xref: /linux/net/core/skbuff.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <iiitac@pyr.swan.ac.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Version:	$Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
8  *
9  *	Fixes:
10  *		Alan Cox	:	Fixed the worst of the load
11  *					balancer bugs.
12  *		Dave Platt	:	Interrupt stacking fix.
13  *	Richard Kooijman	:	Timestamp fixes.
14  *		Alan Cox	:	Changed buffer format.
15  *		Alan Cox	:	destructor hook for AF_UNIX etc.
16  *		Linus Torvalds	:	Better skb_clone.
17  *		Alan Cox	:	Added skb_copy.
18  *		Alan Cox	:	Added all the changed routines Linus
19  *					only put in the headers
20  *		Ray VanTassle	:	Fixed --skb->lock in free
21  *		Alan Cox	:	skb_copy copy arp field
22  *		Andi Kleen	:	slabified it.
23  *		Robert Olsson	:	Removed skb_head_pool
24  *
25  *	NOTE:
26  *		The __skb_ routines should be called with interrupts
27  *	disabled, or you better be *real* sure that the operation is atomic
28  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
29  *	or via disabling bottom half handlers, etc).
30  *
31  *	This program is free software; you can redistribute it and/or
32  *	modify it under the terms of the GNU General Public License
33  *	as published by the Free Software Foundation; either version
34  *	2 of the License, or (at your option) any later version.
35  */
36 
37 /*
38  *	The functions in this file will not compile correctly with gcc 2.4.x
39  */
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/netdevice.h>
50 #ifdef CONFIG_NET_CLS_ACT
51 #include <net/pkt_sched.h>
52 #endif
53 #include <linux/string.h>
54 #include <linux/skbuff.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 
60 #include <net/protocol.h>
61 #include <net/dst.h>
62 #include <net/sock.h>
63 #include <net/checksum.h>
64 #include <net/xfrm.h>
65 
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 
69 #include "kmap_skb.h"
70 
71 static struct kmem_cache *skbuff_head_cache __read_mostly;
72 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
73 
74 /*
75  *	Keep out-of-line to prevent kernel bloat.
76  *	__builtin_return_address is not used because it is not always
77  *	reliable.
78  */
79 
80 /**
81  *	skb_over_panic	- 	private function
82  *	@skb: buffer
83  *	@sz: size
84  *	@here: address
85  *
86  *	Out of line support code for skb_put(). Not user callable.
87  */
88 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
89 {
90 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
91 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
92 	       here, skb->len, sz, skb->head, skb->data,
93 	       (unsigned long)skb->tail, (unsigned long)skb->end,
94 	       skb->dev ? skb->dev->name : "<NULL>");
95 	BUG();
96 }
97 
98 /**
99  *	skb_under_panic	- 	private function
100  *	@skb: buffer
101  *	@sz: size
102  *	@here: address
103  *
104  *	Out of line support code for skb_push(). Not user callable.
105  */
106 
107 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
108 {
109 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
110 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
111 	       here, skb->len, sz, skb->head, skb->data,
112 	       (unsigned long)skb->tail, (unsigned long)skb->end,
113 	       skb->dev ? skb->dev->name : "<NULL>");
114 	BUG();
115 }
116 
117 void skb_truesize_bug(struct sk_buff *skb)
118 {
119 	printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
120 	       "len=%u, sizeof(sk_buff)=%Zd\n",
121 	       skb->truesize, skb->len, sizeof(struct sk_buff));
122 }
123 EXPORT_SYMBOL(skb_truesize_bug);
124 
125 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
126  *	'private' fields and also do memory statistics to find all the
127  *	[BEEP] leaks.
128  *
129  */
130 
131 /**
132  *	__alloc_skb	-	allocate a network buffer
133  *	@size: size to allocate
134  *	@gfp_mask: allocation mask
135  *	@fclone: allocate from fclone cache instead of head cache
136  *		and allocate a cloned (child) skb
137  *	@node: numa node to allocate memory on
138  *
139  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
140  *	tail room of size bytes. The object has a reference count of one.
141  *	The return is the buffer. On a failure the return is %NULL.
142  *
143  *	Buffers may only be allocated from interrupts using a @gfp_mask of
144  *	%GFP_ATOMIC.
145  */
146 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
147 			    int fclone, int node)
148 {
149 	struct kmem_cache *cache;
150 	struct skb_shared_info *shinfo;
151 	struct sk_buff *skb;
152 	u8 *data;
153 
154 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
155 
156 	/* Get the HEAD */
157 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
158 	if (!skb)
159 		goto out;
160 
161 	size = SKB_DATA_ALIGN(size);
162 	data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
163 			gfp_mask, node);
164 	if (!data)
165 		goto nodata;
166 
167 	/*
168 	 * See comment in sk_buff definition, just before the 'tail' member
169 	 */
170 	memset(skb, 0, offsetof(struct sk_buff, tail));
171 	skb->truesize = size + sizeof(struct sk_buff);
172 	atomic_set(&skb->users, 1);
173 	skb->head = data;
174 	skb->data = data;
175 	skb_reset_tail_pointer(skb);
176 	skb->end = skb->tail + size;
177 	/* make sure we initialize shinfo sequentially */
178 	shinfo = skb_shinfo(skb);
179 	atomic_set(&shinfo->dataref, 1);
180 	shinfo->nr_frags  = 0;
181 	shinfo->gso_size = 0;
182 	shinfo->gso_segs = 0;
183 	shinfo->gso_type = 0;
184 	shinfo->ip6_frag_id = 0;
185 	shinfo->frag_list = NULL;
186 
187 	if (fclone) {
188 		struct sk_buff *child = skb + 1;
189 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
190 
191 		skb->fclone = SKB_FCLONE_ORIG;
192 		atomic_set(fclone_ref, 1);
193 
194 		child->fclone = SKB_FCLONE_UNAVAILABLE;
195 	}
196 out:
197 	return skb;
198 nodata:
199 	kmem_cache_free(cache, skb);
200 	skb = NULL;
201 	goto out;
202 }
203 
204 /**
205  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
206  *	@dev: network device to receive on
207  *	@length: length to allocate
208  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
209  *
210  *	Allocate a new &sk_buff and assign it a usage count of one. The
211  *	buffer has unspecified headroom built in. Users should allocate
212  *	the headroom they think they need without accounting for the
213  *	built in space. The built in space is used for optimisations.
214  *
215  *	%NULL is returned if there is no free memory.
216  */
217 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
218 		unsigned int length, gfp_t gfp_mask)
219 {
220 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
221 	struct sk_buff *skb;
222 
223 	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
224 	if (likely(skb)) {
225 		skb_reserve(skb, NET_SKB_PAD);
226 		skb->dev = dev;
227 	}
228 	return skb;
229 }
230 
231 static void skb_drop_list(struct sk_buff **listp)
232 {
233 	struct sk_buff *list = *listp;
234 
235 	*listp = NULL;
236 
237 	do {
238 		struct sk_buff *this = list;
239 		list = list->next;
240 		kfree_skb(this);
241 	} while (list);
242 }
243 
244 static inline void skb_drop_fraglist(struct sk_buff *skb)
245 {
246 	skb_drop_list(&skb_shinfo(skb)->frag_list);
247 }
248 
249 static void skb_clone_fraglist(struct sk_buff *skb)
250 {
251 	struct sk_buff *list;
252 
253 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
254 		skb_get(list);
255 }
256 
257 static void skb_release_data(struct sk_buff *skb)
258 {
259 	if (!skb->cloned ||
260 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
261 			       &skb_shinfo(skb)->dataref)) {
262 		if (skb_shinfo(skb)->nr_frags) {
263 			int i;
264 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
265 				put_page(skb_shinfo(skb)->frags[i].page);
266 		}
267 
268 		if (skb_shinfo(skb)->frag_list)
269 			skb_drop_fraglist(skb);
270 
271 		kfree(skb->head);
272 	}
273 }
274 
275 /*
276  *	Free an skbuff by memory without cleaning the state.
277  */
278 void kfree_skbmem(struct sk_buff *skb)
279 {
280 	struct sk_buff *other;
281 	atomic_t *fclone_ref;
282 
283 	skb_release_data(skb);
284 	switch (skb->fclone) {
285 	case SKB_FCLONE_UNAVAILABLE:
286 		kmem_cache_free(skbuff_head_cache, skb);
287 		break;
288 
289 	case SKB_FCLONE_ORIG:
290 		fclone_ref = (atomic_t *) (skb + 2);
291 		if (atomic_dec_and_test(fclone_ref))
292 			kmem_cache_free(skbuff_fclone_cache, skb);
293 		break;
294 
295 	case SKB_FCLONE_CLONE:
296 		fclone_ref = (atomic_t *) (skb + 1);
297 		other = skb - 1;
298 
299 		/* The clone portion is available for
300 		 * fast-cloning again.
301 		 */
302 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
303 
304 		if (atomic_dec_and_test(fclone_ref))
305 			kmem_cache_free(skbuff_fclone_cache, other);
306 		break;
307 	}
308 }
309 
310 /**
311  *	__kfree_skb - private function
312  *	@skb: buffer
313  *
314  *	Free an sk_buff. Release anything attached to the buffer.
315  *	Clean the state. This is an internal helper function. Users should
316  *	always call kfree_skb
317  */
318 
319 void __kfree_skb(struct sk_buff *skb)
320 {
321 	dst_release(skb->dst);
322 #ifdef CONFIG_XFRM
323 	secpath_put(skb->sp);
324 #endif
325 	if (skb->destructor) {
326 		WARN_ON(in_irq());
327 		skb->destructor(skb);
328 	}
329 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
330 	nf_conntrack_put(skb->nfct);
331 	nf_conntrack_put_reasm(skb->nfct_reasm);
332 #endif
333 #ifdef CONFIG_BRIDGE_NETFILTER
334 	nf_bridge_put(skb->nf_bridge);
335 #endif
336 /* XXX: IS this still necessary? - JHS */
337 #ifdef CONFIG_NET_SCHED
338 	skb->tc_index = 0;
339 #ifdef CONFIG_NET_CLS_ACT
340 	skb->tc_verd = 0;
341 #endif
342 #endif
343 
344 	kfree_skbmem(skb);
345 }
346 
347 /**
348  *	kfree_skb - free an sk_buff
349  *	@skb: buffer to free
350  *
351  *	Drop a reference to the buffer and free it if the usage count has
352  *	hit zero.
353  */
354 void kfree_skb(struct sk_buff *skb)
355 {
356 	if (unlikely(!skb))
357 		return;
358 	if (likely(atomic_read(&skb->users) == 1))
359 		smp_rmb();
360 	else if (likely(!atomic_dec_and_test(&skb->users)))
361 		return;
362 	__kfree_skb(skb);
363 }
364 
365 /**
366  *	skb_clone	-	duplicate an sk_buff
367  *	@skb: buffer to clone
368  *	@gfp_mask: allocation priority
369  *
370  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
371  *	copies share the same packet data but not structure. The new
372  *	buffer has a reference count of 1. If the allocation fails the
373  *	function returns %NULL otherwise the new buffer is returned.
374  *
375  *	If this function is called from an interrupt gfp_mask() must be
376  *	%GFP_ATOMIC.
377  */
378 
379 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
380 {
381 	struct sk_buff *n;
382 
383 	n = skb + 1;
384 	if (skb->fclone == SKB_FCLONE_ORIG &&
385 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
386 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
387 		n->fclone = SKB_FCLONE_CLONE;
388 		atomic_inc(fclone_ref);
389 	} else {
390 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
391 		if (!n)
392 			return NULL;
393 		n->fclone = SKB_FCLONE_UNAVAILABLE;
394 	}
395 
396 #define C(x) n->x = skb->x
397 
398 	n->next = n->prev = NULL;
399 	n->sk = NULL;
400 	C(tstamp);
401 	C(dev);
402 	C(transport_header);
403 	C(network_header);
404 	C(mac_header);
405 	C(dst);
406 	dst_clone(skb->dst);
407 	C(sp);
408 #ifdef CONFIG_INET
409 	secpath_get(skb->sp);
410 #endif
411 	memcpy(n->cb, skb->cb, sizeof(skb->cb));
412 	C(len);
413 	C(data_len);
414 	C(mac_len);
415 	C(csum);
416 	C(local_df);
417 	n->cloned = 1;
418 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
419 	n->nohdr = 0;
420 	C(pkt_type);
421 	C(ip_summed);
422 	skb_copy_queue_mapping(n, skb);
423 	C(priority);
424 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
425 	C(ipvs_property);
426 #endif
427 	C(protocol);
428 	n->destructor = NULL;
429 	C(mark);
430 	__nf_copy(n, skb);
431 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
432     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
433 	C(nf_trace);
434 #endif
435 #ifdef CONFIG_NET_SCHED
436 	C(tc_index);
437 #ifdef CONFIG_NET_CLS_ACT
438 	n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
439 	n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
440 	n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
441 	C(iif);
442 #endif
443 #endif
444 	skb_copy_secmark(n, skb);
445 	C(truesize);
446 	atomic_set(&n->users, 1);
447 	C(head);
448 	C(data);
449 	C(tail);
450 	C(end);
451 
452 	atomic_inc(&(skb_shinfo(skb)->dataref));
453 	skb->cloned = 1;
454 
455 	return n;
456 }
457 
458 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
459 {
460 #ifndef NET_SKBUFF_DATA_USES_OFFSET
461 	/*
462 	 *	Shift between the two data areas in bytes
463 	 */
464 	unsigned long offset = new->data - old->data;
465 #endif
466 	new->sk		= NULL;
467 	new->dev	= old->dev;
468 	skb_copy_queue_mapping(new, old);
469 	new->priority	= old->priority;
470 	new->protocol	= old->protocol;
471 	new->dst	= dst_clone(old->dst);
472 #ifdef CONFIG_INET
473 	new->sp		= secpath_get(old->sp);
474 #endif
475 	new->csum_start = old->csum_start;
476 	new->csum_offset = old->csum_offset;
477 	new->ip_summed = old->ip_summed;
478 	new->transport_header = old->transport_header;
479 	new->network_header   = old->network_header;
480 	new->mac_header	      = old->mac_header;
481 #ifndef NET_SKBUFF_DATA_USES_OFFSET
482 	/* {transport,network,mac}_header are relative to skb->head */
483 	new->transport_header += offset;
484 	new->network_header   += offset;
485 	new->mac_header	      += offset;
486 #endif
487 	memcpy(new->cb, old->cb, sizeof(old->cb));
488 	new->local_df	= old->local_df;
489 	new->fclone	= SKB_FCLONE_UNAVAILABLE;
490 	new->pkt_type	= old->pkt_type;
491 	new->tstamp	= old->tstamp;
492 	new->destructor = NULL;
493 	new->mark	= old->mark;
494 	__nf_copy(new, old);
495 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
496     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
497 	new->nf_trace	= old->nf_trace;
498 #endif
499 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
500 	new->ipvs_property = old->ipvs_property;
501 #endif
502 #ifdef CONFIG_NET_SCHED
503 #ifdef CONFIG_NET_CLS_ACT
504 	new->tc_verd = old->tc_verd;
505 #endif
506 	new->tc_index	= old->tc_index;
507 #endif
508 	skb_copy_secmark(new, old);
509 	atomic_set(&new->users, 1);
510 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
511 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
512 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
513 }
514 
515 /**
516  *	skb_copy	-	create private copy of an sk_buff
517  *	@skb: buffer to copy
518  *	@gfp_mask: allocation priority
519  *
520  *	Make a copy of both an &sk_buff and its data. This is used when the
521  *	caller wishes to modify the data and needs a private copy of the
522  *	data to alter. Returns %NULL on failure or the pointer to the buffer
523  *	on success. The returned buffer has a reference count of 1.
524  *
525  *	As by-product this function converts non-linear &sk_buff to linear
526  *	one, so that &sk_buff becomes completely private and caller is allowed
527  *	to modify all the data of returned buffer. This means that this
528  *	function is not recommended for use in circumstances when only
529  *	header is going to be modified. Use pskb_copy() instead.
530  */
531 
532 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
533 {
534 	int headerlen = skb->data - skb->head;
535 	/*
536 	 *	Allocate the copy buffer
537 	 */
538 	struct sk_buff *n;
539 #ifdef NET_SKBUFF_DATA_USES_OFFSET
540 	n = alloc_skb(skb->end + skb->data_len, gfp_mask);
541 #else
542 	n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
543 #endif
544 	if (!n)
545 		return NULL;
546 
547 	/* Set the data pointer */
548 	skb_reserve(n, headerlen);
549 	/* Set the tail pointer and length */
550 	skb_put(n, skb->len);
551 
552 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
553 		BUG();
554 
555 	copy_skb_header(n, skb);
556 	return n;
557 }
558 
559 
560 /**
561  *	pskb_copy	-	create copy of an sk_buff with private head.
562  *	@skb: buffer to copy
563  *	@gfp_mask: allocation priority
564  *
565  *	Make a copy of both an &sk_buff and part of its data, located
566  *	in header. Fragmented data remain shared. This is used when
567  *	the caller wishes to modify only header of &sk_buff and needs
568  *	private copy of the header to alter. Returns %NULL on failure
569  *	or the pointer to the buffer on success.
570  *	The returned buffer has a reference count of 1.
571  */
572 
573 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
574 {
575 	/*
576 	 *	Allocate the copy buffer
577 	 */
578 	struct sk_buff *n;
579 #ifdef NET_SKBUFF_DATA_USES_OFFSET
580 	n = alloc_skb(skb->end, gfp_mask);
581 #else
582 	n = alloc_skb(skb->end - skb->head, gfp_mask);
583 #endif
584 	if (!n)
585 		goto out;
586 
587 	/* Set the data pointer */
588 	skb_reserve(n, skb->data - skb->head);
589 	/* Set the tail pointer and length */
590 	skb_put(n, skb_headlen(skb));
591 	/* Copy the bytes */
592 	skb_copy_from_linear_data(skb, n->data, n->len);
593 
594 	n->truesize += skb->data_len;
595 	n->data_len  = skb->data_len;
596 	n->len	     = skb->len;
597 
598 	if (skb_shinfo(skb)->nr_frags) {
599 		int i;
600 
601 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
602 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
603 			get_page(skb_shinfo(n)->frags[i].page);
604 		}
605 		skb_shinfo(n)->nr_frags = i;
606 	}
607 
608 	if (skb_shinfo(skb)->frag_list) {
609 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
610 		skb_clone_fraglist(n);
611 	}
612 
613 	copy_skb_header(n, skb);
614 out:
615 	return n;
616 }
617 
618 /**
619  *	pskb_expand_head - reallocate header of &sk_buff
620  *	@skb: buffer to reallocate
621  *	@nhead: room to add at head
622  *	@ntail: room to add at tail
623  *	@gfp_mask: allocation priority
624  *
625  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
626  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
627  *	reference count of 1. Returns zero in the case of success or error,
628  *	if expansion failed. In the last case, &sk_buff is not changed.
629  *
630  *	All the pointers pointing into skb header may change and must be
631  *	reloaded after call to this function.
632  */
633 
634 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
635 		     gfp_t gfp_mask)
636 {
637 	int i;
638 	u8 *data;
639 #ifdef NET_SKBUFF_DATA_USES_OFFSET
640 	int size = nhead + skb->end + ntail;
641 #else
642 	int size = nhead + (skb->end - skb->head) + ntail;
643 #endif
644 	long off;
645 
646 	if (skb_shared(skb))
647 		BUG();
648 
649 	size = SKB_DATA_ALIGN(size);
650 
651 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
652 	if (!data)
653 		goto nodata;
654 
655 	/* Copy only real data... and, alas, header. This should be
656 	 * optimized for the cases when header is void. */
657 #ifdef NET_SKBUFF_DATA_USES_OFFSET
658 	memcpy(data + nhead, skb->head, skb->tail);
659 #else
660 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
661 #endif
662 	memcpy(data + size, skb_end_pointer(skb),
663 	       sizeof(struct skb_shared_info));
664 
665 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
666 		get_page(skb_shinfo(skb)->frags[i].page);
667 
668 	if (skb_shinfo(skb)->frag_list)
669 		skb_clone_fraglist(skb);
670 
671 	skb_release_data(skb);
672 
673 	off = (data + nhead) - skb->head;
674 
675 	skb->head     = data;
676 	skb->data    += off;
677 #ifdef NET_SKBUFF_DATA_USES_OFFSET
678 	skb->end      = size;
679 	off           = nhead;
680 #else
681 	skb->end      = skb->head + size;
682 #endif
683 	/* {transport,network,mac}_header and tail are relative to skb->head */
684 	skb->tail	      += off;
685 	skb->transport_header += off;
686 	skb->network_header   += off;
687 	skb->mac_header	      += off;
688 	skb->csum_start       += off;
689 	skb->cloned   = 0;
690 	skb->hdr_len  = 0;
691 	skb->nohdr    = 0;
692 	atomic_set(&skb_shinfo(skb)->dataref, 1);
693 	return 0;
694 
695 nodata:
696 	return -ENOMEM;
697 }
698 
699 /* Make private copy of skb with writable head and some headroom */
700 
701 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
702 {
703 	struct sk_buff *skb2;
704 	int delta = headroom - skb_headroom(skb);
705 
706 	if (delta <= 0)
707 		skb2 = pskb_copy(skb, GFP_ATOMIC);
708 	else {
709 		skb2 = skb_clone(skb, GFP_ATOMIC);
710 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
711 					     GFP_ATOMIC)) {
712 			kfree_skb(skb2);
713 			skb2 = NULL;
714 		}
715 	}
716 	return skb2;
717 }
718 
719 
720 /**
721  *	skb_copy_expand	-	copy and expand sk_buff
722  *	@skb: buffer to copy
723  *	@newheadroom: new free bytes at head
724  *	@newtailroom: new free bytes at tail
725  *	@gfp_mask: allocation priority
726  *
727  *	Make a copy of both an &sk_buff and its data and while doing so
728  *	allocate additional space.
729  *
730  *	This is used when the caller wishes to modify the data and needs a
731  *	private copy of the data to alter as well as more space for new fields.
732  *	Returns %NULL on failure or the pointer to the buffer
733  *	on success. The returned buffer has a reference count of 1.
734  *
735  *	You must pass %GFP_ATOMIC as the allocation priority if this function
736  *	is called from an interrupt.
737  */
738 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
739 				int newheadroom, int newtailroom,
740 				gfp_t gfp_mask)
741 {
742 	/*
743 	 *	Allocate the copy buffer
744 	 */
745 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
746 				      gfp_mask);
747 	int oldheadroom = skb_headroom(skb);
748 	int head_copy_len, head_copy_off;
749 	int off;
750 
751 	if (!n)
752 		return NULL;
753 
754 	skb_reserve(n, newheadroom);
755 
756 	/* Set the tail pointer and length */
757 	skb_put(n, skb->len);
758 
759 	head_copy_len = oldheadroom;
760 	head_copy_off = 0;
761 	if (newheadroom <= head_copy_len)
762 		head_copy_len = newheadroom;
763 	else
764 		head_copy_off = newheadroom - head_copy_len;
765 
766 	/* Copy the linear header and data. */
767 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
768 			  skb->len + head_copy_len))
769 		BUG();
770 
771 	copy_skb_header(n, skb);
772 
773 	off                  = newheadroom - oldheadroom;
774 	n->csum_start       += off;
775 #ifdef NET_SKBUFF_DATA_USES_OFFSET
776 	n->transport_header += off;
777 	n->network_header   += off;
778 	n->mac_header	    += off;
779 #endif
780 
781 	return n;
782 }
783 
784 /**
785  *	skb_pad			-	zero pad the tail of an skb
786  *	@skb: buffer to pad
787  *	@pad: space to pad
788  *
789  *	Ensure that a buffer is followed by a padding area that is zero
790  *	filled. Used by network drivers which may DMA or transfer data
791  *	beyond the buffer end onto the wire.
792  *
793  *	May return error in out of memory cases. The skb is freed on error.
794  */
795 
796 int skb_pad(struct sk_buff *skb, int pad)
797 {
798 	int err;
799 	int ntail;
800 
801 	/* If the skbuff is non linear tailroom is always zero.. */
802 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
803 		memset(skb->data+skb->len, 0, pad);
804 		return 0;
805 	}
806 
807 	ntail = skb->data_len + pad - (skb->end - skb->tail);
808 	if (likely(skb_cloned(skb) || ntail > 0)) {
809 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
810 		if (unlikely(err))
811 			goto free_skb;
812 	}
813 
814 	/* FIXME: The use of this function with non-linear skb's really needs
815 	 * to be audited.
816 	 */
817 	err = skb_linearize(skb);
818 	if (unlikely(err))
819 		goto free_skb;
820 
821 	memset(skb->data + skb->len, 0, pad);
822 	return 0;
823 
824 free_skb:
825 	kfree_skb(skb);
826 	return err;
827 }
828 
829 /* Trims skb to length len. It can change skb pointers.
830  */
831 
832 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
833 {
834 	struct sk_buff **fragp;
835 	struct sk_buff *frag;
836 	int offset = skb_headlen(skb);
837 	int nfrags = skb_shinfo(skb)->nr_frags;
838 	int i;
839 	int err;
840 
841 	if (skb_cloned(skb) &&
842 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
843 		return err;
844 
845 	i = 0;
846 	if (offset >= len)
847 		goto drop_pages;
848 
849 	for (; i < nfrags; i++) {
850 		int end = offset + skb_shinfo(skb)->frags[i].size;
851 
852 		if (end < len) {
853 			offset = end;
854 			continue;
855 		}
856 
857 		skb_shinfo(skb)->frags[i++].size = len - offset;
858 
859 drop_pages:
860 		skb_shinfo(skb)->nr_frags = i;
861 
862 		for (; i < nfrags; i++)
863 			put_page(skb_shinfo(skb)->frags[i].page);
864 
865 		if (skb_shinfo(skb)->frag_list)
866 			skb_drop_fraglist(skb);
867 		goto done;
868 	}
869 
870 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
871 	     fragp = &frag->next) {
872 		int end = offset + frag->len;
873 
874 		if (skb_shared(frag)) {
875 			struct sk_buff *nfrag;
876 
877 			nfrag = skb_clone(frag, GFP_ATOMIC);
878 			if (unlikely(!nfrag))
879 				return -ENOMEM;
880 
881 			nfrag->next = frag->next;
882 			kfree_skb(frag);
883 			frag = nfrag;
884 			*fragp = frag;
885 		}
886 
887 		if (end < len) {
888 			offset = end;
889 			continue;
890 		}
891 
892 		if (end > len &&
893 		    unlikely((err = pskb_trim(frag, len - offset))))
894 			return err;
895 
896 		if (frag->next)
897 			skb_drop_list(&frag->next);
898 		break;
899 	}
900 
901 done:
902 	if (len > skb_headlen(skb)) {
903 		skb->data_len -= skb->len - len;
904 		skb->len       = len;
905 	} else {
906 		skb->len       = len;
907 		skb->data_len  = 0;
908 		skb_set_tail_pointer(skb, len);
909 	}
910 
911 	return 0;
912 }
913 
914 /**
915  *	__pskb_pull_tail - advance tail of skb header
916  *	@skb: buffer to reallocate
917  *	@delta: number of bytes to advance tail
918  *
919  *	The function makes a sense only on a fragmented &sk_buff,
920  *	it expands header moving its tail forward and copying necessary
921  *	data from fragmented part.
922  *
923  *	&sk_buff MUST have reference count of 1.
924  *
925  *	Returns %NULL (and &sk_buff does not change) if pull failed
926  *	or value of new tail of skb in the case of success.
927  *
928  *	All the pointers pointing into skb header may change and must be
929  *	reloaded after call to this function.
930  */
931 
932 /* Moves tail of skb head forward, copying data from fragmented part,
933  * when it is necessary.
934  * 1. It may fail due to malloc failure.
935  * 2. It may change skb pointers.
936  *
937  * It is pretty complicated. Luckily, it is called only in exceptional cases.
938  */
939 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
940 {
941 	/* If skb has not enough free space at tail, get new one
942 	 * plus 128 bytes for future expansions. If we have enough
943 	 * room at tail, reallocate without expansion only if skb is cloned.
944 	 */
945 	int i, k, eat = (skb->tail + delta) - skb->end;
946 
947 	if (eat > 0 || skb_cloned(skb)) {
948 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
949 				     GFP_ATOMIC))
950 			return NULL;
951 	}
952 
953 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
954 		BUG();
955 
956 	/* Optimization: no fragments, no reasons to preestimate
957 	 * size of pulled pages. Superb.
958 	 */
959 	if (!skb_shinfo(skb)->frag_list)
960 		goto pull_pages;
961 
962 	/* Estimate size of pulled pages. */
963 	eat = delta;
964 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
965 		if (skb_shinfo(skb)->frags[i].size >= eat)
966 			goto pull_pages;
967 		eat -= skb_shinfo(skb)->frags[i].size;
968 	}
969 
970 	/* If we need update frag list, we are in troubles.
971 	 * Certainly, it possible to add an offset to skb data,
972 	 * but taking into account that pulling is expected to
973 	 * be very rare operation, it is worth to fight against
974 	 * further bloating skb head and crucify ourselves here instead.
975 	 * Pure masohism, indeed. 8)8)
976 	 */
977 	if (eat) {
978 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
979 		struct sk_buff *clone = NULL;
980 		struct sk_buff *insp = NULL;
981 
982 		do {
983 			BUG_ON(!list);
984 
985 			if (list->len <= eat) {
986 				/* Eaten as whole. */
987 				eat -= list->len;
988 				list = list->next;
989 				insp = list;
990 			} else {
991 				/* Eaten partially. */
992 
993 				if (skb_shared(list)) {
994 					/* Sucks! We need to fork list. :-( */
995 					clone = skb_clone(list, GFP_ATOMIC);
996 					if (!clone)
997 						return NULL;
998 					insp = list->next;
999 					list = clone;
1000 				} else {
1001 					/* This may be pulled without
1002 					 * problems. */
1003 					insp = list;
1004 				}
1005 				if (!pskb_pull(list, eat)) {
1006 					if (clone)
1007 						kfree_skb(clone);
1008 					return NULL;
1009 				}
1010 				break;
1011 			}
1012 		} while (eat);
1013 
1014 		/* Free pulled out fragments. */
1015 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1016 			skb_shinfo(skb)->frag_list = list->next;
1017 			kfree_skb(list);
1018 		}
1019 		/* And insert new clone at head. */
1020 		if (clone) {
1021 			clone->next = list;
1022 			skb_shinfo(skb)->frag_list = clone;
1023 		}
1024 	}
1025 	/* Success! Now we may commit changes to skb data. */
1026 
1027 pull_pages:
1028 	eat = delta;
1029 	k = 0;
1030 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1031 		if (skb_shinfo(skb)->frags[i].size <= eat) {
1032 			put_page(skb_shinfo(skb)->frags[i].page);
1033 			eat -= skb_shinfo(skb)->frags[i].size;
1034 		} else {
1035 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1036 			if (eat) {
1037 				skb_shinfo(skb)->frags[k].page_offset += eat;
1038 				skb_shinfo(skb)->frags[k].size -= eat;
1039 				eat = 0;
1040 			}
1041 			k++;
1042 		}
1043 	}
1044 	skb_shinfo(skb)->nr_frags = k;
1045 
1046 	skb->tail     += delta;
1047 	skb->data_len -= delta;
1048 
1049 	return skb_tail_pointer(skb);
1050 }
1051 
1052 /* Copy some data bits from skb to kernel buffer. */
1053 
1054 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1055 {
1056 	int i, copy;
1057 	int start = skb_headlen(skb);
1058 
1059 	if (offset > (int)skb->len - len)
1060 		goto fault;
1061 
1062 	/* Copy header. */
1063 	if ((copy = start - offset) > 0) {
1064 		if (copy > len)
1065 			copy = len;
1066 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1067 		if ((len -= copy) == 0)
1068 			return 0;
1069 		offset += copy;
1070 		to     += copy;
1071 	}
1072 
1073 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1074 		int end;
1075 
1076 		BUG_TRAP(start <= offset + len);
1077 
1078 		end = start + skb_shinfo(skb)->frags[i].size;
1079 		if ((copy = end - offset) > 0) {
1080 			u8 *vaddr;
1081 
1082 			if (copy > len)
1083 				copy = len;
1084 
1085 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1086 			memcpy(to,
1087 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1088 			       offset - start, copy);
1089 			kunmap_skb_frag(vaddr);
1090 
1091 			if ((len -= copy) == 0)
1092 				return 0;
1093 			offset += copy;
1094 			to     += copy;
1095 		}
1096 		start = end;
1097 	}
1098 
1099 	if (skb_shinfo(skb)->frag_list) {
1100 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1101 
1102 		for (; list; list = list->next) {
1103 			int end;
1104 
1105 			BUG_TRAP(start <= offset + len);
1106 
1107 			end = start + list->len;
1108 			if ((copy = end - offset) > 0) {
1109 				if (copy > len)
1110 					copy = len;
1111 				if (skb_copy_bits(list, offset - start,
1112 						  to, copy))
1113 					goto fault;
1114 				if ((len -= copy) == 0)
1115 					return 0;
1116 				offset += copy;
1117 				to     += copy;
1118 			}
1119 			start = end;
1120 		}
1121 	}
1122 	if (!len)
1123 		return 0;
1124 
1125 fault:
1126 	return -EFAULT;
1127 }
1128 
1129 /**
1130  *	skb_store_bits - store bits from kernel buffer to skb
1131  *	@skb: destination buffer
1132  *	@offset: offset in destination
1133  *	@from: source buffer
1134  *	@len: number of bytes to copy
1135  *
1136  *	Copy the specified number of bytes from the source buffer to the
1137  *	destination skb.  This function handles all the messy bits of
1138  *	traversing fragment lists and such.
1139  */
1140 
1141 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1142 {
1143 	int i, copy;
1144 	int start = skb_headlen(skb);
1145 
1146 	if (offset > (int)skb->len - len)
1147 		goto fault;
1148 
1149 	if ((copy = start - offset) > 0) {
1150 		if (copy > len)
1151 			copy = len;
1152 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1153 		if ((len -= copy) == 0)
1154 			return 0;
1155 		offset += copy;
1156 		from += copy;
1157 	}
1158 
1159 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1160 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1161 		int end;
1162 
1163 		BUG_TRAP(start <= offset + len);
1164 
1165 		end = start + frag->size;
1166 		if ((copy = end - offset) > 0) {
1167 			u8 *vaddr;
1168 
1169 			if (copy > len)
1170 				copy = len;
1171 
1172 			vaddr = kmap_skb_frag(frag);
1173 			memcpy(vaddr + frag->page_offset + offset - start,
1174 			       from, copy);
1175 			kunmap_skb_frag(vaddr);
1176 
1177 			if ((len -= copy) == 0)
1178 				return 0;
1179 			offset += copy;
1180 			from += copy;
1181 		}
1182 		start = end;
1183 	}
1184 
1185 	if (skb_shinfo(skb)->frag_list) {
1186 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1187 
1188 		for (; list; list = list->next) {
1189 			int end;
1190 
1191 			BUG_TRAP(start <= offset + len);
1192 
1193 			end = start + list->len;
1194 			if ((copy = end - offset) > 0) {
1195 				if (copy > len)
1196 					copy = len;
1197 				if (skb_store_bits(list, offset - start,
1198 						   from, copy))
1199 					goto fault;
1200 				if ((len -= copy) == 0)
1201 					return 0;
1202 				offset += copy;
1203 				from += copy;
1204 			}
1205 			start = end;
1206 		}
1207 	}
1208 	if (!len)
1209 		return 0;
1210 
1211 fault:
1212 	return -EFAULT;
1213 }
1214 
1215 EXPORT_SYMBOL(skb_store_bits);
1216 
1217 /* Checksum skb data. */
1218 
1219 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1220 			  int len, __wsum csum)
1221 {
1222 	int start = skb_headlen(skb);
1223 	int i, copy = start - offset;
1224 	int pos = 0;
1225 
1226 	/* Checksum header. */
1227 	if (copy > 0) {
1228 		if (copy > len)
1229 			copy = len;
1230 		csum = csum_partial(skb->data + offset, copy, csum);
1231 		if ((len -= copy) == 0)
1232 			return csum;
1233 		offset += copy;
1234 		pos	= copy;
1235 	}
1236 
1237 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1238 		int end;
1239 
1240 		BUG_TRAP(start <= offset + len);
1241 
1242 		end = start + skb_shinfo(skb)->frags[i].size;
1243 		if ((copy = end - offset) > 0) {
1244 			__wsum csum2;
1245 			u8 *vaddr;
1246 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1247 
1248 			if (copy > len)
1249 				copy = len;
1250 			vaddr = kmap_skb_frag(frag);
1251 			csum2 = csum_partial(vaddr + frag->page_offset +
1252 					     offset - start, copy, 0);
1253 			kunmap_skb_frag(vaddr);
1254 			csum = csum_block_add(csum, csum2, pos);
1255 			if (!(len -= copy))
1256 				return csum;
1257 			offset += copy;
1258 			pos    += copy;
1259 		}
1260 		start = end;
1261 	}
1262 
1263 	if (skb_shinfo(skb)->frag_list) {
1264 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1265 
1266 		for (; list; list = list->next) {
1267 			int end;
1268 
1269 			BUG_TRAP(start <= offset + len);
1270 
1271 			end = start + list->len;
1272 			if ((copy = end - offset) > 0) {
1273 				__wsum csum2;
1274 				if (copy > len)
1275 					copy = len;
1276 				csum2 = skb_checksum(list, offset - start,
1277 						     copy, 0);
1278 				csum = csum_block_add(csum, csum2, pos);
1279 				if ((len -= copy) == 0)
1280 					return csum;
1281 				offset += copy;
1282 				pos    += copy;
1283 			}
1284 			start = end;
1285 		}
1286 	}
1287 	BUG_ON(len);
1288 
1289 	return csum;
1290 }
1291 
1292 /* Both of above in one bottle. */
1293 
1294 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1295 				    u8 *to, int len, __wsum csum)
1296 {
1297 	int start = skb_headlen(skb);
1298 	int i, copy = start - offset;
1299 	int pos = 0;
1300 
1301 	/* Copy header. */
1302 	if (copy > 0) {
1303 		if (copy > len)
1304 			copy = len;
1305 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1306 						 copy, csum);
1307 		if ((len -= copy) == 0)
1308 			return csum;
1309 		offset += copy;
1310 		to     += copy;
1311 		pos	= copy;
1312 	}
1313 
1314 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1315 		int end;
1316 
1317 		BUG_TRAP(start <= offset + len);
1318 
1319 		end = start + skb_shinfo(skb)->frags[i].size;
1320 		if ((copy = end - offset) > 0) {
1321 			__wsum csum2;
1322 			u8 *vaddr;
1323 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1324 
1325 			if (copy > len)
1326 				copy = len;
1327 			vaddr = kmap_skb_frag(frag);
1328 			csum2 = csum_partial_copy_nocheck(vaddr +
1329 							  frag->page_offset +
1330 							  offset - start, to,
1331 							  copy, 0);
1332 			kunmap_skb_frag(vaddr);
1333 			csum = csum_block_add(csum, csum2, pos);
1334 			if (!(len -= copy))
1335 				return csum;
1336 			offset += copy;
1337 			to     += copy;
1338 			pos    += copy;
1339 		}
1340 		start = end;
1341 	}
1342 
1343 	if (skb_shinfo(skb)->frag_list) {
1344 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1345 
1346 		for (; list; list = list->next) {
1347 			__wsum csum2;
1348 			int end;
1349 
1350 			BUG_TRAP(start <= offset + len);
1351 
1352 			end = start + list->len;
1353 			if ((copy = end - offset) > 0) {
1354 				if (copy > len)
1355 					copy = len;
1356 				csum2 = skb_copy_and_csum_bits(list,
1357 							       offset - start,
1358 							       to, copy, 0);
1359 				csum = csum_block_add(csum, csum2, pos);
1360 				if ((len -= copy) == 0)
1361 					return csum;
1362 				offset += copy;
1363 				to     += copy;
1364 				pos    += copy;
1365 			}
1366 			start = end;
1367 		}
1368 	}
1369 	BUG_ON(len);
1370 	return csum;
1371 }
1372 
1373 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1374 {
1375 	__wsum csum;
1376 	long csstart;
1377 
1378 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1379 		csstart = skb->csum_start - skb_headroom(skb);
1380 	else
1381 		csstart = skb_headlen(skb);
1382 
1383 	BUG_ON(csstart > skb_headlen(skb));
1384 
1385 	skb_copy_from_linear_data(skb, to, csstart);
1386 
1387 	csum = 0;
1388 	if (csstart != skb->len)
1389 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1390 					      skb->len - csstart, 0);
1391 
1392 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1393 		long csstuff = csstart + skb->csum_offset;
1394 
1395 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
1396 	}
1397 }
1398 
1399 /**
1400  *	skb_dequeue - remove from the head of the queue
1401  *	@list: list to dequeue from
1402  *
1403  *	Remove the head of the list. The list lock is taken so the function
1404  *	may be used safely with other locking list functions. The head item is
1405  *	returned or %NULL if the list is empty.
1406  */
1407 
1408 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1409 {
1410 	unsigned long flags;
1411 	struct sk_buff *result;
1412 
1413 	spin_lock_irqsave(&list->lock, flags);
1414 	result = __skb_dequeue(list);
1415 	spin_unlock_irqrestore(&list->lock, flags);
1416 	return result;
1417 }
1418 
1419 /**
1420  *	skb_dequeue_tail - remove from the tail of the queue
1421  *	@list: list to dequeue from
1422  *
1423  *	Remove the tail of the list. The list lock is taken so the function
1424  *	may be used safely with other locking list functions. The tail item is
1425  *	returned or %NULL if the list is empty.
1426  */
1427 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1428 {
1429 	unsigned long flags;
1430 	struct sk_buff *result;
1431 
1432 	spin_lock_irqsave(&list->lock, flags);
1433 	result = __skb_dequeue_tail(list);
1434 	spin_unlock_irqrestore(&list->lock, flags);
1435 	return result;
1436 }
1437 
1438 /**
1439  *	skb_queue_purge - empty a list
1440  *	@list: list to empty
1441  *
1442  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1443  *	the list and one reference dropped. This function takes the list
1444  *	lock and is atomic with respect to other list locking functions.
1445  */
1446 void skb_queue_purge(struct sk_buff_head *list)
1447 {
1448 	struct sk_buff *skb;
1449 	while ((skb = skb_dequeue(list)) != NULL)
1450 		kfree_skb(skb);
1451 }
1452 
1453 /**
1454  *	skb_queue_head - queue a buffer at the list head
1455  *	@list: list to use
1456  *	@newsk: buffer to queue
1457  *
1458  *	Queue a buffer at the start of the list. This function takes the
1459  *	list lock and can be used safely with other locking &sk_buff functions
1460  *	safely.
1461  *
1462  *	A buffer cannot be placed on two lists at the same time.
1463  */
1464 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1465 {
1466 	unsigned long flags;
1467 
1468 	spin_lock_irqsave(&list->lock, flags);
1469 	__skb_queue_head(list, newsk);
1470 	spin_unlock_irqrestore(&list->lock, flags);
1471 }
1472 
1473 /**
1474  *	skb_queue_tail - queue a buffer at the list tail
1475  *	@list: list to use
1476  *	@newsk: buffer to queue
1477  *
1478  *	Queue a buffer at the tail of the list. This function takes the
1479  *	list lock and can be used safely with other locking &sk_buff functions
1480  *	safely.
1481  *
1482  *	A buffer cannot be placed on two lists at the same time.
1483  */
1484 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1485 {
1486 	unsigned long flags;
1487 
1488 	spin_lock_irqsave(&list->lock, flags);
1489 	__skb_queue_tail(list, newsk);
1490 	spin_unlock_irqrestore(&list->lock, flags);
1491 }
1492 
1493 /**
1494  *	skb_unlink	-	remove a buffer from a list
1495  *	@skb: buffer to remove
1496  *	@list: list to use
1497  *
1498  *	Remove a packet from a list. The list locks are taken and this
1499  *	function is atomic with respect to other list locked calls
1500  *
1501  *	You must know what list the SKB is on.
1502  */
1503 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1504 {
1505 	unsigned long flags;
1506 
1507 	spin_lock_irqsave(&list->lock, flags);
1508 	__skb_unlink(skb, list);
1509 	spin_unlock_irqrestore(&list->lock, flags);
1510 }
1511 
1512 /**
1513  *	skb_append	-	append a buffer
1514  *	@old: buffer to insert after
1515  *	@newsk: buffer to insert
1516  *	@list: list to use
1517  *
1518  *	Place a packet after a given packet in a list. The list locks are taken
1519  *	and this function is atomic with respect to other list locked calls.
1520  *	A buffer cannot be placed on two lists at the same time.
1521  */
1522 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1523 {
1524 	unsigned long flags;
1525 
1526 	spin_lock_irqsave(&list->lock, flags);
1527 	__skb_append(old, newsk, list);
1528 	spin_unlock_irqrestore(&list->lock, flags);
1529 }
1530 
1531 
1532 /**
1533  *	skb_insert	-	insert a buffer
1534  *	@old: buffer to insert before
1535  *	@newsk: buffer to insert
1536  *	@list: list to use
1537  *
1538  *	Place a packet before a given packet in a list. The list locks are
1539  * 	taken and this function is atomic with respect to other list locked
1540  *	calls.
1541  *
1542  *	A buffer cannot be placed on two lists at the same time.
1543  */
1544 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1545 {
1546 	unsigned long flags;
1547 
1548 	spin_lock_irqsave(&list->lock, flags);
1549 	__skb_insert(newsk, old->prev, old, list);
1550 	spin_unlock_irqrestore(&list->lock, flags);
1551 }
1552 
1553 static inline void skb_split_inside_header(struct sk_buff *skb,
1554 					   struct sk_buff* skb1,
1555 					   const u32 len, const int pos)
1556 {
1557 	int i;
1558 
1559 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1560 					 pos - len);
1561 	/* And move data appendix as is. */
1562 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1563 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1564 
1565 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1566 	skb_shinfo(skb)->nr_frags  = 0;
1567 	skb1->data_len		   = skb->data_len;
1568 	skb1->len		   += skb1->data_len;
1569 	skb->data_len		   = 0;
1570 	skb->len		   = len;
1571 	skb_set_tail_pointer(skb, len);
1572 }
1573 
1574 static inline void skb_split_no_header(struct sk_buff *skb,
1575 				       struct sk_buff* skb1,
1576 				       const u32 len, int pos)
1577 {
1578 	int i, k = 0;
1579 	const int nfrags = skb_shinfo(skb)->nr_frags;
1580 
1581 	skb_shinfo(skb)->nr_frags = 0;
1582 	skb1->len		  = skb1->data_len = skb->len - len;
1583 	skb->len		  = len;
1584 	skb->data_len		  = len - pos;
1585 
1586 	for (i = 0; i < nfrags; i++) {
1587 		int size = skb_shinfo(skb)->frags[i].size;
1588 
1589 		if (pos + size > len) {
1590 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1591 
1592 			if (pos < len) {
1593 				/* Split frag.
1594 				 * We have two variants in this case:
1595 				 * 1. Move all the frag to the second
1596 				 *    part, if it is possible. F.e.
1597 				 *    this approach is mandatory for TUX,
1598 				 *    where splitting is expensive.
1599 				 * 2. Split is accurately. We make this.
1600 				 */
1601 				get_page(skb_shinfo(skb)->frags[i].page);
1602 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1603 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1604 				skb_shinfo(skb)->frags[i].size	= len - pos;
1605 				skb_shinfo(skb)->nr_frags++;
1606 			}
1607 			k++;
1608 		} else
1609 			skb_shinfo(skb)->nr_frags++;
1610 		pos += size;
1611 	}
1612 	skb_shinfo(skb1)->nr_frags = k;
1613 }
1614 
1615 /**
1616  * skb_split - Split fragmented skb to two parts at length len.
1617  * @skb: the buffer to split
1618  * @skb1: the buffer to receive the second part
1619  * @len: new length for skb
1620  */
1621 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1622 {
1623 	int pos = skb_headlen(skb);
1624 
1625 	if (len < pos)	/* Split line is inside header. */
1626 		skb_split_inside_header(skb, skb1, len, pos);
1627 	else		/* Second chunk has no header, nothing to copy. */
1628 		skb_split_no_header(skb, skb1, len, pos);
1629 }
1630 
1631 /**
1632  * skb_prepare_seq_read - Prepare a sequential read of skb data
1633  * @skb: the buffer to read
1634  * @from: lower offset of data to be read
1635  * @to: upper offset of data to be read
1636  * @st: state variable
1637  *
1638  * Initializes the specified state variable. Must be called before
1639  * invoking skb_seq_read() for the first time.
1640  */
1641 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1642 			  unsigned int to, struct skb_seq_state *st)
1643 {
1644 	st->lower_offset = from;
1645 	st->upper_offset = to;
1646 	st->root_skb = st->cur_skb = skb;
1647 	st->frag_idx = st->stepped_offset = 0;
1648 	st->frag_data = NULL;
1649 }
1650 
1651 /**
1652  * skb_seq_read - Sequentially read skb data
1653  * @consumed: number of bytes consumed by the caller so far
1654  * @data: destination pointer for data to be returned
1655  * @st: state variable
1656  *
1657  * Reads a block of skb data at &consumed relative to the
1658  * lower offset specified to skb_prepare_seq_read(). Assigns
1659  * the head of the data block to &data and returns the length
1660  * of the block or 0 if the end of the skb data or the upper
1661  * offset has been reached.
1662  *
1663  * The caller is not required to consume all of the data
1664  * returned, i.e. &consumed is typically set to the number
1665  * of bytes already consumed and the next call to
1666  * skb_seq_read() will return the remaining part of the block.
1667  *
1668  * Note: The size of each block of data returned can be arbitary,
1669  *       this limitation is the cost for zerocopy seqeuental
1670  *       reads of potentially non linear data.
1671  *
1672  * Note: Fragment lists within fragments are not implemented
1673  *       at the moment, state->root_skb could be replaced with
1674  *       a stack for this purpose.
1675  */
1676 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1677 			  struct skb_seq_state *st)
1678 {
1679 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1680 	skb_frag_t *frag;
1681 
1682 	if (unlikely(abs_offset >= st->upper_offset))
1683 		return 0;
1684 
1685 next_skb:
1686 	block_limit = skb_headlen(st->cur_skb);
1687 
1688 	if (abs_offset < block_limit) {
1689 		*data = st->cur_skb->data + abs_offset;
1690 		return block_limit - abs_offset;
1691 	}
1692 
1693 	if (st->frag_idx == 0 && !st->frag_data)
1694 		st->stepped_offset += skb_headlen(st->cur_skb);
1695 
1696 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1697 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1698 		block_limit = frag->size + st->stepped_offset;
1699 
1700 		if (abs_offset < block_limit) {
1701 			if (!st->frag_data)
1702 				st->frag_data = kmap_skb_frag(frag);
1703 
1704 			*data = (u8 *) st->frag_data + frag->page_offset +
1705 				(abs_offset - st->stepped_offset);
1706 
1707 			return block_limit - abs_offset;
1708 		}
1709 
1710 		if (st->frag_data) {
1711 			kunmap_skb_frag(st->frag_data);
1712 			st->frag_data = NULL;
1713 		}
1714 
1715 		st->frag_idx++;
1716 		st->stepped_offset += frag->size;
1717 	}
1718 
1719 	if (st->frag_data) {
1720 		kunmap_skb_frag(st->frag_data);
1721 		st->frag_data = NULL;
1722 	}
1723 
1724 	if (st->cur_skb->next) {
1725 		st->cur_skb = st->cur_skb->next;
1726 		st->frag_idx = 0;
1727 		goto next_skb;
1728 	} else if (st->root_skb == st->cur_skb &&
1729 		   skb_shinfo(st->root_skb)->frag_list) {
1730 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1731 		goto next_skb;
1732 	}
1733 
1734 	return 0;
1735 }
1736 
1737 /**
1738  * skb_abort_seq_read - Abort a sequential read of skb data
1739  * @st: state variable
1740  *
1741  * Must be called if skb_seq_read() was not called until it
1742  * returned 0.
1743  */
1744 void skb_abort_seq_read(struct skb_seq_state *st)
1745 {
1746 	if (st->frag_data)
1747 		kunmap_skb_frag(st->frag_data);
1748 }
1749 
1750 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
1751 
1752 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1753 					  struct ts_config *conf,
1754 					  struct ts_state *state)
1755 {
1756 	return skb_seq_read(offset, text, TS_SKB_CB(state));
1757 }
1758 
1759 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1760 {
1761 	skb_abort_seq_read(TS_SKB_CB(state));
1762 }
1763 
1764 /**
1765  * skb_find_text - Find a text pattern in skb data
1766  * @skb: the buffer to look in
1767  * @from: search offset
1768  * @to: search limit
1769  * @config: textsearch configuration
1770  * @state: uninitialized textsearch state variable
1771  *
1772  * Finds a pattern in the skb data according to the specified
1773  * textsearch configuration. Use textsearch_next() to retrieve
1774  * subsequent occurrences of the pattern. Returns the offset
1775  * to the first occurrence or UINT_MAX if no match was found.
1776  */
1777 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1778 			   unsigned int to, struct ts_config *config,
1779 			   struct ts_state *state)
1780 {
1781 	unsigned int ret;
1782 
1783 	config->get_next_block = skb_ts_get_next_block;
1784 	config->finish = skb_ts_finish;
1785 
1786 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1787 
1788 	ret = textsearch_find(config, state);
1789 	return (ret <= to - from ? ret : UINT_MAX);
1790 }
1791 
1792 /**
1793  * skb_append_datato_frags: - append the user data to a skb
1794  * @sk: sock  structure
1795  * @skb: skb structure to be appened with user data.
1796  * @getfrag: call back function to be used for getting the user data
1797  * @from: pointer to user message iov
1798  * @length: length of the iov message
1799  *
1800  * Description: This procedure append the user data in the fragment part
1801  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
1802  */
1803 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1804 			int (*getfrag)(void *from, char *to, int offset,
1805 					int len, int odd, struct sk_buff *skb),
1806 			void *from, int length)
1807 {
1808 	int frg_cnt = 0;
1809 	skb_frag_t *frag = NULL;
1810 	struct page *page = NULL;
1811 	int copy, left;
1812 	int offset = 0;
1813 	int ret;
1814 
1815 	do {
1816 		/* Return error if we don't have space for new frag */
1817 		frg_cnt = skb_shinfo(skb)->nr_frags;
1818 		if (frg_cnt >= MAX_SKB_FRAGS)
1819 			return -EFAULT;
1820 
1821 		/* allocate a new page for next frag */
1822 		page = alloc_pages(sk->sk_allocation, 0);
1823 
1824 		/* If alloc_page fails just return failure and caller will
1825 		 * free previous allocated pages by doing kfree_skb()
1826 		 */
1827 		if (page == NULL)
1828 			return -ENOMEM;
1829 
1830 		/* initialize the next frag */
1831 		sk->sk_sndmsg_page = page;
1832 		sk->sk_sndmsg_off = 0;
1833 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1834 		skb->truesize += PAGE_SIZE;
1835 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1836 
1837 		/* get the new initialized frag */
1838 		frg_cnt = skb_shinfo(skb)->nr_frags;
1839 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1840 
1841 		/* copy the user data to page */
1842 		left = PAGE_SIZE - frag->page_offset;
1843 		copy = (length > left)? left : length;
1844 
1845 		ret = getfrag(from, (page_address(frag->page) +
1846 			    frag->page_offset + frag->size),
1847 			    offset, copy, 0, skb);
1848 		if (ret < 0)
1849 			return -EFAULT;
1850 
1851 		/* copy was successful so update the size parameters */
1852 		sk->sk_sndmsg_off += copy;
1853 		frag->size += copy;
1854 		skb->len += copy;
1855 		skb->data_len += copy;
1856 		offset += copy;
1857 		length -= copy;
1858 
1859 	} while (length > 0);
1860 
1861 	return 0;
1862 }
1863 
1864 /**
1865  *	skb_pull_rcsum - pull skb and update receive checksum
1866  *	@skb: buffer to update
1867  *	@start: start of data before pull
1868  *	@len: length of data pulled
1869  *
1870  *	This function performs an skb_pull on the packet and updates
1871  *	update the CHECKSUM_COMPLETE checksum.  It should be used on
1872  *	receive path processing instead of skb_pull unless you know
1873  *	that the checksum difference is zero (e.g., a valid IP header)
1874  *	or you are setting ip_summed to CHECKSUM_NONE.
1875  */
1876 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
1877 {
1878 	BUG_ON(len > skb->len);
1879 	skb->len -= len;
1880 	BUG_ON(skb->len < skb->data_len);
1881 	skb_postpull_rcsum(skb, skb->data, len);
1882 	return skb->data += len;
1883 }
1884 
1885 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
1886 
1887 /**
1888  *	skb_segment - Perform protocol segmentation on skb.
1889  *	@skb: buffer to segment
1890  *	@features: features for the output path (see dev->features)
1891  *
1892  *	This function performs segmentation on the given skb.  It returns
1893  *	the segment at the given position.  It returns NULL if there are
1894  *	no more segments to generate, or when an error is encountered.
1895  */
1896 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
1897 {
1898 	struct sk_buff *segs = NULL;
1899 	struct sk_buff *tail = NULL;
1900 	unsigned int mss = skb_shinfo(skb)->gso_size;
1901 	unsigned int doffset = skb->data - skb_mac_header(skb);
1902 	unsigned int offset = doffset;
1903 	unsigned int headroom;
1904 	unsigned int len;
1905 	int sg = features & NETIF_F_SG;
1906 	int nfrags = skb_shinfo(skb)->nr_frags;
1907 	int err = -ENOMEM;
1908 	int i = 0;
1909 	int pos;
1910 
1911 	__skb_push(skb, doffset);
1912 	headroom = skb_headroom(skb);
1913 	pos = skb_headlen(skb);
1914 
1915 	do {
1916 		struct sk_buff *nskb;
1917 		skb_frag_t *frag;
1918 		int hsize;
1919 		int k;
1920 		int size;
1921 
1922 		len = skb->len - offset;
1923 		if (len > mss)
1924 			len = mss;
1925 
1926 		hsize = skb_headlen(skb) - offset;
1927 		if (hsize < 0)
1928 			hsize = 0;
1929 		if (hsize > len || !sg)
1930 			hsize = len;
1931 
1932 		nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
1933 		if (unlikely(!nskb))
1934 			goto err;
1935 
1936 		if (segs)
1937 			tail->next = nskb;
1938 		else
1939 			segs = nskb;
1940 		tail = nskb;
1941 
1942 		nskb->dev = skb->dev;
1943 		skb_copy_queue_mapping(nskb, skb);
1944 		nskb->priority = skb->priority;
1945 		nskb->protocol = skb->protocol;
1946 		nskb->dst = dst_clone(skb->dst);
1947 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
1948 		nskb->pkt_type = skb->pkt_type;
1949 		nskb->mac_len = skb->mac_len;
1950 
1951 		skb_reserve(nskb, headroom);
1952 		skb_reset_mac_header(nskb);
1953 		skb_set_network_header(nskb, skb->mac_len);
1954 		nskb->transport_header = (nskb->network_header +
1955 					  skb_network_header_len(skb));
1956 		skb_copy_from_linear_data(skb, skb_put(nskb, doffset),
1957 					  doffset);
1958 		if (!sg) {
1959 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
1960 							    skb_put(nskb, len),
1961 							    len, 0);
1962 			continue;
1963 		}
1964 
1965 		frag = skb_shinfo(nskb)->frags;
1966 		k = 0;
1967 
1968 		nskb->ip_summed = CHECKSUM_PARTIAL;
1969 		nskb->csum = skb->csum;
1970 		skb_copy_from_linear_data_offset(skb, offset,
1971 						 skb_put(nskb, hsize), hsize);
1972 
1973 		while (pos < offset + len) {
1974 			BUG_ON(i >= nfrags);
1975 
1976 			*frag = skb_shinfo(skb)->frags[i];
1977 			get_page(frag->page);
1978 			size = frag->size;
1979 
1980 			if (pos < offset) {
1981 				frag->page_offset += offset - pos;
1982 				frag->size -= offset - pos;
1983 			}
1984 
1985 			k++;
1986 
1987 			if (pos + size <= offset + len) {
1988 				i++;
1989 				pos += size;
1990 			} else {
1991 				frag->size -= pos + size - (offset + len);
1992 				break;
1993 			}
1994 
1995 			frag++;
1996 		}
1997 
1998 		skb_shinfo(nskb)->nr_frags = k;
1999 		nskb->data_len = len - hsize;
2000 		nskb->len += nskb->data_len;
2001 		nskb->truesize += nskb->data_len;
2002 	} while ((offset += len) < skb->len);
2003 
2004 	return segs;
2005 
2006 err:
2007 	while ((skb = segs)) {
2008 		segs = skb->next;
2009 		kfree_skb(skb);
2010 	}
2011 	return ERR_PTR(err);
2012 }
2013 
2014 EXPORT_SYMBOL_GPL(skb_segment);
2015 
2016 void __init skb_init(void)
2017 {
2018 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2019 					      sizeof(struct sk_buff),
2020 					      0,
2021 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2022 					      NULL);
2023 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2024 						(2*sizeof(struct sk_buff)) +
2025 						sizeof(atomic_t),
2026 						0,
2027 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2028 						NULL);
2029 }
2030 
2031 /**
2032  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2033  *	@skb: Socket buffer containing the buffers to be mapped
2034  *	@sg: The scatter-gather list to map into
2035  *	@offset: The offset into the buffer's contents to start mapping
2036  *	@len: Length of buffer space to be mapped
2037  *
2038  *	Fill the specified scatter-gather list with mappings/pointers into a
2039  *	region of the buffer space attached to a socket buffer.
2040  */
2041 int
2042 skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2043 {
2044 	int start = skb_headlen(skb);
2045 	int i, copy = start - offset;
2046 	int elt = 0;
2047 
2048 	if (copy > 0) {
2049 		if (copy > len)
2050 			copy = len;
2051 		sg[elt].page = virt_to_page(skb->data + offset);
2052 		sg[elt].offset = (unsigned long)(skb->data + offset) % PAGE_SIZE;
2053 		sg[elt].length = copy;
2054 		elt++;
2055 		if ((len -= copy) == 0)
2056 			return elt;
2057 		offset += copy;
2058 	}
2059 
2060 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2061 		int end;
2062 
2063 		BUG_TRAP(start <= offset + len);
2064 
2065 		end = start + skb_shinfo(skb)->frags[i].size;
2066 		if ((copy = end - offset) > 0) {
2067 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2068 
2069 			if (copy > len)
2070 				copy = len;
2071 			sg[elt].page = frag->page;
2072 			sg[elt].offset = frag->page_offset+offset-start;
2073 			sg[elt].length = copy;
2074 			elt++;
2075 			if (!(len -= copy))
2076 				return elt;
2077 			offset += copy;
2078 		}
2079 		start = end;
2080 	}
2081 
2082 	if (skb_shinfo(skb)->frag_list) {
2083 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2084 
2085 		for (; list; list = list->next) {
2086 			int end;
2087 
2088 			BUG_TRAP(start <= offset + len);
2089 
2090 			end = start + list->len;
2091 			if ((copy = end - offset) > 0) {
2092 				if (copy > len)
2093 					copy = len;
2094 				elt += skb_to_sgvec(list, sg+elt, offset - start, copy);
2095 				if ((len -= copy) == 0)
2096 					return elt;
2097 				offset += copy;
2098 			}
2099 			start = end;
2100 		}
2101 	}
2102 	BUG_ON(len);
2103 	return elt;
2104 }
2105 
2106 /**
2107  *	skb_cow_data - Check that a socket buffer's data buffers are writable
2108  *	@skb: The socket buffer to check.
2109  *	@tailbits: Amount of trailing space to be added
2110  *	@trailer: Returned pointer to the skb where the @tailbits space begins
2111  *
2112  *	Make sure that the data buffers attached to a socket buffer are
2113  *	writable. If they are not, private copies are made of the data buffers
2114  *	and the socket buffer is set to use these instead.
2115  *
2116  *	If @tailbits is given, make sure that there is space to write @tailbits
2117  *	bytes of data beyond current end of socket buffer.  @trailer will be
2118  *	set to point to the skb in which this space begins.
2119  *
2120  *	The number of scatterlist elements required to completely map the
2121  *	COW'd and extended socket buffer will be returned.
2122  */
2123 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2124 {
2125 	int copyflag;
2126 	int elt;
2127 	struct sk_buff *skb1, **skb_p;
2128 
2129 	/* If skb is cloned or its head is paged, reallocate
2130 	 * head pulling out all the pages (pages are considered not writable
2131 	 * at the moment even if they are anonymous).
2132 	 */
2133 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2134 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2135 		return -ENOMEM;
2136 
2137 	/* Easy case. Most of packets will go this way. */
2138 	if (!skb_shinfo(skb)->frag_list) {
2139 		/* A little of trouble, not enough of space for trailer.
2140 		 * This should not happen, when stack is tuned to generate
2141 		 * good frames. OK, on miss we reallocate and reserve even more
2142 		 * space, 128 bytes is fair. */
2143 
2144 		if (skb_tailroom(skb) < tailbits &&
2145 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2146 			return -ENOMEM;
2147 
2148 		/* Voila! */
2149 		*trailer = skb;
2150 		return 1;
2151 	}
2152 
2153 	/* Misery. We are in troubles, going to mincer fragments... */
2154 
2155 	elt = 1;
2156 	skb_p = &skb_shinfo(skb)->frag_list;
2157 	copyflag = 0;
2158 
2159 	while ((skb1 = *skb_p) != NULL) {
2160 		int ntail = 0;
2161 
2162 		/* The fragment is partially pulled by someone,
2163 		 * this can happen on input. Copy it and everything
2164 		 * after it. */
2165 
2166 		if (skb_shared(skb1))
2167 			copyflag = 1;
2168 
2169 		/* If the skb is the last, worry about trailer. */
2170 
2171 		if (skb1->next == NULL && tailbits) {
2172 			if (skb_shinfo(skb1)->nr_frags ||
2173 			    skb_shinfo(skb1)->frag_list ||
2174 			    skb_tailroom(skb1) < tailbits)
2175 				ntail = tailbits + 128;
2176 		}
2177 
2178 		if (copyflag ||
2179 		    skb_cloned(skb1) ||
2180 		    ntail ||
2181 		    skb_shinfo(skb1)->nr_frags ||
2182 		    skb_shinfo(skb1)->frag_list) {
2183 			struct sk_buff *skb2;
2184 
2185 			/* Fuck, we are miserable poor guys... */
2186 			if (ntail == 0)
2187 				skb2 = skb_copy(skb1, GFP_ATOMIC);
2188 			else
2189 				skb2 = skb_copy_expand(skb1,
2190 						       skb_headroom(skb1),
2191 						       ntail,
2192 						       GFP_ATOMIC);
2193 			if (unlikely(skb2 == NULL))
2194 				return -ENOMEM;
2195 
2196 			if (skb1->sk)
2197 				skb_set_owner_w(skb2, skb1->sk);
2198 
2199 			/* Looking around. Are we still alive?
2200 			 * OK, link new skb, drop old one */
2201 
2202 			skb2->next = skb1->next;
2203 			*skb_p = skb2;
2204 			kfree_skb(skb1);
2205 			skb1 = skb2;
2206 		}
2207 		elt++;
2208 		*trailer = skb1;
2209 		skb_p = &skb1->next;
2210 	}
2211 
2212 	return elt;
2213 }
2214 
2215 EXPORT_SYMBOL(___pskb_trim);
2216 EXPORT_SYMBOL(__kfree_skb);
2217 EXPORT_SYMBOL(kfree_skb);
2218 EXPORT_SYMBOL(__pskb_pull_tail);
2219 EXPORT_SYMBOL(__alloc_skb);
2220 EXPORT_SYMBOL(__netdev_alloc_skb);
2221 EXPORT_SYMBOL(pskb_copy);
2222 EXPORT_SYMBOL(pskb_expand_head);
2223 EXPORT_SYMBOL(skb_checksum);
2224 EXPORT_SYMBOL(skb_clone);
2225 EXPORT_SYMBOL(skb_copy);
2226 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2227 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2228 EXPORT_SYMBOL(skb_copy_bits);
2229 EXPORT_SYMBOL(skb_copy_expand);
2230 EXPORT_SYMBOL(skb_over_panic);
2231 EXPORT_SYMBOL(skb_pad);
2232 EXPORT_SYMBOL(skb_realloc_headroom);
2233 EXPORT_SYMBOL(skb_under_panic);
2234 EXPORT_SYMBOL(skb_dequeue);
2235 EXPORT_SYMBOL(skb_dequeue_tail);
2236 EXPORT_SYMBOL(skb_insert);
2237 EXPORT_SYMBOL(skb_queue_purge);
2238 EXPORT_SYMBOL(skb_queue_head);
2239 EXPORT_SYMBOL(skb_queue_tail);
2240 EXPORT_SYMBOL(skb_unlink);
2241 EXPORT_SYMBOL(skb_append);
2242 EXPORT_SYMBOL(skb_split);
2243 EXPORT_SYMBOL(skb_prepare_seq_read);
2244 EXPORT_SYMBOL(skb_seq_read);
2245 EXPORT_SYMBOL(skb_abort_seq_read);
2246 EXPORT_SYMBOL(skb_find_text);
2247 EXPORT_SYMBOL(skb_append_datato_frags);
2248 
2249 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2250 EXPORT_SYMBOL_GPL(skb_cow_data);
2251