xref: /linux/net/core/skbuff.c (revision 2a2c74b2efcb1a0ca3fdcb5fbb96ad8de6a29177)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 
66 #include <net/protocol.h>
67 #include <net/dst.h>
68 #include <net/sock.h>
69 #include <net/checksum.h>
70 #include <net/ip6_checksum.h>
71 #include <net/xfrm.h>
72 
73 #include <asm/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76 
77 struct kmem_cache *skbuff_head_cache __read_mostly;
78 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
79 
80 /**
81  *	skb_panic - private function for out-of-line support
82  *	@skb:	buffer
83  *	@sz:	size
84  *	@addr:	address
85  *	@msg:	skb_over_panic or skb_under_panic
86  *
87  *	Out-of-line support for skb_put() and skb_push().
88  *	Called via the wrapper skb_over_panic() or skb_under_panic().
89  *	Keep out of line to prevent kernel bloat.
90  *	__builtin_return_address is not used because it is not always reliable.
91  */
92 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
93 		      const char msg[])
94 {
95 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
96 		 msg, addr, skb->len, sz, skb->head, skb->data,
97 		 (unsigned long)skb->tail, (unsigned long)skb->end,
98 		 skb->dev ? skb->dev->name : "<NULL>");
99 	BUG();
100 }
101 
102 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
103 {
104 	skb_panic(skb, sz, addr, __func__);
105 }
106 
107 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 	skb_panic(skb, sz, addr, __func__);
110 }
111 
112 /*
113  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
114  * the caller if emergency pfmemalloc reserves are being used. If it is and
115  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
116  * may be used. Otherwise, the packet data may be discarded until enough
117  * memory is free
118  */
119 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
120 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
121 
122 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
123 			       unsigned long ip, bool *pfmemalloc)
124 {
125 	void *obj;
126 	bool ret_pfmemalloc = false;
127 
128 	/*
129 	 * Try a regular allocation, when that fails and we're not entitled
130 	 * to the reserves, fail.
131 	 */
132 	obj = kmalloc_node_track_caller(size,
133 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
134 					node);
135 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
136 		goto out;
137 
138 	/* Try again but now we are using pfmemalloc reserves */
139 	ret_pfmemalloc = true;
140 	obj = kmalloc_node_track_caller(size, flags, node);
141 
142 out:
143 	if (pfmemalloc)
144 		*pfmemalloc = ret_pfmemalloc;
145 
146 	return obj;
147 }
148 
149 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
150  *	'private' fields and also do memory statistics to find all the
151  *	[BEEP] leaks.
152  *
153  */
154 
155 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
156 {
157 	struct sk_buff *skb;
158 
159 	/* Get the HEAD */
160 	skb = kmem_cache_alloc_node(skbuff_head_cache,
161 				    gfp_mask & ~__GFP_DMA, node);
162 	if (!skb)
163 		goto out;
164 
165 	/*
166 	 * Only clear those fields we need to clear, not those that we will
167 	 * actually initialise below. Hence, don't put any more fields after
168 	 * the tail pointer in struct sk_buff!
169 	 */
170 	memset(skb, 0, offsetof(struct sk_buff, tail));
171 	skb->head = NULL;
172 	skb->truesize = sizeof(struct sk_buff);
173 	atomic_set(&skb->users, 1);
174 
175 	skb->mac_header = (typeof(skb->mac_header))~0U;
176 out:
177 	return skb;
178 }
179 
180 /**
181  *	__alloc_skb	-	allocate a network buffer
182  *	@size: size to allocate
183  *	@gfp_mask: allocation mask
184  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
185  *		instead of head cache and allocate a cloned (child) skb.
186  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
187  *		allocations in case the data is required for writeback
188  *	@node: numa node to allocate memory on
189  *
190  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
191  *	tail room of at least size bytes. The object has a reference count
192  *	of one. The return is the buffer. On a failure the return is %NULL.
193  *
194  *	Buffers may only be allocated from interrupts using a @gfp_mask of
195  *	%GFP_ATOMIC.
196  */
197 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
198 			    int flags, int node)
199 {
200 	struct kmem_cache *cache;
201 	struct skb_shared_info *shinfo;
202 	struct sk_buff *skb;
203 	u8 *data;
204 	bool pfmemalloc;
205 
206 	cache = (flags & SKB_ALLOC_FCLONE)
207 		? skbuff_fclone_cache : skbuff_head_cache;
208 
209 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
210 		gfp_mask |= __GFP_MEMALLOC;
211 
212 	/* Get the HEAD */
213 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
214 	if (!skb)
215 		goto out;
216 	prefetchw(skb);
217 
218 	/* We do our best to align skb_shared_info on a separate cache
219 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
220 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
221 	 * Both skb->head and skb_shared_info are cache line aligned.
222 	 */
223 	size = SKB_DATA_ALIGN(size);
224 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
225 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
226 	if (!data)
227 		goto nodata;
228 	/* kmalloc(size) might give us more room than requested.
229 	 * Put skb_shared_info exactly at the end of allocated zone,
230 	 * to allow max possible filling before reallocation.
231 	 */
232 	size = SKB_WITH_OVERHEAD(ksize(data));
233 	prefetchw(data + size);
234 
235 	/*
236 	 * Only clear those fields we need to clear, not those that we will
237 	 * actually initialise below. Hence, don't put any more fields after
238 	 * the tail pointer in struct sk_buff!
239 	 */
240 	memset(skb, 0, offsetof(struct sk_buff, tail));
241 	/* Account for allocated memory : skb + skb->head */
242 	skb->truesize = SKB_TRUESIZE(size);
243 	skb->pfmemalloc = pfmemalloc;
244 	atomic_set(&skb->users, 1);
245 	skb->head = data;
246 	skb->data = data;
247 	skb_reset_tail_pointer(skb);
248 	skb->end = skb->tail + size;
249 	skb->mac_header = (typeof(skb->mac_header))~0U;
250 	skb->transport_header = (typeof(skb->transport_header))~0U;
251 
252 	/* make sure we initialize shinfo sequentially */
253 	shinfo = skb_shinfo(skb);
254 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
255 	atomic_set(&shinfo->dataref, 1);
256 	kmemcheck_annotate_variable(shinfo->destructor_arg);
257 
258 	if (flags & SKB_ALLOC_FCLONE) {
259 		struct sk_buff *child = skb + 1;
260 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
261 
262 		kmemcheck_annotate_bitfield(child, flags1);
263 		kmemcheck_annotate_bitfield(child, flags2);
264 		skb->fclone = SKB_FCLONE_ORIG;
265 		atomic_set(fclone_ref, 1);
266 
267 		child->fclone = SKB_FCLONE_UNAVAILABLE;
268 		child->pfmemalloc = pfmemalloc;
269 	}
270 out:
271 	return skb;
272 nodata:
273 	kmem_cache_free(cache, skb);
274 	skb = NULL;
275 	goto out;
276 }
277 EXPORT_SYMBOL(__alloc_skb);
278 
279 /**
280  * build_skb - build a network buffer
281  * @data: data buffer provided by caller
282  * @frag_size: size of fragment, or 0 if head was kmalloced
283  *
284  * Allocate a new &sk_buff. Caller provides space holding head and
285  * skb_shared_info. @data must have been allocated by kmalloc() only if
286  * @frag_size is 0, otherwise data should come from the page allocator.
287  * The return is the new skb buffer.
288  * On a failure the return is %NULL, and @data is not freed.
289  * Notes :
290  *  Before IO, driver allocates only data buffer where NIC put incoming frame
291  *  Driver should add room at head (NET_SKB_PAD) and
292  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
293  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
294  *  before giving packet to stack.
295  *  RX rings only contains data buffers, not full skbs.
296  */
297 struct sk_buff *build_skb(void *data, unsigned int frag_size)
298 {
299 	struct skb_shared_info *shinfo;
300 	struct sk_buff *skb;
301 	unsigned int size = frag_size ? : ksize(data);
302 
303 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
304 	if (!skb)
305 		return NULL;
306 
307 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
308 
309 	memset(skb, 0, offsetof(struct sk_buff, tail));
310 	skb->truesize = SKB_TRUESIZE(size);
311 	skb->head_frag = frag_size != 0;
312 	atomic_set(&skb->users, 1);
313 	skb->head = data;
314 	skb->data = data;
315 	skb_reset_tail_pointer(skb);
316 	skb->end = skb->tail + size;
317 	skb->mac_header = (typeof(skb->mac_header))~0U;
318 	skb->transport_header = (typeof(skb->transport_header))~0U;
319 
320 	/* make sure we initialize shinfo sequentially */
321 	shinfo = skb_shinfo(skb);
322 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
323 	atomic_set(&shinfo->dataref, 1);
324 	kmemcheck_annotate_variable(shinfo->destructor_arg);
325 
326 	return skb;
327 }
328 EXPORT_SYMBOL(build_skb);
329 
330 struct netdev_alloc_cache {
331 	struct page_frag	frag;
332 	/* we maintain a pagecount bias, so that we dont dirty cache line
333 	 * containing page->_count every time we allocate a fragment.
334 	 */
335 	unsigned int		pagecnt_bias;
336 };
337 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
338 
339 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
340 {
341 	struct netdev_alloc_cache *nc;
342 	void *data = NULL;
343 	int order;
344 	unsigned long flags;
345 
346 	local_irq_save(flags);
347 	nc = &__get_cpu_var(netdev_alloc_cache);
348 	if (unlikely(!nc->frag.page)) {
349 refill:
350 		for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
351 			gfp_t gfp = gfp_mask;
352 
353 			if (order)
354 				gfp |= __GFP_COMP | __GFP_NOWARN;
355 			nc->frag.page = alloc_pages(gfp, order);
356 			if (likely(nc->frag.page))
357 				break;
358 			if (--order < 0)
359 				goto end;
360 		}
361 		nc->frag.size = PAGE_SIZE << order;
362 recycle:
363 		atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
364 		nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
365 		nc->frag.offset = 0;
366 	}
367 
368 	if (nc->frag.offset + fragsz > nc->frag.size) {
369 		/* avoid unnecessary locked operations if possible */
370 		if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
371 		    atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
372 			goto recycle;
373 		goto refill;
374 	}
375 
376 	data = page_address(nc->frag.page) + nc->frag.offset;
377 	nc->frag.offset += fragsz;
378 	nc->pagecnt_bias--;
379 end:
380 	local_irq_restore(flags);
381 	return data;
382 }
383 
384 /**
385  * netdev_alloc_frag - allocate a page fragment
386  * @fragsz: fragment size
387  *
388  * Allocates a frag from a page for receive buffer.
389  * Uses GFP_ATOMIC allocations.
390  */
391 void *netdev_alloc_frag(unsigned int fragsz)
392 {
393 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
394 }
395 EXPORT_SYMBOL(netdev_alloc_frag);
396 
397 /**
398  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
399  *	@dev: network device to receive on
400  *	@length: length to allocate
401  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
402  *
403  *	Allocate a new &sk_buff and assign it a usage count of one. The
404  *	buffer has unspecified headroom built in. Users should allocate
405  *	the headroom they think they need without accounting for the
406  *	built in space. The built in space is used for optimisations.
407  *
408  *	%NULL is returned if there is no free memory.
409  */
410 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
411 				   unsigned int length, gfp_t gfp_mask)
412 {
413 	struct sk_buff *skb = NULL;
414 	unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
415 			      SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
416 
417 	if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
418 		void *data;
419 
420 		if (sk_memalloc_socks())
421 			gfp_mask |= __GFP_MEMALLOC;
422 
423 		data = __netdev_alloc_frag(fragsz, gfp_mask);
424 
425 		if (likely(data)) {
426 			skb = build_skb(data, fragsz);
427 			if (unlikely(!skb))
428 				put_page(virt_to_head_page(data));
429 		}
430 	} else {
431 		skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
432 				  SKB_ALLOC_RX, NUMA_NO_NODE);
433 	}
434 	if (likely(skb)) {
435 		skb_reserve(skb, NET_SKB_PAD);
436 		skb->dev = dev;
437 	}
438 	return skb;
439 }
440 EXPORT_SYMBOL(__netdev_alloc_skb);
441 
442 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
443 		     int size, unsigned int truesize)
444 {
445 	skb_fill_page_desc(skb, i, page, off, size);
446 	skb->len += size;
447 	skb->data_len += size;
448 	skb->truesize += truesize;
449 }
450 EXPORT_SYMBOL(skb_add_rx_frag);
451 
452 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
453 			  unsigned int truesize)
454 {
455 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
456 
457 	skb_frag_size_add(frag, size);
458 	skb->len += size;
459 	skb->data_len += size;
460 	skb->truesize += truesize;
461 }
462 EXPORT_SYMBOL(skb_coalesce_rx_frag);
463 
464 static void skb_drop_list(struct sk_buff **listp)
465 {
466 	kfree_skb_list(*listp);
467 	*listp = NULL;
468 }
469 
470 static inline void skb_drop_fraglist(struct sk_buff *skb)
471 {
472 	skb_drop_list(&skb_shinfo(skb)->frag_list);
473 }
474 
475 static void skb_clone_fraglist(struct sk_buff *skb)
476 {
477 	struct sk_buff *list;
478 
479 	skb_walk_frags(skb, list)
480 		skb_get(list);
481 }
482 
483 static void skb_free_head(struct sk_buff *skb)
484 {
485 	if (skb->head_frag)
486 		put_page(virt_to_head_page(skb->head));
487 	else
488 		kfree(skb->head);
489 }
490 
491 static void skb_release_data(struct sk_buff *skb)
492 {
493 	if (!skb->cloned ||
494 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
495 			       &skb_shinfo(skb)->dataref)) {
496 		if (skb_shinfo(skb)->nr_frags) {
497 			int i;
498 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
499 				skb_frag_unref(skb, i);
500 		}
501 
502 		/*
503 		 * If skb buf is from userspace, we need to notify the caller
504 		 * the lower device DMA has done;
505 		 */
506 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
507 			struct ubuf_info *uarg;
508 
509 			uarg = skb_shinfo(skb)->destructor_arg;
510 			if (uarg->callback)
511 				uarg->callback(uarg, true);
512 		}
513 
514 		if (skb_has_frag_list(skb))
515 			skb_drop_fraglist(skb);
516 
517 		skb_free_head(skb);
518 	}
519 }
520 
521 /*
522  *	Free an skbuff by memory without cleaning the state.
523  */
524 static void kfree_skbmem(struct sk_buff *skb)
525 {
526 	struct sk_buff *other;
527 	atomic_t *fclone_ref;
528 
529 	switch (skb->fclone) {
530 	case SKB_FCLONE_UNAVAILABLE:
531 		kmem_cache_free(skbuff_head_cache, skb);
532 		break;
533 
534 	case SKB_FCLONE_ORIG:
535 		fclone_ref = (atomic_t *) (skb + 2);
536 		if (atomic_dec_and_test(fclone_ref))
537 			kmem_cache_free(skbuff_fclone_cache, skb);
538 		break;
539 
540 	case SKB_FCLONE_CLONE:
541 		fclone_ref = (atomic_t *) (skb + 1);
542 		other = skb - 1;
543 
544 		/* The clone portion is available for
545 		 * fast-cloning again.
546 		 */
547 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
548 
549 		if (atomic_dec_and_test(fclone_ref))
550 			kmem_cache_free(skbuff_fclone_cache, other);
551 		break;
552 	}
553 }
554 
555 static void skb_release_head_state(struct sk_buff *skb)
556 {
557 	skb_dst_drop(skb);
558 #ifdef CONFIG_XFRM
559 	secpath_put(skb->sp);
560 #endif
561 	if (skb->destructor) {
562 		WARN_ON(in_irq());
563 		skb->destructor(skb);
564 	}
565 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
566 	nf_conntrack_put(skb->nfct);
567 #endif
568 #ifdef CONFIG_BRIDGE_NETFILTER
569 	nf_bridge_put(skb->nf_bridge);
570 #endif
571 /* XXX: IS this still necessary? - JHS */
572 #ifdef CONFIG_NET_SCHED
573 	skb->tc_index = 0;
574 #ifdef CONFIG_NET_CLS_ACT
575 	skb->tc_verd = 0;
576 #endif
577 #endif
578 }
579 
580 /* Free everything but the sk_buff shell. */
581 static void skb_release_all(struct sk_buff *skb)
582 {
583 	skb_release_head_state(skb);
584 	if (likely(skb->head))
585 		skb_release_data(skb);
586 }
587 
588 /**
589  *	__kfree_skb - private function
590  *	@skb: buffer
591  *
592  *	Free an sk_buff. Release anything attached to the buffer.
593  *	Clean the state. This is an internal helper function. Users should
594  *	always call kfree_skb
595  */
596 
597 void __kfree_skb(struct sk_buff *skb)
598 {
599 	skb_release_all(skb);
600 	kfree_skbmem(skb);
601 }
602 EXPORT_SYMBOL(__kfree_skb);
603 
604 /**
605  *	kfree_skb - free an sk_buff
606  *	@skb: buffer to free
607  *
608  *	Drop a reference to the buffer and free it if the usage count has
609  *	hit zero.
610  */
611 void kfree_skb(struct sk_buff *skb)
612 {
613 	if (unlikely(!skb))
614 		return;
615 	if (likely(atomic_read(&skb->users) == 1))
616 		smp_rmb();
617 	else if (likely(!atomic_dec_and_test(&skb->users)))
618 		return;
619 	trace_kfree_skb(skb, __builtin_return_address(0));
620 	__kfree_skb(skb);
621 }
622 EXPORT_SYMBOL(kfree_skb);
623 
624 void kfree_skb_list(struct sk_buff *segs)
625 {
626 	while (segs) {
627 		struct sk_buff *next = segs->next;
628 
629 		kfree_skb(segs);
630 		segs = next;
631 	}
632 }
633 EXPORT_SYMBOL(kfree_skb_list);
634 
635 /**
636  *	skb_tx_error - report an sk_buff xmit error
637  *	@skb: buffer that triggered an error
638  *
639  *	Report xmit error if a device callback is tracking this skb.
640  *	skb must be freed afterwards.
641  */
642 void skb_tx_error(struct sk_buff *skb)
643 {
644 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
645 		struct ubuf_info *uarg;
646 
647 		uarg = skb_shinfo(skb)->destructor_arg;
648 		if (uarg->callback)
649 			uarg->callback(uarg, false);
650 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
651 	}
652 }
653 EXPORT_SYMBOL(skb_tx_error);
654 
655 /**
656  *	consume_skb - free an skbuff
657  *	@skb: buffer to free
658  *
659  *	Drop a ref to the buffer and free it if the usage count has hit zero
660  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
661  *	is being dropped after a failure and notes that
662  */
663 void consume_skb(struct sk_buff *skb)
664 {
665 	if (unlikely(!skb))
666 		return;
667 	if (likely(atomic_read(&skb->users) == 1))
668 		smp_rmb();
669 	else if (likely(!atomic_dec_and_test(&skb->users)))
670 		return;
671 	trace_consume_skb(skb);
672 	__kfree_skb(skb);
673 }
674 EXPORT_SYMBOL(consume_skb);
675 
676 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
677 {
678 	new->tstamp		= old->tstamp;
679 	new->dev		= old->dev;
680 	new->transport_header	= old->transport_header;
681 	new->network_header	= old->network_header;
682 	new->mac_header		= old->mac_header;
683 	new->inner_protocol	= old->inner_protocol;
684 	new->inner_transport_header = old->inner_transport_header;
685 	new->inner_network_header = old->inner_network_header;
686 	new->inner_mac_header = old->inner_mac_header;
687 	skb_dst_copy(new, old);
688 	skb_copy_hash(new, old);
689 	new->ooo_okay		= old->ooo_okay;
690 	new->no_fcs		= old->no_fcs;
691 	new->encapsulation	= old->encapsulation;
692 #ifdef CONFIG_XFRM
693 	new->sp			= secpath_get(old->sp);
694 #endif
695 	memcpy(new->cb, old->cb, sizeof(old->cb));
696 	new->csum		= old->csum;
697 	new->local_df		= old->local_df;
698 	new->pkt_type		= old->pkt_type;
699 	new->ip_summed		= old->ip_summed;
700 	skb_copy_queue_mapping(new, old);
701 	new->priority		= old->priority;
702 #if IS_ENABLED(CONFIG_IP_VS)
703 	new->ipvs_property	= old->ipvs_property;
704 #endif
705 	new->pfmemalloc		= old->pfmemalloc;
706 	new->protocol		= old->protocol;
707 	new->mark		= old->mark;
708 	new->skb_iif		= old->skb_iif;
709 	__nf_copy(new, old);
710 #ifdef CONFIG_NET_SCHED
711 	new->tc_index		= old->tc_index;
712 #ifdef CONFIG_NET_CLS_ACT
713 	new->tc_verd		= old->tc_verd;
714 #endif
715 #endif
716 	new->vlan_proto		= old->vlan_proto;
717 	new->vlan_tci		= old->vlan_tci;
718 
719 	skb_copy_secmark(new, old);
720 
721 #ifdef CONFIG_NET_RX_BUSY_POLL
722 	new->napi_id	= old->napi_id;
723 #endif
724 }
725 
726 /*
727  * You should not add any new code to this function.  Add it to
728  * __copy_skb_header above instead.
729  */
730 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
731 {
732 #define C(x) n->x = skb->x
733 
734 	n->next = n->prev = NULL;
735 	n->sk = NULL;
736 	__copy_skb_header(n, skb);
737 
738 	C(len);
739 	C(data_len);
740 	C(mac_len);
741 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
742 	n->cloned = 1;
743 	n->nohdr = 0;
744 	n->destructor = NULL;
745 	C(tail);
746 	C(end);
747 	C(head);
748 	C(head_frag);
749 	C(data);
750 	C(truesize);
751 	atomic_set(&n->users, 1);
752 
753 	atomic_inc(&(skb_shinfo(skb)->dataref));
754 	skb->cloned = 1;
755 
756 	return n;
757 #undef C
758 }
759 
760 /**
761  *	skb_morph	-	morph one skb into another
762  *	@dst: the skb to receive the contents
763  *	@src: the skb to supply the contents
764  *
765  *	This is identical to skb_clone except that the target skb is
766  *	supplied by the user.
767  *
768  *	The target skb is returned upon exit.
769  */
770 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
771 {
772 	skb_release_all(dst);
773 	return __skb_clone(dst, src);
774 }
775 EXPORT_SYMBOL_GPL(skb_morph);
776 
777 /**
778  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
779  *	@skb: the skb to modify
780  *	@gfp_mask: allocation priority
781  *
782  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
783  *	It will copy all frags into kernel and drop the reference
784  *	to userspace pages.
785  *
786  *	If this function is called from an interrupt gfp_mask() must be
787  *	%GFP_ATOMIC.
788  *
789  *	Returns 0 on success or a negative error code on failure
790  *	to allocate kernel memory to copy to.
791  */
792 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
793 {
794 	int i;
795 	int num_frags = skb_shinfo(skb)->nr_frags;
796 	struct page *page, *head = NULL;
797 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
798 
799 	for (i = 0; i < num_frags; i++) {
800 		u8 *vaddr;
801 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
802 
803 		page = alloc_page(gfp_mask);
804 		if (!page) {
805 			while (head) {
806 				struct page *next = (struct page *)page_private(head);
807 				put_page(head);
808 				head = next;
809 			}
810 			return -ENOMEM;
811 		}
812 		vaddr = kmap_atomic(skb_frag_page(f));
813 		memcpy(page_address(page),
814 		       vaddr + f->page_offset, skb_frag_size(f));
815 		kunmap_atomic(vaddr);
816 		set_page_private(page, (unsigned long)head);
817 		head = page;
818 	}
819 
820 	/* skb frags release userspace buffers */
821 	for (i = 0; i < num_frags; i++)
822 		skb_frag_unref(skb, i);
823 
824 	uarg->callback(uarg, false);
825 
826 	/* skb frags point to kernel buffers */
827 	for (i = num_frags - 1; i >= 0; i--) {
828 		__skb_fill_page_desc(skb, i, head, 0,
829 				     skb_shinfo(skb)->frags[i].size);
830 		head = (struct page *)page_private(head);
831 	}
832 
833 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
834 	return 0;
835 }
836 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
837 
838 /**
839  *	skb_clone	-	duplicate an sk_buff
840  *	@skb: buffer to clone
841  *	@gfp_mask: allocation priority
842  *
843  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
844  *	copies share the same packet data but not structure. The new
845  *	buffer has a reference count of 1. If the allocation fails the
846  *	function returns %NULL otherwise the new buffer is returned.
847  *
848  *	If this function is called from an interrupt gfp_mask() must be
849  *	%GFP_ATOMIC.
850  */
851 
852 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
853 {
854 	struct sk_buff *n;
855 
856 	if (skb_orphan_frags(skb, gfp_mask))
857 		return NULL;
858 
859 	n = skb + 1;
860 	if (skb->fclone == SKB_FCLONE_ORIG &&
861 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
862 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
863 		n->fclone = SKB_FCLONE_CLONE;
864 		atomic_inc(fclone_ref);
865 	} else {
866 		if (skb_pfmemalloc(skb))
867 			gfp_mask |= __GFP_MEMALLOC;
868 
869 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
870 		if (!n)
871 			return NULL;
872 
873 		kmemcheck_annotate_bitfield(n, flags1);
874 		kmemcheck_annotate_bitfield(n, flags2);
875 		n->fclone = SKB_FCLONE_UNAVAILABLE;
876 	}
877 
878 	return __skb_clone(n, skb);
879 }
880 EXPORT_SYMBOL(skb_clone);
881 
882 static void skb_headers_offset_update(struct sk_buff *skb, int off)
883 {
884 	/* Only adjust this if it actually is csum_start rather than csum */
885 	if (skb->ip_summed == CHECKSUM_PARTIAL)
886 		skb->csum_start += off;
887 	/* {transport,network,mac}_header and tail are relative to skb->head */
888 	skb->transport_header += off;
889 	skb->network_header   += off;
890 	if (skb_mac_header_was_set(skb))
891 		skb->mac_header += off;
892 	skb->inner_transport_header += off;
893 	skb->inner_network_header += off;
894 	skb->inner_mac_header += off;
895 }
896 
897 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
898 {
899 	__copy_skb_header(new, old);
900 
901 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
902 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
903 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
904 }
905 
906 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
907 {
908 	if (skb_pfmemalloc(skb))
909 		return SKB_ALLOC_RX;
910 	return 0;
911 }
912 
913 /**
914  *	skb_copy	-	create private copy of an sk_buff
915  *	@skb: buffer to copy
916  *	@gfp_mask: allocation priority
917  *
918  *	Make a copy of both an &sk_buff and its data. This is used when the
919  *	caller wishes to modify the data and needs a private copy of the
920  *	data to alter. Returns %NULL on failure or the pointer to the buffer
921  *	on success. The returned buffer has a reference count of 1.
922  *
923  *	As by-product this function converts non-linear &sk_buff to linear
924  *	one, so that &sk_buff becomes completely private and caller is allowed
925  *	to modify all the data of returned buffer. This means that this
926  *	function is not recommended for use in circumstances when only
927  *	header is going to be modified. Use pskb_copy() instead.
928  */
929 
930 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
931 {
932 	int headerlen = skb_headroom(skb);
933 	unsigned int size = skb_end_offset(skb) + skb->data_len;
934 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
935 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
936 
937 	if (!n)
938 		return NULL;
939 
940 	/* Set the data pointer */
941 	skb_reserve(n, headerlen);
942 	/* Set the tail pointer and length */
943 	skb_put(n, skb->len);
944 
945 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
946 		BUG();
947 
948 	copy_skb_header(n, skb);
949 	return n;
950 }
951 EXPORT_SYMBOL(skb_copy);
952 
953 /**
954  *	__pskb_copy	-	create copy of an sk_buff with private head.
955  *	@skb: buffer to copy
956  *	@headroom: headroom of new skb
957  *	@gfp_mask: allocation priority
958  *
959  *	Make a copy of both an &sk_buff and part of its data, located
960  *	in header. Fragmented data remain shared. This is used when
961  *	the caller wishes to modify only header of &sk_buff and needs
962  *	private copy of the header to alter. Returns %NULL on failure
963  *	or the pointer to the buffer on success.
964  *	The returned buffer has a reference count of 1.
965  */
966 
967 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
968 {
969 	unsigned int size = skb_headlen(skb) + headroom;
970 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
971 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
972 
973 	if (!n)
974 		goto out;
975 
976 	/* Set the data pointer */
977 	skb_reserve(n, headroom);
978 	/* Set the tail pointer and length */
979 	skb_put(n, skb_headlen(skb));
980 	/* Copy the bytes */
981 	skb_copy_from_linear_data(skb, n->data, n->len);
982 
983 	n->truesize += skb->data_len;
984 	n->data_len  = skb->data_len;
985 	n->len	     = skb->len;
986 
987 	if (skb_shinfo(skb)->nr_frags) {
988 		int i;
989 
990 		if (skb_orphan_frags(skb, gfp_mask)) {
991 			kfree_skb(n);
992 			n = NULL;
993 			goto out;
994 		}
995 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
996 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
997 			skb_frag_ref(skb, i);
998 		}
999 		skb_shinfo(n)->nr_frags = i;
1000 	}
1001 
1002 	if (skb_has_frag_list(skb)) {
1003 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1004 		skb_clone_fraglist(n);
1005 	}
1006 
1007 	copy_skb_header(n, skb);
1008 out:
1009 	return n;
1010 }
1011 EXPORT_SYMBOL(__pskb_copy);
1012 
1013 /**
1014  *	pskb_expand_head - reallocate header of &sk_buff
1015  *	@skb: buffer to reallocate
1016  *	@nhead: room to add at head
1017  *	@ntail: room to add at tail
1018  *	@gfp_mask: allocation priority
1019  *
1020  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1021  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1022  *	reference count of 1. Returns zero in the case of success or error,
1023  *	if expansion failed. In the last case, &sk_buff is not changed.
1024  *
1025  *	All the pointers pointing into skb header may change and must be
1026  *	reloaded after call to this function.
1027  */
1028 
1029 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1030 		     gfp_t gfp_mask)
1031 {
1032 	int i;
1033 	u8 *data;
1034 	int size = nhead + skb_end_offset(skb) + ntail;
1035 	long off;
1036 
1037 	BUG_ON(nhead < 0);
1038 
1039 	if (skb_shared(skb))
1040 		BUG();
1041 
1042 	size = SKB_DATA_ALIGN(size);
1043 
1044 	if (skb_pfmemalloc(skb))
1045 		gfp_mask |= __GFP_MEMALLOC;
1046 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1047 			       gfp_mask, NUMA_NO_NODE, NULL);
1048 	if (!data)
1049 		goto nodata;
1050 	size = SKB_WITH_OVERHEAD(ksize(data));
1051 
1052 	/* Copy only real data... and, alas, header. This should be
1053 	 * optimized for the cases when header is void.
1054 	 */
1055 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1056 
1057 	memcpy((struct skb_shared_info *)(data + size),
1058 	       skb_shinfo(skb),
1059 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1060 
1061 	/*
1062 	 * if shinfo is shared we must drop the old head gracefully, but if it
1063 	 * is not we can just drop the old head and let the existing refcount
1064 	 * be since all we did is relocate the values
1065 	 */
1066 	if (skb_cloned(skb)) {
1067 		/* copy this zero copy skb frags */
1068 		if (skb_orphan_frags(skb, gfp_mask))
1069 			goto nofrags;
1070 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1071 			skb_frag_ref(skb, i);
1072 
1073 		if (skb_has_frag_list(skb))
1074 			skb_clone_fraglist(skb);
1075 
1076 		skb_release_data(skb);
1077 	} else {
1078 		skb_free_head(skb);
1079 	}
1080 	off = (data + nhead) - skb->head;
1081 
1082 	skb->head     = data;
1083 	skb->head_frag = 0;
1084 	skb->data    += off;
1085 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1086 	skb->end      = size;
1087 	off           = nhead;
1088 #else
1089 	skb->end      = skb->head + size;
1090 #endif
1091 	skb->tail	      += off;
1092 	skb_headers_offset_update(skb, nhead);
1093 	skb->cloned   = 0;
1094 	skb->hdr_len  = 0;
1095 	skb->nohdr    = 0;
1096 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1097 	return 0;
1098 
1099 nofrags:
1100 	kfree(data);
1101 nodata:
1102 	return -ENOMEM;
1103 }
1104 EXPORT_SYMBOL(pskb_expand_head);
1105 
1106 /* Make private copy of skb with writable head and some headroom */
1107 
1108 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1109 {
1110 	struct sk_buff *skb2;
1111 	int delta = headroom - skb_headroom(skb);
1112 
1113 	if (delta <= 0)
1114 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1115 	else {
1116 		skb2 = skb_clone(skb, GFP_ATOMIC);
1117 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1118 					     GFP_ATOMIC)) {
1119 			kfree_skb(skb2);
1120 			skb2 = NULL;
1121 		}
1122 	}
1123 	return skb2;
1124 }
1125 EXPORT_SYMBOL(skb_realloc_headroom);
1126 
1127 /**
1128  *	skb_copy_expand	-	copy and expand sk_buff
1129  *	@skb: buffer to copy
1130  *	@newheadroom: new free bytes at head
1131  *	@newtailroom: new free bytes at tail
1132  *	@gfp_mask: allocation priority
1133  *
1134  *	Make a copy of both an &sk_buff and its data and while doing so
1135  *	allocate additional space.
1136  *
1137  *	This is used when the caller wishes to modify the data and needs a
1138  *	private copy of the data to alter as well as more space for new fields.
1139  *	Returns %NULL on failure or the pointer to the buffer
1140  *	on success. The returned buffer has a reference count of 1.
1141  *
1142  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1143  *	is called from an interrupt.
1144  */
1145 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1146 				int newheadroom, int newtailroom,
1147 				gfp_t gfp_mask)
1148 {
1149 	/*
1150 	 *	Allocate the copy buffer
1151 	 */
1152 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1153 					gfp_mask, skb_alloc_rx_flag(skb),
1154 					NUMA_NO_NODE);
1155 	int oldheadroom = skb_headroom(skb);
1156 	int head_copy_len, head_copy_off;
1157 
1158 	if (!n)
1159 		return NULL;
1160 
1161 	skb_reserve(n, newheadroom);
1162 
1163 	/* Set the tail pointer and length */
1164 	skb_put(n, skb->len);
1165 
1166 	head_copy_len = oldheadroom;
1167 	head_copy_off = 0;
1168 	if (newheadroom <= head_copy_len)
1169 		head_copy_len = newheadroom;
1170 	else
1171 		head_copy_off = newheadroom - head_copy_len;
1172 
1173 	/* Copy the linear header and data. */
1174 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1175 			  skb->len + head_copy_len))
1176 		BUG();
1177 
1178 	copy_skb_header(n, skb);
1179 
1180 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1181 
1182 	return n;
1183 }
1184 EXPORT_SYMBOL(skb_copy_expand);
1185 
1186 /**
1187  *	skb_pad			-	zero pad the tail of an skb
1188  *	@skb: buffer to pad
1189  *	@pad: space to pad
1190  *
1191  *	Ensure that a buffer is followed by a padding area that is zero
1192  *	filled. Used by network drivers which may DMA or transfer data
1193  *	beyond the buffer end onto the wire.
1194  *
1195  *	May return error in out of memory cases. The skb is freed on error.
1196  */
1197 
1198 int skb_pad(struct sk_buff *skb, int pad)
1199 {
1200 	int err;
1201 	int ntail;
1202 
1203 	/* If the skbuff is non linear tailroom is always zero.. */
1204 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1205 		memset(skb->data+skb->len, 0, pad);
1206 		return 0;
1207 	}
1208 
1209 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1210 	if (likely(skb_cloned(skb) || ntail > 0)) {
1211 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1212 		if (unlikely(err))
1213 			goto free_skb;
1214 	}
1215 
1216 	/* FIXME: The use of this function with non-linear skb's really needs
1217 	 * to be audited.
1218 	 */
1219 	err = skb_linearize(skb);
1220 	if (unlikely(err))
1221 		goto free_skb;
1222 
1223 	memset(skb->data + skb->len, 0, pad);
1224 	return 0;
1225 
1226 free_skb:
1227 	kfree_skb(skb);
1228 	return err;
1229 }
1230 EXPORT_SYMBOL(skb_pad);
1231 
1232 /**
1233  *	pskb_put - add data to the tail of a potentially fragmented buffer
1234  *	@skb: start of the buffer to use
1235  *	@tail: tail fragment of the buffer to use
1236  *	@len: amount of data to add
1237  *
1238  *	This function extends the used data area of the potentially
1239  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1240  *	@skb itself. If this would exceed the total buffer size the kernel
1241  *	will panic. A pointer to the first byte of the extra data is
1242  *	returned.
1243  */
1244 
1245 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1246 {
1247 	if (tail != skb) {
1248 		skb->data_len += len;
1249 		skb->len += len;
1250 	}
1251 	return skb_put(tail, len);
1252 }
1253 EXPORT_SYMBOL_GPL(pskb_put);
1254 
1255 /**
1256  *	skb_put - add data to a buffer
1257  *	@skb: buffer to use
1258  *	@len: amount of data to add
1259  *
1260  *	This function extends the used data area of the buffer. If this would
1261  *	exceed the total buffer size the kernel will panic. A pointer to the
1262  *	first byte of the extra data is returned.
1263  */
1264 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1265 {
1266 	unsigned char *tmp = skb_tail_pointer(skb);
1267 	SKB_LINEAR_ASSERT(skb);
1268 	skb->tail += len;
1269 	skb->len  += len;
1270 	if (unlikely(skb->tail > skb->end))
1271 		skb_over_panic(skb, len, __builtin_return_address(0));
1272 	return tmp;
1273 }
1274 EXPORT_SYMBOL(skb_put);
1275 
1276 /**
1277  *	skb_push - add data to the start of a buffer
1278  *	@skb: buffer to use
1279  *	@len: amount of data to add
1280  *
1281  *	This function extends the used data area of the buffer at the buffer
1282  *	start. If this would exceed the total buffer headroom the kernel will
1283  *	panic. A pointer to the first byte of the extra data is returned.
1284  */
1285 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1286 {
1287 	skb->data -= len;
1288 	skb->len  += len;
1289 	if (unlikely(skb->data<skb->head))
1290 		skb_under_panic(skb, len, __builtin_return_address(0));
1291 	return skb->data;
1292 }
1293 EXPORT_SYMBOL(skb_push);
1294 
1295 /**
1296  *	skb_pull - remove data from the start of a buffer
1297  *	@skb: buffer to use
1298  *	@len: amount of data to remove
1299  *
1300  *	This function removes data from the start of a buffer, returning
1301  *	the memory to the headroom. A pointer to the next data in the buffer
1302  *	is returned. Once the data has been pulled future pushes will overwrite
1303  *	the old data.
1304  */
1305 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1306 {
1307 	return skb_pull_inline(skb, len);
1308 }
1309 EXPORT_SYMBOL(skb_pull);
1310 
1311 /**
1312  *	skb_trim - remove end from a buffer
1313  *	@skb: buffer to alter
1314  *	@len: new length
1315  *
1316  *	Cut the length of a buffer down by removing data from the tail. If
1317  *	the buffer is already under the length specified it is not modified.
1318  *	The skb must be linear.
1319  */
1320 void skb_trim(struct sk_buff *skb, unsigned int len)
1321 {
1322 	if (skb->len > len)
1323 		__skb_trim(skb, len);
1324 }
1325 EXPORT_SYMBOL(skb_trim);
1326 
1327 /* Trims skb to length len. It can change skb pointers.
1328  */
1329 
1330 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1331 {
1332 	struct sk_buff **fragp;
1333 	struct sk_buff *frag;
1334 	int offset = skb_headlen(skb);
1335 	int nfrags = skb_shinfo(skb)->nr_frags;
1336 	int i;
1337 	int err;
1338 
1339 	if (skb_cloned(skb) &&
1340 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1341 		return err;
1342 
1343 	i = 0;
1344 	if (offset >= len)
1345 		goto drop_pages;
1346 
1347 	for (; i < nfrags; i++) {
1348 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1349 
1350 		if (end < len) {
1351 			offset = end;
1352 			continue;
1353 		}
1354 
1355 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1356 
1357 drop_pages:
1358 		skb_shinfo(skb)->nr_frags = i;
1359 
1360 		for (; i < nfrags; i++)
1361 			skb_frag_unref(skb, i);
1362 
1363 		if (skb_has_frag_list(skb))
1364 			skb_drop_fraglist(skb);
1365 		goto done;
1366 	}
1367 
1368 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1369 	     fragp = &frag->next) {
1370 		int end = offset + frag->len;
1371 
1372 		if (skb_shared(frag)) {
1373 			struct sk_buff *nfrag;
1374 
1375 			nfrag = skb_clone(frag, GFP_ATOMIC);
1376 			if (unlikely(!nfrag))
1377 				return -ENOMEM;
1378 
1379 			nfrag->next = frag->next;
1380 			consume_skb(frag);
1381 			frag = nfrag;
1382 			*fragp = frag;
1383 		}
1384 
1385 		if (end < len) {
1386 			offset = end;
1387 			continue;
1388 		}
1389 
1390 		if (end > len &&
1391 		    unlikely((err = pskb_trim(frag, len - offset))))
1392 			return err;
1393 
1394 		if (frag->next)
1395 			skb_drop_list(&frag->next);
1396 		break;
1397 	}
1398 
1399 done:
1400 	if (len > skb_headlen(skb)) {
1401 		skb->data_len -= skb->len - len;
1402 		skb->len       = len;
1403 	} else {
1404 		skb->len       = len;
1405 		skb->data_len  = 0;
1406 		skb_set_tail_pointer(skb, len);
1407 	}
1408 
1409 	return 0;
1410 }
1411 EXPORT_SYMBOL(___pskb_trim);
1412 
1413 /**
1414  *	__pskb_pull_tail - advance tail of skb header
1415  *	@skb: buffer to reallocate
1416  *	@delta: number of bytes to advance tail
1417  *
1418  *	The function makes a sense only on a fragmented &sk_buff,
1419  *	it expands header moving its tail forward and copying necessary
1420  *	data from fragmented part.
1421  *
1422  *	&sk_buff MUST have reference count of 1.
1423  *
1424  *	Returns %NULL (and &sk_buff does not change) if pull failed
1425  *	or value of new tail of skb in the case of success.
1426  *
1427  *	All the pointers pointing into skb header may change and must be
1428  *	reloaded after call to this function.
1429  */
1430 
1431 /* Moves tail of skb head forward, copying data from fragmented part,
1432  * when it is necessary.
1433  * 1. It may fail due to malloc failure.
1434  * 2. It may change skb pointers.
1435  *
1436  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1437  */
1438 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1439 {
1440 	/* If skb has not enough free space at tail, get new one
1441 	 * plus 128 bytes for future expansions. If we have enough
1442 	 * room at tail, reallocate without expansion only if skb is cloned.
1443 	 */
1444 	int i, k, eat = (skb->tail + delta) - skb->end;
1445 
1446 	if (eat > 0 || skb_cloned(skb)) {
1447 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1448 				     GFP_ATOMIC))
1449 			return NULL;
1450 	}
1451 
1452 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1453 		BUG();
1454 
1455 	/* Optimization: no fragments, no reasons to preestimate
1456 	 * size of pulled pages. Superb.
1457 	 */
1458 	if (!skb_has_frag_list(skb))
1459 		goto pull_pages;
1460 
1461 	/* Estimate size of pulled pages. */
1462 	eat = delta;
1463 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1464 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1465 
1466 		if (size >= eat)
1467 			goto pull_pages;
1468 		eat -= size;
1469 	}
1470 
1471 	/* If we need update frag list, we are in troubles.
1472 	 * Certainly, it possible to add an offset to skb data,
1473 	 * but taking into account that pulling is expected to
1474 	 * be very rare operation, it is worth to fight against
1475 	 * further bloating skb head and crucify ourselves here instead.
1476 	 * Pure masohism, indeed. 8)8)
1477 	 */
1478 	if (eat) {
1479 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1480 		struct sk_buff *clone = NULL;
1481 		struct sk_buff *insp = NULL;
1482 
1483 		do {
1484 			BUG_ON(!list);
1485 
1486 			if (list->len <= eat) {
1487 				/* Eaten as whole. */
1488 				eat -= list->len;
1489 				list = list->next;
1490 				insp = list;
1491 			} else {
1492 				/* Eaten partially. */
1493 
1494 				if (skb_shared(list)) {
1495 					/* Sucks! We need to fork list. :-( */
1496 					clone = skb_clone(list, GFP_ATOMIC);
1497 					if (!clone)
1498 						return NULL;
1499 					insp = list->next;
1500 					list = clone;
1501 				} else {
1502 					/* This may be pulled without
1503 					 * problems. */
1504 					insp = list;
1505 				}
1506 				if (!pskb_pull(list, eat)) {
1507 					kfree_skb(clone);
1508 					return NULL;
1509 				}
1510 				break;
1511 			}
1512 		} while (eat);
1513 
1514 		/* Free pulled out fragments. */
1515 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1516 			skb_shinfo(skb)->frag_list = list->next;
1517 			kfree_skb(list);
1518 		}
1519 		/* And insert new clone at head. */
1520 		if (clone) {
1521 			clone->next = list;
1522 			skb_shinfo(skb)->frag_list = clone;
1523 		}
1524 	}
1525 	/* Success! Now we may commit changes to skb data. */
1526 
1527 pull_pages:
1528 	eat = delta;
1529 	k = 0;
1530 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1531 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1532 
1533 		if (size <= eat) {
1534 			skb_frag_unref(skb, i);
1535 			eat -= size;
1536 		} else {
1537 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1538 			if (eat) {
1539 				skb_shinfo(skb)->frags[k].page_offset += eat;
1540 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1541 				eat = 0;
1542 			}
1543 			k++;
1544 		}
1545 	}
1546 	skb_shinfo(skb)->nr_frags = k;
1547 
1548 	skb->tail     += delta;
1549 	skb->data_len -= delta;
1550 
1551 	return skb_tail_pointer(skb);
1552 }
1553 EXPORT_SYMBOL(__pskb_pull_tail);
1554 
1555 /**
1556  *	skb_copy_bits - copy bits from skb to kernel buffer
1557  *	@skb: source skb
1558  *	@offset: offset in source
1559  *	@to: destination buffer
1560  *	@len: number of bytes to copy
1561  *
1562  *	Copy the specified number of bytes from the source skb to the
1563  *	destination buffer.
1564  *
1565  *	CAUTION ! :
1566  *		If its prototype is ever changed,
1567  *		check arch/{*}/net/{*}.S files,
1568  *		since it is called from BPF assembly code.
1569  */
1570 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1571 {
1572 	int start = skb_headlen(skb);
1573 	struct sk_buff *frag_iter;
1574 	int i, copy;
1575 
1576 	if (offset > (int)skb->len - len)
1577 		goto fault;
1578 
1579 	/* Copy header. */
1580 	if ((copy = start - offset) > 0) {
1581 		if (copy > len)
1582 			copy = len;
1583 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1584 		if ((len -= copy) == 0)
1585 			return 0;
1586 		offset += copy;
1587 		to     += copy;
1588 	}
1589 
1590 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1591 		int end;
1592 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1593 
1594 		WARN_ON(start > offset + len);
1595 
1596 		end = start + skb_frag_size(f);
1597 		if ((copy = end - offset) > 0) {
1598 			u8 *vaddr;
1599 
1600 			if (copy > len)
1601 				copy = len;
1602 
1603 			vaddr = kmap_atomic(skb_frag_page(f));
1604 			memcpy(to,
1605 			       vaddr + f->page_offset + offset - start,
1606 			       copy);
1607 			kunmap_atomic(vaddr);
1608 
1609 			if ((len -= copy) == 0)
1610 				return 0;
1611 			offset += copy;
1612 			to     += copy;
1613 		}
1614 		start = end;
1615 	}
1616 
1617 	skb_walk_frags(skb, frag_iter) {
1618 		int end;
1619 
1620 		WARN_ON(start > offset + len);
1621 
1622 		end = start + frag_iter->len;
1623 		if ((copy = end - offset) > 0) {
1624 			if (copy > len)
1625 				copy = len;
1626 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1627 				goto fault;
1628 			if ((len -= copy) == 0)
1629 				return 0;
1630 			offset += copy;
1631 			to     += copy;
1632 		}
1633 		start = end;
1634 	}
1635 
1636 	if (!len)
1637 		return 0;
1638 
1639 fault:
1640 	return -EFAULT;
1641 }
1642 EXPORT_SYMBOL(skb_copy_bits);
1643 
1644 /*
1645  * Callback from splice_to_pipe(), if we need to release some pages
1646  * at the end of the spd in case we error'ed out in filling the pipe.
1647  */
1648 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1649 {
1650 	put_page(spd->pages[i]);
1651 }
1652 
1653 static struct page *linear_to_page(struct page *page, unsigned int *len,
1654 				   unsigned int *offset,
1655 				   struct sock *sk)
1656 {
1657 	struct page_frag *pfrag = sk_page_frag(sk);
1658 
1659 	if (!sk_page_frag_refill(sk, pfrag))
1660 		return NULL;
1661 
1662 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1663 
1664 	memcpy(page_address(pfrag->page) + pfrag->offset,
1665 	       page_address(page) + *offset, *len);
1666 	*offset = pfrag->offset;
1667 	pfrag->offset += *len;
1668 
1669 	return pfrag->page;
1670 }
1671 
1672 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1673 			     struct page *page,
1674 			     unsigned int offset)
1675 {
1676 	return	spd->nr_pages &&
1677 		spd->pages[spd->nr_pages - 1] == page &&
1678 		(spd->partial[spd->nr_pages - 1].offset +
1679 		 spd->partial[spd->nr_pages - 1].len == offset);
1680 }
1681 
1682 /*
1683  * Fill page/offset/length into spd, if it can hold more pages.
1684  */
1685 static bool spd_fill_page(struct splice_pipe_desc *spd,
1686 			  struct pipe_inode_info *pipe, struct page *page,
1687 			  unsigned int *len, unsigned int offset,
1688 			  bool linear,
1689 			  struct sock *sk)
1690 {
1691 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1692 		return true;
1693 
1694 	if (linear) {
1695 		page = linear_to_page(page, len, &offset, sk);
1696 		if (!page)
1697 			return true;
1698 	}
1699 	if (spd_can_coalesce(spd, page, offset)) {
1700 		spd->partial[spd->nr_pages - 1].len += *len;
1701 		return false;
1702 	}
1703 	get_page(page);
1704 	spd->pages[spd->nr_pages] = page;
1705 	spd->partial[spd->nr_pages].len = *len;
1706 	spd->partial[spd->nr_pages].offset = offset;
1707 	spd->nr_pages++;
1708 
1709 	return false;
1710 }
1711 
1712 static bool __splice_segment(struct page *page, unsigned int poff,
1713 			     unsigned int plen, unsigned int *off,
1714 			     unsigned int *len,
1715 			     struct splice_pipe_desc *spd, bool linear,
1716 			     struct sock *sk,
1717 			     struct pipe_inode_info *pipe)
1718 {
1719 	if (!*len)
1720 		return true;
1721 
1722 	/* skip this segment if already processed */
1723 	if (*off >= plen) {
1724 		*off -= plen;
1725 		return false;
1726 	}
1727 
1728 	/* ignore any bits we already processed */
1729 	poff += *off;
1730 	plen -= *off;
1731 	*off = 0;
1732 
1733 	do {
1734 		unsigned int flen = min(*len, plen);
1735 
1736 		if (spd_fill_page(spd, pipe, page, &flen, poff,
1737 				  linear, sk))
1738 			return true;
1739 		poff += flen;
1740 		plen -= flen;
1741 		*len -= flen;
1742 	} while (*len && plen);
1743 
1744 	return false;
1745 }
1746 
1747 /*
1748  * Map linear and fragment data from the skb to spd. It reports true if the
1749  * pipe is full or if we already spliced the requested length.
1750  */
1751 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1752 			      unsigned int *offset, unsigned int *len,
1753 			      struct splice_pipe_desc *spd, struct sock *sk)
1754 {
1755 	int seg;
1756 
1757 	/* map the linear part :
1758 	 * If skb->head_frag is set, this 'linear' part is backed by a
1759 	 * fragment, and if the head is not shared with any clones then
1760 	 * we can avoid a copy since we own the head portion of this page.
1761 	 */
1762 	if (__splice_segment(virt_to_page(skb->data),
1763 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1764 			     skb_headlen(skb),
1765 			     offset, len, spd,
1766 			     skb_head_is_locked(skb),
1767 			     sk, pipe))
1768 		return true;
1769 
1770 	/*
1771 	 * then map the fragments
1772 	 */
1773 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1774 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1775 
1776 		if (__splice_segment(skb_frag_page(f),
1777 				     f->page_offset, skb_frag_size(f),
1778 				     offset, len, spd, false, sk, pipe))
1779 			return true;
1780 	}
1781 
1782 	return false;
1783 }
1784 
1785 /*
1786  * Map data from the skb to a pipe. Should handle both the linear part,
1787  * the fragments, and the frag list. It does NOT handle frag lists within
1788  * the frag list, if such a thing exists. We'd probably need to recurse to
1789  * handle that cleanly.
1790  */
1791 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1792 		    struct pipe_inode_info *pipe, unsigned int tlen,
1793 		    unsigned int flags)
1794 {
1795 	struct partial_page partial[MAX_SKB_FRAGS];
1796 	struct page *pages[MAX_SKB_FRAGS];
1797 	struct splice_pipe_desc spd = {
1798 		.pages = pages,
1799 		.partial = partial,
1800 		.nr_pages_max = MAX_SKB_FRAGS,
1801 		.flags = flags,
1802 		.ops = &nosteal_pipe_buf_ops,
1803 		.spd_release = sock_spd_release,
1804 	};
1805 	struct sk_buff *frag_iter;
1806 	struct sock *sk = skb->sk;
1807 	int ret = 0;
1808 
1809 	/*
1810 	 * __skb_splice_bits() only fails if the output has no room left,
1811 	 * so no point in going over the frag_list for the error case.
1812 	 */
1813 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1814 		goto done;
1815 	else if (!tlen)
1816 		goto done;
1817 
1818 	/*
1819 	 * now see if we have a frag_list to map
1820 	 */
1821 	skb_walk_frags(skb, frag_iter) {
1822 		if (!tlen)
1823 			break;
1824 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1825 			break;
1826 	}
1827 
1828 done:
1829 	if (spd.nr_pages) {
1830 		/*
1831 		 * Drop the socket lock, otherwise we have reverse
1832 		 * locking dependencies between sk_lock and i_mutex
1833 		 * here as compared to sendfile(). We enter here
1834 		 * with the socket lock held, and splice_to_pipe() will
1835 		 * grab the pipe inode lock. For sendfile() emulation,
1836 		 * we call into ->sendpage() with the i_mutex lock held
1837 		 * and networking will grab the socket lock.
1838 		 */
1839 		release_sock(sk);
1840 		ret = splice_to_pipe(pipe, &spd);
1841 		lock_sock(sk);
1842 	}
1843 
1844 	return ret;
1845 }
1846 
1847 /**
1848  *	skb_store_bits - store bits from kernel buffer to skb
1849  *	@skb: destination buffer
1850  *	@offset: offset in destination
1851  *	@from: source buffer
1852  *	@len: number of bytes to copy
1853  *
1854  *	Copy the specified number of bytes from the source buffer to the
1855  *	destination skb.  This function handles all the messy bits of
1856  *	traversing fragment lists and such.
1857  */
1858 
1859 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1860 {
1861 	int start = skb_headlen(skb);
1862 	struct sk_buff *frag_iter;
1863 	int i, copy;
1864 
1865 	if (offset > (int)skb->len - len)
1866 		goto fault;
1867 
1868 	if ((copy = start - offset) > 0) {
1869 		if (copy > len)
1870 			copy = len;
1871 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1872 		if ((len -= copy) == 0)
1873 			return 0;
1874 		offset += copy;
1875 		from += copy;
1876 	}
1877 
1878 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1879 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1880 		int end;
1881 
1882 		WARN_ON(start > offset + len);
1883 
1884 		end = start + skb_frag_size(frag);
1885 		if ((copy = end - offset) > 0) {
1886 			u8 *vaddr;
1887 
1888 			if (copy > len)
1889 				copy = len;
1890 
1891 			vaddr = kmap_atomic(skb_frag_page(frag));
1892 			memcpy(vaddr + frag->page_offset + offset - start,
1893 			       from, copy);
1894 			kunmap_atomic(vaddr);
1895 
1896 			if ((len -= copy) == 0)
1897 				return 0;
1898 			offset += copy;
1899 			from += copy;
1900 		}
1901 		start = end;
1902 	}
1903 
1904 	skb_walk_frags(skb, frag_iter) {
1905 		int end;
1906 
1907 		WARN_ON(start > offset + len);
1908 
1909 		end = start + frag_iter->len;
1910 		if ((copy = end - offset) > 0) {
1911 			if (copy > len)
1912 				copy = len;
1913 			if (skb_store_bits(frag_iter, offset - start,
1914 					   from, copy))
1915 				goto fault;
1916 			if ((len -= copy) == 0)
1917 				return 0;
1918 			offset += copy;
1919 			from += copy;
1920 		}
1921 		start = end;
1922 	}
1923 	if (!len)
1924 		return 0;
1925 
1926 fault:
1927 	return -EFAULT;
1928 }
1929 EXPORT_SYMBOL(skb_store_bits);
1930 
1931 /* Checksum skb data. */
1932 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
1933 		      __wsum csum, const struct skb_checksum_ops *ops)
1934 {
1935 	int start = skb_headlen(skb);
1936 	int i, copy = start - offset;
1937 	struct sk_buff *frag_iter;
1938 	int pos = 0;
1939 
1940 	/* Checksum header. */
1941 	if (copy > 0) {
1942 		if (copy > len)
1943 			copy = len;
1944 		csum = ops->update(skb->data + offset, copy, csum);
1945 		if ((len -= copy) == 0)
1946 			return csum;
1947 		offset += copy;
1948 		pos	= copy;
1949 	}
1950 
1951 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1952 		int end;
1953 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1954 
1955 		WARN_ON(start > offset + len);
1956 
1957 		end = start + skb_frag_size(frag);
1958 		if ((copy = end - offset) > 0) {
1959 			__wsum csum2;
1960 			u8 *vaddr;
1961 
1962 			if (copy > len)
1963 				copy = len;
1964 			vaddr = kmap_atomic(skb_frag_page(frag));
1965 			csum2 = ops->update(vaddr + frag->page_offset +
1966 					    offset - start, copy, 0);
1967 			kunmap_atomic(vaddr);
1968 			csum = ops->combine(csum, csum2, pos, copy);
1969 			if (!(len -= copy))
1970 				return csum;
1971 			offset += copy;
1972 			pos    += copy;
1973 		}
1974 		start = end;
1975 	}
1976 
1977 	skb_walk_frags(skb, frag_iter) {
1978 		int end;
1979 
1980 		WARN_ON(start > offset + len);
1981 
1982 		end = start + frag_iter->len;
1983 		if ((copy = end - offset) > 0) {
1984 			__wsum csum2;
1985 			if (copy > len)
1986 				copy = len;
1987 			csum2 = __skb_checksum(frag_iter, offset - start,
1988 					       copy, 0, ops);
1989 			csum = ops->combine(csum, csum2, pos, copy);
1990 			if ((len -= copy) == 0)
1991 				return csum;
1992 			offset += copy;
1993 			pos    += copy;
1994 		}
1995 		start = end;
1996 	}
1997 	BUG_ON(len);
1998 
1999 	return csum;
2000 }
2001 EXPORT_SYMBOL(__skb_checksum);
2002 
2003 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2004 		    int len, __wsum csum)
2005 {
2006 	const struct skb_checksum_ops ops = {
2007 		.update  = csum_partial_ext,
2008 		.combine = csum_block_add_ext,
2009 	};
2010 
2011 	return __skb_checksum(skb, offset, len, csum, &ops);
2012 }
2013 EXPORT_SYMBOL(skb_checksum);
2014 
2015 /* Both of above in one bottle. */
2016 
2017 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2018 				    u8 *to, int len, __wsum csum)
2019 {
2020 	int start = skb_headlen(skb);
2021 	int i, copy = start - offset;
2022 	struct sk_buff *frag_iter;
2023 	int pos = 0;
2024 
2025 	/* Copy header. */
2026 	if (copy > 0) {
2027 		if (copy > len)
2028 			copy = len;
2029 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2030 						 copy, csum);
2031 		if ((len -= copy) == 0)
2032 			return csum;
2033 		offset += copy;
2034 		to     += copy;
2035 		pos	= copy;
2036 	}
2037 
2038 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2039 		int end;
2040 
2041 		WARN_ON(start > offset + len);
2042 
2043 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2044 		if ((copy = end - offset) > 0) {
2045 			__wsum csum2;
2046 			u8 *vaddr;
2047 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2048 
2049 			if (copy > len)
2050 				copy = len;
2051 			vaddr = kmap_atomic(skb_frag_page(frag));
2052 			csum2 = csum_partial_copy_nocheck(vaddr +
2053 							  frag->page_offset +
2054 							  offset - start, to,
2055 							  copy, 0);
2056 			kunmap_atomic(vaddr);
2057 			csum = csum_block_add(csum, csum2, pos);
2058 			if (!(len -= copy))
2059 				return csum;
2060 			offset += copy;
2061 			to     += copy;
2062 			pos    += copy;
2063 		}
2064 		start = end;
2065 	}
2066 
2067 	skb_walk_frags(skb, frag_iter) {
2068 		__wsum csum2;
2069 		int end;
2070 
2071 		WARN_ON(start > offset + len);
2072 
2073 		end = start + frag_iter->len;
2074 		if ((copy = end - offset) > 0) {
2075 			if (copy > len)
2076 				copy = len;
2077 			csum2 = skb_copy_and_csum_bits(frag_iter,
2078 						       offset - start,
2079 						       to, copy, 0);
2080 			csum = csum_block_add(csum, csum2, pos);
2081 			if ((len -= copy) == 0)
2082 				return csum;
2083 			offset += copy;
2084 			to     += copy;
2085 			pos    += copy;
2086 		}
2087 		start = end;
2088 	}
2089 	BUG_ON(len);
2090 	return csum;
2091 }
2092 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2093 
2094  /**
2095  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2096  *	@from: source buffer
2097  *
2098  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2099  *	into skb_zerocopy().
2100  */
2101 unsigned int
2102 skb_zerocopy_headlen(const struct sk_buff *from)
2103 {
2104 	unsigned int hlen = 0;
2105 
2106 	if (!from->head_frag ||
2107 	    skb_headlen(from) < L1_CACHE_BYTES ||
2108 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2109 		hlen = skb_headlen(from);
2110 
2111 	if (skb_has_frag_list(from))
2112 		hlen = from->len;
2113 
2114 	return hlen;
2115 }
2116 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2117 
2118 /**
2119  *	skb_zerocopy - Zero copy skb to skb
2120  *	@to: destination buffer
2121  *	@from: source buffer
2122  *	@len: number of bytes to copy from source buffer
2123  *	@hlen: size of linear headroom in destination buffer
2124  *
2125  *	Copies up to `len` bytes from `from` to `to` by creating references
2126  *	to the frags in the source buffer.
2127  *
2128  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2129  *	headroom in the `to` buffer.
2130  *
2131  *	Return value:
2132  *	0: everything is OK
2133  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2134  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2135  */
2136 int
2137 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2138 {
2139 	int i, j = 0;
2140 	int plen = 0; /* length of skb->head fragment */
2141 	int ret;
2142 	struct page *page;
2143 	unsigned int offset;
2144 
2145 	BUG_ON(!from->head_frag && !hlen);
2146 
2147 	/* dont bother with small payloads */
2148 	if (len <= skb_tailroom(to))
2149 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2150 
2151 	if (hlen) {
2152 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2153 		if (unlikely(ret))
2154 			return ret;
2155 		len -= hlen;
2156 	} else {
2157 		plen = min_t(int, skb_headlen(from), len);
2158 		if (plen) {
2159 			page = virt_to_head_page(from->head);
2160 			offset = from->data - (unsigned char *)page_address(page);
2161 			__skb_fill_page_desc(to, 0, page, offset, plen);
2162 			get_page(page);
2163 			j = 1;
2164 			len -= plen;
2165 		}
2166 	}
2167 
2168 	to->truesize += len + plen;
2169 	to->len += len + plen;
2170 	to->data_len += len + plen;
2171 
2172 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2173 		skb_tx_error(from);
2174 		return -ENOMEM;
2175 	}
2176 
2177 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2178 		if (!len)
2179 			break;
2180 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2181 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2182 		len -= skb_shinfo(to)->frags[j].size;
2183 		skb_frag_ref(to, j);
2184 		j++;
2185 	}
2186 	skb_shinfo(to)->nr_frags = j;
2187 
2188 	return 0;
2189 }
2190 EXPORT_SYMBOL_GPL(skb_zerocopy);
2191 
2192 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2193 {
2194 	__wsum csum;
2195 	long csstart;
2196 
2197 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2198 		csstart = skb_checksum_start_offset(skb);
2199 	else
2200 		csstart = skb_headlen(skb);
2201 
2202 	BUG_ON(csstart > skb_headlen(skb));
2203 
2204 	skb_copy_from_linear_data(skb, to, csstart);
2205 
2206 	csum = 0;
2207 	if (csstart != skb->len)
2208 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2209 					      skb->len - csstart, 0);
2210 
2211 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2212 		long csstuff = csstart + skb->csum_offset;
2213 
2214 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2215 	}
2216 }
2217 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2218 
2219 /**
2220  *	skb_dequeue - remove from the head of the queue
2221  *	@list: list to dequeue from
2222  *
2223  *	Remove the head of the list. The list lock is taken so the function
2224  *	may be used safely with other locking list functions. The head item is
2225  *	returned or %NULL if the list is empty.
2226  */
2227 
2228 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2229 {
2230 	unsigned long flags;
2231 	struct sk_buff *result;
2232 
2233 	spin_lock_irqsave(&list->lock, flags);
2234 	result = __skb_dequeue(list);
2235 	spin_unlock_irqrestore(&list->lock, flags);
2236 	return result;
2237 }
2238 EXPORT_SYMBOL(skb_dequeue);
2239 
2240 /**
2241  *	skb_dequeue_tail - remove from the tail of the queue
2242  *	@list: list to dequeue from
2243  *
2244  *	Remove the tail of the list. The list lock is taken so the function
2245  *	may be used safely with other locking list functions. The tail item is
2246  *	returned or %NULL if the list is empty.
2247  */
2248 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2249 {
2250 	unsigned long flags;
2251 	struct sk_buff *result;
2252 
2253 	spin_lock_irqsave(&list->lock, flags);
2254 	result = __skb_dequeue_tail(list);
2255 	spin_unlock_irqrestore(&list->lock, flags);
2256 	return result;
2257 }
2258 EXPORT_SYMBOL(skb_dequeue_tail);
2259 
2260 /**
2261  *	skb_queue_purge - empty a list
2262  *	@list: list to empty
2263  *
2264  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2265  *	the list and one reference dropped. This function takes the list
2266  *	lock and is atomic with respect to other list locking functions.
2267  */
2268 void skb_queue_purge(struct sk_buff_head *list)
2269 {
2270 	struct sk_buff *skb;
2271 	while ((skb = skb_dequeue(list)) != NULL)
2272 		kfree_skb(skb);
2273 }
2274 EXPORT_SYMBOL(skb_queue_purge);
2275 
2276 /**
2277  *	skb_queue_head - queue a buffer at the list head
2278  *	@list: list to use
2279  *	@newsk: buffer to queue
2280  *
2281  *	Queue a buffer at the start of the list. This function takes the
2282  *	list lock and can be used safely with other locking &sk_buff functions
2283  *	safely.
2284  *
2285  *	A buffer cannot be placed on two lists at the same time.
2286  */
2287 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2288 {
2289 	unsigned long flags;
2290 
2291 	spin_lock_irqsave(&list->lock, flags);
2292 	__skb_queue_head(list, newsk);
2293 	spin_unlock_irqrestore(&list->lock, flags);
2294 }
2295 EXPORT_SYMBOL(skb_queue_head);
2296 
2297 /**
2298  *	skb_queue_tail - queue a buffer at the list tail
2299  *	@list: list to use
2300  *	@newsk: buffer to queue
2301  *
2302  *	Queue a buffer at the tail of the list. This function takes the
2303  *	list lock and can be used safely with other locking &sk_buff functions
2304  *	safely.
2305  *
2306  *	A buffer cannot be placed on two lists at the same time.
2307  */
2308 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2309 {
2310 	unsigned long flags;
2311 
2312 	spin_lock_irqsave(&list->lock, flags);
2313 	__skb_queue_tail(list, newsk);
2314 	spin_unlock_irqrestore(&list->lock, flags);
2315 }
2316 EXPORT_SYMBOL(skb_queue_tail);
2317 
2318 /**
2319  *	skb_unlink	-	remove a buffer from a list
2320  *	@skb: buffer to remove
2321  *	@list: list to use
2322  *
2323  *	Remove a packet from a list. The list locks are taken and this
2324  *	function is atomic with respect to other list locked calls
2325  *
2326  *	You must know what list the SKB is on.
2327  */
2328 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2329 {
2330 	unsigned long flags;
2331 
2332 	spin_lock_irqsave(&list->lock, flags);
2333 	__skb_unlink(skb, list);
2334 	spin_unlock_irqrestore(&list->lock, flags);
2335 }
2336 EXPORT_SYMBOL(skb_unlink);
2337 
2338 /**
2339  *	skb_append	-	append a buffer
2340  *	@old: buffer to insert after
2341  *	@newsk: buffer to insert
2342  *	@list: list to use
2343  *
2344  *	Place a packet after a given packet in a list. The list locks are taken
2345  *	and this function is atomic with respect to other list locked calls.
2346  *	A buffer cannot be placed on two lists at the same time.
2347  */
2348 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2349 {
2350 	unsigned long flags;
2351 
2352 	spin_lock_irqsave(&list->lock, flags);
2353 	__skb_queue_after(list, old, newsk);
2354 	spin_unlock_irqrestore(&list->lock, flags);
2355 }
2356 EXPORT_SYMBOL(skb_append);
2357 
2358 /**
2359  *	skb_insert	-	insert a buffer
2360  *	@old: buffer to insert before
2361  *	@newsk: buffer to insert
2362  *	@list: list to use
2363  *
2364  *	Place a packet before a given packet in a list. The list locks are
2365  * 	taken and this function is atomic with respect to other list locked
2366  *	calls.
2367  *
2368  *	A buffer cannot be placed on two lists at the same time.
2369  */
2370 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2371 {
2372 	unsigned long flags;
2373 
2374 	spin_lock_irqsave(&list->lock, flags);
2375 	__skb_insert(newsk, old->prev, old, list);
2376 	spin_unlock_irqrestore(&list->lock, flags);
2377 }
2378 EXPORT_SYMBOL(skb_insert);
2379 
2380 static inline void skb_split_inside_header(struct sk_buff *skb,
2381 					   struct sk_buff* skb1,
2382 					   const u32 len, const int pos)
2383 {
2384 	int i;
2385 
2386 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2387 					 pos - len);
2388 	/* And move data appendix as is. */
2389 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2390 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2391 
2392 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2393 	skb_shinfo(skb)->nr_frags  = 0;
2394 	skb1->data_len		   = skb->data_len;
2395 	skb1->len		   += skb1->data_len;
2396 	skb->data_len		   = 0;
2397 	skb->len		   = len;
2398 	skb_set_tail_pointer(skb, len);
2399 }
2400 
2401 static inline void skb_split_no_header(struct sk_buff *skb,
2402 				       struct sk_buff* skb1,
2403 				       const u32 len, int pos)
2404 {
2405 	int i, k = 0;
2406 	const int nfrags = skb_shinfo(skb)->nr_frags;
2407 
2408 	skb_shinfo(skb)->nr_frags = 0;
2409 	skb1->len		  = skb1->data_len = skb->len - len;
2410 	skb->len		  = len;
2411 	skb->data_len		  = len - pos;
2412 
2413 	for (i = 0; i < nfrags; i++) {
2414 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2415 
2416 		if (pos + size > len) {
2417 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2418 
2419 			if (pos < len) {
2420 				/* Split frag.
2421 				 * We have two variants in this case:
2422 				 * 1. Move all the frag to the second
2423 				 *    part, if it is possible. F.e.
2424 				 *    this approach is mandatory for TUX,
2425 				 *    where splitting is expensive.
2426 				 * 2. Split is accurately. We make this.
2427 				 */
2428 				skb_frag_ref(skb, i);
2429 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2430 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2431 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2432 				skb_shinfo(skb)->nr_frags++;
2433 			}
2434 			k++;
2435 		} else
2436 			skb_shinfo(skb)->nr_frags++;
2437 		pos += size;
2438 	}
2439 	skb_shinfo(skb1)->nr_frags = k;
2440 }
2441 
2442 /**
2443  * skb_split - Split fragmented skb to two parts at length len.
2444  * @skb: the buffer to split
2445  * @skb1: the buffer to receive the second part
2446  * @len: new length for skb
2447  */
2448 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2449 {
2450 	int pos = skb_headlen(skb);
2451 
2452 	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2453 	if (len < pos)	/* Split line is inside header. */
2454 		skb_split_inside_header(skb, skb1, len, pos);
2455 	else		/* Second chunk has no header, nothing to copy. */
2456 		skb_split_no_header(skb, skb1, len, pos);
2457 }
2458 EXPORT_SYMBOL(skb_split);
2459 
2460 /* Shifting from/to a cloned skb is a no-go.
2461  *
2462  * Caller cannot keep skb_shinfo related pointers past calling here!
2463  */
2464 static int skb_prepare_for_shift(struct sk_buff *skb)
2465 {
2466 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2467 }
2468 
2469 /**
2470  * skb_shift - Shifts paged data partially from skb to another
2471  * @tgt: buffer into which tail data gets added
2472  * @skb: buffer from which the paged data comes from
2473  * @shiftlen: shift up to this many bytes
2474  *
2475  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2476  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2477  * It's up to caller to free skb if everything was shifted.
2478  *
2479  * If @tgt runs out of frags, the whole operation is aborted.
2480  *
2481  * Skb cannot include anything else but paged data while tgt is allowed
2482  * to have non-paged data as well.
2483  *
2484  * TODO: full sized shift could be optimized but that would need
2485  * specialized skb free'er to handle frags without up-to-date nr_frags.
2486  */
2487 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2488 {
2489 	int from, to, merge, todo;
2490 	struct skb_frag_struct *fragfrom, *fragto;
2491 
2492 	BUG_ON(shiftlen > skb->len);
2493 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2494 
2495 	todo = shiftlen;
2496 	from = 0;
2497 	to = skb_shinfo(tgt)->nr_frags;
2498 	fragfrom = &skb_shinfo(skb)->frags[from];
2499 
2500 	/* Actual merge is delayed until the point when we know we can
2501 	 * commit all, so that we don't have to undo partial changes
2502 	 */
2503 	if (!to ||
2504 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2505 			      fragfrom->page_offset)) {
2506 		merge = -1;
2507 	} else {
2508 		merge = to - 1;
2509 
2510 		todo -= skb_frag_size(fragfrom);
2511 		if (todo < 0) {
2512 			if (skb_prepare_for_shift(skb) ||
2513 			    skb_prepare_for_shift(tgt))
2514 				return 0;
2515 
2516 			/* All previous frag pointers might be stale! */
2517 			fragfrom = &skb_shinfo(skb)->frags[from];
2518 			fragto = &skb_shinfo(tgt)->frags[merge];
2519 
2520 			skb_frag_size_add(fragto, shiftlen);
2521 			skb_frag_size_sub(fragfrom, shiftlen);
2522 			fragfrom->page_offset += shiftlen;
2523 
2524 			goto onlymerged;
2525 		}
2526 
2527 		from++;
2528 	}
2529 
2530 	/* Skip full, not-fitting skb to avoid expensive operations */
2531 	if ((shiftlen == skb->len) &&
2532 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2533 		return 0;
2534 
2535 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2536 		return 0;
2537 
2538 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2539 		if (to == MAX_SKB_FRAGS)
2540 			return 0;
2541 
2542 		fragfrom = &skb_shinfo(skb)->frags[from];
2543 		fragto = &skb_shinfo(tgt)->frags[to];
2544 
2545 		if (todo >= skb_frag_size(fragfrom)) {
2546 			*fragto = *fragfrom;
2547 			todo -= skb_frag_size(fragfrom);
2548 			from++;
2549 			to++;
2550 
2551 		} else {
2552 			__skb_frag_ref(fragfrom);
2553 			fragto->page = fragfrom->page;
2554 			fragto->page_offset = fragfrom->page_offset;
2555 			skb_frag_size_set(fragto, todo);
2556 
2557 			fragfrom->page_offset += todo;
2558 			skb_frag_size_sub(fragfrom, todo);
2559 			todo = 0;
2560 
2561 			to++;
2562 			break;
2563 		}
2564 	}
2565 
2566 	/* Ready to "commit" this state change to tgt */
2567 	skb_shinfo(tgt)->nr_frags = to;
2568 
2569 	if (merge >= 0) {
2570 		fragfrom = &skb_shinfo(skb)->frags[0];
2571 		fragto = &skb_shinfo(tgt)->frags[merge];
2572 
2573 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2574 		__skb_frag_unref(fragfrom);
2575 	}
2576 
2577 	/* Reposition in the original skb */
2578 	to = 0;
2579 	while (from < skb_shinfo(skb)->nr_frags)
2580 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2581 	skb_shinfo(skb)->nr_frags = to;
2582 
2583 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2584 
2585 onlymerged:
2586 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2587 	 * the other hand might need it if it needs to be resent
2588 	 */
2589 	tgt->ip_summed = CHECKSUM_PARTIAL;
2590 	skb->ip_summed = CHECKSUM_PARTIAL;
2591 
2592 	/* Yak, is it really working this way? Some helper please? */
2593 	skb->len -= shiftlen;
2594 	skb->data_len -= shiftlen;
2595 	skb->truesize -= shiftlen;
2596 	tgt->len += shiftlen;
2597 	tgt->data_len += shiftlen;
2598 	tgt->truesize += shiftlen;
2599 
2600 	return shiftlen;
2601 }
2602 
2603 /**
2604  * skb_prepare_seq_read - Prepare a sequential read of skb data
2605  * @skb: the buffer to read
2606  * @from: lower offset of data to be read
2607  * @to: upper offset of data to be read
2608  * @st: state variable
2609  *
2610  * Initializes the specified state variable. Must be called before
2611  * invoking skb_seq_read() for the first time.
2612  */
2613 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2614 			  unsigned int to, struct skb_seq_state *st)
2615 {
2616 	st->lower_offset = from;
2617 	st->upper_offset = to;
2618 	st->root_skb = st->cur_skb = skb;
2619 	st->frag_idx = st->stepped_offset = 0;
2620 	st->frag_data = NULL;
2621 }
2622 EXPORT_SYMBOL(skb_prepare_seq_read);
2623 
2624 /**
2625  * skb_seq_read - Sequentially read skb data
2626  * @consumed: number of bytes consumed by the caller so far
2627  * @data: destination pointer for data to be returned
2628  * @st: state variable
2629  *
2630  * Reads a block of skb data at @consumed relative to the
2631  * lower offset specified to skb_prepare_seq_read(). Assigns
2632  * the head of the data block to @data and returns the length
2633  * of the block or 0 if the end of the skb data or the upper
2634  * offset has been reached.
2635  *
2636  * The caller is not required to consume all of the data
2637  * returned, i.e. @consumed is typically set to the number
2638  * of bytes already consumed and the next call to
2639  * skb_seq_read() will return the remaining part of the block.
2640  *
2641  * Note 1: The size of each block of data returned can be arbitrary,
2642  *       this limitation is the cost for zerocopy seqeuental
2643  *       reads of potentially non linear data.
2644  *
2645  * Note 2: Fragment lists within fragments are not implemented
2646  *       at the moment, state->root_skb could be replaced with
2647  *       a stack for this purpose.
2648  */
2649 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2650 			  struct skb_seq_state *st)
2651 {
2652 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2653 	skb_frag_t *frag;
2654 
2655 	if (unlikely(abs_offset >= st->upper_offset)) {
2656 		if (st->frag_data) {
2657 			kunmap_atomic(st->frag_data);
2658 			st->frag_data = NULL;
2659 		}
2660 		return 0;
2661 	}
2662 
2663 next_skb:
2664 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2665 
2666 	if (abs_offset < block_limit && !st->frag_data) {
2667 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2668 		return block_limit - abs_offset;
2669 	}
2670 
2671 	if (st->frag_idx == 0 && !st->frag_data)
2672 		st->stepped_offset += skb_headlen(st->cur_skb);
2673 
2674 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2675 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2676 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2677 
2678 		if (abs_offset < block_limit) {
2679 			if (!st->frag_data)
2680 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2681 
2682 			*data = (u8 *) st->frag_data + frag->page_offset +
2683 				(abs_offset - st->stepped_offset);
2684 
2685 			return block_limit - abs_offset;
2686 		}
2687 
2688 		if (st->frag_data) {
2689 			kunmap_atomic(st->frag_data);
2690 			st->frag_data = NULL;
2691 		}
2692 
2693 		st->frag_idx++;
2694 		st->stepped_offset += skb_frag_size(frag);
2695 	}
2696 
2697 	if (st->frag_data) {
2698 		kunmap_atomic(st->frag_data);
2699 		st->frag_data = NULL;
2700 	}
2701 
2702 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2703 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2704 		st->frag_idx = 0;
2705 		goto next_skb;
2706 	} else if (st->cur_skb->next) {
2707 		st->cur_skb = st->cur_skb->next;
2708 		st->frag_idx = 0;
2709 		goto next_skb;
2710 	}
2711 
2712 	return 0;
2713 }
2714 EXPORT_SYMBOL(skb_seq_read);
2715 
2716 /**
2717  * skb_abort_seq_read - Abort a sequential read of skb data
2718  * @st: state variable
2719  *
2720  * Must be called if skb_seq_read() was not called until it
2721  * returned 0.
2722  */
2723 void skb_abort_seq_read(struct skb_seq_state *st)
2724 {
2725 	if (st->frag_data)
2726 		kunmap_atomic(st->frag_data);
2727 }
2728 EXPORT_SYMBOL(skb_abort_seq_read);
2729 
2730 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2731 
2732 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2733 					  struct ts_config *conf,
2734 					  struct ts_state *state)
2735 {
2736 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2737 }
2738 
2739 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2740 {
2741 	skb_abort_seq_read(TS_SKB_CB(state));
2742 }
2743 
2744 /**
2745  * skb_find_text - Find a text pattern in skb data
2746  * @skb: the buffer to look in
2747  * @from: search offset
2748  * @to: search limit
2749  * @config: textsearch configuration
2750  * @state: uninitialized textsearch state variable
2751  *
2752  * Finds a pattern in the skb data according to the specified
2753  * textsearch configuration. Use textsearch_next() to retrieve
2754  * subsequent occurrences of the pattern. Returns the offset
2755  * to the first occurrence or UINT_MAX if no match was found.
2756  */
2757 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2758 			   unsigned int to, struct ts_config *config,
2759 			   struct ts_state *state)
2760 {
2761 	unsigned int ret;
2762 
2763 	config->get_next_block = skb_ts_get_next_block;
2764 	config->finish = skb_ts_finish;
2765 
2766 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2767 
2768 	ret = textsearch_find(config, state);
2769 	return (ret <= to - from ? ret : UINT_MAX);
2770 }
2771 EXPORT_SYMBOL(skb_find_text);
2772 
2773 /**
2774  * skb_append_datato_frags - append the user data to a skb
2775  * @sk: sock  structure
2776  * @skb: skb structure to be appened with user data.
2777  * @getfrag: call back function to be used for getting the user data
2778  * @from: pointer to user message iov
2779  * @length: length of the iov message
2780  *
2781  * Description: This procedure append the user data in the fragment part
2782  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2783  */
2784 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2785 			int (*getfrag)(void *from, char *to, int offset,
2786 					int len, int odd, struct sk_buff *skb),
2787 			void *from, int length)
2788 {
2789 	int frg_cnt = skb_shinfo(skb)->nr_frags;
2790 	int copy;
2791 	int offset = 0;
2792 	int ret;
2793 	struct page_frag *pfrag = &current->task_frag;
2794 
2795 	do {
2796 		/* Return error if we don't have space for new frag */
2797 		if (frg_cnt >= MAX_SKB_FRAGS)
2798 			return -EMSGSIZE;
2799 
2800 		if (!sk_page_frag_refill(sk, pfrag))
2801 			return -ENOMEM;
2802 
2803 		/* copy the user data to page */
2804 		copy = min_t(int, length, pfrag->size - pfrag->offset);
2805 
2806 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2807 			      offset, copy, 0, skb);
2808 		if (ret < 0)
2809 			return -EFAULT;
2810 
2811 		/* copy was successful so update the size parameters */
2812 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2813 				   copy);
2814 		frg_cnt++;
2815 		pfrag->offset += copy;
2816 		get_page(pfrag->page);
2817 
2818 		skb->truesize += copy;
2819 		atomic_add(copy, &sk->sk_wmem_alloc);
2820 		skb->len += copy;
2821 		skb->data_len += copy;
2822 		offset += copy;
2823 		length -= copy;
2824 
2825 	} while (length > 0);
2826 
2827 	return 0;
2828 }
2829 EXPORT_SYMBOL(skb_append_datato_frags);
2830 
2831 /**
2832  *	skb_pull_rcsum - pull skb and update receive checksum
2833  *	@skb: buffer to update
2834  *	@len: length of data pulled
2835  *
2836  *	This function performs an skb_pull on the packet and updates
2837  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2838  *	receive path processing instead of skb_pull unless you know
2839  *	that the checksum difference is zero (e.g., a valid IP header)
2840  *	or you are setting ip_summed to CHECKSUM_NONE.
2841  */
2842 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2843 {
2844 	BUG_ON(len > skb->len);
2845 	skb->len -= len;
2846 	BUG_ON(skb->len < skb->data_len);
2847 	skb_postpull_rcsum(skb, skb->data, len);
2848 	return skb->data += len;
2849 }
2850 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2851 
2852 /**
2853  *	skb_segment - Perform protocol segmentation on skb.
2854  *	@head_skb: buffer to segment
2855  *	@features: features for the output path (see dev->features)
2856  *
2857  *	This function performs segmentation on the given skb.  It returns
2858  *	a pointer to the first in a list of new skbs for the segments.
2859  *	In case of error it returns ERR_PTR(err).
2860  */
2861 struct sk_buff *skb_segment(struct sk_buff *head_skb,
2862 			    netdev_features_t features)
2863 {
2864 	struct sk_buff *segs = NULL;
2865 	struct sk_buff *tail = NULL;
2866 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
2867 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
2868 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
2869 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
2870 	struct sk_buff *frag_skb = head_skb;
2871 	unsigned int offset = doffset;
2872 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
2873 	unsigned int headroom;
2874 	unsigned int len;
2875 	__be16 proto;
2876 	bool csum;
2877 	int sg = !!(features & NETIF_F_SG);
2878 	int nfrags = skb_shinfo(head_skb)->nr_frags;
2879 	int err = -ENOMEM;
2880 	int i = 0;
2881 	int pos;
2882 	int dummy;
2883 
2884 	proto = skb_network_protocol(head_skb, &dummy);
2885 	if (unlikely(!proto))
2886 		return ERR_PTR(-EINVAL);
2887 
2888 	csum = !!can_checksum_protocol(features, proto);
2889 	__skb_push(head_skb, doffset);
2890 	headroom = skb_headroom(head_skb);
2891 	pos = skb_headlen(head_skb);
2892 
2893 	do {
2894 		struct sk_buff *nskb;
2895 		skb_frag_t *nskb_frag;
2896 		int hsize;
2897 		int size;
2898 
2899 		len = head_skb->len - offset;
2900 		if (len > mss)
2901 			len = mss;
2902 
2903 		hsize = skb_headlen(head_skb) - offset;
2904 		if (hsize < 0)
2905 			hsize = 0;
2906 		if (hsize > len || !sg)
2907 			hsize = len;
2908 
2909 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
2910 		    (skb_headlen(list_skb) == len || sg)) {
2911 			BUG_ON(skb_headlen(list_skb) > len);
2912 
2913 			i = 0;
2914 			nfrags = skb_shinfo(list_skb)->nr_frags;
2915 			frag = skb_shinfo(list_skb)->frags;
2916 			frag_skb = list_skb;
2917 			pos += skb_headlen(list_skb);
2918 
2919 			while (pos < offset + len) {
2920 				BUG_ON(i >= nfrags);
2921 
2922 				size = skb_frag_size(frag);
2923 				if (pos + size > offset + len)
2924 					break;
2925 
2926 				i++;
2927 				pos += size;
2928 				frag++;
2929 			}
2930 
2931 			nskb = skb_clone(list_skb, GFP_ATOMIC);
2932 			list_skb = list_skb->next;
2933 
2934 			if (unlikely(!nskb))
2935 				goto err;
2936 
2937 			if (unlikely(pskb_trim(nskb, len))) {
2938 				kfree_skb(nskb);
2939 				goto err;
2940 			}
2941 
2942 			hsize = skb_end_offset(nskb);
2943 			if (skb_cow_head(nskb, doffset + headroom)) {
2944 				kfree_skb(nskb);
2945 				goto err;
2946 			}
2947 
2948 			nskb->truesize += skb_end_offset(nskb) - hsize;
2949 			skb_release_head_state(nskb);
2950 			__skb_push(nskb, doffset);
2951 		} else {
2952 			nskb = __alloc_skb(hsize + doffset + headroom,
2953 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
2954 					   NUMA_NO_NODE);
2955 
2956 			if (unlikely(!nskb))
2957 				goto err;
2958 
2959 			skb_reserve(nskb, headroom);
2960 			__skb_put(nskb, doffset);
2961 		}
2962 
2963 		if (segs)
2964 			tail->next = nskb;
2965 		else
2966 			segs = nskb;
2967 		tail = nskb;
2968 
2969 		__copy_skb_header(nskb, head_skb);
2970 		nskb->mac_len = head_skb->mac_len;
2971 
2972 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
2973 
2974 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
2975 						 nskb->data - tnl_hlen,
2976 						 doffset + tnl_hlen);
2977 
2978 		if (nskb->len == len + doffset)
2979 			goto perform_csum_check;
2980 
2981 		if (!sg) {
2982 			nskb->ip_summed = CHECKSUM_NONE;
2983 			nskb->csum = skb_copy_and_csum_bits(head_skb, offset,
2984 							    skb_put(nskb, len),
2985 							    len, 0);
2986 			continue;
2987 		}
2988 
2989 		nskb_frag = skb_shinfo(nskb)->frags;
2990 
2991 		skb_copy_from_linear_data_offset(head_skb, offset,
2992 						 skb_put(nskb, hsize), hsize);
2993 
2994 		skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
2995 			SKBTX_SHARED_FRAG;
2996 
2997 		while (pos < offset + len) {
2998 			if (i >= nfrags) {
2999 				BUG_ON(skb_headlen(list_skb));
3000 
3001 				i = 0;
3002 				nfrags = skb_shinfo(list_skb)->nr_frags;
3003 				frag = skb_shinfo(list_skb)->frags;
3004 				frag_skb = list_skb;
3005 
3006 				BUG_ON(!nfrags);
3007 
3008 				list_skb = list_skb->next;
3009 			}
3010 
3011 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3012 				     MAX_SKB_FRAGS)) {
3013 				net_warn_ratelimited(
3014 					"skb_segment: too many frags: %u %u\n",
3015 					pos, mss);
3016 				goto err;
3017 			}
3018 
3019 			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3020 				goto err;
3021 
3022 			*nskb_frag = *frag;
3023 			__skb_frag_ref(nskb_frag);
3024 			size = skb_frag_size(nskb_frag);
3025 
3026 			if (pos < offset) {
3027 				nskb_frag->page_offset += offset - pos;
3028 				skb_frag_size_sub(nskb_frag, offset - pos);
3029 			}
3030 
3031 			skb_shinfo(nskb)->nr_frags++;
3032 
3033 			if (pos + size <= offset + len) {
3034 				i++;
3035 				frag++;
3036 				pos += size;
3037 			} else {
3038 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3039 				goto skip_fraglist;
3040 			}
3041 
3042 			nskb_frag++;
3043 		}
3044 
3045 skip_fraglist:
3046 		nskb->data_len = len - hsize;
3047 		nskb->len += nskb->data_len;
3048 		nskb->truesize += nskb->data_len;
3049 
3050 perform_csum_check:
3051 		if (!csum) {
3052 			nskb->csum = skb_checksum(nskb, doffset,
3053 						  nskb->len - doffset, 0);
3054 			nskb->ip_summed = CHECKSUM_NONE;
3055 		}
3056 	} while ((offset += len) < head_skb->len);
3057 
3058 	return segs;
3059 
3060 err:
3061 	kfree_skb_list(segs);
3062 	return ERR_PTR(err);
3063 }
3064 EXPORT_SYMBOL_GPL(skb_segment);
3065 
3066 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3067 {
3068 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3069 	unsigned int offset = skb_gro_offset(skb);
3070 	unsigned int headlen = skb_headlen(skb);
3071 	struct sk_buff *nskb, *lp, *p = *head;
3072 	unsigned int len = skb_gro_len(skb);
3073 	unsigned int delta_truesize;
3074 	unsigned int headroom;
3075 
3076 	if (unlikely(p->len + len >= 65536))
3077 		return -E2BIG;
3078 
3079 	lp = NAPI_GRO_CB(p)->last ?: p;
3080 	pinfo = skb_shinfo(lp);
3081 
3082 	if (headlen <= offset) {
3083 		skb_frag_t *frag;
3084 		skb_frag_t *frag2;
3085 		int i = skbinfo->nr_frags;
3086 		int nr_frags = pinfo->nr_frags + i;
3087 
3088 		if (nr_frags > MAX_SKB_FRAGS)
3089 			goto merge;
3090 
3091 		offset -= headlen;
3092 		pinfo->nr_frags = nr_frags;
3093 		skbinfo->nr_frags = 0;
3094 
3095 		frag = pinfo->frags + nr_frags;
3096 		frag2 = skbinfo->frags + i;
3097 		do {
3098 			*--frag = *--frag2;
3099 		} while (--i);
3100 
3101 		frag->page_offset += offset;
3102 		skb_frag_size_sub(frag, offset);
3103 
3104 		/* all fragments truesize : remove (head size + sk_buff) */
3105 		delta_truesize = skb->truesize -
3106 				 SKB_TRUESIZE(skb_end_offset(skb));
3107 
3108 		skb->truesize -= skb->data_len;
3109 		skb->len -= skb->data_len;
3110 		skb->data_len = 0;
3111 
3112 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3113 		goto done;
3114 	} else if (skb->head_frag) {
3115 		int nr_frags = pinfo->nr_frags;
3116 		skb_frag_t *frag = pinfo->frags + nr_frags;
3117 		struct page *page = virt_to_head_page(skb->head);
3118 		unsigned int first_size = headlen - offset;
3119 		unsigned int first_offset;
3120 
3121 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3122 			goto merge;
3123 
3124 		first_offset = skb->data -
3125 			       (unsigned char *)page_address(page) +
3126 			       offset;
3127 
3128 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3129 
3130 		frag->page.p	  = page;
3131 		frag->page_offset = first_offset;
3132 		skb_frag_size_set(frag, first_size);
3133 
3134 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3135 		/* We dont need to clear skbinfo->nr_frags here */
3136 
3137 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3138 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3139 		goto done;
3140 	}
3141 	if (pinfo->frag_list)
3142 		goto merge;
3143 	if (skb_gro_len(p) != pinfo->gso_size)
3144 		return -E2BIG;
3145 
3146 	headroom = skb_headroom(p);
3147 	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3148 	if (unlikely(!nskb))
3149 		return -ENOMEM;
3150 
3151 	__copy_skb_header(nskb, p);
3152 	nskb->mac_len = p->mac_len;
3153 
3154 	skb_reserve(nskb, headroom);
3155 	__skb_put(nskb, skb_gro_offset(p));
3156 
3157 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3158 	skb_set_network_header(nskb, skb_network_offset(p));
3159 	skb_set_transport_header(nskb, skb_transport_offset(p));
3160 
3161 	__skb_pull(p, skb_gro_offset(p));
3162 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
3163 	       p->data - skb_mac_header(p));
3164 
3165 	skb_shinfo(nskb)->frag_list = p;
3166 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3167 	pinfo->gso_size = 0;
3168 	skb_header_release(p);
3169 	NAPI_GRO_CB(nskb)->last = p;
3170 
3171 	nskb->data_len += p->len;
3172 	nskb->truesize += p->truesize;
3173 	nskb->len += p->len;
3174 
3175 	*head = nskb;
3176 	nskb->next = p->next;
3177 	p->next = NULL;
3178 
3179 	p = nskb;
3180 
3181 merge:
3182 	delta_truesize = skb->truesize;
3183 	if (offset > headlen) {
3184 		unsigned int eat = offset - headlen;
3185 
3186 		skbinfo->frags[0].page_offset += eat;
3187 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3188 		skb->data_len -= eat;
3189 		skb->len -= eat;
3190 		offset = headlen;
3191 	}
3192 
3193 	__skb_pull(skb, offset);
3194 
3195 	if (!NAPI_GRO_CB(p)->last)
3196 		skb_shinfo(p)->frag_list = skb;
3197 	else
3198 		NAPI_GRO_CB(p)->last->next = skb;
3199 	NAPI_GRO_CB(p)->last = skb;
3200 	skb_header_release(skb);
3201 	lp = p;
3202 
3203 done:
3204 	NAPI_GRO_CB(p)->count++;
3205 	p->data_len += len;
3206 	p->truesize += delta_truesize;
3207 	p->len += len;
3208 	if (lp != p) {
3209 		lp->data_len += len;
3210 		lp->truesize += delta_truesize;
3211 		lp->len += len;
3212 	}
3213 	NAPI_GRO_CB(skb)->same_flow = 1;
3214 	return 0;
3215 }
3216 EXPORT_SYMBOL_GPL(skb_gro_receive);
3217 
3218 void __init skb_init(void)
3219 {
3220 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3221 					      sizeof(struct sk_buff),
3222 					      0,
3223 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3224 					      NULL);
3225 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3226 						(2*sizeof(struct sk_buff)) +
3227 						sizeof(atomic_t),
3228 						0,
3229 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3230 						NULL);
3231 }
3232 
3233 /**
3234  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3235  *	@skb: Socket buffer containing the buffers to be mapped
3236  *	@sg: The scatter-gather list to map into
3237  *	@offset: The offset into the buffer's contents to start mapping
3238  *	@len: Length of buffer space to be mapped
3239  *
3240  *	Fill the specified scatter-gather list with mappings/pointers into a
3241  *	region of the buffer space attached to a socket buffer.
3242  */
3243 static int
3244 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3245 {
3246 	int start = skb_headlen(skb);
3247 	int i, copy = start - offset;
3248 	struct sk_buff *frag_iter;
3249 	int elt = 0;
3250 
3251 	if (copy > 0) {
3252 		if (copy > len)
3253 			copy = len;
3254 		sg_set_buf(sg, skb->data + offset, copy);
3255 		elt++;
3256 		if ((len -= copy) == 0)
3257 			return elt;
3258 		offset += copy;
3259 	}
3260 
3261 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3262 		int end;
3263 
3264 		WARN_ON(start > offset + len);
3265 
3266 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3267 		if ((copy = end - offset) > 0) {
3268 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3269 
3270 			if (copy > len)
3271 				copy = len;
3272 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3273 					frag->page_offset+offset-start);
3274 			elt++;
3275 			if (!(len -= copy))
3276 				return elt;
3277 			offset += copy;
3278 		}
3279 		start = end;
3280 	}
3281 
3282 	skb_walk_frags(skb, frag_iter) {
3283 		int end;
3284 
3285 		WARN_ON(start > offset + len);
3286 
3287 		end = start + frag_iter->len;
3288 		if ((copy = end - offset) > 0) {
3289 			if (copy > len)
3290 				copy = len;
3291 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3292 					      copy);
3293 			if ((len -= copy) == 0)
3294 				return elt;
3295 			offset += copy;
3296 		}
3297 		start = end;
3298 	}
3299 	BUG_ON(len);
3300 	return elt;
3301 }
3302 
3303 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3304  * sglist without mark the sg which contain last skb data as the end.
3305  * So the caller can mannipulate sg list as will when padding new data after
3306  * the first call without calling sg_unmark_end to expend sg list.
3307  *
3308  * Scenario to use skb_to_sgvec_nomark:
3309  * 1. sg_init_table
3310  * 2. skb_to_sgvec_nomark(payload1)
3311  * 3. skb_to_sgvec_nomark(payload2)
3312  *
3313  * This is equivalent to:
3314  * 1. sg_init_table
3315  * 2. skb_to_sgvec(payload1)
3316  * 3. sg_unmark_end
3317  * 4. skb_to_sgvec(payload2)
3318  *
3319  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3320  * is more preferable.
3321  */
3322 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3323 			int offset, int len)
3324 {
3325 	return __skb_to_sgvec(skb, sg, offset, len);
3326 }
3327 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3328 
3329 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3330 {
3331 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3332 
3333 	sg_mark_end(&sg[nsg - 1]);
3334 
3335 	return nsg;
3336 }
3337 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3338 
3339 /**
3340  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3341  *	@skb: The socket buffer to check.
3342  *	@tailbits: Amount of trailing space to be added
3343  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3344  *
3345  *	Make sure that the data buffers attached to a socket buffer are
3346  *	writable. If they are not, private copies are made of the data buffers
3347  *	and the socket buffer is set to use these instead.
3348  *
3349  *	If @tailbits is given, make sure that there is space to write @tailbits
3350  *	bytes of data beyond current end of socket buffer.  @trailer will be
3351  *	set to point to the skb in which this space begins.
3352  *
3353  *	The number of scatterlist elements required to completely map the
3354  *	COW'd and extended socket buffer will be returned.
3355  */
3356 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3357 {
3358 	int copyflag;
3359 	int elt;
3360 	struct sk_buff *skb1, **skb_p;
3361 
3362 	/* If skb is cloned or its head is paged, reallocate
3363 	 * head pulling out all the pages (pages are considered not writable
3364 	 * at the moment even if they are anonymous).
3365 	 */
3366 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3367 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3368 		return -ENOMEM;
3369 
3370 	/* Easy case. Most of packets will go this way. */
3371 	if (!skb_has_frag_list(skb)) {
3372 		/* A little of trouble, not enough of space for trailer.
3373 		 * This should not happen, when stack is tuned to generate
3374 		 * good frames. OK, on miss we reallocate and reserve even more
3375 		 * space, 128 bytes is fair. */
3376 
3377 		if (skb_tailroom(skb) < tailbits &&
3378 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3379 			return -ENOMEM;
3380 
3381 		/* Voila! */
3382 		*trailer = skb;
3383 		return 1;
3384 	}
3385 
3386 	/* Misery. We are in troubles, going to mincer fragments... */
3387 
3388 	elt = 1;
3389 	skb_p = &skb_shinfo(skb)->frag_list;
3390 	copyflag = 0;
3391 
3392 	while ((skb1 = *skb_p) != NULL) {
3393 		int ntail = 0;
3394 
3395 		/* The fragment is partially pulled by someone,
3396 		 * this can happen on input. Copy it and everything
3397 		 * after it. */
3398 
3399 		if (skb_shared(skb1))
3400 			copyflag = 1;
3401 
3402 		/* If the skb is the last, worry about trailer. */
3403 
3404 		if (skb1->next == NULL && tailbits) {
3405 			if (skb_shinfo(skb1)->nr_frags ||
3406 			    skb_has_frag_list(skb1) ||
3407 			    skb_tailroom(skb1) < tailbits)
3408 				ntail = tailbits + 128;
3409 		}
3410 
3411 		if (copyflag ||
3412 		    skb_cloned(skb1) ||
3413 		    ntail ||
3414 		    skb_shinfo(skb1)->nr_frags ||
3415 		    skb_has_frag_list(skb1)) {
3416 			struct sk_buff *skb2;
3417 
3418 			/* Fuck, we are miserable poor guys... */
3419 			if (ntail == 0)
3420 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3421 			else
3422 				skb2 = skb_copy_expand(skb1,
3423 						       skb_headroom(skb1),
3424 						       ntail,
3425 						       GFP_ATOMIC);
3426 			if (unlikely(skb2 == NULL))
3427 				return -ENOMEM;
3428 
3429 			if (skb1->sk)
3430 				skb_set_owner_w(skb2, skb1->sk);
3431 
3432 			/* Looking around. Are we still alive?
3433 			 * OK, link new skb, drop old one */
3434 
3435 			skb2->next = skb1->next;
3436 			*skb_p = skb2;
3437 			kfree_skb(skb1);
3438 			skb1 = skb2;
3439 		}
3440 		elt++;
3441 		*trailer = skb1;
3442 		skb_p = &skb1->next;
3443 	}
3444 
3445 	return elt;
3446 }
3447 EXPORT_SYMBOL_GPL(skb_cow_data);
3448 
3449 static void sock_rmem_free(struct sk_buff *skb)
3450 {
3451 	struct sock *sk = skb->sk;
3452 
3453 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3454 }
3455 
3456 /*
3457  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3458  */
3459 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3460 {
3461 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3462 	    (unsigned int)sk->sk_rcvbuf)
3463 		return -ENOMEM;
3464 
3465 	skb_orphan(skb);
3466 	skb->sk = sk;
3467 	skb->destructor = sock_rmem_free;
3468 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3469 
3470 	/* before exiting rcu section, make sure dst is refcounted */
3471 	skb_dst_force(skb);
3472 
3473 	skb_queue_tail(&sk->sk_error_queue, skb);
3474 	if (!sock_flag(sk, SOCK_DEAD))
3475 		sk->sk_data_ready(sk);
3476 	return 0;
3477 }
3478 EXPORT_SYMBOL(sock_queue_err_skb);
3479 
3480 void skb_tstamp_tx(struct sk_buff *orig_skb,
3481 		struct skb_shared_hwtstamps *hwtstamps)
3482 {
3483 	struct sock *sk = orig_skb->sk;
3484 	struct sock_exterr_skb *serr;
3485 	struct sk_buff *skb;
3486 	int err;
3487 
3488 	if (!sk)
3489 		return;
3490 
3491 	if (hwtstamps) {
3492 		*skb_hwtstamps(orig_skb) =
3493 			*hwtstamps;
3494 	} else {
3495 		/*
3496 		 * no hardware time stamps available,
3497 		 * so keep the shared tx_flags and only
3498 		 * store software time stamp
3499 		 */
3500 		orig_skb->tstamp = ktime_get_real();
3501 	}
3502 
3503 	skb = skb_clone(orig_skb, GFP_ATOMIC);
3504 	if (!skb)
3505 		return;
3506 
3507 	serr = SKB_EXT_ERR(skb);
3508 	memset(serr, 0, sizeof(*serr));
3509 	serr->ee.ee_errno = ENOMSG;
3510 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3511 
3512 	err = sock_queue_err_skb(sk, skb);
3513 
3514 	if (err)
3515 		kfree_skb(skb);
3516 }
3517 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3518 
3519 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3520 {
3521 	struct sock *sk = skb->sk;
3522 	struct sock_exterr_skb *serr;
3523 	int err;
3524 
3525 	skb->wifi_acked_valid = 1;
3526 	skb->wifi_acked = acked;
3527 
3528 	serr = SKB_EXT_ERR(skb);
3529 	memset(serr, 0, sizeof(*serr));
3530 	serr->ee.ee_errno = ENOMSG;
3531 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3532 
3533 	err = sock_queue_err_skb(sk, skb);
3534 	if (err)
3535 		kfree_skb(skb);
3536 }
3537 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3538 
3539 
3540 /**
3541  * skb_partial_csum_set - set up and verify partial csum values for packet
3542  * @skb: the skb to set
3543  * @start: the number of bytes after skb->data to start checksumming.
3544  * @off: the offset from start to place the checksum.
3545  *
3546  * For untrusted partially-checksummed packets, we need to make sure the values
3547  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3548  *
3549  * This function checks and sets those values and skb->ip_summed: if this
3550  * returns false you should drop the packet.
3551  */
3552 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3553 {
3554 	if (unlikely(start > skb_headlen(skb)) ||
3555 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3556 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3557 				     start, off, skb_headlen(skb));
3558 		return false;
3559 	}
3560 	skb->ip_summed = CHECKSUM_PARTIAL;
3561 	skb->csum_start = skb_headroom(skb) + start;
3562 	skb->csum_offset = off;
3563 	skb_set_transport_header(skb, start);
3564 	return true;
3565 }
3566 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3567 
3568 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3569 			       unsigned int max)
3570 {
3571 	if (skb_headlen(skb) >= len)
3572 		return 0;
3573 
3574 	/* If we need to pullup then pullup to the max, so we
3575 	 * won't need to do it again.
3576 	 */
3577 	if (max > skb->len)
3578 		max = skb->len;
3579 
3580 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3581 		return -ENOMEM;
3582 
3583 	if (skb_headlen(skb) < len)
3584 		return -EPROTO;
3585 
3586 	return 0;
3587 }
3588 
3589 #define MAX_TCP_HDR_LEN (15 * 4)
3590 
3591 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3592 				      typeof(IPPROTO_IP) proto,
3593 				      unsigned int off)
3594 {
3595 	switch (proto) {
3596 		int err;
3597 
3598 	case IPPROTO_TCP:
3599 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3600 					  off + MAX_TCP_HDR_LEN);
3601 		if (!err && !skb_partial_csum_set(skb, off,
3602 						  offsetof(struct tcphdr,
3603 							   check)))
3604 			err = -EPROTO;
3605 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3606 
3607 	case IPPROTO_UDP:
3608 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3609 					  off + sizeof(struct udphdr));
3610 		if (!err && !skb_partial_csum_set(skb, off,
3611 						  offsetof(struct udphdr,
3612 							   check)))
3613 			err = -EPROTO;
3614 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3615 	}
3616 
3617 	return ERR_PTR(-EPROTO);
3618 }
3619 
3620 /* This value should be large enough to cover a tagged ethernet header plus
3621  * maximally sized IP and TCP or UDP headers.
3622  */
3623 #define MAX_IP_HDR_LEN 128
3624 
3625 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3626 {
3627 	unsigned int off;
3628 	bool fragment;
3629 	__sum16 *csum;
3630 	int err;
3631 
3632 	fragment = false;
3633 
3634 	err = skb_maybe_pull_tail(skb,
3635 				  sizeof(struct iphdr),
3636 				  MAX_IP_HDR_LEN);
3637 	if (err < 0)
3638 		goto out;
3639 
3640 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3641 		fragment = true;
3642 
3643 	off = ip_hdrlen(skb);
3644 
3645 	err = -EPROTO;
3646 
3647 	if (fragment)
3648 		goto out;
3649 
3650 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3651 	if (IS_ERR(csum))
3652 		return PTR_ERR(csum);
3653 
3654 	if (recalculate)
3655 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3656 					   ip_hdr(skb)->daddr,
3657 					   skb->len - off,
3658 					   ip_hdr(skb)->protocol, 0);
3659 	err = 0;
3660 
3661 out:
3662 	return err;
3663 }
3664 
3665 /* This value should be large enough to cover a tagged ethernet header plus
3666  * an IPv6 header, all options, and a maximal TCP or UDP header.
3667  */
3668 #define MAX_IPV6_HDR_LEN 256
3669 
3670 #define OPT_HDR(type, skb, off) \
3671 	(type *)(skb_network_header(skb) + (off))
3672 
3673 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3674 {
3675 	int err;
3676 	u8 nexthdr;
3677 	unsigned int off;
3678 	unsigned int len;
3679 	bool fragment;
3680 	bool done;
3681 	__sum16 *csum;
3682 
3683 	fragment = false;
3684 	done = false;
3685 
3686 	off = sizeof(struct ipv6hdr);
3687 
3688 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3689 	if (err < 0)
3690 		goto out;
3691 
3692 	nexthdr = ipv6_hdr(skb)->nexthdr;
3693 
3694 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3695 	while (off <= len && !done) {
3696 		switch (nexthdr) {
3697 		case IPPROTO_DSTOPTS:
3698 		case IPPROTO_HOPOPTS:
3699 		case IPPROTO_ROUTING: {
3700 			struct ipv6_opt_hdr *hp;
3701 
3702 			err = skb_maybe_pull_tail(skb,
3703 						  off +
3704 						  sizeof(struct ipv6_opt_hdr),
3705 						  MAX_IPV6_HDR_LEN);
3706 			if (err < 0)
3707 				goto out;
3708 
3709 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
3710 			nexthdr = hp->nexthdr;
3711 			off += ipv6_optlen(hp);
3712 			break;
3713 		}
3714 		case IPPROTO_AH: {
3715 			struct ip_auth_hdr *hp;
3716 
3717 			err = skb_maybe_pull_tail(skb,
3718 						  off +
3719 						  sizeof(struct ip_auth_hdr),
3720 						  MAX_IPV6_HDR_LEN);
3721 			if (err < 0)
3722 				goto out;
3723 
3724 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
3725 			nexthdr = hp->nexthdr;
3726 			off += ipv6_authlen(hp);
3727 			break;
3728 		}
3729 		case IPPROTO_FRAGMENT: {
3730 			struct frag_hdr *hp;
3731 
3732 			err = skb_maybe_pull_tail(skb,
3733 						  off +
3734 						  sizeof(struct frag_hdr),
3735 						  MAX_IPV6_HDR_LEN);
3736 			if (err < 0)
3737 				goto out;
3738 
3739 			hp = OPT_HDR(struct frag_hdr, skb, off);
3740 
3741 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
3742 				fragment = true;
3743 
3744 			nexthdr = hp->nexthdr;
3745 			off += sizeof(struct frag_hdr);
3746 			break;
3747 		}
3748 		default:
3749 			done = true;
3750 			break;
3751 		}
3752 	}
3753 
3754 	err = -EPROTO;
3755 
3756 	if (!done || fragment)
3757 		goto out;
3758 
3759 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
3760 	if (IS_ERR(csum))
3761 		return PTR_ERR(csum);
3762 
3763 	if (recalculate)
3764 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3765 					 &ipv6_hdr(skb)->daddr,
3766 					 skb->len - off, nexthdr, 0);
3767 	err = 0;
3768 
3769 out:
3770 	return err;
3771 }
3772 
3773 /**
3774  * skb_checksum_setup - set up partial checksum offset
3775  * @skb: the skb to set up
3776  * @recalculate: if true the pseudo-header checksum will be recalculated
3777  */
3778 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
3779 {
3780 	int err;
3781 
3782 	switch (skb->protocol) {
3783 	case htons(ETH_P_IP):
3784 		err = skb_checksum_setup_ipv4(skb, recalculate);
3785 		break;
3786 
3787 	case htons(ETH_P_IPV6):
3788 		err = skb_checksum_setup_ipv6(skb, recalculate);
3789 		break;
3790 
3791 	default:
3792 		err = -EPROTO;
3793 		break;
3794 	}
3795 
3796 	return err;
3797 }
3798 EXPORT_SYMBOL(skb_checksum_setup);
3799 
3800 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3801 {
3802 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3803 			     skb->dev->name);
3804 }
3805 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3806 
3807 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3808 {
3809 	if (head_stolen) {
3810 		skb_release_head_state(skb);
3811 		kmem_cache_free(skbuff_head_cache, skb);
3812 	} else {
3813 		__kfree_skb(skb);
3814 	}
3815 }
3816 EXPORT_SYMBOL(kfree_skb_partial);
3817 
3818 /**
3819  * skb_try_coalesce - try to merge skb to prior one
3820  * @to: prior buffer
3821  * @from: buffer to add
3822  * @fragstolen: pointer to boolean
3823  * @delta_truesize: how much more was allocated than was requested
3824  */
3825 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3826 		      bool *fragstolen, int *delta_truesize)
3827 {
3828 	int i, delta, len = from->len;
3829 
3830 	*fragstolen = false;
3831 
3832 	if (skb_cloned(to))
3833 		return false;
3834 
3835 	if (len <= skb_tailroom(to)) {
3836 		BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3837 		*delta_truesize = 0;
3838 		return true;
3839 	}
3840 
3841 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
3842 		return false;
3843 
3844 	if (skb_headlen(from) != 0) {
3845 		struct page *page;
3846 		unsigned int offset;
3847 
3848 		if (skb_shinfo(to)->nr_frags +
3849 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3850 			return false;
3851 
3852 		if (skb_head_is_locked(from))
3853 			return false;
3854 
3855 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3856 
3857 		page = virt_to_head_page(from->head);
3858 		offset = from->data - (unsigned char *)page_address(page);
3859 
3860 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3861 				   page, offset, skb_headlen(from));
3862 		*fragstolen = true;
3863 	} else {
3864 		if (skb_shinfo(to)->nr_frags +
3865 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3866 			return false;
3867 
3868 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3869 	}
3870 
3871 	WARN_ON_ONCE(delta < len);
3872 
3873 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3874 	       skb_shinfo(from)->frags,
3875 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3876 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3877 
3878 	if (!skb_cloned(from))
3879 		skb_shinfo(from)->nr_frags = 0;
3880 
3881 	/* if the skb is not cloned this does nothing
3882 	 * since we set nr_frags to 0.
3883 	 */
3884 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3885 		skb_frag_ref(from, i);
3886 
3887 	to->truesize += delta;
3888 	to->len += len;
3889 	to->data_len += len;
3890 
3891 	*delta_truesize = delta;
3892 	return true;
3893 }
3894 EXPORT_SYMBOL(skb_try_coalesce);
3895 
3896 /**
3897  * skb_scrub_packet - scrub an skb
3898  *
3899  * @skb: buffer to clean
3900  * @xnet: packet is crossing netns
3901  *
3902  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
3903  * into/from a tunnel. Some information have to be cleared during these
3904  * operations.
3905  * skb_scrub_packet can also be used to clean a skb before injecting it in
3906  * another namespace (@xnet == true). We have to clear all information in the
3907  * skb that could impact namespace isolation.
3908  */
3909 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
3910 {
3911 	if (xnet)
3912 		skb_orphan(skb);
3913 	skb->tstamp.tv64 = 0;
3914 	skb->pkt_type = PACKET_HOST;
3915 	skb->skb_iif = 0;
3916 	skb->local_df = 0;
3917 	skb_dst_drop(skb);
3918 	skb->mark = 0;
3919 	secpath_reset(skb);
3920 	nf_reset(skb);
3921 	nf_reset_trace(skb);
3922 }
3923 EXPORT_SYMBOL_GPL(skb_scrub_packet);
3924 
3925 /**
3926  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
3927  *
3928  * @skb: GSO skb
3929  *
3930  * skb_gso_transport_seglen is used to determine the real size of the
3931  * individual segments, including Layer4 headers (TCP/UDP).
3932  *
3933  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
3934  */
3935 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
3936 {
3937 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3938 
3939 	if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3940 		return tcp_hdrlen(skb) + shinfo->gso_size;
3941 
3942 	/* UFO sets gso_size to the size of the fragmentation
3943 	 * payload, i.e. the size of the L4 (UDP) header is already
3944 	 * accounted for.
3945 	 */
3946 	return shinfo->gso_size;
3947 }
3948 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
3949