xref: /linux/net/core/skbuff.c (revision 40e0b09081420853542571c38875b48b60404ebb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/mctp.h>
74 #include <net/page_pool.h>
75 
76 #include <linux/uaccess.h>
77 #include <trace/events/skb.h>
78 #include <linux/highmem.h>
79 #include <linux/capability.h>
80 #include <linux/user_namespace.h>
81 #include <linux/indirect_call_wrapper.h>
82 
83 #include "dev.h"
84 #include "sock_destructor.h"
85 
86 struct kmem_cache *skbuff_head_cache __ro_after_init;
87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88 #ifdef CONFIG_SKB_EXTENSIONS
89 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90 #endif
91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92 EXPORT_SYMBOL(sysctl_max_skb_frags);
93 
94 #undef FN
95 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
96 const char * const drop_reasons[] = {
97 	[SKB_CONSUMED] = "CONSUMED",
98 	DEFINE_DROP_REASON(FN, FN)
99 };
100 EXPORT_SYMBOL(drop_reasons);
101 
102 /**
103  *	skb_panic - private function for out-of-line support
104  *	@skb:	buffer
105  *	@sz:	size
106  *	@addr:	address
107  *	@msg:	skb_over_panic or skb_under_panic
108  *
109  *	Out-of-line support for skb_put() and skb_push().
110  *	Called via the wrapper skb_over_panic() or skb_under_panic().
111  *	Keep out of line to prevent kernel bloat.
112  *	__builtin_return_address is not used because it is not always reliable.
113  */
114 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
115 		      const char msg[])
116 {
117 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
118 		 msg, addr, skb->len, sz, skb->head, skb->data,
119 		 (unsigned long)skb->tail, (unsigned long)skb->end,
120 		 skb->dev ? skb->dev->name : "<NULL>");
121 	BUG();
122 }
123 
124 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
125 {
126 	skb_panic(skb, sz, addr, __func__);
127 }
128 
129 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
130 {
131 	skb_panic(skb, sz, addr, __func__);
132 }
133 
134 #define NAPI_SKB_CACHE_SIZE	64
135 #define NAPI_SKB_CACHE_BULK	16
136 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
137 
138 #if PAGE_SIZE == SZ_4K
139 
140 #define NAPI_HAS_SMALL_PAGE_FRAG	1
141 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
142 
143 /* specialized page frag allocator using a single order 0 page
144  * and slicing it into 1K sized fragment. Constrained to systems
145  * with a very limited amount of 1K fragments fitting a single
146  * page - to avoid excessive truesize underestimation
147  */
148 
149 struct page_frag_1k {
150 	void *va;
151 	u16 offset;
152 	bool pfmemalloc;
153 };
154 
155 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
156 {
157 	struct page *page;
158 	int offset;
159 
160 	offset = nc->offset - SZ_1K;
161 	if (likely(offset >= 0))
162 		goto use_frag;
163 
164 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
165 	if (!page)
166 		return NULL;
167 
168 	nc->va = page_address(page);
169 	nc->pfmemalloc = page_is_pfmemalloc(page);
170 	offset = PAGE_SIZE - SZ_1K;
171 	page_ref_add(page, offset / SZ_1K);
172 
173 use_frag:
174 	nc->offset = offset;
175 	return nc->va + offset;
176 }
177 #else
178 
179 /* the small page is actually unused in this build; add dummy helpers
180  * to please the compiler and avoid later preprocessor's conditionals
181  */
182 #define NAPI_HAS_SMALL_PAGE_FRAG	0
183 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
184 
185 struct page_frag_1k {
186 };
187 
188 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
189 {
190 	return NULL;
191 }
192 
193 #endif
194 
195 struct napi_alloc_cache {
196 	struct page_frag_cache page;
197 	struct page_frag_1k page_small;
198 	unsigned int skb_count;
199 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
200 };
201 
202 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
203 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
204 
205 /* Double check that napi_get_frags() allocates skbs with
206  * skb->head being backed by slab, not a page fragment.
207  * This is to make sure bug fixed in 3226b158e67c
208  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
209  * does not accidentally come back.
210  */
211 void napi_get_frags_check(struct napi_struct *napi)
212 {
213 	struct sk_buff *skb;
214 
215 	local_bh_disable();
216 	skb = napi_get_frags(napi);
217 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
218 	napi_free_frags(napi);
219 	local_bh_enable();
220 }
221 
222 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
223 {
224 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
225 
226 	fragsz = SKB_DATA_ALIGN(fragsz);
227 
228 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
229 }
230 EXPORT_SYMBOL(__napi_alloc_frag_align);
231 
232 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
233 {
234 	void *data;
235 
236 	fragsz = SKB_DATA_ALIGN(fragsz);
237 	if (in_hardirq() || irqs_disabled()) {
238 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
239 
240 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
241 	} else {
242 		struct napi_alloc_cache *nc;
243 
244 		local_bh_disable();
245 		nc = this_cpu_ptr(&napi_alloc_cache);
246 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
247 		local_bh_enable();
248 	}
249 	return data;
250 }
251 EXPORT_SYMBOL(__netdev_alloc_frag_align);
252 
253 static struct sk_buff *napi_skb_cache_get(void)
254 {
255 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
256 	struct sk_buff *skb;
257 
258 	if (unlikely(!nc->skb_count)) {
259 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
260 						      GFP_ATOMIC,
261 						      NAPI_SKB_CACHE_BULK,
262 						      nc->skb_cache);
263 		if (unlikely(!nc->skb_count))
264 			return NULL;
265 	}
266 
267 	skb = nc->skb_cache[--nc->skb_count];
268 	kasan_unpoison_object_data(skbuff_head_cache, skb);
269 
270 	return skb;
271 }
272 
273 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
274 					 unsigned int size)
275 {
276 	struct skb_shared_info *shinfo;
277 
278 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
279 
280 	/* Assumes caller memset cleared SKB */
281 	skb->truesize = SKB_TRUESIZE(size);
282 	refcount_set(&skb->users, 1);
283 	skb->head = data;
284 	skb->data = data;
285 	skb_reset_tail_pointer(skb);
286 	skb_set_end_offset(skb, size);
287 	skb->mac_header = (typeof(skb->mac_header))~0U;
288 	skb->transport_header = (typeof(skb->transport_header))~0U;
289 	skb->alloc_cpu = raw_smp_processor_id();
290 	/* make sure we initialize shinfo sequentially */
291 	shinfo = skb_shinfo(skb);
292 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
293 	atomic_set(&shinfo->dataref, 1);
294 
295 	skb_set_kcov_handle(skb, kcov_common_handle());
296 }
297 
298 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
299 				     unsigned int *size)
300 {
301 	void *resized;
302 
303 	/* Must find the allocation size (and grow it to match). */
304 	*size = ksize(data);
305 	/* krealloc() will immediately return "data" when
306 	 * "ksize(data)" is requested: it is the existing upper
307 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
308 	 * that this "new" pointer needs to be passed back to the
309 	 * caller for use so the __alloc_size hinting will be
310 	 * tracked correctly.
311 	 */
312 	resized = krealloc(data, *size, GFP_ATOMIC);
313 	WARN_ON_ONCE(resized != data);
314 	return resized;
315 }
316 
317 /* build_skb() variant which can operate on slab buffers.
318  * Note that this should be used sparingly as slab buffers
319  * cannot be combined efficiently by GRO!
320  */
321 struct sk_buff *slab_build_skb(void *data)
322 {
323 	struct sk_buff *skb;
324 	unsigned int size;
325 
326 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
327 	if (unlikely(!skb))
328 		return NULL;
329 
330 	memset(skb, 0, offsetof(struct sk_buff, tail));
331 	data = __slab_build_skb(skb, data, &size);
332 	__finalize_skb_around(skb, data, size);
333 
334 	return skb;
335 }
336 EXPORT_SYMBOL(slab_build_skb);
337 
338 /* Caller must provide SKB that is memset cleared */
339 static void __build_skb_around(struct sk_buff *skb, void *data,
340 			       unsigned int frag_size)
341 {
342 	unsigned int size = frag_size;
343 
344 	/* frag_size == 0 is considered deprecated now. Callers
345 	 * using slab buffer should use slab_build_skb() instead.
346 	 */
347 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
348 		data = __slab_build_skb(skb, data, &size);
349 
350 	__finalize_skb_around(skb, data, size);
351 }
352 
353 /**
354  * __build_skb - build a network buffer
355  * @data: data buffer provided by caller
356  * @frag_size: size of data (must not be 0)
357  *
358  * Allocate a new &sk_buff. Caller provides space holding head and
359  * skb_shared_info. @data must have been allocated from the page
360  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
361  * allocation is deprecated, and callers should use slab_build_skb()
362  * instead.)
363  * The return is the new skb buffer.
364  * On a failure the return is %NULL, and @data is not freed.
365  * Notes :
366  *  Before IO, driver allocates only data buffer where NIC put incoming frame
367  *  Driver should add room at head (NET_SKB_PAD) and
368  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
369  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
370  *  before giving packet to stack.
371  *  RX rings only contains data buffers, not full skbs.
372  */
373 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
374 {
375 	struct sk_buff *skb;
376 
377 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
378 	if (unlikely(!skb))
379 		return NULL;
380 
381 	memset(skb, 0, offsetof(struct sk_buff, tail));
382 	__build_skb_around(skb, data, frag_size);
383 
384 	return skb;
385 }
386 
387 /* build_skb() is wrapper over __build_skb(), that specifically
388  * takes care of skb->head and skb->pfmemalloc
389  */
390 struct sk_buff *build_skb(void *data, unsigned int frag_size)
391 {
392 	struct sk_buff *skb = __build_skb(data, frag_size);
393 
394 	if (skb && frag_size) {
395 		skb->head_frag = 1;
396 		if (page_is_pfmemalloc(virt_to_head_page(data)))
397 			skb->pfmemalloc = 1;
398 	}
399 	return skb;
400 }
401 EXPORT_SYMBOL(build_skb);
402 
403 /**
404  * build_skb_around - build a network buffer around provided skb
405  * @skb: sk_buff provide by caller, must be memset cleared
406  * @data: data buffer provided by caller
407  * @frag_size: size of data
408  */
409 struct sk_buff *build_skb_around(struct sk_buff *skb,
410 				 void *data, unsigned int frag_size)
411 {
412 	if (unlikely(!skb))
413 		return NULL;
414 
415 	__build_skb_around(skb, data, frag_size);
416 
417 	if (frag_size) {
418 		skb->head_frag = 1;
419 		if (page_is_pfmemalloc(virt_to_head_page(data)))
420 			skb->pfmemalloc = 1;
421 	}
422 	return skb;
423 }
424 EXPORT_SYMBOL(build_skb_around);
425 
426 /**
427  * __napi_build_skb - build a network buffer
428  * @data: data buffer provided by caller
429  * @frag_size: size of data
430  *
431  * Version of __build_skb() that uses NAPI percpu caches to obtain
432  * skbuff_head instead of inplace allocation.
433  *
434  * Returns a new &sk_buff on success, %NULL on allocation failure.
435  */
436 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
437 {
438 	struct sk_buff *skb;
439 
440 	skb = napi_skb_cache_get();
441 	if (unlikely(!skb))
442 		return NULL;
443 
444 	memset(skb, 0, offsetof(struct sk_buff, tail));
445 	__build_skb_around(skb, data, frag_size);
446 
447 	return skb;
448 }
449 
450 /**
451  * napi_build_skb - build a network buffer
452  * @data: data buffer provided by caller
453  * @frag_size: size of data
454  *
455  * Version of __napi_build_skb() that takes care of skb->head_frag
456  * and skb->pfmemalloc when the data is a page or page fragment.
457  *
458  * Returns a new &sk_buff on success, %NULL on allocation failure.
459  */
460 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
461 {
462 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
463 
464 	if (likely(skb) && frag_size) {
465 		skb->head_frag = 1;
466 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
467 	}
468 
469 	return skb;
470 }
471 EXPORT_SYMBOL(napi_build_skb);
472 
473 /*
474  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
475  * the caller if emergency pfmemalloc reserves are being used. If it is and
476  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
477  * may be used. Otherwise, the packet data may be discarded until enough
478  * memory is free
479  */
480 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
481 			     bool *pfmemalloc)
482 {
483 	void *obj;
484 	bool ret_pfmemalloc = false;
485 
486 	/*
487 	 * Try a regular allocation, when that fails and we're not entitled
488 	 * to the reserves, fail.
489 	 */
490 	obj = kmalloc_node_track_caller(size,
491 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
492 					node);
493 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
494 		goto out;
495 
496 	/* Try again but now we are using pfmemalloc reserves */
497 	ret_pfmemalloc = true;
498 	obj = kmalloc_node_track_caller(size, flags, node);
499 
500 out:
501 	if (pfmemalloc)
502 		*pfmemalloc = ret_pfmemalloc;
503 
504 	return obj;
505 }
506 
507 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
508  *	'private' fields and also do memory statistics to find all the
509  *	[BEEP] leaks.
510  *
511  */
512 
513 /**
514  *	__alloc_skb	-	allocate a network buffer
515  *	@size: size to allocate
516  *	@gfp_mask: allocation mask
517  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
518  *		instead of head cache and allocate a cloned (child) skb.
519  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
520  *		allocations in case the data is required for writeback
521  *	@node: numa node to allocate memory on
522  *
523  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
524  *	tail room of at least size bytes. The object has a reference count
525  *	of one. The return is the buffer. On a failure the return is %NULL.
526  *
527  *	Buffers may only be allocated from interrupts using a @gfp_mask of
528  *	%GFP_ATOMIC.
529  */
530 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
531 			    int flags, int node)
532 {
533 	struct kmem_cache *cache;
534 	struct sk_buff *skb;
535 	unsigned int osize;
536 	bool pfmemalloc;
537 	u8 *data;
538 
539 	cache = (flags & SKB_ALLOC_FCLONE)
540 		? skbuff_fclone_cache : skbuff_head_cache;
541 
542 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
543 		gfp_mask |= __GFP_MEMALLOC;
544 
545 	/* Get the HEAD */
546 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
547 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
548 		skb = napi_skb_cache_get();
549 	else
550 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
551 	if (unlikely(!skb))
552 		return NULL;
553 	prefetchw(skb);
554 
555 	/* We do our best to align skb_shared_info on a separate cache
556 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
557 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
558 	 * Both skb->head and skb_shared_info are cache line aligned.
559 	 */
560 	size = SKB_DATA_ALIGN(size);
561 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
562 	osize = kmalloc_size_roundup(size);
563 	data = kmalloc_reserve(osize, gfp_mask, node, &pfmemalloc);
564 	if (unlikely(!data))
565 		goto nodata;
566 	/* kmalloc_size_roundup() might give us more room than requested.
567 	 * Put skb_shared_info exactly at the end of allocated zone,
568 	 * to allow max possible filling before reallocation.
569 	 */
570 	size = SKB_WITH_OVERHEAD(osize);
571 	prefetchw(data + size);
572 
573 	/*
574 	 * Only clear those fields we need to clear, not those that we will
575 	 * actually initialise below. Hence, don't put any more fields after
576 	 * the tail pointer in struct sk_buff!
577 	 */
578 	memset(skb, 0, offsetof(struct sk_buff, tail));
579 	__build_skb_around(skb, data, osize);
580 	skb->pfmemalloc = pfmemalloc;
581 
582 	if (flags & SKB_ALLOC_FCLONE) {
583 		struct sk_buff_fclones *fclones;
584 
585 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
586 
587 		skb->fclone = SKB_FCLONE_ORIG;
588 		refcount_set(&fclones->fclone_ref, 1);
589 	}
590 
591 	return skb;
592 
593 nodata:
594 	kmem_cache_free(cache, skb);
595 	return NULL;
596 }
597 EXPORT_SYMBOL(__alloc_skb);
598 
599 /**
600  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
601  *	@dev: network device to receive on
602  *	@len: length to allocate
603  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
604  *
605  *	Allocate a new &sk_buff and assign it a usage count of one. The
606  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
607  *	the headroom they think they need without accounting for the
608  *	built in space. The built in space is used for optimisations.
609  *
610  *	%NULL is returned if there is no free memory.
611  */
612 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
613 				   gfp_t gfp_mask)
614 {
615 	struct page_frag_cache *nc;
616 	struct sk_buff *skb;
617 	bool pfmemalloc;
618 	void *data;
619 
620 	len += NET_SKB_PAD;
621 
622 	/* If requested length is either too small or too big,
623 	 * we use kmalloc() for skb->head allocation.
624 	 */
625 	if (len <= SKB_WITH_OVERHEAD(1024) ||
626 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
627 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
628 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
629 		if (!skb)
630 			goto skb_fail;
631 		goto skb_success;
632 	}
633 
634 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
635 	len = SKB_DATA_ALIGN(len);
636 
637 	if (sk_memalloc_socks())
638 		gfp_mask |= __GFP_MEMALLOC;
639 
640 	if (in_hardirq() || irqs_disabled()) {
641 		nc = this_cpu_ptr(&netdev_alloc_cache);
642 		data = page_frag_alloc(nc, len, gfp_mask);
643 		pfmemalloc = nc->pfmemalloc;
644 	} else {
645 		local_bh_disable();
646 		nc = this_cpu_ptr(&napi_alloc_cache.page);
647 		data = page_frag_alloc(nc, len, gfp_mask);
648 		pfmemalloc = nc->pfmemalloc;
649 		local_bh_enable();
650 	}
651 
652 	if (unlikely(!data))
653 		return NULL;
654 
655 	skb = __build_skb(data, len);
656 	if (unlikely(!skb)) {
657 		skb_free_frag(data);
658 		return NULL;
659 	}
660 
661 	if (pfmemalloc)
662 		skb->pfmemalloc = 1;
663 	skb->head_frag = 1;
664 
665 skb_success:
666 	skb_reserve(skb, NET_SKB_PAD);
667 	skb->dev = dev;
668 
669 skb_fail:
670 	return skb;
671 }
672 EXPORT_SYMBOL(__netdev_alloc_skb);
673 
674 /**
675  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
676  *	@napi: napi instance this buffer was allocated for
677  *	@len: length to allocate
678  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
679  *
680  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
681  *	attempt to allocate the head from a special reserved region used
682  *	only for NAPI Rx allocation.  By doing this we can save several
683  *	CPU cycles by avoiding having to disable and re-enable IRQs.
684  *
685  *	%NULL is returned if there is no free memory.
686  */
687 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
688 				 gfp_t gfp_mask)
689 {
690 	struct napi_alloc_cache *nc;
691 	struct sk_buff *skb;
692 	bool pfmemalloc;
693 	void *data;
694 
695 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
696 	len += NET_SKB_PAD + NET_IP_ALIGN;
697 
698 	/* If requested length is either too small or too big,
699 	 * we use kmalloc() for skb->head allocation.
700 	 * When the small frag allocator is available, prefer it over kmalloc
701 	 * for small fragments
702 	 */
703 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
704 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
705 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
706 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
707 				  NUMA_NO_NODE);
708 		if (!skb)
709 			goto skb_fail;
710 		goto skb_success;
711 	}
712 
713 	nc = this_cpu_ptr(&napi_alloc_cache);
714 
715 	if (sk_memalloc_socks())
716 		gfp_mask |= __GFP_MEMALLOC;
717 
718 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
719 		/* we are artificially inflating the allocation size, but
720 		 * that is not as bad as it may look like, as:
721 		 * - 'len' less than GRO_MAX_HEAD makes little sense
722 		 * - On most systems, larger 'len' values lead to fragment
723 		 *   size above 512 bytes
724 		 * - kmalloc would use the kmalloc-1k slab for such values
725 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
726 		 *   little networking, as that implies no WiFi and no
727 		 *   tunnels support, and 32 bits arches.
728 		 */
729 		len = SZ_1K;
730 
731 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
732 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
733 	} else {
734 		len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
735 		len = SKB_DATA_ALIGN(len);
736 
737 		data = page_frag_alloc(&nc->page, len, gfp_mask);
738 		pfmemalloc = nc->page.pfmemalloc;
739 	}
740 
741 	if (unlikely(!data))
742 		return NULL;
743 
744 	skb = __napi_build_skb(data, len);
745 	if (unlikely(!skb)) {
746 		skb_free_frag(data);
747 		return NULL;
748 	}
749 
750 	if (pfmemalloc)
751 		skb->pfmemalloc = 1;
752 	skb->head_frag = 1;
753 
754 skb_success:
755 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
756 	skb->dev = napi->dev;
757 
758 skb_fail:
759 	return skb;
760 }
761 EXPORT_SYMBOL(__napi_alloc_skb);
762 
763 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
764 		     int size, unsigned int truesize)
765 {
766 	skb_fill_page_desc(skb, i, page, off, size);
767 	skb->len += size;
768 	skb->data_len += size;
769 	skb->truesize += truesize;
770 }
771 EXPORT_SYMBOL(skb_add_rx_frag);
772 
773 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
774 			  unsigned int truesize)
775 {
776 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
777 
778 	skb_frag_size_add(frag, size);
779 	skb->len += size;
780 	skb->data_len += size;
781 	skb->truesize += truesize;
782 }
783 EXPORT_SYMBOL(skb_coalesce_rx_frag);
784 
785 static void skb_drop_list(struct sk_buff **listp)
786 {
787 	kfree_skb_list(*listp);
788 	*listp = NULL;
789 }
790 
791 static inline void skb_drop_fraglist(struct sk_buff *skb)
792 {
793 	skb_drop_list(&skb_shinfo(skb)->frag_list);
794 }
795 
796 static void skb_clone_fraglist(struct sk_buff *skb)
797 {
798 	struct sk_buff *list;
799 
800 	skb_walk_frags(skb, list)
801 		skb_get(list);
802 }
803 
804 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
805 {
806 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
807 		return false;
808 	return page_pool_return_skb_page(virt_to_page(data));
809 }
810 
811 static void skb_free_head(struct sk_buff *skb)
812 {
813 	unsigned char *head = skb->head;
814 
815 	if (skb->head_frag) {
816 		if (skb_pp_recycle(skb, head))
817 			return;
818 		skb_free_frag(head);
819 	} else {
820 		kfree(head);
821 	}
822 }
823 
824 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
825 {
826 	struct skb_shared_info *shinfo = skb_shinfo(skb);
827 	int i;
828 
829 	if (skb->cloned &&
830 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
831 			      &shinfo->dataref))
832 		goto exit;
833 
834 	if (skb_zcopy(skb)) {
835 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
836 
837 		skb_zcopy_clear(skb, true);
838 		if (skip_unref)
839 			goto free_head;
840 	}
841 
842 	for (i = 0; i < shinfo->nr_frags; i++)
843 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
844 
845 free_head:
846 	if (shinfo->frag_list)
847 		kfree_skb_list_reason(shinfo->frag_list, reason);
848 
849 	skb_free_head(skb);
850 exit:
851 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
852 	 * bit is only set on the head though, so in order to avoid races
853 	 * while trying to recycle fragments on __skb_frag_unref() we need
854 	 * to make one SKB responsible for triggering the recycle path.
855 	 * So disable the recycling bit if an SKB is cloned and we have
856 	 * additional references to the fragmented part of the SKB.
857 	 * Eventually the last SKB will have the recycling bit set and it's
858 	 * dataref set to 0, which will trigger the recycling
859 	 */
860 	skb->pp_recycle = 0;
861 }
862 
863 /*
864  *	Free an skbuff by memory without cleaning the state.
865  */
866 static void kfree_skbmem(struct sk_buff *skb)
867 {
868 	struct sk_buff_fclones *fclones;
869 
870 	switch (skb->fclone) {
871 	case SKB_FCLONE_UNAVAILABLE:
872 		kmem_cache_free(skbuff_head_cache, skb);
873 		return;
874 
875 	case SKB_FCLONE_ORIG:
876 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
877 
878 		/* We usually free the clone (TX completion) before original skb
879 		 * This test would have no chance to be true for the clone,
880 		 * while here, branch prediction will be good.
881 		 */
882 		if (refcount_read(&fclones->fclone_ref) == 1)
883 			goto fastpath;
884 		break;
885 
886 	default: /* SKB_FCLONE_CLONE */
887 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
888 		break;
889 	}
890 	if (!refcount_dec_and_test(&fclones->fclone_ref))
891 		return;
892 fastpath:
893 	kmem_cache_free(skbuff_fclone_cache, fclones);
894 }
895 
896 void skb_release_head_state(struct sk_buff *skb)
897 {
898 	skb_dst_drop(skb);
899 	if (skb->destructor) {
900 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
901 		skb->destructor(skb);
902 	}
903 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
904 	nf_conntrack_put(skb_nfct(skb));
905 #endif
906 	skb_ext_put(skb);
907 }
908 
909 /* Free everything but the sk_buff shell. */
910 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
911 {
912 	skb_release_head_state(skb);
913 	if (likely(skb->head))
914 		skb_release_data(skb, reason);
915 }
916 
917 /**
918  *	__kfree_skb - private function
919  *	@skb: buffer
920  *
921  *	Free an sk_buff. Release anything attached to the buffer.
922  *	Clean the state. This is an internal helper function. Users should
923  *	always call kfree_skb
924  */
925 
926 void __kfree_skb(struct sk_buff *skb)
927 {
928 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
929 	kfree_skbmem(skb);
930 }
931 EXPORT_SYMBOL(__kfree_skb);
932 
933 static __always_inline
934 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
935 {
936 	if (unlikely(!skb_unref(skb)))
937 		return false;
938 
939 	DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX);
940 
941 	if (reason == SKB_CONSUMED)
942 		trace_consume_skb(skb);
943 	else
944 		trace_kfree_skb(skb, __builtin_return_address(0), reason);
945 	return true;
946 }
947 
948 /**
949  *	kfree_skb_reason - free an sk_buff with special reason
950  *	@skb: buffer to free
951  *	@reason: reason why this skb is dropped
952  *
953  *	Drop a reference to the buffer and free it if the usage count has
954  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
955  *	tracepoint.
956  */
957 void __fix_address
958 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
959 {
960 	if (__kfree_skb_reason(skb, reason))
961 		__kfree_skb(skb);
962 }
963 EXPORT_SYMBOL(kfree_skb_reason);
964 
965 #define KFREE_SKB_BULK_SIZE	16
966 
967 struct skb_free_array {
968 	unsigned int skb_count;
969 	void *skb_array[KFREE_SKB_BULK_SIZE];
970 };
971 
972 static void kfree_skb_add_bulk(struct sk_buff *skb,
973 			       struct skb_free_array *sa,
974 			       enum skb_drop_reason reason)
975 {
976 	/* if SKB is a clone, don't handle this case */
977 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
978 		__kfree_skb(skb);
979 		return;
980 	}
981 
982 	skb_release_all(skb, reason);
983 	sa->skb_array[sa->skb_count++] = skb;
984 
985 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
986 		kmem_cache_free_bulk(skbuff_head_cache, KFREE_SKB_BULK_SIZE,
987 				     sa->skb_array);
988 		sa->skb_count = 0;
989 	}
990 }
991 
992 void __fix_address
993 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
994 {
995 	struct skb_free_array sa;
996 
997 	sa.skb_count = 0;
998 
999 	while (segs) {
1000 		struct sk_buff *next = segs->next;
1001 
1002 		skb_mark_not_on_list(segs);
1003 
1004 		if (__kfree_skb_reason(segs, reason))
1005 			kfree_skb_add_bulk(segs, &sa, reason);
1006 
1007 		segs = next;
1008 	}
1009 
1010 	if (sa.skb_count)
1011 		kmem_cache_free_bulk(skbuff_head_cache, sa.skb_count,
1012 				     sa.skb_array);
1013 }
1014 EXPORT_SYMBOL(kfree_skb_list_reason);
1015 
1016 /* Dump skb information and contents.
1017  *
1018  * Must only be called from net_ratelimit()-ed paths.
1019  *
1020  * Dumps whole packets if full_pkt, only headers otherwise.
1021  */
1022 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1023 {
1024 	struct skb_shared_info *sh = skb_shinfo(skb);
1025 	struct net_device *dev = skb->dev;
1026 	struct sock *sk = skb->sk;
1027 	struct sk_buff *list_skb;
1028 	bool has_mac, has_trans;
1029 	int headroom, tailroom;
1030 	int i, len, seg_len;
1031 
1032 	if (full_pkt)
1033 		len = skb->len;
1034 	else
1035 		len = min_t(int, skb->len, MAX_HEADER + 128);
1036 
1037 	headroom = skb_headroom(skb);
1038 	tailroom = skb_tailroom(skb);
1039 
1040 	has_mac = skb_mac_header_was_set(skb);
1041 	has_trans = skb_transport_header_was_set(skb);
1042 
1043 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1044 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1045 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1046 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1047 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1048 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1049 	       has_mac ? skb->mac_header : -1,
1050 	       has_mac ? skb_mac_header_len(skb) : -1,
1051 	       skb->network_header,
1052 	       has_trans ? skb_network_header_len(skb) : -1,
1053 	       has_trans ? skb->transport_header : -1,
1054 	       sh->tx_flags, sh->nr_frags,
1055 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1056 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
1057 	       skb->csum_valid, skb->csum_level,
1058 	       skb->hash, skb->sw_hash, skb->l4_hash,
1059 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1060 
1061 	if (dev)
1062 		printk("%sdev name=%s feat=%pNF\n",
1063 		       level, dev->name, &dev->features);
1064 	if (sk)
1065 		printk("%ssk family=%hu type=%u proto=%u\n",
1066 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1067 
1068 	if (full_pkt && headroom)
1069 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1070 			       16, 1, skb->head, headroom, false);
1071 
1072 	seg_len = min_t(int, skb_headlen(skb), len);
1073 	if (seg_len)
1074 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1075 			       16, 1, skb->data, seg_len, false);
1076 	len -= seg_len;
1077 
1078 	if (full_pkt && tailroom)
1079 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1080 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1081 
1082 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1083 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1084 		u32 p_off, p_len, copied;
1085 		struct page *p;
1086 		u8 *vaddr;
1087 
1088 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1089 				      skb_frag_size(frag), p, p_off, p_len,
1090 				      copied) {
1091 			seg_len = min_t(int, p_len, len);
1092 			vaddr = kmap_atomic(p);
1093 			print_hex_dump(level, "skb frag:     ",
1094 				       DUMP_PREFIX_OFFSET,
1095 				       16, 1, vaddr + p_off, seg_len, false);
1096 			kunmap_atomic(vaddr);
1097 			len -= seg_len;
1098 			if (!len)
1099 				break;
1100 		}
1101 	}
1102 
1103 	if (full_pkt && skb_has_frag_list(skb)) {
1104 		printk("skb fraglist:\n");
1105 		skb_walk_frags(skb, list_skb)
1106 			skb_dump(level, list_skb, true);
1107 	}
1108 }
1109 EXPORT_SYMBOL(skb_dump);
1110 
1111 /**
1112  *	skb_tx_error - report an sk_buff xmit error
1113  *	@skb: buffer that triggered an error
1114  *
1115  *	Report xmit error if a device callback is tracking this skb.
1116  *	skb must be freed afterwards.
1117  */
1118 void skb_tx_error(struct sk_buff *skb)
1119 {
1120 	if (skb) {
1121 		skb_zcopy_downgrade_managed(skb);
1122 		skb_zcopy_clear(skb, true);
1123 	}
1124 }
1125 EXPORT_SYMBOL(skb_tx_error);
1126 
1127 #ifdef CONFIG_TRACEPOINTS
1128 /**
1129  *	consume_skb - free an skbuff
1130  *	@skb: buffer to free
1131  *
1132  *	Drop a ref to the buffer and free it if the usage count has hit zero
1133  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1134  *	is being dropped after a failure and notes that
1135  */
1136 void consume_skb(struct sk_buff *skb)
1137 {
1138 	if (!skb_unref(skb))
1139 		return;
1140 
1141 	trace_consume_skb(skb);
1142 	__kfree_skb(skb);
1143 }
1144 EXPORT_SYMBOL(consume_skb);
1145 #endif
1146 
1147 /**
1148  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1149  *	@skb: buffer to free
1150  *
1151  *	Alike consume_skb(), but this variant assumes that this is the last
1152  *	skb reference and all the head states have been already dropped
1153  */
1154 void __consume_stateless_skb(struct sk_buff *skb)
1155 {
1156 	trace_consume_skb(skb);
1157 	skb_release_data(skb, SKB_CONSUMED);
1158 	kfree_skbmem(skb);
1159 }
1160 
1161 static void napi_skb_cache_put(struct sk_buff *skb)
1162 {
1163 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1164 	u32 i;
1165 
1166 	kasan_poison_object_data(skbuff_head_cache, skb);
1167 	nc->skb_cache[nc->skb_count++] = skb;
1168 
1169 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1170 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1171 			kasan_unpoison_object_data(skbuff_head_cache,
1172 						   nc->skb_cache[i]);
1173 
1174 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
1175 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1176 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1177 	}
1178 }
1179 
1180 void __kfree_skb_defer(struct sk_buff *skb)
1181 {
1182 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1183 	napi_skb_cache_put(skb);
1184 }
1185 
1186 void napi_skb_free_stolen_head(struct sk_buff *skb)
1187 {
1188 	if (unlikely(skb->slow_gro)) {
1189 		nf_reset_ct(skb);
1190 		skb_dst_drop(skb);
1191 		skb_ext_put(skb);
1192 		skb_orphan(skb);
1193 		skb->slow_gro = 0;
1194 	}
1195 	napi_skb_cache_put(skb);
1196 }
1197 
1198 void napi_consume_skb(struct sk_buff *skb, int budget)
1199 {
1200 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1201 	if (unlikely(!budget)) {
1202 		dev_consume_skb_any(skb);
1203 		return;
1204 	}
1205 
1206 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1207 
1208 	if (!skb_unref(skb))
1209 		return;
1210 
1211 	/* if reaching here SKB is ready to free */
1212 	trace_consume_skb(skb);
1213 
1214 	/* if SKB is a clone, don't handle this case */
1215 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1216 		__kfree_skb(skb);
1217 		return;
1218 	}
1219 
1220 	skb_release_all(skb, SKB_CONSUMED);
1221 	napi_skb_cache_put(skb);
1222 }
1223 EXPORT_SYMBOL(napi_consume_skb);
1224 
1225 /* Make sure a field is contained by headers group */
1226 #define CHECK_SKB_FIELD(field) \
1227 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1228 		     offsetof(struct sk_buff, headers.field));	\
1229 
1230 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1231 {
1232 	new->tstamp		= old->tstamp;
1233 	/* We do not copy old->sk */
1234 	new->dev		= old->dev;
1235 	memcpy(new->cb, old->cb, sizeof(old->cb));
1236 	skb_dst_copy(new, old);
1237 	__skb_ext_copy(new, old);
1238 	__nf_copy(new, old, false);
1239 
1240 	/* Note : this field could be in the headers group.
1241 	 * It is not yet because we do not want to have a 16 bit hole
1242 	 */
1243 	new->queue_mapping = old->queue_mapping;
1244 
1245 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1246 	CHECK_SKB_FIELD(protocol);
1247 	CHECK_SKB_FIELD(csum);
1248 	CHECK_SKB_FIELD(hash);
1249 	CHECK_SKB_FIELD(priority);
1250 	CHECK_SKB_FIELD(skb_iif);
1251 	CHECK_SKB_FIELD(vlan_proto);
1252 	CHECK_SKB_FIELD(vlan_tci);
1253 	CHECK_SKB_FIELD(transport_header);
1254 	CHECK_SKB_FIELD(network_header);
1255 	CHECK_SKB_FIELD(mac_header);
1256 	CHECK_SKB_FIELD(inner_protocol);
1257 	CHECK_SKB_FIELD(inner_transport_header);
1258 	CHECK_SKB_FIELD(inner_network_header);
1259 	CHECK_SKB_FIELD(inner_mac_header);
1260 	CHECK_SKB_FIELD(mark);
1261 #ifdef CONFIG_NETWORK_SECMARK
1262 	CHECK_SKB_FIELD(secmark);
1263 #endif
1264 #ifdef CONFIG_NET_RX_BUSY_POLL
1265 	CHECK_SKB_FIELD(napi_id);
1266 #endif
1267 	CHECK_SKB_FIELD(alloc_cpu);
1268 #ifdef CONFIG_XPS
1269 	CHECK_SKB_FIELD(sender_cpu);
1270 #endif
1271 #ifdef CONFIG_NET_SCHED
1272 	CHECK_SKB_FIELD(tc_index);
1273 #endif
1274 
1275 }
1276 
1277 /*
1278  * You should not add any new code to this function.  Add it to
1279  * __copy_skb_header above instead.
1280  */
1281 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1282 {
1283 #define C(x) n->x = skb->x
1284 
1285 	n->next = n->prev = NULL;
1286 	n->sk = NULL;
1287 	__copy_skb_header(n, skb);
1288 
1289 	C(len);
1290 	C(data_len);
1291 	C(mac_len);
1292 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1293 	n->cloned = 1;
1294 	n->nohdr = 0;
1295 	n->peeked = 0;
1296 	C(pfmemalloc);
1297 	C(pp_recycle);
1298 	n->destructor = NULL;
1299 	C(tail);
1300 	C(end);
1301 	C(head);
1302 	C(head_frag);
1303 	C(data);
1304 	C(truesize);
1305 	refcount_set(&n->users, 1);
1306 
1307 	atomic_inc(&(skb_shinfo(skb)->dataref));
1308 	skb->cloned = 1;
1309 
1310 	return n;
1311 #undef C
1312 }
1313 
1314 /**
1315  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1316  * @first: first sk_buff of the msg
1317  */
1318 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1319 {
1320 	struct sk_buff *n;
1321 
1322 	n = alloc_skb(0, GFP_ATOMIC);
1323 	if (!n)
1324 		return NULL;
1325 
1326 	n->len = first->len;
1327 	n->data_len = first->len;
1328 	n->truesize = first->truesize;
1329 
1330 	skb_shinfo(n)->frag_list = first;
1331 
1332 	__copy_skb_header(n, first);
1333 	n->destructor = NULL;
1334 
1335 	return n;
1336 }
1337 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1338 
1339 /**
1340  *	skb_morph	-	morph one skb into another
1341  *	@dst: the skb to receive the contents
1342  *	@src: the skb to supply the contents
1343  *
1344  *	This is identical to skb_clone except that the target skb is
1345  *	supplied by the user.
1346  *
1347  *	The target skb is returned upon exit.
1348  */
1349 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1350 {
1351 	skb_release_all(dst, SKB_CONSUMED);
1352 	return __skb_clone(dst, src);
1353 }
1354 EXPORT_SYMBOL_GPL(skb_morph);
1355 
1356 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1357 {
1358 	unsigned long max_pg, num_pg, new_pg, old_pg;
1359 	struct user_struct *user;
1360 
1361 	if (capable(CAP_IPC_LOCK) || !size)
1362 		return 0;
1363 
1364 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1365 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1366 	user = mmp->user ? : current_user();
1367 
1368 	old_pg = atomic_long_read(&user->locked_vm);
1369 	do {
1370 		new_pg = old_pg + num_pg;
1371 		if (new_pg > max_pg)
1372 			return -ENOBUFS;
1373 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1374 
1375 	if (!mmp->user) {
1376 		mmp->user = get_uid(user);
1377 		mmp->num_pg = num_pg;
1378 	} else {
1379 		mmp->num_pg += num_pg;
1380 	}
1381 
1382 	return 0;
1383 }
1384 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1385 
1386 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1387 {
1388 	if (mmp->user) {
1389 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1390 		free_uid(mmp->user);
1391 	}
1392 }
1393 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1394 
1395 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1396 {
1397 	struct ubuf_info_msgzc *uarg;
1398 	struct sk_buff *skb;
1399 
1400 	WARN_ON_ONCE(!in_task());
1401 
1402 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1403 	if (!skb)
1404 		return NULL;
1405 
1406 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1407 	uarg = (void *)skb->cb;
1408 	uarg->mmp.user = NULL;
1409 
1410 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1411 		kfree_skb(skb);
1412 		return NULL;
1413 	}
1414 
1415 	uarg->ubuf.callback = msg_zerocopy_callback;
1416 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1417 	uarg->len = 1;
1418 	uarg->bytelen = size;
1419 	uarg->zerocopy = 1;
1420 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1421 	refcount_set(&uarg->ubuf.refcnt, 1);
1422 	sock_hold(sk);
1423 
1424 	return &uarg->ubuf;
1425 }
1426 
1427 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1428 {
1429 	return container_of((void *)uarg, struct sk_buff, cb);
1430 }
1431 
1432 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1433 				       struct ubuf_info *uarg)
1434 {
1435 	if (uarg) {
1436 		struct ubuf_info_msgzc *uarg_zc;
1437 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1438 		u32 bytelen, next;
1439 
1440 		/* there might be non MSG_ZEROCOPY users */
1441 		if (uarg->callback != msg_zerocopy_callback)
1442 			return NULL;
1443 
1444 		/* realloc only when socket is locked (TCP, UDP cork),
1445 		 * so uarg->len and sk_zckey access is serialized
1446 		 */
1447 		if (!sock_owned_by_user(sk)) {
1448 			WARN_ON_ONCE(1);
1449 			return NULL;
1450 		}
1451 
1452 		uarg_zc = uarg_to_msgzc(uarg);
1453 		bytelen = uarg_zc->bytelen + size;
1454 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1455 			/* TCP can create new skb to attach new uarg */
1456 			if (sk->sk_type == SOCK_STREAM)
1457 				goto new_alloc;
1458 			return NULL;
1459 		}
1460 
1461 		next = (u32)atomic_read(&sk->sk_zckey);
1462 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1463 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1464 				return NULL;
1465 			uarg_zc->len++;
1466 			uarg_zc->bytelen = bytelen;
1467 			atomic_set(&sk->sk_zckey, ++next);
1468 
1469 			/* no extra ref when appending to datagram (MSG_MORE) */
1470 			if (sk->sk_type == SOCK_STREAM)
1471 				net_zcopy_get(uarg);
1472 
1473 			return uarg;
1474 		}
1475 	}
1476 
1477 new_alloc:
1478 	return msg_zerocopy_alloc(sk, size);
1479 }
1480 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1481 
1482 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1483 {
1484 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1485 	u32 old_lo, old_hi;
1486 	u64 sum_len;
1487 
1488 	old_lo = serr->ee.ee_info;
1489 	old_hi = serr->ee.ee_data;
1490 	sum_len = old_hi - old_lo + 1ULL + len;
1491 
1492 	if (sum_len >= (1ULL << 32))
1493 		return false;
1494 
1495 	if (lo != old_hi + 1)
1496 		return false;
1497 
1498 	serr->ee.ee_data += len;
1499 	return true;
1500 }
1501 
1502 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1503 {
1504 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1505 	struct sock_exterr_skb *serr;
1506 	struct sock *sk = skb->sk;
1507 	struct sk_buff_head *q;
1508 	unsigned long flags;
1509 	bool is_zerocopy;
1510 	u32 lo, hi;
1511 	u16 len;
1512 
1513 	mm_unaccount_pinned_pages(&uarg->mmp);
1514 
1515 	/* if !len, there was only 1 call, and it was aborted
1516 	 * so do not queue a completion notification
1517 	 */
1518 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1519 		goto release;
1520 
1521 	len = uarg->len;
1522 	lo = uarg->id;
1523 	hi = uarg->id + len - 1;
1524 	is_zerocopy = uarg->zerocopy;
1525 
1526 	serr = SKB_EXT_ERR(skb);
1527 	memset(serr, 0, sizeof(*serr));
1528 	serr->ee.ee_errno = 0;
1529 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1530 	serr->ee.ee_data = hi;
1531 	serr->ee.ee_info = lo;
1532 	if (!is_zerocopy)
1533 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1534 
1535 	q = &sk->sk_error_queue;
1536 	spin_lock_irqsave(&q->lock, flags);
1537 	tail = skb_peek_tail(q);
1538 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1539 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1540 		__skb_queue_tail(q, skb);
1541 		skb = NULL;
1542 	}
1543 	spin_unlock_irqrestore(&q->lock, flags);
1544 
1545 	sk_error_report(sk);
1546 
1547 release:
1548 	consume_skb(skb);
1549 	sock_put(sk);
1550 }
1551 
1552 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1553 			   bool success)
1554 {
1555 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1556 
1557 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1558 
1559 	if (refcount_dec_and_test(&uarg->refcnt))
1560 		__msg_zerocopy_callback(uarg_zc);
1561 }
1562 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1563 
1564 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1565 {
1566 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1567 
1568 	atomic_dec(&sk->sk_zckey);
1569 	uarg_to_msgzc(uarg)->len--;
1570 
1571 	if (have_uref)
1572 		msg_zerocopy_callback(NULL, uarg, true);
1573 }
1574 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1575 
1576 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1577 			     struct msghdr *msg, int len,
1578 			     struct ubuf_info *uarg)
1579 {
1580 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1581 	int err, orig_len = skb->len;
1582 
1583 	/* An skb can only point to one uarg. This edge case happens when
1584 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1585 	 */
1586 	if (orig_uarg && uarg != orig_uarg)
1587 		return -EEXIST;
1588 
1589 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1590 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1591 		struct sock *save_sk = skb->sk;
1592 
1593 		/* Streams do not free skb on error. Reset to prev state. */
1594 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1595 		skb->sk = sk;
1596 		___pskb_trim(skb, orig_len);
1597 		skb->sk = save_sk;
1598 		return err;
1599 	}
1600 
1601 	skb_zcopy_set(skb, uarg, NULL);
1602 	return skb->len - orig_len;
1603 }
1604 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1605 
1606 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1607 {
1608 	int i;
1609 
1610 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1611 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1612 		skb_frag_ref(skb, i);
1613 }
1614 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1615 
1616 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1617 			      gfp_t gfp_mask)
1618 {
1619 	if (skb_zcopy(orig)) {
1620 		if (skb_zcopy(nskb)) {
1621 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1622 			if (!gfp_mask) {
1623 				WARN_ON_ONCE(1);
1624 				return -ENOMEM;
1625 			}
1626 			if (skb_uarg(nskb) == skb_uarg(orig))
1627 				return 0;
1628 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1629 				return -EIO;
1630 		}
1631 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1632 	}
1633 	return 0;
1634 }
1635 
1636 /**
1637  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1638  *	@skb: the skb to modify
1639  *	@gfp_mask: allocation priority
1640  *
1641  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1642  *	It will copy all frags into kernel and drop the reference
1643  *	to userspace pages.
1644  *
1645  *	If this function is called from an interrupt gfp_mask() must be
1646  *	%GFP_ATOMIC.
1647  *
1648  *	Returns 0 on success or a negative error code on failure
1649  *	to allocate kernel memory to copy to.
1650  */
1651 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1652 {
1653 	int num_frags = skb_shinfo(skb)->nr_frags;
1654 	struct page *page, *head = NULL;
1655 	int i, new_frags;
1656 	u32 d_off;
1657 
1658 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1659 		return -EINVAL;
1660 
1661 	if (!num_frags)
1662 		goto release;
1663 
1664 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1665 	for (i = 0; i < new_frags; i++) {
1666 		page = alloc_page(gfp_mask);
1667 		if (!page) {
1668 			while (head) {
1669 				struct page *next = (struct page *)page_private(head);
1670 				put_page(head);
1671 				head = next;
1672 			}
1673 			return -ENOMEM;
1674 		}
1675 		set_page_private(page, (unsigned long)head);
1676 		head = page;
1677 	}
1678 
1679 	page = head;
1680 	d_off = 0;
1681 	for (i = 0; i < num_frags; i++) {
1682 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1683 		u32 p_off, p_len, copied;
1684 		struct page *p;
1685 		u8 *vaddr;
1686 
1687 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1688 				      p, p_off, p_len, copied) {
1689 			u32 copy, done = 0;
1690 			vaddr = kmap_atomic(p);
1691 
1692 			while (done < p_len) {
1693 				if (d_off == PAGE_SIZE) {
1694 					d_off = 0;
1695 					page = (struct page *)page_private(page);
1696 				}
1697 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1698 				memcpy(page_address(page) + d_off,
1699 				       vaddr + p_off + done, copy);
1700 				done += copy;
1701 				d_off += copy;
1702 			}
1703 			kunmap_atomic(vaddr);
1704 		}
1705 	}
1706 
1707 	/* skb frags release userspace buffers */
1708 	for (i = 0; i < num_frags; i++)
1709 		skb_frag_unref(skb, i);
1710 
1711 	/* skb frags point to kernel buffers */
1712 	for (i = 0; i < new_frags - 1; i++) {
1713 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1714 		head = (struct page *)page_private(head);
1715 	}
1716 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1717 	skb_shinfo(skb)->nr_frags = new_frags;
1718 
1719 release:
1720 	skb_zcopy_clear(skb, false);
1721 	return 0;
1722 }
1723 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1724 
1725 /**
1726  *	skb_clone	-	duplicate an sk_buff
1727  *	@skb: buffer to clone
1728  *	@gfp_mask: allocation priority
1729  *
1730  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1731  *	copies share the same packet data but not structure. The new
1732  *	buffer has a reference count of 1. If the allocation fails the
1733  *	function returns %NULL otherwise the new buffer is returned.
1734  *
1735  *	If this function is called from an interrupt gfp_mask() must be
1736  *	%GFP_ATOMIC.
1737  */
1738 
1739 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1740 {
1741 	struct sk_buff_fclones *fclones = container_of(skb,
1742 						       struct sk_buff_fclones,
1743 						       skb1);
1744 	struct sk_buff *n;
1745 
1746 	if (skb_orphan_frags(skb, gfp_mask))
1747 		return NULL;
1748 
1749 	if (skb->fclone == SKB_FCLONE_ORIG &&
1750 	    refcount_read(&fclones->fclone_ref) == 1) {
1751 		n = &fclones->skb2;
1752 		refcount_set(&fclones->fclone_ref, 2);
1753 		n->fclone = SKB_FCLONE_CLONE;
1754 	} else {
1755 		if (skb_pfmemalloc(skb))
1756 			gfp_mask |= __GFP_MEMALLOC;
1757 
1758 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1759 		if (!n)
1760 			return NULL;
1761 
1762 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1763 	}
1764 
1765 	return __skb_clone(n, skb);
1766 }
1767 EXPORT_SYMBOL(skb_clone);
1768 
1769 void skb_headers_offset_update(struct sk_buff *skb, int off)
1770 {
1771 	/* Only adjust this if it actually is csum_start rather than csum */
1772 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1773 		skb->csum_start += off;
1774 	/* {transport,network,mac}_header and tail are relative to skb->head */
1775 	skb->transport_header += off;
1776 	skb->network_header   += off;
1777 	if (skb_mac_header_was_set(skb))
1778 		skb->mac_header += off;
1779 	skb->inner_transport_header += off;
1780 	skb->inner_network_header += off;
1781 	skb->inner_mac_header += off;
1782 }
1783 EXPORT_SYMBOL(skb_headers_offset_update);
1784 
1785 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1786 {
1787 	__copy_skb_header(new, old);
1788 
1789 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1790 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1791 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1792 }
1793 EXPORT_SYMBOL(skb_copy_header);
1794 
1795 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1796 {
1797 	if (skb_pfmemalloc(skb))
1798 		return SKB_ALLOC_RX;
1799 	return 0;
1800 }
1801 
1802 /**
1803  *	skb_copy	-	create private copy of an sk_buff
1804  *	@skb: buffer to copy
1805  *	@gfp_mask: allocation priority
1806  *
1807  *	Make a copy of both an &sk_buff and its data. This is used when the
1808  *	caller wishes to modify the data and needs a private copy of the
1809  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1810  *	on success. The returned buffer has a reference count of 1.
1811  *
1812  *	As by-product this function converts non-linear &sk_buff to linear
1813  *	one, so that &sk_buff becomes completely private and caller is allowed
1814  *	to modify all the data of returned buffer. This means that this
1815  *	function is not recommended for use in circumstances when only
1816  *	header is going to be modified. Use pskb_copy() instead.
1817  */
1818 
1819 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1820 {
1821 	int headerlen = skb_headroom(skb);
1822 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1823 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1824 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1825 
1826 	if (!n)
1827 		return NULL;
1828 
1829 	/* Set the data pointer */
1830 	skb_reserve(n, headerlen);
1831 	/* Set the tail pointer and length */
1832 	skb_put(n, skb->len);
1833 
1834 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1835 
1836 	skb_copy_header(n, skb);
1837 	return n;
1838 }
1839 EXPORT_SYMBOL(skb_copy);
1840 
1841 /**
1842  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1843  *	@skb: buffer to copy
1844  *	@headroom: headroom of new skb
1845  *	@gfp_mask: allocation priority
1846  *	@fclone: if true allocate the copy of the skb from the fclone
1847  *	cache instead of the head cache; it is recommended to set this
1848  *	to true for the cases where the copy will likely be cloned
1849  *
1850  *	Make a copy of both an &sk_buff and part of its data, located
1851  *	in header. Fragmented data remain shared. This is used when
1852  *	the caller wishes to modify only header of &sk_buff and needs
1853  *	private copy of the header to alter. Returns %NULL on failure
1854  *	or the pointer to the buffer on success.
1855  *	The returned buffer has a reference count of 1.
1856  */
1857 
1858 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1859 				   gfp_t gfp_mask, bool fclone)
1860 {
1861 	unsigned int size = skb_headlen(skb) + headroom;
1862 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1863 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1864 
1865 	if (!n)
1866 		goto out;
1867 
1868 	/* Set the data pointer */
1869 	skb_reserve(n, headroom);
1870 	/* Set the tail pointer and length */
1871 	skb_put(n, skb_headlen(skb));
1872 	/* Copy the bytes */
1873 	skb_copy_from_linear_data(skb, n->data, n->len);
1874 
1875 	n->truesize += skb->data_len;
1876 	n->data_len  = skb->data_len;
1877 	n->len	     = skb->len;
1878 
1879 	if (skb_shinfo(skb)->nr_frags) {
1880 		int i;
1881 
1882 		if (skb_orphan_frags(skb, gfp_mask) ||
1883 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1884 			kfree_skb(n);
1885 			n = NULL;
1886 			goto out;
1887 		}
1888 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1889 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1890 			skb_frag_ref(skb, i);
1891 		}
1892 		skb_shinfo(n)->nr_frags = i;
1893 	}
1894 
1895 	if (skb_has_frag_list(skb)) {
1896 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1897 		skb_clone_fraglist(n);
1898 	}
1899 
1900 	skb_copy_header(n, skb);
1901 out:
1902 	return n;
1903 }
1904 EXPORT_SYMBOL(__pskb_copy_fclone);
1905 
1906 /**
1907  *	pskb_expand_head - reallocate header of &sk_buff
1908  *	@skb: buffer to reallocate
1909  *	@nhead: room to add at head
1910  *	@ntail: room to add at tail
1911  *	@gfp_mask: allocation priority
1912  *
1913  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1914  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1915  *	reference count of 1. Returns zero in the case of success or error,
1916  *	if expansion failed. In the last case, &sk_buff is not changed.
1917  *
1918  *	All the pointers pointing into skb header may change and must be
1919  *	reloaded after call to this function.
1920  */
1921 
1922 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1923 		     gfp_t gfp_mask)
1924 {
1925 	unsigned int osize = skb_end_offset(skb);
1926 	unsigned int size = osize + nhead + ntail;
1927 	long off;
1928 	u8 *data;
1929 	int i;
1930 
1931 	BUG_ON(nhead < 0);
1932 
1933 	BUG_ON(skb_shared(skb));
1934 
1935 	skb_zcopy_downgrade_managed(skb);
1936 
1937 	if (skb_pfmemalloc(skb))
1938 		gfp_mask |= __GFP_MEMALLOC;
1939 
1940 	size = SKB_DATA_ALIGN(size);
1941 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1942 	size = kmalloc_size_roundup(size);
1943 	data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
1944 	if (!data)
1945 		goto nodata;
1946 	size = SKB_WITH_OVERHEAD(size);
1947 
1948 	/* Copy only real data... and, alas, header. This should be
1949 	 * optimized for the cases when header is void.
1950 	 */
1951 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1952 
1953 	memcpy((struct skb_shared_info *)(data + size),
1954 	       skb_shinfo(skb),
1955 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1956 
1957 	/*
1958 	 * if shinfo is shared we must drop the old head gracefully, but if it
1959 	 * is not we can just drop the old head and let the existing refcount
1960 	 * be since all we did is relocate the values
1961 	 */
1962 	if (skb_cloned(skb)) {
1963 		if (skb_orphan_frags(skb, gfp_mask))
1964 			goto nofrags;
1965 		if (skb_zcopy(skb))
1966 			refcount_inc(&skb_uarg(skb)->refcnt);
1967 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1968 			skb_frag_ref(skb, i);
1969 
1970 		if (skb_has_frag_list(skb))
1971 			skb_clone_fraglist(skb);
1972 
1973 		skb_release_data(skb, SKB_CONSUMED);
1974 	} else {
1975 		skb_free_head(skb);
1976 	}
1977 	off = (data + nhead) - skb->head;
1978 
1979 	skb->head     = data;
1980 	skb->head_frag = 0;
1981 	skb->data    += off;
1982 
1983 	skb_set_end_offset(skb, size);
1984 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1985 	off           = nhead;
1986 #endif
1987 	skb->tail	      += off;
1988 	skb_headers_offset_update(skb, nhead);
1989 	skb->cloned   = 0;
1990 	skb->hdr_len  = 0;
1991 	skb->nohdr    = 0;
1992 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1993 
1994 	skb_metadata_clear(skb);
1995 
1996 	/* It is not generally safe to change skb->truesize.
1997 	 * For the moment, we really care of rx path, or
1998 	 * when skb is orphaned (not attached to a socket).
1999 	 */
2000 	if (!skb->sk || skb->destructor == sock_edemux)
2001 		skb->truesize += size - osize;
2002 
2003 	return 0;
2004 
2005 nofrags:
2006 	kfree(data);
2007 nodata:
2008 	return -ENOMEM;
2009 }
2010 EXPORT_SYMBOL(pskb_expand_head);
2011 
2012 /* Make private copy of skb with writable head and some headroom */
2013 
2014 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2015 {
2016 	struct sk_buff *skb2;
2017 	int delta = headroom - skb_headroom(skb);
2018 
2019 	if (delta <= 0)
2020 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2021 	else {
2022 		skb2 = skb_clone(skb, GFP_ATOMIC);
2023 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2024 					     GFP_ATOMIC)) {
2025 			kfree_skb(skb2);
2026 			skb2 = NULL;
2027 		}
2028 	}
2029 	return skb2;
2030 }
2031 EXPORT_SYMBOL(skb_realloc_headroom);
2032 
2033 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2034 {
2035 	unsigned int saved_end_offset, saved_truesize;
2036 	struct skb_shared_info *shinfo;
2037 	int res;
2038 
2039 	saved_end_offset = skb_end_offset(skb);
2040 	saved_truesize = skb->truesize;
2041 
2042 	res = pskb_expand_head(skb, 0, 0, pri);
2043 	if (res)
2044 		return res;
2045 
2046 	skb->truesize = saved_truesize;
2047 
2048 	if (likely(skb_end_offset(skb) == saved_end_offset))
2049 		return 0;
2050 
2051 	shinfo = skb_shinfo(skb);
2052 
2053 	/* We are about to change back skb->end,
2054 	 * we need to move skb_shinfo() to its new location.
2055 	 */
2056 	memmove(skb->head + saved_end_offset,
2057 		shinfo,
2058 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2059 
2060 	skb_set_end_offset(skb, saved_end_offset);
2061 
2062 	return 0;
2063 }
2064 
2065 /**
2066  *	skb_expand_head - reallocate header of &sk_buff
2067  *	@skb: buffer to reallocate
2068  *	@headroom: needed headroom
2069  *
2070  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2071  *	if possible; copies skb->sk to new skb as needed
2072  *	and frees original skb in case of failures.
2073  *
2074  *	It expect increased headroom and generates warning otherwise.
2075  */
2076 
2077 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2078 {
2079 	int delta = headroom - skb_headroom(skb);
2080 	int osize = skb_end_offset(skb);
2081 	struct sock *sk = skb->sk;
2082 
2083 	if (WARN_ONCE(delta <= 0,
2084 		      "%s is expecting an increase in the headroom", __func__))
2085 		return skb;
2086 
2087 	delta = SKB_DATA_ALIGN(delta);
2088 	/* pskb_expand_head() might crash, if skb is shared. */
2089 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2090 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2091 
2092 		if (unlikely(!nskb))
2093 			goto fail;
2094 
2095 		if (sk)
2096 			skb_set_owner_w(nskb, sk);
2097 		consume_skb(skb);
2098 		skb = nskb;
2099 	}
2100 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2101 		goto fail;
2102 
2103 	if (sk && is_skb_wmem(skb)) {
2104 		delta = skb_end_offset(skb) - osize;
2105 		refcount_add(delta, &sk->sk_wmem_alloc);
2106 		skb->truesize += delta;
2107 	}
2108 	return skb;
2109 
2110 fail:
2111 	kfree_skb(skb);
2112 	return NULL;
2113 }
2114 EXPORT_SYMBOL(skb_expand_head);
2115 
2116 /**
2117  *	skb_copy_expand	-	copy and expand sk_buff
2118  *	@skb: buffer to copy
2119  *	@newheadroom: new free bytes at head
2120  *	@newtailroom: new free bytes at tail
2121  *	@gfp_mask: allocation priority
2122  *
2123  *	Make a copy of both an &sk_buff and its data and while doing so
2124  *	allocate additional space.
2125  *
2126  *	This is used when the caller wishes to modify the data and needs a
2127  *	private copy of the data to alter as well as more space for new fields.
2128  *	Returns %NULL on failure or the pointer to the buffer
2129  *	on success. The returned buffer has a reference count of 1.
2130  *
2131  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2132  *	is called from an interrupt.
2133  */
2134 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2135 				int newheadroom, int newtailroom,
2136 				gfp_t gfp_mask)
2137 {
2138 	/*
2139 	 *	Allocate the copy buffer
2140 	 */
2141 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2142 					gfp_mask, skb_alloc_rx_flag(skb),
2143 					NUMA_NO_NODE);
2144 	int oldheadroom = skb_headroom(skb);
2145 	int head_copy_len, head_copy_off;
2146 
2147 	if (!n)
2148 		return NULL;
2149 
2150 	skb_reserve(n, newheadroom);
2151 
2152 	/* Set the tail pointer and length */
2153 	skb_put(n, skb->len);
2154 
2155 	head_copy_len = oldheadroom;
2156 	head_copy_off = 0;
2157 	if (newheadroom <= head_copy_len)
2158 		head_copy_len = newheadroom;
2159 	else
2160 		head_copy_off = newheadroom - head_copy_len;
2161 
2162 	/* Copy the linear header and data. */
2163 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2164 			     skb->len + head_copy_len));
2165 
2166 	skb_copy_header(n, skb);
2167 
2168 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2169 
2170 	return n;
2171 }
2172 EXPORT_SYMBOL(skb_copy_expand);
2173 
2174 /**
2175  *	__skb_pad		-	zero pad the tail of an skb
2176  *	@skb: buffer to pad
2177  *	@pad: space to pad
2178  *	@free_on_error: free buffer on error
2179  *
2180  *	Ensure that a buffer is followed by a padding area that is zero
2181  *	filled. Used by network drivers which may DMA or transfer data
2182  *	beyond the buffer end onto the wire.
2183  *
2184  *	May return error in out of memory cases. The skb is freed on error
2185  *	if @free_on_error is true.
2186  */
2187 
2188 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2189 {
2190 	int err;
2191 	int ntail;
2192 
2193 	/* If the skbuff is non linear tailroom is always zero.. */
2194 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2195 		memset(skb->data+skb->len, 0, pad);
2196 		return 0;
2197 	}
2198 
2199 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2200 	if (likely(skb_cloned(skb) || ntail > 0)) {
2201 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2202 		if (unlikely(err))
2203 			goto free_skb;
2204 	}
2205 
2206 	/* FIXME: The use of this function with non-linear skb's really needs
2207 	 * to be audited.
2208 	 */
2209 	err = skb_linearize(skb);
2210 	if (unlikely(err))
2211 		goto free_skb;
2212 
2213 	memset(skb->data + skb->len, 0, pad);
2214 	return 0;
2215 
2216 free_skb:
2217 	if (free_on_error)
2218 		kfree_skb(skb);
2219 	return err;
2220 }
2221 EXPORT_SYMBOL(__skb_pad);
2222 
2223 /**
2224  *	pskb_put - add data to the tail of a potentially fragmented buffer
2225  *	@skb: start of the buffer to use
2226  *	@tail: tail fragment of the buffer to use
2227  *	@len: amount of data to add
2228  *
2229  *	This function extends the used data area of the potentially
2230  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2231  *	@skb itself. If this would exceed the total buffer size the kernel
2232  *	will panic. A pointer to the first byte of the extra data is
2233  *	returned.
2234  */
2235 
2236 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2237 {
2238 	if (tail != skb) {
2239 		skb->data_len += len;
2240 		skb->len += len;
2241 	}
2242 	return skb_put(tail, len);
2243 }
2244 EXPORT_SYMBOL_GPL(pskb_put);
2245 
2246 /**
2247  *	skb_put - add data to a buffer
2248  *	@skb: buffer to use
2249  *	@len: amount of data to add
2250  *
2251  *	This function extends the used data area of the buffer. If this would
2252  *	exceed the total buffer size the kernel will panic. A pointer to the
2253  *	first byte of the extra data is returned.
2254  */
2255 void *skb_put(struct sk_buff *skb, unsigned int len)
2256 {
2257 	void *tmp = skb_tail_pointer(skb);
2258 	SKB_LINEAR_ASSERT(skb);
2259 	skb->tail += len;
2260 	skb->len  += len;
2261 	if (unlikely(skb->tail > skb->end))
2262 		skb_over_panic(skb, len, __builtin_return_address(0));
2263 	return tmp;
2264 }
2265 EXPORT_SYMBOL(skb_put);
2266 
2267 /**
2268  *	skb_push - add data to the start of a buffer
2269  *	@skb: buffer to use
2270  *	@len: amount of data to add
2271  *
2272  *	This function extends the used data area of the buffer at the buffer
2273  *	start. If this would exceed the total buffer headroom the kernel will
2274  *	panic. A pointer to the first byte of the extra data is returned.
2275  */
2276 void *skb_push(struct sk_buff *skb, unsigned int len)
2277 {
2278 	skb->data -= len;
2279 	skb->len  += len;
2280 	if (unlikely(skb->data < skb->head))
2281 		skb_under_panic(skb, len, __builtin_return_address(0));
2282 	return skb->data;
2283 }
2284 EXPORT_SYMBOL(skb_push);
2285 
2286 /**
2287  *	skb_pull - remove data from the start of a buffer
2288  *	@skb: buffer to use
2289  *	@len: amount of data to remove
2290  *
2291  *	This function removes data from the start of a buffer, returning
2292  *	the memory to the headroom. A pointer to the next data in the buffer
2293  *	is returned. Once the data has been pulled future pushes will overwrite
2294  *	the old data.
2295  */
2296 void *skb_pull(struct sk_buff *skb, unsigned int len)
2297 {
2298 	return skb_pull_inline(skb, len);
2299 }
2300 EXPORT_SYMBOL(skb_pull);
2301 
2302 /**
2303  *	skb_pull_data - remove data from the start of a buffer returning its
2304  *	original position.
2305  *	@skb: buffer to use
2306  *	@len: amount of data to remove
2307  *
2308  *	This function removes data from the start of a buffer, returning
2309  *	the memory to the headroom. A pointer to the original data in the buffer
2310  *	is returned after checking if there is enough data to pull. Once the
2311  *	data has been pulled future pushes will overwrite the old data.
2312  */
2313 void *skb_pull_data(struct sk_buff *skb, size_t len)
2314 {
2315 	void *data = skb->data;
2316 
2317 	if (skb->len < len)
2318 		return NULL;
2319 
2320 	skb_pull(skb, len);
2321 
2322 	return data;
2323 }
2324 EXPORT_SYMBOL(skb_pull_data);
2325 
2326 /**
2327  *	skb_trim - remove end from a buffer
2328  *	@skb: buffer to alter
2329  *	@len: new length
2330  *
2331  *	Cut the length of a buffer down by removing data from the tail. If
2332  *	the buffer is already under the length specified it is not modified.
2333  *	The skb must be linear.
2334  */
2335 void skb_trim(struct sk_buff *skb, unsigned int len)
2336 {
2337 	if (skb->len > len)
2338 		__skb_trim(skb, len);
2339 }
2340 EXPORT_SYMBOL(skb_trim);
2341 
2342 /* Trims skb to length len. It can change skb pointers.
2343  */
2344 
2345 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2346 {
2347 	struct sk_buff **fragp;
2348 	struct sk_buff *frag;
2349 	int offset = skb_headlen(skb);
2350 	int nfrags = skb_shinfo(skb)->nr_frags;
2351 	int i;
2352 	int err;
2353 
2354 	if (skb_cloned(skb) &&
2355 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2356 		return err;
2357 
2358 	i = 0;
2359 	if (offset >= len)
2360 		goto drop_pages;
2361 
2362 	for (; i < nfrags; i++) {
2363 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2364 
2365 		if (end < len) {
2366 			offset = end;
2367 			continue;
2368 		}
2369 
2370 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2371 
2372 drop_pages:
2373 		skb_shinfo(skb)->nr_frags = i;
2374 
2375 		for (; i < nfrags; i++)
2376 			skb_frag_unref(skb, i);
2377 
2378 		if (skb_has_frag_list(skb))
2379 			skb_drop_fraglist(skb);
2380 		goto done;
2381 	}
2382 
2383 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2384 	     fragp = &frag->next) {
2385 		int end = offset + frag->len;
2386 
2387 		if (skb_shared(frag)) {
2388 			struct sk_buff *nfrag;
2389 
2390 			nfrag = skb_clone(frag, GFP_ATOMIC);
2391 			if (unlikely(!nfrag))
2392 				return -ENOMEM;
2393 
2394 			nfrag->next = frag->next;
2395 			consume_skb(frag);
2396 			frag = nfrag;
2397 			*fragp = frag;
2398 		}
2399 
2400 		if (end < len) {
2401 			offset = end;
2402 			continue;
2403 		}
2404 
2405 		if (end > len &&
2406 		    unlikely((err = pskb_trim(frag, len - offset))))
2407 			return err;
2408 
2409 		if (frag->next)
2410 			skb_drop_list(&frag->next);
2411 		break;
2412 	}
2413 
2414 done:
2415 	if (len > skb_headlen(skb)) {
2416 		skb->data_len -= skb->len - len;
2417 		skb->len       = len;
2418 	} else {
2419 		skb->len       = len;
2420 		skb->data_len  = 0;
2421 		skb_set_tail_pointer(skb, len);
2422 	}
2423 
2424 	if (!skb->sk || skb->destructor == sock_edemux)
2425 		skb_condense(skb);
2426 	return 0;
2427 }
2428 EXPORT_SYMBOL(___pskb_trim);
2429 
2430 /* Note : use pskb_trim_rcsum() instead of calling this directly
2431  */
2432 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2433 {
2434 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2435 		int delta = skb->len - len;
2436 
2437 		skb->csum = csum_block_sub(skb->csum,
2438 					   skb_checksum(skb, len, delta, 0),
2439 					   len);
2440 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2441 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2442 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2443 
2444 		if (offset + sizeof(__sum16) > hdlen)
2445 			return -EINVAL;
2446 	}
2447 	return __pskb_trim(skb, len);
2448 }
2449 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2450 
2451 /**
2452  *	__pskb_pull_tail - advance tail of skb header
2453  *	@skb: buffer to reallocate
2454  *	@delta: number of bytes to advance tail
2455  *
2456  *	The function makes a sense only on a fragmented &sk_buff,
2457  *	it expands header moving its tail forward and copying necessary
2458  *	data from fragmented part.
2459  *
2460  *	&sk_buff MUST have reference count of 1.
2461  *
2462  *	Returns %NULL (and &sk_buff does not change) if pull failed
2463  *	or value of new tail of skb in the case of success.
2464  *
2465  *	All the pointers pointing into skb header may change and must be
2466  *	reloaded after call to this function.
2467  */
2468 
2469 /* Moves tail of skb head forward, copying data from fragmented part,
2470  * when it is necessary.
2471  * 1. It may fail due to malloc failure.
2472  * 2. It may change skb pointers.
2473  *
2474  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2475  */
2476 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2477 {
2478 	/* If skb has not enough free space at tail, get new one
2479 	 * plus 128 bytes for future expansions. If we have enough
2480 	 * room at tail, reallocate without expansion only if skb is cloned.
2481 	 */
2482 	int i, k, eat = (skb->tail + delta) - skb->end;
2483 
2484 	if (eat > 0 || skb_cloned(skb)) {
2485 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2486 				     GFP_ATOMIC))
2487 			return NULL;
2488 	}
2489 
2490 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2491 			     skb_tail_pointer(skb), delta));
2492 
2493 	/* Optimization: no fragments, no reasons to preestimate
2494 	 * size of pulled pages. Superb.
2495 	 */
2496 	if (!skb_has_frag_list(skb))
2497 		goto pull_pages;
2498 
2499 	/* Estimate size of pulled pages. */
2500 	eat = delta;
2501 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2502 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2503 
2504 		if (size >= eat)
2505 			goto pull_pages;
2506 		eat -= size;
2507 	}
2508 
2509 	/* If we need update frag list, we are in troubles.
2510 	 * Certainly, it is possible to add an offset to skb data,
2511 	 * but taking into account that pulling is expected to
2512 	 * be very rare operation, it is worth to fight against
2513 	 * further bloating skb head and crucify ourselves here instead.
2514 	 * Pure masohism, indeed. 8)8)
2515 	 */
2516 	if (eat) {
2517 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2518 		struct sk_buff *clone = NULL;
2519 		struct sk_buff *insp = NULL;
2520 
2521 		do {
2522 			if (list->len <= eat) {
2523 				/* Eaten as whole. */
2524 				eat -= list->len;
2525 				list = list->next;
2526 				insp = list;
2527 			} else {
2528 				/* Eaten partially. */
2529 				if (skb_is_gso(skb) && !list->head_frag &&
2530 				    skb_headlen(list))
2531 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2532 
2533 				if (skb_shared(list)) {
2534 					/* Sucks! We need to fork list. :-( */
2535 					clone = skb_clone(list, GFP_ATOMIC);
2536 					if (!clone)
2537 						return NULL;
2538 					insp = list->next;
2539 					list = clone;
2540 				} else {
2541 					/* This may be pulled without
2542 					 * problems. */
2543 					insp = list;
2544 				}
2545 				if (!pskb_pull(list, eat)) {
2546 					kfree_skb(clone);
2547 					return NULL;
2548 				}
2549 				break;
2550 			}
2551 		} while (eat);
2552 
2553 		/* Free pulled out fragments. */
2554 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2555 			skb_shinfo(skb)->frag_list = list->next;
2556 			consume_skb(list);
2557 		}
2558 		/* And insert new clone at head. */
2559 		if (clone) {
2560 			clone->next = list;
2561 			skb_shinfo(skb)->frag_list = clone;
2562 		}
2563 	}
2564 	/* Success! Now we may commit changes to skb data. */
2565 
2566 pull_pages:
2567 	eat = delta;
2568 	k = 0;
2569 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2570 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2571 
2572 		if (size <= eat) {
2573 			skb_frag_unref(skb, i);
2574 			eat -= size;
2575 		} else {
2576 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2577 
2578 			*frag = skb_shinfo(skb)->frags[i];
2579 			if (eat) {
2580 				skb_frag_off_add(frag, eat);
2581 				skb_frag_size_sub(frag, eat);
2582 				if (!i)
2583 					goto end;
2584 				eat = 0;
2585 			}
2586 			k++;
2587 		}
2588 	}
2589 	skb_shinfo(skb)->nr_frags = k;
2590 
2591 end:
2592 	skb->tail     += delta;
2593 	skb->data_len -= delta;
2594 
2595 	if (!skb->data_len)
2596 		skb_zcopy_clear(skb, false);
2597 
2598 	return skb_tail_pointer(skb);
2599 }
2600 EXPORT_SYMBOL(__pskb_pull_tail);
2601 
2602 /**
2603  *	skb_copy_bits - copy bits from skb to kernel buffer
2604  *	@skb: source skb
2605  *	@offset: offset in source
2606  *	@to: destination buffer
2607  *	@len: number of bytes to copy
2608  *
2609  *	Copy the specified number of bytes from the source skb to the
2610  *	destination buffer.
2611  *
2612  *	CAUTION ! :
2613  *		If its prototype is ever changed,
2614  *		check arch/{*}/net/{*}.S files,
2615  *		since it is called from BPF assembly code.
2616  */
2617 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2618 {
2619 	int start = skb_headlen(skb);
2620 	struct sk_buff *frag_iter;
2621 	int i, copy;
2622 
2623 	if (offset > (int)skb->len - len)
2624 		goto fault;
2625 
2626 	/* Copy header. */
2627 	if ((copy = start - offset) > 0) {
2628 		if (copy > len)
2629 			copy = len;
2630 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2631 		if ((len -= copy) == 0)
2632 			return 0;
2633 		offset += copy;
2634 		to     += copy;
2635 	}
2636 
2637 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2638 		int end;
2639 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2640 
2641 		WARN_ON(start > offset + len);
2642 
2643 		end = start + skb_frag_size(f);
2644 		if ((copy = end - offset) > 0) {
2645 			u32 p_off, p_len, copied;
2646 			struct page *p;
2647 			u8 *vaddr;
2648 
2649 			if (copy > len)
2650 				copy = len;
2651 
2652 			skb_frag_foreach_page(f,
2653 					      skb_frag_off(f) + offset - start,
2654 					      copy, p, p_off, p_len, copied) {
2655 				vaddr = kmap_atomic(p);
2656 				memcpy(to + copied, vaddr + p_off, p_len);
2657 				kunmap_atomic(vaddr);
2658 			}
2659 
2660 			if ((len -= copy) == 0)
2661 				return 0;
2662 			offset += copy;
2663 			to     += copy;
2664 		}
2665 		start = end;
2666 	}
2667 
2668 	skb_walk_frags(skb, frag_iter) {
2669 		int end;
2670 
2671 		WARN_ON(start > offset + len);
2672 
2673 		end = start + frag_iter->len;
2674 		if ((copy = end - offset) > 0) {
2675 			if (copy > len)
2676 				copy = len;
2677 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2678 				goto fault;
2679 			if ((len -= copy) == 0)
2680 				return 0;
2681 			offset += copy;
2682 			to     += copy;
2683 		}
2684 		start = end;
2685 	}
2686 
2687 	if (!len)
2688 		return 0;
2689 
2690 fault:
2691 	return -EFAULT;
2692 }
2693 EXPORT_SYMBOL(skb_copy_bits);
2694 
2695 /*
2696  * Callback from splice_to_pipe(), if we need to release some pages
2697  * at the end of the spd in case we error'ed out in filling the pipe.
2698  */
2699 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2700 {
2701 	put_page(spd->pages[i]);
2702 }
2703 
2704 static struct page *linear_to_page(struct page *page, unsigned int *len,
2705 				   unsigned int *offset,
2706 				   struct sock *sk)
2707 {
2708 	struct page_frag *pfrag = sk_page_frag(sk);
2709 
2710 	if (!sk_page_frag_refill(sk, pfrag))
2711 		return NULL;
2712 
2713 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2714 
2715 	memcpy(page_address(pfrag->page) + pfrag->offset,
2716 	       page_address(page) + *offset, *len);
2717 	*offset = pfrag->offset;
2718 	pfrag->offset += *len;
2719 
2720 	return pfrag->page;
2721 }
2722 
2723 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2724 			     struct page *page,
2725 			     unsigned int offset)
2726 {
2727 	return	spd->nr_pages &&
2728 		spd->pages[spd->nr_pages - 1] == page &&
2729 		(spd->partial[spd->nr_pages - 1].offset +
2730 		 spd->partial[spd->nr_pages - 1].len == offset);
2731 }
2732 
2733 /*
2734  * Fill page/offset/length into spd, if it can hold more pages.
2735  */
2736 static bool spd_fill_page(struct splice_pipe_desc *spd,
2737 			  struct pipe_inode_info *pipe, struct page *page,
2738 			  unsigned int *len, unsigned int offset,
2739 			  bool linear,
2740 			  struct sock *sk)
2741 {
2742 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2743 		return true;
2744 
2745 	if (linear) {
2746 		page = linear_to_page(page, len, &offset, sk);
2747 		if (!page)
2748 			return true;
2749 	}
2750 	if (spd_can_coalesce(spd, page, offset)) {
2751 		spd->partial[spd->nr_pages - 1].len += *len;
2752 		return false;
2753 	}
2754 	get_page(page);
2755 	spd->pages[spd->nr_pages] = page;
2756 	spd->partial[spd->nr_pages].len = *len;
2757 	spd->partial[spd->nr_pages].offset = offset;
2758 	spd->nr_pages++;
2759 
2760 	return false;
2761 }
2762 
2763 static bool __splice_segment(struct page *page, unsigned int poff,
2764 			     unsigned int plen, unsigned int *off,
2765 			     unsigned int *len,
2766 			     struct splice_pipe_desc *spd, bool linear,
2767 			     struct sock *sk,
2768 			     struct pipe_inode_info *pipe)
2769 {
2770 	if (!*len)
2771 		return true;
2772 
2773 	/* skip this segment if already processed */
2774 	if (*off >= plen) {
2775 		*off -= plen;
2776 		return false;
2777 	}
2778 
2779 	/* ignore any bits we already processed */
2780 	poff += *off;
2781 	plen -= *off;
2782 	*off = 0;
2783 
2784 	do {
2785 		unsigned int flen = min(*len, plen);
2786 
2787 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2788 				  linear, sk))
2789 			return true;
2790 		poff += flen;
2791 		plen -= flen;
2792 		*len -= flen;
2793 	} while (*len && plen);
2794 
2795 	return false;
2796 }
2797 
2798 /*
2799  * Map linear and fragment data from the skb to spd. It reports true if the
2800  * pipe is full or if we already spliced the requested length.
2801  */
2802 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2803 			      unsigned int *offset, unsigned int *len,
2804 			      struct splice_pipe_desc *spd, struct sock *sk)
2805 {
2806 	int seg;
2807 	struct sk_buff *iter;
2808 
2809 	/* map the linear part :
2810 	 * If skb->head_frag is set, this 'linear' part is backed by a
2811 	 * fragment, and if the head is not shared with any clones then
2812 	 * we can avoid a copy since we own the head portion of this page.
2813 	 */
2814 	if (__splice_segment(virt_to_page(skb->data),
2815 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2816 			     skb_headlen(skb),
2817 			     offset, len, spd,
2818 			     skb_head_is_locked(skb),
2819 			     sk, pipe))
2820 		return true;
2821 
2822 	/*
2823 	 * then map the fragments
2824 	 */
2825 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2826 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2827 
2828 		if (__splice_segment(skb_frag_page(f),
2829 				     skb_frag_off(f), skb_frag_size(f),
2830 				     offset, len, spd, false, sk, pipe))
2831 			return true;
2832 	}
2833 
2834 	skb_walk_frags(skb, iter) {
2835 		if (*offset >= iter->len) {
2836 			*offset -= iter->len;
2837 			continue;
2838 		}
2839 		/* __skb_splice_bits() only fails if the output has no room
2840 		 * left, so no point in going over the frag_list for the error
2841 		 * case.
2842 		 */
2843 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2844 			return true;
2845 	}
2846 
2847 	return false;
2848 }
2849 
2850 /*
2851  * Map data from the skb to a pipe. Should handle both the linear part,
2852  * the fragments, and the frag list.
2853  */
2854 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2855 		    struct pipe_inode_info *pipe, unsigned int tlen,
2856 		    unsigned int flags)
2857 {
2858 	struct partial_page partial[MAX_SKB_FRAGS];
2859 	struct page *pages[MAX_SKB_FRAGS];
2860 	struct splice_pipe_desc spd = {
2861 		.pages = pages,
2862 		.partial = partial,
2863 		.nr_pages_max = MAX_SKB_FRAGS,
2864 		.ops = &nosteal_pipe_buf_ops,
2865 		.spd_release = sock_spd_release,
2866 	};
2867 	int ret = 0;
2868 
2869 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2870 
2871 	if (spd.nr_pages)
2872 		ret = splice_to_pipe(pipe, &spd);
2873 
2874 	return ret;
2875 }
2876 EXPORT_SYMBOL_GPL(skb_splice_bits);
2877 
2878 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2879 			    struct kvec *vec, size_t num, size_t size)
2880 {
2881 	struct socket *sock = sk->sk_socket;
2882 
2883 	if (!sock)
2884 		return -EINVAL;
2885 	return kernel_sendmsg(sock, msg, vec, num, size);
2886 }
2887 
2888 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2889 			     size_t size, int flags)
2890 {
2891 	struct socket *sock = sk->sk_socket;
2892 
2893 	if (!sock)
2894 		return -EINVAL;
2895 	return kernel_sendpage(sock, page, offset, size, flags);
2896 }
2897 
2898 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2899 			    struct kvec *vec, size_t num, size_t size);
2900 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2901 			     size_t size, int flags);
2902 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2903 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2904 {
2905 	unsigned int orig_len = len;
2906 	struct sk_buff *head = skb;
2907 	unsigned short fragidx;
2908 	int slen, ret;
2909 
2910 do_frag_list:
2911 
2912 	/* Deal with head data */
2913 	while (offset < skb_headlen(skb) && len) {
2914 		struct kvec kv;
2915 		struct msghdr msg;
2916 
2917 		slen = min_t(int, len, skb_headlen(skb) - offset);
2918 		kv.iov_base = skb->data + offset;
2919 		kv.iov_len = slen;
2920 		memset(&msg, 0, sizeof(msg));
2921 		msg.msg_flags = MSG_DONTWAIT;
2922 
2923 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2924 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2925 		if (ret <= 0)
2926 			goto error;
2927 
2928 		offset += ret;
2929 		len -= ret;
2930 	}
2931 
2932 	/* All the data was skb head? */
2933 	if (!len)
2934 		goto out;
2935 
2936 	/* Make offset relative to start of frags */
2937 	offset -= skb_headlen(skb);
2938 
2939 	/* Find where we are in frag list */
2940 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2941 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2942 
2943 		if (offset < skb_frag_size(frag))
2944 			break;
2945 
2946 		offset -= skb_frag_size(frag);
2947 	}
2948 
2949 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2950 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2951 
2952 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2953 
2954 		while (slen) {
2955 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2956 					      sendpage_unlocked, sk,
2957 					      skb_frag_page(frag),
2958 					      skb_frag_off(frag) + offset,
2959 					      slen, MSG_DONTWAIT);
2960 			if (ret <= 0)
2961 				goto error;
2962 
2963 			len -= ret;
2964 			offset += ret;
2965 			slen -= ret;
2966 		}
2967 
2968 		offset = 0;
2969 	}
2970 
2971 	if (len) {
2972 		/* Process any frag lists */
2973 
2974 		if (skb == head) {
2975 			if (skb_has_frag_list(skb)) {
2976 				skb = skb_shinfo(skb)->frag_list;
2977 				goto do_frag_list;
2978 			}
2979 		} else if (skb->next) {
2980 			skb = skb->next;
2981 			goto do_frag_list;
2982 		}
2983 	}
2984 
2985 out:
2986 	return orig_len - len;
2987 
2988 error:
2989 	return orig_len == len ? ret : orig_len - len;
2990 }
2991 
2992 /* Send skb data on a socket. Socket must be locked. */
2993 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2994 			 int len)
2995 {
2996 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2997 			       kernel_sendpage_locked);
2998 }
2999 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3000 
3001 /* Send skb data on a socket. Socket must be unlocked. */
3002 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3003 {
3004 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
3005 			       sendpage_unlocked);
3006 }
3007 
3008 /**
3009  *	skb_store_bits - store bits from kernel buffer to skb
3010  *	@skb: destination buffer
3011  *	@offset: offset in destination
3012  *	@from: source buffer
3013  *	@len: number of bytes to copy
3014  *
3015  *	Copy the specified number of bytes from the source buffer to the
3016  *	destination skb.  This function handles all the messy bits of
3017  *	traversing fragment lists and such.
3018  */
3019 
3020 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3021 {
3022 	int start = skb_headlen(skb);
3023 	struct sk_buff *frag_iter;
3024 	int i, copy;
3025 
3026 	if (offset > (int)skb->len - len)
3027 		goto fault;
3028 
3029 	if ((copy = start - offset) > 0) {
3030 		if (copy > len)
3031 			copy = len;
3032 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3033 		if ((len -= copy) == 0)
3034 			return 0;
3035 		offset += copy;
3036 		from += copy;
3037 	}
3038 
3039 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3040 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3041 		int end;
3042 
3043 		WARN_ON(start > offset + len);
3044 
3045 		end = start + skb_frag_size(frag);
3046 		if ((copy = end - offset) > 0) {
3047 			u32 p_off, p_len, copied;
3048 			struct page *p;
3049 			u8 *vaddr;
3050 
3051 			if (copy > len)
3052 				copy = len;
3053 
3054 			skb_frag_foreach_page(frag,
3055 					      skb_frag_off(frag) + offset - start,
3056 					      copy, p, p_off, p_len, copied) {
3057 				vaddr = kmap_atomic(p);
3058 				memcpy(vaddr + p_off, from + copied, p_len);
3059 				kunmap_atomic(vaddr);
3060 			}
3061 
3062 			if ((len -= copy) == 0)
3063 				return 0;
3064 			offset += copy;
3065 			from += copy;
3066 		}
3067 		start = end;
3068 	}
3069 
3070 	skb_walk_frags(skb, frag_iter) {
3071 		int end;
3072 
3073 		WARN_ON(start > offset + len);
3074 
3075 		end = start + frag_iter->len;
3076 		if ((copy = end - offset) > 0) {
3077 			if (copy > len)
3078 				copy = len;
3079 			if (skb_store_bits(frag_iter, offset - start,
3080 					   from, copy))
3081 				goto fault;
3082 			if ((len -= copy) == 0)
3083 				return 0;
3084 			offset += copy;
3085 			from += copy;
3086 		}
3087 		start = end;
3088 	}
3089 	if (!len)
3090 		return 0;
3091 
3092 fault:
3093 	return -EFAULT;
3094 }
3095 EXPORT_SYMBOL(skb_store_bits);
3096 
3097 /* Checksum skb data. */
3098 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3099 		      __wsum csum, const struct skb_checksum_ops *ops)
3100 {
3101 	int start = skb_headlen(skb);
3102 	int i, copy = start - offset;
3103 	struct sk_buff *frag_iter;
3104 	int pos = 0;
3105 
3106 	/* Checksum header. */
3107 	if (copy > 0) {
3108 		if (copy > len)
3109 			copy = len;
3110 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3111 				       skb->data + offset, copy, csum);
3112 		if ((len -= copy) == 0)
3113 			return csum;
3114 		offset += copy;
3115 		pos	= copy;
3116 	}
3117 
3118 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3119 		int end;
3120 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3121 
3122 		WARN_ON(start > offset + len);
3123 
3124 		end = start + skb_frag_size(frag);
3125 		if ((copy = end - offset) > 0) {
3126 			u32 p_off, p_len, copied;
3127 			struct page *p;
3128 			__wsum csum2;
3129 			u8 *vaddr;
3130 
3131 			if (copy > len)
3132 				copy = len;
3133 
3134 			skb_frag_foreach_page(frag,
3135 					      skb_frag_off(frag) + offset - start,
3136 					      copy, p, p_off, p_len, copied) {
3137 				vaddr = kmap_atomic(p);
3138 				csum2 = INDIRECT_CALL_1(ops->update,
3139 							csum_partial_ext,
3140 							vaddr + p_off, p_len, 0);
3141 				kunmap_atomic(vaddr);
3142 				csum = INDIRECT_CALL_1(ops->combine,
3143 						       csum_block_add_ext, csum,
3144 						       csum2, pos, p_len);
3145 				pos += p_len;
3146 			}
3147 
3148 			if (!(len -= copy))
3149 				return csum;
3150 			offset += copy;
3151 		}
3152 		start = end;
3153 	}
3154 
3155 	skb_walk_frags(skb, frag_iter) {
3156 		int end;
3157 
3158 		WARN_ON(start > offset + len);
3159 
3160 		end = start + frag_iter->len;
3161 		if ((copy = end - offset) > 0) {
3162 			__wsum csum2;
3163 			if (copy > len)
3164 				copy = len;
3165 			csum2 = __skb_checksum(frag_iter, offset - start,
3166 					       copy, 0, ops);
3167 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3168 					       csum, csum2, pos, copy);
3169 			if ((len -= copy) == 0)
3170 				return csum;
3171 			offset += copy;
3172 			pos    += copy;
3173 		}
3174 		start = end;
3175 	}
3176 	BUG_ON(len);
3177 
3178 	return csum;
3179 }
3180 EXPORT_SYMBOL(__skb_checksum);
3181 
3182 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3183 		    int len, __wsum csum)
3184 {
3185 	const struct skb_checksum_ops ops = {
3186 		.update  = csum_partial_ext,
3187 		.combine = csum_block_add_ext,
3188 	};
3189 
3190 	return __skb_checksum(skb, offset, len, csum, &ops);
3191 }
3192 EXPORT_SYMBOL(skb_checksum);
3193 
3194 /* Both of above in one bottle. */
3195 
3196 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3197 				    u8 *to, int len)
3198 {
3199 	int start = skb_headlen(skb);
3200 	int i, copy = start - offset;
3201 	struct sk_buff *frag_iter;
3202 	int pos = 0;
3203 	__wsum csum = 0;
3204 
3205 	/* Copy header. */
3206 	if (copy > 0) {
3207 		if (copy > len)
3208 			copy = len;
3209 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3210 						 copy);
3211 		if ((len -= copy) == 0)
3212 			return csum;
3213 		offset += copy;
3214 		to     += copy;
3215 		pos	= copy;
3216 	}
3217 
3218 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3219 		int end;
3220 
3221 		WARN_ON(start > offset + len);
3222 
3223 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3224 		if ((copy = end - offset) > 0) {
3225 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3226 			u32 p_off, p_len, copied;
3227 			struct page *p;
3228 			__wsum csum2;
3229 			u8 *vaddr;
3230 
3231 			if (copy > len)
3232 				copy = len;
3233 
3234 			skb_frag_foreach_page(frag,
3235 					      skb_frag_off(frag) + offset - start,
3236 					      copy, p, p_off, p_len, copied) {
3237 				vaddr = kmap_atomic(p);
3238 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3239 								  to + copied,
3240 								  p_len);
3241 				kunmap_atomic(vaddr);
3242 				csum = csum_block_add(csum, csum2, pos);
3243 				pos += p_len;
3244 			}
3245 
3246 			if (!(len -= copy))
3247 				return csum;
3248 			offset += copy;
3249 			to     += copy;
3250 		}
3251 		start = end;
3252 	}
3253 
3254 	skb_walk_frags(skb, frag_iter) {
3255 		__wsum csum2;
3256 		int end;
3257 
3258 		WARN_ON(start > offset + len);
3259 
3260 		end = start + frag_iter->len;
3261 		if ((copy = end - offset) > 0) {
3262 			if (copy > len)
3263 				copy = len;
3264 			csum2 = skb_copy_and_csum_bits(frag_iter,
3265 						       offset - start,
3266 						       to, copy);
3267 			csum = csum_block_add(csum, csum2, pos);
3268 			if ((len -= copy) == 0)
3269 				return csum;
3270 			offset += copy;
3271 			to     += copy;
3272 			pos    += copy;
3273 		}
3274 		start = end;
3275 	}
3276 	BUG_ON(len);
3277 	return csum;
3278 }
3279 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3280 
3281 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3282 {
3283 	__sum16 sum;
3284 
3285 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3286 	/* See comments in __skb_checksum_complete(). */
3287 	if (likely(!sum)) {
3288 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3289 		    !skb->csum_complete_sw)
3290 			netdev_rx_csum_fault(skb->dev, skb);
3291 	}
3292 	if (!skb_shared(skb))
3293 		skb->csum_valid = !sum;
3294 	return sum;
3295 }
3296 EXPORT_SYMBOL(__skb_checksum_complete_head);
3297 
3298 /* This function assumes skb->csum already holds pseudo header's checksum,
3299  * which has been changed from the hardware checksum, for example, by
3300  * __skb_checksum_validate_complete(). And, the original skb->csum must
3301  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3302  *
3303  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3304  * zero. The new checksum is stored back into skb->csum unless the skb is
3305  * shared.
3306  */
3307 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3308 {
3309 	__wsum csum;
3310 	__sum16 sum;
3311 
3312 	csum = skb_checksum(skb, 0, skb->len, 0);
3313 
3314 	sum = csum_fold(csum_add(skb->csum, csum));
3315 	/* This check is inverted, because we already knew the hardware
3316 	 * checksum is invalid before calling this function. So, if the
3317 	 * re-computed checksum is valid instead, then we have a mismatch
3318 	 * between the original skb->csum and skb_checksum(). This means either
3319 	 * the original hardware checksum is incorrect or we screw up skb->csum
3320 	 * when moving skb->data around.
3321 	 */
3322 	if (likely(!sum)) {
3323 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3324 		    !skb->csum_complete_sw)
3325 			netdev_rx_csum_fault(skb->dev, skb);
3326 	}
3327 
3328 	if (!skb_shared(skb)) {
3329 		/* Save full packet checksum */
3330 		skb->csum = csum;
3331 		skb->ip_summed = CHECKSUM_COMPLETE;
3332 		skb->csum_complete_sw = 1;
3333 		skb->csum_valid = !sum;
3334 	}
3335 
3336 	return sum;
3337 }
3338 EXPORT_SYMBOL(__skb_checksum_complete);
3339 
3340 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3341 {
3342 	net_warn_ratelimited(
3343 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3344 		__func__);
3345 	return 0;
3346 }
3347 
3348 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3349 				       int offset, int len)
3350 {
3351 	net_warn_ratelimited(
3352 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3353 		__func__);
3354 	return 0;
3355 }
3356 
3357 static const struct skb_checksum_ops default_crc32c_ops = {
3358 	.update  = warn_crc32c_csum_update,
3359 	.combine = warn_crc32c_csum_combine,
3360 };
3361 
3362 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3363 	&default_crc32c_ops;
3364 EXPORT_SYMBOL(crc32c_csum_stub);
3365 
3366  /**
3367  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3368  *	@from: source buffer
3369  *
3370  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3371  *	into skb_zerocopy().
3372  */
3373 unsigned int
3374 skb_zerocopy_headlen(const struct sk_buff *from)
3375 {
3376 	unsigned int hlen = 0;
3377 
3378 	if (!from->head_frag ||
3379 	    skb_headlen(from) < L1_CACHE_BYTES ||
3380 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3381 		hlen = skb_headlen(from);
3382 		if (!hlen)
3383 			hlen = from->len;
3384 	}
3385 
3386 	if (skb_has_frag_list(from))
3387 		hlen = from->len;
3388 
3389 	return hlen;
3390 }
3391 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3392 
3393 /**
3394  *	skb_zerocopy - Zero copy skb to skb
3395  *	@to: destination buffer
3396  *	@from: source buffer
3397  *	@len: number of bytes to copy from source buffer
3398  *	@hlen: size of linear headroom in destination buffer
3399  *
3400  *	Copies up to `len` bytes from `from` to `to` by creating references
3401  *	to the frags in the source buffer.
3402  *
3403  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3404  *	headroom in the `to` buffer.
3405  *
3406  *	Return value:
3407  *	0: everything is OK
3408  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3409  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3410  */
3411 int
3412 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3413 {
3414 	int i, j = 0;
3415 	int plen = 0; /* length of skb->head fragment */
3416 	int ret;
3417 	struct page *page;
3418 	unsigned int offset;
3419 
3420 	BUG_ON(!from->head_frag && !hlen);
3421 
3422 	/* dont bother with small payloads */
3423 	if (len <= skb_tailroom(to))
3424 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3425 
3426 	if (hlen) {
3427 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3428 		if (unlikely(ret))
3429 			return ret;
3430 		len -= hlen;
3431 	} else {
3432 		plen = min_t(int, skb_headlen(from), len);
3433 		if (plen) {
3434 			page = virt_to_head_page(from->head);
3435 			offset = from->data - (unsigned char *)page_address(page);
3436 			__skb_fill_page_desc(to, 0, page, offset, plen);
3437 			get_page(page);
3438 			j = 1;
3439 			len -= plen;
3440 		}
3441 	}
3442 
3443 	skb_len_add(to, len + plen);
3444 
3445 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3446 		skb_tx_error(from);
3447 		return -ENOMEM;
3448 	}
3449 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3450 
3451 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3452 		int size;
3453 
3454 		if (!len)
3455 			break;
3456 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3457 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3458 					len);
3459 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3460 		len -= size;
3461 		skb_frag_ref(to, j);
3462 		j++;
3463 	}
3464 	skb_shinfo(to)->nr_frags = j;
3465 
3466 	return 0;
3467 }
3468 EXPORT_SYMBOL_GPL(skb_zerocopy);
3469 
3470 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3471 {
3472 	__wsum csum;
3473 	long csstart;
3474 
3475 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3476 		csstart = skb_checksum_start_offset(skb);
3477 	else
3478 		csstart = skb_headlen(skb);
3479 
3480 	BUG_ON(csstart > skb_headlen(skb));
3481 
3482 	skb_copy_from_linear_data(skb, to, csstart);
3483 
3484 	csum = 0;
3485 	if (csstart != skb->len)
3486 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3487 					      skb->len - csstart);
3488 
3489 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3490 		long csstuff = csstart + skb->csum_offset;
3491 
3492 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3493 	}
3494 }
3495 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3496 
3497 /**
3498  *	skb_dequeue - remove from the head of the queue
3499  *	@list: list to dequeue from
3500  *
3501  *	Remove the head of the list. The list lock is taken so the function
3502  *	may be used safely with other locking list functions. The head item is
3503  *	returned or %NULL if the list is empty.
3504  */
3505 
3506 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3507 {
3508 	unsigned long flags;
3509 	struct sk_buff *result;
3510 
3511 	spin_lock_irqsave(&list->lock, flags);
3512 	result = __skb_dequeue(list);
3513 	spin_unlock_irqrestore(&list->lock, flags);
3514 	return result;
3515 }
3516 EXPORT_SYMBOL(skb_dequeue);
3517 
3518 /**
3519  *	skb_dequeue_tail - remove from the tail of the queue
3520  *	@list: list to dequeue from
3521  *
3522  *	Remove the tail of the list. The list lock is taken so the function
3523  *	may be used safely with other locking list functions. The tail item is
3524  *	returned or %NULL if the list is empty.
3525  */
3526 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3527 {
3528 	unsigned long flags;
3529 	struct sk_buff *result;
3530 
3531 	spin_lock_irqsave(&list->lock, flags);
3532 	result = __skb_dequeue_tail(list);
3533 	spin_unlock_irqrestore(&list->lock, flags);
3534 	return result;
3535 }
3536 EXPORT_SYMBOL(skb_dequeue_tail);
3537 
3538 /**
3539  *	skb_queue_purge - empty a list
3540  *	@list: list to empty
3541  *
3542  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3543  *	the list and one reference dropped. This function takes the list
3544  *	lock and is atomic with respect to other list locking functions.
3545  */
3546 void skb_queue_purge(struct sk_buff_head *list)
3547 {
3548 	struct sk_buff *skb;
3549 	while ((skb = skb_dequeue(list)) != NULL)
3550 		kfree_skb(skb);
3551 }
3552 EXPORT_SYMBOL(skb_queue_purge);
3553 
3554 /**
3555  *	skb_rbtree_purge - empty a skb rbtree
3556  *	@root: root of the rbtree to empty
3557  *	Return value: the sum of truesizes of all purged skbs.
3558  *
3559  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3560  *	the list and one reference dropped. This function does not take
3561  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3562  *	out-of-order queue is protected by the socket lock).
3563  */
3564 unsigned int skb_rbtree_purge(struct rb_root *root)
3565 {
3566 	struct rb_node *p = rb_first(root);
3567 	unsigned int sum = 0;
3568 
3569 	while (p) {
3570 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3571 
3572 		p = rb_next(p);
3573 		rb_erase(&skb->rbnode, root);
3574 		sum += skb->truesize;
3575 		kfree_skb(skb);
3576 	}
3577 	return sum;
3578 }
3579 
3580 /**
3581  *	skb_queue_head - queue a buffer at the list head
3582  *	@list: list to use
3583  *	@newsk: buffer to queue
3584  *
3585  *	Queue a buffer at the start of the list. This function takes the
3586  *	list lock and can be used safely with other locking &sk_buff functions
3587  *	safely.
3588  *
3589  *	A buffer cannot be placed on two lists at the same time.
3590  */
3591 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3592 {
3593 	unsigned long flags;
3594 
3595 	spin_lock_irqsave(&list->lock, flags);
3596 	__skb_queue_head(list, newsk);
3597 	spin_unlock_irqrestore(&list->lock, flags);
3598 }
3599 EXPORT_SYMBOL(skb_queue_head);
3600 
3601 /**
3602  *	skb_queue_tail - queue a buffer at the list tail
3603  *	@list: list to use
3604  *	@newsk: buffer to queue
3605  *
3606  *	Queue a buffer at the tail of the list. This function takes the
3607  *	list lock and can be used safely with other locking &sk_buff functions
3608  *	safely.
3609  *
3610  *	A buffer cannot be placed on two lists at the same time.
3611  */
3612 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3613 {
3614 	unsigned long flags;
3615 
3616 	spin_lock_irqsave(&list->lock, flags);
3617 	__skb_queue_tail(list, newsk);
3618 	spin_unlock_irqrestore(&list->lock, flags);
3619 }
3620 EXPORT_SYMBOL(skb_queue_tail);
3621 
3622 /**
3623  *	skb_unlink	-	remove a buffer from a list
3624  *	@skb: buffer to remove
3625  *	@list: list to use
3626  *
3627  *	Remove a packet from a list. The list locks are taken and this
3628  *	function is atomic with respect to other list locked calls
3629  *
3630  *	You must know what list the SKB is on.
3631  */
3632 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3633 {
3634 	unsigned long flags;
3635 
3636 	spin_lock_irqsave(&list->lock, flags);
3637 	__skb_unlink(skb, list);
3638 	spin_unlock_irqrestore(&list->lock, flags);
3639 }
3640 EXPORT_SYMBOL(skb_unlink);
3641 
3642 /**
3643  *	skb_append	-	append a buffer
3644  *	@old: buffer to insert after
3645  *	@newsk: buffer to insert
3646  *	@list: list to use
3647  *
3648  *	Place a packet after a given packet in a list. The list locks are taken
3649  *	and this function is atomic with respect to other list locked calls.
3650  *	A buffer cannot be placed on two lists at the same time.
3651  */
3652 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3653 {
3654 	unsigned long flags;
3655 
3656 	spin_lock_irqsave(&list->lock, flags);
3657 	__skb_queue_after(list, old, newsk);
3658 	spin_unlock_irqrestore(&list->lock, flags);
3659 }
3660 EXPORT_SYMBOL(skb_append);
3661 
3662 static inline void skb_split_inside_header(struct sk_buff *skb,
3663 					   struct sk_buff* skb1,
3664 					   const u32 len, const int pos)
3665 {
3666 	int i;
3667 
3668 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3669 					 pos - len);
3670 	/* And move data appendix as is. */
3671 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3672 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3673 
3674 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3675 	skb_shinfo(skb)->nr_frags  = 0;
3676 	skb1->data_len		   = skb->data_len;
3677 	skb1->len		   += skb1->data_len;
3678 	skb->data_len		   = 0;
3679 	skb->len		   = len;
3680 	skb_set_tail_pointer(skb, len);
3681 }
3682 
3683 static inline void skb_split_no_header(struct sk_buff *skb,
3684 				       struct sk_buff* skb1,
3685 				       const u32 len, int pos)
3686 {
3687 	int i, k = 0;
3688 	const int nfrags = skb_shinfo(skb)->nr_frags;
3689 
3690 	skb_shinfo(skb)->nr_frags = 0;
3691 	skb1->len		  = skb1->data_len = skb->len - len;
3692 	skb->len		  = len;
3693 	skb->data_len		  = len - pos;
3694 
3695 	for (i = 0; i < nfrags; i++) {
3696 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3697 
3698 		if (pos + size > len) {
3699 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3700 
3701 			if (pos < len) {
3702 				/* Split frag.
3703 				 * We have two variants in this case:
3704 				 * 1. Move all the frag to the second
3705 				 *    part, if it is possible. F.e.
3706 				 *    this approach is mandatory for TUX,
3707 				 *    where splitting is expensive.
3708 				 * 2. Split is accurately. We make this.
3709 				 */
3710 				skb_frag_ref(skb, i);
3711 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3712 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3713 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3714 				skb_shinfo(skb)->nr_frags++;
3715 			}
3716 			k++;
3717 		} else
3718 			skb_shinfo(skb)->nr_frags++;
3719 		pos += size;
3720 	}
3721 	skb_shinfo(skb1)->nr_frags = k;
3722 }
3723 
3724 /**
3725  * skb_split - Split fragmented skb to two parts at length len.
3726  * @skb: the buffer to split
3727  * @skb1: the buffer to receive the second part
3728  * @len: new length for skb
3729  */
3730 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3731 {
3732 	int pos = skb_headlen(skb);
3733 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3734 
3735 	skb_zcopy_downgrade_managed(skb);
3736 
3737 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3738 	skb_zerocopy_clone(skb1, skb, 0);
3739 	if (len < pos)	/* Split line is inside header. */
3740 		skb_split_inside_header(skb, skb1, len, pos);
3741 	else		/* Second chunk has no header, nothing to copy. */
3742 		skb_split_no_header(skb, skb1, len, pos);
3743 }
3744 EXPORT_SYMBOL(skb_split);
3745 
3746 /* Shifting from/to a cloned skb is a no-go.
3747  *
3748  * Caller cannot keep skb_shinfo related pointers past calling here!
3749  */
3750 static int skb_prepare_for_shift(struct sk_buff *skb)
3751 {
3752 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3753 }
3754 
3755 /**
3756  * skb_shift - Shifts paged data partially from skb to another
3757  * @tgt: buffer into which tail data gets added
3758  * @skb: buffer from which the paged data comes from
3759  * @shiftlen: shift up to this many bytes
3760  *
3761  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3762  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3763  * It's up to caller to free skb if everything was shifted.
3764  *
3765  * If @tgt runs out of frags, the whole operation is aborted.
3766  *
3767  * Skb cannot include anything else but paged data while tgt is allowed
3768  * to have non-paged data as well.
3769  *
3770  * TODO: full sized shift could be optimized but that would need
3771  * specialized skb free'er to handle frags without up-to-date nr_frags.
3772  */
3773 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3774 {
3775 	int from, to, merge, todo;
3776 	skb_frag_t *fragfrom, *fragto;
3777 
3778 	BUG_ON(shiftlen > skb->len);
3779 
3780 	if (skb_headlen(skb))
3781 		return 0;
3782 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3783 		return 0;
3784 
3785 	todo = shiftlen;
3786 	from = 0;
3787 	to = skb_shinfo(tgt)->nr_frags;
3788 	fragfrom = &skb_shinfo(skb)->frags[from];
3789 
3790 	/* Actual merge is delayed until the point when we know we can
3791 	 * commit all, so that we don't have to undo partial changes
3792 	 */
3793 	if (!to ||
3794 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3795 			      skb_frag_off(fragfrom))) {
3796 		merge = -1;
3797 	} else {
3798 		merge = to - 1;
3799 
3800 		todo -= skb_frag_size(fragfrom);
3801 		if (todo < 0) {
3802 			if (skb_prepare_for_shift(skb) ||
3803 			    skb_prepare_for_shift(tgt))
3804 				return 0;
3805 
3806 			/* All previous frag pointers might be stale! */
3807 			fragfrom = &skb_shinfo(skb)->frags[from];
3808 			fragto = &skb_shinfo(tgt)->frags[merge];
3809 
3810 			skb_frag_size_add(fragto, shiftlen);
3811 			skb_frag_size_sub(fragfrom, shiftlen);
3812 			skb_frag_off_add(fragfrom, shiftlen);
3813 
3814 			goto onlymerged;
3815 		}
3816 
3817 		from++;
3818 	}
3819 
3820 	/* Skip full, not-fitting skb to avoid expensive operations */
3821 	if ((shiftlen == skb->len) &&
3822 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3823 		return 0;
3824 
3825 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3826 		return 0;
3827 
3828 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3829 		if (to == MAX_SKB_FRAGS)
3830 			return 0;
3831 
3832 		fragfrom = &skb_shinfo(skb)->frags[from];
3833 		fragto = &skb_shinfo(tgt)->frags[to];
3834 
3835 		if (todo >= skb_frag_size(fragfrom)) {
3836 			*fragto = *fragfrom;
3837 			todo -= skb_frag_size(fragfrom);
3838 			from++;
3839 			to++;
3840 
3841 		} else {
3842 			__skb_frag_ref(fragfrom);
3843 			skb_frag_page_copy(fragto, fragfrom);
3844 			skb_frag_off_copy(fragto, fragfrom);
3845 			skb_frag_size_set(fragto, todo);
3846 
3847 			skb_frag_off_add(fragfrom, todo);
3848 			skb_frag_size_sub(fragfrom, todo);
3849 			todo = 0;
3850 
3851 			to++;
3852 			break;
3853 		}
3854 	}
3855 
3856 	/* Ready to "commit" this state change to tgt */
3857 	skb_shinfo(tgt)->nr_frags = to;
3858 
3859 	if (merge >= 0) {
3860 		fragfrom = &skb_shinfo(skb)->frags[0];
3861 		fragto = &skb_shinfo(tgt)->frags[merge];
3862 
3863 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3864 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3865 	}
3866 
3867 	/* Reposition in the original skb */
3868 	to = 0;
3869 	while (from < skb_shinfo(skb)->nr_frags)
3870 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3871 	skb_shinfo(skb)->nr_frags = to;
3872 
3873 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3874 
3875 onlymerged:
3876 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3877 	 * the other hand might need it if it needs to be resent
3878 	 */
3879 	tgt->ip_summed = CHECKSUM_PARTIAL;
3880 	skb->ip_summed = CHECKSUM_PARTIAL;
3881 
3882 	skb_len_add(skb, -shiftlen);
3883 	skb_len_add(tgt, shiftlen);
3884 
3885 	return shiftlen;
3886 }
3887 
3888 /**
3889  * skb_prepare_seq_read - Prepare a sequential read of skb data
3890  * @skb: the buffer to read
3891  * @from: lower offset of data to be read
3892  * @to: upper offset of data to be read
3893  * @st: state variable
3894  *
3895  * Initializes the specified state variable. Must be called before
3896  * invoking skb_seq_read() for the first time.
3897  */
3898 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3899 			  unsigned int to, struct skb_seq_state *st)
3900 {
3901 	st->lower_offset = from;
3902 	st->upper_offset = to;
3903 	st->root_skb = st->cur_skb = skb;
3904 	st->frag_idx = st->stepped_offset = 0;
3905 	st->frag_data = NULL;
3906 	st->frag_off = 0;
3907 }
3908 EXPORT_SYMBOL(skb_prepare_seq_read);
3909 
3910 /**
3911  * skb_seq_read - Sequentially read skb data
3912  * @consumed: number of bytes consumed by the caller so far
3913  * @data: destination pointer for data to be returned
3914  * @st: state variable
3915  *
3916  * Reads a block of skb data at @consumed relative to the
3917  * lower offset specified to skb_prepare_seq_read(). Assigns
3918  * the head of the data block to @data and returns the length
3919  * of the block or 0 if the end of the skb data or the upper
3920  * offset has been reached.
3921  *
3922  * The caller is not required to consume all of the data
3923  * returned, i.e. @consumed is typically set to the number
3924  * of bytes already consumed and the next call to
3925  * skb_seq_read() will return the remaining part of the block.
3926  *
3927  * Note 1: The size of each block of data returned can be arbitrary,
3928  *       this limitation is the cost for zerocopy sequential
3929  *       reads of potentially non linear data.
3930  *
3931  * Note 2: Fragment lists within fragments are not implemented
3932  *       at the moment, state->root_skb could be replaced with
3933  *       a stack for this purpose.
3934  */
3935 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3936 			  struct skb_seq_state *st)
3937 {
3938 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3939 	skb_frag_t *frag;
3940 
3941 	if (unlikely(abs_offset >= st->upper_offset)) {
3942 		if (st->frag_data) {
3943 			kunmap_atomic(st->frag_data);
3944 			st->frag_data = NULL;
3945 		}
3946 		return 0;
3947 	}
3948 
3949 next_skb:
3950 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3951 
3952 	if (abs_offset < block_limit && !st->frag_data) {
3953 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3954 		return block_limit - abs_offset;
3955 	}
3956 
3957 	if (st->frag_idx == 0 && !st->frag_data)
3958 		st->stepped_offset += skb_headlen(st->cur_skb);
3959 
3960 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3961 		unsigned int pg_idx, pg_off, pg_sz;
3962 
3963 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3964 
3965 		pg_idx = 0;
3966 		pg_off = skb_frag_off(frag);
3967 		pg_sz = skb_frag_size(frag);
3968 
3969 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3970 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3971 			pg_off = offset_in_page(pg_off + st->frag_off);
3972 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3973 						    PAGE_SIZE - pg_off);
3974 		}
3975 
3976 		block_limit = pg_sz + st->stepped_offset;
3977 		if (abs_offset < block_limit) {
3978 			if (!st->frag_data)
3979 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3980 
3981 			*data = (u8 *)st->frag_data + pg_off +
3982 				(abs_offset - st->stepped_offset);
3983 
3984 			return block_limit - abs_offset;
3985 		}
3986 
3987 		if (st->frag_data) {
3988 			kunmap_atomic(st->frag_data);
3989 			st->frag_data = NULL;
3990 		}
3991 
3992 		st->stepped_offset += pg_sz;
3993 		st->frag_off += pg_sz;
3994 		if (st->frag_off == skb_frag_size(frag)) {
3995 			st->frag_off = 0;
3996 			st->frag_idx++;
3997 		}
3998 	}
3999 
4000 	if (st->frag_data) {
4001 		kunmap_atomic(st->frag_data);
4002 		st->frag_data = NULL;
4003 	}
4004 
4005 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4006 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4007 		st->frag_idx = 0;
4008 		goto next_skb;
4009 	} else if (st->cur_skb->next) {
4010 		st->cur_skb = st->cur_skb->next;
4011 		st->frag_idx = 0;
4012 		goto next_skb;
4013 	}
4014 
4015 	return 0;
4016 }
4017 EXPORT_SYMBOL(skb_seq_read);
4018 
4019 /**
4020  * skb_abort_seq_read - Abort a sequential read of skb data
4021  * @st: state variable
4022  *
4023  * Must be called if skb_seq_read() was not called until it
4024  * returned 0.
4025  */
4026 void skb_abort_seq_read(struct skb_seq_state *st)
4027 {
4028 	if (st->frag_data)
4029 		kunmap_atomic(st->frag_data);
4030 }
4031 EXPORT_SYMBOL(skb_abort_seq_read);
4032 
4033 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4034 
4035 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4036 					  struct ts_config *conf,
4037 					  struct ts_state *state)
4038 {
4039 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4040 }
4041 
4042 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4043 {
4044 	skb_abort_seq_read(TS_SKB_CB(state));
4045 }
4046 
4047 /**
4048  * skb_find_text - Find a text pattern in skb data
4049  * @skb: the buffer to look in
4050  * @from: search offset
4051  * @to: search limit
4052  * @config: textsearch configuration
4053  *
4054  * Finds a pattern in the skb data according to the specified
4055  * textsearch configuration. Use textsearch_next() to retrieve
4056  * subsequent occurrences of the pattern. Returns the offset
4057  * to the first occurrence or UINT_MAX if no match was found.
4058  */
4059 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4060 			   unsigned int to, struct ts_config *config)
4061 {
4062 	struct ts_state state;
4063 	unsigned int ret;
4064 
4065 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4066 
4067 	config->get_next_block = skb_ts_get_next_block;
4068 	config->finish = skb_ts_finish;
4069 
4070 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4071 
4072 	ret = textsearch_find(config, &state);
4073 	return (ret <= to - from ? ret : UINT_MAX);
4074 }
4075 EXPORT_SYMBOL(skb_find_text);
4076 
4077 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4078 			 int offset, size_t size)
4079 {
4080 	int i = skb_shinfo(skb)->nr_frags;
4081 
4082 	if (skb_can_coalesce(skb, i, page, offset)) {
4083 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4084 	} else if (i < MAX_SKB_FRAGS) {
4085 		skb_zcopy_downgrade_managed(skb);
4086 		get_page(page);
4087 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4088 	} else {
4089 		return -EMSGSIZE;
4090 	}
4091 
4092 	return 0;
4093 }
4094 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4095 
4096 /**
4097  *	skb_pull_rcsum - pull skb and update receive checksum
4098  *	@skb: buffer to update
4099  *	@len: length of data pulled
4100  *
4101  *	This function performs an skb_pull on the packet and updates
4102  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4103  *	receive path processing instead of skb_pull unless you know
4104  *	that the checksum difference is zero (e.g., a valid IP header)
4105  *	or you are setting ip_summed to CHECKSUM_NONE.
4106  */
4107 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4108 {
4109 	unsigned char *data = skb->data;
4110 
4111 	BUG_ON(len > skb->len);
4112 	__skb_pull(skb, len);
4113 	skb_postpull_rcsum(skb, data, len);
4114 	return skb->data;
4115 }
4116 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4117 
4118 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4119 {
4120 	skb_frag_t head_frag;
4121 	struct page *page;
4122 
4123 	page = virt_to_head_page(frag_skb->head);
4124 	__skb_frag_set_page(&head_frag, page);
4125 	skb_frag_off_set(&head_frag, frag_skb->data -
4126 			 (unsigned char *)page_address(page));
4127 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
4128 	return head_frag;
4129 }
4130 
4131 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4132 				 netdev_features_t features,
4133 				 unsigned int offset)
4134 {
4135 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4136 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4137 	unsigned int delta_truesize = 0;
4138 	unsigned int delta_len = 0;
4139 	struct sk_buff *tail = NULL;
4140 	struct sk_buff *nskb, *tmp;
4141 	int len_diff, err;
4142 
4143 	skb_push(skb, -skb_network_offset(skb) + offset);
4144 
4145 	skb_shinfo(skb)->frag_list = NULL;
4146 
4147 	do {
4148 		nskb = list_skb;
4149 		list_skb = list_skb->next;
4150 
4151 		err = 0;
4152 		delta_truesize += nskb->truesize;
4153 		if (skb_shared(nskb)) {
4154 			tmp = skb_clone(nskb, GFP_ATOMIC);
4155 			if (tmp) {
4156 				consume_skb(nskb);
4157 				nskb = tmp;
4158 				err = skb_unclone(nskb, GFP_ATOMIC);
4159 			} else {
4160 				err = -ENOMEM;
4161 			}
4162 		}
4163 
4164 		if (!tail)
4165 			skb->next = nskb;
4166 		else
4167 			tail->next = nskb;
4168 
4169 		if (unlikely(err)) {
4170 			nskb->next = list_skb;
4171 			goto err_linearize;
4172 		}
4173 
4174 		tail = nskb;
4175 
4176 		delta_len += nskb->len;
4177 
4178 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4179 
4180 		skb_release_head_state(nskb);
4181 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4182 		__copy_skb_header(nskb, skb);
4183 
4184 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4185 		nskb->transport_header += len_diff;
4186 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4187 						 nskb->data - tnl_hlen,
4188 						 offset + tnl_hlen);
4189 
4190 		if (skb_needs_linearize(nskb, features) &&
4191 		    __skb_linearize(nskb))
4192 			goto err_linearize;
4193 
4194 	} while (list_skb);
4195 
4196 	skb->truesize = skb->truesize - delta_truesize;
4197 	skb->data_len = skb->data_len - delta_len;
4198 	skb->len = skb->len - delta_len;
4199 
4200 	skb_gso_reset(skb);
4201 
4202 	skb->prev = tail;
4203 
4204 	if (skb_needs_linearize(skb, features) &&
4205 	    __skb_linearize(skb))
4206 		goto err_linearize;
4207 
4208 	skb_get(skb);
4209 
4210 	return skb;
4211 
4212 err_linearize:
4213 	kfree_skb_list(skb->next);
4214 	skb->next = NULL;
4215 	return ERR_PTR(-ENOMEM);
4216 }
4217 EXPORT_SYMBOL_GPL(skb_segment_list);
4218 
4219 /**
4220  *	skb_segment - Perform protocol segmentation on skb.
4221  *	@head_skb: buffer to segment
4222  *	@features: features for the output path (see dev->features)
4223  *
4224  *	This function performs segmentation on the given skb.  It returns
4225  *	a pointer to the first in a list of new skbs for the segments.
4226  *	In case of error it returns ERR_PTR(err).
4227  */
4228 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4229 			    netdev_features_t features)
4230 {
4231 	struct sk_buff *segs = NULL;
4232 	struct sk_buff *tail = NULL;
4233 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4234 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
4235 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4236 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4237 	struct sk_buff *frag_skb = head_skb;
4238 	unsigned int offset = doffset;
4239 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4240 	unsigned int partial_segs = 0;
4241 	unsigned int headroom;
4242 	unsigned int len = head_skb->len;
4243 	__be16 proto;
4244 	bool csum, sg;
4245 	int nfrags = skb_shinfo(head_skb)->nr_frags;
4246 	int err = -ENOMEM;
4247 	int i = 0;
4248 	int pos;
4249 
4250 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4251 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4252 		struct sk_buff *check_skb;
4253 
4254 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4255 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4256 				/* gso_size is untrusted, and we have a frag_list with
4257 				 * a linear non head_frag item.
4258 				 *
4259 				 * If head_skb's headlen does not fit requested gso_size,
4260 				 * it means that the frag_list members do NOT terminate
4261 				 * on exact gso_size boundaries. Hence we cannot perform
4262 				 * skb_frag_t page sharing. Therefore we must fallback to
4263 				 * copying the frag_list skbs; we do so by disabling SG.
4264 				 */
4265 				features &= ~NETIF_F_SG;
4266 				break;
4267 			}
4268 		}
4269 	}
4270 
4271 	__skb_push(head_skb, doffset);
4272 	proto = skb_network_protocol(head_skb, NULL);
4273 	if (unlikely(!proto))
4274 		return ERR_PTR(-EINVAL);
4275 
4276 	sg = !!(features & NETIF_F_SG);
4277 	csum = !!can_checksum_protocol(features, proto);
4278 
4279 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4280 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4281 			struct sk_buff *iter;
4282 			unsigned int frag_len;
4283 
4284 			if (!list_skb ||
4285 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4286 				goto normal;
4287 
4288 			/* If we get here then all the required
4289 			 * GSO features except frag_list are supported.
4290 			 * Try to split the SKB to multiple GSO SKBs
4291 			 * with no frag_list.
4292 			 * Currently we can do that only when the buffers don't
4293 			 * have a linear part and all the buffers except
4294 			 * the last are of the same length.
4295 			 */
4296 			frag_len = list_skb->len;
4297 			skb_walk_frags(head_skb, iter) {
4298 				if (frag_len != iter->len && iter->next)
4299 					goto normal;
4300 				if (skb_headlen(iter) && !iter->head_frag)
4301 					goto normal;
4302 
4303 				len -= iter->len;
4304 			}
4305 
4306 			if (len != frag_len)
4307 				goto normal;
4308 		}
4309 
4310 		/* GSO partial only requires that we trim off any excess that
4311 		 * doesn't fit into an MSS sized block, so take care of that
4312 		 * now.
4313 		 */
4314 		partial_segs = len / mss;
4315 		if (partial_segs > 1)
4316 			mss *= partial_segs;
4317 		else
4318 			partial_segs = 0;
4319 	}
4320 
4321 normal:
4322 	headroom = skb_headroom(head_skb);
4323 	pos = skb_headlen(head_skb);
4324 
4325 	do {
4326 		struct sk_buff *nskb;
4327 		skb_frag_t *nskb_frag;
4328 		int hsize;
4329 		int size;
4330 
4331 		if (unlikely(mss == GSO_BY_FRAGS)) {
4332 			len = list_skb->len;
4333 		} else {
4334 			len = head_skb->len - offset;
4335 			if (len > mss)
4336 				len = mss;
4337 		}
4338 
4339 		hsize = skb_headlen(head_skb) - offset;
4340 
4341 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4342 		    (skb_headlen(list_skb) == len || sg)) {
4343 			BUG_ON(skb_headlen(list_skb) > len);
4344 
4345 			i = 0;
4346 			nfrags = skb_shinfo(list_skb)->nr_frags;
4347 			frag = skb_shinfo(list_skb)->frags;
4348 			frag_skb = list_skb;
4349 			pos += skb_headlen(list_skb);
4350 
4351 			while (pos < offset + len) {
4352 				BUG_ON(i >= nfrags);
4353 
4354 				size = skb_frag_size(frag);
4355 				if (pos + size > offset + len)
4356 					break;
4357 
4358 				i++;
4359 				pos += size;
4360 				frag++;
4361 			}
4362 
4363 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4364 			list_skb = list_skb->next;
4365 
4366 			if (unlikely(!nskb))
4367 				goto err;
4368 
4369 			if (unlikely(pskb_trim(nskb, len))) {
4370 				kfree_skb(nskb);
4371 				goto err;
4372 			}
4373 
4374 			hsize = skb_end_offset(nskb);
4375 			if (skb_cow_head(nskb, doffset + headroom)) {
4376 				kfree_skb(nskb);
4377 				goto err;
4378 			}
4379 
4380 			nskb->truesize += skb_end_offset(nskb) - hsize;
4381 			skb_release_head_state(nskb);
4382 			__skb_push(nskb, doffset);
4383 		} else {
4384 			if (hsize < 0)
4385 				hsize = 0;
4386 			if (hsize > len || !sg)
4387 				hsize = len;
4388 
4389 			nskb = __alloc_skb(hsize + doffset + headroom,
4390 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4391 					   NUMA_NO_NODE);
4392 
4393 			if (unlikely(!nskb))
4394 				goto err;
4395 
4396 			skb_reserve(nskb, headroom);
4397 			__skb_put(nskb, doffset);
4398 		}
4399 
4400 		if (segs)
4401 			tail->next = nskb;
4402 		else
4403 			segs = nskb;
4404 		tail = nskb;
4405 
4406 		__copy_skb_header(nskb, head_skb);
4407 
4408 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4409 		skb_reset_mac_len(nskb);
4410 
4411 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4412 						 nskb->data - tnl_hlen,
4413 						 doffset + tnl_hlen);
4414 
4415 		if (nskb->len == len + doffset)
4416 			goto perform_csum_check;
4417 
4418 		if (!sg) {
4419 			if (!csum) {
4420 				if (!nskb->remcsum_offload)
4421 					nskb->ip_summed = CHECKSUM_NONE;
4422 				SKB_GSO_CB(nskb)->csum =
4423 					skb_copy_and_csum_bits(head_skb, offset,
4424 							       skb_put(nskb,
4425 								       len),
4426 							       len);
4427 				SKB_GSO_CB(nskb)->csum_start =
4428 					skb_headroom(nskb) + doffset;
4429 			} else {
4430 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4431 					goto err;
4432 			}
4433 			continue;
4434 		}
4435 
4436 		nskb_frag = skb_shinfo(nskb)->frags;
4437 
4438 		skb_copy_from_linear_data_offset(head_skb, offset,
4439 						 skb_put(nskb, hsize), hsize);
4440 
4441 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4442 					   SKBFL_SHARED_FRAG;
4443 
4444 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4445 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4446 			goto err;
4447 
4448 		while (pos < offset + len) {
4449 			if (i >= nfrags) {
4450 				i = 0;
4451 				nfrags = skb_shinfo(list_skb)->nr_frags;
4452 				frag = skb_shinfo(list_skb)->frags;
4453 				frag_skb = list_skb;
4454 				if (!skb_headlen(list_skb)) {
4455 					BUG_ON(!nfrags);
4456 				} else {
4457 					BUG_ON(!list_skb->head_frag);
4458 
4459 					/* to make room for head_frag. */
4460 					i--;
4461 					frag--;
4462 				}
4463 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4464 				    skb_zerocopy_clone(nskb, frag_skb,
4465 						       GFP_ATOMIC))
4466 					goto err;
4467 
4468 				list_skb = list_skb->next;
4469 			}
4470 
4471 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4472 				     MAX_SKB_FRAGS)) {
4473 				net_warn_ratelimited(
4474 					"skb_segment: too many frags: %u %u\n",
4475 					pos, mss);
4476 				err = -EINVAL;
4477 				goto err;
4478 			}
4479 
4480 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4481 			__skb_frag_ref(nskb_frag);
4482 			size = skb_frag_size(nskb_frag);
4483 
4484 			if (pos < offset) {
4485 				skb_frag_off_add(nskb_frag, offset - pos);
4486 				skb_frag_size_sub(nskb_frag, offset - pos);
4487 			}
4488 
4489 			skb_shinfo(nskb)->nr_frags++;
4490 
4491 			if (pos + size <= offset + len) {
4492 				i++;
4493 				frag++;
4494 				pos += size;
4495 			} else {
4496 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4497 				goto skip_fraglist;
4498 			}
4499 
4500 			nskb_frag++;
4501 		}
4502 
4503 skip_fraglist:
4504 		nskb->data_len = len - hsize;
4505 		nskb->len += nskb->data_len;
4506 		nskb->truesize += nskb->data_len;
4507 
4508 perform_csum_check:
4509 		if (!csum) {
4510 			if (skb_has_shared_frag(nskb) &&
4511 			    __skb_linearize(nskb))
4512 				goto err;
4513 
4514 			if (!nskb->remcsum_offload)
4515 				nskb->ip_summed = CHECKSUM_NONE;
4516 			SKB_GSO_CB(nskb)->csum =
4517 				skb_checksum(nskb, doffset,
4518 					     nskb->len - doffset, 0);
4519 			SKB_GSO_CB(nskb)->csum_start =
4520 				skb_headroom(nskb) + doffset;
4521 		}
4522 	} while ((offset += len) < head_skb->len);
4523 
4524 	/* Some callers want to get the end of the list.
4525 	 * Put it in segs->prev to avoid walking the list.
4526 	 * (see validate_xmit_skb_list() for example)
4527 	 */
4528 	segs->prev = tail;
4529 
4530 	if (partial_segs) {
4531 		struct sk_buff *iter;
4532 		int type = skb_shinfo(head_skb)->gso_type;
4533 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4534 
4535 		/* Update type to add partial and then remove dodgy if set */
4536 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4537 		type &= ~SKB_GSO_DODGY;
4538 
4539 		/* Update GSO info and prepare to start updating headers on
4540 		 * our way back down the stack of protocols.
4541 		 */
4542 		for (iter = segs; iter; iter = iter->next) {
4543 			skb_shinfo(iter)->gso_size = gso_size;
4544 			skb_shinfo(iter)->gso_segs = partial_segs;
4545 			skb_shinfo(iter)->gso_type = type;
4546 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4547 		}
4548 
4549 		if (tail->len - doffset <= gso_size)
4550 			skb_shinfo(tail)->gso_size = 0;
4551 		else if (tail != segs)
4552 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4553 	}
4554 
4555 	/* Following permits correct backpressure, for protocols
4556 	 * using skb_set_owner_w().
4557 	 * Idea is to tranfert ownership from head_skb to last segment.
4558 	 */
4559 	if (head_skb->destructor == sock_wfree) {
4560 		swap(tail->truesize, head_skb->truesize);
4561 		swap(tail->destructor, head_skb->destructor);
4562 		swap(tail->sk, head_skb->sk);
4563 	}
4564 	return segs;
4565 
4566 err:
4567 	kfree_skb_list(segs);
4568 	return ERR_PTR(err);
4569 }
4570 EXPORT_SYMBOL_GPL(skb_segment);
4571 
4572 #ifdef CONFIG_SKB_EXTENSIONS
4573 #define SKB_EXT_ALIGN_VALUE	8
4574 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4575 
4576 static const u8 skb_ext_type_len[] = {
4577 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4578 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4579 #endif
4580 #ifdef CONFIG_XFRM
4581 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4582 #endif
4583 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4584 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4585 #endif
4586 #if IS_ENABLED(CONFIG_MPTCP)
4587 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4588 #endif
4589 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4590 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4591 #endif
4592 };
4593 
4594 static __always_inline unsigned int skb_ext_total_length(void)
4595 {
4596 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4597 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4598 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4599 #endif
4600 #ifdef CONFIG_XFRM
4601 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4602 #endif
4603 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4604 		skb_ext_type_len[TC_SKB_EXT] +
4605 #endif
4606 #if IS_ENABLED(CONFIG_MPTCP)
4607 		skb_ext_type_len[SKB_EXT_MPTCP] +
4608 #endif
4609 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4610 		skb_ext_type_len[SKB_EXT_MCTP] +
4611 #endif
4612 		0;
4613 }
4614 
4615 static void skb_extensions_init(void)
4616 {
4617 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4618 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4619 
4620 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4621 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4622 					     0,
4623 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4624 					     NULL);
4625 }
4626 #else
4627 static void skb_extensions_init(void) {}
4628 #endif
4629 
4630 void __init skb_init(void)
4631 {
4632 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4633 					      sizeof(struct sk_buff),
4634 					      0,
4635 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4636 					      offsetof(struct sk_buff, cb),
4637 					      sizeof_field(struct sk_buff, cb),
4638 					      NULL);
4639 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4640 						sizeof(struct sk_buff_fclones),
4641 						0,
4642 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4643 						NULL);
4644 	skb_extensions_init();
4645 }
4646 
4647 static int
4648 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4649 	       unsigned int recursion_level)
4650 {
4651 	int start = skb_headlen(skb);
4652 	int i, copy = start - offset;
4653 	struct sk_buff *frag_iter;
4654 	int elt = 0;
4655 
4656 	if (unlikely(recursion_level >= 24))
4657 		return -EMSGSIZE;
4658 
4659 	if (copy > 0) {
4660 		if (copy > len)
4661 			copy = len;
4662 		sg_set_buf(sg, skb->data + offset, copy);
4663 		elt++;
4664 		if ((len -= copy) == 0)
4665 			return elt;
4666 		offset += copy;
4667 	}
4668 
4669 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4670 		int end;
4671 
4672 		WARN_ON(start > offset + len);
4673 
4674 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4675 		if ((copy = end - offset) > 0) {
4676 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4677 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4678 				return -EMSGSIZE;
4679 
4680 			if (copy > len)
4681 				copy = len;
4682 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4683 				    skb_frag_off(frag) + offset - start);
4684 			elt++;
4685 			if (!(len -= copy))
4686 				return elt;
4687 			offset += copy;
4688 		}
4689 		start = end;
4690 	}
4691 
4692 	skb_walk_frags(skb, frag_iter) {
4693 		int end, ret;
4694 
4695 		WARN_ON(start > offset + len);
4696 
4697 		end = start + frag_iter->len;
4698 		if ((copy = end - offset) > 0) {
4699 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4700 				return -EMSGSIZE;
4701 
4702 			if (copy > len)
4703 				copy = len;
4704 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4705 					      copy, recursion_level + 1);
4706 			if (unlikely(ret < 0))
4707 				return ret;
4708 			elt += ret;
4709 			if ((len -= copy) == 0)
4710 				return elt;
4711 			offset += copy;
4712 		}
4713 		start = end;
4714 	}
4715 	BUG_ON(len);
4716 	return elt;
4717 }
4718 
4719 /**
4720  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4721  *	@skb: Socket buffer containing the buffers to be mapped
4722  *	@sg: The scatter-gather list to map into
4723  *	@offset: The offset into the buffer's contents to start mapping
4724  *	@len: Length of buffer space to be mapped
4725  *
4726  *	Fill the specified scatter-gather list with mappings/pointers into a
4727  *	region of the buffer space attached to a socket buffer. Returns either
4728  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4729  *	could not fit.
4730  */
4731 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4732 {
4733 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4734 
4735 	if (nsg <= 0)
4736 		return nsg;
4737 
4738 	sg_mark_end(&sg[nsg - 1]);
4739 
4740 	return nsg;
4741 }
4742 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4743 
4744 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4745  * sglist without mark the sg which contain last skb data as the end.
4746  * So the caller can mannipulate sg list as will when padding new data after
4747  * the first call without calling sg_unmark_end to expend sg list.
4748  *
4749  * Scenario to use skb_to_sgvec_nomark:
4750  * 1. sg_init_table
4751  * 2. skb_to_sgvec_nomark(payload1)
4752  * 3. skb_to_sgvec_nomark(payload2)
4753  *
4754  * This is equivalent to:
4755  * 1. sg_init_table
4756  * 2. skb_to_sgvec(payload1)
4757  * 3. sg_unmark_end
4758  * 4. skb_to_sgvec(payload2)
4759  *
4760  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4761  * is more preferable.
4762  */
4763 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4764 			int offset, int len)
4765 {
4766 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4767 }
4768 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4769 
4770 
4771 
4772 /**
4773  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4774  *	@skb: The socket buffer to check.
4775  *	@tailbits: Amount of trailing space to be added
4776  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4777  *
4778  *	Make sure that the data buffers attached to a socket buffer are
4779  *	writable. If they are not, private copies are made of the data buffers
4780  *	and the socket buffer is set to use these instead.
4781  *
4782  *	If @tailbits is given, make sure that there is space to write @tailbits
4783  *	bytes of data beyond current end of socket buffer.  @trailer will be
4784  *	set to point to the skb in which this space begins.
4785  *
4786  *	The number of scatterlist elements required to completely map the
4787  *	COW'd and extended socket buffer will be returned.
4788  */
4789 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4790 {
4791 	int copyflag;
4792 	int elt;
4793 	struct sk_buff *skb1, **skb_p;
4794 
4795 	/* If skb is cloned or its head is paged, reallocate
4796 	 * head pulling out all the pages (pages are considered not writable
4797 	 * at the moment even if they are anonymous).
4798 	 */
4799 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4800 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4801 		return -ENOMEM;
4802 
4803 	/* Easy case. Most of packets will go this way. */
4804 	if (!skb_has_frag_list(skb)) {
4805 		/* A little of trouble, not enough of space for trailer.
4806 		 * This should not happen, when stack is tuned to generate
4807 		 * good frames. OK, on miss we reallocate and reserve even more
4808 		 * space, 128 bytes is fair. */
4809 
4810 		if (skb_tailroom(skb) < tailbits &&
4811 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4812 			return -ENOMEM;
4813 
4814 		/* Voila! */
4815 		*trailer = skb;
4816 		return 1;
4817 	}
4818 
4819 	/* Misery. We are in troubles, going to mincer fragments... */
4820 
4821 	elt = 1;
4822 	skb_p = &skb_shinfo(skb)->frag_list;
4823 	copyflag = 0;
4824 
4825 	while ((skb1 = *skb_p) != NULL) {
4826 		int ntail = 0;
4827 
4828 		/* The fragment is partially pulled by someone,
4829 		 * this can happen on input. Copy it and everything
4830 		 * after it. */
4831 
4832 		if (skb_shared(skb1))
4833 			copyflag = 1;
4834 
4835 		/* If the skb is the last, worry about trailer. */
4836 
4837 		if (skb1->next == NULL && tailbits) {
4838 			if (skb_shinfo(skb1)->nr_frags ||
4839 			    skb_has_frag_list(skb1) ||
4840 			    skb_tailroom(skb1) < tailbits)
4841 				ntail = tailbits + 128;
4842 		}
4843 
4844 		if (copyflag ||
4845 		    skb_cloned(skb1) ||
4846 		    ntail ||
4847 		    skb_shinfo(skb1)->nr_frags ||
4848 		    skb_has_frag_list(skb1)) {
4849 			struct sk_buff *skb2;
4850 
4851 			/* Fuck, we are miserable poor guys... */
4852 			if (ntail == 0)
4853 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4854 			else
4855 				skb2 = skb_copy_expand(skb1,
4856 						       skb_headroom(skb1),
4857 						       ntail,
4858 						       GFP_ATOMIC);
4859 			if (unlikely(skb2 == NULL))
4860 				return -ENOMEM;
4861 
4862 			if (skb1->sk)
4863 				skb_set_owner_w(skb2, skb1->sk);
4864 
4865 			/* Looking around. Are we still alive?
4866 			 * OK, link new skb, drop old one */
4867 
4868 			skb2->next = skb1->next;
4869 			*skb_p = skb2;
4870 			kfree_skb(skb1);
4871 			skb1 = skb2;
4872 		}
4873 		elt++;
4874 		*trailer = skb1;
4875 		skb_p = &skb1->next;
4876 	}
4877 
4878 	return elt;
4879 }
4880 EXPORT_SYMBOL_GPL(skb_cow_data);
4881 
4882 static void sock_rmem_free(struct sk_buff *skb)
4883 {
4884 	struct sock *sk = skb->sk;
4885 
4886 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4887 }
4888 
4889 static void skb_set_err_queue(struct sk_buff *skb)
4890 {
4891 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4892 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4893 	 */
4894 	skb->pkt_type = PACKET_OUTGOING;
4895 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4896 }
4897 
4898 /*
4899  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4900  */
4901 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4902 {
4903 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4904 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4905 		return -ENOMEM;
4906 
4907 	skb_orphan(skb);
4908 	skb->sk = sk;
4909 	skb->destructor = sock_rmem_free;
4910 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4911 	skb_set_err_queue(skb);
4912 
4913 	/* before exiting rcu section, make sure dst is refcounted */
4914 	skb_dst_force(skb);
4915 
4916 	skb_queue_tail(&sk->sk_error_queue, skb);
4917 	if (!sock_flag(sk, SOCK_DEAD))
4918 		sk_error_report(sk);
4919 	return 0;
4920 }
4921 EXPORT_SYMBOL(sock_queue_err_skb);
4922 
4923 static bool is_icmp_err_skb(const struct sk_buff *skb)
4924 {
4925 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4926 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4927 }
4928 
4929 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4930 {
4931 	struct sk_buff_head *q = &sk->sk_error_queue;
4932 	struct sk_buff *skb, *skb_next = NULL;
4933 	bool icmp_next = false;
4934 	unsigned long flags;
4935 
4936 	spin_lock_irqsave(&q->lock, flags);
4937 	skb = __skb_dequeue(q);
4938 	if (skb && (skb_next = skb_peek(q))) {
4939 		icmp_next = is_icmp_err_skb(skb_next);
4940 		if (icmp_next)
4941 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4942 	}
4943 	spin_unlock_irqrestore(&q->lock, flags);
4944 
4945 	if (is_icmp_err_skb(skb) && !icmp_next)
4946 		sk->sk_err = 0;
4947 
4948 	if (skb_next)
4949 		sk_error_report(sk);
4950 
4951 	return skb;
4952 }
4953 EXPORT_SYMBOL(sock_dequeue_err_skb);
4954 
4955 /**
4956  * skb_clone_sk - create clone of skb, and take reference to socket
4957  * @skb: the skb to clone
4958  *
4959  * This function creates a clone of a buffer that holds a reference on
4960  * sk_refcnt.  Buffers created via this function are meant to be
4961  * returned using sock_queue_err_skb, or free via kfree_skb.
4962  *
4963  * When passing buffers allocated with this function to sock_queue_err_skb
4964  * it is necessary to wrap the call with sock_hold/sock_put in order to
4965  * prevent the socket from being released prior to being enqueued on
4966  * the sk_error_queue.
4967  */
4968 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4969 {
4970 	struct sock *sk = skb->sk;
4971 	struct sk_buff *clone;
4972 
4973 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4974 		return NULL;
4975 
4976 	clone = skb_clone(skb, GFP_ATOMIC);
4977 	if (!clone) {
4978 		sock_put(sk);
4979 		return NULL;
4980 	}
4981 
4982 	clone->sk = sk;
4983 	clone->destructor = sock_efree;
4984 
4985 	return clone;
4986 }
4987 EXPORT_SYMBOL(skb_clone_sk);
4988 
4989 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4990 					struct sock *sk,
4991 					int tstype,
4992 					bool opt_stats)
4993 {
4994 	struct sock_exterr_skb *serr;
4995 	int err;
4996 
4997 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4998 
4999 	serr = SKB_EXT_ERR(skb);
5000 	memset(serr, 0, sizeof(*serr));
5001 	serr->ee.ee_errno = ENOMSG;
5002 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5003 	serr->ee.ee_info = tstype;
5004 	serr->opt_stats = opt_stats;
5005 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5006 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
5007 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5008 		if (sk_is_tcp(sk))
5009 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5010 	}
5011 
5012 	err = sock_queue_err_skb(sk, skb);
5013 
5014 	if (err)
5015 		kfree_skb(skb);
5016 }
5017 
5018 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5019 {
5020 	bool ret;
5021 
5022 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5023 		return true;
5024 
5025 	read_lock_bh(&sk->sk_callback_lock);
5026 	ret = sk->sk_socket && sk->sk_socket->file &&
5027 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5028 	read_unlock_bh(&sk->sk_callback_lock);
5029 	return ret;
5030 }
5031 
5032 void skb_complete_tx_timestamp(struct sk_buff *skb,
5033 			       struct skb_shared_hwtstamps *hwtstamps)
5034 {
5035 	struct sock *sk = skb->sk;
5036 
5037 	if (!skb_may_tx_timestamp(sk, false))
5038 		goto err;
5039 
5040 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5041 	 * but only if the socket refcount is not zero.
5042 	 */
5043 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5044 		*skb_hwtstamps(skb) = *hwtstamps;
5045 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5046 		sock_put(sk);
5047 		return;
5048 	}
5049 
5050 err:
5051 	kfree_skb(skb);
5052 }
5053 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5054 
5055 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5056 		     const struct sk_buff *ack_skb,
5057 		     struct skb_shared_hwtstamps *hwtstamps,
5058 		     struct sock *sk, int tstype)
5059 {
5060 	struct sk_buff *skb;
5061 	bool tsonly, opt_stats = false;
5062 
5063 	if (!sk)
5064 		return;
5065 
5066 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5067 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5068 		return;
5069 
5070 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5071 	if (!skb_may_tx_timestamp(sk, tsonly))
5072 		return;
5073 
5074 	if (tsonly) {
5075 #ifdef CONFIG_INET
5076 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5077 		    sk_is_tcp(sk)) {
5078 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5079 							     ack_skb);
5080 			opt_stats = true;
5081 		} else
5082 #endif
5083 			skb = alloc_skb(0, GFP_ATOMIC);
5084 	} else {
5085 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5086 	}
5087 	if (!skb)
5088 		return;
5089 
5090 	if (tsonly) {
5091 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5092 					     SKBTX_ANY_TSTAMP;
5093 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5094 	}
5095 
5096 	if (hwtstamps)
5097 		*skb_hwtstamps(skb) = *hwtstamps;
5098 	else
5099 		__net_timestamp(skb);
5100 
5101 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5102 }
5103 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5104 
5105 void skb_tstamp_tx(struct sk_buff *orig_skb,
5106 		   struct skb_shared_hwtstamps *hwtstamps)
5107 {
5108 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5109 			       SCM_TSTAMP_SND);
5110 }
5111 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5112 
5113 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5114 {
5115 	struct sock *sk = skb->sk;
5116 	struct sock_exterr_skb *serr;
5117 	int err = 1;
5118 
5119 	skb->wifi_acked_valid = 1;
5120 	skb->wifi_acked = acked;
5121 
5122 	serr = SKB_EXT_ERR(skb);
5123 	memset(serr, 0, sizeof(*serr));
5124 	serr->ee.ee_errno = ENOMSG;
5125 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5126 
5127 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5128 	 * but only if the socket refcount is not zero.
5129 	 */
5130 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5131 		err = sock_queue_err_skb(sk, skb);
5132 		sock_put(sk);
5133 	}
5134 	if (err)
5135 		kfree_skb(skb);
5136 }
5137 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5138 
5139 /**
5140  * skb_partial_csum_set - set up and verify partial csum values for packet
5141  * @skb: the skb to set
5142  * @start: the number of bytes after skb->data to start checksumming.
5143  * @off: the offset from start to place the checksum.
5144  *
5145  * For untrusted partially-checksummed packets, we need to make sure the values
5146  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5147  *
5148  * This function checks and sets those values and skb->ip_summed: if this
5149  * returns false you should drop the packet.
5150  */
5151 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5152 {
5153 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5154 	u32 csum_start = skb_headroom(skb) + (u32)start;
5155 
5156 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
5157 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5158 				     start, off, skb_headroom(skb), skb_headlen(skb));
5159 		return false;
5160 	}
5161 	skb->ip_summed = CHECKSUM_PARTIAL;
5162 	skb->csum_start = csum_start;
5163 	skb->csum_offset = off;
5164 	skb_set_transport_header(skb, start);
5165 	return true;
5166 }
5167 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5168 
5169 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5170 			       unsigned int max)
5171 {
5172 	if (skb_headlen(skb) >= len)
5173 		return 0;
5174 
5175 	/* If we need to pullup then pullup to the max, so we
5176 	 * won't need to do it again.
5177 	 */
5178 	if (max > skb->len)
5179 		max = skb->len;
5180 
5181 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5182 		return -ENOMEM;
5183 
5184 	if (skb_headlen(skb) < len)
5185 		return -EPROTO;
5186 
5187 	return 0;
5188 }
5189 
5190 #define MAX_TCP_HDR_LEN (15 * 4)
5191 
5192 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5193 				      typeof(IPPROTO_IP) proto,
5194 				      unsigned int off)
5195 {
5196 	int err;
5197 
5198 	switch (proto) {
5199 	case IPPROTO_TCP:
5200 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5201 					  off + MAX_TCP_HDR_LEN);
5202 		if (!err && !skb_partial_csum_set(skb, off,
5203 						  offsetof(struct tcphdr,
5204 							   check)))
5205 			err = -EPROTO;
5206 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5207 
5208 	case IPPROTO_UDP:
5209 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5210 					  off + sizeof(struct udphdr));
5211 		if (!err && !skb_partial_csum_set(skb, off,
5212 						  offsetof(struct udphdr,
5213 							   check)))
5214 			err = -EPROTO;
5215 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5216 	}
5217 
5218 	return ERR_PTR(-EPROTO);
5219 }
5220 
5221 /* This value should be large enough to cover a tagged ethernet header plus
5222  * maximally sized IP and TCP or UDP headers.
5223  */
5224 #define MAX_IP_HDR_LEN 128
5225 
5226 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5227 {
5228 	unsigned int off;
5229 	bool fragment;
5230 	__sum16 *csum;
5231 	int err;
5232 
5233 	fragment = false;
5234 
5235 	err = skb_maybe_pull_tail(skb,
5236 				  sizeof(struct iphdr),
5237 				  MAX_IP_HDR_LEN);
5238 	if (err < 0)
5239 		goto out;
5240 
5241 	if (ip_is_fragment(ip_hdr(skb)))
5242 		fragment = true;
5243 
5244 	off = ip_hdrlen(skb);
5245 
5246 	err = -EPROTO;
5247 
5248 	if (fragment)
5249 		goto out;
5250 
5251 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5252 	if (IS_ERR(csum))
5253 		return PTR_ERR(csum);
5254 
5255 	if (recalculate)
5256 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5257 					   ip_hdr(skb)->daddr,
5258 					   skb->len - off,
5259 					   ip_hdr(skb)->protocol, 0);
5260 	err = 0;
5261 
5262 out:
5263 	return err;
5264 }
5265 
5266 /* This value should be large enough to cover a tagged ethernet header plus
5267  * an IPv6 header, all options, and a maximal TCP or UDP header.
5268  */
5269 #define MAX_IPV6_HDR_LEN 256
5270 
5271 #define OPT_HDR(type, skb, off) \
5272 	(type *)(skb_network_header(skb) + (off))
5273 
5274 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5275 {
5276 	int err;
5277 	u8 nexthdr;
5278 	unsigned int off;
5279 	unsigned int len;
5280 	bool fragment;
5281 	bool done;
5282 	__sum16 *csum;
5283 
5284 	fragment = false;
5285 	done = false;
5286 
5287 	off = sizeof(struct ipv6hdr);
5288 
5289 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5290 	if (err < 0)
5291 		goto out;
5292 
5293 	nexthdr = ipv6_hdr(skb)->nexthdr;
5294 
5295 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5296 	while (off <= len && !done) {
5297 		switch (nexthdr) {
5298 		case IPPROTO_DSTOPTS:
5299 		case IPPROTO_HOPOPTS:
5300 		case IPPROTO_ROUTING: {
5301 			struct ipv6_opt_hdr *hp;
5302 
5303 			err = skb_maybe_pull_tail(skb,
5304 						  off +
5305 						  sizeof(struct ipv6_opt_hdr),
5306 						  MAX_IPV6_HDR_LEN);
5307 			if (err < 0)
5308 				goto out;
5309 
5310 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5311 			nexthdr = hp->nexthdr;
5312 			off += ipv6_optlen(hp);
5313 			break;
5314 		}
5315 		case IPPROTO_AH: {
5316 			struct ip_auth_hdr *hp;
5317 
5318 			err = skb_maybe_pull_tail(skb,
5319 						  off +
5320 						  sizeof(struct ip_auth_hdr),
5321 						  MAX_IPV6_HDR_LEN);
5322 			if (err < 0)
5323 				goto out;
5324 
5325 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5326 			nexthdr = hp->nexthdr;
5327 			off += ipv6_authlen(hp);
5328 			break;
5329 		}
5330 		case IPPROTO_FRAGMENT: {
5331 			struct frag_hdr *hp;
5332 
5333 			err = skb_maybe_pull_tail(skb,
5334 						  off +
5335 						  sizeof(struct frag_hdr),
5336 						  MAX_IPV6_HDR_LEN);
5337 			if (err < 0)
5338 				goto out;
5339 
5340 			hp = OPT_HDR(struct frag_hdr, skb, off);
5341 
5342 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5343 				fragment = true;
5344 
5345 			nexthdr = hp->nexthdr;
5346 			off += sizeof(struct frag_hdr);
5347 			break;
5348 		}
5349 		default:
5350 			done = true;
5351 			break;
5352 		}
5353 	}
5354 
5355 	err = -EPROTO;
5356 
5357 	if (!done || fragment)
5358 		goto out;
5359 
5360 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5361 	if (IS_ERR(csum))
5362 		return PTR_ERR(csum);
5363 
5364 	if (recalculate)
5365 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5366 					 &ipv6_hdr(skb)->daddr,
5367 					 skb->len - off, nexthdr, 0);
5368 	err = 0;
5369 
5370 out:
5371 	return err;
5372 }
5373 
5374 /**
5375  * skb_checksum_setup - set up partial checksum offset
5376  * @skb: the skb to set up
5377  * @recalculate: if true the pseudo-header checksum will be recalculated
5378  */
5379 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5380 {
5381 	int err;
5382 
5383 	switch (skb->protocol) {
5384 	case htons(ETH_P_IP):
5385 		err = skb_checksum_setup_ipv4(skb, recalculate);
5386 		break;
5387 
5388 	case htons(ETH_P_IPV6):
5389 		err = skb_checksum_setup_ipv6(skb, recalculate);
5390 		break;
5391 
5392 	default:
5393 		err = -EPROTO;
5394 		break;
5395 	}
5396 
5397 	return err;
5398 }
5399 EXPORT_SYMBOL(skb_checksum_setup);
5400 
5401 /**
5402  * skb_checksum_maybe_trim - maybe trims the given skb
5403  * @skb: the skb to check
5404  * @transport_len: the data length beyond the network header
5405  *
5406  * Checks whether the given skb has data beyond the given transport length.
5407  * If so, returns a cloned skb trimmed to this transport length.
5408  * Otherwise returns the provided skb. Returns NULL in error cases
5409  * (e.g. transport_len exceeds skb length or out-of-memory).
5410  *
5411  * Caller needs to set the skb transport header and free any returned skb if it
5412  * differs from the provided skb.
5413  */
5414 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5415 					       unsigned int transport_len)
5416 {
5417 	struct sk_buff *skb_chk;
5418 	unsigned int len = skb_transport_offset(skb) + transport_len;
5419 	int ret;
5420 
5421 	if (skb->len < len)
5422 		return NULL;
5423 	else if (skb->len == len)
5424 		return skb;
5425 
5426 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5427 	if (!skb_chk)
5428 		return NULL;
5429 
5430 	ret = pskb_trim_rcsum(skb_chk, len);
5431 	if (ret) {
5432 		kfree_skb(skb_chk);
5433 		return NULL;
5434 	}
5435 
5436 	return skb_chk;
5437 }
5438 
5439 /**
5440  * skb_checksum_trimmed - validate checksum of an skb
5441  * @skb: the skb to check
5442  * @transport_len: the data length beyond the network header
5443  * @skb_chkf: checksum function to use
5444  *
5445  * Applies the given checksum function skb_chkf to the provided skb.
5446  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5447  *
5448  * If the skb has data beyond the given transport length, then a
5449  * trimmed & cloned skb is checked and returned.
5450  *
5451  * Caller needs to set the skb transport header and free any returned skb if it
5452  * differs from the provided skb.
5453  */
5454 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5455 				     unsigned int transport_len,
5456 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5457 {
5458 	struct sk_buff *skb_chk;
5459 	unsigned int offset = skb_transport_offset(skb);
5460 	__sum16 ret;
5461 
5462 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5463 	if (!skb_chk)
5464 		goto err;
5465 
5466 	if (!pskb_may_pull(skb_chk, offset))
5467 		goto err;
5468 
5469 	skb_pull_rcsum(skb_chk, offset);
5470 	ret = skb_chkf(skb_chk);
5471 	skb_push_rcsum(skb_chk, offset);
5472 
5473 	if (ret)
5474 		goto err;
5475 
5476 	return skb_chk;
5477 
5478 err:
5479 	if (skb_chk && skb_chk != skb)
5480 		kfree_skb(skb_chk);
5481 
5482 	return NULL;
5483 
5484 }
5485 EXPORT_SYMBOL(skb_checksum_trimmed);
5486 
5487 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5488 {
5489 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5490 			     skb->dev->name);
5491 }
5492 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5493 
5494 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5495 {
5496 	if (head_stolen) {
5497 		skb_release_head_state(skb);
5498 		kmem_cache_free(skbuff_head_cache, skb);
5499 	} else {
5500 		__kfree_skb(skb);
5501 	}
5502 }
5503 EXPORT_SYMBOL(kfree_skb_partial);
5504 
5505 /**
5506  * skb_try_coalesce - try to merge skb to prior one
5507  * @to: prior buffer
5508  * @from: buffer to add
5509  * @fragstolen: pointer to boolean
5510  * @delta_truesize: how much more was allocated than was requested
5511  */
5512 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5513 		      bool *fragstolen, int *delta_truesize)
5514 {
5515 	struct skb_shared_info *to_shinfo, *from_shinfo;
5516 	int i, delta, len = from->len;
5517 
5518 	*fragstolen = false;
5519 
5520 	if (skb_cloned(to))
5521 		return false;
5522 
5523 	/* In general, avoid mixing slab allocated and page_pool allocated
5524 	 * pages within the same SKB. However when @to is not pp_recycle and
5525 	 * @from is cloned, we can transition frag pages from page_pool to
5526 	 * reference counted.
5527 	 *
5528 	 * On the other hand, don't allow coalescing two pp_recycle SKBs if
5529 	 * @from is cloned, in case the SKB is using page_pool fragment
5530 	 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5531 	 * references for cloned SKBs at the moment that would result in
5532 	 * inconsistent reference counts.
5533 	 */
5534 	if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from)))
5535 		return false;
5536 
5537 	if (len <= skb_tailroom(to)) {
5538 		if (len)
5539 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5540 		*delta_truesize = 0;
5541 		return true;
5542 	}
5543 
5544 	to_shinfo = skb_shinfo(to);
5545 	from_shinfo = skb_shinfo(from);
5546 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5547 		return false;
5548 	if (skb_zcopy(to) || skb_zcopy(from))
5549 		return false;
5550 
5551 	if (skb_headlen(from) != 0) {
5552 		struct page *page;
5553 		unsigned int offset;
5554 
5555 		if (to_shinfo->nr_frags +
5556 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5557 			return false;
5558 
5559 		if (skb_head_is_locked(from))
5560 			return false;
5561 
5562 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5563 
5564 		page = virt_to_head_page(from->head);
5565 		offset = from->data - (unsigned char *)page_address(page);
5566 
5567 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5568 				   page, offset, skb_headlen(from));
5569 		*fragstolen = true;
5570 	} else {
5571 		if (to_shinfo->nr_frags +
5572 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5573 			return false;
5574 
5575 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5576 	}
5577 
5578 	WARN_ON_ONCE(delta < len);
5579 
5580 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5581 	       from_shinfo->frags,
5582 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5583 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5584 
5585 	if (!skb_cloned(from))
5586 		from_shinfo->nr_frags = 0;
5587 
5588 	/* if the skb is not cloned this does nothing
5589 	 * since we set nr_frags to 0.
5590 	 */
5591 	for (i = 0; i < from_shinfo->nr_frags; i++)
5592 		__skb_frag_ref(&from_shinfo->frags[i]);
5593 
5594 	to->truesize += delta;
5595 	to->len += len;
5596 	to->data_len += len;
5597 
5598 	*delta_truesize = delta;
5599 	return true;
5600 }
5601 EXPORT_SYMBOL(skb_try_coalesce);
5602 
5603 /**
5604  * skb_scrub_packet - scrub an skb
5605  *
5606  * @skb: buffer to clean
5607  * @xnet: packet is crossing netns
5608  *
5609  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5610  * into/from a tunnel. Some information have to be cleared during these
5611  * operations.
5612  * skb_scrub_packet can also be used to clean a skb before injecting it in
5613  * another namespace (@xnet == true). We have to clear all information in the
5614  * skb that could impact namespace isolation.
5615  */
5616 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5617 {
5618 	skb->pkt_type = PACKET_HOST;
5619 	skb->skb_iif = 0;
5620 	skb->ignore_df = 0;
5621 	skb_dst_drop(skb);
5622 	skb_ext_reset(skb);
5623 	nf_reset_ct(skb);
5624 	nf_reset_trace(skb);
5625 
5626 #ifdef CONFIG_NET_SWITCHDEV
5627 	skb->offload_fwd_mark = 0;
5628 	skb->offload_l3_fwd_mark = 0;
5629 #endif
5630 
5631 	if (!xnet)
5632 		return;
5633 
5634 	ipvs_reset(skb);
5635 	skb->mark = 0;
5636 	skb_clear_tstamp(skb);
5637 }
5638 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5639 
5640 /**
5641  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5642  *
5643  * @skb: GSO skb
5644  *
5645  * skb_gso_transport_seglen is used to determine the real size of the
5646  * individual segments, including Layer4 headers (TCP/UDP).
5647  *
5648  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5649  */
5650 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5651 {
5652 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5653 	unsigned int thlen = 0;
5654 
5655 	if (skb->encapsulation) {
5656 		thlen = skb_inner_transport_header(skb) -
5657 			skb_transport_header(skb);
5658 
5659 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5660 			thlen += inner_tcp_hdrlen(skb);
5661 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5662 		thlen = tcp_hdrlen(skb);
5663 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5664 		thlen = sizeof(struct sctphdr);
5665 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5666 		thlen = sizeof(struct udphdr);
5667 	}
5668 	/* UFO sets gso_size to the size of the fragmentation
5669 	 * payload, i.e. the size of the L4 (UDP) header is already
5670 	 * accounted for.
5671 	 */
5672 	return thlen + shinfo->gso_size;
5673 }
5674 
5675 /**
5676  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5677  *
5678  * @skb: GSO skb
5679  *
5680  * skb_gso_network_seglen is used to determine the real size of the
5681  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5682  *
5683  * The MAC/L2 header is not accounted for.
5684  */
5685 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5686 {
5687 	unsigned int hdr_len = skb_transport_header(skb) -
5688 			       skb_network_header(skb);
5689 
5690 	return hdr_len + skb_gso_transport_seglen(skb);
5691 }
5692 
5693 /**
5694  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5695  *
5696  * @skb: GSO skb
5697  *
5698  * skb_gso_mac_seglen is used to determine the real size of the
5699  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5700  * headers (TCP/UDP).
5701  */
5702 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5703 {
5704 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5705 
5706 	return hdr_len + skb_gso_transport_seglen(skb);
5707 }
5708 
5709 /**
5710  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5711  *
5712  * There are a couple of instances where we have a GSO skb, and we
5713  * want to determine what size it would be after it is segmented.
5714  *
5715  * We might want to check:
5716  * -    L3+L4+payload size (e.g. IP forwarding)
5717  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5718  *
5719  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5720  *
5721  * @skb: GSO skb
5722  *
5723  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5724  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5725  *
5726  * @max_len: The maximum permissible length.
5727  *
5728  * Returns true if the segmented length <= max length.
5729  */
5730 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5731 				      unsigned int seg_len,
5732 				      unsigned int max_len) {
5733 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5734 	const struct sk_buff *iter;
5735 
5736 	if (shinfo->gso_size != GSO_BY_FRAGS)
5737 		return seg_len <= max_len;
5738 
5739 	/* Undo this so we can re-use header sizes */
5740 	seg_len -= GSO_BY_FRAGS;
5741 
5742 	skb_walk_frags(skb, iter) {
5743 		if (seg_len + skb_headlen(iter) > max_len)
5744 			return false;
5745 	}
5746 
5747 	return true;
5748 }
5749 
5750 /**
5751  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5752  *
5753  * @skb: GSO skb
5754  * @mtu: MTU to validate against
5755  *
5756  * skb_gso_validate_network_len validates if a given skb will fit a
5757  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5758  * payload.
5759  */
5760 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5761 {
5762 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5763 }
5764 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5765 
5766 /**
5767  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5768  *
5769  * @skb: GSO skb
5770  * @len: length to validate against
5771  *
5772  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5773  * length once split, including L2, L3 and L4 headers and the payload.
5774  */
5775 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5776 {
5777 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5778 }
5779 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5780 
5781 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5782 {
5783 	int mac_len, meta_len;
5784 	void *meta;
5785 
5786 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5787 		kfree_skb(skb);
5788 		return NULL;
5789 	}
5790 
5791 	mac_len = skb->data - skb_mac_header(skb);
5792 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5793 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5794 			mac_len - VLAN_HLEN - ETH_TLEN);
5795 	}
5796 
5797 	meta_len = skb_metadata_len(skb);
5798 	if (meta_len) {
5799 		meta = skb_metadata_end(skb) - meta_len;
5800 		memmove(meta + VLAN_HLEN, meta, meta_len);
5801 	}
5802 
5803 	skb->mac_header += VLAN_HLEN;
5804 	return skb;
5805 }
5806 
5807 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5808 {
5809 	struct vlan_hdr *vhdr;
5810 	u16 vlan_tci;
5811 
5812 	if (unlikely(skb_vlan_tag_present(skb))) {
5813 		/* vlan_tci is already set-up so leave this for another time */
5814 		return skb;
5815 	}
5816 
5817 	skb = skb_share_check(skb, GFP_ATOMIC);
5818 	if (unlikely(!skb))
5819 		goto err_free;
5820 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5821 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5822 		goto err_free;
5823 
5824 	vhdr = (struct vlan_hdr *)skb->data;
5825 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5826 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5827 
5828 	skb_pull_rcsum(skb, VLAN_HLEN);
5829 	vlan_set_encap_proto(skb, vhdr);
5830 
5831 	skb = skb_reorder_vlan_header(skb);
5832 	if (unlikely(!skb))
5833 		goto err_free;
5834 
5835 	skb_reset_network_header(skb);
5836 	if (!skb_transport_header_was_set(skb))
5837 		skb_reset_transport_header(skb);
5838 	skb_reset_mac_len(skb);
5839 
5840 	return skb;
5841 
5842 err_free:
5843 	kfree_skb(skb);
5844 	return NULL;
5845 }
5846 EXPORT_SYMBOL(skb_vlan_untag);
5847 
5848 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5849 {
5850 	if (!pskb_may_pull(skb, write_len))
5851 		return -ENOMEM;
5852 
5853 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5854 		return 0;
5855 
5856 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5857 }
5858 EXPORT_SYMBOL(skb_ensure_writable);
5859 
5860 /* remove VLAN header from packet and update csum accordingly.
5861  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5862  */
5863 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5864 {
5865 	struct vlan_hdr *vhdr;
5866 	int offset = skb->data - skb_mac_header(skb);
5867 	int err;
5868 
5869 	if (WARN_ONCE(offset,
5870 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5871 		      offset)) {
5872 		return -EINVAL;
5873 	}
5874 
5875 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5876 	if (unlikely(err))
5877 		return err;
5878 
5879 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5880 
5881 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5882 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5883 
5884 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5885 	__skb_pull(skb, VLAN_HLEN);
5886 
5887 	vlan_set_encap_proto(skb, vhdr);
5888 	skb->mac_header += VLAN_HLEN;
5889 
5890 	if (skb_network_offset(skb) < ETH_HLEN)
5891 		skb_set_network_header(skb, ETH_HLEN);
5892 
5893 	skb_reset_mac_len(skb);
5894 
5895 	return err;
5896 }
5897 EXPORT_SYMBOL(__skb_vlan_pop);
5898 
5899 /* Pop a vlan tag either from hwaccel or from payload.
5900  * Expects skb->data at mac header.
5901  */
5902 int skb_vlan_pop(struct sk_buff *skb)
5903 {
5904 	u16 vlan_tci;
5905 	__be16 vlan_proto;
5906 	int err;
5907 
5908 	if (likely(skb_vlan_tag_present(skb))) {
5909 		__vlan_hwaccel_clear_tag(skb);
5910 	} else {
5911 		if (unlikely(!eth_type_vlan(skb->protocol)))
5912 			return 0;
5913 
5914 		err = __skb_vlan_pop(skb, &vlan_tci);
5915 		if (err)
5916 			return err;
5917 	}
5918 	/* move next vlan tag to hw accel tag */
5919 	if (likely(!eth_type_vlan(skb->protocol)))
5920 		return 0;
5921 
5922 	vlan_proto = skb->protocol;
5923 	err = __skb_vlan_pop(skb, &vlan_tci);
5924 	if (unlikely(err))
5925 		return err;
5926 
5927 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5928 	return 0;
5929 }
5930 EXPORT_SYMBOL(skb_vlan_pop);
5931 
5932 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5933  * Expects skb->data at mac header.
5934  */
5935 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5936 {
5937 	if (skb_vlan_tag_present(skb)) {
5938 		int offset = skb->data - skb_mac_header(skb);
5939 		int err;
5940 
5941 		if (WARN_ONCE(offset,
5942 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5943 			      offset)) {
5944 			return -EINVAL;
5945 		}
5946 
5947 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5948 					skb_vlan_tag_get(skb));
5949 		if (err)
5950 			return err;
5951 
5952 		skb->protocol = skb->vlan_proto;
5953 		skb->mac_len += VLAN_HLEN;
5954 
5955 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5956 	}
5957 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5958 	return 0;
5959 }
5960 EXPORT_SYMBOL(skb_vlan_push);
5961 
5962 /**
5963  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5964  *
5965  * @skb: Socket buffer to modify
5966  *
5967  * Drop the Ethernet header of @skb.
5968  *
5969  * Expects that skb->data points to the mac header and that no VLAN tags are
5970  * present.
5971  *
5972  * Returns 0 on success, -errno otherwise.
5973  */
5974 int skb_eth_pop(struct sk_buff *skb)
5975 {
5976 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5977 	    skb_network_offset(skb) < ETH_HLEN)
5978 		return -EPROTO;
5979 
5980 	skb_pull_rcsum(skb, ETH_HLEN);
5981 	skb_reset_mac_header(skb);
5982 	skb_reset_mac_len(skb);
5983 
5984 	return 0;
5985 }
5986 EXPORT_SYMBOL(skb_eth_pop);
5987 
5988 /**
5989  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5990  *
5991  * @skb: Socket buffer to modify
5992  * @dst: Destination MAC address of the new header
5993  * @src: Source MAC address of the new header
5994  *
5995  * Prepend @skb with a new Ethernet header.
5996  *
5997  * Expects that skb->data points to the mac header, which must be empty.
5998  *
5999  * Returns 0 on success, -errno otherwise.
6000  */
6001 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6002 		 const unsigned char *src)
6003 {
6004 	struct ethhdr *eth;
6005 	int err;
6006 
6007 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6008 		return -EPROTO;
6009 
6010 	err = skb_cow_head(skb, sizeof(*eth));
6011 	if (err < 0)
6012 		return err;
6013 
6014 	skb_push(skb, sizeof(*eth));
6015 	skb_reset_mac_header(skb);
6016 	skb_reset_mac_len(skb);
6017 
6018 	eth = eth_hdr(skb);
6019 	ether_addr_copy(eth->h_dest, dst);
6020 	ether_addr_copy(eth->h_source, src);
6021 	eth->h_proto = skb->protocol;
6022 
6023 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6024 
6025 	return 0;
6026 }
6027 EXPORT_SYMBOL(skb_eth_push);
6028 
6029 /* Update the ethertype of hdr and the skb csum value if required. */
6030 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6031 			     __be16 ethertype)
6032 {
6033 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6034 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6035 
6036 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6037 	}
6038 
6039 	hdr->h_proto = ethertype;
6040 }
6041 
6042 /**
6043  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6044  *                   the packet
6045  *
6046  * @skb: buffer
6047  * @mpls_lse: MPLS label stack entry to push
6048  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6049  * @mac_len: length of the MAC header
6050  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6051  *            ethernet
6052  *
6053  * Expects skb->data at mac header.
6054  *
6055  * Returns 0 on success, -errno otherwise.
6056  */
6057 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6058 		  int mac_len, bool ethernet)
6059 {
6060 	struct mpls_shim_hdr *lse;
6061 	int err;
6062 
6063 	if (unlikely(!eth_p_mpls(mpls_proto)))
6064 		return -EINVAL;
6065 
6066 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6067 	if (skb->encapsulation)
6068 		return -EINVAL;
6069 
6070 	err = skb_cow_head(skb, MPLS_HLEN);
6071 	if (unlikely(err))
6072 		return err;
6073 
6074 	if (!skb->inner_protocol) {
6075 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6076 		skb_set_inner_protocol(skb, skb->protocol);
6077 	}
6078 
6079 	skb_push(skb, MPLS_HLEN);
6080 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6081 		mac_len);
6082 	skb_reset_mac_header(skb);
6083 	skb_set_network_header(skb, mac_len);
6084 	skb_reset_mac_len(skb);
6085 
6086 	lse = mpls_hdr(skb);
6087 	lse->label_stack_entry = mpls_lse;
6088 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6089 
6090 	if (ethernet && mac_len >= ETH_HLEN)
6091 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6092 	skb->protocol = mpls_proto;
6093 
6094 	return 0;
6095 }
6096 EXPORT_SYMBOL_GPL(skb_mpls_push);
6097 
6098 /**
6099  * skb_mpls_pop() - pop the outermost MPLS header
6100  *
6101  * @skb: buffer
6102  * @next_proto: ethertype of header after popped MPLS header
6103  * @mac_len: length of the MAC header
6104  * @ethernet: flag to indicate if the packet is ethernet
6105  *
6106  * Expects skb->data at mac header.
6107  *
6108  * Returns 0 on success, -errno otherwise.
6109  */
6110 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6111 		 bool ethernet)
6112 {
6113 	int err;
6114 
6115 	if (unlikely(!eth_p_mpls(skb->protocol)))
6116 		return 0;
6117 
6118 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6119 	if (unlikely(err))
6120 		return err;
6121 
6122 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6123 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6124 		mac_len);
6125 
6126 	__skb_pull(skb, MPLS_HLEN);
6127 	skb_reset_mac_header(skb);
6128 	skb_set_network_header(skb, mac_len);
6129 
6130 	if (ethernet && mac_len >= ETH_HLEN) {
6131 		struct ethhdr *hdr;
6132 
6133 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6134 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6135 		skb_mod_eth_type(skb, hdr, next_proto);
6136 	}
6137 	skb->protocol = next_proto;
6138 
6139 	return 0;
6140 }
6141 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6142 
6143 /**
6144  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6145  *
6146  * @skb: buffer
6147  * @mpls_lse: new MPLS label stack entry to update to
6148  *
6149  * Expects skb->data at mac header.
6150  *
6151  * Returns 0 on success, -errno otherwise.
6152  */
6153 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6154 {
6155 	int err;
6156 
6157 	if (unlikely(!eth_p_mpls(skb->protocol)))
6158 		return -EINVAL;
6159 
6160 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6161 	if (unlikely(err))
6162 		return err;
6163 
6164 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6165 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6166 
6167 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6168 	}
6169 
6170 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6171 
6172 	return 0;
6173 }
6174 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6175 
6176 /**
6177  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6178  *
6179  * @skb: buffer
6180  *
6181  * Expects skb->data at mac header.
6182  *
6183  * Returns 0 on success, -errno otherwise.
6184  */
6185 int skb_mpls_dec_ttl(struct sk_buff *skb)
6186 {
6187 	u32 lse;
6188 	u8 ttl;
6189 
6190 	if (unlikely(!eth_p_mpls(skb->protocol)))
6191 		return -EINVAL;
6192 
6193 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6194 		return -ENOMEM;
6195 
6196 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6197 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6198 	if (!--ttl)
6199 		return -EINVAL;
6200 
6201 	lse &= ~MPLS_LS_TTL_MASK;
6202 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6203 
6204 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6205 }
6206 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6207 
6208 /**
6209  * alloc_skb_with_frags - allocate skb with page frags
6210  *
6211  * @header_len: size of linear part
6212  * @data_len: needed length in frags
6213  * @max_page_order: max page order desired.
6214  * @errcode: pointer to error code if any
6215  * @gfp_mask: allocation mask
6216  *
6217  * This can be used to allocate a paged skb, given a maximal order for frags.
6218  */
6219 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6220 				     unsigned long data_len,
6221 				     int max_page_order,
6222 				     int *errcode,
6223 				     gfp_t gfp_mask)
6224 {
6225 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6226 	unsigned long chunk;
6227 	struct sk_buff *skb;
6228 	struct page *page;
6229 	int i;
6230 
6231 	*errcode = -EMSGSIZE;
6232 	/* Note this test could be relaxed, if we succeed to allocate
6233 	 * high order pages...
6234 	 */
6235 	if (npages > MAX_SKB_FRAGS)
6236 		return NULL;
6237 
6238 	*errcode = -ENOBUFS;
6239 	skb = alloc_skb(header_len, gfp_mask);
6240 	if (!skb)
6241 		return NULL;
6242 
6243 	skb->truesize += npages << PAGE_SHIFT;
6244 
6245 	for (i = 0; npages > 0; i++) {
6246 		int order = max_page_order;
6247 
6248 		while (order) {
6249 			if (npages >= 1 << order) {
6250 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6251 						   __GFP_COMP |
6252 						   __GFP_NOWARN,
6253 						   order);
6254 				if (page)
6255 					goto fill_page;
6256 				/* Do not retry other high order allocations */
6257 				order = 1;
6258 				max_page_order = 0;
6259 			}
6260 			order--;
6261 		}
6262 		page = alloc_page(gfp_mask);
6263 		if (!page)
6264 			goto failure;
6265 fill_page:
6266 		chunk = min_t(unsigned long, data_len,
6267 			      PAGE_SIZE << order);
6268 		skb_fill_page_desc(skb, i, page, 0, chunk);
6269 		data_len -= chunk;
6270 		npages -= 1 << order;
6271 	}
6272 	return skb;
6273 
6274 failure:
6275 	kfree_skb(skb);
6276 	return NULL;
6277 }
6278 EXPORT_SYMBOL(alloc_skb_with_frags);
6279 
6280 /* carve out the first off bytes from skb when off < headlen */
6281 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6282 				    const int headlen, gfp_t gfp_mask)
6283 {
6284 	int i;
6285 	unsigned int size = skb_end_offset(skb);
6286 	int new_hlen = headlen - off;
6287 	u8 *data;
6288 
6289 	if (skb_pfmemalloc(skb))
6290 		gfp_mask |= __GFP_MEMALLOC;
6291 
6292 	size = SKB_DATA_ALIGN(size);
6293 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
6294 	size = kmalloc_size_roundup(size);
6295 	data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
6296 	if (!data)
6297 		return -ENOMEM;
6298 	size = SKB_WITH_OVERHEAD(size);
6299 
6300 	/* Copy real data, and all frags */
6301 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6302 	skb->len -= off;
6303 
6304 	memcpy((struct skb_shared_info *)(data + size),
6305 	       skb_shinfo(skb),
6306 	       offsetof(struct skb_shared_info,
6307 			frags[skb_shinfo(skb)->nr_frags]));
6308 	if (skb_cloned(skb)) {
6309 		/* drop the old head gracefully */
6310 		if (skb_orphan_frags(skb, gfp_mask)) {
6311 			kfree(data);
6312 			return -ENOMEM;
6313 		}
6314 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6315 			skb_frag_ref(skb, i);
6316 		if (skb_has_frag_list(skb))
6317 			skb_clone_fraglist(skb);
6318 		skb_release_data(skb, SKB_CONSUMED);
6319 	} else {
6320 		/* we can reuse existing recount- all we did was
6321 		 * relocate values
6322 		 */
6323 		skb_free_head(skb);
6324 	}
6325 
6326 	skb->head = data;
6327 	skb->data = data;
6328 	skb->head_frag = 0;
6329 	skb_set_end_offset(skb, size);
6330 	skb_set_tail_pointer(skb, skb_headlen(skb));
6331 	skb_headers_offset_update(skb, 0);
6332 	skb->cloned = 0;
6333 	skb->hdr_len = 0;
6334 	skb->nohdr = 0;
6335 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6336 
6337 	return 0;
6338 }
6339 
6340 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6341 
6342 /* carve out the first eat bytes from skb's frag_list. May recurse into
6343  * pskb_carve()
6344  */
6345 static int pskb_carve_frag_list(struct sk_buff *skb,
6346 				struct skb_shared_info *shinfo, int eat,
6347 				gfp_t gfp_mask)
6348 {
6349 	struct sk_buff *list = shinfo->frag_list;
6350 	struct sk_buff *clone = NULL;
6351 	struct sk_buff *insp = NULL;
6352 
6353 	do {
6354 		if (!list) {
6355 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6356 			return -EFAULT;
6357 		}
6358 		if (list->len <= eat) {
6359 			/* Eaten as whole. */
6360 			eat -= list->len;
6361 			list = list->next;
6362 			insp = list;
6363 		} else {
6364 			/* Eaten partially. */
6365 			if (skb_shared(list)) {
6366 				clone = skb_clone(list, gfp_mask);
6367 				if (!clone)
6368 					return -ENOMEM;
6369 				insp = list->next;
6370 				list = clone;
6371 			} else {
6372 				/* This may be pulled without problems. */
6373 				insp = list;
6374 			}
6375 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6376 				kfree_skb(clone);
6377 				return -ENOMEM;
6378 			}
6379 			break;
6380 		}
6381 	} while (eat);
6382 
6383 	/* Free pulled out fragments. */
6384 	while ((list = shinfo->frag_list) != insp) {
6385 		shinfo->frag_list = list->next;
6386 		consume_skb(list);
6387 	}
6388 	/* And insert new clone at head. */
6389 	if (clone) {
6390 		clone->next = list;
6391 		shinfo->frag_list = clone;
6392 	}
6393 	return 0;
6394 }
6395 
6396 /* carve off first len bytes from skb. Split line (off) is in the
6397  * non-linear part of skb
6398  */
6399 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6400 				       int pos, gfp_t gfp_mask)
6401 {
6402 	int i, k = 0;
6403 	unsigned int size = skb_end_offset(skb);
6404 	u8 *data;
6405 	const int nfrags = skb_shinfo(skb)->nr_frags;
6406 	struct skb_shared_info *shinfo;
6407 
6408 	if (skb_pfmemalloc(skb))
6409 		gfp_mask |= __GFP_MEMALLOC;
6410 
6411 	size = SKB_DATA_ALIGN(size);
6412 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
6413 	size = kmalloc_size_roundup(size);
6414 	data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
6415 	if (!data)
6416 		return -ENOMEM;
6417 	size = SKB_WITH_OVERHEAD(size);
6418 
6419 	memcpy((struct skb_shared_info *)(data + size),
6420 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6421 	if (skb_orphan_frags(skb, gfp_mask)) {
6422 		kfree(data);
6423 		return -ENOMEM;
6424 	}
6425 	shinfo = (struct skb_shared_info *)(data + size);
6426 	for (i = 0; i < nfrags; i++) {
6427 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6428 
6429 		if (pos + fsize > off) {
6430 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6431 
6432 			if (pos < off) {
6433 				/* Split frag.
6434 				 * We have two variants in this case:
6435 				 * 1. Move all the frag to the second
6436 				 *    part, if it is possible. F.e.
6437 				 *    this approach is mandatory for TUX,
6438 				 *    where splitting is expensive.
6439 				 * 2. Split is accurately. We make this.
6440 				 */
6441 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6442 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6443 			}
6444 			skb_frag_ref(skb, i);
6445 			k++;
6446 		}
6447 		pos += fsize;
6448 	}
6449 	shinfo->nr_frags = k;
6450 	if (skb_has_frag_list(skb))
6451 		skb_clone_fraglist(skb);
6452 
6453 	/* split line is in frag list */
6454 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6455 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6456 		if (skb_has_frag_list(skb))
6457 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6458 		kfree(data);
6459 		return -ENOMEM;
6460 	}
6461 	skb_release_data(skb, SKB_CONSUMED);
6462 
6463 	skb->head = data;
6464 	skb->head_frag = 0;
6465 	skb->data = data;
6466 	skb_set_end_offset(skb, size);
6467 	skb_reset_tail_pointer(skb);
6468 	skb_headers_offset_update(skb, 0);
6469 	skb->cloned   = 0;
6470 	skb->hdr_len  = 0;
6471 	skb->nohdr    = 0;
6472 	skb->len -= off;
6473 	skb->data_len = skb->len;
6474 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6475 	return 0;
6476 }
6477 
6478 /* remove len bytes from the beginning of the skb */
6479 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6480 {
6481 	int headlen = skb_headlen(skb);
6482 
6483 	if (len < headlen)
6484 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6485 	else
6486 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6487 }
6488 
6489 /* Extract to_copy bytes starting at off from skb, and return this in
6490  * a new skb
6491  */
6492 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6493 			     int to_copy, gfp_t gfp)
6494 {
6495 	struct sk_buff  *clone = skb_clone(skb, gfp);
6496 
6497 	if (!clone)
6498 		return NULL;
6499 
6500 	if (pskb_carve(clone, off, gfp) < 0 ||
6501 	    pskb_trim(clone, to_copy)) {
6502 		kfree_skb(clone);
6503 		return NULL;
6504 	}
6505 	return clone;
6506 }
6507 EXPORT_SYMBOL(pskb_extract);
6508 
6509 /**
6510  * skb_condense - try to get rid of fragments/frag_list if possible
6511  * @skb: buffer
6512  *
6513  * Can be used to save memory before skb is added to a busy queue.
6514  * If packet has bytes in frags and enough tail room in skb->head,
6515  * pull all of them, so that we can free the frags right now and adjust
6516  * truesize.
6517  * Notes:
6518  *	We do not reallocate skb->head thus can not fail.
6519  *	Caller must re-evaluate skb->truesize if needed.
6520  */
6521 void skb_condense(struct sk_buff *skb)
6522 {
6523 	if (skb->data_len) {
6524 		if (skb->data_len > skb->end - skb->tail ||
6525 		    skb_cloned(skb))
6526 			return;
6527 
6528 		/* Nice, we can free page frag(s) right now */
6529 		__pskb_pull_tail(skb, skb->data_len);
6530 	}
6531 	/* At this point, skb->truesize might be over estimated,
6532 	 * because skb had a fragment, and fragments do not tell
6533 	 * their truesize.
6534 	 * When we pulled its content into skb->head, fragment
6535 	 * was freed, but __pskb_pull_tail() could not possibly
6536 	 * adjust skb->truesize, not knowing the frag truesize.
6537 	 */
6538 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6539 }
6540 EXPORT_SYMBOL(skb_condense);
6541 
6542 #ifdef CONFIG_SKB_EXTENSIONS
6543 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6544 {
6545 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6546 }
6547 
6548 /**
6549  * __skb_ext_alloc - allocate a new skb extensions storage
6550  *
6551  * @flags: See kmalloc().
6552  *
6553  * Returns the newly allocated pointer. The pointer can later attached to a
6554  * skb via __skb_ext_set().
6555  * Note: caller must handle the skb_ext as an opaque data.
6556  */
6557 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6558 {
6559 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6560 
6561 	if (new) {
6562 		memset(new->offset, 0, sizeof(new->offset));
6563 		refcount_set(&new->refcnt, 1);
6564 	}
6565 
6566 	return new;
6567 }
6568 
6569 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6570 					 unsigned int old_active)
6571 {
6572 	struct skb_ext *new;
6573 
6574 	if (refcount_read(&old->refcnt) == 1)
6575 		return old;
6576 
6577 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6578 	if (!new)
6579 		return NULL;
6580 
6581 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6582 	refcount_set(&new->refcnt, 1);
6583 
6584 #ifdef CONFIG_XFRM
6585 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6586 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6587 		unsigned int i;
6588 
6589 		for (i = 0; i < sp->len; i++)
6590 			xfrm_state_hold(sp->xvec[i]);
6591 	}
6592 #endif
6593 	__skb_ext_put(old);
6594 	return new;
6595 }
6596 
6597 /**
6598  * __skb_ext_set - attach the specified extension storage to this skb
6599  * @skb: buffer
6600  * @id: extension id
6601  * @ext: extension storage previously allocated via __skb_ext_alloc()
6602  *
6603  * Existing extensions, if any, are cleared.
6604  *
6605  * Returns the pointer to the extension.
6606  */
6607 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6608 		    struct skb_ext *ext)
6609 {
6610 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6611 
6612 	skb_ext_put(skb);
6613 	newlen = newoff + skb_ext_type_len[id];
6614 	ext->chunks = newlen;
6615 	ext->offset[id] = newoff;
6616 	skb->extensions = ext;
6617 	skb->active_extensions = 1 << id;
6618 	return skb_ext_get_ptr(ext, id);
6619 }
6620 
6621 /**
6622  * skb_ext_add - allocate space for given extension, COW if needed
6623  * @skb: buffer
6624  * @id: extension to allocate space for
6625  *
6626  * Allocates enough space for the given extension.
6627  * If the extension is already present, a pointer to that extension
6628  * is returned.
6629  *
6630  * If the skb was cloned, COW applies and the returned memory can be
6631  * modified without changing the extension space of clones buffers.
6632  *
6633  * Returns pointer to the extension or NULL on allocation failure.
6634  */
6635 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6636 {
6637 	struct skb_ext *new, *old = NULL;
6638 	unsigned int newlen, newoff;
6639 
6640 	if (skb->active_extensions) {
6641 		old = skb->extensions;
6642 
6643 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6644 		if (!new)
6645 			return NULL;
6646 
6647 		if (__skb_ext_exist(new, id))
6648 			goto set_active;
6649 
6650 		newoff = new->chunks;
6651 	} else {
6652 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6653 
6654 		new = __skb_ext_alloc(GFP_ATOMIC);
6655 		if (!new)
6656 			return NULL;
6657 	}
6658 
6659 	newlen = newoff + skb_ext_type_len[id];
6660 	new->chunks = newlen;
6661 	new->offset[id] = newoff;
6662 set_active:
6663 	skb->slow_gro = 1;
6664 	skb->extensions = new;
6665 	skb->active_extensions |= 1 << id;
6666 	return skb_ext_get_ptr(new, id);
6667 }
6668 EXPORT_SYMBOL(skb_ext_add);
6669 
6670 #ifdef CONFIG_XFRM
6671 static void skb_ext_put_sp(struct sec_path *sp)
6672 {
6673 	unsigned int i;
6674 
6675 	for (i = 0; i < sp->len; i++)
6676 		xfrm_state_put(sp->xvec[i]);
6677 }
6678 #endif
6679 
6680 #ifdef CONFIG_MCTP_FLOWS
6681 static void skb_ext_put_mctp(struct mctp_flow *flow)
6682 {
6683 	if (flow->key)
6684 		mctp_key_unref(flow->key);
6685 }
6686 #endif
6687 
6688 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6689 {
6690 	struct skb_ext *ext = skb->extensions;
6691 
6692 	skb->active_extensions &= ~(1 << id);
6693 	if (skb->active_extensions == 0) {
6694 		skb->extensions = NULL;
6695 		__skb_ext_put(ext);
6696 #ifdef CONFIG_XFRM
6697 	} else if (id == SKB_EXT_SEC_PATH &&
6698 		   refcount_read(&ext->refcnt) == 1) {
6699 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6700 
6701 		skb_ext_put_sp(sp);
6702 		sp->len = 0;
6703 #endif
6704 	}
6705 }
6706 EXPORT_SYMBOL(__skb_ext_del);
6707 
6708 void __skb_ext_put(struct skb_ext *ext)
6709 {
6710 	/* If this is last clone, nothing can increment
6711 	 * it after check passes.  Avoids one atomic op.
6712 	 */
6713 	if (refcount_read(&ext->refcnt) == 1)
6714 		goto free_now;
6715 
6716 	if (!refcount_dec_and_test(&ext->refcnt))
6717 		return;
6718 free_now:
6719 #ifdef CONFIG_XFRM
6720 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6721 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6722 #endif
6723 #ifdef CONFIG_MCTP_FLOWS
6724 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6725 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6726 #endif
6727 
6728 	kmem_cache_free(skbuff_ext_cache, ext);
6729 }
6730 EXPORT_SYMBOL(__skb_ext_put);
6731 #endif /* CONFIG_SKB_EXTENSIONS */
6732 
6733 /**
6734  * skb_attempt_defer_free - queue skb for remote freeing
6735  * @skb: buffer
6736  *
6737  * Put @skb in a per-cpu list, using the cpu which
6738  * allocated the skb/pages to reduce false sharing
6739  * and memory zone spinlock contention.
6740  */
6741 void skb_attempt_defer_free(struct sk_buff *skb)
6742 {
6743 	int cpu = skb->alloc_cpu;
6744 	struct softnet_data *sd;
6745 	unsigned long flags;
6746 	unsigned int defer_max;
6747 	bool kick;
6748 
6749 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6750 	    !cpu_online(cpu) ||
6751 	    cpu == raw_smp_processor_id()) {
6752 nodefer:	__kfree_skb(skb);
6753 		return;
6754 	}
6755 
6756 	sd = &per_cpu(softnet_data, cpu);
6757 	defer_max = READ_ONCE(sysctl_skb_defer_max);
6758 	if (READ_ONCE(sd->defer_count) >= defer_max)
6759 		goto nodefer;
6760 
6761 	spin_lock_irqsave(&sd->defer_lock, flags);
6762 	/* Send an IPI every time queue reaches half capacity. */
6763 	kick = sd->defer_count == (defer_max >> 1);
6764 	/* Paired with the READ_ONCE() few lines above */
6765 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6766 
6767 	skb->next = sd->defer_list;
6768 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
6769 	WRITE_ONCE(sd->defer_list, skb);
6770 	spin_unlock_irqrestore(&sd->defer_lock, flags);
6771 
6772 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6773 	 * if we are unlucky enough (this seems very unlikely).
6774 	 */
6775 	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6776 		smp_call_function_single_async(cpu, &sd->defer_csd);
6777 }
6778