xref: /linux/net/core/skbuff.c (revision 20d0021394c1b070bf04b22c5bc8fdb437edd4c5)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <iiitac@pyr.swan.ac.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Version:	$Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
8  *
9  *	Fixes:
10  *		Alan Cox	:	Fixed the worst of the load
11  *					balancer bugs.
12  *		Dave Platt	:	Interrupt stacking fix.
13  *	Richard Kooijman	:	Timestamp fixes.
14  *		Alan Cox	:	Changed buffer format.
15  *		Alan Cox	:	destructor hook for AF_UNIX etc.
16  *		Linus Torvalds	:	Better skb_clone.
17  *		Alan Cox	:	Added skb_copy.
18  *		Alan Cox	:	Added all the changed routines Linus
19  *					only put in the headers
20  *		Ray VanTassle	:	Fixed --skb->lock in free
21  *		Alan Cox	:	skb_copy copy arp field
22  *		Andi Kleen	:	slabified it.
23  *		Robert Olsson	:	Removed skb_head_pool
24  *
25  *	NOTE:
26  *		The __skb_ routines should be called with interrupts
27  *	disabled, or you better be *real* sure that the operation is atomic
28  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
29  *	or via disabling bottom half handlers, etc).
30  *
31  *	This program is free software; you can redistribute it and/or
32  *	modify it under the terms of the GNU General Public License
33  *	as published by the Free Software Foundation; either version
34  *	2 of the License, or (at your option) any later version.
35  */
36 
37 /*
38  *	The functions in this file will not compile correctly with gcc 2.4.x
39  */
40 
41 #include <linux/config.h>
42 #include <linux/module.h>
43 #include <linux/types.h>
44 #include <linux/kernel.h>
45 #include <linux/sched.h>
46 #include <linux/mm.h>
47 #include <linux/interrupt.h>
48 #include <linux/in.h>
49 #include <linux/inet.h>
50 #include <linux/slab.h>
51 #include <linux/netdevice.h>
52 #ifdef CONFIG_NET_CLS_ACT
53 #include <net/pkt_sched.h>
54 #endif
55 #include <linux/string.h>
56 #include <linux/skbuff.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/highmem.h>
61 
62 #include <net/protocol.h>
63 #include <net/dst.h>
64 #include <net/sock.h>
65 #include <net/checksum.h>
66 #include <net/xfrm.h>
67 
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 
71 static kmem_cache_t *skbuff_head_cache;
72 
73 /*
74  *	Keep out-of-line to prevent kernel bloat.
75  *	__builtin_return_address is not used because it is not always
76  *	reliable.
77  */
78 
79 /**
80  *	skb_over_panic	- 	private function
81  *	@skb: buffer
82  *	@sz: size
83  *	@here: address
84  *
85  *	Out of line support code for skb_put(). Not user callable.
86  */
87 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
88 {
89 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
90 	                  "data:%p tail:%p end:%p dev:%s\n",
91 	       here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
92 	       skb->dev ? skb->dev->name : "<NULL>");
93 	BUG();
94 }
95 
96 /**
97  *	skb_under_panic	- 	private function
98  *	@skb: buffer
99  *	@sz: size
100  *	@here: address
101  *
102  *	Out of line support code for skb_push(). Not user callable.
103  */
104 
105 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
106 {
107 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
108 	                  "data:%p tail:%p end:%p dev:%s\n",
109 	       here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
110 	       skb->dev ? skb->dev->name : "<NULL>");
111 	BUG();
112 }
113 
114 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
115  *	'private' fields and also do memory statistics to find all the
116  *	[BEEP] leaks.
117  *
118  */
119 
120 /**
121  *	alloc_skb	-	allocate a network buffer
122  *	@size: size to allocate
123  *	@gfp_mask: allocation mask
124  *
125  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
126  *	tail room of size bytes. The object has a reference count of one.
127  *	The return is the buffer. On a failure the return is %NULL.
128  *
129  *	Buffers may only be allocated from interrupts using a @gfp_mask of
130  *	%GFP_ATOMIC.
131  */
132 struct sk_buff *alloc_skb(unsigned int size, unsigned int __nocast gfp_mask)
133 {
134 	struct sk_buff *skb;
135 	u8 *data;
136 
137 	/* Get the HEAD */
138 	skb = kmem_cache_alloc(skbuff_head_cache,
139 			       gfp_mask & ~__GFP_DMA);
140 	if (!skb)
141 		goto out;
142 
143 	/* Get the DATA. Size must match skb_add_mtu(). */
144 	size = SKB_DATA_ALIGN(size);
145 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
146 	if (!data)
147 		goto nodata;
148 
149 	memset(skb, 0, offsetof(struct sk_buff, truesize));
150 	skb->truesize = size + sizeof(struct sk_buff);
151 	atomic_set(&skb->users, 1);
152 	skb->head = data;
153 	skb->data = data;
154 	skb->tail = data;
155 	skb->end  = data + size;
156 
157 	atomic_set(&(skb_shinfo(skb)->dataref), 1);
158 	skb_shinfo(skb)->nr_frags  = 0;
159 	skb_shinfo(skb)->tso_size = 0;
160 	skb_shinfo(skb)->tso_segs = 0;
161 	skb_shinfo(skb)->frag_list = NULL;
162 out:
163 	return skb;
164 nodata:
165 	kmem_cache_free(skbuff_head_cache, skb);
166 	skb = NULL;
167 	goto out;
168 }
169 
170 /**
171  *	alloc_skb_from_cache	-	allocate a network buffer
172  *	@cp: kmem_cache from which to allocate the data area
173  *           (object size must be big enough for @size bytes + skb overheads)
174  *	@size: size to allocate
175  *	@gfp_mask: allocation mask
176  *
177  *	Allocate a new &sk_buff. The returned buffer has no headroom and
178  *	tail room of size bytes. The object has a reference count of one.
179  *	The return is the buffer. On a failure the return is %NULL.
180  *
181  *	Buffers may only be allocated from interrupts using a @gfp_mask of
182  *	%GFP_ATOMIC.
183  */
184 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
185 				     unsigned int size,
186 				     unsigned int __nocast gfp_mask)
187 {
188 	struct sk_buff *skb;
189 	u8 *data;
190 
191 	/* Get the HEAD */
192 	skb = kmem_cache_alloc(skbuff_head_cache,
193 			       gfp_mask & ~__GFP_DMA);
194 	if (!skb)
195 		goto out;
196 
197 	/* Get the DATA. */
198 	size = SKB_DATA_ALIGN(size);
199 	data = kmem_cache_alloc(cp, gfp_mask);
200 	if (!data)
201 		goto nodata;
202 
203 	memset(skb, 0, offsetof(struct sk_buff, truesize));
204 	skb->truesize = size + sizeof(struct sk_buff);
205 	atomic_set(&skb->users, 1);
206 	skb->head = data;
207 	skb->data = data;
208 	skb->tail = data;
209 	skb->end  = data + size;
210 
211 	atomic_set(&(skb_shinfo(skb)->dataref), 1);
212 	skb_shinfo(skb)->nr_frags  = 0;
213 	skb_shinfo(skb)->tso_size = 0;
214 	skb_shinfo(skb)->tso_segs = 0;
215 	skb_shinfo(skb)->frag_list = NULL;
216 out:
217 	return skb;
218 nodata:
219 	kmem_cache_free(skbuff_head_cache, skb);
220 	skb = NULL;
221 	goto out;
222 }
223 
224 
225 static void skb_drop_fraglist(struct sk_buff *skb)
226 {
227 	struct sk_buff *list = skb_shinfo(skb)->frag_list;
228 
229 	skb_shinfo(skb)->frag_list = NULL;
230 
231 	do {
232 		struct sk_buff *this = list;
233 		list = list->next;
234 		kfree_skb(this);
235 	} while (list);
236 }
237 
238 static void skb_clone_fraglist(struct sk_buff *skb)
239 {
240 	struct sk_buff *list;
241 
242 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
243 		skb_get(list);
244 }
245 
246 void skb_release_data(struct sk_buff *skb)
247 {
248 	if (!skb->cloned ||
249 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
250 			       &skb_shinfo(skb)->dataref)) {
251 		if (skb_shinfo(skb)->nr_frags) {
252 			int i;
253 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
254 				put_page(skb_shinfo(skb)->frags[i].page);
255 		}
256 
257 		if (skb_shinfo(skb)->frag_list)
258 			skb_drop_fraglist(skb);
259 
260 		kfree(skb->head);
261 	}
262 }
263 
264 /*
265  *	Free an skbuff by memory without cleaning the state.
266  */
267 void kfree_skbmem(struct sk_buff *skb)
268 {
269 	skb_release_data(skb);
270 	kmem_cache_free(skbuff_head_cache, skb);
271 }
272 
273 /**
274  *	__kfree_skb - private function
275  *	@skb: buffer
276  *
277  *	Free an sk_buff. Release anything attached to the buffer.
278  *	Clean the state. This is an internal helper function. Users should
279  *	always call kfree_skb
280  */
281 
282 void __kfree_skb(struct sk_buff *skb)
283 {
284 	BUG_ON(skb->list != NULL);
285 
286 	dst_release(skb->dst);
287 #ifdef CONFIG_XFRM
288 	secpath_put(skb->sp);
289 #endif
290 	if (skb->destructor) {
291 		WARN_ON(in_irq());
292 		skb->destructor(skb);
293 	}
294 #ifdef CONFIG_NETFILTER
295 	nf_conntrack_put(skb->nfct);
296 #ifdef CONFIG_BRIDGE_NETFILTER
297 	nf_bridge_put(skb->nf_bridge);
298 #endif
299 #endif
300 /* XXX: IS this still necessary? - JHS */
301 #ifdef CONFIG_NET_SCHED
302 	skb->tc_index = 0;
303 #ifdef CONFIG_NET_CLS_ACT
304 	skb->tc_verd = 0;
305 	skb->tc_classid = 0;
306 #endif
307 #endif
308 
309 	kfree_skbmem(skb);
310 }
311 
312 /**
313  *	skb_clone	-	duplicate an sk_buff
314  *	@skb: buffer to clone
315  *	@gfp_mask: allocation priority
316  *
317  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
318  *	copies share the same packet data but not structure. The new
319  *	buffer has a reference count of 1. If the allocation fails the
320  *	function returns %NULL otherwise the new buffer is returned.
321  *
322  *	If this function is called from an interrupt gfp_mask() must be
323  *	%GFP_ATOMIC.
324  */
325 
326 struct sk_buff *skb_clone(struct sk_buff *skb, unsigned int __nocast gfp_mask)
327 {
328 	struct sk_buff *n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
329 
330 	if (!n)
331 		return NULL;
332 
333 #define C(x) n->x = skb->x
334 
335 	n->next = n->prev = NULL;
336 	n->list = NULL;
337 	n->sk = NULL;
338 	C(stamp);
339 	C(dev);
340 	C(real_dev);
341 	C(h);
342 	C(nh);
343 	C(mac);
344 	C(dst);
345 	dst_clone(skb->dst);
346 	C(sp);
347 #ifdef CONFIG_INET
348 	secpath_get(skb->sp);
349 #endif
350 	memcpy(n->cb, skb->cb, sizeof(skb->cb));
351 	C(len);
352 	C(data_len);
353 	C(csum);
354 	C(local_df);
355 	n->cloned = 1;
356 	n->nohdr = 0;
357 	C(pkt_type);
358 	C(ip_summed);
359 	C(priority);
360 	C(protocol);
361 	n->destructor = NULL;
362 #ifdef CONFIG_NETFILTER
363 	C(nfmark);
364 	C(nfcache);
365 	C(nfct);
366 	nf_conntrack_get(skb->nfct);
367 	C(nfctinfo);
368 #ifdef CONFIG_BRIDGE_NETFILTER
369 	C(nf_bridge);
370 	nf_bridge_get(skb->nf_bridge);
371 #endif
372 #endif /*CONFIG_NETFILTER*/
373 #if defined(CONFIG_HIPPI)
374 	C(private);
375 #endif
376 #ifdef CONFIG_NET_SCHED
377 	C(tc_index);
378 #ifdef CONFIG_NET_CLS_ACT
379 	n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
380 	n->tc_verd = CLR_TC_OK2MUNGE(skb->tc_verd);
381 	n->tc_verd = CLR_TC_MUNGED(skb->tc_verd);
382 	C(input_dev);
383 	C(tc_classid);
384 #endif
385 
386 #endif
387 	C(truesize);
388 	atomic_set(&n->users, 1);
389 	C(head);
390 	C(data);
391 	C(tail);
392 	C(end);
393 
394 	atomic_inc(&(skb_shinfo(skb)->dataref));
395 	skb->cloned = 1;
396 
397 	return n;
398 }
399 
400 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
401 {
402 	/*
403 	 *	Shift between the two data areas in bytes
404 	 */
405 	unsigned long offset = new->data - old->data;
406 
407 	new->list	= NULL;
408 	new->sk		= NULL;
409 	new->dev	= old->dev;
410 	new->real_dev	= old->real_dev;
411 	new->priority	= old->priority;
412 	new->protocol	= old->protocol;
413 	new->dst	= dst_clone(old->dst);
414 #ifdef CONFIG_INET
415 	new->sp		= secpath_get(old->sp);
416 #endif
417 	new->h.raw	= old->h.raw + offset;
418 	new->nh.raw	= old->nh.raw + offset;
419 	new->mac.raw	= old->mac.raw + offset;
420 	memcpy(new->cb, old->cb, sizeof(old->cb));
421 	new->local_df	= old->local_df;
422 	new->pkt_type	= old->pkt_type;
423 	new->stamp	= old->stamp;
424 	new->destructor = NULL;
425 #ifdef CONFIG_NETFILTER
426 	new->nfmark	= old->nfmark;
427 	new->nfcache	= old->nfcache;
428 	new->nfct	= old->nfct;
429 	nf_conntrack_get(old->nfct);
430 	new->nfctinfo	= old->nfctinfo;
431 #ifdef CONFIG_BRIDGE_NETFILTER
432 	new->nf_bridge	= old->nf_bridge;
433 	nf_bridge_get(old->nf_bridge);
434 #endif
435 #endif
436 #ifdef CONFIG_NET_SCHED
437 #ifdef CONFIG_NET_CLS_ACT
438 	new->tc_verd = old->tc_verd;
439 #endif
440 	new->tc_index	= old->tc_index;
441 #endif
442 	atomic_set(&new->users, 1);
443 	skb_shinfo(new)->tso_size = skb_shinfo(old)->tso_size;
444 	skb_shinfo(new)->tso_segs = skb_shinfo(old)->tso_segs;
445 }
446 
447 /**
448  *	skb_copy	-	create private copy of an sk_buff
449  *	@skb: buffer to copy
450  *	@gfp_mask: allocation priority
451  *
452  *	Make a copy of both an &sk_buff and its data. This is used when the
453  *	caller wishes to modify the data and needs a private copy of the
454  *	data to alter. Returns %NULL on failure or the pointer to the buffer
455  *	on success. The returned buffer has a reference count of 1.
456  *
457  *	As by-product this function converts non-linear &sk_buff to linear
458  *	one, so that &sk_buff becomes completely private and caller is allowed
459  *	to modify all the data of returned buffer. This means that this
460  *	function is not recommended for use in circumstances when only
461  *	header is going to be modified. Use pskb_copy() instead.
462  */
463 
464 struct sk_buff *skb_copy(const struct sk_buff *skb, unsigned int __nocast gfp_mask)
465 {
466 	int headerlen = skb->data - skb->head;
467 	/*
468 	 *	Allocate the copy buffer
469 	 */
470 	struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
471 				      gfp_mask);
472 	if (!n)
473 		return NULL;
474 
475 	/* Set the data pointer */
476 	skb_reserve(n, headerlen);
477 	/* Set the tail pointer and length */
478 	skb_put(n, skb->len);
479 	n->csum	     = skb->csum;
480 	n->ip_summed = skb->ip_summed;
481 
482 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
483 		BUG();
484 
485 	copy_skb_header(n, skb);
486 	return n;
487 }
488 
489 
490 /**
491  *	pskb_copy	-	create copy of an sk_buff with private head.
492  *	@skb: buffer to copy
493  *	@gfp_mask: allocation priority
494  *
495  *	Make a copy of both an &sk_buff and part of its data, located
496  *	in header. Fragmented data remain shared. This is used when
497  *	the caller wishes to modify only header of &sk_buff and needs
498  *	private copy of the header to alter. Returns %NULL on failure
499  *	or the pointer to the buffer on success.
500  *	The returned buffer has a reference count of 1.
501  */
502 
503 struct sk_buff *pskb_copy(struct sk_buff *skb, unsigned int __nocast gfp_mask)
504 {
505 	/*
506 	 *	Allocate the copy buffer
507 	 */
508 	struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
509 
510 	if (!n)
511 		goto out;
512 
513 	/* Set the data pointer */
514 	skb_reserve(n, skb->data - skb->head);
515 	/* Set the tail pointer and length */
516 	skb_put(n, skb_headlen(skb));
517 	/* Copy the bytes */
518 	memcpy(n->data, skb->data, n->len);
519 	n->csum	     = skb->csum;
520 	n->ip_summed = skb->ip_summed;
521 
522 	n->data_len  = skb->data_len;
523 	n->len	     = skb->len;
524 
525 	if (skb_shinfo(skb)->nr_frags) {
526 		int i;
527 
528 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
529 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
530 			get_page(skb_shinfo(n)->frags[i].page);
531 		}
532 		skb_shinfo(n)->nr_frags = i;
533 	}
534 
535 	if (skb_shinfo(skb)->frag_list) {
536 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
537 		skb_clone_fraglist(n);
538 	}
539 
540 	copy_skb_header(n, skb);
541 out:
542 	return n;
543 }
544 
545 /**
546  *	pskb_expand_head - reallocate header of &sk_buff
547  *	@skb: buffer to reallocate
548  *	@nhead: room to add at head
549  *	@ntail: room to add at tail
550  *	@gfp_mask: allocation priority
551  *
552  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
553  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
554  *	reference count of 1. Returns zero in the case of success or error,
555  *	if expansion failed. In the last case, &sk_buff is not changed.
556  *
557  *	All the pointers pointing into skb header may change and must be
558  *	reloaded after call to this function.
559  */
560 
561 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
562 		     unsigned int __nocast gfp_mask)
563 {
564 	int i;
565 	u8 *data;
566 	int size = nhead + (skb->end - skb->head) + ntail;
567 	long off;
568 
569 	if (skb_shared(skb))
570 		BUG();
571 
572 	size = SKB_DATA_ALIGN(size);
573 
574 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
575 	if (!data)
576 		goto nodata;
577 
578 	/* Copy only real data... and, alas, header. This should be
579 	 * optimized for the cases when header is void. */
580 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
581 	memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
582 
583 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
584 		get_page(skb_shinfo(skb)->frags[i].page);
585 
586 	if (skb_shinfo(skb)->frag_list)
587 		skb_clone_fraglist(skb);
588 
589 	skb_release_data(skb);
590 
591 	off = (data + nhead) - skb->head;
592 
593 	skb->head     = data;
594 	skb->end      = data + size;
595 	skb->data    += off;
596 	skb->tail    += off;
597 	skb->mac.raw += off;
598 	skb->h.raw   += off;
599 	skb->nh.raw  += off;
600 	skb->cloned   = 0;
601 	skb->nohdr    = 0;
602 	atomic_set(&skb_shinfo(skb)->dataref, 1);
603 	return 0;
604 
605 nodata:
606 	return -ENOMEM;
607 }
608 
609 /* Make private copy of skb with writable head and some headroom */
610 
611 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
612 {
613 	struct sk_buff *skb2;
614 	int delta = headroom - skb_headroom(skb);
615 
616 	if (delta <= 0)
617 		skb2 = pskb_copy(skb, GFP_ATOMIC);
618 	else {
619 		skb2 = skb_clone(skb, GFP_ATOMIC);
620 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
621 					     GFP_ATOMIC)) {
622 			kfree_skb(skb2);
623 			skb2 = NULL;
624 		}
625 	}
626 	return skb2;
627 }
628 
629 
630 /**
631  *	skb_copy_expand	-	copy and expand sk_buff
632  *	@skb: buffer to copy
633  *	@newheadroom: new free bytes at head
634  *	@newtailroom: new free bytes at tail
635  *	@gfp_mask: allocation priority
636  *
637  *	Make a copy of both an &sk_buff and its data and while doing so
638  *	allocate additional space.
639  *
640  *	This is used when the caller wishes to modify the data and needs a
641  *	private copy of the data to alter as well as more space for new fields.
642  *	Returns %NULL on failure or the pointer to the buffer
643  *	on success. The returned buffer has a reference count of 1.
644  *
645  *	You must pass %GFP_ATOMIC as the allocation priority if this function
646  *	is called from an interrupt.
647  *
648  *	BUG ALERT: ip_summed is not copied. Why does this work? Is it used
649  *	only by netfilter in the cases when checksum is recalculated? --ANK
650  */
651 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
652 				int newheadroom, int newtailroom,
653 				unsigned int __nocast gfp_mask)
654 {
655 	/*
656 	 *	Allocate the copy buffer
657 	 */
658 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
659 				      gfp_mask);
660 	int head_copy_len, head_copy_off;
661 
662 	if (!n)
663 		return NULL;
664 
665 	skb_reserve(n, newheadroom);
666 
667 	/* Set the tail pointer and length */
668 	skb_put(n, skb->len);
669 
670 	head_copy_len = skb_headroom(skb);
671 	head_copy_off = 0;
672 	if (newheadroom <= head_copy_len)
673 		head_copy_len = newheadroom;
674 	else
675 		head_copy_off = newheadroom - head_copy_len;
676 
677 	/* Copy the linear header and data. */
678 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
679 			  skb->len + head_copy_len))
680 		BUG();
681 
682 	copy_skb_header(n, skb);
683 
684 	return n;
685 }
686 
687 /**
688  *	skb_pad			-	zero pad the tail of an skb
689  *	@skb: buffer to pad
690  *	@pad: space to pad
691  *
692  *	Ensure that a buffer is followed by a padding area that is zero
693  *	filled. Used by network drivers which may DMA or transfer data
694  *	beyond the buffer end onto the wire.
695  *
696  *	May return NULL in out of memory cases.
697  */
698 
699 struct sk_buff *skb_pad(struct sk_buff *skb, int pad)
700 {
701 	struct sk_buff *nskb;
702 
703 	/* If the skbuff is non linear tailroom is always zero.. */
704 	if (skb_tailroom(skb) >= pad) {
705 		memset(skb->data+skb->len, 0, pad);
706 		return skb;
707 	}
708 
709 	nskb = skb_copy_expand(skb, skb_headroom(skb), skb_tailroom(skb) + pad, GFP_ATOMIC);
710 	kfree_skb(skb);
711 	if (nskb)
712 		memset(nskb->data+nskb->len, 0, pad);
713 	return nskb;
714 }
715 
716 /* Trims skb to length len. It can change skb pointers, if "realloc" is 1.
717  * If realloc==0 and trimming is impossible without change of data,
718  * it is BUG().
719  */
720 
721 int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc)
722 {
723 	int offset = skb_headlen(skb);
724 	int nfrags = skb_shinfo(skb)->nr_frags;
725 	int i;
726 
727 	for (i = 0; i < nfrags; i++) {
728 		int end = offset + skb_shinfo(skb)->frags[i].size;
729 		if (end > len) {
730 			if (skb_cloned(skb)) {
731 				if (!realloc)
732 					BUG();
733 				if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
734 					return -ENOMEM;
735 			}
736 			if (len <= offset) {
737 				put_page(skb_shinfo(skb)->frags[i].page);
738 				skb_shinfo(skb)->nr_frags--;
739 			} else {
740 				skb_shinfo(skb)->frags[i].size = len - offset;
741 			}
742 		}
743 		offset = end;
744 	}
745 
746 	if (offset < len) {
747 		skb->data_len -= skb->len - len;
748 		skb->len       = len;
749 	} else {
750 		if (len <= skb_headlen(skb)) {
751 			skb->len      = len;
752 			skb->data_len = 0;
753 			skb->tail     = skb->data + len;
754 			if (skb_shinfo(skb)->frag_list && !skb_cloned(skb))
755 				skb_drop_fraglist(skb);
756 		} else {
757 			skb->data_len -= skb->len - len;
758 			skb->len       = len;
759 		}
760 	}
761 
762 	return 0;
763 }
764 
765 /**
766  *	__pskb_pull_tail - advance tail of skb header
767  *	@skb: buffer to reallocate
768  *	@delta: number of bytes to advance tail
769  *
770  *	The function makes a sense only on a fragmented &sk_buff,
771  *	it expands header moving its tail forward and copying necessary
772  *	data from fragmented part.
773  *
774  *	&sk_buff MUST have reference count of 1.
775  *
776  *	Returns %NULL (and &sk_buff does not change) if pull failed
777  *	or value of new tail of skb in the case of success.
778  *
779  *	All the pointers pointing into skb header may change and must be
780  *	reloaded after call to this function.
781  */
782 
783 /* Moves tail of skb head forward, copying data from fragmented part,
784  * when it is necessary.
785  * 1. It may fail due to malloc failure.
786  * 2. It may change skb pointers.
787  *
788  * It is pretty complicated. Luckily, it is called only in exceptional cases.
789  */
790 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
791 {
792 	/* If skb has not enough free space at tail, get new one
793 	 * plus 128 bytes for future expansions. If we have enough
794 	 * room at tail, reallocate without expansion only if skb is cloned.
795 	 */
796 	int i, k, eat = (skb->tail + delta) - skb->end;
797 
798 	if (eat > 0 || skb_cloned(skb)) {
799 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
800 				     GFP_ATOMIC))
801 			return NULL;
802 	}
803 
804 	if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
805 		BUG();
806 
807 	/* Optimization: no fragments, no reasons to preestimate
808 	 * size of pulled pages. Superb.
809 	 */
810 	if (!skb_shinfo(skb)->frag_list)
811 		goto pull_pages;
812 
813 	/* Estimate size of pulled pages. */
814 	eat = delta;
815 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
816 		if (skb_shinfo(skb)->frags[i].size >= eat)
817 			goto pull_pages;
818 		eat -= skb_shinfo(skb)->frags[i].size;
819 	}
820 
821 	/* If we need update frag list, we are in troubles.
822 	 * Certainly, it possible to add an offset to skb data,
823 	 * but taking into account that pulling is expected to
824 	 * be very rare operation, it is worth to fight against
825 	 * further bloating skb head and crucify ourselves here instead.
826 	 * Pure masohism, indeed. 8)8)
827 	 */
828 	if (eat) {
829 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
830 		struct sk_buff *clone = NULL;
831 		struct sk_buff *insp = NULL;
832 
833 		do {
834 			if (!list)
835 				BUG();
836 
837 			if (list->len <= eat) {
838 				/* Eaten as whole. */
839 				eat -= list->len;
840 				list = list->next;
841 				insp = list;
842 			} else {
843 				/* Eaten partially. */
844 
845 				if (skb_shared(list)) {
846 					/* Sucks! We need to fork list. :-( */
847 					clone = skb_clone(list, GFP_ATOMIC);
848 					if (!clone)
849 						return NULL;
850 					insp = list->next;
851 					list = clone;
852 				} else {
853 					/* This may be pulled without
854 					 * problems. */
855 					insp = list;
856 				}
857 				if (!pskb_pull(list, eat)) {
858 					if (clone)
859 						kfree_skb(clone);
860 					return NULL;
861 				}
862 				break;
863 			}
864 		} while (eat);
865 
866 		/* Free pulled out fragments. */
867 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
868 			skb_shinfo(skb)->frag_list = list->next;
869 			kfree_skb(list);
870 		}
871 		/* And insert new clone at head. */
872 		if (clone) {
873 			clone->next = list;
874 			skb_shinfo(skb)->frag_list = clone;
875 		}
876 	}
877 	/* Success! Now we may commit changes to skb data. */
878 
879 pull_pages:
880 	eat = delta;
881 	k = 0;
882 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
883 		if (skb_shinfo(skb)->frags[i].size <= eat) {
884 			put_page(skb_shinfo(skb)->frags[i].page);
885 			eat -= skb_shinfo(skb)->frags[i].size;
886 		} else {
887 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
888 			if (eat) {
889 				skb_shinfo(skb)->frags[k].page_offset += eat;
890 				skb_shinfo(skb)->frags[k].size -= eat;
891 				eat = 0;
892 			}
893 			k++;
894 		}
895 	}
896 	skb_shinfo(skb)->nr_frags = k;
897 
898 	skb->tail     += delta;
899 	skb->data_len -= delta;
900 
901 	return skb->tail;
902 }
903 
904 /* Copy some data bits from skb to kernel buffer. */
905 
906 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
907 {
908 	int i, copy;
909 	int start = skb_headlen(skb);
910 
911 	if (offset > (int)skb->len - len)
912 		goto fault;
913 
914 	/* Copy header. */
915 	if ((copy = start - offset) > 0) {
916 		if (copy > len)
917 			copy = len;
918 		memcpy(to, skb->data + offset, copy);
919 		if ((len -= copy) == 0)
920 			return 0;
921 		offset += copy;
922 		to     += copy;
923 	}
924 
925 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
926 		int end;
927 
928 		BUG_TRAP(start <= offset + len);
929 
930 		end = start + skb_shinfo(skb)->frags[i].size;
931 		if ((copy = end - offset) > 0) {
932 			u8 *vaddr;
933 
934 			if (copy > len)
935 				copy = len;
936 
937 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
938 			memcpy(to,
939 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
940 			       offset - start, copy);
941 			kunmap_skb_frag(vaddr);
942 
943 			if ((len -= copy) == 0)
944 				return 0;
945 			offset += copy;
946 			to     += copy;
947 		}
948 		start = end;
949 	}
950 
951 	if (skb_shinfo(skb)->frag_list) {
952 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
953 
954 		for (; list; list = list->next) {
955 			int end;
956 
957 			BUG_TRAP(start <= offset + len);
958 
959 			end = start + list->len;
960 			if ((copy = end - offset) > 0) {
961 				if (copy > len)
962 					copy = len;
963 				if (skb_copy_bits(list, offset - start,
964 						  to, copy))
965 					goto fault;
966 				if ((len -= copy) == 0)
967 					return 0;
968 				offset += copy;
969 				to     += copy;
970 			}
971 			start = end;
972 		}
973 	}
974 	if (!len)
975 		return 0;
976 
977 fault:
978 	return -EFAULT;
979 }
980 
981 /**
982  *	skb_store_bits - store bits from kernel buffer to skb
983  *	@skb: destination buffer
984  *	@offset: offset in destination
985  *	@from: source buffer
986  *	@len: number of bytes to copy
987  *
988  *	Copy the specified number of bytes from the source buffer to the
989  *	destination skb.  This function handles all the messy bits of
990  *	traversing fragment lists and such.
991  */
992 
993 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
994 {
995 	int i, copy;
996 	int start = skb_headlen(skb);
997 
998 	if (offset > (int)skb->len - len)
999 		goto fault;
1000 
1001 	if ((copy = start - offset) > 0) {
1002 		if (copy > len)
1003 			copy = len;
1004 		memcpy(skb->data + offset, from, copy);
1005 		if ((len -= copy) == 0)
1006 			return 0;
1007 		offset += copy;
1008 		from += copy;
1009 	}
1010 
1011 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1012 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1013 		int end;
1014 
1015 		BUG_TRAP(start <= offset + len);
1016 
1017 		end = start + frag->size;
1018 		if ((copy = end - offset) > 0) {
1019 			u8 *vaddr;
1020 
1021 			if (copy > len)
1022 				copy = len;
1023 
1024 			vaddr = kmap_skb_frag(frag);
1025 			memcpy(vaddr + frag->page_offset + offset - start,
1026 			       from, copy);
1027 			kunmap_skb_frag(vaddr);
1028 
1029 			if ((len -= copy) == 0)
1030 				return 0;
1031 			offset += copy;
1032 			from += copy;
1033 		}
1034 		start = end;
1035 	}
1036 
1037 	if (skb_shinfo(skb)->frag_list) {
1038 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1039 
1040 		for (; list; list = list->next) {
1041 			int end;
1042 
1043 			BUG_TRAP(start <= offset + len);
1044 
1045 			end = start + list->len;
1046 			if ((copy = end - offset) > 0) {
1047 				if (copy > len)
1048 					copy = len;
1049 				if (skb_store_bits(list, offset - start,
1050 						   from, copy))
1051 					goto fault;
1052 				if ((len -= copy) == 0)
1053 					return 0;
1054 				offset += copy;
1055 				from += copy;
1056 			}
1057 			start = end;
1058 		}
1059 	}
1060 	if (!len)
1061 		return 0;
1062 
1063 fault:
1064 	return -EFAULT;
1065 }
1066 
1067 EXPORT_SYMBOL(skb_store_bits);
1068 
1069 /* Checksum skb data. */
1070 
1071 unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1072 			  int len, unsigned int csum)
1073 {
1074 	int start = skb_headlen(skb);
1075 	int i, copy = start - offset;
1076 	int pos = 0;
1077 
1078 	/* Checksum header. */
1079 	if (copy > 0) {
1080 		if (copy > len)
1081 			copy = len;
1082 		csum = csum_partial(skb->data + offset, copy, csum);
1083 		if ((len -= copy) == 0)
1084 			return csum;
1085 		offset += copy;
1086 		pos	= copy;
1087 	}
1088 
1089 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1090 		int end;
1091 
1092 		BUG_TRAP(start <= offset + len);
1093 
1094 		end = start + skb_shinfo(skb)->frags[i].size;
1095 		if ((copy = end - offset) > 0) {
1096 			unsigned int csum2;
1097 			u8 *vaddr;
1098 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1099 
1100 			if (copy > len)
1101 				copy = len;
1102 			vaddr = kmap_skb_frag(frag);
1103 			csum2 = csum_partial(vaddr + frag->page_offset +
1104 					     offset - start, copy, 0);
1105 			kunmap_skb_frag(vaddr);
1106 			csum = csum_block_add(csum, csum2, pos);
1107 			if (!(len -= copy))
1108 				return csum;
1109 			offset += copy;
1110 			pos    += copy;
1111 		}
1112 		start = end;
1113 	}
1114 
1115 	if (skb_shinfo(skb)->frag_list) {
1116 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1117 
1118 		for (; list; list = list->next) {
1119 			int end;
1120 
1121 			BUG_TRAP(start <= offset + len);
1122 
1123 			end = start + list->len;
1124 			if ((copy = end - offset) > 0) {
1125 				unsigned int csum2;
1126 				if (copy > len)
1127 					copy = len;
1128 				csum2 = skb_checksum(list, offset - start,
1129 						     copy, 0);
1130 				csum = csum_block_add(csum, csum2, pos);
1131 				if ((len -= copy) == 0)
1132 					return csum;
1133 				offset += copy;
1134 				pos    += copy;
1135 			}
1136 			start = end;
1137 		}
1138 	}
1139 	if (len)
1140 		BUG();
1141 
1142 	return csum;
1143 }
1144 
1145 /* Both of above in one bottle. */
1146 
1147 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1148 				    u8 *to, int len, unsigned int csum)
1149 {
1150 	int start = skb_headlen(skb);
1151 	int i, copy = start - offset;
1152 	int pos = 0;
1153 
1154 	/* Copy header. */
1155 	if (copy > 0) {
1156 		if (copy > len)
1157 			copy = len;
1158 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1159 						 copy, csum);
1160 		if ((len -= copy) == 0)
1161 			return csum;
1162 		offset += copy;
1163 		to     += copy;
1164 		pos	= copy;
1165 	}
1166 
1167 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1168 		int end;
1169 
1170 		BUG_TRAP(start <= offset + len);
1171 
1172 		end = start + skb_shinfo(skb)->frags[i].size;
1173 		if ((copy = end - offset) > 0) {
1174 			unsigned int csum2;
1175 			u8 *vaddr;
1176 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1177 
1178 			if (copy > len)
1179 				copy = len;
1180 			vaddr = kmap_skb_frag(frag);
1181 			csum2 = csum_partial_copy_nocheck(vaddr +
1182 							  frag->page_offset +
1183 							  offset - start, to,
1184 							  copy, 0);
1185 			kunmap_skb_frag(vaddr);
1186 			csum = csum_block_add(csum, csum2, pos);
1187 			if (!(len -= copy))
1188 				return csum;
1189 			offset += copy;
1190 			to     += copy;
1191 			pos    += copy;
1192 		}
1193 		start = end;
1194 	}
1195 
1196 	if (skb_shinfo(skb)->frag_list) {
1197 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1198 
1199 		for (; list; list = list->next) {
1200 			unsigned int csum2;
1201 			int end;
1202 
1203 			BUG_TRAP(start <= offset + len);
1204 
1205 			end = start + list->len;
1206 			if ((copy = end - offset) > 0) {
1207 				if (copy > len)
1208 					copy = len;
1209 				csum2 = skb_copy_and_csum_bits(list,
1210 							       offset - start,
1211 							       to, copy, 0);
1212 				csum = csum_block_add(csum, csum2, pos);
1213 				if ((len -= copy) == 0)
1214 					return csum;
1215 				offset += copy;
1216 				to     += copy;
1217 				pos    += copy;
1218 			}
1219 			start = end;
1220 		}
1221 	}
1222 	if (len)
1223 		BUG();
1224 	return csum;
1225 }
1226 
1227 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1228 {
1229 	unsigned int csum;
1230 	long csstart;
1231 
1232 	if (skb->ip_summed == CHECKSUM_HW)
1233 		csstart = skb->h.raw - skb->data;
1234 	else
1235 		csstart = skb_headlen(skb);
1236 
1237 	if (csstart > skb_headlen(skb))
1238 		BUG();
1239 
1240 	memcpy(to, skb->data, csstart);
1241 
1242 	csum = 0;
1243 	if (csstart != skb->len)
1244 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1245 					      skb->len - csstart, 0);
1246 
1247 	if (skb->ip_summed == CHECKSUM_HW) {
1248 		long csstuff = csstart + skb->csum;
1249 
1250 		*((unsigned short *)(to + csstuff)) = csum_fold(csum);
1251 	}
1252 }
1253 
1254 /**
1255  *	skb_dequeue - remove from the head of the queue
1256  *	@list: list to dequeue from
1257  *
1258  *	Remove the head of the list. The list lock is taken so the function
1259  *	may be used safely with other locking list functions. The head item is
1260  *	returned or %NULL if the list is empty.
1261  */
1262 
1263 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1264 {
1265 	unsigned long flags;
1266 	struct sk_buff *result;
1267 
1268 	spin_lock_irqsave(&list->lock, flags);
1269 	result = __skb_dequeue(list);
1270 	spin_unlock_irqrestore(&list->lock, flags);
1271 	return result;
1272 }
1273 
1274 /**
1275  *	skb_dequeue_tail - remove from the tail of the queue
1276  *	@list: list to dequeue from
1277  *
1278  *	Remove the tail of the list. The list lock is taken so the function
1279  *	may be used safely with other locking list functions. The tail item is
1280  *	returned or %NULL if the list is empty.
1281  */
1282 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1283 {
1284 	unsigned long flags;
1285 	struct sk_buff *result;
1286 
1287 	spin_lock_irqsave(&list->lock, flags);
1288 	result = __skb_dequeue_tail(list);
1289 	spin_unlock_irqrestore(&list->lock, flags);
1290 	return result;
1291 }
1292 
1293 /**
1294  *	skb_queue_purge - empty a list
1295  *	@list: list to empty
1296  *
1297  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1298  *	the list and one reference dropped. This function takes the list
1299  *	lock and is atomic with respect to other list locking functions.
1300  */
1301 void skb_queue_purge(struct sk_buff_head *list)
1302 {
1303 	struct sk_buff *skb;
1304 	while ((skb = skb_dequeue(list)) != NULL)
1305 		kfree_skb(skb);
1306 }
1307 
1308 /**
1309  *	skb_queue_head - queue a buffer at the list head
1310  *	@list: list to use
1311  *	@newsk: buffer to queue
1312  *
1313  *	Queue a buffer at the start of the list. This function takes the
1314  *	list lock and can be used safely with other locking &sk_buff functions
1315  *	safely.
1316  *
1317  *	A buffer cannot be placed on two lists at the same time.
1318  */
1319 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1320 {
1321 	unsigned long flags;
1322 
1323 	spin_lock_irqsave(&list->lock, flags);
1324 	__skb_queue_head(list, newsk);
1325 	spin_unlock_irqrestore(&list->lock, flags);
1326 }
1327 
1328 /**
1329  *	skb_queue_tail - queue a buffer at the list tail
1330  *	@list: list to use
1331  *	@newsk: buffer to queue
1332  *
1333  *	Queue a buffer at the tail of the list. This function takes the
1334  *	list lock and can be used safely with other locking &sk_buff functions
1335  *	safely.
1336  *
1337  *	A buffer cannot be placed on two lists at the same time.
1338  */
1339 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1340 {
1341 	unsigned long flags;
1342 
1343 	spin_lock_irqsave(&list->lock, flags);
1344 	__skb_queue_tail(list, newsk);
1345 	spin_unlock_irqrestore(&list->lock, flags);
1346 }
1347 /**
1348  *	skb_unlink	-	remove a buffer from a list
1349  *	@skb: buffer to remove
1350  *
1351  *	Place a packet after a given packet in a list. The list locks are taken
1352  *	and this function is atomic with respect to other list locked calls
1353  *
1354  *	Works even without knowing the list it is sitting on, which can be
1355  *	handy at times. It also means that THE LIST MUST EXIST when you
1356  *	unlink. Thus a list must have its contents unlinked before it is
1357  *	destroyed.
1358  */
1359 void skb_unlink(struct sk_buff *skb)
1360 {
1361 	struct sk_buff_head *list = skb->list;
1362 
1363 	if (list) {
1364 		unsigned long flags;
1365 
1366 		spin_lock_irqsave(&list->lock, flags);
1367 		if (skb->list == list)
1368 			__skb_unlink(skb, skb->list);
1369 		spin_unlock_irqrestore(&list->lock, flags);
1370 	}
1371 }
1372 
1373 
1374 /**
1375  *	skb_append	-	append a buffer
1376  *	@old: buffer to insert after
1377  *	@newsk: buffer to insert
1378  *
1379  *	Place a packet after a given packet in a list. The list locks are taken
1380  *	and this function is atomic with respect to other list locked calls.
1381  *	A buffer cannot be placed on two lists at the same time.
1382  */
1383 
1384 void skb_append(struct sk_buff *old, struct sk_buff *newsk)
1385 {
1386 	unsigned long flags;
1387 
1388 	spin_lock_irqsave(&old->list->lock, flags);
1389 	__skb_append(old, newsk);
1390 	spin_unlock_irqrestore(&old->list->lock, flags);
1391 }
1392 
1393 
1394 /**
1395  *	skb_insert	-	insert a buffer
1396  *	@old: buffer to insert before
1397  *	@newsk: buffer to insert
1398  *
1399  *	Place a packet before a given packet in a list. The list locks are taken
1400  *	and this function is atomic with respect to other list locked calls
1401  *	A buffer cannot be placed on two lists at the same time.
1402  */
1403 
1404 void skb_insert(struct sk_buff *old, struct sk_buff *newsk)
1405 {
1406 	unsigned long flags;
1407 
1408 	spin_lock_irqsave(&old->list->lock, flags);
1409 	__skb_insert(newsk, old->prev, old, old->list);
1410 	spin_unlock_irqrestore(&old->list->lock, flags);
1411 }
1412 
1413 #if 0
1414 /*
1415  * 	Tune the memory allocator for a new MTU size.
1416  */
1417 void skb_add_mtu(int mtu)
1418 {
1419 	/* Must match allocation in alloc_skb */
1420 	mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1421 
1422 	kmem_add_cache_size(mtu);
1423 }
1424 #endif
1425 
1426 static inline void skb_split_inside_header(struct sk_buff *skb,
1427 					   struct sk_buff* skb1,
1428 					   const u32 len, const int pos)
1429 {
1430 	int i;
1431 
1432 	memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1433 
1434 	/* And move data appendix as is. */
1435 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1436 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1437 
1438 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1439 	skb_shinfo(skb)->nr_frags  = 0;
1440 	skb1->data_len		   = skb->data_len;
1441 	skb1->len		   += skb1->data_len;
1442 	skb->data_len		   = 0;
1443 	skb->len		   = len;
1444 	skb->tail		   = skb->data + len;
1445 }
1446 
1447 static inline void skb_split_no_header(struct sk_buff *skb,
1448 				       struct sk_buff* skb1,
1449 				       const u32 len, int pos)
1450 {
1451 	int i, k = 0;
1452 	const int nfrags = skb_shinfo(skb)->nr_frags;
1453 
1454 	skb_shinfo(skb)->nr_frags = 0;
1455 	skb1->len		  = skb1->data_len = skb->len - len;
1456 	skb->len		  = len;
1457 	skb->data_len		  = len - pos;
1458 
1459 	for (i = 0; i < nfrags; i++) {
1460 		int size = skb_shinfo(skb)->frags[i].size;
1461 
1462 		if (pos + size > len) {
1463 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1464 
1465 			if (pos < len) {
1466 				/* Split frag.
1467 				 * We have two variants in this case:
1468 				 * 1. Move all the frag to the second
1469 				 *    part, if it is possible. F.e.
1470 				 *    this approach is mandatory for TUX,
1471 				 *    where splitting is expensive.
1472 				 * 2. Split is accurately. We make this.
1473 				 */
1474 				get_page(skb_shinfo(skb)->frags[i].page);
1475 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1476 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1477 				skb_shinfo(skb)->frags[i].size	= len - pos;
1478 				skb_shinfo(skb)->nr_frags++;
1479 			}
1480 			k++;
1481 		} else
1482 			skb_shinfo(skb)->nr_frags++;
1483 		pos += size;
1484 	}
1485 	skb_shinfo(skb1)->nr_frags = k;
1486 }
1487 
1488 /**
1489  * skb_split - Split fragmented skb to two parts at length len.
1490  * @skb: the buffer to split
1491  * @skb1: the buffer to receive the second part
1492  * @len: new length for skb
1493  */
1494 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1495 {
1496 	int pos = skb_headlen(skb);
1497 
1498 	if (len < pos)	/* Split line is inside header. */
1499 		skb_split_inside_header(skb, skb1, len, pos);
1500 	else		/* Second chunk has no header, nothing to copy. */
1501 		skb_split_no_header(skb, skb1, len, pos);
1502 }
1503 
1504 /**
1505  * skb_prepare_seq_read - Prepare a sequential read of skb data
1506  * @skb: the buffer to read
1507  * @from: lower offset of data to be read
1508  * @to: upper offset of data to be read
1509  * @st: state variable
1510  *
1511  * Initializes the specified state variable. Must be called before
1512  * invoking skb_seq_read() for the first time.
1513  */
1514 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1515 			  unsigned int to, struct skb_seq_state *st)
1516 {
1517 	st->lower_offset = from;
1518 	st->upper_offset = to;
1519 	st->root_skb = st->cur_skb = skb;
1520 	st->frag_idx = st->stepped_offset = 0;
1521 	st->frag_data = NULL;
1522 }
1523 
1524 /**
1525  * skb_seq_read - Sequentially read skb data
1526  * @consumed: number of bytes consumed by the caller so far
1527  * @data: destination pointer for data to be returned
1528  * @st: state variable
1529  *
1530  * Reads a block of skb data at &consumed relative to the
1531  * lower offset specified to skb_prepare_seq_read(). Assigns
1532  * the head of the data block to &data and returns the length
1533  * of the block or 0 if the end of the skb data or the upper
1534  * offset has been reached.
1535  *
1536  * The caller is not required to consume all of the data
1537  * returned, i.e. &consumed is typically set to the number
1538  * of bytes already consumed and the next call to
1539  * skb_seq_read() will return the remaining part of the block.
1540  *
1541  * Note: The size of each block of data returned can be arbitary,
1542  *       this limitation is the cost for zerocopy seqeuental
1543  *       reads of potentially non linear data.
1544  *
1545  * Note: Fragment lists within fragments are not implemented
1546  *       at the moment, state->root_skb could be replaced with
1547  *       a stack for this purpose.
1548  */
1549 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1550 			  struct skb_seq_state *st)
1551 {
1552 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1553 	skb_frag_t *frag;
1554 
1555 	if (unlikely(abs_offset >= st->upper_offset))
1556 		return 0;
1557 
1558 next_skb:
1559 	block_limit = skb_headlen(st->cur_skb);
1560 
1561 	if (abs_offset < block_limit) {
1562 		*data = st->cur_skb->data + abs_offset;
1563 		return block_limit - abs_offset;
1564 	}
1565 
1566 	if (st->frag_idx == 0 && !st->frag_data)
1567 		st->stepped_offset += skb_headlen(st->cur_skb);
1568 
1569 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1570 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1571 		block_limit = frag->size + st->stepped_offset;
1572 
1573 		if (abs_offset < block_limit) {
1574 			if (!st->frag_data)
1575 				st->frag_data = kmap_skb_frag(frag);
1576 
1577 			*data = (u8 *) st->frag_data + frag->page_offset +
1578 				(abs_offset - st->stepped_offset);
1579 
1580 			return block_limit - abs_offset;
1581 		}
1582 
1583 		if (st->frag_data) {
1584 			kunmap_skb_frag(st->frag_data);
1585 			st->frag_data = NULL;
1586 		}
1587 
1588 		st->frag_idx++;
1589 		st->stepped_offset += frag->size;
1590 	}
1591 
1592 	if (st->cur_skb->next) {
1593 		st->cur_skb = st->cur_skb->next;
1594 		st->frag_idx = 0;
1595 		goto next_skb;
1596 	} else if (st->root_skb == st->cur_skb &&
1597 		   skb_shinfo(st->root_skb)->frag_list) {
1598 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1599 		goto next_skb;
1600 	}
1601 
1602 	return 0;
1603 }
1604 
1605 /**
1606  * skb_abort_seq_read - Abort a sequential read of skb data
1607  * @st: state variable
1608  *
1609  * Must be called if skb_seq_read() was not called until it
1610  * returned 0.
1611  */
1612 void skb_abort_seq_read(struct skb_seq_state *st)
1613 {
1614 	if (st->frag_data)
1615 		kunmap_skb_frag(st->frag_data);
1616 }
1617 
1618 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
1619 
1620 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1621 					  struct ts_config *conf,
1622 					  struct ts_state *state)
1623 {
1624 	return skb_seq_read(offset, text, TS_SKB_CB(state));
1625 }
1626 
1627 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1628 {
1629 	skb_abort_seq_read(TS_SKB_CB(state));
1630 }
1631 
1632 /**
1633  * skb_find_text - Find a text pattern in skb data
1634  * @skb: the buffer to look in
1635  * @from: search offset
1636  * @to: search limit
1637  * @config: textsearch configuration
1638  * @state: uninitialized textsearch state variable
1639  *
1640  * Finds a pattern in the skb data according to the specified
1641  * textsearch configuration. Use textsearch_next() to retrieve
1642  * subsequent occurrences of the pattern. Returns the offset
1643  * to the first occurrence or UINT_MAX if no match was found.
1644  */
1645 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1646 			   unsigned int to, struct ts_config *config,
1647 			   struct ts_state *state)
1648 {
1649 	config->get_next_block = skb_ts_get_next_block;
1650 	config->finish = skb_ts_finish;
1651 
1652 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1653 
1654 	return textsearch_find(config, state);
1655 }
1656 
1657 void __init skb_init(void)
1658 {
1659 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
1660 					      sizeof(struct sk_buff),
1661 					      0,
1662 					      SLAB_HWCACHE_ALIGN,
1663 					      NULL, NULL);
1664 	if (!skbuff_head_cache)
1665 		panic("cannot create skbuff cache");
1666 }
1667 
1668 EXPORT_SYMBOL(___pskb_trim);
1669 EXPORT_SYMBOL(__kfree_skb);
1670 EXPORT_SYMBOL(__pskb_pull_tail);
1671 EXPORT_SYMBOL(alloc_skb);
1672 EXPORT_SYMBOL(pskb_copy);
1673 EXPORT_SYMBOL(pskb_expand_head);
1674 EXPORT_SYMBOL(skb_checksum);
1675 EXPORT_SYMBOL(skb_clone);
1676 EXPORT_SYMBOL(skb_clone_fraglist);
1677 EXPORT_SYMBOL(skb_copy);
1678 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1679 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1680 EXPORT_SYMBOL(skb_copy_bits);
1681 EXPORT_SYMBOL(skb_copy_expand);
1682 EXPORT_SYMBOL(skb_over_panic);
1683 EXPORT_SYMBOL(skb_pad);
1684 EXPORT_SYMBOL(skb_realloc_headroom);
1685 EXPORT_SYMBOL(skb_under_panic);
1686 EXPORT_SYMBOL(skb_dequeue);
1687 EXPORT_SYMBOL(skb_dequeue_tail);
1688 EXPORT_SYMBOL(skb_insert);
1689 EXPORT_SYMBOL(skb_queue_purge);
1690 EXPORT_SYMBOL(skb_queue_head);
1691 EXPORT_SYMBOL(skb_queue_tail);
1692 EXPORT_SYMBOL(skb_unlink);
1693 EXPORT_SYMBOL(skb_append);
1694 EXPORT_SYMBOL(skb_split);
1695 EXPORT_SYMBOL(skb_prepare_seq_read);
1696 EXPORT_SYMBOL(skb_seq_read);
1697 EXPORT_SYMBOL(skb_abort_seq_read);
1698 EXPORT_SYMBOL(skb_find_text);
1699