1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $ 8 * 9 * Fixes: 10 * Alan Cox : Fixed the worst of the load 11 * balancer bugs. 12 * Dave Platt : Interrupt stacking fix. 13 * Richard Kooijman : Timestamp fixes. 14 * Alan Cox : Changed buffer format. 15 * Alan Cox : destructor hook for AF_UNIX etc. 16 * Linus Torvalds : Better skb_clone. 17 * Alan Cox : Added skb_copy. 18 * Alan Cox : Added all the changed routines Linus 19 * only put in the headers 20 * Ray VanTassle : Fixed --skb->lock in free 21 * Alan Cox : skb_copy copy arp field 22 * Andi Kleen : slabified it. 23 * Robert Olsson : Removed skb_head_pool 24 * 25 * NOTE: 26 * The __skb_ routines should be called with interrupts 27 * disabled, or you better be *real* sure that the operation is atomic 28 * with respect to whatever list is being frobbed (e.g. via lock_sock() 29 * or via disabling bottom half handlers, etc). 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License 33 * as published by the Free Software Foundation; either version 34 * 2 of the License, or (at your option) any later version. 35 */ 36 37 /* 38 * The functions in this file will not compile correctly with gcc 2.4.x 39 */ 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/mm.h> 45 #include <linux/interrupt.h> 46 #include <linux/in.h> 47 #include <linux/inet.h> 48 #include <linux/slab.h> 49 #include <linux/netdevice.h> 50 #ifdef CONFIG_NET_CLS_ACT 51 #include <net/pkt_sched.h> 52 #endif 53 #include <linux/string.h> 54 #include <linux/skbuff.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 60 #include <net/protocol.h> 61 #include <net/dst.h> 62 #include <net/sock.h> 63 #include <net/checksum.h> 64 #include <net/xfrm.h> 65 66 #include <asm/uaccess.h> 67 #include <asm/system.h> 68 69 #include "kmap_skb.h" 70 71 static struct kmem_cache *skbuff_head_cache __read_mostly; 72 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 73 74 /* 75 * Keep out-of-line to prevent kernel bloat. 76 * __builtin_return_address is not used because it is not always 77 * reliable. 78 */ 79 80 /** 81 * skb_over_panic - private function 82 * @skb: buffer 83 * @sz: size 84 * @here: address 85 * 86 * Out of line support code for skb_put(). Not user callable. 87 */ 88 void skb_over_panic(struct sk_buff *skb, int sz, void *here) 89 { 90 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 91 "data:%p tail:%#lx end:%#lx dev:%s\n", 92 here, skb->len, sz, skb->head, skb->data, 93 (unsigned long)skb->tail, (unsigned long)skb->end, 94 skb->dev ? skb->dev->name : "<NULL>"); 95 BUG(); 96 } 97 98 /** 99 * skb_under_panic - private function 100 * @skb: buffer 101 * @sz: size 102 * @here: address 103 * 104 * Out of line support code for skb_push(). Not user callable. 105 */ 106 107 void skb_under_panic(struct sk_buff *skb, int sz, void *here) 108 { 109 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 110 "data:%p tail:%#lx end:%#lx dev:%s\n", 111 here, skb->len, sz, skb->head, skb->data, 112 (unsigned long)skb->tail, (unsigned long)skb->end, 113 skb->dev ? skb->dev->name : "<NULL>"); 114 BUG(); 115 } 116 117 void skb_truesize_bug(struct sk_buff *skb) 118 { 119 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) " 120 "len=%u, sizeof(sk_buff)=%Zd\n", 121 skb->truesize, skb->len, sizeof(struct sk_buff)); 122 } 123 EXPORT_SYMBOL(skb_truesize_bug); 124 125 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 126 * 'private' fields and also do memory statistics to find all the 127 * [BEEP] leaks. 128 * 129 */ 130 131 /** 132 * __alloc_skb - allocate a network buffer 133 * @size: size to allocate 134 * @gfp_mask: allocation mask 135 * @fclone: allocate from fclone cache instead of head cache 136 * and allocate a cloned (child) skb 137 * @node: numa node to allocate memory on 138 * 139 * Allocate a new &sk_buff. The returned buffer has no headroom and a 140 * tail room of size bytes. The object has a reference count of one. 141 * The return is the buffer. On a failure the return is %NULL. 142 * 143 * Buffers may only be allocated from interrupts using a @gfp_mask of 144 * %GFP_ATOMIC. 145 */ 146 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 147 int fclone, int node) 148 { 149 struct kmem_cache *cache; 150 struct skb_shared_info *shinfo; 151 struct sk_buff *skb; 152 u8 *data; 153 154 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 155 156 /* Get the HEAD */ 157 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 158 if (!skb) 159 goto out; 160 161 size = SKB_DATA_ALIGN(size); 162 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info), 163 gfp_mask, node); 164 if (!data) 165 goto nodata; 166 167 /* 168 * See comment in sk_buff definition, just before the 'tail' member 169 */ 170 memset(skb, 0, offsetof(struct sk_buff, tail)); 171 skb->truesize = size + sizeof(struct sk_buff); 172 atomic_set(&skb->users, 1); 173 skb->head = data; 174 skb->data = data; 175 skb_reset_tail_pointer(skb); 176 skb->end = skb->tail + size; 177 /* make sure we initialize shinfo sequentially */ 178 shinfo = skb_shinfo(skb); 179 atomic_set(&shinfo->dataref, 1); 180 shinfo->nr_frags = 0; 181 shinfo->gso_size = 0; 182 shinfo->gso_segs = 0; 183 shinfo->gso_type = 0; 184 shinfo->ip6_frag_id = 0; 185 shinfo->frag_list = NULL; 186 187 if (fclone) { 188 struct sk_buff *child = skb + 1; 189 atomic_t *fclone_ref = (atomic_t *) (child + 1); 190 191 skb->fclone = SKB_FCLONE_ORIG; 192 atomic_set(fclone_ref, 1); 193 194 child->fclone = SKB_FCLONE_UNAVAILABLE; 195 } 196 out: 197 return skb; 198 nodata: 199 kmem_cache_free(cache, skb); 200 skb = NULL; 201 goto out; 202 } 203 204 /** 205 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 206 * @dev: network device to receive on 207 * @length: length to allocate 208 * @gfp_mask: get_free_pages mask, passed to alloc_skb 209 * 210 * Allocate a new &sk_buff and assign it a usage count of one. The 211 * buffer has unspecified headroom built in. Users should allocate 212 * the headroom they think they need without accounting for the 213 * built in space. The built in space is used for optimisations. 214 * 215 * %NULL is returned if there is no free memory. 216 */ 217 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 218 unsigned int length, gfp_t gfp_mask) 219 { 220 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1; 221 struct sk_buff *skb; 222 223 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node); 224 if (likely(skb)) { 225 skb_reserve(skb, NET_SKB_PAD); 226 skb->dev = dev; 227 } 228 return skb; 229 } 230 231 static void skb_drop_list(struct sk_buff **listp) 232 { 233 struct sk_buff *list = *listp; 234 235 *listp = NULL; 236 237 do { 238 struct sk_buff *this = list; 239 list = list->next; 240 kfree_skb(this); 241 } while (list); 242 } 243 244 static inline void skb_drop_fraglist(struct sk_buff *skb) 245 { 246 skb_drop_list(&skb_shinfo(skb)->frag_list); 247 } 248 249 static void skb_clone_fraglist(struct sk_buff *skb) 250 { 251 struct sk_buff *list; 252 253 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) 254 skb_get(list); 255 } 256 257 static void skb_release_data(struct sk_buff *skb) 258 { 259 if (!skb->cloned || 260 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 261 &skb_shinfo(skb)->dataref)) { 262 if (skb_shinfo(skb)->nr_frags) { 263 int i; 264 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 265 put_page(skb_shinfo(skb)->frags[i].page); 266 } 267 268 if (skb_shinfo(skb)->frag_list) 269 skb_drop_fraglist(skb); 270 271 kfree(skb->head); 272 } 273 } 274 275 /* 276 * Free an skbuff by memory without cleaning the state. 277 */ 278 void kfree_skbmem(struct sk_buff *skb) 279 { 280 struct sk_buff *other; 281 atomic_t *fclone_ref; 282 283 skb_release_data(skb); 284 switch (skb->fclone) { 285 case SKB_FCLONE_UNAVAILABLE: 286 kmem_cache_free(skbuff_head_cache, skb); 287 break; 288 289 case SKB_FCLONE_ORIG: 290 fclone_ref = (atomic_t *) (skb + 2); 291 if (atomic_dec_and_test(fclone_ref)) 292 kmem_cache_free(skbuff_fclone_cache, skb); 293 break; 294 295 case SKB_FCLONE_CLONE: 296 fclone_ref = (atomic_t *) (skb + 1); 297 other = skb - 1; 298 299 /* The clone portion is available for 300 * fast-cloning again. 301 */ 302 skb->fclone = SKB_FCLONE_UNAVAILABLE; 303 304 if (atomic_dec_and_test(fclone_ref)) 305 kmem_cache_free(skbuff_fclone_cache, other); 306 break; 307 } 308 } 309 310 /** 311 * __kfree_skb - private function 312 * @skb: buffer 313 * 314 * Free an sk_buff. Release anything attached to the buffer. 315 * Clean the state. This is an internal helper function. Users should 316 * always call kfree_skb 317 */ 318 319 void __kfree_skb(struct sk_buff *skb) 320 { 321 dst_release(skb->dst); 322 #ifdef CONFIG_XFRM 323 secpath_put(skb->sp); 324 #endif 325 if (skb->destructor) { 326 WARN_ON(in_irq()); 327 skb->destructor(skb); 328 } 329 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 330 nf_conntrack_put(skb->nfct); 331 nf_conntrack_put_reasm(skb->nfct_reasm); 332 #endif 333 #ifdef CONFIG_BRIDGE_NETFILTER 334 nf_bridge_put(skb->nf_bridge); 335 #endif 336 /* XXX: IS this still necessary? - JHS */ 337 #ifdef CONFIG_NET_SCHED 338 skb->tc_index = 0; 339 #ifdef CONFIG_NET_CLS_ACT 340 skb->tc_verd = 0; 341 #endif 342 #endif 343 344 kfree_skbmem(skb); 345 } 346 347 /** 348 * kfree_skb - free an sk_buff 349 * @skb: buffer to free 350 * 351 * Drop a reference to the buffer and free it if the usage count has 352 * hit zero. 353 */ 354 void kfree_skb(struct sk_buff *skb) 355 { 356 if (unlikely(!skb)) 357 return; 358 if (likely(atomic_read(&skb->users) == 1)) 359 smp_rmb(); 360 else if (likely(!atomic_dec_and_test(&skb->users))) 361 return; 362 __kfree_skb(skb); 363 } 364 365 /** 366 * skb_clone - duplicate an sk_buff 367 * @skb: buffer to clone 368 * @gfp_mask: allocation priority 369 * 370 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 371 * copies share the same packet data but not structure. The new 372 * buffer has a reference count of 1. If the allocation fails the 373 * function returns %NULL otherwise the new buffer is returned. 374 * 375 * If this function is called from an interrupt gfp_mask() must be 376 * %GFP_ATOMIC. 377 */ 378 379 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 380 { 381 struct sk_buff *n; 382 383 n = skb + 1; 384 if (skb->fclone == SKB_FCLONE_ORIG && 385 n->fclone == SKB_FCLONE_UNAVAILABLE) { 386 atomic_t *fclone_ref = (atomic_t *) (n + 1); 387 n->fclone = SKB_FCLONE_CLONE; 388 atomic_inc(fclone_ref); 389 } else { 390 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 391 if (!n) 392 return NULL; 393 n->fclone = SKB_FCLONE_UNAVAILABLE; 394 } 395 396 #define C(x) n->x = skb->x 397 398 n->next = n->prev = NULL; 399 n->sk = NULL; 400 C(tstamp); 401 C(dev); 402 C(transport_header); 403 C(network_header); 404 C(mac_header); 405 C(dst); 406 dst_clone(skb->dst); 407 C(sp); 408 #ifdef CONFIG_INET 409 secpath_get(skb->sp); 410 #endif 411 memcpy(n->cb, skb->cb, sizeof(skb->cb)); 412 C(len); 413 C(data_len); 414 C(mac_len); 415 C(csum); 416 C(local_df); 417 n->cloned = 1; 418 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 419 n->nohdr = 0; 420 C(pkt_type); 421 C(ip_summed); 422 skb_copy_queue_mapping(n, skb); 423 C(priority); 424 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 425 C(ipvs_property); 426 #endif 427 C(protocol); 428 n->destructor = NULL; 429 C(mark); 430 __nf_copy(n, skb); 431 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \ 432 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE) 433 C(nf_trace); 434 #endif 435 #ifdef CONFIG_NET_SCHED 436 C(tc_index); 437 #ifdef CONFIG_NET_CLS_ACT 438 n->tc_verd = SET_TC_VERD(skb->tc_verd,0); 439 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd); 440 n->tc_verd = CLR_TC_MUNGED(n->tc_verd); 441 C(iif); 442 #endif 443 #endif 444 skb_copy_secmark(n, skb); 445 C(truesize); 446 atomic_set(&n->users, 1); 447 C(head); 448 C(data); 449 C(tail); 450 C(end); 451 452 atomic_inc(&(skb_shinfo(skb)->dataref)); 453 skb->cloned = 1; 454 455 return n; 456 } 457 458 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 459 { 460 #ifndef NET_SKBUFF_DATA_USES_OFFSET 461 /* 462 * Shift between the two data areas in bytes 463 */ 464 unsigned long offset = new->data - old->data; 465 #endif 466 new->sk = NULL; 467 new->dev = old->dev; 468 skb_copy_queue_mapping(new, old); 469 new->priority = old->priority; 470 new->protocol = old->protocol; 471 new->dst = dst_clone(old->dst); 472 #ifdef CONFIG_INET 473 new->sp = secpath_get(old->sp); 474 #endif 475 new->csum_start = old->csum_start; 476 new->csum_offset = old->csum_offset; 477 new->ip_summed = old->ip_summed; 478 new->transport_header = old->transport_header; 479 new->network_header = old->network_header; 480 new->mac_header = old->mac_header; 481 #ifndef NET_SKBUFF_DATA_USES_OFFSET 482 /* {transport,network,mac}_header are relative to skb->head */ 483 new->transport_header += offset; 484 new->network_header += offset; 485 new->mac_header += offset; 486 #endif 487 memcpy(new->cb, old->cb, sizeof(old->cb)); 488 new->local_df = old->local_df; 489 new->fclone = SKB_FCLONE_UNAVAILABLE; 490 new->pkt_type = old->pkt_type; 491 new->tstamp = old->tstamp; 492 new->destructor = NULL; 493 new->mark = old->mark; 494 __nf_copy(new, old); 495 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \ 496 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE) 497 new->nf_trace = old->nf_trace; 498 #endif 499 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 500 new->ipvs_property = old->ipvs_property; 501 #endif 502 #ifdef CONFIG_NET_SCHED 503 #ifdef CONFIG_NET_CLS_ACT 504 new->tc_verd = old->tc_verd; 505 #endif 506 new->tc_index = old->tc_index; 507 #endif 508 skb_copy_secmark(new, old); 509 atomic_set(&new->users, 1); 510 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 511 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 512 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 513 } 514 515 /** 516 * skb_copy - create private copy of an sk_buff 517 * @skb: buffer to copy 518 * @gfp_mask: allocation priority 519 * 520 * Make a copy of both an &sk_buff and its data. This is used when the 521 * caller wishes to modify the data and needs a private copy of the 522 * data to alter. Returns %NULL on failure or the pointer to the buffer 523 * on success. The returned buffer has a reference count of 1. 524 * 525 * As by-product this function converts non-linear &sk_buff to linear 526 * one, so that &sk_buff becomes completely private and caller is allowed 527 * to modify all the data of returned buffer. This means that this 528 * function is not recommended for use in circumstances when only 529 * header is going to be modified. Use pskb_copy() instead. 530 */ 531 532 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 533 { 534 int headerlen = skb->data - skb->head; 535 /* 536 * Allocate the copy buffer 537 */ 538 struct sk_buff *n; 539 #ifdef NET_SKBUFF_DATA_USES_OFFSET 540 n = alloc_skb(skb->end + skb->data_len, gfp_mask); 541 #else 542 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask); 543 #endif 544 if (!n) 545 return NULL; 546 547 /* Set the data pointer */ 548 skb_reserve(n, headerlen); 549 /* Set the tail pointer and length */ 550 skb_put(n, skb->len); 551 552 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 553 BUG(); 554 555 copy_skb_header(n, skb); 556 return n; 557 } 558 559 560 /** 561 * pskb_copy - create copy of an sk_buff with private head. 562 * @skb: buffer to copy 563 * @gfp_mask: allocation priority 564 * 565 * Make a copy of both an &sk_buff and part of its data, located 566 * in header. Fragmented data remain shared. This is used when 567 * the caller wishes to modify only header of &sk_buff and needs 568 * private copy of the header to alter. Returns %NULL on failure 569 * or the pointer to the buffer on success. 570 * The returned buffer has a reference count of 1. 571 */ 572 573 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 574 { 575 /* 576 * Allocate the copy buffer 577 */ 578 struct sk_buff *n; 579 #ifdef NET_SKBUFF_DATA_USES_OFFSET 580 n = alloc_skb(skb->end, gfp_mask); 581 #else 582 n = alloc_skb(skb->end - skb->head, gfp_mask); 583 #endif 584 if (!n) 585 goto out; 586 587 /* Set the data pointer */ 588 skb_reserve(n, skb->data - skb->head); 589 /* Set the tail pointer and length */ 590 skb_put(n, skb_headlen(skb)); 591 /* Copy the bytes */ 592 skb_copy_from_linear_data(skb, n->data, n->len); 593 594 n->truesize += skb->data_len; 595 n->data_len = skb->data_len; 596 n->len = skb->len; 597 598 if (skb_shinfo(skb)->nr_frags) { 599 int i; 600 601 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 602 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 603 get_page(skb_shinfo(n)->frags[i].page); 604 } 605 skb_shinfo(n)->nr_frags = i; 606 } 607 608 if (skb_shinfo(skb)->frag_list) { 609 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 610 skb_clone_fraglist(n); 611 } 612 613 copy_skb_header(n, skb); 614 out: 615 return n; 616 } 617 618 /** 619 * pskb_expand_head - reallocate header of &sk_buff 620 * @skb: buffer to reallocate 621 * @nhead: room to add at head 622 * @ntail: room to add at tail 623 * @gfp_mask: allocation priority 624 * 625 * Expands (or creates identical copy, if &nhead and &ntail are zero) 626 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 627 * reference count of 1. Returns zero in the case of success or error, 628 * if expansion failed. In the last case, &sk_buff is not changed. 629 * 630 * All the pointers pointing into skb header may change and must be 631 * reloaded after call to this function. 632 */ 633 634 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 635 gfp_t gfp_mask) 636 { 637 int i; 638 u8 *data; 639 #ifdef NET_SKBUFF_DATA_USES_OFFSET 640 int size = nhead + skb->end + ntail; 641 #else 642 int size = nhead + (skb->end - skb->head) + ntail; 643 #endif 644 long off; 645 646 if (skb_shared(skb)) 647 BUG(); 648 649 size = SKB_DATA_ALIGN(size); 650 651 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 652 if (!data) 653 goto nodata; 654 655 /* Copy only real data... and, alas, header. This should be 656 * optimized for the cases when header is void. */ 657 #ifdef NET_SKBUFF_DATA_USES_OFFSET 658 memcpy(data + nhead, skb->head, skb->tail); 659 #else 660 memcpy(data + nhead, skb->head, skb->tail - skb->head); 661 #endif 662 memcpy(data + size, skb_end_pointer(skb), 663 sizeof(struct skb_shared_info)); 664 665 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 666 get_page(skb_shinfo(skb)->frags[i].page); 667 668 if (skb_shinfo(skb)->frag_list) 669 skb_clone_fraglist(skb); 670 671 skb_release_data(skb); 672 673 off = (data + nhead) - skb->head; 674 675 skb->head = data; 676 skb->data += off; 677 #ifdef NET_SKBUFF_DATA_USES_OFFSET 678 skb->end = size; 679 off = nhead; 680 #else 681 skb->end = skb->head + size; 682 #endif 683 /* {transport,network,mac}_header and tail are relative to skb->head */ 684 skb->tail += off; 685 skb->transport_header += off; 686 skb->network_header += off; 687 skb->mac_header += off; 688 skb->csum_start += off; 689 skb->cloned = 0; 690 skb->hdr_len = 0; 691 skb->nohdr = 0; 692 atomic_set(&skb_shinfo(skb)->dataref, 1); 693 return 0; 694 695 nodata: 696 return -ENOMEM; 697 } 698 699 /* Make private copy of skb with writable head and some headroom */ 700 701 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 702 { 703 struct sk_buff *skb2; 704 int delta = headroom - skb_headroom(skb); 705 706 if (delta <= 0) 707 skb2 = pskb_copy(skb, GFP_ATOMIC); 708 else { 709 skb2 = skb_clone(skb, GFP_ATOMIC); 710 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 711 GFP_ATOMIC)) { 712 kfree_skb(skb2); 713 skb2 = NULL; 714 } 715 } 716 return skb2; 717 } 718 719 720 /** 721 * skb_copy_expand - copy and expand sk_buff 722 * @skb: buffer to copy 723 * @newheadroom: new free bytes at head 724 * @newtailroom: new free bytes at tail 725 * @gfp_mask: allocation priority 726 * 727 * Make a copy of both an &sk_buff and its data and while doing so 728 * allocate additional space. 729 * 730 * This is used when the caller wishes to modify the data and needs a 731 * private copy of the data to alter as well as more space for new fields. 732 * Returns %NULL on failure or the pointer to the buffer 733 * on success. The returned buffer has a reference count of 1. 734 * 735 * You must pass %GFP_ATOMIC as the allocation priority if this function 736 * is called from an interrupt. 737 */ 738 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 739 int newheadroom, int newtailroom, 740 gfp_t gfp_mask) 741 { 742 /* 743 * Allocate the copy buffer 744 */ 745 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 746 gfp_mask); 747 int oldheadroom = skb_headroom(skb); 748 int head_copy_len, head_copy_off; 749 int off; 750 751 if (!n) 752 return NULL; 753 754 skb_reserve(n, newheadroom); 755 756 /* Set the tail pointer and length */ 757 skb_put(n, skb->len); 758 759 head_copy_len = oldheadroom; 760 head_copy_off = 0; 761 if (newheadroom <= head_copy_len) 762 head_copy_len = newheadroom; 763 else 764 head_copy_off = newheadroom - head_copy_len; 765 766 /* Copy the linear header and data. */ 767 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 768 skb->len + head_copy_len)) 769 BUG(); 770 771 copy_skb_header(n, skb); 772 773 off = newheadroom - oldheadroom; 774 n->csum_start += off; 775 #ifdef NET_SKBUFF_DATA_USES_OFFSET 776 n->transport_header += off; 777 n->network_header += off; 778 n->mac_header += off; 779 #endif 780 781 return n; 782 } 783 784 /** 785 * skb_pad - zero pad the tail of an skb 786 * @skb: buffer to pad 787 * @pad: space to pad 788 * 789 * Ensure that a buffer is followed by a padding area that is zero 790 * filled. Used by network drivers which may DMA or transfer data 791 * beyond the buffer end onto the wire. 792 * 793 * May return error in out of memory cases. The skb is freed on error. 794 */ 795 796 int skb_pad(struct sk_buff *skb, int pad) 797 { 798 int err; 799 int ntail; 800 801 /* If the skbuff is non linear tailroom is always zero.. */ 802 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 803 memset(skb->data+skb->len, 0, pad); 804 return 0; 805 } 806 807 ntail = skb->data_len + pad - (skb->end - skb->tail); 808 if (likely(skb_cloned(skb) || ntail > 0)) { 809 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 810 if (unlikely(err)) 811 goto free_skb; 812 } 813 814 /* FIXME: The use of this function with non-linear skb's really needs 815 * to be audited. 816 */ 817 err = skb_linearize(skb); 818 if (unlikely(err)) 819 goto free_skb; 820 821 memset(skb->data + skb->len, 0, pad); 822 return 0; 823 824 free_skb: 825 kfree_skb(skb); 826 return err; 827 } 828 829 /* Trims skb to length len. It can change skb pointers. 830 */ 831 832 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 833 { 834 struct sk_buff **fragp; 835 struct sk_buff *frag; 836 int offset = skb_headlen(skb); 837 int nfrags = skb_shinfo(skb)->nr_frags; 838 int i; 839 int err; 840 841 if (skb_cloned(skb) && 842 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 843 return err; 844 845 i = 0; 846 if (offset >= len) 847 goto drop_pages; 848 849 for (; i < nfrags; i++) { 850 int end = offset + skb_shinfo(skb)->frags[i].size; 851 852 if (end < len) { 853 offset = end; 854 continue; 855 } 856 857 skb_shinfo(skb)->frags[i++].size = len - offset; 858 859 drop_pages: 860 skb_shinfo(skb)->nr_frags = i; 861 862 for (; i < nfrags; i++) 863 put_page(skb_shinfo(skb)->frags[i].page); 864 865 if (skb_shinfo(skb)->frag_list) 866 skb_drop_fraglist(skb); 867 goto done; 868 } 869 870 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 871 fragp = &frag->next) { 872 int end = offset + frag->len; 873 874 if (skb_shared(frag)) { 875 struct sk_buff *nfrag; 876 877 nfrag = skb_clone(frag, GFP_ATOMIC); 878 if (unlikely(!nfrag)) 879 return -ENOMEM; 880 881 nfrag->next = frag->next; 882 kfree_skb(frag); 883 frag = nfrag; 884 *fragp = frag; 885 } 886 887 if (end < len) { 888 offset = end; 889 continue; 890 } 891 892 if (end > len && 893 unlikely((err = pskb_trim(frag, len - offset)))) 894 return err; 895 896 if (frag->next) 897 skb_drop_list(&frag->next); 898 break; 899 } 900 901 done: 902 if (len > skb_headlen(skb)) { 903 skb->data_len -= skb->len - len; 904 skb->len = len; 905 } else { 906 skb->len = len; 907 skb->data_len = 0; 908 skb_set_tail_pointer(skb, len); 909 } 910 911 return 0; 912 } 913 914 /** 915 * __pskb_pull_tail - advance tail of skb header 916 * @skb: buffer to reallocate 917 * @delta: number of bytes to advance tail 918 * 919 * The function makes a sense only on a fragmented &sk_buff, 920 * it expands header moving its tail forward and copying necessary 921 * data from fragmented part. 922 * 923 * &sk_buff MUST have reference count of 1. 924 * 925 * Returns %NULL (and &sk_buff does not change) if pull failed 926 * or value of new tail of skb in the case of success. 927 * 928 * All the pointers pointing into skb header may change and must be 929 * reloaded after call to this function. 930 */ 931 932 /* Moves tail of skb head forward, copying data from fragmented part, 933 * when it is necessary. 934 * 1. It may fail due to malloc failure. 935 * 2. It may change skb pointers. 936 * 937 * It is pretty complicated. Luckily, it is called only in exceptional cases. 938 */ 939 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 940 { 941 /* If skb has not enough free space at tail, get new one 942 * plus 128 bytes for future expansions. If we have enough 943 * room at tail, reallocate without expansion only if skb is cloned. 944 */ 945 int i, k, eat = (skb->tail + delta) - skb->end; 946 947 if (eat > 0 || skb_cloned(skb)) { 948 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 949 GFP_ATOMIC)) 950 return NULL; 951 } 952 953 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 954 BUG(); 955 956 /* Optimization: no fragments, no reasons to preestimate 957 * size of pulled pages. Superb. 958 */ 959 if (!skb_shinfo(skb)->frag_list) 960 goto pull_pages; 961 962 /* Estimate size of pulled pages. */ 963 eat = delta; 964 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 965 if (skb_shinfo(skb)->frags[i].size >= eat) 966 goto pull_pages; 967 eat -= skb_shinfo(skb)->frags[i].size; 968 } 969 970 /* If we need update frag list, we are in troubles. 971 * Certainly, it possible to add an offset to skb data, 972 * but taking into account that pulling is expected to 973 * be very rare operation, it is worth to fight against 974 * further bloating skb head and crucify ourselves here instead. 975 * Pure masohism, indeed. 8)8) 976 */ 977 if (eat) { 978 struct sk_buff *list = skb_shinfo(skb)->frag_list; 979 struct sk_buff *clone = NULL; 980 struct sk_buff *insp = NULL; 981 982 do { 983 BUG_ON(!list); 984 985 if (list->len <= eat) { 986 /* Eaten as whole. */ 987 eat -= list->len; 988 list = list->next; 989 insp = list; 990 } else { 991 /* Eaten partially. */ 992 993 if (skb_shared(list)) { 994 /* Sucks! We need to fork list. :-( */ 995 clone = skb_clone(list, GFP_ATOMIC); 996 if (!clone) 997 return NULL; 998 insp = list->next; 999 list = clone; 1000 } else { 1001 /* This may be pulled without 1002 * problems. */ 1003 insp = list; 1004 } 1005 if (!pskb_pull(list, eat)) { 1006 if (clone) 1007 kfree_skb(clone); 1008 return NULL; 1009 } 1010 break; 1011 } 1012 } while (eat); 1013 1014 /* Free pulled out fragments. */ 1015 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1016 skb_shinfo(skb)->frag_list = list->next; 1017 kfree_skb(list); 1018 } 1019 /* And insert new clone at head. */ 1020 if (clone) { 1021 clone->next = list; 1022 skb_shinfo(skb)->frag_list = clone; 1023 } 1024 } 1025 /* Success! Now we may commit changes to skb data. */ 1026 1027 pull_pages: 1028 eat = delta; 1029 k = 0; 1030 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1031 if (skb_shinfo(skb)->frags[i].size <= eat) { 1032 put_page(skb_shinfo(skb)->frags[i].page); 1033 eat -= skb_shinfo(skb)->frags[i].size; 1034 } else { 1035 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1036 if (eat) { 1037 skb_shinfo(skb)->frags[k].page_offset += eat; 1038 skb_shinfo(skb)->frags[k].size -= eat; 1039 eat = 0; 1040 } 1041 k++; 1042 } 1043 } 1044 skb_shinfo(skb)->nr_frags = k; 1045 1046 skb->tail += delta; 1047 skb->data_len -= delta; 1048 1049 return skb_tail_pointer(skb); 1050 } 1051 1052 /* Copy some data bits from skb to kernel buffer. */ 1053 1054 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1055 { 1056 int i, copy; 1057 int start = skb_headlen(skb); 1058 1059 if (offset > (int)skb->len - len) 1060 goto fault; 1061 1062 /* Copy header. */ 1063 if ((copy = start - offset) > 0) { 1064 if (copy > len) 1065 copy = len; 1066 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1067 if ((len -= copy) == 0) 1068 return 0; 1069 offset += copy; 1070 to += copy; 1071 } 1072 1073 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1074 int end; 1075 1076 BUG_TRAP(start <= offset + len); 1077 1078 end = start + skb_shinfo(skb)->frags[i].size; 1079 if ((copy = end - offset) > 0) { 1080 u8 *vaddr; 1081 1082 if (copy > len) 1083 copy = len; 1084 1085 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1086 memcpy(to, 1087 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1088 offset - start, copy); 1089 kunmap_skb_frag(vaddr); 1090 1091 if ((len -= copy) == 0) 1092 return 0; 1093 offset += copy; 1094 to += copy; 1095 } 1096 start = end; 1097 } 1098 1099 if (skb_shinfo(skb)->frag_list) { 1100 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1101 1102 for (; list; list = list->next) { 1103 int end; 1104 1105 BUG_TRAP(start <= offset + len); 1106 1107 end = start + list->len; 1108 if ((copy = end - offset) > 0) { 1109 if (copy > len) 1110 copy = len; 1111 if (skb_copy_bits(list, offset - start, 1112 to, copy)) 1113 goto fault; 1114 if ((len -= copy) == 0) 1115 return 0; 1116 offset += copy; 1117 to += copy; 1118 } 1119 start = end; 1120 } 1121 } 1122 if (!len) 1123 return 0; 1124 1125 fault: 1126 return -EFAULT; 1127 } 1128 1129 /** 1130 * skb_store_bits - store bits from kernel buffer to skb 1131 * @skb: destination buffer 1132 * @offset: offset in destination 1133 * @from: source buffer 1134 * @len: number of bytes to copy 1135 * 1136 * Copy the specified number of bytes from the source buffer to the 1137 * destination skb. This function handles all the messy bits of 1138 * traversing fragment lists and such. 1139 */ 1140 1141 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1142 { 1143 int i, copy; 1144 int start = skb_headlen(skb); 1145 1146 if (offset > (int)skb->len - len) 1147 goto fault; 1148 1149 if ((copy = start - offset) > 0) { 1150 if (copy > len) 1151 copy = len; 1152 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1153 if ((len -= copy) == 0) 1154 return 0; 1155 offset += copy; 1156 from += copy; 1157 } 1158 1159 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1160 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1161 int end; 1162 1163 BUG_TRAP(start <= offset + len); 1164 1165 end = start + frag->size; 1166 if ((copy = end - offset) > 0) { 1167 u8 *vaddr; 1168 1169 if (copy > len) 1170 copy = len; 1171 1172 vaddr = kmap_skb_frag(frag); 1173 memcpy(vaddr + frag->page_offset + offset - start, 1174 from, copy); 1175 kunmap_skb_frag(vaddr); 1176 1177 if ((len -= copy) == 0) 1178 return 0; 1179 offset += copy; 1180 from += copy; 1181 } 1182 start = end; 1183 } 1184 1185 if (skb_shinfo(skb)->frag_list) { 1186 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1187 1188 for (; list; list = list->next) { 1189 int end; 1190 1191 BUG_TRAP(start <= offset + len); 1192 1193 end = start + list->len; 1194 if ((copy = end - offset) > 0) { 1195 if (copy > len) 1196 copy = len; 1197 if (skb_store_bits(list, offset - start, 1198 from, copy)) 1199 goto fault; 1200 if ((len -= copy) == 0) 1201 return 0; 1202 offset += copy; 1203 from += copy; 1204 } 1205 start = end; 1206 } 1207 } 1208 if (!len) 1209 return 0; 1210 1211 fault: 1212 return -EFAULT; 1213 } 1214 1215 EXPORT_SYMBOL(skb_store_bits); 1216 1217 /* Checksum skb data. */ 1218 1219 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1220 int len, __wsum csum) 1221 { 1222 int start = skb_headlen(skb); 1223 int i, copy = start - offset; 1224 int pos = 0; 1225 1226 /* Checksum header. */ 1227 if (copy > 0) { 1228 if (copy > len) 1229 copy = len; 1230 csum = csum_partial(skb->data + offset, copy, csum); 1231 if ((len -= copy) == 0) 1232 return csum; 1233 offset += copy; 1234 pos = copy; 1235 } 1236 1237 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1238 int end; 1239 1240 BUG_TRAP(start <= offset + len); 1241 1242 end = start + skb_shinfo(skb)->frags[i].size; 1243 if ((copy = end - offset) > 0) { 1244 __wsum csum2; 1245 u8 *vaddr; 1246 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1247 1248 if (copy > len) 1249 copy = len; 1250 vaddr = kmap_skb_frag(frag); 1251 csum2 = csum_partial(vaddr + frag->page_offset + 1252 offset - start, copy, 0); 1253 kunmap_skb_frag(vaddr); 1254 csum = csum_block_add(csum, csum2, pos); 1255 if (!(len -= copy)) 1256 return csum; 1257 offset += copy; 1258 pos += copy; 1259 } 1260 start = end; 1261 } 1262 1263 if (skb_shinfo(skb)->frag_list) { 1264 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1265 1266 for (; list; list = list->next) { 1267 int end; 1268 1269 BUG_TRAP(start <= offset + len); 1270 1271 end = start + list->len; 1272 if ((copy = end - offset) > 0) { 1273 __wsum csum2; 1274 if (copy > len) 1275 copy = len; 1276 csum2 = skb_checksum(list, offset - start, 1277 copy, 0); 1278 csum = csum_block_add(csum, csum2, pos); 1279 if ((len -= copy) == 0) 1280 return csum; 1281 offset += copy; 1282 pos += copy; 1283 } 1284 start = end; 1285 } 1286 } 1287 BUG_ON(len); 1288 1289 return csum; 1290 } 1291 1292 /* Both of above in one bottle. */ 1293 1294 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1295 u8 *to, int len, __wsum csum) 1296 { 1297 int start = skb_headlen(skb); 1298 int i, copy = start - offset; 1299 int pos = 0; 1300 1301 /* Copy header. */ 1302 if (copy > 0) { 1303 if (copy > len) 1304 copy = len; 1305 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1306 copy, csum); 1307 if ((len -= copy) == 0) 1308 return csum; 1309 offset += copy; 1310 to += copy; 1311 pos = copy; 1312 } 1313 1314 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1315 int end; 1316 1317 BUG_TRAP(start <= offset + len); 1318 1319 end = start + skb_shinfo(skb)->frags[i].size; 1320 if ((copy = end - offset) > 0) { 1321 __wsum csum2; 1322 u8 *vaddr; 1323 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1324 1325 if (copy > len) 1326 copy = len; 1327 vaddr = kmap_skb_frag(frag); 1328 csum2 = csum_partial_copy_nocheck(vaddr + 1329 frag->page_offset + 1330 offset - start, to, 1331 copy, 0); 1332 kunmap_skb_frag(vaddr); 1333 csum = csum_block_add(csum, csum2, pos); 1334 if (!(len -= copy)) 1335 return csum; 1336 offset += copy; 1337 to += copy; 1338 pos += copy; 1339 } 1340 start = end; 1341 } 1342 1343 if (skb_shinfo(skb)->frag_list) { 1344 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1345 1346 for (; list; list = list->next) { 1347 __wsum csum2; 1348 int end; 1349 1350 BUG_TRAP(start <= offset + len); 1351 1352 end = start + list->len; 1353 if ((copy = end - offset) > 0) { 1354 if (copy > len) 1355 copy = len; 1356 csum2 = skb_copy_and_csum_bits(list, 1357 offset - start, 1358 to, copy, 0); 1359 csum = csum_block_add(csum, csum2, pos); 1360 if ((len -= copy) == 0) 1361 return csum; 1362 offset += copy; 1363 to += copy; 1364 pos += copy; 1365 } 1366 start = end; 1367 } 1368 } 1369 BUG_ON(len); 1370 return csum; 1371 } 1372 1373 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1374 { 1375 __wsum csum; 1376 long csstart; 1377 1378 if (skb->ip_summed == CHECKSUM_PARTIAL) 1379 csstart = skb->csum_start - skb_headroom(skb); 1380 else 1381 csstart = skb_headlen(skb); 1382 1383 BUG_ON(csstart > skb_headlen(skb)); 1384 1385 skb_copy_from_linear_data(skb, to, csstart); 1386 1387 csum = 0; 1388 if (csstart != skb->len) 1389 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1390 skb->len - csstart, 0); 1391 1392 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1393 long csstuff = csstart + skb->csum_offset; 1394 1395 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 1396 } 1397 } 1398 1399 /** 1400 * skb_dequeue - remove from the head of the queue 1401 * @list: list to dequeue from 1402 * 1403 * Remove the head of the list. The list lock is taken so the function 1404 * may be used safely with other locking list functions. The head item is 1405 * returned or %NULL if the list is empty. 1406 */ 1407 1408 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1409 { 1410 unsigned long flags; 1411 struct sk_buff *result; 1412 1413 spin_lock_irqsave(&list->lock, flags); 1414 result = __skb_dequeue(list); 1415 spin_unlock_irqrestore(&list->lock, flags); 1416 return result; 1417 } 1418 1419 /** 1420 * skb_dequeue_tail - remove from the tail of the queue 1421 * @list: list to dequeue from 1422 * 1423 * Remove the tail of the list. The list lock is taken so the function 1424 * may be used safely with other locking list functions. The tail item is 1425 * returned or %NULL if the list is empty. 1426 */ 1427 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1428 { 1429 unsigned long flags; 1430 struct sk_buff *result; 1431 1432 spin_lock_irqsave(&list->lock, flags); 1433 result = __skb_dequeue_tail(list); 1434 spin_unlock_irqrestore(&list->lock, flags); 1435 return result; 1436 } 1437 1438 /** 1439 * skb_queue_purge - empty a list 1440 * @list: list to empty 1441 * 1442 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1443 * the list and one reference dropped. This function takes the list 1444 * lock and is atomic with respect to other list locking functions. 1445 */ 1446 void skb_queue_purge(struct sk_buff_head *list) 1447 { 1448 struct sk_buff *skb; 1449 while ((skb = skb_dequeue(list)) != NULL) 1450 kfree_skb(skb); 1451 } 1452 1453 /** 1454 * skb_queue_head - queue a buffer at the list head 1455 * @list: list to use 1456 * @newsk: buffer to queue 1457 * 1458 * Queue a buffer at the start of the list. This function takes the 1459 * list lock and can be used safely with other locking &sk_buff functions 1460 * safely. 1461 * 1462 * A buffer cannot be placed on two lists at the same time. 1463 */ 1464 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1465 { 1466 unsigned long flags; 1467 1468 spin_lock_irqsave(&list->lock, flags); 1469 __skb_queue_head(list, newsk); 1470 spin_unlock_irqrestore(&list->lock, flags); 1471 } 1472 1473 /** 1474 * skb_queue_tail - queue a buffer at the list tail 1475 * @list: list to use 1476 * @newsk: buffer to queue 1477 * 1478 * Queue a buffer at the tail of the list. This function takes the 1479 * list lock and can be used safely with other locking &sk_buff functions 1480 * safely. 1481 * 1482 * A buffer cannot be placed on two lists at the same time. 1483 */ 1484 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1485 { 1486 unsigned long flags; 1487 1488 spin_lock_irqsave(&list->lock, flags); 1489 __skb_queue_tail(list, newsk); 1490 spin_unlock_irqrestore(&list->lock, flags); 1491 } 1492 1493 /** 1494 * skb_unlink - remove a buffer from a list 1495 * @skb: buffer to remove 1496 * @list: list to use 1497 * 1498 * Remove a packet from a list. The list locks are taken and this 1499 * function is atomic with respect to other list locked calls 1500 * 1501 * You must know what list the SKB is on. 1502 */ 1503 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1504 { 1505 unsigned long flags; 1506 1507 spin_lock_irqsave(&list->lock, flags); 1508 __skb_unlink(skb, list); 1509 spin_unlock_irqrestore(&list->lock, flags); 1510 } 1511 1512 /** 1513 * skb_append - append a buffer 1514 * @old: buffer to insert after 1515 * @newsk: buffer to insert 1516 * @list: list to use 1517 * 1518 * Place a packet after a given packet in a list. The list locks are taken 1519 * and this function is atomic with respect to other list locked calls. 1520 * A buffer cannot be placed on two lists at the same time. 1521 */ 1522 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1523 { 1524 unsigned long flags; 1525 1526 spin_lock_irqsave(&list->lock, flags); 1527 __skb_append(old, newsk, list); 1528 spin_unlock_irqrestore(&list->lock, flags); 1529 } 1530 1531 1532 /** 1533 * skb_insert - insert a buffer 1534 * @old: buffer to insert before 1535 * @newsk: buffer to insert 1536 * @list: list to use 1537 * 1538 * Place a packet before a given packet in a list. The list locks are 1539 * taken and this function is atomic with respect to other list locked 1540 * calls. 1541 * 1542 * A buffer cannot be placed on two lists at the same time. 1543 */ 1544 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1545 { 1546 unsigned long flags; 1547 1548 spin_lock_irqsave(&list->lock, flags); 1549 __skb_insert(newsk, old->prev, old, list); 1550 spin_unlock_irqrestore(&list->lock, flags); 1551 } 1552 1553 static inline void skb_split_inside_header(struct sk_buff *skb, 1554 struct sk_buff* skb1, 1555 const u32 len, const int pos) 1556 { 1557 int i; 1558 1559 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 1560 pos - len); 1561 /* And move data appendix as is. */ 1562 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1563 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 1564 1565 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 1566 skb_shinfo(skb)->nr_frags = 0; 1567 skb1->data_len = skb->data_len; 1568 skb1->len += skb1->data_len; 1569 skb->data_len = 0; 1570 skb->len = len; 1571 skb_set_tail_pointer(skb, len); 1572 } 1573 1574 static inline void skb_split_no_header(struct sk_buff *skb, 1575 struct sk_buff* skb1, 1576 const u32 len, int pos) 1577 { 1578 int i, k = 0; 1579 const int nfrags = skb_shinfo(skb)->nr_frags; 1580 1581 skb_shinfo(skb)->nr_frags = 0; 1582 skb1->len = skb1->data_len = skb->len - len; 1583 skb->len = len; 1584 skb->data_len = len - pos; 1585 1586 for (i = 0; i < nfrags; i++) { 1587 int size = skb_shinfo(skb)->frags[i].size; 1588 1589 if (pos + size > len) { 1590 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 1591 1592 if (pos < len) { 1593 /* Split frag. 1594 * We have two variants in this case: 1595 * 1. Move all the frag to the second 1596 * part, if it is possible. F.e. 1597 * this approach is mandatory for TUX, 1598 * where splitting is expensive. 1599 * 2. Split is accurately. We make this. 1600 */ 1601 get_page(skb_shinfo(skb)->frags[i].page); 1602 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 1603 skb_shinfo(skb1)->frags[0].size -= len - pos; 1604 skb_shinfo(skb)->frags[i].size = len - pos; 1605 skb_shinfo(skb)->nr_frags++; 1606 } 1607 k++; 1608 } else 1609 skb_shinfo(skb)->nr_frags++; 1610 pos += size; 1611 } 1612 skb_shinfo(skb1)->nr_frags = k; 1613 } 1614 1615 /** 1616 * skb_split - Split fragmented skb to two parts at length len. 1617 * @skb: the buffer to split 1618 * @skb1: the buffer to receive the second part 1619 * @len: new length for skb 1620 */ 1621 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 1622 { 1623 int pos = skb_headlen(skb); 1624 1625 if (len < pos) /* Split line is inside header. */ 1626 skb_split_inside_header(skb, skb1, len, pos); 1627 else /* Second chunk has no header, nothing to copy. */ 1628 skb_split_no_header(skb, skb1, len, pos); 1629 } 1630 1631 /** 1632 * skb_prepare_seq_read - Prepare a sequential read of skb data 1633 * @skb: the buffer to read 1634 * @from: lower offset of data to be read 1635 * @to: upper offset of data to be read 1636 * @st: state variable 1637 * 1638 * Initializes the specified state variable. Must be called before 1639 * invoking skb_seq_read() for the first time. 1640 */ 1641 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1642 unsigned int to, struct skb_seq_state *st) 1643 { 1644 st->lower_offset = from; 1645 st->upper_offset = to; 1646 st->root_skb = st->cur_skb = skb; 1647 st->frag_idx = st->stepped_offset = 0; 1648 st->frag_data = NULL; 1649 } 1650 1651 /** 1652 * skb_seq_read - Sequentially read skb data 1653 * @consumed: number of bytes consumed by the caller so far 1654 * @data: destination pointer for data to be returned 1655 * @st: state variable 1656 * 1657 * Reads a block of skb data at &consumed relative to the 1658 * lower offset specified to skb_prepare_seq_read(). Assigns 1659 * the head of the data block to &data and returns the length 1660 * of the block or 0 if the end of the skb data or the upper 1661 * offset has been reached. 1662 * 1663 * The caller is not required to consume all of the data 1664 * returned, i.e. &consumed is typically set to the number 1665 * of bytes already consumed and the next call to 1666 * skb_seq_read() will return the remaining part of the block. 1667 * 1668 * Note: The size of each block of data returned can be arbitary, 1669 * this limitation is the cost for zerocopy seqeuental 1670 * reads of potentially non linear data. 1671 * 1672 * Note: Fragment lists within fragments are not implemented 1673 * at the moment, state->root_skb could be replaced with 1674 * a stack for this purpose. 1675 */ 1676 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1677 struct skb_seq_state *st) 1678 { 1679 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 1680 skb_frag_t *frag; 1681 1682 if (unlikely(abs_offset >= st->upper_offset)) 1683 return 0; 1684 1685 next_skb: 1686 block_limit = skb_headlen(st->cur_skb); 1687 1688 if (abs_offset < block_limit) { 1689 *data = st->cur_skb->data + abs_offset; 1690 return block_limit - abs_offset; 1691 } 1692 1693 if (st->frag_idx == 0 && !st->frag_data) 1694 st->stepped_offset += skb_headlen(st->cur_skb); 1695 1696 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 1697 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 1698 block_limit = frag->size + st->stepped_offset; 1699 1700 if (abs_offset < block_limit) { 1701 if (!st->frag_data) 1702 st->frag_data = kmap_skb_frag(frag); 1703 1704 *data = (u8 *) st->frag_data + frag->page_offset + 1705 (abs_offset - st->stepped_offset); 1706 1707 return block_limit - abs_offset; 1708 } 1709 1710 if (st->frag_data) { 1711 kunmap_skb_frag(st->frag_data); 1712 st->frag_data = NULL; 1713 } 1714 1715 st->frag_idx++; 1716 st->stepped_offset += frag->size; 1717 } 1718 1719 if (st->frag_data) { 1720 kunmap_skb_frag(st->frag_data); 1721 st->frag_data = NULL; 1722 } 1723 1724 if (st->cur_skb->next) { 1725 st->cur_skb = st->cur_skb->next; 1726 st->frag_idx = 0; 1727 goto next_skb; 1728 } else if (st->root_skb == st->cur_skb && 1729 skb_shinfo(st->root_skb)->frag_list) { 1730 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 1731 goto next_skb; 1732 } 1733 1734 return 0; 1735 } 1736 1737 /** 1738 * skb_abort_seq_read - Abort a sequential read of skb data 1739 * @st: state variable 1740 * 1741 * Must be called if skb_seq_read() was not called until it 1742 * returned 0. 1743 */ 1744 void skb_abort_seq_read(struct skb_seq_state *st) 1745 { 1746 if (st->frag_data) 1747 kunmap_skb_frag(st->frag_data); 1748 } 1749 1750 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 1751 1752 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 1753 struct ts_config *conf, 1754 struct ts_state *state) 1755 { 1756 return skb_seq_read(offset, text, TS_SKB_CB(state)); 1757 } 1758 1759 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 1760 { 1761 skb_abort_seq_read(TS_SKB_CB(state)); 1762 } 1763 1764 /** 1765 * skb_find_text - Find a text pattern in skb data 1766 * @skb: the buffer to look in 1767 * @from: search offset 1768 * @to: search limit 1769 * @config: textsearch configuration 1770 * @state: uninitialized textsearch state variable 1771 * 1772 * Finds a pattern in the skb data according to the specified 1773 * textsearch configuration. Use textsearch_next() to retrieve 1774 * subsequent occurrences of the pattern. Returns the offset 1775 * to the first occurrence or UINT_MAX if no match was found. 1776 */ 1777 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1778 unsigned int to, struct ts_config *config, 1779 struct ts_state *state) 1780 { 1781 unsigned int ret; 1782 1783 config->get_next_block = skb_ts_get_next_block; 1784 config->finish = skb_ts_finish; 1785 1786 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 1787 1788 ret = textsearch_find(config, state); 1789 return (ret <= to - from ? ret : UINT_MAX); 1790 } 1791 1792 /** 1793 * skb_append_datato_frags: - append the user data to a skb 1794 * @sk: sock structure 1795 * @skb: skb structure to be appened with user data. 1796 * @getfrag: call back function to be used for getting the user data 1797 * @from: pointer to user message iov 1798 * @length: length of the iov message 1799 * 1800 * Description: This procedure append the user data in the fragment part 1801 * of the skb if any page alloc fails user this procedure returns -ENOMEM 1802 */ 1803 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 1804 int (*getfrag)(void *from, char *to, int offset, 1805 int len, int odd, struct sk_buff *skb), 1806 void *from, int length) 1807 { 1808 int frg_cnt = 0; 1809 skb_frag_t *frag = NULL; 1810 struct page *page = NULL; 1811 int copy, left; 1812 int offset = 0; 1813 int ret; 1814 1815 do { 1816 /* Return error if we don't have space for new frag */ 1817 frg_cnt = skb_shinfo(skb)->nr_frags; 1818 if (frg_cnt >= MAX_SKB_FRAGS) 1819 return -EFAULT; 1820 1821 /* allocate a new page for next frag */ 1822 page = alloc_pages(sk->sk_allocation, 0); 1823 1824 /* If alloc_page fails just return failure and caller will 1825 * free previous allocated pages by doing kfree_skb() 1826 */ 1827 if (page == NULL) 1828 return -ENOMEM; 1829 1830 /* initialize the next frag */ 1831 sk->sk_sndmsg_page = page; 1832 sk->sk_sndmsg_off = 0; 1833 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 1834 skb->truesize += PAGE_SIZE; 1835 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 1836 1837 /* get the new initialized frag */ 1838 frg_cnt = skb_shinfo(skb)->nr_frags; 1839 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 1840 1841 /* copy the user data to page */ 1842 left = PAGE_SIZE - frag->page_offset; 1843 copy = (length > left)? left : length; 1844 1845 ret = getfrag(from, (page_address(frag->page) + 1846 frag->page_offset + frag->size), 1847 offset, copy, 0, skb); 1848 if (ret < 0) 1849 return -EFAULT; 1850 1851 /* copy was successful so update the size parameters */ 1852 sk->sk_sndmsg_off += copy; 1853 frag->size += copy; 1854 skb->len += copy; 1855 skb->data_len += copy; 1856 offset += copy; 1857 length -= copy; 1858 1859 } while (length > 0); 1860 1861 return 0; 1862 } 1863 1864 /** 1865 * skb_pull_rcsum - pull skb and update receive checksum 1866 * @skb: buffer to update 1867 * @start: start of data before pull 1868 * @len: length of data pulled 1869 * 1870 * This function performs an skb_pull on the packet and updates 1871 * update the CHECKSUM_COMPLETE checksum. It should be used on 1872 * receive path processing instead of skb_pull unless you know 1873 * that the checksum difference is zero (e.g., a valid IP header) 1874 * or you are setting ip_summed to CHECKSUM_NONE. 1875 */ 1876 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 1877 { 1878 BUG_ON(len > skb->len); 1879 skb->len -= len; 1880 BUG_ON(skb->len < skb->data_len); 1881 skb_postpull_rcsum(skb, skb->data, len); 1882 return skb->data += len; 1883 } 1884 1885 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 1886 1887 /** 1888 * skb_segment - Perform protocol segmentation on skb. 1889 * @skb: buffer to segment 1890 * @features: features for the output path (see dev->features) 1891 * 1892 * This function performs segmentation on the given skb. It returns 1893 * the segment at the given position. It returns NULL if there are 1894 * no more segments to generate, or when an error is encountered. 1895 */ 1896 struct sk_buff *skb_segment(struct sk_buff *skb, int features) 1897 { 1898 struct sk_buff *segs = NULL; 1899 struct sk_buff *tail = NULL; 1900 unsigned int mss = skb_shinfo(skb)->gso_size; 1901 unsigned int doffset = skb->data - skb_mac_header(skb); 1902 unsigned int offset = doffset; 1903 unsigned int headroom; 1904 unsigned int len; 1905 int sg = features & NETIF_F_SG; 1906 int nfrags = skb_shinfo(skb)->nr_frags; 1907 int err = -ENOMEM; 1908 int i = 0; 1909 int pos; 1910 1911 __skb_push(skb, doffset); 1912 headroom = skb_headroom(skb); 1913 pos = skb_headlen(skb); 1914 1915 do { 1916 struct sk_buff *nskb; 1917 skb_frag_t *frag; 1918 int hsize; 1919 int k; 1920 int size; 1921 1922 len = skb->len - offset; 1923 if (len > mss) 1924 len = mss; 1925 1926 hsize = skb_headlen(skb) - offset; 1927 if (hsize < 0) 1928 hsize = 0; 1929 if (hsize > len || !sg) 1930 hsize = len; 1931 1932 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC); 1933 if (unlikely(!nskb)) 1934 goto err; 1935 1936 if (segs) 1937 tail->next = nskb; 1938 else 1939 segs = nskb; 1940 tail = nskb; 1941 1942 nskb->dev = skb->dev; 1943 skb_copy_queue_mapping(nskb, skb); 1944 nskb->priority = skb->priority; 1945 nskb->protocol = skb->protocol; 1946 nskb->dst = dst_clone(skb->dst); 1947 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 1948 nskb->pkt_type = skb->pkt_type; 1949 nskb->mac_len = skb->mac_len; 1950 1951 skb_reserve(nskb, headroom); 1952 skb_reset_mac_header(nskb); 1953 skb_set_network_header(nskb, skb->mac_len); 1954 nskb->transport_header = (nskb->network_header + 1955 skb_network_header_len(skb)); 1956 skb_copy_from_linear_data(skb, skb_put(nskb, doffset), 1957 doffset); 1958 if (!sg) { 1959 nskb->csum = skb_copy_and_csum_bits(skb, offset, 1960 skb_put(nskb, len), 1961 len, 0); 1962 continue; 1963 } 1964 1965 frag = skb_shinfo(nskb)->frags; 1966 k = 0; 1967 1968 nskb->ip_summed = CHECKSUM_PARTIAL; 1969 nskb->csum = skb->csum; 1970 skb_copy_from_linear_data_offset(skb, offset, 1971 skb_put(nskb, hsize), hsize); 1972 1973 while (pos < offset + len) { 1974 BUG_ON(i >= nfrags); 1975 1976 *frag = skb_shinfo(skb)->frags[i]; 1977 get_page(frag->page); 1978 size = frag->size; 1979 1980 if (pos < offset) { 1981 frag->page_offset += offset - pos; 1982 frag->size -= offset - pos; 1983 } 1984 1985 k++; 1986 1987 if (pos + size <= offset + len) { 1988 i++; 1989 pos += size; 1990 } else { 1991 frag->size -= pos + size - (offset + len); 1992 break; 1993 } 1994 1995 frag++; 1996 } 1997 1998 skb_shinfo(nskb)->nr_frags = k; 1999 nskb->data_len = len - hsize; 2000 nskb->len += nskb->data_len; 2001 nskb->truesize += nskb->data_len; 2002 } while ((offset += len) < skb->len); 2003 2004 return segs; 2005 2006 err: 2007 while ((skb = segs)) { 2008 segs = skb->next; 2009 kfree_skb(skb); 2010 } 2011 return ERR_PTR(err); 2012 } 2013 2014 EXPORT_SYMBOL_GPL(skb_segment); 2015 2016 void __init skb_init(void) 2017 { 2018 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 2019 sizeof(struct sk_buff), 2020 0, 2021 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2022 NULL); 2023 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 2024 (2*sizeof(struct sk_buff)) + 2025 sizeof(atomic_t), 2026 0, 2027 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2028 NULL); 2029 } 2030 2031 /** 2032 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 2033 * @skb: Socket buffer containing the buffers to be mapped 2034 * @sg: The scatter-gather list to map into 2035 * @offset: The offset into the buffer's contents to start mapping 2036 * @len: Length of buffer space to be mapped 2037 * 2038 * Fill the specified scatter-gather list with mappings/pointers into a 2039 * region of the buffer space attached to a socket buffer. 2040 */ 2041 int 2042 skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2043 { 2044 int start = skb_headlen(skb); 2045 int i, copy = start - offset; 2046 int elt = 0; 2047 2048 if (copy > 0) { 2049 if (copy > len) 2050 copy = len; 2051 sg[elt].page = virt_to_page(skb->data + offset); 2052 sg[elt].offset = (unsigned long)(skb->data + offset) % PAGE_SIZE; 2053 sg[elt].length = copy; 2054 elt++; 2055 if ((len -= copy) == 0) 2056 return elt; 2057 offset += copy; 2058 } 2059 2060 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2061 int end; 2062 2063 BUG_TRAP(start <= offset + len); 2064 2065 end = start + skb_shinfo(skb)->frags[i].size; 2066 if ((copy = end - offset) > 0) { 2067 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2068 2069 if (copy > len) 2070 copy = len; 2071 sg[elt].page = frag->page; 2072 sg[elt].offset = frag->page_offset+offset-start; 2073 sg[elt].length = copy; 2074 elt++; 2075 if (!(len -= copy)) 2076 return elt; 2077 offset += copy; 2078 } 2079 start = end; 2080 } 2081 2082 if (skb_shinfo(skb)->frag_list) { 2083 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2084 2085 for (; list; list = list->next) { 2086 int end; 2087 2088 BUG_TRAP(start <= offset + len); 2089 2090 end = start + list->len; 2091 if ((copy = end - offset) > 0) { 2092 if (copy > len) 2093 copy = len; 2094 elt += skb_to_sgvec(list, sg+elt, offset - start, copy); 2095 if ((len -= copy) == 0) 2096 return elt; 2097 offset += copy; 2098 } 2099 start = end; 2100 } 2101 } 2102 BUG_ON(len); 2103 return elt; 2104 } 2105 2106 /** 2107 * skb_cow_data - Check that a socket buffer's data buffers are writable 2108 * @skb: The socket buffer to check. 2109 * @tailbits: Amount of trailing space to be added 2110 * @trailer: Returned pointer to the skb where the @tailbits space begins 2111 * 2112 * Make sure that the data buffers attached to a socket buffer are 2113 * writable. If they are not, private copies are made of the data buffers 2114 * and the socket buffer is set to use these instead. 2115 * 2116 * If @tailbits is given, make sure that there is space to write @tailbits 2117 * bytes of data beyond current end of socket buffer. @trailer will be 2118 * set to point to the skb in which this space begins. 2119 * 2120 * The number of scatterlist elements required to completely map the 2121 * COW'd and extended socket buffer will be returned. 2122 */ 2123 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 2124 { 2125 int copyflag; 2126 int elt; 2127 struct sk_buff *skb1, **skb_p; 2128 2129 /* If skb is cloned or its head is paged, reallocate 2130 * head pulling out all the pages (pages are considered not writable 2131 * at the moment even if they are anonymous). 2132 */ 2133 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 2134 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 2135 return -ENOMEM; 2136 2137 /* Easy case. Most of packets will go this way. */ 2138 if (!skb_shinfo(skb)->frag_list) { 2139 /* A little of trouble, not enough of space for trailer. 2140 * This should not happen, when stack is tuned to generate 2141 * good frames. OK, on miss we reallocate and reserve even more 2142 * space, 128 bytes is fair. */ 2143 2144 if (skb_tailroom(skb) < tailbits && 2145 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 2146 return -ENOMEM; 2147 2148 /* Voila! */ 2149 *trailer = skb; 2150 return 1; 2151 } 2152 2153 /* Misery. We are in troubles, going to mincer fragments... */ 2154 2155 elt = 1; 2156 skb_p = &skb_shinfo(skb)->frag_list; 2157 copyflag = 0; 2158 2159 while ((skb1 = *skb_p) != NULL) { 2160 int ntail = 0; 2161 2162 /* The fragment is partially pulled by someone, 2163 * this can happen on input. Copy it and everything 2164 * after it. */ 2165 2166 if (skb_shared(skb1)) 2167 copyflag = 1; 2168 2169 /* If the skb is the last, worry about trailer. */ 2170 2171 if (skb1->next == NULL && tailbits) { 2172 if (skb_shinfo(skb1)->nr_frags || 2173 skb_shinfo(skb1)->frag_list || 2174 skb_tailroom(skb1) < tailbits) 2175 ntail = tailbits + 128; 2176 } 2177 2178 if (copyflag || 2179 skb_cloned(skb1) || 2180 ntail || 2181 skb_shinfo(skb1)->nr_frags || 2182 skb_shinfo(skb1)->frag_list) { 2183 struct sk_buff *skb2; 2184 2185 /* Fuck, we are miserable poor guys... */ 2186 if (ntail == 0) 2187 skb2 = skb_copy(skb1, GFP_ATOMIC); 2188 else 2189 skb2 = skb_copy_expand(skb1, 2190 skb_headroom(skb1), 2191 ntail, 2192 GFP_ATOMIC); 2193 if (unlikely(skb2 == NULL)) 2194 return -ENOMEM; 2195 2196 if (skb1->sk) 2197 skb_set_owner_w(skb2, skb1->sk); 2198 2199 /* Looking around. Are we still alive? 2200 * OK, link new skb, drop old one */ 2201 2202 skb2->next = skb1->next; 2203 *skb_p = skb2; 2204 kfree_skb(skb1); 2205 skb1 = skb2; 2206 } 2207 elt++; 2208 *trailer = skb1; 2209 skb_p = &skb1->next; 2210 } 2211 2212 return elt; 2213 } 2214 2215 EXPORT_SYMBOL(___pskb_trim); 2216 EXPORT_SYMBOL(__kfree_skb); 2217 EXPORT_SYMBOL(kfree_skb); 2218 EXPORT_SYMBOL(__pskb_pull_tail); 2219 EXPORT_SYMBOL(__alloc_skb); 2220 EXPORT_SYMBOL(__netdev_alloc_skb); 2221 EXPORT_SYMBOL(pskb_copy); 2222 EXPORT_SYMBOL(pskb_expand_head); 2223 EXPORT_SYMBOL(skb_checksum); 2224 EXPORT_SYMBOL(skb_clone); 2225 EXPORT_SYMBOL(skb_copy); 2226 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2227 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2228 EXPORT_SYMBOL(skb_copy_bits); 2229 EXPORT_SYMBOL(skb_copy_expand); 2230 EXPORT_SYMBOL(skb_over_panic); 2231 EXPORT_SYMBOL(skb_pad); 2232 EXPORT_SYMBOL(skb_realloc_headroom); 2233 EXPORT_SYMBOL(skb_under_panic); 2234 EXPORT_SYMBOL(skb_dequeue); 2235 EXPORT_SYMBOL(skb_dequeue_tail); 2236 EXPORT_SYMBOL(skb_insert); 2237 EXPORT_SYMBOL(skb_queue_purge); 2238 EXPORT_SYMBOL(skb_queue_head); 2239 EXPORT_SYMBOL(skb_queue_tail); 2240 EXPORT_SYMBOL(skb_unlink); 2241 EXPORT_SYMBOL(skb_append); 2242 EXPORT_SYMBOL(skb_split); 2243 EXPORT_SYMBOL(skb_prepare_seq_read); 2244 EXPORT_SYMBOL(skb_seq_read); 2245 EXPORT_SYMBOL(skb_abort_seq_read); 2246 EXPORT_SYMBOL(skb_find_text); 2247 EXPORT_SYMBOL(skb_append_datato_frags); 2248 2249 EXPORT_SYMBOL_GPL(skb_to_sgvec); 2250 EXPORT_SYMBOL_GPL(skb_cow_data); 2251