xref: /linux/net/core/skbuff.c (revision 2bd87951de659df3381ce083342aaf5b1ea24689)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/skbuff_ref.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
60 #include <linux/errqueue.h>
61 #include <linux/prefetch.h>
62 #include <linux/bitfield.h>
63 #include <linux/if_vlan.h>
64 #include <linux/mpls.h>
65 #include <linux/kcov.h>
66 #include <linux/iov_iter.h>
67 
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/gso.h>
73 #include <net/hotdata.h>
74 #include <net/ip6_checksum.h>
75 #include <net/xfrm.h>
76 #include <net/mpls.h>
77 #include <net/mptcp.h>
78 #include <net/mctp.h>
79 #include <net/page_pool/helpers.h>
80 #include <net/dropreason.h>
81 
82 #include <linux/uaccess.h>
83 #include <trace/events/skb.h>
84 #include <linux/highmem.h>
85 #include <linux/capability.h>
86 #include <linux/user_namespace.h>
87 #include <linux/indirect_call_wrapper.h>
88 #include <linux/textsearch.h>
89 
90 #include "dev.h"
91 #include "sock_destructor.h"
92 
93 #ifdef CONFIG_SKB_EXTENSIONS
94 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
95 #endif
96 
97 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
98 
99 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
100  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
101  * size, and we can differentiate heads from skb_small_head_cache
102  * vs system slabs by looking at their size (skb_end_offset()).
103  */
104 #define SKB_SMALL_HEAD_CACHE_SIZE					\
105 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
106 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
107 		SKB_SMALL_HEAD_SIZE)
108 
109 #define SKB_SMALL_HEAD_HEADROOM						\
110 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
111 
112 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
113 EXPORT_SYMBOL(sysctl_max_skb_frags);
114 
115 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
116  * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
117  * netmem is a page.
118  */
119 static_assert(offsetof(struct bio_vec, bv_page) ==
120 	      offsetof(skb_frag_t, netmem));
121 static_assert(sizeof_field(struct bio_vec, bv_page) ==
122 	      sizeof_field(skb_frag_t, netmem));
123 
124 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
125 static_assert(sizeof_field(struct bio_vec, bv_len) ==
126 	      sizeof_field(skb_frag_t, len));
127 
128 static_assert(offsetof(struct bio_vec, bv_offset) ==
129 	      offsetof(skb_frag_t, offset));
130 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
131 	      sizeof_field(skb_frag_t, offset));
132 
133 #undef FN
134 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
135 static const char * const drop_reasons[] = {
136 	[SKB_CONSUMED] = "CONSUMED",
137 	DEFINE_DROP_REASON(FN, FN)
138 };
139 
140 static const struct drop_reason_list drop_reasons_core = {
141 	.reasons = drop_reasons,
142 	.n_reasons = ARRAY_SIZE(drop_reasons),
143 };
144 
145 const struct drop_reason_list __rcu *
146 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
147 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
148 };
149 EXPORT_SYMBOL(drop_reasons_by_subsys);
150 
151 /**
152  * drop_reasons_register_subsys - register another drop reason subsystem
153  * @subsys: the subsystem to register, must not be the core
154  * @list: the list of drop reasons within the subsystem, must point to
155  *	a statically initialized list
156  */
157 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
158 				  const struct drop_reason_list *list)
159 {
160 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
161 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
162 		 "invalid subsystem %d\n", subsys))
163 		return;
164 
165 	/* must point to statically allocated memory, so INIT is OK */
166 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
167 }
168 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
169 
170 /**
171  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
172  * @subsys: the subsystem to remove, must not be the core
173  *
174  * Note: This will synchronize_rcu() to ensure no users when it returns.
175  */
176 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
177 {
178 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
179 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
180 		 "invalid subsystem %d\n", subsys))
181 		return;
182 
183 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
184 
185 	synchronize_rcu();
186 }
187 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
188 
189 /**
190  *	skb_panic - private function for out-of-line support
191  *	@skb:	buffer
192  *	@sz:	size
193  *	@addr:	address
194  *	@msg:	skb_over_panic or skb_under_panic
195  *
196  *	Out-of-line support for skb_put() and skb_push().
197  *	Called via the wrapper skb_over_panic() or skb_under_panic().
198  *	Keep out of line to prevent kernel bloat.
199  *	__builtin_return_address is not used because it is not always reliable.
200  */
201 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
202 		      const char msg[])
203 {
204 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
205 		 msg, addr, skb->len, sz, skb->head, skb->data,
206 		 (unsigned long)skb->tail, (unsigned long)skb->end,
207 		 skb->dev ? skb->dev->name : "<NULL>");
208 	BUG();
209 }
210 
211 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
212 {
213 	skb_panic(skb, sz, addr, __func__);
214 }
215 
216 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
217 {
218 	skb_panic(skb, sz, addr, __func__);
219 }
220 
221 #define NAPI_SKB_CACHE_SIZE	64
222 #define NAPI_SKB_CACHE_BULK	16
223 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
224 
225 #if PAGE_SIZE == SZ_4K
226 
227 #define NAPI_HAS_SMALL_PAGE_FRAG	1
228 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
229 
230 /* specialized page frag allocator using a single order 0 page
231  * and slicing it into 1K sized fragment. Constrained to systems
232  * with a very limited amount of 1K fragments fitting a single
233  * page - to avoid excessive truesize underestimation
234  */
235 
236 struct page_frag_1k {
237 	void *va;
238 	u16 offset;
239 	bool pfmemalloc;
240 };
241 
242 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
243 {
244 	struct page *page;
245 	int offset;
246 
247 	offset = nc->offset - SZ_1K;
248 	if (likely(offset >= 0))
249 		goto use_frag;
250 
251 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
252 	if (!page)
253 		return NULL;
254 
255 	nc->va = page_address(page);
256 	nc->pfmemalloc = page_is_pfmemalloc(page);
257 	offset = PAGE_SIZE - SZ_1K;
258 	page_ref_add(page, offset / SZ_1K);
259 
260 use_frag:
261 	nc->offset = offset;
262 	return nc->va + offset;
263 }
264 #else
265 
266 /* the small page is actually unused in this build; add dummy helpers
267  * to please the compiler and avoid later preprocessor's conditionals
268  */
269 #define NAPI_HAS_SMALL_PAGE_FRAG	0
270 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
271 
272 struct page_frag_1k {
273 };
274 
275 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
276 {
277 	return NULL;
278 }
279 
280 #endif
281 
282 struct napi_alloc_cache {
283 	struct page_frag_cache page;
284 	struct page_frag_1k page_small;
285 	unsigned int skb_count;
286 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
287 };
288 
289 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
290 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
291 
292 /* Double check that napi_get_frags() allocates skbs with
293  * skb->head being backed by slab, not a page fragment.
294  * This is to make sure bug fixed in 3226b158e67c
295  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
296  * does not accidentally come back.
297  */
298 void napi_get_frags_check(struct napi_struct *napi)
299 {
300 	struct sk_buff *skb;
301 
302 	local_bh_disable();
303 	skb = napi_get_frags(napi);
304 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
305 	napi_free_frags(napi);
306 	local_bh_enable();
307 }
308 
309 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
310 {
311 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
312 
313 	fragsz = SKB_DATA_ALIGN(fragsz);
314 
315 	return __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
316 				       align_mask);
317 }
318 EXPORT_SYMBOL(__napi_alloc_frag_align);
319 
320 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
321 {
322 	void *data;
323 
324 	fragsz = SKB_DATA_ALIGN(fragsz);
325 	if (in_hardirq() || irqs_disabled()) {
326 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
327 
328 		data = __page_frag_alloc_align(nc, fragsz, GFP_ATOMIC,
329 					       align_mask);
330 	} else {
331 		struct napi_alloc_cache *nc;
332 
333 		local_bh_disable();
334 		nc = this_cpu_ptr(&napi_alloc_cache);
335 		data = __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
336 					       align_mask);
337 		local_bh_enable();
338 	}
339 	return data;
340 }
341 EXPORT_SYMBOL(__netdev_alloc_frag_align);
342 
343 static struct sk_buff *napi_skb_cache_get(void)
344 {
345 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
346 	struct sk_buff *skb;
347 
348 	if (unlikely(!nc->skb_count)) {
349 		nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
350 						      GFP_ATOMIC,
351 						      NAPI_SKB_CACHE_BULK,
352 						      nc->skb_cache);
353 		if (unlikely(!nc->skb_count))
354 			return NULL;
355 	}
356 
357 	skb = nc->skb_cache[--nc->skb_count];
358 	kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
359 
360 	return skb;
361 }
362 
363 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
364 					 unsigned int size)
365 {
366 	struct skb_shared_info *shinfo;
367 
368 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
369 
370 	/* Assumes caller memset cleared SKB */
371 	skb->truesize = SKB_TRUESIZE(size);
372 	refcount_set(&skb->users, 1);
373 	skb->head = data;
374 	skb->data = data;
375 	skb_reset_tail_pointer(skb);
376 	skb_set_end_offset(skb, size);
377 	skb->mac_header = (typeof(skb->mac_header))~0U;
378 	skb->transport_header = (typeof(skb->transport_header))~0U;
379 	skb->alloc_cpu = raw_smp_processor_id();
380 	/* make sure we initialize shinfo sequentially */
381 	shinfo = skb_shinfo(skb);
382 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
383 	atomic_set(&shinfo->dataref, 1);
384 
385 	skb_set_kcov_handle(skb, kcov_common_handle());
386 }
387 
388 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
389 				     unsigned int *size)
390 {
391 	void *resized;
392 
393 	/* Must find the allocation size (and grow it to match). */
394 	*size = ksize(data);
395 	/* krealloc() will immediately return "data" when
396 	 * "ksize(data)" is requested: it is the existing upper
397 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
398 	 * that this "new" pointer needs to be passed back to the
399 	 * caller for use so the __alloc_size hinting will be
400 	 * tracked correctly.
401 	 */
402 	resized = krealloc(data, *size, GFP_ATOMIC);
403 	WARN_ON_ONCE(resized != data);
404 	return resized;
405 }
406 
407 /* build_skb() variant which can operate on slab buffers.
408  * Note that this should be used sparingly as slab buffers
409  * cannot be combined efficiently by GRO!
410  */
411 struct sk_buff *slab_build_skb(void *data)
412 {
413 	struct sk_buff *skb;
414 	unsigned int size;
415 
416 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
417 	if (unlikely(!skb))
418 		return NULL;
419 
420 	memset(skb, 0, offsetof(struct sk_buff, tail));
421 	data = __slab_build_skb(skb, data, &size);
422 	__finalize_skb_around(skb, data, size);
423 
424 	return skb;
425 }
426 EXPORT_SYMBOL(slab_build_skb);
427 
428 /* Caller must provide SKB that is memset cleared */
429 static void __build_skb_around(struct sk_buff *skb, void *data,
430 			       unsigned int frag_size)
431 {
432 	unsigned int size = frag_size;
433 
434 	/* frag_size == 0 is considered deprecated now. Callers
435 	 * using slab buffer should use slab_build_skb() instead.
436 	 */
437 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
438 		data = __slab_build_skb(skb, data, &size);
439 
440 	__finalize_skb_around(skb, data, size);
441 }
442 
443 /**
444  * __build_skb - build a network buffer
445  * @data: data buffer provided by caller
446  * @frag_size: size of data (must not be 0)
447  *
448  * Allocate a new &sk_buff. Caller provides space holding head and
449  * skb_shared_info. @data must have been allocated from the page
450  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
451  * allocation is deprecated, and callers should use slab_build_skb()
452  * instead.)
453  * The return is the new skb buffer.
454  * On a failure the return is %NULL, and @data is not freed.
455  * Notes :
456  *  Before IO, driver allocates only data buffer where NIC put incoming frame
457  *  Driver should add room at head (NET_SKB_PAD) and
458  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
459  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
460  *  before giving packet to stack.
461  *  RX rings only contains data buffers, not full skbs.
462  */
463 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
464 {
465 	struct sk_buff *skb;
466 
467 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
468 	if (unlikely(!skb))
469 		return NULL;
470 
471 	memset(skb, 0, offsetof(struct sk_buff, tail));
472 	__build_skb_around(skb, data, frag_size);
473 
474 	return skb;
475 }
476 
477 /* build_skb() is wrapper over __build_skb(), that specifically
478  * takes care of skb->head and skb->pfmemalloc
479  */
480 struct sk_buff *build_skb(void *data, unsigned int frag_size)
481 {
482 	struct sk_buff *skb = __build_skb(data, frag_size);
483 
484 	if (likely(skb && frag_size)) {
485 		skb->head_frag = 1;
486 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
487 	}
488 	return skb;
489 }
490 EXPORT_SYMBOL(build_skb);
491 
492 /**
493  * build_skb_around - build a network buffer around provided skb
494  * @skb: sk_buff provide by caller, must be memset cleared
495  * @data: data buffer provided by caller
496  * @frag_size: size of data
497  */
498 struct sk_buff *build_skb_around(struct sk_buff *skb,
499 				 void *data, unsigned int frag_size)
500 {
501 	if (unlikely(!skb))
502 		return NULL;
503 
504 	__build_skb_around(skb, data, frag_size);
505 
506 	if (frag_size) {
507 		skb->head_frag = 1;
508 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
509 	}
510 	return skb;
511 }
512 EXPORT_SYMBOL(build_skb_around);
513 
514 /**
515  * __napi_build_skb - build a network buffer
516  * @data: data buffer provided by caller
517  * @frag_size: size of data
518  *
519  * Version of __build_skb() that uses NAPI percpu caches to obtain
520  * skbuff_head instead of inplace allocation.
521  *
522  * Returns a new &sk_buff on success, %NULL on allocation failure.
523  */
524 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
525 {
526 	struct sk_buff *skb;
527 
528 	skb = napi_skb_cache_get();
529 	if (unlikely(!skb))
530 		return NULL;
531 
532 	memset(skb, 0, offsetof(struct sk_buff, tail));
533 	__build_skb_around(skb, data, frag_size);
534 
535 	return skb;
536 }
537 
538 /**
539  * napi_build_skb - build a network buffer
540  * @data: data buffer provided by caller
541  * @frag_size: size of data
542  *
543  * Version of __napi_build_skb() that takes care of skb->head_frag
544  * and skb->pfmemalloc when the data is a page or page fragment.
545  *
546  * Returns a new &sk_buff on success, %NULL on allocation failure.
547  */
548 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
549 {
550 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
551 
552 	if (likely(skb) && frag_size) {
553 		skb->head_frag = 1;
554 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
555 	}
556 
557 	return skb;
558 }
559 EXPORT_SYMBOL(napi_build_skb);
560 
561 /*
562  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
563  * the caller if emergency pfmemalloc reserves are being used. If it is and
564  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
565  * may be used. Otherwise, the packet data may be discarded until enough
566  * memory is free
567  */
568 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
569 			     bool *pfmemalloc)
570 {
571 	bool ret_pfmemalloc = false;
572 	size_t obj_size;
573 	void *obj;
574 
575 	obj_size = SKB_HEAD_ALIGN(*size);
576 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
577 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
578 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
579 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
580 				node);
581 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
582 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
583 			goto out;
584 		/* Try again but now we are using pfmemalloc reserves */
585 		ret_pfmemalloc = true;
586 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
587 		goto out;
588 	}
589 
590 	obj_size = kmalloc_size_roundup(obj_size);
591 	/* The following cast might truncate high-order bits of obj_size, this
592 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
593 	 */
594 	*size = (unsigned int)obj_size;
595 
596 	/*
597 	 * Try a regular allocation, when that fails and we're not entitled
598 	 * to the reserves, fail.
599 	 */
600 	obj = kmalloc_node_track_caller(obj_size,
601 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
602 					node);
603 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
604 		goto out;
605 
606 	/* Try again but now we are using pfmemalloc reserves */
607 	ret_pfmemalloc = true;
608 	obj = kmalloc_node_track_caller(obj_size, flags, node);
609 
610 out:
611 	if (pfmemalloc)
612 		*pfmemalloc = ret_pfmemalloc;
613 
614 	return obj;
615 }
616 
617 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
618  *	'private' fields and also do memory statistics to find all the
619  *	[BEEP] leaks.
620  *
621  */
622 
623 /**
624  *	__alloc_skb	-	allocate a network buffer
625  *	@size: size to allocate
626  *	@gfp_mask: allocation mask
627  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
628  *		instead of head cache and allocate a cloned (child) skb.
629  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
630  *		allocations in case the data is required for writeback
631  *	@node: numa node to allocate memory on
632  *
633  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
634  *	tail room of at least size bytes. The object has a reference count
635  *	of one. The return is the buffer. On a failure the return is %NULL.
636  *
637  *	Buffers may only be allocated from interrupts using a @gfp_mask of
638  *	%GFP_ATOMIC.
639  */
640 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
641 			    int flags, int node)
642 {
643 	struct kmem_cache *cache;
644 	struct sk_buff *skb;
645 	bool pfmemalloc;
646 	u8 *data;
647 
648 	cache = (flags & SKB_ALLOC_FCLONE)
649 		? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
650 
651 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
652 		gfp_mask |= __GFP_MEMALLOC;
653 
654 	/* Get the HEAD */
655 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
656 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
657 		skb = napi_skb_cache_get();
658 	else
659 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
660 	if (unlikely(!skb))
661 		return NULL;
662 	prefetchw(skb);
663 
664 	/* We do our best to align skb_shared_info on a separate cache
665 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
666 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
667 	 * Both skb->head and skb_shared_info are cache line aligned.
668 	 */
669 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
670 	if (unlikely(!data))
671 		goto nodata;
672 	/* kmalloc_size_roundup() might give us more room than requested.
673 	 * Put skb_shared_info exactly at the end of allocated zone,
674 	 * to allow max possible filling before reallocation.
675 	 */
676 	prefetchw(data + SKB_WITH_OVERHEAD(size));
677 
678 	/*
679 	 * Only clear those fields we need to clear, not those that we will
680 	 * actually initialise below. Hence, don't put any more fields after
681 	 * the tail pointer in struct sk_buff!
682 	 */
683 	memset(skb, 0, offsetof(struct sk_buff, tail));
684 	__build_skb_around(skb, data, size);
685 	skb->pfmemalloc = pfmemalloc;
686 
687 	if (flags & SKB_ALLOC_FCLONE) {
688 		struct sk_buff_fclones *fclones;
689 
690 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
691 
692 		skb->fclone = SKB_FCLONE_ORIG;
693 		refcount_set(&fclones->fclone_ref, 1);
694 	}
695 
696 	return skb;
697 
698 nodata:
699 	kmem_cache_free(cache, skb);
700 	return NULL;
701 }
702 EXPORT_SYMBOL(__alloc_skb);
703 
704 /**
705  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
706  *	@dev: network device to receive on
707  *	@len: length to allocate
708  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
709  *
710  *	Allocate a new &sk_buff and assign it a usage count of one. The
711  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
712  *	the headroom they think they need without accounting for the
713  *	built in space. The built in space is used for optimisations.
714  *
715  *	%NULL is returned if there is no free memory.
716  */
717 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
718 				   gfp_t gfp_mask)
719 {
720 	struct page_frag_cache *nc;
721 	struct sk_buff *skb;
722 	bool pfmemalloc;
723 	void *data;
724 
725 	len += NET_SKB_PAD;
726 
727 	/* If requested length is either too small or too big,
728 	 * we use kmalloc() for skb->head allocation.
729 	 */
730 	if (len <= SKB_WITH_OVERHEAD(1024) ||
731 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
732 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
733 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
734 		if (!skb)
735 			goto skb_fail;
736 		goto skb_success;
737 	}
738 
739 	len = SKB_HEAD_ALIGN(len);
740 
741 	if (sk_memalloc_socks())
742 		gfp_mask |= __GFP_MEMALLOC;
743 
744 	if (in_hardirq() || irqs_disabled()) {
745 		nc = this_cpu_ptr(&netdev_alloc_cache);
746 		data = page_frag_alloc(nc, len, gfp_mask);
747 		pfmemalloc = nc->pfmemalloc;
748 	} else {
749 		local_bh_disable();
750 		nc = this_cpu_ptr(&napi_alloc_cache.page);
751 		data = page_frag_alloc(nc, len, gfp_mask);
752 		pfmemalloc = nc->pfmemalloc;
753 		local_bh_enable();
754 	}
755 
756 	if (unlikely(!data))
757 		return NULL;
758 
759 	skb = __build_skb(data, len);
760 	if (unlikely(!skb)) {
761 		skb_free_frag(data);
762 		return NULL;
763 	}
764 
765 	if (pfmemalloc)
766 		skb->pfmemalloc = 1;
767 	skb->head_frag = 1;
768 
769 skb_success:
770 	skb_reserve(skb, NET_SKB_PAD);
771 	skb->dev = dev;
772 
773 skb_fail:
774 	return skb;
775 }
776 EXPORT_SYMBOL(__netdev_alloc_skb);
777 
778 /**
779  *	napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
780  *	@napi: napi instance this buffer was allocated for
781  *	@len: length to allocate
782  *
783  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
784  *	attempt to allocate the head from a special reserved region used
785  *	only for NAPI Rx allocation.  By doing this we can save several
786  *	CPU cycles by avoiding having to disable and re-enable IRQs.
787  *
788  *	%NULL is returned if there is no free memory.
789  */
790 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
791 {
792 	gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
793 	struct napi_alloc_cache *nc;
794 	struct sk_buff *skb;
795 	bool pfmemalloc;
796 	void *data;
797 
798 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
799 	len += NET_SKB_PAD + NET_IP_ALIGN;
800 
801 	/* If requested length is either too small or too big,
802 	 * we use kmalloc() for skb->head allocation.
803 	 * When the small frag allocator is available, prefer it over kmalloc
804 	 * for small fragments
805 	 */
806 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
807 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
808 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
809 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
810 				  NUMA_NO_NODE);
811 		if (!skb)
812 			goto skb_fail;
813 		goto skb_success;
814 	}
815 
816 	nc = this_cpu_ptr(&napi_alloc_cache);
817 
818 	if (sk_memalloc_socks())
819 		gfp_mask |= __GFP_MEMALLOC;
820 
821 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
822 		/* we are artificially inflating the allocation size, but
823 		 * that is not as bad as it may look like, as:
824 		 * - 'len' less than GRO_MAX_HEAD makes little sense
825 		 * - On most systems, larger 'len' values lead to fragment
826 		 *   size above 512 bytes
827 		 * - kmalloc would use the kmalloc-1k slab for such values
828 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
829 		 *   little networking, as that implies no WiFi and no
830 		 *   tunnels support, and 32 bits arches.
831 		 */
832 		len = SZ_1K;
833 
834 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
835 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
836 	} else {
837 		len = SKB_HEAD_ALIGN(len);
838 
839 		data = page_frag_alloc(&nc->page, len, gfp_mask);
840 		pfmemalloc = nc->page.pfmemalloc;
841 	}
842 
843 	if (unlikely(!data))
844 		return NULL;
845 
846 	skb = __napi_build_skb(data, len);
847 	if (unlikely(!skb)) {
848 		skb_free_frag(data);
849 		return NULL;
850 	}
851 
852 	if (pfmemalloc)
853 		skb->pfmemalloc = 1;
854 	skb->head_frag = 1;
855 
856 skb_success:
857 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
858 	skb->dev = napi->dev;
859 
860 skb_fail:
861 	return skb;
862 }
863 EXPORT_SYMBOL(napi_alloc_skb);
864 
865 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
866 			    int off, int size, unsigned int truesize)
867 {
868 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
869 
870 	skb_fill_netmem_desc(skb, i, netmem, off, size);
871 	skb->len += size;
872 	skb->data_len += size;
873 	skb->truesize += truesize;
874 }
875 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
876 
877 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
878 			  unsigned int truesize)
879 {
880 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
881 
882 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
883 
884 	skb_frag_size_add(frag, size);
885 	skb->len += size;
886 	skb->data_len += size;
887 	skb->truesize += truesize;
888 }
889 EXPORT_SYMBOL(skb_coalesce_rx_frag);
890 
891 static void skb_drop_list(struct sk_buff **listp)
892 {
893 	kfree_skb_list(*listp);
894 	*listp = NULL;
895 }
896 
897 static inline void skb_drop_fraglist(struct sk_buff *skb)
898 {
899 	skb_drop_list(&skb_shinfo(skb)->frag_list);
900 }
901 
902 static void skb_clone_fraglist(struct sk_buff *skb)
903 {
904 	struct sk_buff *list;
905 
906 	skb_walk_frags(skb, list)
907 		skb_get(list);
908 }
909 
910 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
911 		    unsigned int headroom)
912 {
913 #if IS_ENABLED(CONFIG_PAGE_POOL)
914 	u32 size, truesize, len, max_head_size, off;
915 	struct sk_buff *skb = *pskb, *nskb;
916 	int err, i, head_off;
917 	void *data;
918 
919 	/* XDP does not support fraglist so we need to linearize
920 	 * the skb.
921 	 */
922 	if (skb_has_frag_list(skb))
923 		return -EOPNOTSUPP;
924 
925 	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
926 	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
927 		return -ENOMEM;
928 
929 	size = min_t(u32, skb->len, max_head_size);
930 	truesize = SKB_HEAD_ALIGN(size) + headroom;
931 	data = page_pool_dev_alloc_va(pool, &truesize);
932 	if (!data)
933 		return -ENOMEM;
934 
935 	nskb = napi_build_skb(data, truesize);
936 	if (!nskb) {
937 		page_pool_free_va(pool, data, true);
938 		return -ENOMEM;
939 	}
940 
941 	skb_reserve(nskb, headroom);
942 	skb_copy_header(nskb, skb);
943 	skb_mark_for_recycle(nskb);
944 
945 	err = skb_copy_bits(skb, 0, nskb->data, size);
946 	if (err) {
947 		consume_skb(nskb);
948 		return err;
949 	}
950 	skb_put(nskb, size);
951 
952 	head_off = skb_headroom(nskb) - skb_headroom(skb);
953 	skb_headers_offset_update(nskb, head_off);
954 
955 	off = size;
956 	len = skb->len - off;
957 	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
958 		struct page *page;
959 		u32 page_off;
960 
961 		size = min_t(u32, len, PAGE_SIZE);
962 		truesize = size;
963 
964 		page = page_pool_dev_alloc(pool, &page_off, &truesize);
965 		if (!page) {
966 			consume_skb(nskb);
967 			return -ENOMEM;
968 		}
969 
970 		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
971 		err = skb_copy_bits(skb, off, page_address(page) + page_off,
972 				    size);
973 		if (err) {
974 			consume_skb(nskb);
975 			return err;
976 		}
977 
978 		len -= size;
979 		off += size;
980 	}
981 
982 	consume_skb(skb);
983 	*pskb = nskb;
984 
985 	return 0;
986 #else
987 	return -EOPNOTSUPP;
988 #endif
989 }
990 EXPORT_SYMBOL(skb_pp_cow_data);
991 
992 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
993 			 struct bpf_prog *prog)
994 {
995 	if (!prog->aux->xdp_has_frags)
996 		return -EINVAL;
997 
998 	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
999 }
1000 EXPORT_SYMBOL(skb_cow_data_for_xdp);
1001 
1002 #if IS_ENABLED(CONFIG_PAGE_POOL)
1003 bool napi_pp_put_page(struct page *page)
1004 {
1005 	page = compound_head(page);
1006 
1007 	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
1008 	 * in order to preserve any existing bits, such as bit 0 for the
1009 	 * head page of compound page and bit 1 for pfmemalloc page, so
1010 	 * mask those bits for freeing side when doing below checking,
1011 	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
1012 	 * to avoid recycling the pfmemalloc page.
1013 	 */
1014 	if (unlikely(!is_pp_page(page)))
1015 		return false;
1016 
1017 	page_pool_put_full_page(page->pp, page, false);
1018 
1019 	return true;
1020 }
1021 EXPORT_SYMBOL(napi_pp_put_page);
1022 #endif
1023 
1024 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
1025 {
1026 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1027 		return false;
1028 	return napi_pp_put_page(virt_to_page(data));
1029 }
1030 
1031 static void skb_kfree_head(void *head, unsigned int end_offset)
1032 {
1033 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1034 		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1035 	else
1036 		kfree(head);
1037 }
1038 
1039 static void skb_free_head(struct sk_buff *skb)
1040 {
1041 	unsigned char *head = skb->head;
1042 
1043 	if (skb->head_frag) {
1044 		if (skb_pp_recycle(skb, head))
1045 			return;
1046 		skb_free_frag(head);
1047 	} else {
1048 		skb_kfree_head(head, skb_end_offset(skb));
1049 	}
1050 }
1051 
1052 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1053 {
1054 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1055 	int i;
1056 
1057 	if (!skb_data_unref(skb, shinfo))
1058 		goto exit;
1059 
1060 	if (skb_zcopy(skb)) {
1061 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1062 
1063 		skb_zcopy_clear(skb, true);
1064 		if (skip_unref)
1065 			goto free_head;
1066 	}
1067 
1068 	for (i = 0; i < shinfo->nr_frags; i++)
1069 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1070 
1071 free_head:
1072 	if (shinfo->frag_list)
1073 		kfree_skb_list_reason(shinfo->frag_list, reason);
1074 
1075 	skb_free_head(skb);
1076 exit:
1077 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1078 	 * bit is only set on the head though, so in order to avoid races
1079 	 * while trying to recycle fragments on __skb_frag_unref() we need
1080 	 * to make one SKB responsible for triggering the recycle path.
1081 	 * So disable the recycling bit if an SKB is cloned and we have
1082 	 * additional references to the fragmented part of the SKB.
1083 	 * Eventually the last SKB will have the recycling bit set and it's
1084 	 * dataref set to 0, which will trigger the recycling
1085 	 */
1086 	skb->pp_recycle = 0;
1087 }
1088 
1089 /*
1090  *	Free an skbuff by memory without cleaning the state.
1091  */
1092 static void kfree_skbmem(struct sk_buff *skb)
1093 {
1094 	struct sk_buff_fclones *fclones;
1095 
1096 	switch (skb->fclone) {
1097 	case SKB_FCLONE_UNAVAILABLE:
1098 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1099 		return;
1100 
1101 	case SKB_FCLONE_ORIG:
1102 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1103 
1104 		/* We usually free the clone (TX completion) before original skb
1105 		 * This test would have no chance to be true for the clone,
1106 		 * while here, branch prediction will be good.
1107 		 */
1108 		if (refcount_read(&fclones->fclone_ref) == 1)
1109 			goto fastpath;
1110 		break;
1111 
1112 	default: /* SKB_FCLONE_CLONE */
1113 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1114 		break;
1115 	}
1116 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1117 		return;
1118 fastpath:
1119 	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1120 }
1121 
1122 void skb_release_head_state(struct sk_buff *skb)
1123 {
1124 	skb_dst_drop(skb);
1125 	if (skb->destructor) {
1126 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1127 		skb->destructor(skb);
1128 	}
1129 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1130 	nf_conntrack_put(skb_nfct(skb));
1131 #endif
1132 	skb_ext_put(skb);
1133 }
1134 
1135 /* Free everything but the sk_buff shell. */
1136 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1137 {
1138 	skb_release_head_state(skb);
1139 	if (likely(skb->head))
1140 		skb_release_data(skb, reason);
1141 }
1142 
1143 /**
1144  *	__kfree_skb - private function
1145  *	@skb: buffer
1146  *
1147  *	Free an sk_buff. Release anything attached to the buffer.
1148  *	Clean the state. This is an internal helper function. Users should
1149  *	always call kfree_skb
1150  */
1151 
1152 void __kfree_skb(struct sk_buff *skb)
1153 {
1154 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1155 	kfree_skbmem(skb);
1156 }
1157 EXPORT_SYMBOL(__kfree_skb);
1158 
1159 static __always_inline
1160 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1161 {
1162 	if (unlikely(!skb_unref(skb)))
1163 		return false;
1164 
1165 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1166 			       u32_get_bits(reason,
1167 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1168 				SKB_DROP_REASON_SUBSYS_NUM);
1169 
1170 	if (reason == SKB_CONSUMED)
1171 		trace_consume_skb(skb, __builtin_return_address(0));
1172 	else
1173 		trace_kfree_skb(skb, __builtin_return_address(0), reason);
1174 	return true;
1175 }
1176 
1177 /**
1178  *	kfree_skb_reason - free an sk_buff with special reason
1179  *	@skb: buffer to free
1180  *	@reason: reason why this skb is dropped
1181  *
1182  *	Drop a reference to the buffer and free it if the usage count has
1183  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1184  *	tracepoint.
1185  */
1186 void __fix_address
1187 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1188 {
1189 	if (__kfree_skb_reason(skb, reason))
1190 		__kfree_skb(skb);
1191 }
1192 EXPORT_SYMBOL(kfree_skb_reason);
1193 
1194 #define KFREE_SKB_BULK_SIZE	16
1195 
1196 struct skb_free_array {
1197 	unsigned int skb_count;
1198 	void *skb_array[KFREE_SKB_BULK_SIZE];
1199 };
1200 
1201 static void kfree_skb_add_bulk(struct sk_buff *skb,
1202 			       struct skb_free_array *sa,
1203 			       enum skb_drop_reason reason)
1204 {
1205 	/* if SKB is a clone, don't handle this case */
1206 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1207 		__kfree_skb(skb);
1208 		return;
1209 	}
1210 
1211 	skb_release_all(skb, reason);
1212 	sa->skb_array[sa->skb_count++] = skb;
1213 
1214 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1215 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1216 				     sa->skb_array);
1217 		sa->skb_count = 0;
1218 	}
1219 }
1220 
1221 void __fix_address
1222 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1223 {
1224 	struct skb_free_array sa;
1225 
1226 	sa.skb_count = 0;
1227 
1228 	while (segs) {
1229 		struct sk_buff *next = segs->next;
1230 
1231 		if (__kfree_skb_reason(segs, reason)) {
1232 			skb_poison_list(segs);
1233 			kfree_skb_add_bulk(segs, &sa, reason);
1234 		}
1235 
1236 		segs = next;
1237 	}
1238 
1239 	if (sa.skb_count)
1240 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1241 }
1242 EXPORT_SYMBOL(kfree_skb_list_reason);
1243 
1244 /* Dump skb information and contents.
1245  *
1246  * Must only be called from net_ratelimit()-ed paths.
1247  *
1248  * Dumps whole packets if full_pkt, only headers otherwise.
1249  */
1250 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1251 {
1252 	struct skb_shared_info *sh = skb_shinfo(skb);
1253 	struct net_device *dev = skb->dev;
1254 	struct sock *sk = skb->sk;
1255 	struct sk_buff *list_skb;
1256 	bool has_mac, has_trans;
1257 	int headroom, tailroom;
1258 	int i, len, seg_len;
1259 
1260 	if (full_pkt)
1261 		len = skb->len;
1262 	else
1263 		len = min_t(int, skb->len, MAX_HEADER + 128);
1264 
1265 	headroom = skb_headroom(skb);
1266 	tailroom = skb_tailroom(skb);
1267 
1268 	has_mac = skb_mac_header_was_set(skb);
1269 	has_trans = skb_transport_header_was_set(skb);
1270 
1271 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1272 	       "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n"
1273 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1274 	       "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1275 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n"
1276 	       "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n"
1277 	       "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n",
1278 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1279 	       has_mac ? skb->mac_header : -1,
1280 	       has_mac ? skb_mac_header_len(skb) : -1,
1281 	       skb->mac_len,
1282 	       skb->network_header,
1283 	       has_trans ? skb_network_header_len(skb) : -1,
1284 	       has_trans ? skb->transport_header : -1,
1285 	       sh->tx_flags, sh->nr_frags,
1286 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1287 	       skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed,
1288 	       skb->csum_complete_sw, skb->csum_valid, skb->csum_level,
1289 	       skb->hash, skb->sw_hash, skb->l4_hash,
1290 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif,
1291 	       skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all,
1292 	       skb->encapsulation, skb->inner_protocol, skb->inner_mac_header,
1293 	       skb->inner_network_header, skb->inner_transport_header);
1294 
1295 	if (dev)
1296 		printk("%sdev name=%s feat=%pNF\n",
1297 		       level, dev->name, &dev->features);
1298 	if (sk)
1299 		printk("%ssk family=%hu type=%u proto=%u\n",
1300 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1301 
1302 	if (full_pkt && headroom)
1303 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1304 			       16, 1, skb->head, headroom, false);
1305 
1306 	seg_len = min_t(int, skb_headlen(skb), len);
1307 	if (seg_len)
1308 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1309 			       16, 1, skb->data, seg_len, false);
1310 	len -= seg_len;
1311 
1312 	if (full_pkt && tailroom)
1313 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1314 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1315 
1316 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1317 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1318 		u32 p_off, p_len, copied;
1319 		struct page *p;
1320 		u8 *vaddr;
1321 
1322 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1323 				      skb_frag_size(frag), p, p_off, p_len,
1324 				      copied) {
1325 			seg_len = min_t(int, p_len, len);
1326 			vaddr = kmap_atomic(p);
1327 			print_hex_dump(level, "skb frag:     ",
1328 				       DUMP_PREFIX_OFFSET,
1329 				       16, 1, vaddr + p_off, seg_len, false);
1330 			kunmap_atomic(vaddr);
1331 			len -= seg_len;
1332 			if (!len)
1333 				break;
1334 		}
1335 	}
1336 
1337 	if (full_pkt && skb_has_frag_list(skb)) {
1338 		printk("skb fraglist:\n");
1339 		skb_walk_frags(skb, list_skb)
1340 			skb_dump(level, list_skb, true);
1341 	}
1342 }
1343 EXPORT_SYMBOL(skb_dump);
1344 
1345 /**
1346  *	skb_tx_error - report an sk_buff xmit error
1347  *	@skb: buffer that triggered an error
1348  *
1349  *	Report xmit error if a device callback is tracking this skb.
1350  *	skb must be freed afterwards.
1351  */
1352 void skb_tx_error(struct sk_buff *skb)
1353 {
1354 	if (skb) {
1355 		skb_zcopy_downgrade_managed(skb);
1356 		skb_zcopy_clear(skb, true);
1357 	}
1358 }
1359 EXPORT_SYMBOL(skb_tx_error);
1360 
1361 #ifdef CONFIG_TRACEPOINTS
1362 /**
1363  *	consume_skb - free an skbuff
1364  *	@skb: buffer to free
1365  *
1366  *	Drop a ref to the buffer and free it if the usage count has hit zero
1367  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1368  *	is being dropped after a failure and notes that
1369  */
1370 void consume_skb(struct sk_buff *skb)
1371 {
1372 	if (!skb_unref(skb))
1373 		return;
1374 
1375 	trace_consume_skb(skb, __builtin_return_address(0));
1376 	__kfree_skb(skb);
1377 }
1378 EXPORT_SYMBOL(consume_skb);
1379 #endif
1380 
1381 /**
1382  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1383  *	@skb: buffer to free
1384  *
1385  *	Alike consume_skb(), but this variant assumes that this is the last
1386  *	skb reference and all the head states have been already dropped
1387  */
1388 void __consume_stateless_skb(struct sk_buff *skb)
1389 {
1390 	trace_consume_skb(skb, __builtin_return_address(0));
1391 	skb_release_data(skb, SKB_CONSUMED);
1392 	kfree_skbmem(skb);
1393 }
1394 
1395 static void napi_skb_cache_put(struct sk_buff *skb)
1396 {
1397 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1398 	u32 i;
1399 
1400 	if (!kasan_mempool_poison_object(skb))
1401 		return;
1402 
1403 	nc->skb_cache[nc->skb_count++] = skb;
1404 
1405 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1406 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1407 			kasan_mempool_unpoison_object(nc->skb_cache[i],
1408 						kmem_cache_size(net_hotdata.skbuff_cache));
1409 
1410 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1411 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1412 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1413 	}
1414 }
1415 
1416 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1417 {
1418 	skb_release_all(skb, reason);
1419 	napi_skb_cache_put(skb);
1420 }
1421 
1422 void napi_skb_free_stolen_head(struct sk_buff *skb)
1423 {
1424 	if (unlikely(skb->slow_gro)) {
1425 		nf_reset_ct(skb);
1426 		skb_dst_drop(skb);
1427 		skb_ext_put(skb);
1428 		skb_orphan(skb);
1429 		skb->slow_gro = 0;
1430 	}
1431 	napi_skb_cache_put(skb);
1432 }
1433 
1434 void napi_consume_skb(struct sk_buff *skb, int budget)
1435 {
1436 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1437 	if (unlikely(!budget)) {
1438 		dev_consume_skb_any(skb);
1439 		return;
1440 	}
1441 
1442 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1443 
1444 	if (!skb_unref(skb))
1445 		return;
1446 
1447 	/* if reaching here SKB is ready to free */
1448 	trace_consume_skb(skb, __builtin_return_address(0));
1449 
1450 	/* if SKB is a clone, don't handle this case */
1451 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1452 		__kfree_skb(skb);
1453 		return;
1454 	}
1455 
1456 	skb_release_all(skb, SKB_CONSUMED);
1457 	napi_skb_cache_put(skb);
1458 }
1459 EXPORT_SYMBOL(napi_consume_skb);
1460 
1461 /* Make sure a field is contained by headers group */
1462 #define CHECK_SKB_FIELD(field) \
1463 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1464 		     offsetof(struct sk_buff, headers.field));	\
1465 
1466 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1467 {
1468 	new->tstamp		= old->tstamp;
1469 	/* We do not copy old->sk */
1470 	new->dev		= old->dev;
1471 	memcpy(new->cb, old->cb, sizeof(old->cb));
1472 	skb_dst_copy(new, old);
1473 	__skb_ext_copy(new, old);
1474 	__nf_copy(new, old, false);
1475 
1476 	/* Note : this field could be in the headers group.
1477 	 * It is not yet because we do not want to have a 16 bit hole
1478 	 */
1479 	new->queue_mapping = old->queue_mapping;
1480 
1481 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1482 	CHECK_SKB_FIELD(protocol);
1483 	CHECK_SKB_FIELD(csum);
1484 	CHECK_SKB_FIELD(hash);
1485 	CHECK_SKB_FIELD(priority);
1486 	CHECK_SKB_FIELD(skb_iif);
1487 	CHECK_SKB_FIELD(vlan_proto);
1488 	CHECK_SKB_FIELD(vlan_tci);
1489 	CHECK_SKB_FIELD(transport_header);
1490 	CHECK_SKB_FIELD(network_header);
1491 	CHECK_SKB_FIELD(mac_header);
1492 	CHECK_SKB_FIELD(inner_protocol);
1493 	CHECK_SKB_FIELD(inner_transport_header);
1494 	CHECK_SKB_FIELD(inner_network_header);
1495 	CHECK_SKB_FIELD(inner_mac_header);
1496 	CHECK_SKB_FIELD(mark);
1497 #ifdef CONFIG_NETWORK_SECMARK
1498 	CHECK_SKB_FIELD(secmark);
1499 #endif
1500 #ifdef CONFIG_NET_RX_BUSY_POLL
1501 	CHECK_SKB_FIELD(napi_id);
1502 #endif
1503 	CHECK_SKB_FIELD(alloc_cpu);
1504 #ifdef CONFIG_XPS
1505 	CHECK_SKB_FIELD(sender_cpu);
1506 #endif
1507 #ifdef CONFIG_NET_SCHED
1508 	CHECK_SKB_FIELD(tc_index);
1509 #endif
1510 
1511 }
1512 
1513 /*
1514  * You should not add any new code to this function.  Add it to
1515  * __copy_skb_header above instead.
1516  */
1517 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1518 {
1519 #define C(x) n->x = skb->x
1520 
1521 	n->next = n->prev = NULL;
1522 	n->sk = NULL;
1523 	__copy_skb_header(n, skb);
1524 
1525 	C(len);
1526 	C(data_len);
1527 	C(mac_len);
1528 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1529 	n->cloned = 1;
1530 	n->nohdr = 0;
1531 	n->peeked = 0;
1532 	C(pfmemalloc);
1533 	C(pp_recycle);
1534 	n->destructor = NULL;
1535 	C(tail);
1536 	C(end);
1537 	C(head);
1538 	C(head_frag);
1539 	C(data);
1540 	C(truesize);
1541 	refcount_set(&n->users, 1);
1542 
1543 	atomic_inc(&(skb_shinfo(skb)->dataref));
1544 	skb->cloned = 1;
1545 
1546 	return n;
1547 #undef C
1548 }
1549 
1550 /**
1551  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1552  * @first: first sk_buff of the msg
1553  */
1554 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1555 {
1556 	struct sk_buff *n;
1557 
1558 	n = alloc_skb(0, GFP_ATOMIC);
1559 	if (!n)
1560 		return NULL;
1561 
1562 	n->len = first->len;
1563 	n->data_len = first->len;
1564 	n->truesize = first->truesize;
1565 
1566 	skb_shinfo(n)->frag_list = first;
1567 
1568 	__copy_skb_header(n, first);
1569 	n->destructor = NULL;
1570 
1571 	return n;
1572 }
1573 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1574 
1575 /**
1576  *	skb_morph	-	morph one skb into another
1577  *	@dst: the skb to receive the contents
1578  *	@src: the skb to supply the contents
1579  *
1580  *	This is identical to skb_clone except that the target skb is
1581  *	supplied by the user.
1582  *
1583  *	The target skb is returned upon exit.
1584  */
1585 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1586 {
1587 	skb_release_all(dst, SKB_CONSUMED);
1588 	return __skb_clone(dst, src);
1589 }
1590 EXPORT_SYMBOL_GPL(skb_morph);
1591 
1592 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1593 {
1594 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1595 	struct user_struct *user;
1596 
1597 	if (capable(CAP_IPC_LOCK) || !size)
1598 		return 0;
1599 
1600 	rlim = rlimit(RLIMIT_MEMLOCK);
1601 	if (rlim == RLIM_INFINITY)
1602 		return 0;
1603 
1604 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1605 	max_pg = rlim >> PAGE_SHIFT;
1606 	user = mmp->user ? : current_user();
1607 
1608 	old_pg = atomic_long_read(&user->locked_vm);
1609 	do {
1610 		new_pg = old_pg + num_pg;
1611 		if (new_pg > max_pg)
1612 			return -ENOBUFS;
1613 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1614 
1615 	if (!mmp->user) {
1616 		mmp->user = get_uid(user);
1617 		mmp->num_pg = num_pg;
1618 	} else {
1619 		mmp->num_pg += num_pg;
1620 	}
1621 
1622 	return 0;
1623 }
1624 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1625 
1626 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1627 {
1628 	if (mmp->user) {
1629 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1630 		free_uid(mmp->user);
1631 	}
1632 }
1633 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1634 
1635 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1636 {
1637 	struct ubuf_info_msgzc *uarg;
1638 	struct sk_buff *skb;
1639 
1640 	WARN_ON_ONCE(!in_task());
1641 
1642 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1643 	if (!skb)
1644 		return NULL;
1645 
1646 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1647 	uarg = (void *)skb->cb;
1648 	uarg->mmp.user = NULL;
1649 
1650 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1651 		kfree_skb(skb);
1652 		return NULL;
1653 	}
1654 
1655 	uarg->ubuf.ops = &msg_zerocopy_ubuf_ops;
1656 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1657 	uarg->len = 1;
1658 	uarg->bytelen = size;
1659 	uarg->zerocopy = 1;
1660 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1661 	refcount_set(&uarg->ubuf.refcnt, 1);
1662 	sock_hold(sk);
1663 
1664 	return &uarg->ubuf;
1665 }
1666 
1667 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1668 {
1669 	return container_of((void *)uarg, struct sk_buff, cb);
1670 }
1671 
1672 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1673 				       struct ubuf_info *uarg)
1674 {
1675 	if (uarg) {
1676 		struct ubuf_info_msgzc *uarg_zc;
1677 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1678 		u32 bytelen, next;
1679 
1680 		/* there might be non MSG_ZEROCOPY users */
1681 		if (uarg->ops != &msg_zerocopy_ubuf_ops)
1682 			return NULL;
1683 
1684 		/* realloc only when socket is locked (TCP, UDP cork),
1685 		 * so uarg->len and sk_zckey access is serialized
1686 		 */
1687 		if (!sock_owned_by_user(sk)) {
1688 			WARN_ON_ONCE(1);
1689 			return NULL;
1690 		}
1691 
1692 		uarg_zc = uarg_to_msgzc(uarg);
1693 		bytelen = uarg_zc->bytelen + size;
1694 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1695 			/* TCP can create new skb to attach new uarg */
1696 			if (sk->sk_type == SOCK_STREAM)
1697 				goto new_alloc;
1698 			return NULL;
1699 		}
1700 
1701 		next = (u32)atomic_read(&sk->sk_zckey);
1702 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1703 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1704 				return NULL;
1705 			uarg_zc->len++;
1706 			uarg_zc->bytelen = bytelen;
1707 			atomic_set(&sk->sk_zckey, ++next);
1708 
1709 			/* no extra ref when appending to datagram (MSG_MORE) */
1710 			if (sk->sk_type == SOCK_STREAM)
1711 				net_zcopy_get(uarg);
1712 
1713 			return uarg;
1714 		}
1715 	}
1716 
1717 new_alloc:
1718 	return msg_zerocopy_alloc(sk, size);
1719 }
1720 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1721 
1722 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1723 {
1724 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1725 	u32 old_lo, old_hi;
1726 	u64 sum_len;
1727 
1728 	old_lo = serr->ee.ee_info;
1729 	old_hi = serr->ee.ee_data;
1730 	sum_len = old_hi - old_lo + 1ULL + len;
1731 
1732 	if (sum_len >= (1ULL << 32))
1733 		return false;
1734 
1735 	if (lo != old_hi + 1)
1736 		return false;
1737 
1738 	serr->ee.ee_data += len;
1739 	return true;
1740 }
1741 
1742 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1743 {
1744 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1745 	struct sock_exterr_skb *serr;
1746 	struct sock *sk = skb->sk;
1747 	struct sk_buff_head *q;
1748 	unsigned long flags;
1749 	bool is_zerocopy;
1750 	u32 lo, hi;
1751 	u16 len;
1752 
1753 	mm_unaccount_pinned_pages(&uarg->mmp);
1754 
1755 	/* if !len, there was only 1 call, and it was aborted
1756 	 * so do not queue a completion notification
1757 	 */
1758 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1759 		goto release;
1760 
1761 	len = uarg->len;
1762 	lo = uarg->id;
1763 	hi = uarg->id + len - 1;
1764 	is_zerocopy = uarg->zerocopy;
1765 
1766 	serr = SKB_EXT_ERR(skb);
1767 	memset(serr, 0, sizeof(*serr));
1768 	serr->ee.ee_errno = 0;
1769 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1770 	serr->ee.ee_data = hi;
1771 	serr->ee.ee_info = lo;
1772 	if (!is_zerocopy)
1773 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1774 
1775 	q = &sk->sk_error_queue;
1776 	spin_lock_irqsave(&q->lock, flags);
1777 	tail = skb_peek_tail(q);
1778 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1779 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1780 		__skb_queue_tail(q, skb);
1781 		skb = NULL;
1782 	}
1783 	spin_unlock_irqrestore(&q->lock, flags);
1784 
1785 	sk_error_report(sk);
1786 
1787 release:
1788 	consume_skb(skb);
1789 	sock_put(sk);
1790 }
1791 
1792 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg,
1793 				  bool success)
1794 {
1795 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1796 
1797 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1798 
1799 	if (refcount_dec_and_test(&uarg->refcnt))
1800 		__msg_zerocopy_callback(uarg_zc);
1801 }
1802 
1803 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1804 {
1805 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1806 
1807 	atomic_dec(&sk->sk_zckey);
1808 	uarg_to_msgzc(uarg)->len--;
1809 
1810 	if (have_uref)
1811 		msg_zerocopy_complete(NULL, uarg, true);
1812 }
1813 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1814 
1815 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = {
1816 	.complete = msg_zerocopy_complete,
1817 };
1818 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops);
1819 
1820 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1821 			     struct msghdr *msg, int len,
1822 			     struct ubuf_info *uarg)
1823 {
1824 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1825 	int err, orig_len = skb->len;
1826 
1827 	if (uarg->ops->link_skb) {
1828 		err = uarg->ops->link_skb(skb, uarg);
1829 		if (err)
1830 			return err;
1831 	} else {
1832 		/* An skb can only point to one uarg. This edge case happens
1833 		 * when TCP appends to an skb, but zerocopy_realloc triggered
1834 		 * a new alloc.
1835 		 */
1836 		if (orig_uarg && uarg != orig_uarg)
1837 			return -EEXIST;
1838 	}
1839 
1840 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1841 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1842 		struct sock *save_sk = skb->sk;
1843 
1844 		/* Streams do not free skb on error. Reset to prev state. */
1845 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1846 		skb->sk = sk;
1847 		___pskb_trim(skb, orig_len);
1848 		skb->sk = save_sk;
1849 		return err;
1850 	}
1851 
1852 	if (!uarg->ops->link_skb)
1853 		skb_zcopy_set(skb, uarg, NULL);
1854 	return skb->len - orig_len;
1855 }
1856 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1857 
1858 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1859 {
1860 	int i;
1861 
1862 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1863 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1864 		skb_frag_ref(skb, i);
1865 }
1866 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1867 
1868 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1869 			      gfp_t gfp_mask)
1870 {
1871 	if (skb_zcopy(orig)) {
1872 		if (skb_zcopy(nskb)) {
1873 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1874 			if (!gfp_mask) {
1875 				WARN_ON_ONCE(1);
1876 				return -ENOMEM;
1877 			}
1878 			if (skb_uarg(nskb) == skb_uarg(orig))
1879 				return 0;
1880 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1881 				return -EIO;
1882 		}
1883 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1884 	}
1885 	return 0;
1886 }
1887 
1888 /**
1889  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1890  *	@skb: the skb to modify
1891  *	@gfp_mask: allocation priority
1892  *
1893  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1894  *	It will copy all frags into kernel and drop the reference
1895  *	to userspace pages.
1896  *
1897  *	If this function is called from an interrupt gfp_mask() must be
1898  *	%GFP_ATOMIC.
1899  *
1900  *	Returns 0 on success or a negative error code on failure
1901  *	to allocate kernel memory to copy to.
1902  */
1903 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1904 {
1905 	int num_frags = skb_shinfo(skb)->nr_frags;
1906 	struct page *page, *head = NULL;
1907 	int i, order, psize, new_frags;
1908 	u32 d_off;
1909 
1910 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1911 		return -EINVAL;
1912 
1913 	if (!num_frags)
1914 		goto release;
1915 
1916 	/* We might have to allocate high order pages, so compute what minimum
1917 	 * page order is needed.
1918 	 */
1919 	order = 0;
1920 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1921 		order++;
1922 	psize = (PAGE_SIZE << order);
1923 
1924 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1925 	for (i = 0; i < new_frags; i++) {
1926 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1927 		if (!page) {
1928 			while (head) {
1929 				struct page *next = (struct page *)page_private(head);
1930 				put_page(head);
1931 				head = next;
1932 			}
1933 			return -ENOMEM;
1934 		}
1935 		set_page_private(page, (unsigned long)head);
1936 		head = page;
1937 	}
1938 
1939 	page = head;
1940 	d_off = 0;
1941 	for (i = 0; i < num_frags; i++) {
1942 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1943 		u32 p_off, p_len, copied;
1944 		struct page *p;
1945 		u8 *vaddr;
1946 
1947 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1948 				      p, p_off, p_len, copied) {
1949 			u32 copy, done = 0;
1950 			vaddr = kmap_atomic(p);
1951 
1952 			while (done < p_len) {
1953 				if (d_off == psize) {
1954 					d_off = 0;
1955 					page = (struct page *)page_private(page);
1956 				}
1957 				copy = min_t(u32, psize - d_off, p_len - done);
1958 				memcpy(page_address(page) + d_off,
1959 				       vaddr + p_off + done, copy);
1960 				done += copy;
1961 				d_off += copy;
1962 			}
1963 			kunmap_atomic(vaddr);
1964 		}
1965 	}
1966 
1967 	/* skb frags release userspace buffers */
1968 	for (i = 0; i < num_frags; i++)
1969 		skb_frag_unref(skb, i);
1970 
1971 	/* skb frags point to kernel buffers */
1972 	for (i = 0; i < new_frags - 1; i++) {
1973 		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
1974 		head = (struct page *)page_private(head);
1975 	}
1976 	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
1977 			       d_off);
1978 	skb_shinfo(skb)->nr_frags = new_frags;
1979 
1980 release:
1981 	skb_zcopy_clear(skb, false);
1982 	return 0;
1983 }
1984 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1985 
1986 /**
1987  *	skb_clone	-	duplicate an sk_buff
1988  *	@skb: buffer to clone
1989  *	@gfp_mask: allocation priority
1990  *
1991  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1992  *	copies share the same packet data but not structure. The new
1993  *	buffer has a reference count of 1. If the allocation fails the
1994  *	function returns %NULL otherwise the new buffer is returned.
1995  *
1996  *	If this function is called from an interrupt gfp_mask() must be
1997  *	%GFP_ATOMIC.
1998  */
1999 
2000 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2001 {
2002 	struct sk_buff_fclones *fclones = container_of(skb,
2003 						       struct sk_buff_fclones,
2004 						       skb1);
2005 	struct sk_buff *n;
2006 
2007 	if (skb_orphan_frags(skb, gfp_mask))
2008 		return NULL;
2009 
2010 	if (skb->fclone == SKB_FCLONE_ORIG &&
2011 	    refcount_read(&fclones->fclone_ref) == 1) {
2012 		n = &fclones->skb2;
2013 		refcount_set(&fclones->fclone_ref, 2);
2014 		n->fclone = SKB_FCLONE_CLONE;
2015 	} else {
2016 		if (skb_pfmemalloc(skb))
2017 			gfp_mask |= __GFP_MEMALLOC;
2018 
2019 		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2020 		if (!n)
2021 			return NULL;
2022 
2023 		n->fclone = SKB_FCLONE_UNAVAILABLE;
2024 	}
2025 
2026 	return __skb_clone(n, skb);
2027 }
2028 EXPORT_SYMBOL(skb_clone);
2029 
2030 void skb_headers_offset_update(struct sk_buff *skb, int off)
2031 {
2032 	/* Only adjust this if it actually is csum_start rather than csum */
2033 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2034 		skb->csum_start += off;
2035 	/* {transport,network,mac}_header and tail are relative to skb->head */
2036 	skb->transport_header += off;
2037 	skb->network_header   += off;
2038 	if (skb_mac_header_was_set(skb))
2039 		skb->mac_header += off;
2040 	skb->inner_transport_header += off;
2041 	skb->inner_network_header += off;
2042 	skb->inner_mac_header += off;
2043 }
2044 EXPORT_SYMBOL(skb_headers_offset_update);
2045 
2046 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2047 {
2048 	__copy_skb_header(new, old);
2049 
2050 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2051 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2052 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2053 }
2054 EXPORT_SYMBOL(skb_copy_header);
2055 
2056 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2057 {
2058 	if (skb_pfmemalloc(skb))
2059 		return SKB_ALLOC_RX;
2060 	return 0;
2061 }
2062 
2063 /**
2064  *	skb_copy	-	create private copy of an sk_buff
2065  *	@skb: buffer to copy
2066  *	@gfp_mask: allocation priority
2067  *
2068  *	Make a copy of both an &sk_buff and its data. This is used when the
2069  *	caller wishes to modify the data and needs a private copy of the
2070  *	data to alter. Returns %NULL on failure or the pointer to the buffer
2071  *	on success. The returned buffer has a reference count of 1.
2072  *
2073  *	As by-product this function converts non-linear &sk_buff to linear
2074  *	one, so that &sk_buff becomes completely private and caller is allowed
2075  *	to modify all the data of returned buffer. This means that this
2076  *	function is not recommended for use in circumstances when only
2077  *	header is going to be modified. Use pskb_copy() instead.
2078  */
2079 
2080 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2081 {
2082 	int headerlen = skb_headroom(skb);
2083 	unsigned int size = skb_end_offset(skb) + skb->data_len;
2084 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
2085 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2086 
2087 	if (!n)
2088 		return NULL;
2089 
2090 	/* Set the data pointer */
2091 	skb_reserve(n, headerlen);
2092 	/* Set the tail pointer and length */
2093 	skb_put(n, skb->len);
2094 
2095 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2096 
2097 	skb_copy_header(n, skb);
2098 	return n;
2099 }
2100 EXPORT_SYMBOL(skb_copy);
2101 
2102 /**
2103  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2104  *	@skb: buffer to copy
2105  *	@headroom: headroom of new skb
2106  *	@gfp_mask: allocation priority
2107  *	@fclone: if true allocate the copy of the skb from the fclone
2108  *	cache instead of the head cache; it is recommended to set this
2109  *	to true for the cases where the copy will likely be cloned
2110  *
2111  *	Make a copy of both an &sk_buff and part of its data, located
2112  *	in header. Fragmented data remain shared. This is used when
2113  *	the caller wishes to modify only header of &sk_buff and needs
2114  *	private copy of the header to alter. Returns %NULL on failure
2115  *	or the pointer to the buffer on success.
2116  *	The returned buffer has a reference count of 1.
2117  */
2118 
2119 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2120 				   gfp_t gfp_mask, bool fclone)
2121 {
2122 	unsigned int size = skb_headlen(skb) + headroom;
2123 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2124 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2125 
2126 	if (!n)
2127 		goto out;
2128 
2129 	/* Set the data pointer */
2130 	skb_reserve(n, headroom);
2131 	/* Set the tail pointer and length */
2132 	skb_put(n, skb_headlen(skb));
2133 	/* Copy the bytes */
2134 	skb_copy_from_linear_data(skb, n->data, n->len);
2135 
2136 	n->truesize += skb->data_len;
2137 	n->data_len  = skb->data_len;
2138 	n->len	     = skb->len;
2139 
2140 	if (skb_shinfo(skb)->nr_frags) {
2141 		int i;
2142 
2143 		if (skb_orphan_frags(skb, gfp_mask) ||
2144 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2145 			kfree_skb(n);
2146 			n = NULL;
2147 			goto out;
2148 		}
2149 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2150 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2151 			skb_frag_ref(skb, i);
2152 		}
2153 		skb_shinfo(n)->nr_frags = i;
2154 	}
2155 
2156 	if (skb_has_frag_list(skb)) {
2157 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2158 		skb_clone_fraglist(n);
2159 	}
2160 
2161 	skb_copy_header(n, skb);
2162 out:
2163 	return n;
2164 }
2165 EXPORT_SYMBOL(__pskb_copy_fclone);
2166 
2167 /**
2168  *	pskb_expand_head - reallocate header of &sk_buff
2169  *	@skb: buffer to reallocate
2170  *	@nhead: room to add at head
2171  *	@ntail: room to add at tail
2172  *	@gfp_mask: allocation priority
2173  *
2174  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2175  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2176  *	reference count of 1. Returns zero in the case of success or error,
2177  *	if expansion failed. In the last case, &sk_buff is not changed.
2178  *
2179  *	All the pointers pointing into skb header may change and must be
2180  *	reloaded after call to this function.
2181  */
2182 
2183 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2184 		     gfp_t gfp_mask)
2185 {
2186 	unsigned int osize = skb_end_offset(skb);
2187 	unsigned int size = osize + nhead + ntail;
2188 	long off;
2189 	u8 *data;
2190 	int i;
2191 
2192 	BUG_ON(nhead < 0);
2193 
2194 	BUG_ON(skb_shared(skb));
2195 
2196 	skb_zcopy_downgrade_managed(skb);
2197 
2198 	if (skb_pfmemalloc(skb))
2199 		gfp_mask |= __GFP_MEMALLOC;
2200 
2201 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2202 	if (!data)
2203 		goto nodata;
2204 	size = SKB_WITH_OVERHEAD(size);
2205 
2206 	/* Copy only real data... and, alas, header. This should be
2207 	 * optimized for the cases when header is void.
2208 	 */
2209 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2210 
2211 	memcpy((struct skb_shared_info *)(data + size),
2212 	       skb_shinfo(skb),
2213 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2214 
2215 	/*
2216 	 * if shinfo is shared we must drop the old head gracefully, but if it
2217 	 * is not we can just drop the old head and let the existing refcount
2218 	 * be since all we did is relocate the values
2219 	 */
2220 	if (skb_cloned(skb)) {
2221 		if (skb_orphan_frags(skb, gfp_mask))
2222 			goto nofrags;
2223 		if (skb_zcopy(skb))
2224 			refcount_inc(&skb_uarg(skb)->refcnt);
2225 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2226 			skb_frag_ref(skb, i);
2227 
2228 		if (skb_has_frag_list(skb))
2229 			skb_clone_fraglist(skb);
2230 
2231 		skb_release_data(skb, SKB_CONSUMED);
2232 	} else {
2233 		skb_free_head(skb);
2234 	}
2235 	off = (data + nhead) - skb->head;
2236 
2237 	skb->head     = data;
2238 	skb->head_frag = 0;
2239 	skb->data    += off;
2240 
2241 	skb_set_end_offset(skb, size);
2242 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2243 	off           = nhead;
2244 #endif
2245 	skb->tail	      += off;
2246 	skb_headers_offset_update(skb, nhead);
2247 	skb->cloned   = 0;
2248 	skb->hdr_len  = 0;
2249 	skb->nohdr    = 0;
2250 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2251 
2252 	skb_metadata_clear(skb);
2253 
2254 	/* It is not generally safe to change skb->truesize.
2255 	 * For the moment, we really care of rx path, or
2256 	 * when skb is orphaned (not attached to a socket).
2257 	 */
2258 	if (!skb->sk || skb->destructor == sock_edemux)
2259 		skb->truesize += size - osize;
2260 
2261 	return 0;
2262 
2263 nofrags:
2264 	skb_kfree_head(data, size);
2265 nodata:
2266 	return -ENOMEM;
2267 }
2268 EXPORT_SYMBOL(pskb_expand_head);
2269 
2270 /* Make private copy of skb with writable head and some headroom */
2271 
2272 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2273 {
2274 	struct sk_buff *skb2;
2275 	int delta = headroom - skb_headroom(skb);
2276 
2277 	if (delta <= 0)
2278 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2279 	else {
2280 		skb2 = skb_clone(skb, GFP_ATOMIC);
2281 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2282 					     GFP_ATOMIC)) {
2283 			kfree_skb(skb2);
2284 			skb2 = NULL;
2285 		}
2286 	}
2287 	return skb2;
2288 }
2289 EXPORT_SYMBOL(skb_realloc_headroom);
2290 
2291 /* Note: We plan to rework this in linux-6.4 */
2292 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2293 {
2294 	unsigned int saved_end_offset, saved_truesize;
2295 	struct skb_shared_info *shinfo;
2296 	int res;
2297 
2298 	saved_end_offset = skb_end_offset(skb);
2299 	saved_truesize = skb->truesize;
2300 
2301 	res = pskb_expand_head(skb, 0, 0, pri);
2302 	if (res)
2303 		return res;
2304 
2305 	skb->truesize = saved_truesize;
2306 
2307 	if (likely(skb_end_offset(skb) == saved_end_offset))
2308 		return 0;
2309 
2310 	/* We can not change skb->end if the original or new value
2311 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2312 	 */
2313 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2314 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2315 		/* We think this path should not be taken.
2316 		 * Add a temporary trace to warn us just in case.
2317 		 */
2318 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2319 			    saved_end_offset, skb_end_offset(skb));
2320 		WARN_ON_ONCE(1);
2321 		return 0;
2322 	}
2323 
2324 	shinfo = skb_shinfo(skb);
2325 
2326 	/* We are about to change back skb->end,
2327 	 * we need to move skb_shinfo() to its new location.
2328 	 */
2329 	memmove(skb->head + saved_end_offset,
2330 		shinfo,
2331 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2332 
2333 	skb_set_end_offset(skb, saved_end_offset);
2334 
2335 	return 0;
2336 }
2337 
2338 /**
2339  *	skb_expand_head - reallocate header of &sk_buff
2340  *	@skb: buffer to reallocate
2341  *	@headroom: needed headroom
2342  *
2343  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2344  *	if possible; copies skb->sk to new skb as needed
2345  *	and frees original skb in case of failures.
2346  *
2347  *	It expect increased headroom and generates warning otherwise.
2348  */
2349 
2350 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2351 {
2352 	int delta = headroom - skb_headroom(skb);
2353 	int osize = skb_end_offset(skb);
2354 	struct sock *sk = skb->sk;
2355 
2356 	if (WARN_ONCE(delta <= 0,
2357 		      "%s is expecting an increase in the headroom", __func__))
2358 		return skb;
2359 
2360 	delta = SKB_DATA_ALIGN(delta);
2361 	/* pskb_expand_head() might crash, if skb is shared. */
2362 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2363 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2364 
2365 		if (unlikely(!nskb))
2366 			goto fail;
2367 
2368 		if (sk)
2369 			skb_set_owner_w(nskb, sk);
2370 		consume_skb(skb);
2371 		skb = nskb;
2372 	}
2373 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2374 		goto fail;
2375 
2376 	if (sk && is_skb_wmem(skb)) {
2377 		delta = skb_end_offset(skb) - osize;
2378 		refcount_add(delta, &sk->sk_wmem_alloc);
2379 		skb->truesize += delta;
2380 	}
2381 	return skb;
2382 
2383 fail:
2384 	kfree_skb(skb);
2385 	return NULL;
2386 }
2387 EXPORT_SYMBOL(skb_expand_head);
2388 
2389 /**
2390  *	skb_copy_expand	-	copy and expand sk_buff
2391  *	@skb: buffer to copy
2392  *	@newheadroom: new free bytes at head
2393  *	@newtailroom: new free bytes at tail
2394  *	@gfp_mask: allocation priority
2395  *
2396  *	Make a copy of both an &sk_buff and its data and while doing so
2397  *	allocate additional space.
2398  *
2399  *	This is used when the caller wishes to modify the data and needs a
2400  *	private copy of the data to alter as well as more space for new fields.
2401  *	Returns %NULL on failure or the pointer to the buffer
2402  *	on success. The returned buffer has a reference count of 1.
2403  *
2404  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2405  *	is called from an interrupt.
2406  */
2407 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2408 				int newheadroom, int newtailroom,
2409 				gfp_t gfp_mask)
2410 {
2411 	/*
2412 	 *	Allocate the copy buffer
2413 	 */
2414 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2415 					gfp_mask, skb_alloc_rx_flag(skb),
2416 					NUMA_NO_NODE);
2417 	int oldheadroom = skb_headroom(skb);
2418 	int head_copy_len, head_copy_off;
2419 
2420 	if (!n)
2421 		return NULL;
2422 
2423 	skb_reserve(n, newheadroom);
2424 
2425 	/* Set the tail pointer and length */
2426 	skb_put(n, skb->len);
2427 
2428 	head_copy_len = oldheadroom;
2429 	head_copy_off = 0;
2430 	if (newheadroom <= head_copy_len)
2431 		head_copy_len = newheadroom;
2432 	else
2433 		head_copy_off = newheadroom - head_copy_len;
2434 
2435 	/* Copy the linear header and data. */
2436 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2437 			     skb->len + head_copy_len));
2438 
2439 	skb_copy_header(n, skb);
2440 
2441 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2442 
2443 	return n;
2444 }
2445 EXPORT_SYMBOL(skb_copy_expand);
2446 
2447 /**
2448  *	__skb_pad		-	zero pad the tail of an skb
2449  *	@skb: buffer to pad
2450  *	@pad: space to pad
2451  *	@free_on_error: free buffer on error
2452  *
2453  *	Ensure that a buffer is followed by a padding area that is zero
2454  *	filled. Used by network drivers which may DMA or transfer data
2455  *	beyond the buffer end onto the wire.
2456  *
2457  *	May return error in out of memory cases. The skb is freed on error
2458  *	if @free_on_error is true.
2459  */
2460 
2461 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2462 {
2463 	int err;
2464 	int ntail;
2465 
2466 	/* If the skbuff is non linear tailroom is always zero.. */
2467 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2468 		memset(skb->data+skb->len, 0, pad);
2469 		return 0;
2470 	}
2471 
2472 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2473 	if (likely(skb_cloned(skb) || ntail > 0)) {
2474 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2475 		if (unlikely(err))
2476 			goto free_skb;
2477 	}
2478 
2479 	/* FIXME: The use of this function with non-linear skb's really needs
2480 	 * to be audited.
2481 	 */
2482 	err = skb_linearize(skb);
2483 	if (unlikely(err))
2484 		goto free_skb;
2485 
2486 	memset(skb->data + skb->len, 0, pad);
2487 	return 0;
2488 
2489 free_skb:
2490 	if (free_on_error)
2491 		kfree_skb(skb);
2492 	return err;
2493 }
2494 EXPORT_SYMBOL(__skb_pad);
2495 
2496 /**
2497  *	pskb_put - add data to the tail of a potentially fragmented buffer
2498  *	@skb: start of the buffer to use
2499  *	@tail: tail fragment of the buffer to use
2500  *	@len: amount of data to add
2501  *
2502  *	This function extends the used data area of the potentially
2503  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2504  *	@skb itself. If this would exceed the total buffer size the kernel
2505  *	will panic. A pointer to the first byte of the extra data is
2506  *	returned.
2507  */
2508 
2509 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2510 {
2511 	if (tail != skb) {
2512 		skb->data_len += len;
2513 		skb->len += len;
2514 	}
2515 	return skb_put(tail, len);
2516 }
2517 EXPORT_SYMBOL_GPL(pskb_put);
2518 
2519 /**
2520  *	skb_put - add data to a buffer
2521  *	@skb: buffer to use
2522  *	@len: amount of data to add
2523  *
2524  *	This function extends the used data area of the buffer. If this would
2525  *	exceed the total buffer size the kernel will panic. A pointer to the
2526  *	first byte of the extra data is returned.
2527  */
2528 void *skb_put(struct sk_buff *skb, unsigned int len)
2529 {
2530 	void *tmp = skb_tail_pointer(skb);
2531 	SKB_LINEAR_ASSERT(skb);
2532 	skb->tail += len;
2533 	skb->len  += len;
2534 	if (unlikely(skb->tail > skb->end))
2535 		skb_over_panic(skb, len, __builtin_return_address(0));
2536 	return tmp;
2537 }
2538 EXPORT_SYMBOL(skb_put);
2539 
2540 /**
2541  *	skb_push - add data to the start of a buffer
2542  *	@skb: buffer to use
2543  *	@len: amount of data to add
2544  *
2545  *	This function extends the used data area of the buffer at the buffer
2546  *	start. If this would exceed the total buffer headroom the kernel will
2547  *	panic. A pointer to the first byte of the extra data is returned.
2548  */
2549 void *skb_push(struct sk_buff *skb, unsigned int len)
2550 {
2551 	skb->data -= len;
2552 	skb->len  += len;
2553 	if (unlikely(skb->data < skb->head))
2554 		skb_under_panic(skb, len, __builtin_return_address(0));
2555 	return skb->data;
2556 }
2557 EXPORT_SYMBOL(skb_push);
2558 
2559 /**
2560  *	skb_pull - remove data from the start of a buffer
2561  *	@skb: buffer to use
2562  *	@len: amount of data to remove
2563  *
2564  *	This function removes data from the start of a buffer, returning
2565  *	the memory to the headroom. A pointer to the next data in the buffer
2566  *	is returned. Once the data has been pulled future pushes will overwrite
2567  *	the old data.
2568  */
2569 void *skb_pull(struct sk_buff *skb, unsigned int len)
2570 {
2571 	return skb_pull_inline(skb, len);
2572 }
2573 EXPORT_SYMBOL(skb_pull);
2574 
2575 /**
2576  *	skb_pull_data - remove data from the start of a buffer returning its
2577  *	original position.
2578  *	@skb: buffer to use
2579  *	@len: amount of data to remove
2580  *
2581  *	This function removes data from the start of a buffer, returning
2582  *	the memory to the headroom. A pointer to the original data in the buffer
2583  *	is returned after checking if there is enough data to pull. Once the
2584  *	data has been pulled future pushes will overwrite the old data.
2585  */
2586 void *skb_pull_data(struct sk_buff *skb, size_t len)
2587 {
2588 	void *data = skb->data;
2589 
2590 	if (skb->len < len)
2591 		return NULL;
2592 
2593 	skb_pull(skb, len);
2594 
2595 	return data;
2596 }
2597 EXPORT_SYMBOL(skb_pull_data);
2598 
2599 /**
2600  *	skb_trim - remove end from a buffer
2601  *	@skb: buffer to alter
2602  *	@len: new length
2603  *
2604  *	Cut the length of a buffer down by removing data from the tail. If
2605  *	the buffer is already under the length specified it is not modified.
2606  *	The skb must be linear.
2607  */
2608 void skb_trim(struct sk_buff *skb, unsigned int len)
2609 {
2610 	if (skb->len > len)
2611 		__skb_trim(skb, len);
2612 }
2613 EXPORT_SYMBOL(skb_trim);
2614 
2615 /* Trims skb to length len. It can change skb pointers.
2616  */
2617 
2618 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2619 {
2620 	struct sk_buff **fragp;
2621 	struct sk_buff *frag;
2622 	int offset = skb_headlen(skb);
2623 	int nfrags = skb_shinfo(skb)->nr_frags;
2624 	int i;
2625 	int err;
2626 
2627 	if (skb_cloned(skb) &&
2628 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2629 		return err;
2630 
2631 	i = 0;
2632 	if (offset >= len)
2633 		goto drop_pages;
2634 
2635 	for (; i < nfrags; i++) {
2636 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2637 
2638 		if (end < len) {
2639 			offset = end;
2640 			continue;
2641 		}
2642 
2643 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2644 
2645 drop_pages:
2646 		skb_shinfo(skb)->nr_frags = i;
2647 
2648 		for (; i < nfrags; i++)
2649 			skb_frag_unref(skb, i);
2650 
2651 		if (skb_has_frag_list(skb))
2652 			skb_drop_fraglist(skb);
2653 		goto done;
2654 	}
2655 
2656 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2657 	     fragp = &frag->next) {
2658 		int end = offset + frag->len;
2659 
2660 		if (skb_shared(frag)) {
2661 			struct sk_buff *nfrag;
2662 
2663 			nfrag = skb_clone(frag, GFP_ATOMIC);
2664 			if (unlikely(!nfrag))
2665 				return -ENOMEM;
2666 
2667 			nfrag->next = frag->next;
2668 			consume_skb(frag);
2669 			frag = nfrag;
2670 			*fragp = frag;
2671 		}
2672 
2673 		if (end < len) {
2674 			offset = end;
2675 			continue;
2676 		}
2677 
2678 		if (end > len &&
2679 		    unlikely((err = pskb_trim(frag, len - offset))))
2680 			return err;
2681 
2682 		if (frag->next)
2683 			skb_drop_list(&frag->next);
2684 		break;
2685 	}
2686 
2687 done:
2688 	if (len > skb_headlen(skb)) {
2689 		skb->data_len -= skb->len - len;
2690 		skb->len       = len;
2691 	} else {
2692 		skb->len       = len;
2693 		skb->data_len  = 0;
2694 		skb_set_tail_pointer(skb, len);
2695 	}
2696 
2697 	if (!skb->sk || skb->destructor == sock_edemux)
2698 		skb_condense(skb);
2699 	return 0;
2700 }
2701 EXPORT_SYMBOL(___pskb_trim);
2702 
2703 /* Note : use pskb_trim_rcsum() instead of calling this directly
2704  */
2705 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2706 {
2707 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2708 		int delta = skb->len - len;
2709 
2710 		skb->csum = csum_block_sub(skb->csum,
2711 					   skb_checksum(skb, len, delta, 0),
2712 					   len);
2713 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2714 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2715 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2716 
2717 		if (offset + sizeof(__sum16) > hdlen)
2718 			return -EINVAL;
2719 	}
2720 	return __pskb_trim(skb, len);
2721 }
2722 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2723 
2724 /**
2725  *	__pskb_pull_tail - advance tail of skb header
2726  *	@skb: buffer to reallocate
2727  *	@delta: number of bytes to advance tail
2728  *
2729  *	The function makes a sense only on a fragmented &sk_buff,
2730  *	it expands header moving its tail forward and copying necessary
2731  *	data from fragmented part.
2732  *
2733  *	&sk_buff MUST have reference count of 1.
2734  *
2735  *	Returns %NULL (and &sk_buff does not change) if pull failed
2736  *	or value of new tail of skb in the case of success.
2737  *
2738  *	All the pointers pointing into skb header may change and must be
2739  *	reloaded after call to this function.
2740  */
2741 
2742 /* Moves tail of skb head forward, copying data from fragmented part,
2743  * when it is necessary.
2744  * 1. It may fail due to malloc failure.
2745  * 2. It may change skb pointers.
2746  *
2747  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2748  */
2749 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2750 {
2751 	/* If skb has not enough free space at tail, get new one
2752 	 * plus 128 bytes for future expansions. If we have enough
2753 	 * room at tail, reallocate without expansion only if skb is cloned.
2754 	 */
2755 	int i, k, eat = (skb->tail + delta) - skb->end;
2756 
2757 	if (eat > 0 || skb_cloned(skb)) {
2758 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2759 				     GFP_ATOMIC))
2760 			return NULL;
2761 	}
2762 
2763 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2764 			     skb_tail_pointer(skb), delta));
2765 
2766 	/* Optimization: no fragments, no reasons to preestimate
2767 	 * size of pulled pages. Superb.
2768 	 */
2769 	if (!skb_has_frag_list(skb))
2770 		goto pull_pages;
2771 
2772 	/* Estimate size of pulled pages. */
2773 	eat = delta;
2774 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2775 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2776 
2777 		if (size >= eat)
2778 			goto pull_pages;
2779 		eat -= size;
2780 	}
2781 
2782 	/* If we need update frag list, we are in troubles.
2783 	 * Certainly, it is possible to add an offset to skb data,
2784 	 * but taking into account that pulling is expected to
2785 	 * be very rare operation, it is worth to fight against
2786 	 * further bloating skb head and crucify ourselves here instead.
2787 	 * Pure masohism, indeed. 8)8)
2788 	 */
2789 	if (eat) {
2790 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2791 		struct sk_buff *clone = NULL;
2792 		struct sk_buff *insp = NULL;
2793 
2794 		do {
2795 			if (list->len <= eat) {
2796 				/* Eaten as whole. */
2797 				eat -= list->len;
2798 				list = list->next;
2799 				insp = list;
2800 			} else {
2801 				/* Eaten partially. */
2802 				if (skb_is_gso(skb) && !list->head_frag &&
2803 				    skb_headlen(list))
2804 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2805 
2806 				if (skb_shared(list)) {
2807 					/* Sucks! We need to fork list. :-( */
2808 					clone = skb_clone(list, GFP_ATOMIC);
2809 					if (!clone)
2810 						return NULL;
2811 					insp = list->next;
2812 					list = clone;
2813 				} else {
2814 					/* This may be pulled without
2815 					 * problems. */
2816 					insp = list;
2817 				}
2818 				if (!pskb_pull(list, eat)) {
2819 					kfree_skb(clone);
2820 					return NULL;
2821 				}
2822 				break;
2823 			}
2824 		} while (eat);
2825 
2826 		/* Free pulled out fragments. */
2827 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2828 			skb_shinfo(skb)->frag_list = list->next;
2829 			consume_skb(list);
2830 		}
2831 		/* And insert new clone at head. */
2832 		if (clone) {
2833 			clone->next = list;
2834 			skb_shinfo(skb)->frag_list = clone;
2835 		}
2836 	}
2837 	/* Success! Now we may commit changes to skb data. */
2838 
2839 pull_pages:
2840 	eat = delta;
2841 	k = 0;
2842 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2843 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2844 
2845 		if (size <= eat) {
2846 			skb_frag_unref(skb, i);
2847 			eat -= size;
2848 		} else {
2849 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2850 
2851 			*frag = skb_shinfo(skb)->frags[i];
2852 			if (eat) {
2853 				skb_frag_off_add(frag, eat);
2854 				skb_frag_size_sub(frag, eat);
2855 				if (!i)
2856 					goto end;
2857 				eat = 0;
2858 			}
2859 			k++;
2860 		}
2861 	}
2862 	skb_shinfo(skb)->nr_frags = k;
2863 
2864 end:
2865 	skb->tail     += delta;
2866 	skb->data_len -= delta;
2867 
2868 	if (!skb->data_len)
2869 		skb_zcopy_clear(skb, false);
2870 
2871 	return skb_tail_pointer(skb);
2872 }
2873 EXPORT_SYMBOL(__pskb_pull_tail);
2874 
2875 /**
2876  *	skb_copy_bits - copy bits from skb to kernel buffer
2877  *	@skb: source skb
2878  *	@offset: offset in source
2879  *	@to: destination buffer
2880  *	@len: number of bytes to copy
2881  *
2882  *	Copy the specified number of bytes from the source skb to the
2883  *	destination buffer.
2884  *
2885  *	CAUTION ! :
2886  *		If its prototype is ever changed,
2887  *		check arch/{*}/net/{*}.S files,
2888  *		since it is called from BPF assembly code.
2889  */
2890 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2891 {
2892 	int start = skb_headlen(skb);
2893 	struct sk_buff *frag_iter;
2894 	int i, copy;
2895 
2896 	if (offset > (int)skb->len - len)
2897 		goto fault;
2898 
2899 	/* Copy header. */
2900 	if ((copy = start - offset) > 0) {
2901 		if (copy > len)
2902 			copy = len;
2903 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2904 		if ((len -= copy) == 0)
2905 			return 0;
2906 		offset += copy;
2907 		to     += copy;
2908 	}
2909 
2910 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2911 		int end;
2912 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2913 
2914 		WARN_ON(start > offset + len);
2915 
2916 		end = start + skb_frag_size(f);
2917 		if ((copy = end - offset) > 0) {
2918 			u32 p_off, p_len, copied;
2919 			struct page *p;
2920 			u8 *vaddr;
2921 
2922 			if (copy > len)
2923 				copy = len;
2924 
2925 			skb_frag_foreach_page(f,
2926 					      skb_frag_off(f) + offset - start,
2927 					      copy, p, p_off, p_len, copied) {
2928 				vaddr = kmap_atomic(p);
2929 				memcpy(to + copied, vaddr + p_off, p_len);
2930 				kunmap_atomic(vaddr);
2931 			}
2932 
2933 			if ((len -= copy) == 0)
2934 				return 0;
2935 			offset += copy;
2936 			to     += copy;
2937 		}
2938 		start = end;
2939 	}
2940 
2941 	skb_walk_frags(skb, frag_iter) {
2942 		int end;
2943 
2944 		WARN_ON(start > offset + len);
2945 
2946 		end = start + frag_iter->len;
2947 		if ((copy = end - offset) > 0) {
2948 			if (copy > len)
2949 				copy = len;
2950 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2951 				goto fault;
2952 			if ((len -= copy) == 0)
2953 				return 0;
2954 			offset += copy;
2955 			to     += copy;
2956 		}
2957 		start = end;
2958 	}
2959 
2960 	if (!len)
2961 		return 0;
2962 
2963 fault:
2964 	return -EFAULT;
2965 }
2966 EXPORT_SYMBOL(skb_copy_bits);
2967 
2968 /*
2969  * Callback from splice_to_pipe(), if we need to release some pages
2970  * at the end of the spd in case we error'ed out in filling the pipe.
2971  */
2972 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2973 {
2974 	put_page(spd->pages[i]);
2975 }
2976 
2977 static struct page *linear_to_page(struct page *page, unsigned int *len,
2978 				   unsigned int *offset,
2979 				   struct sock *sk)
2980 {
2981 	struct page_frag *pfrag = sk_page_frag(sk);
2982 
2983 	if (!sk_page_frag_refill(sk, pfrag))
2984 		return NULL;
2985 
2986 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2987 
2988 	memcpy(page_address(pfrag->page) + pfrag->offset,
2989 	       page_address(page) + *offset, *len);
2990 	*offset = pfrag->offset;
2991 	pfrag->offset += *len;
2992 
2993 	return pfrag->page;
2994 }
2995 
2996 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2997 			     struct page *page,
2998 			     unsigned int offset)
2999 {
3000 	return	spd->nr_pages &&
3001 		spd->pages[spd->nr_pages - 1] == page &&
3002 		(spd->partial[spd->nr_pages - 1].offset +
3003 		 spd->partial[spd->nr_pages - 1].len == offset);
3004 }
3005 
3006 /*
3007  * Fill page/offset/length into spd, if it can hold more pages.
3008  */
3009 static bool spd_fill_page(struct splice_pipe_desc *spd,
3010 			  struct pipe_inode_info *pipe, struct page *page,
3011 			  unsigned int *len, unsigned int offset,
3012 			  bool linear,
3013 			  struct sock *sk)
3014 {
3015 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3016 		return true;
3017 
3018 	if (linear) {
3019 		page = linear_to_page(page, len, &offset, sk);
3020 		if (!page)
3021 			return true;
3022 	}
3023 	if (spd_can_coalesce(spd, page, offset)) {
3024 		spd->partial[spd->nr_pages - 1].len += *len;
3025 		return false;
3026 	}
3027 	get_page(page);
3028 	spd->pages[spd->nr_pages] = page;
3029 	spd->partial[spd->nr_pages].len = *len;
3030 	spd->partial[spd->nr_pages].offset = offset;
3031 	spd->nr_pages++;
3032 
3033 	return false;
3034 }
3035 
3036 static bool __splice_segment(struct page *page, unsigned int poff,
3037 			     unsigned int plen, unsigned int *off,
3038 			     unsigned int *len,
3039 			     struct splice_pipe_desc *spd, bool linear,
3040 			     struct sock *sk,
3041 			     struct pipe_inode_info *pipe)
3042 {
3043 	if (!*len)
3044 		return true;
3045 
3046 	/* skip this segment if already processed */
3047 	if (*off >= plen) {
3048 		*off -= plen;
3049 		return false;
3050 	}
3051 
3052 	/* ignore any bits we already processed */
3053 	poff += *off;
3054 	plen -= *off;
3055 	*off = 0;
3056 
3057 	do {
3058 		unsigned int flen = min(*len, plen);
3059 
3060 		if (spd_fill_page(spd, pipe, page, &flen, poff,
3061 				  linear, sk))
3062 			return true;
3063 		poff += flen;
3064 		plen -= flen;
3065 		*len -= flen;
3066 	} while (*len && plen);
3067 
3068 	return false;
3069 }
3070 
3071 /*
3072  * Map linear and fragment data from the skb to spd. It reports true if the
3073  * pipe is full or if we already spliced the requested length.
3074  */
3075 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3076 			      unsigned int *offset, unsigned int *len,
3077 			      struct splice_pipe_desc *spd, struct sock *sk)
3078 {
3079 	int seg;
3080 	struct sk_buff *iter;
3081 
3082 	/* map the linear part :
3083 	 * If skb->head_frag is set, this 'linear' part is backed by a
3084 	 * fragment, and if the head is not shared with any clones then
3085 	 * we can avoid a copy since we own the head portion of this page.
3086 	 */
3087 	if (__splice_segment(virt_to_page(skb->data),
3088 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3089 			     skb_headlen(skb),
3090 			     offset, len, spd,
3091 			     skb_head_is_locked(skb),
3092 			     sk, pipe))
3093 		return true;
3094 
3095 	/*
3096 	 * then map the fragments
3097 	 */
3098 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3099 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3100 
3101 		if (__splice_segment(skb_frag_page(f),
3102 				     skb_frag_off(f), skb_frag_size(f),
3103 				     offset, len, spd, false, sk, pipe))
3104 			return true;
3105 	}
3106 
3107 	skb_walk_frags(skb, iter) {
3108 		if (*offset >= iter->len) {
3109 			*offset -= iter->len;
3110 			continue;
3111 		}
3112 		/* __skb_splice_bits() only fails if the output has no room
3113 		 * left, so no point in going over the frag_list for the error
3114 		 * case.
3115 		 */
3116 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3117 			return true;
3118 	}
3119 
3120 	return false;
3121 }
3122 
3123 /*
3124  * Map data from the skb to a pipe. Should handle both the linear part,
3125  * the fragments, and the frag list.
3126  */
3127 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3128 		    struct pipe_inode_info *pipe, unsigned int tlen,
3129 		    unsigned int flags)
3130 {
3131 	struct partial_page partial[MAX_SKB_FRAGS];
3132 	struct page *pages[MAX_SKB_FRAGS];
3133 	struct splice_pipe_desc spd = {
3134 		.pages = pages,
3135 		.partial = partial,
3136 		.nr_pages_max = MAX_SKB_FRAGS,
3137 		.ops = &nosteal_pipe_buf_ops,
3138 		.spd_release = sock_spd_release,
3139 	};
3140 	int ret = 0;
3141 
3142 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3143 
3144 	if (spd.nr_pages)
3145 		ret = splice_to_pipe(pipe, &spd);
3146 
3147 	return ret;
3148 }
3149 EXPORT_SYMBOL_GPL(skb_splice_bits);
3150 
3151 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3152 {
3153 	struct socket *sock = sk->sk_socket;
3154 	size_t size = msg_data_left(msg);
3155 
3156 	if (!sock)
3157 		return -EINVAL;
3158 
3159 	if (!sock->ops->sendmsg_locked)
3160 		return sock_no_sendmsg_locked(sk, msg, size);
3161 
3162 	return sock->ops->sendmsg_locked(sk, msg, size);
3163 }
3164 
3165 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3166 {
3167 	struct socket *sock = sk->sk_socket;
3168 
3169 	if (!sock)
3170 		return -EINVAL;
3171 	return sock_sendmsg(sock, msg);
3172 }
3173 
3174 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3175 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3176 			   int len, sendmsg_func sendmsg)
3177 {
3178 	unsigned int orig_len = len;
3179 	struct sk_buff *head = skb;
3180 	unsigned short fragidx;
3181 	int slen, ret;
3182 
3183 do_frag_list:
3184 
3185 	/* Deal with head data */
3186 	while (offset < skb_headlen(skb) && len) {
3187 		struct kvec kv;
3188 		struct msghdr msg;
3189 
3190 		slen = min_t(int, len, skb_headlen(skb) - offset);
3191 		kv.iov_base = skb->data + offset;
3192 		kv.iov_len = slen;
3193 		memset(&msg, 0, sizeof(msg));
3194 		msg.msg_flags = MSG_DONTWAIT;
3195 
3196 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3197 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3198 				      sendmsg_unlocked, sk, &msg);
3199 		if (ret <= 0)
3200 			goto error;
3201 
3202 		offset += ret;
3203 		len -= ret;
3204 	}
3205 
3206 	/* All the data was skb head? */
3207 	if (!len)
3208 		goto out;
3209 
3210 	/* Make offset relative to start of frags */
3211 	offset -= skb_headlen(skb);
3212 
3213 	/* Find where we are in frag list */
3214 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3215 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3216 
3217 		if (offset < skb_frag_size(frag))
3218 			break;
3219 
3220 		offset -= skb_frag_size(frag);
3221 	}
3222 
3223 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3224 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3225 
3226 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3227 
3228 		while (slen) {
3229 			struct bio_vec bvec;
3230 			struct msghdr msg = {
3231 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3232 			};
3233 
3234 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3235 				      skb_frag_off(frag) + offset);
3236 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3237 				      slen);
3238 
3239 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3240 					      sendmsg_unlocked, sk, &msg);
3241 			if (ret <= 0)
3242 				goto error;
3243 
3244 			len -= ret;
3245 			offset += ret;
3246 			slen -= ret;
3247 		}
3248 
3249 		offset = 0;
3250 	}
3251 
3252 	if (len) {
3253 		/* Process any frag lists */
3254 
3255 		if (skb == head) {
3256 			if (skb_has_frag_list(skb)) {
3257 				skb = skb_shinfo(skb)->frag_list;
3258 				goto do_frag_list;
3259 			}
3260 		} else if (skb->next) {
3261 			skb = skb->next;
3262 			goto do_frag_list;
3263 		}
3264 	}
3265 
3266 out:
3267 	return orig_len - len;
3268 
3269 error:
3270 	return orig_len == len ? ret : orig_len - len;
3271 }
3272 
3273 /* Send skb data on a socket. Socket must be locked. */
3274 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3275 			 int len)
3276 {
3277 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3278 }
3279 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3280 
3281 /* Send skb data on a socket. Socket must be unlocked. */
3282 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3283 {
3284 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3285 }
3286 
3287 /**
3288  *	skb_store_bits - store bits from kernel buffer to skb
3289  *	@skb: destination buffer
3290  *	@offset: offset in destination
3291  *	@from: source buffer
3292  *	@len: number of bytes to copy
3293  *
3294  *	Copy the specified number of bytes from the source buffer to the
3295  *	destination skb.  This function handles all the messy bits of
3296  *	traversing fragment lists and such.
3297  */
3298 
3299 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3300 {
3301 	int start = skb_headlen(skb);
3302 	struct sk_buff *frag_iter;
3303 	int i, copy;
3304 
3305 	if (offset > (int)skb->len - len)
3306 		goto fault;
3307 
3308 	if ((copy = start - offset) > 0) {
3309 		if (copy > len)
3310 			copy = len;
3311 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3312 		if ((len -= copy) == 0)
3313 			return 0;
3314 		offset += copy;
3315 		from += copy;
3316 	}
3317 
3318 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3319 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3320 		int end;
3321 
3322 		WARN_ON(start > offset + len);
3323 
3324 		end = start + skb_frag_size(frag);
3325 		if ((copy = end - offset) > 0) {
3326 			u32 p_off, p_len, copied;
3327 			struct page *p;
3328 			u8 *vaddr;
3329 
3330 			if (copy > len)
3331 				copy = len;
3332 
3333 			skb_frag_foreach_page(frag,
3334 					      skb_frag_off(frag) + offset - start,
3335 					      copy, p, p_off, p_len, copied) {
3336 				vaddr = kmap_atomic(p);
3337 				memcpy(vaddr + p_off, from + copied, p_len);
3338 				kunmap_atomic(vaddr);
3339 			}
3340 
3341 			if ((len -= copy) == 0)
3342 				return 0;
3343 			offset += copy;
3344 			from += copy;
3345 		}
3346 		start = end;
3347 	}
3348 
3349 	skb_walk_frags(skb, frag_iter) {
3350 		int end;
3351 
3352 		WARN_ON(start > offset + len);
3353 
3354 		end = start + frag_iter->len;
3355 		if ((copy = end - offset) > 0) {
3356 			if (copy > len)
3357 				copy = len;
3358 			if (skb_store_bits(frag_iter, offset - start,
3359 					   from, copy))
3360 				goto fault;
3361 			if ((len -= copy) == 0)
3362 				return 0;
3363 			offset += copy;
3364 			from += copy;
3365 		}
3366 		start = end;
3367 	}
3368 	if (!len)
3369 		return 0;
3370 
3371 fault:
3372 	return -EFAULT;
3373 }
3374 EXPORT_SYMBOL(skb_store_bits);
3375 
3376 /* Checksum skb data. */
3377 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3378 		      __wsum csum, const struct skb_checksum_ops *ops)
3379 {
3380 	int start = skb_headlen(skb);
3381 	int i, copy = start - offset;
3382 	struct sk_buff *frag_iter;
3383 	int pos = 0;
3384 
3385 	/* Checksum header. */
3386 	if (copy > 0) {
3387 		if (copy > len)
3388 			copy = len;
3389 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3390 				       skb->data + offset, copy, csum);
3391 		if ((len -= copy) == 0)
3392 			return csum;
3393 		offset += copy;
3394 		pos	= copy;
3395 	}
3396 
3397 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3398 		int end;
3399 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3400 
3401 		WARN_ON(start > offset + len);
3402 
3403 		end = start + skb_frag_size(frag);
3404 		if ((copy = end - offset) > 0) {
3405 			u32 p_off, p_len, copied;
3406 			struct page *p;
3407 			__wsum csum2;
3408 			u8 *vaddr;
3409 
3410 			if (copy > len)
3411 				copy = len;
3412 
3413 			skb_frag_foreach_page(frag,
3414 					      skb_frag_off(frag) + offset - start,
3415 					      copy, p, p_off, p_len, copied) {
3416 				vaddr = kmap_atomic(p);
3417 				csum2 = INDIRECT_CALL_1(ops->update,
3418 							csum_partial_ext,
3419 							vaddr + p_off, p_len, 0);
3420 				kunmap_atomic(vaddr);
3421 				csum = INDIRECT_CALL_1(ops->combine,
3422 						       csum_block_add_ext, csum,
3423 						       csum2, pos, p_len);
3424 				pos += p_len;
3425 			}
3426 
3427 			if (!(len -= copy))
3428 				return csum;
3429 			offset += copy;
3430 		}
3431 		start = end;
3432 	}
3433 
3434 	skb_walk_frags(skb, frag_iter) {
3435 		int end;
3436 
3437 		WARN_ON(start > offset + len);
3438 
3439 		end = start + frag_iter->len;
3440 		if ((copy = end - offset) > 0) {
3441 			__wsum csum2;
3442 			if (copy > len)
3443 				copy = len;
3444 			csum2 = __skb_checksum(frag_iter, offset - start,
3445 					       copy, 0, ops);
3446 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3447 					       csum, csum2, pos, copy);
3448 			if ((len -= copy) == 0)
3449 				return csum;
3450 			offset += copy;
3451 			pos    += copy;
3452 		}
3453 		start = end;
3454 	}
3455 	BUG_ON(len);
3456 
3457 	return csum;
3458 }
3459 EXPORT_SYMBOL(__skb_checksum);
3460 
3461 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3462 		    int len, __wsum csum)
3463 {
3464 	const struct skb_checksum_ops ops = {
3465 		.update  = csum_partial_ext,
3466 		.combine = csum_block_add_ext,
3467 	};
3468 
3469 	return __skb_checksum(skb, offset, len, csum, &ops);
3470 }
3471 EXPORT_SYMBOL(skb_checksum);
3472 
3473 /* Both of above in one bottle. */
3474 
3475 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3476 				    u8 *to, int len)
3477 {
3478 	int start = skb_headlen(skb);
3479 	int i, copy = start - offset;
3480 	struct sk_buff *frag_iter;
3481 	int pos = 0;
3482 	__wsum csum = 0;
3483 
3484 	/* Copy header. */
3485 	if (copy > 0) {
3486 		if (copy > len)
3487 			copy = len;
3488 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3489 						 copy);
3490 		if ((len -= copy) == 0)
3491 			return csum;
3492 		offset += copy;
3493 		to     += copy;
3494 		pos	= copy;
3495 	}
3496 
3497 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3498 		int end;
3499 
3500 		WARN_ON(start > offset + len);
3501 
3502 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3503 		if ((copy = end - offset) > 0) {
3504 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3505 			u32 p_off, p_len, copied;
3506 			struct page *p;
3507 			__wsum csum2;
3508 			u8 *vaddr;
3509 
3510 			if (copy > len)
3511 				copy = len;
3512 
3513 			skb_frag_foreach_page(frag,
3514 					      skb_frag_off(frag) + offset - start,
3515 					      copy, p, p_off, p_len, copied) {
3516 				vaddr = kmap_atomic(p);
3517 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3518 								  to + copied,
3519 								  p_len);
3520 				kunmap_atomic(vaddr);
3521 				csum = csum_block_add(csum, csum2, pos);
3522 				pos += p_len;
3523 			}
3524 
3525 			if (!(len -= copy))
3526 				return csum;
3527 			offset += copy;
3528 			to     += copy;
3529 		}
3530 		start = end;
3531 	}
3532 
3533 	skb_walk_frags(skb, frag_iter) {
3534 		__wsum csum2;
3535 		int end;
3536 
3537 		WARN_ON(start > offset + len);
3538 
3539 		end = start + frag_iter->len;
3540 		if ((copy = end - offset) > 0) {
3541 			if (copy > len)
3542 				copy = len;
3543 			csum2 = skb_copy_and_csum_bits(frag_iter,
3544 						       offset - start,
3545 						       to, copy);
3546 			csum = csum_block_add(csum, csum2, pos);
3547 			if ((len -= copy) == 0)
3548 				return csum;
3549 			offset += copy;
3550 			to     += copy;
3551 			pos    += copy;
3552 		}
3553 		start = end;
3554 	}
3555 	BUG_ON(len);
3556 	return csum;
3557 }
3558 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3559 
3560 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3561 {
3562 	__sum16 sum;
3563 
3564 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3565 	/* See comments in __skb_checksum_complete(). */
3566 	if (likely(!sum)) {
3567 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3568 		    !skb->csum_complete_sw)
3569 			netdev_rx_csum_fault(skb->dev, skb);
3570 	}
3571 	if (!skb_shared(skb))
3572 		skb->csum_valid = !sum;
3573 	return sum;
3574 }
3575 EXPORT_SYMBOL(__skb_checksum_complete_head);
3576 
3577 /* This function assumes skb->csum already holds pseudo header's checksum,
3578  * which has been changed from the hardware checksum, for example, by
3579  * __skb_checksum_validate_complete(). And, the original skb->csum must
3580  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3581  *
3582  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3583  * zero. The new checksum is stored back into skb->csum unless the skb is
3584  * shared.
3585  */
3586 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3587 {
3588 	__wsum csum;
3589 	__sum16 sum;
3590 
3591 	csum = skb_checksum(skb, 0, skb->len, 0);
3592 
3593 	sum = csum_fold(csum_add(skb->csum, csum));
3594 	/* This check is inverted, because we already knew the hardware
3595 	 * checksum is invalid before calling this function. So, if the
3596 	 * re-computed checksum is valid instead, then we have a mismatch
3597 	 * between the original skb->csum and skb_checksum(). This means either
3598 	 * the original hardware checksum is incorrect or we screw up skb->csum
3599 	 * when moving skb->data around.
3600 	 */
3601 	if (likely(!sum)) {
3602 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3603 		    !skb->csum_complete_sw)
3604 			netdev_rx_csum_fault(skb->dev, skb);
3605 	}
3606 
3607 	if (!skb_shared(skb)) {
3608 		/* Save full packet checksum */
3609 		skb->csum = csum;
3610 		skb->ip_summed = CHECKSUM_COMPLETE;
3611 		skb->csum_complete_sw = 1;
3612 		skb->csum_valid = !sum;
3613 	}
3614 
3615 	return sum;
3616 }
3617 EXPORT_SYMBOL(__skb_checksum_complete);
3618 
3619 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3620 {
3621 	net_warn_ratelimited(
3622 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3623 		__func__);
3624 	return 0;
3625 }
3626 
3627 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3628 				       int offset, int len)
3629 {
3630 	net_warn_ratelimited(
3631 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3632 		__func__);
3633 	return 0;
3634 }
3635 
3636 static const struct skb_checksum_ops default_crc32c_ops = {
3637 	.update  = warn_crc32c_csum_update,
3638 	.combine = warn_crc32c_csum_combine,
3639 };
3640 
3641 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3642 	&default_crc32c_ops;
3643 EXPORT_SYMBOL(crc32c_csum_stub);
3644 
3645  /**
3646  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3647  *	@from: source buffer
3648  *
3649  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3650  *	into skb_zerocopy().
3651  */
3652 unsigned int
3653 skb_zerocopy_headlen(const struct sk_buff *from)
3654 {
3655 	unsigned int hlen = 0;
3656 
3657 	if (!from->head_frag ||
3658 	    skb_headlen(from) < L1_CACHE_BYTES ||
3659 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3660 		hlen = skb_headlen(from);
3661 		if (!hlen)
3662 			hlen = from->len;
3663 	}
3664 
3665 	if (skb_has_frag_list(from))
3666 		hlen = from->len;
3667 
3668 	return hlen;
3669 }
3670 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3671 
3672 /**
3673  *	skb_zerocopy - Zero copy skb to skb
3674  *	@to: destination buffer
3675  *	@from: source buffer
3676  *	@len: number of bytes to copy from source buffer
3677  *	@hlen: size of linear headroom in destination buffer
3678  *
3679  *	Copies up to `len` bytes from `from` to `to` by creating references
3680  *	to the frags in the source buffer.
3681  *
3682  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3683  *	headroom in the `to` buffer.
3684  *
3685  *	Return value:
3686  *	0: everything is OK
3687  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3688  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3689  */
3690 int
3691 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3692 {
3693 	int i, j = 0;
3694 	int plen = 0; /* length of skb->head fragment */
3695 	int ret;
3696 	struct page *page;
3697 	unsigned int offset;
3698 
3699 	BUG_ON(!from->head_frag && !hlen);
3700 
3701 	/* dont bother with small payloads */
3702 	if (len <= skb_tailroom(to))
3703 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3704 
3705 	if (hlen) {
3706 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3707 		if (unlikely(ret))
3708 			return ret;
3709 		len -= hlen;
3710 	} else {
3711 		plen = min_t(int, skb_headlen(from), len);
3712 		if (plen) {
3713 			page = virt_to_head_page(from->head);
3714 			offset = from->data - (unsigned char *)page_address(page);
3715 			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3716 					       offset, plen);
3717 			get_page(page);
3718 			j = 1;
3719 			len -= plen;
3720 		}
3721 	}
3722 
3723 	skb_len_add(to, len + plen);
3724 
3725 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3726 		skb_tx_error(from);
3727 		return -ENOMEM;
3728 	}
3729 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3730 
3731 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3732 		int size;
3733 
3734 		if (!len)
3735 			break;
3736 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3737 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3738 					len);
3739 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3740 		len -= size;
3741 		skb_frag_ref(to, j);
3742 		j++;
3743 	}
3744 	skb_shinfo(to)->nr_frags = j;
3745 
3746 	return 0;
3747 }
3748 EXPORT_SYMBOL_GPL(skb_zerocopy);
3749 
3750 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3751 {
3752 	__wsum csum;
3753 	long csstart;
3754 
3755 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3756 		csstart = skb_checksum_start_offset(skb);
3757 	else
3758 		csstart = skb_headlen(skb);
3759 
3760 	BUG_ON(csstart > skb_headlen(skb));
3761 
3762 	skb_copy_from_linear_data(skb, to, csstart);
3763 
3764 	csum = 0;
3765 	if (csstart != skb->len)
3766 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3767 					      skb->len - csstart);
3768 
3769 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3770 		long csstuff = csstart + skb->csum_offset;
3771 
3772 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3773 	}
3774 }
3775 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3776 
3777 /**
3778  *	skb_dequeue - remove from the head of the queue
3779  *	@list: list to dequeue from
3780  *
3781  *	Remove the head of the list. The list lock is taken so the function
3782  *	may be used safely with other locking list functions. The head item is
3783  *	returned or %NULL if the list is empty.
3784  */
3785 
3786 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3787 {
3788 	unsigned long flags;
3789 	struct sk_buff *result;
3790 
3791 	spin_lock_irqsave(&list->lock, flags);
3792 	result = __skb_dequeue(list);
3793 	spin_unlock_irqrestore(&list->lock, flags);
3794 	return result;
3795 }
3796 EXPORT_SYMBOL(skb_dequeue);
3797 
3798 /**
3799  *	skb_dequeue_tail - remove from the tail of the queue
3800  *	@list: list to dequeue from
3801  *
3802  *	Remove the tail of the list. The list lock is taken so the function
3803  *	may be used safely with other locking list functions. The tail item is
3804  *	returned or %NULL if the list is empty.
3805  */
3806 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3807 {
3808 	unsigned long flags;
3809 	struct sk_buff *result;
3810 
3811 	spin_lock_irqsave(&list->lock, flags);
3812 	result = __skb_dequeue_tail(list);
3813 	spin_unlock_irqrestore(&list->lock, flags);
3814 	return result;
3815 }
3816 EXPORT_SYMBOL(skb_dequeue_tail);
3817 
3818 /**
3819  *	skb_queue_purge_reason - empty a list
3820  *	@list: list to empty
3821  *	@reason: drop reason
3822  *
3823  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3824  *	the list and one reference dropped. This function takes the list
3825  *	lock and is atomic with respect to other list locking functions.
3826  */
3827 void skb_queue_purge_reason(struct sk_buff_head *list,
3828 			    enum skb_drop_reason reason)
3829 {
3830 	struct sk_buff_head tmp;
3831 	unsigned long flags;
3832 
3833 	if (skb_queue_empty_lockless(list))
3834 		return;
3835 
3836 	__skb_queue_head_init(&tmp);
3837 
3838 	spin_lock_irqsave(&list->lock, flags);
3839 	skb_queue_splice_init(list, &tmp);
3840 	spin_unlock_irqrestore(&list->lock, flags);
3841 
3842 	__skb_queue_purge_reason(&tmp, reason);
3843 }
3844 EXPORT_SYMBOL(skb_queue_purge_reason);
3845 
3846 /**
3847  *	skb_rbtree_purge - empty a skb rbtree
3848  *	@root: root of the rbtree to empty
3849  *	Return value: the sum of truesizes of all purged skbs.
3850  *
3851  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3852  *	the list and one reference dropped. This function does not take
3853  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3854  *	out-of-order queue is protected by the socket lock).
3855  */
3856 unsigned int skb_rbtree_purge(struct rb_root *root)
3857 {
3858 	struct rb_node *p = rb_first(root);
3859 	unsigned int sum = 0;
3860 
3861 	while (p) {
3862 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3863 
3864 		p = rb_next(p);
3865 		rb_erase(&skb->rbnode, root);
3866 		sum += skb->truesize;
3867 		kfree_skb(skb);
3868 	}
3869 	return sum;
3870 }
3871 
3872 void skb_errqueue_purge(struct sk_buff_head *list)
3873 {
3874 	struct sk_buff *skb, *next;
3875 	struct sk_buff_head kill;
3876 	unsigned long flags;
3877 
3878 	__skb_queue_head_init(&kill);
3879 
3880 	spin_lock_irqsave(&list->lock, flags);
3881 	skb_queue_walk_safe(list, skb, next) {
3882 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3883 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3884 			continue;
3885 		__skb_unlink(skb, list);
3886 		__skb_queue_tail(&kill, skb);
3887 	}
3888 	spin_unlock_irqrestore(&list->lock, flags);
3889 	__skb_queue_purge(&kill);
3890 }
3891 EXPORT_SYMBOL(skb_errqueue_purge);
3892 
3893 /**
3894  *	skb_queue_head - queue a buffer at the list head
3895  *	@list: list to use
3896  *	@newsk: buffer to queue
3897  *
3898  *	Queue a buffer at the start of the list. This function takes the
3899  *	list lock and can be used safely with other locking &sk_buff functions
3900  *	safely.
3901  *
3902  *	A buffer cannot be placed on two lists at the same time.
3903  */
3904 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3905 {
3906 	unsigned long flags;
3907 
3908 	spin_lock_irqsave(&list->lock, flags);
3909 	__skb_queue_head(list, newsk);
3910 	spin_unlock_irqrestore(&list->lock, flags);
3911 }
3912 EXPORT_SYMBOL(skb_queue_head);
3913 
3914 /**
3915  *	skb_queue_tail - queue a buffer at the list tail
3916  *	@list: list to use
3917  *	@newsk: buffer to queue
3918  *
3919  *	Queue a buffer at the tail of the list. This function takes the
3920  *	list lock and can be used safely with other locking &sk_buff functions
3921  *	safely.
3922  *
3923  *	A buffer cannot be placed on two lists at the same time.
3924  */
3925 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3926 {
3927 	unsigned long flags;
3928 
3929 	spin_lock_irqsave(&list->lock, flags);
3930 	__skb_queue_tail(list, newsk);
3931 	spin_unlock_irqrestore(&list->lock, flags);
3932 }
3933 EXPORT_SYMBOL(skb_queue_tail);
3934 
3935 /**
3936  *	skb_unlink	-	remove a buffer from a list
3937  *	@skb: buffer to remove
3938  *	@list: list to use
3939  *
3940  *	Remove a packet from a list. The list locks are taken and this
3941  *	function is atomic with respect to other list locked calls
3942  *
3943  *	You must know what list the SKB is on.
3944  */
3945 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3946 {
3947 	unsigned long flags;
3948 
3949 	spin_lock_irqsave(&list->lock, flags);
3950 	__skb_unlink(skb, list);
3951 	spin_unlock_irqrestore(&list->lock, flags);
3952 }
3953 EXPORT_SYMBOL(skb_unlink);
3954 
3955 /**
3956  *	skb_append	-	append a buffer
3957  *	@old: buffer to insert after
3958  *	@newsk: buffer to insert
3959  *	@list: list to use
3960  *
3961  *	Place a packet after a given packet in a list. The list locks are taken
3962  *	and this function is atomic with respect to other list locked calls.
3963  *	A buffer cannot be placed on two lists at the same time.
3964  */
3965 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3966 {
3967 	unsigned long flags;
3968 
3969 	spin_lock_irqsave(&list->lock, flags);
3970 	__skb_queue_after(list, old, newsk);
3971 	spin_unlock_irqrestore(&list->lock, flags);
3972 }
3973 EXPORT_SYMBOL(skb_append);
3974 
3975 static inline void skb_split_inside_header(struct sk_buff *skb,
3976 					   struct sk_buff* skb1,
3977 					   const u32 len, const int pos)
3978 {
3979 	int i;
3980 
3981 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3982 					 pos - len);
3983 	/* And move data appendix as is. */
3984 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3985 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3986 
3987 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3988 	skb_shinfo(skb)->nr_frags  = 0;
3989 	skb1->data_len		   = skb->data_len;
3990 	skb1->len		   += skb1->data_len;
3991 	skb->data_len		   = 0;
3992 	skb->len		   = len;
3993 	skb_set_tail_pointer(skb, len);
3994 }
3995 
3996 static inline void skb_split_no_header(struct sk_buff *skb,
3997 				       struct sk_buff* skb1,
3998 				       const u32 len, int pos)
3999 {
4000 	int i, k = 0;
4001 	const int nfrags = skb_shinfo(skb)->nr_frags;
4002 
4003 	skb_shinfo(skb)->nr_frags = 0;
4004 	skb1->len		  = skb1->data_len = skb->len - len;
4005 	skb->len		  = len;
4006 	skb->data_len		  = len - pos;
4007 
4008 	for (i = 0; i < nfrags; i++) {
4009 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4010 
4011 		if (pos + size > len) {
4012 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4013 
4014 			if (pos < len) {
4015 				/* Split frag.
4016 				 * We have two variants in this case:
4017 				 * 1. Move all the frag to the second
4018 				 *    part, if it is possible. F.e.
4019 				 *    this approach is mandatory for TUX,
4020 				 *    where splitting is expensive.
4021 				 * 2. Split is accurately. We make this.
4022 				 */
4023 				skb_frag_ref(skb, i);
4024 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4025 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4026 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4027 				skb_shinfo(skb)->nr_frags++;
4028 			}
4029 			k++;
4030 		} else
4031 			skb_shinfo(skb)->nr_frags++;
4032 		pos += size;
4033 	}
4034 	skb_shinfo(skb1)->nr_frags = k;
4035 }
4036 
4037 /**
4038  * skb_split - Split fragmented skb to two parts at length len.
4039  * @skb: the buffer to split
4040  * @skb1: the buffer to receive the second part
4041  * @len: new length for skb
4042  */
4043 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4044 {
4045 	int pos = skb_headlen(skb);
4046 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4047 
4048 	skb_zcopy_downgrade_managed(skb);
4049 
4050 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4051 	skb_zerocopy_clone(skb1, skb, 0);
4052 	if (len < pos)	/* Split line is inside header. */
4053 		skb_split_inside_header(skb, skb1, len, pos);
4054 	else		/* Second chunk has no header, nothing to copy. */
4055 		skb_split_no_header(skb, skb1, len, pos);
4056 }
4057 EXPORT_SYMBOL(skb_split);
4058 
4059 /* Shifting from/to a cloned skb is a no-go.
4060  *
4061  * Caller cannot keep skb_shinfo related pointers past calling here!
4062  */
4063 static int skb_prepare_for_shift(struct sk_buff *skb)
4064 {
4065 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4066 }
4067 
4068 /**
4069  * skb_shift - Shifts paged data partially from skb to another
4070  * @tgt: buffer into which tail data gets added
4071  * @skb: buffer from which the paged data comes from
4072  * @shiftlen: shift up to this many bytes
4073  *
4074  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4075  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4076  * It's up to caller to free skb if everything was shifted.
4077  *
4078  * If @tgt runs out of frags, the whole operation is aborted.
4079  *
4080  * Skb cannot include anything else but paged data while tgt is allowed
4081  * to have non-paged data as well.
4082  *
4083  * TODO: full sized shift could be optimized but that would need
4084  * specialized skb free'er to handle frags without up-to-date nr_frags.
4085  */
4086 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4087 {
4088 	int from, to, merge, todo;
4089 	skb_frag_t *fragfrom, *fragto;
4090 
4091 	BUG_ON(shiftlen > skb->len);
4092 
4093 	if (skb_headlen(skb))
4094 		return 0;
4095 	if (skb_zcopy(tgt) || skb_zcopy(skb))
4096 		return 0;
4097 
4098 	todo = shiftlen;
4099 	from = 0;
4100 	to = skb_shinfo(tgt)->nr_frags;
4101 	fragfrom = &skb_shinfo(skb)->frags[from];
4102 
4103 	/* Actual merge is delayed until the point when we know we can
4104 	 * commit all, so that we don't have to undo partial changes
4105 	 */
4106 	if (!to ||
4107 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4108 			      skb_frag_off(fragfrom))) {
4109 		merge = -1;
4110 	} else {
4111 		merge = to - 1;
4112 
4113 		todo -= skb_frag_size(fragfrom);
4114 		if (todo < 0) {
4115 			if (skb_prepare_for_shift(skb) ||
4116 			    skb_prepare_for_shift(tgt))
4117 				return 0;
4118 
4119 			/* All previous frag pointers might be stale! */
4120 			fragfrom = &skb_shinfo(skb)->frags[from];
4121 			fragto = &skb_shinfo(tgt)->frags[merge];
4122 
4123 			skb_frag_size_add(fragto, shiftlen);
4124 			skb_frag_size_sub(fragfrom, shiftlen);
4125 			skb_frag_off_add(fragfrom, shiftlen);
4126 
4127 			goto onlymerged;
4128 		}
4129 
4130 		from++;
4131 	}
4132 
4133 	/* Skip full, not-fitting skb to avoid expensive operations */
4134 	if ((shiftlen == skb->len) &&
4135 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4136 		return 0;
4137 
4138 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4139 		return 0;
4140 
4141 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4142 		if (to == MAX_SKB_FRAGS)
4143 			return 0;
4144 
4145 		fragfrom = &skb_shinfo(skb)->frags[from];
4146 		fragto = &skb_shinfo(tgt)->frags[to];
4147 
4148 		if (todo >= skb_frag_size(fragfrom)) {
4149 			*fragto = *fragfrom;
4150 			todo -= skb_frag_size(fragfrom);
4151 			from++;
4152 			to++;
4153 
4154 		} else {
4155 			__skb_frag_ref(fragfrom, skb->pp_recycle);
4156 			skb_frag_page_copy(fragto, fragfrom);
4157 			skb_frag_off_copy(fragto, fragfrom);
4158 			skb_frag_size_set(fragto, todo);
4159 
4160 			skb_frag_off_add(fragfrom, todo);
4161 			skb_frag_size_sub(fragfrom, todo);
4162 			todo = 0;
4163 
4164 			to++;
4165 			break;
4166 		}
4167 	}
4168 
4169 	/* Ready to "commit" this state change to tgt */
4170 	skb_shinfo(tgt)->nr_frags = to;
4171 
4172 	if (merge >= 0) {
4173 		fragfrom = &skb_shinfo(skb)->frags[0];
4174 		fragto = &skb_shinfo(tgt)->frags[merge];
4175 
4176 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4177 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4178 	}
4179 
4180 	/* Reposition in the original skb */
4181 	to = 0;
4182 	while (from < skb_shinfo(skb)->nr_frags)
4183 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4184 	skb_shinfo(skb)->nr_frags = to;
4185 
4186 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4187 
4188 onlymerged:
4189 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4190 	 * the other hand might need it if it needs to be resent
4191 	 */
4192 	tgt->ip_summed = CHECKSUM_PARTIAL;
4193 	skb->ip_summed = CHECKSUM_PARTIAL;
4194 
4195 	skb_len_add(skb, -shiftlen);
4196 	skb_len_add(tgt, shiftlen);
4197 
4198 	return shiftlen;
4199 }
4200 
4201 /**
4202  * skb_prepare_seq_read - Prepare a sequential read of skb data
4203  * @skb: the buffer to read
4204  * @from: lower offset of data to be read
4205  * @to: upper offset of data to be read
4206  * @st: state variable
4207  *
4208  * Initializes the specified state variable. Must be called before
4209  * invoking skb_seq_read() for the first time.
4210  */
4211 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4212 			  unsigned int to, struct skb_seq_state *st)
4213 {
4214 	st->lower_offset = from;
4215 	st->upper_offset = to;
4216 	st->root_skb = st->cur_skb = skb;
4217 	st->frag_idx = st->stepped_offset = 0;
4218 	st->frag_data = NULL;
4219 	st->frag_off = 0;
4220 }
4221 EXPORT_SYMBOL(skb_prepare_seq_read);
4222 
4223 /**
4224  * skb_seq_read - Sequentially read skb data
4225  * @consumed: number of bytes consumed by the caller so far
4226  * @data: destination pointer for data to be returned
4227  * @st: state variable
4228  *
4229  * Reads a block of skb data at @consumed relative to the
4230  * lower offset specified to skb_prepare_seq_read(). Assigns
4231  * the head of the data block to @data and returns the length
4232  * of the block or 0 if the end of the skb data or the upper
4233  * offset has been reached.
4234  *
4235  * The caller is not required to consume all of the data
4236  * returned, i.e. @consumed is typically set to the number
4237  * of bytes already consumed and the next call to
4238  * skb_seq_read() will return the remaining part of the block.
4239  *
4240  * Note 1: The size of each block of data returned can be arbitrary,
4241  *       this limitation is the cost for zerocopy sequential
4242  *       reads of potentially non linear data.
4243  *
4244  * Note 2: Fragment lists within fragments are not implemented
4245  *       at the moment, state->root_skb could be replaced with
4246  *       a stack for this purpose.
4247  */
4248 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4249 			  struct skb_seq_state *st)
4250 {
4251 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4252 	skb_frag_t *frag;
4253 
4254 	if (unlikely(abs_offset >= st->upper_offset)) {
4255 		if (st->frag_data) {
4256 			kunmap_atomic(st->frag_data);
4257 			st->frag_data = NULL;
4258 		}
4259 		return 0;
4260 	}
4261 
4262 next_skb:
4263 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4264 
4265 	if (abs_offset < block_limit && !st->frag_data) {
4266 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4267 		return block_limit - abs_offset;
4268 	}
4269 
4270 	if (st->frag_idx == 0 && !st->frag_data)
4271 		st->stepped_offset += skb_headlen(st->cur_skb);
4272 
4273 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4274 		unsigned int pg_idx, pg_off, pg_sz;
4275 
4276 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4277 
4278 		pg_idx = 0;
4279 		pg_off = skb_frag_off(frag);
4280 		pg_sz = skb_frag_size(frag);
4281 
4282 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4283 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4284 			pg_off = offset_in_page(pg_off + st->frag_off);
4285 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4286 						    PAGE_SIZE - pg_off);
4287 		}
4288 
4289 		block_limit = pg_sz + st->stepped_offset;
4290 		if (abs_offset < block_limit) {
4291 			if (!st->frag_data)
4292 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4293 
4294 			*data = (u8 *)st->frag_data + pg_off +
4295 				(abs_offset - st->stepped_offset);
4296 
4297 			return block_limit - abs_offset;
4298 		}
4299 
4300 		if (st->frag_data) {
4301 			kunmap_atomic(st->frag_data);
4302 			st->frag_data = NULL;
4303 		}
4304 
4305 		st->stepped_offset += pg_sz;
4306 		st->frag_off += pg_sz;
4307 		if (st->frag_off == skb_frag_size(frag)) {
4308 			st->frag_off = 0;
4309 			st->frag_idx++;
4310 		}
4311 	}
4312 
4313 	if (st->frag_data) {
4314 		kunmap_atomic(st->frag_data);
4315 		st->frag_data = NULL;
4316 	}
4317 
4318 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4319 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4320 		st->frag_idx = 0;
4321 		goto next_skb;
4322 	} else if (st->cur_skb->next) {
4323 		st->cur_skb = st->cur_skb->next;
4324 		st->frag_idx = 0;
4325 		goto next_skb;
4326 	}
4327 
4328 	return 0;
4329 }
4330 EXPORT_SYMBOL(skb_seq_read);
4331 
4332 /**
4333  * skb_abort_seq_read - Abort a sequential read of skb data
4334  * @st: state variable
4335  *
4336  * Must be called if skb_seq_read() was not called until it
4337  * returned 0.
4338  */
4339 void skb_abort_seq_read(struct skb_seq_state *st)
4340 {
4341 	if (st->frag_data)
4342 		kunmap_atomic(st->frag_data);
4343 }
4344 EXPORT_SYMBOL(skb_abort_seq_read);
4345 
4346 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4347 
4348 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4349 					  struct ts_config *conf,
4350 					  struct ts_state *state)
4351 {
4352 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4353 }
4354 
4355 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4356 {
4357 	skb_abort_seq_read(TS_SKB_CB(state));
4358 }
4359 
4360 /**
4361  * skb_find_text - Find a text pattern in skb data
4362  * @skb: the buffer to look in
4363  * @from: search offset
4364  * @to: search limit
4365  * @config: textsearch configuration
4366  *
4367  * Finds a pattern in the skb data according to the specified
4368  * textsearch configuration. Use textsearch_next() to retrieve
4369  * subsequent occurrences of the pattern. Returns the offset
4370  * to the first occurrence or UINT_MAX if no match was found.
4371  */
4372 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4373 			   unsigned int to, struct ts_config *config)
4374 {
4375 	unsigned int patlen = config->ops->get_pattern_len(config);
4376 	struct ts_state state;
4377 	unsigned int ret;
4378 
4379 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4380 
4381 	config->get_next_block = skb_ts_get_next_block;
4382 	config->finish = skb_ts_finish;
4383 
4384 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4385 
4386 	ret = textsearch_find(config, &state);
4387 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4388 }
4389 EXPORT_SYMBOL(skb_find_text);
4390 
4391 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4392 			 int offset, size_t size, size_t max_frags)
4393 {
4394 	int i = skb_shinfo(skb)->nr_frags;
4395 
4396 	if (skb_can_coalesce(skb, i, page, offset)) {
4397 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4398 	} else if (i < max_frags) {
4399 		skb_zcopy_downgrade_managed(skb);
4400 		get_page(page);
4401 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4402 	} else {
4403 		return -EMSGSIZE;
4404 	}
4405 
4406 	return 0;
4407 }
4408 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4409 
4410 /**
4411  *	skb_pull_rcsum - pull skb and update receive checksum
4412  *	@skb: buffer to update
4413  *	@len: length of data pulled
4414  *
4415  *	This function performs an skb_pull on the packet and updates
4416  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4417  *	receive path processing instead of skb_pull unless you know
4418  *	that the checksum difference is zero (e.g., a valid IP header)
4419  *	or you are setting ip_summed to CHECKSUM_NONE.
4420  */
4421 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4422 {
4423 	unsigned char *data = skb->data;
4424 
4425 	BUG_ON(len > skb->len);
4426 	__skb_pull(skb, len);
4427 	skb_postpull_rcsum(skb, data, len);
4428 	return skb->data;
4429 }
4430 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4431 
4432 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4433 {
4434 	skb_frag_t head_frag;
4435 	struct page *page;
4436 
4437 	page = virt_to_head_page(frag_skb->head);
4438 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4439 				(unsigned char *)page_address(page),
4440 				skb_headlen(frag_skb));
4441 	return head_frag;
4442 }
4443 
4444 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4445 				 netdev_features_t features,
4446 				 unsigned int offset)
4447 {
4448 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4449 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4450 	unsigned int delta_truesize = 0;
4451 	unsigned int delta_len = 0;
4452 	struct sk_buff *tail = NULL;
4453 	struct sk_buff *nskb, *tmp;
4454 	int len_diff, err;
4455 
4456 	skb_push(skb, -skb_network_offset(skb) + offset);
4457 
4458 	/* Ensure the head is writeable before touching the shared info */
4459 	err = skb_unclone(skb, GFP_ATOMIC);
4460 	if (err)
4461 		goto err_linearize;
4462 
4463 	skb_shinfo(skb)->frag_list = NULL;
4464 
4465 	while (list_skb) {
4466 		nskb = list_skb;
4467 		list_skb = list_skb->next;
4468 
4469 		err = 0;
4470 		delta_truesize += nskb->truesize;
4471 		if (skb_shared(nskb)) {
4472 			tmp = skb_clone(nskb, GFP_ATOMIC);
4473 			if (tmp) {
4474 				consume_skb(nskb);
4475 				nskb = tmp;
4476 				err = skb_unclone(nskb, GFP_ATOMIC);
4477 			} else {
4478 				err = -ENOMEM;
4479 			}
4480 		}
4481 
4482 		if (!tail)
4483 			skb->next = nskb;
4484 		else
4485 			tail->next = nskb;
4486 
4487 		if (unlikely(err)) {
4488 			nskb->next = list_skb;
4489 			goto err_linearize;
4490 		}
4491 
4492 		tail = nskb;
4493 
4494 		delta_len += nskb->len;
4495 
4496 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4497 
4498 		skb_release_head_state(nskb);
4499 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4500 		__copy_skb_header(nskb, skb);
4501 
4502 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4503 		nskb->transport_header += len_diff;
4504 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4505 						 nskb->data - tnl_hlen,
4506 						 offset + tnl_hlen);
4507 
4508 		if (skb_needs_linearize(nskb, features) &&
4509 		    __skb_linearize(nskb))
4510 			goto err_linearize;
4511 	}
4512 
4513 	skb->truesize = skb->truesize - delta_truesize;
4514 	skb->data_len = skb->data_len - delta_len;
4515 	skb->len = skb->len - delta_len;
4516 
4517 	skb_gso_reset(skb);
4518 
4519 	skb->prev = tail;
4520 
4521 	if (skb_needs_linearize(skb, features) &&
4522 	    __skb_linearize(skb))
4523 		goto err_linearize;
4524 
4525 	skb_get(skb);
4526 
4527 	return skb;
4528 
4529 err_linearize:
4530 	kfree_skb_list(skb->next);
4531 	skb->next = NULL;
4532 	return ERR_PTR(-ENOMEM);
4533 }
4534 EXPORT_SYMBOL_GPL(skb_segment_list);
4535 
4536 /**
4537  *	skb_segment - Perform protocol segmentation on skb.
4538  *	@head_skb: buffer to segment
4539  *	@features: features for the output path (see dev->features)
4540  *
4541  *	This function performs segmentation on the given skb.  It returns
4542  *	a pointer to the first in a list of new skbs for the segments.
4543  *	In case of error it returns ERR_PTR(err).
4544  */
4545 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4546 			    netdev_features_t features)
4547 {
4548 	struct sk_buff *segs = NULL;
4549 	struct sk_buff *tail = NULL;
4550 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4551 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4552 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4553 	unsigned int offset = doffset;
4554 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4555 	unsigned int partial_segs = 0;
4556 	unsigned int headroom;
4557 	unsigned int len = head_skb->len;
4558 	struct sk_buff *frag_skb;
4559 	skb_frag_t *frag;
4560 	__be16 proto;
4561 	bool csum, sg;
4562 	int err = -ENOMEM;
4563 	int i = 0;
4564 	int nfrags, pos;
4565 
4566 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4567 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4568 		struct sk_buff *check_skb;
4569 
4570 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4571 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4572 				/* gso_size is untrusted, and we have a frag_list with
4573 				 * a linear non head_frag item.
4574 				 *
4575 				 * If head_skb's headlen does not fit requested gso_size,
4576 				 * it means that the frag_list members do NOT terminate
4577 				 * on exact gso_size boundaries. Hence we cannot perform
4578 				 * skb_frag_t page sharing. Therefore we must fallback to
4579 				 * copying the frag_list skbs; we do so by disabling SG.
4580 				 */
4581 				features &= ~NETIF_F_SG;
4582 				break;
4583 			}
4584 		}
4585 	}
4586 
4587 	__skb_push(head_skb, doffset);
4588 	proto = skb_network_protocol(head_skb, NULL);
4589 	if (unlikely(!proto))
4590 		return ERR_PTR(-EINVAL);
4591 
4592 	sg = !!(features & NETIF_F_SG);
4593 	csum = !!can_checksum_protocol(features, proto);
4594 
4595 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4596 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4597 			struct sk_buff *iter;
4598 			unsigned int frag_len;
4599 
4600 			if (!list_skb ||
4601 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4602 				goto normal;
4603 
4604 			/* If we get here then all the required
4605 			 * GSO features except frag_list are supported.
4606 			 * Try to split the SKB to multiple GSO SKBs
4607 			 * with no frag_list.
4608 			 * Currently we can do that only when the buffers don't
4609 			 * have a linear part and all the buffers except
4610 			 * the last are of the same length.
4611 			 */
4612 			frag_len = list_skb->len;
4613 			skb_walk_frags(head_skb, iter) {
4614 				if (frag_len != iter->len && iter->next)
4615 					goto normal;
4616 				if (skb_headlen(iter) && !iter->head_frag)
4617 					goto normal;
4618 
4619 				len -= iter->len;
4620 			}
4621 
4622 			if (len != frag_len)
4623 				goto normal;
4624 		}
4625 
4626 		/* GSO partial only requires that we trim off any excess that
4627 		 * doesn't fit into an MSS sized block, so take care of that
4628 		 * now.
4629 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4630 		 */
4631 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4632 		if (partial_segs > 1)
4633 			mss *= partial_segs;
4634 		else
4635 			partial_segs = 0;
4636 	}
4637 
4638 normal:
4639 	headroom = skb_headroom(head_skb);
4640 	pos = skb_headlen(head_skb);
4641 
4642 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4643 		return ERR_PTR(-ENOMEM);
4644 
4645 	nfrags = skb_shinfo(head_skb)->nr_frags;
4646 	frag = skb_shinfo(head_skb)->frags;
4647 	frag_skb = head_skb;
4648 
4649 	do {
4650 		struct sk_buff *nskb;
4651 		skb_frag_t *nskb_frag;
4652 		int hsize;
4653 		int size;
4654 
4655 		if (unlikely(mss == GSO_BY_FRAGS)) {
4656 			len = list_skb->len;
4657 		} else {
4658 			len = head_skb->len - offset;
4659 			if (len > mss)
4660 				len = mss;
4661 		}
4662 
4663 		hsize = skb_headlen(head_skb) - offset;
4664 
4665 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4666 		    (skb_headlen(list_skb) == len || sg)) {
4667 			BUG_ON(skb_headlen(list_skb) > len);
4668 
4669 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4670 			if (unlikely(!nskb))
4671 				goto err;
4672 
4673 			i = 0;
4674 			nfrags = skb_shinfo(list_skb)->nr_frags;
4675 			frag = skb_shinfo(list_skb)->frags;
4676 			frag_skb = list_skb;
4677 			pos += skb_headlen(list_skb);
4678 
4679 			while (pos < offset + len) {
4680 				BUG_ON(i >= nfrags);
4681 
4682 				size = skb_frag_size(frag);
4683 				if (pos + size > offset + len)
4684 					break;
4685 
4686 				i++;
4687 				pos += size;
4688 				frag++;
4689 			}
4690 
4691 			list_skb = list_skb->next;
4692 
4693 			if (unlikely(pskb_trim(nskb, len))) {
4694 				kfree_skb(nskb);
4695 				goto err;
4696 			}
4697 
4698 			hsize = skb_end_offset(nskb);
4699 			if (skb_cow_head(nskb, doffset + headroom)) {
4700 				kfree_skb(nskb);
4701 				goto err;
4702 			}
4703 
4704 			nskb->truesize += skb_end_offset(nskb) - hsize;
4705 			skb_release_head_state(nskb);
4706 			__skb_push(nskb, doffset);
4707 		} else {
4708 			if (hsize < 0)
4709 				hsize = 0;
4710 			if (hsize > len || !sg)
4711 				hsize = len;
4712 
4713 			nskb = __alloc_skb(hsize + doffset + headroom,
4714 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4715 					   NUMA_NO_NODE);
4716 
4717 			if (unlikely(!nskb))
4718 				goto err;
4719 
4720 			skb_reserve(nskb, headroom);
4721 			__skb_put(nskb, doffset);
4722 		}
4723 
4724 		if (segs)
4725 			tail->next = nskb;
4726 		else
4727 			segs = nskb;
4728 		tail = nskb;
4729 
4730 		__copy_skb_header(nskb, head_skb);
4731 
4732 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4733 		skb_reset_mac_len(nskb);
4734 
4735 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4736 						 nskb->data - tnl_hlen,
4737 						 doffset + tnl_hlen);
4738 
4739 		if (nskb->len == len + doffset)
4740 			goto perform_csum_check;
4741 
4742 		if (!sg) {
4743 			if (!csum) {
4744 				if (!nskb->remcsum_offload)
4745 					nskb->ip_summed = CHECKSUM_NONE;
4746 				SKB_GSO_CB(nskb)->csum =
4747 					skb_copy_and_csum_bits(head_skb, offset,
4748 							       skb_put(nskb,
4749 								       len),
4750 							       len);
4751 				SKB_GSO_CB(nskb)->csum_start =
4752 					skb_headroom(nskb) + doffset;
4753 			} else {
4754 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4755 					goto err;
4756 			}
4757 			continue;
4758 		}
4759 
4760 		nskb_frag = skb_shinfo(nskb)->frags;
4761 
4762 		skb_copy_from_linear_data_offset(head_skb, offset,
4763 						 skb_put(nskb, hsize), hsize);
4764 
4765 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4766 					   SKBFL_SHARED_FRAG;
4767 
4768 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4769 			goto err;
4770 
4771 		while (pos < offset + len) {
4772 			if (i >= nfrags) {
4773 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4774 				    skb_zerocopy_clone(nskb, list_skb,
4775 						       GFP_ATOMIC))
4776 					goto err;
4777 
4778 				i = 0;
4779 				nfrags = skb_shinfo(list_skb)->nr_frags;
4780 				frag = skb_shinfo(list_skb)->frags;
4781 				frag_skb = list_skb;
4782 				if (!skb_headlen(list_skb)) {
4783 					BUG_ON(!nfrags);
4784 				} else {
4785 					BUG_ON(!list_skb->head_frag);
4786 
4787 					/* to make room for head_frag. */
4788 					i--;
4789 					frag--;
4790 				}
4791 
4792 				list_skb = list_skb->next;
4793 			}
4794 
4795 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4796 				     MAX_SKB_FRAGS)) {
4797 				net_warn_ratelimited(
4798 					"skb_segment: too many frags: %u %u\n",
4799 					pos, mss);
4800 				err = -EINVAL;
4801 				goto err;
4802 			}
4803 
4804 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4805 			__skb_frag_ref(nskb_frag, nskb->pp_recycle);
4806 			size = skb_frag_size(nskb_frag);
4807 
4808 			if (pos < offset) {
4809 				skb_frag_off_add(nskb_frag, offset - pos);
4810 				skb_frag_size_sub(nskb_frag, offset - pos);
4811 			}
4812 
4813 			skb_shinfo(nskb)->nr_frags++;
4814 
4815 			if (pos + size <= offset + len) {
4816 				i++;
4817 				frag++;
4818 				pos += size;
4819 			} else {
4820 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4821 				goto skip_fraglist;
4822 			}
4823 
4824 			nskb_frag++;
4825 		}
4826 
4827 skip_fraglist:
4828 		nskb->data_len = len - hsize;
4829 		nskb->len += nskb->data_len;
4830 		nskb->truesize += nskb->data_len;
4831 
4832 perform_csum_check:
4833 		if (!csum) {
4834 			if (skb_has_shared_frag(nskb) &&
4835 			    __skb_linearize(nskb))
4836 				goto err;
4837 
4838 			if (!nskb->remcsum_offload)
4839 				nskb->ip_summed = CHECKSUM_NONE;
4840 			SKB_GSO_CB(nskb)->csum =
4841 				skb_checksum(nskb, doffset,
4842 					     nskb->len - doffset, 0);
4843 			SKB_GSO_CB(nskb)->csum_start =
4844 				skb_headroom(nskb) + doffset;
4845 		}
4846 	} while ((offset += len) < head_skb->len);
4847 
4848 	/* Some callers want to get the end of the list.
4849 	 * Put it in segs->prev to avoid walking the list.
4850 	 * (see validate_xmit_skb_list() for example)
4851 	 */
4852 	segs->prev = tail;
4853 
4854 	if (partial_segs) {
4855 		struct sk_buff *iter;
4856 		int type = skb_shinfo(head_skb)->gso_type;
4857 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4858 
4859 		/* Update type to add partial and then remove dodgy if set */
4860 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4861 		type &= ~SKB_GSO_DODGY;
4862 
4863 		/* Update GSO info and prepare to start updating headers on
4864 		 * our way back down the stack of protocols.
4865 		 */
4866 		for (iter = segs; iter; iter = iter->next) {
4867 			skb_shinfo(iter)->gso_size = gso_size;
4868 			skb_shinfo(iter)->gso_segs = partial_segs;
4869 			skb_shinfo(iter)->gso_type = type;
4870 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4871 		}
4872 
4873 		if (tail->len - doffset <= gso_size)
4874 			skb_shinfo(tail)->gso_size = 0;
4875 		else if (tail != segs)
4876 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4877 	}
4878 
4879 	/* Following permits correct backpressure, for protocols
4880 	 * using skb_set_owner_w().
4881 	 * Idea is to tranfert ownership from head_skb to last segment.
4882 	 */
4883 	if (head_skb->destructor == sock_wfree) {
4884 		swap(tail->truesize, head_skb->truesize);
4885 		swap(tail->destructor, head_skb->destructor);
4886 		swap(tail->sk, head_skb->sk);
4887 	}
4888 	return segs;
4889 
4890 err:
4891 	kfree_skb_list(segs);
4892 	return ERR_PTR(err);
4893 }
4894 EXPORT_SYMBOL_GPL(skb_segment);
4895 
4896 #ifdef CONFIG_SKB_EXTENSIONS
4897 #define SKB_EXT_ALIGN_VALUE	8
4898 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4899 
4900 static const u8 skb_ext_type_len[] = {
4901 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4902 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4903 #endif
4904 #ifdef CONFIG_XFRM
4905 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4906 #endif
4907 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4908 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4909 #endif
4910 #if IS_ENABLED(CONFIG_MPTCP)
4911 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4912 #endif
4913 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4914 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4915 #endif
4916 };
4917 
4918 static __always_inline unsigned int skb_ext_total_length(void)
4919 {
4920 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4921 	int i;
4922 
4923 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4924 		l += skb_ext_type_len[i];
4925 
4926 	return l;
4927 }
4928 
4929 static void skb_extensions_init(void)
4930 {
4931 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4932 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4933 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4934 #endif
4935 
4936 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4937 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4938 					     0,
4939 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4940 					     NULL);
4941 }
4942 #else
4943 static void skb_extensions_init(void) {}
4944 #endif
4945 
4946 /* The SKB kmem_cache slab is critical for network performance.  Never
4947  * merge/alias the slab with similar sized objects.  This avoids fragmentation
4948  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
4949  */
4950 #ifndef CONFIG_SLUB_TINY
4951 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
4952 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
4953 #define FLAG_SKB_NO_MERGE	0
4954 #endif
4955 
4956 void __init skb_init(void)
4957 {
4958 	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4959 					      sizeof(struct sk_buff),
4960 					      0,
4961 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
4962 						FLAG_SKB_NO_MERGE,
4963 					      offsetof(struct sk_buff, cb),
4964 					      sizeof_field(struct sk_buff, cb),
4965 					      NULL);
4966 	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4967 						sizeof(struct sk_buff_fclones),
4968 						0,
4969 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4970 						NULL);
4971 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
4972 	 * struct skb_shared_info is located at the end of skb->head,
4973 	 * and should not be copied to/from user.
4974 	 */
4975 	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
4976 						SKB_SMALL_HEAD_CACHE_SIZE,
4977 						0,
4978 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
4979 						0,
4980 						SKB_SMALL_HEAD_HEADROOM,
4981 						NULL);
4982 	skb_extensions_init();
4983 }
4984 
4985 static int
4986 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4987 	       unsigned int recursion_level)
4988 {
4989 	int start = skb_headlen(skb);
4990 	int i, copy = start - offset;
4991 	struct sk_buff *frag_iter;
4992 	int elt = 0;
4993 
4994 	if (unlikely(recursion_level >= 24))
4995 		return -EMSGSIZE;
4996 
4997 	if (copy > 0) {
4998 		if (copy > len)
4999 			copy = len;
5000 		sg_set_buf(sg, skb->data + offset, copy);
5001 		elt++;
5002 		if ((len -= copy) == 0)
5003 			return elt;
5004 		offset += copy;
5005 	}
5006 
5007 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5008 		int end;
5009 
5010 		WARN_ON(start > offset + len);
5011 
5012 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5013 		if ((copy = end - offset) > 0) {
5014 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5015 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5016 				return -EMSGSIZE;
5017 
5018 			if (copy > len)
5019 				copy = len;
5020 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5021 				    skb_frag_off(frag) + offset - start);
5022 			elt++;
5023 			if (!(len -= copy))
5024 				return elt;
5025 			offset += copy;
5026 		}
5027 		start = end;
5028 	}
5029 
5030 	skb_walk_frags(skb, frag_iter) {
5031 		int end, ret;
5032 
5033 		WARN_ON(start > offset + len);
5034 
5035 		end = start + frag_iter->len;
5036 		if ((copy = end - offset) > 0) {
5037 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5038 				return -EMSGSIZE;
5039 
5040 			if (copy > len)
5041 				copy = len;
5042 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5043 					      copy, recursion_level + 1);
5044 			if (unlikely(ret < 0))
5045 				return ret;
5046 			elt += ret;
5047 			if ((len -= copy) == 0)
5048 				return elt;
5049 			offset += copy;
5050 		}
5051 		start = end;
5052 	}
5053 	BUG_ON(len);
5054 	return elt;
5055 }
5056 
5057 /**
5058  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5059  *	@skb: Socket buffer containing the buffers to be mapped
5060  *	@sg: The scatter-gather list to map into
5061  *	@offset: The offset into the buffer's contents to start mapping
5062  *	@len: Length of buffer space to be mapped
5063  *
5064  *	Fill the specified scatter-gather list with mappings/pointers into a
5065  *	region of the buffer space attached to a socket buffer. Returns either
5066  *	the number of scatterlist items used, or -EMSGSIZE if the contents
5067  *	could not fit.
5068  */
5069 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5070 {
5071 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5072 
5073 	if (nsg <= 0)
5074 		return nsg;
5075 
5076 	sg_mark_end(&sg[nsg - 1]);
5077 
5078 	return nsg;
5079 }
5080 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5081 
5082 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5083  * sglist without mark the sg which contain last skb data as the end.
5084  * So the caller can mannipulate sg list as will when padding new data after
5085  * the first call without calling sg_unmark_end to expend sg list.
5086  *
5087  * Scenario to use skb_to_sgvec_nomark:
5088  * 1. sg_init_table
5089  * 2. skb_to_sgvec_nomark(payload1)
5090  * 3. skb_to_sgvec_nomark(payload2)
5091  *
5092  * This is equivalent to:
5093  * 1. sg_init_table
5094  * 2. skb_to_sgvec(payload1)
5095  * 3. sg_unmark_end
5096  * 4. skb_to_sgvec(payload2)
5097  *
5098  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
5099  * is more preferable.
5100  */
5101 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5102 			int offset, int len)
5103 {
5104 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5105 }
5106 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5107 
5108 
5109 
5110 /**
5111  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5112  *	@skb: The socket buffer to check.
5113  *	@tailbits: Amount of trailing space to be added
5114  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5115  *
5116  *	Make sure that the data buffers attached to a socket buffer are
5117  *	writable. If they are not, private copies are made of the data buffers
5118  *	and the socket buffer is set to use these instead.
5119  *
5120  *	If @tailbits is given, make sure that there is space to write @tailbits
5121  *	bytes of data beyond current end of socket buffer.  @trailer will be
5122  *	set to point to the skb in which this space begins.
5123  *
5124  *	The number of scatterlist elements required to completely map the
5125  *	COW'd and extended socket buffer will be returned.
5126  */
5127 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5128 {
5129 	int copyflag;
5130 	int elt;
5131 	struct sk_buff *skb1, **skb_p;
5132 
5133 	/* If skb is cloned or its head is paged, reallocate
5134 	 * head pulling out all the pages (pages are considered not writable
5135 	 * at the moment even if they are anonymous).
5136 	 */
5137 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5138 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5139 		return -ENOMEM;
5140 
5141 	/* Easy case. Most of packets will go this way. */
5142 	if (!skb_has_frag_list(skb)) {
5143 		/* A little of trouble, not enough of space for trailer.
5144 		 * This should not happen, when stack is tuned to generate
5145 		 * good frames. OK, on miss we reallocate and reserve even more
5146 		 * space, 128 bytes is fair. */
5147 
5148 		if (skb_tailroom(skb) < tailbits &&
5149 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5150 			return -ENOMEM;
5151 
5152 		/* Voila! */
5153 		*trailer = skb;
5154 		return 1;
5155 	}
5156 
5157 	/* Misery. We are in troubles, going to mincer fragments... */
5158 
5159 	elt = 1;
5160 	skb_p = &skb_shinfo(skb)->frag_list;
5161 	copyflag = 0;
5162 
5163 	while ((skb1 = *skb_p) != NULL) {
5164 		int ntail = 0;
5165 
5166 		/* The fragment is partially pulled by someone,
5167 		 * this can happen on input. Copy it and everything
5168 		 * after it. */
5169 
5170 		if (skb_shared(skb1))
5171 			copyflag = 1;
5172 
5173 		/* If the skb is the last, worry about trailer. */
5174 
5175 		if (skb1->next == NULL && tailbits) {
5176 			if (skb_shinfo(skb1)->nr_frags ||
5177 			    skb_has_frag_list(skb1) ||
5178 			    skb_tailroom(skb1) < tailbits)
5179 				ntail = tailbits + 128;
5180 		}
5181 
5182 		if (copyflag ||
5183 		    skb_cloned(skb1) ||
5184 		    ntail ||
5185 		    skb_shinfo(skb1)->nr_frags ||
5186 		    skb_has_frag_list(skb1)) {
5187 			struct sk_buff *skb2;
5188 
5189 			/* Fuck, we are miserable poor guys... */
5190 			if (ntail == 0)
5191 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5192 			else
5193 				skb2 = skb_copy_expand(skb1,
5194 						       skb_headroom(skb1),
5195 						       ntail,
5196 						       GFP_ATOMIC);
5197 			if (unlikely(skb2 == NULL))
5198 				return -ENOMEM;
5199 
5200 			if (skb1->sk)
5201 				skb_set_owner_w(skb2, skb1->sk);
5202 
5203 			/* Looking around. Are we still alive?
5204 			 * OK, link new skb, drop old one */
5205 
5206 			skb2->next = skb1->next;
5207 			*skb_p = skb2;
5208 			kfree_skb(skb1);
5209 			skb1 = skb2;
5210 		}
5211 		elt++;
5212 		*trailer = skb1;
5213 		skb_p = &skb1->next;
5214 	}
5215 
5216 	return elt;
5217 }
5218 EXPORT_SYMBOL_GPL(skb_cow_data);
5219 
5220 static void sock_rmem_free(struct sk_buff *skb)
5221 {
5222 	struct sock *sk = skb->sk;
5223 
5224 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5225 }
5226 
5227 static void skb_set_err_queue(struct sk_buff *skb)
5228 {
5229 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5230 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5231 	 */
5232 	skb->pkt_type = PACKET_OUTGOING;
5233 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5234 }
5235 
5236 /*
5237  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5238  */
5239 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5240 {
5241 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5242 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5243 		return -ENOMEM;
5244 
5245 	skb_orphan(skb);
5246 	skb->sk = sk;
5247 	skb->destructor = sock_rmem_free;
5248 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5249 	skb_set_err_queue(skb);
5250 
5251 	/* before exiting rcu section, make sure dst is refcounted */
5252 	skb_dst_force(skb);
5253 
5254 	skb_queue_tail(&sk->sk_error_queue, skb);
5255 	if (!sock_flag(sk, SOCK_DEAD))
5256 		sk_error_report(sk);
5257 	return 0;
5258 }
5259 EXPORT_SYMBOL(sock_queue_err_skb);
5260 
5261 static bool is_icmp_err_skb(const struct sk_buff *skb)
5262 {
5263 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5264 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5265 }
5266 
5267 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5268 {
5269 	struct sk_buff_head *q = &sk->sk_error_queue;
5270 	struct sk_buff *skb, *skb_next = NULL;
5271 	bool icmp_next = false;
5272 	unsigned long flags;
5273 
5274 	if (skb_queue_empty_lockless(q))
5275 		return NULL;
5276 
5277 	spin_lock_irqsave(&q->lock, flags);
5278 	skb = __skb_dequeue(q);
5279 	if (skb && (skb_next = skb_peek(q))) {
5280 		icmp_next = is_icmp_err_skb(skb_next);
5281 		if (icmp_next)
5282 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5283 	}
5284 	spin_unlock_irqrestore(&q->lock, flags);
5285 
5286 	if (is_icmp_err_skb(skb) && !icmp_next)
5287 		sk->sk_err = 0;
5288 
5289 	if (skb_next)
5290 		sk_error_report(sk);
5291 
5292 	return skb;
5293 }
5294 EXPORT_SYMBOL(sock_dequeue_err_skb);
5295 
5296 /**
5297  * skb_clone_sk - create clone of skb, and take reference to socket
5298  * @skb: the skb to clone
5299  *
5300  * This function creates a clone of a buffer that holds a reference on
5301  * sk_refcnt.  Buffers created via this function are meant to be
5302  * returned using sock_queue_err_skb, or free via kfree_skb.
5303  *
5304  * When passing buffers allocated with this function to sock_queue_err_skb
5305  * it is necessary to wrap the call with sock_hold/sock_put in order to
5306  * prevent the socket from being released prior to being enqueued on
5307  * the sk_error_queue.
5308  */
5309 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5310 {
5311 	struct sock *sk = skb->sk;
5312 	struct sk_buff *clone;
5313 
5314 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5315 		return NULL;
5316 
5317 	clone = skb_clone(skb, GFP_ATOMIC);
5318 	if (!clone) {
5319 		sock_put(sk);
5320 		return NULL;
5321 	}
5322 
5323 	clone->sk = sk;
5324 	clone->destructor = sock_efree;
5325 
5326 	return clone;
5327 }
5328 EXPORT_SYMBOL(skb_clone_sk);
5329 
5330 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5331 					struct sock *sk,
5332 					int tstype,
5333 					bool opt_stats)
5334 {
5335 	struct sock_exterr_skb *serr;
5336 	int err;
5337 
5338 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5339 
5340 	serr = SKB_EXT_ERR(skb);
5341 	memset(serr, 0, sizeof(*serr));
5342 	serr->ee.ee_errno = ENOMSG;
5343 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5344 	serr->ee.ee_info = tstype;
5345 	serr->opt_stats = opt_stats;
5346 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5347 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5348 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5349 		if (sk_is_tcp(sk))
5350 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5351 	}
5352 
5353 	err = sock_queue_err_skb(sk, skb);
5354 
5355 	if (err)
5356 		kfree_skb(skb);
5357 }
5358 
5359 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5360 {
5361 	bool ret;
5362 
5363 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5364 		return true;
5365 
5366 	read_lock_bh(&sk->sk_callback_lock);
5367 	ret = sk->sk_socket && sk->sk_socket->file &&
5368 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5369 	read_unlock_bh(&sk->sk_callback_lock);
5370 	return ret;
5371 }
5372 
5373 void skb_complete_tx_timestamp(struct sk_buff *skb,
5374 			       struct skb_shared_hwtstamps *hwtstamps)
5375 {
5376 	struct sock *sk = skb->sk;
5377 
5378 	if (!skb_may_tx_timestamp(sk, false))
5379 		goto err;
5380 
5381 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5382 	 * but only if the socket refcount is not zero.
5383 	 */
5384 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5385 		*skb_hwtstamps(skb) = *hwtstamps;
5386 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5387 		sock_put(sk);
5388 		return;
5389 	}
5390 
5391 err:
5392 	kfree_skb(skb);
5393 }
5394 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5395 
5396 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5397 		     const struct sk_buff *ack_skb,
5398 		     struct skb_shared_hwtstamps *hwtstamps,
5399 		     struct sock *sk, int tstype)
5400 {
5401 	struct sk_buff *skb;
5402 	bool tsonly, opt_stats = false;
5403 	u32 tsflags;
5404 
5405 	if (!sk)
5406 		return;
5407 
5408 	tsflags = READ_ONCE(sk->sk_tsflags);
5409 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5410 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5411 		return;
5412 
5413 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5414 	if (!skb_may_tx_timestamp(sk, tsonly))
5415 		return;
5416 
5417 	if (tsonly) {
5418 #ifdef CONFIG_INET
5419 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5420 		    sk_is_tcp(sk)) {
5421 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5422 							     ack_skb);
5423 			opt_stats = true;
5424 		} else
5425 #endif
5426 			skb = alloc_skb(0, GFP_ATOMIC);
5427 	} else {
5428 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5429 
5430 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5431 			kfree_skb(skb);
5432 			return;
5433 		}
5434 	}
5435 	if (!skb)
5436 		return;
5437 
5438 	if (tsonly) {
5439 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5440 					     SKBTX_ANY_TSTAMP;
5441 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5442 	}
5443 
5444 	if (hwtstamps)
5445 		*skb_hwtstamps(skb) = *hwtstamps;
5446 	else
5447 		__net_timestamp(skb);
5448 
5449 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5450 }
5451 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5452 
5453 void skb_tstamp_tx(struct sk_buff *orig_skb,
5454 		   struct skb_shared_hwtstamps *hwtstamps)
5455 {
5456 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5457 			       SCM_TSTAMP_SND);
5458 }
5459 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5460 
5461 #ifdef CONFIG_WIRELESS
5462 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5463 {
5464 	struct sock *sk = skb->sk;
5465 	struct sock_exterr_skb *serr;
5466 	int err = 1;
5467 
5468 	skb->wifi_acked_valid = 1;
5469 	skb->wifi_acked = acked;
5470 
5471 	serr = SKB_EXT_ERR(skb);
5472 	memset(serr, 0, sizeof(*serr));
5473 	serr->ee.ee_errno = ENOMSG;
5474 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5475 
5476 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5477 	 * but only if the socket refcount is not zero.
5478 	 */
5479 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5480 		err = sock_queue_err_skb(sk, skb);
5481 		sock_put(sk);
5482 	}
5483 	if (err)
5484 		kfree_skb(skb);
5485 }
5486 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5487 #endif /* CONFIG_WIRELESS */
5488 
5489 /**
5490  * skb_partial_csum_set - set up and verify partial csum values for packet
5491  * @skb: the skb to set
5492  * @start: the number of bytes after skb->data to start checksumming.
5493  * @off: the offset from start to place the checksum.
5494  *
5495  * For untrusted partially-checksummed packets, we need to make sure the values
5496  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5497  *
5498  * This function checks and sets those values and skb->ip_summed: if this
5499  * returns false you should drop the packet.
5500  */
5501 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5502 {
5503 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5504 	u32 csum_start = skb_headroom(skb) + (u32)start;
5505 
5506 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5507 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5508 				     start, off, skb_headroom(skb), skb_headlen(skb));
5509 		return false;
5510 	}
5511 	skb->ip_summed = CHECKSUM_PARTIAL;
5512 	skb->csum_start = csum_start;
5513 	skb->csum_offset = off;
5514 	skb->transport_header = csum_start;
5515 	return true;
5516 }
5517 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5518 
5519 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5520 			       unsigned int max)
5521 {
5522 	if (skb_headlen(skb) >= len)
5523 		return 0;
5524 
5525 	/* If we need to pullup then pullup to the max, so we
5526 	 * won't need to do it again.
5527 	 */
5528 	if (max > skb->len)
5529 		max = skb->len;
5530 
5531 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5532 		return -ENOMEM;
5533 
5534 	if (skb_headlen(skb) < len)
5535 		return -EPROTO;
5536 
5537 	return 0;
5538 }
5539 
5540 #define MAX_TCP_HDR_LEN (15 * 4)
5541 
5542 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5543 				      typeof(IPPROTO_IP) proto,
5544 				      unsigned int off)
5545 {
5546 	int err;
5547 
5548 	switch (proto) {
5549 	case IPPROTO_TCP:
5550 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5551 					  off + MAX_TCP_HDR_LEN);
5552 		if (!err && !skb_partial_csum_set(skb, off,
5553 						  offsetof(struct tcphdr,
5554 							   check)))
5555 			err = -EPROTO;
5556 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5557 
5558 	case IPPROTO_UDP:
5559 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5560 					  off + sizeof(struct udphdr));
5561 		if (!err && !skb_partial_csum_set(skb, off,
5562 						  offsetof(struct udphdr,
5563 							   check)))
5564 			err = -EPROTO;
5565 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5566 	}
5567 
5568 	return ERR_PTR(-EPROTO);
5569 }
5570 
5571 /* This value should be large enough to cover a tagged ethernet header plus
5572  * maximally sized IP and TCP or UDP headers.
5573  */
5574 #define MAX_IP_HDR_LEN 128
5575 
5576 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5577 {
5578 	unsigned int off;
5579 	bool fragment;
5580 	__sum16 *csum;
5581 	int err;
5582 
5583 	fragment = false;
5584 
5585 	err = skb_maybe_pull_tail(skb,
5586 				  sizeof(struct iphdr),
5587 				  MAX_IP_HDR_LEN);
5588 	if (err < 0)
5589 		goto out;
5590 
5591 	if (ip_is_fragment(ip_hdr(skb)))
5592 		fragment = true;
5593 
5594 	off = ip_hdrlen(skb);
5595 
5596 	err = -EPROTO;
5597 
5598 	if (fragment)
5599 		goto out;
5600 
5601 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5602 	if (IS_ERR(csum))
5603 		return PTR_ERR(csum);
5604 
5605 	if (recalculate)
5606 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5607 					   ip_hdr(skb)->daddr,
5608 					   skb->len - off,
5609 					   ip_hdr(skb)->protocol, 0);
5610 	err = 0;
5611 
5612 out:
5613 	return err;
5614 }
5615 
5616 /* This value should be large enough to cover a tagged ethernet header plus
5617  * an IPv6 header, all options, and a maximal TCP or UDP header.
5618  */
5619 #define MAX_IPV6_HDR_LEN 256
5620 
5621 #define OPT_HDR(type, skb, off) \
5622 	(type *)(skb_network_header(skb) + (off))
5623 
5624 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5625 {
5626 	int err;
5627 	u8 nexthdr;
5628 	unsigned int off;
5629 	unsigned int len;
5630 	bool fragment;
5631 	bool done;
5632 	__sum16 *csum;
5633 
5634 	fragment = false;
5635 	done = false;
5636 
5637 	off = sizeof(struct ipv6hdr);
5638 
5639 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5640 	if (err < 0)
5641 		goto out;
5642 
5643 	nexthdr = ipv6_hdr(skb)->nexthdr;
5644 
5645 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5646 	while (off <= len && !done) {
5647 		switch (nexthdr) {
5648 		case IPPROTO_DSTOPTS:
5649 		case IPPROTO_HOPOPTS:
5650 		case IPPROTO_ROUTING: {
5651 			struct ipv6_opt_hdr *hp;
5652 
5653 			err = skb_maybe_pull_tail(skb,
5654 						  off +
5655 						  sizeof(struct ipv6_opt_hdr),
5656 						  MAX_IPV6_HDR_LEN);
5657 			if (err < 0)
5658 				goto out;
5659 
5660 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5661 			nexthdr = hp->nexthdr;
5662 			off += ipv6_optlen(hp);
5663 			break;
5664 		}
5665 		case IPPROTO_AH: {
5666 			struct ip_auth_hdr *hp;
5667 
5668 			err = skb_maybe_pull_tail(skb,
5669 						  off +
5670 						  sizeof(struct ip_auth_hdr),
5671 						  MAX_IPV6_HDR_LEN);
5672 			if (err < 0)
5673 				goto out;
5674 
5675 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5676 			nexthdr = hp->nexthdr;
5677 			off += ipv6_authlen(hp);
5678 			break;
5679 		}
5680 		case IPPROTO_FRAGMENT: {
5681 			struct frag_hdr *hp;
5682 
5683 			err = skb_maybe_pull_tail(skb,
5684 						  off +
5685 						  sizeof(struct frag_hdr),
5686 						  MAX_IPV6_HDR_LEN);
5687 			if (err < 0)
5688 				goto out;
5689 
5690 			hp = OPT_HDR(struct frag_hdr, skb, off);
5691 
5692 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5693 				fragment = true;
5694 
5695 			nexthdr = hp->nexthdr;
5696 			off += sizeof(struct frag_hdr);
5697 			break;
5698 		}
5699 		default:
5700 			done = true;
5701 			break;
5702 		}
5703 	}
5704 
5705 	err = -EPROTO;
5706 
5707 	if (!done || fragment)
5708 		goto out;
5709 
5710 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5711 	if (IS_ERR(csum))
5712 		return PTR_ERR(csum);
5713 
5714 	if (recalculate)
5715 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5716 					 &ipv6_hdr(skb)->daddr,
5717 					 skb->len - off, nexthdr, 0);
5718 	err = 0;
5719 
5720 out:
5721 	return err;
5722 }
5723 
5724 /**
5725  * skb_checksum_setup - set up partial checksum offset
5726  * @skb: the skb to set up
5727  * @recalculate: if true the pseudo-header checksum will be recalculated
5728  */
5729 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5730 {
5731 	int err;
5732 
5733 	switch (skb->protocol) {
5734 	case htons(ETH_P_IP):
5735 		err = skb_checksum_setup_ipv4(skb, recalculate);
5736 		break;
5737 
5738 	case htons(ETH_P_IPV6):
5739 		err = skb_checksum_setup_ipv6(skb, recalculate);
5740 		break;
5741 
5742 	default:
5743 		err = -EPROTO;
5744 		break;
5745 	}
5746 
5747 	return err;
5748 }
5749 EXPORT_SYMBOL(skb_checksum_setup);
5750 
5751 /**
5752  * skb_checksum_maybe_trim - maybe trims the given skb
5753  * @skb: the skb to check
5754  * @transport_len: the data length beyond the network header
5755  *
5756  * Checks whether the given skb has data beyond the given transport length.
5757  * If so, returns a cloned skb trimmed to this transport length.
5758  * Otherwise returns the provided skb. Returns NULL in error cases
5759  * (e.g. transport_len exceeds skb length or out-of-memory).
5760  *
5761  * Caller needs to set the skb transport header and free any returned skb if it
5762  * differs from the provided skb.
5763  */
5764 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5765 					       unsigned int transport_len)
5766 {
5767 	struct sk_buff *skb_chk;
5768 	unsigned int len = skb_transport_offset(skb) + transport_len;
5769 	int ret;
5770 
5771 	if (skb->len < len)
5772 		return NULL;
5773 	else if (skb->len == len)
5774 		return skb;
5775 
5776 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5777 	if (!skb_chk)
5778 		return NULL;
5779 
5780 	ret = pskb_trim_rcsum(skb_chk, len);
5781 	if (ret) {
5782 		kfree_skb(skb_chk);
5783 		return NULL;
5784 	}
5785 
5786 	return skb_chk;
5787 }
5788 
5789 /**
5790  * skb_checksum_trimmed - validate checksum of an skb
5791  * @skb: the skb to check
5792  * @transport_len: the data length beyond the network header
5793  * @skb_chkf: checksum function to use
5794  *
5795  * Applies the given checksum function skb_chkf to the provided skb.
5796  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5797  *
5798  * If the skb has data beyond the given transport length, then a
5799  * trimmed & cloned skb is checked and returned.
5800  *
5801  * Caller needs to set the skb transport header and free any returned skb if it
5802  * differs from the provided skb.
5803  */
5804 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5805 				     unsigned int transport_len,
5806 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5807 {
5808 	struct sk_buff *skb_chk;
5809 	unsigned int offset = skb_transport_offset(skb);
5810 	__sum16 ret;
5811 
5812 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5813 	if (!skb_chk)
5814 		goto err;
5815 
5816 	if (!pskb_may_pull(skb_chk, offset))
5817 		goto err;
5818 
5819 	skb_pull_rcsum(skb_chk, offset);
5820 	ret = skb_chkf(skb_chk);
5821 	skb_push_rcsum(skb_chk, offset);
5822 
5823 	if (ret)
5824 		goto err;
5825 
5826 	return skb_chk;
5827 
5828 err:
5829 	if (skb_chk && skb_chk != skb)
5830 		kfree_skb(skb_chk);
5831 
5832 	return NULL;
5833 
5834 }
5835 EXPORT_SYMBOL(skb_checksum_trimmed);
5836 
5837 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5838 {
5839 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5840 			     skb->dev->name);
5841 }
5842 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5843 
5844 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5845 {
5846 	if (head_stolen) {
5847 		skb_release_head_state(skb);
5848 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
5849 	} else {
5850 		__kfree_skb(skb);
5851 	}
5852 }
5853 EXPORT_SYMBOL(kfree_skb_partial);
5854 
5855 /**
5856  * skb_try_coalesce - try to merge skb to prior one
5857  * @to: prior buffer
5858  * @from: buffer to add
5859  * @fragstolen: pointer to boolean
5860  * @delta_truesize: how much more was allocated than was requested
5861  */
5862 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5863 		      bool *fragstolen, int *delta_truesize)
5864 {
5865 	struct skb_shared_info *to_shinfo, *from_shinfo;
5866 	int i, delta, len = from->len;
5867 
5868 	*fragstolen = false;
5869 
5870 	if (skb_cloned(to))
5871 		return false;
5872 
5873 	/* In general, avoid mixing page_pool and non-page_pool allocated
5874 	 * pages within the same SKB. In theory we could take full
5875 	 * references if @from is cloned and !@to->pp_recycle but its
5876 	 * tricky (due to potential race with the clone disappearing) and
5877 	 * rare, so not worth dealing with.
5878 	 */
5879 	if (to->pp_recycle != from->pp_recycle)
5880 		return false;
5881 
5882 	if (len <= skb_tailroom(to)) {
5883 		if (len)
5884 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5885 		*delta_truesize = 0;
5886 		return true;
5887 	}
5888 
5889 	to_shinfo = skb_shinfo(to);
5890 	from_shinfo = skb_shinfo(from);
5891 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5892 		return false;
5893 	if (skb_zcopy(to) || skb_zcopy(from))
5894 		return false;
5895 
5896 	if (skb_headlen(from) != 0) {
5897 		struct page *page;
5898 		unsigned int offset;
5899 
5900 		if (to_shinfo->nr_frags +
5901 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5902 			return false;
5903 
5904 		if (skb_head_is_locked(from))
5905 			return false;
5906 
5907 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5908 
5909 		page = virt_to_head_page(from->head);
5910 		offset = from->data - (unsigned char *)page_address(page);
5911 
5912 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5913 				   page, offset, skb_headlen(from));
5914 		*fragstolen = true;
5915 	} else {
5916 		if (to_shinfo->nr_frags +
5917 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5918 			return false;
5919 
5920 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5921 	}
5922 
5923 	WARN_ON_ONCE(delta < len);
5924 
5925 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5926 	       from_shinfo->frags,
5927 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5928 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5929 
5930 	if (!skb_cloned(from))
5931 		from_shinfo->nr_frags = 0;
5932 
5933 	/* if the skb is not cloned this does nothing
5934 	 * since we set nr_frags to 0.
5935 	 */
5936 	for (i = 0; i < from_shinfo->nr_frags; i++)
5937 		__skb_frag_ref(&from_shinfo->frags[i], from->pp_recycle);
5938 
5939 	to->truesize += delta;
5940 	to->len += len;
5941 	to->data_len += len;
5942 
5943 	*delta_truesize = delta;
5944 	return true;
5945 }
5946 EXPORT_SYMBOL(skb_try_coalesce);
5947 
5948 /**
5949  * skb_scrub_packet - scrub an skb
5950  *
5951  * @skb: buffer to clean
5952  * @xnet: packet is crossing netns
5953  *
5954  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5955  * into/from a tunnel. Some information have to be cleared during these
5956  * operations.
5957  * skb_scrub_packet can also be used to clean a skb before injecting it in
5958  * another namespace (@xnet == true). We have to clear all information in the
5959  * skb that could impact namespace isolation.
5960  */
5961 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5962 {
5963 	skb->pkt_type = PACKET_HOST;
5964 	skb->skb_iif = 0;
5965 	skb->ignore_df = 0;
5966 	skb_dst_drop(skb);
5967 	skb_ext_reset(skb);
5968 	nf_reset_ct(skb);
5969 	nf_reset_trace(skb);
5970 
5971 #ifdef CONFIG_NET_SWITCHDEV
5972 	skb->offload_fwd_mark = 0;
5973 	skb->offload_l3_fwd_mark = 0;
5974 #endif
5975 
5976 	if (!xnet)
5977 		return;
5978 
5979 	ipvs_reset(skb);
5980 	skb->mark = 0;
5981 	skb_clear_tstamp(skb);
5982 }
5983 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5984 
5985 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5986 {
5987 	int mac_len, meta_len;
5988 	void *meta;
5989 
5990 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5991 		kfree_skb(skb);
5992 		return NULL;
5993 	}
5994 
5995 	mac_len = skb->data - skb_mac_header(skb);
5996 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5997 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5998 			mac_len - VLAN_HLEN - ETH_TLEN);
5999 	}
6000 
6001 	meta_len = skb_metadata_len(skb);
6002 	if (meta_len) {
6003 		meta = skb_metadata_end(skb) - meta_len;
6004 		memmove(meta + VLAN_HLEN, meta, meta_len);
6005 	}
6006 
6007 	skb->mac_header += VLAN_HLEN;
6008 	return skb;
6009 }
6010 
6011 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6012 {
6013 	struct vlan_hdr *vhdr;
6014 	u16 vlan_tci;
6015 
6016 	if (unlikely(skb_vlan_tag_present(skb))) {
6017 		/* vlan_tci is already set-up so leave this for another time */
6018 		return skb;
6019 	}
6020 
6021 	skb = skb_share_check(skb, GFP_ATOMIC);
6022 	if (unlikely(!skb))
6023 		goto err_free;
6024 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6025 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6026 		goto err_free;
6027 
6028 	vhdr = (struct vlan_hdr *)skb->data;
6029 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6030 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6031 
6032 	skb_pull_rcsum(skb, VLAN_HLEN);
6033 	vlan_set_encap_proto(skb, vhdr);
6034 
6035 	skb = skb_reorder_vlan_header(skb);
6036 	if (unlikely(!skb))
6037 		goto err_free;
6038 
6039 	skb_reset_network_header(skb);
6040 	if (!skb_transport_header_was_set(skb))
6041 		skb_reset_transport_header(skb);
6042 	skb_reset_mac_len(skb);
6043 
6044 	return skb;
6045 
6046 err_free:
6047 	kfree_skb(skb);
6048 	return NULL;
6049 }
6050 EXPORT_SYMBOL(skb_vlan_untag);
6051 
6052 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6053 {
6054 	if (!pskb_may_pull(skb, write_len))
6055 		return -ENOMEM;
6056 
6057 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6058 		return 0;
6059 
6060 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6061 }
6062 EXPORT_SYMBOL(skb_ensure_writable);
6063 
6064 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6065 {
6066 	int needed_headroom = dev->needed_headroom;
6067 	int needed_tailroom = dev->needed_tailroom;
6068 
6069 	/* For tail taggers, we need to pad short frames ourselves, to ensure
6070 	 * that the tail tag does not fail at its role of being at the end of
6071 	 * the packet, once the conduit interface pads the frame. Account for
6072 	 * that pad length here, and pad later.
6073 	 */
6074 	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6075 		needed_tailroom += ETH_ZLEN - skb->len;
6076 	/* skb_headroom() returns unsigned int... */
6077 	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6078 	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6079 
6080 	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6081 		/* No reallocation needed, yay! */
6082 		return 0;
6083 
6084 	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6085 				GFP_ATOMIC);
6086 }
6087 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6088 
6089 /* remove VLAN header from packet and update csum accordingly.
6090  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6091  */
6092 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6093 {
6094 	int offset = skb->data - skb_mac_header(skb);
6095 	int err;
6096 
6097 	if (WARN_ONCE(offset,
6098 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6099 		      offset)) {
6100 		return -EINVAL;
6101 	}
6102 
6103 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6104 	if (unlikely(err))
6105 		return err;
6106 
6107 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6108 
6109 	vlan_remove_tag(skb, vlan_tci);
6110 
6111 	skb->mac_header += VLAN_HLEN;
6112 
6113 	if (skb_network_offset(skb) < ETH_HLEN)
6114 		skb_set_network_header(skb, ETH_HLEN);
6115 
6116 	skb_reset_mac_len(skb);
6117 
6118 	return err;
6119 }
6120 EXPORT_SYMBOL(__skb_vlan_pop);
6121 
6122 /* Pop a vlan tag either from hwaccel or from payload.
6123  * Expects skb->data at mac header.
6124  */
6125 int skb_vlan_pop(struct sk_buff *skb)
6126 {
6127 	u16 vlan_tci;
6128 	__be16 vlan_proto;
6129 	int err;
6130 
6131 	if (likely(skb_vlan_tag_present(skb))) {
6132 		__vlan_hwaccel_clear_tag(skb);
6133 	} else {
6134 		if (unlikely(!eth_type_vlan(skb->protocol)))
6135 			return 0;
6136 
6137 		err = __skb_vlan_pop(skb, &vlan_tci);
6138 		if (err)
6139 			return err;
6140 	}
6141 	/* move next vlan tag to hw accel tag */
6142 	if (likely(!eth_type_vlan(skb->protocol)))
6143 		return 0;
6144 
6145 	vlan_proto = skb->protocol;
6146 	err = __skb_vlan_pop(skb, &vlan_tci);
6147 	if (unlikely(err))
6148 		return err;
6149 
6150 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6151 	return 0;
6152 }
6153 EXPORT_SYMBOL(skb_vlan_pop);
6154 
6155 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6156  * Expects skb->data at mac header.
6157  */
6158 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6159 {
6160 	if (skb_vlan_tag_present(skb)) {
6161 		int offset = skb->data - skb_mac_header(skb);
6162 		int err;
6163 
6164 		if (WARN_ONCE(offset,
6165 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6166 			      offset)) {
6167 			return -EINVAL;
6168 		}
6169 
6170 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6171 					skb_vlan_tag_get(skb));
6172 		if (err)
6173 			return err;
6174 
6175 		skb->protocol = skb->vlan_proto;
6176 		skb->mac_len += VLAN_HLEN;
6177 
6178 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6179 	}
6180 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6181 	return 0;
6182 }
6183 EXPORT_SYMBOL(skb_vlan_push);
6184 
6185 /**
6186  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6187  *
6188  * @skb: Socket buffer to modify
6189  *
6190  * Drop the Ethernet header of @skb.
6191  *
6192  * Expects that skb->data points to the mac header and that no VLAN tags are
6193  * present.
6194  *
6195  * Returns 0 on success, -errno otherwise.
6196  */
6197 int skb_eth_pop(struct sk_buff *skb)
6198 {
6199 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6200 	    skb_network_offset(skb) < ETH_HLEN)
6201 		return -EPROTO;
6202 
6203 	skb_pull_rcsum(skb, ETH_HLEN);
6204 	skb_reset_mac_header(skb);
6205 	skb_reset_mac_len(skb);
6206 
6207 	return 0;
6208 }
6209 EXPORT_SYMBOL(skb_eth_pop);
6210 
6211 /**
6212  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6213  *
6214  * @skb: Socket buffer to modify
6215  * @dst: Destination MAC address of the new header
6216  * @src: Source MAC address of the new header
6217  *
6218  * Prepend @skb with a new Ethernet header.
6219  *
6220  * Expects that skb->data points to the mac header, which must be empty.
6221  *
6222  * Returns 0 on success, -errno otherwise.
6223  */
6224 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6225 		 const unsigned char *src)
6226 {
6227 	struct ethhdr *eth;
6228 	int err;
6229 
6230 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6231 		return -EPROTO;
6232 
6233 	err = skb_cow_head(skb, sizeof(*eth));
6234 	if (err < 0)
6235 		return err;
6236 
6237 	skb_push(skb, sizeof(*eth));
6238 	skb_reset_mac_header(skb);
6239 	skb_reset_mac_len(skb);
6240 
6241 	eth = eth_hdr(skb);
6242 	ether_addr_copy(eth->h_dest, dst);
6243 	ether_addr_copy(eth->h_source, src);
6244 	eth->h_proto = skb->protocol;
6245 
6246 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6247 
6248 	return 0;
6249 }
6250 EXPORT_SYMBOL(skb_eth_push);
6251 
6252 /* Update the ethertype of hdr and the skb csum value if required. */
6253 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6254 			     __be16 ethertype)
6255 {
6256 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6257 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6258 
6259 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6260 	}
6261 
6262 	hdr->h_proto = ethertype;
6263 }
6264 
6265 /**
6266  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6267  *                   the packet
6268  *
6269  * @skb: buffer
6270  * @mpls_lse: MPLS label stack entry to push
6271  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6272  * @mac_len: length of the MAC header
6273  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6274  *            ethernet
6275  *
6276  * Expects skb->data at mac header.
6277  *
6278  * Returns 0 on success, -errno otherwise.
6279  */
6280 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6281 		  int mac_len, bool ethernet)
6282 {
6283 	struct mpls_shim_hdr *lse;
6284 	int err;
6285 
6286 	if (unlikely(!eth_p_mpls(mpls_proto)))
6287 		return -EINVAL;
6288 
6289 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6290 	if (skb->encapsulation)
6291 		return -EINVAL;
6292 
6293 	err = skb_cow_head(skb, MPLS_HLEN);
6294 	if (unlikely(err))
6295 		return err;
6296 
6297 	if (!skb->inner_protocol) {
6298 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6299 		skb_set_inner_protocol(skb, skb->protocol);
6300 	}
6301 
6302 	skb_push(skb, MPLS_HLEN);
6303 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6304 		mac_len);
6305 	skb_reset_mac_header(skb);
6306 	skb_set_network_header(skb, mac_len);
6307 	skb_reset_mac_len(skb);
6308 
6309 	lse = mpls_hdr(skb);
6310 	lse->label_stack_entry = mpls_lse;
6311 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6312 
6313 	if (ethernet && mac_len >= ETH_HLEN)
6314 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6315 	skb->protocol = mpls_proto;
6316 
6317 	return 0;
6318 }
6319 EXPORT_SYMBOL_GPL(skb_mpls_push);
6320 
6321 /**
6322  * skb_mpls_pop() - pop the outermost MPLS header
6323  *
6324  * @skb: buffer
6325  * @next_proto: ethertype of header after popped MPLS header
6326  * @mac_len: length of the MAC header
6327  * @ethernet: flag to indicate if the packet is ethernet
6328  *
6329  * Expects skb->data at mac header.
6330  *
6331  * Returns 0 on success, -errno otherwise.
6332  */
6333 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6334 		 bool ethernet)
6335 {
6336 	int err;
6337 
6338 	if (unlikely(!eth_p_mpls(skb->protocol)))
6339 		return 0;
6340 
6341 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6342 	if (unlikely(err))
6343 		return err;
6344 
6345 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6346 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6347 		mac_len);
6348 
6349 	__skb_pull(skb, MPLS_HLEN);
6350 	skb_reset_mac_header(skb);
6351 	skb_set_network_header(skb, mac_len);
6352 
6353 	if (ethernet && mac_len >= ETH_HLEN) {
6354 		struct ethhdr *hdr;
6355 
6356 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6357 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6358 		skb_mod_eth_type(skb, hdr, next_proto);
6359 	}
6360 	skb->protocol = next_proto;
6361 
6362 	return 0;
6363 }
6364 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6365 
6366 /**
6367  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6368  *
6369  * @skb: buffer
6370  * @mpls_lse: new MPLS label stack entry to update to
6371  *
6372  * Expects skb->data at mac header.
6373  *
6374  * Returns 0 on success, -errno otherwise.
6375  */
6376 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6377 {
6378 	int err;
6379 
6380 	if (unlikely(!eth_p_mpls(skb->protocol)))
6381 		return -EINVAL;
6382 
6383 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6384 	if (unlikely(err))
6385 		return err;
6386 
6387 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6388 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6389 
6390 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6391 	}
6392 
6393 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6394 
6395 	return 0;
6396 }
6397 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6398 
6399 /**
6400  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6401  *
6402  * @skb: buffer
6403  *
6404  * Expects skb->data at mac header.
6405  *
6406  * Returns 0 on success, -errno otherwise.
6407  */
6408 int skb_mpls_dec_ttl(struct sk_buff *skb)
6409 {
6410 	u32 lse;
6411 	u8 ttl;
6412 
6413 	if (unlikely(!eth_p_mpls(skb->protocol)))
6414 		return -EINVAL;
6415 
6416 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6417 		return -ENOMEM;
6418 
6419 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6420 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6421 	if (!--ttl)
6422 		return -EINVAL;
6423 
6424 	lse &= ~MPLS_LS_TTL_MASK;
6425 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6426 
6427 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6428 }
6429 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6430 
6431 /**
6432  * alloc_skb_with_frags - allocate skb with page frags
6433  *
6434  * @header_len: size of linear part
6435  * @data_len: needed length in frags
6436  * @order: max page order desired.
6437  * @errcode: pointer to error code if any
6438  * @gfp_mask: allocation mask
6439  *
6440  * This can be used to allocate a paged skb, given a maximal order for frags.
6441  */
6442 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6443 				     unsigned long data_len,
6444 				     int order,
6445 				     int *errcode,
6446 				     gfp_t gfp_mask)
6447 {
6448 	unsigned long chunk;
6449 	struct sk_buff *skb;
6450 	struct page *page;
6451 	int nr_frags = 0;
6452 
6453 	*errcode = -EMSGSIZE;
6454 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6455 		return NULL;
6456 
6457 	*errcode = -ENOBUFS;
6458 	skb = alloc_skb(header_len, gfp_mask);
6459 	if (!skb)
6460 		return NULL;
6461 
6462 	while (data_len) {
6463 		if (nr_frags == MAX_SKB_FRAGS - 1)
6464 			goto failure;
6465 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6466 			order--;
6467 
6468 		if (order) {
6469 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6470 					   __GFP_COMP |
6471 					   __GFP_NOWARN,
6472 					   order);
6473 			if (!page) {
6474 				order--;
6475 				continue;
6476 			}
6477 		} else {
6478 			page = alloc_page(gfp_mask);
6479 			if (!page)
6480 				goto failure;
6481 		}
6482 		chunk = min_t(unsigned long, data_len,
6483 			      PAGE_SIZE << order);
6484 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6485 		nr_frags++;
6486 		skb->truesize += (PAGE_SIZE << order);
6487 		data_len -= chunk;
6488 	}
6489 	return skb;
6490 
6491 failure:
6492 	kfree_skb(skb);
6493 	return NULL;
6494 }
6495 EXPORT_SYMBOL(alloc_skb_with_frags);
6496 
6497 /* carve out the first off bytes from skb when off < headlen */
6498 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6499 				    const int headlen, gfp_t gfp_mask)
6500 {
6501 	int i;
6502 	unsigned int size = skb_end_offset(skb);
6503 	int new_hlen = headlen - off;
6504 	u8 *data;
6505 
6506 	if (skb_pfmemalloc(skb))
6507 		gfp_mask |= __GFP_MEMALLOC;
6508 
6509 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6510 	if (!data)
6511 		return -ENOMEM;
6512 	size = SKB_WITH_OVERHEAD(size);
6513 
6514 	/* Copy real data, and all frags */
6515 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6516 	skb->len -= off;
6517 
6518 	memcpy((struct skb_shared_info *)(data + size),
6519 	       skb_shinfo(skb),
6520 	       offsetof(struct skb_shared_info,
6521 			frags[skb_shinfo(skb)->nr_frags]));
6522 	if (skb_cloned(skb)) {
6523 		/* drop the old head gracefully */
6524 		if (skb_orphan_frags(skb, gfp_mask)) {
6525 			skb_kfree_head(data, size);
6526 			return -ENOMEM;
6527 		}
6528 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6529 			skb_frag_ref(skb, i);
6530 		if (skb_has_frag_list(skb))
6531 			skb_clone_fraglist(skb);
6532 		skb_release_data(skb, SKB_CONSUMED);
6533 	} else {
6534 		/* we can reuse existing recount- all we did was
6535 		 * relocate values
6536 		 */
6537 		skb_free_head(skb);
6538 	}
6539 
6540 	skb->head = data;
6541 	skb->data = data;
6542 	skb->head_frag = 0;
6543 	skb_set_end_offset(skb, size);
6544 	skb_set_tail_pointer(skb, skb_headlen(skb));
6545 	skb_headers_offset_update(skb, 0);
6546 	skb->cloned = 0;
6547 	skb->hdr_len = 0;
6548 	skb->nohdr = 0;
6549 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6550 
6551 	return 0;
6552 }
6553 
6554 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6555 
6556 /* carve out the first eat bytes from skb's frag_list. May recurse into
6557  * pskb_carve()
6558  */
6559 static int pskb_carve_frag_list(struct sk_buff *skb,
6560 				struct skb_shared_info *shinfo, int eat,
6561 				gfp_t gfp_mask)
6562 {
6563 	struct sk_buff *list = shinfo->frag_list;
6564 	struct sk_buff *clone = NULL;
6565 	struct sk_buff *insp = NULL;
6566 
6567 	do {
6568 		if (!list) {
6569 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6570 			return -EFAULT;
6571 		}
6572 		if (list->len <= eat) {
6573 			/* Eaten as whole. */
6574 			eat -= list->len;
6575 			list = list->next;
6576 			insp = list;
6577 		} else {
6578 			/* Eaten partially. */
6579 			if (skb_shared(list)) {
6580 				clone = skb_clone(list, gfp_mask);
6581 				if (!clone)
6582 					return -ENOMEM;
6583 				insp = list->next;
6584 				list = clone;
6585 			} else {
6586 				/* This may be pulled without problems. */
6587 				insp = list;
6588 			}
6589 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6590 				kfree_skb(clone);
6591 				return -ENOMEM;
6592 			}
6593 			break;
6594 		}
6595 	} while (eat);
6596 
6597 	/* Free pulled out fragments. */
6598 	while ((list = shinfo->frag_list) != insp) {
6599 		shinfo->frag_list = list->next;
6600 		consume_skb(list);
6601 	}
6602 	/* And insert new clone at head. */
6603 	if (clone) {
6604 		clone->next = list;
6605 		shinfo->frag_list = clone;
6606 	}
6607 	return 0;
6608 }
6609 
6610 /* carve off first len bytes from skb. Split line (off) is in the
6611  * non-linear part of skb
6612  */
6613 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6614 				       int pos, gfp_t gfp_mask)
6615 {
6616 	int i, k = 0;
6617 	unsigned int size = skb_end_offset(skb);
6618 	u8 *data;
6619 	const int nfrags = skb_shinfo(skb)->nr_frags;
6620 	struct skb_shared_info *shinfo;
6621 
6622 	if (skb_pfmemalloc(skb))
6623 		gfp_mask |= __GFP_MEMALLOC;
6624 
6625 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6626 	if (!data)
6627 		return -ENOMEM;
6628 	size = SKB_WITH_OVERHEAD(size);
6629 
6630 	memcpy((struct skb_shared_info *)(data + size),
6631 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6632 	if (skb_orphan_frags(skb, gfp_mask)) {
6633 		skb_kfree_head(data, size);
6634 		return -ENOMEM;
6635 	}
6636 	shinfo = (struct skb_shared_info *)(data + size);
6637 	for (i = 0; i < nfrags; i++) {
6638 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6639 
6640 		if (pos + fsize > off) {
6641 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6642 
6643 			if (pos < off) {
6644 				/* Split frag.
6645 				 * We have two variants in this case:
6646 				 * 1. Move all the frag to the second
6647 				 *    part, if it is possible. F.e.
6648 				 *    this approach is mandatory for TUX,
6649 				 *    where splitting is expensive.
6650 				 * 2. Split is accurately. We make this.
6651 				 */
6652 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6653 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6654 			}
6655 			skb_frag_ref(skb, i);
6656 			k++;
6657 		}
6658 		pos += fsize;
6659 	}
6660 	shinfo->nr_frags = k;
6661 	if (skb_has_frag_list(skb))
6662 		skb_clone_fraglist(skb);
6663 
6664 	/* split line is in frag list */
6665 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6666 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6667 		if (skb_has_frag_list(skb))
6668 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6669 		skb_kfree_head(data, size);
6670 		return -ENOMEM;
6671 	}
6672 	skb_release_data(skb, SKB_CONSUMED);
6673 
6674 	skb->head = data;
6675 	skb->head_frag = 0;
6676 	skb->data = data;
6677 	skb_set_end_offset(skb, size);
6678 	skb_reset_tail_pointer(skb);
6679 	skb_headers_offset_update(skb, 0);
6680 	skb->cloned   = 0;
6681 	skb->hdr_len  = 0;
6682 	skb->nohdr    = 0;
6683 	skb->len -= off;
6684 	skb->data_len = skb->len;
6685 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6686 	return 0;
6687 }
6688 
6689 /* remove len bytes from the beginning of the skb */
6690 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6691 {
6692 	int headlen = skb_headlen(skb);
6693 
6694 	if (len < headlen)
6695 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6696 	else
6697 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6698 }
6699 
6700 /* Extract to_copy bytes starting at off from skb, and return this in
6701  * a new skb
6702  */
6703 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6704 			     int to_copy, gfp_t gfp)
6705 {
6706 	struct sk_buff  *clone = skb_clone(skb, gfp);
6707 
6708 	if (!clone)
6709 		return NULL;
6710 
6711 	if (pskb_carve(clone, off, gfp) < 0 ||
6712 	    pskb_trim(clone, to_copy)) {
6713 		kfree_skb(clone);
6714 		return NULL;
6715 	}
6716 	return clone;
6717 }
6718 EXPORT_SYMBOL(pskb_extract);
6719 
6720 /**
6721  * skb_condense - try to get rid of fragments/frag_list if possible
6722  * @skb: buffer
6723  *
6724  * Can be used to save memory before skb is added to a busy queue.
6725  * If packet has bytes in frags and enough tail room in skb->head,
6726  * pull all of them, so that we can free the frags right now and adjust
6727  * truesize.
6728  * Notes:
6729  *	We do not reallocate skb->head thus can not fail.
6730  *	Caller must re-evaluate skb->truesize if needed.
6731  */
6732 void skb_condense(struct sk_buff *skb)
6733 {
6734 	if (skb->data_len) {
6735 		if (skb->data_len > skb->end - skb->tail ||
6736 		    skb_cloned(skb))
6737 			return;
6738 
6739 		/* Nice, we can free page frag(s) right now */
6740 		__pskb_pull_tail(skb, skb->data_len);
6741 	}
6742 	/* At this point, skb->truesize might be over estimated,
6743 	 * because skb had a fragment, and fragments do not tell
6744 	 * their truesize.
6745 	 * When we pulled its content into skb->head, fragment
6746 	 * was freed, but __pskb_pull_tail() could not possibly
6747 	 * adjust skb->truesize, not knowing the frag truesize.
6748 	 */
6749 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6750 }
6751 EXPORT_SYMBOL(skb_condense);
6752 
6753 #ifdef CONFIG_SKB_EXTENSIONS
6754 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6755 {
6756 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6757 }
6758 
6759 /**
6760  * __skb_ext_alloc - allocate a new skb extensions storage
6761  *
6762  * @flags: See kmalloc().
6763  *
6764  * Returns the newly allocated pointer. The pointer can later attached to a
6765  * skb via __skb_ext_set().
6766  * Note: caller must handle the skb_ext as an opaque data.
6767  */
6768 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6769 {
6770 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6771 
6772 	if (new) {
6773 		memset(new->offset, 0, sizeof(new->offset));
6774 		refcount_set(&new->refcnt, 1);
6775 	}
6776 
6777 	return new;
6778 }
6779 
6780 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6781 					 unsigned int old_active)
6782 {
6783 	struct skb_ext *new;
6784 
6785 	if (refcount_read(&old->refcnt) == 1)
6786 		return old;
6787 
6788 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6789 	if (!new)
6790 		return NULL;
6791 
6792 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6793 	refcount_set(&new->refcnt, 1);
6794 
6795 #ifdef CONFIG_XFRM
6796 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6797 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6798 		unsigned int i;
6799 
6800 		for (i = 0; i < sp->len; i++)
6801 			xfrm_state_hold(sp->xvec[i]);
6802 	}
6803 #endif
6804 #ifdef CONFIG_MCTP_FLOWS
6805 	if (old_active & (1 << SKB_EXT_MCTP)) {
6806 		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6807 
6808 		if (flow->key)
6809 			refcount_inc(&flow->key->refs);
6810 	}
6811 #endif
6812 	__skb_ext_put(old);
6813 	return new;
6814 }
6815 
6816 /**
6817  * __skb_ext_set - attach the specified extension storage to this skb
6818  * @skb: buffer
6819  * @id: extension id
6820  * @ext: extension storage previously allocated via __skb_ext_alloc()
6821  *
6822  * Existing extensions, if any, are cleared.
6823  *
6824  * Returns the pointer to the extension.
6825  */
6826 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6827 		    struct skb_ext *ext)
6828 {
6829 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6830 
6831 	skb_ext_put(skb);
6832 	newlen = newoff + skb_ext_type_len[id];
6833 	ext->chunks = newlen;
6834 	ext->offset[id] = newoff;
6835 	skb->extensions = ext;
6836 	skb->active_extensions = 1 << id;
6837 	return skb_ext_get_ptr(ext, id);
6838 }
6839 
6840 /**
6841  * skb_ext_add - allocate space for given extension, COW if needed
6842  * @skb: buffer
6843  * @id: extension to allocate space for
6844  *
6845  * Allocates enough space for the given extension.
6846  * If the extension is already present, a pointer to that extension
6847  * is returned.
6848  *
6849  * If the skb was cloned, COW applies and the returned memory can be
6850  * modified without changing the extension space of clones buffers.
6851  *
6852  * Returns pointer to the extension or NULL on allocation failure.
6853  */
6854 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6855 {
6856 	struct skb_ext *new, *old = NULL;
6857 	unsigned int newlen, newoff;
6858 
6859 	if (skb->active_extensions) {
6860 		old = skb->extensions;
6861 
6862 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6863 		if (!new)
6864 			return NULL;
6865 
6866 		if (__skb_ext_exist(new, id))
6867 			goto set_active;
6868 
6869 		newoff = new->chunks;
6870 	} else {
6871 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6872 
6873 		new = __skb_ext_alloc(GFP_ATOMIC);
6874 		if (!new)
6875 			return NULL;
6876 	}
6877 
6878 	newlen = newoff + skb_ext_type_len[id];
6879 	new->chunks = newlen;
6880 	new->offset[id] = newoff;
6881 set_active:
6882 	skb->slow_gro = 1;
6883 	skb->extensions = new;
6884 	skb->active_extensions |= 1 << id;
6885 	return skb_ext_get_ptr(new, id);
6886 }
6887 EXPORT_SYMBOL(skb_ext_add);
6888 
6889 #ifdef CONFIG_XFRM
6890 static void skb_ext_put_sp(struct sec_path *sp)
6891 {
6892 	unsigned int i;
6893 
6894 	for (i = 0; i < sp->len; i++)
6895 		xfrm_state_put(sp->xvec[i]);
6896 }
6897 #endif
6898 
6899 #ifdef CONFIG_MCTP_FLOWS
6900 static void skb_ext_put_mctp(struct mctp_flow *flow)
6901 {
6902 	if (flow->key)
6903 		mctp_key_unref(flow->key);
6904 }
6905 #endif
6906 
6907 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6908 {
6909 	struct skb_ext *ext = skb->extensions;
6910 
6911 	skb->active_extensions &= ~(1 << id);
6912 	if (skb->active_extensions == 0) {
6913 		skb->extensions = NULL;
6914 		__skb_ext_put(ext);
6915 #ifdef CONFIG_XFRM
6916 	} else if (id == SKB_EXT_SEC_PATH &&
6917 		   refcount_read(&ext->refcnt) == 1) {
6918 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6919 
6920 		skb_ext_put_sp(sp);
6921 		sp->len = 0;
6922 #endif
6923 	}
6924 }
6925 EXPORT_SYMBOL(__skb_ext_del);
6926 
6927 void __skb_ext_put(struct skb_ext *ext)
6928 {
6929 	/* If this is last clone, nothing can increment
6930 	 * it after check passes.  Avoids one atomic op.
6931 	 */
6932 	if (refcount_read(&ext->refcnt) == 1)
6933 		goto free_now;
6934 
6935 	if (!refcount_dec_and_test(&ext->refcnt))
6936 		return;
6937 free_now:
6938 #ifdef CONFIG_XFRM
6939 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6940 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6941 #endif
6942 #ifdef CONFIG_MCTP_FLOWS
6943 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6944 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6945 #endif
6946 
6947 	kmem_cache_free(skbuff_ext_cache, ext);
6948 }
6949 EXPORT_SYMBOL(__skb_ext_put);
6950 #endif /* CONFIG_SKB_EXTENSIONS */
6951 
6952 static void kfree_skb_napi_cache(struct sk_buff *skb)
6953 {
6954 	/* if SKB is a clone, don't handle this case */
6955 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
6956 		__kfree_skb(skb);
6957 		return;
6958 	}
6959 
6960 	local_bh_disable();
6961 	__napi_kfree_skb(skb, SKB_CONSUMED);
6962 	local_bh_enable();
6963 }
6964 
6965 /**
6966  * skb_attempt_defer_free - queue skb for remote freeing
6967  * @skb: buffer
6968  *
6969  * Put @skb in a per-cpu list, using the cpu which
6970  * allocated the skb/pages to reduce false sharing
6971  * and memory zone spinlock contention.
6972  */
6973 void skb_attempt_defer_free(struct sk_buff *skb)
6974 {
6975 	int cpu = skb->alloc_cpu;
6976 	struct softnet_data *sd;
6977 	unsigned int defer_max;
6978 	bool kick;
6979 
6980 	if (cpu == raw_smp_processor_id() ||
6981 	    WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6982 	    !cpu_online(cpu)) {
6983 nodefer:	kfree_skb_napi_cache(skb);
6984 		return;
6985 	}
6986 
6987 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
6988 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
6989 
6990 	sd = &per_cpu(softnet_data, cpu);
6991 	defer_max = READ_ONCE(sysctl_skb_defer_max);
6992 	if (READ_ONCE(sd->defer_count) >= defer_max)
6993 		goto nodefer;
6994 
6995 	spin_lock_bh(&sd->defer_lock);
6996 	/* Send an IPI every time queue reaches half capacity. */
6997 	kick = sd->defer_count == (defer_max >> 1);
6998 	/* Paired with the READ_ONCE() few lines above */
6999 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7000 
7001 	skb->next = sd->defer_list;
7002 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
7003 	WRITE_ONCE(sd->defer_list, skb);
7004 	spin_unlock_bh(&sd->defer_lock);
7005 
7006 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7007 	 * if we are unlucky enough (this seems very unlikely).
7008 	 */
7009 	if (unlikely(kick))
7010 		kick_defer_list_purge(sd, cpu);
7011 }
7012 
7013 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7014 				 size_t offset, size_t len)
7015 {
7016 	const char *kaddr;
7017 	__wsum csum;
7018 
7019 	kaddr = kmap_local_page(page);
7020 	csum = csum_partial(kaddr + offset, len, 0);
7021 	kunmap_local(kaddr);
7022 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7023 }
7024 
7025 /**
7026  * skb_splice_from_iter - Splice (or copy) pages to skbuff
7027  * @skb: The buffer to add pages to
7028  * @iter: Iterator representing the pages to be added
7029  * @maxsize: Maximum amount of pages to be added
7030  * @gfp: Allocation flags
7031  *
7032  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7033  * extracts pages from an iterator and adds them to the socket buffer if
7034  * possible, copying them to fragments if not possible (such as if they're slab
7035  * pages).
7036  *
7037  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7038  * insufficient space in the buffer to transfer anything.
7039  */
7040 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7041 			     ssize_t maxsize, gfp_t gfp)
7042 {
7043 	size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
7044 	struct page *pages[8], **ppages = pages;
7045 	ssize_t spliced = 0, ret = 0;
7046 	unsigned int i;
7047 
7048 	while (iter->count > 0) {
7049 		ssize_t space, nr, len;
7050 		size_t off;
7051 
7052 		ret = -EMSGSIZE;
7053 		space = frag_limit - skb_shinfo(skb)->nr_frags;
7054 		if (space < 0)
7055 			break;
7056 
7057 		/* We might be able to coalesce without increasing nr_frags */
7058 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7059 
7060 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7061 		if (len <= 0) {
7062 			ret = len ?: -EIO;
7063 			break;
7064 		}
7065 
7066 		i = 0;
7067 		do {
7068 			struct page *page = pages[i++];
7069 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7070 
7071 			ret = -EIO;
7072 			if (WARN_ON_ONCE(!sendpage_ok(page)))
7073 				goto out;
7074 
7075 			ret = skb_append_pagefrags(skb, page, off, part,
7076 						   frag_limit);
7077 			if (ret < 0) {
7078 				iov_iter_revert(iter, len);
7079 				goto out;
7080 			}
7081 
7082 			if (skb->ip_summed == CHECKSUM_NONE)
7083 				skb_splice_csum_page(skb, page, off, part);
7084 
7085 			off = 0;
7086 			spliced += part;
7087 			maxsize -= part;
7088 			len -= part;
7089 		} while (len > 0);
7090 
7091 		if (maxsize <= 0)
7092 			break;
7093 	}
7094 
7095 out:
7096 	skb_len_add(skb, spliced);
7097 	return spliced ?: ret;
7098 }
7099 EXPORT_SYMBOL(skb_splice_from_iter);
7100 
7101 static __always_inline
7102 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7103 			     size_t len, void *to, void *priv2)
7104 {
7105 	__wsum *csum = priv2;
7106 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7107 
7108 	*csum = csum_block_add(*csum, next, progress);
7109 	return 0;
7110 }
7111 
7112 static __always_inline
7113 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7114 				size_t len, void *to, void *priv2)
7115 {
7116 	__wsum next, *csum = priv2;
7117 
7118 	next = csum_and_copy_from_user(iter_from, to + progress, len);
7119 	*csum = csum_block_add(*csum, next, progress);
7120 	return next ? 0 : len;
7121 }
7122 
7123 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7124 				  __wsum *csum, struct iov_iter *i)
7125 {
7126 	size_t copied;
7127 
7128 	if (WARN_ON_ONCE(!i->data_source))
7129 		return false;
7130 	copied = iterate_and_advance2(i, bytes, addr, csum,
7131 				      copy_from_user_iter_csum,
7132 				      memcpy_from_iter_csum);
7133 	if (likely(copied == bytes))
7134 		return true;
7135 	iov_iter_revert(i, copied);
7136 	return false;
7137 }
7138 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7139