 		return NULL;
1701 
1702 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1703 	uarg = (void *)skb->cb;
1704 	uarg->mmp.user = NULL;
1705 
1706 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1707 		kfree_skb(skb);
1708 		return NULL;
1709 	}
1710 
1711 	uarg->ubuf.callback = msg_zerocopy_callback;
1712 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1713 	uarg->len = 1;
1714 	uarg->bytelen = size;
1715 	uarg->zerocopy = 1;
1716 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1717 	refcount_set(&uarg->ubuf.refcnt, 1);
1718 	sock_hold(sk);
1719 
1720 	return &uarg->ubuf;
1721 }
1722 
1723 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1724 {
1725 	return container_of((void *)uarg, struct sk_buff, cb);
1726 }
1727 
1728 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1729 				       struct ubuf_info *uarg)
1730 {
1731 	if (uarg) {
1732 		struct ubuf_info_msgzc *uarg_zc;
1733 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1734 		u32 bytelen, next;
1735 
1736 		/* there might be non MSG_ZEROCOPY users */
1737 		if (uarg->callback != msg_zerocopy_callback)
1738 			return NULL;
1739 
1740 		/* realloc only when socket is locked (TCP, UDP cork),
1741 		 * so uarg->len and sk_zckey access is serialized
1742 		 */
1743 		if (!sock_owned_by_user(sk)) {
1744 			WARN_ON_ONCE(1);
1745 			return NULL;
1746 		}
1747 
1748 		uarg_zc = uarg_to_msgzc(uarg);
1749 		bytelen = uarg_zc->bytelen + size;
1750 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1751 			/* TCP can create new skb to attach new uarg */
1752 			if (sk->sk_type == SOCK_STREAM)
1753 				goto new_alloc;
1754 			return NULL;
1755 		}
1756 
1757 		next = (u32)atomic_read(&sk->sk_zckey);
1758 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1759 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1760 				return NULL;
1761 			uarg_zc->len++;
1762 			uarg_zc->bytelen = bytelen;
1763 			atomic_set(&sk->sk_zckey, ++next);
1764 
1765 			/* no extra ref when appending to datagram (MSG_MORE) */
1766 			if (sk->sk_type == SOCK_STREAM)
1767 				net_zcopy_get(uarg);
1768 
1769 			return uarg;
1770 		}
1771 	}
1772 
1773 new_alloc:
1774 	return msg_zerocopy_alloc(sk, size);
1775 }
1776 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1777 
1778 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1779 {
1780 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1781 	u32 old_lo, old_hi;
1782 	u64 sum_len;
1783 
1784 	old_lo = serr->ee.ee_info;
1785 	old_hi = serr->ee.ee_data;
1786 	sum_len = old_hi - old_lo + 1ULL + len;
1787 
1788 	if (sum_len >= (1ULL << 32))
1789 		return false;
1790 
1791 	if (lo != old_hi + 1)
1792 		return false;
1793 
1794 	serr->ee.ee_data += len;
1795 	return true;
1796 }
1797 
1798 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1799 {
1800 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1801 	struct sock_exterr_skb *serr;
1802 	struct sock *sk = skb->sk;
1803 	struct sk_buff_head *q;
1804 	unsigned long flags;
1805 	bool is_zerocopy;
1806 	u32 lo, hi;
1807 	u16 len;
1808 
1809 	mm_unaccount_pinned_pages(&uarg->mmp);
1810 
1811 	/* if !len, there was only 1 call, and it was aborted
1812 	 * so do not queue a completion notification
1813 	 */
1814 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1815 		goto release;
1816 
1817 	len = uarg->len;
1818 	lo = uarg->id;
1819 	hi = uarg->id + len - 1;
1820 	is_zerocopy = uarg->zerocopy;
1821 
1822 	serr = SKB_EXT_ERR(skb);
1823 	memset(serr, 0, sizeof(*serr));
1824 	serr->ee.ee_errno = 0;
1825 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1826 	serr->ee.ee_data = hi;
1827 	serr->ee.ee_info = lo;
1828 	if (!is_zerocopy)
1829 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1830 
1831 	q = &sk->sk_error_queue;
1832 	spin_lock_irqsave(&q->lock, flags);
1833 	tail = skb_peek_tail(q);
1834 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1835 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1836 		__skb_queue_tail(q, skb);
1837 		skb = NULL;
1838 	}
1839 	spin_unlock_irqrestore(&q->lock, flags);
1840 
1841 	sk_error_report(sk);
1842 
1843 release:
1844 	consume_skb(skb);
1845 	sock_put(sk);
1846 }
1847 
1848 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1849 			   bool success)
1850 {
1851 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1852 
1853 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1854 
1855 	if (refcount_dec_and_test(&uarg->refcnt))
1856 		__msg_zerocopy_callback(uarg_zc);
1857 }
1858 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1859 
1860 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1861 {
1862 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1863 
1864 	atomic_dec(&sk->sk_zckey);
1865 	uarg_to_msgzc(uarg)->len--;
1866 
1867 	if (have_uref)
1868 		msg_zerocopy_callback(NULL, uarg, true);
1869 }
1870 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1871 
1872 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1873 			     struct msghdr *msg, int len,
1874 			     struct ubuf_info *uarg)
1875 {
1876 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1877 	int err, orig_len = skb->len;
1878 
1879 	/* An skb can only point to one uarg. This edge case happens when
1880 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1881 	 */
1882 	if (orig_uarg && uarg != orig_uarg)
1883 		return -EEXIST;
1884 
1885 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1886 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1887 		struct sock *save_sk = skb->sk;
1888 
1889 		/* Streams do not free skb on error. Reset to prev state. */
1890 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1891 		skb->sk = sk;
1892 		___pskb_trim(skb, orig_len);
1893 		skb->sk = save_sk;
1894 		return err;
1895 	}
1896 
1897 	skb_zcopy_set(skb, uarg, NULL);
1898 	return skb->len - orig_len;
1899 }
1900 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1901 
1902 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1903 {
1904 	int i;
1905 
1906 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1907 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1908 		skb_frag_ref(skb, i);
1909 }
1910 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1911 
1912 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1913 			      gfp_t gfp_mask)
1914 {
1915 	if (skb_zcopy(orig)) {
1916 		if (skb_zcopy(nskb)) {
1917 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1918 			if (!gfp_mask) {
1919 				WARN_ON_ONCE(1);
1920 				return -ENOMEM;
1921 			}
1922 			if (skb_uarg(nskb) == skb_uarg(orig))
1923 				return 0;
1924 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1925 				return -EIO;
1926 		}
1927 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1928 	}
1929 	return 0;
1930 }
1931 
1932 /**
1933  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1934  *	@skb: the skb to modify
1935  *	@gfp_mask: allocation priority
1936  *
1937  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1938  *	It will copy all frags into kernel and drop the reference
1939  *	to userspace pages.
1940  *
1941  *	If this function is called from an interrupt gfp_mask() must be
1942  *	%GFP_ATOMIC.
1943  *
1944  *	Returns 0 on success or a negative error code on failure
1945  *	to allocate kernel memory to copy to.
1946  */
1947 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1948 {
1949 	int num_frags = skb_shinfo(skb)->nr_frags;
1950 	struct page *page, *head = NULL;
1951 	int i, order, psize, new_frags;
1952 	u32 d_off;
1953 
1954 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1955 		return -EINVAL;
1956 
1957 	if (!num_frags)
1958 		goto release;
1959 
1960 	/* We might have to allocate high order pages, so compute what minimum
1961 	 * page order is needed.
1962 	 */
1963 	order = 0;
1964 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1965 		order++;
1966 	psize = (PAGE_SIZE << order);
1967 
1968 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1969 	for (i = 0; i < new_frags; i++) {
1970 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1971 		if (!page) {
1972 			while (head) {
1973 				struct page *next = (struct page *)page_private(head);
1974 				put_page(head);
1975 				head = next;
1976 			}
1977 			return -ENOMEM;
1978 		}
1979 		set_page_private(page, (unsigned long)head);
1980 		head = page;
1981 	}
1982 
1983 	page = head;
1984 	d_off = 0;
1985 	for (i = 0; i < num_frags; i++) {
1986 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1987 		u32 p_off, p_len, copied;
1988 		struct page *p;
1989 		u8 *vaddr;
1990 
1991 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1992 				      p, p_off, p_len, copied) {
1993 			u32 copy, done = 0;
1994 			vaddr = kmap_atomic(p);
1995 
1996 			while (done < p_len) {
1997 				if (d_off == psize) {
1998 					d_off = 0;
1999 					page = (struct page *)page_private(page);
2000 				}
2001 				copy = min_t(u32, psize - d_off, p_len - done);
2002 				memcpy(page_address(page) + d_off,
2003 				       vaddr + p_off + done, copy);
2004 				done += copy;
2005 				d_off += copy;
2006 			}
2007 			kunmap_atomic(vaddr);
2008 		}
2009 	}
2010 
2011 	/* skb frags release userspace buffers */
2012 	for (i = 0; i < num_frags; i++)
2013 		skb_frag_unref(skb, i);
2014 
2015 	/* skb frags point to kernel buffers */
2016 	for (i = 0; i < new_frags - 1; i++) {
2017 		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
2018 		head = (struct page *)page_private(head);
2019 	}
2020 	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2021 			       d_off);
2022 	skb_shinfo(skb)->nr_frags = new_frags;
2023 
2024 release:
2025 	skb_zcopy_clear(skb, false);
2026 	return 0;
2027 }
2028 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2029 
2030 /**
2031  *	skb_clone	-	duplicate an sk_buff
2032  *	@skb: buffer to clone
2033  *	@gfp_mask: allocation priority
2034  *
2035  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
2036  *	copies share the same packet data but not structure. The new
2037  *	buffer has a reference count of 1. If the allocation fails the
2038  *	function returns %NULL otherwise the new buffer is returned.
2039  *
2040  *	If this function is called from an interrupt gfp_mask() must be
2041  *	%GFP_ATOMIC.
2042  */
2043 
2044 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2045 {
2046 	struct sk_buff_fclones *fclones = container_of(skb,
2047 						       struct sk_buff_fclones,
2048 						       skb1);
2049 	struct sk_buff *n;
2050 
2051 	if (skb_orphan_frags(skb, gfp_mask))
2052 		return NULL;
2053 
2054 	if (skb->fclone == SKB_FCLONE_ORIG &&
2055 	    refcount_read(&fclones->fclone_ref) == 1) {
2056 		n = &fclones->skb2;
2057 		refcount_set(&fclones->fclone_ref, 2);
2058 		n->fclone = SKB_FCLONE_CLONE;
2059 	} else {
2060 		if (skb_pfmemalloc(skb))
2061 			gfp_mask |= __GFP_MEMALLOC;
2062 
2063 		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2064 		if (!n)
2065 			return NULL;
2066 
2067 		n->fclone = SKB_FCLONE_UNAVAILABLE;
2068 	}
2069 
2070 	return __skb_clone(n, skb);
2071 }
2072 EXPORT_SYMBOL(skb_clone);
2073 
2074 void skb_headers_offset_update(struct sk_buff *skb, int off)
2075 {
2076 	/* Only adjust this if it actually is csum_start rather than csum */
2077 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2078 		skb->csum_start += off;
2079 	/* {transport,network,mac}_header and tail are relative to skb->head */
2080 	skb->transport_header += off;
2081 	skb->network_header   += off;
2082 	if (skb_mac_header_was_set(skb))
2083 		skb->mac_header += off;
2084 	skb->inner_transport_header += off;
2085 	skb->inner_network_header += off;
2086 	skb->inner_mac_header += off;
2087 }
2088 EXPORT_SYMBOL(skb_headers_offset_update);
2089 
2090 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2091 {
2092 	__copy_skb_header(new, old);
2093 
2094 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2095 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2096 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2097 }
2098 EXPORT_SYMBOL(skb_copy_header);
2099 
2100 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2101 {
2102 	if (skb_pfmemalloc(skb))
2103 		return SKB_ALLOC_RX;
2104 	return 0;
2105 }
2106 
2107 /**
2108  *	skb_copy	-	create private copy of an sk_buff
2109  *	@skb: buffer to copy
2110  *	@gfp_mask: allocation priority
2111  *
2112  *	Make a copy of both an &sk_buff and its data. This is used when the
2113  *	caller wishes to modify the data and needs a private copy of the
2114  *	data to alter. Returns %NULL on failure or the pointer to the buffer
2115  *	on success. The returned buffer has a reference count of 1.
2116  *
2117  *	As by-product this function converts non-linear &sk_buff to linear
2118  *	one, so that &sk_buff becomes completely private and caller is allowed
2119  *	to modify all the data of returned buffer. This means that this
2120  *	function is not recommended for use in circumstances when only
2121  *	header is going to be modified. Use pskb_copy() instead.
2122  */
2123 
2124 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2125 {
2126 	struct sk_buff *n;
2127 	unsigned int size;
2128 	int headerlen;
2129 
2130 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2131 		return NULL;
2132 
2133 	headerlen = skb_headroom(skb);
2134 	size = skb_end_offset(skb) + skb->data_len;
2135 	n = __alloc_skb(size, gfp_mask,
2136 			skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2137 	if (!n)
2138 		return NULL;
2139 
2140 	/* Set the data pointer */
2141 	skb_reserve(n, headerlen);
2142 	/* Set the tail pointer and length */
2143 	skb_put(n, skb->len);
2144 
2145 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2146 
2147 	skb_copy_header(n, skb);
2148 	return n;
2149 }
2150 EXPORT_SYMBOL(skb_copy);
2151 
2152 /**
2153  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2154  *	@skb: buffer to copy
2155  *	@headroom: headroom of new skb
2156  *	@gfp_mask: allocation priority
2157  *	@fclone: if true allocate the copy of the skb from the fclone
2158  *	cache instead of the head cache; it is recommended to set this
2159  *	to true for the cases where the copy will likely be cloned
2160  *
2161  *	Make a copy of both an &sk_buff and part of its data, located
2162  *	in header. Fragmented data remain shared. This is used when
2163  *	the caller wishes to modify only header of &sk_buff and needs
2164  *	private copy of the header to alter. Returns %NULL on failure
2165  *	or the pointer to the buffer on success.
2166  *	The returned buffer has a reference count of 1.
2167  */
2168 
2169 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2170 				   gfp_t gfp_mask, bool fclone)
2171 {
2172 	unsigned int size = skb_headlen(skb) + headroom;
2173 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2174 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2175 
2176 	if (!n)
2177 		goto out;
2178 
2179 	/* Set the data pointer */
2180 	skb_reserve(n, headroom);
2181 	/* Set the tail pointer and length */
2182 	skb_put(n, skb_headlen(skb));
2183 	/* Copy the bytes */
2184 	skb_copy_from_linear_data(skb, n->data, n->len);
2185 
2186 	n->truesize += skb->data_len;
2187 	n->data_len  = skb->data_len;
2188 	n->len	     = skb->len;
2189 
2190 	if (skb_shinfo(skb)->nr_frags) {
2191 		int i;
2192 
2193 		if (skb_orphan_frags(skb, gfp_mask) ||
2194 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2195 			kfree_skb(n);
2196 			n = NULL;
2197 			goto out;
2198 		}
2199 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2200 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2201 			skb_frag_ref(skb, i);
2202 		}
2203 		skb_shinfo(n)->nr_frags = i;
2204 	}
2205 
2206 	if (skb_has_frag_list(skb)) {
2207 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2208 		skb_clone_fraglist(n);
2209 	}
2210 
2211 	skb_copy_header(n, skb);
2212 out:
2213 	return n;
2214 }
2215 EXPORT_SYMBOL(__pskb_copy_fclone);
2216 
2217 /**
2218  *	pskb_expand_head - reallocate header of &sk_buff
2219  *	@skb: buffer to reallocate
2220  *	@nhead: room to add at head
2221  *	@ntail: room to add at tail
2222  *	@gfp_mask: allocation priority
2223  *
2224  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2225  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2226  *	reference count of 1. Returns zero in the case of success or error,
2227  *	if expansion failed. In the last case, &sk_buff is not changed.
2228  *
2229  *	All the pointers pointing into skb header may change and must be
2230  *	reloaded after call to this function.
2231  */
2232 
2233 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2234 		     gfp_t gfp_mask)
2235 {
2236 	unsigned int osize = skb_end_offset(skb);
2237 	unsigned int size = osize + nhead + ntail;
2238 	long off;
2239 	u8 *data;
2240 	int i;
2241 
2242 	BUG_ON(nhead < 0);
2243 
2244 	BUG_ON(skb_shared(skb));
2245 
2246 	skb_zcopy_downgrade_managed(skb);
2247 
2248 	if (skb_pfmemalloc(skb))
2249 		gfp_mask |= __GFP_MEMALLOC;
2250 
2251 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2252 	if (!data)
2253 		goto nodata;
2254 	size = SKB_WITH_OVERHEAD(size);
2255 
2256 	/* Copy only real data... and, alas, header. This should be
2257 	 * optimized for the cases when header is void.
2258 	 */
2259 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2260 
2261 	memcpy((struct skb_shared_info *)(data + size),
2262 	       skb_shinfo(skb),
2263 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2264 
2265 	/*
2266 	 * if shinfo is shared we must drop the old head gracefully, but if it
2267 	 * is not we can just drop the old head and let the existing refcount
2268 	 * be since all we did is relocate the values
2269 	 */
2270 	if (skb_cloned(skb)) {
2271 		if (skb_orphan_frags(skb, gfp_mask))
2272 			goto nofrags;
2273 		if (skb_zcopy(skb))
2274 			refcount_inc(&skb_uarg(skb)->refcnt);
2275 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2276 			skb_frag_ref(skb, i);
2277 
2278 		if (skb_has_frag_list(skb))
2279 			skb_clone_fraglist(skb);
2280 
2281 		skb_release_data(skb, SKB_CONSUMED, false);
2282 	} else {
2283 		skb_free_head(skb, false);
2284 	}
2285 	off = (data + nhead) - skb->head;
2286 
2287 	skb->head     = data;
2288 	skb->head_frag = 0;
2289 	skb->data    += off;
2290 
2291 	skb_set_end_offset(skb, size);
2292 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2293 	off           = nhead;
2294 #endif
2295 	skb->tail	      += off;
2296 	skb_headers_offset_update(skb, nhead);
2297 	skb->cloned   = 0;
2298 	skb->hdr_len  = 0;
2299 	skb->nohdr    = 0;
2300 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2301 
2302 	skb_metadata_clear(skb);
2303 
2304 	/* It is not generally safe to change skb->truesize.
2305 	 * For the moment, we really care of rx path, or
2306 	 * when skb is orphaned (not attached to a socket).
2307 	 */
2308 	if (!skb->sk || skb->destructor == sock_edemux)
2309 		skb->truesize += size - osize;
2310 
2311 	return 0;
2312 
2313 nofrags:
2314 	skb_kfree_head(data, size);
2315 nodata:
2316 	return -ENOMEM;
2317 }
2318 EXPORT_SYMBOL(pskb_expand_head);
2319 
2320 /* Make private copy of skb with writable head and some headroom */
2321 
2322 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2323 {
2324 	struct sk_buff *skb2;
2325 	int delta = headroom - skb_headroom(skb);
2326 
2327 	if (delta <= 0)
2328 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2329 	else {
2330 		skb2 = skb_clone(skb, GFP_ATOMIC);
2331 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2332 					     GFP_ATOMIC)) {
2333 			kfree_skb(skb2);
2334 			skb2 = NULL;
2335 		}
2336 	}
2337 	return skb2;
2338 }
2339 EXPORT_SYMBOL(skb_realloc_headroom);
2340 
2341 /* Note: We plan to rework this in linux-6.4 */
2342 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2343 {
2344 	unsigned int saved_end_offset, saved_truesize;
2345 	struct skb_shared_info *shinfo;
2346 	int res;
2347 
2348 	saved_end_offset = skb_end_offset(skb);
2349 	saved_truesize = skb->truesize;
2350 
2351 	res = pskb_expand_head(skb, 0, 0, pri);
2352 	if (res)
2353 		return res;
2354 
2355 	skb->truesize = saved_truesize;
2356 
2357 	if (likely(skb_end_offset(skb) == saved_end_offset))
2358 		return 0;
2359 
2360 	/* We can not change skb->end if the original or new value
2361 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2362 	 */
2363 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2364 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2365 		/* We think this path should not be taken.
2366 		 * Add a temporary trace to warn us just in case.
2367 		 */
2368 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2369 			    saved_end_offset, skb_end_offset(skb));
2370 		WARN_ON_ONCE(1);
2371 		return 0;
2372 	}
2373 
2374 	shinfo = skb_shinfo(skb);
2375 
2376 	/* We are about to change back skb->end,
2377 	 * we need to move skb_shinfo() to its new location.
2378 	 */
2379 	memmove(skb->head + saved_end_offset,
2380 		shinfo,
2381 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2382 
2383 	skb_set_end_offset(skb, saved_end_offset);
2384 
2385 	return 0;
2386 }
2387 
2388 /**
2389  *	skb_expand_head - reallocate header of &sk_buff
2390  *	@skb: buffer to reallocate
2391  *	@headroom: needed headroom
2392  *
2393  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2394  *	if possible; copies skb->sk to new skb as needed
2395  *	and frees original skb in case of failures.
2396  *
2397  *	It expect increased headroom and generates warning otherwise.
2398  */
2399 
2400 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2401 {
2402 	int delta = headroom - skb_headroom(skb);
2403 	int osize = skb_end_offset(skb);
2404 	struct sock *sk = skb->sk;
2405 
2406 	if (WARN_ONCE(delta <= 0,
2407 		      "%s is expecting an increase in the headroom", __func__))
2408 		return skb;
2409 
2410 	delta = SKB_DATA_ALIGN(delta);
2411 	/* pskb_expand_head() might crash, if skb is shared. */
2412 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2413 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2414 
2415 		if (unlikely(!nskb))
2416 			goto fail;
2417 
2418 		if (sk)
2419 			skb_set_owner_w(nskb, sk);
2420 		consume_skb(skb);
2421 		skb = nskb;
2422 	}
2423 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2424 		goto fail;
2425 
2426 	if (sk && is_skb_wmem(skb)) {
2427 		delta = skb_end_offset(skb) - osize;
2428 		refcount_add(delta, &sk->sk_wmem_alloc);
2429 		skb->truesize += delta;
2430 	}
2431 	return skb;
2432 
2433 fail:
2434 	kfree_skb(skb);
2435 	return NULL;
2436 }
2437 EXPORT_SYMBOL(skb_expand_head);
2438 
2439 /**
2440  *	skb_copy_expand	-	copy and expand sk_buff
2441  *	@skb: buffer to copy
2442  *	@newheadroom: new free bytes at head
2443  *	@newtailroom: new free bytes at tail
2444  *	@gfp_mask: allocation priority
2445  *
2446  *	Make a copy of both an &sk_buff and its data and while doing so
2447  *	allocate additional space.
2448  *
2449  *	This is used when the caller wishes to modify the data and needs a
2450  *	private copy of the data to alter as well as more space for new fields.
2451  *	Returns %NULL on failure or the pointer to the buffer
2452  *	on success. The returned buffer has a reference count of 1.
2453  *
2454  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2455  *	is called from an interrupt.
2456  */
2457 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2458 				int newheadroom, int newtailroom,
2459 				gfp_t gfp_mask)
2460 {
2461 	/*
2462 	 *	Allocate the copy buffer
2463 	 */
2464 	int head_copy_len, head_copy_off;
2465 	struct sk_buff *n;
2466 	int oldheadroom;
2467 
2468 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2469 		return NULL;
2470 
2471 	oldheadroom = skb_headroom(skb);
2472 	n = __alloc_skb(newheadroom + skb->len + newtailroom,
2473 			gfp_mask, skb_alloc_rx_flag(skb),
2474 			NUMA_NO_NODE);
2475 	if (!n)
2476 		return NULL;
2477 
2478 	skb_reserve(n, newheadroom);
2479 
2480 	/* Set the tail pointer and length */
2481 	skb_put(n, skb->len);
2482 
2483 	head_copy_len = oldheadroom;
2484 	head_copy_off = 0;
2485 	if (newheadroom <= head_copy_len)
2486 		head_copy_len = newheadroom;
2487 	else
2488 		head_copy_off = newheadroom - head_copy_len;
2489 
2490 	/* Copy the linear header and data. */
2491 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2492 			     skb->len + head_copy_len));
2493 
2494 	skb_copy_header(n, skb);
2495 
2496 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2497 
2498 	return n;
2499 }
2500 EXPORT_SYMBOL(skb_copy_expand);
2501 
2502 /**
2503  *	__skb_pad		-	zero pad the tail of an skb
2504  *	@skb: buffer to pad
2505  *	@pad: space to pad
2506  *	@free_on_error: free buffer on error
2507  *
2508  *	Ensure that a buffer is followed by a padding area that is zero
2509  *	filled. Used by network drivers which may DMA or transfer data
2510  *	beyond the buffer end onto the wire.
2511  *
2512  *	May return error in out of memory cases. The skb is freed on error
2513  *	if @free_on_error is true.
2514  */
2515 
2516 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2517 {
2518 	int err;
2519 	int ntail;
2520 
2521 	/* If the skbuff is non linear tailroom is always zero.. */
2522 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2523 		memset(skb->data+skb->len, 0, pad);
2524 		return 0;
2525 	}
2526 
2527 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2528 	if (likely(skb_cloned(skb) || ntail > 0)) {
2529 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2530 		if (unlikely(err))
2531 			goto free_skb;
2532 	}
2533 
2534 	/* FIXME: The use of this function with non-linear skb's really needs
2535 	 * to be audited.
2536 	 */
2537 	err = skb_linearize(skb);
2538 	if (unlikely(err))
2539 		goto free_skb;
2540 
2541 	memset(skb->data + skb->len, 0, pad);
2542 	return 0;
2543 
2544 free_skb:
2545 	if (free_on_error)
2546 		kfree_skb(skb);
2547 	return err;
2548 }
2549 EXPORT_SYMBOL(__skb_pad);
2550 
2551 /**
2552  *	pskb_put - add data to the tail of a potentially fragmented buffer
2553  *	@skb: start of the buffer to use
2554  *	@tail: tail fragment of the buffer to use
2555  *	@len: amount of data to add
2556  *
2557  *	This function extends the used data area of the potentially
2558  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2559  *	@skb itself. If this would exceed the total buffer size the kernel
2560  *	will panic. A pointer to the first byte of the extra data is
2561  *	returned.
2562  */
2563 
2564 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2565 {
2566 	if (tail != skb) {
2567 		skb->data_len += len;
2568 		skb->len += len;
2569 	}
2570 	return skb_put(tail, len);
2571 }
2572 EXPORT_SYMBOL_GPL(pskb_put);
2573 
2574 /**
2575  *	skb_put - add data to a buffer
2576  *	@skb: buffer to use
2577  *	@len: amount of data to add
2578  *
2579  *	This function extends the used data area of the buffer. If this would
2580  *	exceed the total buffer size the kernel will panic. A pointer to the
2581  *	first byte of the extra data is returned.
2582  */
2583 void *skb_put(struct sk_buff *skb, unsigned int len)
2584 {
2585 	void *tmp = skb_tail_pointer(skb);
2586 	SKB_LINEAR_ASSERT(skb);
2587 	skb->tail += len;
2588 	skb->len  += len;
2589 	if (unlikely(skb->tail > skb->end))
2590 		skb_over_panic(skb, len, __builtin_return_address(0));
2591 	return tmp;
2592 }
2593 EXPORT_SYMBOL(skb_put);
2594 
2595 /**
2596  *	skb_push - add data to the start of a buffer
2597  *	@skb: buffer to use
2598  *	@len: amount of data to add
2599  *
2600  *	This function extends the used data area of the buffer at the buffer
2601  *	start. If this would exceed the total buffer headroom the kernel will
2602  *	panic. A pointer to the first byte of the extra data is returned.
2603  */
2604 void *skb_push(struct sk_buff *skb, unsigned int len)
2605 {
2606 	skb->data -= len;
2607 	skb->len  += len;
2608 	if (unlikely(skb->data < skb->head))
2609 		skb_under_panic(skb, len, __builtin_return_address(0));
2610 	return skb->data;
2611 }
2612 EXPORT_SYMBOL(skb_push);
2613 
2614 /**
2615  *	skb_pull - remove data from the start of a buffer
2616  *	@skb: buffer to use
2617  *	@len: amount of data to remove
2618  *
2619  *	This function removes data from the start of a buffer, returning
2620  *	the memory to the headroom. A pointer to the next data in the buffer
2621  *	is returned. Once the data has been pulled future pushes will overwrite
2622  *	the old data.
2623  */
2624 void *skb_pull(struct sk_buff *skb, unsigned int len)
2625 {
2626 	return skb_pull_inline(skb, len);
2627 }
2628 EXPORT_SYMBOL(skb_pull);
2629 
2630 /**
2631  *	skb_pull_data - remove data from the start of a buffer returning its
2632  *	original position.
2633  *	@skb: buffer to use
2634  *	@len: amount of data to remove
2635  *
2636  *	This function removes data from the start of a buffer, returning
2637  *	the memory to the headroom. A pointer to the original data in the buffer
2638  *	is returned after checking if there is enough data to pull. Once the
2639  *	data has been pulled future pushes will overwrite the old data.
2640  */
2641 void *skb_pull_data(struct sk_buff *skb, size_t len)
2642 {
2643 	void *data = skb->data;
2644 
2645 	if (skb->len < len)
2646 		return NULL;
2647 
2648 	skb_pull(skb, len);
2649 
2650 	return data;
2651 }
2652 EXPORT_SYMBOL(skb_pull_data);
2653 
2654 /**
2655  *	skb_trim - remove end from a buffer
2656  *	@skb: buffer to alter
2657  *	@len: new length
2658  *
2659  *	Cut the length of a buffer down by removing data from the tail. If
2660  *	the buffer is already under the length specified it is not modified.
2661  *	The skb must be linear.
2662  */
2663 void skb_trim(struct sk_buff *skb, unsigned int len)
2664 {
2665 	if (skb->len > len)
2666 		__skb_trim(skb, len);
2667 }
2668 EXPORT_SYMBOL(skb_trim);
2669 
2670 /* Trims skb to length len. It can change skb pointers.
2671  */
2672 
2673 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2674 {
2675 	struct sk_buff **fragp;
2676 	struct sk_buff *frag;
2677 	int offset = skb_headlen(skb);
2678 	int nfrags = skb_shinfo(skb)->nr_frags;
2679 	int i;
2680 	int err;
2681 
2682 	if (skb_cloned(skb) &&
2683 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2684 		return err;
2685 
2686 	i = 0;
2687 	if (offset >= len)
2688 		goto drop_pages;
2689 
2690 	for (; i < nfrags; i++) {
2691 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2692 
2693 		if (end < len) {
2694 			offset = end;
2695 			continue;
2696 		}
2697 
2698 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2699 
2700 drop_pages:
2701 		skb_shinfo(skb)->nr_frags = i;
2702 
2703 		for (; i < nfrags; i++)
2704 			skb_frag_unref(skb, i);
2705 
2706 		if (skb_has_frag_list(skb))
2707 			skb_drop_fraglist(skb);
2708 		goto done;
2709 	}
2710 
2711 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2712 	     fragp = &frag->next) {
2713 		int end = offset + frag->len;
2714 
2715 		if (skb_shared(frag)) {
2716 			struct sk_buff *nfrag;
2717 
2718 			nfrag = skb_clone(frag, GFP_ATOMIC);
2719 			if (unlikely(!nfrag))
2720 				return -ENOMEM;
2721 
2722 			nfrag->next = frag->next;
2723 			consume_skb(frag);
2724 			frag = nfrag;
2725 			*fragp = frag;
2726 		}
2727 
2728 		if (end < len) {
2729 			offset = end;
2730 			continue;
2731 		}
2732 
2733 		if (end > len &&
2734 		    unlikely((err = pskb_trim(frag, len - offset))))
2735 			return err;
2736 
2737 		if (frag->next)
2738 			skb_drop_list(&frag->next);
2739 		break;
2740 	}
2741 
2742 done:
2743 	if (len > skb_headlen(skb)) {
2744 		skb->data_len -= skb->len - len;
2745 		skb->len       = len;
2746 	} else {
2747 		skb->len       = len;
2748 		skb->data_len  = 0;
2749 		skb_set_tail_pointer(skb, len);
2750 	}
2751 
2752 	if (!skb->sk || skb->destructor == sock_edemux)
2753 		skb_condense(skb);
2754 	return 0;
2755 }
2756 EXPORT_SYMBOL(___pskb_trim);
2757 
2758 /* Note : use pskb_trim_rcsum() instead of calling this directly
2759  */
2760 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2761 {
2762 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2763 		int delta = skb->len - len;
2764 
2765 		skb->csum = csum_block_sub(skb->csum,
2766 					   skb_checksum(skb, len, delta, 0),
2767 					   len);
2768 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2769 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2770 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2771 
2772 		if (offset + sizeof(__sum16) > hdlen)
2773 			return -EINVAL;
2774 	}
2775 	return __pskb_trim(skb, len);
2776 }
2777 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2778 
2779 /**
2780  *	__pskb_pull_tail - advance tail of skb header
2781  *	@skb: buffer to reallocate
2782  *	@delta: number of bytes to advance tail
2783  *
2784  *	The function makes a sense only on a fragmented &sk_buff,
2785  *	it expands header moving its tail forward and copying necessary
2786  *	data from fragmented part.
2787  *
2788  *	&sk_buff MUST have reference count of 1.
2789  *
2790  *	Returns %NULL (and &sk_buff does not change) if pull failed
2791  *	or value of new tail of skb in the case of success.
2792  *
2793  *	All the pointers pointing into skb header may change and must be
2794  *	reloaded after call to this function.
2795  */
2796 
2797 /* Moves tail of skb head forward, copying data from fragmented part,
2798  * when it is necessary.
2799  * 1. It may fail due to malloc failure.
2800  * 2. It may change skb pointers.
2801  *
2802  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2803  */
2804 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2805 {
2806 	/* If skb has not enough free space at tail, get new one
2807 	 * plus 128 bytes for future expansions. If we have enough
2808 	 * room at tail, reallocate without expansion only if skb is cloned.
2809 	 */
2810 	int i, k, eat = (skb->tail + delta) - skb->end;
2811 
2812 	if (eat > 0 || skb_cloned(skb)) {
2813 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2814 				     GFP_ATOMIC))
2815 			return NULL;
2816 	}
2817 
2818 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2819 			     skb_tail_pointer(skb), delta));
2820 
2821 	/* Optimization: no fragments, no reasons to preestimate
2822 	 * size of pulled pages. Superb.
2823 	 */
2824 	if (!skb_has_frag_list(skb))
2825 		goto pull_pages;
2826 
2827 	/* Estimate size of pulled pages. */
2828 	eat = delta;
2829 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2830 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2831 
2832 		if (size >= eat)
2833 			goto pull_pages;
2834 		eat -= size;
2835 	}
2836 
2837 	/* If we need update frag list, we are in troubles.
2838 	 * Certainly, it is possible to add an offset to skb data,
2839 	 * but taking into account that pulling is expected to
2840 	 * be very rare operation, it is worth to fight against
2841 	 * further bloating skb head and crucify ourselves here instead.
2842 	 * Pure masohism, indeed. 8)8)
2843 	 */
2844 	if (eat) {
2845 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2846 		struct sk_buff *clone = NULL;
2847 		struct sk_buff *insp = NULL;
2848 
2849 		do {
2850 			if (list->len <= eat) {
2851 				/* Eaten as whole. */
2852 				eat -= list->len;
2853 				list = list->next;
2854 				insp = list;
2855 			} else {
2856 				/* Eaten partially. */
2857 				if (skb_is_gso(skb) && !list->head_frag &&
2858 				    skb_headlen(list))
2859 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2860 
2861 				if (skb_shared(list)) {
2862 					/* Sucks! We need to fork list. :-( */
2863 					clone = skb_clone(list, GFP_ATOMIC);
2864 					if (!clone)
2865 						return NULL;
2866 					insp = list->next;
2867 					list = clone;
2868 				} else {
2869 					/* This may be pulled without
2870 					 * problems. */
2871 					insp = list;
2872 				}
2873 				if (!pskb_pull(list, eat)) {
2874 					kfree_skb(clone);
2875 					return NULL;
2876 				}
2877 				break;
2878 			}
2879 		} while (eat);
2880 
2881 		/* Free pulled out fragments. */
2882 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2883 			skb_shinfo(skb)->frag_list = list->next;
2884 			consume_skb(list);
2885 		}
2886 		/* And insert new clone at head. */
2887 		if (clone) {
2888 			clone->next = list;
2889 			skb_shinfo(skb)->frag_list = clone;
2890 		}
2891 	}
2892 	/* Success! Now we may commit changes to skb data. */
2893 
2894 pull_pages:
2895 	eat = delta;
2896 	k = 0;
2897 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2898 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2899 
2900 		if (size <= eat) {
2901 			skb_frag_unref(skb, i);
2902 			eat -= size;
2903 		} else {
2904 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2905 
2906 			*frag = skb_shinfo(skb)->frags[i];
2907 			if (eat) {
2908 				skb_frag_off_add(frag, eat);
2909 				skb_frag_size_sub(frag, eat);
2910 				if (!i)
2911 					goto end;
2912 				eat = 0;
2913 			}
2914 			k++;
2915 		}
2916 	}
2917 	skb_shinfo(skb)->nr_frags = k;
2918 
2919 end:
2920 	skb->tail     += delta;
2921 	skb->data_len -= delta;
2922 
2923 	if (!skb->data_len)
2924 		skb_zcopy_clear(skb, false);
2925 
2926 	return skb_tail_pointer(skb);
2927 }
2928 EXPORT_SYMBOL(__pskb_pull_tail);
2929 
2930 /**
2931  *	skb_copy_bits - copy bits from skb to kernel buffer
2932  *	@skb: source skb
2933  *	@offset: offset in source
2934  *	@to: destination buffer
2935  *	@len: number of bytes to copy
2936  *
2937  *	Copy the specified number of bytes from the source skb to the
2938  *	destination buffer.
2939  *
2940  *	CAUTION ! :
2941  *		If its prototype is ever changed,
2942  *		check arch/{*}/net/{*}.S files,
2943  *		since it is called from BPF assembly code.
2944  */
2945 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2946 {
2947 	int start = skb_headlen(skb);
2948 	struct sk_buff *frag_iter;
2949 	int i, copy;
2950 
2951 	if (offset > (int)skb->len - len)
2952 		goto fault;
2953 
2954 	/* Copy header. */
2955 	if ((copy = start - offset) > 0) {
2956 		if (copy > len)
2957 			copy = len;
2958 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2959 		if ((len -= copy) == 0)
2960 			return 0;
2961 		offset += copy;
2962 		to     += copy;
2963 	}
2964 
2965 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2966 		int end;
2967 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2968 
2969 		WARN_ON(start > offset + len);
2970 
2971 		end = start + skb_frag_size(f);
2972 		if ((copy = end - offset) > 0) {
2973 			u32 p_off, p_len, copied;
2974 			struct page *p;
2975 			u8 *vaddr;
2976 
2977 			if (copy > len)
2978 				copy = len;
2979 
2980 			skb_frag_foreach_page(f,
2981 					      skb_frag_off(f) + offset - start,
2982 					      copy, p, p_off, p_len, copied) {
2983 				vaddr = kmap_atomic(p);
2984 				memcpy(to + copied, vaddr + p_off, p_len);
2985 				kunmap_atomic(vaddr);
2986 			}
2987 
2988 			if ((len -= copy) == 0)
2989 				return 0;
2990 			offset += copy;
2991 			to     += copy;
2992 		}
2993 		start = end;
2994 	}
2995 
2996 	skb_walk_frags(skb, frag_iter) {
2997 		int end;
2998 
2999 		WARN_ON(start > offset + len);
3000 
3001 		end = start + frag_iter->len;
3002 		if ((copy = end - offset) > 0) {
3003 			if (copy > len)
3004 				copy = len;
3005 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
3006 				goto fault;
3007 			if ((len -= copy) == 0)
3008 				return 0;
3009 			offset += copy;
3010 			to     += copy;
3011 		}
3012 		start = end;
3013 	}
3014 
3015 	if (!len)
3016 		return 0;
3017 
3018 fault:
3019 	return -EFAULT;
3020 }
3021 EXPORT_SYMBOL(skb_copy_bits);
3022 
3023 /*
3024  * Callback from splice_to_pipe(), if we need to release some pages
3025  * at the end of the spd in case we error'ed out in filling the pipe.
3026  */
3027 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3028 {
3029 	put_page(spd->pages[i]);
3030 }
3031 
3032 static struct page *linear_to_page(struct page *page, unsigned int *len,
3033 				   unsigned int *offset,
3034 				   struct sock *sk)
3035 {
3036 	struct page_frag *pfrag = sk_page_frag(sk);
3037 
3038 	if (!sk_page_frag_refill(sk, pfrag))
3039 		return NULL;
3040 
3041 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3042 
3043 	memcpy(page_address(pfrag->page) + pfrag->offset,
3044 	       page_address(page) + *offset, *len);
3045 	*offset = pfrag->offset;
3046 	pfrag->offset += *len;
3047 
3048 	return pfrag->page;
3049 }
3050 
3051 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3052 			     struct page *page,
3053 			     unsigned int offset)
3054 {
3055 	return	spd->nr_pages &&
3056 		spd->pages[spd->nr_pages - 1] == page &&
3057 		(spd->partial[spd->nr_pages - 1].offset +
3058 		 spd->partial[spd->nr_pages - 1].len == offset);
3059 }
3060 
3061 /*
3062  * Fill page/offset/length into spd, if it can hold more pages.
3063  */
3064 static bool spd_fill_page(struct splice_pipe_desc *spd,
3065 			  struct pipe_inode_info *pipe, struct page *page,
3066 			  unsigned int *len, unsigned int offset,
3067 			  bool linear,
3068 			  struct sock *sk)
3069 {
3070 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3071 		return true;
3072 
3073 	if (linear) {
3074 		page = linear_to_page(page, len, &offset, sk);
3075 		if (!page)
3076 			return true;
3077 	}
3078 	if (spd_can_coalesce(spd, page, offset)) {
3079 		spd->partial[spd->nr_pages - 1].len += *len;
3080 		return false;
3081 	}
3082 	get_page(page);
3083 	spd->pages[spd->nr_pages] = page;
3084 	spd->partial[spd->nr_pages].len = *len;
3085 	spd->partial[spd->nr_pages].offset = offset;
3086 	spd->nr_pages++;
3087 
3088 	return false;
3089 }
3090 
3091 static bool __splice_segment(struct page *page, unsigned int poff,
3092 			     unsigned int plen, unsigned int *off,
3093 			     unsigned int *len,
3094 			     struct splice_pipe_desc *spd, bool linear,
3095 			     struct sock *sk,
3096 			     struct pipe_inode_info *pipe)
3097 {
3098 	if (!*len)
3099 		return true;
3100 
3101 	/* skip this segment if already processed */
3102 	if (*off >= plen) {
3103 		*off -= plen;
3104 		return false;
3105 	}
3106 
3107 	/* ignore any bits we already processed */
3108 	poff += *off;
3109 	plen -= *off;
3110 	*off = 0;
3111 
3112 	do {
3113 		unsigned int flen = min(*len, plen);
3114 
3115 		if (spd_fill_page(spd, pipe, page, &flen, poff,
3116 				  linear, sk))
3117 			return true;
3118 		poff += flen;
3119 		plen -= flen;
3120 		*len -= flen;
3121 	} while (*len && plen);
3122 
3123 	return false;
3124 }
3125 
3126 /*
3127  * Map linear and fragment data from the skb to spd. It reports true if the
3128  * pipe is full or if we already spliced the requested length.
3129  */
3130 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3131 			      unsigned int *offset, unsigned int *len,
3132 			      struct splice_pipe_desc *spd, struct sock *sk)
3133 {
3134 	int seg;
3135 	struct sk_buff *iter;
3136 
3137 	/* map the linear part :
3138 	 * If skb->head_frag is set, this 'linear' part is backed by a
3139 	 * fragment, and if the head is not shared with any clones then
3140 	 * we can avoid a copy since we own the head portion of this page.
3141 	 */
3142 	if (__splice_segment(virt_to_page(skb->data),
3143 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3144 			     skb_headlen(skb),
3145 			     offset, len, spd,
3146 			     skb_head_is_locked(skb),
3147 			     sk, pipe))
3148 		return true;
3149 
3150 	/*
3151 	 * then map the fragments
3152 	 */
3153 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3154 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3155 
3156 		if (__splice_segment(skb_frag_page(f),
3157 				     skb_frag_off(f), skb_frag_size(f),
3158 				     offset, len, spd, false, sk, pipe))
3159 			return true;
3160 	}
3161 
3162 	skb_walk_frags(skb, iter) {
3163 		if (*offset >= iter->len) {
3164 			*offset -= iter->len;
3165 			continue;
3166 		}
3167 		/* __skb_splice_bits() only fails if the output has no room
3168 		 * left, so no point in going over the frag_list for the error
3169 		 * case.
3170 		 */
3171 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3172 			return true;
3173 	}
3174 
3175 	return false;
3176 }
3177 
3178 /*
3179  * Map data from the skb to a pipe. Should handle both the linear part,
3180  * the fragments, and the frag list.
3181  */
3182 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3183 		    struct pipe_inode_info *pipe, unsigned int tlen,
3184 		    unsigned int flags)
3185 {
3186 	struct partial_page partial[MAX_SKB_FRAGS];
3187 	struct page *pages[MAX_SKB_FRAGS];
3188 	struct splice_pipe_desc spd = {
3189 		.pages = pages,
3190 		.partial = partial,
3191 		.nr_pages_max = MAX_SKB_FRAGS,
3192 		.ops = &nosteal_pipe_buf_ops,
3193 		.spd_release = sock_spd_release,
3194 	};
3195 	int ret = 0;
3196 
3197 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3198 
3199 	if (spd.nr_pages)
3200 		ret = splice_to_pipe(pipe, &spd);
3201 
3202 	return ret;
3203 }
3204 EXPORT_SYMBOL_GPL(skb_splice_bits);
3205 
3206 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3207 {
3208 	struct socket *sock = sk->sk_socket;
3209 	size_t size = msg_data_left(msg);
3210 
3211 	if (!sock)
3212 		return -EINVAL;
3213 
3214 	if (!sock->ops->sendmsg_locked)
3215 		return sock_no_sendmsg_locked(sk, msg, size);
3216 
3217 	return sock->ops->sendmsg_locked(sk, msg, size);
3218 }
3219 
3220 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3221 {
3222 	struct socket *sock = sk->sk_socket;
3223 
3224 	if (!sock)
3225 		return -EINVAL;
3226 	return sock_sendmsg(sock, msg);
3227 }
3228 
3229 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3230 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3231 			   int len, sendmsg_func sendmsg)
3232 {
3233 	unsigned int orig_len = len;
3234 	struct sk_buff *head = skb;
3235 	unsigned short fragidx;
3236 	int slen, ret;
3237 
3238 do_frag_list:
3239 
3240 	/* Deal with head data */
3241 	while (offset < skb_headlen(skb) && len) {
3242 		struct kvec kv;
3243 		struct msghdr msg;
3244 
3245 		slen = min_t(int, len, skb_headlen(skb) - offset);
3246 		kv.iov_base = skb->data + offset;
3247 		kv.iov_len = slen;
3248 		memset(&msg, 0, sizeof(msg));
3249 		msg.msg_flags = MSG_DONTWAIT;
3250 
3251 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3252 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3253 				      sendmsg_unlocked, sk, &msg);
3254 		if (ret <= 0)
3255 			goto error;
3256 
3257 		offset += ret;
3258 		len -= ret;
3259 	}
3260 
3261 	/* All the data was skb head? */
3262 	if (!len)
3263 		goto out;
3264 
3265 	/* Make offset relative to start of frags */
3266 	offset -= skb_headlen(skb);
3267 
3268 	/* Find where we are in frag list */
3269 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3270 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3271 
3272 		if (offset < skb_frag_size(frag))
3273 			break;
3274 
3275 		offset -= skb_frag_size(frag);
3276 	}
3277 
3278 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3279 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3280 
3281 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3282 
3283 		while (slen) {
3284 			struct bio_vec bvec;
3285 			struct msghdr msg = {
3286 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3287 			};
3288 
3289 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3290 				      skb_frag_off(frag) + offset);
3291 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3292 				      slen);
3293 
3294 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3295 					      sendmsg_unlocked, sk, &msg);
3296 			if (ret <= 0)
3297 				goto error;
3298 
3299 			len -= ret;
3300 			offset += ret;
3301 			slen -= ret;
3302 		}
3303 
3304 		offset = 0;
3305 	}
3306 
3307 	if (len) {
3308 		/* Process any frag lists */
3309 
3310 		if (skb == head) {
3311 			if (skb_has_frag_list(skb)) {
3312 				skb = skb_shinfo(skb)->frag_list;
3313 				goto do_frag_list;
3314 			}
3315 		} else if (skb->next) {
3316 			skb = skb->next;
3317 			goto do_frag_list;
3318 		}
3319 	}
3320 
3321 out:
3322 	return orig_len - len;
3323 
3324 error:
3325 	return orig_len == len ? ret : orig_len - len;
3326 }
3327 
3328 /* Send skb data on a socket. Socket must be locked. */
3329 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3330 			 int len)
3331 {
3332 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3333 }
3334 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3335 
3336 /* Send skb data on a socket. Socket must be unlocked. */
3337 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3338 {
3339 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3340 }
3341 
3342 /**
3343  *	skb_store_bits - store bits from kernel buffer to skb
3344  *	@skb: destination buffer
3345  *	@offset: offset in destination
3346  *	@from: source buffer
3347  *	@len: number of bytes to copy
3348  *
3349  *	Copy the specified number of bytes from the source buffer to the
3350  *	destination skb.  This function handles all the messy bits of
3351  *	traversing fragment lists and such.
3352  */
3353 
3354 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3355 {
3356 	int start = skb_headlen(skb);
3357 	struct sk_buff *frag_iter;
3358 	int i, copy;
3359 
3360 	if (offset > (int)skb->len - len)
3361 		goto fault;
3362 
3363 	if ((copy = start - offset) > 0) {
3364 		if (copy > len)
3365 			copy = len;
3366 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3367 		if ((len -= copy) == 0)
3368 			return 0;
3369 		offset += copy;
3370 		from += copy;
3371 	}
3372 
3373 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3374 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3375 		int end;
3376 
3377 		WARN_ON(start > offset + len);
3378 
3379 		end = start + skb_frag_size(frag);
3380 		if ((copy = end - offset) > 0) {
3381 			u32 p_off, p_len, copied;
3382 			struct page *p;
3383 			u8 *vaddr;
3384 
3385 			if (copy > len)
3386 				copy = len;
3387 
3388 			skb_frag_foreach_page(frag,
3389 					      skb_frag_off(frag) + offset - start,
3390 					      copy, p, p_off, p_len, copied) {
3391 				vaddr = kmap_atomic(p);
3392 				memcpy(vaddr + p_off, from + copied, p_len);
3393 				kunmap_atomic(vaddr);
3394 			}
3395 
3396 			if ((len -= copy) == 0)
3397 				return 0;
3398 			offset += copy;
3399 			from += copy;
3400 		}
3401 		start = end;
3402 	}
3403 
3404 	skb_walk_frags(skb, frag_iter) {
3405 		int end;
3406 
3407 		WARN_ON(start > offset + len);
3408 
3409 		end = start + frag_iter->len;
3410 		if ((copy = end - offset) > 0) {
3411 			if (copy > len)
3412 				copy = len;
3413 			if (skb_store_bits(frag_iter, offset - start,
3414 					   from, copy))
3415 				goto fault;
3416 			if ((len -= copy) == 0)
3417 				return 0;
3418 			offset += copy;
3419 			from += copy;
3420 		}
3421 		start = end;
3422 	}
3423 	if (!len)
3424 		return 0;
3425 
3426 fault:
3427 	return -EFAULT;
3428 }
3429 EXPORT_SYMBOL(skb_store_bits);
3430 
3431 /* Checksum skb data. */
3432 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3433 		      __wsum csum, const struct skb_checksum_ops *ops)
3434 {
3435 	int start = skb_headlen(skb);
3436 	int i, copy = start - offset;
3437 	struct sk_buff *frag_iter;
3438 	int pos = 0;
3439 
3440 	/* Checksum header. */
3441 	if (copy > 0) {
3442 		if (copy > len)
3443 			copy = len;
3444 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3445 				       skb->data + offset, copy, csum);
3446 		if ((len -= copy) == 0)
3447 			return csum;
3448 		offset += copy;
3449 		pos	= copy;
3450 	}
3451 
3452 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3453 		int end;
3454 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3455 
3456 		WARN_ON(start > offset + len);
3457 
3458 		end = start + skb_frag_size(frag);
3459 		if ((copy = end - offset) > 0) {
3460 			u32 p_off, p_len, copied;
3461 			struct page *p;
3462 			__wsum csum2;
3463 			u8 *vaddr;
3464 
3465 			if (copy > len)
3466 				copy = len;
3467 
3468 			skb_frag_foreach_page(frag,
3469 					      skb_frag_off(frag) + offset - start,
3470 					      copy, p, p_off, p_len, copied) {
3471 				vaddr = kmap_atomic(p);
3472 				csum2 = INDIRECT_CALL_1(ops->update,
3473 							csum_partial_ext,
3474 							vaddr + p_off, p_len, 0);
3475 				kunmap_atomic(vaddr);
3476 				csum = INDIRECT_CALL_1(ops->combine,
3477 						       csum_block_add_ext, csum,
3478 						       csum2, pos, p_len);
3479 				pos += p_len;
3480 			}
3481 
3482 			if (!(len -= copy))
3483 				return csum;
3484 			offset += copy;
3485 		}
3486 		start = end;
3487 	}
3488 
3489 	skb_walk_frags(skb, frag_iter) {
3490 		int end;
3491 
3492 		WARN_ON(start > offset + len);
3493 
3494 		end = start + frag_iter->len;
3495 		if ((copy = end - offset) > 0) {
3496 			__wsum csum2;
3497 			if (copy > len)
3498 				copy = len;
3499 			csum2 = __skb_checksum(frag_iter, offset - start,
3500 					       copy, 0, ops);
3501 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3502 					       csum, csum2, pos, copy);
3503 			if ((len -= copy) == 0)
3504 				return csum;
3505 			offset += copy;
3506 			pos    += copy;
3507 		}
3508 		start = end;
3509 	}
3510 	BUG_ON(len);
3511 
3512 	return csum;
3513 }
3514 EXPORT_SYMBOL(__skb_checksum);
3515 
3516 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3517 		    int len, __wsum csum)
3518 {
3519 	const struct skb_checksum_ops ops = {
3520 		.update  = csum_partial_ext,
3521 		.combine = csum_block_add_ext,
3522 	};
3523 
3524 	return __skb_checksum(skb, offset, len, csum, &ops);
3525 }
3526 EXPORT_SYMBOL(skb_checksum);
3527 
3528 /* Both of above in one bottle. */
3529 
3530 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3531 				    u8 *to, int len)
3532 {
3533 	int start = skb_headlen(skb);
3534 	int i, copy = start - offset;
3535 	struct sk_buff *frag_iter;
3536 	int pos = 0;
3537 	__wsum csum = 0;
3538 
3539 	/* Copy header. */
3540 	if (copy > 0) {
3541 		if (copy > len)
3542 			copy = len;
3543 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3544 						 copy);
3545 		if ((len -= copy) == 0)
3546 			return csum;
3547 		offset += copy;
3548 		to     += copy;
3549 		pos	= copy;
3550 	}
3551 
3552 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3553 		int end;
3554 
3555 		WARN_ON(start > offset + len);
3556 
3557 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3558 		if ((copy = end - offset) > 0) {
3559 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3560 			u32 p_off, p_len, copied;
3561 			struct page *p;
3562 			__wsum csum2;
3563 			u8 *vaddr;
3564 
3565 			if (copy > len)
3566 				copy = len;
3567 
3568 			skb_frag_foreach_page(frag,
3569 					      skb_frag_off(frag) + offset - start,
3570 					      copy, p, p_off, p_len, copied) {
3571 				vaddr = kmap_atomic(p);
3572 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3573 								  to + copied,
3574 								  p_len);
3575 				kunmap_atomic(vaddr);
3576 				csum = csum_block_add(csum, csum2, pos);
3577 				pos += p_len;
3578 			}
3579 
3580 			if (!(len -= copy))
3581 				return csum;
3582 			offset += copy;
3583 			to     += copy;
3584 		}
3585 		start = end;
3586 	}
3587 
3588 	skb_walk_frags(skb, frag_iter) {
3589 		__wsum csum2;
3590 		int end;
3591 
3592 		WARN_ON(start > offset + len);
3593 
3594 		end = start + frag_iter->len;
3595 		if ((copy = end - offset) > 0) {
3596 			if (copy > len)
3597 				copy = len;
3598 			csum2 = skb_copy_and_csum_bits(frag_iter,
3599 						       offset - start,
3600 						       to, copy);
3601 			csum = csum_block_add(csum, csum2, pos);
3602 			if ((len -= copy) == 0)
3603 				return csum;
3604 			offset += copy;
3605 			to     += copy;
3606 			pos    += copy;
3607 		}
3608 		start = end;
3609 	}
3610 	BUG_ON(len);
3611 	return csum;
3612 }
3613 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3614 
3615 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3616 {
3617 	__sum16 sum;
3618 
3619 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3620 	/* See comments in __skb_checksum_complete(). */
3621 	if (likely(!sum)) {
3622 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3623 		    !skb->csum_complete_sw)
3624 			netdev_rx_csum_fault(skb->dev, skb);
3625 	}
3626 	if (!skb_shared(skb))
3627 		skb->csum_valid = !sum;
3628 	return sum;
3629 }
3630 EXPORT_SYMBOL(__skb_checksum_complete_head);
3631 
3632 /* This function assumes skb->csum already holds pseudo header's checksum,
3633  * which has been changed from the hardware checksum, for example, by
3634  * __skb_checksum_validate_complete(). And, the original skb->csum must
3635  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3636  *
3637  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3638  * zero. The new checksum is stored back into skb->csum unless the skb is
3639  * shared.
3640  */
3641 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3642 {
3643 	__wsum csum;
3644 	__sum16 sum;
3645 
3646 	csum = skb_checksum(skb, 0, skb->len, 0);
3647 
3648 	sum = csum_fold(csum_add(skb->csum, csum));
3649 	/* This check is inverted, because we already knew the hardware
3650 	 * checksum is invalid before calling this function. So, if the
3651 	 * re-computed checksum is valid instead, then we have a mismatch
3652 	 * between the original skb->csum and skb_checksum(). This means either
3653 	 * the original hardware checksum is incorrect or we screw up skb->csum
3654 	 * when moving skb->data around.
3655 	 */
3656 	if (likely(!sum)) {
3657 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3658 		    !skb->csum_complete_sw)
3659 			netdev_rx_csum_fault(skb->dev, skb);
3660 	}
3661 
3662 	if (!skb_shared(skb)) {
3663 		/* Save full packet checksum */
3664 		skb->csum = csum;
3665 		skb->ip_summed = CHECKSUM_COMPLETE;
3666 		skb->csum_complete_sw = 1;
3667 		skb->csum_valid = !sum;
3668 	}
3669 
3670 	return sum;
3671 }
3672 EXPORT_SYMBOL(__skb_checksum_complete);
3673 
3674 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3675 {
3676 	net_warn_ratelimited(
3677 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3678 		__func__);
3679 	return 0;
3680 }
3681 
3682 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3683 				       int offset, int len)
3684 {
3685 	net_warn_ratelimited(
3686 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3687 		__func__);
3688 	return 0;
3689 }
3690 
3691 static const struct skb_checksum_ops default_crc32c_ops = {
3692 	.update  = warn_crc32c_csum_update,
3693 	.combine = warn_crc32c_csum_combine,
3694 };
3695 
3696 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3697 	&default_crc32c_ops;
3698 EXPORT_SYMBOL(crc32c_csum_stub);
3699 
3700  /**
3701  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3702  *	@from: source buffer
3703  *
3704  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3705  *	into skb_zerocopy().
3706  */
3707 unsigned int
3708 skb_zerocopy_headlen(const struct sk_buff *from)
3709 {
3710 	unsigned int hlen = 0;
3711 
3712 	if (!from->head_frag ||
3713 	    skb_headlen(from) < L1_CACHE_BYTES ||
3714 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3715 		hlen = skb_headlen(from);
3716 		if (!hlen)
3717 			hlen = from->len;
3718 	}
3719 
3720 	if (skb_has_frag_list(from))
3721 		hlen = from->len;
3722 
3723 	return hlen;
3724 }
3725 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3726 
3727 /**
3728  *	skb_zerocopy - Zero copy skb to skb
3729  *	@to: destination buffer
3730  *	@from: source buffer
3731  *	@len: number of bytes to copy from source buffer
3732  *	@hlen: size of linear headroom in destination buffer
3733  *
3734  *	Copies up to `len` bytes from `from` to `to` by creating references
3735  *	to the frags in the source buffer.
3736  *
3737  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3738  *	headroom in the `to` buffer.
3739  *
3740  *	Return value:
3741  *	0: everything is OK
3742  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3743  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3744  */
3745 int
3746 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3747 {
3748 	int i, j = 0;
3749 	int plen = 0; /* length of skb->head fragment */
3750 	int ret;
3751 	struct page *page;
3752 	unsigned int offset;
3753 
3754 	BUG_ON(!from->head_frag && !hlen);
3755 
3756 	/* dont bother with small payloads */
3757 	if (len <= skb_tailroom(to))
3758 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3759 
3760 	if (hlen) {
3761 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3762 		if (unlikely(ret))
3763 			return ret;
3764 		len -= hlen;
3765 	} else {
3766 		plen = min_t(int, skb_headlen(from), len);
3767 		if (plen) {
3768 			page = virt_to_head_page(from->head);
3769 			offset = from->data - (unsigned char *)page_address(page);
3770 			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3771 					       offset, plen);
3772 			get_page(page);
3773 			j = 1;
3774 			len -= plen;
3775 		}
3776 	}
3777 
3778 	skb_len_add(to, len + plen);
3779 
3780 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3781 		skb_tx_error(from);
3782 		return -ENOMEM;
3783 	}
3784 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3785 
3786 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3787 		int size;
3788 
3789 		if (!len)
3790 			break;
3791 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3792 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3793 					len);
3794 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3795 		len -= size;
3796 		skb_frag_ref(to, j);
3797 		j++;
3798 	}
3799 	skb_shinfo(to)->nr_frags = j;
3800 
3801 	return 0;
3802 }
3803 EXPORT_SYMBOL_GPL(skb_zerocopy);
3804 
3805 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3806 {
3807 	__wsum csum;
3808 	long csstart;
3809 
3810 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3811 		csstart = skb_checksum_start_offset(skb);
3812 	else
3813 		csstart = skb_headlen(skb);
3814 
3815 	BUG_ON(csstart > skb_headlen(skb));
3816 
3817 	skb_copy_from_linear_data(skb, to, csstart);
3818 
3819 	csum = 0;
3820 	if (csstart != skb->len)
3821 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3822 					      skb->len - csstart);
3823 
3824 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3825 		long csstuff = csstart + skb->csum_offset;
3826 
3827 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3828 	}
3829 }
3830 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3831 
3832 /**
3833  *	skb_dequeue - remove from the head of the queue
3834  *	@list: list to dequeue from
3835  *
3836  *	Remove the head of the list. The list lock is taken so the function
3837  *	may be used safely with other locking list functions. The head item is
3838  *	returned or %NULL if the list is empty.
3839  */
3840 
3841 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3842 {
3843 	unsigned long flags;
3844 	struct sk_buff *result;
3845 
3846 	spin_lock_irqsave(&list->lock, flags);
3847 	result = __skb_dequeue(list);
3848 	spin_unlock_irqrestore(&list->lock, flags);
3849 	return result;
3850 }
3851 EXPORT_SYMBOL(skb_dequeue);
3852 
3853 /**
3854  *	skb_dequeue_tail - remove from the tail of the queue
3855  *	@list: list to dequeue from
3856  *
3857  *	Remove the tail of the list. The list lock is taken so the function
3858  *	may be used safely with other locking list functions. The tail item is
3859  *	returned or %NULL if the list is empty.
3860  */
3861 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3862 {
3863 	unsigned long flags;
3864 	struct sk_buff *result;
3865 
3866 	spin_lock_irqsave(&list->lock, flags);
3867 	result = __skb_dequeue_tail(list);
3868 	spin_unlock_irqrestore(&list->lock, flags);
3869 	return result;
3870 }
3871 EXPORT_SYMBOL(skb_dequeue_tail);
3872 
3873 /**
3874  *	skb_queue_purge_reason - empty a list
3875  *	@list: list to empty
3876  *	@reason: drop reason
3877  *
3878  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3879  *	the list and one reference dropped. This function takes the list
3880  *	lock and is atomic with respect to other list locking functions.
3881  */
3882 void skb_queue_purge_reason(struct sk_buff_head *list,
3883 			    enum skb_drop_reason reason)
3884 {
3885 	struct sk_buff_head tmp;
3886 	unsigned long flags;
3887 
3888 	if (skb_queue_empty_lockless(list))
3889 		return;
3890 
3891 	__skb_queue_head_init(&tmp);
3892 
3893 	spin_lock_irqsave(&list->lock, flags);
3894 	skb_queue_splice_init(list, &tmp);
3895 	spin_unlock_irqrestore(&list->lock, flags);
3896 
3897 	__skb_queue_purge_reason(&tmp, reason);
3898 }
3899 EXPORT_SYMBOL(skb_queue_purge_reason);
3900 
3901 /**
3902  *	skb_rbtree_purge - empty a skb rbtree
3903  *	@root: root of the rbtree to empty
3904  *	Return value: the sum of truesizes of all purged skbs.
3905  *
3906  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3907  *	the list and one reference dropped. This function does not take
3908  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3909  *	out-of-order queue is protected by the socket lock).
3910  */
3911 unsigned int skb_rbtree_purge(struct rb_root *root)
3912 {
3913 	struct rb_node *p = rb_first(root);
3914 	unsigned int sum = 0;
3915 
3916 	while (p) {
3917 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3918 
3919 		p = rb_next(p);
3920 		rb_erase(&skb->rbnode, root);
3921 		sum += skb->truesize;
3922 		kfree_skb(skb);
3923 	}
3924 	return sum;
3925 }
3926 
3927 void skb_errqueue_purge(struct sk_buff_head *list)
3928 {
3929 	struct sk_buff *skb, *next;
3930 	struct sk_buff_head kill;
3931 	unsigned long flags;
3932 
3933 	__skb_queue_head_init(&kill);
3934 
3935 	spin_lock_irqsave(&list->lock, flags);
3936 	skb_queue_walk_safe(list, skb, next) {
3937 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3938 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3939 			continue;
3940 		__skb_unlink(skb, list);
3941 		__skb_queue_tail(&kill, skb);
3942 	}
3943 	spin_unlock_irqrestore(&list->lock, flags);
3944 	__skb_queue_purge(&kill);
3945 }
3946 EXPORT_SYMBOL(skb_errqueue_purge);
3947 
3948 /**
3949  *	skb_queue_head - queue a buffer at the list head
3950  *	@list: list to use
3951  *	@newsk: buffer to queue
3952  *
3953  *	Queue a buffer at the start of the list. This function takes the
3954  *	list lock and can be used safely with other locking &sk_buff functions
3955  *	safely.
3956  *
3957  *	A buffer cannot be placed on two lists at the same time.
3958  */
3959 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3960 {
3961 	unsigned long flags;
3962 
3963 	spin_lock_irqsave(&list->lock, flags);
3964 	__skb_queue_head(list, newsk);
3965 	spin_unlock_irqrestore(&list->lock, flags);
3966 }
3967 EXPORT_SYMBOL(skb_queue_head);
3968 
3969 /**
3970  *	skb_queue_tail - queue a buffer at the list tail
3971  *	@list: list to use
3972  *	@newsk: buffer to queue
3973  *
3974  *	Queue a buffer at the tail of the list. This function takes the
3975  *	list lock and can be used safely with other locking &sk_buff functions
3976  *	safely.
3977  *
3978  *	A buffer cannot be placed on two lists at the same time.
3979  */
3980 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3981 {
3982 	unsigned long flags;
3983 
3984 	spin_lock_irqsave(&list->lock, flags);
3985 	__skb_queue_tail(list, newsk);
3986 	spin_unlock_irqrestore(&list->lock, flags);
3987 }
3988 EXPORT_SYMBOL(skb_queue_tail);
3989 
3990 /**
3991  *	skb_unlink	-	remove a buffer from a list
3992  *	@skb: buffer to remove
3993  *	@list: list to use
3994  *
3995  *	Remove a packet from a list. The list locks are taken and this
3996  *	function is atomic with respect to other list locked calls
3997  *
3998  *	You must know what list the SKB is on.
3999  */
4000 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
4001 {
4002 	unsigned long flags;
4003 
4004 	spin_lock_irqsave(&list->lock, flags);
4005 	__skb_unlink(skb, list);
4006 	spin_unlock_irqrestore(&list->lock, flags);
4007 }
4008 EXPORT_SYMBOL(skb_unlink);
4009 
4010 /**
4011  *	skb_append	-	append a buffer
4012  *	@old: buffer to insert after
4013  *	@newsk: buffer to insert
4014  *	@list: list to use
4015  *
4016  *	Place a packet after a given packet in a list. The list locks are taken
4017  *	and this function is atomic with respect to other list locked calls.
4018  *	A buffer cannot be placed on two lists at the same time.
4019  */
4020 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4021 {
4022 	unsigned long flags;
4023 
4024 	spin_lock_irqsave(&list->lock, flags);
4025 	__skb_queue_after(list, old, newsk);
4026 	spin_unlock_irqrestore(&list->lock, flags);
4027 }
4028 EXPORT_SYMBOL(skb_append);
4029 
4030 static inline void skb_split_inside_header(struct sk_buff *skb,
4031 					   struct sk_buff* skb1,
4032 					   const u32 len, const int pos)
4033 {
4034 	int i;
4035 
4036 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4037 					 pos - len);
4038 	/* And move data appendix as is. */
4039 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4040 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4041 
4042 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4043 	skb_shinfo(skb)->nr_frags  = 0;
4044 	skb1->data_len		   = skb->data_len;
4045 	skb1->len		   += skb1->data_len;
4046 	skb->data_len		   = 0;
4047 	skb->len		   = len;
4048 	skb_set_tail_pointer(skb, len);
4049 }
4050 
4051 static inline void skb_split_no_header(struct sk_buff *skb,
4052 				       struct sk_buff* skb1,
4053 				       const u32 len, int pos)
4054 {
4055 	int i, k = 0;
4056 	const int nfrags = skb_shinfo(skb)->nr_frags;
4057 
4058 	skb_shinfo(skb)->nr_frags = 0;
4059 	skb1->len		  = skb1->data_len = skb->len - len;
4060 	skb->len		  = len;
4061 	skb->data_len		  = len - pos;
4062 
4063 	for (i = 0; i < nfrags; i++) {
4064 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4065 
4066 		if (pos + size > len) {
4067 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4068 
4069 			if (pos < len) {
4070 				/* Split frag.
4071 				 * We have two variants in this case:
4072 				 * 1. Move all the frag to the second
4073 				 *    part, if it is possible. F.e.
4074 				 *    this approach is mandatory for TUX,
4075 				 *    where splitting is expensive.
4076 				 * 2. Split is accurately. We make this.
4077 				 */
4078 				skb_frag_ref(skb, i);
4079 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4080 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4081 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4082 				skb_shinfo(skb)->nr_frags++;
4083 			}
4084 			k++;
4085 		} else
4086 			skb_shinfo(skb)->nr_frags++;
4087 		pos += size;
4088 	}
4089 	skb_shinfo(skb1)->nr_frags = k;
4090 }
4091 
4092 /**
4093  * skb_split - Split fragmented skb to two parts at length len.
4094  * @skb: the buffer to split
4095  * @skb1: the buffer to receive the second part
4096  * @len: new length for skb
4097  */
4098 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4099 {
4100 	int pos = skb_headlen(skb);
4101 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4102 
4103 	skb_zcopy_downgrade_managed(skb);
4104 
4105 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4106 	skb_zerocopy_clone(skb1, skb, 0);
4107 	if (len < pos)	/* Split line is inside header. */
4108 		skb_split_inside_header(skb, skb1, len, pos);
4109 	else		/* Second chunk has no header, nothing to copy. */
4110 		skb_split_no_header(skb, skb1, len, pos);
4111 }
4112 EXPORT_SYMBOL(skb_split);
4113 
4114 /* Shifting from/to a cloned skb is a no-go.
4115  *
4116  * Caller cannot keep skb_shinfo related pointers past calling here!
4117  */
4118 static int skb_prepare_for_shift(struct sk_buff *skb)
4119 {
4120 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4121 }
4122 
4123 /**
4124  * skb_shift - Shifts paged data partially from skb to another
4125  * @tgt: buffer into which tail data gets added
4126  * @skb: buffer from which the paged data comes from
4127  * @shiftlen: shift up to this many bytes
4128  *
4129  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4130  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4131  * It's up to caller to free skb if everything was shifted.
4132  *
4133  * If @tgt runs out of frags, the whole operation is aborted.
4134  *
4135  * Skb cannot include anything else but paged data while tgt is allowed
4136  * to have non-paged data as well.
4137  *
4138  * TODO: full sized shift could be optimized but that would need
4139  * specialized skb free'er to handle frags without up-to-date nr_frags.
4140  */
4141 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4142 {
4143 	int from, to, merge, todo;
4144 	skb_frag_t *fragfrom, *fragto;
4145 
4146 	BUG_ON(shiftlen > skb->len);
4147 
4148 	if (skb_headlen(skb))
4149 		return 0;
4150 	if (skb_zcopy(tgt) || skb_zcopy(skb))
4151 		return 0;
4152 
4153 	todo = shiftlen;
4154 	from = 0;
4155 	to = skb_shinfo(tgt)->nr_frags;
4156 	fragfrom = &skb_shinfo(skb)->frags[from];
4157 
4158 	/* Actual merge is delayed until the point when we know we can
4159 	 * commit all, so that we don't have to undo partial changes
4160 	 */
4161 	if (!to ||
4162 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4163 			      skb_frag_off(fragfrom))) {
4164 		merge = -1;
4165 	} else {
4166 		merge = to - 1;
4167 
4168 		todo -= skb_frag_size(fragfrom);
4169 		if (todo < 0) {
4170 			if (skb_prepare_for_shift(skb) ||
4171 			    skb_prepare_for_shift(tgt))
4172 				return 0;
4173 
4174 			/* All previous frag pointers might be stale! */
4175 			fragfrom = &skb_shinfo(skb)->frags[from];
4176 			fragto = &skb_shinfo(tgt)->frags[merge];
4177 
4178 			skb_frag_size_add(fragto, shiftlen);
4179 			skb_frag_size_sub(fragfrom, shiftlen);
4180 			skb_frag_off_add(fragfrom, shiftlen);
4181 
4182 			goto onlymerged;
4183 		}
4184 
4185 		from++;
4186 	}
4187 
4188 	/* Skip full, not-fitting skb to avoid expensive operations */
4189 	if ((shiftlen == skb->len) &&
4190 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4191 		return 0;
4192 
4193 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4194 		return 0;
4195 
4196 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4197 		if (to == MAX_SKB_FRAGS)
4198 			return 0;
4199 
4200 		fragfrom = &skb_shinfo(skb)->frags[from];
4201 		fragto = &skb_shinfo(tgt)->frags[to];
4202 
4203 		if (todo >= skb_frag_size(fragfrom)) {
4204 			*fragto = *fragfrom;
4205 			todo -= skb_frag_size(fragfrom);
4206 			from++;
4207 			to++;
4208 
4209 		} else {
4210 			__skb_frag_ref(fragfrom);
4211 			skb_frag_page_copy(fragto, fragfrom);
4212 			skb_frag_off_copy(fragto, fragfrom);
4213 			skb_frag_size_set(fragto, todo);
4214 
4215 			skb_frag_off_add(fragfrom, todo);
4216 			skb_frag_size_sub(fragfrom, todo);
4217 			todo = 0;
4218 
4219 			to++;
4220 			break;
4221 		}
4222 	}
4223 
4224 	/* Ready to "commit" this state change to tgt */
4225 	skb_shinfo(tgt)->nr_frags = to;
4226 
4227 	if (merge >= 0) {
4228 		fragfrom = &skb_shinfo(skb)->frags[0];
4229 		fragto = &skb_shinfo(tgt)->frags[merge];
4230 
4231 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4232 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4233 	}
4234 
4235 	/* Reposition in the original skb */
4236 	to = 0;
4237 	while (from < skb_shinfo(skb)->nr_frags)
4238 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4239 	skb_shinfo(skb)->nr_frags = to;
4240 
4241 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4242 
4243 onlymerged:
4244 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4245 	 * the other hand might need it if it needs to be resent
4246 	 */
4247 	tgt->ip_summed = CHECKSUM_PARTIAL;
4248 	skb->ip_summed = CHECKSUM_PARTIAL;
4249 
4250 	skb_len_add(skb, -shiftlen);
4251 	skb_len_add(tgt, shiftlen);
4252 
4253 	return shiftlen;
4254 }
4255 
4256 /**
4257  * skb_prepare_seq_read - Prepare a sequential read of skb data
4258  * @skb: the buffer to read
4259  * @from: lower offset of data to be read
4260  * @to: upper offset of data to be read
4261  * @st: state variable
4262  *
4263  * Initializes the specified state variable. Must be called before
4264  * invoking skb_seq_read() for the first time.
4265  */
4266 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4267 			  unsigned int to, struct skb_seq_state *st)
4268 {
4269 	st->lower_offset = from;
4270 	st->upper_offset = to;
4271 	st->root_skb = st->cur_skb = skb;
4272 	st->frag_idx = st->stepped_offset = 0;
4273 	st->frag_data = NULL;
4274 	st->frag_off = 0;
4275 }
4276 EXPORT_SYMBOL(skb_prepare_seq_read);
4277 
4278 /**
4279  * skb_seq_read - Sequentially read skb data
4280  * @consumed: number of bytes consumed by the caller so far
4281  * @data: destination pointer for data to be returned
4282  * @st: state variable
4283  *
4284  * Reads a block of skb data at @consumed relative to the
4285  * lower offset specified to skb_prepare_seq_read(). Assigns
4286  * the head of the data block to @data and returns the length
4287  * of the block or 0 if the end of the skb data or the upper
4288  * offset has been reached.
4289  *
4290  * The caller is not required to consume all of the data
4291  * returned, i.e. @consumed is typically set to the number
4292  * of bytes already consumed and the next call to
4293  * skb_seq_read() will return the remaining part of the block.
4294  *
4295  * Note 1: The size of each block of data returned can be arbitrary,
4296  *       this limitation is the cost for zerocopy sequential
4297  *       reads of potentially non linear data.
4298  *
4299  * Note 2: Fragment lists within fragments are not implemented
4300  *       at the moment, state->root_skb could be replaced with
4301  *       a stack for this purpose.
4302  */
4303 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4304 			  struct skb_seq_state *st)
4305 {
4306 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4307 	skb_frag_t *frag;
4308 
4309 	if (unlikely(abs_offset >= st->upper_offset)) {
4310 		if (st->frag_data) {
4311 			kunmap_atomic(st->frag_data);
4312 			st->frag_data = NULL;
4313 		}
4314 		return 0;
4315 	}
4316 
4317 next_skb:
4318 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4319 
4320 	if (abs_offset < block_limit && !st->frag_data) {
4321 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4322 		return block_limit - abs_offset;
4323 	}
4324 
4325 	if (st->frag_idx == 0 && !st->frag_data)
4326 		st->stepped_offset += skb_headlen(st->cur_skb);
4327 
4328 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4329 		unsigned int pg_idx, pg_off, pg_sz;
4330 
4331 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4332 
4333 		pg_idx = 0;
4334 		pg_off = skb_frag_off(frag);
4335 		pg_sz = skb_frag_size(frag);
4336 
4337 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4338 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4339 			pg_off = offset_in_page(pg_off + st->frag_off);
4340 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4341 						    PAGE_SIZE - pg_off);
4342 		}
4343 
4344 		block_limit = pg_sz + st->stepped_offset;
4345 		if (abs_offset < block_limit) {
4346 			if (!st->frag_data)
4347 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4348 
4349 			*data = (u8 *)st->frag_data + pg_off +
4350 				(abs_offset - st->stepped_offset);
4351 
4352 			return block_limit - abs_offset;
4353 		}
4354 
4355 		if (st->frag_data) {
4356 			kunmap_atomic(st->frag_data);
4357 			st->frag_data = NULL;
4358 		}
4359 
4360 		st->stepped_offset += pg_sz;
4361 		st->frag_off += pg_sz;
4362 		if (st->frag_off == skb_frag_size(frag)) {
4363 			st->frag_off = 0;
4364 			st->frag_idx++;
4365 		}
4366 	}
4367 
4368 	if (st->frag_data) {
4369 		kunmap_atomic(st->frag_data);
4370 		st->frag_data = NULL;
4371 	}
4372 
4373 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4374 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4375 		st->frag_idx = 0;
4376 		goto next_skb;
4377 	} else if (st->cur_skb->next) {
4378 		st->cur_skb = st->cur_skb->next;
4379 		st->frag_idx = 0;
4380 		goto next_skb;
4381 	}
4382 
4383 	return 0;
4384 }
4385 EXPORT_SYMBOL(skb_seq_read);
4386 
4387 /**
4388  * skb_abort_seq_read - Abort a sequential read of skb data
4389  * @st: state variable
4390  *
4391  * Must be called if skb_seq_read() was not called until it
4392  * returned 0.
4393  */
4394 void skb_abort_seq_read(struct skb_seq_state *st)
4395 {
4396 	if (st->frag_data)
4397 		kunmap_atomic(st->frag_data);
4398 }
4399 EXPORT_SYMBOL(skb_abort_seq_read);
4400 
4401 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4402 
4403 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4404 					  struct ts_config *conf,
4405 					  struct ts_state *state)
4406 {
4407 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4408 }
4409 
4410 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4411 {
4412 	skb_abort_seq_read(TS_SKB_CB(state));
4413 }
4414 
4415 /**
4416  * skb_find_text - Find a text pattern in skb data
4417  * @skb: the buffer to look in
4418  * @from: search offset
4419  * @to: search limit
4420  * @config: textsearch configuration
4421  *
4422  * Finds a pattern in the skb data according to the specified
4423  * textsearch configuration. Use textsearch_next() to retrieve
4424  * subsequent occurrences of the pattern. Returns the offset
4425  * to the first occurrence or UINT_MAX if no match was found.
4426  */
4427 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4428 			   unsigned int to, struct ts_config *config)
4429 {
4430 	unsigned int patlen = config->ops->get_pattern_len(config);
4431 	struct ts_state state;
4432 	unsigned int ret;
4433 
4434 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4435 
4436 	config->get_next_block = skb_ts_get_next_block;
4437 	config->finish = skb_ts_finish;
4438 
4439 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4440 
4441 	ret = textsearch_find(config, &state);
4442 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4443 }
4444 EXPORT_SYMBOL(skb_find_text);
4445 
4446 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4447 			 int offset, size_t size, size_t max_frags)
4448 {
4449 	int i = skb_shinfo(skb)->nr_frags;
4450 
4451 	if (skb_can_coalesce(skb, i, page, offset)) {
4452 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4453 	} else if (i < max_frags) {
4454 		skb_zcopy_downgrade_managed(skb);
4455 		get_page(page);
4456 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4457 	} else {
4458 		return -EMSGSIZE;
4459 	}
4460 
4461 	return 0;
4462 }
4463 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4464 
4465 /**
4466  *	skb_pull_rcsum - pull skb and update receive checksum
4467  *	@skb: buffer to update
4468  *	@len: length of data pulled
4469  *
4470  *	This function performs an skb_pull on the packet and updates
4471  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4472  *	receive path processing instead of skb_pull unless you know
4473  *	that the checksum difference is zero (e.g., a valid IP header)
4474  *	or you are setting ip_summed to CHECKSUM_NONE.
4475  */
4476 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4477 {
4478 	unsigned char *data = skb->data;
4479 
4480 	BUG_ON(len > skb->len);
4481 	__skb_pull(skb, len);
4482 	skb_postpull_rcsum(skb, data, len);
4483 	return skb->data;
4484 }
4485 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4486 
4487 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4488 {
4489 	skb_frag_t head_frag;
4490 	struct page *page;
4491 
4492 	page = virt_to_head_page(frag_skb->head);
4493 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4494 				(unsigned char *)page_address(page),
4495 				skb_headlen(frag_skb));
4496 	return head_frag;
4497 }
4498 
4499 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4500 				 netdev_features_t features,
4501 				 unsigned int offset)
4502 {
4503 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4504 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4505 	unsigned int delta_truesize = 0;
4506 	unsigned int delta_len = 0;
4507 	struct sk_buff *tail = NULL;
4508 	struct sk_buff *nskb, *tmp;
4509 	int len_diff, err;
4510 
4511 	skb_push(skb, -skb_network_offset(skb) + offset);
4512 
4513 	/* Ensure the head is writeable before touching the shared info */
4514 	err = skb_unclone(skb, GFP_ATOMIC);
4515 	if (err)
4516 		goto err_linearize;
4517 
4518 	skb_shinfo(skb)->frag_list = NULL;
4519 
4520 	while (list_skb) {
4521 		nskb = list_skb;
4522 		list_skb = list_skb->next;
4523 
4524 		err = 0;
4525 		delta_truesize += nskb->truesize;
4526 		if (skb_shared(nskb)) {
4527 			tmp = skb_clone(nskb, GFP_ATOMIC);
4528 			if (tmp) {
4529 				consume_skb(nskb);
4530 				nskb = tmp;
4531 				err = skb_unclone(nskb, GFP_ATOMIC);
4532 			} else {
4533 				err = -ENOMEM;
4534 			}
4535 		}
4536 
4537 		if (!tail)
4538 			skb->next = nskb;
4539 		else
4540 			tail->next = nskb;
4541 
4542 		if (unlikely(err)) {
4543 			nskb->next = list_skb;
4544 			goto err_linearize;
4545 		}
4546 
4547 		tail = nskb;
4548 
4549 		delta_len += nskb->len;
4550 
4551 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4552 
4553 		skb_release_head_state(nskb);
4554 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4555 		__copy_skb_header(nskb, skb);
4556 
4557 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4558 		nskb->transport_header += len_diff;
4559 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4560 						 nskb->data - tnl_hlen,
4561 						 offset + tnl_hlen);
4562 
4563 		if (skb_needs_linearize(nskb, features) &&
4564 		    __skb_linearize(nskb))
4565 			goto err_linearize;
4566 	}
4567 
4568 	skb->truesize = skb->truesize - delta_truesize;
4569 	skb->data_len = skb->data_len - delta_len;
4570 	skb->len = skb->len - delta_len;
4571 
4572 	skb_gso_reset(skb);
4573 
4574 	skb->prev = tail;
4575 
4576 	if (skb_needs_linearize(skb, features) &&
4577 	    __skb_linearize(skb))
4578 		goto err_linearize;
4579 
4580 	skb_get(skb);
4581 
4582 	return skb;
4583 
4584 err_linearize:
4585 	kfree_skb_list(skb->next);
4586 	skb->next = NULL;
4587 	return ERR_PTR(-ENOMEM);
4588 }
4589 EXPORT_SYMBOL_GPL(skb_segment_list);
4590 
4591 /**
4592  *	skb_segment - Perform protocol segmentation on skb.
4593  *	@head_skb: buffer to segment
4594  *	@features: features for the output path (see dev->features)
4595  *
4596  *	This function performs segmentation on the given skb.  It returns
4597  *	a pointer to the first in a list of new skbs for the segments.
4598  *	In case of error it returns ERR_PTR(err).
4599  */
4600 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4601 			    netdev_features_t features)
4602 {
4603 	struct sk_buff *segs = NULL;
4604 	struct sk_buff *tail = NULL;
4605 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4606 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4607 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4608 	unsigned int offset = doffset;
4609 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4610 	unsigned int partial_segs = 0;
4611 	unsigned int headroom;
4612 	unsigned int len = head_skb->len;
4613 	struct sk_buff *frag_skb;
4614 	skb_frag_t *frag;
4615 	__be16 proto;
4616 	bool csum, sg;
4617 	int err = -ENOMEM;
4618 	int i = 0;
4619 	int nfrags, pos;
4620 
4621 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4622 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4623 		struct sk_buff *check_skb;
4624 
4625 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4626 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4627 				/* gso_size is untrusted, and we have a frag_list with
4628 				 * a linear non head_frag item.
4629 				 *
4630 				 * If head_skb's headlen does not fit requested gso_size,
4631 				 * it means that the frag_list members do NOT terminate
4632 				 * on exact gso_size boundaries. Hence we cannot perform
4633 				 * skb_frag_t page sharing. Therefore we must fallback to
4634 				 * copying the frag_list skbs; we do so by disabling SG.
4635 				 */
4636 				features &= ~NETIF_F_SG;
4637 				break;
4638 			}
4639 		}
4640 	}
4641 
4642 	__skb_push(head_skb, doffset);
4643 	proto = skb_network_protocol(head_skb, NULL);
4644 	if (unlikely(!proto))
4645 		return ERR_PTR(-EINVAL);
4646 
4647 	sg = !!(features & NETIF_F_SG);
4648 	csum = !!can_checksum_protocol(features, proto);
4649 
4650 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4651 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4652 			struct sk_buff *iter;
4653 			unsigned int frag_len;
4654 
4655 			if (!list_skb ||
4656 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4657 				goto normal;
4658 
4659 			/* If we get here then all the required
4660 			 * GSO features except frag_list are supported.
4661 			 * Try to split the SKB to multiple GSO SKBs
4662 			 * with no frag_list.
4663 			 * Currently we can do that only when the buffers don't
4664 			 * have a linear part and all the buffers except
4665 			 * the last are of the same length.
4666 			 */
4667 			frag_len = list_skb->len;
4668 			skb_walk_frags(head_skb, iter) {
4669 				if (frag_len != iter->len && iter->next)
4670 					goto normal;
4671 				if (skb_headlen(iter) && !iter->head_frag)
4672 					goto normal;
4673 
4674 				len -= iter->len;
4675 			}
4676 
4677 			if (len != frag_len)
4678 				goto normal;
4679 		}
4680 
4681 		/* GSO partial only requires that we trim off any excess that
4682 		 * doesn't fit into an MSS sized block, so take care of that
4683 		 * now.
4684 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4685 		 */
4686 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4687 		if (partial_segs > 1)
4688 			mss *= partial_segs;
4689 		else
4690 			partial_segs = 0;
4691 	}
4692 
4693 normal:
4694 	headroom = skb_headroom(head_skb);
4695 	pos = skb_headlen(head_skb);
4696 
4697 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4698 		return ERR_PTR(-ENOMEM);
4699 
4700 	nfrags = skb_shinfo(head_skb)->nr_frags;
4701 	frag = skb_shinfo(head_skb)->frags;
4702 	frag_skb = head_skb;
4703 
4704 	do {
4705 		struct sk_buff *nskb;
4706 		skb_frag_t *nskb_frag;
4707 		int hsize;
4708 		int size;
4709 
4710 		if (unlikely(mss == GSO_BY_FRAGS)) {
4711 			len = list_skb->len;
4712 		} else {
4713 			len = head_skb->len - offset;
4714 			if (len > mss)
4715 				len = mss;
4716 		}
4717 
4718 		hsize = skb_headlen(head_skb) - offset;
4719 
4720 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4721 		    (skb_headlen(list_skb) == len || sg)) {
4722 			BUG_ON(skb_headlen(list_skb) > len);
4723 
4724 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4725 			if (unlikely(!nskb))
4726 				goto err;
4727 
4728 			i = 0;
4729 			nfrags = skb_shinfo(list_skb)->nr_frags;
4730 			frag = skb_shinfo(list_skb)->frags;
4731 			frag_skb = list_skb;
4732 			pos += skb_headlen(list_skb);
4733 
4734 			while (pos < offset + len) {
4735 				BUG_ON(i >= nfrags);
4736 
4737 				size = skb_frag_size(frag);
4738 				if (pos + size > offset + len)
4739 					break;
4740 
4741 				i++;
4742 				pos += size;
4743 				frag++;
4744 			}
4745 
4746 			list_skb = list_skb->next;
4747 
4748 			if (unlikely(pskb_trim(nskb, len))) {
4749 				kfree_skb(nskb);
4750 				goto err;
4751 			}
4752 
4753 			hsize = skb_end_offset(nskb);
4754 			if (skb_cow_head(nskb, doffset + headroom)) {
4755 				kfree_skb(nskb);
4756 				goto err;
4757 			}
4758 
4759 			nskb->truesize += skb_end_offset(nskb) - hsize;
4760 			skb_release_head_state(nskb);
4761 			__skb_push(nskb, doffset);
4762 		} else {
4763 			if (hsize < 0)
4764 				hsize = 0;
4765 			if (hsize > len || !sg)
4766 				hsize = len;
4767 
4768 			nskb = __alloc_skb(hsize + doffset + headroom,
4769 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4770 					   NUMA_NO_NODE);
4771 
4772 			if (unlikely(!nskb))
4773 				goto err;
4774 
4775 			skb_reserve(nskb, headroom);
4776 			__skb_put(nskb, doffset);
4777 		}
4778 
4779 		if (segs)
4780 			tail->next = nskb;
4781 		else
4782 			segs = nskb;
4783 		tail = nskb;
4784 
4785 		__copy_skb_header(nskb, head_skb);
4786 
4787 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4788 		skb_reset_mac_len(nskb);
4789 
4790 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4791 						 nskb->data - tnl_hlen,
4792 						 doffset + tnl_hlen);
4793 
4794 		if (nskb->len == len + doffset)
4795 			goto perform_csum_check;
4796 
4797 		if (!sg) {
4798 			if (!csum) {
4799 				if (!nskb->remcsum_offload)
4800 					nskb->ip_summed = CHECKSUM_NONE;
4801 				SKB_GSO_CB(nskb)->csum =
4802 					skb_copy_and_csum_bits(head_skb, offset,
4803 							       skb_put(nskb,
4804 								       len),
4805 							       len);
4806 				SKB_GSO_CB(nskb)->csum_start =
4807 					skb_headroom(nskb) + doffset;
4808 			} else {
4809 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4810 					goto err;
4811 			}
4812 			continue;
4813 		}
4814 
4815 		nskb_frag = skb_shinfo(nskb)->frags;
4816 
4817 		skb_copy_from_linear_data_offset(head_skb, offset,
4818 						 skb_put(nskb, hsize), hsize);
4819 
4820 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4821 					   SKBFL_SHARED_FRAG;
4822 
4823 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4824 			goto err;
4825 
4826 		while (pos < offset + len) {
4827 			if (i >= nfrags) {
4828 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4829 				    skb_zerocopy_clone(nskb, list_skb,
4830 						       GFP_ATOMIC))
4831 					goto err;
4832 
4833 				i = 0;
4834 				nfrags = skb_shinfo(list_skb)->nr_frags;
4835 				frag = skb_shinfo(list_skb)->frags;
4836 				frag_skb = list_skb;
4837 				if (!skb_headlen(list_skb)) {
4838 					BUG_ON(!nfrags);
4839 				} else {
4840 					BUG_ON(!list_skb->head_frag);
4841 
4842 					/* to make room for head_frag. */
4843 					i--;
4844 					frag--;
4845 				}
4846 
4847 				list_skb = list_skb->next;
4848 			}
4849 
4850 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4851 				     MAX_SKB_FRAGS)) {
4852 				net_warn_ratelimited(
4853 					"skb_segment: too many frags: %u %u\n",
4854 					pos, mss);
4855 				err = -EINVAL;
4856 				goto err;
4857 			}
4858 
4859 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4860 			__skb_frag_ref(nskb_frag);
4861 			size = skb_frag_size(nskb_frag);
4862 
4863 			if (pos < offset) {
4864 				skb_frag_off_add(nskb_frag, offset - pos);
4865 				skb_frag_size_sub(nskb_frag, offset - pos);
4866 			}
4867 
4868 			skb_shinfo(nskb)->nr_frags++;
4869 
4870 			if (pos + size <= offset + len) {
4871 				i++;
4872 				frag++;
4873 				pos += size;
4874 			} else {
4875 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4876 				goto skip_fraglist;
4877 			}
4878 
4879 			nskb_frag++;
4880 		}
4881 
4882 skip_fraglist:
4883 		nskb->data_len = len - hsize;
4884 		nskb->len += nskb->data_len;
4885 		nskb->truesize += nskb->data_len;
4886 
4887 perform_csum_check:
4888 		if (!csum) {
4889 			if (skb_has_shared_frag(nskb) &&
4890 			    __skb_linearize(nskb))
4891 				goto err;
4892 
4893 			if (!nskb->remcsum_offload)
4894 				nskb->ip_summed = CHECKSUM_NONE;
4895 			SKB_GSO_CB(nskb)->csum =
4896 				skb_checksum(nskb, doffset,
4897 					     nskb->len - doffset, 0);
4898 			SKB_GSO_CB(nskb)->csum_start =
4899 				skb_headroom(nskb) + doffset;
4900 		}
4901 	} while ((offset += len) < head_skb->len);
4902 
4903 	/* Some callers want to get the end of the list.
4904 	 * Put it in segs->prev to avoid walking the list.
4905 	 * (see validate_xmit_skb_list() for example)
4906 	 */
4907 	segs->prev = tail;
4908 
4909 	if (partial_segs) {
4910 		struct sk_buff *iter;
4911 		int type = skb_shinfo(head_skb)->gso_type;
4912 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4913 
4914 		/* Update type to add partial and then remove dodgy if set */
4915 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4916 		type &= ~SKB_GSO_DODGY;
4917 
4918 		/* Update GSO info and prepare to start updating headers on
4919 		 * our way back down the stack of protocols.
4920 		 */
4921 		for (iter = segs; iter; iter = iter->next) {
4922 			skb_shinfo(iter)->gso_size = gso_size;
4923 			skb_shinfo(iter)->gso_segs = partial_segs;
4924 			skb_shinfo(iter)->gso_type = type;
4925 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4926 		}
4927 
4928 		if (tail->len - doffset <= gso_size)
4929 			skb_shinfo(tail)->gso_size = 0;
4930 		else if (tail != segs)
4931 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4932 	}
4933 
4934 	/* Following permits correct backpressure, for protocols
4935 	 * using skb_set_owner_w().
4936 	 * Idea is to tranfert ownership from head_skb to last segment.
4937 	 */
4938 	if (head_skb->destructor == sock_wfree) {
4939 		swap(tail->truesize, head_skb->truesize);
4940 		swap(tail->destructor, head_skb->destructor);
4941 		swap(tail->sk, head_skb->sk);
4942 	}
4943 	return segs;
4944 
4945 err:
4946 	kfree_skb_list(segs);
4947 	return ERR_PTR(err);
4948 }
4949 EXPORT_SYMBOL_GPL(skb_segment);
4950 
4951 #ifdef CONFIG_SKB_EXTENSIONS
4952 #define SKB_EXT_ALIGN_VALUE	8
4953 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4954 
4955 static const u8 skb_ext_type_len[] = {
4956 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4957 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4958 #endif
4959 #ifdef CONFIG_XFRM
4960 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4961 #endif
4962 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4963 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4964 #endif
4965 #if IS_ENABLED(CONFIG_MPTCP)
4966 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4967 #endif
4968 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4969 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4970 #endif
4971 };
4972 
4973 static __always_inline unsigned int skb_ext_total_length(void)
4974 {
4975 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4976 	int i;
4977 
4978 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4979 		l += skb_ext_type_len[i];
4980 
4981 	return l;
4982 }
4983 
4984 static void skb_extensions_init(void)
4985 {
4986 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4987 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4988 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4989 #endif
4990 
4991 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4992 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4993 					     0,
4994 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4995 					     NULL);
4996 }
4997 #else
4998 static void skb_extensions_init(void) {}
4999 #endif
5000 
5001 /* The SKB kmem_cache slab is critical for network performance.  Never
5002  * merge/alias the slab with similar sized objects.  This avoids fragmentation
5003  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
5004  */
5005 #ifndef CONFIG_SLUB_TINY
5006 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
5007 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5008 #define FLAG_SKB_NO_MERGE	0
5009 #endif
5010 
5011 void __init skb_init(void)
5012 {
5013 	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5014 					      sizeof(struct sk_buff),
5015 					      0,
5016 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5017 						FLAG_SKB_NO_MERGE,
5018 					      offsetof(struct sk_buff, cb),
5019 					      sizeof_field(struct sk_buff, cb),
5020 					      NULL);
5021 	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5022 						sizeof(struct sk_buff_fclones),
5023 						0,
5024 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5025 						NULL);
5026 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5027 	 * struct skb_shared_info is located at the end of skb->head,
5028 	 * and should not be copied to/from user.
5029 	 */
5030 	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5031 						SKB_SMALL_HEAD_CACHE_SIZE,
5032 						0,
5033 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5034 						0,
5035 						SKB_SMALL_HEAD_HEADROOM,
5036 						NULL);
5037 	skb_extensions_init();
5038 }
5039 
5040 static int
5041 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5042 	       unsigned int recursion_level)
5043 {
5044 	int start = skb_headlen(skb);
5045 	int i, copy = start - offset;
5046 	struct sk_buff *frag_iter;
5047 	int elt = 0;
5048 
5049 	if (unlikely(recursion_level >= 24))
5050 		return -EMSGSIZE;
5051 
5052 	if (copy > 0) {
5053 		if (copy > len)
5054 			copy = len;
5055 		sg_set_buf(sg, skb->data + offset, copy);
5056 		elt++;
5057 		if ((len -= copy) == 0)
5058 			return elt;
5059 		offset += copy;
5060 	}
5061 
5062 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5063 		int end;
5064 
5065 		WARN_ON(start > offset + len);
5066 
5067 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5068 		if ((copy = end - offset) > 0) {
5069 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5070 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5071 				return -EMSGSIZE;
5072 
5073 			if (copy > len)
5074 				copy = len;
5075 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5076 				    skb_frag_off(frag) + offset - start);
5077 			elt++;
5078 			if (!(len -= copy))
5079 				return elt;
5080 			offset += copy;
5081 		}
5082 		start = end;
5083 	}
5084 
5085 	skb_walk_frags(skb, frag_iter) {
5086 		int end, ret;
5087 
5088 		WARN_ON(start > offset + len);
5089 
5090 		end = start + frag_iter->len;
5091 		if ((copy = end - offset) > 0) {
5092 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5093 				return -EMSGSIZE;
5094 
5095 			if (copy > len)
5096 				copy = len;
5097 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5098 					      copy, recursion_level + 1);
5099 			if (unlikely(ret < 0))
5100 				return ret;
5101 			elt += ret;
5102 			if ((len -= copy) == 0)
5103 				return elt;
5104 			offset += copy;
5105 		}
5106 		start = end;
5107 	}
5108 	BUG_ON(len);
5109 	return elt;
5110 }
5111 
5112 /**
5113  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5114  *	@skb: Socket buffer containing the buffers to be mapped
5115  *	@sg: The scatter-gather list to map into
5116  *	@offset: The offset into the buffer's contents to start mapping
5117  *	@len: Length of buffer space to be mapped
5118  *
5119  *	Fill the specified scatter-gather list with mappings/pointers into a
5120  *	region of the buffer space attached to a socket buffer. Returns either
5121  *	the number of scatterlist items used, or -EMSGSIZE if the contents
5122  *	could not fit.
5123  */
5124 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5125 {
5126 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5127 
5128 	if (nsg <= 0)
5129 		return nsg;
5130 
5131 	sg_mark_end(&sg[nsg - 1]);
5132 
5133 	return nsg;
5134 }
5135 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5136 
5137 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5138  * sglist without mark the sg which contain last skb data as the end.
5139  * So the caller can mannipulate sg list as will when padding new data after
5140  * the first call without calling sg_unmark_end to expend sg list.
5141  *
5142  * Scenario to use skb_to_sgvec_nomark:
5143  * 1. sg_init_table
5144  * 2. skb_to_sgvec_nomark(payload1)
5145  * 3. skb_to_sgvec_nomark(payload2)
5146  *
5147  * This is equivalent to:
5148  * 1. sg_init_table
5149  * 2. skb_to_sgvec(payload1)
5150  * 3. sg_unmark_end
5151  * 4. skb_to_sgvec(payload2)
5152  *
5153  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
5154  * is more preferable.
5155  */
5156 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5157 			int offset, int len)
5158 {
5159 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5160 }
5161 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5162 
5163 
5164 
5165 /**
5166  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5167  *	@skb: The socket buffer to check.
5168  *	@tailbits: Amount of trailing space to be added
5169  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5170  *
5171  *	Make sure that the data buffers attached to a socket buffer are
5172  *	writable. If they are not, private copies are made of the data buffers
5173  *	and the socket buffer is set to use these instead.
5174  *
5175  *	If @tailbits is given, make sure that there is space to write @tailbits
5176  *	bytes of data beyond current end of socket buffer.  @trailer will be
5177  *	set to point to the skb in which this space begins.
5178  *
5179  *	The number of scatterlist elements required to completely map the
5180  *	COW'd and extended socket buffer will be returned.
5181  */
5182 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5183 {
5184 	int copyflag;
5185 	int elt;
5186 	struct sk_buff *skb1, **skb_p;
5187 
5188 	/* If skb is cloned or its head is paged, reallocate
5189 	 * head pulling out all the pages (pages are considered not writable
5190 	 * at the moment even if they are anonymous).
5191 	 */
5192 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5193 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5194 		return -ENOMEM;
5195 
5196 	/* Easy case. Most of packets will go this way. */
5197 	if (!skb_has_frag_list(skb)) {
5198 		/* A little of trouble, not enough of space for trailer.
5199 		 * This should not happen, when stack is tuned to generate
5200 		 * good frames. OK, on miss we reallocate and reserve even more
5201 		 * space, 128 bytes is fair. */
5202 
5203 		if (skb_tailroom(skb) < tailbits &&
5204 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5205 			return -ENOMEM;
5206 
5207 		/* Voila! */
5208 		*trailer = skb;
5209 		return 1;
5210 	}
5211 
5212 	/* Misery. We are in troubles, going to mincer fragments... */
5213 
5214 	elt = 1;
5215 	skb_p = &skb_shinfo(skb)->frag_list;
5216 	copyflag = 0;
5217 
5218 	while ((skb1 = *skb_p) != NULL) {
5219 		int ntail = 0;
5220 
5221 		/* The fragment is partially pulled by someone,
5222 		 * this can happen on input. Copy it and everything
5223 		 * after it. */
5224 
5225 		if (skb_shared(skb1))
5226 			copyflag = 1;
5227 
5228 		/* If the skb is the last, worry about trailer. */
5229 
5230 		if (skb1->next == NULL && tailbits) {
5231 			if (skb_shinfo(skb1)->nr_frags ||
5232 			    skb_has_frag_list(skb1) ||
5233 			    skb_tailroom(skb1) < tailbits)
5234 				ntail = tailbits + 128;
5235 		}
5236 
5237 		if (copyflag ||
5238 		    skb_cloned(skb1) ||
5239 		    ntail ||
5240 		    skb_shinfo(skb1)->nr_frags ||
5241 		    skb_has_frag_list(skb1)) {
5242 			struct sk_buff *skb2;
5243 
5244 			/* Fuck, we are miserable poor guys... */
5245 			if (ntail == 0)
5246 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5247 			else
5248 				skb2 = skb_copy_expand(skb1,
5249 						       skb_headroom(skb1),
5250 						       ntail,
5251 						       GFP_ATOMIC);
5252 			if (unlikely(skb2 == NULL))
5253 				return -ENOMEM;
5254 
5255 			if (skb1->sk)
5256 				skb_set_owner_w(skb2, skb1->sk);
5257 
5258 			/* Looking around. Are we still alive?
5259 			 * OK, link new skb, drop old one */
5260 
5261 			skb2->next = skb1->next;
5262 			*skb_p = skb2;
5263 			kfree_skb(skb1);
5264 			skb1 = skb2;
5265 		}
5266 		elt++;
5267 		*trailer = skb1;
5268 		skb_p = &skb1->next;
5269 	}
5270 
5271 	return elt;
5272 }
5273 EXPORT_SYMBOL_GPL(skb_cow_data);
5274 
5275 static void sock_rmem_free(struct sk_buff *skb)
5276 {
5277 	struct sock *sk = skb->sk;
5278 
5279 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5280 }
5281 
5282 static void skb_set_err_queue(struct sk_buff *skb)
5283 {
5284 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5285 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5286 	 */
5287 	skb->pkt_type = PACKET_OUTGOING;
5288 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5289 }
5290 
5291 /*
5292  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5293  */
5294 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5295 {
5296 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5297 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5298 		return -ENOMEM;
5299 
5300 	skb_orphan(skb);
5301 	skb->sk = sk;
5302 	skb->destructor = sock_rmem_free;
5303 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5304 	skb_set_err_queue(skb);
5305 
5306 	/* before exiting rcu section, make sure dst is refcounted */
5307 	skb_dst_force(skb);
5308 
5309 	skb_queue_tail(&sk->sk_error_queue, skb);
5310 	if (!sock_flag(sk, SOCK_DEAD))
5311 		sk_error_report(sk);
5312 	return 0;
5313 }
5314 EXPORT_SYMBOL(sock_queue_err_skb);
5315 
5316 static bool is_icmp_err_skb(const struct sk_buff *skb)
5317 {
5318 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5319 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5320 }
5321 
5322 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5323 {
5324 	struct sk_buff_head *q = &sk->sk_error_queue;
5325 	struct sk_buff *skb, *skb_next = NULL;
5326 	bool icmp_next = false;
5327 	unsigned long flags;
5328 
5329 	if (skb_queue_empty_lockless(q))
5330 		return NULL;
5331 
5332 	spin_lock_irqsave(&q->lock, flags);
5333 	skb = __skb_dequeue(q);
5334 	if (skb && (skb_next = skb_peek(q))) {
5335 		icmp_next = is_icmp_err_skb(skb_next);
5336 		if (icmp_next)
5337 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5338 	}
5339 	spin_unlock_irqrestore(&q->lock, flags);
5340 
5341 	if (is_icmp_err_skb(skb) && !icmp_next)
5342 		sk->sk_err = 0;
5343 
5344 	if (skb_next)
5345 		sk_error_report(sk);
5346 
5347 	return skb;
5348 }
5349 EXPORT_SYMBOL(sock_dequeue_err_skb);
5350 
5351 /**
5352  * skb_clone_sk - create clone of skb, and take reference to socket
5353  * @skb: the skb to clone
5354  *
5355  * This function creates a clone of a buffer that holds a reference on
5356  * sk_refcnt.  Buffers created via this function are meant to be
5357  * returned using sock_queue_err_skb, or free via kfree_skb.
5358  *
5359  * When passing buffers allocated with this function to sock_queue_err_skb
5360  * it is necessary to wrap the call with sock_hold/sock_put in order to
5361  * prevent the socket from being released prior to being enqueued on
5362  * the sk_error_queue.
5363  */
5364 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5365 {
5366 	struct sock *sk = skb->sk;
5367 	struct sk_buff *clone;
5368 
5369 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5370 		return NULL;
5371 
5372 	clone = skb_clone(skb, GFP_ATOMIC);
5373 	if (!clone) {
5374 		sock_put(sk);
5375 		return NULL;
5376 	}
5377 
5378 	clone->sk = sk;
5379 	clone->destructor = sock_efree;
5380 
5381 	return clone;
5382 }
5383 EXPORT_SYMBOL(skb_clone_sk);
5384 
5385 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5386 					struct sock *sk,
5387 					int tstype,
5388 					bool opt_stats)
5389 {
5390 	struct sock_exterr_skb *serr;
5391 	int err;
5392 
5393 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5394 
5395 	serr = SKB_EXT_ERR(skb);
5396 	memset(serr, 0, sizeof(*serr));
5397 	serr->ee.ee_errno = ENOMSG;
5398 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5399 	serr->ee.ee_info = tstype;
5400 	serr->opt_stats = opt_stats;
5401 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5402 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5403 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5404 		if (sk_is_tcp(sk))
5405 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5406 	}
5407 
5408 	err = sock_queue_err_skb(sk, skb);
5409 
5410 	if (err)
5411 		kfree_skb(skb);
5412 }
5413 
5414 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5415 {
5416 	bool ret;
5417 
5418 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5419 		return true;
5420 
5421 	read_lock_bh(&sk->sk_callback_lock);
5422 	ret = sk->sk_socket && sk->sk_socket->file &&
5423 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5424 	read_unlock_bh(&sk->sk_callback_lock);
5425 	return ret;
5426 }
5427 
5428 void skb_complete_tx_timestamp(struct sk_buff *skb,
5429 			       struct skb_shared_hwtstamps *hwtstamps)
5430 {
5431 	struct sock *sk = skb->sk;
5432 
5433 	if (!skb_may_tx_timestamp(sk, false))
5434 		goto err;
5435 
5436 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5437 	 * but only if the socket refcount is not zero.
5438 	 */
5439 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5440 		*skb_hwtstamps(skb) = *hwtstamps;
5441 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5442 		sock_put(sk);
5443 		return;
5444 	}
5445 
5446 err:
5447 	kfree_skb(skb);
5448 }
5449 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5450 
5451 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5452 		     const struct sk_buff *ack_skb,
5453 		     struct skb_shared_hwtstamps *hwtstamps,
5454 		     struct sock *sk, int tstype)
5455 {
5456 	struct sk_buff *skb;
5457 	bool tsonly, opt_stats = false;
5458 	u32 tsflags;
5459 
5460 	if (!sk)
5461 		return;
5462 
5463 	tsflags = READ_ONCE(sk->sk_tsflags);
5464 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5465 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5466 		return;
5467 
5468 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5469 	if (!skb_may_tx_timestamp(sk, tsonly))
5470 		return;
5471 
5472 	if (tsonly) {
5473 #ifdef CONFIG_INET
5474 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5475 		    sk_is_tcp(sk)) {
5476 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5477 							     ack_skb);
5478 			opt_stats = true;
5479 		} else
5480 #endif
5481 			skb = alloc_skb(0, GFP_ATOMIC);
5482 	} else {
5483 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5484 
5485 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5486 			kfree_skb(skb);
5487 			return;
5488 		}
5489 	}
5490 	if (!skb)
5491 		return;
5492 
5493 	if (tsonly) {
5494 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5495 					     SKBTX_ANY_TSTAMP;
5496 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5497 	}
5498 
5499 	if (hwtstamps)
5500 		*skb_hwtstamps(skb) = *hwtstamps;
5501 	else
5502 		__net_timestamp(skb);
5503 
5504 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5505 }
5506 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5507 
5508 void skb_tstamp_tx(struct sk_buff *orig_skb,
5509 		   struct skb_shared_hwtstamps *hwtstamps)
5510 {
5511 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5512 			       SCM_TSTAMP_SND);
5513 }
5514 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5515 
5516 #ifdef CONFIG_WIRELESS
5517 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5518 {
5519 	struct sock *sk = skb->sk;
5520 	struct sock_exterr_skb *serr;
5521 	int err = 1;
5522 
5523 	skb->wifi_acked_valid = 1;
5524 	skb->wifi_acked = acked;
5525 
5526 	serr = SKB_EXT_ERR(skb);
5527 	memset(serr, 0, sizeof(*serr));
5528 	serr->ee.ee_errno = ENOMSG;
5529 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5530 
5531 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5532 	 * but only if the socket refcount is not zero.
5533 	 */
5534 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5535 		err = sock_queue_err_skb(sk, skb);
5536 		sock_put(sk);
5537 	}
5538 	if (err)
5539 		kfree_skb(skb);
5540 }
5541 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5542 #endif /* CONFIG_WIRELESS */
5543 
5544 /**
5545  * skb_partial_csum_set - set up and verify partial csum values for packet
5546  * @skb: the skb to set
5547  * @start: the number of bytes after skb->data to start checksumming.
5548  * @off: the offset from start to place the checksum.
5549  *
5550  * For untrusted partially-checksummed packets, we need to make sure the values
5551  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5552  *
5553  * This function checks and sets those values and skb->ip_summed: if this
5554  * returns false you should drop the packet.
5555  */
5556 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5557 {
5558 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5559 	u32 csum_start = skb_headroom(skb) + (u32)start;
5560 
5561 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5562 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5563 				     start, off, skb_headroom(skb), skb_headlen(skb));
5564 		return false;
5565 	}
5566 	skb->ip_summed = CHECKSUM_PARTIAL;
5567 	skb->csum_start = csum_start;
5568 	skb->csum_offset = off;
5569 	skb->transport_header = csum_start;
5570 	return true;
5571 }
5572 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5573 
5574 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5575 			       unsigned int max)
5576 {
5577 	if (skb_headlen(skb) >= len)
5578 		return 0;
5579 
5580 	/* If we need to pullup then pullup to the max, so we
5581 	 * won't need to do it again.
5582 	 */
5583 	if (max > skb->len)
5584 		max = skb->len;
5585 
5586 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5587 		return -ENOMEM;
5588 
5589 	if (skb_headlen(skb) < len)
5590 		return -EPROTO;
5591 
5592 	return 0;
5593 }
5594 
5595 #define MAX_TCP_HDR_LEN (15 * 4)
5596 
5597 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5598 				      typeof(IPPROTO_IP) proto,
5599 				      unsigned int off)
5600 {
5601 	int err;
5602 
5603 	switch (proto) {
5604 	case IPPROTO_TCP:
5605 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5606 					  off + MAX_TCP_HDR_LEN);
5607 		if (!err && !skb_partial_csum_set(skb, off,
5608 						  offsetof(struct tcphdr,
5609 							   check)))
5610 			err = -EPROTO;
5611 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5612 
5613 	case IPPROTO_UDP:
5614 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5615 					  off + sizeof(struct udphdr));
5616 		if (!err && !skb_partial_csum_set(skb, off,
5617 						  offsetof(struct udphdr,
5618 							   check)))
5619 			err = -EPROTO;
5620 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5621 	}
5622 
5623 	return ERR_PTR(-EPROTO);
5624 }
5625 
5626 /* This value should be large enough to cover a tagged ethernet header plus
5627  * maximally sized IP and TCP or UDP headers.
5628  */
5629 #define MAX_IP_HDR_LEN 128
5630 
5631 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5632 {
5633 	unsigned int off;
5634 	bool fragment;
5635 	__sum16 *csum;
5636 	int err;
5637 
5638 	fragment = false;
5639 
5640 	err = skb_maybe_pull_tail(skb,
5641 				  sizeof(struct iphdr),
5642 				  MAX_IP_HDR_LEN);
5643 	if (err < 0)
5644 		goto out;
5645 
5646 	if (ip_is_fragment(ip_hdr(skb)))
5647 		fragment = true;
5648 
5649 	off = ip_hdrlen(skb);
5650 
5651 	err = -EPROTO;
5652 
5653 	if (fragment)
5654 		goto out;
5655 
5656 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5657 	if (IS_ERR(csum))
5658 		return PTR_ERR(csum);
5659 
5660 	if (recalculate)
5661 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5662 					   ip_hdr(skb)->daddr,
5663 					   skb->len - off,
5664 					   ip_hdr(skb)->protocol, 0);
5665 	err = 0;
5666 
5667 out:
5668 	return err;
5669 }
5670 
5671 /* This value should be large enough to cover a tagged ethernet header plus
5672  * an IPv6 header, all options, and a maximal TCP or UDP header.
5673  */
5674 #define MAX_IPV6_HDR_LEN 256
5675 
5676 #define OPT_HDR(type, skb, off) \
5677 	(type *)(skb_network_header(skb) + (off))
5678 
5679 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5680 {
5681 	int err;
5682 	u8 nexthdr;
5683 	unsigned int off;
5684 	unsigned int len;
5685 	bool fragment;
5686 	bool done;
5687 	__sum16 *csum;
5688 
5689 	fragment = false;
5690 	done = false;
5691 
5692 	off = sizeof(struct ipv6hdr);
5693 
5694 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5695 	if (err < 0)
5696 		goto out;
5697 
5698 	nexthdr = ipv6_hdr(skb)->nexthdr;
5699 
5700 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5701 	while (off <= len && !done) {
5702 		switch (nexthdr) {
5703 		case IPPROTO_DSTOPTS:
5704 		case IPPROTO_HOPOPTS:
5705 		case IPPROTO_ROUTING: {
5706 			struct ipv6_opt_hdr *hp;
5707 
5708 			err = skb_maybe_pull_tail(skb,
5709 						  off +
5710 						  sizeof(struct ipv6_opt_hdr),
5711 						  MAX_IPV6_HDR_LEN);
5712 			if (err < 0)
5713 				goto out;
5714 
5715 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5716 			nexthdr = hp->nexthdr;
5717 			off += ipv6_optlen(hp);
5718 			break;
5719 		}
5720 		case IPPROTO_AH: {
5721 			struct ip_auth_hdr *hp;
5722 
5723 			err = skb_maybe_pull_tail(skb,
5724 						  off +
5725 						  sizeof(struct ip_auth_hdr),
5726 						  MAX_IPV6_HDR_LEN);
5727 			if (err < 0)
5728 				goto out;
5729 
5730 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5731 			nexthdr = hp->nexthdr;
5732 			off += ipv6_authlen(hp);
5733 			break;
5734 		}
5735 		case IPPROTO_FRAGMENT: {
5736 			struct frag_hdr *hp;
5737 
5738 			err = skb_maybe_pull_tail(skb,
5739 						  off +
5740 						  sizeof(struct frag_hdr),
5741 						  MAX_IPV6_HDR_LEN);
5742 			if (err < 0)
5743 				goto out;
5744 
5745 			hp = OPT_HDR(struct frag_hdr, skb, off);
5746 
5747 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5748 				fragment = true;
5749 
5750 			nexthdr = hp->nexthdr;
5751 			off += sizeof(struct frag_hdr);
5752 			break;
5753 		}
5754 		default:
5755 			done = true;
5756 			break;
5757 		}
5758 	}
5759 
5760 	err = -EPROTO;
5761 
5762 	if (!done || fragment)
5763 		goto out;
5764 
5765 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5766 	if (IS_ERR(csum))
5767 		return PTR_ERR(csum);
5768 
5769 	if (recalculate)
5770 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5771 					 &ipv6_hdr(skb)->daddr,
5772 					 skb->len - off, nexthdr, 0);
5773 	err = 0;
5774 
5775 out:
5776 	return err;
5777 }
5778 
5779 /**
5780  * skb_checksum_setup - set up partial checksum offset
5781  * @skb: the skb to set up
5782  * @recalculate: if true the pseudo-header checksum will be recalculated
5783  */
5784 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5785 {
5786 	int err;
5787 
5788 	switch (skb->protocol) {
5789 	case htons(ETH_P_IP):
5790 		err = skb_checksum_setup_ipv4(skb, recalculate);
5791 		break;
5792 
5793 	case htons(ETH_P_IPV6):
5794 		err = skb_checksum_setup_ipv6(skb, recalculate);
5795 		break;
5796 
5797 	default:
5798 		err = -EPROTO;
5799 		break;
5800 	}
5801 
5802 	return err;
5803 }
5804 EXPORT_SYMBOL(skb_checksum_setup);
5805 
5806 /**
5807  * skb_checksum_maybe_trim - maybe trims the given skb
5808  * @skb: the skb to check
5809  * @transport_len: the data length beyond the network header
5810  *
5811  * Checks whether the given skb has data beyond the given transport length.
5812  * If so, returns a cloned skb trimmed to this transport length.
5813  * Otherwise returns the provided skb. Returns NULL in error cases
5814  * (e.g. transport_len exceeds skb length or out-of-memory).
5815  *
5816  * Caller needs to set the skb transport header and free any returned skb if it
5817  * differs from the provided skb.
5818  */
5819 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5820 					       unsigned int transport_len)
5821 {
5822 	struct sk_buff *skb_chk;
5823 	unsigned int len = skb_transport_offset(skb) + transport_len;
5824 	int ret;
5825 
5826 	if (skb->len < len)
5827 		return NULL;
5828 	else if (skb->len == len)
5829 		return skb;
5830 
5831 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5832 	if (!skb_chk)
5833 		return NULL;
5834 
5835 	ret = pskb_trim_rcsum(skb_chk, len);
5836 	if (ret) {
5837 		kfree_skb(skb_chk);
5838 		return NULL;
5839 	}
5840 
5841 	return skb_chk;
5842 }
5843 
5844 /**
5845  * skb_checksum_trimmed - validate checksum of an skb
5846  * @skb: the skb to check
5847  * @transport_len: the data length beyond the network header
5848  * @skb_chkf: checksum function to use
5849  *
5850  * Applies the given checksum function skb_chkf to the provided skb.
5851  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5852  *
5853  * If the skb has data beyond the given transport length, then a
5854  * trimmed & cloned skb is checked and returned.
5855  *
5856  * Caller needs to set the skb transport header and free any returned skb if it
5857  * differs from the provided skb.
5858  */
5859 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5860 				     unsigned int transport_len,
5861 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5862 {
5863 	struct sk_buff *skb_chk;
5864 	unsigned int offset = skb_transport_offset(skb);
5865 	__sum16 ret;
5866 
5867 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5868 	if (!skb_chk)
5869 		goto err;
5870 
5871 	if (!pskb_may_pull(skb_chk, offset))
5872 		goto err;
5873 
5874 	skb_pull_rcsum(skb_chk, offset);
5875 	ret = skb_chkf(skb_chk);
5876 	skb_push_rcsum(skb_chk, offset);
5877 
5878 	if (ret)
5879 		goto err;
5880 
5881 	return skb_chk;
5882 
5883 err:
5884 	if (skb_chk && skb_chk != skb)
5885 		kfree_skb(skb_chk);
5886 
5887 	return NULL;
5888 
5889 }
5890 EXPORT_SYMBOL(skb_checksum_trimmed);
5891 
5892 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5893 {
5894 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5895 			     skb->dev->name);
5896 }
5897 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5898 
5899 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5900 {
5901 	if (head_stolen) {
5902 		skb_release_head_state(skb);
5903 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
5904 	} else {
5905 		__kfree_skb(skb);
5906 	}
5907 }
5908 EXPORT_SYMBOL(kfree_skb_partial);
5909 
5910 /**
5911  * skb_try_coalesce - try to merge skb to prior one
5912  * @to: prior buffer
5913  * @from: buffer to add
5914  * @fragstolen: pointer to boolean
5915  * @delta_truesize: how much more was allocated than was requested
5916  */
5917 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5918 		      bool *fragstolen, int *delta_truesize)
5919 {
5920 	struct skb_shared_info *to_shinfo, *from_shinfo;
5921 	int i, delta, len = from->len;
5922 
5923 	*fragstolen = false;
5924 
5925 	if (skb_cloned(to))
5926 		return false;
5927 
5928 	/* In general, avoid mixing page_pool and non-page_pool allocated
5929 	 * pages within the same SKB. In theory we could take full
5930 	 * references if @from is cloned and !@to->pp_recycle but its
5931 	 * tricky (due to potential race with the clone disappearing) and
5932 	 * rare, so not worth dealing with.
5933 	 */
5934 	if (to->pp_recycle != from->pp_recycle)
5935 		return false;
5936 
5937 	if (len <= skb_tailroom(to)) {
5938 		if (len)
5939 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5940 		*delta_truesize = 0;
5941 		return true;
5942 	}
5943 
5944 	to_shinfo = skb_shinfo(to);
5945 	from_shinfo = skb_shinfo(from);
5946 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5947 		return false;
5948 	if (skb_zcopy(to) || skb_zcopy(from))
5949 		return false;
5950 
5951 	if (skb_headlen(from) != 0) {
5952 		struct page *page;
5953 		unsigned int offset;
5954 
5955 		if (to_shinfo->nr_frags +
5956 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5957 			return false;
5958 
5959 		if (skb_head_is_locked(from))
5960 			return false;
5961 
5962 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5963 
5964 		page = virt_to_head_page(from->head);
5965 		offset = from->data - (unsigned char *)page_address(page);
5966 
5967 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5968 				   page, offset, skb_headlen(from));
5969 		*fragstolen = true;
5970 	} else {
5971 		if (to_shinfo->nr_frags +
5972 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5973 			return false;
5974 
5975 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5976 	}
5977 
5978 	WARN_ON_ONCE(delta < len);
5979 
5980 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5981 	       from_shinfo->frags,
5982 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5983 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5984 
5985 	if (!skb_cloned(from))
5986 		from_shinfo->nr_frags = 0;
5987 
5988 	/* if the skb is not cloned this does nothing
5989 	 * since we set nr_frags to 0.
5990 	 */
5991 	if (skb_pp_frag_ref(from)) {
5992 		for (i = 0; i < from_shinfo->nr_frags; i++)
5993 			__skb_frag_ref(&from_shinfo->frags[i]);
5994 	}
5995 
5996 	to->truesize += delta;
5997 	to->len += len;
5998 	to->data_len += len;
5999 
6000 	*delta_truesize = delta;
6001 	return true;
6002 }
6003 EXPORT_SYMBOL(skb_try_coalesce);
6004 
6005 /**
6006  * skb_scrub_packet - scrub an skb
6007  *
6008  * @skb: buffer to clean
6009  * @xnet: packet is crossing netns
6010  *
6011  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
6012  * into/from a tunnel. Some information have to be cleared during these
6013  * operations.
6014  * skb_scrub_packet can also be used to clean a skb before injecting it in
6015  * another namespace (@xnet == true). We have to clear all information in the
6016  * skb that could impact namespace isolation.
6017  */
6018 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6019 {
6020 	skb->pkt_type = PACKET_HOST;
6021 	skb->skb_iif = 0;
6022 	skb->ignore_df = 0;
6023 	skb_dst_drop(skb);
6024 	skb_ext_reset(skb);
6025 	nf_reset_ct(skb);
6026 	nf_reset_trace(skb);
6027 
6028 #ifdef CONFIG_NET_SWITCHDEV
6029 	skb->offload_fwd_mark = 0;
6030 	skb->offload_l3_fwd_mark = 0;
6031 #endif
6032 
6033 	if (!xnet)
6034 		return;
6035 
6036 	ipvs_reset(skb);
6037 	skb->mark = 0;
6038 	skb_clear_tstamp(skb);
6039 }
6040 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6041 
6042 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6043 {
6044 	int mac_len, meta_len;
6045 	void *meta;
6046 
6047 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
6048 		kfree_skb(skb);
6049 		return NULL;
6050 	}
6051 
6052 	mac_len = skb->data - skb_mac_header(skb);
6053 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6054 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6055 			mac_len - VLAN_HLEN - ETH_TLEN);
6056 	}
6057 
6058 	meta_len = skb_metadata_len(skb);
6059 	if (meta_len) {
6060 		meta = skb_metadata_end(skb) - meta_len;
6061 		memmove(meta + VLAN_HLEN, meta, meta_len);
6062 	}
6063 
6064 	skb->mac_header += VLAN_HLEN;
6065 	return skb;
6066 }
6067 
6068 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6069 {
6070 	struct vlan_hdr *vhdr;
6071 	u16 vlan_tci;
6072 
6073 	if (unlikely(skb_vlan_tag_present(skb))) {
6074 		/* vlan_tci is already set-up so leave this for another time */
6075 		return skb;
6076 	}
6077 
6078 	skb = skb_share_check(skb, GFP_ATOMIC);
6079 	if (unlikely(!skb))
6080 		goto err_free;
6081 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6082 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6083 		goto err_free;
6084 
6085 	vhdr = (struct vlan_hdr *)skb->data;
6086 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6087 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6088 
6089 	skb_pull_rcsum(skb, VLAN_HLEN);
6090 	vlan_set_encap_proto(skb, vhdr);
6091 
6092 	skb = skb_reorder_vlan_header(skb);
6093 	if (unlikely(!skb))
6094 		goto err_free;
6095 
6096 	skb_reset_network_header(skb);
6097 	if (!skb_transport_header_was_set(skb))
6098 		skb_reset_transport_header(skb);
6099 	skb_reset_mac_len(skb);
6100 
6101 	return skb;
6102 
6103 err_free:
6104 	kfree_skb(skb);
6105 	return NULL;
6106 }
6107 EXPORT_SYMBOL(skb_vlan_untag);
6108 
6109 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6110 {
6111 	if (!pskb_may_pull(skb, write_len))
6112 		return -ENOMEM;
6113 
6114 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6115 		return 0;
6116 
6117 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6118 }
6119 EXPORT_SYMBOL(skb_ensure_writable);
6120 
6121 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6122 {
6123 	int needed_headroom = dev->needed_headroom;
6124 	int needed_tailroom = dev->needed_tailroom;
6125 
6126 	/* For tail taggers, we need to pad short frames ourselves, to ensure
6127 	 * that the tail tag does not fail at its role of being at the end of
6128 	 * the packet, once the conduit interface pads the frame. Account for
6129 	 * that pad length here, and pad later.
6130 	 */
6131 	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6132 		needed_tailroom += ETH_ZLEN - skb->len;
6133 	/* skb_headroom() returns unsigned int... */
6134 	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6135 	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6136 
6137 	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6138 		/* No reallocation needed, yay! */
6139 		return 0;
6140 
6141 	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6142 				GFP_ATOMIC);
6143 }
6144 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6145 
6146 /* remove VLAN header from packet and update csum accordingly.
6147  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6148  */
6149 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6150 {
6151 	int offset = skb->data - skb_mac_header(skb);
6152 	int err;
6153 
6154 	if (WARN_ONCE(offset,
6155 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6156 		      offset)) {
6157 		return -EINVAL;
6158 	}
6159 
6160 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6161 	if (unlikely(err))
6162 		return err;
6163 
6164 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6165 
6166 	vlan_remove_tag(skb, vlan_tci);
6167 
6168 	skb->mac_header += VLAN_HLEN;
6169 
6170 	if (skb_network_offset(skb) < ETH_HLEN)
6171 		skb_set_network_header(skb, ETH_HLEN);
6172 
6173 	skb_reset_mac_len(skb);
6174 
6175 	return err;
6176 }
6177 EXPORT_SYMBOL(__skb_vlan_pop);
6178 
6179 /* Pop a vlan tag either from hwaccel or from payload.
6180  * Expects skb->data at mac header.
6181  */
6182 int skb_vlan_pop(struct sk_buff *skb)
6183 {
6184 	u16 vlan_tci;
6185 	__be16 vlan_proto;
6186 	int err;
6187 
6188 	if (likely(skb_vlan_tag_present(skb))) {
6189 		__vlan_hwaccel_clear_tag(skb);
6190 	} else {
6191 		if (unlikely(!eth_type_vlan(skb->protocol)))
6192 			return 0;
6193 
6194 		err = __skb_vlan_pop(skb, &vlan_tci);
6195 		if (err)
6196 			return err;
6197 	}
6198 	/* move next vlan tag to hw accel tag */
6199 	if (likely(!eth_type_vlan(skb->protocol)))
6200 		return 0;
6201 
6202 	vlan_proto = skb->protocol;
6203 	err = __skb_vlan_pop(skb, &vlan_tci);
6204 	if (unlikely(err))
6205 		return err;
6206 
6207 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6208 	return 0;
6209 }
6210 EXPORT_SYMBOL(skb_vlan_pop);
6211 
6212 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6213  * Expects skb->data at mac header.
6214  */
6215 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6216 {
6217 	if (skb_vlan_tag_present(skb)) {
6218 		int offset = skb->data - skb_mac_header(skb);
6219 		int err;
6220 
6221 		if (WARN_ONCE(offset,
6222 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6223 			      offset)) {
6224 			return -EINVAL;
6225 		}
6226 
6227 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6228 					skb_vlan_tag_get(skb));
6229 		if (err)
6230 			return err;
6231 
6232 		skb->protocol = skb->vlan_proto;
6233 		skb->mac_len += VLAN_HLEN;
6234 
6235 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6236 	}
6237 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6238 	return 0;
6239 }
6240 EXPORT_SYMBOL(skb_vlan_push);
6241 
6242 /**
6243  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6244  *
6245  * @skb: Socket buffer to modify
6246  *
6247  * Drop the Ethernet header of @skb.
6248  *
6249  * Expects that skb->data points to the mac header and that no VLAN tags are
6250  * present.
6251  *
6252  * Returns 0 on success, -errno otherwise.
6253  */
6254 int skb_eth_pop(struct sk_buff *skb)
6255 {
6256 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6257 	    skb_network_offset(skb) < ETH_HLEN)
6258 		return -EPROTO;
6259 
6260 	skb_pull_rcsum(skb, ETH_HLEN);
6261 	skb_reset_mac_header(skb);
6262 	skb_reset_mac_len(skb);
6263 
6264 	return 0;
6265 }
6266 EXPORT_SYMBOL(skb_eth_pop);
6267 
6268 /**
6269  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6270  *
6271  * @skb: Socket buffer to modify
6272  * @dst: Destination MAC address of the new header
6273  * @src: Source MAC address of the new header
6274  *
6275  * Prepend @skb with a new Ethernet header.
6276  *
6277  * Expects that skb->data points to the mac header, which must be empty.
6278  *
6279  * Returns 0 on success, -errno otherwise.
6280  */
6281 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6282 		 const unsigned char *src)
6283 {
6284 	struct ethhdr *eth;
6285 	int err;
6286 
6287 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6288 		return -EPROTO;
6289 
6290 	err = skb_cow_head(skb, sizeof(*eth));
6291 	if (err < 0)
6292 		return err;
6293 
6294 	skb_push(skb, sizeof(*eth));
6295 	skb_reset_mac_header(skb);
6296 	skb_reset_mac_len(skb);
6297 
6298 	eth = eth_hdr(skb);
6299 	ether_addr_copy(eth->h_dest, dst);
6300 	ether_addr_copy(eth->h_source, src);
6301 	eth->h_proto = skb->protocol;
6302 
6303 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6304 
6305 	return 0;
6306 }
6307 EXPORT_SYMBOL(skb_eth_push);
6308 
6309 /* Update the ethertype of hdr and the skb csum value if required. */
6310 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6311 			     __be16 ethertype)
6312 {
6313 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6314 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6315 
6316 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6317 	}
6318 
6319 	hdr->h_proto = ethertype;
6320 }
6321 
6322 /**
6323  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6324  *                   the packet
6325  *
6326  * @skb: buffer
6327  * @mpls_lse: MPLS label stack entry to push
6328  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6329  * @mac_len: length of the MAC header
6330  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6331  *            ethernet
6332  *
6333  * Expects skb->data at mac header.
6334  *
6335  * Returns 0 on success, -errno otherwise.
6336  */
6337 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6338 		  int mac_len, bool ethernet)
6339 {
6340 	struct mpls_shim_hdr *lse;
6341 	int err;
6342 
6343 	if (unlikely(!eth_p_mpls(mpls_proto)))
6344 		return -EINVAL;
6345 
6346 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6347 	if (skb->encapsulation)
6348 		return -EINVAL;
6349 
6350 	err = skb_cow_head(skb, MPLS_HLEN);
6351 	if (unlikely(err))
6352 		return err;
6353 
6354 	if (!skb->inner_protocol) {
6355 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6356 		skb_set_inner_protocol(skb, skb->protocol);
6357 	}
6358 
6359 	skb_push(skb, MPLS_HLEN);
6360 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6361 		mac_len);
6362 	skb_reset_mac_header(skb);
6363 	skb_set_network_header(skb, mac_len);
6364 	skb_reset_mac_len(skb);
6365 
6366 	lse = mpls_hdr(skb);
6367 	lse->label_stack_entry = mpls_lse;
6368 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6369 
6370 	if (ethernet && mac_len >= ETH_HLEN)
6371 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6372 	skb->protocol = mpls_proto;
6373 
6374 	return 0;
6375 }
6376 EXPORT_SYMBOL_GPL(skb_mpls_push);
6377 
6378 /**
6379  * skb_mpls_pop() - pop the outermost MPLS header
6380  *
6381  * @skb: buffer
6382  * @next_proto: ethertype of header after popped MPLS header
6383  * @mac_len: length of the MAC header
6384  * @ethernet: flag to indicate if the packet is ethernet
6385  *
6386  * Expects skb->data at mac header.
6387  *
6388  * Returns 0 on success, -errno otherwise.
6389  */
6390 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6391 		 bool ethernet)
6392 {
6393 	int err;
6394 
6395 	if (unlikely(!eth_p_mpls(skb->protocol)))
6396 		return 0;
6397 
6398 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6399 	if (unlikely(err))
6400 		return err;
6401 
6402 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6403 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6404 		mac_len);
6405 
6406 	__skb_pull(skb, MPLS_HLEN);
6407 	skb_reset_mac_header(skb);
6408 	skb_set_network_header(skb, mac_len);
6409 
6410 	if (ethernet && mac_len >= ETH_HLEN) {
6411 		struct ethhdr *hdr;
6412 
6413 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6414 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6415 		skb_mod_eth_type(skb, hdr, next_proto);
6416 	}
6417 	skb->protocol = next_proto;
6418 
6419 	return 0;
6420 }
6421 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6422 
6423 /**
6424  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6425  *
6426  * @skb: buffer
6427  * @mpls_lse: new MPLS label stack entry to update to
6428  *
6429  * Expects skb->data at mac header.
6430  *
6431  * Returns 0 on success, -errno otherwise.
6432  */
6433 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6434 {
6435 	int err;
6436 
6437 	if (unlikely(!eth_p_mpls(skb->protocol)))
6438 		return -EINVAL;
6439 
6440 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6441 	if (unlikely(err))
6442 		return err;
6443 
6444 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6445 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6446 
6447 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6448 	}
6449 
6450 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6451 
6452 	return 0;
6453 }
6454 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6455 
6456 /**
6457  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6458  *
6459  * @skb: buffer
6460  *
6461  * Expects skb->data at mac header.
6462  *
6463  * Returns 0 on success, -errno otherwise.
6464  */
6465 int skb_mpls_dec_ttl(struct sk_buff *skb)
6466 {
6467 	u32 lse;
6468 	u8 ttl;
6469 
6470 	if (unlikely(!eth_p_mpls(skb->protocol)))
6471 		return -EINVAL;
6472 
6473 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6474 		return -ENOMEM;
6475 
6476 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6477 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6478 	if (!--ttl)
6479 		return -EINVAL;
6480 
6481 	lse &= ~MPLS_LS_TTL_MASK;
6482 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6483 
6484 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6485 }
6486 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6487 
6488 /**
6489  * alloc_skb_with_frags - allocate skb with page frags
6490  *
6491  * @header_len: size of linear part
6492  * @data_len: needed length in frags
6493  * @order: max page order desired.
6494  * @errcode: pointer to error code if any
6495  * @gfp_mask: allocation mask
6496  *
6497  * This can be used to allocate a paged skb, given a maximal order for frags.
6498  */
6499 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6500 				     unsigned long data_len,
6501 				     int order,
6502 				     int *errcode,
6503 				     gfp_t gfp_mask)
6504 {
6505 	unsigned long chunk;
6506 	struct sk_buff *skb;
6507 	struct page *page;
6508 	int nr_frags = 0;
6509 
6510 	*errcode = -EMSGSIZE;
6511 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6512 		return NULL;
6513 
6514 	*errcode = -ENOBUFS;
6515 	skb = alloc_skb(header_len, gfp_mask);
6516 	if (!skb)
6517 		return NULL;
6518 
6519 	while (data_len) {
6520 		if (nr_frags == MAX_SKB_FRAGS - 1)
6521 			goto failure;
6522 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6523 			order--;
6524 
6525 		if (order) {
6526 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6527 					   __GFP_COMP |
6528 					   __GFP_NOWARN,
6529 					   order);
6530 			if (!page) {
6531 				order--;
6532 				continue;
6533 			}
6534 		} else {
6535 			page = alloc_page(gfp_mask);
6536 			if (!page)
6537 				goto failure;
6538 		}
6539 		chunk = min_t(unsigned long, data_len,
6540 			      PAGE_SIZE << order);
6541 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6542 		nr_frags++;
6543 		skb->truesize += (PAGE_SIZE << order);
6544 		data_len -= chunk;
6545 	}
6546 	return skb;
6547 
6548 failure:
6549 	kfree_skb(skb);
6550 	return NULL;
6551 }
6552 EXPORT_SYMBOL(alloc_skb_with_frags);
6553 
6554 /* carve out the first off bytes from skb when off < headlen */
6555 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6556 				    const int headlen, gfp_t gfp_mask)
6557 {
6558 	int i;
6559 	unsigned int size = skb_end_offset(skb);
6560 	int new_hlen = headlen - off;
6561 	u8 *data;
6562 
6563 	if (skb_pfmemalloc(skb))
6564 		gfp_mask |= __GFP_MEMALLOC;
6565 
6566 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6567 	if (!data)
6568 		return -ENOMEM;
6569 	size = SKB_WITH_OVERHEAD(size);
6570 
6571 	/* Copy real data, and all frags */
6572 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6573 	skb->len -= off;
6574 
6575 	memcpy((struct skb_shared_info *)(data + size),
6576 	       skb_shinfo(skb),
6577 	       offsetof(struct skb_shared_info,
6578 			frags[skb_shinfo(skb)->nr_frags]));
6579 	if (skb_cloned(skb)) {
6580 		/* drop the old head gracefully */
6581 		if (skb_orphan_frags(skb, gfp_mask)) {
6582 			skb_kfree_head(data, size);
6583 			return -ENOMEM;
6584 		}
6585 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6586 			skb_frag_ref(skb, i);
6587 		if (skb_has_frag_list(skb))
6588 			skb_clone_fraglist(skb);
6589 		skb_release_data(skb, SKB_CONSUMED, false);
6590 	} else {
6591 		/* we can reuse existing recount- all we did was
6592 		 * relocate values
6593 		 */
6594 		skb_free_head(skb, false);
6595 	}
6596 
6597 	skb->head = data;
6598 	skb->data = data;
6599 	skb->head_frag = 0;
6600 	skb_set_end_offset(skb, size);
6601 	skb_set_tail_pointer(skb, skb_headlen(skb));
6602 	skb_headers_offset_update(skb, 0);
6603 	skb->cloned = 0;
6604 	skb->hdr_len = 0;
6605 	skb->nohdr = 0;
6606 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6607 
6608 	return 0;
6609 }
6610 
6611 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6612 
6613 /* carve out the first eat bytes from skb's frag_list. May recurse into
6614  * pskb_carve()
6615  */
6616 static int pskb_carve_frag_list(struct sk_buff *skb,
6617 				struct skb_shared_info *shinfo, int eat,
6618 				gfp_t gfp_mask)
6619 {
6620 	struct sk_buff *list = shinfo->frag_list;
6621 	struct sk_buff *clone = NULL;
6622 	struct sk_buff *insp = NULL;
6623 
6624 	do {
6625 		if (!list) {
6626 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6627 			return -EFAULT;
6628 		}
6629 		if (list->len <= eat) {
6630 			/* Eaten as whole. */
6631 			eat -= list->len;
6632 			list = list->next;
6633 			insp = list;
6634 		} else {
6635 			/* Eaten partially. */
6636 			if (skb_shared(list)) {
6637 				clone = skb_clone(list, gfp_mask);
6638 				if (!clone)
6639 					return -ENOMEM;
6640 				insp = list->next;
6641 				list = clone;
6642 			} else {
6643 				/* This may be pulled without problems. */
6644 				insp = list;
6645 			}
6646 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6647 				kfree_skb(clone);
6648 				return -ENOMEM;
6649 			}
6650 			break;
6651 		}
6652 	} while (eat);
6653 
6654 	/* Free pulled out fragments. */
6655 	while ((list = shinfo->frag_list) != insp) {
6656 		shinfo->frag_list = list->next;
6657 		consume_skb(list);
6658 	}
6659 	/* And insert new clone at head. */
6660 	if (clone) {
6661 		clone->next = list;
6662 		shinfo->frag_list = clone;
6663 	}
6664 	return 0;
6665 }
6666 
6667 /* carve off first len bytes from skb. Split line (off) is in the
6668  * non-linear part of skb
6669  */
6670 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6671 				       int pos, gfp_t gfp_mask)
6672 {
6673 	int i, k = 0;
6674 	unsigned int size = skb_end_offset(skb);
6675 	u8 *data;
6676 	const int nfrags = skb_shinfo(skb)->nr_frags;
6677 	struct skb_shared_info *shinfo;
6678 
6679 	if (skb_pfmemalloc(skb))
6680 		gfp_mask |= __GFP_MEMALLOC;
6681 
6682 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6683 	if (!data)
6684 		return -ENOMEM;
6685 	size = SKB_WITH_OVERHEAD(size);
6686 
6687 	memcpy((struct skb_shared_info *)(data + size),
6688 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6689 	if (skb_orphan_frags(skb, gfp_mask)) {
6690 		skb_kfree_head(data, size);
6691 		return -ENOMEM;
6692 	}
6693 	shinfo = (struct skb_shared_info *)(data + size);
6694 	for (i = 0; i < nfrags; i++) {
6695 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6696 
6697 		if (pos + fsize > off) {
6698 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6699 
6700 			if (pos < off) {
6701 				/* Split frag.
6702 				 * We have two variants in this case:
6703 				 * 1. Move all the frag to the second
6704 				 *    part, if it is possible. F.e.
6705 				 *    this approach is mandatory for TUX,
6706 				 *    where splitting is expensive.
6707 				 * 2. Split is accurately. We make this.
6708 				 */
6709 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6710 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6711 			}
6712 			skb_frag_ref(skb, i);
6713 			k++;
6714 		}
6715 		pos += fsize;
6716 	}
6717 	shinfo->nr_frags = k;
6718 	if (skb_has_frag_list(skb))
6719 		skb_clone_fraglist(skb);
6720 
6721 	/* split line is in frag list */
6722 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6723 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6724 		if (skb_has_frag_list(skb))
6725 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6726 		skb_kfree_head(data, size);
6727 		return -ENOMEM;
6728 	}
6729 	skb_release_data(skb, SKB_CONSUMED, false);
6730 
6731 	skb->head = data;
6732 	skb->head_frag = 0;
6733 	skb->data = data;
6734 	skb_set_end_offset(skb, size);
6735 	skb_reset_tail_pointer(skb);
6736 	skb_headers_offset_update(skb, 0);
6737 	skb->cloned   = 0;
6738 	skb->hdr_len  = 0;
6739 	skb->nohdr    = 0;
6740 	skb->len -= off;
6741 	skb->data_len = skb->len;
6742 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6743 	return 0;
6744 }
6745 
6746 /* remove len bytes from the beginning of the skb */
6747 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6748 {
6749 	int headlen = skb_headlen(skb);
6750 
6751 	if (len < headlen)
6752 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6753 	else
6754 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6755 }
6756 
6757 /* Extract to_copy bytes starting at off from skb, and return this in
6758  * a new skb
6759  */
6760 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6761 			     int to_copy, gfp_t gfp)
6762 {
6763 	struct sk_buff  *clone = skb_clone(skb, gfp);
6764 
6765 	if (!clone)
6766 		return NULL;
6767 
6768 	if (pskb_carve(clone, off, gfp) < 0 ||
6769 	    pskb_trim(clone, to_copy)) {
6770 		kfree_skb(clone);
6771 		return NULL;
6772 	}
6773 	return clone;
6774 }
6775 EXPORT_SYMBOL(pskb_extract);
6776 
6777 /**
6778  * skb_condense - try to get rid of fragments/frag_list if possible
6779  * @skb: buffer
6780  *
6781  * Can be used to save memory before skb is added to a busy queue.
6782  * If packet has bytes in frags and enough tail room in skb->head,
6783  * pull all of them, so that we can free the frags right now and adjust
6784  * truesize.
6785  * Notes:
6786  *	We do not reallocate skb->head thus can not fail.
6787  *	Caller must re-evaluate skb->truesize if needed.
6788  */
6789 void skb_condense(struct sk_buff *skb)
6790 {
6791 	if (skb->data_len) {
6792 		if (skb->data_len > skb->end - skb->tail ||
6793 		    skb_cloned(skb))
6794 			return;
6795 
6796 		/* Nice, we can free page frag(s) right now */
6797 		__pskb_pull_tail(skb, skb->data_len);
6798 	}
6799 	/* At this point, skb->truesize might be over estimated,
6800 	 * because skb had a fragment, and fragments do not tell
6801 	 * their truesize.
6802 	 * When we pulled its content into skb->head, fragment
6803 	 * was freed, but __pskb_pull_tail() could not possibly
6804 	 * adjust skb->truesize, not knowing the frag truesize.
6805 	 */
6806 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6807 }
6808 EXPORT_SYMBOL(skb_condense);
6809 
6810 #ifdef CONFIG_SKB_EXTENSIONS
6811 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6812 {
6813 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6814 }
6815 
6816 /**
6817  * __skb_ext_alloc - allocate a new skb extensions storage
6818  *
6819  * @flags: See kmalloc().
6820  *
6821  * Returns the newly allocated pointer. The pointer can later attached to a
6822  * skb via __skb_ext_set().
6823  * Note: caller must handle the skb_ext as an opaque data.
6824  */
6825 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6826 {
6827 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6828 
6829 	if (new) {
6830 		memset(new->offset, 0, sizeof(new->offset));
6831 		refcount_set(&new->refcnt, 1);
6832 	}
6833 
6834 	return new;
6835 }
6836 
6837 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6838 					 unsigned int old_active)
6839 {
6840 	struct skb_ext *new;
6841 
6842 	if (refcount_read(&old->refcnt) == 1)
6843 		return old;
6844 
6845 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6846 	if (!new)
6847 		return NULL;
6848 
6849 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6850 	refcount_set(&new->refcnt, 1);
6851 
6852 #ifdef CONFIG_XFRM
6853 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6854 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6855 		unsigned int i;
6856 
6857 		for (i = 0; i < sp->len; i++)
6858 			xfrm_state_hold(sp->xvec[i]);
6859 	}
6860 #endif
6861 #ifdef CONFIG_MCTP_FLOWS
6862 	if (old_active & (1 << SKB_EXT_MCTP)) {
6863 		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6864 
6865 		if (flow->key)
6866 			refcount_inc(&flow->key->refs);
6867 	}
6868 #endif
6869 	__skb_ext_put(old);
6870 	return new;
6871 }
6872 
6873 /**
6874  * __skb_ext_set - attach the specified extension storage to this skb
6875  * @skb: buffer
6876  * @id: extension id
6877  * @ext: extension storage previously allocated via __skb_ext_alloc()
6878  *
6879  * Existing extensions, if any, are cleared.
6880  *
6881  * Returns the pointer to the extension.
6882  */
6883 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6884 		    struct skb_ext *ext)
6885 {
6886 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6887 
6888 	skb_ext_put(skb);
6889 	newlen = newoff + skb_ext_type_len[id];
6890 	ext->chunks = newlen;
6891 	ext->offset[id] = newoff;
6892 	skb->extensions = ext;
6893 	skb->active_extensions = 1 << id;
6894 	return skb_ext_get_ptr(ext, id);
6895 }
6896 
6897 /**
6898  * skb_ext_add - allocate space for given extension, COW if needed
6899  * @skb: buffer
6900  * @id: extension to allocate space for
6901  *
6902  * Allocates enough space for the given extension.
6903  * If the extension is already present, a pointer to that extension
6904  * is returned.
6905  *
6906  * If the skb was cloned, COW applies and the returned memory can be
6907  * modified without changing the extension space of clones buffers.
6908  *
6909  * Returns pointer to the extension or NULL on allocation failure.
6910  */
6911 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6912 {
6913 	struct skb_ext *new, *old = NULL;
6914 	unsigned int newlen, newoff;
6915 
6916 	if (skb->active_extensions) {
6917 		old = skb->extensions;
6918 
6919 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6920 		if (!new)
6921 			return NULL;
6922 
6923 		if (__skb_ext_exist(new, id))
6924 			goto set_active;
6925 
6926 		newoff = new->chunks;
6927 	} else {
6928 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6929 
6930 		new = __skb_ext_alloc(GFP_ATOMIC);
6931 		if (!new)
6932 			return NULL;
6933 	}
6934 
6935 	newlen = newoff + skb_ext_type_len[id];
6936 	new->chunks = newlen;
6937 	new->offset[id] = newoff;
6938 set_active:
6939 	skb->slow_gro = 1;
6940 	skb->extensions = new;
6941 	skb->active_extensions |= 1 << id;
6942 	return skb_ext_get_ptr(new, id);
6943 }
6944 EXPORT_SYMBOL(skb_ext_add);
6945 
6946 #ifdef CONFIG_XFRM
6947 static void skb_ext_put_sp(struct sec_path *sp)
6948 {
6949 	unsigned int i;
6950 
6951 	for (i = 0; i < sp->len; i++)
6952 		xfrm_state_put(sp->xvec[i]);
6953 }
6954 #endif
6955 
6956 #ifdef CONFIG_MCTP_FLOWS
6957 static void skb_ext_put_mctp(struct mctp_flow *flow)
6958 {
6959 	if (flow->key)
6960 		mctp_key_unref(flow->key);
6961 }
6962 #endif
6963 
6964 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6965 {
6966 	struct skb_ext *ext = skb->extensions;
6967 
6968 	skb->active_extensions &= ~(1 << id);
6969 	if (skb->active_extensions == 0) {
6970 		skb->extensions = NULL;
6971 		__skb_ext_put(ext);
6972 #ifdef CONFIG_XFRM
6973 	} else if (id == SKB_EXT_SEC_PATH &&
6974 		   refcount_read(&ext->refcnt) == 1) {
6975 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6976 
6977 		skb_ext_put_sp(sp);
6978 		sp->len = 0;
6979 #endif
6980 	}
6981 }
6982 EXPORT_SYMBOL(__skb_ext_del);
6983 
6984 void __skb_ext_put(struct skb_ext *ext)
6985 {
6986 	/* If this is last clone, nothing can increment
6987 	 * it after check passes.  Avoids one atomic op.
6988 	 */
6989 	if (refcount_read(&ext->refcnt) == 1)
6990 		goto free_now;
6991 
6992 	if (!refcount_dec_and_test(&ext->refcnt))
6993 		return;
6994 free_now:
6995 #ifdef CONFIG_XFRM
6996 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6997 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6998 #endif
6999 #ifdef CONFIG_MCTP_FLOWS
7000 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
7001 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
7002 #endif
7003 
7004 	kmem_cache_free(skbuff_ext_cache, ext);
7005 }
7006 EXPORT_SYMBOL(__skb_ext_put);
7007 #endif /* CONFIG_SKB_EXTENSIONS */
7008 
7009 /**
7010  * skb_attempt_defer_free - queue skb for remote freeing
7011  * @skb: buffer
7012  *
7013  * Put @skb in a per-cpu list, using the cpu which
7014  * allocated the skb/pages to reduce false sharing
7015  * and memory zone spinlock contention.
7016  */
7017 void skb_attempt_defer_free(struct sk_buff *skb)
7018 {
7019 	int cpu = skb->alloc_cpu;
7020 	struct softnet_data *sd;
7021 	unsigned int defer_max;
7022 	bool kick;
7023 
7024 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7025 	    !cpu_online(cpu) ||
7026 	    cpu == raw_smp_processor_id()) {
7027 nodefer:	__kfree_skb(skb);
7028 		return;
7029 	}
7030 
7031 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7032 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7033 
7034 	sd = &per_cpu(softnet_data, cpu);
7035 	defer_max = READ_ONCE(sysctl_skb_defer_max);
7036 	if (READ_ONCE(sd->defer_count) >= defer_max)
7037 		goto nodefer;
7038 
7039 	spin_lock_bh(&sd->defer_lock);
7040 	/* Send an IPI every time queue reaches half capacity. */
7041 	kick = sd->defer_count == (defer_max >> 1);
7042 	/* Paired with the READ_ONCE() few lines above */
7043 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7044 
7045 	skb->next = sd->defer_list;
7046 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
7047 	WRITE_ONCE(sd->defer_list, skb);
7048 	spin_unlock_bh(&sd->defer_lock);
7049 
7050 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7051 	 * if we are unlucky enough (this seems very unlikely).
7052 	 */
7053 	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
7054 		smp_call_function_single_async(cpu, &sd->defer_csd);
7055 }
7056 
7057 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7058 				 size_t offset, size_t len)
7059 {
7060 	const char *kaddr;
7061 	__wsum csum;
7062 
7063 	kaddr = kmap_local_page(page);
7064 	csum = csum_partial(kaddr + offset, len, 0);
7065 	kunmap_local(kaddr);
7066 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7067 }
7068 
7069 /**
7070  * skb_splice_from_iter - Splice (or copy) pages to skbuff
7071  * @skb: The buffer to add pages to
7072  * @iter: Iterator representing the pages to be added
7073  * @maxsize: Maximum amount of pages to be added
7074  * @gfp: Allocation flags
7075  *
7076  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7077  * extracts pages from an iterator and adds them to the socket buffer if
7078  * possible, copying them to fragments if not possible (such as if they're slab
7079  * pages).
7080  *
7081  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7082  * insufficient space in the buffer to transfer anything.
7083  */
7084 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7085 			     ssize_t maxsize, gfp_t gfp)
7086 {
7087 	size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
7088 	struct page *pages[8], **ppages = pages;
7089 	ssize_t spliced = 0, ret = 0;
7090 	unsigned int i;
7091 
7092 	while (iter->count > 0) {
7093 		ssize_t space, nr, len;
7094 		size_t off;
7095 
7096 		ret = -EMSGSIZE;
7097 		space = frag_limit - skb_shinfo(skb)->nr_frags;
7098 		if (space < 0)
7099 			break;
7100 
7101 		/* We might be able to coalesce without increasing nr_frags */
7102 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7103 
7104 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7105 		if (len <= 0) {
7106 			ret = len ?: -EIO;
7107 			break;
7108 		}
7109 
7110 		i = 0;
7111 		do {
7112 			struct page *page = pages[i++];
7113 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7114 
7115 			ret = -EIO;
7116 			if (WARN_ON_ONCE(!sendpage_ok(page)))
7117 				goto out;
7118 
7119 			ret = skb_append_pagefrags(skb, page, off, part,
7120 						   frag_limit);
7121 			if (ret < 0) {
7122 				iov_iter_revert(iter, len);
7123 				goto out;
7124 			}
7125 
7126 			if (skb->ip_summed == CHECKSUM_NONE)
7127 				skb_splice_csum_page(skb, page, off, part);
7128 
7129 			off = 0;
7130 			spliced += part;
7131 			maxsize -= part;
7132 			len -= part;
7133 		} while (len > 0);
7134 
7135 		if (maxsize <= 0)
7136 			break;
7137 	}
7138 
7139 out:
7140 	skb_len_add(skb, spliced);
7141 	return spliced ?: ret;
7142 }
7143 EXPORT_SYMBOL(skb_splice_from_iter);
7144 
7145 static __always_inline
7146 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7147 			     size_t len, void *to, void *priv2)
7148 {
7149 	__wsum *csum = priv2;
7150 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7151 
7152 	*csum = csum_block_add(*csum, next, progress);
7153 	return 0;
7154 }
7155 
7156 static __always_inline
7157 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7158 				size_t len, void *to, void *priv2)
7159 {
7160 	__wsum next, *csum = priv2;
7161 
7162 	next = csum_and_copy_from_user(iter_from, to + progress, len);
7163 	*csum = csum_block_add(*csum, next, progress);
7164 	return next ? 0 : len;
7165 }
7166 
7167 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7168 				  __wsum *csum, struct iov_iter *i)
7169 {
7170 	size_t copied;
7171 
7172 	if (WARN_ON_ONCE(!i->data_source))
7173 		return false;
7174 	copied = iterate_and_advance2(i, bytes, addr, csum,
7175 				      copy_from_user_iter_csum,
7176 				      memcpy_from_iter_csum);
7177 	if (likely(copied == bytes))
7178 		return true;
7179 	iov_iter_revert(i, copied);
7180 	return false;
7181 }
7182 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7183