xref: /linux/net/core/skbuff.c (revision 268531be211f18c55f7ff5a1641d32c0fd0571cd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/bitfield.h>
62 #include <linux/if_vlan.h>
63 #include <linux/mpls.h>
64 #include <linux/kcov.h>
65 #include <linux/iov_iter.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/gso.h>
72 #include <net/ip6_checksum.h>
73 #include <net/xfrm.h>
74 #include <net/mpls.h>
75 #include <net/mptcp.h>
76 #include <net/mctp.h>
77 #include <net/page_pool/helpers.h>
78 #include <net/dropreason.h>
79 
80 #include <linux/uaccess.h>
81 #include <trace/events/skb.h>
82 #include <linux/highmem.h>
83 #include <linux/capability.h>
84 #include <linux/user_namespace.h>
85 #include <linux/indirect_call_wrapper.h>
86 #include <linux/textsearch.h>
87 
88 #include "dev.h"
89 #include "sock_destructor.h"
90 
91 struct kmem_cache *skbuff_cache __ro_after_init;
92 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
93 #ifdef CONFIG_SKB_EXTENSIONS
94 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
95 #endif
96 
97 
98 static struct kmem_cache *skb_small_head_cache __ro_after_init;
99 
100 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
101 
102 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
103  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
104  * size, and we can differentiate heads from skb_small_head_cache
105  * vs system slabs by looking at their size (skb_end_offset()).
106  */
107 #define SKB_SMALL_HEAD_CACHE_SIZE					\
108 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
109 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
110 		SKB_SMALL_HEAD_SIZE)
111 
112 #define SKB_SMALL_HEAD_HEADROOM						\
113 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
114 
115 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
116 EXPORT_SYMBOL(sysctl_max_skb_frags);
117 
118 #undef FN
119 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
120 static const char * const drop_reasons[] = {
121 	[SKB_CONSUMED] = "CONSUMED",
122 	DEFINE_DROP_REASON(FN, FN)
123 };
124 
125 static const struct drop_reason_list drop_reasons_core = {
126 	.reasons = drop_reasons,
127 	.n_reasons = ARRAY_SIZE(drop_reasons),
128 };
129 
130 const struct drop_reason_list __rcu *
131 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
132 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
133 };
134 EXPORT_SYMBOL(drop_reasons_by_subsys);
135 
136 /**
137  * drop_reasons_register_subsys - register another drop reason subsystem
138  * @subsys: the subsystem to register, must not be the core
139  * @list: the list of drop reasons within the subsystem, must point to
140  *	a statically initialized list
141  */
142 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
143 				  const struct drop_reason_list *list)
144 {
145 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
146 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
147 		 "invalid subsystem %d\n", subsys))
148 		return;
149 
150 	/* must point to statically allocated memory, so INIT is OK */
151 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
152 }
153 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
154 
155 /**
156  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
157  * @subsys: the subsystem to remove, must not be the core
158  *
159  * Note: This will synchronize_rcu() to ensure no users when it returns.
160  */
161 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
162 {
163 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
164 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
165 		 "invalid subsystem %d\n", subsys))
166 		return;
167 
168 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
169 
170 	synchronize_rcu();
171 }
172 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
173 
174 /**
175  *	skb_panic - private function for out-of-line support
176  *	@skb:	buffer
177  *	@sz:	size
178  *	@addr:	address
179  *	@msg:	skb_over_panic or skb_under_panic
180  *
181  *	Out-of-line support for skb_put() and skb_push().
182  *	Called via the wrapper skb_over_panic() or skb_under_panic().
183  *	Keep out of line to prevent kernel bloat.
184  *	__builtin_return_address is not used because it is not always reliable.
185  */
186 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
187 		      const char msg[])
188 {
189 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
190 		 msg, addr, skb->len, sz, skb->head, skb->data,
191 		 (unsigned long)skb->tail, (unsigned long)skb->end,
192 		 skb->dev ? skb->dev->name : "<NULL>");
193 	BUG();
194 }
195 
196 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
197 {
198 	skb_panic(skb, sz, addr, __func__);
199 }
200 
201 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
202 {
203 	skb_panic(skb, sz, addr, __func__);
204 }
205 
206 #define NAPI_SKB_CACHE_SIZE	64
207 #define NAPI_SKB_CACHE_BULK	16
208 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
209 
210 #if PAGE_SIZE == SZ_4K
211 
212 #define NAPI_HAS_SMALL_PAGE_FRAG	1
213 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
214 
215 /* specialized page frag allocator using a single order 0 page
216  * and slicing it into 1K sized fragment. Constrained to systems
217  * with a very limited amount of 1K fragments fitting a single
218  * page - to avoid excessive truesize underestimation
219  */
220 
221 struct page_frag_1k {
222 	void *va;
223 	u16 offset;
224 	bool pfmemalloc;
225 };
226 
227 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
228 {
229 	struct page *page;
230 	int offset;
231 
232 	offset = nc->offset - SZ_1K;
233 	if (likely(offset >= 0))
234 		goto use_frag;
235 
236 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
237 	if (!page)
238 		return NULL;
239 
240 	nc->va = page_address(page);
241 	nc->pfmemalloc = page_is_pfmemalloc(page);
242 	offset = PAGE_SIZE - SZ_1K;
243 	page_ref_add(page, offset / SZ_1K);
244 
245 use_frag:
246 	nc->offset = offset;
247 	return nc->va + offset;
248 }
249 #else
250 
251 /* the small page is actually unused in this build; add dummy helpers
252  * to please the compiler and avoid later preprocessor's conditionals
253  */
254 #define NAPI_HAS_SMALL_PAGE_FRAG	0
255 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
256 
257 struct page_frag_1k {
258 };
259 
260 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
261 {
262 	return NULL;
263 }
264 
265 #endif
266 
267 struct napi_alloc_cache {
268 	struct page_frag_cache page;
269 	struct page_frag_1k page_small;
270 	unsigned int skb_count;
271 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
272 };
273 
274 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
275 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
276 
277 /* Double check that napi_get_frags() allocates skbs with
278  * skb->head being backed by slab, not a page fragment.
279  * This is to make sure bug fixed in 3226b158e67c
280  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
281  * does not accidentally come back.
282  */
283 void napi_get_frags_check(struct napi_struct *napi)
284 {
285 	struct sk_buff *skb;
286 
287 	local_bh_disable();
288 	skb = napi_get_frags(napi);
289 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
290 	napi_free_frags(napi);
291 	local_bh_enable();
292 }
293 
294 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
295 {
296 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
297 
298 	fragsz = SKB_DATA_ALIGN(fragsz);
299 
300 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
301 }
302 EXPORT_SYMBOL(__napi_alloc_frag_align);
303 
304 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
305 {
306 	void *data;
307 
308 	fragsz = SKB_DATA_ALIGN(fragsz);
309 	if (in_hardirq() || irqs_disabled()) {
310 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
311 
312 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
313 	} else {
314 		struct napi_alloc_cache *nc;
315 
316 		local_bh_disable();
317 		nc = this_cpu_ptr(&napi_alloc_cache);
318 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
319 		local_bh_enable();
320 	}
321 	return data;
322 }
323 EXPORT_SYMBOL(__netdev_alloc_frag_align);
324 
325 static struct sk_buff *napi_skb_cache_get(void)
326 {
327 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
328 	struct sk_buff *skb;
329 
330 	if (unlikely(!nc->skb_count)) {
331 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache,
332 						      GFP_ATOMIC,
333 						      NAPI_SKB_CACHE_BULK,
334 						      nc->skb_cache);
335 		if (unlikely(!nc->skb_count))
336 			return NULL;
337 	}
338 
339 	skb = nc->skb_cache[--nc->skb_count];
340 	kasan_unpoison_object_data(skbuff_cache, skb);
341 
342 	return skb;
343 }
344 
345 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
346 					 unsigned int size)
347 {
348 	struct skb_shared_info *shinfo;
349 
350 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
351 
352 	/* Assumes caller memset cleared SKB */
353 	skb->truesize = SKB_TRUESIZE(size);
354 	refcount_set(&skb->users, 1);
355 	skb->head = data;
356 	skb->data = data;
357 	skb_reset_tail_pointer(skb);
358 	skb_set_end_offset(skb, size);
359 	skb->mac_header = (typeof(skb->mac_header))~0U;
360 	skb->transport_header = (typeof(skb->transport_header))~0U;
361 	skb->alloc_cpu = raw_smp_processor_id();
362 	/* make sure we initialize shinfo sequentially */
363 	shinfo = skb_shinfo(skb);
364 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
365 	atomic_set(&shinfo->dataref, 1);
366 
367 	skb_set_kcov_handle(skb, kcov_common_handle());
368 }
369 
370 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
371 				     unsigned int *size)
372 {
373 	void *resized;
374 
375 	/* Must find the allocation size (and grow it to match). */
376 	*size = ksize(data);
377 	/* krealloc() will immediately return "data" when
378 	 * "ksize(data)" is requested: it is the existing upper
379 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
380 	 * that this "new" pointer needs to be passed back to the
381 	 * caller for use so the __alloc_size hinting will be
382 	 * tracked correctly.
383 	 */
384 	resized = krealloc(data, *size, GFP_ATOMIC);
385 	WARN_ON_ONCE(resized != data);
386 	return resized;
387 }
388 
389 /* build_skb() variant which can operate on slab buffers.
390  * Note that this should be used sparingly as slab buffers
391  * cannot be combined efficiently by GRO!
392  */
393 struct sk_buff *slab_build_skb(void *data)
394 {
395 	struct sk_buff *skb;
396 	unsigned int size;
397 
398 	skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
399 	if (unlikely(!skb))
400 		return NULL;
401 
402 	memset(skb, 0, offsetof(struct sk_buff, tail));
403 	data = __slab_build_skb(skb, data, &size);
404 	__finalize_skb_around(skb, data, size);
405 
406 	return skb;
407 }
408 EXPORT_SYMBOL(slab_build_skb);
409 
410 /* Caller must provide SKB that is memset cleared */
411 static void __build_skb_around(struct sk_buff *skb, void *data,
412 			       unsigned int frag_size)
413 {
414 	unsigned int size = frag_size;
415 
416 	/* frag_size == 0 is considered deprecated now. Callers
417 	 * using slab buffer should use slab_build_skb() instead.
418 	 */
419 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
420 		data = __slab_build_skb(skb, data, &size);
421 
422 	__finalize_skb_around(skb, data, size);
423 }
424 
425 /**
426  * __build_skb - build a network buffer
427  * @data: data buffer provided by caller
428  * @frag_size: size of data (must not be 0)
429  *
430  * Allocate a new &sk_buff. Caller provides space holding head and
431  * skb_shared_info. @data must have been allocated from the page
432  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
433  * allocation is deprecated, and callers should use slab_build_skb()
434  * instead.)
435  * The return is the new skb buffer.
436  * On a failure the return is %NULL, and @data is not freed.
437  * Notes :
438  *  Before IO, driver allocates only data buffer where NIC put incoming frame
439  *  Driver should add room at head (NET_SKB_PAD) and
440  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
441  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
442  *  before giving packet to stack.
443  *  RX rings only contains data buffers, not full skbs.
444  */
445 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
446 {
447 	struct sk_buff *skb;
448 
449 	skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
450 	if (unlikely(!skb))
451 		return NULL;
452 
453 	memset(skb, 0, offsetof(struct sk_buff, tail));
454 	__build_skb_around(skb, data, frag_size);
455 
456 	return skb;
457 }
458 
459 /* build_skb() is wrapper over __build_skb(), that specifically
460  * takes care of skb->head and skb->pfmemalloc
461  */
462 struct sk_buff *build_skb(void *data, unsigned int frag_size)
463 {
464 	struct sk_buff *skb = __build_skb(data, frag_size);
465 
466 	if (likely(skb && frag_size)) {
467 		skb->head_frag = 1;
468 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
469 	}
470 	return skb;
471 }
472 EXPORT_SYMBOL(build_skb);
473 
474 /**
475  * build_skb_around - build a network buffer around provided skb
476  * @skb: sk_buff provide by caller, must be memset cleared
477  * @data: data buffer provided by caller
478  * @frag_size: size of data
479  */
480 struct sk_buff *build_skb_around(struct sk_buff *skb,
481 				 void *data, unsigned int frag_size)
482 {
483 	if (unlikely(!skb))
484 		return NULL;
485 
486 	__build_skb_around(skb, data, frag_size);
487 
488 	if (frag_size) {
489 		skb->head_frag = 1;
490 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
491 	}
492 	return skb;
493 }
494 EXPORT_SYMBOL(build_skb_around);
495 
496 /**
497  * __napi_build_skb - build a network buffer
498  * @data: data buffer provided by caller
499  * @frag_size: size of data
500  *
501  * Version of __build_skb() that uses NAPI percpu caches to obtain
502  * skbuff_head instead of inplace allocation.
503  *
504  * Returns a new &sk_buff on success, %NULL on allocation failure.
505  */
506 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
507 {
508 	struct sk_buff *skb;
509 
510 	skb = napi_skb_cache_get();
511 	if (unlikely(!skb))
512 		return NULL;
513 
514 	memset(skb, 0, offsetof(struct sk_buff, tail));
515 	__build_skb_around(skb, data, frag_size);
516 
517 	return skb;
518 }
519 
520 /**
521  * napi_build_skb - build a network buffer
522  * @data: data buffer provided by caller
523  * @frag_size: size of data
524  *
525  * Version of __napi_build_skb() that takes care of skb->head_frag
526  * and skb->pfmemalloc when the data is a page or page fragment.
527  *
528  * Returns a new &sk_buff on success, %NULL on allocation failure.
529  */
530 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
531 {
532 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
533 
534 	if (likely(skb) && frag_size) {
535 		skb->head_frag = 1;
536 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
537 	}
538 
539 	return skb;
540 }
541 EXPORT_SYMBOL(napi_build_skb);
542 
543 /*
544  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
545  * the caller if emergency pfmemalloc reserves are being used. If it is and
546  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
547  * may be used. Otherwise, the packet data may be discarded until enough
548  * memory is free
549  */
550 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
551 			     bool *pfmemalloc)
552 {
553 	bool ret_pfmemalloc = false;
554 	size_t obj_size;
555 	void *obj;
556 
557 	obj_size = SKB_HEAD_ALIGN(*size);
558 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
559 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
560 		obj = kmem_cache_alloc_node(skb_small_head_cache,
561 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
562 				node);
563 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
564 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
565 			goto out;
566 		/* Try again but now we are using pfmemalloc reserves */
567 		ret_pfmemalloc = true;
568 		obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node);
569 		goto out;
570 	}
571 
572 	obj_size = kmalloc_size_roundup(obj_size);
573 	/* The following cast might truncate high-order bits of obj_size, this
574 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
575 	 */
576 	*size = (unsigned int)obj_size;
577 
578 	/*
579 	 * Try a regular allocation, when that fails and we're not entitled
580 	 * to the reserves, fail.
581 	 */
582 	obj = kmalloc_node_track_caller(obj_size,
583 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
584 					node);
585 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
586 		goto out;
587 
588 	/* Try again but now we are using pfmemalloc reserves */
589 	ret_pfmemalloc = true;
590 	obj = kmalloc_node_track_caller(obj_size, flags, node);
591 
592 out:
593 	if (pfmemalloc)
594 		*pfmemalloc = ret_pfmemalloc;
595 
596 	return obj;
597 }
598 
599 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
600  *	'private' fields and also do memory statistics to find all the
601  *	[BEEP] leaks.
602  *
603  */
604 
605 /**
606  *	__alloc_skb	-	allocate a network buffer
607  *	@size: size to allocate
608  *	@gfp_mask: allocation mask
609  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
610  *		instead of head cache and allocate a cloned (child) skb.
611  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
612  *		allocations in case the data is required for writeback
613  *	@node: numa node to allocate memory on
614  *
615  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
616  *	tail room of at least size bytes. The object has a reference count
617  *	of one. The return is the buffer. On a failure the return is %NULL.
618  *
619  *	Buffers may only be allocated from interrupts using a @gfp_mask of
620  *	%GFP_ATOMIC.
621  */
622 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
623 			    int flags, int node)
624 {
625 	struct kmem_cache *cache;
626 	struct sk_buff *skb;
627 	bool pfmemalloc;
628 	u8 *data;
629 
630 	cache = (flags & SKB_ALLOC_FCLONE)
631 		? skbuff_fclone_cache : skbuff_cache;
632 
633 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
634 		gfp_mask |= __GFP_MEMALLOC;
635 
636 	/* Get the HEAD */
637 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
638 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
639 		skb = napi_skb_cache_get();
640 	else
641 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
642 	if (unlikely(!skb))
643 		return NULL;
644 	prefetchw(skb);
645 
646 	/* We do our best to align skb_shared_info on a separate cache
647 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
648 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
649 	 * Both skb->head and skb_shared_info are cache line aligned.
650 	 */
651 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
652 	if (unlikely(!data))
653 		goto nodata;
654 	/* kmalloc_size_roundup() might give us more room than requested.
655 	 * Put skb_shared_info exactly at the end of allocated zone,
656 	 * to allow max possible filling before reallocation.
657 	 */
658 	prefetchw(data + SKB_WITH_OVERHEAD(size));
659 
660 	/*
661 	 * Only clear those fields we need to clear, not those that we will
662 	 * actually initialise below. Hence, don't put any more fields after
663 	 * the tail pointer in struct sk_buff!
664 	 */
665 	memset(skb, 0, offsetof(struct sk_buff, tail));
666 	__build_skb_around(skb, data, size);
667 	skb->pfmemalloc = pfmemalloc;
668 
669 	if (flags & SKB_ALLOC_FCLONE) {
670 		struct sk_buff_fclones *fclones;
671 
672 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
673 
674 		skb->fclone = SKB_FCLONE_ORIG;
675 		refcount_set(&fclones->fclone_ref, 1);
676 	}
677 
678 	return skb;
679 
680 nodata:
681 	kmem_cache_free(cache, skb);
682 	return NULL;
683 }
684 EXPORT_SYMBOL(__alloc_skb);
685 
686 /**
687  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
688  *	@dev: network device to receive on
689  *	@len: length to allocate
690  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
691  *
692  *	Allocate a new &sk_buff and assign it a usage count of one. The
693  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
694  *	the headroom they think they need without accounting for the
695  *	built in space. The built in space is used for optimisations.
696  *
697  *	%NULL is returned if there is no free memory.
698  */
699 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
700 				   gfp_t gfp_mask)
701 {
702 	struct page_frag_cache *nc;
703 	struct sk_buff *skb;
704 	bool pfmemalloc;
705 	void *data;
706 
707 	len += NET_SKB_PAD;
708 
709 	/* If requested length is either too small or too big,
710 	 * we use kmalloc() for skb->head allocation.
711 	 */
712 	if (len <= SKB_WITH_OVERHEAD(1024) ||
713 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
714 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
715 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
716 		if (!skb)
717 			goto skb_fail;
718 		goto skb_success;
719 	}
720 
721 	len = SKB_HEAD_ALIGN(len);
722 
723 	if (sk_memalloc_socks())
724 		gfp_mask |= __GFP_MEMALLOC;
725 
726 	if (in_hardirq() || irqs_disabled()) {
727 		nc = this_cpu_ptr(&netdev_alloc_cache);
728 		data = page_frag_alloc(nc, len, gfp_mask);
729 		pfmemalloc = nc->pfmemalloc;
730 	} else {
731 		local_bh_disable();
732 		nc = this_cpu_ptr(&napi_alloc_cache.page);
733 		data = page_frag_alloc(nc, len, gfp_mask);
734 		pfmemalloc = nc->pfmemalloc;
735 		local_bh_enable();
736 	}
737 
738 	if (unlikely(!data))
739 		return NULL;
740 
741 	skb = __build_skb(data, len);
742 	if (unlikely(!skb)) {
743 		skb_free_frag(data);
744 		return NULL;
745 	}
746 
747 	if (pfmemalloc)
748 		skb->pfmemalloc = 1;
749 	skb->head_frag = 1;
750 
751 skb_success:
752 	skb_reserve(skb, NET_SKB_PAD);
753 	skb->dev = dev;
754 
755 skb_fail:
756 	return skb;
757 }
758 EXPORT_SYMBOL(__netdev_alloc_skb);
759 
760 /**
761  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
762  *	@napi: napi instance this buffer was allocated for
763  *	@len: length to allocate
764  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
765  *
766  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
767  *	attempt to allocate the head from a special reserved region used
768  *	only for NAPI Rx allocation.  By doing this we can save several
769  *	CPU cycles by avoiding having to disable and re-enable IRQs.
770  *
771  *	%NULL is returned if there is no free memory.
772  */
773 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
774 				 gfp_t gfp_mask)
775 {
776 	struct napi_alloc_cache *nc;
777 	struct sk_buff *skb;
778 	bool pfmemalloc;
779 	void *data;
780 
781 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
782 	len += NET_SKB_PAD + NET_IP_ALIGN;
783 
784 	/* If requested length is either too small or too big,
785 	 * we use kmalloc() for skb->head allocation.
786 	 * When the small frag allocator is available, prefer it over kmalloc
787 	 * for small fragments
788 	 */
789 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
790 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
791 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
792 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
793 				  NUMA_NO_NODE);
794 		if (!skb)
795 			goto skb_fail;
796 		goto skb_success;
797 	}
798 
799 	nc = this_cpu_ptr(&napi_alloc_cache);
800 
801 	if (sk_memalloc_socks())
802 		gfp_mask |= __GFP_MEMALLOC;
803 
804 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
805 		/* we are artificially inflating the allocation size, but
806 		 * that is not as bad as it may look like, as:
807 		 * - 'len' less than GRO_MAX_HEAD makes little sense
808 		 * - On most systems, larger 'len' values lead to fragment
809 		 *   size above 512 bytes
810 		 * - kmalloc would use the kmalloc-1k slab for such values
811 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
812 		 *   little networking, as that implies no WiFi and no
813 		 *   tunnels support, and 32 bits arches.
814 		 */
815 		len = SZ_1K;
816 
817 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
818 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
819 	} else {
820 		len = SKB_HEAD_ALIGN(len);
821 
822 		data = page_frag_alloc(&nc->page, len, gfp_mask);
823 		pfmemalloc = nc->page.pfmemalloc;
824 	}
825 
826 	if (unlikely(!data))
827 		return NULL;
828 
829 	skb = __napi_build_skb(data, len);
830 	if (unlikely(!skb)) {
831 		skb_free_frag(data);
832 		return NULL;
833 	}
834 
835 	if (pfmemalloc)
836 		skb->pfmemalloc = 1;
837 	skb->head_frag = 1;
838 
839 skb_success:
840 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
841 	skb->dev = napi->dev;
842 
843 skb_fail:
844 	return skb;
845 }
846 EXPORT_SYMBOL(__napi_alloc_skb);
847 
848 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
849 		     int size, unsigned int truesize)
850 {
851 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
852 
853 	skb_fill_page_desc(skb, i, page, off, size);
854 	skb->len += size;
855 	skb->data_len += size;
856 	skb->truesize += truesize;
857 }
858 EXPORT_SYMBOL(skb_add_rx_frag);
859 
860 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
861 			  unsigned int truesize)
862 {
863 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
864 
865 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
866 
867 	skb_frag_size_add(frag, size);
868 	skb->len += size;
869 	skb->data_len += size;
870 	skb->truesize += truesize;
871 }
872 EXPORT_SYMBOL(skb_coalesce_rx_frag);
873 
874 static void skb_drop_list(struct sk_buff **listp)
875 {
876 	kfree_skb_list(*listp);
877 	*listp = NULL;
878 }
879 
880 static inline void skb_drop_fraglist(struct sk_buff *skb)
881 {
882 	skb_drop_list(&skb_shinfo(skb)->frag_list);
883 }
884 
885 static void skb_clone_fraglist(struct sk_buff *skb)
886 {
887 	struct sk_buff *list;
888 
889 	skb_walk_frags(skb, list)
890 		skb_get(list);
891 }
892 
893 #if IS_ENABLED(CONFIG_PAGE_POOL)
894 bool napi_pp_put_page(struct page *page, bool napi_safe)
895 {
896 	bool allow_direct = false;
897 	struct page_pool *pp;
898 
899 	page = compound_head(page);
900 
901 	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
902 	 * in order to preserve any existing bits, such as bit 0 for the
903 	 * head page of compound page and bit 1 for pfmemalloc page, so
904 	 * mask those bits for freeing side when doing below checking,
905 	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
906 	 * to avoid recycling the pfmemalloc page.
907 	 */
908 	if (unlikely((page->pp_magic & ~0x3UL) != PP_SIGNATURE))
909 		return false;
910 
911 	pp = page->pp;
912 
913 	/* Allow direct recycle if we have reasons to believe that we are
914 	 * in the same context as the consumer would run, so there's
915 	 * no possible race.
916 	 * __page_pool_put_page() makes sure we're not in hardirq context
917 	 * and interrupts are enabled prior to accessing the cache.
918 	 */
919 	if (napi_safe || in_softirq()) {
920 		const struct napi_struct *napi = READ_ONCE(pp->p.napi);
921 
922 		allow_direct = napi &&
923 			READ_ONCE(napi->list_owner) == smp_processor_id();
924 	}
925 
926 	/* Driver set this to memory recycling info. Reset it on recycle.
927 	 * This will *not* work for NIC using a split-page memory model.
928 	 * The page will be returned to the pool here regardless of the
929 	 * 'flipped' fragment being in use or not.
930 	 */
931 	page_pool_put_full_page(pp, page, allow_direct);
932 
933 	return true;
934 }
935 EXPORT_SYMBOL(napi_pp_put_page);
936 #endif
937 
938 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
939 {
940 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
941 		return false;
942 	return napi_pp_put_page(virt_to_page(data), napi_safe);
943 }
944 
945 static void skb_kfree_head(void *head, unsigned int end_offset)
946 {
947 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
948 		kmem_cache_free(skb_small_head_cache, head);
949 	else
950 		kfree(head);
951 }
952 
953 static void skb_free_head(struct sk_buff *skb, bool napi_safe)
954 {
955 	unsigned char *head = skb->head;
956 
957 	if (skb->head_frag) {
958 		if (skb_pp_recycle(skb, head, napi_safe))
959 			return;
960 		skb_free_frag(head);
961 	} else {
962 		skb_kfree_head(head, skb_end_offset(skb));
963 	}
964 }
965 
966 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
967 			     bool napi_safe)
968 {
969 	struct skb_shared_info *shinfo = skb_shinfo(skb);
970 	int i;
971 
972 	if (skb->cloned &&
973 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
974 			      &shinfo->dataref))
975 		goto exit;
976 
977 	if (skb_zcopy(skb)) {
978 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
979 
980 		skb_zcopy_clear(skb, true);
981 		if (skip_unref)
982 			goto free_head;
983 	}
984 
985 	for (i = 0; i < shinfo->nr_frags; i++)
986 		napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
987 
988 free_head:
989 	if (shinfo->frag_list)
990 		kfree_skb_list_reason(shinfo->frag_list, reason);
991 
992 	skb_free_head(skb, napi_safe);
993 exit:
994 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
995 	 * bit is only set on the head though, so in order to avoid races
996 	 * while trying to recycle fragments on __skb_frag_unref() we need
997 	 * to make one SKB responsible for triggering the recycle path.
998 	 * So disable the recycling bit if an SKB is cloned and we have
999 	 * additional references to the fragmented part of the SKB.
1000 	 * Eventually the last SKB will have the recycling bit set and it's
1001 	 * dataref set to 0, which will trigger the recycling
1002 	 */
1003 	skb->pp_recycle = 0;
1004 }
1005 
1006 /*
1007  *	Free an skbuff by memory without cleaning the state.
1008  */
1009 static void kfree_skbmem(struct sk_buff *skb)
1010 {
1011 	struct sk_buff_fclones *fclones;
1012 
1013 	switch (skb->fclone) {
1014 	case SKB_FCLONE_UNAVAILABLE:
1015 		kmem_cache_free(skbuff_cache, skb);
1016 		return;
1017 
1018 	case SKB_FCLONE_ORIG:
1019 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1020 
1021 		/* We usually free the clone (TX completion) before original skb
1022 		 * This test would have no chance to be true for the clone,
1023 		 * while here, branch prediction will be good.
1024 		 */
1025 		if (refcount_read(&fclones->fclone_ref) == 1)
1026 			goto fastpath;
1027 		break;
1028 
1029 	default: /* SKB_FCLONE_CLONE */
1030 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1031 		break;
1032 	}
1033 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1034 		return;
1035 fastpath:
1036 	kmem_cache_free(skbuff_fclone_cache, fclones);
1037 }
1038 
1039 void skb_release_head_state(struct sk_buff *skb)
1040 {
1041 	skb_dst_drop(skb);
1042 	if (skb->destructor) {
1043 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1044 		skb->destructor(skb);
1045 	}
1046 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1047 	nf_conntrack_put(skb_nfct(skb));
1048 #endif
1049 	skb_ext_put(skb);
1050 }
1051 
1052 /* Free everything but the sk_buff shell. */
1053 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
1054 			    bool napi_safe)
1055 {
1056 	skb_release_head_state(skb);
1057 	if (likely(skb->head))
1058 		skb_release_data(skb, reason, napi_safe);
1059 }
1060 
1061 /**
1062  *	__kfree_skb - private function
1063  *	@skb: buffer
1064  *
1065  *	Free an sk_buff. Release anything attached to the buffer.
1066  *	Clean the state. This is an internal helper function. Users should
1067  *	always call kfree_skb
1068  */
1069 
1070 void __kfree_skb(struct sk_buff *skb)
1071 {
1072 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1073 	kfree_skbmem(skb);
1074 }
1075 EXPORT_SYMBOL(__kfree_skb);
1076 
1077 static __always_inline
1078 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1079 {
1080 	if (unlikely(!skb_unref(skb)))
1081 		return false;
1082 
1083 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1084 			       u32_get_bits(reason,
1085 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1086 				SKB_DROP_REASON_SUBSYS_NUM);
1087 
1088 	if (reason == SKB_CONSUMED)
1089 		trace_consume_skb(skb, __builtin_return_address(0));
1090 	else
1091 		trace_kfree_skb(skb, __builtin_return_address(0), reason);
1092 	return true;
1093 }
1094 
1095 /**
1096  *	kfree_skb_reason - free an sk_buff with special reason
1097  *	@skb: buffer to free
1098  *	@reason: reason why this skb is dropped
1099  *
1100  *	Drop a reference to the buffer and free it if the usage count has
1101  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1102  *	tracepoint.
1103  */
1104 void __fix_address
1105 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1106 {
1107 	if (__kfree_skb_reason(skb, reason))
1108 		__kfree_skb(skb);
1109 }
1110 EXPORT_SYMBOL(kfree_skb_reason);
1111 
1112 #define KFREE_SKB_BULK_SIZE	16
1113 
1114 struct skb_free_array {
1115 	unsigned int skb_count;
1116 	void *skb_array[KFREE_SKB_BULK_SIZE];
1117 };
1118 
1119 static void kfree_skb_add_bulk(struct sk_buff *skb,
1120 			       struct skb_free_array *sa,
1121 			       enum skb_drop_reason reason)
1122 {
1123 	/* if SKB is a clone, don't handle this case */
1124 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1125 		__kfree_skb(skb);
1126 		return;
1127 	}
1128 
1129 	skb_release_all(skb, reason, false);
1130 	sa->skb_array[sa->skb_count++] = skb;
1131 
1132 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1133 		kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE,
1134 				     sa->skb_array);
1135 		sa->skb_count = 0;
1136 	}
1137 }
1138 
1139 void __fix_address
1140 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1141 {
1142 	struct skb_free_array sa;
1143 
1144 	sa.skb_count = 0;
1145 
1146 	while (segs) {
1147 		struct sk_buff *next = segs->next;
1148 
1149 		if (__kfree_skb_reason(segs, reason)) {
1150 			skb_poison_list(segs);
1151 			kfree_skb_add_bulk(segs, &sa, reason);
1152 		}
1153 
1154 		segs = next;
1155 	}
1156 
1157 	if (sa.skb_count)
1158 		kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array);
1159 }
1160 EXPORT_SYMBOL(kfree_skb_list_reason);
1161 
1162 /* Dump skb information and contents.
1163  *
1164  * Must only be called from net_ratelimit()-ed paths.
1165  *
1166  * Dumps whole packets if full_pkt, only headers otherwise.
1167  */
1168 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1169 {
1170 	struct skb_shared_info *sh = skb_shinfo(skb);
1171 	struct net_device *dev = skb->dev;
1172 	struct sock *sk = skb->sk;
1173 	struct sk_buff *list_skb;
1174 	bool has_mac, has_trans;
1175 	int headroom, tailroom;
1176 	int i, len, seg_len;
1177 
1178 	if (full_pkt)
1179 		len = skb->len;
1180 	else
1181 		len = min_t(int, skb->len, MAX_HEADER + 128);
1182 
1183 	headroom = skb_headroom(skb);
1184 	tailroom = skb_tailroom(skb);
1185 
1186 	has_mac = skb_mac_header_was_set(skb);
1187 	has_trans = skb_transport_header_was_set(skb);
1188 
1189 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1190 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1191 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1192 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1193 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1194 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1195 	       has_mac ? skb->mac_header : -1,
1196 	       has_mac ? skb_mac_header_len(skb) : -1,
1197 	       skb->network_header,
1198 	       has_trans ? skb_network_header_len(skb) : -1,
1199 	       has_trans ? skb->transport_header : -1,
1200 	       sh->tx_flags, sh->nr_frags,
1201 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1202 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
1203 	       skb->csum_valid, skb->csum_level,
1204 	       skb->hash, skb->sw_hash, skb->l4_hash,
1205 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1206 
1207 	if (dev)
1208 		printk("%sdev name=%s feat=%pNF\n",
1209 		       level, dev->name, &dev->features);
1210 	if (sk)
1211 		printk("%ssk family=%hu type=%u proto=%u\n",
1212 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1213 
1214 	if (full_pkt && headroom)
1215 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1216 			       16, 1, skb->head, headroom, false);
1217 
1218 	seg_len = min_t(int, skb_headlen(skb), len);
1219 	if (seg_len)
1220 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1221 			       16, 1, skb->data, seg_len, false);
1222 	len -= seg_len;
1223 
1224 	if (full_pkt && tailroom)
1225 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1226 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1227 
1228 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1229 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1230 		u32 p_off, p_len, copied;
1231 		struct page *p;
1232 		u8 *vaddr;
1233 
1234 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1235 				      skb_frag_size(frag), p, p_off, p_len,
1236 				      copied) {
1237 			seg_len = min_t(int, p_len, len);
1238 			vaddr = kmap_atomic(p);
1239 			print_hex_dump(level, "skb frag:     ",
1240 				       DUMP_PREFIX_OFFSET,
1241 				       16, 1, vaddr + p_off, seg_len, false);
1242 			kunmap_atomic(vaddr);
1243 			len -= seg_len;
1244 			if (!len)
1245 				break;
1246 		}
1247 	}
1248 
1249 	if (full_pkt && skb_has_frag_list(skb)) {
1250 		printk("skb fraglist:\n");
1251 		skb_walk_frags(skb, list_skb)
1252 			skb_dump(level, list_skb, true);
1253 	}
1254 }
1255 EXPORT_SYMBOL(skb_dump);
1256 
1257 /**
1258  *	skb_tx_error - report an sk_buff xmit error
1259  *	@skb: buffer that triggered an error
1260  *
1261  *	Report xmit error if a device callback is tracking this skb.
1262  *	skb must be freed afterwards.
1263  */
1264 void skb_tx_error(struct sk_buff *skb)
1265 {
1266 	if (skb) {
1267 		skb_zcopy_downgrade_managed(skb);
1268 		skb_zcopy_clear(skb, true);
1269 	}
1270 }
1271 EXPORT_SYMBOL(skb_tx_error);
1272 
1273 #ifdef CONFIG_TRACEPOINTS
1274 /**
1275  *	consume_skb - free an skbuff
1276  *	@skb: buffer to free
1277  *
1278  *	Drop a ref to the buffer and free it if the usage count has hit zero
1279  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1280  *	is being dropped after a failure and notes that
1281  */
1282 void consume_skb(struct sk_buff *skb)
1283 {
1284 	if (!skb_unref(skb))
1285 		return;
1286 
1287 	trace_consume_skb(skb, __builtin_return_address(0));
1288 	__kfree_skb(skb);
1289 }
1290 EXPORT_SYMBOL(consume_skb);
1291 #endif
1292 
1293 /**
1294  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1295  *	@skb: buffer to free
1296  *
1297  *	Alike consume_skb(), but this variant assumes that this is the last
1298  *	skb reference and all the head states have been already dropped
1299  */
1300 void __consume_stateless_skb(struct sk_buff *skb)
1301 {
1302 	trace_consume_skb(skb, __builtin_return_address(0));
1303 	skb_release_data(skb, SKB_CONSUMED, false);
1304 	kfree_skbmem(skb);
1305 }
1306 
1307 static void napi_skb_cache_put(struct sk_buff *skb)
1308 {
1309 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1310 	u32 i;
1311 
1312 	kasan_poison_object_data(skbuff_cache, skb);
1313 	nc->skb_cache[nc->skb_count++] = skb;
1314 
1315 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1316 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1317 			kasan_unpoison_object_data(skbuff_cache,
1318 						   nc->skb_cache[i]);
1319 
1320 		kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF,
1321 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1322 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1323 	}
1324 }
1325 
1326 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1327 {
1328 	skb_release_all(skb, reason, true);
1329 	napi_skb_cache_put(skb);
1330 }
1331 
1332 void napi_skb_free_stolen_head(struct sk_buff *skb)
1333 {
1334 	if (unlikely(skb->slow_gro)) {
1335 		nf_reset_ct(skb);
1336 		skb_dst_drop(skb);
1337 		skb_ext_put(skb);
1338 		skb_orphan(skb);
1339 		skb->slow_gro = 0;
1340 	}
1341 	napi_skb_cache_put(skb);
1342 }
1343 
1344 void napi_consume_skb(struct sk_buff *skb, int budget)
1345 {
1346 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1347 	if (unlikely(!budget)) {
1348 		dev_consume_skb_any(skb);
1349 		return;
1350 	}
1351 
1352 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1353 
1354 	if (!skb_unref(skb))
1355 		return;
1356 
1357 	/* if reaching here SKB is ready to free */
1358 	trace_consume_skb(skb, __builtin_return_address(0));
1359 
1360 	/* if SKB is a clone, don't handle this case */
1361 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1362 		__kfree_skb(skb);
1363 		return;
1364 	}
1365 
1366 	skb_release_all(skb, SKB_CONSUMED, !!budget);
1367 	napi_skb_cache_put(skb);
1368 }
1369 EXPORT_SYMBOL(napi_consume_skb);
1370 
1371 /* Make sure a field is contained by headers group */
1372 #define CHECK_SKB_FIELD(field) \
1373 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1374 		     offsetof(struct sk_buff, headers.field));	\
1375 
1376 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1377 {
1378 	new->tstamp		= old->tstamp;
1379 	/* We do not copy old->sk */
1380 	new->dev		= old->dev;
1381 	memcpy(new->cb, old->cb, sizeof(old->cb));
1382 	skb_dst_copy(new, old);
1383 	__skb_ext_copy(new, old);
1384 	__nf_copy(new, old, false);
1385 
1386 	/* Note : this field could be in the headers group.
1387 	 * It is not yet because we do not want to have a 16 bit hole
1388 	 */
1389 	new->queue_mapping = old->queue_mapping;
1390 
1391 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1392 	CHECK_SKB_FIELD(protocol);
1393 	CHECK_SKB_FIELD(csum);
1394 	CHECK_SKB_FIELD(hash);
1395 	CHECK_SKB_FIELD(priority);
1396 	CHECK_SKB_FIELD(skb_iif);
1397 	CHECK_SKB_FIELD(vlan_proto);
1398 	CHECK_SKB_FIELD(vlan_tci);
1399 	CHECK_SKB_FIELD(transport_header);
1400 	CHECK_SKB_FIELD(network_header);
1401 	CHECK_SKB_FIELD(mac_header);
1402 	CHECK_SKB_FIELD(inner_protocol);
1403 	CHECK_SKB_FIELD(inner_transport_header);
1404 	CHECK_SKB_FIELD(inner_network_header);
1405 	CHECK_SKB_FIELD(inner_mac_header);
1406 	CHECK_SKB_FIELD(mark);
1407 #ifdef CONFIG_NETWORK_SECMARK
1408 	CHECK_SKB_FIELD(secmark);
1409 #endif
1410 #ifdef CONFIG_NET_RX_BUSY_POLL
1411 	CHECK_SKB_FIELD(napi_id);
1412 #endif
1413 	CHECK_SKB_FIELD(alloc_cpu);
1414 #ifdef CONFIG_XPS
1415 	CHECK_SKB_FIELD(sender_cpu);
1416 #endif
1417 #ifdef CONFIG_NET_SCHED
1418 	CHECK_SKB_FIELD(tc_index);
1419 #endif
1420 
1421 }
1422 
1423 /*
1424  * You should not add any new code to this function.  Add it to
1425  * __copy_skb_header above instead.
1426  */
1427 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1428 {
1429 #define C(x) n->x = skb->x
1430 
1431 	n->next = n->prev = NULL;
1432 	n->sk = NULL;
1433 	__copy_skb_header(n, skb);
1434 
1435 	C(len);
1436 	C(data_len);
1437 	C(mac_len);
1438 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1439 	n->cloned = 1;
1440 	n->nohdr = 0;
1441 	n->peeked = 0;
1442 	C(pfmemalloc);
1443 	C(pp_recycle);
1444 	n->destructor = NULL;
1445 	C(tail);
1446 	C(end);
1447 	C(head);
1448 	C(head_frag);
1449 	C(data);
1450 	C(truesize);
1451 	refcount_set(&n->users, 1);
1452 
1453 	atomic_inc(&(skb_shinfo(skb)->dataref));
1454 	skb->cloned = 1;
1455 
1456 	return n;
1457 #undef C
1458 }
1459 
1460 /**
1461  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1462  * @first: first sk_buff of the msg
1463  */
1464 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1465 {
1466 	struct sk_buff *n;
1467 
1468 	n = alloc_skb(0, GFP_ATOMIC);
1469 	if (!n)
1470 		return NULL;
1471 
1472 	n->len = first->len;
1473 	n->data_len = first->len;
1474 	n->truesize = first->truesize;
1475 
1476 	skb_shinfo(n)->frag_list = first;
1477 
1478 	__copy_skb_header(n, first);
1479 	n->destructor = NULL;
1480 
1481 	return n;
1482 }
1483 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1484 
1485 /**
1486  *	skb_morph	-	morph one skb into another
1487  *	@dst: the skb to receive the contents
1488  *	@src: the skb to supply the contents
1489  *
1490  *	This is identical to skb_clone except that the target skb is
1491  *	supplied by the user.
1492  *
1493  *	The target skb is returned upon exit.
1494  */
1495 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1496 {
1497 	skb_release_all(dst, SKB_CONSUMED, false);
1498 	return __skb_clone(dst, src);
1499 }
1500 EXPORT_SYMBOL_GPL(skb_morph);
1501 
1502 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1503 {
1504 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1505 	struct user_struct *user;
1506 
1507 	if (capable(CAP_IPC_LOCK) || !size)
1508 		return 0;
1509 
1510 	rlim = rlimit(RLIMIT_MEMLOCK);
1511 	if (rlim == RLIM_INFINITY)
1512 		return 0;
1513 
1514 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1515 	max_pg = rlim >> PAGE_SHIFT;
1516 	user = mmp->user ? : current_user();
1517 
1518 	old_pg = atomic_long_read(&user->locked_vm);
1519 	do {
1520 		new_pg = old_pg + num_pg;
1521 		if (new_pg > max_pg)
1522 			return -ENOBUFS;
1523 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1524 
1525 	if (!mmp->user) {
1526 		mmp->user = get_uid(user);
1527 		mmp->num_pg = num_pg;
1528 	} else {
1529 		mmp->num_pg += num_pg;
1530 	}
1531 
1532 	return 0;
1533 }
1534 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1535 
1536 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1537 {
1538 	if (mmp->user) {
1539 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1540 		free_uid(mmp->user);
1541 	}
1542 }
1543 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1544 
1545 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1546 {
1547 	struct ubuf_info_msgzc *uarg;
1548 	struct sk_buff *skb;
1549 
1550 	WARN_ON_ONCE(!in_task());
1551 
1552 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1553 	if (!skb)
1554 		return NULL;
1555 
1556 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1557 	uarg = (void *)skb->cb;
1558 	uarg->mmp.user = NULL;
1559 
1560 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1561 		kfree_skb(skb);
1562 		return NULL;
1563 	}
1564 
1565 	uarg->ubuf.callback = msg_zerocopy_callback;
1566 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1567 	uarg->len = 1;
1568 	uarg->bytelen = size;
1569 	uarg->zerocopy = 1;
1570 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1571 	refcount_set(&uarg->ubuf.refcnt, 1);
1572 	sock_hold(sk);
1573 
1574 	return &uarg->ubuf;
1575 }
1576 
1577 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1578 {
1579 	return container_of((void *)uarg, struct sk_buff, cb);
1580 }
1581 
1582 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1583 				       struct ubuf_info *uarg)
1584 {
1585 	if (uarg) {
1586 		struct ubuf_info_msgzc *uarg_zc;
1587 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1588 		u32 bytelen, next;
1589 
1590 		/* there might be non MSG_ZEROCOPY users */
1591 		if (uarg->callback != msg_zerocopy_callback)
1592 			return NULL;
1593 
1594 		/* realloc only when socket is locked (TCP, UDP cork),
1595 		 * so uarg->len and sk_zckey access is serialized
1596 		 */
1597 		if (!sock_owned_by_user(sk)) {
1598 			WARN_ON_ONCE(1);
1599 			return NULL;
1600 		}
1601 
1602 		uarg_zc = uarg_to_msgzc(uarg);
1603 		bytelen = uarg_zc->bytelen + size;
1604 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1605 			/* TCP can create new skb to attach new uarg */
1606 			if (sk->sk_type == SOCK_STREAM)
1607 				goto new_alloc;
1608 			return NULL;
1609 		}
1610 
1611 		next = (u32)atomic_read(&sk->sk_zckey);
1612 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1613 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1614 				return NULL;
1615 			uarg_zc->len++;
1616 			uarg_zc->bytelen = bytelen;
1617 			atomic_set(&sk->sk_zckey, ++next);
1618 
1619 			/* no extra ref when appending to datagram (MSG_MORE) */
1620 			if (sk->sk_type == SOCK_STREAM)
1621 				net_zcopy_get(uarg);
1622 
1623 			return uarg;
1624 		}
1625 	}
1626 
1627 new_alloc:
1628 	return msg_zerocopy_alloc(sk, size);
1629 }
1630 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1631 
1632 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1633 {
1634 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1635 	u32 old_lo, old_hi;
1636 	u64 sum_len;
1637 
1638 	old_lo = serr->ee.ee_info;
1639 	old_hi = serr->ee.ee_data;
1640 	sum_len = old_hi - old_lo + 1ULL + len;
1641 
1642 	if (sum_len >= (1ULL << 32))
1643 		return false;
1644 
1645 	if (lo != old_hi + 1)
1646 		return false;
1647 
1648 	serr->ee.ee_data += len;
1649 	return true;
1650 }
1651 
1652 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1653 {
1654 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1655 	struct sock_exterr_skb *serr;
1656 	struct sock *sk = skb->sk;
1657 	struct sk_buff_head *q;
1658 	unsigned long flags;
1659 	bool is_zerocopy;
1660 	u32 lo, hi;
1661 	u16 len;
1662 
1663 	mm_unaccount_pinned_pages(&uarg->mmp);
1664 
1665 	/* if !len, there was only 1 call, and it was aborted
1666 	 * so do not queue a completion notification
1667 	 */
1668 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1669 		goto release;
1670 
1671 	len = uarg->len;
1672 	lo = uarg->id;
1673 	hi = uarg->id + len - 1;
1674 	is_zerocopy = uarg->zerocopy;
1675 
1676 	serr = SKB_EXT_ERR(skb);
1677 	memset(serr, 0, sizeof(*serr));
1678 	serr->ee.ee_errno = 0;
1679 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1680 	serr->ee.ee_data = hi;
1681 	serr->ee.ee_info = lo;
1682 	if (!is_zerocopy)
1683 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1684 
1685 	q = &sk->sk_error_queue;
1686 	spin_lock_irqsave(&q->lock, flags);
1687 	tail = skb_peek_tail(q);
1688 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1689 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1690 		__skb_queue_tail(q, skb);
1691 		skb = NULL;
1692 	}
1693 	spin_unlock_irqrestore(&q->lock, flags);
1694 
1695 	sk_error_report(sk);
1696 
1697 release:
1698 	consume_skb(skb);
1699 	sock_put(sk);
1700 }
1701 
1702 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1703 			   bool success)
1704 {
1705 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1706 
1707 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1708 
1709 	if (refcount_dec_and_test(&uarg->refcnt))
1710 		__msg_zerocopy_callback(uarg_zc);
1711 }
1712 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1713 
1714 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1715 {
1716 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1717 
1718 	atomic_dec(&sk->sk_zckey);
1719 	uarg_to_msgzc(uarg)->len--;
1720 
1721 	if (have_uref)
1722 		msg_zerocopy_callback(NULL, uarg, true);
1723 }
1724 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1725 
1726 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1727 			     struct msghdr *msg, int len,
1728 			     struct ubuf_info *uarg)
1729 {
1730 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1731 	int err, orig_len = skb->len;
1732 
1733 	/* An skb can only point to one uarg. This edge case happens when
1734 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1735 	 */
1736 	if (orig_uarg && uarg != orig_uarg)
1737 		return -EEXIST;
1738 
1739 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1740 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1741 		struct sock *save_sk = skb->sk;
1742 
1743 		/* Streams do not free skb on error. Reset to prev state. */
1744 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1745 		skb->sk = sk;
1746 		___pskb_trim(skb, orig_len);
1747 		skb->sk = save_sk;
1748 		return err;
1749 	}
1750 
1751 	skb_zcopy_set(skb, uarg, NULL);
1752 	return skb->len - orig_len;
1753 }
1754 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1755 
1756 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1757 {
1758 	int i;
1759 
1760 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1761 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1762 		skb_frag_ref(skb, i);
1763 }
1764 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1765 
1766 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1767 			      gfp_t gfp_mask)
1768 {
1769 	if (skb_zcopy(orig)) {
1770 		if (skb_zcopy(nskb)) {
1771 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1772 			if (!gfp_mask) {
1773 				WARN_ON_ONCE(1);
1774 				return -ENOMEM;
1775 			}
1776 			if (skb_uarg(nskb) == skb_uarg(orig))
1777 				return 0;
1778 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1779 				return -EIO;
1780 		}
1781 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1782 	}
1783 	return 0;
1784 }
1785 
1786 /**
1787  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1788  *	@skb: the skb to modify
1789  *	@gfp_mask: allocation priority
1790  *
1791  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1792  *	It will copy all frags into kernel and drop the reference
1793  *	to userspace pages.
1794  *
1795  *	If this function is called from an interrupt gfp_mask() must be
1796  *	%GFP_ATOMIC.
1797  *
1798  *	Returns 0 on success or a negative error code on failure
1799  *	to allocate kernel memory to copy to.
1800  */
1801 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1802 {
1803 	int num_frags = skb_shinfo(skb)->nr_frags;
1804 	struct page *page, *head = NULL;
1805 	int i, order, psize, new_frags;
1806 	u32 d_off;
1807 
1808 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1809 		return -EINVAL;
1810 
1811 	if (!num_frags)
1812 		goto release;
1813 
1814 	/* We might have to allocate high order pages, so compute what minimum
1815 	 * page order is needed.
1816 	 */
1817 	order = 0;
1818 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1819 		order++;
1820 	psize = (PAGE_SIZE << order);
1821 
1822 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1823 	for (i = 0; i < new_frags; i++) {
1824 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1825 		if (!page) {
1826 			while (head) {
1827 				struct page *next = (struct page *)page_private(head);
1828 				put_page(head);
1829 				head = next;
1830 			}
1831 			return -ENOMEM;
1832 		}
1833 		set_page_private(page, (unsigned long)head);
1834 		head = page;
1835 	}
1836 
1837 	page = head;
1838 	d_off = 0;
1839 	for (i = 0; i < num_frags; i++) {
1840 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1841 		u32 p_off, p_len, copied;
1842 		struct page *p;
1843 		u8 *vaddr;
1844 
1845 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1846 				      p, p_off, p_len, copied) {
1847 			u32 copy, done = 0;
1848 			vaddr = kmap_atomic(p);
1849 
1850 			while (done < p_len) {
1851 				if (d_off == psize) {
1852 					d_off = 0;
1853 					page = (struct page *)page_private(page);
1854 				}
1855 				copy = min_t(u32, psize - d_off, p_len - done);
1856 				memcpy(page_address(page) + d_off,
1857 				       vaddr + p_off + done, copy);
1858 				done += copy;
1859 				d_off += copy;
1860 			}
1861 			kunmap_atomic(vaddr);
1862 		}
1863 	}
1864 
1865 	/* skb frags release userspace buffers */
1866 	for (i = 0; i < num_frags; i++)
1867 		skb_frag_unref(skb, i);
1868 
1869 	/* skb frags point to kernel buffers */
1870 	for (i = 0; i < new_frags - 1; i++) {
1871 		__skb_fill_page_desc(skb, i, head, 0, psize);
1872 		head = (struct page *)page_private(head);
1873 	}
1874 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1875 	skb_shinfo(skb)->nr_frags = new_frags;
1876 
1877 release:
1878 	skb_zcopy_clear(skb, false);
1879 	return 0;
1880 }
1881 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1882 
1883 /**
1884  *	skb_clone	-	duplicate an sk_buff
1885  *	@skb: buffer to clone
1886  *	@gfp_mask: allocation priority
1887  *
1888  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1889  *	copies share the same packet data but not structure. The new
1890  *	buffer has a reference count of 1. If the allocation fails the
1891  *	function returns %NULL otherwise the new buffer is returned.
1892  *
1893  *	If this function is called from an interrupt gfp_mask() must be
1894  *	%GFP_ATOMIC.
1895  */
1896 
1897 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1898 {
1899 	struct sk_buff_fclones *fclones = container_of(skb,
1900 						       struct sk_buff_fclones,
1901 						       skb1);
1902 	struct sk_buff *n;
1903 
1904 	if (skb_orphan_frags(skb, gfp_mask))
1905 		return NULL;
1906 
1907 	if (skb->fclone == SKB_FCLONE_ORIG &&
1908 	    refcount_read(&fclones->fclone_ref) == 1) {
1909 		n = &fclones->skb2;
1910 		refcount_set(&fclones->fclone_ref, 2);
1911 		n->fclone = SKB_FCLONE_CLONE;
1912 	} else {
1913 		if (skb_pfmemalloc(skb))
1914 			gfp_mask |= __GFP_MEMALLOC;
1915 
1916 		n = kmem_cache_alloc(skbuff_cache, gfp_mask);
1917 		if (!n)
1918 			return NULL;
1919 
1920 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1921 	}
1922 
1923 	return __skb_clone(n, skb);
1924 }
1925 EXPORT_SYMBOL(skb_clone);
1926 
1927 void skb_headers_offset_update(struct sk_buff *skb, int off)
1928 {
1929 	/* Only adjust this if it actually is csum_start rather than csum */
1930 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1931 		skb->csum_start += off;
1932 	/* {transport,network,mac}_header and tail are relative to skb->head */
1933 	skb->transport_header += off;
1934 	skb->network_header   += off;
1935 	if (skb_mac_header_was_set(skb))
1936 		skb->mac_header += off;
1937 	skb->inner_transport_header += off;
1938 	skb->inner_network_header += off;
1939 	skb->inner_mac_header += off;
1940 }
1941 EXPORT_SYMBOL(skb_headers_offset_update);
1942 
1943 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1944 {
1945 	__copy_skb_header(new, old);
1946 
1947 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1948 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1949 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1950 }
1951 EXPORT_SYMBOL(skb_copy_header);
1952 
1953 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1954 {
1955 	if (skb_pfmemalloc(skb))
1956 		return SKB_ALLOC_RX;
1957 	return 0;
1958 }
1959 
1960 /**
1961  *	skb_copy	-	create private copy of an sk_buff
1962  *	@skb: buffer to copy
1963  *	@gfp_mask: allocation priority
1964  *
1965  *	Make a copy of both an &sk_buff and its data. This is used when the
1966  *	caller wishes to modify the data and needs a private copy of the
1967  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1968  *	on success. The returned buffer has a reference count of 1.
1969  *
1970  *	As by-product this function converts non-linear &sk_buff to linear
1971  *	one, so that &sk_buff becomes completely private and caller is allowed
1972  *	to modify all the data of returned buffer. This means that this
1973  *	function is not recommended for use in circumstances when only
1974  *	header is going to be modified. Use pskb_copy() instead.
1975  */
1976 
1977 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1978 {
1979 	int headerlen = skb_headroom(skb);
1980 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1981 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1982 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1983 
1984 	if (!n)
1985 		return NULL;
1986 
1987 	/* Set the data pointer */
1988 	skb_reserve(n, headerlen);
1989 	/* Set the tail pointer and length */
1990 	skb_put(n, skb->len);
1991 
1992 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1993 
1994 	skb_copy_header(n, skb);
1995 	return n;
1996 }
1997 EXPORT_SYMBOL(skb_copy);
1998 
1999 /**
2000  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2001  *	@skb: buffer to copy
2002  *	@headroom: headroom of new skb
2003  *	@gfp_mask: allocation priority
2004  *	@fclone: if true allocate the copy of the skb from the fclone
2005  *	cache instead of the head cache; it is recommended to set this
2006  *	to true for the cases where the copy will likely be cloned
2007  *
2008  *	Make a copy of both an &sk_buff and part of its data, located
2009  *	in header. Fragmented data remain shared. This is used when
2010  *	the caller wishes to modify only header of &sk_buff and needs
2011  *	private copy of the header to alter. Returns %NULL on failure
2012  *	or the pointer to the buffer on success.
2013  *	The returned buffer has a reference count of 1.
2014  */
2015 
2016 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2017 				   gfp_t gfp_mask, bool fclone)
2018 {
2019 	unsigned int size = skb_headlen(skb) + headroom;
2020 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2021 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2022 
2023 	if (!n)
2024 		goto out;
2025 
2026 	/* Set the data pointer */
2027 	skb_reserve(n, headroom);
2028 	/* Set the tail pointer and length */
2029 	skb_put(n, skb_headlen(skb));
2030 	/* Copy the bytes */
2031 	skb_copy_from_linear_data(skb, n->data, n->len);
2032 
2033 	n->truesize += skb->data_len;
2034 	n->data_len  = skb->data_len;
2035 	n->len	     = skb->len;
2036 
2037 	if (skb_shinfo(skb)->nr_frags) {
2038 		int i;
2039 
2040 		if (skb_orphan_frags(skb, gfp_mask) ||
2041 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2042 			kfree_skb(n);
2043 			n = NULL;
2044 			goto out;
2045 		}
2046 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2047 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2048 			skb_frag_ref(skb, i);
2049 		}
2050 		skb_shinfo(n)->nr_frags = i;
2051 	}
2052 
2053 	if (skb_has_frag_list(skb)) {
2054 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2055 		skb_clone_fraglist(n);
2056 	}
2057 
2058 	skb_copy_header(n, skb);
2059 out:
2060 	return n;
2061 }
2062 EXPORT_SYMBOL(__pskb_copy_fclone);
2063 
2064 /**
2065  *	pskb_expand_head - reallocate header of &sk_buff
2066  *	@skb: buffer to reallocate
2067  *	@nhead: room to add at head
2068  *	@ntail: room to add at tail
2069  *	@gfp_mask: allocation priority
2070  *
2071  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2072  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2073  *	reference count of 1. Returns zero in the case of success or error,
2074  *	if expansion failed. In the last case, &sk_buff is not changed.
2075  *
2076  *	All the pointers pointing into skb header may change and must be
2077  *	reloaded after call to this function.
2078  */
2079 
2080 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2081 		     gfp_t gfp_mask)
2082 {
2083 	unsigned int osize = skb_end_offset(skb);
2084 	unsigned int size = osize + nhead + ntail;
2085 	long off;
2086 	u8 *data;
2087 	int i;
2088 
2089 	BUG_ON(nhead < 0);
2090 
2091 	BUG_ON(skb_shared(skb));
2092 
2093 	skb_zcopy_downgrade_managed(skb);
2094 
2095 	if (skb_pfmemalloc(skb))
2096 		gfp_mask |= __GFP_MEMALLOC;
2097 
2098 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2099 	if (!data)
2100 		goto nodata;
2101 	size = SKB_WITH_OVERHEAD(size);
2102 
2103 	/* Copy only real data... and, alas, header. This should be
2104 	 * optimized for the cases when header is void.
2105 	 */
2106 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2107 
2108 	memcpy((struct skb_shared_info *)(data + size),
2109 	       skb_shinfo(skb),
2110 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2111 
2112 	/*
2113 	 * if shinfo is shared we must drop the old head gracefully, but if it
2114 	 * is not we can just drop the old head and let the existing refcount
2115 	 * be since all we did is relocate the values
2116 	 */
2117 	if (skb_cloned(skb)) {
2118 		if (skb_orphan_frags(skb, gfp_mask))
2119 			goto nofrags;
2120 		if (skb_zcopy(skb))
2121 			refcount_inc(&skb_uarg(skb)->refcnt);
2122 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2123 			skb_frag_ref(skb, i);
2124 
2125 		if (skb_has_frag_list(skb))
2126 			skb_clone_fraglist(skb);
2127 
2128 		skb_release_data(skb, SKB_CONSUMED, false);
2129 	} else {
2130 		skb_free_head(skb, false);
2131 	}
2132 	off = (data + nhead) - skb->head;
2133 
2134 	skb->head     = data;
2135 	skb->head_frag = 0;
2136 	skb->data    += off;
2137 
2138 	skb_set_end_offset(skb, size);
2139 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2140 	off           = nhead;
2141 #endif
2142 	skb->tail	      += off;
2143 	skb_headers_offset_update(skb, nhead);
2144 	skb->cloned   = 0;
2145 	skb->hdr_len  = 0;
2146 	skb->nohdr    = 0;
2147 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2148 
2149 	skb_metadata_clear(skb);
2150 
2151 	/* It is not generally safe to change skb->truesize.
2152 	 * For the moment, we really care of rx path, or
2153 	 * when skb is orphaned (not attached to a socket).
2154 	 */
2155 	if (!skb->sk || skb->destructor == sock_edemux)
2156 		skb->truesize += size - osize;
2157 
2158 	return 0;
2159 
2160 nofrags:
2161 	skb_kfree_head(data, size);
2162 nodata:
2163 	return -ENOMEM;
2164 }
2165 EXPORT_SYMBOL(pskb_expand_head);
2166 
2167 /* Make private copy of skb with writable head and some headroom */
2168 
2169 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2170 {
2171 	struct sk_buff *skb2;
2172 	int delta = headroom - skb_headroom(skb);
2173 
2174 	if (delta <= 0)
2175 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2176 	else {
2177 		skb2 = skb_clone(skb, GFP_ATOMIC);
2178 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2179 					     GFP_ATOMIC)) {
2180 			kfree_skb(skb2);
2181 			skb2 = NULL;
2182 		}
2183 	}
2184 	return skb2;
2185 }
2186 EXPORT_SYMBOL(skb_realloc_headroom);
2187 
2188 /* Note: We plan to rework this in linux-6.4 */
2189 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2190 {
2191 	unsigned int saved_end_offset, saved_truesize;
2192 	struct skb_shared_info *shinfo;
2193 	int res;
2194 
2195 	saved_end_offset = skb_end_offset(skb);
2196 	saved_truesize = skb->truesize;
2197 
2198 	res = pskb_expand_head(skb, 0, 0, pri);
2199 	if (res)
2200 		return res;
2201 
2202 	skb->truesize = saved_truesize;
2203 
2204 	if (likely(skb_end_offset(skb) == saved_end_offset))
2205 		return 0;
2206 
2207 	/* We can not change skb->end if the original or new value
2208 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2209 	 */
2210 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2211 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2212 		/* We think this path should not be taken.
2213 		 * Add a temporary trace to warn us just in case.
2214 		 */
2215 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2216 			    saved_end_offset, skb_end_offset(skb));
2217 		WARN_ON_ONCE(1);
2218 		return 0;
2219 	}
2220 
2221 	shinfo = skb_shinfo(skb);
2222 
2223 	/* We are about to change back skb->end,
2224 	 * we need to move skb_shinfo() to its new location.
2225 	 */
2226 	memmove(skb->head + saved_end_offset,
2227 		shinfo,
2228 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2229 
2230 	skb_set_end_offset(skb, saved_end_offset);
2231 
2232 	return 0;
2233 }
2234 
2235 /**
2236  *	skb_expand_head - reallocate header of &sk_buff
2237  *	@skb: buffer to reallocate
2238  *	@headroom: needed headroom
2239  *
2240  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2241  *	if possible; copies skb->sk to new skb as needed
2242  *	and frees original skb in case of failures.
2243  *
2244  *	It expect increased headroom and generates warning otherwise.
2245  */
2246 
2247 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2248 {
2249 	int delta = headroom - skb_headroom(skb);
2250 	int osize = skb_end_offset(skb);
2251 	struct sock *sk = skb->sk;
2252 
2253 	if (WARN_ONCE(delta <= 0,
2254 		      "%s is expecting an increase in the headroom", __func__))
2255 		return skb;
2256 
2257 	delta = SKB_DATA_ALIGN(delta);
2258 	/* pskb_expand_head() might crash, if skb is shared. */
2259 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2260 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2261 
2262 		if (unlikely(!nskb))
2263 			goto fail;
2264 
2265 		if (sk)
2266 			skb_set_owner_w(nskb, sk);
2267 		consume_skb(skb);
2268 		skb = nskb;
2269 	}
2270 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2271 		goto fail;
2272 
2273 	if (sk && is_skb_wmem(skb)) {
2274 		delta = skb_end_offset(skb) - osize;
2275 		refcount_add(delta, &sk->sk_wmem_alloc);
2276 		skb->truesize += delta;
2277 	}
2278 	return skb;
2279 
2280 fail:
2281 	kfree_skb(skb);
2282 	return NULL;
2283 }
2284 EXPORT_SYMBOL(skb_expand_head);
2285 
2286 /**
2287  *	skb_copy_expand	-	copy and expand sk_buff
2288  *	@skb: buffer to copy
2289  *	@newheadroom: new free bytes at head
2290  *	@newtailroom: new free bytes at tail
2291  *	@gfp_mask: allocation priority
2292  *
2293  *	Make a copy of both an &sk_buff and its data and while doing so
2294  *	allocate additional space.
2295  *
2296  *	This is used when the caller wishes to modify the data and needs a
2297  *	private copy of the data to alter as well as more space for new fields.
2298  *	Returns %NULL on failure or the pointer to the buffer
2299  *	on success. The returned buffer has a reference count of 1.
2300  *
2301  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2302  *	is called from an interrupt.
2303  */
2304 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2305 				int newheadroom, int newtailroom,
2306 				gfp_t gfp_mask)
2307 {
2308 	/*
2309 	 *	Allocate the copy buffer
2310 	 */
2311 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2312 					gfp_mask, skb_alloc_rx_flag(skb),
2313 					NUMA_NO_NODE);
2314 	int oldheadroom = skb_headroom(skb);
2315 	int head_copy_len, head_copy_off;
2316 
2317 	if (!n)
2318 		return NULL;
2319 
2320 	skb_reserve(n, newheadroom);
2321 
2322 	/* Set the tail pointer and length */
2323 	skb_put(n, skb->len);
2324 
2325 	head_copy_len = oldheadroom;
2326 	head_copy_off = 0;
2327 	if (newheadroom <= head_copy_len)
2328 		head_copy_len = newheadroom;
2329 	else
2330 		head_copy_off = newheadroom - head_copy_len;
2331 
2332 	/* Copy the linear header and data. */
2333 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2334 			     skb->len + head_copy_len));
2335 
2336 	skb_copy_header(n, skb);
2337 
2338 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2339 
2340 	return n;
2341 }
2342 EXPORT_SYMBOL(skb_copy_expand);
2343 
2344 /**
2345  *	__skb_pad		-	zero pad the tail of an skb
2346  *	@skb: buffer to pad
2347  *	@pad: space to pad
2348  *	@free_on_error: free buffer on error
2349  *
2350  *	Ensure that a buffer is followed by a padding area that is zero
2351  *	filled. Used by network drivers which may DMA or transfer data
2352  *	beyond the buffer end onto the wire.
2353  *
2354  *	May return error in out of memory cases. The skb is freed on error
2355  *	if @free_on_error is true.
2356  */
2357 
2358 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2359 {
2360 	int err;
2361 	int ntail;
2362 
2363 	/* If the skbuff is non linear tailroom is always zero.. */
2364 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2365 		memset(skb->data+skb->len, 0, pad);
2366 		return 0;
2367 	}
2368 
2369 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2370 	if (likely(skb_cloned(skb) || ntail > 0)) {
2371 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2372 		if (unlikely(err))
2373 			goto free_skb;
2374 	}
2375 
2376 	/* FIXME: The use of this function with non-linear skb's really needs
2377 	 * to be audited.
2378 	 */
2379 	err = skb_linearize(skb);
2380 	if (unlikely(err))
2381 		goto free_skb;
2382 
2383 	memset(skb->data + skb->len, 0, pad);
2384 	return 0;
2385 
2386 free_skb:
2387 	if (free_on_error)
2388 		kfree_skb(skb);
2389 	return err;
2390 }
2391 EXPORT_SYMBOL(__skb_pad);
2392 
2393 /**
2394  *	pskb_put - add data to the tail of a potentially fragmented buffer
2395  *	@skb: start of the buffer to use
2396  *	@tail: tail fragment of the buffer to use
2397  *	@len: amount of data to add
2398  *
2399  *	This function extends the used data area of the potentially
2400  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2401  *	@skb itself. If this would exceed the total buffer size the kernel
2402  *	will panic. A pointer to the first byte of the extra data is
2403  *	returned.
2404  */
2405 
2406 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2407 {
2408 	if (tail != skb) {
2409 		skb->data_len += len;
2410 		skb->len += len;
2411 	}
2412 	return skb_put(tail, len);
2413 }
2414 EXPORT_SYMBOL_GPL(pskb_put);
2415 
2416 /**
2417  *	skb_put - add data to a buffer
2418  *	@skb: buffer to use
2419  *	@len: amount of data to add
2420  *
2421  *	This function extends the used data area of the buffer. If this would
2422  *	exceed the total buffer size the kernel will panic. A pointer to the
2423  *	first byte of the extra data is returned.
2424  */
2425 void *skb_put(struct sk_buff *skb, unsigned int len)
2426 {
2427 	void *tmp = skb_tail_pointer(skb);
2428 	SKB_LINEAR_ASSERT(skb);
2429 	skb->tail += len;
2430 	skb->len  += len;
2431 	if (unlikely(skb->tail > skb->end))
2432 		skb_over_panic(skb, len, __builtin_return_address(0));
2433 	return tmp;
2434 }
2435 EXPORT_SYMBOL(skb_put);
2436 
2437 /**
2438  *	skb_push - add data to the start of a buffer
2439  *	@skb: buffer to use
2440  *	@len: amount of data to add
2441  *
2442  *	This function extends the used data area of the buffer at the buffer
2443  *	start. If this would exceed the total buffer headroom the kernel will
2444  *	panic. A pointer to the first byte of the extra data is returned.
2445  */
2446 void *skb_push(struct sk_buff *skb, unsigned int len)
2447 {
2448 	skb->data -= len;
2449 	skb->len  += len;
2450 	if (unlikely(skb->data < skb->head))
2451 		skb_under_panic(skb, len, __builtin_return_address(0));
2452 	return skb->data;
2453 }
2454 EXPORT_SYMBOL(skb_push);
2455 
2456 /**
2457  *	skb_pull - remove data from the start of a buffer
2458  *	@skb: buffer to use
2459  *	@len: amount of data to remove
2460  *
2461  *	This function removes data from the start of a buffer, returning
2462  *	the memory to the headroom. A pointer to the next data in the buffer
2463  *	is returned. Once the data has been pulled future pushes will overwrite
2464  *	the old data.
2465  */
2466 void *skb_pull(struct sk_buff *skb, unsigned int len)
2467 {
2468 	return skb_pull_inline(skb, len);
2469 }
2470 EXPORT_SYMBOL(skb_pull);
2471 
2472 /**
2473  *	skb_pull_data - remove data from the start of a buffer returning its
2474  *	original position.
2475  *	@skb: buffer to use
2476  *	@len: amount of data to remove
2477  *
2478  *	This function removes data from the start of a buffer, returning
2479  *	the memory to the headroom. A pointer to the original data in the buffer
2480  *	is returned after checking if there is enough data to pull. Once the
2481  *	data has been pulled future pushes will overwrite the old data.
2482  */
2483 void *skb_pull_data(struct sk_buff *skb, size_t len)
2484 {
2485 	void *data = skb->data;
2486 
2487 	if (skb->len < len)
2488 		return NULL;
2489 
2490 	skb_pull(skb, len);
2491 
2492 	return data;
2493 }
2494 EXPORT_SYMBOL(skb_pull_data);
2495 
2496 /**
2497  *	skb_trim - remove end from a buffer
2498  *	@skb: buffer to alter
2499  *	@len: new length
2500  *
2501  *	Cut the length of a buffer down by removing data from the tail. If
2502  *	the buffer is already under the length specified it is not modified.
2503  *	The skb must be linear.
2504  */
2505 void skb_trim(struct sk_buff *skb, unsigned int len)
2506 {
2507 	if (skb->len > len)
2508 		__skb_trim(skb, len);
2509 }
2510 EXPORT_SYMBOL(skb_trim);
2511 
2512 /* Trims skb to length len. It can change skb pointers.
2513  */
2514 
2515 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2516 {
2517 	struct sk_buff **fragp;
2518 	struct sk_buff *frag;
2519 	int offset = skb_headlen(skb);
2520 	int nfrags = skb_shinfo(skb)->nr_frags;
2521 	int i;
2522 	int err;
2523 
2524 	if (skb_cloned(skb) &&
2525 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2526 		return err;
2527 
2528 	i = 0;
2529 	if (offset >= len)
2530 		goto drop_pages;
2531 
2532 	for (; i < nfrags; i++) {
2533 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2534 
2535 		if (end < len) {
2536 			offset = end;
2537 			continue;
2538 		}
2539 
2540 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2541 
2542 drop_pages:
2543 		skb_shinfo(skb)->nr_frags = i;
2544 
2545 		for (; i < nfrags; i++)
2546 			skb_frag_unref(skb, i);
2547 
2548 		if (skb_has_frag_list(skb))
2549 			skb_drop_fraglist(skb);
2550 		goto done;
2551 	}
2552 
2553 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2554 	     fragp = &frag->next) {
2555 		int end = offset + frag->len;
2556 
2557 		if (skb_shared(frag)) {
2558 			struct sk_buff *nfrag;
2559 
2560 			nfrag = skb_clone(frag, GFP_ATOMIC);
2561 			if (unlikely(!nfrag))
2562 				return -ENOMEM;
2563 
2564 			nfrag->next = frag->next;
2565 			consume_skb(frag);
2566 			frag = nfrag;
2567 			*fragp = frag;
2568 		}
2569 
2570 		if (end < len) {
2571 			offset = end;
2572 			continue;
2573 		}
2574 
2575 		if (end > len &&
2576 		    unlikely((err = pskb_trim(frag, len - offset))))
2577 			return err;
2578 
2579 		if (frag->next)
2580 			skb_drop_list(&frag->next);
2581 		break;
2582 	}
2583 
2584 done:
2585 	if (len > skb_headlen(skb)) {
2586 		skb->data_len -= skb->len - len;
2587 		skb->len       = len;
2588 	} else {
2589 		skb->len       = len;
2590 		skb->data_len  = 0;
2591 		skb_set_tail_pointer(skb, len);
2592 	}
2593 
2594 	if (!skb->sk || skb->destructor == sock_edemux)
2595 		skb_condense(skb);
2596 	return 0;
2597 }
2598 EXPORT_SYMBOL(___pskb_trim);
2599 
2600 /* Note : use pskb_trim_rcsum() instead of calling this directly
2601  */
2602 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2603 {
2604 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2605 		int delta = skb->len - len;
2606 
2607 		skb->csum = csum_block_sub(skb->csum,
2608 					   skb_checksum(skb, len, delta, 0),
2609 					   len);
2610 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2611 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2612 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2613 
2614 		if (offset + sizeof(__sum16) > hdlen)
2615 			return -EINVAL;
2616 	}
2617 	return __pskb_trim(skb, len);
2618 }
2619 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2620 
2621 /**
2622  *	__pskb_pull_tail - advance tail of skb header
2623  *	@skb: buffer to reallocate
2624  *	@delta: number of bytes to advance tail
2625  *
2626  *	The function makes a sense only on a fragmented &sk_buff,
2627  *	it expands header moving its tail forward and copying necessary
2628  *	data from fragmented part.
2629  *
2630  *	&sk_buff MUST have reference count of 1.
2631  *
2632  *	Returns %NULL (and &sk_buff does not change) if pull failed
2633  *	or value of new tail of skb in the case of success.
2634  *
2635  *	All the pointers pointing into skb header may change and must be
2636  *	reloaded after call to this function.
2637  */
2638 
2639 /* Moves tail of skb head forward, copying data from fragmented part,
2640  * when it is necessary.
2641  * 1. It may fail due to malloc failure.
2642  * 2. It may change skb pointers.
2643  *
2644  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2645  */
2646 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2647 {
2648 	/* If skb has not enough free space at tail, get new one
2649 	 * plus 128 bytes for future expansions. If we have enough
2650 	 * room at tail, reallocate without expansion only if skb is cloned.
2651 	 */
2652 	int i, k, eat = (skb->tail + delta) - skb->end;
2653 
2654 	if (eat > 0 || skb_cloned(skb)) {
2655 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2656 				     GFP_ATOMIC))
2657 			return NULL;
2658 	}
2659 
2660 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2661 			     skb_tail_pointer(skb), delta));
2662 
2663 	/* Optimization: no fragments, no reasons to preestimate
2664 	 * size of pulled pages. Superb.
2665 	 */
2666 	if (!skb_has_frag_list(skb))
2667 		goto pull_pages;
2668 
2669 	/* Estimate size of pulled pages. */
2670 	eat = delta;
2671 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2672 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2673 
2674 		if (size >= eat)
2675 			goto pull_pages;
2676 		eat -= size;
2677 	}
2678 
2679 	/* If we need update frag list, we are in troubles.
2680 	 * Certainly, it is possible to add an offset to skb data,
2681 	 * but taking into account that pulling is expected to
2682 	 * be very rare operation, it is worth to fight against
2683 	 * further bloating skb head and crucify ourselves here instead.
2684 	 * Pure masohism, indeed. 8)8)
2685 	 */
2686 	if (eat) {
2687 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2688 		struct sk_buff *clone = NULL;
2689 		struct sk_buff *insp = NULL;
2690 
2691 		do {
2692 			if (list->len <= eat) {
2693 				/* Eaten as whole. */
2694 				eat -= list->len;
2695 				list = list->next;
2696 				insp = list;
2697 			} else {
2698 				/* Eaten partially. */
2699 				if (skb_is_gso(skb) && !list->head_frag &&
2700 				    skb_headlen(list))
2701 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2702 
2703 				if (skb_shared(list)) {
2704 					/* Sucks! We need to fork list. :-( */
2705 					clone = skb_clone(list, GFP_ATOMIC);
2706 					if (!clone)
2707 						return NULL;
2708 					insp = list->next;
2709 					list = clone;
2710 				} else {
2711 					/* This may be pulled without
2712 					 * problems. */
2713 					insp = list;
2714 				}
2715 				if (!pskb_pull(list, eat)) {
2716 					kfree_skb(clone);
2717 					return NULL;
2718 				}
2719 				break;
2720 			}
2721 		} while (eat);
2722 
2723 		/* Free pulled out fragments. */
2724 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2725 			skb_shinfo(skb)->frag_list = list->next;
2726 			consume_skb(list);
2727 		}
2728 		/* And insert new clone at head. */
2729 		if (clone) {
2730 			clone->next = list;
2731 			skb_shinfo(skb)->frag_list = clone;
2732 		}
2733 	}
2734 	/* Success! Now we may commit changes to skb data. */
2735 
2736 pull_pages:
2737 	eat = delta;
2738 	k = 0;
2739 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2740 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2741 
2742 		if (size <= eat) {
2743 			skb_frag_unref(skb, i);
2744 			eat -= size;
2745 		} else {
2746 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2747 
2748 			*frag = skb_shinfo(skb)->frags[i];
2749 			if (eat) {
2750 				skb_frag_off_add(frag, eat);
2751 				skb_frag_size_sub(frag, eat);
2752 				if (!i)
2753 					goto end;
2754 				eat = 0;
2755 			}
2756 			k++;
2757 		}
2758 	}
2759 	skb_shinfo(skb)->nr_frags = k;
2760 
2761 end:
2762 	skb->tail     += delta;
2763 	skb->data_len -= delta;
2764 
2765 	if (!skb->data_len)
2766 		skb_zcopy_clear(skb, false);
2767 
2768 	return skb_tail_pointer(skb);
2769 }
2770 EXPORT_SYMBOL(__pskb_pull_tail);
2771 
2772 /**
2773  *	skb_copy_bits - copy bits from skb to kernel buffer
2774  *	@skb: source skb
2775  *	@offset: offset in source
2776  *	@to: destination buffer
2777  *	@len: number of bytes to copy
2778  *
2779  *	Copy the specified number of bytes from the source skb to the
2780  *	destination buffer.
2781  *
2782  *	CAUTION ! :
2783  *		If its prototype is ever changed,
2784  *		check arch/{*}/net/{*}.S files,
2785  *		since it is called from BPF assembly code.
2786  */
2787 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2788 {
2789 	int start = skb_headlen(skb);
2790 	struct sk_buff *frag_iter;
2791 	int i, copy;
2792 
2793 	if (offset > (int)skb->len - len)
2794 		goto fault;
2795 
2796 	/* Copy header. */
2797 	if ((copy = start - offset) > 0) {
2798 		if (copy > len)
2799 			copy = len;
2800 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2801 		if ((len -= copy) == 0)
2802 			return 0;
2803 		offset += copy;
2804 		to     += copy;
2805 	}
2806 
2807 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2808 		int end;
2809 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2810 
2811 		WARN_ON(start > offset + len);
2812 
2813 		end = start + skb_frag_size(f);
2814 		if ((copy = end - offset) > 0) {
2815 			u32 p_off, p_len, copied;
2816 			struct page *p;
2817 			u8 *vaddr;
2818 
2819 			if (copy > len)
2820 				copy = len;
2821 
2822 			skb_frag_foreach_page(f,
2823 					      skb_frag_off(f) + offset - start,
2824 					      copy, p, p_off, p_len, copied) {
2825 				vaddr = kmap_atomic(p);
2826 				memcpy(to + copied, vaddr + p_off, p_len);
2827 				kunmap_atomic(vaddr);
2828 			}
2829 
2830 			if ((len -= copy) == 0)
2831 				return 0;
2832 			offset += copy;
2833 			to     += copy;
2834 		}
2835 		start = end;
2836 	}
2837 
2838 	skb_walk_frags(skb, frag_iter) {
2839 		int end;
2840 
2841 		WARN_ON(start > offset + len);
2842 
2843 		end = start + frag_iter->len;
2844 		if ((copy = end - offset) > 0) {
2845 			if (copy > len)
2846 				copy = len;
2847 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2848 				goto fault;
2849 			if ((len -= copy) == 0)
2850 				return 0;
2851 			offset += copy;
2852 			to     += copy;
2853 		}
2854 		start = end;
2855 	}
2856 
2857 	if (!len)
2858 		return 0;
2859 
2860 fault:
2861 	return -EFAULT;
2862 }
2863 EXPORT_SYMBOL(skb_copy_bits);
2864 
2865 /*
2866  * Callback from splice_to_pipe(), if we need to release some pages
2867  * at the end of the spd in case we error'ed out in filling the pipe.
2868  */
2869 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2870 {
2871 	put_page(spd->pages[i]);
2872 }
2873 
2874 static struct page *linear_to_page(struct page *page, unsigned int *len,
2875 				   unsigned int *offset,
2876 				   struct sock *sk)
2877 {
2878 	struct page_frag *pfrag = sk_page_frag(sk);
2879 
2880 	if (!sk_page_frag_refill(sk, pfrag))
2881 		return NULL;
2882 
2883 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2884 
2885 	memcpy(page_address(pfrag->page) + pfrag->offset,
2886 	       page_address(page) + *offset, *len);
2887 	*offset = pfrag->offset;
2888 	pfrag->offset += *len;
2889 
2890 	return pfrag->page;
2891 }
2892 
2893 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2894 			     struct page *page,
2895 			     unsigned int offset)
2896 {
2897 	return	spd->nr_pages &&
2898 		spd->pages[spd->nr_pages - 1] == page &&
2899 		(spd->partial[spd->nr_pages - 1].offset +
2900 		 spd->partial[spd->nr_pages - 1].len == offset);
2901 }
2902 
2903 /*
2904  * Fill page/offset/length into spd, if it can hold more pages.
2905  */
2906 static bool spd_fill_page(struct splice_pipe_desc *spd,
2907 			  struct pipe_inode_info *pipe, struct page *page,
2908 			  unsigned int *len, unsigned int offset,
2909 			  bool linear,
2910 			  struct sock *sk)
2911 {
2912 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2913 		return true;
2914 
2915 	if (linear) {
2916 		page = linear_to_page(page, len, &offset, sk);
2917 		if (!page)
2918 			return true;
2919 	}
2920 	if (spd_can_coalesce(spd, page, offset)) {
2921 		spd->partial[spd->nr_pages - 1].len += *len;
2922 		return false;
2923 	}
2924 	get_page(page);
2925 	spd->pages[spd->nr_pages] = page;
2926 	spd->partial[spd->nr_pages].len = *len;
2927 	spd->partial[spd->nr_pages].offset = offset;
2928 	spd->nr_pages++;
2929 
2930 	return false;
2931 }
2932 
2933 static bool __splice_segment(struct page *page, unsigned int poff,
2934 			     unsigned int plen, unsigned int *off,
2935 			     unsigned int *len,
2936 			     struct splice_pipe_desc *spd, bool linear,
2937 			     struct sock *sk,
2938 			     struct pipe_inode_info *pipe)
2939 {
2940 	if (!*len)
2941 		return true;
2942 
2943 	/* skip this segment if already processed */
2944 	if (*off >= plen) {
2945 		*off -= plen;
2946 		return false;
2947 	}
2948 
2949 	/* ignore any bits we already processed */
2950 	poff += *off;
2951 	plen -= *off;
2952 	*off = 0;
2953 
2954 	do {
2955 		unsigned int flen = min(*len, plen);
2956 
2957 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2958 				  linear, sk))
2959 			return true;
2960 		poff += flen;
2961 		plen -= flen;
2962 		*len -= flen;
2963 	} while (*len && plen);
2964 
2965 	return false;
2966 }
2967 
2968 /*
2969  * Map linear and fragment data from the skb to spd. It reports true if the
2970  * pipe is full or if we already spliced the requested length.
2971  */
2972 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2973 			      unsigned int *offset, unsigned int *len,
2974 			      struct splice_pipe_desc *spd, struct sock *sk)
2975 {
2976 	int seg;
2977 	struct sk_buff *iter;
2978 
2979 	/* map the linear part :
2980 	 * If skb->head_frag is set, this 'linear' part is backed by a
2981 	 * fragment, and if the head is not shared with any clones then
2982 	 * we can avoid a copy since we own the head portion of this page.
2983 	 */
2984 	if (__splice_segment(virt_to_page(skb->data),
2985 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2986 			     skb_headlen(skb),
2987 			     offset, len, spd,
2988 			     skb_head_is_locked(skb),
2989 			     sk, pipe))
2990 		return true;
2991 
2992 	/*
2993 	 * then map the fragments
2994 	 */
2995 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2996 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2997 
2998 		if (__splice_segment(skb_frag_page(f),
2999 				     skb_frag_off(f), skb_frag_size(f),
3000 				     offset, len, spd, false, sk, pipe))
3001 			return true;
3002 	}
3003 
3004 	skb_walk_frags(skb, iter) {
3005 		if (*offset >= iter->len) {
3006 			*offset -= iter->len;
3007 			continue;
3008 		}
3009 		/* __skb_splice_bits() only fails if the output has no room
3010 		 * left, so no point in going over the frag_list for the error
3011 		 * case.
3012 		 */
3013 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3014 			return true;
3015 	}
3016 
3017 	return false;
3018 }
3019 
3020 /*
3021  * Map data from the skb to a pipe. Should handle both the linear part,
3022  * the fragments, and the frag list.
3023  */
3024 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3025 		    struct pipe_inode_info *pipe, unsigned int tlen,
3026 		    unsigned int flags)
3027 {
3028 	struct partial_page partial[MAX_SKB_FRAGS];
3029 	struct page *pages[MAX_SKB_FRAGS];
3030 	struct splice_pipe_desc spd = {
3031 		.pages = pages,
3032 		.partial = partial,
3033 		.nr_pages_max = MAX_SKB_FRAGS,
3034 		.ops = &nosteal_pipe_buf_ops,
3035 		.spd_release = sock_spd_release,
3036 	};
3037 	int ret = 0;
3038 
3039 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3040 
3041 	if (spd.nr_pages)
3042 		ret = splice_to_pipe(pipe, &spd);
3043 
3044 	return ret;
3045 }
3046 EXPORT_SYMBOL_GPL(skb_splice_bits);
3047 
3048 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3049 {
3050 	struct socket *sock = sk->sk_socket;
3051 	size_t size = msg_data_left(msg);
3052 
3053 	if (!sock)
3054 		return -EINVAL;
3055 
3056 	if (!sock->ops->sendmsg_locked)
3057 		return sock_no_sendmsg_locked(sk, msg, size);
3058 
3059 	return sock->ops->sendmsg_locked(sk, msg, size);
3060 }
3061 
3062 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3063 {
3064 	struct socket *sock = sk->sk_socket;
3065 
3066 	if (!sock)
3067 		return -EINVAL;
3068 	return sock_sendmsg(sock, msg);
3069 }
3070 
3071 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3072 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3073 			   int len, sendmsg_func sendmsg)
3074 {
3075 	unsigned int orig_len = len;
3076 	struct sk_buff *head = skb;
3077 	unsigned short fragidx;
3078 	int slen, ret;
3079 
3080 do_frag_list:
3081 
3082 	/* Deal with head data */
3083 	while (offset < skb_headlen(skb) && len) {
3084 		struct kvec kv;
3085 		struct msghdr msg;
3086 
3087 		slen = min_t(int, len, skb_headlen(skb) - offset);
3088 		kv.iov_base = skb->data + offset;
3089 		kv.iov_len = slen;
3090 		memset(&msg, 0, sizeof(msg));
3091 		msg.msg_flags = MSG_DONTWAIT;
3092 
3093 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3094 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3095 				      sendmsg_unlocked, sk, &msg);
3096 		if (ret <= 0)
3097 			goto error;
3098 
3099 		offset += ret;
3100 		len -= ret;
3101 	}
3102 
3103 	/* All the data was skb head? */
3104 	if (!len)
3105 		goto out;
3106 
3107 	/* Make offset relative to start of frags */
3108 	offset -= skb_headlen(skb);
3109 
3110 	/* Find where we are in frag list */
3111 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3112 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3113 
3114 		if (offset < skb_frag_size(frag))
3115 			break;
3116 
3117 		offset -= skb_frag_size(frag);
3118 	}
3119 
3120 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3121 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3122 
3123 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3124 
3125 		while (slen) {
3126 			struct bio_vec bvec;
3127 			struct msghdr msg = {
3128 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3129 			};
3130 
3131 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3132 				      skb_frag_off(frag) + offset);
3133 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3134 				      slen);
3135 
3136 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3137 					      sendmsg_unlocked, sk, &msg);
3138 			if (ret <= 0)
3139 				goto error;
3140 
3141 			len -= ret;
3142 			offset += ret;
3143 			slen -= ret;
3144 		}
3145 
3146 		offset = 0;
3147 	}
3148 
3149 	if (len) {
3150 		/* Process any frag lists */
3151 
3152 		if (skb == head) {
3153 			if (skb_has_frag_list(skb)) {
3154 				skb = skb_shinfo(skb)->frag_list;
3155 				goto do_frag_list;
3156 			}
3157 		} else if (skb->next) {
3158 			skb = skb->next;
3159 			goto do_frag_list;
3160 		}
3161 	}
3162 
3163 out:
3164 	return orig_len - len;
3165 
3166 error:
3167 	return orig_len == len ? ret : orig_len - len;
3168 }
3169 
3170 /* Send skb data on a socket. Socket must be locked. */
3171 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3172 			 int len)
3173 {
3174 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3175 }
3176 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3177 
3178 /* Send skb data on a socket. Socket must be unlocked. */
3179 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3180 {
3181 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3182 }
3183 
3184 /**
3185  *	skb_store_bits - store bits from kernel buffer to skb
3186  *	@skb: destination buffer
3187  *	@offset: offset in destination
3188  *	@from: source buffer
3189  *	@len: number of bytes to copy
3190  *
3191  *	Copy the specified number of bytes from the source buffer to the
3192  *	destination skb.  This function handles all the messy bits of
3193  *	traversing fragment lists and such.
3194  */
3195 
3196 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3197 {
3198 	int start = skb_headlen(skb);
3199 	struct sk_buff *frag_iter;
3200 	int i, copy;
3201 
3202 	if (offset > (int)skb->len - len)
3203 		goto fault;
3204 
3205 	if ((copy = start - offset) > 0) {
3206 		if (copy > len)
3207 			copy = len;
3208 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3209 		if ((len -= copy) == 0)
3210 			return 0;
3211 		offset += copy;
3212 		from += copy;
3213 	}
3214 
3215 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3216 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3217 		int end;
3218 
3219 		WARN_ON(start > offset + len);
3220 
3221 		end = start + skb_frag_size(frag);
3222 		if ((copy = end - offset) > 0) {
3223 			u32 p_off, p_len, copied;
3224 			struct page *p;
3225 			u8 *vaddr;
3226 
3227 			if (copy > len)
3228 				copy = len;
3229 
3230 			skb_frag_foreach_page(frag,
3231 					      skb_frag_off(frag) + offset - start,
3232 					      copy, p, p_off, p_len, copied) {
3233 				vaddr = kmap_atomic(p);
3234 				memcpy(vaddr + p_off, from + copied, p_len);
3235 				kunmap_atomic(vaddr);
3236 			}
3237 
3238 			if ((len -= copy) == 0)
3239 				return 0;
3240 			offset += copy;
3241 			from += copy;
3242 		}
3243 		start = end;
3244 	}
3245 
3246 	skb_walk_frags(skb, frag_iter) {
3247 		int end;
3248 
3249 		WARN_ON(start > offset + len);
3250 
3251 		end = start + frag_iter->len;
3252 		if ((copy = end - offset) > 0) {
3253 			if (copy > len)
3254 				copy = len;
3255 			if (skb_store_bits(frag_iter, offset - start,
3256 					   from, copy))
3257 				goto fault;
3258 			if ((len -= copy) == 0)
3259 				return 0;
3260 			offset += copy;
3261 			from += copy;
3262 		}
3263 		start = end;
3264 	}
3265 	if (!len)
3266 		return 0;
3267 
3268 fault:
3269 	return -EFAULT;
3270 }
3271 EXPORT_SYMBOL(skb_store_bits);
3272 
3273 /* Checksum skb data. */
3274 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3275 		      __wsum csum, const struct skb_checksum_ops *ops)
3276 {
3277 	int start = skb_headlen(skb);
3278 	int i, copy = start - offset;
3279 	struct sk_buff *frag_iter;
3280 	int pos = 0;
3281 
3282 	/* Checksum header. */
3283 	if (copy > 0) {
3284 		if (copy > len)
3285 			copy = len;
3286 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3287 				       skb->data + offset, copy, csum);
3288 		if ((len -= copy) == 0)
3289 			return csum;
3290 		offset += copy;
3291 		pos	= copy;
3292 	}
3293 
3294 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3295 		int end;
3296 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3297 
3298 		WARN_ON(start > offset + len);
3299 
3300 		end = start + skb_frag_size(frag);
3301 		if ((copy = end - offset) > 0) {
3302 			u32 p_off, p_len, copied;
3303 			struct page *p;
3304 			__wsum csum2;
3305 			u8 *vaddr;
3306 
3307 			if (copy > len)
3308 				copy = len;
3309 
3310 			skb_frag_foreach_page(frag,
3311 					      skb_frag_off(frag) + offset - start,
3312 					      copy, p, p_off, p_len, copied) {
3313 				vaddr = kmap_atomic(p);
3314 				csum2 = INDIRECT_CALL_1(ops->update,
3315 							csum_partial_ext,
3316 							vaddr + p_off, p_len, 0);
3317 				kunmap_atomic(vaddr);
3318 				csum = INDIRECT_CALL_1(ops->combine,
3319 						       csum_block_add_ext, csum,
3320 						       csum2, pos, p_len);
3321 				pos += p_len;
3322 			}
3323 
3324 			if (!(len -= copy))
3325 				return csum;
3326 			offset += copy;
3327 		}
3328 		start = end;
3329 	}
3330 
3331 	skb_walk_frags(skb, frag_iter) {
3332 		int end;
3333 
3334 		WARN_ON(start > offset + len);
3335 
3336 		end = start + frag_iter->len;
3337 		if ((copy = end - offset) > 0) {
3338 			__wsum csum2;
3339 			if (copy > len)
3340 				copy = len;
3341 			csum2 = __skb_checksum(frag_iter, offset - start,
3342 					       copy, 0, ops);
3343 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3344 					       csum, csum2, pos, copy);
3345 			if ((len -= copy) == 0)
3346 				return csum;
3347 			offset += copy;
3348 			pos    += copy;
3349 		}
3350 		start = end;
3351 	}
3352 	BUG_ON(len);
3353 
3354 	return csum;
3355 }
3356 EXPORT_SYMBOL(__skb_checksum);
3357 
3358 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3359 		    int len, __wsum csum)
3360 {
3361 	const struct skb_checksum_ops ops = {
3362 		.update  = csum_partial_ext,
3363 		.combine = csum_block_add_ext,
3364 	};
3365 
3366 	return __skb_checksum(skb, offset, len, csum, &ops);
3367 }
3368 EXPORT_SYMBOL(skb_checksum);
3369 
3370 /* Both of above in one bottle. */
3371 
3372 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3373 				    u8 *to, int len)
3374 {
3375 	int start = skb_headlen(skb);
3376 	int i, copy = start - offset;
3377 	struct sk_buff *frag_iter;
3378 	int pos = 0;
3379 	__wsum csum = 0;
3380 
3381 	/* Copy header. */
3382 	if (copy > 0) {
3383 		if (copy > len)
3384 			copy = len;
3385 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3386 						 copy);
3387 		if ((len -= copy) == 0)
3388 			return csum;
3389 		offset += copy;
3390 		to     += copy;
3391 		pos	= copy;
3392 	}
3393 
3394 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3395 		int end;
3396 
3397 		WARN_ON(start > offset + len);
3398 
3399 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3400 		if ((copy = end - offset) > 0) {
3401 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3402 			u32 p_off, p_len, copied;
3403 			struct page *p;
3404 			__wsum csum2;
3405 			u8 *vaddr;
3406 
3407 			if (copy > len)
3408 				copy = len;
3409 
3410 			skb_frag_foreach_page(frag,
3411 					      skb_frag_off(frag) + offset - start,
3412 					      copy, p, p_off, p_len, copied) {
3413 				vaddr = kmap_atomic(p);
3414 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3415 								  to + copied,
3416 								  p_len);
3417 				kunmap_atomic(vaddr);
3418 				csum = csum_block_add(csum, csum2, pos);
3419 				pos += p_len;
3420 			}
3421 
3422 			if (!(len -= copy))
3423 				return csum;
3424 			offset += copy;
3425 			to     += copy;
3426 		}
3427 		start = end;
3428 	}
3429 
3430 	skb_walk_frags(skb, frag_iter) {
3431 		__wsum csum2;
3432 		int end;
3433 
3434 		WARN_ON(start > offset + len);
3435 
3436 		end = start + frag_iter->len;
3437 		if ((copy = end - offset) > 0) {
3438 			if (copy > len)
3439 				copy = len;
3440 			csum2 = skb_copy_and_csum_bits(frag_iter,
3441 						       offset - start,
3442 						       to, copy);
3443 			csum = csum_block_add(csum, csum2, pos);
3444 			if ((len -= copy) == 0)
3445 				return csum;
3446 			offset += copy;
3447 			to     += copy;
3448 			pos    += copy;
3449 		}
3450 		start = end;
3451 	}
3452 	BUG_ON(len);
3453 	return csum;
3454 }
3455 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3456 
3457 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3458 {
3459 	__sum16 sum;
3460 
3461 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3462 	/* See comments in __skb_checksum_complete(). */
3463 	if (likely(!sum)) {
3464 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3465 		    !skb->csum_complete_sw)
3466 			netdev_rx_csum_fault(skb->dev, skb);
3467 	}
3468 	if (!skb_shared(skb))
3469 		skb->csum_valid = !sum;
3470 	return sum;
3471 }
3472 EXPORT_SYMBOL(__skb_checksum_complete_head);
3473 
3474 /* This function assumes skb->csum already holds pseudo header's checksum,
3475  * which has been changed from the hardware checksum, for example, by
3476  * __skb_checksum_validate_complete(). And, the original skb->csum must
3477  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3478  *
3479  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3480  * zero. The new checksum is stored back into skb->csum unless the skb is
3481  * shared.
3482  */
3483 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3484 {
3485 	__wsum csum;
3486 	__sum16 sum;
3487 
3488 	csum = skb_checksum(skb, 0, skb->len, 0);
3489 
3490 	sum = csum_fold(csum_add(skb->csum, csum));
3491 	/* This check is inverted, because we already knew the hardware
3492 	 * checksum is invalid before calling this function. So, if the
3493 	 * re-computed checksum is valid instead, then we have a mismatch
3494 	 * between the original skb->csum and skb_checksum(). This means either
3495 	 * the original hardware checksum is incorrect or we screw up skb->csum
3496 	 * when moving skb->data around.
3497 	 */
3498 	if (likely(!sum)) {
3499 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3500 		    !skb->csum_complete_sw)
3501 			netdev_rx_csum_fault(skb->dev, skb);
3502 	}
3503 
3504 	if (!skb_shared(skb)) {
3505 		/* Save full packet checksum */
3506 		skb->csum = csum;
3507 		skb->ip_summed = CHECKSUM_COMPLETE;
3508 		skb->csum_complete_sw = 1;
3509 		skb->csum_valid = !sum;
3510 	}
3511 
3512 	return sum;
3513 }
3514 EXPORT_SYMBOL(__skb_checksum_complete);
3515 
3516 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3517 {
3518 	net_warn_ratelimited(
3519 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3520 		__func__);
3521 	return 0;
3522 }
3523 
3524 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3525 				       int offset, int len)
3526 {
3527 	net_warn_ratelimited(
3528 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3529 		__func__);
3530 	return 0;
3531 }
3532 
3533 static const struct skb_checksum_ops default_crc32c_ops = {
3534 	.update  = warn_crc32c_csum_update,
3535 	.combine = warn_crc32c_csum_combine,
3536 };
3537 
3538 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3539 	&default_crc32c_ops;
3540 EXPORT_SYMBOL(crc32c_csum_stub);
3541 
3542  /**
3543  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3544  *	@from: source buffer
3545  *
3546  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3547  *	into skb_zerocopy().
3548  */
3549 unsigned int
3550 skb_zerocopy_headlen(const struct sk_buff *from)
3551 {
3552 	unsigned int hlen = 0;
3553 
3554 	if (!from->head_frag ||
3555 	    skb_headlen(from) < L1_CACHE_BYTES ||
3556 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3557 		hlen = skb_headlen(from);
3558 		if (!hlen)
3559 			hlen = from->len;
3560 	}
3561 
3562 	if (skb_has_frag_list(from))
3563 		hlen = from->len;
3564 
3565 	return hlen;
3566 }
3567 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3568 
3569 /**
3570  *	skb_zerocopy - Zero copy skb to skb
3571  *	@to: destination buffer
3572  *	@from: source buffer
3573  *	@len: number of bytes to copy from source buffer
3574  *	@hlen: size of linear headroom in destination buffer
3575  *
3576  *	Copies up to `len` bytes from `from` to `to` by creating references
3577  *	to the frags in the source buffer.
3578  *
3579  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3580  *	headroom in the `to` buffer.
3581  *
3582  *	Return value:
3583  *	0: everything is OK
3584  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3585  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3586  */
3587 int
3588 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3589 {
3590 	int i, j = 0;
3591 	int plen = 0; /* length of skb->head fragment */
3592 	int ret;
3593 	struct page *page;
3594 	unsigned int offset;
3595 
3596 	BUG_ON(!from->head_frag && !hlen);
3597 
3598 	/* dont bother with small payloads */
3599 	if (len <= skb_tailroom(to))
3600 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3601 
3602 	if (hlen) {
3603 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3604 		if (unlikely(ret))
3605 			return ret;
3606 		len -= hlen;
3607 	} else {
3608 		plen = min_t(int, skb_headlen(from), len);
3609 		if (plen) {
3610 			page = virt_to_head_page(from->head);
3611 			offset = from->data - (unsigned char *)page_address(page);
3612 			__skb_fill_page_desc(to, 0, page, offset, plen);
3613 			get_page(page);
3614 			j = 1;
3615 			len -= plen;
3616 		}
3617 	}
3618 
3619 	skb_len_add(to, len + plen);
3620 
3621 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3622 		skb_tx_error(from);
3623 		return -ENOMEM;
3624 	}
3625 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3626 
3627 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3628 		int size;
3629 
3630 		if (!len)
3631 			break;
3632 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3633 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3634 					len);
3635 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3636 		len -= size;
3637 		skb_frag_ref(to, j);
3638 		j++;
3639 	}
3640 	skb_shinfo(to)->nr_frags = j;
3641 
3642 	return 0;
3643 }
3644 EXPORT_SYMBOL_GPL(skb_zerocopy);
3645 
3646 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3647 {
3648 	__wsum csum;
3649 	long csstart;
3650 
3651 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3652 		csstart = skb_checksum_start_offset(skb);
3653 	else
3654 		csstart = skb_headlen(skb);
3655 
3656 	BUG_ON(csstart > skb_headlen(skb));
3657 
3658 	skb_copy_from_linear_data(skb, to, csstart);
3659 
3660 	csum = 0;
3661 	if (csstart != skb->len)
3662 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3663 					      skb->len - csstart);
3664 
3665 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3666 		long csstuff = csstart + skb->csum_offset;
3667 
3668 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3669 	}
3670 }
3671 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3672 
3673 /**
3674  *	skb_dequeue - remove from the head of the queue
3675  *	@list: list to dequeue from
3676  *
3677  *	Remove the head of the list. The list lock is taken so the function
3678  *	may be used safely with other locking list functions. The head item is
3679  *	returned or %NULL if the list is empty.
3680  */
3681 
3682 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3683 {
3684 	unsigned long flags;
3685 	struct sk_buff *result;
3686 
3687 	spin_lock_irqsave(&list->lock, flags);
3688 	result = __skb_dequeue(list);
3689 	spin_unlock_irqrestore(&list->lock, flags);
3690 	return result;
3691 }
3692 EXPORT_SYMBOL(skb_dequeue);
3693 
3694 /**
3695  *	skb_dequeue_tail - remove from the tail of the queue
3696  *	@list: list to dequeue from
3697  *
3698  *	Remove the tail of the list. The list lock is taken so the function
3699  *	may be used safely with other locking list functions. The tail item is
3700  *	returned or %NULL if the list is empty.
3701  */
3702 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3703 {
3704 	unsigned long flags;
3705 	struct sk_buff *result;
3706 
3707 	spin_lock_irqsave(&list->lock, flags);
3708 	result = __skb_dequeue_tail(list);
3709 	spin_unlock_irqrestore(&list->lock, flags);
3710 	return result;
3711 }
3712 EXPORT_SYMBOL(skb_dequeue_tail);
3713 
3714 /**
3715  *	skb_queue_purge_reason - empty a list
3716  *	@list: list to empty
3717  *	@reason: drop reason
3718  *
3719  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3720  *	the list and one reference dropped. This function takes the list
3721  *	lock and is atomic with respect to other list locking functions.
3722  */
3723 void skb_queue_purge_reason(struct sk_buff_head *list,
3724 			    enum skb_drop_reason reason)
3725 {
3726 	struct sk_buff_head tmp;
3727 	unsigned long flags;
3728 
3729 	if (skb_queue_empty_lockless(list))
3730 		return;
3731 
3732 	__skb_queue_head_init(&tmp);
3733 
3734 	spin_lock_irqsave(&list->lock, flags);
3735 	skb_queue_splice_init(list, &tmp);
3736 	spin_unlock_irqrestore(&list->lock, flags);
3737 
3738 	__skb_queue_purge_reason(&tmp, reason);
3739 }
3740 EXPORT_SYMBOL(skb_queue_purge_reason);
3741 
3742 /**
3743  *	skb_rbtree_purge - empty a skb rbtree
3744  *	@root: root of the rbtree to empty
3745  *	Return value: the sum of truesizes of all purged skbs.
3746  *
3747  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3748  *	the list and one reference dropped. This function does not take
3749  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3750  *	out-of-order queue is protected by the socket lock).
3751  */
3752 unsigned int skb_rbtree_purge(struct rb_root *root)
3753 {
3754 	struct rb_node *p = rb_first(root);
3755 	unsigned int sum = 0;
3756 
3757 	while (p) {
3758 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3759 
3760 		p = rb_next(p);
3761 		rb_erase(&skb->rbnode, root);
3762 		sum += skb->truesize;
3763 		kfree_skb(skb);
3764 	}
3765 	return sum;
3766 }
3767 
3768 void skb_errqueue_purge(struct sk_buff_head *list)
3769 {
3770 	struct sk_buff *skb, *next;
3771 	struct sk_buff_head kill;
3772 	unsigned long flags;
3773 
3774 	__skb_queue_head_init(&kill);
3775 
3776 	spin_lock_irqsave(&list->lock, flags);
3777 	skb_queue_walk_safe(list, skb, next) {
3778 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3779 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3780 			continue;
3781 		__skb_unlink(skb, list);
3782 		__skb_queue_tail(&kill, skb);
3783 	}
3784 	spin_unlock_irqrestore(&list->lock, flags);
3785 	__skb_queue_purge(&kill);
3786 }
3787 EXPORT_SYMBOL(skb_errqueue_purge);
3788 
3789 /**
3790  *	skb_queue_head - queue a buffer at the list head
3791  *	@list: list to use
3792  *	@newsk: buffer to queue
3793  *
3794  *	Queue a buffer at the start of the list. This function takes the
3795  *	list lock and can be used safely with other locking &sk_buff functions
3796  *	safely.
3797  *
3798  *	A buffer cannot be placed on two lists at the same time.
3799  */
3800 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3801 {
3802 	unsigned long flags;
3803 
3804 	spin_lock_irqsave(&list->lock, flags);
3805 	__skb_queue_head(list, newsk);
3806 	spin_unlock_irqrestore(&list->lock, flags);
3807 }
3808 EXPORT_SYMBOL(skb_queue_head);
3809 
3810 /**
3811  *	skb_queue_tail - queue a buffer at the list tail
3812  *	@list: list to use
3813  *	@newsk: buffer to queue
3814  *
3815  *	Queue a buffer at the tail of the list. This function takes the
3816  *	list lock and can be used safely with other locking &sk_buff functions
3817  *	safely.
3818  *
3819  *	A buffer cannot be placed on two lists at the same time.
3820  */
3821 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3822 {
3823 	unsigned long flags;
3824 
3825 	spin_lock_irqsave(&list->lock, flags);
3826 	__skb_queue_tail(list, newsk);
3827 	spin_unlock_irqrestore(&list->lock, flags);
3828 }
3829 EXPORT_SYMBOL(skb_queue_tail);
3830 
3831 /**
3832  *	skb_unlink	-	remove a buffer from a list
3833  *	@skb: buffer to remove
3834  *	@list: list to use
3835  *
3836  *	Remove a packet from a list. The list locks are taken and this
3837  *	function is atomic with respect to other list locked calls
3838  *
3839  *	You must know what list the SKB is on.
3840  */
3841 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3842 {
3843 	unsigned long flags;
3844 
3845 	spin_lock_irqsave(&list->lock, flags);
3846 	__skb_unlink(skb, list);
3847 	spin_unlock_irqrestore(&list->lock, flags);
3848 }
3849 EXPORT_SYMBOL(skb_unlink);
3850 
3851 /**
3852  *	skb_append	-	append a buffer
3853  *	@old: buffer to insert after
3854  *	@newsk: buffer to insert
3855  *	@list: list to use
3856  *
3857  *	Place a packet after a given packet in a list. The list locks are taken
3858  *	and this function is atomic with respect to other list locked calls.
3859  *	A buffer cannot be placed on two lists at the same time.
3860  */
3861 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3862 {
3863 	unsigned long flags;
3864 
3865 	spin_lock_irqsave(&list->lock, flags);
3866 	__skb_queue_after(list, old, newsk);
3867 	spin_unlock_irqrestore(&list->lock, flags);
3868 }
3869 EXPORT_SYMBOL(skb_append);
3870 
3871 static inline void skb_split_inside_header(struct sk_buff *skb,
3872 					   struct sk_buff* skb1,
3873 					   const u32 len, const int pos)
3874 {
3875 	int i;
3876 
3877 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3878 					 pos - len);
3879 	/* And move data appendix as is. */
3880 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3881 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3882 
3883 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3884 	skb_shinfo(skb)->nr_frags  = 0;
3885 	skb1->data_len		   = skb->data_len;
3886 	skb1->len		   += skb1->data_len;
3887 	skb->data_len		   = 0;
3888 	skb->len		   = len;
3889 	skb_set_tail_pointer(skb, len);
3890 }
3891 
3892 static inline void skb_split_no_header(struct sk_buff *skb,
3893 				       struct sk_buff* skb1,
3894 				       const u32 len, int pos)
3895 {
3896 	int i, k = 0;
3897 	const int nfrags = skb_shinfo(skb)->nr_frags;
3898 
3899 	skb_shinfo(skb)->nr_frags = 0;
3900 	skb1->len		  = skb1->data_len = skb->len - len;
3901 	skb->len		  = len;
3902 	skb->data_len		  = len - pos;
3903 
3904 	for (i = 0; i < nfrags; i++) {
3905 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3906 
3907 		if (pos + size > len) {
3908 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3909 
3910 			if (pos < len) {
3911 				/* Split frag.
3912 				 * We have two variants in this case:
3913 				 * 1. Move all the frag to the second
3914 				 *    part, if it is possible. F.e.
3915 				 *    this approach is mandatory for TUX,
3916 				 *    where splitting is expensive.
3917 				 * 2. Split is accurately. We make this.
3918 				 */
3919 				skb_frag_ref(skb, i);
3920 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3921 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3922 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3923 				skb_shinfo(skb)->nr_frags++;
3924 			}
3925 			k++;
3926 		} else
3927 			skb_shinfo(skb)->nr_frags++;
3928 		pos += size;
3929 	}
3930 	skb_shinfo(skb1)->nr_frags = k;
3931 }
3932 
3933 /**
3934  * skb_split - Split fragmented skb to two parts at length len.
3935  * @skb: the buffer to split
3936  * @skb1: the buffer to receive the second part
3937  * @len: new length for skb
3938  */
3939 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3940 {
3941 	int pos = skb_headlen(skb);
3942 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3943 
3944 	skb_zcopy_downgrade_managed(skb);
3945 
3946 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3947 	skb_zerocopy_clone(skb1, skb, 0);
3948 	if (len < pos)	/* Split line is inside header. */
3949 		skb_split_inside_header(skb, skb1, len, pos);
3950 	else		/* Second chunk has no header, nothing to copy. */
3951 		skb_split_no_header(skb, skb1, len, pos);
3952 }
3953 EXPORT_SYMBOL(skb_split);
3954 
3955 /* Shifting from/to a cloned skb is a no-go.
3956  *
3957  * Caller cannot keep skb_shinfo related pointers past calling here!
3958  */
3959 static int skb_prepare_for_shift(struct sk_buff *skb)
3960 {
3961 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3962 }
3963 
3964 /**
3965  * skb_shift - Shifts paged data partially from skb to another
3966  * @tgt: buffer into which tail data gets added
3967  * @skb: buffer from which the paged data comes from
3968  * @shiftlen: shift up to this many bytes
3969  *
3970  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3971  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3972  * It's up to caller to free skb if everything was shifted.
3973  *
3974  * If @tgt runs out of frags, the whole operation is aborted.
3975  *
3976  * Skb cannot include anything else but paged data while tgt is allowed
3977  * to have non-paged data as well.
3978  *
3979  * TODO: full sized shift could be optimized but that would need
3980  * specialized skb free'er to handle frags without up-to-date nr_frags.
3981  */
3982 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3983 {
3984 	int from, to, merge, todo;
3985 	skb_frag_t *fragfrom, *fragto;
3986 
3987 	BUG_ON(shiftlen > skb->len);
3988 
3989 	if (skb_headlen(skb))
3990 		return 0;
3991 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3992 		return 0;
3993 
3994 	todo = shiftlen;
3995 	from = 0;
3996 	to = skb_shinfo(tgt)->nr_frags;
3997 	fragfrom = &skb_shinfo(skb)->frags[from];
3998 
3999 	/* Actual merge is delayed until the point when we know we can
4000 	 * commit all, so that we don't have to undo partial changes
4001 	 */
4002 	if (!to ||
4003 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4004 			      skb_frag_off(fragfrom))) {
4005 		merge = -1;
4006 	} else {
4007 		merge = to - 1;
4008 
4009 		todo -= skb_frag_size(fragfrom);
4010 		if (todo < 0) {
4011 			if (skb_prepare_for_shift(skb) ||
4012 			    skb_prepare_for_shift(tgt))
4013 				return 0;
4014 
4015 			/* All previous frag pointers might be stale! */
4016 			fragfrom = &skb_shinfo(skb)->frags[from];
4017 			fragto = &skb_shinfo(tgt)->frags[merge];
4018 
4019 			skb_frag_size_add(fragto, shiftlen);
4020 			skb_frag_size_sub(fragfrom, shiftlen);
4021 			skb_frag_off_add(fragfrom, shiftlen);
4022 
4023 			goto onlymerged;
4024 		}
4025 
4026 		from++;
4027 	}
4028 
4029 	/* Skip full, not-fitting skb to avoid expensive operations */
4030 	if ((shiftlen == skb->len) &&
4031 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4032 		return 0;
4033 
4034 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4035 		return 0;
4036 
4037 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4038 		if (to == MAX_SKB_FRAGS)
4039 			return 0;
4040 
4041 		fragfrom = &skb_shinfo(skb)->frags[from];
4042 		fragto = &skb_shinfo(tgt)->frags[to];
4043 
4044 		if (todo >= skb_frag_size(fragfrom)) {
4045 			*fragto = *fragfrom;
4046 			todo -= skb_frag_size(fragfrom);
4047 			from++;
4048 			to++;
4049 
4050 		} else {
4051 			__skb_frag_ref(fragfrom);
4052 			skb_frag_page_copy(fragto, fragfrom);
4053 			skb_frag_off_copy(fragto, fragfrom);
4054 			skb_frag_size_set(fragto, todo);
4055 
4056 			skb_frag_off_add(fragfrom, todo);
4057 			skb_frag_size_sub(fragfrom, todo);
4058 			todo = 0;
4059 
4060 			to++;
4061 			break;
4062 		}
4063 	}
4064 
4065 	/* Ready to "commit" this state change to tgt */
4066 	skb_shinfo(tgt)->nr_frags = to;
4067 
4068 	if (merge >= 0) {
4069 		fragfrom = &skb_shinfo(skb)->frags[0];
4070 		fragto = &skb_shinfo(tgt)->frags[merge];
4071 
4072 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4073 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4074 	}
4075 
4076 	/* Reposition in the original skb */
4077 	to = 0;
4078 	while (from < skb_shinfo(skb)->nr_frags)
4079 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4080 	skb_shinfo(skb)->nr_frags = to;
4081 
4082 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4083 
4084 onlymerged:
4085 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4086 	 * the other hand might need it if it needs to be resent
4087 	 */
4088 	tgt->ip_summed = CHECKSUM_PARTIAL;
4089 	skb->ip_summed = CHECKSUM_PARTIAL;
4090 
4091 	skb_len_add(skb, -shiftlen);
4092 	skb_len_add(tgt, shiftlen);
4093 
4094 	return shiftlen;
4095 }
4096 
4097 /**
4098  * skb_prepare_seq_read - Prepare a sequential read of skb data
4099  * @skb: the buffer to read
4100  * @from: lower offset of data to be read
4101  * @to: upper offset of data to be read
4102  * @st: state variable
4103  *
4104  * Initializes the specified state variable. Must be called before
4105  * invoking skb_seq_read() for the first time.
4106  */
4107 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4108 			  unsigned int to, struct skb_seq_state *st)
4109 {
4110 	st->lower_offset = from;
4111 	st->upper_offset = to;
4112 	st->root_skb = st->cur_skb = skb;
4113 	st->frag_idx = st->stepped_offset = 0;
4114 	st->frag_data = NULL;
4115 	st->frag_off = 0;
4116 }
4117 EXPORT_SYMBOL(skb_prepare_seq_read);
4118 
4119 /**
4120  * skb_seq_read - Sequentially read skb data
4121  * @consumed: number of bytes consumed by the caller so far
4122  * @data: destination pointer for data to be returned
4123  * @st: state variable
4124  *
4125  * Reads a block of skb data at @consumed relative to the
4126  * lower offset specified to skb_prepare_seq_read(). Assigns
4127  * the head of the data block to @data and returns the length
4128  * of the block or 0 if the end of the skb data or the upper
4129  * offset has been reached.
4130  *
4131  * The caller is not required to consume all of the data
4132  * returned, i.e. @consumed is typically set to the number
4133  * of bytes already consumed and the next call to
4134  * skb_seq_read() will return the remaining part of the block.
4135  *
4136  * Note 1: The size of each block of data returned can be arbitrary,
4137  *       this limitation is the cost for zerocopy sequential
4138  *       reads of potentially non linear data.
4139  *
4140  * Note 2: Fragment lists within fragments are not implemented
4141  *       at the moment, state->root_skb could be replaced with
4142  *       a stack for this purpose.
4143  */
4144 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4145 			  struct skb_seq_state *st)
4146 {
4147 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4148 	skb_frag_t *frag;
4149 
4150 	if (unlikely(abs_offset >= st->upper_offset)) {
4151 		if (st->frag_data) {
4152 			kunmap_atomic(st->frag_data);
4153 			st->frag_data = NULL;
4154 		}
4155 		return 0;
4156 	}
4157 
4158 next_skb:
4159 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4160 
4161 	if (abs_offset < block_limit && !st->frag_data) {
4162 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4163 		return block_limit - abs_offset;
4164 	}
4165 
4166 	if (st->frag_idx == 0 && !st->frag_data)
4167 		st->stepped_offset += skb_headlen(st->cur_skb);
4168 
4169 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4170 		unsigned int pg_idx, pg_off, pg_sz;
4171 
4172 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4173 
4174 		pg_idx = 0;
4175 		pg_off = skb_frag_off(frag);
4176 		pg_sz = skb_frag_size(frag);
4177 
4178 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4179 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4180 			pg_off = offset_in_page(pg_off + st->frag_off);
4181 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4182 						    PAGE_SIZE - pg_off);
4183 		}
4184 
4185 		block_limit = pg_sz + st->stepped_offset;
4186 		if (abs_offset < block_limit) {
4187 			if (!st->frag_data)
4188 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4189 
4190 			*data = (u8 *)st->frag_data + pg_off +
4191 				(abs_offset - st->stepped_offset);
4192 
4193 			return block_limit - abs_offset;
4194 		}
4195 
4196 		if (st->frag_data) {
4197 			kunmap_atomic(st->frag_data);
4198 			st->frag_data = NULL;
4199 		}
4200 
4201 		st->stepped_offset += pg_sz;
4202 		st->frag_off += pg_sz;
4203 		if (st->frag_off == skb_frag_size(frag)) {
4204 			st->frag_off = 0;
4205 			st->frag_idx++;
4206 		}
4207 	}
4208 
4209 	if (st->frag_data) {
4210 		kunmap_atomic(st->frag_data);
4211 		st->frag_data = NULL;
4212 	}
4213 
4214 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4215 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4216 		st->frag_idx = 0;
4217 		goto next_skb;
4218 	} else if (st->cur_skb->next) {
4219 		st->cur_skb = st->cur_skb->next;
4220 		st->frag_idx = 0;
4221 		goto next_skb;
4222 	}
4223 
4224 	return 0;
4225 }
4226 EXPORT_SYMBOL(skb_seq_read);
4227 
4228 /**
4229  * skb_abort_seq_read - Abort a sequential read of skb data
4230  * @st: state variable
4231  *
4232  * Must be called if skb_seq_read() was not called until it
4233  * returned 0.
4234  */
4235 void skb_abort_seq_read(struct skb_seq_state *st)
4236 {
4237 	if (st->frag_data)
4238 		kunmap_atomic(st->frag_data);
4239 }
4240 EXPORT_SYMBOL(skb_abort_seq_read);
4241 
4242 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4243 
4244 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4245 					  struct ts_config *conf,
4246 					  struct ts_state *state)
4247 {
4248 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4249 }
4250 
4251 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4252 {
4253 	skb_abort_seq_read(TS_SKB_CB(state));
4254 }
4255 
4256 /**
4257  * skb_find_text - Find a text pattern in skb data
4258  * @skb: the buffer to look in
4259  * @from: search offset
4260  * @to: search limit
4261  * @config: textsearch configuration
4262  *
4263  * Finds a pattern in the skb data according to the specified
4264  * textsearch configuration. Use textsearch_next() to retrieve
4265  * subsequent occurrences of the pattern. Returns the offset
4266  * to the first occurrence or UINT_MAX if no match was found.
4267  */
4268 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4269 			   unsigned int to, struct ts_config *config)
4270 {
4271 	unsigned int patlen = config->ops->get_pattern_len(config);
4272 	struct ts_state state;
4273 	unsigned int ret;
4274 
4275 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4276 
4277 	config->get_next_block = skb_ts_get_next_block;
4278 	config->finish = skb_ts_finish;
4279 
4280 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4281 
4282 	ret = textsearch_find(config, &state);
4283 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4284 }
4285 EXPORT_SYMBOL(skb_find_text);
4286 
4287 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4288 			 int offset, size_t size, size_t max_frags)
4289 {
4290 	int i = skb_shinfo(skb)->nr_frags;
4291 
4292 	if (skb_can_coalesce(skb, i, page, offset)) {
4293 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4294 	} else if (i < max_frags) {
4295 		skb_zcopy_downgrade_managed(skb);
4296 		get_page(page);
4297 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4298 	} else {
4299 		return -EMSGSIZE;
4300 	}
4301 
4302 	return 0;
4303 }
4304 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4305 
4306 /**
4307  *	skb_pull_rcsum - pull skb and update receive checksum
4308  *	@skb: buffer to update
4309  *	@len: length of data pulled
4310  *
4311  *	This function performs an skb_pull on the packet and updates
4312  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4313  *	receive path processing instead of skb_pull unless you know
4314  *	that the checksum difference is zero (e.g., a valid IP header)
4315  *	or you are setting ip_summed to CHECKSUM_NONE.
4316  */
4317 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4318 {
4319 	unsigned char *data = skb->data;
4320 
4321 	BUG_ON(len > skb->len);
4322 	__skb_pull(skb, len);
4323 	skb_postpull_rcsum(skb, data, len);
4324 	return skb->data;
4325 }
4326 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4327 
4328 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4329 {
4330 	skb_frag_t head_frag;
4331 	struct page *page;
4332 
4333 	page = virt_to_head_page(frag_skb->head);
4334 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4335 				(unsigned char *)page_address(page),
4336 				skb_headlen(frag_skb));
4337 	return head_frag;
4338 }
4339 
4340 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4341 				 netdev_features_t features,
4342 				 unsigned int offset)
4343 {
4344 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4345 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4346 	unsigned int delta_truesize = 0;
4347 	unsigned int delta_len = 0;
4348 	struct sk_buff *tail = NULL;
4349 	struct sk_buff *nskb, *tmp;
4350 	int len_diff, err;
4351 
4352 	skb_push(skb, -skb_network_offset(skb) + offset);
4353 
4354 	/* Ensure the head is writeable before touching the shared info */
4355 	err = skb_unclone(skb, GFP_ATOMIC);
4356 	if (err)
4357 		goto err_linearize;
4358 
4359 	skb_shinfo(skb)->frag_list = NULL;
4360 
4361 	while (list_skb) {
4362 		nskb = list_skb;
4363 		list_skb = list_skb->next;
4364 
4365 		err = 0;
4366 		delta_truesize += nskb->truesize;
4367 		if (skb_shared(nskb)) {
4368 			tmp = skb_clone(nskb, GFP_ATOMIC);
4369 			if (tmp) {
4370 				consume_skb(nskb);
4371 				nskb = tmp;
4372 				err = skb_unclone(nskb, GFP_ATOMIC);
4373 			} else {
4374 				err = -ENOMEM;
4375 			}
4376 		}
4377 
4378 		if (!tail)
4379 			skb->next = nskb;
4380 		else
4381 			tail->next = nskb;
4382 
4383 		if (unlikely(err)) {
4384 			nskb->next = list_skb;
4385 			goto err_linearize;
4386 		}
4387 
4388 		tail = nskb;
4389 
4390 		delta_len += nskb->len;
4391 
4392 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4393 
4394 		skb_release_head_state(nskb);
4395 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4396 		__copy_skb_header(nskb, skb);
4397 
4398 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4399 		nskb->transport_header += len_diff;
4400 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4401 						 nskb->data - tnl_hlen,
4402 						 offset + tnl_hlen);
4403 
4404 		if (skb_needs_linearize(nskb, features) &&
4405 		    __skb_linearize(nskb))
4406 			goto err_linearize;
4407 	}
4408 
4409 	skb->truesize = skb->truesize - delta_truesize;
4410 	skb->data_len = skb->data_len - delta_len;
4411 	skb->len = skb->len - delta_len;
4412 
4413 	skb_gso_reset(skb);
4414 
4415 	skb->prev = tail;
4416 
4417 	if (skb_needs_linearize(skb, features) &&
4418 	    __skb_linearize(skb))
4419 		goto err_linearize;
4420 
4421 	skb_get(skb);
4422 
4423 	return skb;
4424 
4425 err_linearize:
4426 	kfree_skb_list(skb->next);
4427 	skb->next = NULL;
4428 	return ERR_PTR(-ENOMEM);
4429 }
4430 EXPORT_SYMBOL_GPL(skb_segment_list);
4431 
4432 /**
4433  *	skb_segment - Perform protocol segmentation on skb.
4434  *	@head_skb: buffer to segment
4435  *	@features: features for the output path (see dev->features)
4436  *
4437  *	This function performs segmentation on the given skb.  It returns
4438  *	a pointer to the first in a list of new skbs for the segments.
4439  *	In case of error it returns ERR_PTR(err).
4440  */
4441 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4442 			    netdev_features_t features)
4443 {
4444 	struct sk_buff *segs = NULL;
4445 	struct sk_buff *tail = NULL;
4446 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4447 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4448 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4449 	unsigned int offset = doffset;
4450 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4451 	unsigned int partial_segs = 0;
4452 	unsigned int headroom;
4453 	unsigned int len = head_skb->len;
4454 	struct sk_buff *frag_skb;
4455 	skb_frag_t *frag;
4456 	__be16 proto;
4457 	bool csum, sg;
4458 	int err = -ENOMEM;
4459 	int i = 0;
4460 	int nfrags, pos;
4461 
4462 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4463 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4464 		struct sk_buff *check_skb;
4465 
4466 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4467 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4468 				/* gso_size is untrusted, and we have a frag_list with
4469 				 * a linear non head_frag item.
4470 				 *
4471 				 * If head_skb's headlen does not fit requested gso_size,
4472 				 * it means that the frag_list members do NOT terminate
4473 				 * on exact gso_size boundaries. Hence we cannot perform
4474 				 * skb_frag_t page sharing. Therefore we must fallback to
4475 				 * copying the frag_list skbs; we do so by disabling SG.
4476 				 */
4477 				features &= ~NETIF_F_SG;
4478 				break;
4479 			}
4480 		}
4481 	}
4482 
4483 	__skb_push(head_skb, doffset);
4484 	proto = skb_network_protocol(head_skb, NULL);
4485 	if (unlikely(!proto))
4486 		return ERR_PTR(-EINVAL);
4487 
4488 	sg = !!(features & NETIF_F_SG);
4489 	csum = !!can_checksum_protocol(features, proto);
4490 
4491 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4492 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4493 			struct sk_buff *iter;
4494 			unsigned int frag_len;
4495 
4496 			if (!list_skb ||
4497 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4498 				goto normal;
4499 
4500 			/* If we get here then all the required
4501 			 * GSO features except frag_list are supported.
4502 			 * Try to split the SKB to multiple GSO SKBs
4503 			 * with no frag_list.
4504 			 * Currently we can do that only when the buffers don't
4505 			 * have a linear part and all the buffers except
4506 			 * the last are of the same length.
4507 			 */
4508 			frag_len = list_skb->len;
4509 			skb_walk_frags(head_skb, iter) {
4510 				if (frag_len != iter->len && iter->next)
4511 					goto normal;
4512 				if (skb_headlen(iter) && !iter->head_frag)
4513 					goto normal;
4514 
4515 				len -= iter->len;
4516 			}
4517 
4518 			if (len != frag_len)
4519 				goto normal;
4520 		}
4521 
4522 		/* GSO partial only requires that we trim off any excess that
4523 		 * doesn't fit into an MSS sized block, so take care of that
4524 		 * now.
4525 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4526 		 */
4527 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4528 		if (partial_segs > 1)
4529 			mss *= partial_segs;
4530 		else
4531 			partial_segs = 0;
4532 	}
4533 
4534 normal:
4535 	headroom = skb_headroom(head_skb);
4536 	pos = skb_headlen(head_skb);
4537 
4538 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4539 		return ERR_PTR(-ENOMEM);
4540 
4541 	nfrags = skb_shinfo(head_skb)->nr_frags;
4542 	frag = skb_shinfo(head_skb)->frags;
4543 	frag_skb = head_skb;
4544 
4545 	do {
4546 		struct sk_buff *nskb;
4547 		skb_frag_t *nskb_frag;
4548 		int hsize;
4549 		int size;
4550 
4551 		if (unlikely(mss == GSO_BY_FRAGS)) {
4552 			len = list_skb->len;
4553 		} else {
4554 			len = head_skb->len - offset;
4555 			if (len > mss)
4556 				len = mss;
4557 		}
4558 
4559 		hsize = skb_headlen(head_skb) - offset;
4560 
4561 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4562 		    (skb_headlen(list_skb) == len || sg)) {
4563 			BUG_ON(skb_headlen(list_skb) > len);
4564 
4565 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4566 			if (unlikely(!nskb))
4567 				goto err;
4568 
4569 			i = 0;
4570 			nfrags = skb_shinfo(list_skb)->nr_frags;
4571 			frag = skb_shinfo(list_skb)->frags;
4572 			frag_skb = list_skb;
4573 			pos += skb_headlen(list_skb);
4574 
4575 			while (pos < offset + len) {
4576 				BUG_ON(i >= nfrags);
4577 
4578 				size = skb_frag_size(frag);
4579 				if (pos + size > offset + len)
4580 					break;
4581 
4582 				i++;
4583 				pos += size;
4584 				frag++;
4585 			}
4586 
4587 			list_skb = list_skb->next;
4588 
4589 			if (unlikely(pskb_trim(nskb, len))) {
4590 				kfree_skb(nskb);
4591 				goto err;
4592 			}
4593 
4594 			hsize = skb_end_offset(nskb);
4595 			if (skb_cow_head(nskb, doffset + headroom)) {
4596 				kfree_skb(nskb);
4597 				goto err;
4598 			}
4599 
4600 			nskb->truesize += skb_end_offset(nskb) - hsize;
4601 			skb_release_head_state(nskb);
4602 			__skb_push(nskb, doffset);
4603 		} else {
4604 			if (hsize < 0)
4605 				hsize = 0;
4606 			if (hsize > len || !sg)
4607 				hsize = len;
4608 
4609 			nskb = __alloc_skb(hsize + doffset + headroom,
4610 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4611 					   NUMA_NO_NODE);
4612 
4613 			if (unlikely(!nskb))
4614 				goto err;
4615 
4616 			skb_reserve(nskb, headroom);
4617 			__skb_put(nskb, doffset);
4618 		}
4619 
4620 		if (segs)
4621 			tail->next = nskb;
4622 		else
4623 			segs = nskb;
4624 		tail = nskb;
4625 
4626 		__copy_skb_header(nskb, head_skb);
4627 
4628 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4629 		skb_reset_mac_len(nskb);
4630 
4631 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4632 						 nskb->data - tnl_hlen,
4633 						 doffset + tnl_hlen);
4634 
4635 		if (nskb->len == len + doffset)
4636 			goto perform_csum_check;
4637 
4638 		if (!sg) {
4639 			if (!csum) {
4640 				if (!nskb->remcsum_offload)
4641 					nskb->ip_summed = CHECKSUM_NONE;
4642 				SKB_GSO_CB(nskb)->csum =
4643 					skb_copy_and_csum_bits(head_skb, offset,
4644 							       skb_put(nskb,
4645 								       len),
4646 							       len);
4647 				SKB_GSO_CB(nskb)->csum_start =
4648 					skb_headroom(nskb) + doffset;
4649 			} else {
4650 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4651 					goto err;
4652 			}
4653 			continue;
4654 		}
4655 
4656 		nskb_frag = skb_shinfo(nskb)->frags;
4657 
4658 		skb_copy_from_linear_data_offset(head_skb, offset,
4659 						 skb_put(nskb, hsize), hsize);
4660 
4661 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4662 					   SKBFL_SHARED_FRAG;
4663 
4664 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4665 			goto err;
4666 
4667 		while (pos < offset + len) {
4668 			if (i >= nfrags) {
4669 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4670 				    skb_zerocopy_clone(nskb, list_skb,
4671 						       GFP_ATOMIC))
4672 					goto err;
4673 
4674 				i = 0;
4675 				nfrags = skb_shinfo(list_skb)->nr_frags;
4676 				frag = skb_shinfo(list_skb)->frags;
4677 				frag_skb = list_skb;
4678 				if (!skb_headlen(list_skb)) {
4679 					BUG_ON(!nfrags);
4680 				} else {
4681 					BUG_ON(!list_skb->head_frag);
4682 
4683 					/* to make room for head_frag. */
4684 					i--;
4685 					frag--;
4686 				}
4687 
4688 				list_skb = list_skb->next;
4689 			}
4690 
4691 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4692 				     MAX_SKB_FRAGS)) {
4693 				net_warn_ratelimited(
4694 					"skb_segment: too many frags: %u %u\n",
4695 					pos, mss);
4696 				err = -EINVAL;
4697 				goto err;
4698 			}
4699 
4700 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4701 			__skb_frag_ref(nskb_frag);
4702 			size = skb_frag_size(nskb_frag);
4703 
4704 			if (pos < offset) {
4705 				skb_frag_off_add(nskb_frag, offset - pos);
4706 				skb_frag_size_sub(nskb_frag, offset - pos);
4707 			}
4708 
4709 			skb_shinfo(nskb)->nr_frags++;
4710 
4711 			if (pos + size <= offset + len) {
4712 				i++;
4713 				frag++;
4714 				pos += size;
4715 			} else {
4716 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4717 				goto skip_fraglist;
4718 			}
4719 
4720 			nskb_frag++;
4721 		}
4722 
4723 skip_fraglist:
4724 		nskb->data_len = len - hsize;
4725 		nskb->len += nskb->data_len;
4726 		nskb->truesize += nskb->data_len;
4727 
4728 perform_csum_check:
4729 		if (!csum) {
4730 			if (skb_has_shared_frag(nskb) &&
4731 			    __skb_linearize(nskb))
4732 				goto err;
4733 
4734 			if (!nskb->remcsum_offload)
4735 				nskb->ip_summed = CHECKSUM_NONE;
4736 			SKB_GSO_CB(nskb)->csum =
4737 				skb_checksum(nskb, doffset,
4738 					     nskb->len - doffset, 0);
4739 			SKB_GSO_CB(nskb)->csum_start =
4740 				skb_headroom(nskb) + doffset;
4741 		}
4742 	} while ((offset += len) < head_skb->len);
4743 
4744 	/* Some callers want to get the end of the list.
4745 	 * Put it in segs->prev to avoid walking the list.
4746 	 * (see validate_xmit_skb_list() for example)
4747 	 */
4748 	segs->prev = tail;
4749 
4750 	if (partial_segs) {
4751 		struct sk_buff *iter;
4752 		int type = skb_shinfo(head_skb)->gso_type;
4753 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4754 
4755 		/* Update type to add partial and then remove dodgy if set */
4756 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4757 		type &= ~SKB_GSO_DODGY;
4758 
4759 		/* Update GSO info and prepare to start updating headers on
4760 		 * our way back down the stack of protocols.
4761 		 */
4762 		for (iter = segs; iter; iter = iter->next) {
4763 			skb_shinfo(iter)->gso_size = gso_size;
4764 			skb_shinfo(iter)->gso_segs = partial_segs;
4765 			skb_shinfo(iter)->gso_type = type;
4766 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4767 		}
4768 
4769 		if (tail->len - doffset <= gso_size)
4770 			skb_shinfo(tail)->gso_size = 0;
4771 		else if (tail != segs)
4772 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4773 	}
4774 
4775 	/* Following permits correct backpressure, for protocols
4776 	 * using skb_set_owner_w().
4777 	 * Idea is to tranfert ownership from head_skb to last segment.
4778 	 */
4779 	if (head_skb->destructor == sock_wfree) {
4780 		swap(tail->truesize, head_skb->truesize);
4781 		swap(tail->destructor, head_skb->destructor);
4782 		swap(tail->sk, head_skb->sk);
4783 	}
4784 	return segs;
4785 
4786 err:
4787 	kfree_skb_list(segs);
4788 	return ERR_PTR(err);
4789 }
4790 EXPORT_SYMBOL_GPL(skb_segment);
4791 
4792 #ifdef CONFIG_SKB_EXTENSIONS
4793 #define SKB_EXT_ALIGN_VALUE	8
4794 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4795 
4796 static const u8 skb_ext_type_len[] = {
4797 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4798 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4799 #endif
4800 #ifdef CONFIG_XFRM
4801 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4802 #endif
4803 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4804 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4805 #endif
4806 #if IS_ENABLED(CONFIG_MPTCP)
4807 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4808 #endif
4809 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4810 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4811 #endif
4812 };
4813 
4814 static __always_inline unsigned int skb_ext_total_length(void)
4815 {
4816 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4817 	int i;
4818 
4819 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4820 		l += skb_ext_type_len[i];
4821 
4822 	return l;
4823 }
4824 
4825 static void skb_extensions_init(void)
4826 {
4827 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4828 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4829 
4830 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4831 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4832 					     0,
4833 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4834 					     NULL);
4835 }
4836 #else
4837 static void skb_extensions_init(void) {}
4838 #endif
4839 
4840 /* The SKB kmem_cache slab is critical for network performance.  Never
4841  * merge/alias the slab with similar sized objects.  This avoids fragmentation
4842  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
4843  */
4844 #ifndef CONFIG_SLUB_TINY
4845 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
4846 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
4847 #define FLAG_SKB_NO_MERGE	0
4848 #endif
4849 
4850 void __init skb_init(void)
4851 {
4852 	skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4853 					      sizeof(struct sk_buff),
4854 					      0,
4855 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
4856 						FLAG_SKB_NO_MERGE,
4857 					      offsetof(struct sk_buff, cb),
4858 					      sizeof_field(struct sk_buff, cb),
4859 					      NULL);
4860 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4861 						sizeof(struct sk_buff_fclones),
4862 						0,
4863 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4864 						NULL);
4865 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
4866 	 * struct skb_shared_info is located at the end of skb->head,
4867 	 * and should not be copied to/from user.
4868 	 */
4869 	skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
4870 						SKB_SMALL_HEAD_CACHE_SIZE,
4871 						0,
4872 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
4873 						0,
4874 						SKB_SMALL_HEAD_HEADROOM,
4875 						NULL);
4876 	skb_extensions_init();
4877 }
4878 
4879 static int
4880 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4881 	       unsigned int recursion_level)
4882 {
4883 	int start = skb_headlen(skb);
4884 	int i, copy = start - offset;
4885 	struct sk_buff *frag_iter;
4886 	int elt = 0;
4887 
4888 	if (unlikely(recursion_level >= 24))
4889 		return -EMSGSIZE;
4890 
4891 	if (copy > 0) {
4892 		if (copy > len)
4893 			copy = len;
4894 		sg_set_buf(sg, skb->data + offset, copy);
4895 		elt++;
4896 		if ((len -= copy) == 0)
4897 			return elt;
4898 		offset += copy;
4899 	}
4900 
4901 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4902 		int end;
4903 
4904 		WARN_ON(start > offset + len);
4905 
4906 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4907 		if ((copy = end - offset) > 0) {
4908 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4909 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4910 				return -EMSGSIZE;
4911 
4912 			if (copy > len)
4913 				copy = len;
4914 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4915 				    skb_frag_off(frag) + offset - start);
4916 			elt++;
4917 			if (!(len -= copy))
4918 				return elt;
4919 			offset += copy;
4920 		}
4921 		start = end;
4922 	}
4923 
4924 	skb_walk_frags(skb, frag_iter) {
4925 		int end, ret;
4926 
4927 		WARN_ON(start > offset + len);
4928 
4929 		end = start + frag_iter->len;
4930 		if ((copy = end - offset) > 0) {
4931 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4932 				return -EMSGSIZE;
4933 
4934 			if (copy > len)
4935 				copy = len;
4936 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4937 					      copy, recursion_level + 1);
4938 			if (unlikely(ret < 0))
4939 				return ret;
4940 			elt += ret;
4941 			if ((len -= copy) == 0)
4942 				return elt;
4943 			offset += copy;
4944 		}
4945 		start = end;
4946 	}
4947 	BUG_ON(len);
4948 	return elt;
4949 }
4950 
4951 /**
4952  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4953  *	@skb: Socket buffer containing the buffers to be mapped
4954  *	@sg: The scatter-gather list to map into
4955  *	@offset: The offset into the buffer's contents to start mapping
4956  *	@len: Length of buffer space to be mapped
4957  *
4958  *	Fill the specified scatter-gather list with mappings/pointers into a
4959  *	region of the buffer space attached to a socket buffer. Returns either
4960  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4961  *	could not fit.
4962  */
4963 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4964 {
4965 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4966 
4967 	if (nsg <= 0)
4968 		return nsg;
4969 
4970 	sg_mark_end(&sg[nsg - 1]);
4971 
4972 	return nsg;
4973 }
4974 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4975 
4976 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4977  * sglist without mark the sg which contain last skb data as the end.
4978  * So the caller can mannipulate sg list as will when padding new data after
4979  * the first call without calling sg_unmark_end to expend sg list.
4980  *
4981  * Scenario to use skb_to_sgvec_nomark:
4982  * 1. sg_init_table
4983  * 2. skb_to_sgvec_nomark(payload1)
4984  * 3. skb_to_sgvec_nomark(payload2)
4985  *
4986  * This is equivalent to:
4987  * 1. sg_init_table
4988  * 2. skb_to_sgvec(payload1)
4989  * 3. sg_unmark_end
4990  * 4. skb_to_sgvec(payload2)
4991  *
4992  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4993  * is more preferable.
4994  */
4995 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4996 			int offset, int len)
4997 {
4998 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4999 }
5000 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5001 
5002 
5003 
5004 /**
5005  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5006  *	@skb: The socket buffer to check.
5007  *	@tailbits: Amount of trailing space to be added
5008  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5009  *
5010  *	Make sure that the data buffers attached to a socket buffer are
5011  *	writable. If they are not, private copies are made of the data buffers
5012  *	and the socket buffer is set to use these instead.
5013  *
5014  *	If @tailbits is given, make sure that there is space to write @tailbits
5015  *	bytes of data beyond current end of socket buffer.  @trailer will be
5016  *	set to point to the skb in which this space begins.
5017  *
5018  *	The number of scatterlist elements required to completely map the
5019  *	COW'd and extended socket buffer will be returned.
5020  */
5021 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5022 {
5023 	int copyflag;
5024 	int elt;
5025 	struct sk_buff *skb1, **skb_p;
5026 
5027 	/* If skb is cloned or its head is paged, reallocate
5028 	 * head pulling out all the pages (pages are considered not writable
5029 	 * at the moment even if they are anonymous).
5030 	 */
5031 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5032 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5033 		return -ENOMEM;
5034 
5035 	/* Easy case. Most of packets will go this way. */
5036 	if (!skb_has_frag_list(skb)) {
5037 		/* A little of trouble, not enough of space for trailer.
5038 		 * This should not happen, when stack is tuned to generate
5039 		 * good frames. OK, on miss we reallocate and reserve even more
5040 		 * space, 128 bytes is fair. */
5041 
5042 		if (skb_tailroom(skb) < tailbits &&
5043 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5044 			return -ENOMEM;
5045 
5046 		/* Voila! */
5047 		*trailer = skb;
5048 		return 1;
5049 	}
5050 
5051 	/* Misery. We are in troubles, going to mincer fragments... */
5052 
5053 	elt = 1;
5054 	skb_p = &skb_shinfo(skb)->frag_list;
5055 	copyflag = 0;
5056 
5057 	while ((skb1 = *skb_p) != NULL) {
5058 		int ntail = 0;
5059 
5060 		/* The fragment is partially pulled by someone,
5061 		 * this can happen on input. Copy it and everything
5062 		 * after it. */
5063 
5064 		if (skb_shared(skb1))
5065 			copyflag = 1;
5066 
5067 		/* If the skb is the last, worry about trailer. */
5068 
5069 		if (skb1->next == NULL && tailbits) {
5070 			if (skb_shinfo(skb1)->nr_frags ||
5071 			    skb_has_frag_list(skb1) ||
5072 			    skb_tailroom(skb1) < tailbits)
5073 				ntail = tailbits + 128;
5074 		}
5075 
5076 		if (copyflag ||
5077 		    skb_cloned(skb1) ||
5078 		    ntail ||
5079 		    skb_shinfo(skb1)->nr_frags ||
5080 		    skb_has_frag_list(skb1)) {
5081 			struct sk_buff *skb2;
5082 
5083 			/* Fuck, we are miserable poor guys... */
5084 			if (ntail == 0)
5085 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5086 			else
5087 				skb2 = skb_copy_expand(skb1,
5088 						       skb_headroom(skb1),
5089 						       ntail,
5090 						       GFP_ATOMIC);
5091 			if (unlikely(skb2 == NULL))
5092 				return -ENOMEM;
5093 
5094 			if (skb1->sk)
5095 				skb_set_owner_w(skb2, skb1->sk);
5096 
5097 			/* Looking around. Are we still alive?
5098 			 * OK, link new skb, drop old one */
5099 
5100 			skb2->next = skb1->next;
5101 			*skb_p = skb2;
5102 			kfree_skb(skb1);
5103 			skb1 = skb2;
5104 		}
5105 		elt++;
5106 		*trailer = skb1;
5107 		skb_p = &skb1->next;
5108 	}
5109 
5110 	return elt;
5111 }
5112 EXPORT_SYMBOL_GPL(skb_cow_data);
5113 
5114 static void sock_rmem_free(struct sk_buff *skb)
5115 {
5116 	struct sock *sk = skb->sk;
5117 
5118 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5119 }
5120 
5121 static void skb_set_err_queue(struct sk_buff *skb)
5122 {
5123 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5124 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5125 	 */
5126 	skb->pkt_type = PACKET_OUTGOING;
5127 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5128 }
5129 
5130 /*
5131  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5132  */
5133 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5134 {
5135 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5136 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5137 		return -ENOMEM;
5138 
5139 	skb_orphan(skb);
5140 	skb->sk = sk;
5141 	skb->destructor = sock_rmem_free;
5142 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5143 	skb_set_err_queue(skb);
5144 
5145 	/* before exiting rcu section, make sure dst is refcounted */
5146 	skb_dst_force(skb);
5147 
5148 	skb_queue_tail(&sk->sk_error_queue, skb);
5149 	if (!sock_flag(sk, SOCK_DEAD))
5150 		sk_error_report(sk);
5151 	return 0;
5152 }
5153 EXPORT_SYMBOL(sock_queue_err_skb);
5154 
5155 static bool is_icmp_err_skb(const struct sk_buff *skb)
5156 {
5157 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5158 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5159 }
5160 
5161 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5162 {
5163 	struct sk_buff_head *q = &sk->sk_error_queue;
5164 	struct sk_buff *skb, *skb_next = NULL;
5165 	bool icmp_next = false;
5166 	unsigned long flags;
5167 
5168 	if (skb_queue_empty_lockless(q))
5169 		return NULL;
5170 
5171 	spin_lock_irqsave(&q->lock, flags);
5172 	skb = __skb_dequeue(q);
5173 	if (skb && (skb_next = skb_peek(q))) {
5174 		icmp_next = is_icmp_err_skb(skb_next);
5175 		if (icmp_next)
5176 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5177 	}
5178 	spin_unlock_irqrestore(&q->lock, flags);
5179 
5180 	if (is_icmp_err_skb(skb) && !icmp_next)
5181 		sk->sk_err = 0;
5182 
5183 	if (skb_next)
5184 		sk_error_report(sk);
5185 
5186 	return skb;
5187 }
5188 EXPORT_SYMBOL(sock_dequeue_err_skb);
5189 
5190 /**
5191  * skb_clone_sk - create clone of skb, and take reference to socket
5192  * @skb: the skb to clone
5193  *
5194  * This function creates a clone of a buffer that holds a reference on
5195  * sk_refcnt.  Buffers created via this function are meant to be
5196  * returned using sock_queue_err_skb, or free via kfree_skb.
5197  *
5198  * When passing buffers allocated with this function to sock_queue_err_skb
5199  * it is necessary to wrap the call with sock_hold/sock_put in order to
5200  * prevent the socket from being released prior to being enqueued on
5201  * the sk_error_queue.
5202  */
5203 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5204 {
5205 	struct sock *sk = skb->sk;
5206 	struct sk_buff *clone;
5207 
5208 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5209 		return NULL;
5210 
5211 	clone = skb_clone(skb, GFP_ATOMIC);
5212 	if (!clone) {
5213 		sock_put(sk);
5214 		return NULL;
5215 	}
5216 
5217 	clone->sk = sk;
5218 	clone->destructor = sock_efree;
5219 
5220 	return clone;
5221 }
5222 EXPORT_SYMBOL(skb_clone_sk);
5223 
5224 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5225 					struct sock *sk,
5226 					int tstype,
5227 					bool opt_stats)
5228 {
5229 	struct sock_exterr_skb *serr;
5230 	int err;
5231 
5232 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5233 
5234 	serr = SKB_EXT_ERR(skb);
5235 	memset(serr, 0, sizeof(*serr));
5236 	serr->ee.ee_errno = ENOMSG;
5237 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5238 	serr->ee.ee_info = tstype;
5239 	serr->opt_stats = opt_stats;
5240 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5241 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5242 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5243 		if (sk_is_tcp(sk))
5244 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5245 	}
5246 
5247 	err = sock_queue_err_skb(sk, skb);
5248 
5249 	if (err)
5250 		kfree_skb(skb);
5251 }
5252 
5253 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5254 {
5255 	bool ret;
5256 
5257 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5258 		return true;
5259 
5260 	read_lock_bh(&sk->sk_callback_lock);
5261 	ret = sk->sk_socket && sk->sk_socket->file &&
5262 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5263 	read_unlock_bh(&sk->sk_callback_lock);
5264 	return ret;
5265 }
5266 
5267 void skb_complete_tx_timestamp(struct sk_buff *skb,
5268 			       struct skb_shared_hwtstamps *hwtstamps)
5269 {
5270 	struct sock *sk = skb->sk;
5271 
5272 	if (!skb_may_tx_timestamp(sk, false))
5273 		goto err;
5274 
5275 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5276 	 * but only if the socket refcount is not zero.
5277 	 */
5278 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5279 		*skb_hwtstamps(skb) = *hwtstamps;
5280 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5281 		sock_put(sk);
5282 		return;
5283 	}
5284 
5285 err:
5286 	kfree_skb(skb);
5287 }
5288 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5289 
5290 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5291 		     const struct sk_buff *ack_skb,
5292 		     struct skb_shared_hwtstamps *hwtstamps,
5293 		     struct sock *sk, int tstype)
5294 {
5295 	struct sk_buff *skb;
5296 	bool tsonly, opt_stats = false;
5297 	u32 tsflags;
5298 
5299 	if (!sk)
5300 		return;
5301 
5302 	tsflags = READ_ONCE(sk->sk_tsflags);
5303 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5304 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5305 		return;
5306 
5307 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5308 	if (!skb_may_tx_timestamp(sk, tsonly))
5309 		return;
5310 
5311 	if (tsonly) {
5312 #ifdef CONFIG_INET
5313 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5314 		    sk_is_tcp(sk)) {
5315 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5316 							     ack_skb);
5317 			opt_stats = true;
5318 		} else
5319 #endif
5320 			skb = alloc_skb(0, GFP_ATOMIC);
5321 	} else {
5322 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5323 
5324 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5325 			kfree_skb(skb);
5326 			return;
5327 		}
5328 	}
5329 	if (!skb)
5330 		return;
5331 
5332 	if (tsonly) {
5333 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5334 					     SKBTX_ANY_TSTAMP;
5335 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5336 	}
5337 
5338 	if (hwtstamps)
5339 		*skb_hwtstamps(skb) = *hwtstamps;
5340 	else
5341 		__net_timestamp(skb);
5342 
5343 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5344 }
5345 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5346 
5347 void skb_tstamp_tx(struct sk_buff *orig_skb,
5348 		   struct skb_shared_hwtstamps *hwtstamps)
5349 {
5350 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5351 			       SCM_TSTAMP_SND);
5352 }
5353 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5354 
5355 #ifdef CONFIG_WIRELESS
5356 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5357 {
5358 	struct sock *sk = skb->sk;
5359 	struct sock_exterr_skb *serr;
5360 	int err = 1;
5361 
5362 	skb->wifi_acked_valid = 1;
5363 	skb->wifi_acked = acked;
5364 
5365 	serr = SKB_EXT_ERR(skb);
5366 	memset(serr, 0, sizeof(*serr));
5367 	serr->ee.ee_errno = ENOMSG;
5368 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5369 
5370 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5371 	 * but only if the socket refcount is not zero.
5372 	 */
5373 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5374 		err = sock_queue_err_skb(sk, skb);
5375 		sock_put(sk);
5376 	}
5377 	if (err)
5378 		kfree_skb(skb);
5379 }
5380 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5381 #endif /* CONFIG_WIRELESS */
5382 
5383 /**
5384  * skb_partial_csum_set - set up and verify partial csum values for packet
5385  * @skb: the skb to set
5386  * @start: the number of bytes after skb->data to start checksumming.
5387  * @off: the offset from start to place the checksum.
5388  *
5389  * For untrusted partially-checksummed packets, we need to make sure the values
5390  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5391  *
5392  * This function checks and sets those values and skb->ip_summed: if this
5393  * returns false you should drop the packet.
5394  */
5395 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5396 {
5397 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5398 	u32 csum_start = skb_headroom(skb) + (u32)start;
5399 
5400 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5401 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5402 				     start, off, skb_headroom(skb), skb_headlen(skb));
5403 		return false;
5404 	}
5405 	skb->ip_summed = CHECKSUM_PARTIAL;
5406 	skb->csum_start = csum_start;
5407 	skb->csum_offset = off;
5408 	skb->transport_header = csum_start;
5409 	return true;
5410 }
5411 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5412 
5413 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5414 			       unsigned int max)
5415 {
5416 	if (skb_headlen(skb) >= len)
5417 		return 0;
5418 
5419 	/* If we need to pullup then pullup to the max, so we
5420 	 * won't need to do it again.
5421 	 */
5422 	if (max > skb->len)
5423 		max = skb->len;
5424 
5425 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5426 		return -ENOMEM;
5427 
5428 	if (skb_headlen(skb) < len)
5429 		return -EPROTO;
5430 
5431 	return 0;
5432 }
5433 
5434 #define MAX_TCP_HDR_LEN (15 * 4)
5435 
5436 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5437 				      typeof(IPPROTO_IP) proto,
5438 				      unsigned int off)
5439 {
5440 	int err;
5441 
5442 	switch (proto) {
5443 	case IPPROTO_TCP:
5444 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5445 					  off + MAX_TCP_HDR_LEN);
5446 		if (!err && !skb_partial_csum_set(skb, off,
5447 						  offsetof(struct tcphdr,
5448 							   check)))
5449 			err = -EPROTO;
5450 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5451 
5452 	case IPPROTO_UDP:
5453 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5454 					  off + sizeof(struct udphdr));
5455 		if (!err && !skb_partial_csum_set(skb, off,
5456 						  offsetof(struct udphdr,
5457 							   check)))
5458 			err = -EPROTO;
5459 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5460 	}
5461 
5462 	return ERR_PTR(-EPROTO);
5463 }
5464 
5465 /* This value should be large enough to cover a tagged ethernet header plus
5466  * maximally sized IP and TCP or UDP headers.
5467  */
5468 #define MAX_IP_HDR_LEN 128
5469 
5470 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5471 {
5472 	unsigned int off;
5473 	bool fragment;
5474 	__sum16 *csum;
5475 	int err;
5476 
5477 	fragment = false;
5478 
5479 	err = skb_maybe_pull_tail(skb,
5480 				  sizeof(struct iphdr),
5481 				  MAX_IP_HDR_LEN);
5482 	if (err < 0)
5483 		goto out;
5484 
5485 	if (ip_is_fragment(ip_hdr(skb)))
5486 		fragment = true;
5487 
5488 	off = ip_hdrlen(skb);
5489 
5490 	err = -EPROTO;
5491 
5492 	if (fragment)
5493 		goto out;
5494 
5495 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5496 	if (IS_ERR(csum))
5497 		return PTR_ERR(csum);
5498 
5499 	if (recalculate)
5500 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5501 					   ip_hdr(skb)->daddr,
5502 					   skb->len - off,
5503 					   ip_hdr(skb)->protocol, 0);
5504 	err = 0;
5505 
5506 out:
5507 	return err;
5508 }
5509 
5510 /* This value should be large enough to cover a tagged ethernet header plus
5511  * an IPv6 header, all options, and a maximal TCP or UDP header.
5512  */
5513 #define MAX_IPV6_HDR_LEN 256
5514 
5515 #define OPT_HDR(type, skb, off) \
5516 	(type *)(skb_network_header(skb) + (off))
5517 
5518 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5519 {
5520 	int err;
5521 	u8 nexthdr;
5522 	unsigned int off;
5523 	unsigned int len;
5524 	bool fragment;
5525 	bool done;
5526 	__sum16 *csum;
5527 
5528 	fragment = false;
5529 	done = false;
5530 
5531 	off = sizeof(struct ipv6hdr);
5532 
5533 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5534 	if (err < 0)
5535 		goto out;
5536 
5537 	nexthdr = ipv6_hdr(skb)->nexthdr;
5538 
5539 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5540 	while (off <= len && !done) {
5541 		switch (nexthdr) {
5542 		case IPPROTO_DSTOPTS:
5543 		case IPPROTO_HOPOPTS:
5544 		case IPPROTO_ROUTING: {
5545 			struct ipv6_opt_hdr *hp;
5546 
5547 			err = skb_maybe_pull_tail(skb,
5548 						  off +
5549 						  sizeof(struct ipv6_opt_hdr),
5550 						  MAX_IPV6_HDR_LEN);
5551 			if (err < 0)
5552 				goto out;
5553 
5554 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5555 			nexthdr = hp->nexthdr;
5556 			off += ipv6_optlen(hp);
5557 			break;
5558 		}
5559 		case IPPROTO_AH: {
5560 			struct ip_auth_hdr *hp;
5561 
5562 			err = skb_maybe_pull_tail(skb,
5563 						  off +
5564 						  sizeof(struct ip_auth_hdr),
5565 						  MAX_IPV6_HDR_LEN);
5566 			if (err < 0)
5567 				goto out;
5568 
5569 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5570 			nexthdr = hp->nexthdr;
5571 			off += ipv6_authlen(hp);
5572 			break;
5573 		}
5574 		case IPPROTO_FRAGMENT: {
5575 			struct frag_hdr *hp;
5576 
5577 			err = skb_maybe_pull_tail(skb,
5578 						  off +
5579 						  sizeof(struct frag_hdr),
5580 						  MAX_IPV6_HDR_LEN);
5581 			if (err < 0)
5582 				goto out;
5583 
5584 			hp = OPT_HDR(struct frag_hdr, skb, off);
5585 
5586 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5587 				fragment = true;
5588 
5589 			nexthdr = hp->nexthdr;
5590 			off += sizeof(struct frag_hdr);
5591 			break;
5592 		}
5593 		default:
5594 			done = true;
5595 			break;
5596 		}
5597 	}
5598 
5599 	err = -EPROTO;
5600 
5601 	if (!done || fragment)
5602 		goto out;
5603 
5604 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5605 	if (IS_ERR(csum))
5606 		return PTR_ERR(csum);
5607 
5608 	if (recalculate)
5609 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5610 					 &ipv6_hdr(skb)->daddr,
5611 					 skb->len - off, nexthdr, 0);
5612 	err = 0;
5613 
5614 out:
5615 	return err;
5616 }
5617 
5618 /**
5619  * skb_checksum_setup - set up partial checksum offset
5620  * @skb: the skb to set up
5621  * @recalculate: if true the pseudo-header checksum will be recalculated
5622  */
5623 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5624 {
5625 	int err;
5626 
5627 	switch (skb->protocol) {
5628 	case htons(ETH_P_IP):
5629 		err = skb_checksum_setup_ipv4(skb, recalculate);
5630 		break;
5631 
5632 	case htons(ETH_P_IPV6):
5633 		err = skb_checksum_setup_ipv6(skb, recalculate);
5634 		break;
5635 
5636 	default:
5637 		err = -EPROTO;
5638 		break;
5639 	}
5640 
5641 	return err;
5642 }
5643 EXPORT_SYMBOL(skb_checksum_setup);
5644 
5645 /**
5646  * skb_checksum_maybe_trim - maybe trims the given skb
5647  * @skb: the skb to check
5648  * @transport_len: the data length beyond the network header
5649  *
5650  * Checks whether the given skb has data beyond the given transport length.
5651  * If so, returns a cloned skb trimmed to this transport length.
5652  * Otherwise returns the provided skb. Returns NULL in error cases
5653  * (e.g. transport_len exceeds skb length or out-of-memory).
5654  *
5655  * Caller needs to set the skb transport header and free any returned skb if it
5656  * differs from the provided skb.
5657  */
5658 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5659 					       unsigned int transport_len)
5660 {
5661 	struct sk_buff *skb_chk;
5662 	unsigned int len = skb_transport_offset(skb) + transport_len;
5663 	int ret;
5664 
5665 	if (skb->len < len)
5666 		return NULL;
5667 	else if (skb->len == len)
5668 		return skb;
5669 
5670 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5671 	if (!skb_chk)
5672 		return NULL;
5673 
5674 	ret = pskb_trim_rcsum(skb_chk, len);
5675 	if (ret) {
5676 		kfree_skb(skb_chk);
5677 		return NULL;
5678 	}
5679 
5680 	return skb_chk;
5681 }
5682 
5683 /**
5684  * skb_checksum_trimmed - validate checksum of an skb
5685  * @skb: the skb to check
5686  * @transport_len: the data length beyond the network header
5687  * @skb_chkf: checksum function to use
5688  *
5689  * Applies the given checksum function skb_chkf to the provided skb.
5690  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5691  *
5692  * If the skb has data beyond the given transport length, then a
5693  * trimmed & cloned skb is checked and returned.
5694  *
5695  * Caller needs to set the skb transport header and free any returned skb if it
5696  * differs from the provided skb.
5697  */
5698 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5699 				     unsigned int transport_len,
5700 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5701 {
5702 	struct sk_buff *skb_chk;
5703 	unsigned int offset = skb_transport_offset(skb);
5704 	__sum16 ret;
5705 
5706 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5707 	if (!skb_chk)
5708 		goto err;
5709 
5710 	if (!pskb_may_pull(skb_chk, offset))
5711 		goto err;
5712 
5713 	skb_pull_rcsum(skb_chk, offset);
5714 	ret = skb_chkf(skb_chk);
5715 	skb_push_rcsum(skb_chk, offset);
5716 
5717 	if (ret)
5718 		goto err;
5719 
5720 	return skb_chk;
5721 
5722 err:
5723 	if (skb_chk && skb_chk != skb)
5724 		kfree_skb(skb_chk);
5725 
5726 	return NULL;
5727 
5728 }
5729 EXPORT_SYMBOL(skb_checksum_trimmed);
5730 
5731 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5732 {
5733 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5734 			     skb->dev->name);
5735 }
5736 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5737 
5738 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5739 {
5740 	if (head_stolen) {
5741 		skb_release_head_state(skb);
5742 		kmem_cache_free(skbuff_cache, skb);
5743 	} else {
5744 		__kfree_skb(skb);
5745 	}
5746 }
5747 EXPORT_SYMBOL(kfree_skb_partial);
5748 
5749 /**
5750  * skb_try_coalesce - try to merge skb to prior one
5751  * @to: prior buffer
5752  * @from: buffer to add
5753  * @fragstolen: pointer to boolean
5754  * @delta_truesize: how much more was allocated than was requested
5755  */
5756 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5757 		      bool *fragstolen, int *delta_truesize)
5758 {
5759 	struct skb_shared_info *to_shinfo, *from_shinfo;
5760 	int i, delta, len = from->len;
5761 
5762 	*fragstolen = false;
5763 
5764 	if (skb_cloned(to))
5765 		return false;
5766 
5767 	/* In general, avoid mixing page_pool and non-page_pool allocated
5768 	 * pages within the same SKB. Additionally avoid dealing with clones
5769 	 * with page_pool pages, in case the SKB is using page_pool fragment
5770 	 * references (page_pool_alloc_frag()). Since we only take full page
5771 	 * references for cloned SKBs at the moment that would result in
5772 	 * inconsistent reference counts.
5773 	 * In theory we could take full references if @from is cloned and
5774 	 * !@to->pp_recycle but its tricky (due to potential race with
5775 	 * the clone disappearing) and rare, so not worth dealing with.
5776 	 */
5777 	if (to->pp_recycle != from->pp_recycle ||
5778 	    (from->pp_recycle && skb_cloned(from)))
5779 		return false;
5780 
5781 	if (len <= skb_tailroom(to)) {
5782 		if (len)
5783 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5784 		*delta_truesize = 0;
5785 		return true;
5786 	}
5787 
5788 	to_shinfo = skb_shinfo(to);
5789 	from_shinfo = skb_shinfo(from);
5790 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5791 		return false;
5792 	if (skb_zcopy(to) || skb_zcopy(from))
5793 		return false;
5794 
5795 	if (skb_headlen(from) != 0) {
5796 		struct page *page;
5797 		unsigned int offset;
5798 
5799 		if (to_shinfo->nr_frags +
5800 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5801 			return false;
5802 
5803 		if (skb_head_is_locked(from))
5804 			return false;
5805 
5806 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5807 
5808 		page = virt_to_head_page(from->head);
5809 		offset = from->data - (unsigned char *)page_address(page);
5810 
5811 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5812 				   page, offset, skb_headlen(from));
5813 		*fragstolen = true;
5814 	} else {
5815 		if (to_shinfo->nr_frags +
5816 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5817 			return false;
5818 
5819 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5820 	}
5821 
5822 	WARN_ON_ONCE(delta < len);
5823 
5824 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5825 	       from_shinfo->frags,
5826 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5827 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5828 
5829 	if (!skb_cloned(from))
5830 		from_shinfo->nr_frags = 0;
5831 
5832 	/* if the skb is not cloned this does nothing
5833 	 * since we set nr_frags to 0.
5834 	 */
5835 	for (i = 0; i < from_shinfo->nr_frags; i++)
5836 		__skb_frag_ref(&from_shinfo->frags[i]);
5837 
5838 	to->truesize += delta;
5839 	to->len += len;
5840 	to->data_len += len;
5841 
5842 	*delta_truesize = delta;
5843 	return true;
5844 }
5845 EXPORT_SYMBOL(skb_try_coalesce);
5846 
5847 /**
5848  * skb_scrub_packet - scrub an skb
5849  *
5850  * @skb: buffer to clean
5851  * @xnet: packet is crossing netns
5852  *
5853  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5854  * into/from a tunnel. Some information have to be cleared during these
5855  * operations.
5856  * skb_scrub_packet can also be used to clean a skb before injecting it in
5857  * another namespace (@xnet == true). We have to clear all information in the
5858  * skb that could impact namespace isolation.
5859  */
5860 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5861 {
5862 	skb->pkt_type = PACKET_HOST;
5863 	skb->skb_iif = 0;
5864 	skb->ignore_df = 0;
5865 	skb_dst_drop(skb);
5866 	skb_ext_reset(skb);
5867 	nf_reset_ct(skb);
5868 	nf_reset_trace(skb);
5869 
5870 #ifdef CONFIG_NET_SWITCHDEV
5871 	skb->offload_fwd_mark = 0;
5872 	skb->offload_l3_fwd_mark = 0;
5873 #endif
5874 
5875 	if (!xnet)
5876 		return;
5877 
5878 	ipvs_reset(skb);
5879 	skb->mark = 0;
5880 	skb_clear_tstamp(skb);
5881 }
5882 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5883 
5884 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5885 {
5886 	int mac_len, meta_len;
5887 	void *meta;
5888 
5889 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5890 		kfree_skb(skb);
5891 		return NULL;
5892 	}
5893 
5894 	mac_len = skb->data - skb_mac_header(skb);
5895 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5896 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5897 			mac_len - VLAN_HLEN - ETH_TLEN);
5898 	}
5899 
5900 	meta_len = skb_metadata_len(skb);
5901 	if (meta_len) {
5902 		meta = skb_metadata_end(skb) - meta_len;
5903 		memmove(meta + VLAN_HLEN, meta, meta_len);
5904 	}
5905 
5906 	skb->mac_header += VLAN_HLEN;
5907 	return skb;
5908 }
5909 
5910 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5911 {
5912 	struct vlan_hdr *vhdr;
5913 	u16 vlan_tci;
5914 
5915 	if (unlikely(skb_vlan_tag_present(skb))) {
5916 		/* vlan_tci is already set-up so leave this for another time */
5917 		return skb;
5918 	}
5919 
5920 	skb = skb_share_check(skb, GFP_ATOMIC);
5921 	if (unlikely(!skb))
5922 		goto err_free;
5923 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5924 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5925 		goto err_free;
5926 
5927 	vhdr = (struct vlan_hdr *)skb->data;
5928 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5929 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5930 
5931 	skb_pull_rcsum(skb, VLAN_HLEN);
5932 	vlan_set_encap_proto(skb, vhdr);
5933 
5934 	skb = skb_reorder_vlan_header(skb);
5935 	if (unlikely(!skb))
5936 		goto err_free;
5937 
5938 	skb_reset_network_header(skb);
5939 	if (!skb_transport_header_was_set(skb))
5940 		skb_reset_transport_header(skb);
5941 	skb_reset_mac_len(skb);
5942 
5943 	return skb;
5944 
5945 err_free:
5946 	kfree_skb(skb);
5947 	return NULL;
5948 }
5949 EXPORT_SYMBOL(skb_vlan_untag);
5950 
5951 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5952 {
5953 	if (!pskb_may_pull(skb, write_len))
5954 		return -ENOMEM;
5955 
5956 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5957 		return 0;
5958 
5959 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5960 }
5961 EXPORT_SYMBOL(skb_ensure_writable);
5962 
5963 /* remove VLAN header from packet and update csum accordingly.
5964  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5965  */
5966 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5967 {
5968 	int offset = skb->data - skb_mac_header(skb);
5969 	int err;
5970 
5971 	if (WARN_ONCE(offset,
5972 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5973 		      offset)) {
5974 		return -EINVAL;
5975 	}
5976 
5977 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5978 	if (unlikely(err))
5979 		return err;
5980 
5981 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5982 
5983 	vlan_remove_tag(skb, vlan_tci);
5984 
5985 	skb->mac_header += VLAN_HLEN;
5986 
5987 	if (skb_network_offset(skb) < ETH_HLEN)
5988 		skb_set_network_header(skb, ETH_HLEN);
5989 
5990 	skb_reset_mac_len(skb);
5991 
5992 	return err;
5993 }
5994 EXPORT_SYMBOL(__skb_vlan_pop);
5995 
5996 /* Pop a vlan tag either from hwaccel or from payload.
5997  * Expects skb->data at mac header.
5998  */
5999 int skb_vlan_pop(struct sk_buff *skb)
6000 {
6001 	u16 vlan_tci;
6002 	__be16 vlan_proto;
6003 	int err;
6004 
6005 	if (likely(skb_vlan_tag_present(skb))) {
6006 		__vlan_hwaccel_clear_tag(skb);
6007 	} else {
6008 		if (unlikely(!eth_type_vlan(skb->protocol)))
6009 			return 0;
6010 
6011 		err = __skb_vlan_pop(skb, &vlan_tci);
6012 		if (err)
6013 			return err;
6014 	}
6015 	/* move next vlan tag to hw accel tag */
6016 	if (likely(!eth_type_vlan(skb->protocol)))
6017 		return 0;
6018 
6019 	vlan_proto = skb->protocol;
6020 	err = __skb_vlan_pop(skb, &vlan_tci);
6021 	if (unlikely(err))
6022 		return err;
6023 
6024 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6025 	return 0;
6026 }
6027 EXPORT_SYMBOL(skb_vlan_pop);
6028 
6029 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6030  * Expects skb->data at mac header.
6031  */
6032 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6033 {
6034 	if (skb_vlan_tag_present(skb)) {
6035 		int offset = skb->data - skb_mac_header(skb);
6036 		int err;
6037 
6038 		if (WARN_ONCE(offset,
6039 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6040 			      offset)) {
6041 			return -EINVAL;
6042 		}
6043 
6044 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6045 					skb_vlan_tag_get(skb));
6046 		if (err)
6047 			return err;
6048 
6049 		skb->protocol = skb->vlan_proto;
6050 		skb->mac_len += VLAN_HLEN;
6051 
6052 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6053 	}
6054 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6055 	return 0;
6056 }
6057 EXPORT_SYMBOL(skb_vlan_push);
6058 
6059 /**
6060  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6061  *
6062  * @skb: Socket buffer to modify
6063  *
6064  * Drop the Ethernet header of @skb.
6065  *
6066  * Expects that skb->data points to the mac header and that no VLAN tags are
6067  * present.
6068  *
6069  * Returns 0 on success, -errno otherwise.
6070  */
6071 int skb_eth_pop(struct sk_buff *skb)
6072 {
6073 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6074 	    skb_network_offset(skb) < ETH_HLEN)
6075 		return -EPROTO;
6076 
6077 	skb_pull_rcsum(skb, ETH_HLEN);
6078 	skb_reset_mac_header(skb);
6079 	skb_reset_mac_len(skb);
6080 
6081 	return 0;
6082 }
6083 EXPORT_SYMBOL(skb_eth_pop);
6084 
6085 /**
6086  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6087  *
6088  * @skb: Socket buffer to modify
6089  * @dst: Destination MAC address of the new header
6090  * @src: Source MAC address of the new header
6091  *
6092  * Prepend @skb with a new Ethernet header.
6093  *
6094  * Expects that skb->data points to the mac header, which must be empty.
6095  *
6096  * Returns 0 on success, -errno otherwise.
6097  */
6098 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6099 		 const unsigned char *src)
6100 {
6101 	struct ethhdr *eth;
6102 	int err;
6103 
6104 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6105 		return -EPROTO;
6106 
6107 	err = skb_cow_head(skb, sizeof(*eth));
6108 	if (err < 0)
6109 		return err;
6110 
6111 	skb_push(skb, sizeof(*eth));
6112 	skb_reset_mac_header(skb);
6113 	skb_reset_mac_len(skb);
6114 
6115 	eth = eth_hdr(skb);
6116 	ether_addr_copy(eth->h_dest, dst);
6117 	ether_addr_copy(eth->h_source, src);
6118 	eth->h_proto = skb->protocol;
6119 
6120 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6121 
6122 	return 0;
6123 }
6124 EXPORT_SYMBOL(skb_eth_push);
6125 
6126 /* Update the ethertype of hdr and the skb csum value if required. */
6127 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6128 			     __be16 ethertype)
6129 {
6130 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6131 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6132 
6133 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6134 	}
6135 
6136 	hdr->h_proto = ethertype;
6137 }
6138 
6139 /**
6140  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6141  *                   the packet
6142  *
6143  * @skb: buffer
6144  * @mpls_lse: MPLS label stack entry to push
6145  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6146  * @mac_len: length of the MAC header
6147  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6148  *            ethernet
6149  *
6150  * Expects skb->data at mac header.
6151  *
6152  * Returns 0 on success, -errno otherwise.
6153  */
6154 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6155 		  int mac_len, bool ethernet)
6156 {
6157 	struct mpls_shim_hdr *lse;
6158 	int err;
6159 
6160 	if (unlikely(!eth_p_mpls(mpls_proto)))
6161 		return -EINVAL;
6162 
6163 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6164 	if (skb->encapsulation)
6165 		return -EINVAL;
6166 
6167 	err = skb_cow_head(skb, MPLS_HLEN);
6168 	if (unlikely(err))
6169 		return err;
6170 
6171 	if (!skb->inner_protocol) {
6172 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6173 		skb_set_inner_protocol(skb, skb->protocol);
6174 	}
6175 
6176 	skb_push(skb, MPLS_HLEN);
6177 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6178 		mac_len);
6179 	skb_reset_mac_header(skb);
6180 	skb_set_network_header(skb, mac_len);
6181 	skb_reset_mac_len(skb);
6182 
6183 	lse = mpls_hdr(skb);
6184 	lse->label_stack_entry = mpls_lse;
6185 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6186 
6187 	if (ethernet && mac_len >= ETH_HLEN)
6188 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6189 	skb->protocol = mpls_proto;
6190 
6191 	return 0;
6192 }
6193 EXPORT_SYMBOL_GPL(skb_mpls_push);
6194 
6195 /**
6196  * skb_mpls_pop() - pop the outermost MPLS header
6197  *
6198  * @skb: buffer
6199  * @next_proto: ethertype of header after popped MPLS header
6200  * @mac_len: length of the MAC header
6201  * @ethernet: flag to indicate if the packet is ethernet
6202  *
6203  * Expects skb->data at mac header.
6204  *
6205  * Returns 0 on success, -errno otherwise.
6206  */
6207 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6208 		 bool ethernet)
6209 {
6210 	int err;
6211 
6212 	if (unlikely(!eth_p_mpls(skb->protocol)))
6213 		return 0;
6214 
6215 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6216 	if (unlikely(err))
6217 		return err;
6218 
6219 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6220 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6221 		mac_len);
6222 
6223 	__skb_pull(skb, MPLS_HLEN);
6224 	skb_reset_mac_header(skb);
6225 	skb_set_network_header(skb, mac_len);
6226 
6227 	if (ethernet && mac_len >= ETH_HLEN) {
6228 		struct ethhdr *hdr;
6229 
6230 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6231 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6232 		skb_mod_eth_type(skb, hdr, next_proto);
6233 	}
6234 	skb->protocol = next_proto;
6235 
6236 	return 0;
6237 }
6238 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6239 
6240 /**
6241  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6242  *
6243  * @skb: buffer
6244  * @mpls_lse: new MPLS label stack entry to update to
6245  *
6246  * Expects skb->data at mac header.
6247  *
6248  * Returns 0 on success, -errno otherwise.
6249  */
6250 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6251 {
6252 	int err;
6253 
6254 	if (unlikely(!eth_p_mpls(skb->protocol)))
6255 		return -EINVAL;
6256 
6257 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6258 	if (unlikely(err))
6259 		return err;
6260 
6261 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6262 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6263 
6264 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6265 	}
6266 
6267 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6268 
6269 	return 0;
6270 }
6271 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6272 
6273 /**
6274  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6275  *
6276  * @skb: buffer
6277  *
6278  * Expects skb->data at mac header.
6279  *
6280  * Returns 0 on success, -errno otherwise.
6281  */
6282 int skb_mpls_dec_ttl(struct sk_buff *skb)
6283 {
6284 	u32 lse;
6285 	u8 ttl;
6286 
6287 	if (unlikely(!eth_p_mpls(skb->protocol)))
6288 		return -EINVAL;
6289 
6290 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6291 		return -ENOMEM;
6292 
6293 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6294 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6295 	if (!--ttl)
6296 		return -EINVAL;
6297 
6298 	lse &= ~MPLS_LS_TTL_MASK;
6299 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6300 
6301 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6302 }
6303 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6304 
6305 /**
6306  * alloc_skb_with_frags - allocate skb with page frags
6307  *
6308  * @header_len: size of linear part
6309  * @data_len: needed length in frags
6310  * @order: max page order desired.
6311  * @errcode: pointer to error code if any
6312  * @gfp_mask: allocation mask
6313  *
6314  * This can be used to allocate a paged skb, given a maximal order for frags.
6315  */
6316 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6317 				     unsigned long data_len,
6318 				     int order,
6319 				     int *errcode,
6320 				     gfp_t gfp_mask)
6321 {
6322 	unsigned long chunk;
6323 	struct sk_buff *skb;
6324 	struct page *page;
6325 	int nr_frags = 0;
6326 
6327 	*errcode = -EMSGSIZE;
6328 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6329 		return NULL;
6330 
6331 	*errcode = -ENOBUFS;
6332 	skb = alloc_skb(header_len, gfp_mask);
6333 	if (!skb)
6334 		return NULL;
6335 
6336 	while (data_len) {
6337 		if (nr_frags == MAX_SKB_FRAGS - 1)
6338 			goto failure;
6339 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6340 			order--;
6341 
6342 		if (order) {
6343 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6344 					   __GFP_COMP |
6345 					   __GFP_NOWARN,
6346 					   order);
6347 			if (!page) {
6348 				order--;
6349 				continue;
6350 			}
6351 		} else {
6352 			page = alloc_page(gfp_mask);
6353 			if (!page)
6354 				goto failure;
6355 		}
6356 		chunk = min_t(unsigned long, data_len,
6357 			      PAGE_SIZE << order);
6358 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6359 		nr_frags++;
6360 		skb->truesize += (PAGE_SIZE << order);
6361 		data_len -= chunk;
6362 	}
6363 	return skb;
6364 
6365 failure:
6366 	kfree_skb(skb);
6367 	return NULL;
6368 }
6369 EXPORT_SYMBOL(alloc_skb_with_frags);
6370 
6371 /* carve out the first off bytes from skb when off < headlen */
6372 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6373 				    const int headlen, gfp_t gfp_mask)
6374 {
6375 	int i;
6376 	unsigned int size = skb_end_offset(skb);
6377 	int new_hlen = headlen - off;
6378 	u8 *data;
6379 
6380 	if (skb_pfmemalloc(skb))
6381 		gfp_mask |= __GFP_MEMALLOC;
6382 
6383 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6384 	if (!data)
6385 		return -ENOMEM;
6386 	size = SKB_WITH_OVERHEAD(size);
6387 
6388 	/* Copy real data, and all frags */
6389 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6390 	skb->len -= off;
6391 
6392 	memcpy((struct skb_shared_info *)(data + size),
6393 	       skb_shinfo(skb),
6394 	       offsetof(struct skb_shared_info,
6395 			frags[skb_shinfo(skb)->nr_frags]));
6396 	if (skb_cloned(skb)) {
6397 		/* drop the old head gracefully */
6398 		if (skb_orphan_frags(skb, gfp_mask)) {
6399 			skb_kfree_head(data, size);
6400 			return -ENOMEM;
6401 		}
6402 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6403 			skb_frag_ref(skb, i);
6404 		if (skb_has_frag_list(skb))
6405 			skb_clone_fraglist(skb);
6406 		skb_release_data(skb, SKB_CONSUMED, false);
6407 	} else {
6408 		/* we can reuse existing recount- all we did was
6409 		 * relocate values
6410 		 */
6411 		skb_free_head(skb, false);
6412 	}
6413 
6414 	skb->head = data;
6415 	skb->data = data;
6416 	skb->head_frag = 0;
6417 	skb_set_end_offset(skb, size);
6418 	skb_set_tail_pointer(skb, skb_headlen(skb));
6419 	skb_headers_offset_update(skb, 0);
6420 	skb->cloned = 0;
6421 	skb->hdr_len = 0;
6422 	skb->nohdr = 0;
6423 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6424 
6425 	return 0;
6426 }
6427 
6428 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6429 
6430 /* carve out the first eat bytes from skb's frag_list. May recurse into
6431  * pskb_carve()
6432  */
6433 static int pskb_carve_frag_list(struct sk_buff *skb,
6434 				struct skb_shared_info *shinfo, int eat,
6435 				gfp_t gfp_mask)
6436 {
6437 	struct sk_buff *list = shinfo->frag_list;
6438 	struct sk_buff *clone = NULL;
6439 	struct sk_buff *insp = NULL;
6440 
6441 	do {
6442 		if (!list) {
6443 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6444 			return -EFAULT;
6445 		}
6446 		if (list->len <= eat) {
6447 			/* Eaten as whole. */
6448 			eat -= list->len;
6449 			list = list->next;
6450 			insp = list;
6451 		} else {
6452 			/* Eaten partially. */
6453 			if (skb_shared(list)) {
6454 				clone = skb_clone(list, gfp_mask);
6455 				if (!clone)
6456 					return -ENOMEM;
6457 				insp = list->next;
6458 				list = clone;
6459 			} else {
6460 				/* This may be pulled without problems. */
6461 				insp = list;
6462 			}
6463 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6464 				kfree_skb(clone);
6465 				return -ENOMEM;
6466 			}
6467 			break;
6468 		}
6469 	} while (eat);
6470 
6471 	/* Free pulled out fragments. */
6472 	while ((list = shinfo->frag_list) != insp) {
6473 		shinfo->frag_list = list->next;
6474 		consume_skb(list);
6475 	}
6476 	/* And insert new clone at head. */
6477 	if (clone) {
6478 		clone->next = list;
6479 		shinfo->frag_list = clone;
6480 	}
6481 	return 0;
6482 }
6483 
6484 /* carve off first len bytes from skb. Split line (off) is in the
6485  * non-linear part of skb
6486  */
6487 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6488 				       int pos, gfp_t gfp_mask)
6489 {
6490 	int i, k = 0;
6491 	unsigned int size = skb_end_offset(skb);
6492 	u8 *data;
6493 	const int nfrags = skb_shinfo(skb)->nr_frags;
6494 	struct skb_shared_info *shinfo;
6495 
6496 	if (skb_pfmemalloc(skb))
6497 		gfp_mask |= __GFP_MEMALLOC;
6498 
6499 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6500 	if (!data)
6501 		return -ENOMEM;
6502 	size = SKB_WITH_OVERHEAD(size);
6503 
6504 	memcpy((struct skb_shared_info *)(data + size),
6505 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6506 	if (skb_orphan_frags(skb, gfp_mask)) {
6507 		skb_kfree_head(data, size);
6508 		return -ENOMEM;
6509 	}
6510 	shinfo = (struct skb_shared_info *)(data + size);
6511 	for (i = 0; i < nfrags; i++) {
6512 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6513 
6514 		if (pos + fsize > off) {
6515 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6516 
6517 			if (pos < off) {
6518 				/* Split frag.
6519 				 * We have two variants in this case:
6520 				 * 1. Move all the frag to the second
6521 				 *    part, if it is possible. F.e.
6522 				 *    this approach is mandatory for TUX,
6523 				 *    where splitting is expensive.
6524 				 * 2. Split is accurately. We make this.
6525 				 */
6526 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6527 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6528 			}
6529 			skb_frag_ref(skb, i);
6530 			k++;
6531 		}
6532 		pos += fsize;
6533 	}
6534 	shinfo->nr_frags = k;
6535 	if (skb_has_frag_list(skb))
6536 		skb_clone_fraglist(skb);
6537 
6538 	/* split line is in frag list */
6539 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6540 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6541 		if (skb_has_frag_list(skb))
6542 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6543 		skb_kfree_head(data, size);
6544 		return -ENOMEM;
6545 	}
6546 	skb_release_data(skb, SKB_CONSUMED, false);
6547 
6548 	skb->head = data;
6549 	skb->head_frag = 0;
6550 	skb->data = data;
6551 	skb_set_end_offset(skb, size);
6552 	skb_reset_tail_pointer(skb);
6553 	skb_headers_offset_update(skb, 0);
6554 	skb->cloned   = 0;
6555 	skb->hdr_len  = 0;
6556 	skb->nohdr    = 0;
6557 	skb->len -= off;
6558 	skb->data_len = skb->len;
6559 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6560 	return 0;
6561 }
6562 
6563 /* remove len bytes from the beginning of the skb */
6564 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6565 {
6566 	int headlen = skb_headlen(skb);
6567 
6568 	if (len < headlen)
6569 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6570 	else
6571 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6572 }
6573 
6574 /* Extract to_copy bytes starting at off from skb, and return this in
6575  * a new skb
6576  */
6577 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6578 			     int to_copy, gfp_t gfp)
6579 {
6580 	struct sk_buff  *clone = skb_clone(skb, gfp);
6581 
6582 	if (!clone)
6583 		return NULL;
6584 
6585 	if (pskb_carve(clone, off, gfp) < 0 ||
6586 	    pskb_trim(clone, to_copy)) {
6587 		kfree_skb(clone);
6588 		return NULL;
6589 	}
6590 	return clone;
6591 }
6592 EXPORT_SYMBOL(pskb_extract);
6593 
6594 /**
6595  * skb_condense - try to get rid of fragments/frag_list if possible
6596  * @skb: buffer
6597  *
6598  * Can be used to save memory before skb is added to a busy queue.
6599  * If packet has bytes in frags and enough tail room in skb->head,
6600  * pull all of them, so that we can free the frags right now and adjust
6601  * truesize.
6602  * Notes:
6603  *	We do not reallocate skb->head thus can not fail.
6604  *	Caller must re-evaluate skb->truesize if needed.
6605  */
6606 void skb_condense(struct sk_buff *skb)
6607 {
6608 	if (skb->data_len) {
6609 		if (skb->data_len > skb->end - skb->tail ||
6610 		    skb_cloned(skb))
6611 			return;
6612 
6613 		/* Nice, we can free page frag(s) right now */
6614 		__pskb_pull_tail(skb, skb->data_len);
6615 	}
6616 	/* At this point, skb->truesize might be over estimated,
6617 	 * because skb had a fragment, and fragments do not tell
6618 	 * their truesize.
6619 	 * When we pulled its content into skb->head, fragment
6620 	 * was freed, but __pskb_pull_tail() could not possibly
6621 	 * adjust skb->truesize, not knowing the frag truesize.
6622 	 */
6623 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6624 }
6625 EXPORT_SYMBOL(skb_condense);
6626 
6627 #ifdef CONFIG_SKB_EXTENSIONS
6628 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6629 {
6630 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6631 }
6632 
6633 /**
6634  * __skb_ext_alloc - allocate a new skb extensions storage
6635  *
6636  * @flags: See kmalloc().
6637  *
6638  * Returns the newly allocated pointer. The pointer can later attached to a
6639  * skb via __skb_ext_set().
6640  * Note: caller must handle the skb_ext as an opaque data.
6641  */
6642 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6643 {
6644 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6645 
6646 	if (new) {
6647 		memset(new->offset, 0, sizeof(new->offset));
6648 		refcount_set(&new->refcnt, 1);
6649 	}
6650 
6651 	return new;
6652 }
6653 
6654 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6655 					 unsigned int old_active)
6656 {
6657 	struct skb_ext *new;
6658 
6659 	if (refcount_read(&old->refcnt) == 1)
6660 		return old;
6661 
6662 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6663 	if (!new)
6664 		return NULL;
6665 
6666 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6667 	refcount_set(&new->refcnt, 1);
6668 
6669 #ifdef CONFIG_XFRM
6670 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6671 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6672 		unsigned int i;
6673 
6674 		for (i = 0; i < sp->len; i++)
6675 			xfrm_state_hold(sp->xvec[i]);
6676 	}
6677 #endif
6678 	__skb_ext_put(old);
6679 	return new;
6680 }
6681 
6682 /**
6683  * __skb_ext_set - attach the specified extension storage to this skb
6684  * @skb: buffer
6685  * @id: extension id
6686  * @ext: extension storage previously allocated via __skb_ext_alloc()
6687  *
6688  * Existing extensions, if any, are cleared.
6689  *
6690  * Returns the pointer to the extension.
6691  */
6692 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6693 		    struct skb_ext *ext)
6694 {
6695 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6696 
6697 	skb_ext_put(skb);
6698 	newlen = newoff + skb_ext_type_len[id];
6699 	ext->chunks = newlen;
6700 	ext->offset[id] = newoff;
6701 	skb->extensions = ext;
6702 	skb->active_extensions = 1 << id;
6703 	return skb_ext_get_ptr(ext, id);
6704 }
6705 
6706 /**
6707  * skb_ext_add - allocate space for given extension, COW if needed
6708  * @skb: buffer
6709  * @id: extension to allocate space for
6710  *
6711  * Allocates enough space for the given extension.
6712  * If the extension is already present, a pointer to that extension
6713  * is returned.
6714  *
6715  * If the skb was cloned, COW applies and the returned memory can be
6716  * modified without changing the extension space of clones buffers.
6717  *
6718  * Returns pointer to the extension or NULL on allocation failure.
6719  */
6720 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6721 {
6722 	struct skb_ext *new, *old = NULL;
6723 	unsigned int newlen, newoff;
6724 
6725 	if (skb->active_extensions) {
6726 		old = skb->extensions;
6727 
6728 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6729 		if (!new)
6730 			return NULL;
6731 
6732 		if (__skb_ext_exist(new, id))
6733 			goto set_active;
6734 
6735 		newoff = new->chunks;
6736 	} else {
6737 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6738 
6739 		new = __skb_ext_alloc(GFP_ATOMIC);
6740 		if (!new)
6741 			return NULL;
6742 	}
6743 
6744 	newlen = newoff + skb_ext_type_len[id];
6745 	new->chunks = newlen;
6746 	new->offset[id] = newoff;
6747 set_active:
6748 	skb->slow_gro = 1;
6749 	skb->extensions = new;
6750 	skb->active_extensions |= 1 << id;
6751 	return skb_ext_get_ptr(new, id);
6752 }
6753 EXPORT_SYMBOL(skb_ext_add);
6754 
6755 #ifdef CONFIG_XFRM
6756 static void skb_ext_put_sp(struct sec_path *sp)
6757 {
6758 	unsigned int i;
6759 
6760 	for (i = 0; i < sp->len; i++)
6761 		xfrm_state_put(sp->xvec[i]);
6762 }
6763 #endif
6764 
6765 #ifdef CONFIG_MCTP_FLOWS
6766 static void skb_ext_put_mctp(struct mctp_flow *flow)
6767 {
6768 	if (flow->key)
6769 		mctp_key_unref(flow->key);
6770 }
6771 #endif
6772 
6773 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6774 {
6775 	struct skb_ext *ext = skb->extensions;
6776 
6777 	skb->active_extensions &= ~(1 << id);
6778 	if (skb->active_extensions == 0) {
6779 		skb->extensions = NULL;
6780 		__skb_ext_put(ext);
6781 #ifdef CONFIG_XFRM
6782 	} else if (id == SKB_EXT_SEC_PATH &&
6783 		   refcount_read(&ext->refcnt) == 1) {
6784 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6785 
6786 		skb_ext_put_sp(sp);
6787 		sp->len = 0;
6788 #endif
6789 	}
6790 }
6791 EXPORT_SYMBOL(__skb_ext_del);
6792 
6793 void __skb_ext_put(struct skb_ext *ext)
6794 {
6795 	/* If this is last clone, nothing can increment
6796 	 * it after check passes.  Avoids one atomic op.
6797 	 */
6798 	if (refcount_read(&ext->refcnt) == 1)
6799 		goto free_now;
6800 
6801 	if (!refcount_dec_and_test(&ext->refcnt))
6802 		return;
6803 free_now:
6804 #ifdef CONFIG_XFRM
6805 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6806 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6807 #endif
6808 #ifdef CONFIG_MCTP_FLOWS
6809 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6810 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6811 #endif
6812 
6813 	kmem_cache_free(skbuff_ext_cache, ext);
6814 }
6815 EXPORT_SYMBOL(__skb_ext_put);
6816 #endif /* CONFIG_SKB_EXTENSIONS */
6817 
6818 /**
6819  * skb_attempt_defer_free - queue skb for remote freeing
6820  * @skb: buffer
6821  *
6822  * Put @skb in a per-cpu list, using the cpu which
6823  * allocated the skb/pages to reduce false sharing
6824  * and memory zone spinlock contention.
6825  */
6826 void skb_attempt_defer_free(struct sk_buff *skb)
6827 {
6828 	int cpu = skb->alloc_cpu;
6829 	struct softnet_data *sd;
6830 	unsigned int defer_max;
6831 	bool kick;
6832 
6833 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6834 	    !cpu_online(cpu) ||
6835 	    cpu == raw_smp_processor_id()) {
6836 nodefer:	__kfree_skb(skb);
6837 		return;
6838 	}
6839 
6840 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
6841 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
6842 
6843 	sd = &per_cpu(softnet_data, cpu);
6844 	defer_max = READ_ONCE(sysctl_skb_defer_max);
6845 	if (READ_ONCE(sd->defer_count) >= defer_max)
6846 		goto nodefer;
6847 
6848 	spin_lock_bh(&sd->defer_lock);
6849 	/* Send an IPI every time queue reaches half capacity. */
6850 	kick = sd->defer_count == (defer_max >> 1);
6851 	/* Paired with the READ_ONCE() few lines above */
6852 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6853 
6854 	skb->next = sd->defer_list;
6855 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
6856 	WRITE_ONCE(sd->defer_list, skb);
6857 	spin_unlock_bh(&sd->defer_lock);
6858 
6859 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6860 	 * if we are unlucky enough (this seems very unlikely).
6861 	 */
6862 	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6863 		smp_call_function_single_async(cpu, &sd->defer_csd);
6864 }
6865 
6866 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
6867 				 size_t offset, size_t len)
6868 {
6869 	const char *kaddr;
6870 	__wsum csum;
6871 
6872 	kaddr = kmap_local_page(page);
6873 	csum = csum_partial(kaddr + offset, len, 0);
6874 	kunmap_local(kaddr);
6875 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
6876 }
6877 
6878 /**
6879  * skb_splice_from_iter - Splice (or copy) pages to skbuff
6880  * @skb: The buffer to add pages to
6881  * @iter: Iterator representing the pages to be added
6882  * @maxsize: Maximum amount of pages to be added
6883  * @gfp: Allocation flags
6884  *
6885  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
6886  * extracts pages from an iterator and adds them to the socket buffer if
6887  * possible, copying them to fragments if not possible (such as if they're slab
6888  * pages).
6889  *
6890  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
6891  * insufficient space in the buffer to transfer anything.
6892  */
6893 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
6894 			     ssize_t maxsize, gfp_t gfp)
6895 {
6896 	size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
6897 	struct page *pages[8], **ppages = pages;
6898 	ssize_t spliced = 0, ret = 0;
6899 	unsigned int i;
6900 
6901 	while (iter->count > 0) {
6902 		ssize_t space, nr, len;
6903 		size_t off;
6904 
6905 		ret = -EMSGSIZE;
6906 		space = frag_limit - skb_shinfo(skb)->nr_frags;
6907 		if (space < 0)
6908 			break;
6909 
6910 		/* We might be able to coalesce without increasing nr_frags */
6911 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
6912 
6913 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
6914 		if (len <= 0) {
6915 			ret = len ?: -EIO;
6916 			break;
6917 		}
6918 
6919 		i = 0;
6920 		do {
6921 			struct page *page = pages[i++];
6922 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
6923 
6924 			ret = -EIO;
6925 			if (WARN_ON_ONCE(!sendpage_ok(page)))
6926 				goto out;
6927 
6928 			ret = skb_append_pagefrags(skb, page, off, part,
6929 						   frag_limit);
6930 			if (ret < 0) {
6931 				iov_iter_revert(iter, len);
6932 				goto out;
6933 			}
6934 
6935 			if (skb->ip_summed == CHECKSUM_NONE)
6936 				skb_splice_csum_page(skb, page, off, part);
6937 
6938 			off = 0;
6939 			spliced += part;
6940 			maxsize -= part;
6941 			len -= part;
6942 		} while (len > 0);
6943 
6944 		if (maxsize <= 0)
6945 			break;
6946 	}
6947 
6948 out:
6949 	skb_len_add(skb, spliced);
6950 	return spliced ?: ret;
6951 }
6952 EXPORT_SYMBOL(skb_splice_from_iter);
6953 
6954 static __always_inline
6955 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
6956 			     size_t len, void *to, void *priv2)
6957 {
6958 	__wsum *csum = priv2;
6959 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
6960 
6961 	*csum = csum_block_add(*csum, next, progress);
6962 	return 0;
6963 }
6964 
6965 static __always_inline
6966 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
6967 				size_t len, void *to, void *priv2)
6968 {
6969 	__wsum next, *csum = priv2;
6970 
6971 	next = csum_and_copy_from_user(iter_from, to + progress, len);
6972 	*csum = csum_block_add(*csum, next, progress);
6973 	return next ? 0 : len;
6974 }
6975 
6976 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
6977 				  __wsum *csum, struct iov_iter *i)
6978 {
6979 	size_t copied;
6980 
6981 	if (WARN_ON_ONCE(!i->data_source))
6982 		return false;
6983 	copied = iterate_and_advance2(i, bytes, addr, csum,
6984 				      copy_from_user_iter_csum,
6985 				      memcpy_from_iter_csum);
6986 	if (likely(copied == bytes))
6987 		return true;
6988 	iov_iter_revert(i, copied);
6989 	return false;
6990 }
6991 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
6992