xref: /linux/net/core/skbuff.c (revision 21ab7031cbff8c6b6f608234e18ffe0473e98f9d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/mctp.h>
74 #include <net/page_pool.h>
75 
76 #include <linux/uaccess.h>
77 #include <trace/events/skb.h>
78 #include <linux/highmem.h>
79 #include <linux/capability.h>
80 #include <linux/user_namespace.h>
81 #include <linux/indirect_call_wrapper.h>
82 
83 #include "dev.h"
84 #include "sock_destructor.h"
85 
86 struct kmem_cache *skbuff_head_cache __ro_after_init;
87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88 #ifdef CONFIG_SKB_EXTENSIONS
89 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90 #endif
91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92 EXPORT_SYMBOL(sysctl_max_skb_frags);
93 
94 #undef FN
95 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
96 const char * const drop_reasons[] = {
97 	[SKB_CONSUMED] = "CONSUMED",
98 	DEFINE_DROP_REASON(FN, FN)
99 };
100 EXPORT_SYMBOL(drop_reasons);
101 
102 /**
103  *	skb_panic - private function for out-of-line support
104  *	@skb:	buffer
105  *	@sz:	size
106  *	@addr:	address
107  *	@msg:	skb_over_panic or skb_under_panic
108  *
109  *	Out-of-line support for skb_put() and skb_push().
110  *	Called via the wrapper skb_over_panic() or skb_under_panic().
111  *	Keep out of line to prevent kernel bloat.
112  *	__builtin_return_address is not used because it is not always reliable.
113  */
114 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
115 		      const char msg[])
116 {
117 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
118 		 msg, addr, skb->len, sz, skb->head, skb->data,
119 		 (unsigned long)skb->tail, (unsigned long)skb->end,
120 		 skb->dev ? skb->dev->name : "<NULL>");
121 	BUG();
122 }
123 
124 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
125 {
126 	skb_panic(skb, sz, addr, __func__);
127 }
128 
129 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
130 {
131 	skb_panic(skb, sz, addr, __func__);
132 }
133 
134 #define NAPI_SKB_CACHE_SIZE	64
135 #define NAPI_SKB_CACHE_BULK	16
136 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
137 
138 #if PAGE_SIZE == SZ_4K
139 
140 #define NAPI_HAS_SMALL_PAGE_FRAG	1
141 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
142 
143 /* specialized page frag allocator using a single order 0 page
144  * and slicing it into 1K sized fragment. Constrained to systems
145  * with a very limited amount of 1K fragments fitting a single
146  * page - to avoid excessive truesize underestimation
147  */
148 
149 struct page_frag_1k {
150 	void *va;
151 	u16 offset;
152 	bool pfmemalloc;
153 };
154 
155 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
156 {
157 	struct page *page;
158 	int offset;
159 
160 	offset = nc->offset - SZ_1K;
161 	if (likely(offset >= 0))
162 		goto use_frag;
163 
164 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
165 	if (!page)
166 		return NULL;
167 
168 	nc->va = page_address(page);
169 	nc->pfmemalloc = page_is_pfmemalloc(page);
170 	offset = PAGE_SIZE - SZ_1K;
171 	page_ref_add(page, offset / SZ_1K);
172 
173 use_frag:
174 	nc->offset = offset;
175 	return nc->va + offset;
176 }
177 #else
178 
179 /* the small page is actually unused in this build; add dummy helpers
180  * to please the compiler and avoid later preprocessor's conditionals
181  */
182 #define NAPI_HAS_SMALL_PAGE_FRAG	0
183 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
184 
185 struct page_frag_1k {
186 };
187 
188 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
189 {
190 	return NULL;
191 }
192 
193 #endif
194 
195 struct napi_alloc_cache {
196 	struct page_frag_cache page;
197 	struct page_frag_1k page_small;
198 	unsigned int skb_count;
199 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
200 };
201 
202 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
203 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
204 
205 /* Double check that napi_get_frags() allocates skbs with
206  * skb->head being backed by slab, not a page fragment.
207  * This is to make sure bug fixed in 3226b158e67c
208  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
209  * does not accidentally come back.
210  */
211 void napi_get_frags_check(struct napi_struct *napi)
212 {
213 	struct sk_buff *skb;
214 
215 	local_bh_disable();
216 	skb = napi_get_frags(napi);
217 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
218 	napi_free_frags(napi);
219 	local_bh_enable();
220 }
221 
222 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
223 {
224 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
225 
226 	fragsz = SKB_DATA_ALIGN(fragsz);
227 
228 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
229 }
230 EXPORT_SYMBOL(__napi_alloc_frag_align);
231 
232 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
233 {
234 	void *data;
235 
236 	fragsz = SKB_DATA_ALIGN(fragsz);
237 	if (in_hardirq() || irqs_disabled()) {
238 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
239 
240 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
241 	} else {
242 		struct napi_alloc_cache *nc;
243 
244 		local_bh_disable();
245 		nc = this_cpu_ptr(&napi_alloc_cache);
246 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
247 		local_bh_enable();
248 	}
249 	return data;
250 }
251 EXPORT_SYMBOL(__netdev_alloc_frag_align);
252 
253 static struct sk_buff *napi_skb_cache_get(void)
254 {
255 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
256 	struct sk_buff *skb;
257 
258 	if (unlikely(!nc->skb_count)) {
259 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
260 						      GFP_ATOMIC,
261 						      NAPI_SKB_CACHE_BULK,
262 						      nc->skb_cache);
263 		if (unlikely(!nc->skb_count))
264 			return NULL;
265 	}
266 
267 	skb = nc->skb_cache[--nc->skb_count];
268 	kasan_unpoison_object_data(skbuff_head_cache, skb);
269 
270 	return skb;
271 }
272 
273 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
274 					 unsigned int size)
275 {
276 	struct skb_shared_info *shinfo;
277 
278 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
279 
280 	/* Assumes caller memset cleared SKB */
281 	skb->truesize = SKB_TRUESIZE(size);
282 	refcount_set(&skb->users, 1);
283 	skb->head = data;
284 	skb->data = data;
285 	skb_reset_tail_pointer(skb);
286 	skb_set_end_offset(skb, size);
287 	skb->mac_header = (typeof(skb->mac_header))~0U;
288 	skb->transport_header = (typeof(skb->transport_header))~0U;
289 	skb->alloc_cpu = raw_smp_processor_id();
290 	/* make sure we initialize shinfo sequentially */
291 	shinfo = skb_shinfo(skb);
292 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
293 	atomic_set(&shinfo->dataref, 1);
294 
295 	skb_set_kcov_handle(skb, kcov_common_handle());
296 }
297 
298 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
299 				     unsigned int *size)
300 {
301 	void *resized;
302 
303 	/* Must find the allocation size (and grow it to match). */
304 	*size = ksize(data);
305 	/* krealloc() will immediately return "data" when
306 	 * "ksize(data)" is requested: it is the existing upper
307 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
308 	 * that this "new" pointer needs to be passed back to the
309 	 * caller for use so the __alloc_size hinting will be
310 	 * tracked correctly.
311 	 */
312 	resized = krealloc(data, *size, GFP_ATOMIC);
313 	WARN_ON_ONCE(resized != data);
314 	return resized;
315 }
316 
317 /* build_skb() variant which can operate on slab buffers.
318  * Note that this should be used sparingly as slab buffers
319  * cannot be combined efficiently by GRO!
320  */
321 struct sk_buff *slab_build_skb(void *data)
322 {
323 	struct sk_buff *skb;
324 	unsigned int size;
325 
326 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
327 	if (unlikely(!skb))
328 		return NULL;
329 
330 	memset(skb, 0, offsetof(struct sk_buff, tail));
331 	data = __slab_build_skb(skb, data, &size);
332 	__finalize_skb_around(skb, data, size);
333 
334 	return skb;
335 }
336 EXPORT_SYMBOL(slab_build_skb);
337 
338 /* Caller must provide SKB that is memset cleared */
339 static void __build_skb_around(struct sk_buff *skb, void *data,
340 			       unsigned int frag_size)
341 {
342 	unsigned int size = frag_size;
343 
344 	/* frag_size == 0 is considered deprecated now. Callers
345 	 * using slab buffer should use slab_build_skb() instead.
346 	 */
347 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
348 		data = __slab_build_skb(skb, data, &size);
349 
350 	__finalize_skb_around(skb, data, size);
351 }
352 
353 /**
354  * __build_skb - build a network buffer
355  * @data: data buffer provided by caller
356  * @frag_size: size of data (must not be 0)
357  *
358  * Allocate a new &sk_buff. Caller provides space holding head and
359  * skb_shared_info. @data must have been allocated from the page
360  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
361  * allocation is deprecated, and callers should use slab_build_skb()
362  * instead.)
363  * The return is the new skb buffer.
364  * On a failure the return is %NULL, and @data is not freed.
365  * Notes :
366  *  Before IO, driver allocates only data buffer where NIC put incoming frame
367  *  Driver should add room at head (NET_SKB_PAD) and
368  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
369  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
370  *  before giving packet to stack.
371  *  RX rings only contains data buffers, not full skbs.
372  */
373 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
374 {
375 	struct sk_buff *skb;
376 
377 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
378 	if (unlikely(!skb))
379 		return NULL;
380 
381 	memset(skb, 0, offsetof(struct sk_buff, tail));
382 	__build_skb_around(skb, data, frag_size);
383 
384 	return skb;
385 }
386 
387 /* build_skb() is wrapper over __build_skb(), that specifically
388  * takes care of skb->head and skb->pfmemalloc
389  * This means that if @frag_size is not zero, then @data must be backed
390  * by a page fragment, not kmalloc() or vmalloc()
391  */
392 struct sk_buff *build_skb(void *data, unsigned int frag_size)
393 {
394 	struct sk_buff *skb = __build_skb(data, frag_size);
395 
396 	if (skb && frag_size) {
397 		skb->head_frag = 1;
398 		if (page_is_pfmemalloc(virt_to_head_page(data)))
399 			skb->pfmemalloc = 1;
400 	}
401 	return skb;
402 }
403 EXPORT_SYMBOL(build_skb);
404 
405 /**
406  * build_skb_around - build a network buffer around provided skb
407  * @skb: sk_buff provide by caller, must be memset cleared
408  * @data: data buffer provided by caller
409  * @frag_size: size of data, or 0 if head was kmalloced
410  */
411 struct sk_buff *build_skb_around(struct sk_buff *skb,
412 				 void *data, unsigned int frag_size)
413 {
414 	if (unlikely(!skb))
415 		return NULL;
416 
417 	__build_skb_around(skb, data, frag_size);
418 
419 	if (frag_size) {
420 		skb->head_frag = 1;
421 		if (page_is_pfmemalloc(virt_to_head_page(data)))
422 			skb->pfmemalloc = 1;
423 	}
424 	return skb;
425 }
426 EXPORT_SYMBOL(build_skb_around);
427 
428 /**
429  * __napi_build_skb - build a network buffer
430  * @data: data buffer provided by caller
431  * @frag_size: size of data, or 0 if head was kmalloced
432  *
433  * Version of __build_skb() that uses NAPI percpu caches to obtain
434  * skbuff_head instead of inplace allocation.
435  *
436  * Returns a new &sk_buff on success, %NULL on allocation failure.
437  */
438 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
439 {
440 	struct sk_buff *skb;
441 
442 	skb = napi_skb_cache_get();
443 	if (unlikely(!skb))
444 		return NULL;
445 
446 	memset(skb, 0, offsetof(struct sk_buff, tail));
447 	__build_skb_around(skb, data, frag_size);
448 
449 	return skb;
450 }
451 
452 /**
453  * napi_build_skb - build a network buffer
454  * @data: data buffer provided by caller
455  * @frag_size: size of data, or 0 if head was kmalloced
456  *
457  * Version of __napi_build_skb() that takes care of skb->head_frag
458  * and skb->pfmemalloc when the data is a page or page fragment.
459  *
460  * Returns a new &sk_buff on success, %NULL on allocation failure.
461  */
462 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
463 {
464 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
465 
466 	if (likely(skb) && frag_size) {
467 		skb->head_frag = 1;
468 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
469 	}
470 
471 	return skb;
472 }
473 EXPORT_SYMBOL(napi_build_skb);
474 
475 /*
476  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
477  * the caller if emergency pfmemalloc reserves are being used. If it is and
478  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
479  * may be used. Otherwise, the packet data may be discarded until enough
480  * memory is free
481  */
482 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
483 			     bool *pfmemalloc)
484 {
485 	void *obj;
486 	bool ret_pfmemalloc = false;
487 
488 	/*
489 	 * Try a regular allocation, when that fails and we're not entitled
490 	 * to the reserves, fail.
491 	 */
492 	obj = kmalloc_node_track_caller(size,
493 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
494 					node);
495 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
496 		goto out;
497 
498 	/* Try again but now we are using pfmemalloc reserves */
499 	ret_pfmemalloc = true;
500 	obj = kmalloc_node_track_caller(size, flags, node);
501 
502 out:
503 	if (pfmemalloc)
504 		*pfmemalloc = ret_pfmemalloc;
505 
506 	return obj;
507 }
508 
509 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
510  *	'private' fields and also do memory statistics to find all the
511  *	[BEEP] leaks.
512  *
513  */
514 
515 /**
516  *	__alloc_skb	-	allocate a network buffer
517  *	@size: size to allocate
518  *	@gfp_mask: allocation mask
519  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
520  *		instead of head cache and allocate a cloned (child) skb.
521  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
522  *		allocations in case the data is required for writeback
523  *	@node: numa node to allocate memory on
524  *
525  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
526  *	tail room of at least size bytes. The object has a reference count
527  *	of one. The return is the buffer. On a failure the return is %NULL.
528  *
529  *	Buffers may only be allocated from interrupts using a @gfp_mask of
530  *	%GFP_ATOMIC.
531  */
532 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
533 			    int flags, int node)
534 {
535 	struct kmem_cache *cache;
536 	struct sk_buff *skb;
537 	unsigned int osize;
538 	bool pfmemalloc;
539 	u8 *data;
540 
541 	cache = (flags & SKB_ALLOC_FCLONE)
542 		? skbuff_fclone_cache : skbuff_head_cache;
543 
544 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
545 		gfp_mask |= __GFP_MEMALLOC;
546 
547 	/* Get the HEAD */
548 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
549 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
550 		skb = napi_skb_cache_get();
551 	else
552 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
553 	if (unlikely(!skb))
554 		return NULL;
555 	prefetchw(skb);
556 
557 	/* We do our best to align skb_shared_info on a separate cache
558 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
559 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
560 	 * Both skb->head and skb_shared_info are cache line aligned.
561 	 */
562 	size = SKB_DATA_ALIGN(size);
563 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
564 	osize = kmalloc_size_roundup(size);
565 	data = kmalloc_reserve(osize, gfp_mask, node, &pfmemalloc);
566 	if (unlikely(!data))
567 		goto nodata;
568 	/* kmalloc_size_roundup() might give us more room than requested.
569 	 * Put skb_shared_info exactly at the end of allocated zone,
570 	 * to allow max possible filling before reallocation.
571 	 */
572 	size = SKB_WITH_OVERHEAD(osize);
573 	prefetchw(data + size);
574 
575 	/*
576 	 * Only clear those fields we need to clear, not those that we will
577 	 * actually initialise below. Hence, don't put any more fields after
578 	 * the tail pointer in struct sk_buff!
579 	 */
580 	memset(skb, 0, offsetof(struct sk_buff, tail));
581 	__build_skb_around(skb, data, osize);
582 	skb->pfmemalloc = pfmemalloc;
583 
584 	if (flags & SKB_ALLOC_FCLONE) {
585 		struct sk_buff_fclones *fclones;
586 
587 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
588 
589 		skb->fclone = SKB_FCLONE_ORIG;
590 		refcount_set(&fclones->fclone_ref, 1);
591 	}
592 
593 	return skb;
594 
595 nodata:
596 	kmem_cache_free(cache, skb);
597 	return NULL;
598 }
599 EXPORT_SYMBOL(__alloc_skb);
600 
601 /**
602  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
603  *	@dev: network device to receive on
604  *	@len: length to allocate
605  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
606  *
607  *	Allocate a new &sk_buff and assign it a usage count of one. The
608  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
609  *	the headroom they think they need without accounting for the
610  *	built in space. The built in space is used for optimisations.
611  *
612  *	%NULL is returned if there is no free memory.
613  */
614 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
615 				   gfp_t gfp_mask)
616 {
617 	struct page_frag_cache *nc;
618 	struct sk_buff *skb;
619 	bool pfmemalloc;
620 	void *data;
621 
622 	len += NET_SKB_PAD;
623 
624 	/* If requested length is either too small or too big,
625 	 * we use kmalloc() for skb->head allocation.
626 	 */
627 	if (len <= SKB_WITH_OVERHEAD(1024) ||
628 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
629 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
630 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
631 		if (!skb)
632 			goto skb_fail;
633 		goto skb_success;
634 	}
635 
636 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
637 	len = SKB_DATA_ALIGN(len);
638 
639 	if (sk_memalloc_socks())
640 		gfp_mask |= __GFP_MEMALLOC;
641 
642 	if (in_hardirq() || irqs_disabled()) {
643 		nc = this_cpu_ptr(&netdev_alloc_cache);
644 		data = page_frag_alloc(nc, len, gfp_mask);
645 		pfmemalloc = nc->pfmemalloc;
646 	} else {
647 		local_bh_disable();
648 		nc = this_cpu_ptr(&napi_alloc_cache.page);
649 		data = page_frag_alloc(nc, len, gfp_mask);
650 		pfmemalloc = nc->pfmemalloc;
651 		local_bh_enable();
652 	}
653 
654 	if (unlikely(!data))
655 		return NULL;
656 
657 	skb = __build_skb(data, len);
658 	if (unlikely(!skb)) {
659 		skb_free_frag(data);
660 		return NULL;
661 	}
662 
663 	if (pfmemalloc)
664 		skb->pfmemalloc = 1;
665 	skb->head_frag = 1;
666 
667 skb_success:
668 	skb_reserve(skb, NET_SKB_PAD);
669 	skb->dev = dev;
670 
671 skb_fail:
672 	return skb;
673 }
674 EXPORT_SYMBOL(__netdev_alloc_skb);
675 
676 /**
677  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
678  *	@napi: napi instance this buffer was allocated for
679  *	@len: length to allocate
680  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
681  *
682  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
683  *	attempt to allocate the head from a special reserved region used
684  *	only for NAPI Rx allocation.  By doing this we can save several
685  *	CPU cycles by avoiding having to disable and re-enable IRQs.
686  *
687  *	%NULL is returned if there is no free memory.
688  */
689 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
690 				 gfp_t gfp_mask)
691 {
692 	struct napi_alloc_cache *nc;
693 	struct sk_buff *skb;
694 	bool pfmemalloc;
695 	void *data;
696 
697 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
698 	len += NET_SKB_PAD + NET_IP_ALIGN;
699 
700 	/* If requested length is either too small or too big,
701 	 * we use kmalloc() for skb->head allocation.
702 	 * When the small frag allocator is available, prefer it over kmalloc
703 	 * for small fragments
704 	 */
705 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
706 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
707 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
708 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
709 				  NUMA_NO_NODE);
710 		if (!skb)
711 			goto skb_fail;
712 		goto skb_success;
713 	}
714 
715 	nc = this_cpu_ptr(&napi_alloc_cache);
716 
717 	if (sk_memalloc_socks())
718 		gfp_mask |= __GFP_MEMALLOC;
719 
720 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
721 		/* we are artificially inflating the allocation size, but
722 		 * that is not as bad as it may look like, as:
723 		 * - 'len' less than GRO_MAX_HEAD makes little sense
724 		 * - On most systems, larger 'len' values lead to fragment
725 		 *   size above 512 bytes
726 		 * - kmalloc would use the kmalloc-1k slab for such values
727 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
728 		 *   little networking, as that implies no WiFi and no
729 		 *   tunnels support, and 32 bits arches.
730 		 */
731 		len = SZ_1K;
732 
733 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
734 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
735 	} else {
736 		len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
737 		len = SKB_DATA_ALIGN(len);
738 
739 		data = page_frag_alloc(&nc->page, len, gfp_mask);
740 		pfmemalloc = nc->page.pfmemalloc;
741 	}
742 
743 	if (unlikely(!data))
744 		return NULL;
745 
746 	skb = __napi_build_skb(data, len);
747 	if (unlikely(!skb)) {
748 		skb_free_frag(data);
749 		return NULL;
750 	}
751 
752 	if (pfmemalloc)
753 		skb->pfmemalloc = 1;
754 	skb->head_frag = 1;
755 
756 skb_success:
757 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
758 	skb->dev = napi->dev;
759 
760 skb_fail:
761 	return skb;
762 }
763 EXPORT_SYMBOL(__napi_alloc_skb);
764 
765 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
766 		     int size, unsigned int truesize)
767 {
768 	skb_fill_page_desc(skb, i, page, off, size);
769 	skb->len += size;
770 	skb->data_len += size;
771 	skb->truesize += truesize;
772 }
773 EXPORT_SYMBOL(skb_add_rx_frag);
774 
775 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
776 			  unsigned int truesize)
777 {
778 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
779 
780 	skb_frag_size_add(frag, size);
781 	skb->len += size;
782 	skb->data_len += size;
783 	skb->truesize += truesize;
784 }
785 EXPORT_SYMBOL(skb_coalesce_rx_frag);
786 
787 static void skb_drop_list(struct sk_buff **listp)
788 {
789 	kfree_skb_list(*listp);
790 	*listp = NULL;
791 }
792 
793 static inline void skb_drop_fraglist(struct sk_buff *skb)
794 {
795 	skb_drop_list(&skb_shinfo(skb)->frag_list);
796 }
797 
798 static void skb_clone_fraglist(struct sk_buff *skb)
799 {
800 	struct sk_buff *list;
801 
802 	skb_walk_frags(skb, list)
803 		skb_get(list);
804 }
805 
806 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
807 {
808 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
809 		return false;
810 	return page_pool_return_skb_page(virt_to_page(data));
811 }
812 
813 static void skb_free_head(struct sk_buff *skb)
814 {
815 	unsigned char *head = skb->head;
816 
817 	if (skb->head_frag) {
818 		if (skb_pp_recycle(skb, head))
819 			return;
820 		skb_free_frag(head);
821 	} else {
822 		kfree(head);
823 	}
824 }
825 
826 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
827 {
828 	struct skb_shared_info *shinfo = skb_shinfo(skb);
829 	int i;
830 
831 	if (skb->cloned &&
832 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
833 			      &shinfo->dataref))
834 		goto exit;
835 
836 	if (skb_zcopy(skb)) {
837 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
838 
839 		skb_zcopy_clear(skb, true);
840 		if (skip_unref)
841 			goto free_head;
842 	}
843 
844 	for (i = 0; i < shinfo->nr_frags; i++)
845 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
846 
847 free_head:
848 	if (shinfo->frag_list)
849 		kfree_skb_list_reason(shinfo->frag_list, reason);
850 
851 	skb_free_head(skb);
852 exit:
853 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
854 	 * bit is only set on the head though, so in order to avoid races
855 	 * while trying to recycle fragments on __skb_frag_unref() we need
856 	 * to make one SKB responsible for triggering the recycle path.
857 	 * So disable the recycling bit if an SKB is cloned and we have
858 	 * additional references to the fragmented part of the SKB.
859 	 * Eventually the last SKB will have the recycling bit set and it's
860 	 * dataref set to 0, which will trigger the recycling
861 	 */
862 	skb->pp_recycle = 0;
863 }
864 
865 /*
866  *	Free an skbuff by memory without cleaning the state.
867  */
868 static void kfree_skbmem(struct sk_buff *skb)
869 {
870 	struct sk_buff_fclones *fclones;
871 
872 	switch (skb->fclone) {
873 	case SKB_FCLONE_UNAVAILABLE:
874 		kmem_cache_free(skbuff_head_cache, skb);
875 		return;
876 
877 	case SKB_FCLONE_ORIG:
878 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
879 
880 		/* We usually free the clone (TX completion) before original skb
881 		 * This test would have no chance to be true for the clone,
882 		 * while here, branch prediction will be good.
883 		 */
884 		if (refcount_read(&fclones->fclone_ref) == 1)
885 			goto fastpath;
886 		break;
887 
888 	default: /* SKB_FCLONE_CLONE */
889 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
890 		break;
891 	}
892 	if (!refcount_dec_and_test(&fclones->fclone_ref))
893 		return;
894 fastpath:
895 	kmem_cache_free(skbuff_fclone_cache, fclones);
896 }
897 
898 void skb_release_head_state(struct sk_buff *skb)
899 {
900 	skb_dst_drop(skb);
901 	if (skb->destructor) {
902 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
903 		skb->destructor(skb);
904 	}
905 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
906 	nf_conntrack_put(skb_nfct(skb));
907 #endif
908 	skb_ext_put(skb);
909 }
910 
911 /* Free everything but the sk_buff shell. */
912 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
913 {
914 	skb_release_head_state(skb);
915 	if (likely(skb->head))
916 		skb_release_data(skb, reason);
917 }
918 
919 /**
920  *	__kfree_skb - private function
921  *	@skb: buffer
922  *
923  *	Free an sk_buff. Release anything attached to the buffer.
924  *	Clean the state. This is an internal helper function. Users should
925  *	always call kfree_skb
926  */
927 
928 void __kfree_skb(struct sk_buff *skb)
929 {
930 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
931 	kfree_skbmem(skb);
932 }
933 EXPORT_SYMBOL(__kfree_skb);
934 
935 /**
936  *	kfree_skb_reason - free an sk_buff with special reason
937  *	@skb: buffer to free
938  *	@reason: reason why this skb is dropped
939  *
940  *	Drop a reference to the buffer and free it if the usage count has
941  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
942  *	tracepoint.
943  */
944 void __fix_address
945 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
946 {
947 	if (unlikely(!skb_unref(skb)))
948 		return;
949 
950 	DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX);
951 
952 	if (reason == SKB_CONSUMED)
953 		trace_consume_skb(skb);
954 	else
955 		trace_kfree_skb(skb, __builtin_return_address(0), reason);
956 	__kfree_skb(skb);
957 }
958 EXPORT_SYMBOL(kfree_skb_reason);
959 
960 void kfree_skb_list_reason(struct sk_buff *segs,
961 			   enum skb_drop_reason reason)
962 {
963 	while (segs) {
964 		struct sk_buff *next = segs->next;
965 
966 		kfree_skb_reason(segs, reason);
967 		segs = next;
968 	}
969 }
970 EXPORT_SYMBOL(kfree_skb_list_reason);
971 
972 /* Dump skb information and contents.
973  *
974  * Must only be called from net_ratelimit()-ed paths.
975  *
976  * Dumps whole packets if full_pkt, only headers otherwise.
977  */
978 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
979 {
980 	struct skb_shared_info *sh = skb_shinfo(skb);
981 	struct net_device *dev = skb->dev;
982 	struct sock *sk = skb->sk;
983 	struct sk_buff *list_skb;
984 	bool has_mac, has_trans;
985 	int headroom, tailroom;
986 	int i, len, seg_len;
987 
988 	if (full_pkt)
989 		len = skb->len;
990 	else
991 		len = min_t(int, skb->len, MAX_HEADER + 128);
992 
993 	headroom = skb_headroom(skb);
994 	tailroom = skb_tailroom(skb);
995 
996 	has_mac = skb_mac_header_was_set(skb);
997 	has_trans = skb_transport_header_was_set(skb);
998 
999 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1000 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1001 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1002 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1003 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1004 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1005 	       has_mac ? skb->mac_header : -1,
1006 	       has_mac ? skb_mac_header_len(skb) : -1,
1007 	       skb->network_header,
1008 	       has_trans ? skb_network_header_len(skb) : -1,
1009 	       has_trans ? skb->transport_header : -1,
1010 	       sh->tx_flags, sh->nr_frags,
1011 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1012 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
1013 	       skb->csum_valid, skb->csum_level,
1014 	       skb->hash, skb->sw_hash, skb->l4_hash,
1015 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1016 
1017 	if (dev)
1018 		printk("%sdev name=%s feat=%pNF\n",
1019 		       level, dev->name, &dev->features);
1020 	if (sk)
1021 		printk("%ssk family=%hu type=%u proto=%u\n",
1022 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1023 
1024 	if (full_pkt && headroom)
1025 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1026 			       16, 1, skb->head, headroom, false);
1027 
1028 	seg_len = min_t(int, skb_headlen(skb), len);
1029 	if (seg_len)
1030 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1031 			       16, 1, skb->data, seg_len, false);
1032 	len -= seg_len;
1033 
1034 	if (full_pkt && tailroom)
1035 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1036 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1037 
1038 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1039 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1040 		u32 p_off, p_len, copied;
1041 		struct page *p;
1042 		u8 *vaddr;
1043 
1044 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1045 				      skb_frag_size(frag), p, p_off, p_len,
1046 				      copied) {
1047 			seg_len = min_t(int, p_len, len);
1048 			vaddr = kmap_atomic(p);
1049 			print_hex_dump(level, "skb frag:     ",
1050 				       DUMP_PREFIX_OFFSET,
1051 				       16, 1, vaddr + p_off, seg_len, false);
1052 			kunmap_atomic(vaddr);
1053 			len -= seg_len;
1054 			if (!len)
1055 				break;
1056 		}
1057 	}
1058 
1059 	if (full_pkt && skb_has_frag_list(skb)) {
1060 		printk("skb fraglist:\n");
1061 		skb_walk_frags(skb, list_skb)
1062 			skb_dump(level, list_skb, true);
1063 	}
1064 }
1065 EXPORT_SYMBOL(skb_dump);
1066 
1067 /**
1068  *	skb_tx_error - report an sk_buff xmit error
1069  *	@skb: buffer that triggered an error
1070  *
1071  *	Report xmit error if a device callback is tracking this skb.
1072  *	skb must be freed afterwards.
1073  */
1074 void skb_tx_error(struct sk_buff *skb)
1075 {
1076 	if (skb) {
1077 		skb_zcopy_downgrade_managed(skb);
1078 		skb_zcopy_clear(skb, true);
1079 	}
1080 }
1081 EXPORT_SYMBOL(skb_tx_error);
1082 
1083 #ifdef CONFIG_TRACEPOINTS
1084 /**
1085  *	consume_skb - free an skbuff
1086  *	@skb: buffer to free
1087  *
1088  *	Drop a ref to the buffer and free it if the usage count has hit zero
1089  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1090  *	is being dropped after a failure and notes that
1091  */
1092 void consume_skb(struct sk_buff *skb)
1093 {
1094 	if (!skb_unref(skb))
1095 		return;
1096 
1097 	trace_consume_skb(skb);
1098 	__kfree_skb(skb);
1099 }
1100 EXPORT_SYMBOL(consume_skb);
1101 #endif
1102 
1103 /**
1104  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1105  *	@skb: buffer to free
1106  *
1107  *	Alike consume_skb(), but this variant assumes that this is the last
1108  *	skb reference and all the head states have been already dropped
1109  */
1110 void __consume_stateless_skb(struct sk_buff *skb)
1111 {
1112 	trace_consume_skb(skb);
1113 	skb_release_data(skb, SKB_CONSUMED);
1114 	kfree_skbmem(skb);
1115 }
1116 
1117 static void napi_skb_cache_put(struct sk_buff *skb)
1118 {
1119 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1120 	u32 i;
1121 
1122 	kasan_poison_object_data(skbuff_head_cache, skb);
1123 	nc->skb_cache[nc->skb_count++] = skb;
1124 
1125 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1126 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1127 			kasan_unpoison_object_data(skbuff_head_cache,
1128 						   nc->skb_cache[i]);
1129 
1130 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
1131 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1132 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1133 	}
1134 }
1135 
1136 void __kfree_skb_defer(struct sk_buff *skb)
1137 {
1138 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1139 	napi_skb_cache_put(skb);
1140 }
1141 
1142 void napi_skb_free_stolen_head(struct sk_buff *skb)
1143 {
1144 	if (unlikely(skb->slow_gro)) {
1145 		nf_reset_ct(skb);
1146 		skb_dst_drop(skb);
1147 		skb_ext_put(skb);
1148 		skb_orphan(skb);
1149 		skb->slow_gro = 0;
1150 	}
1151 	napi_skb_cache_put(skb);
1152 }
1153 
1154 void napi_consume_skb(struct sk_buff *skb, int budget)
1155 {
1156 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1157 	if (unlikely(!budget)) {
1158 		dev_consume_skb_any(skb);
1159 		return;
1160 	}
1161 
1162 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1163 
1164 	if (!skb_unref(skb))
1165 		return;
1166 
1167 	/* if reaching here SKB is ready to free */
1168 	trace_consume_skb(skb);
1169 
1170 	/* if SKB is a clone, don't handle this case */
1171 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1172 		__kfree_skb(skb);
1173 		return;
1174 	}
1175 
1176 	skb_release_all(skb, SKB_CONSUMED);
1177 	napi_skb_cache_put(skb);
1178 }
1179 EXPORT_SYMBOL(napi_consume_skb);
1180 
1181 /* Make sure a field is contained by headers group */
1182 #define CHECK_SKB_FIELD(field) \
1183 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1184 		     offsetof(struct sk_buff, headers.field));	\
1185 
1186 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1187 {
1188 	new->tstamp		= old->tstamp;
1189 	/* We do not copy old->sk */
1190 	new->dev		= old->dev;
1191 	memcpy(new->cb, old->cb, sizeof(old->cb));
1192 	skb_dst_copy(new, old);
1193 	__skb_ext_copy(new, old);
1194 	__nf_copy(new, old, false);
1195 
1196 	/* Note : this field could be in the headers group.
1197 	 * It is not yet because we do not want to have a 16 bit hole
1198 	 */
1199 	new->queue_mapping = old->queue_mapping;
1200 
1201 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1202 	CHECK_SKB_FIELD(protocol);
1203 	CHECK_SKB_FIELD(csum);
1204 	CHECK_SKB_FIELD(hash);
1205 	CHECK_SKB_FIELD(priority);
1206 	CHECK_SKB_FIELD(skb_iif);
1207 	CHECK_SKB_FIELD(vlan_proto);
1208 	CHECK_SKB_FIELD(vlan_tci);
1209 	CHECK_SKB_FIELD(transport_header);
1210 	CHECK_SKB_FIELD(network_header);
1211 	CHECK_SKB_FIELD(mac_header);
1212 	CHECK_SKB_FIELD(inner_protocol);
1213 	CHECK_SKB_FIELD(inner_transport_header);
1214 	CHECK_SKB_FIELD(inner_network_header);
1215 	CHECK_SKB_FIELD(inner_mac_header);
1216 	CHECK_SKB_FIELD(mark);
1217 #ifdef CONFIG_NETWORK_SECMARK
1218 	CHECK_SKB_FIELD(secmark);
1219 #endif
1220 #ifdef CONFIG_NET_RX_BUSY_POLL
1221 	CHECK_SKB_FIELD(napi_id);
1222 #endif
1223 	CHECK_SKB_FIELD(alloc_cpu);
1224 #ifdef CONFIG_XPS
1225 	CHECK_SKB_FIELD(sender_cpu);
1226 #endif
1227 #ifdef CONFIG_NET_SCHED
1228 	CHECK_SKB_FIELD(tc_index);
1229 #endif
1230 
1231 }
1232 
1233 /*
1234  * You should not add any new code to this function.  Add it to
1235  * __copy_skb_header above instead.
1236  */
1237 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1238 {
1239 #define C(x) n->x = skb->x
1240 
1241 	n->next = n->prev = NULL;
1242 	n->sk = NULL;
1243 	__copy_skb_header(n, skb);
1244 
1245 	C(len);
1246 	C(data_len);
1247 	C(mac_len);
1248 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1249 	n->cloned = 1;
1250 	n->nohdr = 0;
1251 	n->peeked = 0;
1252 	C(pfmemalloc);
1253 	C(pp_recycle);
1254 	n->destructor = NULL;
1255 	C(tail);
1256 	C(end);
1257 	C(head);
1258 	C(head_frag);
1259 	C(data);
1260 	C(truesize);
1261 	refcount_set(&n->users, 1);
1262 
1263 	atomic_inc(&(skb_shinfo(skb)->dataref));
1264 	skb->cloned = 1;
1265 
1266 	return n;
1267 #undef C
1268 }
1269 
1270 /**
1271  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1272  * @first: first sk_buff of the msg
1273  */
1274 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1275 {
1276 	struct sk_buff *n;
1277 
1278 	n = alloc_skb(0, GFP_ATOMIC);
1279 	if (!n)
1280 		return NULL;
1281 
1282 	n->len = first->len;
1283 	n->data_len = first->len;
1284 	n->truesize = first->truesize;
1285 
1286 	skb_shinfo(n)->frag_list = first;
1287 
1288 	__copy_skb_header(n, first);
1289 	n->destructor = NULL;
1290 
1291 	return n;
1292 }
1293 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1294 
1295 /**
1296  *	skb_morph	-	morph one skb into another
1297  *	@dst: the skb to receive the contents
1298  *	@src: the skb to supply the contents
1299  *
1300  *	This is identical to skb_clone except that the target skb is
1301  *	supplied by the user.
1302  *
1303  *	The target skb is returned upon exit.
1304  */
1305 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1306 {
1307 	skb_release_all(dst, SKB_CONSUMED);
1308 	return __skb_clone(dst, src);
1309 }
1310 EXPORT_SYMBOL_GPL(skb_morph);
1311 
1312 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1313 {
1314 	unsigned long max_pg, num_pg, new_pg, old_pg;
1315 	struct user_struct *user;
1316 
1317 	if (capable(CAP_IPC_LOCK) || !size)
1318 		return 0;
1319 
1320 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1321 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1322 	user = mmp->user ? : current_user();
1323 
1324 	old_pg = atomic_long_read(&user->locked_vm);
1325 	do {
1326 		new_pg = old_pg + num_pg;
1327 		if (new_pg > max_pg)
1328 			return -ENOBUFS;
1329 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1330 
1331 	if (!mmp->user) {
1332 		mmp->user = get_uid(user);
1333 		mmp->num_pg = num_pg;
1334 	} else {
1335 		mmp->num_pg += num_pg;
1336 	}
1337 
1338 	return 0;
1339 }
1340 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1341 
1342 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1343 {
1344 	if (mmp->user) {
1345 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1346 		free_uid(mmp->user);
1347 	}
1348 }
1349 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1350 
1351 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1352 {
1353 	struct ubuf_info_msgzc *uarg;
1354 	struct sk_buff *skb;
1355 
1356 	WARN_ON_ONCE(!in_task());
1357 
1358 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1359 	if (!skb)
1360 		return NULL;
1361 
1362 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1363 	uarg = (void *)skb->cb;
1364 	uarg->mmp.user = NULL;
1365 
1366 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1367 		kfree_skb(skb);
1368 		return NULL;
1369 	}
1370 
1371 	uarg->ubuf.callback = msg_zerocopy_callback;
1372 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1373 	uarg->len = 1;
1374 	uarg->bytelen = size;
1375 	uarg->zerocopy = 1;
1376 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1377 	refcount_set(&uarg->ubuf.refcnt, 1);
1378 	sock_hold(sk);
1379 
1380 	return &uarg->ubuf;
1381 }
1382 
1383 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1384 {
1385 	return container_of((void *)uarg, struct sk_buff, cb);
1386 }
1387 
1388 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1389 				       struct ubuf_info *uarg)
1390 {
1391 	if (uarg) {
1392 		struct ubuf_info_msgzc *uarg_zc;
1393 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1394 		u32 bytelen, next;
1395 
1396 		/* there might be non MSG_ZEROCOPY users */
1397 		if (uarg->callback != msg_zerocopy_callback)
1398 			return NULL;
1399 
1400 		/* realloc only when socket is locked (TCP, UDP cork),
1401 		 * so uarg->len and sk_zckey access is serialized
1402 		 */
1403 		if (!sock_owned_by_user(sk)) {
1404 			WARN_ON_ONCE(1);
1405 			return NULL;
1406 		}
1407 
1408 		uarg_zc = uarg_to_msgzc(uarg);
1409 		bytelen = uarg_zc->bytelen + size;
1410 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1411 			/* TCP can create new skb to attach new uarg */
1412 			if (sk->sk_type == SOCK_STREAM)
1413 				goto new_alloc;
1414 			return NULL;
1415 		}
1416 
1417 		next = (u32)atomic_read(&sk->sk_zckey);
1418 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1419 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1420 				return NULL;
1421 			uarg_zc->len++;
1422 			uarg_zc->bytelen = bytelen;
1423 			atomic_set(&sk->sk_zckey, ++next);
1424 
1425 			/* no extra ref when appending to datagram (MSG_MORE) */
1426 			if (sk->sk_type == SOCK_STREAM)
1427 				net_zcopy_get(uarg);
1428 
1429 			return uarg;
1430 		}
1431 	}
1432 
1433 new_alloc:
1434 	return msg_zerocopy_alloc(sk, size);
1435 }
1436 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1437 
1438 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1439 {
1440 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1441 	u32 old_lo, old_hi;
1442 	u64 sum_len;
1443 
1444 	old_lo = serr->ee.ee_info;
1445 	old_hi = serr->ee.ee_data;
1446 	sum_len = old_hi - old_lo + 1ULL + len;
1447 
1448 	if (sum_len >= (1ULL << 32))
1449 		return false;
1450 
1451 	if (lo != old_hi + 1)
1452 		return false;
1453 
1454 	serr->ee.ee_data += len;
1455 	return true;
1456 }
1457 
1458 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1459 {
1460 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1461 	struct sock_exterr_skb *serr;
1462 	struct sock *sk = skb->sk;
1463 	struct sk_buff_head *q;
1464 	unsigned long flags;
1465 	bool is_zerocopy;
1466 	u32 lo, hi;
1467 	u16 len;
1468 
1469 	mm_unaccount_pinned_pages(&uarg->mmp);
1470 
1471 	/* if !len, there was only 1 call, and it was aborted
1472 	 * so do not queue a completion notification
1473 	 */
1474 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1475 		goto release;
1476 
1477 	len = uarg->len;
1478 	lo = uarg->id;
1479 	hi = uarg->id + len - 1;
1480 	is_zerocopy = uarg->zerocopy;
1481 
1482 	serr = SKB_EXT_ERR(skb);
1483 	memset(serr, 0, sizeof(*serr));
1484 	serr->ee.ee_errno = 0;
1485 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1486 	serr->ee.ee_data = hi;
1487 	serr->ee.ee_info = lo;
1488 	if (!is_zerocopy)
1489 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1490 
1491 	q = &sk->sk_error_queue;
1492 	spin_lock_irqsave(&q->lock, flags);
1493 	tail = skb_peek_tail(q);
1494 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1495 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1496 		__skb_queue_tail(q, skb);
1497 		skb = NULL;
1498 	}
1499 	spin_unlock_irqrestore(&q->lock, flags);
1500 
1501 	sk_error_report(sk);
1502 
1503 release:
1504 	consume_skb(skb);
1505 	sock_put(sk);
1506 }
1507 
1508 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1509 			   bool success)
1510 {
1511 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1512 
1513 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1514 
1515 	if (refcount_dec_and_test(&uarg->refcnt))
1516 		__msg_zerocopy_callback(uarg_zc);
1517 }
1518 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1519 
1520 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1521 {
1522 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1523 
1524 	atomic_dec(&sk->sk_zckey);
1525 	uarg_to_msgzc(uarg)->len--;
1526 
1527 	if (have_uref)
1528 		msg_zerocopy_callback(NULL, uarg, true);
1529 }
1530 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1531 
1532 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1533 			     struct msghdr *msg, int len,
1534 			     struct ubuf_info *uarg)
1535 {
1536 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1537 	int err, orig_len = skb->len;
1538 
1539 	/* An skb can only point to one uarg. This edge case happens when
1540 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1541 	 */
1542 	if (orig_uarg && uarg != orig_uarg)
1543 		return -EEXIST;
1544 
1545 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1546 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1547 		struct sock *save_sk = skb->sk;
1548 
1549 		/* Streams do not free skb on error. Reset to prev state. */
1550 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1551 		skb->sk = sk;
1552 		___pskb_trim(skb, orig_len);
1553 		skb->sk = save_sk;
1554 		return err;
1555 	}
1556 
1557 	skb_zcopy_set(skb, uarg, NULL);
1558 	return skb->len - orig_len;
1559 }
1560 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1561 
1562 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1563 {
1564 	int i;
1565 
1566 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1567 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1568 		skb_frag_ref(skb, i);
1569 }
1570 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1571 
1572 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1573 			      gfp_t gfp_mask)
1574 {
1575 	if (skb_zcopy(orig)) {
1576 		if (skb_zcopy(nskb)) {
1577 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1578 			if (!gfp_mask) {
1579 				WARN_ON_ONCE(1);
1580 				return -ENOMEM;
1581 			}
1582 			if (skb_uarg(nskb) == skb_uarg(orig))
1583 				return 0;
1584 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1585 				return -EIO;
1586 		}
1587 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1588 	}
1589 	return 0;
1590 }
1591 
1592 /**
1593  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1594  *	@skb: the skb to modify
1595  *	@gfp_mask: allocation priority
1596  *
1597  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1598  *	It will copy all frags into kernel and drop the reference
1599  *	to userspace pages.
1600  *
1601  *	If this function is called from an interrupt gfp_mask() must be
1602  *	%GFP_ATOMIC.
1603  *
1604  *	Returns 0 on success or a negative error code on failure
1605  *	to allocate kernel memory to copy to.
1606  */
1607 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1608 {
1609 	int num_frags = skb_shinfo(skb)->nr_frags;
1610 	struct page *page, *head = NULL;
1611 	int i, new_frags;
1612 	u32 d_off;
1613 
1614 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1615 		return -EINVAL;
1616 
1617 	if (!num_frags)
1618 		goto release;
1619 
1620 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1621 	for (i = 0; i < new_frags; i++) {
1622 		page = alloc_page(gfp_mask);
1623 		if (!page) {
1624 			while (head) {
1625 				struct page *next = (struct page *)page_private(head);
1626 				put_page(head);
1627 				head = next;
1628 			}
1629 			return -ENOMEM;
1630 		}
1631 		set_page_private(page, (unsigned long)head);
1632 		head = page;
1633 	}
1634 
1635 	page = head;
1636 	d_off = 0;
1637 	for (i = 0; i < num_frags; i++) {
1638 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1639 		u32 p_off, p_len, copied;
1640 		struct page *p;
1641 		u8 *vaddr;
1642 
1643 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1644 				      p, p_off, p_len, copied) {
1645 			u32 copy, done = 0;
1646 			vaddr = kmap_atomic(p);
1647 
1648 			while (done < p_len) {
1649 				if (d_off == PAGE_SIZE) {
1650 					d_off = 0;
1651 					page = (struct page *)page_private(page);
1652 				}
1653 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1654 				memcpy(page_address(page) + d_off,
1655 				       vaddr + p_off + done, copy);
1656 				done += copy;
1657 				d_off += copy;
1658 			}
1659 			kunmap_atomic(vaddr);
1660 		}
1661 	}
1662 
1663 	/* skb frags release userspace buffers */
1664 	for (i = 0; i < num_frags; i++)
1665 		skb_frag_unref(skb, i);
1666 
1667 	/* skb frags point to kernel buffers */
1668 	for (i = 0; i < new_frags - 1; i++) {
1669 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1670 		head = (struct page *)page_private(head);
1671 	}
1672 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1673 	skb_shinfo(skb)->nr_frags = new_frags;
1674 
1675 release:
1676 	skb_zcopy_clear(skb, false);
1677 	return 0;
1678 }
1679 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1680 
1681 /**
1682  *	skb_clone	-	duplicate an sk_buff
1683  *	@skb: buffer to clone
1684  *	@gfp_mask: allocation priority
1685  *
1686  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1687  *	copies share the same packet data but not structure. The new
1688  *	buffer has a reference count of 1. If the allocation fails the
1689  *	function returns %NULL otherwise the new buffer is returned.
1690  *
1691  *	If this function is called from an interrupt gfp_mask() must be
1692  *	%GFP_ATOMIC.
1693  */
1694 
1695 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1696 {
1697 	struct sk_buff_fclones *fclones = container_of(skb,
1698 						       struct sk_buff_fclones,
1699 						       skb1);
1700 	struct sk_buff *n;
1701 
1702 	if (skb_orphan_frags(skb, gfp_mask))
1703 		return NULL;
1704 
1705 	if (skb->fclone == SKB_FCLONE_ORIG &&
1706 	    refcount_read(&fclones->fclone_ref) == 1) {
1707 		n = &fclones->skb2;
1708 		refcount_set(&fclones->fclone_ref, 2);
1709 		n->fclone = SKB_FCLONE_CLONE;
1710 	} else {
1711 		if (skb_pfmemalloc(skb))
1712 			gfp_mask |= __GFP_MEMALLOC;
1713 
1714 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1715 		if (!n)
1716 			return NULL;
1717 
1718 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1719 	}
1720 
1721 	return __skb_clone(n, skb);
1722 }
1723 EXPORT_SYMBOL(skb_clone);
1724 
1725 void skb_headers_offset_update(struct sk_buff *skb, int off)
1726 {
1727 	/* Only adjust this if it actually is csum_start rather than csum */
1728 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1729 		skb->csum_start += off;
1730 	/* {transport,network,mac}_header and tail are relative to skb->head */
1731 	skb->transport_header += off;
1732 	skb->network_header   += off;
1733 	if (skb_mac_header_was_set(skb))
1734 		skb->mac_header += off;
1735 	skb->inner_transport_header += off;
1736 	skb->inner_network_header += off;
1737 	skb->inner_mac_header += off;
1738 }
1739 EXPORT_SYMBOL(skb_headers_offset_update);
1740 
1741 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1742 {
1743 	__copy_skb_header(new, old);
1744 
1745 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1746 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1747 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1748 }
1749 EXPORT_SYMBOL(skb_copy_header);
1750 
1751 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1752 {
1753 	if (skb_pfmemalloc(skb))
1754 		return SKB_ALLOC_RX;
1755 	return 0;
1756 }
1757 
1758 /**
1759  *	skb_copy	-	create private copy of an sk_buff
1760  *	@skb: buffer to copy
1761  *	@gfp_mask: allocation priority
1762  *
1763  *	Make a copy of both an &sk_buff and its data. This is used when the
1764  *	caller wishes to modify the data and needs a private copy of the
1765  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1766  *	on success. The returned buffer has a reference count of 1.
1767  *
1768  *	As by-product this function converts non-linear &sk_buff to linear
1769  *	one, so that &sk_buff becomes completely private and caller is allowed
1770  *	to modify all the data of returned buffer. This means that this
1771  *	function is not recommended for use in circumstances when only
1772  *	header is going to be modified. Use pskb_copy() instead.
1773  */
1774 
1775 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1776 {
1777 	int headerlen = skb_headroom(skb);
1778 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1779 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1780 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1781 
1782 	if (!n)
1783 		return NULL;
1784 
1785 	/* Set the data pointer */
1786 	skb_reserve(n, headerlen);
1787 	/* Set the tail pointer and length */
1788 	skb_put(n, skb->len);
1789 
1790 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1791 
1792 	skb_copy_header(n, skb);
1793 	return n;
1794 }
1795 EXPORT_SYMBOL(skb_copy);
1796 
1797 /**
1798  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1799  *	@skb: buffer to copy
1800  *	@headroom: headroom of new skb
1801  *	@gfp_mask: allocation priority
1802  *	@fclone: if true allocate the copy of the skb from the fclone
1803  *	cache instead of the head cache; it is recommended to set this
1804  *	to true for the cases where the copy will likely be cloned
1805  *
1806  *	Make a copy of both an &sk_buff and part of its data, located
1807  *	in header. Fragmented data remain shared. This is used when
1808  *	the caller wishes to modify only header of &sk_buff and needs
1809  *	private copy of the header to alter. Returns %NULL on failure
1810  *	or the pointer to the buffer on success.
1811  *	The returned buffer has a reference count of 1.
1812  */
1813 
1814 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1815 				   gfp_t gfp_mask, bool fclone)
1816 {
1817 	unsigned int size = skb_headlen(skb) + headroom;
1818 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1819 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1820 
1821 	if (!n)
1822 		goto out;
1823 
1824 	/* Set the data pointer */
1825 	skb_reserve(n, headroom);
1826 	/* Set the tail pointer and length */
1827 	skb_put(n, skb_headlen(skb));
1828 	/* Copy the bytes */
1829 	skb_copy_from_linear_data(skb, n->data, n->len);
1830 
1831 	n->truesize += skb->data_len;
1832 	n->data_len  = skb->data_len;
1833 	n->len	     = skb->len;
1834 
1835 	if (skb_shinfo(skb)->nr_frags) {
1836 		int i;
1837 
1838 		if (skb_orphan_frags(skb, gfp_mask) ||
1839 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1840 			kfree_skb(n);
1841 			n = NULL;
1842 			goto out;
1843 		}
1844 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1845 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1846 			skb_frag_ref(skb, i);
1847 		}
1848 		skb_shinfo(n)->nr_frags = i;
1849 	}
1850 
1851 	if (skb_has_frag_list(skb)) {
1852 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1853 		skb_clone_fraglist(n);
1854 	}
1855 
1856 	skb_copy_header(n, skb);
1857 out:
1858 	return n;
1859 }
1860 EXPORT_SYMBOL(__pskb_copy_fclone);
1861 
1862 /**
1863  *	pskb_expand_head - reallocate header of &sk_buff
1864  *	@skb: buffer to reallocate
1865  *	@nhead: room to add at head
1866  *	@ntail: room to add at tail
1867  *	@gfp_mask: allocation priority
1868  *
1869  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1870  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1871  *	reference count of 1. Returns zero in the case of success or error,
1872  *	if expansion failed. In the last case, &sk_buff is not changed.
1873  *
1874  *	All the pointers pointing into skb header may change and must be
1875  *	reloaded after call to this function.
1876  */
1877 
1878 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1879 		     gfp_t gfp_mask)
1880 {
1881 	unsigned int osize = skb_end_offset(skb);
1882 	unsigned int size = osize + nhead + ntail;
1883 	long off;
1884 	u8 *data;
1885 	int i;
1886 
1887 	BUG_ON(nhead < 0);
1888 
1889 	BUG_ON(skb_shared(skb));
1890 
1891 	skb_zcopy_downgrade_managed(skb);
1892 
1893 	if (skb_pfmemalloc(skb))
1894 		gfp_mask |= __GFP_MEMALLOC;
1895 
1896 	size = SKB_DATA_ALIGN(size);
1897 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1898 	size = kmalloc_size_roundup(size);
1899 	data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
1900 	if (!data)
1901 		goto nodata;
1902 	size = SKB_WITH_OVERHEAD(size);
1903 
1904 	/* Copy only real data... and, alas, header. This should be
1905 	 * optimized for the cases when header is void.
1906 	 */
1907 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1908 
1909 	memcpy((struct skb_shared_info *)(data + size),
1910 	       skb_shinfo(skb),
1911 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1912 
1913 	/*
1914 	 * if shinfo is shared we must drop the old head gracefully, but if it
1915 	 * is not we can just drop the old head and let the existing refcount
1916 	 * be since all we did is relocate the values
1917 	 */
1918 	if (skb_cloned(skb)) {
1919 		if (skb_orphan_frags(skb, gfp_mask))
1920 			goto nofrags;
1921 		if (skb_zcopy(skb))
1922 			refcount_inc(&skb_uarg(skb)->refcnt);
1923 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1924 			skb_frag_ref(skb, i);
1925 
1926 		if (skb_has_frag_list(skb))
1927 			skb_clone_fraglist(skb);
1928 
1929 		skb_release_data(skb, SKB_CONSUMED);
1930 	} else {
1931 		skb_free_head(skb);
1932 	}
1933 	off = (data + nhead) - skb->head;
1934 
1935 	skb->head     = data;
1936 	skb->head_frag = 0;
1937 	skb->data    += off;
1938 
1939 	skb_set_end_offset(skb, size);
1940 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1941 	off           = nhead;
1942 #endif
1943 	skb->tail	      += off;
1944 	skb_headers_offset_update(skb, nhead);
1945 	skb->cloned   = 0;
1946 	skb->hdr_len  = 0;
1947 	skb->nohdr    = 0;
1948 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1949 
1950 	skb_metadata_clear(skb);
1951 
1952 	/* It is not generally safe to change skb->truesize.
1953 	 * For the moment, we really care of rx path, or
1954 	 * when skb is orphaned (not attached to a socket).
1955 	 */
1956 	if (!skb->sk || skb->destructor == sock_edemux)
1957 		skb->truesize += size - osize;
1958 
1959 	return 0;
1960 
1961 nofrags:
1962 	kfree(data);
1963 nodata:
1964 	return -ENOMEM;
1965 }
1966 EXPORT_SYMBOL(pskb_expand_head);
1967 
1968 /* Make private copy of skb with writable head and some headroom */
1969 
1970 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1971 {
1972 	struct sk_buff *skb2;
1973 	int delta = headroom - skb_headroom(skb);
1974 
1975 	if (delta <= 0)
1976 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1977 	else {
1978 		skb2 = skb_clone(skb, GFP_ATOMIC);
1979 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1980 					     GFP_ATOMIC)) {
1981 			kfree_skb(skb2);
1982 			skb2 = NULL;
1983 		}
1984 	}
1985 	return skb2;
1986 }
1987 EXPORT_SYMBOL(skb_realloc_headroom);
1988 
1989 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1990 {
1991 	unsigned int saved_end_offset, saved_truesize;
1992 	struct skb_shared_info *shinfo;
1993 	int res;
1994 
1995 	saved_end_offset = skb_end_offset(skb);
1996 	saved_truesize = skb->truesize;
1997 
1998 	res = pskb_expand_head(skb, 0, 0, pri);
1999 	if (res)
2000 		return res;
2001 
2002 	skb->truesize = saved_truesize;
2003 
2004 	if (likely(skb_end_offset(skb) == saved_end_offset))
2005 		return 0;
2006 
2007 	shinfo = skb_shinfo(skb);
2008 
2009 	/* We are about to change back skb->end,
2010 	 * we need to move skb_shinfo() to its new location.
2011 	 */
2012 	memmove(skb->head + saved_end_offset,
2013 		shinfo,
2014 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2015 
2016 	skb_set_end_offset(skb, saved_end_offset);
2017 
2018 	return 0;
2019 }
2020 
2021 /**
2022  *	skb_expand_head - reallocate header of &sk_buff
2023  *	@skb: buffer to reallocate
2024  *	@headroom: needed headroom
2025  *
2026  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2027  *	if possible; copies skb->sk to new skb as needed
2028  *	and frees original skb in case of failures.
2029  *
2030  *	It expect increased headroom and generates warning otherwise.
2031  */
2032 
2033 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2034 {
2035 	int delta = headroom - skb_headroom(skb);
2036 	int osize = skb_end_offset(skb);
2037 	struct sock *sk = skb->sk;
2038 
2039 	if (WARN_ONCE(delta <= 0,
2040 		      "%s is expecting an increase in the headroom", __func__))
2041 		return skb;
2042 
2043 	delta = SKB_DATA_ALIGN(delta);
2044 	/* pskb_expand_head() might crash, if skb is shared. */
2045 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2046 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2047 
2048 		if (unlikely(!nskb))
2049 			goto fail;
2050 
2051 		if (sk)
2052 			skb_set_owner_w(nskb, sk);
2053 		consume_skb(skb);
2054 		skb = nskb;
2055 	}
2056 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2057 		goto fail;
2058 
2059 	if (sk && is_skb_wmem(skb)) {
2060 		delta = skb_end_offset(skb) - osize;
2061 		refcount_add(delta, &sk->sk_wmem_alloc);
2062 		skb->truesize += delta;
2063 	}
2064 	return skb;
2065 
2066 fail:
2067 	kfree_skb(skb);
2068 	return NULL;
2069 }
2070 EXPORT_SYMBOL(skb_expand_head);
2071 
2072 /**
2073  *	skb_copy_expand	-	copy and expand sk_buff
2074  *	@skb: buffer to copy
2075  *	@newheadroom: new free bytes at head
2076  *	@newtailroom: new free bytes at tail
2077  *	@gfp_mask: allocation priority
2078  *
2079  *	Make a copy of both an &sk_buff and its data and while doing so
2080  *	allocate additional space.
2081  *
2082  *	This is used when the caller wishes to modify the data and needs a
2083  *	private copy of the data to alter as well as more space for new fields.
2084  *	Returns %NULL on failure or the pointer to the buffer
2085  *	on success. The returned buffer has a reference count of 1.
2086  *
2087  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2088  *	is called from an interrupt.
2089  */
2090 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2091 				int newheadroom, int newtailroom,
2092 				gfp_t gfp_mask)
2093 {
2094 	/*
2095 	 *	Allocate the copy buffer
2096 	 */
2097 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2098 					gfp_mask, skb_alloc_rx_flag(skb),
2099 					NUMA_NO_NODE);
2100 	int oldheadroom = skb_headroom(skb);
2101 	int head_copy_len, head_copy_off;
2102 
2103 	if (!n)
2104 		return NULL;
2105 
2106 	skb_reserve(n, newheadroom);
2107 
2108 	/* Set the tail pointer and length */
2109 	skb_put(n, skb->len);
2110 
2111 	head_copy_len = oldheadroom;
2112 	head_copy_off = 0;
2113 	if (newheadroom <= head_copy_len)
2114 		head_copy_len = newheadroom;
2115 	else
2116 		head_copy_off = newheadroom - head_copy_len;
2117 
2118 	/* Copy the linear header and data. */
2119 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2120 			     skb->len + head_copy_len));
2121 
2122 	skb_copy_header(n, skb);
2123 
2124 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2125 
2126 	return n;
2127 }
2128 EXPORT_SYMBOL(skb_copy_expand);
2129 
2130 /**
2131  *	__skb_pad		-	zero pad the tail of an skb
2132  *	@skb: buffer to pad
2133  *	@pad: space to pad
2134  *	@free_on_error: free buffer on error
2135  *
2136  *	Ensure that a buffer is followed by a padding area that is zero
2137  *	filled. Used by network drivers which may DMA or transfer data
2138  *	beyond the buffer end onto the wire.
2139  *
2140  *	May return error in out of memory cases. The skb is freed on error
2141  *	if @free_on_error is true.
2142  */
2143 
2144 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2145 {
2146 	int err;
2147 	int ntail;
2148 
2149 	/* If the skbuff is non linear tailroom is always zero.. */
2150 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2151 		memset(skb->data+skb->len, 0, pad);
2152 		return 0;
2153 	}
2154 
2155 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2156 	if (likely(skb_cloned(skb) || ntail > 0)) {
2157 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2158 		if (unlikely(err))
2159 			goto free_skb;
2160 	}
2161 
2162 	/* FIXME: The use of this function with non-linear skb's really needs
2163 	 * to be audited.
2164 	 */
2165 	err = skb_linearize(skb);
2166 	if (unlikely(err))
2167 		goto free_skb;
2168 
2169 	memset(skb->data + skb->len, 0, pad);
2170 	return 0;
2171 
2172 free_skb:
2173 	if (free_on_error)
2174 		kfree_skb(skb);
2175 	return err;
2176 }
2177 EXPORT_SYMBOL(__skb_pad);
2178 
2179 /**
2180  *	pskb_put - add data to the tail of a potentially fragmented buffer
2181  *	@skb: start of the buffer to use
2182  *	@tail: tail fragment of the buffer to use
2183  *	@len: amount of data to add
2184  *
2185  *	This function extends the used data area of the potentially
2186  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2187  *	@skb itself. If this would exceed the total buffer size the kernel
2188  *	will panic. A pointer to the first byte of the extra data is
2189  *	returned.
2190  */
2191 
2192 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2193 {
2194 	if (tail != skb) {
2195 		skb->data_len += len;
2196 		skb->len += len;
2197 	}
2198 	return skb_put(tail, len);
2199 }
2200 EXPORT_SYMBOL_GPL(pskb_put);
2201 
2202 /**
2203  *	skb_put - add data to a buffer
2204  *	@skb: buffer to use
2205  *	@len: amount of data to add
2206  *
2207  *	This function extends the used data area of the buffer. If this would
2208  *	exceed the total buffer size the kernel will panic. A pointer to the
2209  *	first byte of the extra data is returned.
2210  */
2211 void *skb_put(struct sk_buff *skb, unsigned int len)
2212 {
2213 	void *tmp = skb_tail_pointer(skb);
2214 	SKB_LINEAR_ASSERT(skb);
2215 	skb->tail += len;
2216 	skb->len  += len;
2217 	if (unlikely(skb->tail > skb->end))
2218 		skb_over_panic(skb, len, __builtin_return_address(0));
2219 	return tmp;
2220 }
2221 EXPORT_SYMBOL(skb_put);
2222 
2223 /**
2224  *	skb_push - add data to the start of a buffer
2225  *	@skb: buffer to use
2226  *	@len: amount of data to add
2227  *
2228  *	This function extends the used data area of the buffer at the buffer
2229  *	start. If this would exceed the total buffer headroom the kernel will
2230  *	panic. A pointer to the first byte of the extra data is returned.
2231  */
2232 void *skb_push(struct sk_buff *skb, unsigned int len)
2233 {
2234 	skb->data -= len;
2235 	skb->len  += len;
2236 	if (unlikely(skb->data < skb->head))
2237 		skb_under_panic(skb, len, __builtin_return_address(0));
2238 	return skb->data;
2239 }
2240 EXPORT_SYMBOL(skb_push);
2241 
2242 /**
2243  *	skb_pull - remove data from the start of a buffer
2244  *	@skb: buffer to use
2245  *	@len: amount of data to remove
2246  *
2247  *	This function removes data from the start of a buffer, returning
2248  *	the memory to the headroom. A pointer to the next data in the buffer
2249  *	is returned. Once the data has been pulled future pushes will overwrite
2250  *	the old data.
2251  */
2252 void *skb_pull(struct sk_buff *skb, unsigned int len)
2253 {
2254 	return skb_pull_inline(skb, len);
2255 }
2256 EXPORT_SYMBOL(skb_pull);
2257 
2258 /**
2259  *	skb_pull_data - remove data from the start of a buffer returning its
2260  *	original position.
2261  *	@skb: buffer to use
2262  *	@len: amount of data to remove
2263  *
2264  *	This function removes data from the start of a buffer, returning
2265  *	the memory to the headroom. A pointer to the original data in the buffer
2266  *	is returned after checking if there is enough data to pull. Once the
2267  *	data has been pulled future pushes will overwrite the old data.
2268  */
2269 void *skb_pull_data(struct sk_buff *skb, size_t len)
2270 {
2271 	void *data = skb->data;
2272 
2273 	if (skb->len < len)
2274 		return NULL;
2275 
2276 	skb_pull(skb, len);
2277 
2278 	return data;
2279 }
2280 EXPORT_SYMBOL(skb_pull_data);
2281 
2282 /**
2283  *	skb_trim - remove end from a buffer
2284  *	@skb: buffer to alter
2285  *	@len: new length
2286  *
2287  *	Cut the length of a buffer down by removing data from the tail. If
2288  *	the buffer is already under the length specified it is not modified.
2289  *	The skb must be linear.
2290  */
2291 void skb_trim(struct sk_buff *skb, unsigned int len)
2292 {
2293 	if (skb->len > len)
2294 		__skb_trim(skb, len);
2295 }
2296 EXPORT_SYMBOL(skb_trim);
2297 
2298 /* Trims skb to length len. It can change skb pointers.
2299  */
2300 
2301 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2302 {
2303 	struct sk_buff **fragp;
2304 	struct sk_buff *frag;
2305 	int offset = skb_headlen(skb);
2306 	int nfrags = skb_shinfo(skb)->nr_frags;
2307 	int i;
2308 	int err;
2309 
2310 	if (skb_cloned(skb) &&
2311 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2312 		return err;
2313 
2314 	i = 0;
2315 	if (offset >= len)
2316 		goto drop_pages;
2317 
2318 	for (; i < nfrags; i++) {
2319 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2320 
2321 		if (end < len) {
2322 			offset = end;
2323 			continue;
2324 		}
2325 
2326 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2327 
2328 drop_pages:
2329 		skb_shinfo(skb)->nr_frags = i;
2330 
2331 		for (; i < nfrags; i++)
2332 			skb_frag_unref(skb, i);
2333 
2334 		if (skb_has_frag_list(skb))
2335 			skb_drop_fraglist(skb);
2336 		goto done;
2337 	}
2338 
2339 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2340 	     fragp = &frag->next) {
2341 		int end = offset + frag->len;
2342 
2343 		if (skb_shared(frag)) {
2344 			struct sk_buff *nfrag;
2345 
2346 			nfrag = skb_clone(frag, GFP_ATOMIC);
2347 			if (unlikely(!nfrag))
2348 				return -ENOMEM;
2349 
2350 			nfrag->next = frag->next;
2351 			consume_skb(frag);
2352 			frag = nfrag;
2353 			*fragp = frag;
2354 		}
2355 
2356 		if (end < len) {
2357 			offset = end;
2358 			continue;
2359 		}
2360 
2361 		if (end > len &&
2362 		    unlikely((err = pskb_trim(frag, len - offset))))
2363 			return err;
2364 
2365 		if (frag->next)
2366 			skb_drop_list(&frag->next);
2367 		break;
2368 	}
2369 
2370 done:
2371 	if (len > skb_headlen(skb)) {
2372 		skb->data_len -= skb->len - len;
2373 		skb->len       = len;
2374 	} else {
2375 		skb->len       = len;
2376 		skb->data_len  = 0;
2377 		skb_set_tail_pointer(skb, len);
2378 	}
2379 
2380 	if (!skb->sk || skb->destructor == sock_edemux)
2381 		skb_condense(skb);
2382 	return 0;
2383 }
2384 EXPORT_SYMBOL(___pskb_trim);
2385 
2386 /* Note : use pskb_trim_rcsum() instead of calling this directly
2387  */
2388 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2389 {
2390 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2391 		int delta = skb->len - len;
2392 
2393 		skb->csum = csum_block_sub(skb->csum,
2394 					   skb_checksum(skb, len, delta, 0),
2395 					   len);
2396 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2397 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2398 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2399 
2400 		if (offset + sizeof(__sum16) > hdlen)
2401 			return -EINVAL;
2402 	}
2403 	return __pskb_trim(skb, len);
2404 }
2405 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2406 
2407 /**
2408  *	__pskb_pull_tail - advance tail of skb header
2409  *	@skb: buffer to reallocate
2410  *	@delta: number of bytes to advance tail
2411  *
2412  *	The function makes a sense only on a fragmented &sk_buff,
2413  *	it expands header moving its tail forward and copying necessary
2414  *	data from fragmented part.
2415  *
2416  *	&sk_buff MUST have reference count of 1.
2417  *
2418  *	Returns %NULL (and &sk_buff does not change) if pull failed
2419  *	or value of new tail of skb in the case of success.
2420  *
2421  *	All the pointers pointing into skb header may change and must be
2422  *	reloaded after call to this function.
2423  */
2424 
2425 /* Moves tail of skb head forward, copying data from fragmented part,
2426  * when it is necessary.
2427  * 1. It may fail due to malloc failure.
2428  * 2. It may change skb pointers.
2429  *
2430  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2431  */
2432 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2433 {
2434 	/* If skb has not enough free space at tail, get new one
2435 	 * plus 128 bytes for future expansions. If we have enough
2436 	 * room at tail, reallocate without expansion only if skb is cloned.
2437 	 */
2438 	int i, k, eat = (skb->tail + delta) - skb->end;
2439 
2440 	if (eat > 0 || skb_cloned(skb)) {
2441 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2442 				     GFP_ATOMIC))
2443 			return NULL;
2444 	}
2445 
2446 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2447 			     skb_tail_pointer(skb), delta));
2448 
2449 	/* Optimization: no fragments, no reasons to preestimate
2450 	 * size of pulled pages. Superb.
2451 	 */
2452 	if (!skb_has_frag_list(skb))
2453 		goto pull_pages;
2454 
2455 	/* Estimate size of pulled pages. */
2456 	eat = delta;
2457 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2458 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2459 
2460 		if (size >= eat)
2461 			goto pull_pages;
2462 		eat -= size;
2463 	}
2464 
2465 	/* If we need update frag list, we are in troubles.
2466 	 * Certainly, it is possible to add an offset to skb data,
2467 	 * but taking into account that pulling is expected to
2468 	 * be very rare operation, it is worth to fight against
2469 	 * further bloating skb head and crucify ourselves here instead.
2470 	 * Pure masohism, indeed. 8)8)
2471 	 */
2472 	if (eat) {
2473 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2474 		struct sk_buff *clone = NULL;
2475 		struct sk_buff *insp = NULL;
2476 
2477 		do {
2478 			if (list->len <= eat) {
2479 				/* Eaten as whole. */
2480 				eat -= list->len;
2481 				list = list->next;
2482 				insp = list;
2483 			} else {
2484 				/* Eaten partially. */
2485 				if (skb_is_gso(skb) && !list->head_frag &&
2486 				    skb_headlen(list))
2487 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2488 
2489 				if (skb_shared(list)) {
2490 					/* Sucks! We need to fork list. :-( */
2491 					clone = skb_clone(list, GFP_ATOMIC);
2492 					if (!clone)
2493 						return NULL;
2494 					insp = list->next;
2495 					list = clone;
2496 				} else {
2497 					/* This may be pulled without
2498 					 * problems. */
2499 					insp = list;
2500 				}
2501 				if (!pskb_pull(list, eat)) {
2502 					kfree_skb(clone);
2503 					return NULL;
2504 				}
2505 				break;
2506 			}
2507 		} while (eat);
2508 
2509 		/* Free pulled out fragments. */
2510 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2511 			skb_shinfo(skb)->frag_list = list->next;
2512 			consume_skb(list);
2513 		}
2514 		/* And insert new clone at head. */
2515 		if (clone) {
2516 			clone->next = list;
2517 			skb_shinfo(skb)->frag_list = clone;
2518 		}
2519 	}
2520 	/* Success! Now we may commit changes to skb data. */
2521 
2522 pull_pages:
2523 	eat = delta;
2524 	k = 0;
2525 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2526 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2527 
2528 		if (size <= eat) {
2529 			skb_frag_unref(skb, i);
2530 			eat -= size;
2531 		} else {
2532 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2533 
2534 			*frag = skb_shinfo(skb)->frags[i];
2535 			if (eat) {
2536 				skb_frag_off_add(frag, eat);
2537 				skb_frag_size_sub(frag, eat);
2538 				if (!i)
2539 					goto end;
2540 				eat = 0;
2541 			}
2542 			k++;
2543 		}
2544 	}
2545 	skb_shinfo(skb)->nr_frags = k;
2546 
2547 end:
2548 	skb->tail     += delta;
2549 	skb->data_len -= delta;
2550 
2551 	if (!skb->data_len)
2552 		skb_zcopy_clear(skb, false);
2553 
2554 	return skb_tail_pointer(skb);
2555 }
2556 EXPORT_SYMBOL(__pskb_pull_tail);
2557 
2558 /**
2559  *	skb_copy_bits - copy bits from skb to kernel buffer
2560  *	@skb: source skb
2561  *	@offset: offset in source
2562  *	@to: destination buffer
2563  *	@len: number of bytes to copy
2564  *
2565  *	Copy the specified number of bytes from the source skb to the
2566  *	destination buffer.
2567  *
2568  *	CAUTION ! :
2569  *		If its prototype is ever changed,
2570  *		check arch/{*}/net/{*}.S files,
2571  *		since it is called from BPF assembly code.
2572  */
2573 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2574 {
2575 	int start = skb_headlen(skb);
2576 	struct sk_buff *frag_iter;
2577 	int i, copy;
2578 
2579 	if (offset > (int)skb->len - len)
2580 		goto fault;
2581 
2582 	/* Copy header. */
2583 	if ((copy = start - offset) > 0) {
2584 		if (copy > len)
2585 			copy = len;
2586 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2587 		if ((len -= copy) == 0)
2588 			return 0;
2589 		offset += copy;
2590 		to     += copy;
2591 	}
2592 
2593 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2594 		int end;
2595 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2596 
2597 		WARN_ON(start > offset + len);
2598 
2599 		end = start + skb_frag_size(f);
2600 		if ((copy = end - offset) > 0) {
2601 			u32 p_off, p_len, copied;
2602 			struct page *p;
2603 			u8 *vaddr;
2604 
2605 			if (copy > len)
2606 				copy = len;
2607 
2608 			skb_frag_foreach_page(f,
2609 					      skb_frag_off(f) + offset - start,
2610 					      copy, p, p_off, p_len, copied) {
2611 				vaddr = kmap_atomic(p);
2612 				memcpy(to + copied, vaddr + p_off, p_len);
2613 				kunmap_atomic(vaddr);
2614 			}
2615 
2616 			if ((len -= copy) == 0)
2617 				return 0;
2618 			offset += copy;
2619 			to     += copy;
2620 		}
2621 		start = end;
2622 	}
2623 
2624 	skb_walk_frags(skb, frag_iter) {
2625 		int end;
2626 
2627 		WARN_ON(start > offset + len);
2628 
2629 		end = start + frag_iter->len;
2630 		if ((copy = end - offset) > 0) {
2631 			if (copy > len)
2632 				copy = len;
2633 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2634 				goto fault;
2635 			if ((len -= copy) == 0)
2636 				return 0;
2637 			offset += copy;
2638 			to     += copy;
2639 		}
2640 		start = end;
2641 	}
2642 
2643 	if (!len)
2644 		return 0;
2645 
2646 fault:
2647 	return -EFAULT;
2648 }
2649 EXPORT_SYMBOL(skb_copy_bits);
2650 
2651 /*
2652  * Callback from splice_to_pipe(), if we need to release some pages
2653  * at the end of the spd in case we error'ed out in filling the pipe.
2654  */
2655 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2656 {
2657 	put_page(spd->pages[i]);
2658 }
2659 
2660 static struct page *linear_to_page(struct page *page, unsigned int *len,
2661 				   unsigned int *offset,
2662 				   struct sock *sk)
2663 {
2664 	struct page_frag *pfrag = sk_page_frag(sk);
2665 
2666 	if (!sk_page_frag_refill(sk, pfrag))
2667 		return NULL;
2668 
2669 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2670 
2671 	memcpy(page_address(pfrag->page) + pfrag->offset,
2672 	       page_address(page) + *offset, *len);
2673 	*offset = pfrag->offset;
2674 	pfrag->offset += *len;
2675 
2676 	return pfrag->page;
2677 }
2678 
2679 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2680 			     struct page *page,
2681 			     unsigned int offset)
2682 {
2683 	return	spd->nr_pages &&
2684 		spd->pages[spd->nr_pages - 1] == page &&
2685 		(spd->partial[spd->nr_pages - 1].offset +
2686 		 spd->partial[spd->nr_pages - 1].len == offset);
2687 }
2688 
2689 /*
2690  * Fill page/offset/length into spd, if it can hold more pages.
2691  */
2692 static bool spd_fill_page(struct splice_pipe_desc *spd,
2693 			  struct pipe_inode_info *pipe, struct page *page,
2694 			  unsigned int *len, unsigned int offset,
2695 			  bool linear,
2696 			  struct sock *sk)
2697 {
2698 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2699 		return true;
2700 
2701 	if (linear) {
2702 		page = linear_to_page(page, len, &offset, sk);
2703 		if (!page)
2704 			return true;
2705 	}
2706 	if (spd_can_coalesce(spd, page, offset)) {
2707 		spd->partial[spd->nr_pages - 1].len += *len;
2708 		return false;
2709 	}
2710 	get_page(page);
2711 	spd->pages[spd->nr_pages] = page;
2712 	spd->partial[spd->nr_pages].len = *len;
2713 	spd->partial[spd->nr_pages].offset = offset;
2714 	spd->nr_pages++;
2715 
2716 	return false;
2717 }
2718 
2719 static bool __splice_segment(struct page *page, unsigned int poff,
2720 			     unsigned int plen, unsigned int *off,
2721 			     unsigned int *len,
2722 			     struct splice_pipe_desc *spd, bool linear,
2723 			     struct sock *sk,
2724 			     struct pipe_inode_info *pipe)
2725 {
2726 	if (!*len)
2727 		return true;
2728 
2729 	/* skip this segment if already processed */
2730 	if (*off >= plen) {
2731 		*off -= plen;
2732 		return false;
2733 	}
2734 
2735 	/* ignore any bits we already processed */
2736 	poff += *off;
2737 	plen -= *off;
2738 	*off = 0;
2739 
2740 	do {
2741 		unsigned int flen = min(*len, plen);
2742 
2743 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2744 				  linear, sk))
2745 			return true;
2746 		poff += flen;
2747 		plen -= flen;
2748 		*len -= flen;
2749 	} while (*len && plen);
2750 
2751 	return false;
2752 }
2753 
2754 /*
2755  * Map linear and fragment data from the skb to spd. It reports true if the
2756  * pipe is full or if we already spliced the requested length.
2757  */
2758 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2759 			      unsigned int *offset, unsigned int *len,
2760 			      struct splice_pipe_desc *spd, struct sock *sk)
2761 {
2762 	int seg;
2763 	struct sk_buff *iter;
2764 
2765 	/* map the linear part :
2766 	 * If skb->head_frag is set, this 'linear' part is backed by a
2767 	 * fragment, and if the head is not shared with any clones then
2768 	 * we can avoid a copy since we own the head portion of this page.
2769 	 */
2770 	if (__splice_segment(virt_to_page(skb->data),
2771 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2772 			     skb_headlen(skb),
2773 			     offset, len, spd,
2774 			     skb_head_is_locked(skb),
2775 			     sk, pipe))
2776 		return true;
2777 
2778 	/*
2779 	 * then map the fragments
2780 	 */
2781 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2782 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2783 
2784 		if (__splice_segment(skb_frag_page(f),
2785 				     skb_frag_off(f), skb_frag_size(f),
2786 				     offset, len, spd, false, sk, pipe))
2787 			return true;
2788 	}
2789 
2790 	skb_walk_frags(skb, iter) {
2791 		if (*offset >= iter->len) {
2792 			*offset -= iter->len;
2793 			continue;
2794 		}
2795 		/* __skb_splice_bits() only fails if the output has no room
2796 		 * left, so no point in going over the frag_list for the error
2797 		 * case.
2798 		 */
2799 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2800 			return true;
2801 	}
2802 
2803 	return false;
2804 }
2805 
2806 /*
2807  * Map data from the skb to a pipe. Should handle both the linear part,
2808  * the fragments, and the frag list.
2809  */
2810 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2811 		    struct pipe_inode_info *pipe, unsigned int tlen,
2812 		    unsigned int flags)
2813 {
2814 	struct partial_page partial[MAX_SKB_FRAGS];
2815 	struct page *pages[MAX_SKB_FRAGS];
2816 	struct splice_pipe_desc spd = {
2817 		.pages = pages,
2818 		.partial = partial,
2819 		.nr_pages_max = MAX_SKB_FRAGS,
2820 		.ops = &nosteal_pipe_buf_ops,
2821 		.spd_release = sock_spd_release,
2822 	};
2823 	int ret = 0;
2824 
2825 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2826 
2827 	if (spd.nr_pages)
2828 		ret = splice_to_pipe(pipe, &spd);
2829 
2830 	return ret;
2831 }
2832 EXPORT_SYMBOL_GPL(skb_splice_bits);
2833 
2834 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2835 			    struct kvec *vec, size_t num, size_t size)
2836 {
2837 	struct socket *sock = sk->sk_socket;
2838 
2839 	if (!sock)
2840 		return -EINVAL;
2841 	return kernel_sendmsg(sock, msg, vec, num, size);
2842 }
2843 
2844 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2845 			     size_t size, int flags)
2846 {
2847 	struct socket *sock = sk->sk_socket;
2848 
2849 	if (!sock)
2850 		return -EINVAL;
2851 	return kernel_sendpage(sock, page, offset, size, flags);
2852 }
2853 
2854 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2855 			    struct kvec *vec, size_t num, size_t size);
2856 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2857 			     size_t size, int flags);
2858 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2859 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2860 {
2861 	unsigned int orig_len = len;
2862 	struct sk_buff *head = skb;
2863 	unsigned short fragidx;
2864 	int slen, ret;
2865 
2866 do_frag_list:
2867 
2868 	/* Deal with head data */
2869 	while (offset < skb_headlen(skb) && len) {
2870 		struct kvec kv;
2871 		struct msghdr msg;
2872 
2873 		slen = min_t(int, len, skb_headlen(skb) - offset);
2874 		kv.iov_base = skb->data + offset;
2875 		kv.iov_len = slen;
2876 		memset(&msg, 0, sizeof(msg));
2877 		msg.msg_flags = MSG_DONTWAIT;
2878 
2879 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2880 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2881 		if (ret <= 0)
2882 			goto error;
2883 
2884 		offset += ret;
2885 		len -= ret;
2886 	}
2887 
2888 	/* All the data was skb head? */
2889 	if (!len)
2890 		goto out;
2891 
2892 	/* Make offset relative to start of frags */
2893 	offset -= skb_headlen(skb);
2894 
2895 	/* Find where we are in frag list */
2896 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2897 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2898 
2899 		if (offset < skb_frag_size(frag))
2900 			break;
2901 
2902 		offset -= skb_frag_size(frag);
2903 	}
2904 
2905 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2906 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2907 
2908 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2909 
2910 		while (slen) {
2911 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2912 					      sendpage_unlocked, sk,
2913 					      skb_frag_page(frag),
2914 					      skb_frag_off(frag) + offset,
2915 					      slen, MSG_DONTWAIT);
2916 			if (ret <= 0)
2917 				goto error;
2918 
2919 			len -= ret;
2920 			offset += ret;
2921 			slen -= ret;
2922 		}
2923 
2924 		offset = 0;
2925 	}
2926 
2927 	if (len) {
2928 		/* Process any frag lists */
2929 
2930 		if (skb == head) {
2931 			if (skb_has_frag_list(skb)) {
2932 				skb = skb_shinfo(skb)->frag_list;
2933 				goto do_frag_list;
2934 			}
2935 		} else if (skb->next) {
2936 			skb = skb->next;
2937 			goto do_frag_list;
2938 		}
2939 	}
2940 
2941 out:
2942 	return orig_len - len;
2943 
2944 error:
2945 	return orig_len == len ? ret : orig_len - len;
2946 }
2947 
2948 /* Send skb data on a socket. Socket must be locked. */
2949 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2950 			 int len)
2951 {
2952 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2953 			       kernel_sendpage_locked);
2954 }
2955 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2956 
2957 /* Send skb data on a socket. Socket must be unlocked. */
2958 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2959 {
2960 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2961 			       sendpage_unlocked);
2962 }
2963 
2964 /**
2965  *	skb_store_bits - store bits from kernel buffer to skb
2966  *	@skb: destination buffer
2967  *	@offset: offset in destination
2968  *	@from: source buffer
2969  *	@len: number of bytes to copy
2970  *
2971  *	Copy the specified number of bytes from the source buffer to the
2972  *	destination skb.  This function handles all the messy bits of
2973  *	traversing fragment lists and such.
2974  */
2975 
2976 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2977 {
2978 	int start = skb_headlen(skb);
2979 	struct sk_buff *frag_iter;
2980 	int i, copy;
2981 
2982 	if (offset > (int)skb->len - len)
2983 		goto fault;
2984 
2985 	if ((copy = start - offset) > 0) {
2986 		if (copy > len)
2987 			copy = len;
2988 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2989 		if ((len -= copy) == 0)
2990 			return 0;
2991 		offset += copy;
2992 		from += copy;
2993 	}
2994 
2995 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2996 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2997 		int end;
2998 
2999 		WARN_ON(start > offset + len);
3000 
3001 		end = start + skb_frag_size(frag);
3002 		if ((copy = end - offset) > 0) {
3003 			u32 p_off, p_len, copied;
3004 			struct page *p;
3005 			u8 *vaddr;
3006 
3007 			if (copy > len)
3008 				copy = len;
3009 
3010 			skb_frag_foreach_page(frag,
3011 					      skb_frag_off(frag) + offset - start,
3012 					      copy, p, p_off, p_len, copied) {
3013 				vaddr = kmap_atomic(p);
3014 				memcpy(vaddr + p_off, from + copied, p_len);
3015 				kunmap_atomic(vaddr);
3016 			}
3017 
3018 			if ((len -= copy) == 0)
3019 				return 0;
3020 			offset += copy;
3021 			from += copy;
3022 		}
3023 		start = end;
3024 	}
3025 
3026 	skb_walk_frags(skb, frag_iter) {
3027 		int end;
3028 
3029 		WARN_ON(start > offset + len);
3030 
3031 		end = start + frag_iter->len;
3032 		if ((copy = end - offset) > 0) {
3033 			if (copy > len)
3034 				copy = len;
3035 			if (skb_store_bits(frag_iter, offset - start,
3036 					   from, copy))
3037 				goto fault;
3038 			if ((len -= copy) == 0)
3039 				return 0;
3040 			offset += copy;
3041 			from += copy;
3042 		}
3043 		start = end;
3044 	}
3045 	if (!len)
3046 		return 0;
3047 
3048 fault:
3049 	return -EFAULT;
3050 }
3051 EXPORT_SYMBOL(skb_store_bits);
3052 
3053 /* Checksum skb data. */
3054 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3055 		      __wsum csum, const struct skb_checksum_ops *ops)
3056 {
3057 	int start = skb_headlen(skb);
3058 	int i, copy = start - offset;
3059 	struct sk_buff *frag_iter;
3060 	int pos = 0;
3061 
3062 	/* Checksum header. */
3063 	if (copy > 0) {
3064 		if (copy > len)
3065 			copy = len;
3066 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3067 				       skb->data + offset, copy, csum);
3068 		if ((len -= copy) == 0)
3069 			return csum;
3070 		offset += copy;
3071 		pos	= copy;
3072 	}
3073 
3074 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3075 		int end;
3076 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3077 
3078 		WARN_ON(start > offset + len);
3079 
3080 		end = start + skb_frag_size(frag);
3081 		if ((copy = end - offset) > 0) {
3082 			u32 p_off, p_len, copied;
3083 			struct page *p;
3084 			__wsum csum2;
3085 			u8 *vaddr;
3086 
3087 			if (copy > len)
3088 				copy = len;
3089 
3090 			skb_frag_foreach_page(frag,
3091 					      skb_frag_off(frag) + offset - start,
3092 					      copy, p, p_off, p_len, copied) {
3093 				vaddr = kmap_atomic(p);
3094 				csum2 = INDIRECT_CALL_1(ops->update,
3095 							csum_partial_ext,
3096 							vaddr + p_off, p_len, 0);
3097 				kunmap_atomic(vaddr);
3098 				csum = INDIRECT_CALL_1(ops->combine,
3099 						       csum_block_add_ext, csum,
3100 						       csum2, pos, p_len);
3101 				pos += p_len;
3102 			}
3103 
3104 			if (!(len -= copy))
3105 				return csum;
3106 			offset += copy;
3107 		}
3108 		start = end;
3109 	}
3110 
3111 	skb_walk_frags(skb, frag_iter) {
3112 		int end;
3113 
3114 		WARN_ON(start > offset + len);
3115 
3116 		end = start + frag_iter->len;
3117 		if ((copy = end - offset) > 0) {
3118 			__wsum csum2;
3119 			if (copy > len)
3120 				copy = len;
3121 			csum2 = __skb_checksum(frag_iter, offset - start,
3122 					       copy, 0, ops);
3123 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3124 					       csum, csum2, pos, copy);
3125 			if ((len -= copy) == 0)
3126 				return csum;
3127 			offset += copy;
3128 			pos    += copy;
3129 		}
3130 		start = end;
3131 	}
3132 	BUG_ON(len);
3133 
3134 	return csum;
3135 }
3136 EXPORT_SYMBOL(__skb_checksum);
3137 
3138 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3139 		    int len, __wsum csum)
3140 {
3141 	const struct skb_checksum_ops ops = {
3142 		.update  = csum_partial_ext,
3143 		.combine = csum_block_add_ext,
3144 	};
3145 
3146 	return __skb_checksum(skb, offset, len, csum, &ops);
3147 }
3148 EXPORT_SYMBOL(skb_checksum);
3149 
3150 /* Both of above in one bottle. */
3151 
3152 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3153 				    u8 *to, int len)
3154 {
3155 	int start = skb_headlen(skb);
3156 	int i, copy = start - offset;
3157 	struct sk_buff *frag_iter;
3158 	int pos = 0;
3159 	__wsum csum = 0;
3160 
3161 	/* Copy header. */
3162 	if (copy > 0) {
3163 		if (copy > len)
3164 			copy = len;
3165 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3166 						 copy);
3167 		if ((len -= copy) == 0)
3168 			return csum;
3169 		offset += copy;
3170 		to     += copy;
3171 		pos	= copy;
3172 	}
3173 
3174 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3175 		int end;
3176 
3177 		WARN_ON(start > offset + len);
3178 
3179 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3180 		if ((copy = end - offset) > 0) {
3181 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3182 			u32 p_off, p_len, copied;
3183 			struct page *p;
3184 			__wsum csum2;
3185 			u8 *vaddr;
3186 
3187 			if (copy > len)
3188 				copy = len;
3189 
3190 			skb_frag_foreach_page(frag,
3191 					      skb_frag_off(frag) + offset - start,
3192 					      copy, p, p_off, p_len, copied) {
3193 				vaddr = kmap_atomic(p);
3194 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3195 								  to + copied,
3196 								  p_len);
3197 				kunmap_atomic(vaddr);
3198 				csum = csum_block_add(csum, csum2, pos);
3199 				pos += p_len;
3200 			}
3201 
3202 			if (!(len -= copy))
3203 				return csum;
3204 			offset += copy;
3205 			to     += copy;
3206 		}
3207 		start = end;
3208 	}
3209 
3210 	skb_walk_frags(skb, frag_iter) {
3211 		__wsum csum2;
3212 		int end;
3213 
3214 		WARN_ON(start > offset + len);
3215 
3216 		end = start + frag_iter->len;
3217 		if ((copy = end - offset) > 0) {
3218 			if (copy > len)
3219 				copy = len;
3220 			csum2 = skb_copy_and_csum_bits(frag_iter,
3221 						       offset - start,
3222 						       to, copy);
3223 			csum = csum_block_add(csum, csum2, pos);
3224 			if ((len -= copy) == 0)
3225 				return csum;
3226 			offset += copy;
3227 			to     += copy;
3228 			pos    += copy;
3229 		}
3230 		start = end;
3231 	}
3232 	BUG_ON(len);
3233 	return csum;
3234 }
3235 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3236 
3237 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3238 {
3239 	__sum16 sum;
3240 
3241 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3242 	/* See comments in __skb_checksum_complete(). */
3243 	if (likely(!sum)) {
3244 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3245 		    !skb->csum_complete_sw)
3246 			netdev_rx_csum_fault(skb->dev, skb);
3247 	}
3248 	if (!skb_shared(skb))
3249 		skb->csum_valid = !sum;
3250 	return sum;
3251 }
3252 EXPORT_SYMBOL(__skb_checksum_complete_head);
3253 
3254 /* This function assumes skb->csum already holds pseudo header's checksum,
3255  * which has been changed from the hardware checksum, for example, by
3256  * __skb_checksum_validate_complete(). And, the original skb->csum must
3257  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3258  *
3259  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3260  * zero. The new checksum is stored back into skb->csum unless the skb is
3261  * shared.
3262  */
3263 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3264 {
3265 	__wsum csum;
3266 	__sum16 sum;
3267 
3268 	csum = skb_checksum(skb, 0, skb->len, 0);
3269 
3270 	sum = csum_fold(csum_add(skb->csum, csum));
3271 	/* This check is inverted, because we already knew the hardware
3272 	 * checksum is invalid before calling this function. So, if the
3273 	 * re-computed checksum is valid instead, then we have a mismatch
3274 	 * between the original skb->csum and skb_checksum(). This means either
3275 	 * the original hardware checksum is incorrect or we screw up skb->csum
3276 	 * when moving skb->data around.
3277 	 */
3278 	if (likely(!sum)) {
3279 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3280 		    !skb->csum_complete_sw)
3281 			netdev_rx_csum_fault(skb->dev, skb);
3282 	}
3283 
3284 	if (!skb_shared(skb)) {
3285 		/* Save full packet checksum */
3286 		skb->csum = csum;
3287 		skb->ip_summed = CHECKSUM_COMPLETE;
3288 		skb->csum_complete_sw = 1;
3289 		skb->csum_valid = !sum;
3290 	}
3291 
3292 	return sum;
3293 }
3294 EXPORT_SYMBOL(__skb_checksum_complete);
3295 
3296 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3297 {
3298 	net_warn_ratelimited(
3299 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3300 		__func__);
3301 	return 0;
3302 }
3303 
3304 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3305 				       int offset, int len)
3306 {
3307 	net_warn_ratelimited(
3308 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3309 		__func__);
3310 	return 0;
3311 }
3312 
3313 static const struct skb_checksum_ops default_crc32c_ops = {
3314 	.update  = warn_crc32c_csum_update,
3315 	.combine = warn_crc32c_csum_combine,
3316 };
3317 
3318 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3319 	&default_crc32c_ops;
3320 EXPORT_SYMBOL(crc32c_csum_stub);
3321 
3322  /**
3323  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3324  *	@from: source buffer
3325  *
3326  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3327  *	into skb_zerocopy().
3328  */
3329 unsigned int
3330 skb_zerocopy_headlen(const struct sk_buff *from)
3331 {
3332 	unsigned int hlen = 0;
3333 
3334 	if (!from->head_frag ||
3335 	    skb_headlen(from) < L1_CACHE_BYTES ||
3336 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3337 		hlen = skb_headlen(from);
3338 		if (!hlen)
3339 			hlen = from->len;
3340 	}
3341 
3342 	if (skb_has_frag_list(from))
3343 		hlen = from->len;
3344 
3345 	return hlen;
3346 }
3347 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3348 
3349 /**
3350  *	skb_zerocopy - Zero copy skb to skb
3351  *	@to: destination buffer
3352  *	@from: source buffer
3353  *	@len: number of bytes to copy from source buffer
3354  *	@hlen: size of linear headroom in destination buffer
3355  *
3356  *	Copies up to `len` bytes from `from` to `to` by creating references
3357  *	to the frags in the source buffer.
3358  *
3359  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3360  *	headroom in the `to` buffer.
3361  *
3362  *	Return value:
3363  *	0: everything is OK
3364  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3365  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3366  */
3367 int
3368 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3369 {
3370 	int i, j = 0;
3371 	int plen = 0; /* length of skb->head fragment */
3372 	int ret;
3373 	struct page *page;
3374 	unsigned int offset;
3375 
3376 	BUG_ON(!from->head_frag && !hlen);
3377 
3378 	/* dont bother with small payloads */
3379 	if (len <= skb_tailroom(to))
3380 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3381 
3382 	if (hlen) {
3383 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3384 		if (unlikely(ret))
3385 			return ret;
3386 		len -= hlen;
3387 	} else {
3388 		plen = min_t(int, skb_headlen(from), len);
3389 		if (plen) {
3390 			page = virt_to_head_page(from->head);
3391 			offset = from->data - (unsigned char *)page_address(page);
3392 			__skb_fill_page_desc(to, 0, page, offset, plen);
3393 			get_page(page);
3394 			j = 1;
3395 			len -= plen;
3396 		}
3397 	}
3398 
3399 	skb_len_add(to, len + plen);
3400 
3401 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3402 		skb_tx_error(from);
3403 		return -ENOMEM;
3404 	}
3405 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3406 
3407 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3408 		int size;
3409 
3410 		if (!len)
3411 			break;
3412 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3413 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3414 					len);
3415 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3416 		len -= size;
3417 		skb_frag_ref(to, j);
3418 		j++;
3419 	}
3420 	skb_shinfo(to)->nr_frags = j;
3421 
3422 	return 0;
3423 }
3424 EXPORT_SYMBOL_GPL(skb_zerocopy);
3425 
3426 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3427 {
3428 	__wsum csum;
3429 	long csstart;
3430 
3431 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3432 		csstart = skb_checksum_start_offset(skb);
3433 	else
3434 		csstart = skb_headlen(skb);
3435 
3436 	BUG_ON(csstart > skb_headlen(skb));
3437 
3438 	skb_copy_from_linear_data(skb, to, csstart);
3439 
3440 	csum = 0;
3441 	if (csstart != skb->len)
3442 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3443 					      skb->len - csstart);
3444 
3445 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3446 		long csstuff = csstart + skb->csum_offset;
3447 
3448 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3449 	}
3450 }
3451 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3452 
3453 /**
3454  *	skb_dequeue - remove from the head of the queue
3455  *	@list: list to dequeue from
3456  *
3457  *	Remove the head of the list. The list lock is taken so the function
3458  *	may be used safely with other locking list functions. The head item is
3459  *	returned or %NULL if the list is empty.
3460  */
3461 
3462 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3463 {
3464 	unsigned long flags;
3465 	struct sk_buff *result;
3466 
3467 	spin_lock_irqsave(&list->lock, flags);
3468 	result = __skb_dequeue(list);
3469 	spin_unlock_irqrestore(&list->lock, flags);
3470 	return result;
3471 }
3472 EXPORT_SYMBOL(skb_dequeue);
3473 
3474 /**
3475  *	skb_dequeue_tail - remove from the tail of the queue
3476  *	@list: list to dequeue from
3477  *
3478  *	Remove the tail of the list. The list lock is taken so the function
3479  *	may be used safely with other locking list functions. The tail item is
3480  *	returned or %NULL if the list is empty.
3481  */
3482 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3483 {
3484 	unsigned long flags;
3485 	struct sk_buff *result;
3486 
3487 	spin_lock_irqsave(&list->lock, flags);
3488 	result = __skb_dequeue_tail(list);
3489 	spin_unlock_irqrestore(&list->lock, flags);
3490 	return result;
3491 }
3492 EXPORT_SYMBOL(skb_dequeue_tail);
3493 
3494 /**
3495  *	skb_queue_purge - empty a list
3496  *	@list: list to empty
3497  *
3498  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3499  *	the list and one reference dropped. This function takes the list
3500  *	lock and is atomic with respect to other list locking functions.
3501  */
3502 void skb_queue_purge(struct sk_buff_head *list)
3503 {
3504 	struct sk_buff *skb;
3505 	while ((skb = skb_dequeue(list)) != NULL)
3506 		kfree_skb(skb);
3507 }
3508 EXPORT_SYMBOL(skb_queue_purge);
3509 
3510 /**
3511  *	skb_rbtree_purge - empty a skb rbtree
3512  *	@root: root of the rbtree to empty
3513  *	Return value: the sum of truesizes of all purged skbs.
3514  *
3515  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3516  *	the list and one reference dropped. This function does not take
3517  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3518  *	out-of-order queue is protected by the socket lock).
3519  */
3520 unsigned int skb_rbtree_purge(struct rb_root *root)
3521 {
3522 	struct rb_node *p = rb_first(root);
3523 	unsigned int sum = 0;
3524 
3525 	while (p) {
3526 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3527 
3528 		p = rb_next(p);
3529 		rb_erase(&skb->rbnode, root);
3530 		sum += skb->truesize;
3531 		kfree_skb(skb);
3532 	}
3533 	return sum;
3534 }
3535 
3536 /**
3537  *	skb_queue_head - queue a buffer at the list head
3538  *	@list: list to use
3539  *	@newsk: buffer to queue
3540  *
3541  *	Queue a buffer at the start of the list. This function takes the
3542  *	list lock and can be used safely with other locking &sk_buff functions
3543  *	safely.
3544  *
3545  *	A buffer cannot be placed on two lists at the same time.
3546  */
3547 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3548 {
3549 	unsigned long flags;
3550 
3551 	spin_lock_irqsave(&list->lock, flags);
3552 	__skb_queue_head(list, newsk);
3553 	spin_unlock_irqrestore(&list->lock, flags);
3554 }
3555 EXPORT_SYMBOL(skb_queue_head);
3556 
3557 /**
3558  *	skb_queue_tail - queue a buffer at the list tail
3559  *	@list: list to use
3560  *	@newsk: buffer to queue
3561  *
3562  *	Queue a buffer at the tail of the list. This function takes the
3563  *	list lock and can be used safely with other locking &sk_buff functions
3564  *	safely.
3565  *
3566  *	A buffer cannot be placed on two lists at the same time.
3567  */
3568 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3569 {
3570 	unsigned long flags;
3571 
3572 	spin_lock_irqsave(&list->lock, flags);
3573 	__skb_queue_tail(list, newsk);
3574 	spin_unlock_irqrestore(&list->lock, flags);
3575 }
3576 EXPORT_SYMBOL(skb_queue_tail);
3577 
3578 /**
3579  *	skb_unlink	-	remove a buffer from a list
3580  *	@skb: buffer to remove
3581  *	@list: list to use
3582  *
3583  *	Remove a packet from a list. The list locks are taken and this
3584  *	function is atomic with respect to other list locked calls
3585  *
3586  *	You must know what list the SKB is on.
3587  */
3588 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3589 {
3590 	unsigned long flags;
3591 
3592 	spin_lock_irqsave(&list->lock, flags);
3593 	__skb_unlink(skb, list);
3594 	spin_unlock_irqrestore(&list->lock, flags);
3595 }
3596 EXPORT_SYMBOL(skb_unlink);
3597 
3598 /**
3599  *	skb_append	-	append a buffer
3600  *	@old: buffer to insert after
3601  *	@newsk: buffer to insert
3602  *	@list: list to use
3603  *
3604  *	Place a packet after a given packet in a list. The list locks are taken
3605  *	and this function is atomic with respect to other list locked calls.
3606  *	A buffer cannot be placed on two lists at the same time.
3607  */
3608 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3609 {
3610 	unsigned long flags;
3611 
3612 	spin_lock_irqsave(&list->lock, flags);
3613 	__skb_queue_after(list, old, newsk);
3614 	spin_unlock_irqrestore(&list->lock, flags);
3615 }
3616 EXPORT_SYMBOL(skb_append);
3617 
3618 static inline void skb_split_inside_header(struct sk_buff *skb,
3619 					   struct sk_buff* skb1,
3620 					   const u32 len, const int pos)
3621 {
3622 	int i;
3623 
3624 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3625 					 pos - len);
3626 	/* And move data appendix as is. */
3627 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3628 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3629 
3630 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3631 	skb_shinfo(skb)->nr_frags  = 0;
3632 	skb1->data_len		   = skb->data_len;
3633 	skb1->len		   += skb1->data_len;
3634 	skb->data_len		   = 0;
3635 	skb->len		   = len;
3636 	skb_set_tail_pointer(skb, len);
3637 }
3638 
3639 static inline void skb_split_no_header(struct sk_buff *skb,
3640 				       struct sk_buff* skb1,
3641 				       const u32 len, int pos)
3642 {
3643 	int i, k = 0;
3644 	const int nfrags = skb_shinfo(skb)->nr_frags;
3645 
3646 	skb_shinfo(skb)->nr_frags = 0;
3647 	skb1->len		  = skb1->data_len = skb->len - len;
3648 	skb->len		  = len;
3649 	skb->data_len		  = len - pos;
3650 
3651 	for (i = 0; i < nfrags; i++) {
3652 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3653 
3654 		if (pos + size > len) {
3655 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3656 
3657 			if (pos < len) {
3658 				/* Split frag.
3659 				 * We have two variants in this case:
3660 				 * 1. Move all the frag to the second
3661 				 *    part, if it is possible. F.e.
3662 				 *    this approach is mandatory for TUX,
3663 				 *    where splitting is expensive.
3664 				 * 2. Split is accurately. We make this.
3665 				 */
3666 				skb_frag_ref(skb, i);
3667 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3668 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3669 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3670 				skb_shinfo(skb)->nr_frags++;
3671 			}
3672 			k++;
3673 		} else
3674 			skb_shinfo(skb)->nr_frags++;
3675 		pos += size;
3676 	}
3677 	skb_shinfo(skb1)->nr_frags = k;
3678 }
3679 
3680 /**
3681  * skb_split - Split fragmented skb to two parts at length len.
3682  * @skb: the buffer to split
3683  * @skb1: the buffer to receive the second part
3684  * @len: new length for skb
3685  */
3686 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3687 {
3688 	int pos = skb_headlen(skb);
3689 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3690 
3691 	skb_zcopy_downgrade_managed(skb);
3692 
3693 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3694 	skb_zerocopy_clone(skb1, skb, 0);
3695 	if (len < pos)	/* Split line is inside header. */
3696 		skb_split_inside_header(skb, skb1, len, pos);
3697 	else		/* Second chunk has no header, nothing to copy. */
3698 		skb_split_no_header(skb, skb1, len, pos);
3699 }
3700 EXPORT_SYMBOL(skb_split);
3701 
3702 /* Shifting from/to a cloned skb is a no-go.
3703  *
3704  * Caller cannot keep skb_shinfo related pointers past calling here!
3705  */
3706 static int skb_prepare_for_shift(struct sk_buff *skb)
3707 {
3708 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3709 }
3710 
3711 /**
3712  * skb_shift - Shifts paged data partially from skb to another
3713  * @tgt: buffer into which tail data gets added
3714  * @skb: buffer from which the paged data comes from
3715  * @shiftlen: shift up to this many bytes
3716  *
3717  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3718  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3719  * It's up to caller to free skb if everything was shifted.
3720  *
3721  * If @tgt runs out of frags, the whole operation is aborted.
3722  *
3723  * Skb cannot include anything else but paged data while tgt is allowed
3724  * to have non-paged data as well.
3725  *
3726  * TODO: full sized shift could be optimized but that would need
3727  * specialized skb free'er to handle frags without up-to-date nr_frags.
3728  */
3729 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3730 {
3731 	int from, to, merge, todo;
3732 	skb_frag_t *fragfrom, *fragto;
3733 
3734 	BUG_ON(shiftlen > skb->len);
3735 
3736 	if (skb_headlen(skb))
3737 		return 0;
3738 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3739 		return 0;
3740 
3741 	todo = shiftlen;
3742 	from = 0;
3743 	to = skb_shinfo(tgt)->nr_frags;
3744 	fragfrom = &skb_shinfo(skb)->frags[from];
3745 
3746 	/* Actual merge is delayed until the point when we know we can
3747 	 * commit all, so that we don't have to undo partial changes
3748 	 */
3749 	if (!to ||
3750 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3751 			      skb_frag_off(fragfrom))) {
3752 		merge = -1;
3753 	} else {
3754 		merge = to - 1;
3755 
3756 		todo -= skb_frag_size(fragfrom);
3757 		if (todo < 0) {
3758 			if (skb_prepare_for_shift(skb) ||
3759 			    skb_prepare_for_shift(tgt))
3760 				return 0;
3761 
3762 			/* All previous frag pointers might be stale! */
3763 			fragfrom = &skb_shinfo(skb)->frags[from];
3764 			fragto = &skb_shinfo(tgt)->frags[merge];
3765 
3766 			skb_frag_size_add(fragto, shiftlen);
3767 			skb_frag_size_sub(fragfrom, shiftlen);
3768 			skb_frag_off_add(fragfrom, shiftlen);
3769 
3770 			goto onlymerged;
3771 		}
3772 
3773 		from++;
3774 	}
3775 
3776 	/* Skip full, not-fitting skb to avoid expensive operations */
3777 	if ((shiftlen == skb->len) &&
3778 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3779 		return 0;
3780 
3781 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3782 		return 0;
3783 
3784 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3785 		if (to == MAX_SKB_FRAGS)
3786 			return 0;
3787 
3788 		fragfrom = &skb_shinfo(skb)->frags[from];
3789 		fragto = &skb_shinfo(tgt)->frags[to];
3790 
3791 		if (todo >= skb_frag_size(fragfrom)) {
3792 			*fragto = *fragfrom;
3793 			todo -= skb_frag_size(fragfrom);
3794 			from++;
3795 			to++;
3796 
3797 		} else {
3798 			__skb_frag_ref(fragfrom);
3799 			skb_frag_page_copy(fragto, fragfrom);
3800 			skb_frag_off_copy(fragto, fragfrom);
3801 			skb_frag_size_set(fragto, todo);
3802 
3803 			skb_frag_off_add(fragfrom, todo);
3804 			skb_frag_size_sub(fragfrom, todo);
3805 			todo = 0;
3806 
3807 			to++;
3808 			break;
3809 		}
3810 	}
3811 
3812 	/* Ready to "commit" this state change to tgt */
3813 	skb_shinfo(tgt)->nr_frags = to;
3814 
3815 	if (merge >= 0) {
3816 		fragfrom = &skb_shinfo(skb)->frags[0];
3817 		fragto = &skb_shinfo(tgt)->frags[merge];
3818 
3819 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3820 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3821 	}
3822 
3823 	/* Reposition in the original skb */
3824 	to = 0;
3825 	while (from < skb_shinfo(skb)->nr_frags)
3826 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3827 	skb_shinfo(skb)->nr_frags = to;
3828 
3829 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3830 
3831 onlymerged:
3832 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3833 	 * the other hand might need it if it needs to be resent
3834 	 */
3835 	tgt->ip_summed = CHECKSUM_PARTIAL;
3836 	skb->ip_summed = CHECKSUM_PARTIAL;
3837 
3838 	skb_len_add(skb, -shiftlen);
3839 	skb_len_add(tgt, shiftlen);
3840 
3841 	return shiftlen;
3842 }
3843 
3844 /**
3845  * skb_prepare_seq_read - Prepare a sequential read of skb data
3846  * @skb: the buffer to read
3847  * @from: lower offset of data to be read
3848  * @to: upper offset of data to be read
3849  * @st: state variable
3850  *
3851  * Initializes the specified state variable. Must be called before
3852  * invoking skb_seq_read() for the first time.
3853  */
3854 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3855 			  unsigned int to, struct skb_seq_state *st)
3856 {
3857 	st->lower_offset = from;
3858 	st->upper_offset = to;
3859 	st->root_skb = st->cur_skb = skb;
3860 	st->frag_idx = st->stepped_offset = 0;
3861 	st->frag_data = NULL;
3862 	st->frag_off = 0;
3863 }
3864 EXPORT_SYMBOL(skb_prepare_seq_read);
3865 
3866 /**
3867  * skb_seq_read - Sequentially read skb data
3868  * @consumed: number of bytes consumed by the caller so far
3869  * @data: destination pointer for data to be returned
3870  * @st: state variable
3871  *
3872  * Reads a block of skb data at @consumed relative to the
3873  * lower offset specified to skb_prepare_seq_read(). Assigns
3874  * the head of the data block to @data and returns the length
3875  * of the block or 0 if the end of the skb data or the upper
3876  * offset has been reached.
3877  *
3878  * The caller is not required to consume all of the data
3879  * returned, i.e. @consumed is typically set to the number
3880  * of bytes already consumed and the next call to
3881  * skb_seq_read() will return the remaining part of the block.
3882  *
3883  * Note 1: The size of each block of data returned can be arbitrary,
3884  *       this limitation is the cost for zerocopy sequential
3885  *       reads of potentially non linear data.
3886  *
3887  * Note 2: Fragment lists within fragments are not implemented
3888  *       at the moment, state->root_skb could be replaced with
3889  *       a stack for this purpose.
3890  */
3891 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3892 			  struct skb_seq_state *st)
3893 {
3894 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3895 	skb_frag_t *frag;
3896 
3897 	if (unlikely(abs_offset >= st->upper_offset)) {
3898 		if (st->frag_data) {
3899 			kunmap_atomic(st->frag_data);
3900 			st->frag_data = NULL;
3901 		}
3902 		return 0;
3903 	}
3904 
3905 next_skb:
3906 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3907 
3908 	if (abs_offset < block_limit && !st->frag_data) {
3909 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3910 		return block_limit - abs_offset;
3911 	}
3912 
3913 	if (st->frag_idx == 0 && !st->frag_data)
3914 		st->stepped_offset += skb_headlen(st->cur_skb);
3915 
3916 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3917 		unsigned int pg_idx, pg_off, pg_sz;
3918 
3919 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3920 
3921 		pg_idx = 0;
3922 		pg_off = skb_frag_off(frag);
3923 		pg_sz = skb_frag_size(frag);
3924 
3925 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3926 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3927 			pg_off = offset_in_page(pg_off + st->frag_off);
3928 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3929 						    PAGE_SIZE - pg_off);
3930 		}
3931 
3932 		block_limit = pg_sz + st->stepped_offset;
3933 		if (abs_offset < block_limit) {
3934 			if (!st->frag_data)
3935 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3936 
3937 			*data = (u8 *)st->frag_data + pg_off +
3938 				(abs_offset - st->stepped_offset);
3939 
3940 			return block_limit - abs_offset;
3941 		}
3942 
3943 		if (st->frag_data) {
3944 			kunmap_atomic(st->frag_data);
3945 			st->frag_data = NULL;
3946 		}
3947 
3948 		st->stepped_offset += pg_sz;
3949 		st->frag_off += pg_sz;
3950 		if (st->frag_off == skb_frag_size(frag)) {
3951 			st->frag_off = 0;
3952 			st->frag_idx++;
3953 		}
3954 	}
3955 
3956 	if (st->frag_data) {
3957 		kunmap_atomic(st->frag_data);
3958 		st->frag_data = NULL;
3959 	}
3960 
3961 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3962 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3963 		st->frag_idx = 0;
3964 		goto next_skb;
3965 	} else if (st->cur_skb->next) {
3966 		st->cur_skb = st->cur_skb->next;
3967 		st->frag_idx = 0;
3968 		goto next_skb;
3969 	}
3970 
3971 	return 0;
3972 }
3973 EXPORT_SYMBOL(skb_seq_read);
3974 
3975 /**
3976  * skb_abort_seq_read - Abort a sequential read of skb data
3977  * @st: state variable
3978  *
3979  * Must be called if skb_seq_read() was not called until it
3980  * returned 0.
3981  */
3982 void skb_abort_seq_read(struct skb_seq_state *st)
3983 {
3984 	if (st->frag_data)
3985 		kunmap_atomic(st->frag_data);
3986 }
3987 EXPORT_SYMBOL(skb_abort_seq_read);
3988 
3989 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3990 
3991 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3992 					  struct ts_config *conf,
3993 					  struct ts_state *state)
3994 {
3995 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3996 }
3997 
3998 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3999 {
4000 	skb_abort_seq_read(TS_SKB_CB(state));
4001 }
4002 
4003 /**
4004  * skb_find_text - Find a text pattern in skb data
4005  * @skb: the buffer to look in
4006  * @from: search offset
4007  * @to: search limit
4008  * @config: textsearch configuration
4009  *
4010  * Finds a pattern in the skb data according to the specified
4011  * textsearch configuration. Use textsearch_next() to retrieve
4012  * subsequent occurrences of the pattern. Returns the offset
4013  * to the first occurrence or UINT_MAX if no match was found.
4014  */
4015 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4016 			   unsigned int to, struct ts_config *config)
4017 {
4018 	struct ts_state state;
4019 	unsigned int ret;
4020 
4021 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4022 
4023 	config->get_next_block = skb_ts_get_next_block;
4024 	config->finish = skb_ts_finish;
4025 
4026 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4027 
4028 	ret = textsearch_find(config, &state);
4029 	return (ret <= to - from ? ret : UINT_MAX);
4030 }
4031 EXPORT_SYMBOL(skb_find_text);
4032 
4033 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4034 			 int offset, size_t size)
4035 {
4036 	int i = skb_shinfo(skb)->nr_frags;
4037 
4038 	if (skb_can_coalesce(skb, i, page, offset)) {
4039 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4040 	} else if (i < MAX_SKB_FRAGS) {
4041 		skb_zcopy_downgrade_managed(skb);
4042 		get_page(page);
4043 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4044 	} else {
4045 		return -EMSGSIZE;
4046 	}
4047 
4048 	return 0;
4049 }
4050 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4051 
4052 /**
4053  *	skb_pull_rcsum - pull skb and update receive checksum
4054  *	@skb: buffer to update
4055  *	@len: length of data pulled
4056  *
4057  *	This function performs an skb_pull on the packet and updates
4058  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4059  *	receive path processing instead of skb_pull unless you know
4060  *	that the checksum difference is zero (e.g., a valid IP header)
4061  *	or you are setting ip_summed to CHECKSUM_NONE.
4062  */
4063 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4064 {
4065 	unsigned char *data = skb->data;
4066 
4067 	BUG_ON(len > skb->len);
4068 	__skb_pull(skb, len);
4069 	skb_postpull_rcsum(skb, data, len);
4070 	return skb->data;
4071 }
4072 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4073 
4074 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4075 {
4076 	skb_frag_t head_frag;
4077 	struct page *page;
4078 
4079 	page = virt_to_head_page(frag_skb->head);
4080 	__skb_frag_set_page(&head_frag, page);
4081 	skb_frag_off_set(&head_frag, frag_skb->data -
4082 			 (unsigned char *)page_address(page));
4083 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
4084 	return head_frag;
4085 }
4086 
4087 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4088 				 netdev_features_t features,
4089 				 unsigned int offset)
4090 {
4091 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4092 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4093 	unsigned int delta_truesize = 0;
4094 	unsigned int delta_len = 0;
4095 	struct sk_buff *tail = NULL;
4096 	struct sk_buff *nskb, *tmp;
4097 	int len_diff, err;
4098 
4099 	skb_push(skb, -skb_network_offset(skb) + offset);
4100 
4101 	skb_shinfo(skb)->frag_list = NULL;
4102 
4103 	do {
4104 		nskb = list_skb;
4105 		list_skb = list_skb->next;
4106 
4107 		err = 0;
4108 		delta_truesize += nskb->truesize;
4109 		if (skb_shared(nskb)) {
4110 			tmp = skb_clone(nskb, GFP_ATOMIC);
4111 			if (tmp) {
4112 				consume_skb(nskb);
4113 				nskb = tmp;
4114 				err = skb_unclone(nskb, GFP_ATOMIC);
4115 			} else {
4116 				err = -ENOMEM;
4117 			}
4118 		}
4119 
4120 		if (!tail)
4121 			skb->next = nskb;
4122 		else
4123 			tail->next = nskb;
4124 
4125 		if (unlikely(err)) {
4126 			nskb->next = list_skb;
4127 			goto err_linearize;
4128 		}
4129 
4130 		tail = nskb;
4131 
4132 		delta_len += nskb->len;
4133 
4134 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4135 
4136 		skb_release_head_state(nskb);
4137 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4138 		__copy_skb_header(nskb, skb);
4139 
4140 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4141 		nskb->transport_header += len_diff;
4142 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4143 						 nskb->data - tnl_hlen,
4144 						 offset + tnl_hlen);
4145 
4146 		if (skb_needs_linearize(nskb, features) &&
4147 		    __skb_linearize(nskb))
4148 			goto err_linearize;
4149 
4150 	} while (list_skb);
4151 
4152 	skb->truesize = skb->truesize - delta_truesize;
4153 	skb->data_len = skb->data_len - delta_len;
4154 	skb->len = skb->len - delta_len;
4155 
4156 	skb_gso_reset(skb);
4157 
4158 	skb->prev = tail;
4159 
4160 	if (skb_needs_linearize(skb, features) &&
4161 	    __skb_linearize(skb))
4162 		goto err_linearize;
4163 
4164 	skb_get(skb);
4165 
4166 	return skb;
4167 
4168 err_linearize:
4169 	kfree_skb_list(skb->next);
4170 	skb->next = NULL;
4171 	return ERR_PTR(-ENOMEM);
4172 }
4173 EXPORT_SYMBOL_GPL(skb_segment_list);
4174 
4175 /**
4176  *	skb_segment - Perform protocol segmentation on skb.
4177  *	@head_skb: buffer to segment
4178  *	@features: features for the output path (see dev->features)
4179  *
4180  *	This function performs segmentation on the given skb.  It returns
4181  *	a pointer to the first in a list of new skbs for the segments.
4182  *	In case of error it returns ERR_PTR(err).
4183  */
4184 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4185 			    netdev_features_t features)
4186 {
4187 	struct sk_buff *segs = NULL;
4188 	struct sk_buff *tail = NULL;
4189 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4190 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
4191 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4192 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4193 	struct sk_buff *frag_skb = head_skb;
4194 	unsigned int offset = doffset;
4195 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4196 	unsigned int partial_segs = 0;
4197 	unsigned int headroom;
4198 	unsigned int len = head_skb->len;
4199 	__be16 proto;
4200 	bool csum, sg;
4201 	int nfrags = skb_shinfo(head_skb)->nr_frags;
4202 	int err = -ENOMEM;
4203 	int i = 0;
4204 	int pos;
4205 
4206 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4207 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4208 		struct sk_buff *check_skb;
4209 
4210 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4211 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4212 				/* gso_size is untrusted, and we have a frag_list with
4213 				 * a linear non head_frag item.
4214 				 *
4215 				 * If head_skb's headlen does not fit requested gso_size,
4216 				 * it means that the frag_list members do NOT terminate
4217 				 * on exact gso_size boundaries. Hence we cannot perform
4218 				 * skb_frag_t page sharing. Therefore we must fallback to
4219 				 * copying the frag_list skbs; we do so by disabling SG.
4220 				 */
4221 				features &= ~NETIF_F_SG;
4222 				break;
4223 			}
4224 		}
4225 	}
4226 
4227 	__skb_push(head_skb, doffset);
4228 	proto = skb_network_protocol(head_skb, NULL);
4229 	if (unlikely(!proto))
4230 		return ERR_PTR(-EINVAL);
4231 
4232 	sg = !!(features & NETIF_F_SG);
4233 	csum = !!can_checksum_protocol(features, proto);
4234 
4235 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4236 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4237 			struct sk_buff *iter;
4238 			unsigned int frag_len;
4239 
4240 			if (!list_skb ||
4241 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4242 				goto normal;
4243 
4244 			/* If we get here then all the required
4245 			 * GSO features except frag_list are supported.
4246 			 * Try to split the SKB to multiple GSO SKBs
4247 			 * with no frag_list.
4248 			 * Currently we can do that only when the buffers don't
4249 			 * have a linear part and all the buffers except
4250 			 * the last are of the same length.
4251 			 */
4252 			frag_len = list_skb->len;
4253 			skb_walk_frags(head_skb, iter) {
4254 				if (frag_len != iter->len && iter->next)
4255 					goto normal;
4256 				if (skb_headlen(iter) && !iter->head_frag)
4257 					goto normal;
4258 
4259 				len -= iter->len;
4260 			}
4261 
4262 			if (len != frag_len)
4263 				goto normal;
4264 		}
4265 
4266 		/* GSO partial only requires that we trim off any excess that
4267 		 * doesn't fit into an MSS sized block, so take care of that
4268 		 * now.
4269 		 */
4270 		partial_segs = len / mss;
4271 		if (partial_segs > 1)
4272 			mss *= partial_segs;
4273 		else
4274 			partial_segs = 0;
4275 	}
4276 
4277 normal:
4278 	headroom = skb_headroom(head_skb);
4279 	pos = skb_headlen(head_skb);
4280 
4281 	do {
4282 		struct sk_buff *nskb;
4283 		skb_frag_t *nskb_frag;
4284 		int hsize;
4285 		int size;
4286 
4287 		if (unlikely(mss == GSO_BY_FRAGS)) {
4288 			len = list_skb->len;
4289 		} else {
4290 			len = head_skb->len - offset;
4291 			if (len > mss)
4292 				len = mss;
4293 		}
4294 
4295 		hsize = skb_headlen(head_skb) - offset;
4296 
4297 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4298 		    (skb_headlen(list_skb) == len || sg)) {
4299 			BUG_ON(skb_headlen(list_skb) > len);
4300 
4301 			i = 0;
4302 			nfrags = skb_shinfo(list_skb)->nr_frags;
4303 			frag = skb_shinfo(list_skb)->frags;
4304 			frag_skb = list_skb;
4305 			pos += skb_headlen(list_skb);
4306 
4307 			while (pos < offset + len) {
4308 				BUG_ON(i >= nfrags);
4309 
4310 				size = skb_frag_size(frag);
4311 				if (pos + size > offset + len)
4312 					break;
4313 
4314 				i++;
4315 				pos += size;
4316 				frag++;
4317 			}
4318 
4319 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4320 			list_skb = list_skb->next;
4321 
4322 			if (unlikely(!nskb))
4323 				goto err;
4324 
4325 			if (unlikely(pskb_trim(nskb, len))) {
4326 				kfree_skb(nskb);
4327 				goto err;
4328 			}
4329 
4330 			hsize = skb_end_offset(nskb);
4331 			if (skb_cow_head(nskb, doffset + headroom)) {
4332 				kfree_skb(nskb);
4333 				goto err;
4334 			}
4335 
4336 			nskb->truesize += skb_end_offset(nskb) - hsize;
4337 			skb_release_head_state(nskb);
4338 			__skb_push(nskb, doffset);
4339 		} else {
4340 			if (hsize < 0)
4341 				hsize = 0;
4342 			if (hsize > len || !sg)
4343 				hsize = len;
4344 
4345 			nskb = __alloc_skb(hsize + doffset + headroom,
4346 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4347 					   NUMA_NO_NODE);
4348 
4349 			if (unlikely(!nskb))
4350 				goto err;
4351 
4352 			skb_reserve(nskb, headroom);
4353 			__skb_put(nskb, doffset);
4354 		}
4355 
4356 		if (segs)
4357 			tail->next = nskb;
4358 		else
4359 			segs = nskb;
4360 		tail = nskb;
4361 
4362 		__copy_skb_header(nskb, head_skb);
4363 
4364 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4365 		skb_reset_mac_len(nskb);
4366 
4367 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4368 						 nskb->data - tnl_hlen,
4369 						 doffset + tnl_hlen);
4370 
4371 		if (nskb->len == len + doffset)
4372 			goto perform_csum_check;
4373 
4374 		if (!sg) {
4375 			if (!csum) {
4376 				if (!nskb->remcsum_offload)
4377 					nskb->ip_summed = CHECKSUM_NONE;
4378 				SKB_GSO_CB(nskb)->csum =
4379 					skb_copy_and_csum_bits(head_skb, offset,
4380 							       skb_put(nskb,
4381 								       len),
4382 							       len);
4383 				SKB_GSO_CB(nskb)->csum_start =
4384 					skb_headroom(nskb) + doffset;
4385 			} else {
4386 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4387 					goto err;
4388 			}
4389 			continue;
4390 		}
4391 
4392 		nskb_frag = skb_shinfo(nskb)->frags;
4393 
4394 		skb_copy_from_linear_data_offset(head_skb, offset,
4395 						 skb_put(nskb, hsize), hsize);
4396 
4397 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4398 					   SKBFL_SHARED_FRAG;
4399 
4400 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4401 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4402 			goto err;
4403 
4404 		while (pos < offset + len) {
4405 			if (i >= nfrags) {
4406 				i = 0;
4407 				nfrags = skb_shinfo(list_skb)->nr_frags;
4408 				frag = skb_shinfo(list_skb)->frags;
4409 				frag_skb = list_skb;
4410 				if (!skb_headlen(list_skb)) {
4411 					BUG_ON(!nfrags);
4412 				} else {
4413 					BUG_ON(!list_skb->head_frag);
4414 
4415 					/* to make room for head_frag. */
4416 					i--;
4417 					frag--;
4418 				}
4419 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4420 				    skb_zerocopy_clone(nskb, frag_skb,
4421 						       GFP_ATOMIC))
4422 					goto err;
4423 
4424 				list_skb = list_skb->next;
4425 			}
4426 
4427 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4428 				     MAX_SKB_FRAGS)) {
4429 				net_warn_ratelimited(
4430 					"skb_segment: too many frags: %u %u\n",
4431 					pos, mss);
4432 				err = -EINVAL;
4433 				goto err;
4434 			}
4435 
4436 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4437 			__skb_frag_ref(nskb_frag);
4438 			size = skb_frag_size(nskb_frag);
4439 
4440 			if (pos < offset) {
4441 				skb_frag_off_add(nskb_frag, offset - pos);
4442 				skb_frag_size_sub(nskb_frag, offset - pos);
4443 			}
4444 
4445 			skb_shinfo(nskb)->nr_frags++;
4446 
4447 			if (pos + size <= offset + len) {
4448 				i++;
4449 				frag++;
4450 				pos += size;
4451 			} else {
4452 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4453 				goto skip_fraglist;
4454 			}
4455 
4456 			nskb_frag++;
4457 		}
4458 
4459 skip_fraglist:
4460 		nskb->data_len = len - hsize;
4461 		nskb->len += nskb->data_len;
4462 		nskb->truesize += nskb->data_len;
4463 
4464 perform_csum_check:
4465 		if (!csum) {
4466 			if (skb_has_shared_frag(nskb) &&
4467 			    __skb_linearize(nskb))
4468 				goto err;
4469 
4470 			if (!nskb->remcsum_offload)
4471 				nskb->ip_summed = CHECKSUM_NONE;
4472 			SKB_GSO_CB(nskb)->csum =
4473 				skb_checksum(nskb, doffset,
4474 					     nskb->len - doffset, 0);
4475 			SKB_GSO_CB(nskb)->csum_start =
4476 				skb_headroom(nskb) + doffset;
4477 		}
4478 	} while ((offset += len) < head_skb->len);
4479 
4480 	/* Some callers want to get the end of the list.
4481 	 * Put it in segs->prev to avoid walking the list.
4482 	 * (see validate_xmit_skb_list() for example)
4483 	 */
4484 	segs->prev = tail;
4485 
4486 	if (partial_segs) {
4487 		struct sk_buff *iter;
4488 		int type = skb_shinfo(head_skb)->gso_type;
4489 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4490 
4491 		/* Update type to add partial and then remove dodgy if set */
4492 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4493 		type &= ~SKB_GSO_DODGY;
4494 
4495 		/* Update GSO info and prepare to start updating headers on
4496 		 * our way back down the stack of protocols.
4497 		 */
4498 		for (iter = segs; iter; iter = iter->next) {
4499 			skb_shinfo(iter)->gso_size = gso_size;
4500 			skb_shinfo(iter)->gso_segs = partial_segs;
4501 			skb_shinfo(iter)->gso_type = type;
4502 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4503 		}
4504 
4505 		if (tail->len - doffset <= gso_size)
4506 			skb_shinfo(tail)->gso_size = 0;
4507 		else if (tail != segs)
4508 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4509 	}
4510 
4511 	/* Following permits correct backpressure, for protocols
4512 	 * using skb_set_owner_w().
4513 	 * Idea is to tranfert ownership from head_skb to last segment.
4514 	 */
4515 	if (head_skb->destructor == sock_wfree) {
4516 		swap(tail->truesize, head_skb->truesize);
4517 		swap(tail->destructor, head_skb->destructor);
4518 		swap(tail->sk, head_skb->sk);
4519 	}
4520 	return segs;
4521 
4522 err:
4523 	kfree_skb_list(segs);
4524 	return ERR_PTR(err);
4525 }
4526 EXPORT_SYMBOL_GPL(skb_segment);
4527 
4528 #ifdef CONFIG_SKB_EXTENSIONS
4529 #define SKB_EXT_ALIGN_VALUE	8
4530 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4531 
4532 static const u8 skb_ext_type_len[] = {
4533 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4534 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4535 #endif
4536 #ifdef CONFIG_XFRM
4537 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4538 #endif
4539 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4540 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4541 #endif
4542 #if IS_ENABLED(CONFIG_MPTCP)
4543 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4544 #endif
4545 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4546 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4547 #endif
4548 };
4549 
4550 static __always_inline unsigned int skb_ext_total_length(void)
4551 {
4552 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4553 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4554 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4555 #endif
4556 #ifdef CONFIG_XFRM
4557 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4558 #endif
4559 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4560 		skb_ext_type_len[TC_SKB_EXT] +
4561 #endif
4562 #if IS_ENABLED(CONFIG_MPTCP)
4563 		skb_ext_type_len[SKB_EXT_MPTCP] +
4564 #endif
4565 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4566 		skb_ext_type_len[SKB_EXT_MCTP] +
4567 #endif
4568 		0;
4569 }
4570 
4571 static void skb_extensions_init(void)
4572 {
4573 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4574 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4575 
4576 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4577 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4578 					     0,
4579 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4580 					     NULL);
4581 }
4582 #else
4583 static void skb_extensions_init(void) {}
4584 #endif
4585 
4586 void __init skb_init(void)
4587 {
4588 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4589 					      sizeof(struct sk_buff),
4590 					      0,
4591 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4592 					      offsetof(struct sk_buff, cb),
4593 					      sizeof_field(struct sk_buff, cb),
4594 					      NULL);
4595 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4596 						sizeof(struct sk_buff_fclones),
4597 						0,
4598 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4599 						NULL);
4600 	skb_extensions_init();
4601 }
4602 
4603 static int
4604 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4605 	       unsigned int recursion_level)
4606 {
4607 	int start = skb_headlen(skb);
4608 	int i, copy = start - offset;
4609 	struct sk_buff *frag_iter;
4610 	int elt = 0;
4611 
4612 	if (unlikely(recursion_level >= 24))
4613 		return -EMSGSIZE;
4614 
4615 	if (copy > 0) {
4616 		if (copy > len)
4617 			copy = len;
4618 		sg_set_buf(sg, skb->data + offset, copy);
4619 		elt++;
4620 		if ((len -= copy) == 0)
4621 			return elt;
4622 		offset += copy;
4623 	}
4624 
4625 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4626 		int end;
4627 
4628 		WARN_ON(start > offset + len);
4629 
4630 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4631 		if ((copy = end - offset) > 0) {
4632 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4633 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4634 				return -EMSGSIZE;
4635 
4636 			if (copy > len)
4637 				copy = len;
4638 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4639 				    skb_frag_off(frag) + offset - start);
4640 			elt++;
4641 			if (!(len -= copy))
4642 				return elt;
4643 			offset += copy;
4644 		}
4645 		start = end;
4646 	}
4647 
4648 	skb_walk_frags(skb, frag_iter) {
4649 		int end, ret;
4650 
4651 		WARN_ON(start > offset + len);
4652 
4653 		end = start + frag_iter->len;
4654 		if ((copy = end - offset) > 0) {
4655 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4656 				return -EMSGSIZE;
4657 
4658 			if (copy > len)
4659 				copy = len;
4660 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4661 					      copy, recursion_level + 1);
4662 			if (unlikely(ret < 0))
4663 				return ret;
4664 			elt += ret;
4665 			if ((len -= copy) == 0)
4666 				return elt;
4667 			offset += copy;
4668 		}
4669 		start = end;
4670 	}
4671 	BUG_ON(len);
4672 	return elt;
4673 }
4674 
4675 /**
4676  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4677  *	@skb: Socket buffer containing the buffers to be mapped
4678  *	@sg: The scatter-gather list to map into
4679  *	@offset: The offset into the buffer's contents to start mapping
4680  *	@len: Length of buffer space to be mapped
4681  *
4682  *	Fill the specified scatter-gather list with mappings/pointers into a
4683  *	region of the buffer space attached to a socket buffer. Returns either
4684  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4685  *	could not fit.
4686  */
4687 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4688 {
4689 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4690 
4691 	if (nsg <= 0)
4692 		return nsg;
4693 
4694 	sg_mark_end(&sg[nsg - 1]);
4695 
4696 	return nsg;
4697 }
4698 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4699 
4700 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4701  * sglist without mark the sg which contain last skb data as the end.
4702  * So the caller can mannipulate sg list as will when padding new data after
4703  * the first call without calling sg_unmark_end to expend sg list.
4704  *
4705  * Scenario to use skb_to_sgvec_nomark:
4706  * 1. sg_init_table
4707  * 2. skb_to_sgvec_nomark(payload1)
4708  * 3. skb_to_sgvec_nomark(payload2)
4709  *
4710  * This is equivalent to:
4711  * 1. sg_init_table
4712  * 2. skb_to_sgvec(payload1)
4713  * 3. sg_unmark_end
4714  * 4. skb_to_sgvec(payload2)
4715  *
4716  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4717  * is more preferable.
4718  */
4719 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4720 			int offset, int len)
4721 {
4722 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4723 }
4724 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4725 
4726 
4727 
4728 /**
4729  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4730  *	@skb: The socket buffer to check.
4731  *	@tailbits: Amount of trailing space to be added
4732  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4733  *
4734  *	Make sure that the data buffers attached to a socket buffer are
4735  *	writable. If they are not, private copies are made of the data buffers
4736  *	and the socket buffer is set to use these instead.
4737  *
4738  *	If @tailbits is given, make sure that there is space to write @tailbits
4739  *	bytes of data beyond current end of socket buffer.  @trailer will be
4740  *	set to point to the skb in which this space begins.
4741  *
4742  *	The number of scatterlist elements required to completely map the
4743  *	COW'd and extended socket buffer will be returned.
4744  */
4745 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4746 {
4747 	int copyflag;
4748 	int elt;
4749 	struct sk_buff *skb1, **skb_p;
4750 
4751 	/* If skb is cloned or its head is paged, reallocate
4752 	 * head pulling out all the pages (pages are considered not writable
4753 	 * at the moment even if they are anonymous).
4754 	 */
4755 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4756 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4757 		return -ENOMEM;
4758 
4759 	/* Easy case. Most of packets will go this way. */
4760 	if (!skb_has_frag_list(skb)) {
4761 		/* A little of trouble, not enough of space for trailer.
4762 		 * This should not happen, when stack is tuned to generate
4763 		 * good frames. OK, on miss we reallocate and reserve even more
4764 		 * space, 128 bytes is fair. */
4765 
4766 		if (skb_tailroom(skb) < tailbits &&
4767 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4768 			return -ENOMEM;
4769 
4770 		/* Voila! */
4771 		*trailer = skb;
4772 		return 1;
4773 	}
4774 
4775 	/* Misery. We are in troubles, going to mincer fragments... */
4776 
4777 	elt = 1;
4778 	skb_p = &skb_shinfo(skb)->frag_list;
4779 	copyflag = 0;
4780 
4781 	while ((skb1 = *skb_p) != NULL) {
4782 		int ntail = 0;
4783 
4784 		/* The fragment is partially pulled by someone,
4785 		 * this can happen on input. Copy it and everything
4786 		 * after it. */
4787 
4788 		if (skb_shared(skb1))
4789 			copyflag = 1;
4790 
4791 		/* If the skb is the last, worry about trailer. */
4792 
4793 		if (skb1->next == NULL && tailbits) {
4794 			if (skb_shinfo(skb1)->nr_frags ||
4795 			    skb_has_frag_list(skb1) ||
4796 			    skb_tailroom(skb1) < tailbits)
4797 				ntail = tailbits + 128;
4798 		}
4799 
4800 		if (copyflag ||
4801 		    skb_cloned(skb1) ||
4802 		    ntail ||
4803 		    skb_shinfo(skb1)->nr_frags ||
4804 		    skb_has_frag_list(skb1)) {
4805 			struct sk_buff *skb2;
4806 
4807 			/* Fuck, we are miserable poor guys... */
4808 			if (ntail == 0)
4809 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4810 			else
4811 				skb2 = skb_copy_expand(skb1,
4812 						       skb_headroom(skb1),
4813 						       ntail,
4814 						       GFP_ATOMIC);
4815 			if (unlikely(skb2 == NULL))
4816 				return -ENOMEM;
4817 
4818 			if (skb1->sk)
4819 				skb_set_owner_w(skb2, skb1->sk);
4820 
4821 			/* Looking around. Are we still alive?
4822 			 * OK, link new skb, drop old one */
4823 
4824 			skb2->next = skb1->next;
4825 			*skb_p = skb2;
4826 			kfree_skb(skb1);
4827 			skb1 = skb2;
4828 		}
4829 		elt++;
4830 		*trailer = skb1;
4831 		skb_p = &skb1->next;
4832 	}
4833 
4834 	return elt;
4835 }
4836 EXPORT_SYMBOL_GPL(skb_cow_data);
4837 
4838 static void sock_rmem_free(struct sk_buff *skb)
4839 {
4840 	struct sock *sk = skb->sk;
4841 
4842 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4843 }
4844 
4845 static void skb_set_err_queue(struct sk_buff *skb)
4846 {
4847 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4848 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4849 	 */
4850 	skb->pkt_type = PACKET_OUTGOING;
4851 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4852 }
4853 
4854 /*
4855  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4856  */
4857 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4858 {
4859 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4860 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4861 		return -ENOMEM;
4862 
4863 	skb_orphan(skb);
4864 	skb->sk = sk;
4865 	skb->destructor = sock_rmem_free;
4866 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4867 	skb_set_err_queue(skb);
4868 
4869 	/* before exiting rcu section, make sure dst is refcounted */
4870 	skb_dst_force(skb);
4871 
4872 	skb_queue_tail(&sk->sk_error_queue, skb);
4873 	if (!sock_flag(sk, SOCK_DEAD))
4874 		sk_error_report(sk);
4875 	return 0;
4876 }
4877 EXPORT_SYMBOL(sock_queue_err_skb);
4878 
4879 static bool is_icmp_err_skb(const struct sk_buff *skb)
4880 {
4881 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4882 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4883 }
4884 
4885 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4886 {
4887 	struct sk_buff_head *q = &sk->sk_error_queue;
4888 	struct sk_buff *skb, *skb_next = NULL;
4889 	bool icmp_next = false;
4890 	unsigned long flags;
4891 
4892 	spin_lock_irqsave(&q->lock, flags);
4893 	skb = __skb_dequeue(q);
4894 	if (skb && (skb_next = skb_peek(q))) {
4895 		icmp_next = is_icmp_err_skb(skb_next);
4896 		if (icmp_next)
4897 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4898 	}
4899 	spin_unlock_irqrestore(&q->lock, flags);
4900 
4901 	if (is_icmp_err_skb(skb) && !icmp_next)
4902 		sk->sk_err = 0;
4903 
4904 	if (skb_next)
4905 		sk_error_report(sk);
4906 
4907 	return skb;
4908 }
4909 EXPORT_SYMBOL(sock_dequeue_err_skb);
4910 
4911 /**
4912  * skb_clone_sk - create clone of skb, and take reference to socket
4913  * @skb: the skb to clone
4914  *
4915  * This function creates a clone of a buffer that holds a reference on
4916  * sk_refcnt.  Buffers created via this function are meant to be
4917  * returned using sock_queue_err_skb, or free via kfree_skb.
4918  *
4919  * When passing buffers allocated with this function to sock_queue_err_skb
4920  * it is necessary to wrap the call with sock_hold/sock_put in order to
4921  * prevent the socket from being released prior to being enqueued on
4922  * the sk_error_queue.
4923  */
4924 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4925 {
4926 	struct sock *sk = skb->sk;
4927 	struct sk_buff *clone;
4928 
4929 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4930 		return NULL;
4931 
4932 	clone = skb_clone(skb, GFP_ATOMIC);
4933 	if (!clone) {
4934 		sock_put(sk);
4935 		return NULL;
4936 	}
4937 
4938 	clone->sk = sk;
4939 	clone->destructor = sock_efree;
4940 
4941 	return clone;
4942 }
4943 EXPORT_SYMBOL(skb_clone_sk);
4944 
4945 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4946 					struct sock *sk,
4947 					int tstype,
4948 					bool opt_stats)
4949 {
4950 	struct sock_exterr_skb *serr;
4951 	int err;
4952 
4953 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4954 
4955 	serr = SKB_EXT_ERR(skb);
4956 	memset(serr, 0, sizeof(*serr));
4957 	serr->ee.ee_errno = ENOMSG;
4958 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4959 	serr->ee.ee_info = tstype;
4960 	serr->opt_stats = opt_stats;
4961 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4962 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4963 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4964 		if (sk_is_tcp(sk))
4965 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
4966 	}
4967 
4968 	err = sock_queue_err_skb(sk, skb);
4969 
4970 	if (err)
4971 		kfree_skb(skb);
4972 }
4973 
4974 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4975 {
4976 	bool ret;
4977 
4978 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
4979 		return true;
4980 
4981 	read_lock_bh(&sk->sk_callback_lock);
4982 	ret = sk->sk_socket && sk->sk_socket->file &&
4983 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4984 	read_unlock_bh(&sk->sk_callback_lock);
4985 	return ret;
4986 }
4987 
4988 void skb_complete_tx_timestamp(struct sk_buff *skb,
4989 			       struct skb_shared_hwtstamps *hwtstamps)
4990 {
4991 	struct sock *sk = skb->sk;
4992 
4993 	if (!skb_may_tx_timestamp(sk, false))
4994 		goto err;
4995 
4996 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4997 	 * but only if the socket refcount is not zero.
4998 	 */
4999 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5000 		*skb_hwtstamps(skb) = *hwtstamps;
5001 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5002 		sock_put(sk);
5003 		return;
5004 	}
5005 
5006 err:
5007 	kfree_skb(skb);
5008 }
5009 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5010 
5011 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5012 		     const struct sk_buff *ack_skb,
5013 		     struct skb_shared_hwtstamps *hwtstamps,
5014 		     struct sock *sk, int tstype)
5015 {
5016 	struct sk_buff *skb;
5017 	bool tsonly, opt_stats = false;
5018 
5019 	if (!sk)
5020 		return;
5021 
5022 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5023 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5024 		return;
5025 
5026 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5027 	if (!skb_may_tx_timestamp(sk, tsonly))
5028 		return;
5029 
5030 	if (tsonly) {
5031 #ifdef CONFIG_INET
5032 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5033 		    sk_is_tcp(sk)) {
5034 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5035 							     ack_skb);
5036 			opt_stats = true;
5037 		} else
5038 #endif
5039 			skb = alloc_skb(0, GFP_ATOMIC);
5040 	} else {
5041 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5042 	}
5043 	if (!skb)
5044 		return;
5045 
5046 	if (tsonly) {
5047 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5048 					     SKBTX_ANY_TSTAMP;
5049 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5050 	}
5051 
5052 	if (hwtstamps)
5053 		*skb_hwtstamps(skb) = *hwtstamps;
5054 	else
5055 		__net_timestamp(skb);
5056 
5057 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5058 }
5059 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5060 
5061 void skb_tstamp_tx(struct sk_buff *orig_skb,
5062 		   struct skb_shared_hwtstamps *hwtstamps)
5063 {
5064 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5065 			       SCM_TSTAMP_SND);
5066 }
5067 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5068 
5069 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5070 {
5071 	struct sock *sk = skb->sk;
5072 	struct sock_exterr_skb *serr;
5073 	int err = 1;
5074 
5075 	skb->wifi_acked_valid = 1;
5076 	skb->wifi_acked = acked;
5077 
5078 	serr = SKB_EXT_ERR(skb);
5079 	memset(serr, 0, sizeof(*serr));
5080 	serr->ee.ee_errno = ENOMSG;
5081 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5082 
5083 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5084 	 * but only if the socket refcount is not zero.
5085 	 */
5086 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5087 		err = sock_queue_err_skb(sk, skb);
5088 		sock_put(sk);
5089 	}
5090 	if (err)
5091 		kfree_skb(skb);
5092 }
5093 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5094 
5095 /**
5096  * skb_partial_csum_set - set up and verify partial csum values for packet
5097  * @skb: the skb to set
5098  * @start: the number of bytes after skb->data to start checksumming.
5099  * @off: the offset from start to place the checksum.
5100  *
5101  * For untrusted partially-checksummed packets, we need to make sure the values
5102  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5103  *
5104  * This function checks and sets those values and skb->ip_summed: if this
5105  * returns false you should drop the packet.
5106  */
5107 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5108 {
5109 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5110 	u32 csum_start = skb_headroom(skb) + (u32)start;
5111 
5112 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
5113 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5114 				     start, off, skb_headroom(skb), skb_headlen(skb));
5115 		return false;
5116 	}
5117 	skb->ip_summed = CHECKSUM_PARTIAL;
5118 	skb->csum_start = csum_start;
5119 	skb->csum_offset = off;
5120 	skb_set_transport_header(skb, start);
5121 	return true;
5122 }
5123 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5124 
5125 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5126 			       unsigned int max)
5127 {
5128 	if (skb_headlen(skb) >= len)
5129 		return 0;
5130 
5131 	/* If we need to pullup then pullup to the max, so we
5132 	 * won't need to do it again.
5133 	 */
5134 	if (max > skb->len)
5135 		max = skb->len;
5136 
5137 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5138 		return -ENOMEM;
5139 
5140 	if (skb_headlen(skb) < len)
5141 		return -EPROTO;
5142 
5143 	return 0;
5144 }
5145 
5146 #define MAX_TCP_HDR_LEN (15 * 4)
5147 
5148 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5149 				      typeof(IPPROTO_IP) proto,
5150 				      unsigned int off)
5151 {
5152 	int err;
5153 
5154 	switch (proto) {
5155 	case IPPROTO_TCP:
5156 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5157 					  off + MAX_TCP_HDR_LEN);
5158 		if (!err && !skb_partial_csum_set(skb, off,
5159 						  offsetof(struct tcphdr,
5160 							   check)))
5161 			err = -EPROTO;
5162 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5163 
5164 	case IPPROTO_UDP:
5165 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5166 					  off + sizeof(struct udphdr));
5167 		if (!err && !skb_partial_csum_set(skb, off,
5168 						  offsetof(struct udphdr,
5169 							   check)))
5170 			err = -EPROTO;
5171 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5172 	}
5173 
5174 	return ERR_PTR(-EPROTO);
5175 }
5176 
5177 /* This value should be large enough to cover a tagged ethernet header plus
5178  * maximally sized IP and TCP or UDP headers.
5179  */
5180 #define MAX_IP_HDR_LEN 128
5181 
5182 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5183 {
5184 	unsigned int off;
5185 	bool fragment;
5186 	__sum16 *csum;
5187 	int err;
5188 
5189 	fragment = false;
5190 
5191 	err = skb_maybe_pull_tail(skb,
5192 				  sizeof(struct iphdr),
5193 				  MAX_IP_HDR_LEN);
5194 	if (err < 0)
5195 		goto out;
5196 
5197 	if (ip_is_fragment(ip_hdr(skb)))
5198 		fragment = true;
5199 
5200 	off = ip_hdrlen(skb);
5201 
5202 	err = -EPROTO;
5203 
5204 	if (fragment)
5205 		goto out;
5206 
5207 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5208 	if (IS_ERR(csum))
5209 		return PTR_ERR(csum);
5210 
5211 	if (recalculate)
5212 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5213 					   ip_hdr(skb)->daddr,
5214 					   skb->len - off,
5215 					   ip_hdr(skb)->protocol, 0);
5216 	err = 0;
5217 
5218 out:
5219 	return err;
5220 }
5221 
5222 /* This value should be large enough to cover a tagged ethernet header plus
5223  * an IPv6 header, all options, and a maximal TCP or UDP header.
5224  */
5225 #define MAX_IPV6_HDR_LEN 256
5226 
5227 #define OPT_HDR(type, skb, off) \
5228 	(type *)(skb_network_header(skb) + (off))
5229 
5230 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5231 {
5232 	int err;
5233 	u8 nexthdr;
5234 	unsigned int off;
5235 	unsigned int len;
5236 	bool fragment;
5237 	bool done;
5238 	__sum16 *csum;
5239 
5240 	fragment = false;
5241 	done = false;
5242 
5243 	off = sizeof(struct ipv6hdr);
5244 
5245 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5246 	if (err < 0)
5247 		goto out;
5248 
5249 	nexthdr = ipv6_hdr(skb)->nexthdr;
5250 
5251 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5252 	while (off <= len && !done) {
5253 		switch (nexthdr) {
5254 		case IPPROTO_DSTOPTS:
5255 		case IPPROTO_HOPOPTS:
5256 		case IPPROTO_ROUTING: {
5257 			struct ipv6_opt_hdr *hp;
5258 
5259 			err = skb_maybe_pull_tail(skb,
5260 						  off +
5261 						  sizeof(struct ipv6_opt_hdr),
5262 						  MAX_IPV6_HDR_LEN);
5263 			if (err < 0)
5264 				goto out;
5265 
5266 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5267 			nexthdr = hp->nexthdr;
5268 			off += ipv6_optlen(hp);
5269 			break;
5270 		}
5271 		case IPPROTO_AH: {
5272 			struct ip_auth_hdr *hp;
5273 
5274 			err = skb_maybe_pull_tail(skb,
5275 						  off +
5276 						  sizeof(struct ip_auth_hdr),
5277 						  MAX_IPV6_HDR_LEN);
5278 			if (err < 0)
5279 				goto out;
5280 
5281 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5282 			nexthdr = hp->nexthdr;
5283 			off += ipv6_authlen(hp);
5284 			break;
5285 		}
5286 		case IPPROTO_FRAGMENT: {
5287 			struct frag_hdr *hp;
5288 
5289 			err = skb_maybe_pull_tail(skb,
5290 						  off +
5291 						  sizeof(struct frag_hdr),
5292 						  MAX_IPV6_HDR_LEN);
5293 			if (err < 0)
5294 				goto out;
5295 
5296 			hp = OPT_HDR(struct frag_hdr, skb, off);
5297 
5298 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5299 				fragment = true;
5300 
5301 			nexthdr = hp->nexthdr;
5302 			off += sizeof(struct frag_hdr);
5303 			break;
5304 		}
5305 		default:
5306 			done = true;
5307 			break;
5308 		}
5309 	}
5310 
5311 	err = -EPROTO;
5312 
5313 	if (!done || fragment)
5314 		goto out;
5315 
5316 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5317 	if (IS_ERR(csum))
5318 		return PTR_ERR(csum);
5319 
5320 	if (recalculate)
5321 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5322 					 &ipv6_hdr(skb)->daddr,
5323 					 skb->len - off, nexthdr, 0);
5324 	err = 0;
5325 
5326 out:
5327 	return err;
5328 }
5329 
5330 /**
5331  * skb_checksum_setup - set up partial checksum offset
5332  * @skb: the skb to set up
5333  * @recalculate: if true the pseudo-header checksum will be recalculated
5334  */
5335 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5336 {
5337 	int err;
5338 
5339 	switch (skb->protocol) {
5340 	case htons(ETH_P_IP):
5341 		err = skb_checksum_setup_ipv4(skb, recalculate);
5342 		break;
5343 
5344 	case htons(ETH_P_IPV6):
5345 		err = skb_checksum_setup_ipv6(skb, recalculate);
5346 		break;
5347 
5348 	default:
5349 		err = -EPROTO;
5350 		break;
5351 	}
5352 
5353 	return err;
5354 }
5355 EXPORT_SYMBOL(skb_checksum_setup);
5356 
5357 /**
5358  * skb_checksum_maybe_trim - maybe trims the given skb
5359  * @skb: the skb to check
5360  * @transport_len: the data length beyond the network header
5361  *
5362  * Checks whether the given skb has data beyond the given transport length.
5363  * If so, returns a cloned skb trimmed to this transport length.
5364  * Otherwise returns the provided skb. Returns NULL in error cases
5365  * (e.g. transport_len exceeds skb length or out-of-memory).
5366  *
5367  * Caller needs to set the skb transport header and free any returned skb if it
5368  * differs from the provided skb.
5369  */
5370 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5371 					       unsigned int transport_len)
5372 {
5373 	struct sk_buff *skb_chk;
5374 	unsigned int len = skb_transport_offset(skb) + transport_len;
5375 	int ret;
5376 
5377 	if (skb->len < len)
5378 		return NULL;
5379 	else if (skb->len == len)
5380 		return skb;
5381 
5382 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5383 	if (!skb_chk)
5384 		return NULL;
5385 
5386 	ret = pskb_trim_rcsum(skb_chk, len);
5387 	if (ret) {
5388 		kfree_skb(skb_chk);
5389 		return NULL;
5390 	}
5391 
5392 	return skb_chk;
5393 }
5394 
5395 /**
5396  * skb_checksum_trimmed - validate checksum of an skb
5397  * @skb: the skb to check
5398  * @transport_len: the data length beyond the network header
5399  * @skb_chkf: checksum function to use
5400  *
5401  * Applies the given checksum function skb_chkf to the provided skb.
5402  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5403  *
5404  * If the skb has data beyond the given transport length, then a
5405  * trimmed & cloned skb is checked and returned.
5406  *
5407  * Caller needs to set the skb transport header and free any returned skb if it
5408  * differs from the provided skb.
5409  */
5410 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5411 				     unsigned int transport_len,
5412 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5413 {
5414 	struct sk_buff *skb_chk;
5415 	unsigned int offset = skb_transport_offset(skb);
5416 	__sum16 ret;
5417 
5418 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5419 	if (!skb_chk)
5420 		goto err;
5421 
5422 	if (!pskb_may_pull(skb_chk, offset))
5423 		goto err;
5424 
5425 	skb_pull_rcsum(skb_chk, offset);
5426 	ret = skb_chkf(skb_chk);
5427 	skb_push_rcsum(skb_chk, offset);
5428 
5429 	if (ret)
5430 		goto err;
5431 
5432 	return skb_chk;
5433 
5434 err:
5435 	if (skb_chk && skb_chk != skb)
5436 		kfree_skb(skb_chk);
5437 
5438 	return NULL;
5439 
5440 }
5441 EXPORT_SYMBOL(skb_checksum_trimmed);
5442 
5443 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5444 {
5445 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5446 			     skb->dev->name);
5447 }
5448 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5449 
5450 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5451 {
5452 	if (head_stolen) {
5453 		skb_release_head_state(skb);
5454 		kmem_cache_free(skbuff_head_cache, skb);
5455 	} else {
5456 		__kfree_skb(skb);
5457 	}
5458 }
5459 EXPORT_SYMBOL(kfree_skb_partial);
5460 
5461 /**
5462  * skb_try_coalesce - try to merge skb to prior one
5463  * @to: prior buffer
5464  * @from: buffer to add
5465  * @fragstolen: pointer to boolean
5466  * @delta_truesize: how much more was allocated than was requested
5467  */
5468 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5469 		      bool *fragstolen, int *delta_truesize)
5470 {
5471 	struct skb_shared_info *to_shinfo, *from_shinfo;
5472 	int i, delta, len = from->len;
5473 
5474 	*fragstolen = false;
5475 
5476 	if (skb_cloned(to))
5477 		return false;
5478 
5479 	/* In general, avoid mixing slab allocated and page_pool allocated
5480 	 * pages within the same SKB. However when @to is not pp_recycle and
5481 	 * @from is cloned, we can transition frag pages from page_pool to
5482 	 * reference counted.
5483 	 *
5484 	 * On the other hand, don't allow coalescing two pp_recycle SKBs if
5485 	 * @from is cloned, in case the SKB is using page_pool fragment
5486 	 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5487 	 * references for cloned SKBs at the moment that would result in
5488 	 * inconsistent reference counts.
5489 	 */
5490 	if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from)))
5491 		return false;
5492 
5493 	if (len <= skb_tailroom(to)) {
5494 		if (len)
5495 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5496 		*delta_truesize = 0;
5497 		return true;
5498 	}
5499 
5500 	to_shinfo = skb_shinfo(to);
5501 	from_shinfo = skb_shinfo(from);
5502 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5503 		return false;
5504 	if (skb_zcopy(to) || skb_zcopy(from))
5505 		return false;
5506 
5507 	if (skb_headlen(from) != 0) {
5508 		struct page *page;
5509 		unsigned int offset;
5510 
5511 		if (to_shinfo->nr_frags +
5512 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5513 			return false;
5514 
5515 		if (skb_head_is_locked(from))
5516 			return false;
5517 
5518 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5519 
5520 		page = virt_to_head_page(from->head);
5521 		offset = from->data - (unsigned char *)page_address(page);
5522 
5523 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5524 				   page, offset, skb_headlen(from));
5525 		*fragstolen = true;
5526 	} else {
5527 		if (to_shinfo->nr_frags +
5528 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5529 			return false;
5530 
5531 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5532 	}
5533 
5534 	WARN_ON_ONCE(delta < len);
5535 
5536 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5537 	       from_shinfo->frags,
5538 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5539 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5540 
5541 	if (!skb_cloned(from))
5542 		from_shinfo->nr_frags = 0;
5543 
5544 	/* if the skb is not cloned this does nothing
5545 	 * since we set nr_frags to 0.
5546 	 */
5547 	for (i = 0; i < from_shinfo->nr_frags; i++)
5548 		__skb_frag_ref(&from_shinfo->frags[i]);
5549 
5550 	to->truesize += delta;
5551 	to->len += len;
5552 	to->data_len += len;
5553 
5554 	*delta_truesize = delta;
5555 	return true;
5556 }
5557 EXPORT_SYMBOL(skb_try_coalesce);
5558 
5559 /**
5560  * skb_scrub_packet - scrub an skb
5561  *
5562  * @skb: buffer to clean
5563  * @xnet: packet is crossing netns
5564  *
5565  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5566  * into/from a tunnel. Some information have to be cleared during these
5567  * operations.
5568  * skb_scrub_packet can also be used to clean a skb before injecting it in
5569  * another namespace (@xnet == true). We have to clear all information in the
5570  * skb that could impact namespace isolation.
5571  */
5572 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5573 {
5574 	skb->pkt_type = PACKET_HOST;
5575 	skb->skb_iif = 0;
5576 	skb->ignore_df = 0;
5577 	skb_dst_drop(skb);
5578 	skb_ext_reset(skb);
5579 	nf_reset_ct(skb);
5580 	nf_reset_trace(skb);
5581 
5582 #ifdef CONFIG_NET_SWITCHDEV
5583 	skb->offload_fwd_mark = 0;
5584 	skb->offload_l3_fwd_mark = 0;
5585 #endif
5586 
5587 	if (!xnet)
5588 		return;
5589 
5590 	ipvs_reset(skb);
5591 	skb->mark = 0;
5592 	skb_clear_tstamp(skb);
5593 }
5594 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5595 
5596 /**
5597  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5598  *
5599  * @skb: GSO skb
5600  *
5601  * skb_gso_transport_seglen is used to determine the real size of the
5602  * individual segments, including Layer4 headers (TCP/UDP).
5603  *
5604  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5605  */
5606 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5607 {
5608 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5609 	unsigned int thlen = 0;
5610 
5611 	if (skb->encapsulation) {
5612 		thlen = skb_inner_transport_header(skb) -
5613 			skb_transport_header(skb);
5614 
5615 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5616 			thlen += inner_tcp_hdrlen(skb);
5617 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5618 		thlen = tcp_hdrlen(skb);
5619 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5620 		thlen = sizeof(struct sctphdr);
5621 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5622 		thlen = sizeof(struct udphdr);
5623 	}
5624 	/* UFO sets gso_size to the size of the fragmentation
5625 	 * payload, i.e. the size of the L4 (UDP) header is already
5626 	 * accounted for.
5627 	 */
5628 	return thlen + shinfo->gso_size;
5629 }
5630 
5631 /**
5632  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5633  *
5634  * @skb: GSO skb
5635  *
5636  * skb_gso_network_seglen is used to determine the real size of the
5637  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5638  *
5639  * The MAC/L2 header is not accounted for.
5640  */
5641 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5642 {
5643 	unsigned int hdr_len = skb_transport_header(skb) -
5644 			       skb_network_header(skb);
5645 
5646 	return hdr_len + skb_gso_transport_seglen(skb);
5647 }
5648 
5649 /**
5650  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5651  *
5652  * @skb: GSO skb
5653  *
5654  * skb_gso_mac_seglen is used to determine the real size of the
5655  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5656  * headers (TCP/UDP).
5657  */
5658 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5659 {
5660 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5661 
5662 	return hdr_len + skb_gso_transport_seglen(skb);
5663 }
5664 
5665 /**
5666  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5667  *
5668  * There are a couple of instances where we have a GSO skb, and we
5669  * want to determine what size it would be after it is segmented.
5670  *
5671  * We might want to check:
5672  * -    L3+L4+payload size (e.g. IP forwarding)
5673  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5674  *
5675  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5676  *
5677  * @skb: GSO skb
5678  *
5679  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5680  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5681  *
5682  * @max_len: The maximum permissible length.
5683  *
5684  * Returns true if the segmented length <= max length.
5685  */
5686 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5687 				      unsigned int seg_len,
5688 				      unsigned int max_len) {
5689 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5690 	const struct sk_buff *iter;
5691 
5692 	if (shinfo->gso_size != GSO_BY_FRAGS)
5693 		return seg_len <= max_len;
5694 
5695 	/* Undo this so we can re-use header sizes */
5696 	seg_len -= GSO_BY_FRAGS;
5697 
5698 	skb_walk_frags(skb, iter) {
5699 		if (seg_len + skb_headlen(iter) > max_len)
5700 			return false;
5701 	}
5702 
5703 	return true;
5704 }
5705 
5706 /**
5707  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5708  *
5709  * @skb: GSO skb
5710  * @mtu: MTU to validate against
5711  *
5712  * skb_gso_validate_network_len validates if a given skb will fit a
5713  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5714  * payload.
5715  */
5716 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5717 {
5718 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5719 }
5720 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5721 
5722 /**
5723  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5724  *
5725  * @skb: GSO skb
5726  * @len: length to validate against
5727  *
5728  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5729  * length once split, including L2, L3 and L4 headers and the payload.
5730  */
5731 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5732 {
5733 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5734 }
5735 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5736 
5737 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5738 {
5739 	int mac_len, meta_len;
5740 	void *meta;
5741 
5742 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5743 		kfree_skb(skb);
5744 		return NULL;
5745 	}
5746 
5747 	mac_len = skb->data - skb_mac_header(skb);
5748 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5749 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5750 			mac_len - VLAN_HLEN - ETH_TLEN);
5751 	}
5752 
5753 	meta_len = skb_metadata_len(skb);
5754 	if (meta_len) {
5755 		meta = skb_metadata_end(skb) - meta_len;
5756 		memmove(meta + VLAN_HLEN, meta, meta_len);
5757 	}
5758 
5759 	skb->mac_header += VLAN_HLEN;
5760 	return skb;
5761 }
5762 
5763 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5764 {
5765 	struct vlan_hdr *vhdr;
5766 	u16 vlan_tci;
5767 
5768 	if (unlikely(skb_vlan_tag_present(skb))) {
5769 		/* vlan_tci is already set-up so leave this for another time */
5770 		return skb;
5771 	}
5772 
5773 	skb = skb_share_check(skb, GFP_ATOMIC);
5774 	if (unlikely(!skb))
5775 		goto err_free;
5776 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5777 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5778 		goto err_free;
5779 
5780 	vhdr = (struct vlan_hdr *)skb->data;
5781 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5782 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5783 
5784 	skb_pull_rcsum(skb, VLAN_HLEN);
5785 	vlan_set_encap_proto(skb, vhdr);
5786 
5787 	skb = skb_reorder_vlan_header(skb);
5788 	if (unlikely(!skb))
5789 		goto err_free;
5790 
5791 	skb_reset_network_header(skb);
5792 	if (!skb_transport_header_was_set(skb))
5793 		skb_reset_transport_header(skb);
5794 	skb_reset_mac_len(skb);
5795 
5796 	return skb;
5797 
5798 err_free:
5799 	kfree_skb(skb);
5800 	return NULL;
5801 }
5802 EXPORT_SYMBOL(skb_vlan_untag);
5803 
5804 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5805 {
5806 	if (!pskb_may_pull(skb, write_len))
5807 		return -ENOMEM;
5808 
5809 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5810 		return 0;
5811 
5812 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5813 }
5814 EXPORT_SYMBOL(skb_ensure_writable);
5815 
5816 /* remove VLAN header from packet and update csum accordingly.
5817  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5818  */
5819 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5820 {
5821 	struct vlan_hdr *vhdr;
5822 	int offset = skb->data - skb_mac_header(skb);
5823 	int err;
5824 
5825 	if (WARN_ONCE(offset,
5826 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5827 		      offset)) {
5828 		return -EINVAL;
5829 	}
5830 
5831 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5832 	if (unlikely(err))
5833 		return err;
5834 
5835 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5836 
5837 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5838 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5839 
5840 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5841 	__skb_pull(skb, VLAN_HLEN);
5842 
5843 	vlan_set_encap_proto(skb, vhdr);
5844 	skb->mac_header += VLAN_HLEN;
5845 
5846 	if (skb_network_offset(skb) < ETH_HLEN)
5847 		skb_set_network_header(skb, ETH_HLEN);
5848 
5849 	skb_reset_mac_len(skb);
5850 
5851 	return err;
5852 }
5853 EXPORT_SYMBOL(__skb_vlan_pop);
5854 
5855 /* Pop a vlan tag either from hwaccel or from payload.
5856  * Expects skb->data at mac header.
5857  */
5858 int skb_vlan_pop(struct sk_buff *skb)
5859 {
5860 	u16 vlan_tci;
5861 	__be16 vlan_proto;
5862 	int err;
5863 
5864 	if (likely(skb_vlan_tag_present(skb))) {
5865 		__vlan_hwaccel_clear_tag(skb);
5866 	} else {
5867 		if (unlikely(!eth_type_vlan(skb->protocol)))
5868 			return 0;
5869 
5870 		err = __skb_vlan_pop(skb, &vlan_tci);
5871 		if (err)
5872 			return err;
5873 	}
5874 	/* move next vlan tag to hw accel tag */
5875 	if (likely(!eth_type_vlan(skb->protocol)))
5876 		return 0;
5877 
5878 	vlan_proto = skb->protocol;
5879 	err = __skb_vlan_pop(skb, &vlan_tci);
5880 	if (unlikely(err))
5881 		return err;
5882 
5883 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5884 	return 0;
5885 }
5886 EXPORT_SYMBOL(skb_vlan_pop);
5887 
5888 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5889  * Expects skb->data at mac header.
5890  */
5891 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5892 {
5893 	if (skb_vlan_tag_present(skb)) {
5894 		int offset = skb->data - skb_mac_header(skb);
5895 		int err;
5896 
5897 		if (WARN_ONCE(offset,
5898 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5899 			      offset)) {
5900 			return -EINVAL;
5901 		}
5902 
5903 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5904 					skb_vlan_tag_get(skb));
5905 		if (err)
5906 			return err;
5907 
5908 		skb->protocol = skb->vlan_proto;
5909 		skb->mac_len += VLAN_HLEN;
5910 
5911 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5912 	}
5913 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5914 	return 0;
5915 }
5916 EXPORT_SYMBOL(skb_vlan_push);
5917 
5918 /**
5919  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5920  *
5921  * @skb: Socket buffer to modify
5922  *
5923  * Drop the Ethernet header of @skb.
5924  *
5925  * Expects that skb->data points to the mac header and that no VLAN tags are
5926  * present.
5927  *
5928  * Returns 0 on success, -errno otherwise.
5929  */
5930 int skb_eth_pop(struct sk_buff *skb)
5931 {
5932 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5933 	    skb_network_offset(skb) < ETH_HLEN)
5934 		return -EPROTO;
5935 
5936 	skb_pull_rcsum(skb, ETH_HLEN);
5937 	skb_reset_mac_header(skb);
5938 	skb_reset_mac_len(skb);
5939 
5940 	return 0;
5941 }
5942 EXPORT_SYMBOL(skb_eth_pop);
5943 
5944 /**
5945  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5946  *
5947  * @skb: Socket buffer to modify
5948  * @dst: Destination MAC address of the new header
5949  * @src: Source MAC address of the new header
5950  *
5951  * Prepend @skb with a new Ethernet header.
5952  *
5953  * Expects that skb->data points to the mac header, which must be empty.
5954  *
5955  * Returns 0 on success, -errno otherwise.
5956  */
5957 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5958 		 const unsigned char *src)
5959 {
5960 	struct ethhdr *eth;
5961 	int err;
5962 
5963 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5964 		return -EPROTO;
5965 
5966 	err = skb_cow_head(skb, sizeof(*eth));
5967 	if (err < 0)
5968 		return err;
5969 
5970 	skb_push(skb, sizeof(*eth));
5971 	skb_reset_mac_header(skb);
5972 	skb_reset_mac_len(skb);
5973 
5974 	eth = eth_hdr(skb);
5975 	ether_addr_copy(eth->h_dest, dst);
5976 	ether_addr_copy(eth->h_source, src);
5977 	eth->h_proto = skb->protocol;
5978 
5979 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5980 
5981 	return 0;
5982 }
5983 EXPORT_SYMBOL(skb_eth_push);
5984 
5985 /* Update the ethertype of hdr and the skb csum value if required. */
5986 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5987 			     __be16 ethertype)
5988 {
5989 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5990 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5991 
5992 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5993 	}
5994 
5995 	hdr->h_proto = ethertype;
5996 }
5997 
5998 /**
5999  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6000  *                   the packet
6001  *
6002  * @skb: buffer
6003  * @mpls_lse: MPLS label stack entry to push
6004  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6005  * @mac_len: length of the MAC header
6006  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6007  *            ethernet
6008  *
6009  * Expects skb->data at mac header.
6010  *
6011  * Returns 0 on success, -errno otherwise.
6012  */
6013 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6014 		  int mac_len, bool ethernet)
6015 {
6016 	struct mpls_shim_hdr *lse;
6017 	int err;
6018 
6019 	if (unlikely(!eth_p_mpls(mpls_proto)))
6020 		return -EINVAL;
6021 
6022 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6023 	if (skb->encapsulation)
6024 		return -EINVAL;
6025 
6026 	err = skb_cow_head(skb, MPLS_HLEN);
6027 	if (unlikely(err))
6028 		return err;
6029 
6030 	if (!skb->inner_protocol) {
6031 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6032 		skb_set_inner_protocol(skb, skb->protocol);
6033 	}
6034 
6035 	skb_push(skb, MPLS_HLEN);
6036 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6037 		mac_len);
6038 	skb_reset_mac_header(skb);
6039 	skb_set_network_header(skb, mac_len);
6040 	skb_reset_mac_len(skb);
6041 
6042 	lse = mpls_hdr(skb);
6043 	lse->label_stack_entry = mpls_lse;
6044 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6045 
6046 	if (ethernet && mac_len >= ETH_HLEN)
6047 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6048 	skb->protocol = mpls_proto;
6049 
6050 	return 0;
6051 }
6052 EXPORT_SYMBOL_GPL(skb_mpls_push);
6053 
6054 /**
6055  * skb_mpls_pop() - pop the outermost MPLS header
6056  *
6057  * @skb: buffer
6058  * @next_proto: ethertype of header after popped MPLS header
6059  * @mac_len: length of the MAC header
6060  * @ethernet: flag to indicate if the packet is ethernet
6061  *
6062  * Expects skb->data at mac header.
6063  *
6064  * Returns 0 on success, -errno otherwise.
6065  */
6066 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6067 		 bool ethernet)
6068 {
6069 	int err;
6070 
6071 	if (unlikely(!eth_p_mpls(skb->protocol)))
6072 		return 0;
6073 
6074 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6075 	if (unlikely(err))
6076 		return err;
6077 
6078 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6079 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6080 		mac_len);
6081 
6082 	__skb_pull(skb, MPLS_HLEN);
6083 	skb_reset_mac_header(skb);
6084 	skb_set_network_header(skb, mac_len);
6085 
6086 	if (ethernet && mac_len >= ETH_HLEN) {
6087 		struct ethhdr *hdr;
6088 
6089 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6090 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6091 		skb_mod_eth_type(skb, hdr, next_proto);
6092 	}
6093 	skb->protocol = next_proto;
6094 
6095 	return 0;
6096 }
6097 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6098 
6099 /**
6100  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6101  *
6102  * @skb: buffer
6103  * @mpls_lse: new MPLS label stack entry to update to
6104  *
6105  * Expects skb->data at mac header.
6106  *
6107  * Returns 0 on success, -errno otherwise.
6108  */
6109 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6110 {
6111 	int err;
6112 
6113 	if (unlikely(!eth_p_mpls(skb->protocol)))
6114 		return -EINVAL;
6115 
6116 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6117 	if (unlikely(err))
6118 		return err;
6119 
6120 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6121 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6122 
6123 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6124 	}
6125 
6126 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6127 
6128 	return 0;
6129 }
6130 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6131 
6132 /**
6133  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6134  *
6135  * @skb: buffer
6136  *
6137  * Expects skb->data at mac header.
6138  *
6139  * Returns 0 on success, -errno otherwise.
6140  */
6141 int skb_mpls_dec_ttl(struct sk_buff *skb)
6142 {
6143 	u32 lse;
6144 	u8 ttl;
6145 
6146 	if (unlikely(!eth_p_mpls(skb->protocol)))
6147 		return -EINVAL;
6148 
6149 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6150 		return -ENOMEM;
6151 
6152 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6153 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6154 	if (!--ttl)
6155 		return -EINVAL;
6156 
6157 	lse &= ~MPLS_LS_TTL_MASK;
6158 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6159 
6160 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6161 }
6162 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6163 
6164 /**
6165  * alloc_skb_with_frags - allocate skb with page frags
6166  *
6167  * @header_len: size of linear part
6168  * @data_len: needed length in frags
6169  * @max_page_order: max page order desired.
6170  * @errcode: pointer to error code if any
6171  * @gfp_mask: allocation mask
6172  *
6173  * This can be used to allocate a paged skb, given a maximal order for frags.
6174  */
6175 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6176 				     unsigned long data_len,
6177 				     int max_page_order,
6178 				     int *errcode,
6179 				     gfp_t gfp_mask)
6180 {
6181 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6182 	unsigned long chunk;
6183 	struct sk_buff *skb;
6184 	struct page *page;
6185 	int i;
6186 
6187 	*errcode = -EMSGSIZE;
6188 	/* Note this test could be relaxed, if we succeed to allocate
6189 	 * high order pages...
6190 	 */
6191 	if (npages > MAX_SKB_FRAGS)
6192 		return NULL;
6193 
6194 	*errcode = -ENOBUFS;
6195 	skb = alloc_skb(header_len, gfp_mask);
6196 	if (!skb)
6197 		return NULL;
6198 
6199 	skb->truesize += npages << PAGE_SHIFT;
6200 
6201 	for (i = 0; npages > 0; i++) {
6202 		int order = max_page_order;
6203 
6204 		while (order) {
6205 			if (npages >= 1 << order) {
6206 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6207 						   __GFP_COMP |
6208 						   __GFP_NOWARN,
6209 						   order);
6210 				if (page)
6211 					goto fill_page;
6212 				/* Do not retry other high order allocations */
6213 				order = 1;
6214 				max_page_order = 0;
6215 			}
6216 			order--;
6217 		}
6218 		page = alloc_page(gfp_mask);
6219 		if (!page)
6220 			goto failure;
6221 fill_page:
6222 		chunk = min_t(unsigned long, data_len,
6223 			      PAGE_SIZE << order);
6224 		skb_fill_page_desc(skb, i, page, 0, chunk);
6225 		data_len -= chunk;
6226 		npages -= 1 << order;
6227 	}
6228 	return skb;
6229 
6230 failure:
6231 	kfree_skb(skb);
6232 	return NULL;
6233 }
6234 EXPORT_SYMBOL(alloc_skb_with_frags);
6235 
6236 /* carve out the first off bytes from skb when off < headlen */
6237 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6238 				    const int headlen, gfp_t gfp_mask)
6239 {
6240 	int i;
6241 	unsigned int size = skb_end_offset(skb);
6242 	int new_hlen = headlen - off;
6243 	u8 *data;
6244 
6245 	if (skb_pfmemalloc(skb))
6246 		gfp_mask |= __GFP_MEMALLOC;
6247 
6248 	size = SKB_DATA_ALIGN(size);
6249 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
6250 	size = kmalloc_size_roundup(size);
6251 	data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
6252 	if (!data)
6253 		return -ENOMEM;
6254 	size = SKB_WITH_OVERHEAD(size);
6255 
6256 	/* Copy real data, and all frags */
6257 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6258 	skb->len -= off;
6259 
6260 	memcpy((struct skb_shared_info *)(data + size),
6261 	       skb_shinfo(skb),
6262 	       offsetof(struct skb_shared_info,
6263 			frags[skb_shinfo(skb)->nr_frags]));
6264 	if (skb_cloned(skb)) {
6265 		/* drop the old head gracefully */
6266 		if (skb_orphan_frags(skb, gfp_mask)) {
6267 			kfree(data);
6268 			return -ENOMEM;
6269 		}
6270 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6271 			skb_frag_ref(skb, i);
6272 		if (skb_has_frag_list(skb))
6273 			skb_clone_fraglist(skb);
6274 		skb_release_data(skb, SKB_CONSUMED);
6275 	} else {
6276 		/* we can reuse existing recount- all we did was
6277 		 * relocate values
6278 		 */
6279 		skb_free_head(skb);
6280 	}
6281 
6282 	skb->head = data;
6283 	skb->data = data;
6284 	skb->head_frag = 0;
6285 	skb_set_end_offset(skb, size);
6286 	skb_set_tail_pointer(skb, skb_headlen(skb));
6287 	skb_headers_offset_update(skb, 0);
6288 	skb->cloned = 0;
6289 	skb->hdr_len = 0;
6290 	skb->nohdr = 0;
6291 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6292 
6293 	return 0;
6294 }
6295 
6296 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6297 
6298 /* carve out the first eat bytes from skb's frag_list. May recurse into
6299  * pskb_carve()
6300  */
6301 static int pskb_carve_frag_list(struct sk_buff *skb,
6302 				struct skb_shared_info *shinfo, int eat,
6303 				gfp_t gfp_mask)
6304 {
6305 	struct sk_buff *list = shinfo->frag_list;
6306 	struct sk_buff *clone = NULL;
6307 	struct sk_buff *insp = NULL;
6308 
6309 	do {
6310 		if (!list) {
6311 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6312 			return -EFAULT;
6313 		}
6314 		if (list->len <= eat) {
6315 			/* Eaten as whole. */
6316 			eat -= list->len;
6317 			list = list->next;
6318 			insp = list;
6319 		} else {
6320 			/* Eaten partially. */
6321 			if (skb_shared(list)) {
6322 				clone = skb_clone(list, gfp_mask);
6323 				if (!clone)
6324 					return -ENOMEM;
6325 				insp = list->next;
6326 				list = clone;
6327 			} else {
6328 				/* This may be pulled without problems. */
6329 				insp = list;
6330 			}
6331 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6332 				kfree_skb(clone);
6333 				return -ENOMEM;
6334 			}
6335 			break;
6336 		}
6337 	} while (eat);
6338 
6339 	/* Free pulled out fragments. */
6340 	while ((list = shinfo->frag_list) != insp) {
6341 		shinfo->frag_list = list->next;
6342 		consume_skb(list);
6343 	}
6344 	/* And insert new clone at head. */
6345 	if (clone) {
6346 		clone->next = list;
6347 		shinfo->frag_list = clone;
6348 	}
6349 	return 0;
6350 }
6351 
6352 /* carve off first len bytes from skb. Split line (off) is in the
6353  * non-linear part of skb
6354  */
6355 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6356 				       int pos, gfp_t gfp_mask)
6357 {
6358 	int i, k = 0;
6359 	unsigned int size = skb_end_offset(skb);
6360 	u8 *data;
6361 	const int nfrags = skb_shinfo(skb)->nr_frags;
6362 	struct skb_shared_info *shinfo;
6363 
6364 	if (skb_pfmemalloc(skb))
6365 		gfp_mask |= __GFP_MEMALLOC;
6366 
6367 	size = SKB_DATA_ALIGN(size);
6368 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
6369 	size = kmalloc_size_roundup(size);
6370 	data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
6371 	if (!data)
6372 		return -ENOMEM;
6373 	size = SKB_WITH_OVERHEAD(size);
6374 
6375 	memcpy((struct skb_shared_info *)(data + size),
6376 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6377 	if (skb_orphan_frags(skb, gfp_mask)) {
6378 		kfree(data);
6379 		return -ENOMEM;
6380 	}
6381 	shinfo = (struct skb_shared_info *)(data + size);
6382 	for (i = 0; i < nfrags; i++) {
6383 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6384 
6385 		if (pos + fsize > off) {
6386 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6387 
6388 			if (pos < off) {
6389 				/* Split frag.
6390 				 * We have two variants in this case:
6391 				 * 1. Move all the frag to the second
6392 				 *    part, if it is possible. F.e.
6393 				 *    this approach is mandatory for TUX,
6394 				 *    where splitting is expensive.
6395 				 * 2. Split is accurately. We make this.
6396 				 */
6397 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6398 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6399 			}
6400 			skb_frag_ref(skb, i);
6401 			k++;
6402 		}
6403 		pos += fsize;
6404 	}
6405 	shinfo->nr_frags = k;
6406 	if (skb_has_frag_list(skb))
6407 		skb_clone_fraglist(skb);
6408 
6409 	/* split line is in frag list */
6410 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6411 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6412 		if (skb_has_frag_list(skb))
6413 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6414 		kfree(data);
6415 		return -ENOMEM;
6416 	}
6417 	skb_release_data(skb, SKB_CONSUMED);
6418 
6419 	skb->head = data;
6420 	skb->head_frag = 0;
6421 	skb->data = data;
6422 	skb_set_end_offset(skb, size);
6423 	skb_reset_tail_pointer(skb);
6424 	skb_headers_offset_update(skb, 0);
6425 	skb->cloned   = 0;
6426 	skb->hdr_len  = 0;
6427 	skb->nohdr    = 0;
6428 	skb->len -= off;
6429 	skb->data_len = skb->len;
6430 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6431 	return 0;
6432 }
6433 
6434 /* remove len bytes from the beginning of the skb */
6435 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6436 {
6437 	int headlen = skb_headlen(skb);
6438 
6439 	if (len < headlen)
6440 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6441 	else
6442 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6443 }
6444 
6445 /* Extract to_copy bytes starting at off from skb, and return this in
6446  * a new skb
6447  */
6448 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6449 			     int to_copy, gfp_t gfp)
6450 {
6451 	struct sk_buff  *clone = skb_clone(skb, gfp);
6452 
6453 	if (!clone)
6454 		return NULL;
6455 
6456 	if (pskb_carve(clone, off, gfp) < 0 ||
6457 	    pskb_trim(clone, to_copy)) {
6458 		kfree_skb(clone);
6459 		return NULL;
6460 	}
6461 	return clone;
6462 }
6463 EXPORT_SYMBOL(pskb_extract);
6464 
6465 /**
6466  * skb_condense - try to get rid of fragments/frag_list if possible
6467  * @skb: buffer
6468  *
6469  * Can be used to save memory before skb is added to a busy queue.
6470  * If packet has bytes in frags and enough tail room in skb->head,
6471  * pull all of them, so that we can free the frags right now and adjust
6472  * truesize.
6473  * Notes:
6474  *	We do not reallocate skb->head thus can not fail.
6475  *	Caller must re-evaluate skb->truesize if needed.
6476  */
6477 void skb_condense(struct sk_buff *skb)
6478 {
6479 	if (skb->data_len) {
6480 		if (skb->data_len > skb->end - skb->tail ||
6481 		    skb_cloned(skb))
6482 			return;
6483 
6484 		/* Nice, we can free page frag(s) right now */
6485 		__pskb_pull_tail(skb, skb->data_len);
6486 	}
6487 	/* At this point, skb->truesize might be over estimated,
6488 	 * because skb had a fragment, and fragments do not tell
6489 	 * their truesize.
6490 	 * When we pulled its content into skb->head, fragment
6491 	 * was freed, but __pskb_pull_tail() could not possibly
6492 	 * adjust skb->truesize, not knowing the frag truesize.
6493 	 */
6494 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6495 }
6496 EXPORT_SYMBOL(skb_condense);
6497 
6498 #ifdef CONFIG_SKB_EXTENSIONS
6499 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6500 {
6501 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6502 }
6503 
6504 /**
6505  * __skb_ext_alloc - allocate a new skb extensions storage
6506  *
6507  * @flags: See kmalloc().
6508  *
6509  * Returns the newly allocated pointer. The pointer can later attached to a
6510  * skb via __skb_ext_set().
6511  * Note: caller must handle the skb_ext as an opaque data.
6512  */
6513 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6514 {
6515 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6516 
6517 	if (new) {
6518 		memset(new->offset, 0, sizeof(new->offset));
6519 		refcount_set(&new->refcnt, 1);
6520 	}
6521 
6522 	return new;
6523 }
6524 
6525 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6526 					 unsigned int old_active)
6527 {
6528 	struct skb_ext *new;
6529 
6530 	if (refcount_read(&old->refcnt) == 1)
6531 		return old;
6532 
6533 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6534 	if (!new)
6535 		return NULL;
6536 
6537 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6538 	refcount_set(&new->refcnt, 1);
6539 
6540 #ifdef CONFIG_XFRM
6541 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6542 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6543 		unsigned int i;
6544 
6545 		for (i = 0; i < sp->len; i++)
6546 			xfrm_state_hold(sp->xvec[i]);
6547 	}
6548 #endif
6549 	__skb_ext_put(old);
6550 	return new;
6551 }
6552 
6553 /**
6554  * __skb_ext_set - attach the specified extension storage to this skb
6555  * @skb: buffer
6556  * @id: extension id
6557  * @ext: extension storage previously allocated via __skb_ext_alloc()
6558  *
6559  * Existing extensions, if any, are cleared.
6560  *
6561  * Returns the pointer to the extension.
6562  */
6563 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6564 		    struct skb_ext *ext)
6565 {
6566 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6567 
6568 	skb_ext_put(skb);
6569 	newlen = newoff + skb_ext_type_len[id];
6570 	ext->chunks = newlen;
6571 	ext->offset[id] = newoff;
6572 	skb->extensions = ext;
6573 	skb->active_extensions = 1 << id;
6574 	return skb_ext_get_ptr(ext, id);
6575 }
6576 
6577 /**
6578  * skb_ext_add - allocate space for given extension, COW if needed
6579  * @skb: buffer
6580  * @id: extension to allocate space for
6581  *
6582  * Allocates enough space for the given extension.
6583  * If the extension is already present, a pointer to that extension
6584  * is returned.
6585  *
6586  * If the skb was cloned, COW applies and the returned memory can be
6587  * modified without changing the extension space of clones buffers.
6588  *
6589  * Returns pointer to the extension or NULL on allocation failure.
6590  */
6591 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6592 {
6593 	struct skb_ext *new, *old = NULL;
6594 	unsigned int newlen, newoff;
6595 
6596 	if (skb->active_extensions) {
6597 		old = skb->extensions;
6598 
6599 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6600 		if (!new)
6601 			return NULL;
6602 
6603 		if (__skb_ext_exist(new, id))
6604 			goto set_active;
6605 
6606 		newoff = new->chunks;
6607 	} else {
6608 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6609 
6610 		new = __skb_ext_alloc(GFP_ATOMIC);
6611 		if (!new)
6612 			return NULL;
6613 	}
6614 
6615 	newlen = newoff + skb_ext_type_len[id];
6616 	new->chunks = newlen;
6617 	new->offset[id] = newoff;
6618 set_active:
6619 	skb->slow_gro = 1;
6620 	skb->extensions = new;
6621 	skb->active_extensions |= 1 << id;
6622 	return skb_ext_get_ptr(new, id);
6623 }
6624 EXPORT_SYMBOL(skb_ext_add);
6625 
6626 #ifdef CONFIG_XFRM
6627 static void skb_ext_put_sp(struct sec_path *sp)
6628 {
6629 	unsigned int i;
6630 
6631 	for (i = 0; i < sp->len; i++)
6632 		xfrm_state_put(sp->xvec[i]);
6633 }
6634 #endif
6635 
6636 #ifdef CONFIG_MCTP_FLOWS
6637 static void skb_ext_put_mctp(struct mctp_flow *flow)
6638 {
6639 	if (flow->key)
6640 		mctp_key_unref(flow->key);
6641 }
6642 #endif
6643 
6644 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6645 {
6646 	struct skb_ext *ext = skb->extensions;
6647 
6648 	skb->active_extensions &= ~(1 << id);
6649 	if (skb->active_extensions == 0) {
6650 		skb->extensions = NULL;
6651 		__skb_ext_put(ext);
6652 #ifdef CONFIG_XFRM
6653 	} else if (id == SKB_EXT_SEC_PATH &&
6654 		   refcount_read(&ext->refcnt) == 1) {
6655 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6656 
6657 		skb_ext_put_sp(sp);
6658 		sp->len = 0;
6659 #endif
6660 	}
6661 }
6662 EXPORT_SYMBOL(__skb_ext_del);
6663 
6664 void __skb_ext_put(struct skb_ext *ext)
6665 {
6666 	/* If this is last clone, nothing can increment
6667 	 * it after check passes.  Avoids one atomic op.
6668 	 */
6669 	if (refcount_read(&ext->refcnt) == 1)
6670 		goto free_now;
6671 
6672 	if (!refcount_dec_and_test(&ext->refcnt))
6673 		return;
6674 free_now:
6675 #ifdef CONFIG_XFRM
6676 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6677 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6678 #endif
6679 #ifdef CONFIG_MCTP_FLOWS
6680 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6681 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6682 #endif
6683 
6684 	kmem_cache_free(skbuff_ext_cache, ext);
6685 }
6686 EXPORT_SYMBOL(__skb_ext_put);
6687 #endif /* CONFIG_SKB_EXTENSIONS */
6688 
6689 /**
6690  * skb_attempt_defer_free - queue skb for remote freeing
6691  * @skb: buffer
6692  *
6693  * Put @skb in a per-cpu list, using the cpu which
6694  * allocated the skb/pages to reduce false sharing
6695  * and memory zone spinlock contention.
6696  */
6697 void skb_attempt_defer_free(struct sk_buff *skb)
6698 {
6699 	int cpu = skb->alloc_cpu;
6700 	struct softnet_data *sd;
6701 	unsigned long flags;
6702 	unsigned int defer_max;
6703 	bool kick;
6704 
6705 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6706 	    !cpu_online(cpu) ||
6707 	    cpu == raw_smp_processor_id()) {
6708 nodefer:	__kfree_skb(skb);
6709 		return;
6710 	}
6711 
6712 	sd = &per_cpu(softnet_data, cpu);
6713 	defer_max = READ_ONCE(sysctl_skb_defer_max);
6714 	if (READ_ONCE(sd->defer_count) >= defer_max)
6715 		goto nodefer;
6716 
6717 	spin_lock_irqsave(&sd->defer_lock, flags);
6718 	/* Send an IPI every time queue reaches half capacity. */
6719 	kick = sd->defer_count == (defer_max >> 1);
6720 	/* Paired with the READ_ONCE() few lines above */
6721 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6722 
6723 	skb->next = sd->defer_list;
6724 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
6725 	WRITE_ONCE(sd->defer_list, skb);
6726 	spin_unlock_irqrestore(&sd->defer_lock, flags);
6727 
6728 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6729 	 * if we are unlucky enough (this seems very unlikely).
6730 	 */
6731 	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6732 		smp_call_function_single_async(cpu, &sd->defer_csd);
6733 }
6734