xref: /linux/net/core/skbuff.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <iiitac@pyr.swan.ac.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Version:	$Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
8  *
9  *	Fixes:
10  *		Alan Cox	:	Fixed the worst of the load
11  *					balancer bugs.
12  *		Dave Platt	:	Interrupt stacking fix.
13  *	Richard Kooijman	:	Timestamp fixes.
14  *		Alan Cox	:	Changed buffer format.
15  *		Alan Cox	:	destructor hook for AF_UNIX etc.
16  *		Linus Torvalds	:	Better skb_clone.
17  *		Alan Cox	:	Added skb_copy.
18  *		Alan Cox	:	Added all the changed routines Linus
19  *					only put in the headers
20  *		Ray VanTassle	:	Fixed --skb->lock in free
21  *		Alan Cox	:	skb_copy copy arp field
22  *		Andi Kleen	:	slabified it.
23  *		Robert Olsson	:	Removed skb_head_pool
24  *
25  *	NOTE:
26  *		The __skb_ routines should be called with interrupts
27  *	disabled, or you better be *real* sure that the operation is atomic
28  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
29  *	or via disabling bottom half handlers, etc).
30  *
31  *	This program is free software; you can redistribute it and/or
32  *	modify it under the terms of the GNU General Public License
33  *	as published by the Free Software Foundation; either version
34  *	2 of the License, or (at your option) any later version.
35  */
36 
37 /*
38  *	The functions in this file will not compile correctly with gcc 2.4.x
39  */
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/sched.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/highmem.h>
60 
61 #include <net/protocol.h>
62 #include <net/dst.h>
63 #include <net/sock.h>
64 #include <net/checksum.h>
65 #include <net/xfrm.h>
66 
67 #include <asm/uaccess.h>
68 #include <asm/system.h>
69 
70 static kmem_cache_t *skbuff_head_cache __read_mostly;
71 static kmem_cache_t *skbuff_fclone_cache __read_mostly;
72 
73 /*
74  * lockdep: lock class key used by skb_queue_head_init():
75  */
76 struct lock_class_key skb_queue_lock_key;
77 
78 EXPORT_SYMBOL(skb_queue_lock_key);
79 
80 /*
81  *	Keep out-of-line to prevent kernel bloat.
82  *	__builtin_return_address is not used because it is not always
83  *	reliable.
84  */
85 
86 /**
87  *	skb_over_panic	- 	private function
88  *	@skb: buffer
89  *	@sz: size
90  *	@here: address
91  *
92  *	Out of line support code for skb_put(). Not user callable.
93  */
94 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
95 {
96 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
97 	                  "data:%p tail:%p end:%p dev:%s\n",
98 	       here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
99 	       skb->dev ? skb->dev->name : "<NULL>");
100 	BUG();
101 }
102 
103 /**
104  *	skb_under_panic	- 	private function
105  *	@skb: buffer
106  *	@sz: size
107  *	@here: address
108  *
109  *	Out of line support code for skb_push(). Not user callable.
110  */
111 
112 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
113 {
114 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
115 	                  "data:%p tail:%p end:%p dev:%s\n",
116 	       here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
117 	       skb->dev ? skb->dev->name : "<NULL>");
118 	BUG();
119 }
120 
121 void skb_truesize_bug(struct sk_buff *skb)
122 {
123 	printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
124 	       "len=%u, sizeof(sk_buff)=%Zd\n",
125 	       skb->truesize, skb->len, sizeof(struct sk_buff));
126 }
127 EXPORT_SYMBOL(skb_truesize_bug);
128 
129 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
130  *	'private' fields and also do memory statistics to find all the
131  *	[BEEP] leaks.
132  *
133  */
134 
135 /**
136  *	__alloc_skb	-	allocate a network buffer
137  *	@size: size to allocate
138  *	@gfp_mask: allocation mask
139  *	@fclone: allocate from fclone cache instead of head cache
140  *		and allocate a cloned (child) skb
141  *
142  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
143  *	tail room of size bytes. The object has a reference count of one.
144  *	The return is the buffer. On a failure the return is %NULL.
145  *
146  *	Buffers may only be allocated from interrupts using a @gfp_mask of
147  *	%GFP_ATOMIC.
148  */
149 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
150 			    int fclone)
151 {
152 	kmem_cache_t *cache;
153 	struct skb_shared_info *shinfo;
154 	struct sk_buff *skb;
155 	u8 *data;
156 
157 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
158 
159 	/* Get the HEAD */
160 	skb = kmem_cache_alloc(cache, gfp_mask & ~__GFP_DMA);
161 	if (!skb)
162 		goto out;
163 
164 	/* Get the DATA. Size must match skb_add_mtu(). */
165 	size = SKB_DATA_ALIGN(size);
166 	data = ____kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
167 	if (!data)
168 		goto nodata;
169 
170 	memset(skb, 0, offsetof(struct sk_buff, truesize));
171 	skb->truesize = size + sizeof(struct sk_buff);
172 	atomic_set(&skb->users, 1);
173 	skb->head = data;
174 	skb->data = data;
175 	skb->tail = data;
176 	skb->end  = data + size;
177 	/* make sure we initialize shinfo sequentially */
178 	shinfo = skb_shinfo(skb);
179 	atomic_set(&shinfo->dataref, 1);
180 	shinfo->nr_frags  = 0;
181 	shinfo->gso_size = 0;
182 	shinfo->gso_segs = 0;
183 	shinfo->gso_type = 0;
184 	shinfo->ip6_frag_id = 0;
185 	shinfo->frag_list = NULL;
186 
187 	if (fclone) {
188 		struct sk_buff *child = skb + 1;
189 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
190 
191 		skb->fclone = SKB_FCLONE_ORIG;
192 		atomic_set(fclone_ref, 1);
193 
194 		child->fclone = SKB_FCLONE_UNAVAILABLE;
195 	}
196 out:
197 	return skb;
198 nodata:
199 	kmem_cache_free(cache, skb);
200 	skb = NULL;
201 	goto out;
202 }
203 
204 /**
205  *	alloc_skb_from_cache	-	allocate a network buffer
206  *	@cp: kmem_cache from which to allocate the data area
207  *           (object size must be big enough for @size bytes + skb overheads)
208  *	@size: size to allocate
209  *	@gfp_mask: allocation mask
210  *
211  *	Allocate a new &sk_buff. The returned buffer has no headroom and
212  *	tail room of size bytes. The object has a reference count of one.
213  *	The return is the buffer. On a failure the return is %NULL.
214  *
215  *	Buffers may only be allocated from interrupts using a @gfp_mask of
216  *	%GFP_ATOMIC.
217  */
218 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
219 				     unsigned int size,
220 				     gfp_t gfp_mask)
221 {
222 	struct sk_buff *skb;
223 	u8 *data;
224 
225 	/* Get the HEAD */
226 	skb = kmem_cache_alloc(skbuff_head_cache,
227 			       gfp_mask & ~__GFP_DMA);
228 	if (!skb)
229 		goto out;
230 
231 	/* Get the DATA. */
232 	size = SKB_DATA_ALIGN(size);
233 	data = kmem_cache_alloc(cp, gfp_mask);
234 	if (!data)
235 		goto nodata;
236 
237 	memset(skb, 0, offsetof(struct sk_buff, truesize));
238 	skb->truesize = size + sizeof(struct sk_buff);
239 	atomic_set(&skb->users, 1);
240 	skb->head = data;
241 	skb->data = data;
242 	skb->tail = data;
243 	skb->end  = data + size;
244 
245 	atomic_set(&(skb_shinfo(skb)->dataref), 1);
246 	skb_shinfo(skb)->nr_frags  = 0;
247 	skb_shinfo(skb)->gso_size = 0;
248 	skb_shinfo(skb)->gso_segs = 0;
249 	skb_shinfo(skb)->gso_type = 0;
250 	skb_shinfo(skb)->frag_list = NULL;
251 out:
252 	return skb;
253 nodata:
254 	kmem_cache_free(skbuff_head_cache, skb);
255 	skb = NULL;
256 	goto out;
257 }
258 
259 
260 static void skb_drop_fraglist(struct sk_buff *skb)
261 {
262 	struct sk_buff *list = skb_shinfo(skb)->frag_list;
263 
264 	skb_shinfo(skb)->frag_list = NULL;
265 
266 	do {
267 		struct sk_buff *this = list;
268 		list = list->next;
269 		kfree_skb(this);
270 	} while (list);
271 }
272 
273 static void skb_clone_fraglist(struct sk_buff *skb)
274 {
275 	struct sk_buff *list;
276 
277 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
278 		skb_get(list);
279 }
280 
281 static void skb_release_data(struct sk_buff *skb)
282 {
283 	if (!skb->cloned ||
284 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
285 			       &skb_shinfo(skb)->dataref)) {
286 		if (skb_shinfo(skb)->nr_frags) {
287 			int i;
288 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
289 				put_page(skb_shinfo(skb)->frags[i].page);
290 		}
291 
292 		if (skb_shinfo(skb)->frag_list)
293 			skb_drop_fraglist(skb);
294 
295 		kfree(skb->head);
296 	}
297 }
298 
299 /*
300  *	Free an skbuff by memory without cleaning the state.
301  */
302 void kfree_skbmem(struct sk_buff *skb)
303 {
304 	struct sk_buff *other;
305 	atomic_t *fclone_ref;
306 
307 	skb_release_data(skb);
308 	switch (skb->fclone) {
309 	case SKB_FCLONE_UNAVAILABLE:
310 		kmem_cache_free(skbuff_head_cache, skb);
311 		break;
312 
313 	case SKB_FCLONE_ORIG:
314 		fclone_ref = (atomic_t *) (skb + 2);
315 		if (atomic_dec_and_test(fclone_ref))
316 			kmem_cache_free(skbuff_fclone_cache, skb);
317 		break;
318 
319 	case SKB_FCLONE_CLONE:
320 		fclone_ref = (atomic_t *) (skb + 1);
321 		other = skb - 1;
322 
323 		/* The clone portion is available for
324 		 * fast-cloning again.
325 		 */
326 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
327 
328 		if (atomic_dec_and_test(fclone_ref))
329 			kmem_cache_free(skbuff_fclone_cache, other);
330 		break;
331 	};
332 }
333 
334 /**
335  *	__kfree_skb - private function
336  *	@skb: buffer
337  *
338  *	Free an sk_buff. Release anything attached to the buffer.
339  *	Clean the state. This is an internal helper function. Users should
340  *	always call kfree_skb
341  */
342 
343 void __kfree_skb(struct sk_buff *skb)
344 {
345 	dst_release(skb->dst);
346 #ifdef CONFIG_XFRM
347 	secpath_put(skb->sp);
348 #endif
349 	if (skb->destructor) {
350 		WARN_ON(in_irq());
351 		skb->destructor(skb);
352 	}
353 #ifdef CONFIG_NETFILTER
354 	nf_conntrack_put(skb->nfct);
355 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
356 	nf_conntrack_put_reasm(skb->nfct_reasm);
357 #endif
358 #ifdef CONFIG_BRIDGE_NETFILTER
359 	nf_bridge_put(skb->nf_bridge);
360 #endif
361 #endif
362 /* XXX: IS this still necessary? - JHS */
363 #ifdef CONFIG_NET_SCHED
364 	skb->tc_index = 0;
365 #ifdef CONFIG_NET_CLS_ACT
366 	skb->tc_verd = 0;
367 #endif
368 #endif
369 
370 	kfree_skbmem(skb);
371 }
372 
373 /**
374  *	kfree_skb - free an sk_buff
375  *	@skb: buffer to free
376  *
377  *	Drop a reference to the buffer and free it if the usage count has
378  *	hit zero.
379  */
380 void kfree_skb(struct sk_buff *skb)
381 {
382 	if (unlikely(!skb))
383 		return;
384 	if (likely(atomic_read(&skb->users) == 1))
385 		smp_rmb();
386 	else if (likely(!atomic_dec_and_test(&skb->users)))
387 		return;
388 	__kfree_skb(skb);
389 }
390 
391 /**
392  *	skb_clone	-	duplicate an sk_buff
393  *	@skb: buffer to clone
394  *	@gfp_mask: allocation priority
395  *
396  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
397  *	copies share the same packet data but not structure. The new
398  *	buffer has a reference count of 1. If the allocation fails the
399  *	function returns %NULL otherwise the new buffer is returned.
400  *
401  *	If this function is called from an interrupt gfp_mask() must be
402  *	%GFP_ATOMIC.
403  */
404 
405 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
406 {
407 	struct sk_buff *n;
408 
409 	n = skb + 1;
410 	if (skb->fclone == SKB_FCLONE_ORIG &&
411 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
412 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
413 		n->fclone = SKB_FCLONE_CLONE;
414 		atomic_inc(fclone_ref);
415 	} else {
416 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
417 		if (!n)
418 			return NULL;
419 		n->fclone = SKB_FCLONE_UNAVAILABLE;
420 	}
421 
422 #define C(x) n->x = skb->x
423 
424 	n->next = n->prev = NULL;
425 	n->sk = NULL;
426 	C(tstamp);
427 	C(dev);
428 	C(h);
429 	C(nh);
430 	C(mac);
431 	C(dst);
432 	dst_clone(skb->dst);
433 	C(sp);
434 #ifdef CONFIG_INET
435 	secpath_get(skb->sp);
436 #endif
437 	memcpy(n->cb, skb->cb, sizeof(skb->cb));
438 	C(len);
439 	C(data_len);
440 	C(csum);
441 	C(local_df);
442 	n->cloned = 1;
443 	n->nohdr = 0;
444 	C(pkt_type);
445 	C(ip_summed);
446 	C(priority);
447 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
448 	C(ipvs_property);
449 #endif
450 	C(protocol);
451 	n->destructor = NULL;
452 #ifdef CONFIG_NETFILTER
453 	C(nfmark);
454 	C(nfct);
455 	nf_conntrack_get(skb->nfct);
456 	C(nfctinfo);
457 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
458 	C(nfct_reasm);
459 	nf_conntrack_get_reasm(skb->nfct_reasm);
460 #endif
461 #ifdef CONFIG_BRIDGE_NETFILTER
462 	C(nf_bridge);
463 	nf_bridge_get(skb->nf_bridge);
464 #endif
465 #endif /*CONFIG_NETFILTER*/
466 #ifdef CONFIG_NET_SCHED
467 	C(tc_index);
468 #ifdef CONFIG_NET_CLS_ACT
469 	n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
470 	n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
471 	n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
472 	C(input_dev);
473 #endif
474 	skb_copy_secmark(n, skb);
475 #endif
476 	C(truesize);
477 	atomic_set(&n->users, 1);
478 	C(head);
479 	C(data);
480 	C(tail);
481 	C(end);
482 
483 	atomic_inc(&(skb_shinfo(skb)->dataref));
484 	skb->cloned = 1;
485 
486 	return n;
487 }
488 
489 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
490 {
491 	/*
492 	 *	Shift between the two data areas in bytes
493 	 */
494 	unsigned long offset = new->data - old->data;
495 
496 	new->sk		= NULL;
497 	new->dev	= old->dev;
498 	new->priority	= old->priority;
499 	new->protocol	= old->protocol;
500 	new->dst	= dst_clone(old->dst);
501 #ifdef CONFIG_INET
502 	new->sp		= secpath_get(old->sp);
503 #endif
504 	new->h.raw	= old->h.raw + offset;
505 	new->nh.raw	= old->nh.raw + offset;
506 	new->mac.raw	= old->mac.raw + offset;
507 	memcpy(new->cb, old->cb, sizeof(old->cb));
508 	new->local_df	= old->local_df;
509 	new->fclone	= SKB_FCLONE_UNAVAILABLE;
510 	new->pkt_type	= old->pkt_type;
511 	new->tstamp	= old->tstamp;
512 	new->destructor = NULL;
513 #ifdef CONFIG_NETFILTER
514 	new->nfmark	= old->nfmark;
515 	new->nfct	= old->nfct;
516 	nf_conntrack_get(old->nfct);
517 	new->nfctinfo	= old->nfctinfo;
518 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
519 	new->nfct_reasm = old->nfct_reasm;
520 	nf_conntrack_get_reasm(old->nfct_reasm);
521 #endif
522 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
523 	new->ipvs_property = old->ipvs_property;
524 #endif
525 #ifdef CONFIG_BRIDGE_NETFILTER
526 	new->nf_bridge	= old->nf_bridge;
527 	nf_bridge_get(old->nf_bridge);
528 #endif
529 #endif
530 #ifdef CONFIG_NET_SCHED
531 #ifdef CONFIG_NET_CLS_ACT
532 	new->tc_verd = old->tc_verd;
533 #endif
534 	new->tc_index	= old->tc_index;
535 #endif
536 	skb_copy_secmark(new, old);
537 	atomic_set(&new->users, 1);
538 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
539 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
540 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
541 }
542 
543 /**
544  *	skb_copy	-	create private copy of an sk_buff
545  *	@skb: buffer to copy
546  *	@gfp_mask: allocation priority
547  *
548  *	Make a copy of both an &sk_buff and its data. This is used when the
549  *	caller wishes to modify the data and needs a private copy of the
550  *	data to alter. Returns %NULL on failure or the pointer to the buffer
551  *	on success. The returned buffer has a reference count of 1.
552  *
553  *	As by-product this function converts non-linear &sk_buff to linear
554  *	one, so that &sk_buff becomes completely private and caller is allowed
555  *	to modify all the data of returned buffer. This means that this
556  *	function is not recommended for use in circumstances when only
557  *	header is going to be modified. Use pskb_copy() instead.
558  */
559 
560 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
561 {
562 	int headerlen = skb->data - skb->head;
563 	/*
564 	 *	Allocate the copy buffer
565 	 */
566 	struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
567 				      gfp_mask);
568 	if (!n)
569 		return NULL;
570 
571 	/* Set the data pointer */
572 	skb_reserve(n, headerlen);
573 	/* Set the tail pointer and length */
574 	skb_put(n, skb->len);
575 	n->csum	     = skb->csum;
576 	n->ip_summed = skb->ip_summed;
577 
578 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
579 		BUG();
580 
581 	copy_skb_header(n, skb);
582 	return n;
583 }
584 
585 
586 /**
587  *	pskb_copy	-	create copy of an sk_buff with private head.
588  *	@skb: buffer to copy
589  *	@gfp_mask: allocation priority
590  *
591  *	Make a copy of both an &sk_buff and part of its data, located
592  *	in header. Fragmented data remain shared. This is used when
593  *	the caller wishes to modify only header of &sk_buff and needs
594  *	private copy of the header to alter. Returns %NULL on failure
595  *	or the pointer to the buffer on success.
596  *	The returned buffer has a reference count of 1.
597  */
598 
599 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
600 {
601 	/*
602 	 *	Allocate the copy buffer
603 	 */
604 	struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
605 
606 	if (!n)
607 		goto out;
608 
609 	/* Set the data pointer */
610 	skb_reserve(n, skb->data - skb->head);
611 	/* Set the tail pointer and length */
612 	skb_put(n, skb_headlen(skb));
613 	/* Copy the bytes */
614 	memcpy(n->data, skb->data, n->len);
615 	n->csum	     = skb->csum;
616 	n->ip_summed = skb->ip_summed;
617 
618 	n->data_len  = skb->data_len;
619 	n->len	     = skb->len;
620 
621 	if (skb_shinfo(skb)->nr_frags) {
622 		int i;
623 
624 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
625 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
626 			get_page(skb_shinfo(n)->frags[i].page);
627 		}
628 		skb_shinfo(n)->nr_frags = i;
629 	}
630 
631 	if (skb_shinfo(skb)->frag_list) {
632 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
633 		skb_clone_fraglist(n);
634 	}
635 
636 	copy_skb_header(n, skb);
637 out:
638 	return n;
639 }
640 
641 /**
642  *	pskb_expand_head - reallocate header of &sk_buff
643  *	@skb: buffer to reallocate
644  *	@nhead: room to add at head
645  *	@ntail: room to add at tail
646  *	@gfp_mask: allocation priority
647  *
648  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
649  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
650  *	reference count of 1. Returns zero in the case of success or error,
651  *	if expansion failed. In the last case, &sk_buff is not changed.
652  *
653  *	All the pointers pointing into skb header may change and must be
654  *	reloaded after call to this function.
655  */
656 
657 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
658 		     gfp_t gfp_mask)
659 {
660 	int i;
661 	u8 *data;
662 	int size = nhead + (skb->end - skb->head) + ntail;
663 	long off;
664 
665 	if (skb_shared(skb))
666 		BUG();
667 
668 	size = SKB_DATA_ALIGN(size);
669 
670 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
671 	if (!data)
672 		goto nodata;
673 
674 	/* Copy only real data... and, alas, header. This should be
675 	 * optimized for the cases when header is void. */
676 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
677 	memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
678 
679 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
680 		get_page(skb_shinfo(skb)->frags[i].page);
681 
682 	if (skb_shinfo(skb)->frag_list)
683 		skb_clone_fraglist(skb);
684 
685 	skb_release_data(skb);
686 
687 	off = (data + nhead) - skb->head;
688 
689 	skb->head     = data;
690 	skb->end      = data + size;
691 	skb->data    += off;
692 	skb->tail    += off;
693 	skb->mac.raw += off;
694 	skb->h.raw   += off;
695 	skb->nh.raw  += off;
696 	skb->cloned   = 0;
697 	skb->nohdr    = 0;
698 	atomic_set(&skb_shinfo(skb)->dataref, 1);
699 	return 0;
700 
701 nodata:
702 	return -ENOMEM;
703 }
704 
705 /* Make private copy of skb with writable head and some headroom */
706 
707 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
708 {
709 	struct sk_buff *skb2;
710 	int delta = headroom - skb_headroom(skb);
711 
712 	if (delta <= 0)
713 		skb2 = pskb_copy(skb, GFP_ATOMIC);
714 	else {
715 		skb2 = skb_clone(skb, GFP_ATOMIC);
716 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
717 					     GFP_ATOMIC)) {
718 			kfree_skb(skb2);
719 			skb2 = NULL;
720 		}
721 	}
722 	return skb2;
723 }
724 
725 
726 /**
727  *	skb_copy_expand	-	copy and expand sk_buff
728  *	@skb: buffer to copy
729  *	@newheadroom: new free bytes at head
730  *	@newtailroom: new free bytes at tail
731  *	@gfp_mask: allocation priority
732  *
733  *	Make a copy of both an &sk_buff and its data and while doing so
734  *	allocate additional space.
735  *
736  *	This is used when the caller wishes to modify the data and needs a
737  *	private copy of the data to alter as well as more space for new fields.
738  *	Returns %NULL on failure or the pointer to the buffer
739  *	on success. The returned buffer has a reference count of 1.
740  *
741  *	You must pass %GFP_ATOMIC as the allocation priority if this function
742  *	is called from an interrupt.
743  *
744  *	BUG ALERT: ip_summed is not copied. Why does this work? Is it used
745  *	only by netfilter in the cases when checksum is recalculated? --ANK
746  */
747 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
748 				int newheadroom, int newtailroom,
749 				gfp_t gfp_mask)
750 {
751 	/*
752 	 *	Allocate the copy buffer
753 	 */
754 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
755 				      gfp_mask);
756 	int head_copy_len, head_copy_off;
757 
758 	if (!n)
759 		return NULL;
760 
761 	skb_reserve(n, newheadroom);
762 
763 	/* Set the tail pointer and length */
764 	skb_put(n, skb->len);
765 
766 	head_copy_len = skb_headroom(skb);
767 	head_copy_off = 0;
768 	if (newheadroom <= head_copy_len)
769 		head_copy_len = newheadroom;
770 	else
771 		head_copy_off = newheadroom - head_copy_len;
772 
773 	/* Copy the linear header and data. */
774 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
775 			  skb->len + head_copy_len))
776 		BUG();
777 
778 	copy_skb_header(n, skb);
779 
780 	return n;
781 }
782 
783 /**
784  *	skb_pad			-	zero pad the tail of an skb
785  *	@skb: buffer to pad
786  *	@pad: space to pad
787  *
788  *	Ensure that a buffer is followed by a padding area that is zero
789  *	filled. Used by network drivers which may DMA or transfer data
790  *	beyond the buffer end onto the wire.
791  *
792  *	May return error in out of memory cases. The skb is freed on error.
793  */
794 
795 int skb_pad(struct sk_buff *skb, int pad)
796 {
797 	int err;
798 	int ntail;
799 
800 	/* If the skbuff is non linear tailroom is always zero.. */
801 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
802 		memset(skb->data+skb->len, 0, pad);
803 		return 0;
804 	}
805 
806 	ntail = skb->data_len + pad - (skb->end - skb->tail);
807 	if (likely(skb_cloned(skb) || ntail > 0)) {
808 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
809 		if (unlikely(err))
810 			goto free_skb;
811 	}
812 
813 	/* FIXME: The use of this function with non-linear skb's really needs
814 	 * to be audited.
815 	 */
816 	err = skb_linearize(skb);
817 	if (unlikely(err))
818 		goto free_skb;
819 
820 	memset(skb->data + skb->len, 0, pad);
821 	return 0;
822 
823 free_skb:
824 	kfree_skb(skb);
825 	return err;
826 }
827 
828 /* Trims skb to length len. It can change skb pointers.
829  */
830 
831 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
832 {
833 	int offset = skb_headlen(skb);
834 	int nfrags = skb_shinfo(skb)->nr_frags;
835 	int i;
836 
837 	for (i = 0; i < nfrags; i++) {
838 		int end = offset + skb_shinfo(skb)->frags[i].size;
839 		if (end > len) {
840 			if (skb_cloned(skb)) {
841 				if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
842 					return -ENOMEM;
843 			}
844 			if (len <= offset) {
845 				put_page(skb_shinfo(skb)->frags[i].page);
846 				skb_shinfo(skb)->nr_frags--;
847 			} else {
848 				skb_shinfo(skb)->frags[i].size = len - offset;
849 			}
850 		}
851 		offset = end;
852 	}
853 
854 	if (offset < len) {
855 		skb->data_len -= skb->len - len;
856 		skb->len       = len;
857 	} else {
858 		if (len <= skb_headlen(skb)) {
859 			skb->len      = len;
860 			skb->data_len = 0;
861 			skb->tail     = skb->data + len;
862 			if (skb_shinfo(skb)->frag_list && !skb_cloned(skb))
863 				skb_drop_fraglist(skb);
864 		} else {
865 			skb->data_len -= skb->len - len;
866 			skb->len       = len;
867 		}
868 	}
869 
870 	return 0;
871 }
872 
873 /**
874  *	__pskb_pull_tail - advance tail of skb header
875  *	@skb: buffer to reallocate
876  *	@delta: number of bytes to advance tail
877  *
878  *	The function makes a sense only on a fragmented &sk_buff,
879  *	it expands header moving its tail forward and copying necessary
880  *	data from fragmented part.
881  *
882  *	&sk_buff MUST have reference count of 1.
883  *
884  *	Returns %NULL (and &sk_buff does not change) if pull failed
885  *	or value of new tail of skb in the case of success.
886  *
887  *	All the pointers pointing into skb header may change and must be
888  *	reloaded after call to this function.
889  */
890 
891 /* Moves tail of skb head forward, copying data from fragmented part,
892  * when it is necessary.
893  * 1. It may fail due to malloc failure.
894  * 2. It may change skb pointers.
895  *
896  * It is pretty complicated. Luckily, it is called only in exceptional cases.
897  */
898 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
899 {
900 	/* If skb has not enough free space at tail, get new one
901 	 * plus 128 bytes for future expansions. If we have enough
902 	 * room at tail, reallocate without expansion only if skb is cloned.
903 	 */
904 	int i, k, eat = (skb->tail + delta) - skb->end;
905 
906 	if (eat > 0 || skb_cloned(skb)) {
907 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
908 				     GFP_ATOMIC))
909 			return NULL;
910 	}
911 
912 	if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
913 		BUG();
914 
915 	/* Optimization: no fragments, no reasons to preestimate
916 	 * size of pulled pages. Superb.
917 	 */
918 	if (!skb_shinfo(skb)->frag_list)
919 		goto pull_pages;
920 
921 	/* Estimate size of pulled pages. */
922 	eat = delta;
923 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
924 		if (skb_shinfo(skb)->frags[i].size >= eat)
925 			goto pull_pages;
926 		eat -= skb_shinfo(skb)->frags[i].size;
927 	}
928 
929 	/* If we need update frag list, we are in troubles.
930 	 * Certainly, it possible to add an offset to skb data,
931 	 * but taking into account that pulling is expected to
932 	 * be very rare operation, it is worth to fight against
933 	 * further bloating skb head and crucify ourselves here instead.
934 	 * Pure masohism, indeed. 8)8)
935 	 */
936 	if (eat) {
937 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
938 		struct sk_buff *clone = NULL;
939 		struct sk_buff *insp = NULL;
940 
941 		do {
942 			BUG_ON(!list);
943 
944 			if (list->len <= eat) {
945 				/* Eaten as whole. */
946 				eat -= list->len;
947 				list = list->next;
948 				insp = list;
949 			} else {
950 				/* Eaten partially. */
951 
952 				if (skb_shared(list)) {
953 					/* Sucks! We need to fork list. :-( */
954 					clone = skb_clone(list, GFP_ATOMIC);
955 					if (!clone)
956 						return NULL;
957 					insp = list->next;
958 					list = clone;
959 				} else {
960 					/* This may be pulled without
961 					 * problems. */
962 					insp = list;
963 				}
964 				if (!pskb_pull(list, eat)) {
965 					if (clone)
966 						kfree_skb(clone);
967 					return NULL;
968 				}
969 				break;
970 			}
971 		} while (eat);
972 
973 		/* Free pulled out fragments. */
974 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
975 			skb_shinfo(skb)->frag_list = list->next;
976 			kfree_skb(list);
977 		}
978 		/* And insert new clone at head. */
979 		if (clone) {
980 			clone->next = list;
981 			skb_shinfo(skb)->frag_list = clone;
982 		}
983 	}
984 	/* Success! Now we may commit changes to skb data. */
985 
986 pull_pages:
987 	eat = delta;
988 	k = 0;
989 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
990 		if (skb_shinfo(skb)->frags[i].size <= eat) {
991 			put_page(skb_shinfo(skb)->frags[i].page);
992 			eat -= skb_shinfo(skb)->frags[i].size;
993 		} else {
994 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
995 			if (eat) {
996 				skb_shinfo(skb)->frags[k].page_offset += eat;
997 				skb_shinfo(skb)->frags[k].size -= eat;
998 				eat = 0;
999 			}
1000 			k++;
1001 		}
1002 	}
1003 	skb_shinfo(skb)->nr_frags = k;
1004 
1005 	skb->tail     += delta;
1006 	skb->data_len -= delta;
1007 
1008 	return skb->tail;
1009 }
1010 
1011 /* Copy some data bits from skb to kernel buffer. */
1012 
1013 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1014 {
1015 	int i, copy;
1016 	int start = skb_headlen(skb);
1017 
1018 	if (offset > (int)skb->len - len)
1019 		goto fault;
1020 
1021 	/* Copy header. */
1022 	if ((copy = start - offset) > 0) {
1023 		if (copy > len)
1024 			copy = len;
1025 		memcpy(to, skb->data + offset, copy);
1026 		if ((len -= copy) == 0)
1027 			return 0;
1028 		offset += copy;
1029 		to     += copy;
1030 	}
1031 
1032 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1033 		int end;
1034 
1035 		BUG_TRAP(start <= offset + len);
1036 
1037 		end = start + skb_shinfo(skb)->frags[i].size;
1038 		if ((copy = end - offset) > 0) {
1039 			u8 *vaddr;
1040 
1041 			if (copy > len)
1042 				copy = len;
1043 
1044 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1045 			memcpy(to,
1046 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1047 			       offset - start, copy);
1048 			kunmap_skb_frag(vaddr);
1049 
1050 			if ((len -= copy) == 0)
1051 				return 0;
1052 			offset += copy;
1053 			to     += copy;
1054 		}
1055 		start = end;
1056 	}
1057 
1058 	if (skb_shinfo(skb)->frag_list) {
1059 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1060 
1061 		for (; list; list = list->next) {
1062 			int end;
1063 
1064 			BUG_TRAP(start <= offset + len);
1065 
1066 			end = start + list->len;
1067 			if ((copy = end - offset) > 0) {
1068 				if (copy > len)
1069 					copy = len;
1070 				if (skb_copy_bits(list, offset - start,
1071 						  to, copy))
1072 					goto fault;
1073 				if ((len -= copy) == 0)
1074 					return 0;
1075 				offset += copy;
1076 				to     += copy;
1077 			}
1078 			start = end;
1079 		}
1080 	}
1081 	if (!len)
1082 		return 0;
1083 
1084 fault:
1085 	return -EFAULT;
1086 }
1087 
1088 /**
1089  *	skb_store_bits - store bits from kernel buffer to skb
1090  *	@skb: destination buffer
1091  *	@offset: offset in destination
1092  *	@from: source buffer
1093  *	@len: number of bytes to copy
1094  *
1095  *	Copy the specified number of bytes from the source buffer to the
1096  *	destination skb.  This function handles all the messy bits of
1097  *	traversing fragment lists and such.
1098  */
1099 
1100 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
1101 {
1102 	int i, copy;
1103 	int start = skb_headlen(skb);
1104 
1105 	if (offset > (int)skb->len - len)
1106 		goto fault;
1107 
1108 	if ((copy = start - offset) > 0) {
1109 		if (copy > len)
1110 			copy = len;
1111 		memcpy(skb->data + offset, from, copy);
1112 		if ((len -= copy) == 0)
1113 			return 0;
1114 		offset += copy;
1115 		from += copy;
1116 	}
1117 
1118 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1119 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1120 		int end;
1121 
1122 		BUG_TRAP(start <= offset + len);
1123 
1124 		end = start + frag->size;
1125 		if ((copy = end - offset) > 0) {
1126 			u8 *vaddr;
1127 
1128 			if (copy > len)
1129 				copy = len;
1130 
1131 			vaddr = kmap_skb_frag(frag);
1132 			memcpy(vaddr + frag->page_offset + offset - start,
1133 			       from, copy);
1134 			kunmap_skb_frag(vaddr);
1135 
1136 			if ((len -= copy) == 0)
1137 				return 0;
1138 			offset += copy;
1139 			from += copy;
1140 		}
1141 		start = end;
1142 	}
1143 
1144 	if (skb_shinfo(skb)->frag_list) {
1145 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1146 
1147 		for (; list; list = list->next) {
1148 			int end;
1149 
1150 			BUG_TRAP(start <= offset + len);
1151 
1152 			end = start + list->len;
1153 			if ((copy = end - offset) > 0) {
1154 				if (copy > len)
1155 					copy = len;
1156 				if (skb_store_bits(list, offset - start,
1157 						   from, copy))
1158 					goto fault;
1159 				if ((len -= copy) == 0)
1160 					return 0;
1161 				offset += copy;
1162 				from += copy;
1163 			}
1164 			start = end;
1165 		}
1166 	}
1167 	if (!len)
1168 		return 0;
1169 
1170 fault:
1171 	return -EFAULT;
1172 }
1173 
1174 EXPORT_SYMBOL(skb_store_bits);
1175 
1176 /* Checksum skb data. */
1177 
1178 unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1179 			  int len, unsigned int csum)
1180 {
1181 	int start = skb_headlen(skb);
1182 	int i, copy = start - offset;
1183 	int pos = 0;
1184 
1185 	/* Checksum header. */
1186 	if (copy > 0) {
1187 		if (copy > len)
1188 			copy = len;
1189 		csum = csum_partial(skb->data + offset, copy, csum);
1190 		if ((len -= copy) == 0)
1191 			return csum;
1192 		offset += copy;
1193 		pos	= copy;
1194 	}
1195 
1196 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1197 		int end;
1198 
1199 		BUG_TRAP(start <= offset + len);
1200 
1201 		end = start + skb_shinfo(skb)->frags[i].size;
1202 		if ((copy = end - offset) > 0) {
1203 			unsigned int csum2;
1204 			u8 *vaddr;
1205 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1206 
1207 			if (copy > len)
1208 				copy = len;
1209 			vaddr = kmap_skb_frag(frag);
1210 			csum2 = csum_partial(vaddr + frag->page_offset +
1211 					     offset - start, copy, 0);
1212 			kunmap_skb_frag(vaddr);
1213 			csum = csum_block_add(csum, csum2, pos);
1214 			if (!(len -= copy))
1215 				return csum;
1216 			offset += copy;
1217 			pos    += copy;
1218 		}
1219 		start = end;
1220 	}
1221 
1222 	if (skb_shinfo(skb)->frag_list) {
1223 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1224 
1225 		for (; list; list = list->next) {
1226 			int end;
1227 
1228 			BUG_TRAP(start <= offset + len);
1229 
1230 			end = start + list->len;
1231 			if ((copy = end - offset) > 0) {
1232 				unsigned int csum2;
1233 				if (copy > len)
1234 					copy = len;
1235 				csum2 = skb_checksum(list, offset - start,
1236 						     copy, 0);
1237 				csum = csum_block_add(csum, csum2, pos);
1238 				if ((len -= copy) == 0)
1239 					return csum;
1240 				offset += copy;
1241 				pos    += copy;
1242 			}
1243 			start = end;
1244 		}
1245 	}
1246 	BUG_ON(len);
1247 
1248 	return csum;
1249 }
1250 
1251 /* Both of above in one bottle. */
1252 
1253 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1254 				    u8 *to, int len, unsigned int csum)
1255 {
1256 	int start = skb_headlen(skb);
1257 	int i, copy = start - offset;
1258 	int pos = 0;
1259 
1260 	/* Copy header. */
1261 	if (copy > 0) {
1262 		if (copy > len)
1263 			copy = len;
1264 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1265 						 copy, csum);
1266 		if ((len -= copy) == 0)
1267 			return csum;
1268 		offset += copy;
1269 		to     += copy;
1270 		pos	= copy;
1271 	}
1272 
1273 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1274 		int end;
1275 
1276 		BUG_TRAP(start <= offset + len);
1277 
1278 		end = start + skb_shinfo(skb)->frags[i].size;
1279 		if ((copy = end - offset) > 0) {
1280 			unsigned int csum2;
1281 			u8 *vaddr;
1282 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1283 
1284 			if (copy > len)
1285 				copy = len;
1286 			vaddr = kmap_skb_frag(frag);
1287 			csum2 = csum_partial_copy_nocheck(vaddr +
1288 							  frag->page_offset +
1289 							  offset - start, to,
1290 							  copy, 0);
1291 			kunmap_skb_frag(vaddr);
1292 			csum = csum_block_add(csum, csum2, pos);
1293 			if (!(len -= copy))
1294 				return csum;
1295 			offset += copy;
1296 			to     += copy;
1297 			pos    += copy;
1298 		}
1299 		start = end;
1300 	}
1301 
1302 	if (skb_shinfo(skb)->frag_list) {
1303 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1304 
1305 		for (; list; list = list->next) {
1306 			unsigned int csum2;
1307 			int end;
1308 
1309 			BUG_TRAP(start <= offset + len);
1310 
1311 			end = start + list->len;
1312 			if ((copy = end - offset) > 0) {
1313 				if (copy > len)
1314 					copy = len;
1315 				csum2 = skb_copy_and_csum_bits(list,
1316 							       offset - start,
1317 							       to, copy, 0);
1318 				csum = csum_block_add(csum, csum2, pos);
1319 				if ((len -= copy) == 0)
1320 					return csum;
1321 				offset += copy;
1322 				to     += copy;
1323 				pos    += copy;
1324 			}
1325 			start = end;
1326 		}
1327 	}
1328 	BUG_ON(len);
1329 	return csum;
1330 }
1331 
1332 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1333 {
1334 	unsigned int csum;
1335 	long csstart;
1336 
1337 	if (skb->ip_summed == CHECKSUM_HW)
1338 		csstart = skb->h.raw - skb->data;
1339 	else
1340 		csstart = skb_headlen(skb);
1341 
1342 	BUG_ON(csstart > skb_headlen(skb));
1343 
1344 	memcpy(to, skb->data, csstart);
1345 
1346 	csum = 0;
1347 	if (csstart != skb->len)
1348 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1349 					      skb->len - csstart, 0);
1350 
1351 	if (skb->ip_summed == CHECKSUM_HW) {
1352 		long csstuff = csstart + skb->csum;
1353 
1354 		*((unsigned short *)(to + csstuff)) = csum_fold(csum);
1355 	}
1356 }
1357 
1358 /**
1359  *	skb_dequeue - remove from the head of the queue
1360  *	@list: list to dequeue from
1361  *
1362  *	Remove the head of the list. The list lock is taken so the function
1363  *	may be used safely with other locking list functions. The head item is
1364  *	returned or %NULL if the list is empty.
1365  */
1366 
1367 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1368 {
1369 	unsigned long flags;
1370 	struct sk_buff *result;
1371 
1372 	spin_lock_irqsave(&list->lock, flags);
1373 	result = __skb_dequeue(list);
1374 	spin_unlock_irqrestore(&list->lock, flags);
1375 	return result;
1376 }
1377 
1378 /**
1379  *	skb_dequeue_tail - remove from the tail of the queue
1380  *	@list: list to dequeue from
1381  *
1382  *	Remove the tail of the list. The list lock is taken so the function
1383  *	may be used safely with other locking list functions. The tail item is
1384  *	returned or %NULL if the list is empty.
1385  */
1386 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1387 {
1388 	unsigned long flags;
1389 	struct sk_buff *result;
1390 
1391 	spin_lock_irqsave(&list->lock, flags);
1392 	result = __skb_dequeue_tail(list);
1393 	spin_unlock_irqrestore(&list->lock, flags);
1394 	return result;
1395 }
1396 
1397 /**
1398  *	skb_queue_purge - empty a list
1399  *	@list: list to empty
1400  *
1401  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1402  *	the list and one reference dropped. This function takes the list
1403  *	lock and is atomic with respect to other list locking functions.
1404  */
1405 void skb_queue_purge(struct sk_buff_head *list)
1406 {
1407 	struct sk_buff *skb;
1408 	while ((skb = skb_dequeue(list)) != NULL)
1409 		kfree_skb(skb);
1410 }
1411 
1412 /**
1413  *	skb_queue_head - queue a buffer at the list head
1414  *	@list: list to use
1415  *	@newsk: buffer to queue
1416  *
1417  *	Queue a buffer at the start of the list. This function takes the
1418  *	list lock and can be used safely with other locking &sk_buff functions
1419  *	safely.
1420  *
1421  *	A buffer cannot be placed on two lists at the same time.
1422  */
1423 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1424 {
1425 	unsigned long flags;
1426 
1427 	spin_lock_irqsave(&list->lock, flags);
1428 	__skb_queue_head(list, newsk);
1429 	spin_unlock_irqrestore(&list->lock, flags);
1430 }
1431 
1432 /**
1433  *	skb_queue_tail - queue a buffer at the list tail
1434  *	@list: list to use
1435  *	@newsk: buffer to queue
1436  *
1437  *	Queue a buffer at the tail of the list. This function takes the
1438  *	list lock and can be used safely with other locking &sk_buff functions
1439  *	safely.
1440  *
1441  *	A buffer cannot be placed on two lists at the same time.
1442  */
1443 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1444 {
1445 	unsigned long flags;
1446 
1447 	spin_lock_irqsave(&list->lock, flags);
1448 	__skb_queue_tail(list, newsk);
1449 	spin_unlock_irqrestore(&list->lock, flags);
1450 }
1451 
1452 /**
1453  *	skb_unlink	-	remove a buffer from a list
1454  *	@skb: buffer to remove
1455  *	@list: list to use
1456  *
1457  *	Remove a packet from a list. The list locks are taken and this
1458  *	function is atomic with respect to other list locked calls
1459  *
1460  *	You must know what list the SKB is on.
1461  */
1462 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1463 {
1464 	unsigned long flags;
1465 
1466 	spin_lock_irqsave(&list->lock, flags);
1467 	__skb_unlink(skb, list);
1468 	spin_unlock_irqrestore(&list->lock, flags);
1469 }
1470 
1471 /**
1472  *	skb_append	-	append a buffer
1473  *	@old: buffer to insert after
1474  *	@newsk: buffer to insert
1475  *	@list: list to use
1476  *
1477  *	Place a packet after a given packet in a list. The list locks are taken
1478  *	and this function is atomic with respect to other list locked calls.
1479  *	A buffer cannot be placed on two lists at the same time.
1480  */
1481 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1482 {
1483 	unsigned long flags;
1484 
1485 	spin_lock_irqsave(&list->lock, flags);
1486 	__skb_append(old, newsk, list);
1487 	spin_unlock_irqrestore(&list->lock, flags);
1488 }
1489 
1490 
1491 /**
1492  *	skb_insert	-	insert a buffer
1493  *	@old: buffer to insert before
1494  *	@newsk: buffer to insert
1495  *	@list: list to use
1496  *
1497  *	Place a packet before a given packet in a list. The list locks are
1498  * 	taken and this function is atomic with respect to other list locked
1499  *	calls.
1500  *
1501  *	A buffer cannot be placed on two lists at the same time.
1502  */
1503 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1504 {
1505 	unsigned long flags;
1506 
1507 	spin_lock_irqsave(&list->lock, flags);
1508 	__skb_insert(newsk, old->prev, old, list);
1509 	spin_unlock_irqrestore(&list->lock, flags);
1510 }
1511 
1512 #if 0
1513 /*
1514  * 	Tune the memory allocator for a new MTU size.
1515  */
1516 void skb_add_mtu(int mtu)
1517 {
1518 	/* Must match allocation in alloc_skb */
1519 	mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1520 
1521 	kmem_add_cache_size(mtu);
1522 }
1523 #endif
1524 
1525 static inline void skb_split_inside_header(struct sk_buff *skb,
1526 					   struct sk_buff* skb1,
1527 					   const u32 len, const int pos)
1528 {
1529 	int i;
1530 
1531 	memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1532 
1533 	/* And move data appendix as is. */
1534 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1535 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1536 
1537 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1538 	skb_shinfo(skb)->nr_frags  = 0;
1539 	skb1->data_len		   = skb->data_len;
1540 	skb1->len		   += skb1->data_len;
1541 	skb->data_len		   = 0;
1542 	skb->len		   = len;
1543 	skb->tail		   = skb->data + len;
1544 }
1545 
1546 static inline void skb_split_no_header(struct sk_buff *skb,
1547 				       struct sk_buff* skb1,
1548 				       const u32 len, int pos)
1549 {
1550 	int i, k = 0;
1551 	const int nfrags = skb_shinfo(skb)->nr_frags;
1552 
1553 	skb_shinfo(skb)->nr_frags = 0;
1554 	skb1->len		  = skb1->data_len = skb->len - len;
1555 	skb->len		  = len;
1556 	skb->data_len		  = len - pos;
1557 
1558 	for (i = 0; i < nfrags; i++) {
1559 		int size = skb_shinfo(skb)->frags[i].size;
1560 
1561 		if (pos + size > len) {
1562 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1563 
1564 			if (pos < len) {
1565 				/* Split frag.
1566 				 * We have two variants in this case:
1567 				 * 1. Move all the frag to the second
1568 				 *    part, if it is possible. F.e.
1569 				 *    this approach is mandatory for TUX,
1570 				 *    where splitting is expensive.
1571 				 * 2. Split is accurately. We make this.
1572 				 */
1573 				get_page(skb_shinfo(skb)->frags[i].page);
1574 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1575 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1576 				skb_shinfo(skb)->frags[i].size	= len - pos;
1577 				skb_shinfo(skb)->nr_frags++;
1578 			}
1579 			k++;
1580 		} else
1581 			skb_shinfo(skb)->nr_frags++;
1582 		pos += size;
1583 	}
1584 	skb_shinfo(skb1)->nr_frags = k;
1585 }
1586 
1587 /**
1588  * skb_split - Split fragmented skb to two parts at length len.
1589  * @skb: the buffer to split
1590  * @skb1: the buffer to receive the second part
1591  * @len: new length for skb
1592  */
1593 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1594 {
1595 	int pos = skb_headlen(skb);
1596 
1597 	if (len < pos)	/* Split line is inside header. */
1598 		skb_split_inside_header(skb, skb1, len, pos);
1599 	else		/* Second chunk has no header, nothing to copy. */
1600 		skb_split_no_header(skb, skb1, len, pos);
1601 }
1602 
1603 /**
1604  * skb_prepare_seq_read - Prepare a sequential read of skb data
1605  * @skb: the buffer to read
1606  * @from: lower offset of data to be read
1607  * @to: upper offset of data to be read
1608  * @st: state variable
1609  *
1610  * Initializes the specified state variable. Must be called before
1611  * invoking skb_seq_read() for the first time.
1612  */
1613 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1614 			  unsigned int to, struct skb_seq_state *st)
1615 {
1616 	st->lower_offset = from;
1617 	st->upper_offset = to;
1618 	st->root_skb = st->cur_skb = skb;
1619 	st->frag_idx = st->stepped_offset = 0;
1620 	st->frag_data = NULL;
1621 }
1622 
1623 /**
1624  * skb_seq_read - Sequentially read skb data
1625  * @consumed: number of bytes consumed by the caller so far
1626  * @data: destination pointer for data to be returned
1627  * @st: state variable
1628  *
1629  * Reads a block of skb data at &consumed relative to the
1630  * lower offset specified to skb_prepare_seq_read(). Assigns
1631  * the head of the data block to &data and returns the length
1632  * of the block or 0 if the end of the skb data or the upper
1633  * offset has been reached.
1634  *
1635  * The caller is not required to consume all of the data
1636  * returned, i.e. &consumed is typically set to the number
1637  * of bytes already consumed and the next call to
1638  * skb_seq_read() will return the remaining part of the block.
1639  *
1640  * Note: The size of each block of data returned can be arbitary,
1641  *       this limitation is the cost for zerocopy seqeuental
1642  *       reads of potentially non linear data.
1643  *
1644  * Note: Fragment lists within fragments are not implemented
1645  *       at the moment, state->root_skb could be replaced with
1646  *       a stack for this purpose.
1647  */
1648 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1649 			  struct skb_seq_state *st)
1650 {
1651 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1652 	skb_frag_t *frag;
1653 
1654 	if (unlikely(abs_offset >= st->upper_offset))
1655 		return 0;
1656 
1657 next_skb:
1658 	block_limit = skb_headlen(st->cur_skb);
1659 
1660 	if (abs_offset < block_limit) {
1661 		*data = st->cur_skb->data + abs_offset;
1662 		return block_limit - abs_offset;
1663 	}
1664 
1665 	if (st->frag_idx == 0 && !st->frag_data)
1666 		st->stepped_offset += skb_headlen(st->cur_skb);
1667 
1668 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1669 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1670 		block_limit = frag->size + st->stepped_offset;
1671 
1672 		if (abs_offset < block_limit) {
1673 			if (!st->frag_data)
1674 				st->frag_data = kmap_skb_frag(frag);
1675 
1676 			*data = (u8 *) st->frag_data + frag->page_offset +
1677 				(abs_offset - st->stepped_offset);
1678 
1679 			return block_limit - abs_offset;
1680 		}
1681 
1682 		if (st->frag_data) {
1683 			kunmap_skb_frag(st->frag_data);
1684 			st->frag_data = NULL;
1685 		}
1686 
1687 		st->frag_idx++;
1688 		st->stepped_offset += frag->size;
1689 	}
1690 
1691 	if (st->cur_skb->next) {
1692 		st->cur_skb = st->cur_skb->next;
1693 		st->frag_idx = 0;
1694 		goto next_skb;
1695 	} else if (st->root_skb == st->cur_skb &&
1696 		   skb_shinfo(st->root_skb)->frag_list) {
1697 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1698 		goto next_skb;
1699 	}
1700 
1701 	return 0;
1702 }
1703 
1704 /**
1705  * skb_abort_seq_read - Abort a sequential read of skb data
1706  * @st: state variable
1707  *
1708  * Must be called if skb_seq_read() was not called until it
1709  * returned 0.
1710  */
1711 void skb_abort_seq_read(struct skb_seq_state *st)
1712 {
1713 	if (st->frag_data)
1714 		kunmap_skb_frag(st->frag_data);
1715 }
1716 
1717 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
1718 
1719 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1720 					  struct ts_config *conf,
1721 					  struct ts_state *state)
1722 {
1723 	return skb_seq_read(offset, text, TS_SKB_CB(state));
1724 }
1725 
1726 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1727 {
1728 	skb_abort_seq_read(TS_SKB_CB(state));
1729 }
1730 
1731 /**
1732  * skb_find_text - Find a text pattern in skb data
1733  * @skb: the buffer to look in
1734  * @from: search offset
1735  * @to: search limit
1736  * @config: textsearch configuration
1737  * @state: uninitialized textsearch state variable
1738  *
1739  * Finds a pattern in the skb data according to the specified
1740  * textsearch configuration. Use textsearch_next() to retrieve
1741  * subsequent occurrences of the pattern. Returns the offset
1742  * to the first occurrence or UINT_MAX if no match was found.
1743  */
1744 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1745 			   unsigned int to, struct ts_config *config,
1746 			   struct ts_state *state)
1747 {
1748 	unsigned int ret;
1749 
1750 	config->get_next_block = skb_ts_get_next_block;
1751 	config->finish = skb_ts_finish;
1752 
1753 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1754 
1755 	ret = textsearch_find(config, state);
1756 	return (ret <= to - from ? ret : UINT_MAX);
1757 }
1758 
1759 /**
1760  * skb_append_datato_frags: - append the user data to a skb
1761  * @sk: sock  structure
1762  * @skb: skb structure to be appened with user data.
1763  * @getfrag: call back function to be used for getting the user data
1764  * @from: pointer to user message iov
1765  * @length: length of the iov message
1766  *
1767  * Description: This procedure append the user data in the fragment part
1768  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
1769  */
1770 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1771 			int (*getfrag)(void *from, char *to, int offset,
1772 					int len, int odd, struct sk_buff *skb),
1773 			void *from, int length)
1774 {
1775 	int frg_cnt = 0;
1776 	skb_frag_t *frag = NULL;
1777 	struct page *page = NULL;
1778 	int copy, left;
1779 	int offset = 0;
1780 	int ret;
1781 
1782 	do {
1783 		/* Return error if we don't have space for new frag */
1784 		frg_cnt = skb_shinfo(skb)->nr_frags;
1785 		if (frg_cnt >= MAX_SKB_FRAGS)
1786 			return -EFAULT;
1787 
1788 		/* allocate a new page for next frag */
1789 		page = alloc_pages(sk->sk_allocation, 0);
1790 
1791 		/* If alloc_page fails just return failure and caller will
1792 		 * free previous allocated pages by doing kfree_skb()
1793 		 */
1794 		if (page == NULL)
1795 			return -ENOMEM;
1796 
1797 		/* initialize the next frag */
1798 		sk->sk_sndmsg_page = page;
1799 		sk->sk_sndmsg_off = 0;
1800 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1801 		skb->truesize += PAGE_SIZE;
1802 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1803 
1804 		/* get the new initialized frag */
1805 		frg_cnt = skb_shinfo(skb)->nr_frags;
1806 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1807 
1808 		/* copy the user data to page */
1809 		left = PAGE_SIZE - frag->page_offset;
1810 		copy = (length > left)? left : length;
1811 
1812 		ret = getfrag(from, (page_address(frag->page) +
1813 			    frag->page_offset + frag->size),
1814 			    offset, copy, 0, skb);
1815 		if (ret < 0)
1816 			return -EFAULT;
1817 
1818 		/* copy was successful so update the size parameters */
1819 		sk->sk_sndmsg_off += copy;
1820 		frag->size += copy;
1821 		skb->len += copy;
1822 		skb->data_len += copy;
1823 		offset += copy;
1824 		length -= copy;
1825 
1826 	} while (length > 0);
1827 
1828 	return 0;
1829 }
1830 
1831 /**
1832  *	skb_pull_rcsum - pull skb and update receive checksum
1833  *	@skb: buffer to update
1834  *	@start: start of data before pull
1835  *	@len: length of data pulled
1836  *
1837  *	This function performs an skb_pull on the packet and updates
1838  *	update the CHECKSUM_HW checksum.  It should be used on receive
1839  *	path processing instead of skb_pull unless you know that the
1840  *	checksum difference is zero (e.g., a valid IP header) or you
1841  *	are setting ip_summed to CHECKSUM_NONE.
1842  */
1843 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
1844 {
1845 	BUG_ON(len > skb->len);
1846 	skb->len -= len;
1847 	BUG_ON(skb->len < skb->data_len);
1848 	skb_postpull_rcsum(skb, skb->data, len);
1849 	return skb->data += len;
1850 }
1851 
1852 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
1853 
1854 /**
1855  *	skb_segment - Perform protocol segmentation on skb.
1856  *	@skb: buffer to segment
1857  *	@features: features for the output path (see dev->features)
1858  *
1859  *	This function performs segmentation on the given skb.  It returns
1860  *	the segment at the given position.  It returns NULL if there are
1861  *	no more segments to generate, or when an error is encountered.
1862  */
1863 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
1864 {
1865 	struct sk_buff *segs = NULL;
1866 	struct sk_buff *tail = NULL;
1867 	unsigned int mss = skb_shinfo(skb)->gso_size;
1868 	unsigned int doffset = skb->data - skb->mac.raw;
1869 	unsigned int offset = doffset;
1870 	unsigned int headroom;
1871 	unsigned int len;
1872 	int sg = features & NETIF_F_SG;
1873 	int nfrags = skb_shinfo(skb)->nr_frags;
1874 	int err = -ENOMEM;
1875 	int i = 0;
1876 	int pos;
1877 
1878 	__skb_push(skb, doffset);
1879 	headroom = skb_headroom(skb);
1880 	pos = skb_headlen(skb);
1881 
1882 	do {
1883 		struct sk_buff *nskb;
1884 		skb_frag_t *frag;
1885 		int hsize, nsize;
1886 		int k;
1887 		int size;
1888 
1889 		len = skb->len - offset;
1890 		if (len > mss)
1891 			len = mss;
1892 
1893 		hsize = skb_headlen(skb) - offset;
1894 		if (hsize < 0)
1895 			hsize = 0;
1896 		nsize = hsize + doffset;
1897 		if (nsize > len + doffset || !sg)
1898 			nsize = len + doffset;
1899 
1900 		nskb = alloc_skb(nsize + headroom, GFP_ATOMIC);
1901 		if (unlikely(!nskb))
1902 			goto err;
1903 
1904 		if (segs)
1905 			tail->next = nskb;
1906 		else
1907 			segs = nskb;
1908 		tail = nskb;
1909 
1910 		nskb->dev = skb->dev;
1911 		nskb->priority = skb->priority;
1912 		nskb->protocol = skb->protocol;
1913 		nskb->dst = dst_clone(skb->dst);
1914 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
1915 		nskb->pkt_type = skb->pkt_type;
1916 		nskb->mac_len = skb->mac_len;
1917 
1918 		skb_reserve(nskb, headroom);
1919 		nskb->mac.raw = nskb->data;
1920 		nskb->nh.raw = nskb->data + skb->mac_len;
1921 		nskb->h.raw = nskb->nh.raw + (skb->h.raw - skb->nh.raw);
1922 		memcpy(skb_put(nskb, doffset), skb->data, doffset);
1923 
1924 		if (!sg) {
1925 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
1926 							    skb_put(nskb, len),
1927 							    len, 0);
1928 			continue;
1929 		}
1930 
1931 		frag = skb_shinfo(nskb)->frags;
1932 		k = 0;
1933 
1934 		nskb->ip_summed = CHECKSUM_HW;
1935 		nskb->csum = skb->csum;
1936 		memcpy(skb_put(nskb, hsize), skb->data + offset, hsize);
1937 
1938 		while (pos < offset + len) {
1939 			BUG_ON(i >= nfrags);
1940 
1941 			*frag = skb_shinfo(skb)->frags[i];
1942 			get_page(frag->page);
1943 			size = frag->size;
1944 
1945 			if (pos < offset) {
1946 				frag->page_offset += offset - pos;
1947 				frag->size -= offset - pos;
1948 			}
1949 
1950 			k++;
1951 
1952 			if (pos + size <= offset + len) {
1953 				i++;
1954 				pos += size;
1955 			} else {
1956 				frag->size -= pos + size - (offset + len);
1957 				break;
1958 			}
1959 
1960 			frag++;
1961 		}
1962 
1963 		skb_shinfo(nskb)->nr_frags = k;
1964 		nskb->data_len = len - hsize;
1965 		nskb->len += nskb->data_len;
1966 		nskb->truesize += nskb->data_len;
1967 	} while ((offset += len) < skb->len);
1968 
1969 	return segs;
1970 
1971 err:
1972 	while ((skb = segs)) {
1973 		segs = skb->next;
1974 		kfree(skb);
1975 	}
1976 	return ERR_PTR(err);
1977 }
1978 
1979 EXPORT_SYMBOL_GPL(skb_segment);
1980 
1981 void __init skb_init(void)
1982 {
1983 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
1984 					      sizeof(struct sk_buff),
1985 					      0,
1986 					      SLAB_HWCACHE_ALIGN,
1987 					      NULL, NULL);
1988 	if (!skbuff_head_cache)
1989 		panic("cannot create skbuff cache");
1990 
1991 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
1992 						(2*sizeof(struct sk_buff)) +
1993 						sizeof(atomic_t),
1994 						0,
1995 						SLAB_HWCACHE_ALIGN,
1996 						NULL, NULL);
1997 	if (!skbuff_fclone_cache)
1998 		panic("cannot create skbuff cache");
1999 }
2000 
2001 EXPORT_SYMBOL(___pskb_trim);
2002 EXPORT_SYMBOL(__kfree_skb);
2003 EXPORT_SYMBOL(kfree_skb);
2004 EXPORT_SYMBOL(__pskb_pull_tail);
2005 EXPORT_SYMBOL(__alloc_skb);
2006 EXPORT_SYMBOL(pskb_copy);
2007 EXPORT_SYMBOL(pskb_expand_head);
2008 EXPORT_SYMBOL(skb_checksum);
2009 EXPORT_SYMBOL(skb_clone);
2010 EXPORT_SYMBOL(skb_clone_fraglist);
2011 EXPORT_SYMBOL(skb_copy);
2012 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2013 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2014 EXPORT_SYMBOL(skb_copy_bits);
2015 EXPORT_SYMBOL(skb_copy_expand);
2016 EXPORT_SYMBOL(skb_over_panic);
2017 EXPORT_SYMBOL(skb_pad);
2018 EXPORT_SYMBOL(skb_realloc_headroom);
2019 EXPORT_SYMBOL(skb_under_panic);
2020 EXPORT_SYMBOL(skb_dequeue);
2021 EXPORT_SYMBOL(skb_dequeue_tail);
2022 EXPORT_SYMBOL(skb_insert);
2023 EXPORT_SYMBOL(skb_queue_purge);
2024 EXPORT_SYMBOL(skb_queue_head);
2025 EXPORT_SYMBOL(skb_queue_tail);
2026 EXPORT_SYMBOL(skb_unlink);
2027 EXPORT_SYMBOL(skb_append);
2028 EXPORT_SYMBOL(skb_split);
2029 EXPORT_SYMBOL(skb_prepare_seq_read);
2030 EXPORT_SYMBOL(skb_seq_read);
2031 EXPORT_SYMBOL(skb_abort_seq_read);
2032 EXPORT_SYMBOL(skb_find_text);
2033 EXPORT_SYMBOL(skb_append_datato_frags);
2034