1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $ 8 * 9 * Fixes: 10 * Alan Cox : Fixed the worst of the load 11 * balancer bugs. 12 * Dave Platt : Interrupt stacking fix. 13 * Richard Kooijman : Timestamp fixes. 14 * Alan Cox : Changed buffer format. 15 * Alan Cox : destructor hook for AF_UNIX etc. 16 * Linus Torvalds : Better skb_clone. 17 * Alan Cox : Added skb_copy. 18 * Alan Cox : Added all the changed routines Linus 19 * only put in the headers 20 * Ray VanTassle : Fixed --skb->lock in free 21 * Alan Cox : skb_copy copy arp field 22 * Andi Kleen : slabified it. 23 * Robert Olsson : Removed skb_head_pool 24 * 25 * NOTE: 26 * The __skb_ routines should be called with interrupts 27 * disabled, or you better be *real* sure that the operation is atomic 28 * with respect to whatever list is being frobbed (e.g. via lock_sock() 29 * or via disabling bottom half handlers, etc). 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License 33 * as published by the Free Software Foundation; either version 34 * 2 of the License, or (at your option) any later version. 35 */ 36 37 /* 38 * The functions in this file will not compile correctly with gcc 2.4.x 39 */ 40 41 #include <linux/config.h> 42 #include <linux/module.h> 43 #include <linux/types.h> 44 #include <linux/kernel.h> 45 #include <linux/sched.h> 46 #include <linux/mm.h> 47 #include <linux/interrupt.h> 48 #include <linux/in.h> 49 #include <linux/inet.h> 50 #include <linux/slab.h> 51 #include <linux/netdevice.h> 52 #ifdef CONFIG_NET_CLS_ACT 53 #include <net/pkt_sched.h> 54 #endif 55 #include <linux/string.h> 56 #include <linux/skbuff.h> 57 #include <linux/cache.h> 58 #include <linux/rtnetlink.h> 59 #include <linux/init.h> 60 #include <linux/highmem.h> 61 62 #include <net/protocol.h> 63 #include <net/dst.h> 64 #include <net/sock.h> 65 #include <net/checksum.h> 66 #include <net/xfrm.h> 67 68 #include <asm/uaccess.h> 69 #include <asm/system.h> 70 71 static kmem_cache_t *skbuff_head_cache __read_mostly; 72 static kmem_cache_t *skbuff_fclone_cache __read_mostly; 73 74 struct timeval __read_mostly skb_tv_base; 75 76 /* 77 * Keep out-of-line to prevent kernel bloat. 78 * __builtin_return_address is not used because it is not always 79 * reliable. 80 */ 81 82 /** 83 * skb_over_panic - private function 84 * @skb: buffer 85 * @sz: size 86 * @here: address 87 * 88 * Out of line support code for skb_put(). Not user callable. 89 */ 90 void skb_over_panic(struct sk_buff *skb, int sz, void *here) 91 { 92 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 93 "data:%p tail:%p end:%p dev:%s\n", 94 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end, 95 skb->dev ? skb->dev->name : "<NULL>"); 96 BUG(); 97 } 98 99 /** 100 * skb_under_panic - private function 101 * @skb: buffer 102 * @sz: size 103 * @here: address 104 * 105 * Out of line support code for skb_push(). Not user callable. 106 */ 107 108 void skb_under_panic(struct sk_buff *skb, int sz, void *here) 109 { 110 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 111 "data:%p tail:%p end:%p dev:%s\n", 112 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end, 113 skb->dev ? skb->dev->name : "<NULL>"); 114 BUG(); 115 } 116 117 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 118 * 'private' fields and also do memory statistics to find all the 119 * [BEEP] leaks. 120 * 121 */ 122 123 /** 124 * __alloc_skb - allocate a network buffer 125 * @size: size to allocate 126 * @gfp_mask: allocation mask 127 * 128 * Allocate a new &sk_buff. The returned buffer has no headroom and a 129 * tail room of size bytes. The object has a reference count of one. 130 * The return is the buffer. On a failure the return is %NULL. 131 * 132 * Buffers may only be allocated from interrupts using a @gfp_mask of 133 * %GFP_ATOMIC. 134 */ 135 struct sk_buff *__alloc_skb(unsigned int size, unsigned int __nocast gfp_mask, 136 int fclone) 137 { 138 struct sk_buff *skb; 139 u8 *data; 140 141 /* Get the HEAD */ 142 if (fclone) 143 skb = kmem_cache_alloc(skbuff_fclone_cache, 144 gfp_mask & ~__GFP_DMA); 145 else 146 skb = kmem_cache_alloc(skbuff_head_cache, 147 gfp_mask & ~__GFP_DMA); 148 149 if (!skb) 150 goto out; 151 152 /* Get the DATA. Size must match skb_add_mtu(). */ 153 size = SKB_DATA_ALIGN(size); 154 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 155 if (!data) 156 goto nodata; 157 158 memset(skb, 0, offsetof(struct sk_buff, truesize)); 159 skb->truesize = size + sizeof(struct sk_buff); 160 atomic_set(&skb->users, 1); 161 skb->head = data; 162 skb->data = data; 163 skb->tail = data; 164 skb->end = data + size; 165 if (fclone) { 166 struct sk_buff *child = skb + 1; 167 atomic_t *fclone_ref = (atomic_t *) (child + 1); 168 169 skb->fclone = SKB_FCLONE_ORIG; 170 atomic_set(fclone_ref, 1); 171 172 child->fclone = SKB_FCLONE_UNAVAILABLE; 173 } 174 atomic_set(&(skb_shinfo(skb)->dataref), 1); 175 skb_shinfo(skb)->nr_frags = 0; 176 skb_shinfo(skb)->tso_size = 0; 177 skb_shinfo(skb)->tso_segs = 0; 178 skb_shinfo(skb)->frag_list = NULL; 179 out: 180 return skb; 181 nodata: 182 kmem_cache_free(skbuff_head_cache, skb); 183 skb = NULL; 184 goto out; 185 } 186 187 /** 188 * alloc_skb_from_cache - allocate a network buffer 189 * @cp: kmem_cache from which to allocate the data area 190 * (object size must be big enough for @size bytes + skb overheads) 191 * @size: size to allocate 192 * @gfp_mask: allocation mask 193 * 194 * Allocate a new &sk_buff. The returned buffer has no headroom and 195 * tail room of size bytes. The object has a reference count of one. 196 * The return is the buffer. On a failure the return is %NULL. 197 * 198 * Buffers may only be allocated from interrupts using a @gfp_mask of 199 * %GFP_ATOMIC. 200 */ 201 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp, 202 unsigned int size, 203 unsigned int __nocast gfp_mask) 204 { 205 struct sk_buff *skb; 206 u8 *data; 207 208 /* Get the HEAD */ 209 skb = kmem_cache_alloc(skbuff_head_cache, 210 gfp_mask & ~__GFP_DMA); 211 if (!skb) 212 goto out; 213 214 /* Get the DATA. */ 215 size = SKB_DATA_ALIGN(size); 216 data = kmem_cache_alloc(cp, gfp_mask); 217 if (!data) 218 goto nodata; 219 220 memset(skb, 0, offsetof(struct sk_buff, truesize)); 221 skb->truesize = size + sizeof(struct sk_buff); 222 atomic_set(&skb->users, 1); 223 skb->head = data; 224 skb->data = data; 225 skb->tail = data; 226 skb->end = data + size; 227 228 atomic_set(&(skb_shinfo(skb)->dataref), 1); 229 skb_shinfo(skb)->nr_frags = 0; 230 skb_shinfo(skb)->tso_size = 0; 231 skb_shinfo(skb)->tso_segs = 0; 232 skb_shinfo(skb)->frag_list = NULL; 233 out: 234 return skb; 235 nodata: 236 kmem_cache_free(skbuff_head_cache, skb); 237 skb = NULL; 238 goto out; 239 } 240 241 242 static void skb_drop_fraglist(struct sk_buff *skb) 243 { 244 struct sk_buff *list = skb_shinfo(skb)->frag_list; 245 246 skb_shinfo(skb)->frag_list = NULL; 247 248 do { 249 struct sk_buff *this = list; 250 list = list->next; 251 kfree_skb(this); 252 } while (list); 253 } 254 255 static void skb_clone_fraglist(struct sk_buff *skb) 256 { 257 struct sk_buff *list; 258 259 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) 260 skb_get(list); 261 } 262 263 void skb_release_data(struct sk_buff *skb) 264 { 265 if (!skb->cloned || 266 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 267 &skb_shinfo(skb)->dataref)) { 268 if (skb_shinfo(skb)->nr_frags) { 269 int i; 270 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 271 put_page(skb_shinfo(skb)->frags[i].page); 272 } 273 274 if (skb_shinfo(skb)->frag_list) 275 skb_drop_fraglist(skb); 276 277 kfree(skb->head); 278 } 279 } 280 281 /* 282 * Free an skbuff by memory without cleaning the state. 283 */ 284 void kfree_skbmem(struct sk_buff *skb) 285 { 286 struct sk_buff *other; 287 atomic_t *fclone_ref; 288 289 skb_release_data(skb); 290 switch (skb->fclone) { 291 case SKB_FCLONE_UNAVAILABLE: 292 kmem_cache_free(skbuff_head_cache, skb); 293 break; 294 295 case SKB_FCLONE_ORIG: 296 fclone_ref = (atomic_t *) (skb + 2); 297 if (atomic_dec_and_test(fclone_ref)) 298 kmem_cache_free(skbuff_fclone_cache, skb); 299 break; 300 301 case SKB_FCLONE_CLONE: 302 fclone_ref = (atomic_t *) (skb + 1); 303 other = skb - 1; 304 305 /* The clone portion is available for 306 * fast-cloning again. 307 */ 308 skb->fclone = SKB_FCLONE_UNAVAILABLE; 309 310 if (atomic_dec_and_test(fclone_ref)) 311 kmem_cache_free(skbuff_fclone_cache, other); 312 break; 313 }; 314 } 315 316 /** 317 * __kfree_skb - private function 318 * @skb: buffer 319 * 320 * Free an sk_buff. Release anything attached to the buffer. 321 * Clean the state. This is an internal helper function. Users should 322 * always call kfree_skb 323 */ 324 325 void __kfree_skb(struct sk_buff *skb) 326 { 327 dst_release(skb->dst); 328 #ifdef CONFIG_XFRM 329 secpath_put(skb->sp); 330 #endif 331 if (skb->destructor) { 332 WARN_ON(in_irq()); 333 skb->destructor(skb); 334 } 335 #ifdef CONFIG_NETFILTER 336 nf_conntrack_put(skb->nfct); 337 #ifdef CONFIG_BRIDGE_NETFILTER 338 nf_bridge_put(skb->nf_bridge); 339 #endif 340 #endif 341 /* XXX: IS this still necessary? - JHS */ 342 #ifdef CONFIG_NET_SCHED 343 skb->tc_index = 0; 344 #ifdef CONFIG_NET_CLS_ACT 345 skb->tc_verd = 0; 346 #endif 347 #endif 348 349 kfree_skbmem(skb); 350 } 351 352 /** 353 * skb_clone - duplicate an sk_buff 354 * @skb: buffer to clone 355 * @gfp_mask: allocation priority 356 * 357 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 358 * copies share the same packet data but not structure. The new 359 * buffer has a reference count of 1. If the allocation fails the 360 * function returns %NULL otherwise the new buffer is returned. 361 * 362 * If this function is called from an interrupt gfp_mask() must be 363 * %GFP_ATOMIC. 364 */ 365 366 struct sk_buff *skb_clone(struct sk_buff *skb, unsigned int __nocast gfp_mask) 367 { 368 struct sk_buff *n; 369 370 n = skb + 1; 371 if (skb->fclone == SKB_FCLONE_ORIG && 372 n->fclone == SKB_FCLONE_UNAVAILABLE) { 373 atomic_t *fclone_ref = (atomic_t *) (n + 1); 374 n->fclone = SKB_FCLONE_CLONE; 375 atomic_inc(fclone_ref); 376 } else { 377 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 378 if (!n) 379 return NULL; 380 n->fclone = SKB_FCLONE_UNAVAILABLE; 381 } 382 383 #define C(x) n->x = skb->x 384 385 n->next = n->prev = NULL; 386 n->sk = NULL; 387 C(tstamp); 388 C(dev); 389 C(h); 390 C(nh); 391 C(mac); 392 C(dst); 393 dst_clone(skb->dst); 394 C(sp); 395 #ifdef CONFIG_INET 396 secpath_get(skb->sp); 397 #endif 398 memcpy(n->cb, skb->cb, sizeof(skb->cb)); 399 C(len); 400 C(data_len); 401 C(csum); 402 C(local_df); 403 n->cloned = 1; 404 n->nohdr = 0; 405 C(pkt_type); 406 C(ip_summed); 407 C(priority); 408 C(protocol); 409 n->destructor = NULL; 410 #ifdef CONFIG_NETFILTER 411 C(nfmark); 412 C(nfct); 413 nf_conntrack_get(skb->nfct); 414 C(nfctinfo); 415 #ifdef CONFIG_BRIDGE_NETFILTER 416 C(nf_bridge); 417 nf_bridge_get(skb->nf_bridge); 418 #endif 419 #endif /*CONFIG_NETFILTER*/ 420 #ifdef CONFIG_NET_SCHED 421 C(tc_index); 422 #ifdef CONFIG_NET_CLS_ACT 423 n->tc_verd = SET_TC_VERD(skb->tc_verd,0); 424 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd); 425 n->tc_verd = CLR_TC_MUNGED(n->tc_verd); 426 C(input_dev); 427 #endif 428 429 #endif 430 C(truesize); 431 atomic_set(&n->users, 1); 432 C(head); 433 C(data); 434 C(tail); 435 C(end); 436 437 atomic_inc(&(skb_shinfo(skb)->dataref)); 438 skb->cloned = 1; 439 440 return n; 441 } 442 443 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 444 { 445 /* 446 * Shift between the two data areas in bytes 447 */ 448 unsigned long offset = new->data - old->data; 449 450 new->sk = NULL; 451 new->dev = old->dev; 452 new->priority = old->priority; 453 new->protocol = old->protocol; 454 new->dst = dst_clone(old->dst); 455 #ifdef CONFIG_INET 456 new->sp = secpath_get(old->sp); 457 #endif 458 new->h.raw = old->h.raw + offset; 459 new->nh.raw = old->nh.raw + offset; 460 new->mac.raw = old->mac.raw + offset; 461 memcpy(new->cb, old->cb, sizeof(old->cb)); 462 new->local_df = old->local_df; 463 new->fclone = SKB_FCLONE_UNAVAILABLE; 464 new->pkt_type = old->pkt_type; 465 new->tstamp = old->tstamp; 466 new->destructor = NULL; 467 #ifdef CONFIG_NETFILTER 468 new->nfmark = old->nfmark; 469 new->nfct = old->nfct; 470 nf_conntrack_get(old->nfct); 471 new->nfctinfo = old->nfctinfo; 472 #ifdef CONFIG_BRIDGE_NETFILTER 473 new->nf_bridge = old->nf_bridge; 474 nf_bridge_get(old->nf_bridge); 475 #endif 476 #endif 477 #ifdef CONFIG_NET_SCHED 478 #ifdef CONFIG_NET_CLS_ACT 479 new->tc_verd = old->tc_verd; 480 #endif 481 new->tc_index = old->tc_index; 482 #endif 483 atomic_set(&new->users, 1); 484 skb_shinfo(new)->tso_size = skb_shinfo(old)->tso_size; 485 skb_shinfo(new)->tso_segs = skb_shinfo(old)->tso_segs; 486 } 487 488 /** 489 * skb_copy - create private copy of an sk_buff 490 * @skb: buffer to copy 491 * @gfp_mask: allocation priority 492 * 493 * Make a copy of both an &sk_buff and its data. This is used when the 494 * caller wishes to modify the data and needs a private copy of the 495 * data to alter. Returns %NULL on failure or the pointer to the buffer 496 * on success. The returned buffer has a reference count of 1. 497 * 498 * As by-product this function converts non-linear &sk_buff to linear 499 * one, so that &sk_buff becomes completely private and caller is allowed 500 * to modify all the data of returned buffer. This means that this 501 * function is not recommended for use in circumstances when only 502 * header is going to be modified. Use pskb_copy() instead. 503 */ 504 505 struct sk_buff *skb_copy(const struct sk_buff *skb, unsigned int __nocast gfp_mask) 506 { 507 int headerlen = skb->data - skb->head; 508 /* 509 * Allocate the copy buffer 510 */ 511 struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len, 512 gfp_mask); 513 if (!n) 514 return NULL; 515 516 /* Set the data pointer */ 517 skb_reserve(n, headerlen); 518 /* Set the tail pointer and length */ 519 skb_put(n, skb->len); 520 n->csum = skb->csum; 521 n->ip_summed = skb->ip_summed; 522 523 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 524 BUG(); 525 526 copy_skb_header(n, skb); 527 return n; 528 } 529 530 531 /** 532 * pskb_copy - create copy of an sk_buff with private head. 533 * @skb: buffer to copy 534 * @gfp_mask: allocation priority 535 * 536 * Make a copy of both an &sk_buff and part of its data, located 537 * in header. Fragmented data remain shared. This is used when 538 * the caller wishes to modify only header of &sk_buff and needs 539 * private copy of the header to alter. Returns %NULL on failure 540 * or the pointer to the buffer on success. 541 * The returned buffer has a reference count of 1. 542 */ 543 544 struct sk_buff *pskb_copy(struct sk_buff *skb, unsigned int __nocast gfp_mask) 545 { 546 /* 547 * Allocate the copy buffer 548 */ 549 struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask); 550 551 if (!n) 552 goto out; 553 554 /* Set the data pointer */ 555 skb_reserve(n, skb->data - skb->head); 556 /* Set the tail pointer and length */ 557 skb_put(n, skb_headlen(skb)); 558 /* Copy the bytes */ 559 memcpy(n->data, skb->data, n->len); 560 n->csum = skb->csum; 561 n->ip_summed = skb->ip_summed; 562 563 n->data_len = skb->data_len; 564 n->len = skb->len; 565 566 if (skb_shinfo(skb)->nr_frags) { 567 int i; 568 569 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 570 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 571 get_page(skb_shinfo(n)->frags[i].page); 572 } 573 skb_shinfo(n)->nr_frags = i; 574 } 575 576 if (skb_shinfo(skb)->frag_list) { 577 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 578 skb_clone_fraglist(n); 579 } 580 581 copy_skb_header(n, skb); 582 out: 583 return n; 584 } 585 586 /** 587 * pskb_expand_head - reallocate header of &sk_buff 588 * @skb: buffer to reallocate 589 * @nhead: room to add at head 590 * @ntail: room to add at tail 591 * @gfp_mask: allocation priority 592 * 593 * Expands (or creates identical copy, if &nhead and &ntail are zero) 594 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 595 * reference count of 1. Returns zero in the case of success or error, 596 * if expansion failed. In the last case, &sk_buff is not changed. 597 * 598 * All the pointers pointing into skb header may change and must be 599 * reloaded after call to this function. 600 */ 601 602 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 603 unsigned int __nocast gfp_mask) 604 { 605 int i; 606 u8 *data; 607 int size = nhead + (skb->end - skb->head) + ntail; 608 long off; 609 610 if (skb_shared(skb)) 611 BUG(); 612 613 size = SKB_DATA_ALIGN(size); 614 615 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 616 if (!data) 617 goto nodata; 618 619 /* Copy only real data... and, alas, header. This should be 620 * optimized for the cases when header is void. */ 621 memcpy(data + nhead, skb->head, skb->tail - skb->head); 622 memcpy(data + size, skb->end, sizeof(struct skb_shared_info)); 623 624 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 625 get_page(skb_shinfo(skb)->frags[i].page); 626 627 if (skb_shinfo(skb)->frag_list) 628 skb_clone_fraglist(skb); 629 630 skb_release_data(skb); 631 632 off = (data + nhead) - skb->head; 633 634 skb->head = data; 635 skb->end = data + size; 636 skb->data += off; 637 skb->tail += off; 638 skb->mac.raw += off; 639 skb->h.raw += off; 640 skb->nh.raw += off; 641 skb->cloned = 0; 642 skb->nohdr = 0; 643 atomic_set(&skb_shinfo(skb)->dataref, 1); 644 return 0; 645 646 nodata: 647 return -ENOMEM; 648 } 649 650 /* Make private copy of skb with writable head and some headroom */ 651 652 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 653 { 654 struct sk_buff *skb2; 655 int delta = headroom - skb_headroom(skb); 656 657 if (delta <= 0) 658 skb2 = pskb_copy(skb, GFP_ATOMIC); 659 else { 660 skb2 = skb_clone(skb, GFP_ATOMIC); 661 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 662 GFP_ATOMIC)) { 663 kfree_skb(skb2); 664 skb2 = NULL; 665 } 666 } 667 return skb2; 668 } 669 670 671 /** 672 * skb_copy_expand - copy and expand sk_buff 673 * @skb: buffer to copy 674 * @newheadroom: new free bytes at head 675 * @newtailroom: new free bytes at tail 676 * @gfp_mask: allocation priority 677 * 678 * Make a copy of both an &sk_buff and its data and while doing so 679 * allocate additional space. 680 * 681 * This is used when the caller wishes to modify the data and needs a 682 * private copy of the data to alter as well as more space for new fields. 683 * Returns %NULL on failure or the pointer to the buffer 684 * on success. The returned buffer has a reference count of 1. 685 * 686 * You must pass %GFP_ATOMIC as the allocation priority if this function 687 * is called from an interrupt. 688 * 689 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used 690 * only by netfilter in the cases when checksum is recalculated? --ANK 691 */ 692 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 693 int newheadroom, int newtailroom, 694 unsigned int __nocast gfp_mask) 695 { 696 /* 697 * Allocate the copy buffer 698 */ 699 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 700 gfp_mask); 701 int head_copy_len, head_copy_off; 702 703 if (!n) 704 return NULL; 705 706 skb_reserve(n, newheadroom); 707 708 /* Set the tail pointer and length */ 709 skb_put(n, skb->len); 710 711 head_copy_len = skb_headroom(skb); 712 head_copy_off = 0; 713 if (newheadroom <= head_copy_len) 714 head_copy_len = newheadroom; 715 else 716 head_copy_off = newheadroom - head_copy_len; 717 718 /* Copy the linear header and data. */ 719 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 720 skb->len + head_copy_len)) 721 BUG(); 722 723 copy_skb_header(n, skb); 724 725 return n; 726 } 727 728 /** 729 * skb_pad - zero pad the tail of an skb 730 * @skb: buffer to pad 731 * @pad: space to pad 732 * 733 * Ensure that a buffer is followed by a padding area that is zero 734 * filled. Used by network drivers which may DMA or transfer data 735 * beyond the buffer end onto the wire. 736 * 737 * May return NULL in out of memory cases. 738 */ 739 740 struct sk_buff *skb_pad(struct sk_buff *skb, int pad) 741 { 742 struct sk_buff *nskb; 743 744 /* If the skbuff is non linear tailroom is always zero.. */ 745 if (skb_tailroom(skb) >= pad) { 746 memset(skb->data+skb->len, 0, pad); 747 return skb; 748 } 749 750 nskb = skb_copy_expand(skb, skb_headroom(skb), skb_tailroom(skb) + pad, GFP_ATOMIC); 751 kfree_skb(skb); 752 if (nskb) 753 memset(nskb->data+nskb->len, 0, pad); 754 return nskb; 755 } 756 757 /* Trims skb to length len. It can change skb pointers, if "realloc" is 1. 758 * If realloc==0 and trimming is impossible without change of data, 759 * it is BUG(). 760 */ 761 762 int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc) 763 { 764 int offset = skb_headlen(skb); 765 int nfrags = skb_shinfo(skb)->nr_frags; 766 int i; 767 768 for (i = 0; i < nfrags; i++) { 769 int end = offset + skb_shinfo(skb)->frags[i].size; 770 if (end > len) { 771 if (skb_cloned(skb)) { 772 if (!realloc) 773 BUG(); 774 if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 775 return -ENOMEM; 776 } 777 if (len <= offset) { 778 put_page(skb_shinfo(skb)->frags[i].page); 779 skb_shinfo(skb)->nr_frags--; 780 } else { 781 skb_shinfo(skb)->frags[i].size = len - offset; 782 } 783 } 784 offset = end; 785 } 786 787 if (offset < len) { 788 skb->data_len -= skb->len - len; 789 skb->len = len; 790 } else { 791 if (len <= skb_headlen(skb)) { 792 skb->len = len; 793 skb->data_len = 0; 794 skb->tail = skb->data + len; 795 if (skb_shinfo(skb)->frag_list && !skb_cloned(skb)) 796 skb_drop_fraglist(skb); 797 } else { 798 skb->data_len -= skb->len - len; 799 skb->len = len; 800 } 801 } 802 803 return 0; 804 } 805 806 /** 807 * __pskb_pull_tail - advance tail of skb header 808 * @skb: buffer to reallocate 809 * @delta: number of bytes to advance tail 810 * 811 * The function makes a sense only on a fragmented &sk_buff, 812 * it expands header moving its tail forward and copying necessary 813 * data from fragmented part. 814 * 815 * &sk_buff MUST have reference count of 1. 816 * 817 * Returns %NULL (and &sk_buff does not change) if pull failed 818 * or value of new tail of skb in the case of success. 819 * 820 * All the pointers pointing into skb header may change and must be 821 * reloaded after call to this function. 822 */ 823 824 /* Moves tail of skb head forward, copying data from fragmented part, 825 * when it is necessary. 826 * 1. It may fail due to malloc failure. 827 * 2. It may change skb pointers. 828 * 829 * It is pretty complicated. Luckily, it is called only in exceptional cases. 830 */ 831 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 832 { 833 /* If skb has not enough free space at tail, get new one 834 * plus 128 bytes for future expansions. If we have enough 835 * room at tail, reallocate without expansion only if skb is cloned. 836 */ 837 int i, k, eat = (skb->tail + delta) - skb->end; 838 839 if (eat > 0 || skb_cloned(skb)) { 840 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 841 GFP_ATOMIC)) 842 return NULL; 843 } 844 845 if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta)) 846 BUG(); 847 848 /* Optimization: no fragments, no reasons to preestimate 849 * size of pulled pages. Superb. 850 */ 851 if (!skb_shinfo(skb)->frag_list) 852 goto pull_pages; 853 854 /* Estimate size of pulled pages. */ 855 eat = delta; 856 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 857 if (skb_shinfo(skb)->frags[i].size >= eat) 858 goto pull_pages; 859 eat -= skb_shinfo(skb)->frags[i].size; 860 } 861 862 /* If we need update frag list, we are in troubles. 863 * Certainly, it possible to add an offset to skb data, 864 * but taking into account that pulling is expected to 865 * be very rare operation, it is worth to fight against 866 * further bloating skb head and crucify ourselves here instead. 867 * Pure masohism, indeed. 8)8) 868 */ 869 if (eat) { 870 struct sk_buff *list = skb_shinfo(skb)->frag_list; 871 struct sk_buff *clone = NULL; 872 struct sk_buff *insp = NULL; 873 874 do { 875 if (!list) 876 BUG(); 877 878 if (list->len <= eat) { 879 /* Eaten as whole. */ 880 eat -= list->len; 881 list = list->next; 882 insp = list; 883 } else { 884 /* Eaten partially. */ 885 886 if (skb_shared(list)) { 887 /* Sucks! We need to fork list. :-( */ 888 clone = skb_clone(list, GFP_ATOMIC); 889 if (!clone) 890 return NULL; 891 insp = list->next; 892 list = clone; 893 } else { 894 /* This may be pulled without 895 * problems. */ 896 insp = list; 897 } 898 if (!pskb_pull(list, eat)) { 899 if (clone) 900 kfree_skb(clone); 901 return NULL; 902 } 903 break; 904 } 905 } while (eat); 906 907 /* Free pulled out fragments. */ 908 while ((list = skb_shinfo(skb)->frag_list) != insp) { 909 skb_shinfo(skb)->frag_list = list->next; 910 kfree_skb(list); 911 } 912 /* And insert new clone at head. */ 913 if (clone) { 914 clone->next = list; 915 skb_shinfo(skb)->frag_list = clone; 916 } 917 } 918 /* Success! Now we may commit changes to skb data. */ 919 920 pull_pages: 921 eat = delta; 922 k = 0; 923 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 924 if (skb_shinfo(skb)->frags[i].size <= eat) { 925 put_page(skb_shinfo(skb)->frags[i].page); 926 eat -= skb_shinfo(skb)->frags[i].size; 927 } else { 928 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 929 if (eat) { 930 skb_shinfo(skb)->frags[k].page_offset += eat; 931 skb_shinfo(skb)->frags[k].size -= eat; 932 eat = 0; 933 } 934 k++; 935 } 936 } 937 skb_shinfo(skb)->nr_frags = k; 938 939 skb->tail += delta; 940 skb->data_len -= delta; 941 942 return skb->tail; 943 } 944 945 /* Copy some data bits from skb to kernel buffer. */ 946 947 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 948 { 949 int i, copy; 950 int start = skb_headlen(skb); 951 952 if (offset > (int)skb->len - len) 953 goto fault; 954 955 /* Copy header. */ 956 if ((copy = start - offset) > 0) { 957 if (copy > len) 958 copy = len; 959 memcpy(to, skb->data + offset, copy); 960 if ((len -= copy) == 0) 961 return 0; 962 offset += copy; 963 to += copy; 964 } 965 966 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 967 int end; 968 969 BUG_TRAP(start <= offset + len); 970 971 end = start + skb_shinfo(skb)->frags[i].size; 972 if ((copy = end - offset) > 0) { 973 u8 *vaddr; 974 975 if (copy > len) 976 copy = len; 977 978 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 979 memcpy(to, 980 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 981 offset - start, copy); 982 kunmap_skb_frag(vaddr); 983 984 if ((len -= copy) == 0) 985 return 0; 986 offset += copy; 987 to += copy; 988 } 989 start = end; 990 } 991 992 if (skb_shinfo(skb)->frag_list) { 993 struct sk_buff *list = skb_shinfo(skb)->frag_list; 994 995 for (; list; list = list->next) { 996 int end; 997 998 BUG_TRAP(start <= offset + len); 999 1000 end = start + list->len; 1001 if ((copy = end - offset) > 0) { 1002 if (copy > len) 1003 copy = len; 1004 if (skb_copy_bits(list, offset - start, 1005 to, copy)) 1006 goto fault; 1007 if ((len -= copy) == 0) 1008 return 0; 1009 offset += copy; 1010 to += copy; 1011 } 1012 start = end; 1013 } 1014 } 1015 if (!len) 1016 return 0; 1017 1018 fault: 1019 return -EFAULT; 1020 } 1021 1022 /** 1023 * skb_store_bits - store bits from kernel buffer to skb 1024 * @skb: destination buffer 1025 * @offset: offset in destination 1026 * @from: source buffer 1027 * @len: number of bytes to copy 1028 * 1029 * Copy the specified number of bytes from the source buffer to the 1030 * destination skb. This function handles all the messy bits of 1031 * traversing fragment lists and such. 1032 */ 1033 1034 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len) 1035 { 1036 int i, copy; 1037 int start = skb_headlen(skb); 1038 1039 if (offset > (int)skb->len - len) 1040 goto fault; 1041 1042 if ((copy = start - offset) > 0) { 1043 if (copy > len) 1044 copy = len; 1045 memcpy(skb->data + offset, from, copy); 1046 if ((len -= copy) == 0) 1047 return 0; 1048 offset += copy; 1049 from += copy; 1050 } 1051 1052 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1053 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1054 int end; 1055 1056 BUG_TRAP(start <= offset + len); 1057 1058 end = start + frag->size; 1059 if ((copy = end - offset) > 0) { 1060 u8 *vaddr; 1061 1062 if (copy > len) 1063 copy = len; 1064 1065 vaddr = kmap_skb_frag(frag); 1066 memcpy(vaddr + frag->page_offset + offset - start, 1067 from, copy); 1068 kunmap_skb_frag(vaddr); 1069 1070 if ((len -= copy) == 0) 1071 return 0; 1072 offset += copy; 1073 from += copy; 1074 } 1075 start = end; 1076 } 1077 1078 if (skb_shinfo(skb)->frag_list) { 1079 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1080 1081 for (; list; list = list->next) { 1082 int end; 1083 1084 BUG_TRAP(start <= offset + len); 1085 1086 end = start + list->len; 1087 if ((copy = end - offset) > 0) { 1088 if (copy > len) 1089 copy = len; 1090 if (skb_store_bits(list, offset - start, 1091 from, copy)) 1092 goto fault; 1093 if ((len -= copy) == 0) 1094 return 0; 1095 offset += copy; 1096 from += copy; 1097 } 1098 start = end; 1099 } 1100 } 1101 if (!len) 1102 return 0; 1103 1104 fault: 1105 return -EFAULT; 1106 } 1107 1108 EXPORT_SYMBOL(skb_store_bits); 1109 1110 /* Checksum skb data. */ 1111 1112 unsigned int skb_checksum(const struct sk_buff *skb, int offset, 1113 int len, unsigned int csum) 1114 { 1115 int start = skb_headlen(skb); 1116 int i, copy = start - offset; 1117 int pos = 0; 1118 1119 /* Checksum header. */ 1120 if (copy > 0) { 1121 if (copy > len) 1122 copy = len; 1123 csum = csum_partial(skb->data + offset, copy, csum); 1124 if ((len -= copy) == 0) 1125 return csum; 1126 offset += copy; 1127 pos = copy; 1128 } 1129 1130 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1131 int end; 1132 1133 BUG_TRAP(start <= offset + len); 1134 1135 end = start + skb_shinfo(skb)->frags[i].size; 1136 if ((copy = end - offset) > 0) { 1137 unsigned int csum2; 1138 u8 *vaddr; 1139 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1140 1141 if (copy > len) 1142 copy = len; 1143 vaddr = kmap_skb_frag(frag); 1144 csum2 = csum_partial(vaddr + frag->page_offset + 1145 offset - start, copy, 0); 1146 kunmap_skb_frag(vaddr); 1147 csum = csum_block_add(csum, csum2, pos); 1148 if (!(len -= copy)) 1149 return csum; 1150 offset += copy; 1151 pos += copy; 1152 } 1153 start = end; 1154 } 1155 1156 if (skb_shinfo(skb)->frag_list) { 1157 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1158 1159 for (; list; list = list->next) { 1160 int end; 1161 1162 BUG_TRAP(start <= offset + len); 1163 1164 end = start + list->len; 1165 if ((copy = end - offset) > 0) { 1166 unsigned int csum2; 1167 if (copy > len) 1168 copy = len; 1169 csum2 = skb_checksum(list, offset - start, 1170 copy, 0); 1171 csum = csum_block_add(csum, csum2, pos); 1172 if ((len -= copy) == 0) 1173 return csum; 1174 offset += copy; 1175 pos += copy; 1176 } 1177 start = end; 1178 } 1179 } 1180 if (len) 1181 BUG(); 1182 1183 return csum; 1184 } 1185 1186 /* Both of above in one bottle. */ 1187 1188 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1189 u8 *to, int len, unsigned int csum) 1190 { 1191 int start = skb_headlen(skb); 1192 int i, copy = start - offset; 1193 int pos = 0; 1194 1195 /* Copy header. */ 1196 if (copy > 0) { 1197 if (copy > len) 1198 copy = len; 1199 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1200 copy, csum); 1201 if ((len -= copy) == 0) 1202 return csum; 1203 offset += copy; 1204 to += copy; 1205 pos = copy; 1206 } 1207 1208 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1209 int end; 1210 1211 BUG_TRAP(start <= offset + len); 1212 1213 end = start + skb_shinfo(skb)->frags[i].size; 1214 if ((copy = end - offset) > 0) { 1215 unsigned int csum2; 1216 u8 *vaddr; 1217 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1218 1219 if (copy > len) 1220 copy = len; 1221 vaddr = kmap_skb_frag(frag); 1222 csum2 = csum_partial_copy_nocheck(vaddr + 1223 frag->page_offset + 1224 offset - start, to, 1225 copy, 0); 1226 kunmap_skb_frag(vaddr); 1227 csum = csum_block_add(csum, csum2, pos); 1228 if (!(len -= copy)) 1229 return csum; 1230 offset += copy; 1231 to += copy; 1232 pos += copy; 1233 } 1234 start = end; 1235 } 1236 1237 if (skb_shinfo(skb)->frag_list) { 1238 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1239 1240 for (; list; list = list->next) { 1241 unsigned int csum2; 1242 int end; 1243 1244 BUG_TRAP(start <= offset + len); 1245 1246 end = start + list->len; 1247 if ((copy = end - offset) > 0) { 1248 if (copy > len) 1249 copy = len; 1250 csum2 = skb_copy_and_csum_bits(list, 1251 offset - start, 1252 to, copy, 0); 1253 csum = csum_block_add(csum, csum2, pos); 1254 if ((len -= copy) == 0) 1255 return csum; 1256 offset += copy; 1257 to += copy; 1258 pos += copy; 1259 } 1260 start = end; 1261 } 1262 } 1263 if (len) 1264 BUG(); 1265 return csum; 1266 } 1267 1268 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1269 { 1270 unsigned int csum; 1271 long csstart; 1272 1273 if (skb->ip_summed == CHECKSUM_HW) 1274 csstart = skb->h.raw - skb->data; 1275 else 1276 csstart = skb_headlen(skb); 1277 1278 if (csstart > skb_headlen(skb)) 1279 BUG(); 1280 1281 memcpy(to, skb->data, csstart); 1282 1283 csum = 0; 1284 if (csstart != skb->len) 1285 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1286 skb->len - csstart, 0); 1287 1288 if (skb->ip_summed == CHECKSUM_HW) { 1289 long csstuff = csstart + skb->csum; 1290 1291 *((unsigned short *)(to + csstuff)) = csum_fold(csum); 1292 } 1293 } 1294 1295 /** 1296 * skb_dequeue - remove from the head of the queue 1297 * @list: list to dequeue from 1298 * 1299 * Remove the head of the list. The list lock is taken so the function 1300 * may be used safely with other locking list functions. The head item is 1301 * returned or %NULL if the list is empty. 1302 */ 1303 1304 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1305 { 1306 unsigned long flags; 1307 struct sk_buff *result; 1308 1309 spin_lock_irqsave(&list->lock, flags); 1310 result = __skb_dequeue(list); 1311 spin_unlock_irqrestore(&list->lock, flags); 1312 return result; 1313 } 1314 1315 /** 1316 * skb_dequeue_tail - remove from the tail of the queue 1317 * @list: list to dequeue from 1318 * 1319 * Remove the tail of the list. The list lock is taken so the function 1320 * may be used safely with other locking list functions. The tail item is 1321 * returned or %NULL if the list is empty. 1322 */ 1323 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1324 { 1325 unsigned long flags; 1326 struct sk_buff *result; 1327 1328 spin_lock_irqsave(&list->lock, flags); 1329 result = __skb_dequeue_tail(list); 1330 spin_unlock_irqrestore(&list->lock, flags); 1331 return result; 1332 } 1333 1334 /** 1335 * skb_queue_purge - empty a list 1336 * @list: list to empty 1337 * 1338 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1339 * the list and one reference dropped. This function takes the list 1340 * lock and is atomic with respect to other list locking functions. 1341 */ 1342 void skb_queue_purge(struct sk_buff_head *list) 1343 { 1344 struct sk_buff *skb; 1345 while ((skb = skb_dequeue(list)) != NULL) 1346 kfree_skb(skb); 1347 } 1348 1349 /** 1350 * skb_queue_head - queue a buffer at the list head 1351 * @list: list to use 1352 * @newsk: buffer to queue 1353 * 1354 * Queue a buffer at the start of the list. This function takes the 1355 * list lock and can be used safely with other locking &sk_buff functions 1356 * safely. 1357 * 1358 * A buffer cannot be placed on two lists at the same time. 1359 */ 1360 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1361 { 1362 unsigned long flags; 1363 1364 spin_lock_irqsave(&list->lock, flags); 1365 __skb_queue_head(list, newsk); 1366 spin_unlock_irqrestore(&list->lock, flags); 1367 } 1368 1369 /** 1370 * skb_queue_tail - queue a buffer at the list tail 1371 * @list: list to use 1372 * @newsk: buffer to queue 1373 * 1374 * Queue a buffer at the tail of the list. This function takes the 1375 * list lock and can be used safely with other locking &sk_buff functions 1376 * safely. 1377 * 1378 * A buffer cannot be placed on two lists at the same time. 1379 */ 1380 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1381 { 1382 unsigned long flags; 1383 1384 spin_lock_irqsave(&list->lock, flags); 1385 __skb_queue_tail(list, newsk); 1386 spin_unlock_irqrestore(&list->lock, flags); 1387 } 1388 1389 /** 1390 * skb_unlink - remove a buffer from a list 1391 * @skb: buffer to remove 1392 * @list: list to use 1393 * 1394 * Remove a packet from a list. The list locks are taken and this 1395 * function is atomic with respect to other list locked calls 1396 * 1397 * You must know what list the SKB is on. 1398 */ 1399 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1400 { 1401 unsigned long flags; 1402 1403 spin_lock_irqsave(&list->lock, flags); 1404 __skb_unlink(skb, list); 1405 spin_unlock_irqrestore(&list->lock, flags); 1406 } 1407 1408 /** 1409 * skb_append - append a buffer 1410 * @old: buffer to insert after 1411 * @newsk: buffer to insert 1412 * @list: list to use 1413 * 1414 * Place a packet after a given packet in a list. The list locks are taken 1415 * and this function is atomic with respect to other list locked calls. 1416 * A buffer cannot be placed on two lists at the same time. 1417 */ 1418 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1419 { 1420 unsigned long flags; 1421 1422 spin_lock_irqsave(&list->lock, flags); 1423 __skb_append(old, newsk, list); 1424 spin_unlock_irqrestore(&list->lock, flags); 1425 } 1426 1427 1428 /** 1429 * skb_insert - insert a buffer 1430 * @old: buffer to insert before 1431 * @newsk: buffer to insert 1432 * @list: list to use 1433 * 1434 * Place a packet before a given packet in a list. The list locks are 1435 * taken and this function is atomic with respect to other list locked 1436 * calls. 1437 * 1438 * A buffer cannot be placed on two lists at the same time. 1439 */ 1440 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1441 { 1442 unsigned long flags; 1443 1444 spin_lock_irqsave(&list->lock, flags); 1445 __skb_insert(newsk, old->prev, old, list); 1446 spin_unlock_irqrestore(&list->lock, flags); 1447 } 1448 1449 #if 0 1450 /* 1451 * Tune the memory allocator for a new MTU size. 1452 */ 1453 void skb_add_mtu(int mtu) 1454 { 1455 /* Must match allocation in alloc_skb */ 1456 mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info); 1457 1458 kmem_add_cache_size(mtu); 1459 } 1460 #endif 1461 1462 static inline void skb_split_inside_header(struct sk_buff *skb, 1463 struct sk_buff* skb1, 1464 const u32 len, const int pos) 1465 { 1466 int i; 1467 1468 memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len); 1469 1470 /* And move data appendix as is. */ 1471 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1472 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 1473 1474 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 1475 skb_shinfo(skb)->nr_frags = 0; 1476 skb1->data_len = skb->data_len; 1477 skb1->len += skb1->data_len; 1478 skb->data_len = 0; 1479 skb->len = len; 1480 skb->tail = skb->data + len; 1481 } 1482 1483 static inline void skb_split_no_header(struct sk_buff *skb, 1484 struct sk_buff* skb1, 1485 const u32 len, int pos) 1486 { 1487 int i, k = 0; 1488 const int nfrags = skb_shinfo(skb)->nr_frags; 1489 1490 skb_shinfo(skb)->nr_frags = 0; 1491 skb1->len = skb1->data_len = skb->len - len; 1492 skb->len = len; 1493 skb->data_len = len - pos; 1494 1495 for (i = 0; i < nfrags; i++) { 1496 int size = skb_shinfo(skb)->frags[i].size; 1497 1498 if (pos + size > len) { 1499 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 1500 1501 if (pos < len) { 1502 /* Split frag. 1503 * We have two variants in this case: 1504 * 1. Move all the frag to the second 1505 * part, if it is possible. F.e. 1506 * this approach is mandatory for TUX, 1507 * where splitting is expensive. 1508 * 2. Split is accurately. We make this. 1509 */ 1510 get_page(skb_shinfo(skb)->frags[i].page); 1511 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 1512 skb_shinfo(skb1)->frags[0].size -= len - pos; 1513 skb_shinfo(skb)->frags[i].size = len - pos; 1514 skb_shinfo(skb)->nr_frags++; 1515 } 1516 k++; 1517 } else 1518 skb_shinfo(skb)->nr_frags++; 1519 pos += size; 1520 } 1521 skb_shinfo(skb1)->nr_frags = k; 1522 } 1523 1524 /** 1525 * skb_split - Split fragmented skb to two parts at length len. 1526 * @skb: the buffer to split 1527 * @skb1: the buffer to receive the second part 1528 * @len: new length for skb 1529 */ 1530 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 1531 { 1532 int pos = skb_headlen(skb); 1533 1534 if (len < pos) /* Split line is inside header. */ 1535 skb_split_inside_header(skb, skb1, len, pos); 1536 else /* Second chunk has no header, nothing to copy. */ 1537 skb_split_no_header(skb, skb1, len, pos); 1538 } 1539 1540 /** 1541 * skb_prepare_seq_read - Prepare a sequential read of skb data 1542 * @skb: the buffer to read 1543 * @from: lower offset of data to be read 1544 * @to: upper offset of data to be read 1545 * @st: state variable 1546 * 1547 * Initializes the specified state variable. Must be called before 1548 * invoking skb_seq_read() for the first time. 1549 */ 1550 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1551 unsigned int to, struct skb_seq_state *st) 1552 { 1553 st->lower_offset = from; 1554 st->upper_offset = to; 1555 st->root_skb = st->cur_skb = skb; 1556 st->frag_idx = st->stepped_offset = 0; 1557 st->frag_data = NULL; 1558 } 1559 1560 /** 1561 * skb_seq_read - Sequentially read skb data 1562 * @consumed: number of bytes consumed by the caller so far 1563 * @data: destination pointer for data to be returned 1564 * @st: state variable 1565 * 1566 * Reads a block of skb data at &consumed relative to the 1567 * lower offset specified to skb_prepare_seq_read(). Assigns 1568 * the head of the data block to &data and returns the length 1569 * of the block or 0 if the end of the skb data or the upper 1570 * offset has been reached. 1571 * 1572 * The caller is not required to consume all of the data 1573 * returned, i.e. &consumed is typically set to the number 1574 * of bytes already consumed and the next call to 1575 * skb_seq_read() will return the remaining part of the block. 1576 * 1577 * Note: The size of each block of data returned can be arbitary, 1578 * this limitation is the cost for zerocopy seqeuental 1579 * reads of potentially non linear data. 1580 * 1581 * Note: Fragment lists within fragments are not implemented 1582 * at the moment, state->root_skb could be replaced with 1583 * a stack for this purpose. 1584 */ 1585 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1586 struct skb_seq_state *st) 1587 { 1588 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 1589 skb_frag_t *frag; 1590 1591 if (unlikely(abs_offset >= st->upper_offset)) 1592 return 0; 1593 1594 next_skb: 1595 block_limit = skb_headlen(st->cur_skb); 1596 1597 if (abs_offset < block_limit) { 1598 *data = st->cur_skb->data + abs_offset; 1599 return block_limit - abs_offset; 1600 } 1601 1602 if (st->frag_idx == 0 && !st->frag_data) 1603 st->stepped_offset += skb_headlen(st->cur_skb); 1604 1605 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 1606 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 1607 block_limit = frag->size + st->stepped_offset; 1608 1609 if (abs_offset < block_limit) { 1610 if (!st->frag_data) 1611 st->frag_data = kmap_skb_frag(frag); 1612 1613 *data = (u8 *) st->frag_data + frag->page_offset + 1614 (abs_offset - st->stepped_offset); 1615 1616 return block_limit - abs_offset; 1617 } 1618 1619 if (st->frag_data) { 1620 kunmap_skb_frag(st->frag_data); 1621 st->frag_data = NULL; 1622 } 1623 1624 st->frag_idx++; 1625 st->stepped_offset += frag->size; 1626 } 1627 1628 if (st->cur_skb->next) { 1629 st->cur_skb = st->cur_skb->next; 1630 st->frag_idx = 0; 1631 goto next_skb; 1632 } else if (st->root_skb == st->cur_skb && 1633 skb_shinfo(st->root_skb)->frag_list) { 1634 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 1635 goto next_skb; 1636 } 1637 1638 return 0; 1639 } 1640 1641 /** 1642 * skb_abort_seq_read - Abort a sequential read of skb data 1643 * @st: state variable 1644 * 1645 * Must be called if skb_seq_read() was not called until it 1646 * returned 0. 1647 */ 1648 void skb_abort_seq_read(struct skb_seq_state *st) 1649 { 1650 if (st->frag_data) 1651 kunmap_skb_frag(st->frag_data); 1652 } 1653 1654 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 1655 1656 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 1657 struct ts_config *conf, 1658 struct ts_state *state) 1659 { 1660 return skb_seq_read(offset, text, TS_SKB_CB(state)); 1661 } 1662 1663 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 1664 { 1665 skb_abort_seq_read(TS_SKB_CB(state)); 1666 } 1667 1668 /** 1669 * skb_find_text - Find a text pattern in skb data 1670 * @skb: the buffer to look in 1671 * @from: search offset 1672 * @to: search limit 1673 * @config: textsearch configuration 1674 * @state: uninitialized textsearch state variable 1675 * 1676 * Finds a pattern in the skb data according to the specified 1677 * textsearch configuration. Use textsearch_next() to retrieve 1678 * subsequent occurrences of the pattern. Returns the offset 1679 * to the first occurrence or UINT_MAX if no match was found. 1680 */ 1681 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1682 unsigned int to, struct ts_config *config, 1683 struct ts_state *state) 1684 { 1685 config->get_next_block = skb_ts_get_next_block; 1686 config->finish = skb_ts_finish; 1687 1688 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 1689 1690 return textsearch_find(config, state); 1691 } 1692 1693 void __init skb_init(void) 1694 { 1695 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 1696 sizeof(struct sk_buff), 1697 0, 1698 SLAB_HWCACHE_ALIGN, 1699 NULL, NULL); 1700 if (!skbuff_head_cache) 1701 panic("cannot create skbuff cache"); 1702 1703 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 1704 (2*sizeof(struct sk_buff)) + 1705 sizeof(atomic_t), 1706 0, 1707 SLAB_HWCACHE_ALIGN, 1708 NULL, NULL); 1709 if (!skbuff_fclone_cache) 1710 panic("cannot create skbuff cache"); 1711 1712 do_gettimeofday(&skb_tv_base); 1713 } 1714 1715 EXPORT_SYMBOL(___pskb_trim); 1716 EXPORT_SYMBOL(__kfree_skb); 1717 EXPORT_SYMBOL(__pskb_pull_tail); 1718 EXPORT_SYMBOL(__alloc_skb); 1719 EXPORT_SYMBOL(pskb_copy); 1720 EXPORT_SYMBOL(pskb_expand_head); 1721 EXPORT_SYMBOL(skb_checksum); 1722 EXPORT_SYMBOL(skb_clone); 1723 EXPORT_SYMBOL(skb_clone_fraglist); 1724 EXPORT_SYMBOL(skb_copy); 1725 EXPORT_SYMBOL(skb_copy_and_csum_bits); 1726 EXPORT_SYMBOL(skb_copy_and_csum_dev); 1727 EXPORT_SYMBOL(skb_copy_bits); 1728 EXPORT_SYMBOL(skb_copy_expand); 1729 EXPORT_SYMBOL(skb_over_panic); 1730 EXPORT_SYMBOL(skb_pad); 1731 EXPORT_SYMBOL(skb_realloc_headroom); 1732 EXPORT_SYMBOL(skb_under_panic); 1733 EXPORT_SYMBOL(skb_dequeue); 1734 EXPORT_SYMBOL(skb_dequeue_tail); 1735 EXPORT_SYMBOL(skb_insert); 1736 EXPORT_SYMBOL(skb_queue_purge); 1737 EXPORT_SYMBOL(skb_queue_head); 1738 EXPORT_SYMBOL(skb_queue_tail); 1739 EXPORT_SYMBOL(skb_unlink); 1740 EXPORT_SYMBOL(skb_append); 1741 EXPORT_SYMBOL(skb_split); 1742 EXPORT_SYMBOL(skb_prepare_seq_read); 1743 EXPORT_SYMBOL(skb_seq_read); 1744 EXPORT_SYMBOL(skb_abort_seq_read); 1745 EXPORT_SYMBOL(skb_find_text); 1746 EXPORT_SYMBOL(skb_tv_base); 1747