1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/skbuff_ref.h> 55 #include <linux/splice.h> 56 #include <linux/cache.h> 57 #include <linux/rtnetlink.h> 58 #include <linux/init.h> 59 #include <linux/scatterlist.h> 60 #include <linux/errqueue.h> 61 #include <linux/prefetch.h> 62 #include <linux/bitfield.h> 63 #include <linux/if_vlan.h> 64 #include <linux/mpls.h> 65 #include <linux/kcov.h> 66 #include <linux/iov_iter.h> 67 #include <linux/crc32.h> 68 69 #include <net/protocol.h> 70 #include <net/dst.h> 71 #include <net/sock.h> 72 #include <net/checksum.h> 73 #include <net/gro.h> 74 #include <net/gso.h> 75 #include <net/hotdata.h> 76 #include <net/ip6_checksum.h> 77 #include <net/xfrm.h> 78 #include <net/mpls.h> 79 #include <net/mptcp.h> 80 #include <net/mctp.h> 81 #include <net/page_pool/helpers.h> 82 #include <net/dropreason.h> 83 84 #include <linux/uaccess.h> 85 #include <trace/events/skb.h> 86 #include <linux/highmem.h> 87 #include <linux/capability.h> 88 #include <linux/user_namespace.h> 89 #include <linux/indirect_call_wrapper.h> 90 #include <linux/textsearch.h> 91 92 #include "dev.h" 93 #include "devmem.h" 94 #include "netmem_priv.h" 95 #include "sock_destructor.h" 96 97 #ifdef CONFIG_SKB_EXTENSIONS 98 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 99 #endif 100 101 #define GRO_MAX_HEAD_PAD (GRO_MAX_HEAD + NET_SKB_PAD + NET_IP_ALIGN) 102 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(max(MAX_TCP_HEADER, \ 103 GRO_MAX_HEAD_PAD)) 104 105 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 106 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 107 * size, and we can differentiate heads from skb_small_head_cache 108 * vs system slabs by looking at their size (skb_end_offset()). 109 */ 110 #define SKB_SMALL_HEAD_CACHE_SIZE \ 111 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 112 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 113 SKB_SMALL_HEAD_SIZE) 114 115 #define SKB_SMALL_HEAD_HEADROOM \ 116 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 117 118 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use 119 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the 120 * netmem is a page. 121 */ 122 static_assert(offsetof(struct bio_vec, bv_page) == 123 offsetof(skb_frag_t, netmem)); 124 static_assert(sizeof_field(struct bio_vec, bv_page) == 125 sizeof_field(skb_frag_t, netmem)); 126 127 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len)); 128 static_assert(sizeof_field(struct bio_vec, bv_len) == 129 sizeof_field(skb_frag_t, len)); 130 131 static_assert(offsetof(struct bio_vec, bv_offset) == 132 offsetof(skb_frag_t, offset)); 133 static_assert(sizeof_field(struct bio_vec, bv_offset) == 134 sizeof_field(skb_frag_t, offset)); 135 136 #undef FN 137 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 138 static const char * const drop_reasons[] = { 139 [SKB_CONSUMED] = "CONSUMED", 140 DEFINE_DROP_REASON(FN, FN) 141 }; 142 143 static const struct drop_reason_list drop_reasons_core = { 144 .reasons = drop_reasons, 145 .n_reasons = ARRAY_SIZE(drop_reasons), 146 }; 147 148 const struct drop_reason_list __rcu * 149 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 150 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 151 }; 152 EXPORT_SYMBOL(drop_reasons_by_subsys); 153 154 /** 155 * drop_reasons_register_subsys - register another drop reason subsystem 156 * @subsys: the subsystem to register, must not be the core 157 * @list: the list of drop reasons within the subsystem, must point to 158 * a statically initialized list 159 */ 160 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 161 const struct drop_reason_list *list) 162 { 163 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 164 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 165 "invalid subsystem %d\n", subsys)) 166 return; 167 168 /* must point to statically allocated memory, so INIT is OK */ 169 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 170 } 171 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 172 173 /** 174 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 175 * @subsys: the subsystem to remove, must not be the core 176 * 177 * Note: This will synchronize_rcu() to ensure no users when it returns. 178 */ 179 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 180 { 181 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 182 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 183 "invalid subsystem %d\n", subsys)) 184 return; 185 186 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 187 188 synchronize_rcu(); 189 } 190 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 191 192 /** 193 * skb_panic - private function for out-of-line support 194 * @skb: buffer 195 * @sz: size 196 * @addr: address 197 * @msg: skb_over_panic or skb_under_panic 198 * 199 * Out-of-line support for skb_put() and skb_push(). 200 * Called via the wrapper skb_over_panic() or skb_under_panic(). 201 * Keep out of line to prevent kernel bloat. 202 * __builtin_return_address is not used because it is not always reliable. 203 */ 204 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 205 const char msg[]) 206 { 207 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 208 msg, addr, skb->len, sz, skb->head, skb->data, 209 (unsigned long)skb->tail, (unsigned long)skb->end, 210 skb->dev ? skb->dev->name : "<NULL>"); 211 BUG(); 212 } 213 214 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 215 { 216 skb_panic(skb, sz, addr, __func__); 217 } 218 219 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 220 { 221 skb_panic(skb, sz, addr, __func__); 222 } 223 224 #define NAPI_SKB_CACHE_SIZE 64 225 #define NAPI_SKB_CACHE_BULK 16 226 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 227 228 struct napi_alloc_cache { 229 local_lock_t bh_lock; 230 struct page_frag_cache page; 231 unsigned int skb_count; 232 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 233 }; 234 235 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 236 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = { 237 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 238 }; 239 240 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 241 { 242 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 243 void *data; 244 245 fragsz = SKB_DATA_ALIGN(fragsz); 246 247 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 248 data = __page_frag_alloc_align(&nc->page, fragsz, 249 GFP_ATOMIC | __GFP_NOWARN, align_mask); 250 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 251 return data; 252 253 } 254 EXPORT_SYMBOL(__napi_alloc_frag_align); 255 256 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 257 { 258 void *data; 259 260 if (in_hardirq() || irqs_disabled()) { 261 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 262 263 fragsz = SKB_DATA_ALIGN(fragsz); 264 data = __page_frag_alloc_align(nc, fragsz, 265 GFP_ATOMIC | __GFP_NOWARN, 266 align_mask); 267 } else { 268 local_bh_disable(); 269 data = __napi_alloc_frag_align(fragsz, align_mask); 270 local_bh_enable(); 271 } 272 return data; 273 } 274 EXPORT_SYMBOL(__netdev_alloc_frag_align); 275 276 static struct sk_buff *napi_skb_cache_get(void) 277 { 278 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 279 struct sk_buff *skb; 280 281 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 282 if (unlikely(!nc->skb_count)) { 283 nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 284 GFP_ATOMIC | __GFP_NOWARN, 285 NAPI_SKB_CACHE_BULK, 286 nc->skb_cache); 287 if (unlikely(!nc->skb_count)) { 288 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 289 return NULL; 290 } 291 } 292 293 skb = nc->skb_cache[--nc->skb_count]; 294 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 295 kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache)); 296 297 return skb; 298 } 299 300 /** 301 * napi_skb_cache_get_bulk - obtain a number of zeroed skb heads from the cache 302 * @skbs: pointer to an at least @n-sized array to fill with skb pointers 303 * @n: number of entries to provide 304 * 305 * Tries to obtain @n &sk_buff entries from the NAPI percpu cache and writes 306 * the pointers into the provided array @skbs. If there are less entries 307 * available, tries to replenish the cache and bulk-allocates the diff from 308 * the MM layer if needed. 309 * The heads are being zeroed with either memset() or %__GFP_ZERO, so they are 310 * ready for {,__}build_skb_around() and don't have any data buffers attached. 311 * Must be called *only* from the BH context. 312 * 313 * Return: number of successfully allocated skbs (@n if no actual allocation 314 * needed or kmem_cache_alloc_bulk() didn't fail). 315 */ 316 u32 napi_skb_cache_get_bulk(void **skbs, u32 n) 317 { 318 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 319 u32 bulk, total = n; 320 321 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 322 323 if (nc->skb_count >= n) 324 goto get; 325 326 /* No enough cached skbs. Try refilling the cache first */ 327 bulk = min(NAPI_SKB_CACHE_SIZE - nc->skb_count, NAPI_SKB_CACHE_BULK); 328 nc->skb_count += kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 329 GFP_ATOMIC | __GFP_NOWARN, bulk, 330 &nc->skb_cache[nc->skb_count]); 331 if (likely(nc->skb_count >= n)) 332 goto get; 333 334 /* Still not enough. Bulk-allocate the missing part directly, zeroed */ 335 n -= kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 336 GFP_ATOMIC | __GFP_ZERO | __GFP_NOWARN, 337 n - nc->skb_count, &skbs[nc->skb_count]); 338 if (likely(nc->skb_count >= n)) 339 goto get; 340 341 /* kmem_cache didn't allocate the number we need, limit the output */ 342 total -= n - nc->skb_count; 343 n = nc->skb_count; 344 345 get: 346 for (u32 base = nc->skb_count - n, i = 0; i < n; i++) { 347 u32 cache_size = kmem_cache_size(net_hotdata.skbuff_cache); 348 349 skbs[i] = nc->skb_cache[base + i]; 350 351 kasan_mempool_unpoison_object(skbs[i], cache_size); 352 memset(skbs[i], 0, offsetof(struct sk_buff, tail)); 353 } 354 355 nc->skb_count -= n; 356 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 357 358 return total; 359 } 360 EXPORT_SYMBOL_GPL(napi_skb_cache_get_bulk); 361 362 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 363 unsigned int size) 364 { 365 struct skb_shared_info *shinfo; 366 367 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 368 369 /* Assumes caller memset cleared SKB */ 370 skb->truesize = SKB_TRUESIZE(size); 371 refcount_set(&skb->users, 1); 372 skb->head = data; 373 skb->data = data; 374 skb_reset_tail_pointer(skb); 375 skb_set_end_offset(skb, size); 376 skb->mac_header = (typeof(skb->mac_header))~0U; 377 skb->transport_header = (typeof(skb->transport_header))~0U; 378 skb->alloc_cpu = raw_smp_processor_id(); 379 /* make sure we initialize shinfo sequentially */ 380 shinfo = skb_shinfo(skb); 381 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 382 atomic_set(&shinfo->dataref, 1); 383 384 skb_set_kcov_handle(skb, kcov_common_handle()); 385 } 386 387 static inline void *__slab_build_skb(void *data, unsigned int *size) 388 { 389 void *resized; 390 391 /* Must find the allocation size (and grow it to match). */ 392 *size = ksize(data); 393 /* krealloc() will immediately return "data" when 394 * "ksize(data)" is requested: it is the existing upper 395 * bounds. As a result, GFP_ATOMIC will be ignored. Note 396 * that this "new" pointer needs to be passed back to the 397 * caller for use so the __alloc_size hinting will be 398 * tracked correctly. 399 */ 400 resized = krealloc(data, *size, GFP_ATOMIC); 401 WARN_ON_ONCE(resized != data); 402 return resized; 403 } 404 405 /* build_skb() variant which can operate on slab buffers. 406 * Note that this should be used sparingly as slab buffers 407 * cannot be combined efficiently by GRO! 408 */ 409 struct sk_buff *slab_build_skb(void *data) 410 { 411 struct sk_buff *skb; 412 unsigned int size; 413 414 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, 415 GFP_ATOMIC | __GFP_NOWARN); 416 if (unlikely(!skb)) 417 return NULL; 418 419 memset(skb, 0, offsetof(struct sk_buff, tail)); 420 data = __slab_build_skb(data, &size); 421 __finalize_skb_around(skb, data, size); 422 423 return skb; 424 } 425 EXPORT_SYMBOL(slab_build_skb); 426 427 /* Caller must provide SKB that is memset cleared */ 428 static void __build_skb_around(struct sk_buff *skb, void *data, 429 unsigned int frag_size) 430 { 431 unsigned int size = frag_size; 432 433 /* frag_size == 0 is considered deprecated now. Callers 434 * using slab buffer should use slab_build_skb() instead. 435 */ 436 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 437 data = __slab_build_skb(data, &size); 438 439 __finalize_skb_around(skb, data, size); 440 } 441 442 /** 443 * __build_skb - build a network buffer 444 * @data: data buffer provided by caller 445 * @frag_size: size of data (must not be 0) 446 * 447 * Allocate a new &sk_buff. Caller provides space holding head and 448 * skb_shared_info. @data must have been allocated from the page 449 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 450 * allocation is deprecated, and callers should use slab_build_skb() 451 * instead.) 452 * The return is the new skb buffer. 453 * On a failure the return is %NULL, and @data is not freed. 454 * Notes : 455 * Before IO, driver allocates only data buffer where NIC put incoming frame 456 * Driver should add room at head (NET_SKB_PAD) and 457 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 458 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 459 * before giving packet to stack. 460 * RX rings only contains data buffers, not full skbs. 461 */ 462 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 463 { 464 struct sk_buff *skb; 465 466 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, 467 GFP_ATOMIC | __GFP_NOWARN); 468 if (unlikely(!skb)) 469 return NULL; 470 471 memset(skb, 0, offsetof(struct sk_buff, tail)); 472 __build_skb_around(skb, data, frag_size); 473 474 return skb; 475 } 476 477 /* build_skb() is wrapper over __build_skb(), that specifically 478 * takes care of skb->head and skb->pfmemalloc 479 */ 480 struct sk_buff *build_skb(void *data, unsigned int frag_size) 481 { 482 struct sk_buff *skb = __build_skb(data, frag_size); 483 484 if (likely(skb && frag_size)) { 485 skb->head_frag = 1; 486 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 487 } 488 return skb; 489 } 490 EXPORT_SYMBOL(build_skb); 491 492 /** 493 * build_skb_around - build a network buffer around provided skb 494 * @skb: sk_buff provide by caller, must be memset cleared 495 * @data: data buffer provided by caller 496 * @frag_size: size of data 497 */ 498 struct sk_buff *build_skb_around(struct sk_buff *skb, 499 void *data, unsigned int frag_size) 500 { 501 if (unlikely(!skb)) 502 return NULL; 503 504 __build_skb_around(skb, data, frag_size); 505 506 if (frag_size) { 507 skb->head_frag = 1; 508 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 509 } 510 return skb; 511 } 512 EXPORT_SYMBOL(build_skb_around); 513 514 /** 515 * __napi_build_skb - build a network buffer 516 * @data: data buffer provided by caller 517 * @frag_size: size of data 518 * 519 * Version of __build_skb() that uses NAPI percpu caches to obtain 520 * skbuff_head instead of inplace allocation. 521 * 522 * Returns a new &sk_buff on success, %NULL on allocation failure. 523 */ 524 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 525 { 526 struct sk_buff *skb; 527 528 skb = napi_skb_cache_get(); 529 if (unlikely(!skb)) 530 return NULL; 531 532 memset(skb, 0, offsetof(struct sk_buff, tail)); 533 __build_skb_around(skb, data, frag_size); 534 535 return skb; 536 } 537 538 /** 539 * napi_build_skb - build a network buffer 540 * @data: data buffer provided by caller 541 * @frag_size: size of data 542 * 543 * Version of __napi_build_skb() that takes care of skb->head_frag 544 * and skb->pfmemalloc when the data is a page or page fragment. 545 * 546 * Returns a new &sk_buff on success, %NULL on allocation failure. 547 */ 548 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 549 { 550 struct sk_buff *skb = __napi_build_skb(data, frag_size); 551 552 if (likely(skb) && frag_size) { 553 skb->head_frag = 1; 554 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 555 } 556 557 return skb; 558 } 559 EXPORT_SYMBOL(napi_build_skb); 560 561 /* 562 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 563 * the caller if emergency pfmemalloc reserves are being used. If it is and 564 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 565 * may be used. Otherwise, the packet data may be discarded until enough 566 * memory is free 567 */ 568 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 569 bool *pfmemalloc) 570 { 571 bool ret_pfmemalloc = false; 572 size_t obj_size; 573 void *obj; 574 575 obj_size = SKB_HEAD_ALIGN(*size); 576 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 577 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 578 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, 579 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 580 node); 581 *size = SKB_SMALL_HEAD_CACHE_SIZE; 582 if (obj || !(gfp_pfmemalloc_allowed(flags))) 583 goto out; 584 /* Try again but now we are using pfmemalloc reserves */ 585 ret_pfmemalloc = true; 586 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node); 587 goto out; 588 } 589 590 obj_size = kmalloc_size_roundup(obj_size); 591 /* The following cast might truncate high-order bits of obj_size, this 592 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. 593 */ 594 *size = (unsigned int)obj_size; 595 596 /* 597 * Try a regular allocation, when that fails and we're not entitled 598 * to the reserves, fail. 599 */ 600 obj = kmalloc_node_track_caller(obj_size, 601 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 602 node); 603 if (obj || !(gfp_pfmemalloc_allowed(flags))) 604 goto out; 605 606 /* Try again but now we are using pfmemalloc reserves */ 607 ret_pfmemalloc = true; 608 obj = kmalloc_node_track_caller(obj_size, flags, node); 609 610 out: 611 if (pfmemalloc) 612 *pfmemalloc = ret_pfmemalloc; 613 614 return obj; 615 } 616 617 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 618 * 'private' fields and also do memory statistics to find all the 619 * [BEEP] leaks. 620 * 621 */ 622 623 /** 624 * __alloc_skb - allocate a network buffer 625 * @size: size to allocate 626 * @gfp_mask: allocation mask 627 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 628 * instead of head cache and allocate a cloned (child) skb. 629 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 630 * allocations in case the data is required for writeback 631 * @node: numa node to allocate memory on 632 * 633 * Allocate a new &sk_buff. The returned buffer has no headroom and a 634 * tail room of at least size bytes. The object has a reference count 635 * of one. The return is the buffer. On a failure the return is %NULL. 636 * 637 * Buffers may only be allocated from interrupts using a @gfp_mask of 638 * %GFP_ATOMIC. 639 */ 640 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 641 int flags, int node) 642 { 643 struct kmem_cache *cache; 644 struct sk_buff *skb; 645 bool pfmemalloc; 646 u8 *data; 647 648 cache = (flags & SKB_ALLOC_FCLONE) 649 ? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache; 650 651 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 652 gfp_mask |= __GFP_MEMALLOC; 653 654 /* Get the HEAD */ 655 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 656 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 657 skb = napi_skb_cache_get(); 658 else 659 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 660 if (unlikely(!skb)) 661 return NULL; 662 prefetchw(skb); 663 664 /* We do our best to align skb_shared_info on a separate cache 665 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 666 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 667 * Both skb->head and skb_shared_info are cache line aligned. 668 */ 669 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 670 if (unlikely(!data)) 671 goto nodata; 672 /* kmalloc_size_roundup() might give us more room than requested. 673 * Put skb_shared_info exactly at the end of allocated zone, 674 * to allow max possible filling before reallocation. 675 */ 676 prefetchw(data + SKB_WITH_OVERHEAD(size)); 677 678 /* 679 * Only clear those fields we need to clear, not those that we will 680 * actually initialise below. Hence, don't put any more fields after 681 * the tail pointer in struct sk_buff! 682 */ 683 memset(skb, 0, offsetof(struct sk_buff, tail)); 684 __build_skb_around(skb, data, size); 685 skb->pfmemalloc = pfmemalloc; 686 687 if (flags & SKB_ALLOC_FCLONE) { 688 struct sk_buff_fclones *fclones; 689 690 fclones = container_of(skb, struct sk_buff_fclones, skb1); 691 692 skb->fclone = SKB_FCLONE_ORIG; 693 refcount_set(&fclones->fclone_ref, 1); 694 } 695 696 return skb; 697 698 nodata: 699 kmem_cache_free(cache, skb); 700 return NULL; 701 } 702 EXPORT_SYMBOL(__alloc_skb); 703 704 /** 705 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 706 * @dev: network device to receive on 707 * @len: length to allocate 708 * @gfp_mask: get_free_pages mask, passed to alloc_skb 709 * 710 * Allocate a new &sk_buff and assign it a usage count of one. The 711 * buffer has NET_SKB_PAD headroom built in. Users should allocate 712 * the headroom they think they need without accounting for the 713 * built in space. The built in space is used for optimisations. 714 * 715 * %NULL is returned if there is no free memory. 716 */ 717 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 718 gfp_t gfp_mask) 719 { 720 struct page_frag_cache *nc; 721 struct sk_buff *skb; 722 bool pfmemalloc; 723 void *data; 724 725 len += NET_SKB_PAD; 726 727 /* If requested length is either too small or too big, 728 * we use kmalloc() for skb->head allocation. 729 */ 730 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) || 731 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 732 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 733 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 734 if (!skb) 735 goto skb_fail; 736 goto skb_success; 737 } 738 739 len = SKB_HEAD_ALIGN(len); 740 741 if (sk_memalloc_socks()) 742 gfp_mask |= __GFP_MEMALLOC; 743 744 if (in_hardirq() || irqs_disabled()) { 745 nc = this_cpu_ptr(&netdev_alloc_cache); 746 data = page_frag_alloc(nc, len, gfp_mask); 747 pfmemalloc = page_frag_cache_is_pfmemalloc(nc); 748 } else { 749 local_bh_disable(); 750 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 751 752 nc = this_cpu_ptr(&napi_alloc_cache.page); 753 data = page_frag_alloc(nc, len, gfp_mask); 754 pfmemalloc = page_frag_cache_is_pfmemalloc(nc); 755 756 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 757 local_bh_enable(); 758 } 759 760 if (unlikely(!data)) 761 return NULL; 762 763 skb = __build_skb(data, len); 764 if (unlikely(!skb)) { 765 skb_free_frag(data); 766 return NULL; 767 } 768 769 if (pfmemalloc) 770 skb->pfmemalloc = 1; 771 skb->head_frag = 1; 772 773 skb_success: 774 skb_reserve(skb, NET_SKB_PAD); 775 skb->dev = dev; 776 777 skb_fail: 778 return skb; 779 } 780 EXPORT_SYMBOL(__netdev_alloc_skb); 781 782 /** 783 * napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 784 * @napi: napi instance this buffer was allocated for 785 * @len: length to allocate 786 * 787 * Allocate a new sk_buff for use in NAPI receive. This buffer will 788 * attempt to allocate the head from a special reserved region used 789 * only for NAPI Rx allocation. By doing this we can save several 790 * CPU cycles by avoiding having to disable and re-enable IRQs. 791 * 792 * %NULL is returned if there is no free memory. 793 */ 794 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len) 795 { 796 gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN; 797 struct napi_alloc_cache *nc; 798 struct sk_buff *skb; 799 bool pfmemalloc; 800 void *data; 801 802 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 803 len += NET_SKB_PAD + NET_IP_ALIGN; 804 805 /* If requested length is either too small or too big, 806 * we use kmalloc() for skb->head allocation. 807 */ 808 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) || 809 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 810 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 811 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 812 NUMA_NO_NODE); 813 if (!skb) 814 goto skb_fail; 815 goto skb_success; 816 } 817 818 len = SKB_HEAD_ALIGN(len); 819 820 if (sk_memalloc_socks()) 821 gfp_mask |= __GFP_MEMALLOC; 822 823 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 824 nc = this_cpu_ptr(&napi_alloc_cache); 825 826 data = page_frag_alloc(&nc->page, len, gfp_mask); 827 pfmemalloc = page_frag_cache_is_pfmemalloc(&nc->page); 828 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 829 830 if (unlikely(!data)) 831 return NULL; 832 833 skb = __napi_build_skb(data, len); 834 if (unlikely(!skb)) { 835 skb_free_frag(data); 836 return NULL; 837 } 838 839 if (pfmemalloc) 840 skb->pfmemalloc = 1; 841 skb->head_frag = 1; 842 843 skb_success: 844 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 845 skb->dev = napi->dev; 846 847 skb_fail: 848 return skb; 849 } 850 EXPORT_SYMBOL(napi_alloc_skb); 851 852 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 853 int off, int size, unsigned int truesize) 854 { 855 DEBUG_NET_WARN_ON_ONCE(size > truesize); 856 857 skb_fill_netmem_desc(skb, i, netmem, off, size); 858 skb->len += size; 859 skb->data_len += size; 860 skb->truesize += truesize; 861 } 862 EXPORT_SYMBOL(skb_add_rx_frag_netmem); 863 864 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 865 unsigned int truesize) 866 { 867 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 868 869 DEBUG_NET_WARN_ON_ONCE(size > truesize); 870 871 skb_frag_size_add(frag, size); 872 skb->len += size; 873 skb->data_len += size; 874 skb->truesize += truesize; 875 } 876 EXPORT_SYMBOL(skb_coalesce_rx_frag); 877 878 static void skb_drop_list(struct sk_buff **listp) 879 { 880 kfree_skb_list(*listp); 881 *listp = NULL; 882 } 883 884 static inline void skb_drop_fraglist(struct sk_buff *skb) 885 { 886 skb_drop_list(&skb_shinfo(skb)->frag_list); 887 } 888 889 static void skb_clone_fraglist(struct sk_buff *skb) 890 { 891 struct sk_buff *list; 892 893 skb_walk_frags(skb, list) 894 skb_get(list); 895 } 896 897 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 898 unsigned int headroom) 899 { 900 #if IS_ENABLED(CONFIG_PAGE_POOL) 901 u32 size, truesize, len, max_head_size, off; 902 struct sk_buff *skb = *pskb, *nskb; 903 int err, i, head_off; 904 void *data; 905 906 /* XDP does not support fraglist so we need to linearize 907 * the skb. 908 */ 909 if (skb_has_frag_list(skb)) 910 return -EOPNOTSUPP; 911 912 max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom); 913 if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE) 914 return -ENOMEM; 915 916 size = min_t(u32, skb->len, max_head_size); 917 truesize = SKB_HEAD_ALIGN(size) + headroom; 918 data = page_pool_dev_alloc_va(pool, &truesize); 919 if (!data) 920 return -ENOMEM; 921 922 nskb = napi_build_skb(data, truesize); 923 if (!nskb) { 924 page_pool_free_va(pool, data, true); 925 return -ENOMEM; 926 } 927 928 skb_reserve(nskb, headroom); 929 skb_copy_header(nskb, skb); 930 skb_mark_for_recycle(nskb); 931 932 err = skb_copy_bits(skb, 0, nskb->data, size); 933 if (err) { 934 consume_skb(nskb); 935 return err; 936 } 937 skb_put(nskb, size); 938 939 head_off = skb_headroom(nskb) - skb_headroom(skb); 940 skb_headers_offset_update(nskb, head_off); 941 942 off = size; 943 len = skb->len - off; 944 for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) { 945 struct page *page; 946 u32 page_off; 947 948 size = min_t(u32, len, PAGE_SIZE); 949 truesize = size; 950 951 page = page_pool_dev_alloc(pool, &page_off, &truesize); 952 if (!page) { 953 consume_skb(nskb); 954 return -ENOMEM; 955 } 956 957 skb_add_rx_frag(nskb, i, page, page_off, size, truesize); 958 err = skb_copy_bits(skb, off, page_address(page) + page_off, 959 size); 960 if (err) { 961 consume_skb(nskb); 962 return err; 963 } 964 965 len -= size; 966 off += size; 967 } 968 969 consume_skb(skb); 970 *pskb = nskb; 971 972 return 0; 973 #else 974 return -EOPNOTSUPP; 975 #endif 976 } 977 EXPORT_SYMBOL(skb_pp_cow_data); 978 979 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 980 const struct bpf_prog *prog) 981 { 982 if (!prog->aux->xdp_has_frags) 983 return -EINVAL; 984 985 return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM); 986 } 987 EXPORT_SYMBOL(skb_cow_data_for_xdp); 988 989 #if IS_ENABLED(CONFIG_PAGE_POOL) 990 bool napi_pp_put_page(netmem_ref netmem) 991 { 992 netmem = netmem_compound_head(netmem); 993 994 if (unlikely(!netmem_is_pp(netmem))) 995 return false; 996 997 page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false); 998 999 return true; 1000 } 1001 EXPORT_SYMBOL(napi_pp_put_page); 1002 #endif 1003 1004 static bool skb_pp_recycle(struct sk_buff *skb, void *data) 1005 { 1006 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 1007 return false; 1008 return napi_pp_put_page(page_to_netmem(virt_to_page(data))); 1009 } 1010 1011 /** 1012 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb 1013 * @skb: page pool aware skb 1014 * 1015 * Increase the fragment reference count (pp_ref_count) of a skb. This is 1016 * intended to gain fragment references only for page pool aware skbs, 1017 * i.e. when skb->pp_recycle is true, and not for fragments in a 1018 * non-pp-recycling skb. It has a fallback to increase references on normal 1019 * pages, as page pool aware skbs may also have normal page fragments. 1020 */ 1021 static int skb_pp_frag_ref(struct sk_buff *skb) 1022 { 1023 struct skb_shared_info *shinfo; 1024 netmem_ref head_netmem; 1025 int i; 1026 1027 if (!skb->pp_recycle) 1028 return -EINVAL; 1029 1030 shinfo = skb_shinfo(skb); 1031 1032 for (i = 0; i < shinfo->nr_frags; i++) { 1033 head_netmem = netmem_compound_head(shinfo->frags[i].netmem); 1034 if (likely(netmem_is_pp(head_netmem))) 1035 page_pool_ref_netmem(head_netmem); 1036 else 1037 page_ref_inc(netmem_to_page(head_netmem)); 1038 } 1039 return 0; 1040 } 1041 1042 static void skb_kfree_head(void *head, unsigned int end_offset) 1043 { 1044 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 1045 kmem_cache_free(net_hotdata.skb_small_head_cache, head); 1046 else 1047 kfree(head); 1048 } 1049 1050 static void skb_free_head(struct sk_buff *skb) 1051 { 1052 unsigned char *head = skb->head; 1053 1054 if (skb->head_frag) { 1055 if (skb_pp_recycle(skb, head)) 1056 return; 1057 skb_free_frag(head); 1058 } else { 1059 skb_kfree_head(head, skb_end_offset(skb)); 1060 } 1061 } 1062 1063 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason) 1064 { 1065 struct skb_shared_info *shinfo = skb_shinfo(skb); 1066 int i; 1067 1068 if (!skb_data_unref(skb, shinfo)) 1069 goto exit; 1070 1071 if (skb_zcopy(skb)) { 1072 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 1073 1074 skb_zcopy_clear(skb, true); 1075 if (skip_unref) 1076 goto free_head; 1077 } 1078 1079 for (i = 0; i < shinfo->nr_frags; i++) 1080 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 1081 1082 free_head: 1083 if (shinfo->frag_list) 1084 kfree_skb_list_reason(shinfo->frag_list, reason); 1085 1086 skb_free_head(skb); 1087 exit: 1088 /* When we clone an SKB we copy the reycling bit. The pp_recycle 1089 * bit is only set on the head though, so in order to avoid races 1090 * while trying to recycle fragments on __skb_frag_unref() we need 1091 * to make one SKB responsible for triggering the recycle path. 1092 * So disable the recycling bit if an SKB is cloned and we have 1093 * additional references to the fragmented part of the SKB. 1094 * Eventually the last SKB will have the recycling bit set and it's 1095 * dataref set to 0, which will trigger the recycling 1096 */ 1097 skb->pp_recycle = 0; 1098 } 1099 1100 /* 1101 * Free an skbuff by memory without cleaning the state. 1102 */ 1103 static void kfree_skbmem(struct sk_buff *skb) 1104 { 1105 struct sk_buff_fclones *fclones; 1106 1107 switch (skb->fclone) { 1108 case SKB_FCLONE_UNAVAILABLE: 1109 kmem_cache_free(net_hotdata.skbuff_cache, skb); 1110 return; 1111 1112 case SKB_FCLONE_ORIG: 1113 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1114 1115 /* We usually free the clone (TX completion) before original skb 1116 * This test would have no chance to be true for the clone, 1117 * while here, branch prediction will be good. 1118 */ 1119 if (refcount_read(&fclones->fclone_ref) == 1) 1120 goto fastpath; 1121 break; 1122 1123 default: /* SKB_FCLONE_CLONE */ 1124 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1125 break; 1126 } 1127 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1128 return; 1129 fastpath: 1130 kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones); 1131 } 1132 1133 void skb_release_head_state(struct sk_buff *skb) 1134 { 1135 skb_dst_drop(skb); 1136 if (skb->destructor) { 1137 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1138 skb->destructor(skb); 1139 } 1140 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 1141 nf_conntrack_put(skb_nfct(skb)); 1142 #endif 1143 skb_ext_put(skb); 1144 } 1145 1146 /* Free everything but the sk_buff shell. */ 1147 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason) 1148 { 1149 skb_release_head_state(skb); 1150 if (likely(skb->head)) 1151 skb_release_data(skb, reason); 1152 } 1153 1154 /** 1155 * __kfree_skb - private function 1156 * @skb: buffer 1157 * 1158 * Free an sk_buff. Release anything attached to the buffer. 1159 * Clean the state. This is an internal helper function. Users should 1160 * always call kfree_skb 1161 */ 1162 1163 void __kfree_skb(struct sk_buff *skb) 1164 { 1165 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1166 kfree_skbmem(skb); 1167 } 1168 EXPORT_SYMBOL(__kfree_skb); 1169 1170 static __always_inline 1171 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, 1172 enum skb_drop_reason reason) 1173 { 1174 if (unlikely(!skb_unref(skb))) 1175 return false; 1176 1177 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1178 u32_get_bits(reason, 1179 SKB_DROP_REASON_SUBSYS_MASK) >= 1180 SKB_DROP_REASON_SUBSYS_NUM); 1181 1182 if (reason == SKB_CONSUMED) 1183 trace_consume_skb(skb, __builtin_return_address(0)); 1184 else 1185 trace_kfree_skb(skb, __builtin_return_address(0), reason, sk); 1186 return true; 1187 } 1188 1189 /** 1190 * sk_skb_reason_drop - free an sk_buff with special reason 1191 * @sk: the socket to receive @skb, or NULL if not applicable 1192 * @skb: buffer to free 1193 * @reason: reason why this skb is dropped 1194 * 1195 * Drop a reference to the buffer and free it if the usage count has hit 1196 * zero. Meanwhile, pass the receiving socket and drop reason to 1197 * 'kfree_skb' tracepoint. 1198 */ 1199 void __fix_address 1200 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason) 1201 { 1202 if (__sk_skb_reason_drop(sk, skb, reason)) 1203 __kfree_skb(skb); 1204 } 1205 EXPORT_SYMBOL(sk_skb_reason_drop); 1206 1207 #define KFREE_SKB_BULK_SIZE 16 1208 1209 struct skb_free_array { 1210 unsigned int skb_count; 1211 void *skb_array[KFREE_SKB_BULK_SIZE]; 1212 }; 1213 1214 static void kfree_skb_add_bulk(struct sk_buff *skb, 1215 struct skb_free_array *sa, 1216 enum skb_drop_reason reason) 1217 { 1218 /* if SKB is a clone, don't handle this case */ 1219 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1220 __kfree_skb(skb); 1221 return; 1222 } 1223 1224 skb_release_all(skb, reason); 1225 sa->skb_array[sa->skb_count++] = skb; 1226 1227 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1228 kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE, 1229 sa->skb_array); 1230 sa->skb_count = 0; 1231 } 1232 } 1233 1234 void __fix_address 1235 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1236 { 1237 struct skb_free_array sa; 1238 1239 sa.skb_count = 0; 1240 1241 while (segs) { 1242 struct sk_buff *next = segs->next; 1243 1244 if (__sk_skb_reason_drop(NULL, segs, reason)) { 1245 skb_poison_list(segs); 1246 kfree_skb_add_bulk(segs, &sa, reason); 1247 } 1248 1249 segs = next; 1250 } 1251 1252 if (sa.skb_count) 1253 kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array); 1254 } 1255 EXPORT_SYMBOL(kfree_skb_list_reason); 1256 1257 /* Dump skb information and contents. 1258 * 1259 * Must only be called from net_ratelimit()-ed paths. 1260 * 1261 * Dumps whole packets if full_pkt, only headers otherwise. 1262 */ 1263 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1264 { 1265 struct skb_shared_info *sh = skb_shinfo(skb); 1266 struct net_device *dev = skb->dev; 1267 struct sock *sk = skb->sk; 1268 struct sk_buff *list_skb; 1269 bool has_mac, has_trans; 1270 int headroom, tailroom; 1271 int i, len, seg_len; 1272 1273 if (full_pkt) 1274 len = skb->len; 1275 else 1276 len = min_t(int, skb->len, MAX_HEADER + 128); 1277 1278 headroom = skb_headroom(skb); 1279 tailroom = skb_tailroom(skb); 1280 1281 has_mac = skb_mac_header_was_set(skb); 1282 has_trans = skb_transport_header_was_set(skb); 1283 1284 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1285 "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n" 1286 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1287 "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1288 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n" 1289 "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n" 1290 "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n", 1291 level, skb->len, headroom, skb_headlen(skb), tailroom, 1292 has_mac ? skb->mac_header : -1, 1293 has_mac ? skb_mac_header_len(skb) : -1, 1294 skb->mac_len, 1295 skb->network_header, 1296 has_trans ? skb_network_header_len(skb) : -1, 1297 has_trans ? skb->transport_header : -1, 1298 sh->tx_flags, sh->nr_frags, 1299 sh->gso_size, sh->gso_type, sh->gso_segs, 1300 skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed, 1301 skb->csum_complete_sw, skb->csum_valid, skb->csum_level, 1302 skb->hash, skb->sw_hash, skb->l4_hash, 1303 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif, 1304 skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all, 1305 skb->encapsulation, skb->inner_protocol, skb->inner_mac_header, 1306 skb->inner_network_header, skb->inner_transport_header); 1307 1308 if (dev) 1309 printk("%sdev name=%s feat=%pNF\n", 1310 level, dev->name, &dev->features); 1311 if (sk) 1312 printk("%ssk family=%hu type=%u proto=%u\n", 1313 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1314 1315 if (full_pkt && headroom) 1316 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1317 16, 1, skb->head, headroom, false); 1318 1319 seg_len = min_t(int, skb_headlen(skb), len); 1320 if (seg_len) 1321 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1322 16, 1, skb->data, seg_len, false); 1323 len -= seg_len; 1324 1325 if (full_pkt && tailroom) 1326 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1327 16, 1, skb_tail_pointer(skb), tailroom, false); 1328 1329 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1330 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1331 u32 p_off, p_len, copied; 1332 struct page *p; 1333 u8 *vaddr; 1334 1335 if (skb_frag_is_net_iov(frag)) { 1336 printk("%sskb frag %d: not readable\n", level, i); 1337 len -= skb_frag_size(frag); 1338 if (!len) 1339 break; 1340 continue; 1341 } 1342 1343 skb_frag_foreach_page(frag, skb_frag_off(frag), 1344 skb_frag_size(frag), p, p_off, p_len, 1345 copied) { 1346 seg_len = min_t(int, p_len, len); 1347 vaddr = kmap_atomic(p); 1348 print_hex_dump(level, "skb frag: ", 1349 DUMP_PREFIX_OFFSET, 1350 16, 1, vaddr + p_off, seg_len, false); 1351 kunmap_atomic(vaddr); 1352 len -= seg_len; 1353 if (!len) 1354 break; 1355 } 1356 } 1357 1358 if (full_pkt && skb_has_frag_list(skb)) { 1359 printk("skb fraglist:\n"); 1360 skb_walk_frags(skb, list_skb) 1361 skb_dump(level, list_skb, true); 1362 } 1363 } 1364 EXPORT_SYMBOL(skb_dump); 1365 1366 /** 1367 * skb_tx_error - report an sk_buff xmit error 1368 * @skb: buffer that triggered an error 1369 * 1370 * Report xmit error if a device callback is tracking this skb. 1371 * skb must be freed afterwards. 1372 */ 1373 void skb_tx_error(struct sk_buff *skb) 1374 { 1375 if (skb) { 1376 skb_zcopy_downgrade_managed(skb); 1377 skb_zcopy_clear(skb, true); 1378 } 1379 } 1380 EXPORT_SYMBOL(skb_tx_error); 1381 1382 #ifdef CONFIG_TRACEPOINTS 1383 /** 1384 * consume_skb - free an skbuff 1385 * @skb: buffer to free 1386 * 1387 * Drop a ref to the buffer and free it if the usage count has hit zero 1388 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1389 * is being dropped after a failure and notes that 1390 */ 1391 void consume_skb(struct sk_buff *skb) 1392 { 1393 if (!skb_unref(skb)) 1394 return; 1395 1396 trace_consume_skb(skb, __builtin_return_address(0)); 1397 __kfree_skb(skb); 1398 } 1399 EXPORT_SYMBOL(consume_skb); 1400 #endif 1401 1402 /** 1403 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1404 * @skb: buffer to free 1405 * 1406 * Alike consume_skb(), but this variant assumes that this is the last 1407 * skb reference and all the head states have been already dropped 1408 */ 1409 void __consume_stateless_skb(struct sk_buff *skb) 1410 { 1411 trace_consume_skb(skb, __builtin_return_address(0)); 1412 skb_release_data(skb, SKB_CONSUMED); 1413 kfree_skbmem(skb); 1414 } 1415 1416 static void napi_skb_cache_put(struct sk_buff *skb) 1417 { 1418 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1419 u32 i; 1420 1421 if (!kasan_mempool_poison_object(skb)) 1422 return; 1423 1424 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 1425 nc->skb_cache[nc->skb_count++] = skb; 1426 1427 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1428 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1429 kasan_mempool_unpoison_object(nc->skb_cache[i], 1430 kmem_cache_size(net_hotdata.skbuff_cache)); 1431 1432 kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF, 1433 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1434 nc->skb_count = NAPI_SKB_CACHE_HALF; 1435 } 1436 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 1437 } 1438 1439 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1440 { 1441 skb_release_all(skb, reason); 1442 napi_skb_cache_put(skb); 1443 } 1444 1445 void napi_skb_free_stolen_head(struct sk_buff *skb) 1446 { 1447 if (unlikely(skb->slow_gro)) { 1448 nf_reset_ct(skb); 1449 skb_dst_drop(skb); 1450 skb_ext_put(skb); 1451 skb_orphan(skb); 1452 skb->slow_gro = 0; 1453 } 1454 napi_skb_cache_put(skb); 1455 } 1456 1457 void napi_consume_skb(struct sk_buff *skb, int budget) 1458 { 1459 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1460 if (unlikely(!budget)) { 1461 dev_consume_skb_any(skb); 1462 return; 1463 } 1464 1465 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1466 1467 if (!skb_unref(skb)) 1468 return; 1469 1470 /* if reaching here SKB is ready to free */ 1471 trace_consume_skb(skb, __builtin_return_address(0)); 1472 1473 /* if SKB is a clone, don't handle this case */ 1474 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1475 __kfree_skb(skb); 1476 return; 1477 } 1478 1479 skb_release_all(skb, SKB_CONSUMED); 1480 napi_skb_cache_put(skb); 1481 } 1482 EXPORT_SYMBOL(napi_consume_skb); 1483 1484 /* Make sure a field is contained by headers group */ 1485 #define CHECK_SKB_FIELD(field) \ 1486 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1487 offsetof(struct sk_buff, headers.field)); \ 1488 1489 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1490 { 1491 new->tstamp = old->tstamp; 1492 /* We do not copy old->sk */ 1493 new->dev = old->dev; 1494 memcpy(new->cb, old->cb, sizeof(old->cb)); 1495 skb_dst_copy(new, old); 1496 __skb_ext_copy(new, old); 1497 __nf_copy(new, old, false); 1498 1499 /* Note : this field could be in the headers group. 1500 * It is not yet because we do not want to have a 16 bit hole 1501 */ 1502 new->queue_mapping = old->queue_mapping; 1503 1504 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1505 CHECK_SKB_FIELD(protocol); 1506 CHECK_SKB_FIELD(csum); 1507 CHECK_SKB_FIELD(hash); 1508 CHECK_SKB_FIELD(priority); 1509 CHECK_SKB_FIELD(skb_iif); 1510 CHECK_SKB_FIELD(vlan_proto); 1511 CHECK_SKB_FIELD(vlan_tci); 1512 CHECK_SKB_FIELD(transport_header); 1513 CHECK_SKB_FIELD(network_header); 1514 CHECK_SKB_FIELD(mac_header); 1515 CHECK_SKB_FIELD(inner_protocol); 1516 CHECK_SKB_FIELD(inner_transport_header); 1517 CHECK_SKB_FIELD(inner_network_header); 1518 CHECK_SKB_FIELD(inner_mac_header); 1519 CHECK_SKB_FIELD(mark); 1520 #ifdef CONFIG_NETWORK_SECMARK 1521 CHECK_SKB_FIELD(secmark); 1522 #endif 1523 #ifdef CONFIG_NET_RX_BUSY_POLL 1524 CHECK_SKB_FIELD(napi_id); 1525 #endif 1526 CHECK_SKB_FIELD(alloc_cpu); 1527 #ifdef CONFIG_XPS 1528 CHECK_SKB_FIELD(sender_cpu); 1529 #endif 1530 #ifdef CONFIG_NET_SCHED 1531 CHECK_SKB_FIELD(tc_index); 1532 #endif 1533 1534 } 1535 1536 /* 1537 * You should not add any new code to this function. Add it to 1538 * __copy_skb_header above instead. 1539 */ 1540 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1541 { 1542 #define C(x) n->x = skb->x 1543 1544 n->next = n->prev = NULL; 1545 n->sk = NULL; 1546 __copy_skb_header(n, skb); 1547 1548 C(len); 1549 C(data_len); 1550 C(mac_len); 1551 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1552 n->cloned = 1; 1553 n->nohdr = 0; 1554 n->peeked = 0; 1555 C(pfmemalloc); 1556 C(pp_recycle); 1557 n->destructor = NULL; 1558 C(tail); 1559 C(end); 1560 C(head); 1561 C(head_frag); 1562 C(data); 1563 C(truesize); 1564 refcount_set(&n->users, 1); 1565 1566 atomic_inc(&(skb_shinfo(skb)->dataref)); 1567 skb->cloned = 1; 1568 1569 return n; 1570 #undef C 1571 } 1572 1573 /** 1574 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1575 * @first: first sk_buff of the msg 1576 */ 1577 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1578 { 1579 struct sk_buff *n; 1580 1581 n = alloc_skb(0, GFP_ATOMIC); 1582 if (!n) 1583 return NULL; 1584 1585 n->len = first->len; 1586 n->data_len = first->len; 1587 n->truesize = first->truesize; 1588 1589 skb_shinfo(n)->frag_list = first; 1590 1591 __copy_skb_header(n, first); 1592 n->destructor = NULL; 1593 1594 return n; 1595 } 1596 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1597 1598 /** 1599 * skb_morph - morph one skb into another 1600 * @dst: the skb to receive the contents 1601 * @src: the skb to supply the contents 1602 * 1603 * This is identical to skb_clone except that the target skb is 1604 * supplied by the user. 1605 * 1606 * The target skb is returned upon exit. 1607 */ 1608 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1609 { 1610 skb_release_all(dst, SKB_CONSUMED); 1611 return __skb_clone(dst, src); 1612 } 1613 EXPORT_SYMBOL_GPL(skb_morph); 1614 1615 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1616 { 1617 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1618 struct user_struct *user; 1619 1620 if (capable(CAP_IPC_LOCK) || !size) 1621 return 0; 1622 1623 rlim = rlimit(RLIMIT_MEMLOCK); 1624 if (rlim == RLIM_INFINITY) 1625 return 0; 1626 1627 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1628 max_pg = rlim >> PAGE_SHIFT; 1629 user = mmp->user ? : current_user(); 1630 1631 old_pg = atomic_long_read(&user->locked_vm); 1632 do { 1633 new_pg = old_pg + num_pg; 1634 if (new_pg > max_pg) 1635 return -ENOBUFS; 1636 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1637 1638 if (!mmp->user) { 1639 mmp->user = get_uid(user); 1640 mmp->num_pg = num_pg; 1641 } else { 1642 mmp->num_pg += num_pg; 1643 } 1644 1645 return 0; 1646 } 1647 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1648 1649 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1650 { 1651 if (mmp->user) { 1652 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1653 free_uid(mmp->user); 1654 } 1655 } 1656 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1657 1658 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size, 1659 bool devmem) 1660 { 1661 struct ubuf_info_msgzc *uarg; 1662 struct sk_buff *skb; 1663 1664 WARN_ON_ONCE(!in_task()); 1665 1666 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1667 if (!skb) 1668 return NULL; 1669 1670 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1671 uarg = (void *)skb->cb; 1672 uarg->mmp.user = NULL; 1673 1674 if (likely(!devmem) && mm_account_pinned_pages(&uarg->mmp, size)) { 1675 kfree_skb(skb); 1676 return NULL; 1677 } 1678 1679 uarg->ubuf.ops = &msg_zerocopy_ubuf_ops; 1680 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1681 uarg->len = 1; 1682 uarg->bytelen = size; 1683 uarg->zerocopy = 1; 1684 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1685 refcount_set(&uarg->ubuf.refcnt, 1); 1686 sock_hold(sk); 1687 1688 return &uarg->ubuf; 1689 } 1690 1691 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1692 { 1693 return container_of((void *)uarg, struct sk_buff, cb); 1694 } 1695 1696 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1697 struct ubuf_info *uarg, bool devmem) 1698 { 1699 if (uarg) { 1700 struct ubuf_info_msgzc *uarg_zc; 1701 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1702 u32 bytelen, next; 1703 1704 /* there might be non MSG_ZEROCOPY users */ 1705 if (uarg->ops != &msg_zerocopy_ubuf_ops) 1706 return NULL; 1707 1708 /* realloc only when socket is locked (TCP, UDP cork), 1709 * so uarg->len and sk_zckey access is serialized 1710 */ 1711 if (!sock_owned_by_user(sk)) { 1712 WARN_ON_ONCE(1); 1713 return NULL; 1714 } 1715 1716 uarg_zc = uarg_to_msgzc(uarg); 1717 bytelen = uarg_zc->bytelen + size; 1718 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1719 /* TCP can create new skb to attach new uarg */ 1720 if (sk->sk_type == SOCK_STREAM) 1721 goto new_alloc; 1722 return NULL; 1723 } 1724 1725 next = (u32)atomic_read(&sk->sk_zckey); 1726 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1727 if (likely(!devmem) && 1728 mm_account_pinned_pages(&uarg_zc->mmp, size)) 1729 return NULL; 1730 uarg_zc->len++; 1731 uarg_zc->bytelen = bytelen; 1732 atomic_set(&sk->sk_zckey, ++next); 1733 1734 /* no extra ref when appending to datagram (MSG_MORE) */ 1735 if (sk->sk_type == SOCK_STREAM) 1736 net_zcopy_get(uarg); 1737 1738 return uarg; 1739 } 1740 } 1741 1742 new_alloc: 1743 return msg_zerocopy_alloc(sk, size, devmem); 1744 } 1745 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1746 1747 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1748 { 1749 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1750 u32 old_lo, old_hi; 1751 u64 sum_len; 1752 1753 old_lo = serr->ee.ee_info; 1754 old_hi = serr->ee.ee_data; 1755 sum_len = old_hi - old_lo + 1ULL + len; 1756 1757 if (sum_len >= (1ULL << 32)) 1758 return false; 1759 1760 if (lo != old_hi + 1) 1761 return false; 1762 1763 serr->ee.ee_data += len; 1764 return true; 1765 } 1766 1767 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1768 { 1769 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1770 struct sock_exterr_skb *serr; 1771 struct sock *sk = skb->sk; 1772 struct sk_buff_head *q; 1773 unsigned long flags; 1774 bool is_zerocopy; 1775 u32 lo, hi; 1776 u16 len; 1777 1778 mm_unaccount_pinned_pages(&uarg->mmp); 1779 1780 /* if !len, there was only 1 call, and it was aborted 1781 * so do not queue a completion notification 1782 */ 1783 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1784 goto release; 1785 1786 len = uarg->len; 1787 lo = uarg->id; 1788 hi = uarg->id + len - 1; 1789 is_zerocopy = uarg->zerocopy; 1790 1791 serr = SKB_EXT_ERR(skb); 1792 memset(serr, 0, sizeof(*serr)); 1793 serr->ee.ee_errno = 0; 1794 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1795 serr->ee.ee_data = hi; 1796 serr->ee.ee_info = lo; 1797 if (!is_zerocopy) 1798 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1799 1800 q = &sk->sk_error_queue; 1801 spin_lock_irqsave(&q->lock, flags); 1802 tail = skb_peek_tail(q); 1803 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1804 !skb_zerocopy_notify_extend(tail, lo, len)) { 1805 __skb_queue_tail(q, skb); 1806 skb = NULL; 1807 } 1808 spin_unlock_irqrestore(&q->lock, flags); 1809 1810 sk_error_report(sk); 1811 1812 release: 1813 consume_skb(skb); 1814 sock_put(sk); 1815 } 1816 1817 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg, 1818 bool success) 1819 { 1820 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1821 1822 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1823 1824 if (refcount_dec_and_test(&uarg->refcnt)) 1825 __msg_zerocopy_callback(uarg_zc); 1826 } 1827 1828 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1829 { 1830 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1831 1832 atomic_dec(&sk->sk_zckey); 1833 uarg_to_msgzc(uarg)->len--; 1834 1835 if (have_uref) 1836 msg_zerocopy_complete(NULL, uarg, true); 1837 } 1838 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1839 1840 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = { 1841 .complete = msg_zerocopy_complete, 1842 }; 1843 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops); 1844 1845 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1846 struct msghdr *msg, int len, 1847 struct ubuf_info *uarg, 1848 struct net_devmem_dmabuf_binding *binding) 1849 { 1850 int err, orig_len = skb->len; 1851 1852 if (uarg->ops->link_skb) { 1853 err = uarg->ops->link_skb(skb, uarg); 1854 if (err) 1855 return err; 1856 } else { 1857 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1858 1859 /* An skb can only point to one uarg. This edge case happens 1860 * when TCP appends to an skb, but zerocopy_realloc triggered 1861 * a new alloc. 1862 */ 1863 if (orig_uarg && uarg != orig_uarg) 1864 return -EEXIST; 1865 } 1866 1867 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len, 1868 binding); 1869 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1870 struct sock *save_sk = skb->sk; 1871 1872 /* Streams do not free skb on error. Reset to prev state. */ 1873 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1874 skb->sk = sk; 1875 ___pskb_trim(skb, orig_len); 1876 skb->sk = save_sk; 1877 return err; 1878 } 1879 1880 skb_zcopy_set(skb, uarg, NULL); 1881 return skb->len - orig_len; 1882 } 1883 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1884 1885 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1886 { 1887 int i; 1888 1889 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1890 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1891 skb_frag_ref(skb, i); 1892 } 1893 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1894 1895 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1896 gfp_t gfp_mask) 1897 { 1898 if (skb_zcopy(orig)) { 1899 if (skb_zcopy(nskb)) { 1900 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1901 if (!gfp_mask) { 1902 WARN_ON_ONCE(1); 1903 return -ENOMEM; 1904 } 1905 if (skb_uarg(nskb) == skb_uarg(orig)) 1906 return 0; 1907 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1908 return -EIO; 1909 } 1910 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1911 } 1912 return 0; 1913 } 1914 1915 /** 1916 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1917 * @skb: the skb to modify 1918 * @gfp_mask: allocation priority 1919 * 1920 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1921 * It will copy all frags into kernel and drop the reference 1922 * to userspace pages. 1923 * 1924 * If this function is called from an interrupt gfp_mask() must be 1925 * %GFP_ATOMIC. 1926 * 1927 * Returns 0 on success or a negative error code on failure 1928 * to allocate kernel memory to copy to. 1929 */ 1930 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1931 { 1932 int num_frags = skb_shinfo(skb)->nr_frags; 1933 struct page *page, *head = NULL; 1934 int i, order, psize, new_frags; 1935 u32 d_off; 1936 1937 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1938 return -EINVAL; 1939 1940 if (!skb_frags_readable(skb)) 1941 return -EFAULT; 1942 1943 if (!num_frags) 1944 goto release; 1945 1946 /* We might have to allocate high order pages, so compute what minimum 1947 * page order is needed. 1948 */ 1949 order = 0; 1950 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1951 order++; 1952 psize = (PAGE_SIZE << order); 1953 1954 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1955 for (i = 0; i < new_frags; i++) { 1956 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1957 if (!page) { 1958 while (head) { 1959 struct page *next = (struct page *)page_private(head); 1960 put_page(head); 1961 head = next; 1962 } 1963 return -ENOMEM; 1964 } 1965 set_page_private(page, (unsigned long)head); 1966 head = page; 1967 } 1968 1969 page = head; 1970 d_off = 0; 1971 for (i = 0; i < num_frags; i++) { 1972 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1973 u32 p_off, p_len, copied; 1974 struct page *p; 1975 u8 *vaddr; 1976 1977 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1978 p, p_off, p_len, copied) { 1979 u32 copy, done = 0; 1980 vaddr = kmap_atomic(p); 1981 1982 while (done < p_len) { 1983 if (d_off == psize) { 1984 d_off = 0; 1985 page = (struct page *)page_private(page); 1986 } 1987 copy = min_t(u32, psize - d_off, p_len - done); 1988 memcpy(page_address(page) + d_off, 1989 vaddr + p_off + done, copy); 1990 done += copy; 1991 d_off += copy; 1992 } 1993 kunmap_atomic(vaddr); 1994 } 1995 } 1996 1997 /* skb frags release userspace buffers */ 1998 for (i = 0; i < num_frags; i++) 1999 skb_frag_unref(skb, i); 2000 2001 /* skb frags point to kernel buffers */ 2002 for (i = 0; i < new_frags - 1; i++) { 2003 __skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize); 2004 head = (struct page *)page_private(head); 2005 } 2006 __skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0, 2007 d_off); 2008 skb_shinfo(skb)->nr_frags = new_frags; 2009 2010 release: 2011 skb_zcopy_clear(skb, false); 2012 return 0; 2013 } 2014 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 2015 2016 /** 2017 * skb_clone - duplicate an sk_buff 2018 * @skb: buffer to clone 2019 * @gfp_mask: allocation priority 2020 * 2021 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 2022 * copies share the same packet data but not structure. The new 2023 * buffer has a reference count of 1. If the allocation fails the 2024 * function returns %NULL otherwise the new buffer is returned. 2025 * 2026 * If this function is called from an interrupt gfp_mask() must be 2027 * %GFP_ATOMIC. 2028 */ 2029 2030 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 2031 { 2032 struct sk_buff_fclones *fclones = container_of(skb, 2033 struct sk_buff_fclones, 2034 skb1); 2035 struct sk_buff *n; 2036 2037 if (skb_orphan_frags(skb, gfp_mask)) 2038 return NULL; 2039 2040 if (skb->fclone == SKB_FCLONE_ORIG && 2041 refcount_read(&fclones->fclone_ref) == 1) { 2042 n = &fclones->skb2; 2043 refcount_set(&fclones->fclone_ref, 2); 2044 n->fclone = SKB_FCLONE_CLONE; 2045 } else { 2046 if (skb_pfmemalloc(skb)) 2047 gfp_mask |= __GFP_MEMALLOC; 2048 2049 n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask); 2050 if (!n) 2051 return NULL; 2052 2053 n->fclone = SKB_FCLONE_UNAVAILABLE; 2054 } 2055 2056 return __skb_clone(n, skb); 2057 } 2058 EXPORT_SYMBOL(skb_clone); 2059 2060 void skb_headers_offset_update(struct sk_buff *skb, int off) 2061 { 2062 /* Only adjust this if it actually is csum_start rather than csum */ 2063 if (skb->ip_summed == CHECKSUM_PARTIAL) 2064 skb->csum_start += off; 2065 /* {transport,network,mac}_header and tail are relative to skb->head */ 2066 skb->transport_header += off; 2067 skb->network_header += off; 2068 if (skb_mac_header_was_set(skb)) 2069 skb->mac_header += off; 2070 skb->inner_transport_header += off; 2071 skb->inner_network_header += off; 2072 skb->inner_mac_header += off; 2073 } 2074 EXPORT_SYMBOL(skb_headers_offset_update); 2075 2076 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 2077 { 2078 __copy_skb_header(new, old); 2079 2080 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 2081 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 2082 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 2083 } 2084 EXPORT_SYMBOL(skb_copy_header); 2085 2086 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 2087 { 2088 if (skb_pfmemalloc(skb)) 2089 return SKB_ALLOC_RX; 2090 return 0; 2091 } 2092 2093 /** 2094 * skb_copy - create private copy of an sk_buff 2095 * @skb: buffer to copy 2096 * @gfp_mask: allocation priority 2097 * 2098 * Make a copy of both an &sk_buff and its data. This is used when the 2099 * caller wishes to modify the data and needs a private copy of the 2100 * data to alter. Returns %NULL on failure or the pointer to the buffer 2101 * on success. The returned buffer has a reference count of 1. 2102 * 2103 * As by-product this function converts non-linear &sk_buff to linear 2104 * one, so that &sk_buff becomes completely private and caller is allowed 2105 * to modify all the data of returned buffer. This means that this 2106 * function is not recommended for use in circumstances when only 2107 * header is going to be modified. Use pskb_copy() instead. 2108 */ 2109 2110 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 2111 { 2112 struct sk_buff *n; 2113 unsigned int size; 2114 int headerlen; 2115 2116 if (!skb_frags_readable(skb)) 2117 return NULL; 2118 2119 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2120 return NULL; 2121 2122 headerlen = skb_headroom(skb); 2123 size = skb_end_offset(skb) + skb->data_len; 2124 n = __alloc_skb(size, gfp_mask, 2125 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 2126 if (!n) 2127 return NULL; 2128 2129 /* Set the data pointer */ 2130 skb_reserve(n, headerlen); 2131 /* Set the tail pointer and length */ 2132 skb_put(n, skb->len); 2133 2134 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 2135 2136 skb_copy_header(n, skb); 2137 return n; 2138 } 2139 EXPORT_SYMBOL(skb_copy); 2140 2141 /** 2142 * __pskb_copy_fclone - create copy of an sk_buff with private head. 2143 * @skb: buffer to copy 2144 * @headroom: headroom of new skb 2145 * @gfp_mask: allocation priority 2146 * @fclone: if true allocate the copy of the skb from the fclone 2147 * cache instead of the head cache; it is recommended to set this 2148 * to true for the cases where the copy will likely be cloned 2149 * 2150 * Make a copy of both an &sk_buff and part of its data, located 2151 * in header. Fragmented data remain shared. This is used when 2152 * the caller wishes to modify only header of &sk_buff and needs 2153 * private copy of the header to alter. Returns %NULL on failure 2154 * or the pointer to the buffer on success. 2155 * The returned buffer has a reference count of 1. 2156 */ 2157 2158 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2159 gfp_t gfp_mask, bool fclone) 2160 { 2161 unsigned int size = skb_headlen(skb) + headroom; 2162 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2163 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2164 2165 if (!n) 2166 goto out; 2167 2168 /* Set the data pointer */ 2169 skb_reserve(n, headroom); 2170 /* Set the tail pointer and length */ 2171 skb_put(n, skb_headlen(skb)); 2172 /* Copy the bytes */ 2173 skb_copy_from_linear_data(skb, n->data, n->len); 2174 2175 n->truesize += skb->data_len; 2176 n->data_len = skb->data_len; 2177 n->len = skb->len; 2178 2179 if (skb_shinfo(skb)->nr_frags) { 2180 int i; 2181 2182 if (skb_orphan_frags(skb, gfp_mask) || 2183 skb_zerocopy_clone(n, skb, gfp_mask)) { 2184 kfree_skb(n); 2185 n = NULL; 2186 goto out; 2187 } 2188 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2189 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2190 skb_frag_ref(skb, i); 2191 } 2192 skb_shinfo(n)->nr_frags = i; 2193 } 2194 2195 if (skb_has_frag_list(skb)) { 2196 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2197 skb_clone_fraglist(n); 2198 } 2199 2200 skb_copy_header(n, skb); 2201 out: 2202 return n; 2203 } 2204 EXPORT_SYMBOL(__pskb_copy_fclone); 2205 2206 /** 2207 * pskb_expand_head - reallocate header of &sk_buff 2208 * @skb: buffer to reallocate 2209 * @nhead: room to add at head 2210 * @ntail: room to add at tail 2211 * @gfp_mask: allocation priority 2212 * 2213 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2214 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2215 * reference count of 1. Returns zero in the case of success or error, 2216 * if expansion failed. In the last case, &sk_buff is not changed. 2217 * 2218 * All the pointers pointing into skb header may change and must be 2219 * reloaded after call to this function. 2220 */ 2221 2222 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2223 gfp_t gfp_mask) 2224 { 2225 unsigned int osize = skb_end_offset(skb); 2226 unsigned int size = osize + nhead + ntail; 2227 long off; 2228 u8 *data; 2229 int i; 2230 2231 BUG_ON(nhead < 0); 2232 2233 BUG_ON(skb_shared(skb)); 2234 2235 skb_zcopy_downgrade_managed(skb); 2236 2237 if (skb_pfmemalloc(skb)) 2238 gfp_mask |= __GFP_MEMALLOC; 2239 2240 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2241 if (!data) 2242 goto nodata; 2243 size = SKB_WITH_OVERHEAD(size); 2244 2245 /* Copy only real data... and, alas, header. This should be 2246 * optimized for the cases when header is void. 2247 */ 2248 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2249 2250 memcpy((struct skb_shared_info *)(data + size), 2251 skb_shinfo(skb), 2252 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2253 2254 /* 2255 * if shinfo is shared we must drop the old head gracefully, but if it 2256 * is not we can just drop the old head and let the existing refcount 2257 * be since all we did is relocate the values 2258 */ 2259 if (skb_cloned(skb)) { 2260 if (skb_orphan_frags(skb, gfp_mask)) 2261 goto nofrags; 2262 if (skb_zcopy(skb)) 2263 refcount_inc(&skb_uarg(skb)->refcnt); 2264 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2265 skb_frag_ref(skb, i); 2266 2267 if (skb_has_frag_list(skb)) 2268 skb_clone_fraglist(skb); 2269 2270 skb_release_data(skb, SKB_CONSUMED); 2271 } else { 2272 skb_free_head(skb); 2273 } 2274 off = (data + nhead) - skb->head; 2275 2276 skb->head = data; 2277 skb->head_frag = 0; 2278 skb->data += off; 2279 2280 skb_set_end_offset(skb, size); 2281 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2282 off = nhead; 2283 #endif 2284 skb->tail += off; 2285 skb_headers_offset_update(skb, nhead); 2286 skb->cloned = 0; 2287 skb->hdr_len = 0; 2288 skb->nohdr = 0; 2289 atomic_set(&skb_shinfo(skb)->dataref, 1); 2290 2291 skb_metadata_clear(skb); 2292 2293 /* It is not generally safe to change skb->truesize. 2294 * For the moment, we really care of rx path, or 2295 * when skb is orphaned (not attached to a socket). 2296 */ 2297 if (!skb->sk || skb->destructor == sock_edemux) 2298 skb->truesize += size - osize; 2299 2300 return 0; 2301 2302 nofrags: 2303 skb_kfree_head(data, size); 2304 nodata: 2305 return -ENOMEM; 2306 } 2307 EXPORT_SYMBOL(pskb_expand_head); 2308 2309 /* Make private copy of skb with writable head and some headroom */ 2310 2311 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2312 { 2313 struct sk_buff *skb2; 2314 int delta = headroom - skb_headroom(skb); 2315 2316 if (delta <= 0) 2317 skb2 = pskb_copy(skb, GFP_ATOMIC); 2318 else { 2319 skb2 = skb_clone(skb, GFP_ATOMIC); 2320 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2321 GFP_ATOMIC)) { 2322 kfree_skb(skb2); 2323 skb2 = NULL; 2324 } 2325 } 2326 return skb2; 2327 } 2328 EXPORT_SYMBOL(skb_realloc_headroom); 2329 2330 /* Note: We plan to rework this in linux-6.4 */ 2331 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2332 { 2333 unsigned int saved_end_offset, saved_truesize; 2334 struct skb_shared_info *shinfo; 2335 int res; 2336 2337 saved_end_offset = skb_end_offset(skb); 2338 saved_truesize = skb->truesize; 2339 2340 res = pskb_expand_head(skb, 0, 0, pri); 2341 if (res) 2342 return res; 2343 2344 skb->truesize = saved_truesize; 2345 2346 if (likely(skb_end_offset(skb) == saved_end_offset)) 2347 return 0; 2348 2349 /* We can not change skb->end if the original or new value 2350 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2351 */ 2352 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2353 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2354 /* We think this path should not be taken. 2355 * Add a temporary trace to warn us just in case. 2356 */ 2357 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2358 saved_end_offset, skb_end_offset(skb)); 2359 WARN_ON_ONCE(1); 2360 return 0; 2361 } 2362 2363 shinfo = skb_shinfo(skb); 2364 2365 /* We are about to change back skb->end, 2366 * we need to move skb_shinfo() to its new location. 2367 */ 2368 memmove(skb->head + saved_end_offset, 2369 shinfo, 2370 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2371 2372 skb_set_end_offset(skb, saved_end_offset); 2373 2374 return 0; 2375 } 2376 2377 /** 2378 * skb_expand_head - reallocate header of &sk_buff 2379 * @skb: buffer to reallocate 2380 * @headroom: needed headroom 2381 * 2382 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2383 * if possible; copies skb->sk to new skb as needed 2384 * and frees original skb in case of failures. 2385 * 2386 * It expect increased headroom and generates warning otherwise. 2387 */ 2388 2389 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2390 { 2391 int delta = headroom - skb_headroom(skb); 2392 int osize = skb_end_offset(skb); 2393 struct sock *sk = skb->sk; 2394 2395 if (WARN_ONCE(delta <= 0, 2396 "%s is expecting an increase in the headroom", __func__)) 2397 return skb; 2398 2399 delta = SKB_DATA_ALIGN(delta); 2400 /* pskb_expand_head() might crash, if skb is shared. */ 2401 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2402 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2403 2404 if (unlikely(!nskb)) 2405 goto fail; 2406 2407 if (sk) 2408 skb_set_owner_w(nskb, sk); 2409 consume_skb(skb); 2410 skb = nskb; 2411 } 2412 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2413 goto fail; 2414 2415 if (sk && is_skb_wmem(skb)) { 2416 delta = skb_end_offset(skb) - osize; 2417 refcount_add(delta, &sk->sk_wmem_alloc); 2418 skb->truesize += delta; 2419 } 2420 return skb; 2421 2422 fail: 2423 kfree_skb(skb); 2424 return NULL; 2425 } 2426 EXPORT_SYMBOL(skb_expand_head); 2427 2428 /** 2429 * skb_copy_expand - copy and expand sk_buff 2430 * @skb: buffer to copy 2431 * @newheadroom: new free bytes at head 2432 * @newtailroom: new free bytes at tail 2433 * @gfp_mask: allocation priority 2434 * 2435 * Make a copy of both an &sk_buff and its data and while doing so 2436 * allocate additional space. 2437 * 2438 * This is used when the caller wishes to modify the data and needs a 2439 * private copy of the data to alter as well as more space for new fields. 2440 * Returns %NULL on failure or the pointer to the buffer 2441 * on success. The returned buffer has a reference count of 1. 2442 * 2443 * You must pass %GFP_ATOMIC as the allocation priority if this function 2444 * is called from an interrupt. 2445 */ 2446 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2447 int newheadroom, int newtailroom, 2448 gfp_t gfp_mask) 2449 { 2450 /* 2451 * Allocate the copy buffer 2452 */ 2453 int head_copy_len, head_copy_off; 2454 struct sk_buff *n; 2455 int oldheadroom; 2456 2457 if (!skb_frags_readable(skb)) 2458 return NULL; 2459 2460 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2461 return NULL; 2462 2463 oldheadroom = skb_headroom(skb); 2464 n = __alloc_skb(newheadroom + skb->len + newtailroom, 2465 gfp_mask, skb_alloc_rx_flag(skb), 2466 NUMA_NO_NODE); 2467 if (!n) 2468 return NULL; 2469 2470 skb_reserve(n, newheadroom); 2471 2472 /* Set the tail pointer and length */ 2473 skb_put(n, skb->len); 2474 2475 head_copy_len = oldheadroom; 2476 head_copy_off = 0; 2477 if (newheadroom <= head_copy_len) 2478 head_copy_len = newheadroom; 2479 else 2480 head_copy_off = newheadroom - head_copy_len; 2481 2482 /* Copy the linear header and data. */ 2483 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2484 skb->len + head_copy_len)); 2485 2486 skb_copy_header(n, skb); 2487 2488 skb_headers_offset_update(n, newheadroom - oldheadroom); 2489 2490 return n; 2491 } 2492 EXPORT_SYMBOL(skb_copy_expand); 2493 2494 /** 2495 * __skb_pad - zero pad the tail of an skb 2496 * @skb: buffer to pad 2497 * @pad: space to pad 2498 * @free_on_error: free buffer on error 2499 * 2500 * Ensure that a buffer is followed by a padding area that is zero 2501 * filled. Used by network drivers which may DMA or transfer data 2502 * beyond the buffer end onto the wire. 2503 * 2504 * May return error in out of memory cases. The skb is freed on error 2505 * if @free_on_error is true. 2506 */ 2507 2508 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2509 { 2510 int err; 2511 int ntail; 2512 2513 /* If the skbuff is non linear tailroom is always zero.. */ 2514 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2515 memset(skb->data+skb->len, 0, pad); 2516 return 0; 2517 } 2518 2519 ntail = skb->data_len + pad - (skb->end - skb->tail); 2520 if (likely(skb_cloned(skb) || ntail > 0)) { 2521 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2522 if (unlikely(err)) 2523 goto free_skb; 2524 } 2525 2526 /* FIXME: The use of this function with non-linear skb's really needs 2527 * to be audited. 2528 */ 2529 err = skb_linearize(skb); 2530 if (unlikely(err)) 2531 goto free_skb; 2532 2533 memset(skb->data + skb->len, 0, pad); 2534 return 0; 2535 2536 free_skb: 2537 if (free_on_error) 2538 kfree_skb(skb); 2539 return err; 2540 } 2541 EXPORT_SYMBOL(__skb_pad); 2542 2543 /** 2544 * pskb_put - add data to the tail of a potentially fragmented buffer 2545 * @skb: start of the buffer to use 2546 * @tail: tail fragment of the buffer to use 2547 * @len: amount of data to add 2548 * 2549 * This function extends the used data area of the potentially 2550 * fragmented buffer. @tail must be the last fragment of @skb -- or 2551 * @skb itself. If this would exceed the total buffer size the kernel 2552 * will panic. A pointer to the first byte of the extra data is 2553 * returned. 2554 */ 2555 2556 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2557 { 2558 if (tail != skb) { 2559 skb->data_len += len; 2560 skb->len += len; 2561 } 2562 return skb_put(tail, len); 2563 } 2564 EXPORT_SYMBOL_GPL(pskb_put); 2565 2566 /** 2567 * skb_put - add data to a buffer 2568 * @skb: buffer to use 2569 * @len: amount of data to add 2570 * 2571 * This function extends the used data area of the buffer. If this would 2572 * exceed the total buffer size the kernel will panic. A pointer to the 2573 * first byte of the extra data is returned. 2574 */ 2575 void *skb_put(struct sk_buff *skb, unsigned int len) 2576 { 2577 void *tmp = skb_tail_pointer(skb); 2578 SKB_LINEAR_ASSERT(skb); 2579 skb->tail += len; 2580 skb->len += len; 2581 if (unlikely(skb->tail > skb->end)) 2582 skb_over_panic(skb, len, __builtin_return_address(0)); 2583 return tmp; 2584 } 2585 EXPORT_SYMBOL(skb_put); 2586 2587 /** 2588 * skb_push - add data to the start of a buffer 2589 * @skb: buffer to use 2590 * @len: amount of data to add 2591 * 2592 * This function extends the used data area of the buffer at the buffer 2593 * start. If this would exceed the total buffer headroom the kernel will 2594 * panic. A pointer to the first byte of the extra data is returned. 2595 */ 2596 void *skb_push(struct sk_buff *skb, unsigned int len) 2597 { 2598 skb->data -= len; 2599 skb->len += len; 2600 if (unlikely(skb->data < skb->head)) 2601 skb_under_panic(skb, len, __builtin_return_address(0)); 2602 return skb->data; 2603 } 2604 EXPORT_SYMBOL(skb_push); 2605 2606 /** 2607 * skb_pull - remove data from the start of a buffer 2608 * @skb: buffer to use 2609 * @len: amount of data to remove 2610 * 2611 * This function removes data from the start of a buffer, returning 2612 * the memory to the headroom. A pointer to the next data in the buffer 2613 * is returned. Once the data has been pulled future pushes will overwrite 2614 * the old data. 2615 */ 2616 void *skb_pull(struct sk_buff *skb, unsigned int len) 2617 { 2618 return skb_pull_inline(skb, len); 2619 } 2620 EXPORT_SYMBOL(skb_pull); 2621 2622 /** 2623 * skb_pull_data - remove data from the start of a buffer returning its 2624 * original position. 2625 * @skb: buffer to use 2626 * @len: amount of data to remove 2627 * 2628 * This function removes data from the start of a buffer, returning 2629 * the memory to the headroom. A pointer to the original data in the buffer 2630 * is returned after checking if there is enough data to pull. Once the 2631 * data has been pulled future pushes will overwrite the old data. 2632 */ 2633 void *skb_pull_data(struct sk_buff *skb, size_t len) 2634 { 2635 void *data = skb->data; 2636 2637 if (skb->len < len) 2638 return NULL; 2639 2640 skb_pull(skb, len); 2641 2642 return data; 2643 } 2644 EXPORT_SYMBOL(skb_pull_data); 2645 2646 /** 2647 * skb_trim - remove end from a buffer 2648 * @skb: buffer to alter 2649 * @len: new length 2650 * 2651 * Cut the length of a buffer down by removing data from the tail. If 2652 * the buffer is already under the length specified it is not modified. 2653 * The skb must be linear. 2654 */ 2655 void skb_trim(struct sk_buff *skb, unsigned int len) 2656 { 2657 if (skb->len > len) 2658 __skb_trim(skb, len); 2659 } 2660 EXPORT_SYMBOL(skb_trim); 2661 2662 /* Trims skb to length len. It can change skb pointers. 2663 */ 2664 2665 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2666 { 2667 struct sk_buff **fragp; 2668 struct sk_buff *frag; 2669 int offset = skb_headlen(skb); 2670 int nfrags = skb_shinfo(skb)->nr_frags; 2671 int i; 2672 int err; 2673 2674 if (skb_cloned(skb) && 2675 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2676 return err; 2677 2678 i = 0; 2679 if (offset >= len) 2680 goto drop_pages; 2681 2682 for (; i < nfrags; i++) { 2683 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2684 2685 if (end < len) { 2686 offset = end; 2687 continue; 2688 } 2689 2690 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2691 2692 drop_pages: 2693 skb_shinfo(skb)->nr_frags = i; 2694 2695 for (; i < nfrags; i++) 2696 skb_frag_unref(skb, i); 2697 2698 if (skb_has_frag_list(skb)) 2699 skb_drop_fraglist(skb); 2700 goto done; 2701 } 2702 2703 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2704 fragp = &frag->next) { 2705 int end = offset + frag->len; 2706 2707 if (skb_shared(frag)) { 2708 struct sk_buff *nfrag; 2709 2710 nfrag = skb_clone(frag, GFP_ATOMIC); 2711 if (unlikely(!nfrag)) 2712 return -ENOMEM; 2713 2714 nfrag->next = frag->next; 2715 consume_skb(frag); 2716 frag = nfrag; 2717 *fragp = frag; 2718 } 2719 2720 if (end < len) { 2721 offset = end; 2722 continue; 2723 } 2724 2725 if (end > len && 2726 unlikely((err = pskb_trim(frag, len - offset)))) 2727 return err; 2728 2729 if (frag->next) 2730 skb_drop_list(&frag->next); 2731 break; 2732 } 2733 2734 done: 2735 if (len > skb_headlen(skb)) { 2736 skb->data_len -= skb->len - len; 2737 skb->len = len; 2738 } else { 2739 skb->len = len; 2740 skb->data_len = 0; 2741 skb_set_tail_pointer(skb, len); 2742 } 2743 2744 if (!skb->sk || skb->destructor == sock_edemux) 2745 skb_condense(skb); 2746 return 0; 2747 } 2748 EXPORT_SYMBOL(___pskb_trim); 2749 2750 /* Note : use pskb_trim_rcsum() instead of calling this directly 2751 */ 2752 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2753 { 2754 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2755 int delta = skb->len - len; 2756 2757 skb->csum = csum_block_sub(skb->csum, 2758 skb_checksum(skb, len, delta, 0), 2759 len); 2760 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2761 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2762 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2763 2764 if (offset + sizeof(__sum16) > hdlen) 2765 return -EINVAL; 2766 } 2767 return __pskb_trim(skb, len); 2768 } 2769 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2770 2771 /** 2772 * __pskb_pull_tail - advance tail of skb header 2773 * @skb: buffer to reallocate 2774 * @delta: number of bytes to advance tail 2775 * 2776 * The function makes a sense only on a fragmented &sk_buff, 2777 * it expands header moving its tail forward and copying necessary 2778 * data from fragmented part. 2779 * 2780 * &sk_buff MUST have reference count of 1. 2781 * 2782 * Returns %NULL (and &sk_buff does not change) if pull failed 2783 * or value of new tail of skb in the case of success. 2784 * 2785 * All the pointers pointing into skb header may change and must be 2786 * reloaded after call to this function. 2787 */ 2788 2789 /* Moves tail of skb head forward, copying data from fragmented part, 2790 * when it is necessary. 2791 * 1. It may fail due to malloc failure. 2792 * 2. It may change skb pointers. 2793 * 2794 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2795 */ 2796 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2797 { 2798 /* If skb has not enough free space at tail, get new one 2799 * plus 128 bytes for future expansions. If we have enough 2800 * room at tail, reallocate without expansion only if skb is cloned. 2801 */ 2802 int i, k, eat = (skb->tail + delta) - skb->end; 2803 2804 if (!skb_frags_readable(skb)) 2805 return NULL; 2806 2807 if (eat > 0 || skb_cloned(skb)) { 2808 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2809 GFP_ATOMIC)) 2810 return NULL; 2811 } 2812 2813 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2814 skb_tail_pointer(skb), delta)); 2815 2816 /* Optimization: no fragments, no reasons to preestimate 2817 * size of pulled pages. Superb. 2818 */ 2819 if (!skb_has_frag_list(skb)) 2820 goto pull_pages; 2821 2822 /* Estimate size of pulled pages. */ 2823 eat = delta; 2824 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2825 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2826 2827 if (size >= eat) 2828 goto pull_pages; 2829 eat -= size; 2830 } 2831 2832 /* If we need update frag list, we are in troubles. 2833 * Certainly, it is possible to add an offset to skb data, 2834 * but taking into account that pulling is expected to 2835 * be very rare operation, it is worth to fight against 2836 * further bloating skb head and crucify ourselves here instead. 2837 * Pure masohism, indeed. 8)8) 2838 */ 2839 if (eat) { 2840 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2841 struct sk_buff *clone = NULL; 2842 struct sk_buff *insp = NULL; 2843 2844 do { 2845 if (list->len <= eat) { 2846 /* Eaten as whole. */ 2847 eat -= list->len; 2848 list = list->next; 2849 insp = list; 2850 } else { 2851 /* Eaten partially. */ 2852 if (skb_is_gso(skb) && !list->head_frag && 2853 skb_headlen(list)) 2854 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2855 2856 if (skb_shared(list)) { 2857 /* Sucks! We need to fork list. :-( */ 2858 clone = skb_clone(list, GFP_ATOMIC); 2859 if (!clone) 2860 return NULL; 2861 insp = list->next; 2862 list = clone; 2863 } else { 2864 /* This may be pulled without 2865 * problems. */ 2866 insp = list; 2867 } 2868 if (!pskb_pull(list, eat)) { 2869 kfree_skb(clone); 2870 return NULL; 2871 } 2872 break; 2873 } 2874 } while (eat); 2875 2876 /* Free pulled out fragments. */ 2877 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2878 skb_shinfo(skb)->frag_list = list->next; 2879 consume_skb(list); 2880 } 2881 /* And insert new clone at head. */ 2882 if (clone) { 2883 clone->next = list; 2884 skb_shinfo(skb)->frag_list = clone; 2885 } 2886 } 2887 /* Success! Now we may commit changes to skb data. */ 2888 2889 pull_pages: 2890 eat = delta; 2891 k = 0; 2892 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2893 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2894 2895 if (size <= eat) { 2896 skb_frag_unref(skb, i); 2897 eat -= size; 2898 } else { 2899 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2900 2901 *frag = skb_shinfo(skb)->frags[i]; 2902 if (eat) { 2903 skb_frag_off_add(frag, eat); 2904 skb_frag_size_sub(frag, eat); 2905 if (!i) 2906 goto end; 2907 eat = 0; 2908 } 2909 k++; 2910 } 2911 } 2912 skb_shinfo(skb)->nr_frags = k; 2913 2914 end: 2915 skb->tail += delta; 2916 skb->data_len -= delta; 2917 2918 if (!skb->data_len) 2919 skb_zcopy_clear(skb, false); 2920 2921 return skb_tail_pointer(skb); 2922 } 2923 EXPORT_SYMBOL(__pskb_pull_tail); 2924 2925 /** 2926 * skb_copy_bits - copy bits from skb to kernel buffer 2927 * @skb: source skb 2928 * @offset: offset in source 2929 * @to: destination buffer 2930 * @len: number of bytes to copy 2931 * 2932 * Copy the specified number of bytes from the source skb to the 2933 * destination buffer. 2934 * 2935 * CAUTION ! : 2936 * If its prototype is ever changed, 2937 * check arch/{*}/net/{*}.S files, 2938 * since it is called from BPF assembly code. 2939 */ 2940 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2941 { 2942 int start = skb_headlen(skb); 2943 struct sk_buff *frag_iter; 2944 int i, copy; 2945 2946 if (offset > (int)skb->len - len) 2947 goto fault; 2948 2949 /* Copy header. */ 2950 if ((copy = start - offset) > 0) { 2951 if (copy > len) 2952 copy = len; 2953 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2954 if ((len -= copy) == 0) 2955 return 0; 2956 offset += copy; 2957 to += copy; 2958 } 2959 2960 if (!skb_frags_readable(skb)) 2961 goto fault; 2962 2963 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2964 int end; 2965 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2966 2967 WARN_ON(start > offset + len); 2968 2969 end = start + skb_frag_size(f); 2970 if ((copy = end - offset) > 0) { 2971 u32 p_off, p_len, copied; 2972 struct page *p; 2973 u8 *vaddr; 2974 2975 if (copy > len) 2976 copy = len; 2977 2978 skb_frag_foreach_page(f, 2979 skb_frag_off(f) + offset - start, 2980 copy, p, p_off, p_len, copied) { 2981 vaddr = kmap_atomic(p); 2982 memcpy(to + copied, vaddr + p_off, p_len); 2983 kunmap_atomic(vaddr); 2984 } 2985 2986 if ((len -= copy) == 0) 2987 return 0; 2988 offset += copy; 2989 to += copy; 2990 } 2991 start = end; 2992 } 2993 2994 skb_walk_frags(skb, frag_iter) { 2995 int end; 2996 2997 WARN_ON(start > offset + len); 2998 2999 end = start + frag_iter->len; 3000 if ((copy = end - offset) > 0) { 3001 if (copy > len) 3002 copy = len; 3003 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 3004 goto fault; 3005 if ((len -= copy) == 0) 3006 return 0; 3007 offset += copy; 3008 to += copy; 3009 } 3010 start = end; 3011 } 3012 3013 if (!len) 3014 return 0; 3015 3016 fault: 3017 return -EFAULT; 3018 } 3019 EXPORT_SYMBOL(skb_copy_bits); 3020 3021 /* 3022 * Callback from splice_to_pipe(), if we need to release some pages 3023 * at the end of the spd in case we error'ed out in filling the pipe. 3024 */ 3025 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 3026 { 3027 put_page(spd->pages[i]); 3028 } 3029 3030 static struct page *linear_to_page(struct page *page, unsigned int *len, 3031 unsigned int *offset, 3032 struct sock *sk) 3033 { 3034 struct page_frag *pfrag = sk_page_frag(sk); 3035 3036 if (!sk_page_frag_refill(sk, pfrag)) 3037 return NULL; 3038 3039 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 3040 3041 memcpy(page_address(pfrag->page) + pfrag->offset, 3042 page_address(page) + *offset, *len); 3043 *offset = pfrag->offset; 3044 pfrag->offset += *len; 3045 3046 return pfrag->page; 3047 } 3048 3049 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 3050 struct page *page, 3051 unsigned int offset) 3052 { 3053 return spd->nr_pages && 3054 spd->pages[spd->nr_pages - 1] == page && 3055 (spd->partial[spd->nr_pages - 1].offset + 3056 spd->partial[spd->nr_pages - 1].len == offset); 3057 } 3058 3059 /* 3060 * Fill page/offset/length into spd, if it can hold more pages. 3061 */ 3062 static bool spd_fill_page(struct splice_pipe_desc *spd, struct page *page, 3063 unsigned int *len, unsigned int offset, bool linear, 3064 struct sock *sk) 3065 { 3066 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 3067 return true; 3068 3069 if (linear) { 3070 page = linear_to_page(page, len, &offset, sk); 3071 if (!page) 3072 return true; 3073 } 3074 if (spd_can_coalesce(spd, page, offset)) { 3075 spd->partial[spd->nr_pages - 1].len += *len; 3076 return false; 3077 } 3078 get_page(page); 3079 spd->pages[spd->nr_pages] = page; 3080 spd->partial[spd->nr_pages].len = *len; 3081 spd->partial[spd->nr_pages].offset = offset; 3082 spd->nr_pages++; 3083 3084 return false; 3085 } 3086 3087 static bool __splice_segment(struct page *page, unsigned int poff, 3088 unsigned int plen, unsigned int *off, 3089 unsigned int *len, 3090 struct splice_pipe_desc *spd, bool linear, 3091 struct sock *sk) 3092 { 3093 if (!*len) 3094 return true; 3095 3096 /* skip this segment if already processed */ 3097 if (*off >= plen) { 3098 *off -= plen; 3099 return false; 3100 } 3101 3102 /* ignore any bits we already processed */ 3103 poff += *off; 3104 plen -= *off; 3105 *off = 0; 3106 3107 do { 3108 unsigned int flen = min(*len, plen); 3109 3110 if (spd_fill_page(spd, page, &flen, poff, linear, sk)) 3111 return true; 3112 poff += flen; 3113 plen -= flen; 3114 *len -= flen; 3115 } while (*len && plen); 3116 3117 return false; 3118 } 3119 3120 /* 3121 * Map linear and fragment data from the skb to spd. It reports true if the 3122 * pipe is full or if we already spliced the requested length. 3123 */ 3124 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 3125 unsigned int *offset, unsigned int *len, 3126 struct splice_pipe_desc *spd, struct sock *sk) 3127 { 3128 struct sk_buff *iter; 3129 int seg; 3130 3131 /* map the linear part : 3132 * If skb->head_frag is set, this 'linear' part is backed by a 3133 * fragment, and if the head is not shared with any clones then 3134 * we can avoid a copy since we own the head portion of this page. 3135 */ 3136 if (__splice_segment(virt_to_page(skb->data), 3137 (unsigned long) skb->data & (PAGE_SIZE - 1), 3138 skb_headlen(skb), 3139 offset, len, spd, 3140 skb_head_is_locked(skb), 3141 sk)) 3142 return true; 3143 3144 /* 3145 * then map the fragments 3146 */ 3147 if (!skb_frags_readable(skb)) 3148 return false; 3149 3150 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 3151 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 3152 3153 if (WARN_ON_ONCE(!skb_frag_page(f))) 3154 return false; 3155 3156 if (__splice_segment(skb_frag_page(f), 3157 skb_frag_off(f), skb_frag_size(f), 3158 offset, len, spd, false, sk)) 3159 return true; 3160 } 3161 3162 skb_walk_frags(skb, iter) { 3163 if (*offset >= iter->len) { 3164 *offset -= iter->len; 3165 continue; 3166 } 3167 /* __skb_splice_bits() only fails if the output has no room 3168 * left, so no point in going over the frag_list for the error 3169 * case. 3170 */ 3171 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 3172 return true; 3173 } 3174 3175 return false; 3176 } 3177 3178 /* 3179 * Map data from the skb to a pipe. Should handle both the linear part, 3180 * the fragments, and the frag list. 3181 */ 3182 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3183 struct pipe_inode_info *pipe, unsigned int tlen, 3184 unsigned int flags) 3185 { 3186 struct partial_page partial[MAX_SKB_FRAGS]; 3187 struct page *pages[MAX_SKB_FRAGS]; 3188 struct splice_pipe_desc spd = { 3189 .pages = pages, 3190 .partial = partial, 3191 .nr_pages_max = MAX_SKB_FRAGS, 3192 .ops = &nosteal_pipe_buf_ops, 3193 .spd_release = sock_spd_release, 3194 }; 3195 int ret = 0; 3196 3197 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3198 3199 if (spd.nr_pages) 3200 ret = splice_to_pipe(pipe, &spd); 3201 3202 return ret; 3203 } 3204 EXPORT_SYMBOL_GPL(skb_splice_bits); 3205 3206 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3207 { 3208 struct socket *sock = sk->sk_socket; 3209 size_t size = msg_data_left(msg); 3210 3211 if (!sock) 3212 return -EINVAL; 3213 3214 if (!sock->ops->sendmsg_locked) 3215 return sock_no_sendmsg_locked(sk, msg, size); 3216 3217 return sock->ops->sendmsg_locked(sk, msg, size); 3218 } 3219 3220 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3221 { 3222 struct socket *sock = sk->sk_socket; 3223 3224 if (!sock) 3225 return -EINVAL; 3226 return sock_sendmsg(sock, msg); 3227 } 3228 3229 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3230 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3231 int len, sendmsg_func sendmsg, int flags) 3232 { 3233 int more_hint = sk_is_tcp(sk) ? MSG_MORE : 0; 3234 unsigned int orig_len = len; 3235 struct sk_buff *head = skb; 3236 unsigned short fragidx; 3237 int slen, ret; 3238 3239 do_frag_list: 3240 3241 /* Deal with head data */ 3242 while (offset < skb_headlen(skb) && len) { 3243 struct kvec kv; 3244 struct msghdr msg; 3245 3246 slen = min_t(int, len, skb_headlen(skb) - offset); 3247 kv.iov_base = skb->data + offset; 3248 kv.iov_len = slen; 3249 memset(&msg, 0, sizeof(msg)); 3250 msg.msg_flags = MSG_DONTWAIT | flags; 3251 if (slen < len) 3252 msg.msg_flags |= more_hint; 3253 3254 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3255 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3256 sendmsg_unlocked, sk, &msg); 3257 if (ret <= 0) 3258 goto error; 3259 3260 offset += ret; 3261 len -= ret; 3262 } 3263 3264 /* All the data was skb head? */ 3265 if (!len) 3266 goto out; 3267 3268 /* Make offset relative to start of frags */ 3269 offset -= skb_headlen(skb); 3270 3271 /* Find where we are in frag list */ 3272 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3273 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3274 3275 if (offset < skb_frag_size(frag)) 3276 break; 3277 3278 offset -= skb_frag_size(frag); 3279 } 3280 3281 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3282 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3283 3284 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3285 3286 while (slen) { 3287 struct bio_vec bvec; 3288 struct msghdr msg = { 3289 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | 3290 flags, 3291 }; 3292 3293 if (slen < len) 3294 msg.msg_flags |= more_hint; 3295 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3296 skb_frag_off(frag) + offset); 3297 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3298 slen); 3299 3300 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3301 sendmsg_unlocked, sk, &msg); 3302 if (ret <= 0) 3303 goto error; 3304 3305 len -= ret; 3306 offset += ret; 3307 slen -= ret; 3308 } 3309 3310 offset = 0; 3311 } 3312 3313 if (len) { 3314 /* Process any frag lists */ 3315 3316 if (skb == head) { 3317 if (skb_has_frag_list(skb)) { 3318 skb = skb_shinfo(skb)->frag_list; 3319 goto do_frag_list; 3320 } 3321 } else if (skb->next) { 3322 skb = skb->next; 3323 goto do_frag_list; 3324 } 3325 } 3326 3327 out: 3328 return orig_len - len; 3329 3330 error: 3331 return orig_len == len ? ret : orig_len - len; 3332 } 3333 3334 /* Send skb data on a socket. Socket must be locked. */ 3335 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3336 int len) 3337 { 3338 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, 0); 3339 } 3340 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3341 3342 int skb_send_sock_locked_with_flags(struct sock *sk, struct sk_buff *skb, 3343 int offset, int len, int flags) 3344 { 3345 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, flags); 3346 } 3347 EXPORT_SYMBOL_GPL(skb_send_sock_locked_with_flags); 3348 3349 /* Send skb data on a socket. Socket must be unlocked. */ 3350 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3351 { 3352 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 0); 3353 } 3354 3355 /** 3356 * skb_store_bits - store bits from kernel buffer to skb 3357 * @skb: destination buffer 3358 * @offset: offset in destination 3359 * @from: source buffer 3360 * @len: number of bytes to copy 3361 * 3362 * Copy the specified number of bytes from the source buffer to the 3363 * destination skb. This function handles all the messy bits of 3364 * traversing fragment lists and such. 3365 */ 3366 3367 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3368 { 3369 int start = skb_headlen(skb); 3370 struct sk_buff *frag_iter; 3371 int i, copy; 3372 3373 if (offset > (int)skb->len - len) 3374 goto fault; 3375 3376 if ((copy = start - offset) > 0) { 3377 if (copy > len) 3378 copy = len; 3379 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3380 if ((len -= copy) == 0) 3381 return 0; 3382 offset += copy; 3383 from += copy; 3384 } 3385 3386 if (!skb_frags_readable(skb)) 3387 goto fault; 3388 3389 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3390 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3391 int end; 3392 3393 WARN_ON(start > offset + len); 3394 3395 end = start + skb_frag_size(frag); 3396 if ((copy = end - offset) > 0) { 3397 u32 p_off, p_len, copied; 3398 struct page *p; 3399 u8 *vaddr; 3400 3401 if (copy > len) 3402 copy = len; 3403 3404 skb_frag_foreach_page(frag, 3405 skb_frag_off(frag) + offset - start, 3406 copy, p, p_off, p_len, copied) { 3407 vaddr = kmap_atomic(p); 3408 memcpy(vaddr + p_off, from + copied, p_len); 3409 kunmap_atomic(vaddr); 3410 } 3411 3412 if ((len -= copy) == 0) 3413 return 0; 3414 offset += copy; 3415 from += copy; 3416 } 3417 start = end; 3418 } 3419 3420 skb_walk_frags(skb, frag_iter) { 3421 int end; 3422 3423 WARN_ON(start > offset + len); 3424 3425 end = start + frag_iter->len; 3426 if ((copy = end - offset) > 0) { 3427 if (copy > len) 3428 copy = len; 3429 if (skb_store_bits(frag_iter, offset - start, 3430 from, copy)) 3431 goto fault; 3432 if ((len -= copy) == 0) 3433 return 0; 3434 offset += copy; 3435 from += copy; 3436 } 3437 start = end; 3438 } 3439 if (!len) 3440 return 0; 3441 3442 fault: 3443 return -EFAULT; 3444 } 3445 EXPORT_SYMBOL(skb_store_bits); 3446 3447 /* Checksum skb data. */ 3448 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum) 3449 { 3450 int start = skb_headlen(skb); 3451 int i, copy = start - offset; 3452 struct sk_buff *frag_iter; 3453 int pos = 0; 3454 3455 /* Checksum header. */ 3456 if (copy > 0) { 3457 if (copy > len) 3458 copy = len; 3459 csum = csum_partial(skb->data + offset, copy, csum); 3460 if ((len -= copy) == 0) 3461 return csum; 3462 offset += copy; 3463 pos = copy; 3464 } 3465 3466 if (WARN_ON_ONCE(!skb_frags_readable(skb))) 3467 return 0; 3468 3469 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3470 int end; 3471 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3472 3473 WARN_ON(start > offset + len); 3474 3475 end = start + skb_frag_size(frag); 3476 if ((copy = end - offset) > 0) { 3477 u32 p_off, p_len, copied; 3478 struct page *p; 3479 __wsum csum2; 3480 u8 *vaddr; 3481 3482 if (copy > len) 3483 copy = len; 3484 3485 skb_frag_foreach_page(frag, 3486 skb_frag_off(frag) + offset - start, 3487 copy, p, p_off, p_len, copied) { 3488 vaddr = kmap_atomic(p); 3489 csum2 = csum_partial(vaddr + p_off, p_len, 0); 3490 kunmap_atomic(vaddr); 3491 csum = csum_block_add(csum, csum2, pos); 3492 pos += p_len; 3493 } 3494 3495 if (!(len -= copy)) 3496 return csum; 3497 offset += copy; 3498 } 3499 start = end; 3500 } 3501 3502 skb_walk_frags(skb, frag_iter) { 3503 int end; 3504 3505 WARN_ON(start > offset + len); 3506 3507 end = start + frag_iter->len; 3508 if ((copy = end - offset) > 0) { 3509 __wsum csum2; 3510 if (copy > len) 3511 copy = len; 3512 csum2 = skb_checksum(frag_iter, offset - start, copy, 3513 0); 3514 csum = csum_block_add(csum, csum2, pos); 3515 if ((len -= copy) == 0) 3516 return csum; 3517 offset += copy; 3518 pos += copy; 3519 } 3520 start = end; 3521 } 3522 BUG_ON(len); 3523 3524 return csum; 3525 } 3526 EXPORT_SYMBOL(skb_checksum); 3527 3528 /* Both of above in one bottle. */ 3529 3530 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3531 u8 *to, int len) 3532 { 3533 int start = skb_headlen(skb); 3534 int i, copy = start - offset; 3535 struct sk_buff *frag_iter; 3536 int pos = 0; 3537 __wsum csum = 0; 3538 3539 /* Copy header. */ 3540 if (copy > 0) { 3541 if (copy > len) 3542 copy = len; 3543 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3544 copy); 3545 if ((len -= copy) == 0) 3546 return csum; 3547 offset += copy; 3548 to += copy; 3549 pos = copy; 3550 } 3551 3552 if (!skb_frags_readable(skb)) 3553 return 0; 3554 3555 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3556 int end; 3557 3558 WARN_ON(start > offset + len); 3559 3560 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3561 if ((copy = end - offset) > 0) { 3562 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3563 u32 p_off, p_len, copied; 3564 struct page *p; 3565 __wsum csum2; 3566 u8 *vaddr; 3567 3568 if (copy > len) 3569 copy = len; 3570 3571 skb_frag_foreach_page(frag, 3572 skb_frag_off(frag) + offset - start, 3573 copy, p, p_off, p_len, copied) { 3574 vaddr = kmap_atomic(p); 3575 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3576 to + copied, 3577 p_len); 3578 kunmap_atomic(vaddr); 3579 csum = csum_block_add(csum, csum2, pos); 3580 pos += p_len; 3581 } 3582 3583 if (!(len -= copy)) 3584 return csum; 3585 offset += copy; 3586 to += copy; 3587 } 3588 start = end; 3589 } 3590 3591 skb_walk_frags(skb, frag_iter) { 3592 __wsum csum2; 3593 int end; 3594 3595 WARN_ON(start > offset + len); 3596 3597 end = start + frag_iter->len; 3598 if ((copy = end - offset) > 0) { 3599 if (copy > len) 3600 copy = len; 3601 csum2 = skb_copy_and_csum_bits(frag_iter, 3602 offset - start, 3603 to, copy); 3604 csum = csum_block_add(csum, csum2, pos); 3605 if ((len -= copy) == 0) 3606 return csum; 3607 offset += copy; 3608 to += copy; 3609 pos += copy; 3610 } 3611 start = end; 3612 } 3613 BUG_ON(len); 3614 return csum; 3615 } 3616 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3617 3618 #ifdef CONFIG_NET_CRC32C 3619 u32 skb_crc32c(const struct sk_buff *skb, int offset, int len, u32 crc) 3620 { 3621 int start = skb_headlen(skb); 3622 int i, copy = start - offset; 3623 struct sk_buff *frag_iter; 3624 3625 if (copy > 0) { 3626 copy = min(copy, len); 3627 crc = crc32c(crc, skb->data + offset, copy); 3628 len -= copy; 3629 if (len == 0) 3630 return crc; 3631 offset += copy; 3632 } 3633 3634 if (WARN_ON_ONCE(!skb_frags_readable(skb))) 3635 return 0; 3636 3637 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3638 int end; 3639 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3640 3641 WARN_ON(start > offset + len); 3642 3643 end = start + skb_frag_size(frag); 3644 copy = end - offset; 3645 if (copy > 0) { 3646 u32 p_off, p_len, copied; 3647 struct page *p; 3648 u8 *vaddr; 3649 3650 copy = min(copy, len); 3651 skb_frag_foreach_page(frag, 3652 skb_frag_off(frag) + offset - start, 3653 copy, p, p_off, p_len, copied) { 3654 vaddr = kmap_atomic(p); 3655 crc = crc32c(crc, vaddr + p_off, p_len); 3656 kunmap_atomic(vaddr); 3657 } 3658 len -= copy; 3659 if (len == 0) 3660 return crc; 3661 offset += copy; 3662 } 3663 start = end; 3664 } 3665 3666 skb_walk_frags(skb, frag_iter) { 3667 int end; 3668 3669 WARN_ON(start > offset + len); 3670 3671 end = start + frag_iter->len; 3672 copy = end - offset; 3673 if (copy > 0) { 3674 copy = min(copy, len); 3675 crc = skb_crc32c(frag_iter, offset - start, copy, crc); 3676 len -= copy; 3677 if (len == 0) 3678 return crc; 3679 offset += copy; 3680 } 3681 start = end; 3682 } 3683 BUG_ON(len); 3684 3685 return crc; 3686 } 3687 EXPORT_SYMBOL(skb_crc32c); 3688 #endif /* CONFIG_NET_CRC32C */ 3689 3690 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3691 { 3692 __sum16 sum; 3693 3694 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3695 /* See comments in __skb_checksum_complete(). */ 3696 if (likely(!sum)) { 3697 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3698 !skb->csum_complete_sw) 3699 netdev_rx_csum_fault(skb->dev, skb); 3700 } 3701 if (!skb_shared(skb)) 3702 skb->csum_valid = !sum; 3703 return sum; 3704 } 3705 EXPORT_SYMBOL(__skb_checksum_complete_head); 3706 3707 /* This function assumes skb->csum already holds pseudo header's checksum, 3708 * which has been changed from the hardware checksum, for example, by 3709 * __skb_checksum_validate_complete(). And, the original skb->csum must 3710 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3711 * 3712 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3713 * zero. The new checksum is stored back into skb->csum unless the skb is 3714 * shared. 3715 */ 3716 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3717 { 3718 __wsum csum; 3719 __sum16 sum; 3720 3721 csum = skb_checksum(skb, 0, skb->len, 0); 3722 3723 sum = csum_fold(csum_add(skb->csum, csum)); 3724 /* This check is inverted, because we already knew the hardware 3725 * checksum is invalid before calling this function. So, if the 3726 * re-computed checksum is valid instead, then we have a mismatch 3727 * between the original skb->csum and skb_checksum(). This means either 3728 * the original hardware checksum is incorrect or we screw up skb->csum 3729 * when moving skb->data around. 3730 */ 3731 if (likely(!sum)) { 3732 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3733 !skb->csum_complete_sw) 3734 netdev_rx_csum_fault(skb->dev, skb); 3735 } 3736 3737 if (!skb_shared(skb)) { 3738 /* Save full packet checksum */ 3739 skb->csum = csum; 3740 skb->ip_summed = CHECKSUM_COMPLETE; 3741 skb->csum_complete_sw = 1; 3742 skb->csum_valid = !sum; 3743 } 3744 3745 return sum; 3746 } 3747 EXPORT_SYMBOL(__skb_checksum_complete); 3748 3749 /** 3750 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3751 * @from: source buffer 3752 * 3753 * Calculates the amount of linear headroom needed in the 'to' skb passed 3754 * into skb_zerocopy(). 3755 */ 3756 unsigned int 3757 skb_zerocopy_headlen(const struct sk_buff *from) 3758 { 3759 unsigned int hlen = 0; 3760 3761 if (!from->head_frag || 3762 skb_headlen(from) < L1_CACHE_BYTES || 3763 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3764 hlen = skb_headlen(from); 3765 if (!hlen) 3766 hlen = from->len; 3767 } 3768 3769 if (skb_has_frag_list(from)) 3770 hlen = from->len; 3771 3772 return hlen; 3773 } 3774 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3775 3776 /** 3777 * skb_zerocopy - Zero copy skb to skb 3778 * @to: destination buffer 3779 * @from: source buffer 3780 * @len: number of bytes to copy from source buffer 3781 * @hlen: size of linear headroom in destination buffer 3782 * 3783 * Copies up to `len` bytes from `from` to `to` by creating references 3784 * to the frags in the source buffer. 3785 * 3786 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3787 * headroom in the `to` buffer. 3788 * 3789 * Return value: 3790 * 0: everything is OK 3791 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3792 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3793 */ 3794 int 3795 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3796 { 3797 int i, j = 0; 3798 int plen = 0; /* length of skb->head fragment */ 3799 int ret; 3800 struct page *page; 3801 unsigned int offset; 3802 3803 BUG_ON(!from->head_frag && !hlen); 3804 3805 /* dont bother with small payloads */ 3806 if (len <= skb_tailroom(to)) 3807 return skb_copy_bits(from, 0, skb_put(to, len), len); 3808 3809 if (hlen) { 3810 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3811 if (unlikely(ret)) 3812 return ret; 3813 len -= hlen; 3814 } else { 3815 plen = min_t(int, skb_headlen(from), len); 3816 if (plen) { 3817 page = virt_to_head_page(from->head); 3818 offset = from->data - (unsigned char *)page_address(page); 3819 __skb_fill_netmem_desc(to, 0, page_to_netmem(page), 3820 offset, plen); 3821 get_page(page); 3822 j = 1; 3823 len -= plen; 3824 } 3825 } 3826 3827 skb_len_add(to, len + plen); 3828 3829 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3830 skb_tx_error(from); 3831 return -ENOMEM; 3832 } 3833 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3834 3835 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3836 int size; 3837 3838 if (!len) 3839 break; 3840 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3841 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3842 len); 3843 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3844 len -= size; 3845 skb_frag_ref(to, j); 3846 j++; 3847 } 3848 skb_shinfo(to)->nr_frags = j; 3849 3850 return 0; 3851 } 3852 EXPORT_SYMBOL_GPL(skb_zerocopy); 3853 3854 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3855 { 3856 __wsum csum; 3857 long csstart; 3858 3859 if (skb->ip_summed == CHECKSUM_PARTIAL) 3860 csstart = skb_checksum_start_offset(skb); 3861 else 3862 csstart = skb_headlen(skb); 3863 3864 BUG_ON(csstart > skb_headlen(skb)); 3865 3866 skb_copy_from_linear_data(skb, to, csstart); 3867 3868 csum = 0; 3869 if (csstart != skb->len) 3870 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3871 skb->len - csstart); 3872 3873 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3874 long csstuff = csstart + skb->csum_offset; 3875 3876 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3877 } 3878 } 3879 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3880 3881 /** 3882 * skb_dequeue - remove from the head of the queue 3883 * @list: list to dequeue from 3884 * 3885 * Remove the head of the list. The list lock is taken so the function 3886 * may be used safely with other locking list functions. The head item is 3887 * returned or %NULL if the list is empty. 3888 */ 3889 3890 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3891 { 3892 unsigned long flags; 3893 struct sk_buff *result; 3894 3895 spin_lock_irqsave(&list->lock, flags); 3896 result = __skb_dequeue(list); 3897 spin_unlock_irqrestore(&list->lock, flags); 3898 return result; 3899 } 3900 EXPORT_SYMBOL(skb_dequeue); 3901 3902 /** 3903 * skb_dequeue_tail - remove from the tail of the queue 3904 * @list: list to dequeue from 3905 * 3906 * Remove the tail of the list. The list lock is taken so the function 3907 * may be used safely with other locking list functions. The tail item is 3908 * returned or %NULL if the list is empty. 3909 */ 3910 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3911 { 3912 unsigned long flags; 3913 struct sk_buff *result; 3914 3915 spin_lock_irqsave(&list->lock, flags); 3916 result = __skb_dequeue_tail(list); 3917 spin_unlock_irqrestore(&list->lock, flags); 3918 return result; 3919 } 3920 EXPORT_SYMBOL(skb_dequeue_tail); 3921 3922 /** 3923 * skb_queue_purge_reason - empty a list 3924 * @list: list to empty 3925 * @reason: drop reason 3926 * 3927 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3928 * the list and one reference dropped. This function takes the list 3929 * lock and is atomic with respect to other list locking functions. 3930 */ 3931 void skb_queue_purge_reason(struct sk_buff_head *list, 3932 enum skb_drop_reason reason) 3933 { 3934 struct sk_buff_head tmp; 3935 unsigned long flags; 3936 3937 if (skb_queue_empty_lockless(list)) 3938 return; 3939 3940 __skb_queue_head_init(&tmp); 3941 3942 spin_lock_irqsave(&list->lock, flags); 3943 skb_queue_splice_init(list, &tmp); 3944 spin_unlock_irqrestore(&list->lock, flags); 3945 3946 __skb_queue_purge_reason(&tmp, reason); 3947 } 3948 EXPORT_SYMBOL(skb_queue_purge_reason); 3949 3950 /** 3951 * skb_rbtree_purge - empty a skb rbtree 3952 * @root: root of the rbtree to empty 3953 * Return value: the sum of truesizes of all purged skbs. 3954 * 3955 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3956 * the list and one reference dropped. This function does not take 3957 * any lock. Synchronization should be handled by the caller (e.g., TCP 3958 * out-of-order queue is protected by the socket lock). 3959 */ 3960 unsigned int skb_rbtree_purge(struct rb_root *root) 3961 { 3962 struct rb_node *p = rb_first(root); 3963 unsigned int sum = 0; 3964 3965 while (p) { 3966 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3967 3968 p = rb_next(p); 3969 rb_erase(&skb->rbnode, root); 3970 sum += skb->truesize; 3971 kfree_skb(skb); 3972 } 3973 return sum; 3974 } 3975 3976 void skb_errqueue_purge(struct sk_buff_head *list) 3977 { 3978 struct sk_buff *skb, *next; 3979 struct sk_buff_head kill; 3980 unsigned long flags; 3981 3982 __skb_queue_head_init(&kill); 3983 3984 spin_lock_irqsave(&list->lock, flags); 3985 skb_queue_walk_safe(list, skb, next) { 3986 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || 3987 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) 3988 continue; 3989 __skb_unlink(skb, list); 3990 __skb_queue_tail(&kill, skb); 3991 } 3992 spin_unlock_irqrestore(&list->lock, flags); 3993 __skb_queue_purge(&kill); 3994 } 3995 EXPORT_SYMBOL(skb_errqueue_purge); 3996 3997 /** 3998 * skb_queue_head - queue a buffer at the list head 3999 * @list: list to use 4000 * @newsk: buffer to queue 4001 * 4002 * Queue a buffer at the start of the list. This function takes the 4003 * list lock and can be used safely with other locking &sk_buff functions 4004 * safely. 4005 * 4006 * A buffer cannot be placed on two lists at the same time. 4007 */ 4008 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 4009 { 4010 unsigned long flags; 4011 4012 spin_lock_irqsave(&list->lock, flags); 4013 __skb_queue_head(list, newsk); 4014 spin_unlock_irqrestore(&list->lock, flags); 4015 } 4016 EXPORT_SYMBOL(skb_queue_head); 4017 4018 /** 4019 * skb_queue_tail - queue a buffer at the list tail 4020 * @list: list to use 4021 * @newsk: buffer to queue 4022 * 4023 * Queue a buffer at the tail of the list. This function takes the 4024 * list lock and can be used safely with other locking &sk_buff functions 4025 * safely. 4026 * 4027 * A buffer cannot be placed on two lists at the same time. 4028 */ 4029 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 4030 { 4031 unsigned long flags; 4032 4033 spin_lock_irqsave(&list->lock, flags); 4034 __skb_queue_tail(list, newsk); 4035 spin_unlock_irqrestore(&list->lock, flags); 4036 } 4037 EXPORT_SYMBOL(skb_queue_tail); 4038 4039 /** 4040 * skb_unlink - remove a buffer from a list 4041 * @skb: buffer to remove 4042 * @list: list to use 4043 * 4044 * Remove a packet from a list. The list locks are taken and this 4045 * function is atomic with respect to other list locked calls 4046 * 4047 * You must know what list the SKB is on. 4048 */ 4049 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 4050 { 4051 unsigned long flags; 4052 4053 spin_lock_irqsave(&list->lock, flags); 4054 __skb_unlink(skb, list); 4055 spin_unlock_irqrestore(&list->lock, flags); 4056 } 4057 EXPORT_SYMBOL(skb_unlink); 4058 4059 /** 4060 * skb_append - append a buffer 4061 * @old: buffer to insert after 4062 * @newsk: buffer to insert 4063 * @list: list to use 4064 * 4065 * Place a packet after a given packet in a list. The list locks are taken 4066 * and this function is atomic with respect to other list locked calls. 4067 * A buffer cannot be placed on two lists at the same time. 4068 */ 4069 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 4070 { 4071 unsigned long flags; 4072 4073 spin_lock_irqsave(&list->lock, flags); 4074 __skb_queue_after(list, old, newsk); 4075 spin_unlock_irqrestore(&list->lock, flags); 4076 } 4077 EXPORT_SYMBOL(skb_append); 4078 4079 static inline void skb_split_inside_header(struct sk_buff *skb, 4080 struct sk_buff* skb1, 4081 const u32 len, const int pos) 4082 { 4083 int i; 4084 4085 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 4086 pos - len); 4087 /* And move data appendix as is. */ 4088 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 4089 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 4090 4091 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 4092 skb1->unreadable = skb->unreadable; 4093 skb_shinfo(skb)->nr_frags = 0; 4094 skb1->data_len = skb->data_len; 4095 skb1->len += skb1->data_len; 4096 skb->data_len = 0; 4097 skb->len = len; 4098 skb_set_tail_pointer(skb, len); 4099 } 4100 4101 static inline void skb_split_no_header(struct sk_buff *skb, 4102 struct sk_buff* skb1, 4103 const u32 len, int pos) 4104 { 4105 int i, k = 0; 4106 const int nfrags = skb_shinfo(skb)->nr_frags; 4107 4108 skb_shinfo(skb)->nr_frags = 0; 4109 skb1->len = skb1->data_len = skb->len - len; 4110 skb->len = len; 4111 skb->data_len = len - pos; 4112 4113 for (i = 0; i < nfrags; i++) { 4114 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 4115 4116 if (pos + size > len) { 4117 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 4118 4119 if (pos < len) { 4120 /* Split frag. 4121 * We have two variants in this case: 4122 * 1. Move all the frag to the second 4123 * part, if it is possible. F.e. 4124 * this approach is mandatory for TUX, 4125 * where splitting is expensive. 4126 * 2. Split is accurately. We make this. 4127 */ 4128 skb_frag_ref(skb, i); 4129 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 4130 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 4131 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 4132 skb_shinfo(skb)->nr_frags++; 4133 } 4134 k++; 4135 } else 4136 skb_shinfo(skb)->nr_frags++; 4137 pos += size; 4138 } 4139 skb_shinfo(skb1)->nr_frags = k; 4140 4141 skb1->unreadable = skb->unreadable; 4142 } 4143 4144 /** 4145 * skb_split - Split fragmented skb to two parts at length len. 4146 * @skb: the buffer to split 4147 * @skb1: the buffer to receive the second part 4148 * @len: new length for skb 4149 */ 4150 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 4151 { 4152 int pos = skb_headlen(skb); 4153 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 4154 4155 skb_zcopy_downgrade_managed(skb); 4156 4157 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 4158 skb_zerocopy_clone(skb1, skb, 0); 4159 if (len < pos) /* Split line is inside header. */ 4160 skb_split_inside_header(skb, skb1, len, pos); 4161 else /* Second chunk has no header, nothing to copy. */ 4162 skb_split_no_header(skb, skb1, len, pos); 4163 } 4164 EXPORT_SYMBOL(skb_split); 4165 4166 /* Shifting from/to a cloned skb is a no-go. 4167 * 4168 * Caller cannot keep skb_shinfo related pointers past calling here! 4169 */ 4170 static int skb_prepare_for_shift(struct sk_buff *skb) 4171 { 4172 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 4173 } 4174 4175 /** 4176 * skb_shift - Shifts paged data partially from skb to another 4177 * @tgt: buffer into which tail data gets added 4178 * @skb: buffer from which the paged data comes from 4179 * @shiftlen: shift up to this many bytes 4180 * 4181 * Attempts to shift up to shiftlen worth of bytes, which may be less than 4182 * the length of the skb, from skb to tgt. Returns number bytes shifted. 4183 * It's up to caller to free skb if everything was shifted. 4184 * 4185 * If @tgt runs out of frags, the whole operation is aborted. 4186 * 4187 * Skb cannot include anything else but paged data while tgt is allowed 4188 * to have non-paged data as well. 4189 * 4190 * TODO: full sized shift could be optimized but that would need 4191 * specialized skb free'er to handle frags without up-to-date nr_frags. 4192 */ 4193 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 4194 { 4195 int from, to, merge, todo; 4196 skb_frag_t *fragfrom, *fragto; 4197 4198 BUG_ON(shiftlen > skb->len); 4199 4200 if (skb_headlen(skb)) 4201 return 0; 4202 if (skb_zcopy(tgt) || skb_zcopy(skb)) 4203 return 0; 4204 4205 DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle); 4206 DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb)); 4207 4208 todo = shiftlen; 4209 from = 0; 4210 to = skb_shinfo(tgt)->nr_frags; 4211 fragfrom = &skb_shinfo(skb)->frags[from]; 4212 4213 /* Actual merge is delayed until the point when we know we can 4214 * commit all, so that we don't have to undo partial changes 4215 */ 4216 if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 4217 skb_frag_off(fragfrom))) { 4218 merge = -1; 4219 } else { 4220 merge = to - 1; 4221 4222 todo -= skb_frag_size(fragfrom); 4223 if (todo < 0) { 4224 if (skb_prepare_for_shift(skb) || 4225 skb_prepare_for_shift(tgt)) 4226 return 0; 4227 4228 /* All previous frag pointers might be stale! */ 4229 fragfrom = &skb_shinfo(skb)->frags[from]; 4230 fragto = &skb_shinfo(tgt)->frags[merge]; 4231 4232 skb_frag_size_add(fragto, shiftlen); 4233 skb_frag_size_sub(fragfrom, shiftlen); 4234 skb_frag_off_add(fragfrom, shiftlen); 4235 4236 goto onlymerged; 4237 } 4238 4239 from++; 4240 } 4241 4242 /* Skip full, not-fitting skb to avoid expensive operations */ 4243 if ((shiftlen == skb->len) && 4244 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 4245 return 0; 4246 4247 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 4248 return 0; 4249 4250 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 4251 if (to == MAX_SKB_FRAGS) 4252 return 0; 4253 4254 fragfrom = &skb_shinfo(skb)->frags[from]; 4255 fragto = &skb_shinfo(tgt)->frags[to]; 4256 4257 if (todo >= skb_frag_size(fragfrom)) { 4258 *fragto = *fragfrom; 4259 todo -= skb_frag_size(fragfrom); 4260 from++; 4261 to++; 4262 4263 } else { 4264 __skb_frag_ref(fragfrom); 4265 skb_frag_page_copy(fragto, fragfrom); 4266 skb_frag_off_copy(fragto, fragfrom); 4267 skb_frag_size_set(fragto, todo); 4268 4269 skb_frag_off_add(fragfrom, todo); 4270 skb_frag_size_sub(fragfrom, todo); 4271 todo = 0; 4272 4273 to++; 4274 break; 4275 } 4276 } 4277 4278 /* Ready to "commit" this state change to tgt */ 4279 skb_shinfo(tgt)->nr_frags = to; 4280 4281 if (merge >= 0) { 4282 fragfrom = &skb_shinfo(skb)->frags[0]; 4283 fragto = &skb_shinfo(tgt)->frags[merge]; 4284 4285 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4286 __skb_frag_unref(fragfrom, skb->pp_recycle); 4287 } 4288 4289 /* Reposition in the original skb */ 4290 to = 0; 4291 while (from < skb_shinfo(skb)->nr_frags) 4292 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4293 skb_shinfo(skb)->nr_frags = to; 4294 4295 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4296 4297 onlymerged: 4298 /* Most likely the tgt won't ever need its checksum anymore, skb on 4299 * the other hand might need it if it needs to be resent 4300 */ 4301 tgt->ip_summed = CHECKSUM_PARTIAL; 4302 skb->ip_summed = CHECKSUM_PARTIAL; 4303 4304 skb_len_add(skb, -shiftlen); 4305 skb_len_add(tgt, shiftlen); 4306 4307 return shiftlen; 4308 } 4309 4310 /** 4311 * skb_prepare_seq_read - Prepare a sequential read of skb data 4312 * @skb: the buffer to read 4313 * @from: lower offset of data to be read 4314 * @to: upper offset of data to be read 4315 * @st: state variable 4316 * 4317 * Initializes the specified state variable. Must be called before 4318 * invoking skb_seq_read() for the first time. 4319 */ 4320 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4321 unsigned int to, struct skb_seq_state *st) 4322 { 4323 st->lower_offset = from; 4324 st->upper_offset = to; 4325 st->root_skb = st->cur_skb = skb; 4326 st->frag_idx = st->stepped_offset = 0; 4327 st->frag_data = NULL; 4328 st->frag_off = 0; 4329 } 4330 EXPORT_SYMBOL(skb_prepare_seq_read); 4331 4332 /** 4333 * skb_seq_read - Sequentially read skb data 4334 * @consumed: number of bytes consumed by the caller so far 4335 * @data: destination pointer for data to be returned 4336 * @st: state variable 4337 * 4338 * Reads a block of skb data at @consumed relative to the 4339 * lower offset specified to skb_prepare_seq_read(). Assigns 4340 * the head of the data block to @data and returns the length 4341 * of the block or 0 if the end of the skb data or the upper 4342 * offset has been reached. 4343 * 4344 * The caller is not required to consume all of the data 4345 * returned, i.e. @consumed is typically set to the number 4346 * of bytes already consumed and the next call to 4347 * skb_seq_read() will return the remaining part of the block. 4348 * 4349 * Note 1: The size of each block of data returned can be arbitrary, 4350 * this limitation is the cost for zerocopy sequential 4351 * reads of potentially non linear data. 4352 * 4353 * Note 2: Fragment lists within fragments are not implemented 4354 * at the moment, state->root_skb could be replaced with 4355 * a stack for this purpose. 4356 */ 4357 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4358 struct skb_seq_state *st) 4359 { 4360 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4361 skb_frag_t *frag; 4362 4363 if (unlikely(abs_offset >= st->upper_offset)) { 4364 if (st->frag_data) { 4365 kunmap_atomic(st->frag_data); 4366 st->frag_data = NULL; 4367 } 4368 return 0; 4369 } 4370 4371 next_skb: 4372 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4373 4374 if (abs_offset < block_limit && !st->frag_data) { 4375 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4376 return block_limit - abs_offset; 4377 } 4378 4379 if (!skb_frags_readable(st->cur_skb)) 4380 return 0; 4381 4382 if (st->frag_idx == 0 && !st->frag_data) 4383 st->stepped_offset += skb_headlen(st->cur_skb); 4384 4385 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4386 unsigned int pg_idx, pg_off, pg_sz; 4387 4388 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4389 4390 pg_idx = 0; 4391 pg_off = skb_frag_off(frag); 4392 pg_sz = skb_frag_size(frag); 4393 4394 if (skb_frag_must_loop(skb_frag_page(frag))) { 4395 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4396 pg_off = offset_in_page(pg_off + st->frag_off); 4397 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4398 PAGE_SIZE - pg_off); 4399 } 4400 4401 block_limit = pg_sz + st->stepped_offset; 4402 if (abs_offset < block_limit) { 4403 if (!st->frag_data) 4404 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4405 4406 *data = (u8 *)st->frag_data + pg_off + 4407 (abs_offset - st->stepped_offset); 4408 4409 return block_limit - abs_offset; 4410 } 4411 4412 if (st->frag_data) { 4413 kunmap_atomic(st->frag_data); 4414 st->frag_data = NULL; 4415 } 4416 4417 st->stepped_offset += pg_sz; 4418 st->frag_off += pg_sz; 4419 if (st->frag_off == skb_frag_size(frag)) { 4420 st->frag_off = 0; 4421 st->frag_idx++; 4422 } 4423 } 4424 4425 if (st->frag_data) { 4426 kunmap_atomic(st->frag_data); 4427 st->frag_data = NULL; 4428 } 4429 4430 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4431 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4432 st->frag_idx = 0; 4433 goto next_skb; 4434 } else if (st->cur_skb->next) { 4435 st->cur_skb = st->cur_skb->next; 4436 st->frag_idx = 0; 4437 goto next_skb; 4438 } 4439 4440 return 0; 4441 } 4442 EXPORT_SYMBOL(skb_seq_read); 4443 4444 /** 4445 * skb_abort_seq_read - Abort a sequential read of skb data 4446 * @st: state variable 4447 * 4448 * Must be called if skb_seq_read() was not called until it 4449 * returned 0. 4450 */ 4451 void skb_abort_seq_read(struct skb_seq_state *st) 4452 { 4453 if (st->frag_data) 4454 kunmap_atomic(st->frag_data); 4455 } 4456 EXPORT_SYMBOL(skb_abort_seq_read); 4457 4458 /** 4459 * skb_copy_seq_read() - copy from a skb_seq_state to a buffer 4460 * @st: source skb_seq_state 4461 * @offset: offset in source 4462 * @to: destination buffer 4463 * @len: number of bytes to copy 4464 * 4465 * Copy @len bytes from @offset bytes into the source @st to the destination 4466 * buffer @to. `offset` should increase (or be unchanged) with each subsequent 4467 * call to this function. If offset needs to decrease from the previous use `st` 4468 * should be reset first. 4469 * 4470 * Return: 0 on success or -EINVAL if the copy ended early 4471 */ 4472 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len) 4473 { 4474 const u8 *data; 4475 u32 sqlen; 4476 4477 for (;;) { 4478 sqlen = skb_seq_read(offset, &data, st); 4479 if (sqlen == 0) 4480 return -EINVAL; 4481 if (sqlen >= len) { 4482 memcpy(to, data, len); 4483 return 0; 4484 } 4485 memcpy(to, data, sqlen); 4486 to += sqlen; 4487 offset += sqlen; 4488 len -= sqlen; 4489 } 4490 } 4491 EXPORT_SYMBOL(skb_copy_seq_read); 4492 4493 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4494 4495 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4496 struct ts_config *conf, 4497 struct ts_state *state) 4498 { 4499 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4500 } 4501 4502 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4503 { 4504 skb_abort_seq_read(TS_SKB_CB(state)); 4505 } 4506 4507 /** 4508 * skb_find_text - Find a text pattern in skb data 4509 * @skb: the buffer to look in 4510 * @from: search offset 4511 * @to: search limit 4512 * @config: textsearch configuration 4513 * 4514 * Finds a pattern in the skb data according to the specified 4515 * textsearch configuration. Use textsearch_next() to retrieve 4516 * subsequent occurrences of the pattern. Returns the offset 4517 * to the first occurrence or UINT_MAX if no match was found. 4518 */ 4519 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4520 unsigned int to, struct ts_config *config) 4521 { 4522 unsigned int patlen = config->ops->get_pattern_len(config); 4523 struct ts_state state; 4524 unsigned int ret; 4525 4526 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4527 4528 config->get_next_block = skb_ts_get_next_block; 4529 config->finish = skb_ts_finish; 4530 4531 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4532 4533 ret = textsearch_find(config, &state); 4534 return (ret + patlen <= to - from ? ret : UINT_MAX); 4535 } 4536 EXPORT_SYMBOL(skb_find_text); 4537 4538 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4539 int offset, size_t size, size_t max_frags) 4540 { 4541 int i = skb_shinfo(skb)->nr_frags; 4542 4543 if (skb_can_coalesce(skb, i, page, offset)) { 4544 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4545 } else if (i < max_frags) { 4546 skb_zcopy_downgrade_managed(skb); 4547 get_page(page); 4548 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4549 } else { 4550 return -EMSGSIZE; 4551 } 4552 4553 return 0; 4554 } 4555 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4556 4557 /** 4558 * skb_pull_rcsum - pull skb and update receive checksum 4559 * @skb: buffer to update 4560 * @len: length of data pulled 4561 * 4562 * This function performs an skb_pull on the packet and updates 4563 * the CHECKSUM_COMPLETE checksum. It should be used on 4564 * receive path processing instead of skb_pull unless you know 4565 * that the checksum difference is zero (e.g., a valid IP header) 4566 * or you are setting ip_summed to CHECKSUM_NONE. 4567 */ 4568 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4569 { 4570 unsigned char *data = skb->data; 4571 4572 BUG_ON(len > skb->len); 4573 __skb_pull(skb, len); 4574 skb_postpull_rcsum(skb, data, len); 4575 return skb->data; 4576 } 4577 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4578 4579 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4580 { 4581 skb_frag_t head_frag; 4582 struct page *page; 4583 4584 page = virt_to_head_page(frag_skb->head); 4585 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4586 (unsigned char *)page_address(page), 4587 skb_headlen(frag_skb)); 4588 return head_frag; 4589 } 4590 4591 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4592 netdev_features_t features, 4593 unsigned int offset) 4594 { 4595 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4596 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4597 unsigned int delta_truesize = 0; 4598 unsigned int delta_len = 0; 4599 struct sk_buff *tail = NULL; 4600 struct sk_buff *nskb, *tmp; 4601 int len_diff, err; 4602 4603 skb_push(skb, -skb_network_offset(skb) + offset); 4604 4605 /* Ensure the head is writeable before touching the shared info */ 4606 err = skb_unclone(skb, GFP_ATOMIC); 4607 if (err) 4608 goto err_linearize; 4609 4610 skb_shinfo(skb)->frag_list = NULL; 4611 4612 while (list_skb) { 4613 nskb = list_skb; 4614 list_skb = list_skb->next; 4615 4616 err = 0; 4617 delta_truesize += nskb->truesize; 4618 if (skb_shared(nskb)) { 4619 tmp = skb_clone(nskb, GFP_ATOMIC); 4620 if (tmp) { 4621 consume_skb(nskb); 4622 nskb = tmp; 4623 err = skb_unclone(nskb, GFP_ATOMIC); 4624 } else { 4625 err = -ENOMEM; 4626 } 4627 } 4628 4629 if (!tail) 4630 skb->next = nskb; 4631 else 4632 tail->next = nskb; 4633 4634 if (unlikely(err)) { 4635 nskb->next = list_skb; 4636 goto err_linearize; 4637 } 4638 4639 tail = nskb; 4640 4641 delta_len += nskb->len; 4642 4643 skb_push(nskb, -skb_network_offset(nskb) + offset); 4644 4645 skb_release_head_state(nskb); 4646 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4647 __copy_skb_header(nskb, skb); 4648 4649 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4650 nskb->transport_header += len_diff; 4651 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4652 nskb->data - tnl_hlen, 4653 offset + tnl_hlen); 4654 4655 if (skb_needs_linearize(nskb, features) && 4656 __skb_linearize(nskb)) 4657 goto err_linearize; 4658 } 4659 4660 skb->truesize = skb->truesize - delta_truesize; 4661 skb->data_len = skb->data_len - delta_len; 4662 skb->len = skb->len - delta_len; 4663 4664 skb_gso_reset(skb); 4665 4666 skb->prev = tail; 4667 4668 if (skb_needs_linearize(skb, features) && 4669 __skb_linearize(skb)) 4670 goto err_linearize; 4671 4672 skb_get(skb); 4673 4674 return skb; 4675 4676 err_linearize: 4677 kfree_skb_list(skb->next); 4678 skb->next = NULL; 4679 return ERR_PTR(-ENOMEM); 4680 } 4681 EXPORT_SYMBOL_GPL(skb_segment_list); 4682 4683 /** 4684 * skb_segment - Perform protocol segmentation on skb. 4685 * @head_skb: buffer to segment 4686 * @features: features for the output path (see dev->features) 4687 * 4688 * This function performs segmentation on the given skb. It returns 4689 * a pointer to the first in a list of new skbs for the segments. 4690 * In case of error it returns ERR_PTR(err). 4691 */ 4692 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4693 netdev_features_t features) 4694 { 4695 struct sk_buff *segs = NULL; 4696 struct sk_buff *tail = NULL; 4697 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4698 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4699 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4700 unsigned int offset = doffset; 4701 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4702 unsigned int partial_segs = 0; 4703 unsigned int headroom; 4704 unsigned int len = head_skb->len; 4705 struct sk_buff *frag_skb; 4706 skb_frag_t *frag; 4707 __be16 proto; 4708 bool csum, sg; 4709 int err = -ENOMEM; 4710 int i = 0; 4711 int nfrags, pos; 4712 4713 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4714 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4715 struct sk_buff *check_skb; 4716 4717 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4718 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4719 /* gso_size is untrusted, and we have a frag_list with 4720 * a linear non head_frag item. 4721 * 4722 * If head_skb's headlen does not fit requested gso_size, 4723 * it means that the frag_list members do NOT terminate 4724 * on exact gso_size boundaries. Hence we cannot perform 4725 * skb_frag_t page sharing. Therefore we must fallback to 4726 * copying the frag_list skbs; we do so by disabling SG. 4727 */ 4728 features &= ~NETIF_F_SG; 4729 break; 4730 } 4731 } 4732 } 4733 4734 __skb_push(head_skb, doffset); 4735 proto = skb_network_protocol(head_skb, NULL); 4736 if (unlikely(!proto)) 4737 return ERR_PTR(-EINVAL); 4738 4739 sg = !!(features & NETIF_F_SG); 4740 csum = !!can_checksum_protocol(features, proto); 4741 4742 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4743 if (!(features & NETIF_F_GSO_PARTIAL)) { 4744 struct sk_buff *iter; 4745 unsigned int frag_len; 4746 4747 if (!list_skb || 4748 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4749 goto normal; 4750 4751 /* If we get here then all the required 4752 * GSO features except frag_list are supported. 4753 * Try to split the SKB to multiple GSO SKBs 4754 * with no frag_list. 4755 * Currently we can do that only when the buffers don't 4756 * have a linear part and all the buffers except 4757 * the last are of the same length. 4758 */ 4759 frag_len = list_skb->len; 4760 skb_walk_frags(head_skb, iter) { 4761 if (frag_len != iter->len && iter->next) 4762 goto normal; 4763 if (skb_headlen(iter) && !iter->head_frag) 4764 goto normal; 4765 4766 len -= iter->len; 4767 } 4768 4769 if (len != frag_len) 4770 goto normal; 4771 } 4772 4773 /* GSO partial only requires that we trim off any excess that 4774 * doesn't fit into an MSS sized block, so take care of that 4775 * now. 4776 * Cap len to not accidentally hit GSO_BY_FRAGS. 4777 */ 4778 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss; 4779 if (partial_segs > 1) 4780 mss *= partial_segs; 4781 else 4782 partial_segs = 0; 4783 } 4784 4785 normal: 4786 headroom = skb_headroom(head_skb); 4787 pos = skb_headlen(head_skb); 4788 4789 if (skb_orphan_frags(head_skb, GFP_ATOMIC)) 4790 return ERR_PTR(-ENOMEM); 4791 4792 nfrags = skb_shinfo(head_skb)->nr_frags; 4793 frag = skb_shinfo(head_skb)->frags; 4794 frag_skb = head_skb; 4795 4796 do { 4797 struct sk_buff *nskb; 4798 skb_frag_t *nskb_frag; 4799 int hsize; 4800 int size; 4801 4802 if (unlikely(mss == GSO_BY_FRAGS)) { 4803 len = list_skb->len; 4804 } else { 4805 len = head_skb->len - offset; 4806 if (len > mss) 4807 len = mss; 4808 } 4809 4810 hsize = skb_headlen(head_skb) - offset; 4811 4812 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4813 (skb_headlen(list_skb) == len || sg)) { 4814 BUG_ON(skb_headlen(list_skb) > len); 4815 4816 nskb = skb_clone(list_skb, GFP_ATOMIC); 4817 if (unlikely(!nskb)) 4818 goto err; 4819 4820 i = 0; 4821 nfrags = skb_shinfo(list_skb)->nr_frags; 4822 frag = skb_shinfo(list_skb)->frags; 4823 frag_skb = list_skb; 4824 pos += skb_headlen(list_skb); 4825 4826 while (pos < offset + len) { 4827 BUG_ON(i >= nfrags); 4828 4829 size = skb_frag_size(frag); 4830 if (pos + size > offset + len) 4831 break; 4832 4833 i++; 4834 pos += size; 4835 frag++; 4836 } 4837 4838 list_skb = list_skb->next; 4839 4840 if (unlikely(pskb_trim(nskb, len))) { 4841 kfree_skb(nskb); 4842 goto err; 4843 } 4844 4845 hsize = skb_end_offset(nskb); 4846 if (skb_cow_head(nskb, doffset + headroom)) { 4847 kfree_skb(nskb); 4848 goto err; 4849 } 4850 4851 nskb->truesize += skb_end_offset(nskb) - hsize; 4852 skb_release_head_state(nskb); 4853 __skb_push(nskb, doffset); 4854 } else { 4855 if (hsize < 0) 4856 hsize = 0; 4857 if (hsize > len || !sg) 4858 hsize = len; 4859 4860 nskb = __alloc_skb(hsize + doffset + headroom, 4861 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4862 NUMA_NO_NODE); 4863 4864 if (unlikely(!nskb)) 4865 goto err; 4866 4867 skb_reserve(nskb, headroom); 4868 __skb_put(nskb, doffset); 4869 } 4870 4871 if (segs) 4872 tail->next = nskb; 4873 else 4874 segs = nskb; 4875 tail = nskb; 4876 4877 __copy_skb_header(nskb, head_skb); 4878 4879 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4880 skb_reset_mac_len(nskb); 4881 4882 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4883 nskb->data - tnl_hlen, 4884 doffset + tnl_hlen); 4885 4886 if (nskb->len == len + doffset) 4887 goto perform_csum_check; 4888 4889 if (!sg) { 4890 if (!csum) { 4891 if (!nskb->remcsum_offload) 4892 nskb->ip_summed = CHECKSUM_NONE; 4893 SKB_GSO_CB(nskb)->csum = 4894 skb_copy_and_csum_bits(head_skb, offset, 4895 skb_put(nskb, 4896 len), 4897 len); 4898 SKB_GSO_CB(nskb)->csum_start = 4899 skb_headroom(nskb) + doffset; 4900 } else { 4901 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4902 goto err; 4903 } 4904 continue; 4905 } 4906 4907 nskb_frag = skb_shinfo(nskb)->frags; 4908 4909 skb_copy_from_linear_data_offset(head_skb, offset, 4910 skb_put(nskb, hsize), hsize); 4911 4912 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4913 SKBFL_SHARED_FRAG; 4914 4915 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4916 goto err; 4917 4918 while (pos < offset + len) { 4919 if (i >= nfrags) { 4920 if (skb_orphan_frags(list_skb, GFP_ATOMIC) || 4921 skb_zerocopy_clone(nskb, list_skb, 4922 GFP_ATOMIC)) 4923 goto err; 4924 4925 i = 0; 4926 nfrags = skb_shinfo(list_skb)->nr_frags; 4927 frag = skb_shinfo(list_skb)->frags; 4928 frag_skb = list_skb; 4929 if (!skb_headlen(list_skb)) { 4930 BUG_ON(!nfrags); 4931 } else { 4932 BUG_ON(!list_skb->head_frag); 4933 4934 /* to make room for head_frag. */ 4935 i--; 4936 frag--; 4937 } 4938 4939 list_skb = list_skb->next; 4940 } 4941 4942 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4943 MAX_SKB_FRAGS)) { 4944 net_warn_ratelimited( 4945 "skb_segment: too many frags: %u %u\n", 4946 pos, mss); 4947 err = -EINVAL; 4948 goto err; 4949 } 4950 4951 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4952 __skb_frag_ref(nskb_frag); 4953 size = skb_frag_size(nskb_frag); 4954 4955 if (pos < offset) { 4956 skb_frag_off_add(nskb_frag, offset - pos); 4957 skb_frag_size_sub(nskb_frag, offset - pos); 4958 } 4959 4960 skb_shinfo(nskb)->nr_frags++; 4961 4962 if (pos + size <= offset + len) { 4963 i++; 4964 frag++; 4965 pos += size; 4966 } else { 4967 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4968 goto skip_fraglist; 4969 } 4970 4971 nskb_frag++; 4972 } 4973 4974 skip_fraglist: 4975 nskb->data_len = len - hsize; 4976 nskb->len += nskb->data_len; 4977 nskb->truesize += nskb->data_len; 4978 4979 perform_csum_check: 4980 if (!csum) { 4981 if (skb_has_shared_frag(nskb) && 4982 __skb_linearize(nskb)) 4983 goto err; 4984 4985 if (!nskb->remcsum_offload) 4986 nskb->ip_summed = CHECKSUM_NONE; 4987 SKB_GSO_CB(nskb)->csum = 4988 skb_checksum(nskb, doffset, 4989 nskb->len - doffset, 0); 4990 SKB_GSO_CB(nskb)->csum_start = 4991 skb_headroom(nskb) + doffset; 4992 } 4993 } while ((offset += len) < head_skb->len); 4994 4995 /* Some callers want to get the end of the list. 4996 * Put it in segs->prev to avoid walking the list. 4997 * (see validate_xmit_skb_list() for example) 4998 */ 4999 segs->prev = tail; 5000 5001 if (partial_segs) { 5002 struct sk_buff *iter; 5003 int type = skb_shinfo(head_skb)->gso_type; 5004 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 5005 5006 /* Update type to add partial and then remove dodgy if set */ 5007 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 5008 type &= ~SKB_GSO_DODGY; 5009 5010 /* Update GSO info and prepare to start updating headers on 5011 * our way back down the stack of protocols. 5012 */ 5013 for (iter = segs; iter; iter = iter->next) { 5014 skb_shinfo(iter)->gso_size = gso_size; 5015 skb_shinfo(iter)->gso_segs = partial_segs; 5016 skb_shinfo(iter)->gso_type = type; 5017 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 5018 } 5019 5020 if (tail->len - doffset <= gso_size) 5021 skb_shinfo(tail)->gso_size = 0; 5022 else if (tail != segs) 5023 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 5024 } 5025 5026 /* Following permits correct backpressure, for protocols 5027 * using skb_set_owner_w(). 5028 * Idea is to tranfert ownership from head_skb to last segment. 5029 */ 5030 if (head_skb->destructor == sock_wfree) { 5031 swap(tail->truesize, head_skb->truesize); 5032 swap(tail->destructor, head_skb->destructor); 5033 swap(tail->sk, head_skb->sk); 5034 } 5035 return segs; 5036 5037 err: 5038 kfree_skb_list(segs); 5039 return ERR_PTR(err); 5040 } 5041 EXPORT_SYMBOL_GPL(skb_segment); 5042 5043 #ifdef CONFIG_SKB_EXTENSIONS 5044 #define SKB_EXT_ALIGN_VALUE 8 5045 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 5046 5047 static const u8 skb_ext_type_len[] = { 5048 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 5049 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 5050 #endif 5051 #ifdef CONFIG_XFRM 5052 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 5053 #endif 5054 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 5055 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 5056 #endif 5057 #if IS_ENABLED(CONFIG_MPTCP) 5058 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 5059 #endif 5060 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 5061 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 5062 #endif 5063 }; 5064 5065 static __always_inline unsigned int skb_ext_total_length(void) 5066 { 5067 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); 5068 int i; 5069 5070 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) 5071 l += skb_ext_type_len[i]; 5072 5073 return l; 5074 } 5075 5076 static void skb_extensions_init(void) 5077 { 5078 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 5079 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL) 5080 BUILD_BUG_ON(skb_ext_total_length() > 255); 5081 #endif 5082 5083 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 5084 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 5085 0, 5086 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5087 NULL); 5088 } 5089 #else 5090 static void skb_extensions_init(void) {} 5091 #endif 5092 5093 /* The SKB kmem_cache slab is critical for network performance. Never 5094 * merge/alias the slab with similar sized objects. This avoids fragmentation 5095 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. 5096 */ 5097 #ifndef CONFIG_SLUB_TINY 5098 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE 5099 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ 5100 #define FLAG_SKB_NO_MERGE 0 5101 #endif 5102 5103 void __init skb_init(void) 5104 { 5105 net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 5106 sizeof(struct sk_buff), 5107 0, 5108 SLAB_HWCACHE_ALIGN|SLAB_PANIC| 5109 FLAG_SKB_NO_MERGE, 5110 offsetof(struct sk_buff, cb), 5111 sizeof_field(struct sk_buff, cb), 5112 NULL); 5113 net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 5114 sizeof(struct sk_buff_fclones), 5115 0, 5116 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5117 NULL); 5118 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 5119 * struct skb_shared_info is located at the end of skb->head, 5120 * and should not be copied to/from user. 5121 */ 5122 net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 5123 SKB_SMALL_HEAD_CACHE_SIZE, 5124 0, 5125 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 5126 0, 5127 SKB_SMALL_HEAD_HEADROOM, 5128 NULL); 5129 skb_extensions_init(); 5130 } 5131 5132 static int 5133 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 5134 unsigned int recursion_level) 5135 { 5136 int start = skb_headlen(skb); 5137 int i, copy = start - offset; 5138 struct sk_buff *frag_iter; 5139 int elt = 0; 5140 5141 if (unlikely(recursion_level >= 24)) 5142 return -EMSGSIZE; 5143 5144 if (copy > 0) { 5145 if (copy > len) 5146 copy = len; 5147 sg_set_buf(sg, skb->data + offset, copy); 5148 elt++; 5149 if ((len -= copy) == 0) 5150 return elt; 5151 offset += copy; 5152 } 5153 5154 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 5155 int end; 5156 5157 WARN_ON(start > offset + len); 5158 5159 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 5160 if ((copy = end - offset) > 0) { 5161 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 5162 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5163 return -EMSGSIZE; 5164 5165 if (copy > len) 5166 copy = len; 5167 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 5168 skb_frag_off(frag) + offset - start); 5169 elt++; 5170 if (!(len -= copy)) 5171 return elt; 5172 offset += copy; 5173 } 5174 start = end; 5175 } 5176 5177 skb_walk_frags(skb, frag_iter) { 5178 int end, ret; 5179 5180 WARN_ON(start > offset + len); 5181 5182 end = start + frag_iter->len; 5183 if ((copy = end - offset) > 0) { 5184 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5185 return -EMSGSIZE; 5186 5187 if (copy > len) 5188 copy = len; 5189 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 5190 copy, recursion_level + 1); 5191 if (unlikely(ret < 0)) 5192 return ret; 5193 elt += ret; 5194 if ((len -= copy) == 0) 5195 return elt; 5196 offset += copy; 5197 } 5198 start = end; 5199 } 5200 BUG_ON(len); 5201 return elt; 5202 } 5203 5204 /** 5205 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 5206 * @skb: Socket buffer containing the buffers to be mapped 5207 * @sg: The scatter-gather list to map into 5208 * @offset: The offset into the buffer's contents to start mapping 5209 * @len: Length of buffer space to be mapped 5210 * 5211 * Fill the specified scatter-gather list with mappings/pointers into a 5212 * region of the buffer space attached to a socket buffer. Returns either 5213 * the number of scatterlist items used, or -EMSGSIZE if the contents 5214 * could not fit. 5215 */ 5216 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 5217 { 5218 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 5219 5220 if (nsg <= 0) 5221 return nsg; 5222 5223 sg_mark_end(&sg[nsg - 1]); 5224 5225 return nsg; 5226 } 5227 EXPORT_SYMBOL_GPL(skb_to_sgvec); 5228 5229 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 5230 * sglist without mark the sg which contain last skb data as the end. 5231 * So the caller can mannipulate sg list as will when padding new data after 5232 * the first call without calling sg_unmark_end to expend sg list. 5233 * 5234 * Scenario to use skb_to_sgvec_nomark: 5235 * 1. sg_init_table 5236 * 2. skb_to_sgvec_nomark(payload1) 5237 * 3. skb_to_sgvec_nomark(payload2) 5238 * 5239 * This is equivalent to: 5240 * 1. sg_init_table 5241 * 2. skb_to_sgvec(payload1) 5242 * 3. sg_unmark_end 5243 * 4. skb_to_sgvec(payload2) 5244 * 5245 * When mapping multiple payload conditionally, skb_to_sgvec_nomark 5246 * is more preferable. 5247 */ 5248 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 5249 int offset, int len) 5250 { 5251 return __skb_to_sgvec(skb, sg, offset, len, 0); 5252 } 5253 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 5254 5255 5256 5257 /** 5258 * skb_cow_data - Check that a socket buffer's data buffers are writable 5259 * @skb: The socket buffer to check. 5260 * @tailbits: Amount of trailing space to be added 5261 * @trailer: Returned pointer to the skb where the @tailbits space begins 5262 * 5263 * Make sure that the data buffers attached to a socket buffer are 5264 * writable. If they are not, private copies are made of the data buffers 5265 * and the socket buffer is set to use these instead. 5266 * 5267 * If @tailbits is given, make sure that there is space to write @tailbits 5268 * bytes of data beyond current end of socket buffer. @trailer will be 5269 * set to point to the skb in which this space begins. 5270 * 5271 * The number of scatterlist elements required to completely map the 5272 * COW'd and extended socket buffer will be returned. 5273 */ 5274 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 5275 { 5276 int copyflag; 5277 int elt; 5278 struct sk_buff *skb1, **skb_p; 5279 5280 /* If skb is cloned or its head is paged, reallocate 5281 * head pulling out all the pages (pages are considered not writable 5282 * at the moment even if they are anonymous). 5283 */ 5284 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 5285 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 5286 return -ENOMEM; 5287 5288 /* Easy case. Most of packets will go this way. */ 5289 if (!skb_has_frag_list(skb)) { 5290 /* A little of trouble, not enough of space for trailer. 5291 * This should not happen, when stack is tuned to generate 5292 * good frames. OK, on miss we reallocate and reserve even more 5293 * space, 128 bytes is fair. */ 5294 5295 if (skb_tailroom(skb) < tailbits && 5296 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 5297 return -ENOMEM; 5298 5299 /* Voila! */ 5300 *trailer = skb; 5301 return 1; 5302 } 5303 5304 /* Misery. We are in troubles, going to mincer fragments... */ 5305 5306 elt = 1; 5307 skb_p = &skb_shinfo(skb)->frag_list; 5308 copyflag = 0; 5309 5310 while ((skb1 = *skb_p) != NULL) { 5311 int ntail = 0; 5312 5313 /* The fragment is partially pulled by someone, 5314 * this can happen on input. Copy it and everything 5315 * after it. */ 5316 5317 if (skb_shared(skb1)) 5318 copyflag = 1; 5319 5320 /* If the skb is the last, worry about trailer. */ 5321 5322 if (skb1->next == NULL && tailbits) { 5323 if (skb_shinfo(skb1)->nr_frags || 5324 skb_has_frag_list(skb1) || 5325 skb_tailroom(skb1) < tailbits) 5326 ntail = tailbits + 128; 5327 } 5328 5329 if (copyflag || 5330 skb_cloned(skb1) || 5331 ntail || 5332 skb_shinfo(skb1)->nr_frags || 5333 skb_has_frag_list(skb1)) { 5334 struct sk_buff *skb2; 5335 5336 /* Fuck, we are miserable poor guys... */ 5337 if (ntail == 0) 5338 skb2 = skb_copy(skb1, GFP_ATOMIC); 5339 else 5340 skb2 = skb_copy_expand(skb1, 5341 skb_headroom(skb1), 5342 ntail, 5343 GFP_ATOMIC); 5344 if (unlikely(skb2 == NULL)) 5345 return -ENOMEM; 5346 5347 if (skb1->sk) 5348 skb_set_owner_w(skb2, skb1->sk); 5349 5350 /* Looking around. Are we still alive? 5351 * OK, link new skb, drop old one */ 5352 5353 skb2->next = skb1->next; 5354 *skb_p = skb2; 5355 kfree_skb(skb1); 5356 skb1 = skb2; 5357 } 5358 elt++; 5359 *trailer = skb1; 5360 skb_p = &skb1->next; 5361 } 5362 5363 return elt; 5364 } 5365 EXPORT_SYMBOL_GPL(skb_cow_data); 5366 5367 static void sock_rmem_free(struct sk_buff *skb) 5368 { 5369 struct sock *sk = skb->sk; 5370 5371 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5372 } 5373 5374 static void skb_set_err_queue(struct sk_buff *skb) 5375 { 5376 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5377 * So, it is safe to (mis)use it to mark skbs on the error queue. 5378 */ 5379 skb->pkt_type = PACKET_OUTGOING; 5380 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5381 } 5382 5383 /* 5384 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5385 */ 5386 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5387 { 5388 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5389 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5390 return -ENOMEM; 5391 5392 skb_orphan(skb); 5393 skb->sk = sk; 5394 skb->destructor = sock_rmem_free; 5395 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5396 skb_set_err_queue(skb); 5397 5398 /* before exiting rcu section, make sure dst is refcounted */ 5399 skb_dst_force(skb); 5400 5401 skb_queue_tail(&sk->sk_error_queue, skb); 5402 if (!sock_flag(sk, SOCK_DEAD)) 5403 sk_error_report(sk); 5404 return 0; 5405 } 5406 EXPORT_SYMBOL(sock_queue_err_skb); 5407 5408 static bool is_icmp_err_skb(const struct sk_buff *skb) 5409 { 5410 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5411 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5412 } 5413 5414 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5415 { 5416 struct sk_buff_head *q = &sk->sk_error_queue; 5417 struct sk_buff *skb, *skb_next = NULL; 5418 bool icmp_next = false; 5419 unsigned long flags; 5420 5421 if (skb_queue_empty_lockless(q)) 5422 return NULL; 5423 5424 spin_lock_irqsave(&q->lock, flags); 5425 skb = __skb_dequeue(q); 5426 if (skb && (skb_next = skb_peek(q))) { 5427 icmp_next = is_icmp_err_skb(skb_next); 5428 if (icmp_next) 5429 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5430 } 5431 spin_unlock_irqrestore(&q->lock, flags); 5432 5433 if (is_icmp_err_skb(skb) && !icmp_next) 5434 sk->sk_err = 0; 5435 5436 if (skb_next) 5437 sk_error_report(sk); 5438 5439 return skb; 5440 } 5441 EXPORT_SYMBOL(sock_dequeue_err_skb); 5442 5443 /** 5444 * skb_clone_sk - create clone of skb, and take reference to socket 5445 * @skb: the skb to clone 5446 * 5447 * This function creates a clone of a buffer that holds a reference on 5448 * sk_refcnt. Buffers created via this function are meant to be 5449 * returned using sock_queue_err_skb, or free via kfree_skb. 5450 * 5451 * When passing buffers allocated with this function to sock_queue_err_skb 5452 * it is necessary to wrap the call with sock_hold/sock_put in order to 5453 * prevent the socket from being released prior to being enqueued on 5454 * the sk_error_queue. 5455 */ 5456 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5457 { 5458 struct sock *sk = skb->sk; 5459 struct sk_buff *clone; 5460 5461 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5462 return NULL; 5463 5464 clone = skb_clone(skb, GFP_ATOMIC); 5465 if (!clone) { 5466 sock_put(sk); 5467 return NULL; 5468 } 5469 5470 clone->sk = sk; 5471 clone->destructor = sock_efree; 5472 5473 return clone; 5474 } 5475 EXPORT_SYMBOL(skb_clone_sk); 5476 5477 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5478 struct sock *sk, 5479 int tstype, 5480 bool opt_stats) 5481 { 5482 struct sock_exterr_skb *serr; 5483 int err; 5484 5485 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5486 5487 serr = SKB_EXT_ERR(skb); 5488 memset(serr, 0, sizeof(*serr)); 5489 serr->ee.ee_errno = ENOMSG; 5490 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5491 serr->ee.ee_info = tstype; 5492 serr->opt_stats = opt_stats; 5493 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5494 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 5495 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5496 if (sk_is_tcp(sk)) 5497 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5498 } 5499 5500 err = sock_queue_err_skb(sk, skb); 5501 5502 if (err) 5503 kfree_skb(skb); 5504 } 5505 5506 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5507 { 5508 bool ret; 5509 5510 if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data))) 5511 return true; 5512 5513 read_lock_bh(&sk->sk_callback_lock); 5514 ret = sk->sk_socket && sk->sk_socket->file && 5515 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5516 read_unlock_bh(&sk->sk_callback_lock); 5517 return ret; 5518 } 5519 5520 void skb_complete_tx_timestamp(struct sk_buff *skb, 5521 struct skb_shared_hwtstamps *hwtstamps) 5522 { 5523 struct sock *sk = skb->sk; 5524 5525 if (!skb_may_tx_timestamp(sk, false)) 5526 goto err; 5527 5528 /* Take a reference to prevent skb_orphan() from freeing the socket, 5529 * but only if the socket refcount is not zero. 5530 */ 5531 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5532 *skb_hwtstamps(skb) = *hwtstamps; 5533 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5534 sock_put(sk); 5535 return; 5536 } 5537 5538 err: 5539 kfree_skb(skb); 5540 } 5541 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5542 5543 static bool skb_tstamp_tx_report_so_timestamping(struct sk_buff *skb, 5544 struct skb_shared_hwtstamps *hwtstamps, 5545 int tstype) 5546 { 5547 switch (tstype) { 5548 case SCM_TSTAMP_SCHED: 5549 return skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP; 5550 case SCM_TSTAMP_SND: 5551 return skb_shinfo(skb)->tx_flags & (hwtstamps ? SKBTX_HW_TSTAMP_NOBPF : 5552 SKBTX_SW_TSTAMP); 5553 case SCM_TSTAMP_ACK: 5554 return TCP_SKB_CB(skb)->txstamp_ack & TSTAMP_ACK_SK; 5555 case SCM_TSTAMP_COMPLETION: 5556 return skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP; 5557 } 5558 5559 return false; 5560 } 5561 5562 static void skb_tstamp_tx_report_bpf_timestamping(struct sk_buff *skb, 5563 struct skb_shared_hwtstamps *hwtstamps, 5564 struct sock *sk, 5565 int tstype) 5566 { 5567 int op; 5568 5569 switch (tstype) { 5570 case SCM_TSTAMP_SCHED: 5571 op = BPF_SOCK_OPS_TSTAMP_SCHED_CB; 5572 break; 5573 case SCM_TSTAMP_SND: 5574 if (hwtstamps) { 5575 op = BPF_SOCK_OPS_TSTAMP_SND_HW_CB; 5576 *skb_hwtstamps(skb) = *hwtstamps; 5577 } else { 5578 op = BPF_SOCK_OPS_TSTAMP_SND_SW_CB; 5579 } 5580 break; 5581 case SCM_TSTAMP_ACK: 5582 op = BPF_SOCK_OPS_TSTAMP_ACK_CB; 5583 break; 5584 default: 5585 return; 5586 } 5587 5588 bpf_skops_tx_timestamping(sk, skb, op); 5589 } 5590 5591 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5592 const struct sk_buff *ack_skb, 5593 struct skb_shared_hwtstamps *hwtstamps, 5594 struct sock *sk, int tstype) 5595 { 5596 struct sk_buff *skb; 5597 bool tsonly, opt_stats = false; 5598 u32 tsflags; 5599 5600 if (!sk) 5601 return; 5602 5603 if (skb_shinfo(orig_skb)->tx_flags & SKBTX_BPF) 5604 skb_tstamp_tx_report_bpf_timestamping(orig_skb, hwtstamps, 5605 sk, tstype); 5606 5607 if (!skb_tstamp_tx_report_so_timestamping(orig_skb, hwtstamps, tstype)) 5608 return; 5609 5610 tsflags = READ_ONCE(sk->sk_tsflags); 5611 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5612 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5613 return; 5614 5615 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5616 if (!skb_may_tx_timestamp(sk, tsonly)) 5617 return; 5618 5619 if (tsonly) { 5620 #ifdef CONFIG_INET 5621 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5622 sk_is_tcp(sk)) { 5623 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5624 ack_skb); 5625 opt_stats = true; 5626 } else 5627 #endif 5628 skb = alloc_skb(0, GFP_ATOMIC); 5629 } else { 5630 skb = skb_clone(orig_skb, GFP_ATOMIC); 5631 5632 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5633 kfree_skb(skb); 5634 return; 5635 } 5636 } 5637 if (!skb) 5638 return; 5639 5640 if (tsonly) { 5641 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5642 SKBTX_ANY_TSTAMP; 5643 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5644 } 5645 5646 if (hwtstamps) 5647 *skb_hwtstamps(skb) = *hwtstamps; 5648 else 5649 __net_timestamp(skb); 5650 5651 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5652 } 5653 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5654 5655 void skb_tstamp_tx(struct sk_buff *orig_skb, 5656 struct skb_shared_hwtstamps *hwtstamps) 5657 { 5658 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5659 SCM_TSTAMP_SND); 5660 } 5661 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5662 5663 #ifdef CONFIG_WIRELESS 5664 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5665 { 5666 struct sock *sk = skb->sk; 5667 struct sock_exterr_skb *serr; 5668 int err = 1; 5669 5670 skb->wifi_acked_valid = 1; 5671 skb->wifi_acked = acked; 5672 5673 serr = SKB_EXT_ERR(skb); 5674 memset(serr, 0, sizeof(*serr)); 5675 serr->ee.ee_errno = ENOMSG; 5676 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5677 5678 /* Take a reference to prevent skb_orphan() from freeing the socket, 5679 * but only if the socket refcount is not zero. 5680 */ 5681 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5682 err = sock_queue_err_skb(sk, skb); 5683 sock_put(sk); 5684 } 5685 if (err) 5686 kfree_skb(skb); 5687 } 5688 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5689 #endif /* CONFIG_WIRELESS */ 5690 5691 /** 5692 * skb_partial_csum_set - set up and verify partial csum values for packet 5693 * @skb: the skb to set 5694 * @start: the number of bytes after skb->data to start checksumming. 5695 * @off: the offset from start to place the checksum. 5696 * 5697 * For untrusted partially-checksummed packets, we need to make sure the values 5698 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5699 * 5700 * This function checks and sets those values and skb->ip_summed: if this 5701 * returns false you should drop the packet. 5702 */ 5703 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5704 { 5705 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5706 u32 csum_start = skb_headroom(skb) + (u32)start; 5707 5708 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5709 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5710 start, off, skb_headroom(skb), skb_headlen(skb)); 5711 return false; 5712 } 5713 skb->ip_summed = CHECKSUM_PARTIAL; 5714 skb->csum_start = csum_start; 5715 skb->csum_offset = off; 5716 skb->transport_header = csum_start; 5717 return true; 5718 } 5719 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5720 5721 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5722 unsigned int max) 5723 { 5724 if (skb_headlen(skb) >= len) 5725 return 0; 5726 5727 /* If we need to pullup then pullup to the max, so we 5728 * won't need to do it again. 5729 */ 5730 if (max > skb->len) 5731 max = skb->len; 5732 5733 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5734 return -ENOMEM; 5735 5736 if (skb_headlen(skb) < len) 5737 return -EPROTO; 5738 5739 return 0; 5740 } 5741 5742 #define MAX_TCP_HDR_LEN (15 * 4) 5743 5744 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5745 typeof(IPPROTO_IP) proto, 5746 unsigned int off) 5747 { 5748 int err; 5749 5750 switch (proto) { 5751 case IPPROTO_TCP: 5752 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5753 off + MAX_TCP_HDR_LEN); 5754 if (!err && !skb_partial_csum_set(skb, off, 5755 offsetof(struct tcphdr, 5756 check))) 5757 err = -EPROTO; 5758 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5759 5760 case IPPROTO_UDP: 5761 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5762 off + sizeof(struct udphdr)); 5763 if (!err && !skb_partial_csum_set(skb, off, 5764 offsetof(struct udphdr, 5765 check))) 5766 err = -EPROTO; 5767 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5768 } 5769 5770 return ERR_PTR(-EPROTO); 5771 } 5772 5773 /* This value should be large enough to cover a tagged ethernet header plus 5774 * maximally sized IP and TCP or UDP headers. 5775 */ 5776 #define MAX_IP_HDR_LEN 128 5777 5778 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5779 { 5780 unsigned int off; 5781 bool fragment; 5782 __sum16 *csum; 5783 int err; 5784 5785 fragment = false; 5786 5787 err = skb_maybe_pull_tail(skb, 5788 sizeof(struct iphdr), 5789 MAX_IP_HDR_LEN); 5790 if (err < 0) 5791 goto out; 5792 5793 if (ip_is_fragment(ip_hdr(skb))) 5794 fragment = true; 5795 5796 off = ip_hdrlen(skb); 5797 5798 err = -EPROTO; 5799 5800 if (fragment) 5801 goto out; 5802 5803 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5804 if (IS_ERR(csum)) 5805 return PTR_ERR(csum); 5806 5807 if (recalculate) 5808 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5809 ip_hdr(skb)->daddr, 5810 skb->len - off, 5811 ip_hdr(skb)->protocol, 0); 5812 err = 0; 5813 5814 out: 5815 return err; 5816 } 5817 5818 /* This value should be large enough to cover a tagged ethernet header plus 5819 * an IPv6 header, all options, and a maximal TCP or UDP header. 5820 */ 5821 #define MAX_IPV6_HDR_LEN 256 5822 5823 #define OPT_HDR(type, skb, off) \ 5824 (type *)(skb_network_header(skb) + (off)) 5825 5826 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5827 { 5828 int err; 5829 u8 nexthdr; 5830 unsigned int off; 5831 unsigned int len; 5832 bool fragment; 5833 bool done; 5834 __sum16 *csum; 5835 5836 fragment = false; 5837 done = false; 5838 5839 off = sizeof(struct ipv6hdr); 5840 5841 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5842 if (err < 0) 5843 goto out; 5844 5845 nexthdr = ipv6_hdr(skb)->nexthdr; 5846 5847 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5848 while (off <= len && !done) { 5849 switch (nexthdr) { 5850 case IPPROTO_DSTOPTS: 5851 case IPPROTO_HOPOPTS: 5852 case IPPROTO_ROUTING: { 5853 struct ipv6_opt_hdr *hp; 5854 5855 err = skb_maybe_pull_tail(skb, 5856 off + 5857 sizeof(struct ipv6_opt_hdr), 5858 MAX_IPV6_HDR_LEN); 5859 if (err < 0) 5860 goto out; 5861 5862 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5863 nexthdr = hp->nexthdr; 5864 off += ipv6_optlen(hp); 5865 break; 5866 } 5867 case IPPROTO_AH: { 5868 struct ip_auth_hdr *hp; 5869 5870 err = skb_maybe_pull_tail(skb, 5871 off + 5872 sizeof(struct ip_auth_hdr), 5873 MAX_IPV6_HDR_LEN); 5874 if (err < 0) 5875 goto out; 5876 5877 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5878 nexthdr = hp->nexthdr; 5879 off += ipv6_authlen(hp); 5880 break; 5881 } 5882 case IPPROTO_FRAGMENT: { 5883 struct frag_hdr *hp; 5884 5885 err = skb_maybe_pull_tail(skb, 5886 off + 5887 sizeof(struct frag_hdr), 5888 MAX_IPV6_HDR_LEN); 5889 if (err < 0) 5890 goto out; 5891 5892 hp = OPT_HDR(struct frag_hdr, skb, off); 5893 5894 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5895 fragment = true; 5896 5897 nexthdr = hp->nexthdr; 5898 off += sizeof(struct frag_hdr); 5899 break; 5900 } 5901 default: 5902 done = true; 5903 break; 5904 } 5905 } 5906 5907 err = -EPROTO; 5908 5909 if (!done || fragment) 5910 goto out; 5911 5912 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5913 if (IS_ERR(csum)) 5914 return PTR_ERR(csum); 5915 5916 if (recalculate) 5917 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5918 &ipv6_hdr(skb)->daddr, 5919 skb->len - off, nexthdr, 0); 5920 err = 0; 5921 5922 out: 5923 return err; 5924 } 5925 5926 /** 5927 * skb_checksum_setup - set up partial checksum offset 5928 * @skb: the skb to set up 5929 * @recalculate: if true the pseudo-header checksum will be recalculated 5930 */ 5931 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5932 { 5933 int err; 5934 5935 switch (skb->protocol) { 5936 case htons(ETH_P_IP): 5937 err = skb_checksum_setup_ipv4(skb, recalculate); 5938 break; 5939 5940 case htons(ETH_P_IPV6): 5941 err = skb_checksum_setup_ipv6(skb, recalculate); 5942 break; 5943 5944 default: 5945 err = -EPROTO; 5946 break; 5947 } 5948 5949 return err; 5950 } 5951 EXPORT_SYMBOL(skb_checksum_setup); 5952 5953 /** 5954 * skb_checksum_maybe_trim - maybe trims the given skb 5955 * @skb: the skb to check 5956 * @transport_len: the data length beyond the network header 5957 * 5958 * Checks whether the given skb has data beyond the given transport length. 5959 * If so, returns a cloned skb trimmed to this transport length. 5960 * Otherwise returns the provided skb. Returns NULL in error cases 5961 * (e.g. transport_len exceeds skb length or out-of-memory). 5962 * 5963 * Caller needs to set the skb transport header and free any returned skb if it 5964 * differs from the provided skb. 5965 */ 5966 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5967 unsigned int transport_len) 5968 { 5969 struct sk_buff *skb_chk; 5970 unsigned int len = skb_transport_offset(skb) + transport_len; 5971 int ret; 5972 5973 if (skb->len < len) 5974 return NULL; 5975 else if (skb->len == len) 5976 return skb; 5977 5978 skb_chk = skb_clone(skb, GFP_ATOMIC); 5979 if (!skb_chk) 5980 return NULL; 5981 5982 ret = pskb_trim_rcsum(skb_chk, len); 5983 if (ret) { 5984 kfree_skb(skb_chk); 5985 return NULL; 5986 } 5987 5988 return skb_chk; 5989 } 5990 5991 /** 5992 * skb_checksum_trimmed - validate checksum of an skb 5993 * @skb: the skb to check 5994 * @transport_len: the data length beyond the network header 5995 * @skb_chkf: checksum function to use 5996 * 5997 * Applies the given checksum function skb_chkf to the provided skb. 5998 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5999 * 6000 * If the skb has data beyond the given transport length, then a 6001 * trimmed & cloned skb is checked and returned. 6002 * 6003 * Caller needs to set the skb transport header and free any returned skb if it 6004 * differs from the provided skb. 6005 */ 6006 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 6007 unsigned int transport_len, 6008 __sum16(*skb_chkf)(struct sk_buff *skb)) 6009 { 6010 struct sk_buff *skb_chk; 6011 unsigned int offset = skb_transport_offset(skb); 6012 __sum16 ret; 6013 6014 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 6015 if (!skb_chk) 6016 goto err; 6017 6018 if (!pskb_may_pull(skb_chk, offset)) 6019 goto err; 6020 6021 skb_pull_rcsum(skb_chk, offset); 6022 ret = skb_chkf(skb_chk); 6023 skb_push_rcsum(skb_chk, offset); 6024 6025 if (ret) 6026 goto err; 6027 6028 return skb_chk; 6029 6030 err: 6031 if (skb_chk && skb_chk != skb) 6032 kfree_skb(skb_chk); 6033 6034 return NULL; 6035 6036 } 6037 EXPORT_SYMBOL(skb_checksum_trimmed); 6038 6039 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 6040 { 6041 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 6042 skb->dev->name); 6043 } 6044 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 6045 6046 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 6047 { 6048 if (head_stolen) { 6049 skb_release_head_state(skb); 6050 kmem_cache_free(net_hotdata.skbuff_cache, skb); 6051 } else { 6052 __kfree_skb(skb); 6053 } 6054 } 6055 EXPORT_SYMBOL(kfree_skb_partial); 6056 6057 /** 6058 * skb_try_coalesce - try to merge skb to prior one 6059 * @to: prior buffer 6060 * @from: buffer to add 6061 * @fragstolen: pointer to boolean 6062 * @delta_truesize: how much more was allocated than was requested 6063 */ 6064 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 6065 bool *fragstolen, int *delta_truesize) 6066 { 6067 struct skb_shared_info *to_shinfo, *from_shinfo; 6068 int i, delta, len = from->len; 6069 6070 *fragstolen = false; 6071 6072 if (skb_cloned(to)) 6073 return false; 6074 6075 /* In general, avoid mixing page_pool and non-page_pool allocated 6076 * pages within the same SKB. In theory we could take full 6077 * references if @from is cloned and !@to->pp_recycle but its 6078 * tricky (due to potential race with the clone disappearing) and 6079 * rare, so not worth dealing with. 6080 */ 6081 if (to->pp_recycle != from->pp_recycle) 6082 return false; 6083 6084 if (skb_frags_readable(from) != skb_frags_readable(to)) 6085 return false; 6086 6087 if (len <= skb_tailroom(to) && skb_frags_readable(from)) { 6088 if (len) 6089 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 6090 *delta_truesize = 0; 6091 return true; 6092 } 6093 6094 to_shinfo = skb_shinfo(to); 6095 from_shinfo = skb_shinfo(from); 6096 if (to_shinfo->frag_list || from_shinfo->frag_list) 6097 return false; 6098 if (skb_zcopy(to) || skb_zcopy(from)) 6099 return false; 6100 6101 if (skb_headlen(from) != 0) { 6102 struct page *page; 6103 unsigned int offset; 6104 6105 if (to_shinfo->nr_frags + 6106 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 6107 return false; 6108 6109 if (skb_head_is_locked(from)) 6110 return false; 6111 6112 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 6113 6114 page = virt_to_head_page(from->head); 6115 offset = from->data - (unsigned char *)page_address(page); 6116 6117 skb_fill_page_desc(to, to_shinfo->nr_frags, 6118 page, offset, skb_headlen(from)); 6119 *fragstolen = true; 6120 } else { 6121 if (to_shinfo->nr_frags + 6122 from_shinfo->nr_frags > MAX_SKB_FRAGS) 6123 return false; 6124 6125 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 6126 } 6127 6128 WARN_ON_ONCE(delta < len); 6129 6130 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 6131 from_shinfo->frags, 6132 from_shinfo->nr_frags * sizeof(skb_frag_t)); 6133 to_shinfo->nr_frags += from_shinfo->nr_frags; 6134 6135 if (!skb_cloned(from)) 6136 from_shinfo->nr_frags = 0; 6137 6138 /* if the skb is not cloned this does nothing 6139 * since we set nr_frags to 0. 6140 */ 6141 if (skb_pp_frag_ref(from)) { 6142 for (i = 0; i < from_shinfo->nr_frags; i++) 6143 __skb_frag_ref(&from_shinfo->frags[i]); 6144 } 6145 6146 to->truesize += delta; 6147 to->len += len; 6148 to->data_len += len; 6149 6150 *delta_truesize = delta; 6151 return true; 6152 } 6153 EXPORT_SYMBOL(skb_try_coalesce); 6154 6155 /** 6156 * skb_scrub_packet - scrub an skb 6157 * 6158 * @skb: buffer to clean 6159 * @xnet: packet is crossing netns 6160 * 6161 * skb_scrub_packet can be used after encapsulating or decapsulating a packet 6162 * into/from a tunnel. Some information have to be cleared during these 6163 * operations. 6164 * skb_scrub_packet can also be used to clean a skb before injecting it in 6165 * another namespace (@xnet == true). We have to clear all information in the 6166 * skb that could impact namespace isolation. 6167 */ 6168 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 6169 { 6170 skb->pkt_type = PACKET_HOST; 6171 skb->skb_iif = 0; 6172 skb->ignore_df = 0; 6173 skb_dst_drop(skb); 6174 skb_ext_reset(skb); 6175 nf_reset_ct(skb); 6176 nf_reset_trace(skb); 6177 6178 #ifdef CONFIG_NET_SWITCHDEV 6179 skb->offload_fwd_mark = 0; 6180 skb->offload_l3_fwd_mark = 0; 6181 #endif 6182 ipvs_reset(skb); 6183 6184 if (!xnet) 6185 return; 6186 6187 skb->mark = 0; 6188 skb_clear_tstamp(skb); 6189 } 6190 EXPORT_SYMBOL_GPL(skb_scrub_packet); 6191 6192 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 6193 { 6194 int mac_len, meta_len; 6195 void *meta; 6196 6197 if (skb_cow(skb, skb_headroom(skb)) < 0) { 6198 kfree_skb(skb); 6199 return NULL; 6200 } 6201 6202 mac_len = skb->data - skb_mac_header(skb); 6203 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 6204 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 6205 mac_len - VLAN_HLEN - ETH_TLEN); 6206 } 6207 6208 meta_len = skb_metadata_len(skb); 6209 if (meta_len) { 6210 meta = skb_metadata_end(skb) - meta_len; 6211 memmove(meta + VLAN_HLEN, meta, meta_len); 6212 } 6213 6214 skb->mac_header += VLAN_HLEN; 6215 return skb; 6216 } 6217 6218 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 6219 { 6220 struct vlan_hdr *vhdr; 6221 u16 vlan_tci; 6222 6223 if (unlikely(skb_vlan_tag_present(skb))) { 6224 /* vlan_tci is already set-up so leave this for another time */ 6225 return skb; 6226 } 6227 6228 skb = skb_share_check(skb, GFP_ATOMIC); 6229 if (unlikely(!skb)) 6230 goto err_free; 6231 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 6232 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 6233 goto err_free; 6234 6235 vhdr = (struct vlan_hdr *)skb->data; 6236 vlan_tci = ntohs(vhdr->h_vlan_TCI); 6237 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 6238 6239 skb_pull_rcsum(skb, VLAN_HLEN); 6240 vlan_set_encap_proto(skb, vhdr); 6241 6242 skb = skb_reorder_vlan_header(skb); 6243 if (unlikely(!skb)) 6244 goto err_free; 6245 6246 skb_reset_network_header(skb); 6247 if (!skb_transport_header_was_set(skb)) 6248 skb_reset_transport_header(skb); 6249 skb_reset_mac_len(skb); 6250 6251 return skb; 6252 6253 err_free: 6254 kfree_skb(skb); 6255 return NULL; 6256 } 6257 EXPORT_SYMBOL(skb_vlan_untag); 6258 6259 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 6260 { 6261 if (!pskb_may_pull(skb, write_len)) 6262 return -ENOMEM; 6263 6264 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 6265 return 0; 6266 6267 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 6268 } 6269 EXPORT_SYMBOL(skb_ensure_writable); 6270 6271 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev) 6272 { 6273 int needed_headroom = dev->needed_headroom; 6274 int needed_tailroom = dev->needed_tailroom; 6275 6276 /* For tail taggers, we need to pad short frames ourselves, to ensure 6277 * that the tail tag does not fail at its role of being at the end of 6278 * the packet, once the conduit interface pads the frame. Account for 6279 * that pad length here, and pad later. 6280 */ 6281 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN)) 6282 needed_tailroom += ETH_ZLEN - skb->len; 6283 /* skb_headroom() returns unsigned int... */ 6284 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0); 6285 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0); 6286 6287 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb))) 6288 /* No reallocation needed, yay! */ 6289 return 0; 6290 6291 return pskb_expand_head(skb, needed_headroom, needed_tailroom, 6292 GFP_ATOMIC); 6293 } 6294 EXPORT_SYMBOL(skb_ensure_writable_head_tail); 6295 6296 /* remove VLAN header from packet and update csum accordingly. 6297 * expects a non skb_vlan_tag_present skb with a vlan tag payload 6298 */ 6299 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 6300 { 6301 int offset = skb->data - skb_mac_header(skb); 6302 int err; 6303 6304 if (WARN_ONCE(offset, 6305 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 6306 offset)) { 6307 return -EINVAL; 6308 } 6309 6310 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 6311 if (unlikely(err)) 6312 return err; 6313 6314 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6315 6316 vlan_remove_tag(skb, vlan_tci); 6317 6318 skb->mac_header += VLAN_HLEN; 6319 6320 if (skb_network_offset(skb) < ETH_HLEN) 6321 skb_set_network_header(skb, ETH_HLEN); 6322 6323 skb_reset_mac_len(skb); 6324 6325 return err; 6326 } 6327 EXPORT_SYMBOL(__skb_vlan_pop); 6328 6329 /* Pop a vlan tag either from hwaccel or from payload. 6330 * Expects skb->data at mac header. 6331 */ 6332 int skb_vlan_pop(struct sk_buff *skb) 6333 { 6334 u16 vlan_tci; 6335 __be16 vlan_proto; 6336 int err; 6337 6338 if (likely(skb_vlan_tag_present(skb))) { 6339 __vlan_hwaccel_clear_tag(skb); 6340 } else { 6341 if (unlikely(!eth_type_vlan(skb->protocol))) 6342 return 0; 6343 6344 err = __skb_vlan_pop(skb, &vlan_tci); 6345 if (err) 6346 return err; 6347 } 6348 /* move next vlan tag to hw accel tag */ 6349 if (likely(!eth_type_vlan(skb->protocol))) 6350 return 0; 6351 6352 vlan_proto = skb->protocol; 6353 err = __skb_vlan_pop(skb, &vlan_tci); 6354 if (unlikely(err)) 6355 return err; 6356 6357 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6358 return 0; 6359 } 6360 EXPORT_SYMBOL(skb_vlan_pop); 6361 6362 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 6363 * Expects skb->data at mac header. 6364 */ 6365 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6366 { 6367 if (skb_vlan_tag_present(skb)) { 6368 int offset = skb->data - skb_mac_header(skb); 6369 int err; 6370 6371 if (WARN_ONCE(offset, 6372 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6373 offset)) { 6374 return -EINVAL; 6375 } 6376 6377 err = __vlan_insert_tag(skb, skb->vlan_proto, 6378 skb_vlan_tag_get(skb)); 6379 if (err) 6380 return err; 6381 6382 skb->protocol = skb->vlan_proto; 6383 skb->network_header -= VLAN_HLEN; 6384 6385 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6386 } 6387 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6388 return 0; 6389 } 6390 EXPORT_SYMBOL(skb_vlan_push); 6391 6392 /** 6393 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6394 * 6395 * @skb: Socket buffer to modify 6396 * 6397 * Drop the Ethernet header of @skb. 6398 * 6399 * Expects that skb->data points to the mac header and that no VLAN tags are 6400 * present. 6401 * 6402 * Returns 0 on success, -errno otherwise. 6403 */ 6404 int skb_eth_pop(struct sk_buff *skb) 6405 { 6406 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6407 skb_network_offset(skb) < ETH_HLEN) 6408 return -EPROTO; 6409 6410 skb_pull_rcsum(skb, ETH_HLEN); 6411 skb_reset_mac_header(skb); 6412 skb_reset_mac_len(skb); 6413 6414 return 0; 6415 } 6416 EXPORT_SYMBOL(skb_eth_pop); 6417 6418 /** 6419 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6420 * 6421 * @skb: Socket buffer to modify 6422 * @dst: Destination MAC address of the new header 6423 * @src: Source MAC address of the new header 6424 * 6425 * Prepend @skb with a new Ethernet header. 6426 * 6427 * Expects that skb->data points to the mac header, which must be empty. 6428 * 6429 * Returns 0 on success, -errno otherwise. 6430 */ 6431 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6432 const unsigned char *src) 6433 { 6434 struct ethhdr *eth; 6435 int err; 6436 6437 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6438 return -EPROTO; 6439 6440 err = skb_cow_head(skb, sizeof(*eth)); 6441 if (err < 0) 6442 return err; 6443 6444 skb_push(skb, sizeof(*eth)); 6445 skb_reset_mac_header(skb); 6446 skb_reset_mac_len(skb); 6447 6448 eth = eth_hdr(skb); 6449 ether_addr_copy(eth->h_dest, dst); 6450 ether_addr_copy(eth->h_source, src); 6451 eth->h_proto = skb->protocol; 6452 6453 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6454 6455 return 0; 6456 } 6457 EXPORT_SYMBOL(skb_eth_push); 6458 6459 /* Update the ethertype of hdr and the skb csum value if required. */ 6460 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6461 __be16 ethertype) 6462 { 6463 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6464 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6465 6466 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6467 } 6468 6469 hdr->h_proto = ethertype; 6470 } 6471 6472 /** 6473 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6474 * the packet 6475 * 6476 * @skb: buffer 6477 * @mpls_lse: MPLS label stack entry to push 6478 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6479 * @mac_len: length of the MAC header 6480 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6481 * ethernet 6482 * 6483 * Expects skb->data at mac header. 6484 * 6485 * Returns 0 on success, -errno otherwise. 6486 */ 6487 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6488 int mac_len, bool ethernet) 6489 { 6490 struct mpls_shim_hdr *lse; 6491 int err; 6492 6493 if (unlikely(!eth_p_mpls(mpls_proto))) 6494 return -EINVAL; 6495 6496 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6497 if (skb->encapsulation) 6498 return -EINVAL; 6499 6500 err = skb_cow_head(skb, MPLS_HLEN); 6501 if (unlikely(err)) 6502 return err; 6503 6504 if (!skb->inner_protocol) { 6505 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6506 skb_set_inner_protocol(skb, skb->protocol); 6507 } 6508 6509 skb_push(skb, MPLS_HLEN); 6510 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6511 mac_len); 6512 skb_reset_mac_header(skb); 6513 skb_set_network_header(skb, mac_len); 6514 skb_reset_mac_len(skb); 6515 6516 lse = mpls_hdr(skb); 6517 lse->label_stack_entry = mpls_lse; 6518 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6519 6520 if (ethernet && mac_len >= ETH_HLEN) 6521 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6522 skb->protocol = mpls_proto; 6523 6524 return 0; 6525 } 6526 EXPORT_SYMBOL_GPL(skb_mpls_push); 6527 6528 /** 6529 * skb_mpls_pop() - pop the outermost MPLS header 6530 * 6531 * @skb: buffer 6532 * @next_proto: ethertype of header after popped MPLS header 6533 * @mac_len: length of the MAC header 6534 * @ethernet: flag to indicate if the packet is ethernet 6535 * 6536 * Expects skb->data at mac header. 6537 * 6538 * Returns 0 on success, -errno otherwise. 6539 */ 6540 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6541 bool ethernet) 6542 { 6543 int err; 6544 6545 if (unlikely(!eth_p_mpls(skb->protocol))) 6546 return 0; 6547 6548 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6549 if (unlikely(err)) 6550 return err; 6551 6552 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6553 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6554 mac_len); 6555 6556 __skb_pull(skb, MPLS_HLEN); 6557 skb_reset_mac_header(skb); 6558 skb_set_network_header(skb, mac_len); 6559 6560 if (ethernet && mac_len >= ETH_HLEN) { 6561 struct ethhdr *hdr; 6562 6563 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6564 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6565 skb_mod_eth_type(skb, hdr, next_proto); 6566 } 6567 skb->protocol = next_proto; 6568 6569 return 0; 6570 } 6571 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6572 6573 /** 6574 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6575 * 6576 * @skb: buffer 6577 * @mpls_lse: new MPLS label stack entry to update to 6578 * 6579 * Expects skb->data at mac header. 6580 * 6581 * Returns 0 on success, -errno otherwise. 6582 */ 6583 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6584 { 6585 int err; 6586 6587 if (unlikely(!eth_p_mpls(skb->protocol))) 6588 return -EINVAL; 6589 6590 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6591 if (unlikely(err)) 6592 return err; 6593 6594 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6595 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6596 6597 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6598 } 6599 6600 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6601 6602 return 0; 6603 } 6604 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6605 6606 /** 6607 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6608 * 6609 * @skb: buffer 6610 * 6611 * Expects skb->data at mac header. 6612 * 6613 * Returns 0 on success, -errno otherwise. 6614 */ 6615 int skb_mpls_dec_ttl(struct sk_buff *skb) 6616 { 6617 u32 lse; 6618 u8 ttl; 6619 6620 if (unlikely(!eth_p_mpls(skb->protocol))) 6621 return -EINVAL; 6622 6623 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6624 return -ENOMEM; 6625 6626 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6627 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6628 if (!--ttl) 6629 return -EINVAL; 6630 6631 lse &= ~MPLS_LS_TTL_MASK; 6632 lse |= ttl << MPLS_LS_TTL_SHIFT; 6633 6634 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6635 } 6636 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6637 6638 /** 6639 * alloc_skb_with_frags - allocate skb with page frags 6640 * 6641 * @header_len: size of linear part 6642 * @data_len: needed length in frags 6643 * @order: max page order desired. 6644 * @errcode: pointer to error code if any 6645 * @gfp_mask: allocation mask 6646 * 6647 * This can be used to allocate a paged skb, given a maximal order for frags. 6648 */ 6649 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6650 unsigned long data_len, 6651 int order, 6652 int *errcode, 6653 gfp_t gfp_mask) 6654 { 6655 unsigned long chunk; 6656 struct sk_buff *skb; 6657 struct page *page; 6658 int nr_frags = 0; 6659 6660 *errcode = -EMSGSIZE; 6661 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6662 return NULL; 6663 6664 *errcode = -ENOBUFS; 6665 skb = alloc_skb(header_len, gfp_mask); 6666 if (!skb) 6667 return NULL; 6668 6669 while (data_len) { 6670 if (nr_frags == MAX_SKB_FRAGS - 1) 6671 goto failure; 6672 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6673 order--; 6674 6675 if (order) { 6676 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6677 __GFP_COMP | 6678 __GFP_NOWARN, 6679 order); 6680 if (!page) { 6681 order--; 6682 continue; 6683 } 6684 } else { 6685 page = alloc_page(gfp_mask); 6686 if (!page) 6687 goto failure; 6688 } 6689 chunk = min_t(unsigned long, data_len, 6690 PAGE_SIZE << order); 6691 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6692 nr_frags++; 6693 skb->truesize += (PAGE_SIZE << order); 6694 data_len -= chunk; 6695 } 6696 return skb; 6697 6698 failure: 6699 kfree_skb(skb); 6700 return NULL; 6701 } 6702 EXPORT_SYMBOL(alloc_skb_with_frags); 6703 6704 /* carve out the first off bytes from skb when off < headlen */ 6705 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6706 const int headlen, gfp_t gfp_mask) 6707 { 6708 int i; 6709 unsigned int size = skb_end_offset(skb); 6710 int new_hlen = headlen - off; 6711 u8 *data; 6712 6713 if (skb_pfmemalloc(skb)) 6714 gfp_mask |= __GFP_MEMALLOC; 6715 6716 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6717 if (!data) 6718 return -ENOMEM; 6719 size = SKB_WITH_OVERHEAD(size); 6720 6721 /* Copy real data, and all frags */ 6722 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6723 skb->len -= off; 6724 6725 memcpy((struct skb_shared_info *)(data + size), 6726 skb_shinfo(skb), 6727 offsetof(struct skb_shared_info, 6728 frags[skb_shinfo(skb)->nr_frags])); 6729 if (skb_cloned(skb)) { 6730 /* drop the old head gracefully */ 6731 if (skb_orphan_frags(skb, gfp_mask)) { 6732 skb_kfree_head(data, size); 6733 return -ENOMEM; 6734 } 6735 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6736 skb_frag_ref(skb, i); 6737 if (skb_has_frag_list(skb)) 6738 skb_clone_fraglist(skb); 6739 skb_release_data(skb, SKB_CONSUMED); 6740 } else { 6741 /* we can reuse existing recount- all we did was 6742 * relocate values 6743 */ 6744 skb_free_head(skb); 6745 } 6746 6747 skb->head = data; 6748 skb->data = data; 6749 skb->head_frag = 0; 6750 skb_set_end_offset(skb, size); 6751 skb_set_tail_pointer(skb, skb_headlen(skb)); 6752 skb_headers_offset_update(skb, 0); 6753 skb->cloned = 0; 6754 skb->hdr_len = 0; 6755 skb->nohdr = 0; 6756 atomic_set(&skb_shinfo(skb)->dataref, 1); 6757 6758 return 0; 6759 } 6760 6761 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6762 6763 /* carve out the first eat bytes from skb's frag_list. May recurse into 6764 * pskb_carve() 6765 */ 6766 static int pskb_carve_frag_list(struct skb_shared_info *shinfo, int eat, 6767 gfp_t gfp_mask) 6768 { 6769 struct sk_buff *list = shinfo->frag_list; 6770 struct sk_buff *clone = NULL; 6771 struct sk_buff *insp = NULL; 6772 6773 do { 6774 if (!list) { 6775 pr_err("Not enough bytes to eat. Want %d\n", eat); 6776 return -EFAULT; 6777 } 6778 if (list->len <= eat) { 6779 /* Eaten as whole. */ 6780 eat -= list->len; 6781 list = list->next; 6782 insp = list; 6783 } else { 6784 /* Eaten partially. */ 6785 if (skb_shared(list)) { 6786 clone = skb_clone(list, gfp_mask); 6787 if (!clone) 6788 return -ENOMEM; 6789 insp = list->next; 6790 list = clone; 6791 } else { 6792 /* This may be pulled without problems. */ 6793 insp = list; 6794 } 6795 if (pskb_carve(list, eat, gfp_mask) < 0) { 6796 kfree_skb(clone); 6797 return -ENOMEM; 6798 } 6799 break; 6800 } 6801 } while (eat); 6802 6803 /* Free pulled out fragments. */ 6804 while ((list = shinfo->frag_list) != insp) { 6805 shinfo->frag_list = list->next; 6806 consume_skb(list); 6807 } 6808 /* And insert new clone at head. */ 6809 if (clone) { 6810 clone->next = list; 6811 shinfo->frag_list = clone; 6812 } 6813 return 0; 6814 } 6815 6816 /* carve off first len bytes from skb. Split line (off) is in the 6817 * non-linear part of skb 6818 */ 6819 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6820 int pos, gfp_t gfp_mask) 6821 { 6822 int i, k = 0; 6823 unsigned int size = skb_end_offset(skb); 6824 u8 *data; 6825 const int nfrags = skb_shinfo(skb)->nr_frags; 6826 struct skb_shared_info *shinfo; 6827 6828 if (skb_pfmemalloc(skb)) 6829 gfp_mask |= __GFP_MEMALLOC; 6830 6831 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6832 if (!data) 6833 return -ENOMEM; 6834 size = SKB_WITH_OVERHEAD(size); 6835 6836 memcpy((struct skb_shared_info *)(data + size), 6837 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6838 if (skb_orphan_frags(skb, gfp_mask)) { 6839 skb_kfree_head(data, size); 6840 return -ENOMEM; 6841 } 6842 shinfo = (struct skb_shared_info *)(data + size); 6843 for (i = 0; i < nfrags; i++) { 6844 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6845 6846 if (pos + fsize > off) { 6847 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6848 6849 if (pos < off) { 6850 /* Split frag. 6851 * We have two variants in this case: 6852 * 1. Move all the frag to the second 6853 * part, if it is possible. F.e. 6854 * this approach is mandatory for TUX, 6855 * where splitting is expensive. 6856 * 2. Split is accurately. We make this. 6857 */ 6858 skb_frag_off_add(&shinfo->frags[0], off - pos); 6859 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6860 } 6861 skb_frag_ref(skb, i); 6862 k++; 6863 } 6864 pos += fsize; 6865 } 6866 shinfo->nr_frags = k; 6867 if (skb_has_frag_list(skb)) 6868 skb_clone_fraglist(skb); 6869 6870 /* split line is in frag list */ 6871 if (k == 0 && pskb_carve_frag_list(shinfo, off - pos, gfp_mask)) { 6872 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6873 if (skb_has_frag_list(skb)) 6874 kfree_skb_list(skb_shinfo(skb)->frag_list); 6875 skb_kfree_head(data, size); 6876 return -ENOMEM; 6877 } 6878 skb_release_data(skb, SKB_CONSUMED); 6879 6880 skb->head = data; 6881 skb->head_frag = 0; 6882 skb->data = data; 6883 skb_set_end_offset(skb, size); 6884 skb_reset_tail_pointer(skb); 6885 skb_headers_offset_update(skb, 0); 6886 skb->cloned = 0; 6887 skb->hdr_len = 0; 6888 skb->nohdr = 0; 6889 skb->len -= off; 6890 skb->data_len = skb->len; 6891 atomic_set(&skb_shinfo(skb)->dataref, 1); 6892 return 0; 6893 } 6894 6895 /* remove len bytes from the beginning of the skb */ 6896 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6897 { 6898 int headlen = skb_headlen(skb); 6899 6900 if (len < headlen) 6901 return pskb_carve_inside_header(skb, len, headlen, gfp); 6902 else 6903 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6904 } 6905 6906 /* Extract to_copy bytes starting at off from skb, and return this in 6907 * a new skb 6908 */ 6909 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6910 int to_copy, gfp_t gfp) 6911 { 6912 struct sk_buff *clone = skb_clone(skb, gfp); 6913 6914 if (!clone) 6915 return NULL; 6916 6917 if (pskb_carve(clone, off, gfp) < 0 || 6918 pskb_trim(clone, to_copy)) { 6919 kfree_skb(clone); 6920 return NULL; 6921 } 6922 return clone; 6923 } 6924 EXPORT_SYMBOL(pskb_extract); 6925 6926 /** 6927 * skb_condense - try to get rid of fragments/frag_list if possible 6928 * @skb: buffer 6929 * 6930 * Can be used to save memory before skb is added to a busy queue. 6931 * If packet has bytes in frags and enough tail room in skb->head, 6932 * pull all of them, so that we can free the frags right now and adjust 6933 * truesize. 6934 * Notes: 6935 * We do not reallocate skb->head thus can not fail. 6936 * Caller must re-evaluate skb->truesize if needed. 6937 */ 6938 void skb_condense(struct sk_buff *skb) 6939 { 6940 if (skb->data_len) { 6941 if (skb->data_len > skb->end - skb->tail || 6942 skb_cloned(skb) || !skb_frags_readable(skb)) 6943 return; 6944 6945 /* Nice, we can free page frag(s) right now */ 6946 __pskb_pull_tail(skb, skb->data_len); 6947 } 6948 /* At this point, skb->truesize might be over estimated, 6949 * because skb had a fragment, and fragments do not tell 6950 * their truesize. 6951 * When we pulled its content into skb->head, fragment 6952 * was freed, but __pskb_pull_tail() could not possibly 6953 * adjust skb->truesize, not knowing the frag truesize. 6954 */ 6955 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6956 } 6957 EXPORT_SYMBOL(skb_condense); 6958 6959 #ifdef CONFIG_SKB_EXTENSIONS 6960 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6961 { 6962 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6963 } 6964 6965 /** 6966 * __skb_ext_alloc - allocate a new skb extensions storage 6967 * 6968 * @flags: See kmalloc(). 6969 * 6970 * Returns the newly allocated pointer. The pointer can later attached to a 6971 * skb via __skb_ext_set(). 6972 * Note: caller must handle the skb_ext as an opaque data. 6973 */ 6974 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6975 { 6976 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6977 6978 if (new) { 6979 memset(new->offset, 0, sizeof(new->offset)); 6980 refcount_set(&new->refcnt, 1); 6981 } 6982 6983 return new; 6984 } 6985 6986 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6987 unsigned int old_active) 6988 { 6989 struct skb_ext *new; 6990 6991 if (refcount_read(&old->refcnt) == 1) 6992 return old; 6993 6994 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6995 if (!new) 6996 return NULL; 6997 6998 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6999 refcount_set(&new->refcnt, 1); 7000 7001 #ifdef CONFIG_XFRM 7002 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 7003 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 7004 unsigned int i; 7005 7006 for (i = 0; i < sp->len; i++) 7007 xfrm_state_hold(sp->xvec[i]); 7008 } 7009 #endif 7010 #ifdef CONFIG_MCTP_FLOWS 7011 if (old_active & (1 << SKB_EXT_MCTP)) { 7012 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP); 7013 7014 if (flow->key) 7015 refcount_inc(&flow->key->refs); 7016 } 7017 #endif 7018 __skb_ext_put(old); 7019 return new; 7020 } 7021 7022 /** 7023 * __skb_ext_set - attach the specified extension storage to this skb 7024 * @skb: buffer 7025 * @id: extension id 7026 * @ext: extension storage previously allocated via __skb_ext_alloc() 7027 * 7028 * Existing extensions, if any, are cleared. 7029 * 7030 * Returns the pointer to the extension. 7031 */ 7032 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 7033 struct skb_ext *ext) 7034 { 7035 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 7036 7037 skb_ext_put(skb); 7038 newlen = newoff + skb_ext_type_len[id]; 7039 ext->chunks = newlen; 7040 ext->offset[id] = newoff; 7041 skb->extensions = ext; 7042 skb->active_extensions = 1 << id; 7043 return skb_ext_get_ptr(ext, id); 7044 } 7045 7046 /** 7047 * skb_ext_add - allocate space for given extension, COW if needed 7048 * @skb: buffer 7049 * @id: extension to allocate space for 7050 * 7051 * Allocates enough space for the given extension. 7052 * If the extension is already present, a pointer to that extension 7053 * is returned. 7054 * 7055 * If the skb was cloned, COW applies and the returned memory can be 7056 * modified without changing the extension space of clones buffers. 7057 * 7058 * Returns pointer to the extension or NULL on allocation failure. 7059 */ 7060 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 7061 { 7062 struct skb_ext *new, *old = NULL; 7063 unsigned int newlen, newoff; 7064 7065 if (skb->active_extensions) { 7066 old = skb->extensions; 7067 7068 new = skb_ext_maybe_cow(old, skb->active_extensions); 7069 if (!new) 7070 return NULL; 7071 7072 if (__skb_ext_exist(new, id)) 7073 goto set_active; 7074 7075 newoff = new->chunks; 7076 } else { 7077 newoff = SKB_EXT_CHUNKSIZEOF(*new); 7078 7079 new = __skb_ext_alloc(GFP_ATOMIC); 7080 if (!new) 7081 return NULL; 7082 } 7083 7084 newlen = newoff + skb_ext_type_len[id]; 7085 new->chunks = newlen; 7086 new->offset[id] = newoff; 7087 set_active: 7088 skb->slow_gro = 1; 7089 skb->extensions = new; 7090 skb->active_extensions |= 1 << id; 7091 return skb_ext_get_ptr(new, id); 7092 } 7093 EXPORT_SYMBOL(skb_ext_add); 7094 7095 #ifdef CONFIG_XFRM 7096 static void skb_ext_put_sp(struct sec_path *sp) 7097 { 7098 unsigned int i; 7099 7100 for (i = 0; i < sp->len; i++) 7101 xfrm_state_put(sp->xvec[i]); 7102 } 7103 #endif 7104 7105 #ifdef CONFIG_MCTP_FLOWS 7106 static void skb_ext_put_mctp(struct mctp_flow *flow) 7107 { 7108 if (flow->key) 7109 mctp_key_unref(flow->key); 7110 } 7111 #endif 7112 7113 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 7114 { 7115 struct skb_ext *ext = skb->extensions; 7116 7117 skb->active_extensions &= ~(1 << id); 7118 if (skb->active_extensions == 0) { 7119 skb->extensions = NULL; 7120 __skb_ext_put(ext); 7121 #ifdef CONFIG_XFRM 7122 } else if (id == SKB_EXT_SEC_PATH && 7123 refcount_read(&ext->refcnt) == 1) { 7124 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 7125 7126 skb_ext_put_sp(sp); 7127 sp->len = 0; 7128 #endif 7129 } 7130 } 7131 EXPORT_SYMBOL(__skb_ext_del); 7132 7133 void __skb_ext_put(struct skb_ext *ext) 7134 { 7135 /* If this is last clone, nothing can increment 7136 * it after check passes. Avoids one atomic op. 7137 */ 7138 if (refcount_read(&ext->refcnt) == 1) 7139 goto free_now; 7140 7141 if (!refcount_dec_and_test(&ext->refcnt)) 7142 return; 7143 free_now: 7144 #ifdef CONFIG_XFRM 7145 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 7146 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 7147 #endif 7148 #ifdef CONFIG_MCTP_FLOWS 7149 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 7150 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 7151 #endif 7152 7153 kmem_cache_free(skbuff_ext_cache, ext); 7154 } 7155 EXPORT_SYMBOL(__skb_ext_put); 7156 #endif /* CONFIG_SKB_EXTENSIONS */ 7157 7158 static void kfree_skb_napi_cache(struct sk_buff *skb) 7159 { 7160 /* if SKB is a clone, don't handle this case */ 7161 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 7162 __kfree_skb(skb); 7163 return; 7164 } 7165 7166 local_bh_disable(); 7167 __napi_kfree_skb(skb, SKB_CONSUMED); 7168 local_bh_enable(); 7169 } 7170 7171 /** 7172 * skb_attempt_defer_free - queue skb for remote freeing 7173 * @skb: buffer 7174 * 7175 * Put @skb in a per-cpu list, using the cpu which 7176 * allocated the skb/pages to reduce false sharing 7177 * and memory zone spinlock contention. 7178 */ 7179 void skb_attempt_defer_free(struct sk_buff *skb) 7180 { 7181 int cpu = skb->alloc_cpu; 7182 struct softnet_data *sd; 7183 unsigned int defer_max; 7184 bool kick; 7185 7186 if (cpu == raw_smp_processor_id() || 7187 WARN_ON_ONCE(cpu >= nr_cpu_ids) || 7188 !cpu_online(cpu)) { 7189 nodefer: kfree_skb_napi_cache(skb); 7190 return; 7191 } 7192 7193 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 7194 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 7195 7196 sd = &per_cpu(softnet_data, cpu); 7197 defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max); 7198 if (READ_ONCE(sd->defer_count) >= defer_max) 7199 goto nodefer; 7200 7201 spin_lock_bh(&sd->defer_lock); 7202 /* Send an IPI every time queue reaches half capacity. */ 7203 kick = sd->defer_count == (defer_max >> 1); 7204 /* Paired with the READ_ONCE() few lines above */ 7205 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 7206 7207 skb->next = sd->defer_list; 7208 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 7209 WRITE_ONCE(sd->defer_list, skb); 7210 spin_unlock_bh(&sd->defer_lock); 7211 7212 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 7213 * if we are unlucky enough (this seems very unlikely). 7214 */ 7215 if (unlikely(kick)) 7216 kick_defer_list_purge(sd, cpu); 7217 } 7218 7219 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 7220 size_t offset, size_t len) 7221 { 7222 const char *kaddr; 7223 __wsum csum; 7224 7225 kaddr = kmap_local_page(page); 7226 csum = csum_partial(kaddr + offset, len, 0); 7227 kunmap_local(kaddr); 7228 skb->csum = csum_block_add(skb->csum, csum, skb->len); 7229 } 7230 7231 /** 7232 * skb_splice_from_iter - Splice (or copy) pages to skbuff 7233 * @skb: The buffer to add pages to 7234 * @iter: Iterator representing the pages to be added 7235 * @maxsize: Maximum amount of pages to be added 7236 * 7237 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 7238 * extracts pages from an iterator and adds them to the socket buffer if 7239 * possible, copying them to fragments if not possible (such as if they're slab 7240 * pages). 7241 * 7242 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 7243 * insufficient space in the buffer to transfer anything. 7244 */ 7245 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 7246 ssize_t maxsize) 7247 { 7248 size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags); 7249 struct page *pages[8], **ppages = pages; 7250 ssize_t spliced = 0, ret = 0; 7251 unsigned int i; 7252 7253 while (iter->count > 0) { 7254 ssize_t space, nr, len; 7255 size_t off; 7256 7257 ret = -EMSGSIZE; 7258 space = frag_limit - skb_shinfo(skb)->nr_frags; 7259 if (space < 0) 7260 break; 7261 7262 /* We might be able to coalesce without increasing nr_frags */ 7263 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 7264 7265 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 7266 if (len <= 0) { 7267 ret = len ?: -EIO; 7268 break; 7269 } 7270 7271 i = 0; 7272 do { 7273 struct page *page = pages[i++]; 7274 size_t part = min_t(size_t, PAGE_SIZE - off, len); 7275 7276 ret = -EIO; 7277 if (WARN_ON_ONCE(!sendpage_ok(page))) 7278 goto out; 7279 7280 ret = skb_append_pagefrags(skb, page, off, part, 7281 frag_limit); 7282 if (ret < 0) { 7283 iov_iter_revert(iter, len); 7284 goto out; 7285 } 7286 7287 if (skb->ip_summed == CHECKSUM_NONE) 7288 skb_splice_csum_page(skb, page, off, part); 7289 7290 off = 0; 7291 spliced += part; 7292 maxsize -= part; 7293 len -= part; 7294 } while (len > 0); 7295 7296 if (maxsize <= 0) 7297 break; 7298 } 7299 7300 out: 7301 skb_len_add(skb, spliced); 7302 return spliced ?: ret; 7303 } 7304 EXPORT_SYMBOL(skb_splice_from_iter); 7305 7306 static __always_inline 7307 size_t memcpy_from_iter_csum(void *iter_from, size_t progress, 7308 size_t len, void *to, void *priv2) 7309 { 7310 __wsum *csum = priv2; 7311 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len); 7312 7313 *csum = csum_block_add(*csum, next, progress); 7314 return 0; 7315 } 7316 7317 static __always_inline 7318 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress, 7319 size_t len, void *to, void *priv2) 7320 { 7321 __wsum next, *csum = priv2; 7322 7323 next = csum_and_copy_from_user(iter_from, to + progress, len); 7324 *csum = csum_block_add(*csum, next, progress); 7325 return next ? 0 : len; 7326 } 7327 7328 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, 7329 __wsum *csum, struct iov_iter *i) 7330 { 7331 size_t copied; 7332 7333 if (WARN_ON_ONCE(!i->data_source)) 7334 return false; 7335 copied = iterate_and_advance2(i, bytes, addr, csum, 7336 copy_from_user_iter_csum, 7337 memcpy_from_iter_csum); 7338 if (likely(copied == bytes)) 7339 return true; 7340 iov_iter_revert(i, copied); 7341 return false; 7342 } 7343 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 7344 7345 void get_netmem(netmem_ref netmem) 7346 { 7347 struct net_iov *niov; 7348 7349 if (netmem_is_net_iov(netmem)) { 7350 niov = netmem_to_net_iov(netmem); 7351 if (net_is_devmem_iov(niov)) 7352 net_devmem_get_net_iov(netmem_to_net_iov(netmem)); 7353 return; 7354 } 7355 get_page(netmem_to_page(netmem)); 7356 } 7357 EXPORT_SYMBOL(get_netmem); 7358 7359 void put_netmem(netmem_ref netmem) 7360 { 7361 struct net_iov *niov; 7362 7363 if (netmem_is_net_iov(netmem)) { 7364 niov = netmem_to_net_iov(netmem); 7365 if (net_is_devmem_iov(niov)) 7366 net_devmem_put_net_iov(netmem_to_net_iov(netmem)); 7367 return; 7368 } 7369 7370 put_page(netmem_to_page(netmem)); 7371 } 7372 EXPORT_SYMBOL(put_netmem); 7373