1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/bitfield.h> 62 #include <linux/if_vlan.h> 63 #include <linux/mpls.h> 64 #include <linux/kcov.h> 65 #include <linux/iov_iter.h> 66 67 #include <net/protocol.h> 68 #include <net/dst.h> 69 #include <net/sock.h> 70 #include <net/checksum.h> 71 #include <net/gso.h> 72 #include <net/ip6_checksum.h> 73 #include <net/xfrm.h> 74 #include <net/mpls.h> 75 #include <net/mptcp.h> 76 #include <net/mctp.h> 77 #include <net/page_pool/helpers.h> 78 #include <net/dropreason.h> 79 80 #include <linux/uaccess.h> 81 #include <trace/events/skb.h> 82 #include <linux/highmem.h> 83 #include <linux/capability.h> 84 #include <linux/user_namespace.h> 85 #include <linux/indirect_call_wrapper.h> 86 #include <linux/textsearch.h> 87 88 #include "dev.h" 89 #include "sock_destructor.h" 90 91 struct kmem_cache *skbuff_cache __ro_after_init; 92 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 93 #ifdef CONFIG_SKB_EXTENSIONS 94 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 95 #endif 96 97 98 static struct kmem_cache *skb_small_head_cache __ro_after_init; 99 100 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER) 101 102 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 103 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 104 * size, and we can differentiate heads from skb_small_head_cache 105 * vs system slabs by looking at their size (skb_end_offset()). 106 */ 107 #define SKB_SMALL_HEAD_CACHE_SIZE \ 108 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 109 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 110 SKB_SMALL_HEAD_SIZE) 111 112 #define SKB_SMALL_HEAD_HEADROOM \ 113 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 114 115 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 116 EXPORT_SYMBOL(sysctl_max_skb_frags); 117 118 #undef FN 119 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 120 static const char * const drop_reasons[] = { 121 [SKB_CONSUMED] = "CONSUMED", 122 DEFINE_DROP_REASON(FN, FN) 123 }; 124 125 static const struct drop_reason_list drop_reasons_core = { 126 .reasons = drop_reasons, 127 .n_reasons = ARRAY_SIZE(drop_reasons), 128 }; 129 130 const struct drop_reason_list __rcu * 131 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 132 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 133 }; 134 EXPORT_SYMBOL(drop_reasons_by_subsys); 135 136 /** 137 * drop_reasons_register_subsys - register another drop reason subsystem 138 * @subsys: the subsystem to register, must not be the core 139 * @list: the list of drop reasons within the subsystem, must point to 140 * a statically initialized list 141 */ 142 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 143 const struct drop_reason_list *list) 144 { 145 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 146 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 147 "invalid subsystem %d\n", subsys)) 148 return; 149 150 /* must point to statically allocated memory, so INIT is OK */ 151 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 152 } 153 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 154 155 /** 156 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 157 * @subsys: the subsystem to remove, must not be the core 158 * 159 * Note: This will synchronize_rcu() to ensure no users when it returns. 160 */ 161 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 162 { 163 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 164 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 165 "invalid subsystem %d\n", subsys)) 166 return; 167 168 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 169 170 synchronize_rcu(); 171 } 172 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 173 174 /** 175 * skb_panic - private function for out-of-line support 176 * @skb: buffer 177 * @sz: size 178 * @addr: address 179 * @msg: skb_over_panic or skb_under_panic 180 * 181 * Out-of-line support for skb_put() and skb_push(). 182 * Called via the wrapper skb_over_panic() or skb_under_panic(). 183 * Keep out of line to prevent kernel bloat. 184 * __builtin_return_address is not used because it is not always reliable. 185 */ 186 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 187 const char msg[]) 188 { 189 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 190 msg, addr, skb->len, sz, skb->head, skb->data, 191 (unsigned long)skb->tail, (unsigned long)skb->end, 192 skb->dev ? skb->dev->name : "<NULL>"); 193 BUG(); 194 } 195 196 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 197 { 198 skb_panic(skb, sz, addr, __func__); 199 } 200 201 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 202 { 203 skb_panic(skb, sz, addr, __func__); 204 } 205 206 #define NAPI_SKB_CACHE_SIZE 64 207 #define NAPI_SKB_CACHE_BULK 16 208 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 209 210 #if PAGE_SIZE == SZ_4K 211 212 #define NAPI_HAS_SMALL_PAGE_FRAG 1 213 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc) 214 215 /* specialized page frag allocator using a single order 0 page 216 * and slicing it into 1K sized fragment. Constrained to systems 217 * with a very limited amount of 1K fragments fitting a single 218 * page - to avoid excessive truesize underestimation 219 */ 220 221 struct page_frag_1k { 222 void *va; 223 u16 offset; 224 bool pfmemalloc; 225 }; 226 227 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp) 228 { 229 struct page *page; 230 int offset; 231 232 offset = nc->offset - SZ_1K; 233 if (likely(offset >= 0)) 234 goto use_frag; 235 236 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 237 if (!page) 238 return NULL; 239 240 nc->va = page_address(page); 241 nc->pfmemalloc = page_is_pfmemalloc(page); 242 offset = PAGE_SIZE - SZ_1K; 243 page_ref_add(page, offset / SZ_1K); 244 245 use_frag: 246 nc->offset = offset; 247 return nc->va + offset; 248 } 249 #else 250 251 /* the small page is actually unused in this build; add dummy helpers 252 * to please the compiler and avoid later preprocessor's conditionals 253 */ 254 #define NAPI_HAS_SMALL_PAGE_FRAG 0 255 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false 256 257 struct page_frag_1k { 258 }; 259 260 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask) 261 { 262 return NULL; 263 } 264 265 #endif 266 267 struct napi_alloc_cache { 268 struct page_frag_cache page; 269 struct page_frag_1k page_small; 270 unsigned int skb_count; 271 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 272 }; 273 274 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 275 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 276 277 /* Double check that napi_get_frags() allocates skbs with 278 * skb->head being backed by slab, not a page fragment. 279 * This is to make sure bug fixed in 3226b158e67c 280 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 281 * does not accidentally come back. 282 */ 283 void napi_get_frags_check(struct napi_struct *napi) 284 { 285 struct sk_buff *skb; 286 287 local_bh_disable(); 288 skb = napi_get_frags(napi); 289 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag); 290 napi_free_frags(napi); 291 local_bh_enable(); 292 } 293 294 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 295 { 296 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 297 298 fragsz = SKB_DATA_ALIGN(fragsz); 299 300 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 301 } 302 EXPORT_SYMBOL(__napi_alloc_frag_align); 303 304 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 305 { 306 void *data; 307 308 fragsz = SKB_DATA_ALIGN(fragsz); 309 if (in_hardirq() || irqs_disabled()) { 310 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 311 312 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 313 } else { 314 struct napi_alloc_cache *nc; 315 316 local_bh_disable(); 317 nc = this_cpu_ptr(&napi_alloc_cache); 318 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 319 local_bh_enable(); 320 } 321 return data; 322 } 323 EXPORT_SYMBOL(__netdev_alloc_frag_align); 324 325 static struct sk_buff *napi_skb_cache_get(void) 326 { 327 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 328 struct sk_buff *skb; 329 330 if (unlikely(!nc->skb_count)) { 331 nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache, 332 GFP_ATOMIC, 333 NAPI_SKB_CACHE_BULK, 334 nc->skb_cache); 335 if (unlikely(!nc->skb_count)) 336 return NULL; 337 } 338 339 skb = nc->skb_cache[--nc->skb_count]; 340 kasan_mempool_unpoison_object(skb, kmem_cache_size(skbuff_cache)); 341 342 return skb; 343 } 344 345 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 346 unsigned int size) 347 { 348 struct skb_shared_info *shinfo; 349 350 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 351 352 /* Assumes caller memset cleared SKB */ 353 skb->truesize = SKB_TRUESIZE(size); 354 refcount_set(&skb->users, 1); 355 skb->head = data; 356 skb->data = data; 357 skb_reset_tail_pointer(skb); 358 skb_set_end_offset(skb, size); 359 skb->mac_header = (typeof(skb->mac_header))~0U; 360 skb->transport_header = (typeof(skb->transport_header))~0U; 361 skb->alloc_cpu = raw_smp_processor_id(); 362 /* make sure we initialize shinfo sequentially */ 363 shinfo = skb_shinfo(skb); 364 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 365 atomic_set(&shinfo->dataref, 1); 366 367 skb_set_kcov_handle(skb, kcov_common_handle()); 368 } 369 370 static inline void *__slab_build_skb(struct sk_buff *skb, void *data, 371 unsigned int *size) 372 { 373 void *resized; 374 375 /* Must find the allocation size (and grow it to match). */ 376 *size = ksize(data); 377 /* krealloc() will immediately return "data" when 378 * "ksize(data)" is requested: it is the existing upper 379 * bounds. As a result, GFP_ATOMIC will be ignored. Note 380 * that this "new" pointer needs to be passed back to the 381 * caller for use so the __alloc_size hinting will be 382 * tracked correctly. 383 */ 384 resized = krealloc(data, *size, GFP_ATOMIC); 385 WARN_ON_ONCE(resized != data); 386 return resized; 387 } 388 389 /* build_skb() variant which can operate on slab buffers. 390 * Note that this should be used sparingly as slab buffers 391 * cannot be combined efficiently by GRO! 392 */ 393 struct sk_buff *slab_build_skb(void *data) 394 { 395 struct sk_buff *skb; 396 unsigned int size; 397 398 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 399 if (unlikely(!skb)) 400 return NULL; 401 402 memset(skb, 0, offsetof(struct sk_buff, tail)); 403 data = __slab_build_skb(skb, data, &size); 404 __finalize_skb_around(skb, data, size); 405 406 return skb; 407 } 408 EXPORT_SYMBOL(slab_build_skb); 409 410 /* Caller must provide SKB that is memset cleared */ 411 static void __build_skb_around(struct sk_buff *skb, void *data, 412 unsigned int frag_size) 413 { 414 unsigned int size = frag_size; 415 416 /* frag_size == 0 is considered deprecated now. Callers 417 * using slab buffer should use slab_build_skb() instead. 418 */ 419 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 420 data = __slab_build_skb(skb, data, &size); 421 422 __finalize_skb_around(skb, data, size); 423 } 424 425 /** 426 * __build_skb - build a network buffer 427 * @data: data buffer provided by caller 428 * @frag_size: size of data (must not be 0) 429 * 430 * Allocate a new &sk_buff. Caller provides space holding head and 431 * skb_shared_info. @data must have been allocated from the page 432 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 433 * allocation is deprecated, and callers should use slab_build_skb() 434 * instead.) 435 * The return is the new skb buffer. 436 * On a failure the return is %NULL, and @data is not freed. 437 * Notes : 438 * Before IO, driver allocates only data buffer where NIC put incoming frame 439 * Driver should add room at head (NET_SKB_PAD) and 440 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 441 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 442 * before giving packet to stack. 443 * RX rings only contains data buffers, not full skbs. 444 */ 445 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 446 { 447 struct sk_buff *skb; 448 449 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 450 if (unlikely(!skb)) 451 return NULL; 452 453 memset(skb, 0, offsetof(struct sk_buff, tail)); 454 __build_skb_around(skb, data, frag_size); 455 456 return skb; 457 } 458 459 /* build_skb() is wrapper over __build_skb(), that specifically 460 * takes care of skb->head and skb->pfmemalloc 461 */ 462 struct sk_buff *build_skb(void *data, unsigned int frag_size) 463 { 464 struct sk_buff *skb = __build_skb(data, frag_size); 465 466 if (likely(skb && frag_size)) { 467 skb->head_frag = 1; 468 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 469 } 470 return skb; 471 } 472 EXPORT_SYMBOL(build_skb); 473 474 /** 475 * build_skb_around - build a network buffer around provided skb 476 * @skb: sk_buff provide by caller, must be memset cleared 477 * @data: data buffer provided by caller 478 * @frag_size: size of data 479 */ 480 struct sk_buff *build_skb_around(struct sk_buff *skb, 481 void *data, unsigned int frag_size) 482 { 483 if (unlikely(!skb)) 484 return NULL; 485 486 __build_skb_around(skb, data, frag_size); 487 488 if (frag_size) { 489 skb->head_frag = 1; 490 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 491 } 492 return skb; 493 } 494 EXPORT_SYMBOL(build_skb_around); 495 496 /** 497 * __napi_build_skb - build a network buffer 498 * @data: data buffer provided by caller 499 * @frag_size: size of data 500 * 501 * Version of __build_skb() that uses NAPI percpu caches to obtain 502 * skbuff_head instead of inplace allocation. 503 * 504 * Returns a new &sk_buff on success, %NULL on allocation failure. 505 */ 506 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 507 { 508 struct sk_buff *skb; 509 510 skb = napi_skb_cache_get(); 511 if (unlikely(!skb)) 512 return NULL; 513 514 memset(skb, 0, offsetof(struct sk_buff, tail)); 515 __build_skb_around(skb, data, frag_size); 516 517 return skb; 518 } 519 520 /** 521 * napi_build_skb - build a network buffer 522 * @data: data buffer provided by caller 523 * @frag_size: size of data 524 * 525 * Version of __napi_build_skb() that takes care of skb->head_frag 526 * and skb->pfmemalloc when the data is a page or page fragment. 527 * 528 * Returns a new &sk_buff on success, %NULL on allocation failure. 529 */ 530 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 531 { 532 struct sk_buff *skb = __napi_build_skb(data, frag_size); 533 534 if (likely(skb) && frag_size) { 535 skb->head_frag = 1; 536 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 537 } 538 539 return skb; 540 } 541 EXPORT_SYMBOL(napi_build_skb); 542 543 /* 544 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 545 * the caller if emergency pfmemalloc reserves are being used. If it is and 546 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 547 * may be used. Otherwise, the packet data may be discarded until enough 548 * memory is free 549 */ 550 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 551 bool *pfmemalloc) 552 { 553 bool ret_pfmemalloc = false; 554 size_t obj_size; 555 void *obj; 556 557 obj_size = SKB_HEAD_ALIGN(*size); 558 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 559 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 560 obj = kmem_cache_alloc_node(skb_small_head_cache, 561 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 562 node); 563 *size = SKB_SMALL_HEAD_CACHE_SIZE; 564 if (obj || !(gfp_pfmemalloc_allowed(flags))) 565 goto out; 566 /* Try again but now we are using pfmemalloc reserves */ 567 ret_pfmemalloc = true; 568 obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node); 569 goto out; 570 } 571 572 obj_size = kmalloc_size_roundup(obj_size); 573 /* The following cast might truncate high-order bits of obj_size, this 574 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. 575 */ 576 *size = (unsigned int)obj_size; 577 578 /* 579 * Try a regular allocation, when that fails and we're not entitled 580 * to the reserves, fail. 581 */ 582 obj = kmalloc_node_track_caller(obj_size, 583 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 584 node); 585 if (obj || !(gfp_pfmemalloc_allowed(flags))) 586 goto out; 587 588 /* Try again but now we are using pfmemalloc reserves */ 589 ret_pfmemalloc = true; 590 obj = kmalloc_node_track_caller(obj_size, flags, node); 591 592 out: 593 if (pfmemalloc) 594 *pfmemalloc = ret_pfmemalloc; 595 596 return obj; 597 } 598 599 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 600 * 'private' fields and also do memory statistics to find all the 601 * [BEEP] leaks. 602 * 603 */ 604 605 /** 606 * __alloc_skb - allocate a network buffer 607 * @size: size to allocate 608 * @gfp_mask: allocation mask 609 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 610 * instead of head cache and allocate a cloned (child) skb. 611 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 612 * allocations in case the data is required for writeback 613 * @node: numa node to allocate memory on 614 * 615 * Allocate a new &sk_buff. The returned buffer has no headroom and a 616 * tail room of at least size bytes. The object has a reference count 617 * of one. The return is the buffer. On a failure the return is %NULL. 618 * 619 * Buffers may only be allocated from interrupts using a @gfp_mask of 620 * %GFP_ATOMIC. 621 */ 622 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 623 int flags, int node) 624 { 625 struct kmem_cache *cache; 626 struct sk_buff *skb; 627 bool pfmemalloc; 628 u8 *data; 629 630 cache = (flags & SKB_ALLOC_FCLONE) 631 ? skbuff_fclone_cache : skbuff_cache; 632 633 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 634 gfp_mask |= __GFP_MEMALLOC; 635 636 /* Get the HEAD */ 637 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 638 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 639 skb = napi_skb_cache_get(); 640 else 641 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 642 if (unlikely(!skb)) 643 return NULL; 644 prefetchw(skb); 645 646 /* We do our best to align skb_shared_info on a separate cache 647 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 648 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 649 * Both skb->head and skb_shared_info are cache line aligned. 650 */ 651 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 652 if (unlikely(!data)) 653 goto nodata; 654 /* kmalloc_size_roundup() might give us more room than requested. 655 * Put skb_shared_info exactly at the end of allocated zone, 656 * to allow max possible filling before reallocation. 657 */ 658 prefetchw(data + SKB_WITH_OVERHEAD(size)); 659 660 /* 661 * Only clear those fields we need to clear, not those that we will 662 * actually initialise below. Hence, don't put any more fields after 663 * the tail pointer in struct sk_buff! 664 */ 665 memset(skb, 0, offsetof(struct sk_buff, tail)); 666 __build_skb_around(skb, data, size); 667 skb->pfmemalloc = pfmemalloc; 668 669 if (flags & SKB_ALLOC_FCLONE) { 670 struct sk_buff_fclones *fclones; 671 672 fclones = container_of(skb, struct sk_buff_fclones, skb1); 673 674 skb->fclone = SKB_FCLONE_ORIG; 675 refcount_set(&fclones->fclone_ref, 1); 676 } 677 678 return skb; 679 680 nodata: 681 kmem_cache_free(cache, skb); 682 return NULL; 683 } 684 EXPORT_SYMBOL(__alloc_skb); 685 686 /** 687 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 688 * @dev: network device to receive on 689 * @len: length to allocate 690 * @gfp_mask: get_free_pages mask, passed to alloc_skb 691 * 692 * Allocate a new &sk_buff and assign it a usage count of one. The 693 * buffer has NET_SKB_PAD headroom built in. Users should allocate 694 * the headroom they think they need without accounting for the 695 * built in space. The built in space is used for optimisations. 696 * 697 * %NULL is returned if there is no free memory. 698 */ 699 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 700 gfp_t gfp_mask) 701 { 702 struct page_frag_cache *nc; 703 struct sk_buff *skb; 704 bool pfmemalloc; 705 void *data; 706 707 len += NET_SKB_PAD; 708 709 /* If requested length is either too small or too big, 710 * we use kmalloc() for skb->head allocation. 711 */ 712 if (len <= SKB_WITH_OVERHEAD(1024) || 713 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 714 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 715 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 716 if (!skb) 717 goto skb_fail; 718 goto skb_success; 719 } 720 721 len = SKB_HEAD_ALIGN(len); 722 723 if (sk_memalloc_socks()) 724 gfp_mask |= __GFP_MEMALLOC; 725 726 if (in_hardirq() || irqs_disabled()) { 727 nc = this_cpu_ptr(&netdev_alloc_cache); 728 data = page_frag_alloc(nc, len, gfp_mask); 729 pfmemalloc = nc->pfmemalloc; 730 } else { 731 local_bh_disable(); 732 nc = this_cpu_ptr(&napi_alloc_cache.page); 733 data = page_frag_alloc(nc, len, gfp_mask); 734 pfmemalloc = nc->pfmemalloc; 735 local_bh_enable(); 736 } 737 738 if (unlikely(!data)) 739 return NULL; 740 741 skb = __build_skb(data, len); 742 if (unlikely(!skb)) { 743 skb_free_frag(data); 744 return NULL; 745 } 746 747 if (pfmemalloc) 748 skb->pfmemalloc = 1; 749 skb->head_frag = 1; 750 751 skb_success: 752 skb_reserve(skb, NET_SKB_PAD); 753 skb->dev = dev; 754 755 skb_fail: 756 return skb; 757 } 758 EXPORT_SYMBOL(__netdev_alloc_skb); 759 760 /** 761 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 762 * @napi: napi instance this buffer was allocated for 763 * @len: length to allocate 764 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 765 * 766 * Allocate a new sk_buff for use in NAPI receive. This buffer will 767 * attempt to allocate the head from a special reserved region used 768 * only for NAPI Rx allocation. By doing this we can save several 769 * CPU cycles by avoiding having to disable and re-enable IRQs. 770 * 771 * %NULL is returned if there is no free memory. 772 */ 773 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 774 gfp_t gfp_mask) 775 { 776 struct napi_alloc_cache *nc; 777 struct sk_buff *skb; 778 bool pfmemalloc; 779 void *data; 780 781 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 782 len += NET_SKB_PAD + NET_IP_ALIGN; 783 784 /* If requested length is either too small or too big, 785 * we use kmalloc() for skb->head allocation. 786 * When the small frag allocator is available, prefer it over kmalloc 787 * for small fragments 788 */ 789 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) || 790 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 791 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 792 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 793 NUMA_NO_NODE); 794 if (!skb) 795 goto skb_fail; 796 goto skb_success; 797 } 798 799 nc = this_cpu_ptr(&napi_alloc_cache); 800 801 if (sk_memalloc_socks()) 802 gfp_mask |= __GFP_MEMALLOC; 803 804 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) { 805 /* we are artificially inflating the allocation size, but 806 * that is not as bad as it may look like, as: 807 * - 'len' less than GRO_MAX_HEAD makes little sense 808 * - On most systems, larger 'len' values lead to fragment 809 * size above 512 bytes 810 * - kmalloc would use the kmalloc-1k slab for such values 811 * - Builds with smaller GRO_MAX_HEAD will very likely do 812 * little networking, as that implies no WiFi and no 813 * tunnels support, and 32 bits arches. 814 */ 815 len = SZ_1K; 816 817 data = page_frag_alloc_1k(&nc->page_small, gfp_mask); 818 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small); 819 } else { 820 len = SKB_HEAD_ALIGN(len); 821 822 data = page_frag_alloc(&nc->page, len, gfp_mask); 823 pfmemalloc = nc->page.pfmemalloc; 824 } 825 826 if (unlikely(!data)) 827 return NULL; 828 829 skb = __napi_build_skb(data, len); 830 if (unlikely(!skb)) { 831 skb_free_frag(data); 832 return NULL; 833 } 834 835 if (pfmemalloc) 836 skb->pfmemalloc = 1; 837 skb->head_frag = 1; 838 839 skb_success: 840 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 841 skb->dev = napi->dev; 842 843 skb_fail: 844 return skb; 845 } 846 EXPORT_SYMBOL(__napi_alloc_skb); 847 848 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 849 int size, unsigned int truesize) 850 { 851 DEBUG_NET_WARN_ON_ONCE(size > truesize); 852 853 skb_fill_page_desc(skb, i, page, off, size); 854 skb->len += size; 855 skb->data_len += size; 856 skb->truesize += truesize; 857 } 858 EXPORT_SYMBOL(skb_add_rx_frag); 859 860 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 861 unsigned int truesize) 862 { 863 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 864 865 DEBUG_NET_WARN_ON_ONCE(size > truesize); 866 867 skb_frag_size_add(frag, size); 868 skb->len += size; 869 skb->data_len += size; 870 skb->truesize += truesize; 871 } 872 EXPORT_SYMBOL(skb_coalesce_rx_frag); 873 874 static void skb_drop_list(struct sk_buff **listp) 875 { 876 kfree_skb_list(*listp); 877 *listp = NULL; 878 } 879 880 static inline void skb_drop_fraglist(struct sk_buff *skb) 881 { 882 skb_drop_list(&skb_shinfo(skb)->frag_list); 883 } 884 885 static void skb_clone_fraglist(struct sk_buff *skb) 886 { 887 struct sk_buff *list; 888 889 skb_walk_frags(skb, list) 890 skb_get(list); 891 } 892 893 static bool is_pp_page(struct page *page) 894 { 895 return (page->pp_magic & ~0x3UL) == PP_SIGNATURE; 896 } 897 898 #if IS_ENABLED(CONFIG_PAGE_POOL) 899 bool napi_pp_put_page(struct page *page, bool napi_safe) 900 { 901 bool allow_direct = false; 902 struct page_pool *pp; 903 904 page = compound_head(page); 905 906 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation 907 * in order to preserve any existing bits, such as bit 0 for the 908 * head page of compound page and bit 1 for pfmemalloc page, so 909 * mask those bits for freeing side when doing below checking, 910 * and page_is_pfmemalloc() is checked in __page_pool_put_page() 911 * to avoid recycling the pfmemalloc page. 912 */ 913 if (unlikely(!is_pp_page(page))) 914 return false; 915 916 pp = page->pp; 917 918 /* Allow direct recycle if we have reasons to believe that we are 919 * in the same context as the consumer would run, so there's 920 * no possible race. 921 * __page_pool_put_page() makes sure we're not in hardirq context 922 * and interrupts are enabled prior to accessing the cache. 923 */ 924 if (napi_safe || in_softirq()) { 925 const struct napi_struct *napi = READ_ONCE(pp->p.napi); 926 unsigned int cpuid = smp_processor_id(); 927 928 allow_direct = napi && READ_ONCE(napi->list_owner) == cpuid; 929 allow_direct |= (pp->cpuid == cpuid); 930 } 931 932 /* Driver set this to memory recycling info. Reset it on recycle. 933 * This will *not* work for NIC using a split-page memory model. 934 * The page will be returned to the pool here regardless of the 935 * 'flipped' fragment being in use or not. 936 */ 937 page_pool_put_full_page(pp, page, allow_direct); 938 939 return true; 940 } 941 EXPORT_SYMBOL(napi_pp_put_page); 942 #endif 943 944 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe) 945 { 946 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 947 return false; 948 return napi_pp_put_page(virt_to_page(data), napi_safe); 949 } 950 951 /** 952 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb 953 * @skb: page pool aware skb 954 * 955 * Increase the fragment reference count (pp_ref_count) of a skb. This is 956 * intended to gain fragment references only for page pool aware skbs, 957 * i.e. when skb->pp_recycle is true, and not for fragments in a 958 * non-pp-recycling skb. It has a fallback to increase references on normal 959 * pages, as page pool aware skbs may also have normal page fragments. 960 */ 961 static int skb_pp_frag_ref(struct sk_buff *skb) 962 { 963 struct skb_shared_info *shinfo; 964 struct page *head_page; 965 int i; 966 967 if (!skb->pp_recycle) 968 return -EINVAL; 969 970 shinfo = skb_shinfo(skb); 971 972 for (i = 0; i < shinfo->nr_frags; i++) { 973 head_page = compound_head(skb_frag_page(&shinfo->frags[i])); 974 if (likely(is_pp_page(head_page))) 975 page_pool_ref_page(head_page); 976 else 977 page_ref_inc(head_page); 978 } 979 return 0; 980 } 981 982 static void skb_kfree_head(void *head, unsigned int end_offset) 983 { 984 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 985 kmem_cache_free(skb_small_head_cache, head); 986 else 987 kfree(head); 988 } 989 990 static void skb_free_head(struct sk_buff *skb, bool napi_safe) 991 { 992 unsigned char *head = skb->head; 993 994 if (skb->head_frag) { 995 if (skb_pp_recycle(skb, head, napi_safe)) 996 return; 997 skb_free_frag(head); 998 } else { 999 skb_kfree_head(head, skb_end_offset(skb)); 1000 } 1001 } 1002 1003 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason, 1004 bool napi_safe) 1005 { 1006 struct skb_shared_info *shinfo = skb_shinfo(skb); 1007 int i; 1008 1009 if (skb->cloned && 1010 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 1011 &shinfo->dataref)) 1012 goto exit; 1013 1014 if (skb_zcopy(skb)) { 1015 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 1016 1017 skb_zcopy_clear(skb, true); 1018 if (skip_unref) 1019 goto free_head; 1020 } 1021 1022 for (i = 0; i < shinfo->nr_frags; i++) 1023 napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe); 1024 1025 free_head: 1026 if (shinfo->frag_list) 1027 kfree_skb_list_reason(shinfo->frag_list, reason); 1028 1029 skb_free_head(skb, napi_safe); 1030 exit: 1031 /* When we clone an SKB we copy the reycling bit. The pp_recycle 1032 * bit is only set on the head though, so in order to avoid races 1033 * while trying to recycle fragments on __skb_frag_unref() we need 1034 * to make one SKB responsible for triggering the recycle path. 1035 * So disable the recycling bit if an SKB is cloned and we have 1036 * additional references to the fragmented part of the SKB. 1037 * Eventually the last SKB will have the recycling bit set and it's 1038 * dataref set to 0, which will trigger the recycling 1039 */ 1040 skb->pp_recycle = 0; 1041 } 1042 1043 /* 1044 * Free an skbuff by memory without cleaning the state. 1045 */ 1046 static void kfree_skbmem(struct sk_buff *skb) 1047 { 1048 struct sk_buff_fclones *fclones; 1049 1050 switch (skb->fclone) { 1051 case SKB_FCLONE_UNAVAILABLE: 1052 kmem_cache_free(skbuff_cache, skb); 1053 return; 1054 1055 case SKB_FCLONE_ORIG: 1056 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1057 1058 /* We usually free the clone (TX completion) before original skb 1059 * This test would have no chance to be true for the clone, 1060 * while here, branch prediction will be good. 1061 */ 1062 if (refcount_read(&fclones->fclone_ref) == 1) 1063 goto fastpath; 1064 break; 1065 1066 default: /* SKB_FCLONE_CLONE */ 1067 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1068 break; 1069 } 1070 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1071 return; 1072 fastpath: 1073 kmem_cache_free(skbuff_fclone_cache, fclones); 1074 } 1075 1076 void skb_release_head_state(struct sk_buff *skb) 1077 { 1078 skb_dst_drop(skb); 1079 if (skb->destructor) { 1080 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1081 skb->destructor(skb); 1082 } 1083 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 1084 nf_conntrack_put(skb_nfct(skb)); 1085 #endif 1086 skb_ext_put(skb); 1087 } 1088 1089 /* Free everything but the sk_buff shell. */ 1090 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason, 1091 bool napi_safe) 1092 { 1093 skb_release_head_state(skb); 1094 if (likely(skb->head)) 1095 skb_release_data(skb, reason, napi_safe); 1096 } 1097 1098 /** 1099 * __kfree_skb - private function 1100 * @skb: buffer 1101 * 1102 * Free an sk_buff. Release anything attached to the buffer. 1103 * Clean the state. This is an internal helper function. Users should 1104 * always call kfree_skb 1105 */ 1106 1107 void __kfree_skb(struct sk_buff *skb) 1108 { 1109 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false); 1110 kfree_skbmem(skb); 1111 } 1112 EXPORT_SYMBOL(__kfree_skb); 1113 1114 static __always_inline 1115 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1116 { 1117 if (unlikely(!skb_unref(skb))) 1118 return false; 1119 1120 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1121 u32_get_bits(reason, 1122 SKB_DROP_REASON_SUBSYS_MASK) >= 1123 SKB_DROP_REASON_SUBSYS_NUM); 1124 1125 if (reason == SKB_CONSUMED) 1126 trace_consume_skb(skb, __builtin_return_address(0)); 1127 else 1128 trace_kfree_skb(skb, __builtin_return_address(0), reason); 1129 return true; 1130 } 1131 1132 /** 1133 * kfree_skb_reason - free an sk_buff with special reason 1134 * @skb: buffer to free 1135 * @reason: reason why this skb is dropped 1136 * 1137 * Drop a reference to the buffer and free it if the usage count has 1138 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 1139 * tracepoint. 1140 */ 1141 void __fix_address 1142 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1143 { 1144 if (__kfree_skb_reason(skb, reason)) 1145 __kfree_skb(skb); 1146 } 1147 EXPORT_SYMBOL(kfree_skb_reason); 1148 1149 #define KFREE_SKB_BULK_SIZE 16 1150 1151 struct skb_free_array { 1152 unsigned int skb_count; 1153 void *skb_array[KFREE_SKB_BULK_SIZE]; 1154 }; 1155 1156 static void kfree_skb_add_bulk(struct sk_buff *skb, 1157 struct skb_free_array *sa, 1158 enum skb_drop_reason reason) 1159 { 1160 /* if SKB is a clone, don't handle this case */ 1161 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1162 __kfree_skb(skb); 1163 return; 1164 } 1165 1166 skb_release_all(skb, reason, false); 1167 sa->skb_array[sa->skb_count++] = skb; 1168 1169 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1170 kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE, 1171 sa->skb_array); 1172 sa->skb_count = 0; 1173 } 1174 } 1175 1176 void __fix_address 1177 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1178 { 1179 struct skb_free_array sa; 1180 1181 sa.skb_count = 0; 1182 1183 while (segs) { 1184 struct sk_buff *next = segs->next; 1185 1186 if (__kfree_skb_reason(segs, reason)) { 1187 skb_poison_list(segs); 1188 kfree_skb_add_bulk(segs, &sa, reason); 1189 } 1190 1191 segs = next; 1192 } 1193 1194 if (sa.skb_count) 1195 kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array); 1196 } 1197 EXPORT_SYMBOL(kfree_skb_list_reason); 1198 1199 /* Dump skb information and contents. 1200 * 1201 * Must only be called from net_ratelimit()-ed paths. 1202 * 1203 * Dumps whole packets if full_pkt, only headers otherwise. 1204 */ 1205 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1206 { 1207 struct skb_shared_info *sh = skb_shinfo(skb); 1208 struct net_device *dev = skb->dev; 1209 struct sock *sk = skb->sk; 1210 struct sk_buff *list_skb; 1211 bool has_mac, has_trans; 1212 int headroom, tailroom; 1213 int i, len, seg_len; 1214 1215 if (full_pkt) 1216 len = skb->len; 1217 else 1218 len = min_t(int, skb->len, MAX_HEADER + 128); 1219 1220 headroom = skb_headroom(skb); 1221 tailroom = skb_tailroom(skb); 1222 1223 has_mac = skb_mac_header_was_set(skb); 1224 has_trans = skb_transport_header_was_set(skb); 1225 1226 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1227 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 1228 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1229 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1230 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 1231 level, skb->len, headroom, skb_headlen(skb), tailroom, 1232 has_mac ? skb->mac_header : -1, 1233 has_mac ? skb_mac_header_len(skb) : -1, 1234 skb->network_header, 1235 has_trans ? skb_network_header_len(skb) : -1, 1236 has_trans ? skb->transport_header : -1, 1237 sh->tx_flags, sh->nr_frags, 1238 sh->gso_size, sh->gso_type, sh->gso_segs, 1239 skb->csum, skb->ip_summed, skb->csum_complete_sw, 1240 skb->csum_valid, skb->csum_level, 1241 skb->hash, skb->sw_hash, skb->l4_hash, 1242 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 1243 1244 if (dev) 1245 printk("%sdev name=%s feat=%pNF\n", 1246 level, dev->name, &dev->features); 1247 if (sk) 1248 printk("%ssk family=%hu type=%u proto=%u\n", 1249 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1250 1251 if (full_pkt && headroom) 1252 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1253 16, 1, skb->head, headroom, false); 1254 1255 seg_len = min_t(int, skb_headlen(skb), len); 1256 if (seg_len) 1257 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1258 16, 1, skb->data, seg_len, false); 1259 len -= seg_len; 1260 1261 if (full_pkt && tailroom) 1262 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1263 16, 1, skb_tail_pointer(skb), tailroom, false); 1264 1265 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1266 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1267 u32 p_off, p_len, copied; 1268 struct page *p; 1269 u8 *vaddr; 1270 1271 skb_frag_foreach_page(frag, skb_frag_off(frag), 1272 skb_frag_size(frag), p, p_off, p_len, 1273 copied) { 1274 seg_len = min_t(int, p_len, len); 1275 vaddr = kmap_atomic(p); 1276 print_hex_dump(level, "skb frag: ", 1277 DUMP_PREFIX_OFFSET, 1278 16, 1, vaddr + p_off, seg_len, false); 1279 kunmap_atomic(vaddr); 1280 len -= seg_len; 1281 if (!len) 1282 break; 1283 } 1284 } 1285 1286 if (full_pkt && skb_has_frag_list(skb)) { 1287 printk("skb fraglist:\n"); 1288 skb_walk_frags(skb, list_skb) 1289 skb_dump(level, list_skb, true); 1290 } 1291 } 1292 EXPORT_SYMBOL(skb_dump); 1293 1294 /** 1295 * skb_tx_error - report an sk_buff xmit error 1296 * @skb: buffer that triggered an error 1297 * 1298 * Report xmit error if a device callback is tracking this skb. 1299 * skb must be freed afterwards. 1300 */ 1301 void skb_tx_error(struct sk_buff *skb) 1302 { 1303 if (skb) { 1304 skb_zcopy_downgrade_managed(skb); 1305 skb_zcopy_clear(skb, true); 1306 } 1307 } 1308 EXPORT_SYMBOL(skb_tx_error); 1309 1310 #ifdef CONFIG_TRACEPOINTS 1311 /** 1312 * consume_skb - free an skbuff 1313 * @skb: buffer to free 1314 * 1315 * Drop a ref to the buffer and free it if the usage count has hit zero 1316 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1317 * is being dropped after a failure and notes that 1318 */ 1319 void consume_skb(struct sk_buff *skb) 1320 { 1321 if (!skb_unref(skb)) 1322 return; 1323 1324 trace_consume_skb(skb, __builtin_return_address(0)); 1325 __kfree_skb(skb); 1326 } 1327 EXPORT_SYMBOL(consume_skb); 1328 #endif 1329 1330 /** 1331 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1332 * @skb: buffer to free 1333 * 1334 * Alike consume_skb(), but this variant assumes that this is the last 1335 * skb reference and all the head states have been already dropped 1336 */ 1337 void __consume_stateless_skb(struct sk_buff *skb) 1338 { 1339 trace_consume_skb(skb, __builtin_return_address(0)); 1340 skb_release_data(skb, SKB_CONSUMED, false); 1341 kfree_skbmem(skb); 1342 } 1343 1344 static void napi_skb_cache_put(struct sk_buff *skb) 1345 { 1346 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1347 u32 i; 1348 1349 if (!kasan_mempool_poison_object(skb)) 1350 return; 1351 1352 nc->skb_cache[nc->skb_count++] = skb; 1353 1354 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1355 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1356 kasan_mempool_unpoison_object(nc->skb_cache[i], 1357 kmem_cache_size(skbuff_cache)); 1358 1359 kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF, 1360 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1361 nc->skb_count = NAPI_SKB_CACHE_HALF; 1362 } 1363 } 1364 1365 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1366 { 1367 skb_release_all(skb, reason, true); 1368 napi_skb_cache_put(skb); 1369 } 1370 1371 void napi_skb_free_stolen_head(struct sk_buff *skb) 1372 { 1373 if (unlikely(skb->slow_gro)) { 1374 nf_reset_ct(skb); 1375 skb_dst_drop(skb); 1376 skb_ext_put(skb); 1377 skb_orphan(skb); 1378 skb->slow_gro = 0; 1379 } 1380 napi_skb_cache_put(skb); 1381 } 1382 1383 void napi_consume_skb(struct sk_buff *skb, int budget) 1384 { 1385 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1386 if (unlikely(!budget)) { 1387 dev_consume_skb_any(skb); 1388 return; 1389 } 1390 1391 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1392 1393 if (!skb_unref(skb)) 1394 return; 1395 1396 /* if reaching here SKB is ready to free */ 1397 trace_consume_skb(skb, __builtin_return_address(0)); 1398 1399 /* if SKB is a clone, don't handle this case */ 1400 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1401 __kfree_skb(skb); 1402 return; 1403 } 1404 1405 skb_release_all(skb, SKB_CONSUMED, !!budget); 1406 napi_skb_cache_put(skb); 1407 } 1408 EXPORT_SYMBOL(napi_consume_skb); 1409 1410 /* Make sure a field is contained by headers group */ 1411 #define CHECK_SKB_FIELD(field) \ 1412 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1413 offsetof(struct sk_buff, headers.field)); \ 1414 1415 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1416 { 1417 new->tstamp = old->tstamp; 1418 /* We do not copy old->sk */ 1419 new->dev = old->dev; 1420 memcpy(new->cb, old->cb, sizeof(old->cb)); 1421 skb_dst_copy(new, old); 1422 __skb_ext_copy(new, old); 1423 __nf_copy(new, old, false); 1424 1425 /* Note : this field could be in the headers group. 1426 * It is not yet because we do not want to have a 16 bit hole 1427 */ 1428 new->queue_mapping = old->queue_mapping; 1429 1430 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1431 CHECK_SKB_FIELD(protocol); 1432 CHECK_SKB_FIELD(csum); 1433 CHECK_SKB_FIELD(hash); 1434 CHECK_SKB_FIELD(priority); 1435 CHECK_SKB_FIELD(skb_iif); 1436 CHECK_SKB_FIELD(vlan_proto); 1437 CHECK_SKB_FIELD(vlan_tci); 1438 CHECK_SKB_FIELD(transport_header); 1439 CHECK_SKB_FIELD(network_header); 1440 CHECK_SKB_FIELD(mac_header); 1441 CHECK_SKB_FIELD(inner_protocol); 1442 CHECK_SKB_FIELD(inner_transport_header); 1443 CHECK_SKB_FIELD(inner_network_header); 1444 CHECK_SKB_FIELD(inner_mac_header); 1445 CHECK_SKB_FIELD(mark); 1446 #ifdef CONFIG_NETWORK_SECMARK 1447 CHECK_SKB_FIELD(secmark); 1448 #endif 1449 #ifdef CONFIG_NET_RX_BUSY_POLL 1450 CHECK_SKB_FIELD(napi_id); 1451 #endif 1452 CHECK_SKB_FIELD(alloc_cpu); 1453 #ifdef CONFIG_XPS 1454 CHECK_SKB_FIELD(sender_cpu); 1455 #endif 1456 #ifdef CONFIG_NET_SCHED 1457 CHECK_SKB_FIELD(tc_index); 1458 #endif 1459 1460 } 1461 1462 /* 1463 * You should not add any new code to this function. Add it to 1464 * __copy_skb_header above instead. 1465 */ 1466 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1467 { 1468 #define C(x) n->x = skb->x 1469 1470 n->next = n->prev = NULL; 1471 n->sk = NULL; 1472 __copy_skb_header(n, skb); 1473 1474 C(len); 1475 C(data_len); 1476 C(mac_len); 1477 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1478 n->cloned = 1; 1479 n->nohdr = 0; 1480 n->peeked = 0; 1481 C(pfmemalloc); 1482 C(pp_recycle); 1483 n->destructor = NULL; 1484 C(tail); 1485 C(end); 1486 C(head); 1487 C(head_frag); 1488 C(data); 1489 C(truesize); 1490 refcount_set(&n->users, 1); 1491 1492 atomic_inc(&(skb_shinfo(skb)->dataref)); 1493 skb->cloned = 1; 1494 1495 return n; 1496 #undef C 1497 } 1498 1499 /** 1500 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1501 * @first: first sk_buff of the msg 1502 */ 1503 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1504 { 1505 struct sk_buff *n; 1506 1507 n = alloc_skb(0, GFP_ATOMIC); 1508 if (!n) 1509 return NULL; 1510 1511 n->len = first->len; 1512 n->data_len = first->len; 1513 n->truesize = first->truesize; 1514 1515 skb_shinfo(n)->frag_list = first; 1516 1517 __copy_skb_header(n, first); 1518 n->destructor = NULL; 1519 1520 return n; 1521 } 1522 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1523 1524 /** 1525 * skb_morph - morph one skb into another 1526 * @dst: the skb to receive the contents 1527 * @src: the skb to supply the contents 1528 * 1529 * This is identical to skb_clone except that the target skb is 1530 * supplied by the user. 1531 * 1532 * The target skb is returned upon exit. 1533 */ 1534 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1535 { 1536 skb_release_all(dst, SKB_CONSUMED, false); 1537 return __skb_clone(dst, src); 1538 } 1539 EXPORT_SYMBOL_GPL(skb_morph); 1540 1541 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1542 { 1543 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1544 struct user_struct *user; 1545 1546 if (capable(CAP_IPC_LOCK) || !size) 1547 return 0; 1548 1549 rlim = rlimit(RLIMIT_MEMLOCK); 1550 if (rlim == RLIM_INFINITY) 1551 return 0; 1552 1553 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1554 max_pg = rlim >> PAGE_SHIFT; 1555 user = mmp->user ? : current_user(); 1556 1557 old_pg = atomic_long_read(&user->locked_vm); 1558 do { 1559 new_pg = old_pg + num_pg; 1560 if (new_pg > max_pg) 1561 return -ENOBUFS; 1562 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1563 1564 if (!mmp->user) { 1565 mmp->user = get_uid(user); 1566 mmp->num_pg = num_pg; 1567 } else { 1568 mmp->num_pg += num_pg; 1569 } 1570 1571 return 0; 1572 } 1573 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1574 1575 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1576 { 1577 if (mmp->user) { 1578 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1579 free_uid(mmp->user); 1580 } 1581 } 1582 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1583 1584 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1585 { 1586 struct ubuf_info_msgzc *uarg; 1587 struct sk_buff *skb; 1588 1589 WARN_ON_ONCE(!in_task()); 1590 1591 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1592 if (!skb) 1593 return NULL; 1594 1595 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1596 uarg = (void *)skb->cb; 1597 uarg->mmp.user = NULL; 1598 1599 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1600 kfree_skb(skb); 1601 return NULL; 1602 } 1603 1604 uarg->ubuf.callback = msg_zerocopy_callback; 1605 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1606 uarg->len = 1; 1607 uarg->bytelen = size; 1608 uarg->zerocopy = 1; 1609 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1610 refcount_set(&uarg->ubuf.refcnt, 1); 1611 sock_hold(sk); 1612 1613 return &uarg->ubuf; 1614 } 1615 1616 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1617 { 1618 return container_of((void *)uarg, struct sk_buff, cb); 1619 } 1620 1621 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1622 struct ubuf_info *uarg) 1623 { 1624 if (uarg) { 1625 struct ubuf_info_msgzc *uarg_zc; 1626 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1627 u32 bytelen, next; 1628 1629 /* there might be non MSG_ZEROCOPY users */ 1630 if (uarg->callback != msg_zerocopy_callback) 1631 return NULL; 1632 1633 /* realloc only when socket is locked (TCP, UDP cork), 1634 * so uarg->len and sk_zckey access is serialized 1635 */ 1636 if (!sock_owned_by_user(sk)) { 1637 WARN_ON_ONCE(1); 1638 return NULL; 1639 } 1640 1641 uarg_zc = uarg_to_msgzc(uarg); 1642 bytelen = uarg_zc->bytelen + size; 1643 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1644 /* TCP can create new skb to attach new uarg */ 1645 if (sk->sk_type == SOCK_STREAM) 1646 goto new_alloc; 1647 return NULL; 1648 } 1649 1650 next = (u32)atomic_read(&sk->sk_zckey); 1651 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1652 if (mm_account_pinned_pages(&uarg_zc->mmp, size)) 1653 return NULL; 1654 uarg_zc->len++; 1655 uarg_zc->bytelen = bytelen; 1656 atomic_set(&sk->sk_zckey, ++next); 1657 1658 /* no extra ref when appending to datagram (MSG_MORE) */ 1659 if (sk->sk_type == SOCK_STREAM) 1660 net_zcopy_get(uarg); 1661 1662 return uarg; 1663 } 1664 } 1665 1666 new_alloc: 1667 return msg_zerocopy_alloc(sk, size); 1668 } 1669 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1670 1671 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1672 { 1673 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1674 u32 old_lo, old_hi; 1675 u64 sum_len; 1676 1677 old_lo = serr->ee.ee_info; 1678 old_hi = serr->ee.ee_data; 1679 sum_len = old_hi - old_lo + 1ULL + len; 1680 1681 if (sum_len >= (1ULL << 32)) 1682 return false; 1683 1684 if (lo != old_hi + 1) 1685 return false; 1686 1687 serr->ee.ee_data += len; 1688 return true; 1689 } 1690 1691 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1692 { 1693 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1694 struct sock_exterr_skb *serr; 1695 struct sock *sk = skb->sk; 1696 struct sk_buff_head *q; 1697 unsigned long flags; 1698 bool is_zerocopy; 1699 u32 lo, hi; 1700 u16 len; 1701 1702 mm_unaccount_pinned_pages(&uarg->mmp); 1703 1704 /* if !len, there was only 1 call, and it was aborted 1705 * so do not queue a completion notification 1706 */ 1707 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1708 goto release; 1709 1710 len = uarg->len; 1711 lo = uarg->id; 1712 hi = uarg->id + len - 1; 1713 is_zerocopy = uarg->zerocopy; 1714 1715 serr = SKB_EXT_ERR(skb); 1716 memset(serr, 0, sizeof(*serr)); 1717 serr->ee.ee_errno = 0; 1718 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1719 serr->ee.ee_data = hi; 1720 serr->ee.ee_info = lo; 1721 if (!is_zerocopy) 1722 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1723 1724 q = &sk->sk_error_queue; 1725 spin_lock_irqsave(&q->lock, flags); 1726 tail = skb_peek_tail(q); 1727 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1728 !skb_zerocopy_notify_extend(tail, lo, len)) { 1729 __skb_queue_tail(q, skb); 1730 skb = NULL; 1731 } 1732 spin_unlock_irqrestore(&q->lock, flags); 1733 1734 sk_error_report(sk); 1735 1736 release: 1737 consume_skb(skb); 1738 sock_put(sk); 1739 } 1740 1741 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1742 bool success) 1743 { 1744 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1745 1746 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1747 1748 if (refcount_dec_and_test(&uarg->refcnt)) 1749 __msg_zerocopy_callback(uarg_zc); 1750 } 1751 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1752 1753 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1754 { 1755 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1756 1757 atomic_dec(&sk->sk_zckey); 1758 uarg_to_msgzc(uarg)->len--; 1759 1760 if (have_uref) 1761 msg_zerocopy_callback(NULL, uarg, true); 1762 } 1763 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1764 1765 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1766 struct msghdr *msg, int len, 1767 struct ubuf_info *uarg) 1768 { 1769 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1770 int err, orig_len = skb->len; 1771 1772 /* An skb can only point to one uarg. This edge case happens when 1773 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1774 */ 1775 if (orig_uarg && uarg != orig_uarg) 1776 return -EEXIST; 1777 1778 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1779 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1780 struct sock *save_sk = skb->sk; 1781 1782 /* Streams do not free skb on error. Reset to prev state. */ 1783 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1784 skb->sk = sk; 1785 ___pskb_trim(skb, orig_len); 1786 skb->sk = save_sk; 1787 return err; 1788 } 1789 1790 skb_zcopy_set(skb, uarg, NULL); 1791 return skb->len - orig_len; 1792 } 1793 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1794 1795 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1796 { 1797 int i; 1798 1799 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1800 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1801 skb_frag_ref(skb, i); 1802 } 1803 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1804 1805 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1806 gfp_t gfp_mask) 1807 { 1808 if (skb_zcopy(orig)) { 1809 if (skb_zcopy(nskb)) { 1810 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1811 if (!gfp_mask) { 1812 WARN_ON_ONCE(1); 1813 return -ENOMEM; 1814 } 1815 if (skb_uarg(nskb) == skb_uarg(orig)) 1816 return 0; 1817 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1818 return -EIO; 1819 } 1820 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1821 } 1822 return 0; 1823 } 1824 1825 /** 1826 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1827 * @skb: the skb to modify 1828 * @gfp_mask: allocation priority 1829 * 1830 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1831 * It will copy all frags into kernel and drop the reference 1832 * to userspace pages. 1833 * 1834 * If this function is called from an interrupt gfp_mask() must be 1835 * %GFP_ATOMIC. 1836 * 1837 * Returns 0 on success or a negative error code on failure 1838 * to allocate kernel memory to copy to. 1839 */ 1840 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1841 { 1842 int num_frags = skb_shinfo(skb)->nr_frags; 1843 struct page *page, *head = NULL; 1844 int i, order, psize, new_frags; 1845 u32 d_off; 1846 1847 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1848 return -EINVAL; 1849 1850 if (!num_frags) 1851 goto release; 1852 1853 /* We might have to allocate high order pages, so compute what minimum 1854 * page order is needed. 1855 */ 1856 order = 0; 1857 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1858 order++; 1859 psize = (PAGE_SIZE << order); 1860 1861 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1862 for (i = 0; i < new_frags; i++) { 1863 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1864 if (!page) { 1865 while (head) { 1866 struct page *next = (struct page *)page_private(head); 1867 put_page(head); 1868 head = next; 1869 } 1870 return -ENOMEM; 1871 } 1872 set_page_private(page, (unsigned long)head); 1873 head = page; 1874 } 1875 1876 page = head; 1877 d_off = 0; 1878 for (i = 0; i < num_frags; i++) { 1879 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1880 u32 p_off, p_len, copied; 1881 struct page *p; 1882 u8 *vaddr; 1883 1884 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1885 p, p_off, p_len, copied) { 1886 u32 copy, done = 0; 1887 vaddr = kmap_atomic(p); 1888 1889 while (done < p_len) { 1890 if (d_off == psize) { 1891 d_off = 0; 1892 page = (struct page *)page_private(page); 1893 } 1894 copy = min_t(u32, psize - d_off, p_len - done); 1895 memcpy(page_address(page) + d_off, 1896 vaddr + p_off + done, copy); 1897 done += copy; 1898 d_off += copy; 1899 } 1900 kunmap_atomic(vaddr); 1901 } 1902 } 1903 1904 /* skb frags release userspace buffers */ 1905 for (i = 0; i < num_frags; i++) 1906 skb_frag_unref(skb, i); 1907 1908 /* skb frags point to kernel buffers */ 1909 for (i = 0; i < new_frags - 1; i++) { 1910 __skb_fill_page_desc(skb, i, head, 0, psize); 1911 head = (struct page *)page_private(head); 1912 } 1913 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1914 skb_shinfo(skb)->nr_frags = new_frags; 1915 1916 release: 1917 skb_zcopy_clear(skb, false); 1918 return 0; 1919 } 1920 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1921 1922 /** 1923 * skb_clone - duplicate an sk_buff 1924 * @skb: buffer to clone 1925 * @gfp_mask: allocation priority 1926 * 1927 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1928 * copies share the same packet data but not structure. The new 1929 * buffer has a reference count of 1. If the allocation fails the 1930 * function returns %NULL otherwise the new buffer is returned. 1931 * 1932 * If this function is called from an interrupt gfp_mask() must be 1933 * %GFP_ATOMIC. 1934 */ 1935 1936 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1937 { 1938 struct sk_buff_fclones *fclones = container_of(skb, 1939 struct sk_buff_fclones, 1940 skb1); 1941 struct sk_buff *n; 1942 1943 if (skb_orphan_frags(skb, gfp_mask)) 1944 return NULL; 1945 1946 if (skb->fclone == SKB_FCLONE_ORIG && 1947 refcount_read(&fclones->fclone_ref) == 1) { 1948 n = &fclones->skb2; 1949 refcount_set(&fclones->fclone_ref, 2); 1950 n->fclone = SKB_FCLONE_CLONE; 1951 } else { 1952 if (skb_pfmemalloc(skb)) 1953 gfp_mask |= __GFP_MEMALLOC; 1954 1955 n = kmem_cache_alloc(skbuff_cache, gfp_mask); 1956 if (!n) 1957 return NULL; 1958 1959 n->fclone = SKB_FCLONE_UNAVAILABLE; 1960 } 1961 1962 return __skb_clone(n, skb); 1963 } 1964 EXPORT_SYMBOL(skb_clone); 1965 1966 void skb_headers_offset_update(struct sk_buff *skb, int off) 1967 { 1968 /* Only adjust this if it actually is csum_start rather than csum */ 1969 if (skb->ip_summed == CHECKSUM_PARTIAL) 1970 skb->csum_start += off; 1971 /* {transport,network,mac}_header and tail are relative to skb->head */ 1972 skb->transport_header += off; 1973 skb->network_header += off; 1974 if (skb_mac_header_was_set(skb)) 1975 skb->mac_header += off; 1976 skb->inner_transport_header += off; 1977 skb->inner_network_header += off; 1978 skb->inner_mac_header += off; 1979 } 1980 EXPORT_SYMBOL(skb_headers_offset_update); 1981 1982 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1983 { 1984 __copy_skb_header(new, old); 1985 1986 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1987 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1988 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1989 } 1990 EXPORT_SYMBOL(skb_copy_header); 1991 1992 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1993 { 1994 if (skb_pfmemalloc(skb)) 1995 return SKB_ALLOC_RX; 1996 return 0; 1997 } 1998 1999 /** 2000 * skb_copy - create private copy of an sk_buff 2001 * @skb: buffer to copy 2002 * @gfp_mask: allocation priority 2003 * 2004 * Make a copy of both an &sk_buff and its data. This is used when the 2005 * caller wishes to modify the data and needs a private copy of the 2006 * data to alter. Returns %NULL on failure or the pointer to the buffer 2007 * on success. The returned buffer has a reference count of 1. 2008 * 2009 * As by-product this function converts non-linear &sk_buff to linear 2010 * one, so that &sk_buff becomes completely private and caller is allowed 2011 * to modify all the data of returned buffer. This means that this 2012 * function is not recommended for use in circumstances when only 2013 * header is going to be modified. Use pskb_copy() instead. 2014 */ 2015 2016 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 2017 { 2018 int headerlen = skb_headroom(skb); 2019 unsigned int size = skb_end_offset(skb) + skb->data_len; 2020 struct sk_buff *n = __alloc_skb(size, gfp_mask, 2021 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 2022 2023 if (!n) 2024 return NULL; 2025 2026 /* Set the data pointer */ 2027 skb_reserve(n, headerlen); 2028 /* Set the tail pointer and length */ 2029 skb_put(n, skb->len); 2030 2031 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 2032 2033 skb_copy_header(n, skb); 2034 return n; 2035 } 2036 EXPORT_SYMBOL(skb_copy); 2037 2038 /** 2039 * __pskb_copy_fclone - create copy of an sk_buff with private head. 2040 * @skb: buffer to copy 2041 * @headroom: headroom of new skb 2042 * @gfp_mask: allocation priority 2043 * @fclone: if true allocate the copy of the skb from the fclone 2044 * cache instead of the head cache; it is recommended to set this 2045 * to true for the cases where the copy will likely be cloned 2046 * 2047 * Make a copy of both an &sk_buff and part of its data, located 2048 * in header. Fragmented data remain shared. This is used when 2049 * the caller wishes to modify only header of &sk_buff and needs 2050 * private copy of the header to alter. Returns %NULL on failure 2051 * or the pointer to the buffer on success. 2052 * The returned buffer has a reference count of 1. 2053 */ 2054 2055 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2056 gfp_t gfp_mask, bool fclone) 2057 { 2058 unsigned int size = skb_headlen(skb) + headroom; 2059 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2060 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2061 2062 if (!n) 2063 goto out; 2064 2065 /* Set the data pointer */ 2066 skb_reserve(n, headroom); 2067 /* Set the tail pointer and length */ 2068 skb_put(n, skb_headlen(skb)); 2069 /* Copy the bytes */ 2070 skb_copy_from_linear_data(skb, n->data, n->len); 2071 2072 n->truesize += skb->data_len; 2073 n->data_len = skb->data_len; 2074 n->len = skb->len; 2075 2076 if (skb_shinfo(skb)->nr_frags) { 2077 int i; 2078 2079 if (skb_orphan_frags(skb, gfp_mask) || 2080 skb_zerocopy_clone(n, skb, gfp_mask)) { 2081 kfree_skb(n); 2082 n = NULL; 2083 goto out; 2084 } 2085 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2086 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2087 skb_frag_ref(skb, i); 2088 } 2089 skb_shinfo(n)->nr_frags = i; 2090 } 2091 2092 if (skb_has_frag_list(skb)) { 2093 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2094 skb_clone_fraglist(n); 2095 } 2096 2097 skb_copy_header(n, skb); 2098 out: 2099 return n; 2100 } 2101 EXPORT_SYMBOL(__pskb_copy_fclone); 2102 2103 /** 2104 * pskb_expand_head - reallocate header of &sk_buff 2105 * @skb: buffer to reallocate 2106 * @nhead: room to add at head 2107 * @ntail: room to add at tail 2108 * @gfp_mask: allocation priority 2109 * 2110 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2111 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2112 * reference count of 1. Returns zero in the case of success or error, 2113 * if expansion failed. In the last case, &sk_buff is not changed. 2114 * 2115 * All the pointers pointing into skb header may change and must be 2116 * reloaded after call to this function. 2117 */ 2118 2119 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2120 gfp_t gfp_mask) 2121 { 2122 unsigned int osize = skb_end_offset(skb); 2123 unsigned int size = osize + nhead + ntail; 2124 long off; 2125 u8 *data; 2126 int i; 2127 2128 BUG_ON(nhead < 0); 2129 2130 BUG_ON(skb_shared(skb)); 2131 2132 skb_zcopy_downgrade_managed(skb); 2133 2134 if (skb_pfmemalloc(skb)) 2135 gfp_mask |= __GFP_MEMALLOC; 2136 2137 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2138 if (!data) 2139 goto nodata; 2140 size = SKB_WITH_OVERHEAD(size); 2141 2142 /* Copy only real data... and, alas, header. This should be 2143 * optimized for the cases when header is void. 2144 */ 2145 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2146 2147 memcpy((struct skb_shared_info *)(data + size), 2148 skb_shinfo(skb), 2149 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2150 2151 /* 2152 * if shinfo is shared we must drop the old head gracefully, but if it 2153 * is not we can just drop the old head and let the existing refcount 2154 * be since all we did is relocate the values 2155 */ 2156 if (skb_cloned(skb)) { 2157 if (skb_orphan_frags(skb, gfp_mask)) 2158 goto nofrags; 2159 if (skb_zcopy(skb)) 2160 refcount_inc(&skb_uarg(skb)->refcnt); 2161 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2162 skb_frag_ref(skb, i); 2163 2164 if (skb_has_frag_list(skb)) 2165 skb_clone_fraglist(skb); 2166 2167 skb_release_data(skb, SKB_CONSUMED, false); 2168 } else { 2169 skb_free_head(skb, false); 2170 } 2171 off = (data + nhead) - skb->head; 2172 2173 skb->head = data; 2174 skb->head_frag = 0; 2175 skb->data += off; 2176 2177 skb_set_end_offset(skb, size); 2178 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2179 off = nhead; 2180 #endif 2181 skb->tail += off; 2182 skb_headers_offset_update(skb, nhead); 2183 skb->cloned = 0; 2184 skb->hdr_len = 0; 2185 skb->nohdr = 0; 2186 atomic_set(&skb_shinfo(skb)->dataref, 1); 2187 2188 skb_metadata_clear(skb); 2189 2190 /* It is not generally safe to change skb->truesize. 2191 * For the moment, we really care of rx path, or 2192 * when skb is orphaned (not attached to a socket). 2193 */ 2194 if (!skb->sk || skb->destructor == sock_edemux) 2195 skb->truesize += size - osize; 2196 2197 return 0; 2198 2199 nofrags: 2200 skb_kfree_head(data, size); 2201 nodata: 2202 return -ENOMEM; 2203 } 2204 EXPORT_SYMBOL(pskb_expand_head); 2205 2206 /* Make private copy of skb with writable head and some headroom */ 2207 2208 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2209 { 2210 struct sk_buff *skb2; 2211 int delta = headroom - skb_headroom(skb); 2212 2213 if (delta <= 0) 2214 skb2 = pskb_copy(skb, GFP_ATOMIC); 2215 else { 2216 skb2 = skb_clone(skb, GFP_ATOMIC); 2217 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2218 GFP_ATOMIC)) { 2219 kfree_skb(skb2); 2220 skb2 = NULL; 2221 } 2222 } 2223 return skb2; 2224 } 2225 EXPORT_SYMBOL(skb_realloc_headroom); 2226 2227 /* Note: We plan to rework this in linux-6.4 */ 2228 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2229 { 2230 unsigned int saved_end_offset, saved_truesize; 2231 struct skb_shared_info *shinfo; 2232 int res; 2233 2234 saved_end_offset = skb_end_offset(skb); 2235 saved_truesize = skb->truesize; 2236 2237 res = pskb_expand_head(skb, 0, 0, pri); 2238 if (res) 2239 return res; 2240 2241 skb->truesize = saved_truesize; 2242 2243 if (likely(skb_end_offset(skb) == saved_end_offset)) 2244 return 0; 2245 2246 /* We can not change skb->end if the original or new value 2247 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2248 */ 2249 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2250 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2251 /* We think this path should not be taken. 2252 * Add a temporary trace to warn us just in case. 2253 */ 2254 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2255 saved_end_offset, skb_end_offset(skb)); 2256 WARN_ON_ONCE(1); 2257 return 0; 2258 } 2259 2260 shinfo = skb_shinfo(skb); 2261 2262 /* We are about to change back skb->end, 2263 * we need to move skb_shinfo() to its new location. 2264 */ 2265 memmove(skb->head + saved_end_offset, 2266 shinfo, 2267 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2268 2269 skb_set_end_offset(skb, saved_end_offset); 2270 2271 return 0; 2272 } 2273 2274 /** 2275 * skb_expand_head - reallocate header of &sk_buff 2276 * @skb: buffer to reallocate 2277 * @headroom: needed headroom 2278 * 2279 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2280 * if possible; copies skb->sk to new skb as needed 2281 * and frees original skb in case of failures. 2282 * 2283 * It expect increased headroom and generates warning otherwise. 2284 */ 2285 2286 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2287 { 2288 int delta = headroom - skb_headroom(skb); 2289 int osize = skb_end_offset(skb); 2290 struct sock *sk = skb->sk; 2291 2292 if (WARN_ONCE(delta <= 0, 2293 "%s is expecting an increase in the headroom", __func__)) 2294 return skb; 2295 2296 delta = SKB_DATA_ALIGN(delta); 2297 /* pskb_expand_head() might crash, if skb is shared. */ 2298 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2299 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2300 2301 if (unlikely(!nskb)) 2302 goto fail; 2303 2304 if (sk) 2305 skb_set_owner_w(nskb, sk); 2306 consume_skb(skb); 2307 skb = nskb; 2308 } 2309 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2310 goto fail; 2311 2312 if (sk && is_skb_wmem(skb)) { 2313 delta = skb_end_offset(skb) - osize; 2314 refcount_add(delta, &sk->sk_wmem_alloc); 2315 skb->truesize += delta; 2316 } 2317 return skb; 2318 2319 fail: 2320 kfree_skb(skb); 2321 return NULL; 2322 } 2323 EXPORT_SYMBOL(skb_expand_head); 2324 2325 /** 2326 * skb_copy_expand - copy and expand sk_buff 2327 * @skb: buffer to copy 2328 * @newheadroom: new free bytes at head 2329 * @newtailroom: new free bytes at tail 2330 * @gfp_mask: allocation priority 2331 * 2332 * Make a copy of both an &sk_buff and its data and while doing so 2333 * allocate additional space. 2334 * 2335 * This is used when the caller wishes to modify the data and needs a 2336 * private copy of the data to alter as well as more space for new fields. 2337 * Returns %NULL on failure or the pointer to the buffer 2338 * on success. The returned buffer has a reference count of 1. 2339 * 2340 * You must pass %GFP_ATOMIC as the allocation priority if this function 2341 * is called from an interrupt. 2342 */ 2343 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2344 int newheadroom, int newtailroom, 2345 gfp_t gfp_mask) 2346 { 2347 /* 2348 * Allocate the copy buffer 2349 */ 2350 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 2351 gfp_mask, skb_alloc_rx_flag(skb), 2352 NUMA_NO_NODE); 2353 int oldheadroom = skb_headroom(skb); 2354 int head_copy_len, head_copy_off; 2355 2356 if (!n) 2357 return NULL; 2358 2359 skb_reserve(n, newheadroom); 2360 2361 /* Set the tail pointer and length */ 2362 skb_put(n, skb->len); 2363 2364 head_copy_len = oldheadroom; 2365 head_copy_off = 0; 2366 if (newheadroom <= head_copy_len) 2367 head_copy_len = newheadroom; 2368 else 2369 head_copy_off = newheadroom - head_copy_len; 2370 2371 /* Copy the linear header and data. */ 2372 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2373 skb->len + head_copy_len)); 2374 2375 skb_copy_header(n, skb); 2376 2377 skb_headers_offset_update(n, newheadroom - oldheadroom); 2378 2379 return n; 2380 } 2381 EXPORT_SYMBOL(skb_copy_expand); 2382 2383 /** 2384 * __skb_pad - zero pad the tail of an skb 2385 * @skb: buffer to pad 2386 * @pad: space to pad 2387 * @free_on_error: free buffer on error 2388 * 2389 * Ensure that a buffer is followed by a padding area that is zero 2390 * filled. Used by network drivers which may DMA or transfer data 2391 * beyond the buffer end onto the wire. 2392 * 2393 * May return error in out of memory cases. The skb is freed on error 2394 * if @free_on_error is true. 2395 */ 2396 2397 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2398 { 2399 int err; 2400 int ntail; 2401 2402 /* If the skbuff is non linear tailroom is always zero.. */ 2403 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2404 memset(skb->data+skb->len, 0, pad); 2405 return 0; 2406 } 2407 2408 ntail = skb->data_len + pad - (skb->end - skb->tail); 2409 if (likely(skb_cloned(skb) || ntail > 0)) { 2410 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2411 if (unlikely(err)) 2412 goto free_skb; 2413 } 2414 2415 /* FIXME: The use of this function with non-linear skb's really needs 2416 * to be audited. 2417 */ 2418 err = skb_linearize(skb); 2419 if (unlikely(err)) 2420 goto free_skb; 2421 2422 memset(skb->data + skb->len, 0, pad); 2423 return 0; 2424 2425 free_skb: 2426 if (free_on_error) 2427 kfree_skb(skb); 2428 return err; 2429 } 2430 EXPORT_SYMBOL(__skb_pad); 2431 2432 /** 2433 * pskb_put - add data to the tail of a potentially fragmented buffer 2434 * @skb: start of the buffer to use 2435 * @tail: tail fragment of the buffer to use 2436 * @len: amount of data to add 2437 * 2438 * This function extends the used data area of the potentially 2439 * fragmented buffer. @tail must be the last fragment of @skb -- or 2440 * @skb itself. If this would exceed the total buffer size the kernel 2441 * will panic. A pointer to the first byte of the extra data is 2442 * returned. 2443 */ 2444 2445 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2446 { 2447 if (tail != skb) { 2448 skb->data_len += len; 2449 skb->len += len; 2450 } 2451 return skb_put(tail, len); 2452 } 2453 EXPORT_SYMBOL_GPL(pskb_put); 2454 2455 /** 2456 * skb_put - add data to a buffer 2457 * @skb: buffer to use 2458 * @len: amount of data to add 2459 * 2460 * This function extends the used data area of the buffer. If this would 2461 * exceed the total buffer size the kernel will panic. A pointer to the 2462 * first byte of the extra data is returned. 2463 */ 2464 void *skb_put(struct sk_buff *skb, unsigned int len) 2465 { 2466 void *tmp = skb_tail_pointer(skb); 2467 SKB_LINEAR_ASSERT(skb); 2468 skb->tail += len; 2469 skb->len += len; 2470 if (unlikely(skb->tail > skb->end)) 2471 skb_over_panic(skb, len, __builtin_return_address(0)); 2472 return tmp; 2473 } 2474 EXPORT_SYMBOL(skb_put); 2475 2476 /** 2477 * skb_push - add data to the start of a buffer 2478 * @skb: buffer to use 2479 * @len: amount of data to add 2480 * 2481 * This function extends the used data area of the buffer at the buffer 2482 * start. If this would exceed the total buffer headroom the kernel will 2483 * panic. A pointer to the first byte of the extra data is returned. 2484 */ 2485 void *skb_push(struct sk_buff *skb, unsigned int len) 2486 { 2487 skb->data -= len; 2488 skb->len += len; 2489 if (unlikely(skb->data < skb->head)) 2490 skb_under_panic(skb, len, __builtin_return_address(0)); 2491 return skb->data; 2492 } 2493 EXPORT_SYMBOL(skb_push); 2494 2495 /** 2496 * skb_pull - remove data from the start of a buffer 2497 * @skb: buffer to use 2498 * @len: amount of data to remove 2499 * 2500 * This function removes data from the start of a buffer, returning 2501 * the memory to the headroom. A pointer to the next data in the buffer 2502 * is returned. Once the data has been pulled future pushes will overwrite 2503 * the old data. 2504 */ 2505 void *skb_pull(struct sk_buff *skb, unsigned int len) 2506 { 2507 return skb_pull_inline(skb, len); 2508 } 2509 EXPORT_SYMBOL(skb_pull); 2510 2511 /** 2512 * skb_pull_data - remove data from the start of a buffer returning its 2513 * original position. 2514 * @skb: buffer to use 2515 * @len: amount of data to remove 2516 * 2517 * This function removes data from the start of a buffer, returning 2518 * the memory to the headroom. A pointer to the original data in the buffer 2519 * is returned after checking if there is enough data to pull. Once the 2520 * data has been pulled future pushes will overwrite the old data. 2521 */ 2522 void *skb_pull_data(struct sk_buff *skb, size_t len) 2523 { 2524 void *data = skb->data; 2525 2526 if (skb->len < len) 2527 return NULL; 2528 2529 skb_pull(skb, len); 2530 2531 return data; 2532 } 2533 EXPORT_SYMBOL(skb_pull_data); 2534 2535 /** 2536 * skb_trim - remove end from a buffer 2537 * @skb: buffer to alter 2538 * @len: new length 2539 * 2540 * Cut the length of a buffer down by removing data from the tail. If 2541 * the buffer is already under the length specified it is not modified. 2542 * The skb must be linear. 2543 */ 2544 void skb_trim(struct sk_buff *skb, unsigned int len) 2545 { 2546 if (skb->len > len) 2547 __skb_trim(skb, len); 2548 } 2549 EXPORT_SYMBOL(skb_trim); 2550 2551 /* Trims skb to length len. It can change skb pointers. 2552 */ 2553 2554 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2555 { 2556 struct sk_buff **fragp; 2557 struct sk_buff *frag; 2558 int offset = skb_headlen(skb); 2559 int nfrags = skb_shinfo(skb)->nr_frags; 2560 int i; 2561 int err; 2562 2563 if (skb_cloned(skb) && 2564 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2565 return err; 2566 2567 i = 0; 2568 if (offset >= len) 2569 goto drop_pages; 2570 2571 for (; i < nfrags; i++) { 2572 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2573 2574 if (end < len) { 2575 offset = end; 2576 continue; 2577 } 2578 2579 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2580 2581 drop_pages: 2582 skb_shinfo(skb)->nr_frags = i; 2583 2584 for (; i < nfrags; i++) 2585 skb_frag_unref(skb, i); 2586 2587 if (skb_has_frag_list(skb)) 2588 skb_drop_fraglist(skb); 2589 goto done; 2590 } 2591 2592 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2593 fragp = &frag->next) { 2594 int end = offset + frag->len; 2595 2596 if (skb_shared(frag)) { 2597 struct sk_buff *nfrag; 2598 2599 nfrag = skb_clone(frag, GFP_ATOMIC); 2600 if (unlikely(!nfrag)) 2601 return -ENOMEM; 2602 2603 nfrag->next = frag->next; 2604 consume_skb(frag); 2605 frag = nfrag; 2606 *fragp = frag; 2607 } 2608 2609 if (end < len) { 2610 offset = end; 2611 continue; 2612 } 2613 2614 if (end > len && 2615 unlikely((err = pskb_trim(frag, len - offset)))) 2616 return err; 2617 2618 if (frag->next) 2619 skb_drop_list(&frag->next); 2620 break; 2621 } 2622 2623 done: 2624 if (len > skb_headlen(skb)) { 2625 skb->data_len -= skb->len - len; 2626 skb->len = len; 2627 } else { 2628 skb->len = len; 2629 skb->data_len = 0; 2630 skb_set_tail_pointer(skb, len); 2631 } 2632 2633 if (!skb->sk || skb->destructor == sock_edemux) 2634 skb_condense(skb); 2635 return 0; 2636 } 2637 EXPORT_SYMBOL(___pskb_trim); 2638 2639 /* Note : use pskb_trim_rcsum() instead of calling this directly 2640 */ 2641 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2642 { 2643 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2644 int delta = skb->len - len; 2645 2646 skb->csum = csum_block_sub(skb->csum, 2647 skb_checksum(skb, len, delta, 0), 2648 len); 2649 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2650 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2651 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2652 2653 if (offset + sizeof(__sum16) > hdlen) 2654 return -EINVAL; 2655 } 2656 return __pskb_trim(skb, len); 2657 } 2658 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2659 2660 /** 2661 * __pskb_pull_tail - advance tail of skb header 2662 * @skb: buffer to reallocate 2663 * @delta: number of bytes to advance tail 2664 * 2665 * The function makes a sense only on a fragmented &sk_buff, 2666 * it expands header moving its tail forward and copying necessary 2667 * data from fragmented part. 2668 * 2669 * &sk_buff MUST have reference count of 1. 2670 * 2671 * Returns %NULL (and &sk_buff does not change) if pull failed 2672 * or value of new tail of skb in the case of success. 2673 * 2674 * All the pointers pointing into skb header may change and must be 2675 * reloaded after call to this function. 2676 */ 2677 2678 /* Moves tail of skb head forward, copying data from fragmented part, 2679 * when it is necessary. 2680 * 1. It may fail due to malloc failure. 2681 * 2. It may change skb pointers. 2682 * 2683 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2684 */ 2685 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2686 { 2687 /* If skb has not enough free space at tail, get new one 2688 * plus 128 bytes for future expansions. If we have enough 2689 * room at tail, reallocate without expansion only if skb is cloned. 2690 */ 2691 int i, k, eat = (skb->tail + delta) - skb->end; 2692 2693 if (eat > 0 || skb_cloned(skb)) { 2694 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2695 GFP_ATOMIC)) 2696 return NULL; 2697 } 2698 2699 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2700 skb_tail_pointer(skb), delta)); 2701 2702 /* Optimization: no fragments, no reasons to preestimate 2703 * size of pulled pages. Superb. 2704 */ 2705 if (!skb_has_frag_list(skb)) 2706 goto pull_pages; 2707 2708 /* Estimate size of pulled pages. */ 2709 eat = delta; 2710 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2711 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2712 2713 if (size >= eat) 2714 goto pull_pages; 2715 eat -= size; 2716 } 2717 2718 /* If we need update frag list, we are in troubles. 2719 * Certainly, it is possible to add an offset to skb data, 2720 * but taking into account that pulling is expected to 2721 * be very rare operation, it is worth to fight against 2722 * further bloating skb head and crucify ourselves here instead. 2723 * Pure masohism, indeed. 8)8) 2724 */ 2725 if (eat) { 2726 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2727 struct sk_buff *clone = NULL; 2728 struct sk_buff *insp = NULL; 2729 2730 do { 2731 if (list->len <= eat) { 2732 /* Eaten as whole. */ 2733 eat -= list->len; 2734 list = list->next; 2735 insp = list; 2736 } else { 2737 /* Eaten partially. */ 2738 if (skb_is_gso(skb) && !list->head_frag && 2739 skb_headlen(list)) 2740 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2741 2742 if (skb_shared(list)) { 2743 /* Sucks! We need to fork list. :-( */ 2744 clone = skb_clone(list, GFP_ATOMIC); 2745 if (!clone) 2746 return NULL; 2747 insp = list->next; 2748 list = clone; 2749 } else { 2750 /* This may be pulled without 2751 * problems. */ 2752 insp = list; 2753 } 2754 if (!pskb_pull(list, eat)) { 2755 kfree_skb(clone); 2756 return NULL; 2757 } 2758 break; 2759 } 2760 } while (eat); 2761 2762 /* Free pulled out fragments. */ 2763 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2764 skb_shinfo(skb)->frag_list = list->next; 2765 consume_skb(list); 2766 } 2767 /* And insert new clone at head. */ 2768 if (clone) { 2769 clone->next = list; 2770 skb_shinfo(skb)->frag_list = clone; 2771 } 2772 } 2773 /* Success! Now we may commit changes to skb data. */ 2774 2775 pull_pages: 2776 eat = delta; 2777 k = 0; 2778 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2779 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2780 2781 if (size <= eat) { 2782 skb_frag_unref(skb, i); 2783 eat -= size; 2784 } else { 2785 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2786 2787 *frag = skb_shinfo(skb)->frags[i]; 2788 if (eat) { 2789 skb_frag_off_add(frag, eat); 2790 skb_frag_size_sub(frag, eat); 2791 if (!i) 2792 goto end; 2793 eat = 0; 2794 } 2795 k++; 2796 } 2797 } 2798 skb_shinfo(skb)->nr_frags = k; 2799 2800 end: 2801 skb->tail += delta; 2802 skb->data_len -= delta; 2803 2804 if (!skb->data_len) 2805 skb_zcopy_clear(skb, false); 2806 2807 return skb_tail_pointer(skb); 2808 } 2809 EXPORT_SYMBOL(__pskb_pull_tail); 2810 2811 /** 2812 * skb_copy_bits - copy bits from skb to kernel buffer 2813 * @skb: source skb 2814 * @offset: offset in source 2815 * @to: destination buffer 2816 * @len: number of bytes to copy 2817 * 2818 * Copy the specified number of bytes from the source skb to the 2819 * destination buffer. 2820 * 2821 * CAUTION ! : 2822 * If its prototype is ever changed, 2823 * check arch/{*}/net/{*}.S files, 2824 * since it is called from BPF assembly code. 2825 */ 2826 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2827 { 2828 int start = skb_headlen(skb); 2829 struct sk_buff *frag_iter; 2830 int i, copy; 2831 2832 if (offset > (int)skb->len - len) 2833 goto fault; 2834 2835 /* Copy header. */ 2836 if ((copy = start - offset) > 0) { 2837 if (copy > len) 2838 copy = len; 2839 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2840 if ((len -= copy) == 0) 2841 return 0; 2842 offset += copy; 2843 to += copy; 2844 } 2845 2846 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2847 int end; 2848 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2849 2850 WARN_ON(start > offset + len); 2851 2852 end = start + skb_frag_size(f); 2853 if ((copy = end - offset) > 0) { 2854 u32 p_off, p_len, copied; 2855 struct page *p; 2856 u8 *vaddr; 2857 2858 if (copy > len) 2859 copy = len; 2860 2861 skb_frag_foreach_page(f, 2862 skb_frag_off(f) + offset - start, 2863 copy, p, p_off, p_len, copied) { 2864 vaddr = kmap_atomic(p); 2865 memcpy(to + copied, vaddr + p_off, p_len); 2866 kunmap_atomic(vaddr); 2867 } 2868 2869 if ((len -= copy) == 0) 2870 return 0; 2871 offset += copy; 2872 to += copy; 2873 } 2874 start = end; 2875 } 2876 2877 skb_walk_frags(skb, frag_iter) { 2878 int end; 2879 2880 WARN_ON(start > offset + len); 2881 2882 end = start + frag_iter->len; 2883 if ((copy = end - offset) > 0) { 2884 if (copy > len) 2885 copy = len; 2886 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2887 goto fault; 2888 if ((len -= copy) == 0) 2889 return 0; 2890 offset += copy; 2891 to += copy; 2892 } 2893 start = end; 2894 } 2895 2896 if (!len) 2897 return 0; 2898 2899 fault: 2900 return -EFAULT; 2901 } 2902 EXPORT_SYMBOL(skb_copy_bits); 2903 2904 /* 2905 * Callback from splice_to_pipe(), if we need to release some pages 2906 * at the end of the spd in case we error'ed out in filling the pipe. 2907 */ 2908 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2909 { 2910 put_page(spd->pages[i]); 2911 } 2912 2913 static struct page *linear_to_page(struct page *page, unsigned int *len, 2914 unsigned int *offset, 2915 struct sock *sk) 2916 { 2917 struct page_frag *pfrag = sk_page_frag(sk); 2918 2919 if (!sk_page_frag_refill(sk, pfrag)) 2920 return NULL; 2921 2922 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2923 2924 memcpy(page_address(pfrag->page) + pfrag->offset, 2925 page_address(page) + *offset, *len); 2926 *offset = pfrag->offset; 2927 pfrag->offset += *len; 2928 2929 return pfrag->page; 2930 } 2931 2932 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2933 struct page *page, 2934 unsigned int offset) 2935 { 2936 return spd->nr_pages && 2937 spd->pages[spd->nr_pages - 1] == page && 2938 (spd->partial[spd->nr_pages - 1].offset + 2939 spd->partial[spd->nr_pages - 1].len == offset); 2940 } 2941 2942 /* 2943 * Fill page/offset/length into spd, if it can hold more pages. 2944 */ 2945 static bool spd_fill_page(struct splice_pipe_desc *spd, 2946 struct pipe_inode_info *pipe, struct page *page, 2947 unsigned int *len, unsigned int offset, 2948 bool linear, 2949 struct sock *sk) 2950 { 2951 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2952 return true; 2953 2954 if (linear) { 2955 page = linear_to_page(page, len, &offset, sk); 2956 if (!page) 2957 return true; 2958 } 2959 if (spd_can_coalesce(spd, page, offset)) { 2960 spd->partial[spd->nr_pages - 1].len += *len; 2961 return false; 2962 } 2963 get_page(page); 2964 spd->pages[spd->nr_pages] = page; 2965 spd->partial[spd->nr_pages].len = *len; 2966 spd->partial[spd->nr_pages].offset = offset; 2967 spd->nr_pages++; 2968 2969 return false; 2970 } 2971 2972 static bool __splice_segment(struct page *page, unsigned int poff, 2973 unsigned int plen, unsigned int *off, 2974 unsigned int *len, 2975 struct splice_pipe_desc *spd, bool linear, 2976 struct sock *sk, 2977 struct pipe_inode_info *pipe) 2978 { 2979 if (!*len) 2980 return true; 2981 2982 /* skip this segment if already processed */ 2983 if (*off >= plen) { 2984 *off -= plen; 2985 return false; 2986 } 2987 2988 /* ignore any bits we already processed */ 2989 poff += *off; 2990 plen -= *off; 2991 *off = 0; 2992 2993 do { 2994 unsigned int flen = min(*len, plen); 2995 2996 if (spd_fill_page(spd, pipe, page, &flen, poff, 2997 linear, sk)) 2998 return true; 2999 poff += flen; 3000 plen -= flen; 3001 *len -= flen; 3002 } while (*len && plen); 3003 3004 return false; 3005 } 3006 3007 /* 3008 * Map linear and fragment data from the skb to spd. It reports true if the 3009 * pipe is full or if we already spliced the requested length. 3010 */ 3011 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 3012 unsigned int *offset, unsigned int *len, 3013 struct splice_pipe_desc *spd, struct sock *sk) 3014 { 3015 int seg; 3016 struct sk_buff *iter; 3017 3018 /* map the linear part : 3019 * If skb->head_frag is set, this 'linear' part is backed by a 3020 * fragment, and if the head is not shared with any clones then 3021 * we can avoid a copy since we own the head portion of this page. 3022 */ 3023 if (__splice_segment(virt_to_page(skb->data), 3024 (unsigned long) skb->data & (PAGE_SIZE - 1), 3025 skb_headlen(skb), 3026 offset, len, spd, 3027 skb_head_is_locked(skb), 3028 sk, pipe)) 3029 return true; 3030 3031 /* 3032 * then map the fragments 3033 */ 3034 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 3035 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 3036 3037 if (__splice_segment(skb_frag_page(f), 3038 skb_frag_off(f), skb_frag_size(f), 3039 offset, len, spd, false, sk, pipe)) 3040 return true; 3041 } 3042 3043 skb_walk_frags(skb, iter) { 3044 if (*offset >= iter->len) { 3045 *offset -= iter->len; 3046 continue; 3047 } 3048 /* __skb_splice_bits() only fails if the output has no room 3049 * left, so no point in going over the frag_list for the error 3050 * case. 3051 */ 3052 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 3053 return true; 3054 } 3055 3056 return false; 3057 } 3058 3059 /* 3060 * Map data from the skb to a pipe. Should handle both the linear part, 3061 * the fragments, and the frag list. 3062 */ 3063 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3064 struct pipe_inode_info *pipe, unsigned int tlen, 3065 unsigned int flags) 3066 { 3067 struct partial_page partial[MAX_SKB_FRAGS]; 3068 struct page *pages[MAX_SKB_FRAGS]; 3069 struct splice_pipe_desc spd = { 3070 .pages = pages, 3071 .partial = partial, 3072 .nr_pages_max = MAX_SKB_FRAGS, 3073 .ops = &nosteal_pipe_buf_ops, 3074 .spd_release = sock_spd_release, 3075 }; 3076 int ret = 0; 3077 3078 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3079 3080 if (spd.nr_pages) 3081 ret = splice_to_pipe(pipe, &spd); 3082 3083 return ret; 3084 } 3085 EXPORT_SYMBOL_GPL(skb_splice_bits); 3086 3087 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3088 { 3089 struct socket *sock = sk->sk_socket; 3090 size_t size = msg_data_left(msg); 3091 3092 if (!sock) 3093 return -EINVAL; 3094 3095 if (!sock->ops->sendmsg_locked) 3096 return sock_no_sendmsg_locked(sk, msg, size); 3097 3098 return sock->ops->sendmsg_locked(sk, msg, size); 3099 } 3100 3101 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3102 { 3103 struct socket *sock = sk->sk_socket; 3104 3105 if (!sock) 3106 return -EINVAL; 3107 return sock_sendmsg(sock, msg); 3108 } 3109 3110 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3111 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3112 int len, sendmsg_func sendmsg) 3113 { 3114 unsigned int orig_len = len; 3115 struct sk_buff *head = skb; 3116 unsigned short fragidx; 3117 int slen, ret; 3118 3119 do_frag_list: 3120 3121 /* Deal with head data */ 3122 while (offset < skb_headlen(skb) && len) { 3123 struct kvec kv; 3124 struct msghdr msg; 3125 3126 slen = min_t(int, len, skb_headlen(skb) - offset); 3127 kv.iov_base = skb->data + offset; 3128 kv.iov_len = slen; 3129 memset(&msg, 0, sizeof(msg)); 3130 msg.msg_flags = MSG_DONTWAIT; 3131 3132 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3133 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3134 sendmsg_unlocked, sk, &msg); 3135 if (ret <= 0) 3136 goto error; 3137 3138 offset += ret; 3139 len -= ret; 3140 } 3141 3142 /* All the data was skb head? */ 3143 if (!len) 3144 goto out; 3145 3146 /* Make offset relative to start of frags */ 3147 offset -= skb_headlen(skb); 3148 3149 /* Find where we are in frag list */ 3150 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3151 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3152 3153 if (offset < skb_frag_size(frag)) 3154 break; 3155 3156 offset -= skb_frag_size(frag); 3157 } 3158 3159 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3160 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3161 3162 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3163 3164 while (slen) { 3165 struct bio_vec bvec; 3166 struct msghdr msg = { 3167 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT, 3168 }; 3169 3170 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3171 skb_frag_off(frag) + offset); 3172 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3173 slen); 3174 3175 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3176 sendmsg_unlocked, sk, &msg); 3177 if (ret <= 0) 3178 goto error; 3179 3180 len -= ret; 3181 offset += ret; 3182 slen -= ret; 3183 } 3184 3185 offset = 0; 3186 } 3187 3188 if (len) { 3189 /* Process any frag lists */ 3190 3191 if (skb == head) { 3192 if (skb_has_frag_list(skb)) { 3193 skb = skb_shinfo(skb)->frag_list; 3194 goto do_frag_list; 3195 } 3196 } else if (skb->next) { 3197 skb = skb->next; 3198 goto do_frag_list; 3199 } 3200 } 3201 3202 out: 3203 return orig_len - len; 3204 3205 error: 3206 return orig_len == len ? ret : orig_len - len; 3207 } 3208 3209 /* Send skb data on a socket. Socket must be locked. */ 3210 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3211 int len) 3212 { 3213 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked); 3214 } 3215 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3216 3217 /* Send skb data on a socket. Socket must be unlocked. */ 3218 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3219 { 3220 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked); 3221 } 3222 3223 /** 3224 * skb_store_bits - store bits from kernel buffer to skb 3225 * @skb: destination buffer 3226 * @offset: offset in destination 3227 * @from: source buffer 3228 * @len: number of bytes to copy 3229 * 3230 * Copy the specified number of bytes from the source buffer to the 3231 * destination skb. This function handles all the messy bits of 3232 * traversing fragment lists and such. 3233 */ 3234 3235 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3236 { 3237 int start = skb_headlen(skb); 3238 struct sk_buff *frag_iter; 3239 int i, copy; 3240 3241 if (offset > (int)skb->len - len) 3242 goto fault; 3243 3244 if ((copy = start - offset) > 0) { 3245 if (copy > len) 3246 copy = len; 3247 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3248 if ((len -= copy) == 0) 3249 return 0; 3250 offset += copy; 3251 from += copy; 3252 } 3253 3254 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3255 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3256 int end; 3257 3258 WARN_ON(start > offset + len); 3259 3260 end = start + skb_frag_size(frag); 3261 if ((copy = end - offset) > 0) { 3262 u32 p_off, p_len, copied; 3263 struct page *p; 3264 u8 *vaddr; 3265 3266 if (copy > len) 3267 copy = len; 3268 3269 skb_frag_foreach_page(frag, 3270 skb_frag_off(frag) + offset - start, 3271 copy, p, p_off, p_len, copied) { 3272 vaddr = kmap_atomic(p); 3273 memcpy(vaddr + p_off, from + copied, p_len); 3274 kunmap_atomic(vaddr); 3275 } 3276 3277 if ((len -= copy) == 0) 3278 return 0; 3279 offset += copy; 3280 from += copy; 3281 } 3282 start = end; 3283 } 3284 3285 skb_walk_frags(skb, frag_iter) { 3286 int end; 3287 3288 WARN_ON(start > offset + len); 3289 3290 end = start + frag_iter->len; 3291 if ((copy = end - offset) > 0) { 3292 if (copy > len) 3293 copy = len; 3294 if (skb_store_bits(frag_iter, offset - start, 3295 from, copy)) 3296 goto fault; 3297 if ((len -= copy) == 0) 3298 return 0; 3299 offset += copy; 3300 from += copy; 3301 } 3302 start = end; 3303 } 3304 if (!len) 3305 return 0; 3306 3307 fault: 3308 return -EFAULT; 3309 } 3310 EXPORT_SYMBOL(skb_store_bits); 3311 3312 /* Checksum skb data. */ 3313 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3314 __wsum csum, const struct skb_checksum_ops *ops) 3315 { 3316 int start = skb_headlen(skb); 3317 int i, copy = start - offset; 3318 struct sk_buff *frag_iter; 3319 int pos = 0; 3320 3321 /* Checksum header. */ 3322 if (copy > 0) { 3323 if (copy > len) 3324 copy = len; 3325 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 3326 skb->data + offset, copy, csum); 3327 if ((len -= copy) == 0) 3328 return csum; 3329 offset += copy; 3330 pos = copy; 3331 } 3332 3333 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3334 int end; 3335 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3336 3337 WARN_ON(start > offset + len); 3338 3339 end = start + skb_frag_size(frag); 3340 if ((copy = end - offset) > 0) { 3341 u32 p_off, p_len, copied; 3342 struct page *p; 3343 __wsum csum2; 3344 u8 *vaddr; 3345 3346 if (copy > len) 3347 copy = len; 3348 3349 skb_frag_foreach_page(frag, 3350 skb_frag_off(frag) + offset - start, 3351 copy, p, p_off, p_len, copied) { 3352 vaddr = kmap_atomic(p); 3353 csum2 = INDIRECT_CALL_1(ops->update, 3354 csum_partial_ext, 3355 vaddr + p_off, p_len, 0); 3356 kunmap_atomic(vaddr); 3357 csum = INDIRECT_CALL_1(ops->combine, 3358 csum_block_add_ext, csum, 3359 csum2, pos, p_len); 3360 pos += p_len; 3361 } 3362 3363 if (!(len -= copy)) 3364 return csum; 3365 offset += copy; 3366 } 3367 start = end; 3368 } 3369 3370 skb_walk_frags(skb, frag_iter) { 3371 int end; 3372 3373 WARN_ON(start > offset + len); 3374 3375 end = start + frag_iter->len; 3376 if ((copy = end - offset) > 0) { 3377 __wsum csum2; 3378 if (copy > len) 3379 copy = len; 3380 csum2 = __skb_checksum(frag_iter, offset - start, 3381 copy, 0, ops); 3382 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 3383 csum, csum2, pos, copy); 3384 if ((len -= copy) == 0) 3385 return csum; 3386 offset += copy; 3387 pos += copy; 3388 } 3389 start = end; 3390 } 3391 BUG_ON(len); 3392 3393 return csum; 3394 } 3395 EXPORT_SYMBOL(__skb_checksum); 3396 3397 __wsum skb_checksum(const struct sk_buff *skb, int offset, 3398 int len, __wsum csum) 3399 { 3400 const struct skb_checksum_ops ops = { 3401 .update = csum_partial_ext, 3402 .combine = csum_block_add_ext, 3403 }; 3404 3405 return __skb_checksum(skb, offset, len, csum, &ops); 3406 } 3407 EXPORT_SYMBOL(skb_checksum); 3408 3409 /* Both of above in one bottle. */ 3410 3411 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3412 u8 *to, int len) 3413 { 3414 int start = skb_headlen(skb); 3415 int i, copy = start - offset; 3416 struct sk_buff *frag_iter; 3417 int pos = 0; 3418 __wsum csum = 0; 3419 3420 /* Copy header. */ 3421 if (copy > 0) { 3422 if (copy > len) 3423 copy = len; 3424 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3425 copy); 3426 if ((len -= copy) == 0) 3427 return csum; 3428 offset += copy; 3429 to += copy; 3430 pos = copy; 3431 } 3432 3433 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3434 int end; 3435 3436 WARN_ON(start > offset + len); 3437 3438 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3439 if ((copy = end - offset) > 0) { 3440 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3441 u32 p_off, p_len, copied; 3442 struct page *p; 3443 __wsum csum2; 3444 u8 *vaddr; 3445 3446 if (copy > len) 3447 copy = len; 3448 3449 skb_frag_foreach_page(frag, 3450 skb_frag_off(frag) + offset - start, 3451 copy, p, p_off, p_len, copied) { 3452 vaddr = kmap_atomic(p); 3453 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3454 to + copied, 3455 p_len); 3456 kunmap_atomic(vaddr); 3457 csum = csum_block_add(csum, csum2, pos); 3458 pos += p_len; 3459 } 3460 3461 if (!(len -= copy)) 3462 return csum; 3463 offset += copy; 3464 to += copy; 3465 } 3466 start = end; 3467 } 3468 3469 skb_walk_frags(skb, frag_iter) { 3470 __wsum csum2; 3471 int end; 3472 3473 WARN_ON(start > offset + len); 3474 3475 end = start + frag_iter->len; 3476 if ((copy = end - offset) > 0) { 3477 if (copy > len) 3478 copy = len; 3479 csum2 = skb_copy_and_csum_bits(frag_iter, 3480 offset - start, 3481 to, copy); 3482 csum = csum_block_add(csum, csum2, pos); 3483 if ((len -= copy) == 0) 3484 return csum; 3485 offset += copy; 3486 to += copy; 3487 pos += copy; 3488 } 3489 start = end; 3490 } 3491 BUG_ON(len); 3492 return csum; 3493 } 3494 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3495 3496 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3497 { 3498 __sum16 sum; 3499 3500 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3501 /* See comments in __skb_checksum_complete(). */ 3502 if (likely(!sum)) { 3503 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3504 !skb->csum_complete_sw) 3505 netdev_rx_csum_fault(skb->dev, skb); 3506 } 3507 if (!skb_shared(skb)) 3508 skb->csum_valid = !sum; 3509 return sum; 3510 } 3511 EXPORT_SYMBOL(__skb_checksum_complete_head); 3512 3513 /* This function assumes skb->csum already holds pseudo header's checksum, 3514 * which has been changed from the hardware checksum, for example, by 3515 * __skb_checksum_validate_complete(). And, the original skb->csum must 3516 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3517 * 3518 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3519 * zero. The new checksum is stored back into skb->csum unless the skb is 3520 * shared. 3521 */ 3522 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3523 { 3524 __wsum csum; 3525 __sum16 sum; 3526 3527 csum = skb_checksum(skb, 0, skb->len, 0); 3528 3529 sum = csum_fold(csum_add(skb->csum, csum)); 3530 /* This check is inverted, because we already knew the hardware 3531 * checksum is invalid before calling this function. So, if the 3532 * re-computed checksum is valid instead, then we have a mismatch 3533 * between the original skb->csum and skb_checksum(). This means either 3534 * the original hardware checksum is incorrect or we screw up skb->csum 3535 * when moving skb->data around. 3536 */ 3537 if (likely(!sum)) { 3538 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3539 !skb->csum_complete_sw) 3540 netdev_rx_csum_fault(skb->dev, skb); 3541 } 3542 3543 if (!skb_shared(skb)) { 3544 /* Save full packet checksum */ 3545 skb->csum = csum; 3546 skb->ip_summed = CHECKSUM_COMPLETE; 3547 skb->csum_complete_sw = 1; 3548 skb->csum_valid = !sum; 3549 } 3550 3551 return sum; 3552 } 3553 EXPORT_SYMBOL(__skb_checksum_complete); 3554 3555 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3556 { 3557 net_warn_ratelimited( 3558 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3559 __func__); 3560 return 0; 3561 } 3562 3563 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3564 int offset, int len) 3565 { 3566 net_warn_ratelimited( 3567 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3568 __func__); 3569 return 0; 3570 } 3571 3572 static const struct skb_checksum_ops default_crc32c_ops = { 3573 .update = warn_crc32c_csum_update, 3574 .combine = warn_crc32c_csum_combine, 3575 }; 3576 3577 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3578 &default_crc32c_ops; 3579 EXPORT_SYMBOL(crc32c_csum_stub); 3580 3581 /** 3582 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3583 * @from: source buffer 3584 * 3585 * Calculates the amount of linear headroom needed in the 'to' skb passed 3586 * into skb_zerocopy(). 3587 */ 3588 unsigned int 3589 skb_zerocopy_headlen(const struct sk_buff *from) 3590 { 3591 unsigned int hlen = 0; 3592 3593 if (!from->head_frag || 3594 skb_headlen(from) < L1_CACHE_BYTES || 3595 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3596 hlen = skb_headlen(from); 3597 if (!hlen) 3598 hlen = from->len; 3599 } 3600 3601 if (skb_has_frag_list(from)) 3602 hlen = from->len; 3603 3604 return hlen; 3605 } 3606 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3607 3608 /** 3609 * skb_zerocopy - Zero copy skb to skb 3610 * @to: destination buffer 3611 * @from: source buffer 3612 * @len: number of bytes to copy from source buffer 3613 * @hlen: size of linear headroom in destination buffer 3614 * 3615 * Copies up to `len` bytes from `from` to `to` by creating references 3616 * to the frags in the source buffer. 3617 * 3618 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3619 * headroom in the `to` buffer. 3620 * 3621 * Return value: 3622 * 0: everything is OK 3623 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3624 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3625 */ 3626 int 3627 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3628 { 3629 int i, j = 0; 3630 int plen = 0; /* length of skb->head fragment */ 3631 int ret; 3632 struct page *page; 3633 unsigned int offset; 3634 3635 BUG_ON(!from->head_frag && !hlen); 3636 3637 /* dont bother with small payloads */ 3638 if (len <= skb_tailroom(to)) 3639 return skb_copy_bits(from, 0, skb_put(to, len), len); 3640 3641 if (hlen) { 3642 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3643 if (unlikely(ret)) 3644 return ret; 3645 len -= hlen; 3646 } else { 3647 plen = min_t(int, skb_headlen(from), len); 3648 if (plen) { 3649 page = virt_to_head_page(from->head); 3650 offset = from->data - (unsigned char *)page_address(page); 3651 __skb_fill_page_desc(to, 0, page, offset, plen); 3652 get_page(page); 3653 j = 1; 3654 len -= plen; 3655 } 3656 } 3657 3658 skb_len_add(to, len + plen); 3659 3660 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3661 skb_tx_error(from); 3662 return -ENOMEM; 3663 } 3664 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3665 3666 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3667 int size; 3668 3669 if (!len) 3670 break; 3671 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3672 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3673 len); 3674 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3675 len -= size; 3676 skb_frag_ref(to, j); 3677 j++; 3678 } 3679 skb_shinfo(to)->nr_frags = j; 3680 3681 return 0; 3682 } 3683 EXPORT_SYMBOL_GPL(skb_zerocopy); 3684 3685 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3686 { 3687 __wsum csum; 3688 long csstart; 3689 3690 if (skb->ip_summed == CHECKSUM_PARTIAL) 3691 csstart = skb_checksum_start_offset(skb); 3692 else 3693 csstart = skb_headlen(skb); 3694 3695 BUG_ON(csstart > skb_headlen(skb)); 3696 3697 skb_copy_from_linear_data(skb, to, csstart); 3698 3699 csum = 0; 3700 if (csstart != skb->len) 3701 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3702 skb->len - csstart); 3703 3704 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3705 long csstuff = csstart + skb->csum_offset; 3706 3707 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3708 } 3709 } 3710 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3711 3712 /** 3713 * skb_dequeue - remove from the head of the queue 3714 * @list: list to dequeue from 3715 * 3716 * Remove the head of the list. The list lock is taken so the function 3717 * may be used safely with other locking list functions. The head item is 3718 * returned or %NULL if the list is empty. 3719 */ 3720 3721 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3722 { 3723 unsigned long flags; 3724 struct sk_buff *result; 3725 3726 spin_lock_irqsave(&list->lock, flags); 3727 result = __skb_dequeue(list); 3728 spin_unlock_irqrestore(&list->lock, flags); 3729 return result; 3730 } 3731 EXPORT_SYMBOL(skb_dequeue); 3732 3733 /** 3734 * skb_dequeue_tail - remove from the tail of the queue 3735 * @list: list to dequeue from 3736 * 3737 * Remove the tail of the list. The list lock is taken so the function 3738 * may be used safely with other locking list functions. The tail item is 3739 * returned or %NULL if the list is empty. 3740 */ 3741 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3742 { 3743 unsigned long flags; 3744 struct sk_buff *result; 3745 3746 spin_lock_irqsave(&list->lock, flags); 3747 result = __skb_dequeue_tail(list); 3748 spin_unlock_irqrestore(&list->lock, flags); 3749 return result; 3750 } 3751 EXPORT_SYMBOL(skb_dequeue_tail); 3752 3753 /** 3754 * skb_queue_purge_reason - empty a list 3755 * @list: list to empty 3756 * @reason: drop reason 3757 * 3758 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3759 * the list and one reference dropped. This function takes the list 3760 * lock and is atomic with respect to other list locking functions. 3761 */ 3762 void skb_queue_purge_reason(struct sk_buff_head *list, 3763 enum skb_drop_reason reason) 3764 { 3765 struct sk_buff_head tmp; 3766 unsigned long flags; 3767 3768 if (skb_queue_empty_lockless(list)) 3769 return; 3770 3771 __skb_queue_head_init(&tmp); 3772 3773 spin_lock_irqsave(&list->lock, flags); 3774 skb_queue_splice_init(list, &tmp); 3775 spin_unlock_irqrestore(&list->lock, flags); 3776 3777 __skb_queue_purge_reason(&tmp, reason); 3778 } 3779 EXPORT_SYMBOL(skb_queue_purge_reason); 3780 3781 /** 3782 * skb_rbtree_purge - empty a skb rbtree 3783 * @root: root of the rbtree to empty 3784 * Return value: the sum of truesizes of all purged skbs. 3785 * 3786 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3787 * the list and one reference dropped. This function does not take 3788 * any lock. Synchronization should be handled by the caller (e.g., TCP 3789 * out-of-order queue is protected by the socket lock). 3790 */ 3791 unsigned int skb_rbtree_purge(struct rb_root *root) 3792 { 3793 struct rb_node *p = rb_first(root); 3794 unsigned int sum = 0; 3795 3796 while (p) { 3797 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3798 3799 p = rb_next(p); 3800 rb_erase(&skb->rbnode, root); 3801 sum += skb->truesize; 3802 kfree_skb(skb); 3803 } 3804 return sum; 3805 } 3806 3807 void skb_errqueue_purge(struct sk_buff_head *list) 3808 { 3809 struct sk_buff *skb, *next; 3810 struct sk_buff_head kill; 3811 unsigned long flags; 3812 3813 __skb_queue_head_init(&kill); 3814 3815 spin_lock_irqsave(&list->lock, flags); 3816 skb_queue_walk_safe(list, skb, next) { 3817 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || 3818 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) 3819 continue; 3820 __skb_unlink(skb, list); 3821 __skb_queue_tail(&kill, skb); 3822 } 3823 spin_unlock_irqrestore(&list->lock, flags); 3824 __skb_queue_purge(&kill); 3825 } 3826 EXPORT_SYMBOL(skb_errqueue_purge); 3827 3828 /** 3829 * skb_queue_head - queue a buffer at the list head 3830 * @list: list to use 3831 * @newsk: buffer to queue 3832 * 3833 * Queue a buffer at the start of the list. This function takes the 3834 * list lock and can be used safely with other locking &sk_buff functions 3835 * safely. 3836 * 3837 * A buffer cannot be placed on two lists at the same time. 3838 */ 3839 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3840 { 3841 unsigned long flags; 3842 3843 spin_lock_irqsave(&list->lock, flags); 3844 __skb_queue_head(list, newsk); 3845 spin_unlock_irqrestore(&list->lock, flags); 3846 } 3847 EXPORT_SYMBOL(skb_queue_head); 3848 3849 /** 3850 * skb_queue_tail - queue a buffer at the list tail 3851 * @list: list to use 3852 * @newsk: buffer to queue 3853 * 3854 * Queue a buffer at the tail of the list. This function takes the 3855 * list lock and can be used safely with other locking &sk_buff functions 3856 * safely. 3857 * 3858 * A buffer cannot be placed on two lists at the same time. 3859 */ 3860 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3861 { 3862 unsigned long flags; 3863 3864 spin_lock_irqsave(&list->lock, flags); 3865 __skb_queue_tail(list, newsk); 3866 spin_unlock_irqrestore(&list->lock, flags); 3867 } 3868 EXPORT_SYMBOL(skb_queue_tail); 3869 3870 /** 3871 * skb_unlink - remove a buffer from a list 3872 * @skb: buffer to remove 3873 * @list: list to use 3874 * 3875 * Remove a packet from a list. The list locks are taken and this 3876 * function is atomic with respect to other list locked calls 3877 * 3878 * You must know what list the SKB is on. 3879 */ 3880 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3881 { 3882 unsigned long flags; 3883 3884 spin_lock_irqsave(&list->lock, flags); 3885 __skb_unlink(skb, list); 3886 spin_unlock_irqrestore(&list->lock, flags); 3887 } 3888 EXPORT_SYMBOL(skb_unlink); 3889 3890 /** 3891 * skb_append - append a buffer 3892 * @old: buffer to insert after 3893 * @newsk: buffer to insert 3894 * @list: list to use 3895 * 3896 * Place a packet after a given packet in a list. The list locks are taken 3897 * and this function is atomic with respect to other list locked calls. 3898 * A buffer cannot be placed on two lists at the same time. 3899 */ 3900 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3901 { 3902 unsigned long flags; 3903 3904 spin_lock_irqsave(&list->lock, flags); 3905 __skb_queue_after(list, old, newsk); 3906 spin_unlock_irqrestore(&list->lock, flags); 3907 } 3908 EXPORT_SYMBOL(skb_append); 3909 3910 static inline void skb_split_inside_header(struct sk_buff *skb, 3911 struct sk_buff* skb1, 3912 const u32 len, const int pos) 3913 { 3914 int i; 3915 3916 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3917 pos - len); 3918 /* And move data appendix as is. */ 3919 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3920 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3921 3922 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3923 skb_shinfo(skb)->nr_frags = 0; 3924 skb1->data_len = skb->data_len; 3925 skb1->len += skb1->data_len; 3926 skb->data_len = 0; 3927 skb->len = len; 3928 skb_set_tail_pointer(skb, len); 3929 } 3930 3931 static inline void skb_split_no_header(struct sk_buff *skb, 3932 struct sk_buff* skb1, 3933 const u32 len, int pos) 3934 { 3935 int i, k = 0; 3936 const int nfrags = skb_shinfo(skb)->nr_frags; 3937 3938 skb_shinfo(skb)->nr_frags = 0; 3939 skb1->len = skb1->data_len = skb->len - len; 3940 skb->len = len; 3941 skb->data_len = len - pos; 3942 3943 for (i = 0; i < nfrags; i++) { 3944 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3945 3946 if (pos + size > len) { 3947 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3948 3949 if (pos < len) { 3950 /* Split frag. 3951 * We have two variants in this case: 3952 * 1. Move all the frag to the second 3953 * part, if it is possible. F.e. 3954 * this approach is mandatory for TUX, 3955 * where splitting is expensive. 3956 * 2. Split is accurately. We make this. 3957 */ 3958 skb_frag_ref(skb, i); 3959 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3960 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3961 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3962 skb_shinfo(skb)->nr_frags++; 3963 } 3964 k++; 3965 } else 3966 skb_shinfo(skb)->nr_frags++; 3967 pos += size; 3968 } 3969 skb_shinfo(skb1)->nr_frags = k; 3970 } 3971 3972 /** 3973 * skb_split - Split fragmented skb to two parts at length len. 3974 * @skb: the buffer to split 3975 * @skb1: the buffer to receive the second part 3976 * @len: new length for skb 3977 */ 3978 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3979 { 3980 int pos = skb_headlen(skb); 3981 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 3982 3983 skb_zcopy_downgrade_managed(skb); 3984 3985 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 3986 skb_zerocopy_clone(skb1, skb, 0); 3987 if (len < pos) /* Split line is inside header. */ 3988 skb_split_inside_header(skb, skb1, len, pos); 3989 else /* Second chunk has no header, nothing to copy. */ 3990 skb_split_no_header(skb, skb1, len, pos); 3991 } 3992 EXPORT_SYMBOL(skb_split); 3993 3994 /* Shifting from/to a cloned skb is a no-go. 3995 * 3996 * Caller cannot keep skb_shinfo related pointers past calling here! 3997 */ 3998 static int skb_prepare_for_shift(struct sk_buff *skb) 3999 { 4000 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 4001 } 4002 4003 /** 4004 * skb_shift - Shifts paged data partially from skb to another 4005 * @tgt: buffer into which tail data gets added 4006 * @skb: buffer from which the paged data comes from 4007 * @shiftlen: shift up to this many bytes 4008 * 4009 * Attempts to shift up to shiftlen worth of bytes, which may be less than 4010 * the length of the skb, from skb to tgt. Returns number bytes shifted. 4011 * It's up to caller to free skb if everything was shifted. 4012 * 4013 * If @tgt runs out of frags, the whole operation is aborted. 4014 * 4015 * Skb cannot include anything else but paged data while tgt is allowed 4016 * to have non-paged data as well. 4017 * 4018 * TODO: full sized shift could be optimized but that would need 4019 * specialized skb free'er to handle frags without up-to-date nr_frags. 4020 */ 4021 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 4022 { 4023 int from, to, merge, todo; 4024 skb_frag_t *fragfrom, *fragto; 4025 4026 BUG_ON(shiftlen > skb->len); 4027 4028 if (skb_headlen(skb)) 4029 return 0; 4030 if (skb_zcopy(tgt) || skb_zcopy(skb)) 4031 return 0; 4032 4033 todo = shiftlen; 4034 from = 0; 4035 to = skb_shinfo(tgt)->nr_frags; 4036 fragfrom = &skb_shinfo(skb)->frags[from]; 4037 4038 /* Actual merge is delayed until the point when we know we can 4039 * commit all, so that we don't have to undo partial changes 4040 */ 4041 if (!to || 4042 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 4043 skb_frag_off(fragfrom))) { 4044 merge = -1; 4045 } else { 4046 merge = to - 1; 4047 4048 todo -= skb_frag_size(fragfrom); 4049 if (todo < 0) { 4050 if (skb_prepare_for_shift(skb) || 4051 skb_prepare_for_shift(tgt)) 4052 return 0; 4053 4054 /* All previous frag pointers might be stale! */ 4055 fragfrom = &skb_shinfo(skb)->frags[from]; 4056 fragto = &skb_shinfo(tgt)->frags[merge]; 4057 4058 skb_frag_size_add(fragto, shiftlen); 4059 skb_frag_size_sub(fragfrom, shiftlen); 4060 skb_frag_off_add(fragfrom, shiftlen); 4061 4062 goto onlymerged; 4063 } 4064 4065 from++; 4066 } 4067 4068 /* Skip full, not-fitting skb to avoid expensive operations */ 4069 if ((shiftlen == skb->len) && 4070 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 4071 return 0; 4072 4073 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 4074 return 0; 4075 4076 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 4077 if (to == MAX_SKB_FRAGS) 4078 return 0; 4079 4080 fragfrom = &skb_shinfo(skb)->frags[from]; 4081 fragto = &skb_shinfo(tgt)->frags[to]; 4082 4083 if (todo >= skb_frag_size(fragfrom)) { 4084 *fragto = *fragfrom; 4085 todo -= skb_frag_size(fragfrom); 4086 from++; 4087 to++; 4088 4089 } else { 4090 __skb_frag_ref(fragfrom); 4091 skb_frag_page_copy(fragto, fragfrom); 4092 skb_frag_off_copy(fragto, fragfrom); 4093 skb_frag_size_set(fragto, todo); 4094 4095 skb_frag_off_add(fragfrom, todo); 4096 skb_frag_size_sub(fragfrom, todo); 4097 todo = 0; 4098 4099 to++; 4100 break; 4101 } 4102 } 4103 4104 /* Ready to "commit" this state change to tgt */ 4105 skb_shinfo(tgt)->nr_frags = to; 4106 4107 if (merge >= 0) { 4108 fragfrom = &skb_shinfo(skb)->frags[0]; 4109 fragto = &skb_shinfo(tgt)->frags[merge]; 4110 4111 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4112 __skb_frag_unref(fragfrom, skb->pp_recycle); 4113 } 4114 4115 /* Reposition in the original skb */ 4116 to = 0; 4117 while (from < skb_shinfo(skb)->nr_frags) 4118 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4119 skb_shinfo(skb)->nr_frags = to; 4120 4121 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4122 4123 onlymerged: 4124 /* Most likely the tgt won't ever need its checksum anymore, skb on 4125 * the other hand might need it if it needs to be resent 4126 */ 4127 tgt->ip_summed = CHECKSUM_PARTIAL; 4128 skb->ip_summed = CHECKSUM_PARTIAL; 4129 4130 skb_len_add(skb, -shiftlen); 4131 skb_len_add(tgt, shiftlen); 4132 4133 return shiftlen; 4134 } 4135 4136 /** 4137 * skb_prepare_seq_read - Prepare a sequential read of skb data 4138 * @skb: the buffer to read 4139 * @from: lower offset of data to be read 4140 * @to: upper offset of data to be read 4141 * @st: state variable 4142 * 4143 * Initializes the specified state variable. Must be called before 4144 * invoking skb_seq_read() for the first time. 4145 */ 4146 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4147 unsigned int to, struct skb_seq_state *st) 4148 { 4149 st->lower_offset = from; 4150 st->upper_offset = to; 4151 st->root_skb = st->cur_skb = skb; 4152 st->frag_idx = st->stepped_offset = 0; 4153 st->frag_data = NULL; 4154 st->frag_off = 0; 4155 } 4156 EXPORT_SYMBOL(skb_prepare_seq_read); 4157 4158 /** 4159 * skb_seq_read - Sequentially read skb data 4160 * @consumed: number of bytes consumed by the caller so far 4161 * @data: destination pointer for data to be returned 4162 * @st: state variable 4163 * 4164 * Reads a block of skb data at @consumed relative to the 4165 * lower offset specified to skb_prepare_seq_read(). Assigns 4166 * the head of the data block to @data and returns the length 4167 * of the block or 0 if the end of the skb data or the upper 4168 * offset has been reached. 4169 * 4170 * The caller is not required to consume all of the data 4171 * returned, i.e. @consumed is typically set to the number 4172 * of bytes already consumed and the next call to 4173 * skb_seq_read() will return the remaining part of the block. 4174 * 4175 * Note 1: The size of each block of data returned can be arbitrary, 4176 * this limitation is the cost for zerocopy sequential 4177 * reads of potentially non linear data. 4178 * 4179 * Note 2: Fragment lists within fragments are not implemented 4180 * at the moment, state->root_skb could be replaced with 4181 * a stack for this purpose. 4182 */ 4183 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4184 struct skb_seq_state *st) 4185 { 4186 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4187 skb_frag_t *frag; 4188 4189 if (unlikely(abs_offset >= st->upper_offset)) { 4190 if (st->frag_data) { 4191 kunmap_atomic(st->frag_data); 4192 st->frag_data = NULL; 4193 } 4194 return 0; 4195 } 4196 4197 next_skb: 4198 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4199 4200 if (abs_offset < block_limit && !st->frag_data) { 4201 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4202 return block_limit - abs_offset; 4203 } 4204 4205 if (st->frag_idx == 0 && !st->frag_data) 4206 st->stepped_offset += skb_headlen(st->cur_skb); 4207 4208 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4209 unsigned int pg_idx, pg_off, pg_sz; 4210 4211 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4212 4213 pg_idx = 0; 4214 pg_off = skb_frag_off(frag); 4215 pg_sz = skb_frag_size(frag); 4216 4217 if (skb_frag_must_loop(skb_frag_page(frag))) { 4218 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4219 pg_off = offset_in_page(pg_off + st->frag_off); 4220 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4221 PAGE_SIZE - pg_off); 4222 } 4223 4224 block_limit = pg_sz + st->stepped_offset; 4225 if (abs_offset < block_limit) { 4226 if (!st->frag_data) 4227 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4228 4229 *data = (u8 *)st->frag_data + pg_off + 4230 (abs_offset - st->stepped_offset); 4231 4232 return block_limit - abs_offset; 4233 } 4234 4235 if (st->frag_data) { 4236 kunmap_atomic(st->frag_data); 4237 st->frag_data = NULL; 4238 } 4239 4240 st->stepped_offset += pg_sz; 4241 st->frag_off += pg_sz; 4242 if (st->frag_off == skb_frag_size(frag)) { 4243 st->frag_off = 0; 4244 st->frag_idx++; 4245 } 4246 } 4247 4248 if (st->frag_data) { 4249 kunmap_atomic(st->frag_data); 4250 st->frag_data = NULL; 4251 } 4252 4253 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4254 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4255 st->frag_idx = 0; 4256 goto next_skb; 4257 } else if (st->cur_skb->next) { 4258 st->cur_skb = st->cur_skb->next; 4259 st->frag_idx = 0; 4260 goto next_skb; 4261 } 4262 4263 return 0; 4264 } 4265 EXPORT_SYMBOL(skb_seq_read); 4266 4267 /** 4268 * skb_abort_seq_read - Abort a sequential read of skb data 4269 * @st: state variable 4270 * 4271 * Must be called if skb_seq_read() was not called until it 4272 * returned 0. 4273 */ 4274 void skb_abort_seq_read(struct skb_seq_state *st) 4275 { 4276 if (st->frag_data) 4277 kunmap_atomic(st->frag_data); 4278 } 4279 EXPORT_SYMBOL(skb_abort_seq_read); 4280 4281 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4282 4283 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4284 struct ts_config *conf, 4285 struct ts_state *state) 4286 { 4287 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4288 } 4289 4290 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4291 { 4292 skb_abort_seq_read(TS_SKB_CB(state)); 4293 } 4294 4295 /** 4296 * skb_find_text - Find a text pattern in skb data 4297 * @skb: the buffer to look in 4298 * @from: search offset 4299 * @to: search limit 4300 * @config: textsearch configuration 4301 * 4302 * Finds a pattern in the skb data according to the specified 4303 * textsearch configuration. Use textsearch_next() to retrieve 4304 * subsequent occurrences of the pattern. Returns the offset 4305 * to the first occurrence or UINT_MAX if no match was found. 4306 */ 4307 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4308 unsigned int to, struct ts_config *config) 4309 { 4310 unsigned int patlen = config->ops->get_pattern_len(config); 4311 struct ts_state state; 4312 unsigned int ret; 4313 4314 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4315 4316 config->get_next_block = skb_ts_get_next_block; 4317 config->finish = skb_ts_finish; 4318 4319 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4320 4321 ret = textsearch_find(config, &state); 4322 return (ret + patlen <= to - from ? ret : UINT_MAX); 4323 } 4324 EXPORT_SYMBOL(skb_find_text); 4325 4326 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4327 int offset, size_t size, size_t max_frags) 4328 { 4329 int i = skb_shinfo(skb)->nr_frags; 4330 4331 if (skb_can_coalesce(skb, i, page, offset)) { 4332 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4333 } else if (i < max_frags) { 4334 skb_zcopy_downgrade_managed(skb); 4335 get_page(page); 4336 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4337 } else { 4338 return -EMSGSIZE; 4339 } 4340 4341 return 0; 4342 } 4343 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4344 4345 /** 4346 * skb_pull_rcsum - pull skb and update receive checksum 4347 * @skb: buffer to update 4348 * @len: length of data pulled 4349 * 4350 * This function performs an skb_pull on the packet and updates 4351 * the CHECKSUM_COMPLETE checksum. It should be used on 4352 * receive path processing instead of skb_pull unless you know 4353 * that the checksum difference is zero (e.g., a valid IP header) 4354 * or you are setting ip_summed to CHECKSUM_NONE. 4355 */ 4356 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4357 { 4358 unsigned char *data = skb->data; 4359 4360 BUG_ON(len > skb->len); 4361 __skb_pull(skb, len); 4362 skb_postpull_rcsum(skb, data, len); 4363 return skb->data; 4364 } 4365 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4366 4367 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4368 { 4369 skb_frag_t head_frag; 4370 struct page *page; 4371 4372 page = virt_to_head_page(frag_skb->head); 4373 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4374 (unsigned char *)page_address(page), 4375 skb_headlen(frag_skb)); 4376 return head_frag; 4377 } 4378 4379 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4380 netdev_features_t features, 4381 unsigned int offset) 4382 { 4383 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4384 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4385 unsigned int delta_truesize = 0; 4386 unsigned int delta_len = 0; 4387 struct sk_buff *tail = NULL; 4388 struct sk_buff *nskb, *tmp; 4389 int len_diff, err; 4390 4391 skb_push(skb, -skb_network_offset(skb) + offset); 4392 4393 /* Ensure the head is writeable before touching the shared info */ 4394 err = skb_unclone(skb, GFP_ATOMIC); 4395 if (err) 4396 goto err_linearize; 4397 4398 skb_shinfo(skb)->frag_list = NULL; 4399 4400 while (list_skb) { 4401 nskb = list_skb; 4402 list_skb = list_skb->next; 4403 4404 err = 0; 4405 delta_truesize += nskb->truesize; 4406 if (skb_shared(nskb)) { 4407 tmp = skb_clone(nskb, GFP_ATOMIC); 4408 if (tmp) { 4409 consume_skb(nskb); 4410 nskb = tmp; 4411 err = skb_unclone(nskb, GFP_ATOMIC); 4412 } else { 4413 err = -ENOMEM; 4414 } 4415 } 4416 4417 if (!tail) 4418 skb->next = nskb; 4419 else 4420 tail->next = nskb; 4421 4422 if (unlikely(err)) { 4423 nskb->next = list_skb; 4424 goto err_linearize; 4425 } 4426 4427 tail = nskb; 4428 4429 delta_len += nskb->len; 4430 4431 skb_push(nskb, -skb_network_offset(nskb) + offset); 4432 4433 skb_release_head_state(nskb); 4434 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4435 __copy_skb_header(nskb, skb); 4436 4437 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4438 nskb->transport_header += len_diff; 4439 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4440 nskb->data - tnl_hlen, 4441 offset + tnl_hlen); 4442 4443 if (skb_needs_linearize(nskb, features) && 4444 __skb_linearize(nskb)) 4445 goto err_linearize; 4446 } 4447 4448 skb->truesize = skb->truesize - delta_truesize; 4449 skb->data_len = skb->data_len - delta_len; 4450 skb->len = skb->len - delta_len; 4451 4452 skb_gso_reset(skb); 4453 4454 skb->prev = tail; 4455 4456 if (skb_needs_linearize(skb, features) && 4457 __skb_linearize(skb)) 4458 goto err_linearize; 4459 4460 skb_get(skb); 4461 4462 return skb; 4463 4464 err_linearize: 4465 kfree_skb_list(skb->next); 4466 skb->next = NULL; 4467 return ERR_PTR(-ENOMEM); 4468 } 4469 EXPORT_SYMBOL_GPL(skb_segment_list); 4470 4471 /** 4472 * skb_segment - Perform protocol segmentation on skb. 4473 * @head_skb: buffer to segment 4474 * @features: features for the output path (see dev->features) 4475 * 4476 * This function performs segmentation on the given skb. It returns 4477 * a pointer to the first in a list of new skbs for the segments. 4478 * In case of error it returns ERR_PTR(err). 4479 */ 4480 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4481 netdev_features_t features) 4482 { 4483 struct sk_buff *segs = NULL; 4484 struct sk_buff *tail = NULL; 4485 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4486 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4487 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4488 unsigned int offset = doffset; 4489 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4490 unsigned int partial_segs = 0; 4491 unsigned int headroom; 4492 unsigned int len = head_skb->len; 4493 struct sk_buff *frag_skb; 4494 skb_frag_t *frag; 4495 __be16 proto; 4496 bool csum, sg; 4497 int err = -ENOMEM; 4498 int i = 0; 4499 int nfrags, pos; 4500 4501 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4502 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4503 struct sk_buff *check_skb; 4504 4505 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4506 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4507 /* gso_size is untrusted, and we have a frag_list with 4508 * a linear non head_frag item. 4509 * 4510 * If head_skb's headlen does not fit requested gso_size, 4511 * it means that the frag_list members do NOT terminate 4512 * on exact gso_size boundaries. Hence we cannot perform 4513 * skb_frag_t page sharing. Therefore we must fallback to 4514 * copying the frag_list skbs; we do so by disabling SG. 4515 */ 4516 features &= ~NETIF_F_SG; 4517 break; 4518 } 4519 } 4520 } 4521 4522 __skb_push(head_skb, doffset); 4523 proto = skb_network_protocol(head_skb, NULL); 4524 if (unlikely(!proto)) 4525 return ERR_PTR(-EINVAL); 4526 4527 sg = !!(features & NETIF_F_SG); 4528 csum = !!can_checksum_protocol(features, proto); 4529 4530 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4531 if (!(features & NETIF_F_GSO_PARTIAL)) { 4532 struct sk_buff *iter; 4533 unsigned int frag_len; 4534 4535 if (!list_skb || 4536 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4537 goto normal; 4538 4539 /* If we get here then all the required 4540 * GSO features except frag_list are supported. 4541 * Try to split the SKB to multiple GSO SKBs 4542 * with no frag_list. 4543 * Currently we can do that only when the buffers don't 4544 * have a linear part and all the buffers except 4545 * the last are of the same length. 4546 */ 4547 frag_len = list_skb->len; 4548 skb_walk_frags(head_skb, iter) { 4549 if (frag_len != iter->len && iter->next) 4550 goto normal; 4551 if (skb_headlen(iter) && !iter->head_frag) 4552 goto normal; 4553 4554 len -= iter->len; 4555 } 4556 4557 if (len != frag_len) 4558 goto normal; 4559 } 4560 4561 /* GSO partial only requires that we trim off any excess that 4562 * doesn't fit into an MSS sized block, so take care of that 4563 * now. 4564 * Cap len to not accidentally hit GSO_BY_FRAGS. 4565 */ 4566 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss; 4567 if (partial_segs > 1) 4568 mss *= partial_segs; 4569 else 4570 partial_segs = 0; 4571 } 4572 4573 normal: 4574 headroom = skb_headroom(head_skb); 4575 pos = skb_headlen(head_skb); 4576 4577 if (skb_orphan_frags(head_skb, GFP_ATOMIC)) 4578 return ERR_PTR(-ENOMEM); 4579 4580 nfrags = skb_shinfo(head_skb)->nr_frags; 4581 frag = skb_shinfo(head_skb)->frags; 4582 frag_skb = head_skb; 4583 4584 do { 4585 struct sk_buff *nskb; 4586 skb_frag_t *nskb_frag; 4587 int hsize; 4588 int size; 4589 4590 if (unlikely(mss == GSO_BY_FRAGS)) { 4591 len = list_skb->len; 4592 } else { 4593 len = head_skb->len - offset; 4594 if (len > mss) 4595 len = mss; 4596 } 4597 4598 hsize = skb_headlen(head_skb) - offset; 4599 4600 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4601 (skb_headlen(list_skb) == len || sg)) { 4602 BUG_ON(skb_headlen(list_skb) > len); 4603 4604 nskb = skb_clone(list_skb, GFP_ATOMIC); 4605 if (unlikely(!nskb)) 4606 goto err; 4607 4608 i = 0; 4609 nfrags = skb_shinfo(list_skb)->nr_frags; 4610 frag = skb_shinfo(list_skb)->frags; 4611 frag_skb = list_skb; 4612 pos += skb_headlen(list_skb); 4613 4614 while (pos < offset + len) { 4615 BUG_ON(i >= nfrags); 4616 4617 size = skb_frag_size(frag); 4618 if (pos + size > offset + len) 4619 break; 4620 4621 i++; 4622 pos += size; 4623 frag++; 4624 } 4625 4626 list_skb = list_skb->next; 4627 4628 if (unlikely(pskb_trim(nskb, len))) { 4629 kfree_skb(nskb); 4630 goto err; 4631 } 4632 4633 hsize = skb_end_offset(nskb); 4634 if (skb_cow_head(nskb, doffset + headroom)) { 4635 kfree_skb(nskb); 4636 goto err; 4637 } 4638 4639 nskb->truesize += skb_end_offset(nskb) - hsize; 4640 skb_release_head_state(nskb); 4641 __skb_push(nskb, doffset); 4642 } else { 4643 if (hsize < 0) 4644 hsize = 0; 4645 if (hsize > len || !sg) 4646 hsize = len; 4647 4648 nskb = __alloc_skb(hsize + doffset + headroom, 4649 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4650 NUMA_NO_NODE); 4651 4652 if (unlikely(!nskb)) 4653 goto err; 4654 4655 skb_reserve(nskb, headroom); 4656 __skb_put(nskb, doffset); 4657 } 4658 4659 if (segs) 4660 tail->next = nskb; 4661 else 4662 segs = nskb; 4663 tail = nskb; 4664 4665 __copy_skb_header(nskb, head_skb); 4666 4667 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4668 skb_reset_mac_len(nskb); 4669 4670 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4671 nskb->data - tnl_hlen, 4672 doffset + tnl_hlen); 4673 4674 if (nskb->len == len + doffset) 4675 goto perform_csum_check; 4676 4677 if (!sg) { 4678 if (!csum) { 4679 if (!nskb->remcsum_offload) 4680 nskb->ip_summed = CHECKSUM_NONE; 4681 SKB_GSO_CB(nskb)->csum = 4682 skb_copy_and_csum_bits(head_skb, offset, 4683 skb_put(nskb, 4684 len), 4685 len); 4686 SKB_GSO_CB(nskb)->csum_start = 4687 skb_headroom(nskb) + doffset; 4688 } else { 4689 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4690 goto err; 4691 } 4692 continue; 4693 } 4694 4695 nskb_frag = skb_shinfo(nskb)->frags; 4696 4697 skb_copy_from_linear_data_offset(head_skb, offset, 4698 skb_put(nskb, hsize), hsize); 4699 4700 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4701 SKBFL_SHARED_FRAG; 4702 4703 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4704 goto err; 4705 4706 while (pos < offset + len) { 4707 if (i >= nfrags) { 4708 if (skb_orphan_frags(list_skb, GFP_ATOMIC) || 4709 skb_zerocopy_clone(nskb, list_skb, 4710 GFP_ATOMIC)) 4711 goto err; 4712 4713 i = 0; 4714 nfrags = skb_shinfo(list_skb)->nr_frags; 4715 frag = skb_shinfo(list_skb)->frags; 4716 frag_skb = list_skb; 4717 if (!skb_headlen(list_skb)) { 4718 BUG_ON(!nfrags); 4719 } else { 4720 BUG_ON(!list_skb->head_frag); 4721 4722 /* to make room for head_frag. */ 4723 i--; 4724 frag--; 4725 } 4726 4727 list_skb = list_skb->next; 4728 } 4729 4730 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4731 MAX_SKB_FRAGS)) { 4732 net_warn_ratelimited( 4733 "skb_segment: too many frags: %u %u\n", 4734 pos, mss); 4735 err = -EINVAL; 4736 goto err; 4737 } 4738 4739 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4740 __skb_frag_ref(nskb_frag); 4741 size = skb_frag_size(nskb_frag); 4742 4743 if (pos < offset) { 4744 skb_frag_off_add(nskb_frag, offset - pos); 4745 skb_frag_size_sub(nskb_frag, offset - pos); 4746 } 4747 4748 skb_shinfo(nskb)->nr_frags++; 4749 4750 if (pos + size <= offset + len) { 4751 i++; 4752 frag++; 4753 pos += size; 4754 } else { 4755 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4756 goto skip_fraglist; 4757 } 4758 4759 nskb_frag++; 4760 } 4761 4762 skip_fraglist: 4763 nskb->data_len = len - hsize; 4764 nskb->len += nskb->data_len; 4765 nskb->truesize += nskb->data_len; 4766 4767 perform_csum_check: 4768 if (!csum) { 4769 if (skb_has_shared_frag(nskb) && 4770 __skb_linearize(nskb)) 4771 goto err; 4772 4773 if (!nskb->remcsum_offload) 4774 nskb->ip_summed = CHECKSUM_NONE; 4775 SKB_GSO_CB(nskb)->csum = 4776 skb_checksum(nskb, doffset, 4777 nskb->len - doffset, 0); 4778 SKB_GSO_CB(nskb)->csum_start = 4779 skb_headroom(nskb) + doffset; 4780 } 4781 } while ((offset += len) < head_skb->len); 4782 4783 /* Some callers want to get the end of the list. 4784 * Put it in segs->prev to avoid walking the list. 4785 * (see validate_xmit_skb_list() for example) 4786 */ 4787 segs->prev = tail; 4788 4789 if (partial_segs) { 4790 struct sk_buff *iter; 4791 int type = skb_shinfo(head_skb)->gso_type; 4792 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4793 4794 /* Update type to add partial and then remove dodgy if set */ 4795 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4796 type &= ~SKB_GSO_DODGY; 4797 4798 /* Update GSO info and prepare to start updating headers on 4799 * our way back down the stack of protocols. 4800 */ 4801 for (iter = segs; iter; iter = iter->next) { 4802 skb_shinfo(iter)->gso_size = gso_size; 4803 skb_shinfo(iter)->gso_segs = partial_segs; 4804 skb_shinfo(iter)->gso_type = type; 4805 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4806 } 4807 4808 if (tail->len - doffset <= gso_size) 4809 skb_shinfo(tail)->gso_size = 0; 4810 else if (tail != segs) 4811 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4812 } 4813 4814 /* Following permits correct backpressure, for protocols 4815 * using skb_set_owner_w(). 4816 * Idea is to tranfert ownership from head_skb to last segment. 4817 */ 4818 if (head_skb->destructor == sock_wfree) { 4819 swap(tail->truesize, head_skb->truesize); 4820 swap(tail->destructor, head_skb->destructor); 4821 swap(tail->sk, head_skb->sk); 4822 } 4823 return segs; 4824 4825 err: 4826 kfree_skb_list(segs); 4827 return ERR_PTR(err); 4828 } 4829 EXPORT_SYMBOL_GPL(skb_segment); 4830 4831 #ifdef CONFIG_SKB_EXTENSIONS 4832 #define SKB_EXT_ALIGN_VALUE 8 4833 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4834 4835 static const u8 skb_ext_type_len[] = { 4836 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4837 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4838 #endif 4839 #ifdef CONFIG_XFRM 4840 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4841 #endif 4842 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4843 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4844 #endif 4845 #if IS_ENABLED(CONFIG_MPTCP) 4846 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4847 #endif 4848 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4849 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4850 #endif 4851 }; 4852 4853 static __always_inline unsigned int skb_ext_total_length(void) 4854 { 4855 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); 4856 int i; 4857 4858 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) 4859 l += skb_ext_type_len[i]; 4860 4861 return l; 4862 } 4863 4864 static void skb_extensions_init(void) 4865 { 4866 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4867 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL) 4868 BUILD_BUG_ON(skb_ext_total_length() > 255); 4869 #endif 4870 4871 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4872 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4873 0, 4874 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4875 NULL); 4876 } 4877 #else 4878 static void skb_extensions_init(void) {} 4879 #endif 4880 4881 /* The SKB kmem_cache slab is critical for network performance. Never 4882 * merge/alias the slab with similar sized objects. This avoids fragmentation 4883 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. 4884 */ 4885 #ifndef CONFIG_SLUB_TINY 4886 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE 4887 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ 4888 #define FLAG_SKB_NO_MERGE 0 4889 #endif 4890 4891 void __init skb_init(void) 4892 { 4893 skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4894 sizeof(struct sk_buff), 4895 0, 4896 SLAB_HWCACHE_ALIGN|SLAB_PANIC| 4897 FLAG_SKB_NO_MERGE, 4898 offsetof(struct sk_buff, cb), 4899 sizeof_field(struct sk_buff, cb), 4900 NULL); 4901 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4902 sizeof(struct sk_buff_fclones), 4903 0, 4904 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4905 NULL); 4906 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 4907 * struct skb_shared_info is located at the end of skb->head, 4908 * and should not be copied to/from user. 4909 */ 4910 skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 4911 SKB_SMALL_HEAD_CACHE_SIZE, 4912 0, 4913 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 4914 0, 4915 SKB_SMALL_HEAD_HEADROOM, 4916 NULL); 4917 skb_extensions_init(); 4918 } 4919 4920 static int 4921 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4922 unsigned int recursion_level) 4923 { 4924 int start = skb_headlen(skb); 4925 int i, copy = start - offset; 4926 struct sk_buff *frag_iter; 4927 int elt = 0; 4928 4929 if (unlikely(recursion_level >= 24)) 4930 return -EMSGSIZE; 4931 4932 if (copy > 0) { 4933 if (copy > len) 4934 copy = len; 4935 sg_set_buf(sg, skb->data + offset, copy); 4936 elt++; 4937 if ((len -= copy) == 0) 4938 return elt; 4939 offset += copy; 4940 } 4941 4942 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4943 int end; 4944 4945 WARN_ON(start > offset + len); 4946 4947 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4948 if ((copy = end - offset) > 0) { 4949 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4950 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4951 return -EMSGSIZE; 4952 4953 if (copy > len) 4954 copy = len; 4955 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4956 skb_frag_off(frag) + offset - start); 4957 elt++; 4958 if (!(len -= copy)) 4959 return elt; 4960 offset += copy; 4961 } 4962 start = end; 4963 } 4964 4965 skb_walk_frags(skb, frag_iter) { 4966 int end, ret; 4967 4968 WARN_ON(start > offset + len); 4969 4970 end = start + frag_iter->len; 4971 if ((copy = end - offset) > 0) { 4972 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4973 return -EMSGSIZE; 4974 4975 if (copy > len) 4976 copy = len; 4977 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4978 copy, recursion_level + 1); 4979 if (unlikely(ret < 0)) 4980 return ret; 4981 elt += ret; 4982 if ((len -= copy) == 0) 4983 return elt; 4984 offset += copy; 4985 } 4986 start = end; 4987 } 4988 BUG_ON(len); 4989 return elt; 4990 } 4991 4992 /** 4993 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4994 * @skb: Socket buffer containing the buffers to be mapped 4995 * @sg: The scatter-gather list to map into 4996 * @offset: The offset into the buffer's contents to start mapping 4997 * @len: Length of buffer space to be mapped 4998 * 4999 * Fill the specified scatter-gather list with mappings/pointers into a 5000 * region of the buffer space attached to a socket buffer. Returns either 5001 * the number of scatterlist items used, or -EMSGSIZE if the contents 5002 * could not fit. 5003 */ 5004 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 5005 { 5006 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 5007 5008 if (nsg <= 0) 5009 return nsg; 5010 5011 sg_mark_end(&sg[nsg - 1]); 5012 5013 return nsg; 5014 } 5015 EXPORT_SYMBOL_GPL(skb_to_sgvec); 5016 5017 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 5018 * sglist without mark the sg which contain last skb data as the end. 5019 * So the caller can mannipulate sg list as will when padding new data after 5020 * the first call without calling sg_unmark_end to expend sg list. 5021 * 5022 * Scenario to use skb_to_sgvec_nomark: 5023 * 1. sg_init_table 5024 * 2. skb_to_sgvec_nomark(payload1) 5025 * 3. skb_to_sgvec_nomark(payload2) 5026 * 5027 * This is equivalent to: 5028 * 1. sg_init_table 5029 * 2. skb_to_sgvec(payload1) 5030 * 3. sg_unmark_end 5031 * 4. skb_to_sgvec(payload2) 5032 * 5033 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 5034 * is more preferable. 5035 */ 5036 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 5037 int offset, int len) 5038 { 5039 return __skb_to_sgvec(skb, sg, offset, len, 0); 5040 } 5041 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 5042 5043 5044 5045 /** 5046 * skb_cow_data - Check that a socket buffer's data buffers are writable 5047 * @skb: The socket buffer to check. 5048 * @tailbits: Amount of trailing space to be added 5049 * @trailer: Returned pointer to the skb where the @tailbits space begins 5050 * 5051 * Make sure that the data buffers attached to a socket buffer are 5052 * writable. If they are not, private copies are made of the data buffers 5053 * and the socket buffer is set to use these instead. 5054 * 5055 * If @tailbits is given, make sure that there is space to write @tailbits 5056 * bytes of data beyond current end of socket buffer. @trailer will be 5057 * set to point to the skb in which this space begins. 5058 * 5059 * The number of scatterlist elements required to completely map the 5060 * COW'd and extended socket buffer will be returned. 5061 */ 5062 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 5063 { 5064 int copyflag; 5065 int elt; 5066 struct sk_buff *skb1, **skb_p; 5067 5068 /* If skb is cloned or its head is paged, reallocate 5069 * head pulling out all the pages (pages are considered not writable 5070 * at the moment even if they are anonymous). 5071 */ 5072 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 5073 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 5074 return -ENOMEM; 5075 5076 /* Easy case. Most of packets will go this way. */ 5077 if (!skb_has_frag_list(skb)) { 5078 /* A little of trouble, not enough of space for trailer. 5079 * This should not happen, when stack is tuned to generate 5080 * good frames. OK, on miss we reallocate and reserve even more 5081 * space, 128 bytes is fair. */ 5082 5083 if (skb_tailroom(skb) < tailbits && 5084 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 5085 return -ENOMEM; 5086 5087 /* Voila! */ 5088 *trailer = skb; 5089 return 1; 5090 } 5091 5092 /* Misery. We are in troubles, going to mincer fragments... */ 5093 5094 elt = 1; 5095 skb_p = &skb_shinfo(skb)->frag_list; 5096 copyflag = 0; 5097 5098 while ((skb1 = *skb_p) != NULL) { 5099 int ntail = 0; 5100 5101 /* The fragment is partially pulled by someone, 5102 * this can happen on input. Copy it and everything 5103 * after it. */ 5104 5105 if (skb_shared(skb1)) 5106 copyflag = 1; 5107 5108 /* If the skb is the last, worry about trailer. */ 5109 5110 if (skb1->next == NULL && tailbits) { 5111 if (skb_shinfo(skb1)->nr_frags || 5112 skb_has_frag_list(skb1) || 5113 skb_tailroom(skb1) < tailbits) 5114 ntail = tailbits + 128; 5115 } 5116 5117 if (copyflag || 5118 skb_cloned(skb1) || 5119 ntail || 5120 skb_shinfo(skb1)->nr_frags || 5121 skb_has_frag_list(skb1)) { 5122 struct sk_buff *skb2; 5123 5124 /* Fuck, we are miserable poor guys... */ 5125 if (ntail == 0) 5126 skb2 = skb_copy(skb1, GFP_ATOMIC); 5127 else 5128 skb2 = skb_copy_expand(skb1, 5129 skb_headroom(skb1), 5130 ntail, 5131 GFP_ATOMIC); 5132 if (unlikely(skb2 == NULL)) 5133 return -ENOMEM; 5134 5135 if (skb1->sk) 5136 skb_set_owner_w(skb2, skb1->sk); 5137 5138 /* Looking around. Are we still alive? 5139 * OK, link new skb, drop old one */ 5140 5141 skb2->next = skb1->next; 5142 *skb_p = skb2; 5143 kfree_skb(skb1); 5144 skb1 = skb2; 5145 } 5146 elt++; 5147 *trailer = skb1; 5148 skb_p = &skb1->next; 5149 } 5150 5151 return elt; 5152 } 5153 EXPORT_SYMBOL_GPL(skb_cow_data); 5154 5155 static void sock_rmem_free(struct sk_buff *skb) 5156 { 5157 struct sock *sk = skb->sk; 5158 5159 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5160 } 5161 5162 static void skb_set_err_queue(struct sk_buff *skb) 5163 { 5164 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5165 * So, it is safe to (mis)use it to mark skbs on the error queue. 5166 */ 5167 skb->pkt_type = PACKET_OUTGOING; 5168 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5169 } 5170 5171 /* 5172 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5173 */ 5174 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5175 { 5176 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5177 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5178 return -ENOMEM; 5179 5180 skb_orphan(skb); 5181 skb->sk = sk; 5182 skb->destructor = sock_rmem_free; 5183 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5184 skb_set_err_queue(skb); 5185 5186 /* before exiting rcu section, make sure dst is refcounted */ 5187 skb_dst_force(skb); 5188 5189 skb_queue_tail(&sk->sk_error_queue, skb); 5190 if (!sock_flag(sk, SOCK_DEAD)) 5191 sk_error_report(sk); 5192 return 0; 5193 } 5194 EXPORT_SYMBOL(sock_queue_err_skb); 5195 5196 static bool is_icmp_err_skb(const struct sk_buff *skb) 5197 { 5198 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5199 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5200 } 5201 5202 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5203 { 5204 struct sk_buff_head *q = &sk->sk_error_queue; 5205 struct sk_buff *skb, *skb_next = NULL; 5206 bool icmp_next = false; 5207 unsigned long flags; 5208 5209 if (skb_queue_empty_lockless(q)) 5210 return NULL; 5211 5212 spin_lock_irqsave(&q->lock, flags); 5213 skb = __skb_dequeue(q); 5214 if (skb && (skb_next = skb_peek(q))) { 5215 icmp_next = is_icmp_err_skb(skb_next); 5216 if (icmp_next) 5217 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5218 } 5219 spin_unlock_irqrestore(&q->lock, flags); 5220 5221 if (is_icmp_err_skb(skb) && !icmp_next) 5222 sk->sk_err = 0; 5223 5224 if (skb_next) 5225 sk_error_report(sk); 5226 5227 return skb; 5228 } 5229 EXPORT_SYMBOL(sock_dequeue_err_skb); 5230 5231 /** 5232 * skb_clone_sk - create clone of skb, and take reference to socket 5233 * @skb: the skb to clone 5234 * 5235 * This function creates a clone of a buffer that holds a reference on 5236 * sk_refcnt. Buffers created via this function are meant to be 5237 * returned using sock_queue_err_skb, or free via kfree_skb. 5238 * 5239 * When passing buffers allocated with this function to sock_queue_err_skb 5240 * it is necessary to wrap the call with sock_hold/sock_put in order to 5241 * prevent the socket from being released prior to being enqueued on 5242 * the sk_error_queue. 5243 */ 5244 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5245 { 5246 struct sock *sk = skb->sk; 5247 struct sk_buff *clone; 5248 5249 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5250 return NULL; 5251 5252 clone = skb_clone(skb, GFP_ATOMIC); 5253 if (!clone) { 5254 sock_put(sk); 5255 return NULL; 5256 } 5257 5258 clone->sk = sk; 5259 clone->destructor = sock_efree; 5260 5261 return clone; 5262 } 5263 EXPORT_SYMBOL(skb_clone_sk); 5264 5265 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5266 struct sock *sk, 5267 int tstype, 5268 bool opt_stats) 5269 { 5270 struct sock_exterr_skb *serr; 5271 int err; 5272 5273 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5274 5275 serr = SKB_EXT_ERR(skb); 5276 memset(serr, 0, sizeof(*serr)); 5277 serr->ee.ee_errno = ENOMSG; 5278 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5279 serr->ee.ee_info = tstype; 5280 serr->opt_stats = opt_stats; 5281 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5282 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 5283 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5284 if (sk_is_tcp(sk)) 5285 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5286 } 5287 5288 err = sock_queue_err_skb(sk, skb); 5289 5290 if (err) 5291 kfree_skb(skb); 5292 } 5293 5294 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5295 { 5296 bool ret; 5297 5298 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 5299 return true; 5300 5301 read_lock_bh(&sk->sk_callback_lock); 5302 ret = sk->sk_socket && sk->sk_socket->file && 5303 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5304 read_unlock_bh(&sk->sk_callback_lock); 5305 return ret; 5306 } 5307 5308 void skb_complete_tx_timestamp(struct sk_buff *skb, 5309 struct skb_shared_hwtstamps *hwtstamps) 5310 { 5311 struct sock *sk = skb->sk; 5312 5313 if (!skb_may_tx_timestamp(sk, false)) 5314 goto err; 5315 5316 /* Take a reference to prevent skb_orphan() from freeing the socket, 5317 * but only if the socket refcount is not zero. 5318 */ 5319 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5320 *skb_hwtstamps(skb) = *hwtstamps; 5321 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5322 sock_put(sk); 5323 return; 5324 } 5325 5326 err: 5327 kfree_skb(skb); 5328 } 5329 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5330 5331 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5332 const struct sk_buff *ack_skb, 5333 struct skb_shared_hwtstamps *hwtstamps, 5334 struct sock *sk, int tstype) 5335 { 5336 struct sk_buff *skb; 5337 bool tsonly, opt_stats = false; 5338 u32 tsflags; 5339 5340 if (!sk) 5341 return; 5342 5343 tsflags = READ_ONCE(sk->sk_tsflags); 5344 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5345 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5346 return; 5347 5348 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5349 if (!skb_may_tx_timestamp(sk, tsonly)) 5350 return; 5351 5352 if (tsonly) { 5353 #ifdef CONFIG_INET 5354 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5355 sk_is_tcp(sk)) { 5356 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5357 ack_skb); 5358 opt_stats = true; 5359 } else 5360 #endif 5361 skb = alloc_skb(0, GFP_ATOMIC); 5362 } else { 5363 skb = skb_clone(orig_skb, GFP_ATOMIC); 5364 5365 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5366 kfree_skb(skb); 5367 return; 5368 } 5369 } 5370 if (!skb) 5371 return; 5372 5373 if (tsonly) { 5374 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5375 SKBTX_ANY_TSTAMP; 5376 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5377 } 5378 5379 if (hwtstamps) 5380 *skb_hwtstamps(skb) = *hwtstamps; 5381 else 5382 __net_timestamp(skb); 5383 5384 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5385 } 5386 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5387 5388 void skb_tstamp_tx(struct sk_buff *orig_skb, 5389 struct skb_shared_hwtstamps *hwtstamps) 5390 { 5391 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5392 SCM_TSTAMP_SND); 5393 } 5394 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5395 5396 #ifdef CONFIG_WIRELESS 5397 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5398 { 5399 struct sock *sk = skb->sk; 5400 struct sock_exterr_skb *serr; 5401 int err = 1; 5402 5403 skb->wifi_acked_valid = 1; 5404 skb->wifi_acked = acked; 5405 5406 serr = SKB_EXT_ERR(skb); 5407 memset(serr, 0, sizeof(*serr)); 5408 serr->ee.ee_errno = ENOMSG; 5409 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5410 5411 /* Take a reference to prevent skb_orphan() from freeing the socket, 5412 * but only if the socket refcount is not zero. 5413 */ 5414 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5415 err = sock_queue_err_skb(sk, skb); 5416 sock_put(sk); 5417 } 5418 if (err) 5419 kfree_skb(skb); 5420 } 5421 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5422 #endif /* CONFIG_WIRELESS */ 5423 5424 /** 5425 * skb_partial_csum_set - set up and verify partial csum values for packet 5426 * @skb: the skb to set 5427 * @start: the number of bytes after skb->data to start checksumming. 5428 * @off: the offset from start to place the checksum. 5429 * 5430 * For untrusted partially-checksummed packets, we need to make sure the values 5431 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5432 * 5433 * This function checks and sets those values and skb->ip_summed: if this 5434 * returns false you should drop the packet. 5435 */ 5436 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5437 { 5438 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5439 u32 csum_start = skb_headroom(skb) + (u32)start; 5440 5441 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5442 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5443 start, off, skb_headroom(skb), skb_headlen(skb)); 5444 return false; 5445 } 5446 skb->ip_summed = CHECKSUM_PARTIAL; 5447 skb->csum_start = csum_start; 5448 skb->csum_offset = off; 5449 skb->transport_header = csum_start; 5450 return true; 5451 } 5452 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5453 5454 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5455 unsigned int max) 5456 { 5457 if (skb_headlen(skb) >= len) 5458 return 0; 5459 5460 /* If we need to pullup then pullup to the max, so we 5461 * won't need to do it again. 5462 */ 5463 if (max > skb->len) 5464 max = skb->len; 5465 5466 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5467 return -ENOMEM; 5468 5469 if (skb_headlen(skb) < len) 5470 return -EPROTO; 5471 5472 return 0; 5473 } 5474 5475 #define MAX_TCP_HDR_LEN (15 * 4) 5476 5477 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5478 typeof(IPPROTO_IP) proto, 5479 unsigned int off) 5480 { 5481 int err; 5482 5483 switch (proto) { 5484 case IPPROTO_TCP: 5485 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5486 off + MAX_TCP_HDR_LEN); 5487 if (!err && !skb_partial_csum_set(skb, off, 5488 offsetof(struct tcphdr, 5489 check))) 5490 err = -EPROTO; 5491 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5492 5493 case IPPROTO_UDP: 5494 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5495 off + sizeof(struct udphdr)); 5496 if (!err && !skb_partial_csum_set(skb, off, 5497 offsetof(struct udphdr, 5498 check))) 5499 err = -EPROTO; 5500 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5501 } 5502 5503 return ERR_PTR(-EPROTO); 5504 } 5505 5506 /* This value should be large enough to cover a tagged ethernet header plus 5507 * maximally sized IP and TCP or UDP headers. 5508 */ 5509 #define MAX_IP_HDR_LEN 128 5510 5511 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5512 { 5513 unsigned int off; 5514 bool fragment; 5515 __sum16 *csum; 5516 int err; 5517 5518 fragment = false; 5519 5520 err = skb_maybe_pull_tail(skb, 5521 sizeof(struct iphdr), 5522 MAX_IP_HDR_LEN); 5523 if (err < 0) 5524 goto out; 5525 5526 if (ip_is_fragment(ip_hdr(skb))) 5527 fragment = true; 5528 5529 off = ip_hdrlen(skb); 5530 5531 err = -EPROTO; 5532 5533 if (fragment) 5534 goto out; 5535 5536 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5537 if (IS_ERR(csum)) 5538 return PTR_ERR(csum); 5539 5540 if (recalculate) 5541 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5542 ip_hdr(skb)->daddr, 5543 skb->len - off, 5544 ip_hdr(skb)->protocol, 0); 5545 err = 0; 5546 5547 out: 5548 return err; 5549 } 5550 5551 /* This value should be large enough to cover a tagged ethernet header plus 5552 * an IPv6 header, all options, and a maximal TCP or UDP header. 5553 */ 5554 #define MAX_IPV6_HDR_LEN 256 5555 5556 #define OPT_HDR(type, skb, off) \ 5557 (type *)(skb_network_header(skb) + (off)) 5558 5559 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5560 { 5561 int err; 5562 u8 nexthdr; 5563 unsigned int off; 5564 unsigned int len; 5565 bool fragment; 5566 bool done; 5567 __sum16 *csum; 5568 5569 fragment = false; 5570 done = false; 5571 5572 off = sizeof(struct ipv6hdr); 5573 5574 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5575 if (err < 0) 5576 goto out; 5577 5578 nexthdr = ipv6_hdr(skb)->nexthdr; 5579 5580 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5581 while (off <= len && !done) { 5582 switch (nexthdr) { 5583 case IPPROTO_DSTOPTS: 5584 case IPPROTO_HOPOPTS: 5585 case IPPROTO_ROUTING: { 5586 struct ipv6_opt_hdr *hp; 5587 5588 err = skb_maybe_pull_tail(skb, 5589 off + 5590 sizeof(struct ipv6_opt_hdr), 5591 MAX_IPV6_HDR_LEN); 5592 if (err < 0) 5593 goto out; 5594 5595 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5596 nexthdr = hp->nexthdr; 5597 off += ipv6_optlen(hp); 5598 break; 5599 } 5600 case IPPROTO_AH: { 5601 struct ip_auth_hdr *hp; 5602 5603 err = skb_maybe_pull_tail(skb, 5604 off + 5605 sizeof(struct ip_auth_hdr), 5606 MAX_IPV6_HDR_LEN); 5607 if (err < 0) 5608 goto out; 5609 5610 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5611 nexthdr = hp->nexthdr; 5612 off += ipv6_authlen(hp); 5613 break; 5614 } 5615 case IPPROTO_FRAGMENT: { 5616 struct frag_hdr *hp; 5617 5618 err = skb_maybe_pull_tail(skb, 5619 off + 5620 sizeof(struct frag_hdr), 5621 MAX_IPV6_HDR_LEN); 5622 if (err < 0) 5623 goto out; 5624 5625 hp = OPT_HDR(struct frag_hdr, skb, off); 5626 5627 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5628 fragment = true; 5629 5630 nexthdr = hp->nexthdr; 5631 off += sizeof(struct frag_hdr); 5632 break; 5633 } 5634 default: 5635 done = true; 5636 break; 5637 } 5638 } 5639 5640 err = -EPROTO; 5641 5642 if (!done || fragment) 5643 goto out; 5644 5645 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5646 if (IS_ERR(csum)) 5647 return PTR_ERR(csum); 5648 5649 if (recalculate) 5650 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5651 &ipv6_hdr(skb)->daddr, 5652 skb->len - off, nexthdr, 0); 5653 err = 0; 5654 5655 out: 5656 return err; 5657 } 5658 5659 /** 5660 * skb_checksum_setup - set up partial checksum offset 5661 * @skb: the skb to set up 5662 * @recalculate: if true the pseudo-header checksum will be recalculated 5663 */ 5664 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5665 { 5666 int err; 5667 5668 switch (skb->protocol) { 5669 case htons(ETH_P_IP): 5670 err = skb_checksum_setup_ipv4(skb, recalculate); 5671 break; 5672 5673 case htons(ETH_P_IPV6): 5674 err = skb_checksum_setup_ipv6(skb, recalculate); 5675 break; 5676 5677 default: 5678 err = -EPROTO; 5679 break; 5680 } 5681 5682 return err; 5683 } 5684 EXPORT_SYMBOL(skb_checksum_setup); 5685 5686 /** 5687 * skb_checksum_maybe_trim - maybe trims the given skb 5688 * @skb: the skb to check 5689 * @transport_len: the data length beyond the network header 5690 * 5691 * Checks whether the given skb has data beyond the given transport length. 5692 * If so, returns a cloned skb trimmed to this transport length. 5693 * Otherwise returns the provided skb. Returns NULL in error cases 5694 * (e.g. transport_len exceeds skb length or out-of-memory). 5695 * 5696 * Caller needs to set the skb transport header and free any returned skb if it 5697 * differs from the provided skb. 5698 */ 5699 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5700 unsigned int transport_len) 5701 { 5702 struct sk_buff *skb_chk; 5703 unsigned int len = skb_transport_offset(skb) + transport_len; 5704 int ret; 5705 5706 if (skb->len < len) 5707 return NULL; 5708 else if (skb->len == len) 5709 return skb; 5710 5711 skb_chk = skb_clone(skb, GFP_ATOMIC); 5712 if (!skb_chk) 5713 return NULL; 5714 5715 ret = pskb_trim_rcsum(skb_chk, len); 5716 if (ret) { 5717 kfree_skb(skb_chk); 5718 return NULL; 5719 } 5720 5721 return skb_chk; 5722 } 5723 5724 /** 5725 * skb_checksum_trimmed - validate checksum of an skb 5726 * @skb: the skb to check 5727 * @transport_len: the data length beyond the network header 5728 * @skb_chkf: checksum function to use 5729 * 5730 * Applies the given checksum function skb_chkf to the provided skb. 5731 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5732 * 5733 * If the skb has data beyond the given transport length, then a 5734 * trimmed & cloned skb is checked and returned. 5735 * 5736 * Caller needs to set the skb transport header and free any returned skb if it 5737 * differs from the provided skb. 5738 */ 5739 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5740 unsigned int transport_len, 5741 __sum16(*skb_chkf)(struct sk_buff *skb)) 5742 { 5743 struct sk_buff *skb_chk; 5744 unsigned int offset = skb_transport_offset(skb); 5745 __sum16 ret; 5746 5747 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5748 if (!skb_chk) 5749 goto err; 5750 5751 if (!pskb_may_pull(skb_chk, offset)) 5752 goto err; 5753 5754 skb_pull_rcsum(skb_chk, offset); 5755 ret = skb_chkf(skb_chk); 5756 skb_push_rcsum(skb_chk, offset); 5757 5758 if (ret) 5759 goto err; 5760 5761 return skb_chk; 5762 5763 err: 5764 if (skb_chk && skb_chk != skb) 5765 kfree_skb(skb_chk); 5766 5767 return NULL; 5768 5769 } 5770 EXPORT_SYMBOL(skb_checksum_trimmed); 5771 5772 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5773 { 5774 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5775 skb->dev->name); 5776 } 5777 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5778 5779 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5780 { 5781 if (head_stolen) { 5782 skb_release_head_state(skb); 5783 kmem_cache_free(skbuff_cache, skb); 5784 } else { 5785 __kfree_skb(skb); 5786 } 5787 } 5788 EXPORT_SYMBOL(kfree_skb_partial); 5789 5790 /** 5791 * skb_try_coalesce - try to merge skb to prior one 5792 * @to: prior buffer 5793 * @from: buffer to add 5794 * @fragstolen: pointer to boolean 5795 * @delta_truesize: how much more was allocated than was requested 5796 */ 5797 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5798 bool *fragstolen, int *delta_truesize) 5799 { 5800 struct skb_shared_info *to_shinfo, *from_shinfo; 5801 int i, delta, len = from->len; 5802 5803 *fragstolen = false; 5804 5805 if (skb_cloned(to)) 5806 return false; 5807 5808 /* In general, avoid mixing page_pool and non-page_pool allocated 5809 * pages within the same SKB. In theory we could take full 5810 * references if @from is cloned and !@to->pp_recycle but its 5811 * tricky (due to potential race with the clone disappearing) and 5812 * rare, so not worth dealing with. 5813 */ 5814 if (to->pp_recycle != from->pp_recycle) 5815 return false; 5816 5817 if (len <= skb_tailroom(to)) { 5818 if (len) 5819 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5820 *delta_truesize = 0; 5821 return true; 5822 } 5823 5824 to_shinfo = skb_shinfo(to); 5825 from_shinfo = skb_shinfo(from); 5826 if (to_shinfo->frag_list || from_shinfo->frag_list) 5827 return false; 5828 if (skb_zcopy(to) || skb_zcopy(from)) 5829 return false; 5830 5831 if (skb_headlen(from) != 0) { 5832 struct page *page; 5833 unsigned int offset; 5834 5835 if (to_shinfo->nr_frags + 5836 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5837 return false; 5838 5839 if (skb_head_is_locked(from)) 5840 return false; 5841 5842 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5843 5844 page = virt_to_head_page(from->head); 5845 offset = from->data - (unsigned char *)page_address(page); 5846 5847 skb_fill_page_desc(to, to_shinfo->nr_frags, 5848 page, offset, skb_headlen(from)); 5849 *fragstolen = true; 5850 } else { 5851 if (to_shinfo->nr_frags + 5852 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5853 return false; 5854 5855 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5856 } 5857 5858 WARN_ON_ONCE(delta < len); 5859 5860 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5861 from_shinfo->frags, 5862 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5863 to_shinfo->nr_frags += from_shinfo->nr_frags; 5864 5865 if (!skb_cloned(from)) 5866 from_shinfo->nr_frags = 0; 5867 5868 /* if the skb is not cloned this does nothing 5869 * since we set nr_frags to 0. 5870 */ 5871 if (skb_pp_frag_ref(from)) { 5872 for (i = 0; i < from_shinfo->nr_frags; i++) 5873 __skb_frag_ref(&from_shinfo->frags[i]); 5874 } 5875 5876 to->truesize += delta; 5877 to->len += len; 5878 to->data_len += len; 5879 5880 *delta_truesize = delta; 5881 return true; 5882 } 5883 EXPORT_SYMBOL(skb_try_coalesce); 5884 5885 /** 5886 * skb_scrub_packet - scrub an skb 5887 * 5888 * @skb: buffer to clean 5889 * @xnet: packet is crossing netns 5890 * 5891 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5892 * into/from a tunnel. Some information have to be cleared during these 5893 * operations. 5894 * skb_scrub_packet can also be used to clean a skb before injecting it in 5895 * another namespace (@xnet == true). We have to clear all information in the 5896 * skb that could impact namespace isolation. 5897 */ 5898 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5899 { 5900 skb->pkt_type = PACKET_HOST; 5901 skb->skb_iif = 0; 5902 skb->ignore_df = 0; 5903 skb_dst_drop(skb); 5904 skb_ext_reset(skb); 5905 nf_reset_ct(skb); 5906 nf_reset_trace(skb); 5907 5908 #ifdef CONFIG_NET_SWITCHDEV 5909 skb->offload_fwd_mark = 0; 5910 skb->offload_l3_fwd_mark = 0; 5911 #endif 5912 5913 if (!xnet) 5914 return; 5915 5916 ipvs_reset(skb); 5917 skb->mark = 0; 5918 skb_clear_tstamp(skb); 5919 } 5920 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5921 5922 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5923 { 5924 int mac_len, meta_len; 5925 void *meta; 5926 5927 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5928 kfree_skb(skb); 5929 return NULL; 5930 } 5931 5932 mac_len = skb->data - skb_mac_header(skb); 5933 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5934 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5935 mac_len - VLAN_HLEN - ETH_TLEN); 5936 } 5937 5938 meta_len = skb_metadata_len(skb); 5939 if (meta_len) { 5940 meta = skb_metadata_end(skb) - meta_len; 5941 memmove(meta + VLAN_HLEN, meta, meta_len); 5942 } 5943 5944 skb->mac_header += VLAN_HLEN; 5945 return skb; 5946 } 5947 5948 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5949 { 5950 struct vlan_hdr *vhdr; 5951 u16 vlan_tci; 5952 5953 if (unlikely(skb_vlan_tag_present(skb))) { 5954 /* vlan_tci is already set-up so leave this for another time */ 5955 return skb; 5956 } 5957 5958 skb = skb_share_check(skb, GFP_ATOMIC); 5959 if (unlikely(!skb)) 5960 goto err_free; 5961 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5962 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5963 goto err_free; 5964 5965 vhdr = (struct vlan_hdr *)skb->data; 5966 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5967 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5968 5969 skb_pull_rcsum(skb, VLAN_HLEN); 5970 vlan_set_encap_proto(skb, vhdr); 5971 5972 skb = skb_reorder_vlan_header(skb); 5973 if (unlikely(!skb)) 5974 goto err_free; 5975 5976 skb_reset_network_header(skb); 5977 if (!skb_transport_header_was_set(skb)) 5978 skb_reset_transport_header(skb); 5979 skb_reset_mac_len(skb); 5980 5981 return skb; 5982 5983 err_free: 5984 kfree_skb(skb); 5985 return NULL; 5986 } 5987 EXPORT_SYMBOL(skb_vlan_untag); 5988 5989 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 5990 { 5991 if (!pskb_may_pull(skb, write_len)) 5992 return -ENOMEM; 5993 5994 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5995 return 0; 5996 5997 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5998 } 5999 EXPORT_SYMBOL(skb_ensure_writable); 6000 6001 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev) 6002 { 6003 int needed_headroom = dev->needed_headroom; 6004 int needed_tailroom = dev->needed_tailroom; 6005 6006 /* For tail taggers, we need to pad short frames ourselves, to ensure 6007 * that the tail tag does not fail at its role of being at the end of 6008 * the packet, once the conduit interface pads the frame. Account for 6009 * that pad length here, and pad later. 6010 */ 6011 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN)) 6012 needed_tailroom += ETH_ZLEN - skb->len; 6013 /* skb_headroom() returns unsigned int... */ 6014 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0); 6015 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0); 6016 6017 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb))) 6018 /* No reallocation needed, yay! */ 6019 return 0; 6020 6021 return pskb_expand_head(skb, needed_headroom, needed_tailroom, 6022 GFP_ATOMIC); 6023 } 6024 EXPORT_SYMBOL(skb_ensure_writable_head_tail); 6025 6026 /* remove VLAN header from packet and update csum accordingly. 6027 * expects a non skb_vlan_tag_present skb with a vlan tag payload 6028 */ 6029 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 6030 { 6031 int offset = skb->data - skb_mac_header(skb); 6032 int err; 6033 6034 if (WARN_ONCE(offset, 6035 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 6036 offset)) { 6037 return -EINVAL; 6038 } 6039 6040 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 6041 if (unlikely(err)) 6042 return err; 6043 6044 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6045 6046 vlan_remove_tag(skb, vlan_tci); 6047 6048 skb->mac_header += VLAN_HLEN; 6049 6050 if (skb_network_offset(skb) < ETH_HLEN) 6051 skb_set_network_header(skb, ETH_HLEN); 6052 6053 skb_reset_mac_len(skb); 6054 6055 return err; 6056 } 6057 EXPORT_SYMBOL(__skb_vlan_pop); 6058 6059 /* Pop a vlan tag either from hwaccel or from payload. 6060 * Expects skb->data at mac header. 6061 */ 6062 int skb_vlan_pop(struct sk_buff *skb) 6063 { 6064 u16 vlan_tci; 6065 __be16 vlan_proto; 6066 int err; 6067 6068 if (likely(skb_vlan_tag_present(skb))) { 6069 __vlan_hwaccel_clear_tag(skb); 6070 } else { 6071 if (unlikely(!eth_type_vlan(skb->protocol))) 6072 return 0; 6073 6074 err = __skb_vlan_pop(skb, &vlan_tci); 6075 if (err) 6076 return err; 6077 } 6078 /* move next vlan tag to hw accel tag */ 6079 if (likely(!eth_type_vlan(skb->protocol))) 6080 return 0; 6081 6082 vlan_proto = skb->protocol; 6083 err = __skb_vlan_pop(skb, &vlan_tci); 6084 if (unlikely(err)) 6085 return err; 6086 6087 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6088 return 0; 6089 } 6090 EXPORT_SYMBOL(skb_vlan_pop); 6091 6092 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 6093 * Expects skb->data at mac header. 6094 */ 6095 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6096 { 6097 if (skb_vlan_tag_present(skb)) { 6098 int offset = skb->data - skb_mac_header(skb); 6099 int err; 6100 6101 if (WARN_ONCE(offset, 6102 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6103 offset)) { 6104 return -EINVAL; 6105 } 6106 6107 err = __vlan_insert_tag(skb, skb->vlan_proto, 6108 skb_vlan_tag_get(skb)); 6109 if (err) 6110 return err; 6111 6112 skb->protocol = skb->vlan_proto; 6113 skb->mac_len += VLAN_HLEN; 6114 6115 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6116 } 6117 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6118 return 0; 6119 } 6120 EXPORT_SYMBOL(skb_vlan_push); 6121 6122 /** 6123 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6124 * 6125 * @skb: Socket buffer to modify 6126 * 6127 * Drop the Ethernet header of @skb. 6128 * 6129 * Expects that skb->data points to the mac header and that no VLAN tags are 6130 * present. 6131 * 6132 * Returns 0 on success, -errno otherwise. 6133 */ 6134 int skb_eth_pop(struct sk_buff *skb) 6135 { 6136 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6137 skb_network_offset(skb) < ETH_HLEN) 6138 return -EPROTO; 6139 6140 skb_pull_rcsum(skb, ETH_HLEN); 6141 skb_reset_mac_header(skb); 6142 skb_reset_mac_len(skb); 6143 6144 return 0; 6145 } 6146 EXPORT_SYMBOL(skb_eth_pop); 6147 6148 /** 6149 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6150 * 6151 * @skb: Socket buffer to modify 6152 * @dst: Destination MAC address of the new header 6153 * @src: Source MAC address of the new header 6154 * 6155 * Prepend @skb with a new Ethernet header. 6156 * 6157 * Expects that skb->data points to the mac header, which must be empty. 6158 * 6159 * Returns 0 on success, -errno otherwise. 6160 */ 6161 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6162 const unsigned char *src) 6163 { 6164 struct ethhdr *eth; 6165 int err; 6166 6167 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6168 return -EPROTO; 6169 6170 err = skb_cow_head(skb, sizeof(*eth)); 6171 if (err < 0) 6172 return err; 6173 6174 skb_push(skb, sizeof(*eth)); 6175 skb_reset_mac_header(skb); 6176 skb_reset_mac_len(skb); 6177 6178 eth = eth_hdr(skb); 6179 ether_addr_copy(eth->h_dest, dst); 6180 ether_addr_copy(eth->h_source, src); 6181 eth->h_proto = skb->protocol; 6182 6183 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6184 6185 return 0; 6186 } 6187 EXPORT_SYMBOL(skb_eth_push); 6188 6189 /* Update the ethertype of hdr and the skb csum value if required. */ 6190 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6191 __be16 ethertype) 6192 { 6193 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6194 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6195 6196 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6197 } 6198 6199 hdr->h_proto = ethertype; 6200 } 6201 6202 /** 6203 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6204 * the packet 6205 * 6206 * @skb: buffer 6207 * @mpls_lse: MPLS label stack entry to push 6208 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6209 * @mac_len: length of the MAC header 6210 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6211 * ethernet 6212 * 6213 * Expects skb->data at mac header. 6214 * 6215 * Returns 0 on success, -errno otherwise. 6216 */ 6217 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6218 int mac_len, bool ethernet) 6219 { 6220 struct mpls_shim_hdr *lse; 6221 int err; 6222 6223 if (unlikely(!eth_p_mpls(mpls_proto))) 6224 return -EINVAL; 6225 6226 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6227 if (skb->encapsulation) 6228 return -EINVAL; 6229 6230 err = skb_cow_head(skb, MPLS_HLEN); 6231 if (unlikely(err)) 6232 return err; 6233 6234 if (!skb->inner_protocol) { 6235 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6236 skb_set_inner_protocol(skb, skb->protocol); 6237 } 6238 6239 skb_push(skb, MPLS_HLEN); 6240 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6241 mac_len); 6242 skb_reset_mac_header(skb); 6243 skb_set_network_header(skb, mac_len); 6244 skb_reset_mac_len(skb); 6245 6246 lse = mpls_hdr(skb); 6247 lse->label_stack_entry = mpls_lse; 6248 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6249 6250 if (ethernet && mac_len >= ETH_HLEN) 6251 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6252 skb->protocol = mpls_proto; 6253 6254 return 0; 6255 } 6256 EXPORT_SYMBOL_GPL(skb_mpls_push); 6257 6258 /** 6259 * skb_mpls_pop() - pop the outermost MPLS header 6260 * 6261 * @skb: buffer 6262 * @next_proto: ethertype of header after popped MPLS header 6263 * @mac_len: length of the MAC header 6264 * @ethernet: flag to indicate if the packet is ethernet 6265 * 6266 * Expects skb->data at mac header. 6267 * 6268 * Returns 0 on success, -errno otherwise. 6269 */ 6270 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6271 bool ethernet) 6272 { 6273 int err; 6274 6275 if (unlikely(!eth_p_mpls(skb->protocol))) 6276 return 0; 6277 6278 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6279 if (unlikely(err)) 6280 return err; 6281 6282 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6283 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6284 mac_len); 6285 6286 __skb_pull(skb, MPLS_HLEN); 6287 skb_reset_mac_header(skb); 6288 skb_set_network_header(skb, mac_len); 6289 6290 if (ethernet && mac_len >= ETH_HLEN) { 6291 struct ethhdr *hdr; 6292 6293 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6294 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6295 skb_mod_eth_type(skb, hdr, next_proto); 6296 } 6297 skb->protocol = next_proto; 6298 6299 return 0; 6300 } 6301 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6302 6303 /** 6304 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6305 * 6306 * @skb: buffer 6307 * @mpls_lse: new MPLS label stack entry to update to 6308 * 6309 * Expects skb->data at mac header. 6310 * 6311 * Returns 0 on success, -errno otherwise. 6312 */ 6313 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6314 { 6315 int err; 6316 6317 if (unlikely(!eth_p_mpls(skb->protocol))) 6318 return -EINVAL; 6319 6320 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6321 if (unlikely(err)) 6322 return err; 6323 6324 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6325 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6326 6327 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6328 } 6329 6330 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6331 6332 return 0; 6333 } 6334 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6335 6336 /** 6337 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6338 * 6339 * @skb: buffer 6340 * 6341 * Expects skb->data at mac header. 6342 * 6343 * Returns 0 on success, -errno otherwise. 6344 */ 6345 int skb_mpls_dec_ttl(struct sk_buff *skb) 6346 { 6347 u32 lse; 6348 u8 ttl; 6349 6350 if (unlikely(!eth_p_mpls(skb->protocol))) 6351 return -EINVAL; 6352 6353 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6354 return -ENOMEM; 6355 6356 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6357 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6358 if (!--ttl) 6359 return -EINVAL; 6360 6361 lse &= ~MPLS_LS_TTL_MASK; 6362 lse |= ttl << MPLS_LS_TTL_SHIFT; 6363 6364 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6365 } 6366 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6367 6368 /** 6369 * alloc_skb_with_frags - allocate skb with page frags 6370 * 6371 * @header_len: size of linear part 6372 * @data_len: needed length in frags 6373 * @order: max page order desired. 6374 * @errcode: pointer to error code if any 6375 * @gfp_mask: allocation mask 6376 * 6377 * This can be used to allocate a paged skb, given a maximal order for frags. 6378 */ 6379 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6380 unsigned long data_len, 6381 int order, 6382 int *errcode, 6383 gfp_t gfp_mask) 6384 { 6385 unsigned long chunk; 6386 struct sk_buff *skb; 6387 struct page *page; 6388 int nr_frags = 0; 6389 6390 *errcode = -EMSGSIZE; 6391 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6392 return NULL; 6393 6394 *errcode = -ENOBUFS; 6395 skb = alloc_skb(header_len, gfp_mask); 6396 if (!skb) 6397 return NULL; 6398 6399 while (data_len) { 6400 if (nr_frags == MAX_SKB_FRAGS - 1) 6401 goto failure; 6402 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6403 order--; 6404 6405 if (order) { 6406 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6407 __GFP_COMP | 6408 __GFP_NOWARN, 6409 order); 6410 if (!page) { 6411 order--; 6412 continue; 6413 } 6414 } else { 6415 page = alloc_page(gfp_mask); 6416 if (!page) 6417 goto failure; 6418 } 6419 chunk = min_t(unsigned long, data_len, 6420 PAGE_SIZE << order); 6421 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6422 nr_frags++; 6423 skb->truesize += (PAGE_SIZE << order); 6424 data_len -= chunk; 6425 } 6426 return skb; 6427 6428 failure: 6429 kfree_skb(skb); 6430 return NULL; 6431 } 6432 EXPORT_SYMBOL(alloc_skb_with_frags); 6433 6434 /* carve out the first off bytes from skb when off < headlen */ 6435 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6436 const int headlen, gfp_t gfp_mask) 6437 { 6438 int i; 6439 unsigned int size = skb_end_offset(skb); 6440 int new_hlen = headlen - off; 6441 u8 *data; 6442 6443 if (skb_pfmemalloc(skb)) 6444 gfp_mask |= __GFP_MEMALLOC; 6445 6446 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6447 if (!data) 6448 return -ENOMEM; 6449 size = SKB_WITH_OVERHEAD(size); 6450 6451 /* Copy real data, and all frags */ 6452 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6453 skb->len -= off; 6454 6455 memcpy((struct skb_shared_info *)(data + size), 6456 skb_shinfo(skb), 6457 offsetof(struct skb_shared_info, 6458 frags[skb_shinfo(skb)->nr_frags])); 6459 if (skb_cloned(skb)) { 6460 /* drop the old head gracefully */ 6461 if (skb_orphan_frags(skb, gfp_mask)) { 6462 skb_kfree_head(data, size); 6463 return -ENOMEM; 6464 } 6465 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6466 skb_frag_ref(skb, i); 6467 if (skb_has_frag_list(skb)) 6468 skb_clone_fraglist(skb); 6469 skb_release_data(skb, SKB_CONSUMED, false); 6470 } else { 6471 /* we can reuse existing recount- all we did was 6472 * relocate values 6473 */ 6474 skb_free_head(skb, false); 6475 } 6476 6477 skb->head = data; 6478 skb->data = data; 6479 skb->head_frag = 0; 6480 skb_set_end_offset(skb, size); 6481 skb_set_tail_pointer(skb, skb_headlen(skb)); 6482 skb_headers_offset_update(skb, 0); 6483 skb->cloned = 0; 6484 skb->hdr_len = 0; 6485 skb->nohdr = 0; 6486 atomic_set(&skb_shinfo(skb)->dataref, 1); 6487 6488 return 0; 6489 } 6490 6491 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6492 6493 /* carve out the first eat bytes from skb's frag_list. May recurse into 6494 * pskb_carve() 6495 */ 6496 static int pskb_carve_frag_list(struct sk_buff *skb, 6497 struct skb_shared_info *shinfo, int eat, 6498 gfp_t gfp_mask) 6499 { 6500 struct sk_buff *list = shinfo->frag_list; 6501 struct sk_buff *clone = NULL; 6502 struct sk_buff *insp = NULL; 6503 6504 do { 6505 if (!list) { 6506 pr_err("Not enough bytes to eat. Want %d\n", eat); 6507 return -EFAULT; 6508 } 6509 if (list->len <= eat) { 6510 /* Eaten as whole. */ 6511 eat -= list->len; 6512 list = list->next; 6513 insp = list; 6514 } else { 6515 /* Eaten partially. */ 6516 if (skb_shared(list)) { 6517 clone = skb_clone(list, gfp_mask); 6518 if (!clone) 6519 return -ENOMEM; 6520 insp = list->next; 6521 list = clone; 6522 } else { 6523 /* This may be pulled without problems. */ 6524 insp = list; 6525 } 6526 if (pskb_carve(list, eat, gfp_mask) < 0) { 6527 kfree_skb(clone); 6528 return -ENOMEM; 6529 } 6530 break; 6531 } 6532 } while (eat); 6533 6534 /* Free pulled out fragments. */ 6535 while ((list = shinfo->frag_list) != insp) { 6536 shinfo->frag_list = list->next; 6537 consume_skb(list); 6538 } 6539 /* And insert new clone at head. */ 6540 if (clone) { 6541 clone->next = list; 6542 shinfo->frag_list = clone; 6543 } 6544 return 0; 6545 } 6546 6547 /* carve off first len bytes from skb. Split line (off) is in the 6548 * non-linear part of skb 6549 */ 6550 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6551 int pos, gfp_t gfp_mask) 6552 { 6553 int i, k = 0; 6554 unsigned int size = skb_end_offset(skb); 6555 u8 *data; 6556 const int nfrags = skb_shinfo(skb)->nr_frags; 6557 struct skb_shared_info *shinfo; 6558 6559 if (skb_pfmemalloc(skb)) 6560 gfp_mask |= __GFP_MEMALLOC; 6561 6562 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6563 if (!data) 6564 return -ENOMEM; 6565 size = SKB_WITH_OVERHEAD(size); 6566 6567 memcpy((struct skb_shared_info *)(data + size), 6568 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6569 if (skb_orphan_frags(skb, gfp_mask)) { 6570 skb_kfree_head(data, size); 6571 return -ENOMEM; 6572 } 6573 shinfo = (struct skb_shared_info *)(data + size); 6574 for (i = 0; i < nfrags; i++) { 6575 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6576 6577 if (pos + fsize > off) { 6578 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6579 6580 if (pos < off) { 6581 /* Split frag. 6582 * We have two variants in this case: 6583 * 1. Move all the frag to the second 6584 * part, if it is possible. F.e. 6585 * this approach is mandatory for TUX, 6586 * where splitting is expensive. 6587 * 2. Split is accurately. We make this. 6588 */ 6589 skb_frag_off_add(&shinfo->frags[0], off - pos); 6590 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6591 } 6592 skb_frag_ref(skb, i); 6593 k++; 6594 } 6595 pos += fsize; 6596 } 6597 shinfo->nr_frags = k; 6598 if (skb_has_frag_list(skb)) 6599 skb_clone_fraglist(skb); 6600 6601 /* split line is in frag list */ 6602 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6603 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6604 if (skb_has_frag_list(skb)) 6605 kfree_skb_list(skb_shinfo(skb)->frag_list); 6606 skb_kfree_head(data, size); 6607 return -ENOMEM; 6608 } 6609 skb_release_data(skb, SKB_CONSUMED, false); 6610 6611 skb->head = data; 6612 skb->head_frag = 0; 6613 skb->data = data; 6614 skb_set_end_offset(skb, size); 6615 skb_reset_tail_pointer(skb); 6616 skb_headers_offset_update(skb, 0); 6617 skb->cloned = 0; 6618 skb->hdr_len = 0; 6619 skb->nohdr = 0; 6620 skb->len -= off; 6621 skb->data_len = skb->len; 6622 atomic_set(&skb_shinfo(skb)->dataref, 1); 6623 return 0; 6624 } 6625 6626 /* remove len bytes from the beginning of the skb */ 6627 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6628 { 6629 int headlen = skb_headlen(skb); 6630 6631 if (len < headlen) 6632 return pskb_carve_inside_header(skb, len, headlen, gfp); 6633 else 6634 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6635 } 6636 6637 /* Extract to_copy bytes starting at off from skb, and return this in 6638 * a new skb 6639 */ 6640 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6641 int to_copy, gfp_t gfp) 6642 { 6643 struct sk_buff *clone = skb_clone(skb, gfp); 6644 6645 if (!clone) 6646 return NULL; 6647 6648 if (pskb_carve(clone, off, gfp) < 0 || 6649 pskb_trim(clone, to_copy)) { 6650 kfree_skb(clone); 6651 return NULL; 6652 } 6653 return clone; 6654 } 6655 EXPORT_SYMBOL(pskb_extract); 6656 6657 /** 6658 * skb_condense - try to get rid of fragments/frag_list if possible 6659 * @skb: buffer 6660 * 6661 * Can be used to save memory before skb is added to a busy queue. 6662 * If packet has bytes in frags and enough tail room in skb->head, 6663 * pull all of them, so that we can free the frags right now and adjust 6664 * truesize. 6665 * Notes: 6666 * We do not reallocate skb->head thus can not fail. 6667 * Caller must re-evaluate skb->truesize if needed. 6668 */ 6669 void skb_condense(struct sk_buff *skb) 6670 { 6671 if (skb->data_len) { 6672 if (skb->data_len > skb->end - skb->tail || 6673 skb_cloned(skb)) 6674 return; 6675 6676 /* Nice, we can free page frag(s) right now */ 6677 __pskb_pull_tail(skb, skb->data_len); 6678 } 6679 /* At this point, skb->truesize might be over estimated, 6680 * because skb had a fragment, and fragments do not tell 6681 * their truesize. 6682 * When we pulled its content into skb->head, fragment 6683 * was freed, but __pskb_pull_tail() could not possibly 6684 * adjust skb->truesize, not knowing the frag truesize. 6685 */ 6686 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6687 } 6688 EXPORT_SYMBOL(skb_condense); 6689 6690 #ifdef CONFIG_SKB_EXTENSIONS 6691 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6692 { 6693 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6694 } 6695 6696 /** 6697 * __skb_ext_alloc - allocate a new skb extensions storage 6698 * 6699 * @flags: See kmalloc(). 6700 * 6701 * Returns the newly allocated pointer. The pointer can later attached to a 6702 * skb via __skb_ext_set(). 6703 * Note: caller must handle the skb_ext as an opaque data. 6704 */ 6705 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6706 { 6707 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6708 6709 if (new) { 6710 memset(new->offset, 0, sizeof(new->offset)); 6711 refcount_set(&new->refcnt, 1); 6712 } 6713 6714 return new; 6715 } 6716 6717 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6718 unsigned int old_active) 6719 { 6720 struct skb_ext *new; 6721 6722 if (refcount_read(&old->refcnt) == 1) 6723 return old; 6724 6725 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6726 if (!new) 6727 return NULL; 6728 6729 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6730 refcount_set(&new->refcnt, 1); 6731 6732 #ifdef CONFIG_XFRM 6733 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6734 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6735 unsigned int i; 6736 6737 for (i = 0; i < sp->len; i++) 6738 xfrm_state_hold(sp->xvec[i]); 6739 } 6740 #endif 6741 __skb_ext_put(old); 6742 return new; 6743 } 6744 6745 /** 6746 * __skb_ext_set - attach the specified extension storage to this skb 6747 * @skb: buffer 6748 * @id: extension id 6749 * @ext: extension storage previously allocated via __skb_ext_alloc() 6750 * 6751 * Existing extensions, if any, are cleared. 6752 * 6753 * Returns the pointer to the extension. 6754 */ 6755 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6756 struct skb_ext *ext) 6757 { 6758 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6759 6760 skb_ext_put(skb); 6761 newlen = newoff + skb_ext_type_len[id]; 6762 ext->chunks = newlen; 6763 ext->offset[id] = newoff; 6764 skb->extensions = ext; 6765 skb->active_extensions = 1 << id; 6766 return skb_ext_get_ptr(ext, id); 6767 } 6768 6769 /** 6770 * skb_ext_add - allocate space for given extension, COW if needed 6771 * @skb: buffer 6772 * @id: extension to allocate space for 6773 * 6774 * Allocates enough space for the given extension. 6775 * If the extension is already present, a pointer to that extension 6776 * is returned. 6777 * 6778 * If the skb was cloned, COW applies and the returned memory can be 6779 * modified without changing the extension space of clones buffers. 6780 * 6781 * Returns pointer to the extension or NULL on allocation failure. 6782 */ 6783 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6784 { 6785 struct skb_ext *new, *old = NULL; 6786 unsigned int newlen, newoff; 6787 6788 if (skb->active_extensions) { 6789 old = skb->extensions; 6790 6791 new = skb_ext_maybe_cow(old, skb->active_extensions); 6792 if (!new) 6793 return NULL; 6794 6795 if (__skb_ext_exist(new, id)) 6796 goto set_active; 6797 6798 newoff = new->chunks; 6799 } else { 6800 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6801 6802 new = __skb_ext_alloc(GFP_ATOMIC); 6803 if (!new) 6804 return NULL; 6805 } 6806 6807 newlen = newoff + skb_ext_type_len[id]; 6808 new->chunks = newlen; 6809 new->offset[id] = newoff; 6810 set_active: 6811 skb->slow_gro = 1; 6812 skb->extensions = new; 6813 skb->active_extensions |= 1 << id; 6814 return skb_ext_get_ptr(new, id); 6815 } 6816 EXPORT_SYMBOL(skb_ext_add); 6817 6818 #ifdef CONFIG_XFRM 6819 static void skb_ext_put_sp(struct sec_path *sp) 6820 { 6821 unsigned int i; 6822 6823 for (i = 0; i < sp->len; i++) 6824 xfrm_state_put(sp->xvec[i]); 6825 } 6826 #endif 6827 6828 #ifdef CONFIG_MCTP_FLOWS 6829 static void skb_ext_put_mctp(struct mctp_flow *flow) 6830 { 6831 if (flow->key) 6832 mctp_key_unref(flow->key); 6833 } 6834 #endif 6835 6836 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6837 { 6838 struct skb_ext *ext = skb->extensions; 6839 6840 skb->active_extensions &= ~(1 << id); 6841 if (skb->active_extensions == 0) { 6842 skb->extensions = NULL; 6843 __skb_ext_put(ext); 6844 #ifdef CONFIG_XFRM 6845 } else if (id == SKB_EXT_SEC_PATH && 6846 refcount_read(&ext->refcnt) == 1) { 6847 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6848 6849 skb_ext_put_sp(sp); 6850 sp->len = 0; 6851 #endif 6852 } 6853 } 6854 EXPORT_SYMBOL(__skb_ext_del); 6855 6856 void __skb_ext_put(struct skb_ext *ext) 6857 { 6858 /* If this is last clone, nothing can increment 6859 * it after check passes. Avoids one atomic op. 6860 */ 6861 if (refcount_read(&ext->refcnt) == 1) 6862 goto free_now; 6863 6864 if (!refcount_dec_and_test(&ext->refcnt)) 6865 return; 6866 free_now: 6867 #ifdef CONFIG_XFRM 6868 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6869 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6870 #endif 6871 #ifdef CONFIG_MCTP_FLOWS 6872 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6873 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6874 #endif 6875 6876 kmem_cache_free(skbuff_ext_cache, ext); 6877 } 6878 EXPORT_SYMBOL(__skb_ext_put); 6879 #endif /* CONFIG_SKB_EXTENSIONS */ 6880 6881 /** 6882 * skb_attempt_defer_free - queue skb for remote freeing 6883 * @skb: buffer 6884 * 6885 * Put @skb in a per-cpu list, using the cpu which 6886 * allocated the skb/pages to reduce false sharing 6887 * and memory zone spinlock contention. 6888 */ 6889 void skb_attempt_defer_free(struct sk_buff *skb) 6890 { 6891 int cpu = skb->alloc_cpu; 6892 struct softnet_data *sd; 6893 unsigned int defer_max; 6894 bool kick; 6895 6896 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 6897 !cpu_online(cpu) || 6898 cpu == raw_smp_processor_id()) { 6899 nodefer: __kfree_skb(skb); 6900 return; 6901 } 6902 6903 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 6904 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 6905 6906 sd = &per_cpu(softnet_data, cpu); 6907 defer_max = READ_ONCE(sysctl_skb_defer_max); 6908 if (READ_ONCE(sd->defer_count) >= defer_max) 6909 goto nodefer; 6910 6911 spin_lock_bh(&sd->defer_lock); 6912 /* Send an IPI every time queue reaches half capacity. */ 6913 kick = sd->defer_count == (defer_max >> 1); 6914 /* Paired with the READ_ONCE() few lines above */ 6915 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 6916 6917 skb->next = sd->defer_list; 6918 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 6919 WRITE_ONCE(sd->defer_list, skb); 6920 spin_unlock_bh(&sd->defer_lock); 6921 6922 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 6923 * if we are unlucky enough (this seems very unlikely). 6924 */ 6925 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) 6926 smp_call_function_single_async(cpu, &sd->defer_csd); 6927 } 6928 6929 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 6930 size_t offset, size_t len) 6931 { 6932 const char *kaddr; 6933 __wsum csum; 6934 6935 kaddr = kmap_local_page(page); 6936 csum = csum_partial(kaddr + offset, len, 0); 6937 kunmap_local(kaddr); 6938 skb->csum = csum_block_add(skb->csum, csum, skb->len); 6939 } 6940 6941 /** 6942 * skb_splice_from_iter - Splice (or copy) pages to skbuff 6943 * @skb: The buffer to add pages to 6944 * @iter: Iterator representing the pages to be added 6945 * @maxsize: Maximum amount of pages to be added 6946 * @gfp: Allocation flags 6947 * 6948 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 6949 * extracts pages from an iterator and adds them to the socket buffer if 6950 * possible, copying them to fragments if not possible (such as if they're slab 6951 * pages). 6952 * 6953 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 6954 * insufficient space in the buffer to transfer anything. 6955 */ 6956 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 6957 ssize_t maxsize, gfp_t gfp) 6958 { 6959 size_t frag_limit = READ_ONCE(sysctl_max_skb_frags); 6960 struct page *pages[8], **ppages = pages; 6961 ssize_t spliced = 0, ret = 0; 6962 unsigned int i; 6963 6964 while (iter->count > 0) { 6965 ssize_t space, nr, len; 6966 size_t off; 6967 6968 ret = -EMSGSIZE; 6969 space = frag_limit - skb_shinfo(skb)->nr_frags; 6970 if (space < 0) 6971 break; 6972 6973 /* We might be able to coalesce without increasing nr_frags */ 6974 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 6975 6976 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 6977 if (len <= 0) { 6978 ret = len ?: -EIO; 6979 break; 6980 } 6981 6982 i = 0; 6983 do { 6984 struct page *page = pages[i++]; 6985 size_t part = min_t(size_t, PAGE_SIZE - off, len); 6986 6987 ret = -EIO; 6988 if (WARN_ON_ONCE(!sendpage_ok(page))) 6989 goto out; 6990 6991 ret = skb_append_pagefrags(skb, page, off, part, 6992 frag_limit); 6993 if (ret < 0) { 6994 iov_iter_revert(iter, len); 6995 goto out; 6996 } 6997 6998 if (skb->ip_summed == CHECKSUM_NONE) 6999 skb_splice_csum_page(skb, page, off, part); 7000 7001 off = 0; 7002 spliced += part; 7003 maxsize -= part; 7004 len -= part; 7005 } while (len > 0); 7006 7007 if (maxsize <= 0) 7008 break; 7009 } 7010 7011 out: 7012 skb_len_add(skb, spliced); 7013 return spliced ?: ret; 7014 } 7015 EXPORT_SYMBOL(skb_splice_from_iter); 7016 7017 static __always_inline 7018 size_t memcpy_from_iter_csum(void *iter_from, size_t progress, 7019 size_t len, void *to, void *priv2) 7020 { 7021 __wsum *csum = priv2; 7022 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len); 7023 7024 *csum = csum_block_add(*csum, next, progress); 7025 return 0; 7026 } 7027 7028 static __always_inline 7029 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress, 7030 size_t len, void *to, void *priv2) 7031 { 7032 __wsum next, *csum = priv2; 7033 7034 next = csum_and_copy_from_user(iter_from, to + progress, len); 7035 *csum = csum_block_add(*csum, next, progress); 7036 return next ? 0 : len; 7037 } 7038 7039 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, 7040 __wsum *csum, struct iov_iter *i) 7041 { 7042 size_t copied; 7043 7044 if (WARN_ON_ONCE(!i->data_source)) 7045 return false; 7046 copied = iterate_and_advance2(i, bytes, addr, csum, 7047 copy_from_user_iter_csum, 7048 memcpy_from_iter_csum); 7049 if (likely(copied == bytes)) 7050 return true; 7051 iov_iter_revert(i, copied); 7052 return false; 7053 } 7054 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 7055