xref: /linux/net/core/skbuff.c (revision 1375dc4a4579d5e767dd8c2d2abcd929ff59d0a7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71 
72 #include <linux/uaccess.h>
73 #include <trace/events/skb.h>
74 #include <linux/highmem.h>
75 #include <linux/capability.h>
76 #include <linux/user_namespace.h>
77 #include <linux/indirect_call_wrapper.h>
78 
79 #include "datagram.h"
80 
81 struct kmem_cache *skbuff_head_cache __ro_after_init;
82 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
83 #ifdef CONFIG_SKB_EXTENSIONS
84 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
85 #endif
86 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
87 EXPORT_SYMBOL(sysctl_max_skb_frags);
88 
89 /**
90  *	skb_panic - private function for out-of-line support
91  *	@skb:	buffer
92  *	@sz:	size
93  *	@addr:	address
94  *	@msg:	skb_over_panic or skb_under_panic
95  *
96  *	Out-of-line support for skb_put() and skb_push().
97  *	Called via the wrapper skb_over_panic() or skb_under_panic().
98  *	Keep out of line to prevent kernel bloat.
99  *	__builtin_return_address is not used because it is not always reliable.
100  */
101 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
102 		      const char msg[])
103 {
104 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
105 		 msg, addr, skb->len, sz, skb->head, skb->data,
106 		 (unsigned long)skb->tail, (unsigned long)skb->end,
107 		 skb->dev ? skb->dev->name : "<NULL>");
108 	BUG();
109 }
110 
111 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
112 {
113 	skb_panic(skb, sz, addr, __func__);
114 }
115 
116 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
117 {
118 	skb_panic(skb, sz, addr, __func__);
119 }
120 
121 /*
122  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
123  * the caller if emergency pfmemalloc reserves are being used. If it is and
124  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
125  * may be used. Otherwise, the packet data may be discarded until enough
126  * memory is free
127  */
128 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
129 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
130 
131 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
132 			       unsigned long ip, bool *pfmemalloc)
133 {
134 	void *obj;
135 	bool ret_pfmemalloc = false;
136 
137 	/*
138 	 * Try a regular allocation, when that fails and we're not entitled
139 	 * to the reserves, fail.
140 	 */
141 	obj = kmalloc_node_track_caller(size,
142 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
143 					node);
144 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
145 		goto out;
146 
147 	/* Try again but now we are using pfmemalloc reserves */
148 	ret_pfmemalloc = true;
149 	obj = kmalloc_node_track_caller(size, flags, node);
150 
151 out:
152 	if (pfmemalloc)
153 		*pfmemalloc = ret_pfmemalloc;
154 
155 	return obj;
156 }
157 
158 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
159  *	'private' fields and also do memory statistics to find all the
160  *	[BEEP] leaks.
161  *
162  */
163 
164 /**
165  *	__alloc_skb	-	allocate a network buffer
166  *	@size: size to allocate
167  *	@gfp_mask: allocation mask
168  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
169  *		instead of head cache and allocate a cloned (child) skb.
170  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
171  *		allocations in case the data is required for writeback
172  *	@node: numa node to allocate memory on
173  *
174  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
175  *	tail room of at least size bytes. The object has a reference count
176  *	of one. The return is the buffer. On a failure the return is %NULL.
177  *
178  *	Buffers may only be allocated from interrupts using a @gfp_mask of
179  *	%GFP_ATOMIC.
180  */
181 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
182 			    int flags, int node)
183 {
184 	struct kmem_cache *cache;
185 	struct skb_shared_info *shinfo;
186 	struct sk_buff *skb;
187 	u8 *data;
188 	bool pfmemalloc;
189 
190 	cache = (flags & SKB_ALLOC_FCLONE)
191 		? skbuff_fclone_cache : skbuff_head_cache;
192 
193 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
194 		gfp_mask |= __GFP_MEMALLOC;
195 
196 	/* Get the HEAD */
197 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
198 	if (!skb)
199 		goto out;
200 	prefetchw(skb);
201 
202 	/* We do our best to align skb_shared_info on a separate cache
203 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
204 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
205 	 * Both skb->head and skb_shared_info are cache line aligned.
206 	 */
207 	size = SKB_DATA_ALIGN(size);
208 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
209 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
210 	if (!data)
211 		goto nodata;
212 	/* kmalloc(size) might give us more room than requested.
213 	 * Put skb_shared_info exactly at the end of allocated zone,
214 	 * to allow max possible filling before reallocation.
215 	 */
216 	size = SKB_WITH_OVERHEAD(ksize(data));
217 	prefetchw(data + size);
218 
219 	/*
220 	 * Only clear those fields we need to clear, not those that we will
221 	 * actually initialise below. Hence, don't put any more fields after
222 	 * the tail pointer in struct sk_buff!
223 	 */
224 	memset(skb, 0, offsetof(struct sk_buff, tail));
225 	/* Account for allocated memory : skb + skb->head */
226 	skb->truesize = SKB_TRUESIZE(size);
227 	skb->pfmemalloc = pfmemalloc;
228 	refcount_set(&skb->users, 1);
229 	skb->head = data;
230 	skb->data = data;
231 	skb_reset_tail_pointer(skb);
232 	skb->end = skb->tail + size;
233 	skb->mac_header = (typeof(skb->mac_header))~0U;
234 	skb->transport_header = (typeof(skb->transport_header))~0U;
235 
236 	/* make sure we initialize shinfo sequentially */
237 	shinfo = skb_shinfo(skb);
238 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
239 	atomic_set(&shinfo->dataref, 1);
240 
241 	if (flags & SKB_ALLOC_FCLONE) {
242 		struct sk_buff_fclones *fclones;
243 
244 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
245 
246 		skb->fclone = SKB_FCLONE_ORIG;
247 		refcount_set(&fclones->fclone_ref, 1);
248 
249 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
250 	}
251 out:
252 	return skb;
253 nodata:
254 	kmem_cache_free(cache, skb);
255 	skb = NULL;
256 	goto out;
257 }
258 EXPORT_SYMBOL(__alloc_skb);
259 
260 /* Caller must provide SKB that is memset cleared */
261 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
262 					  void *data, unsigned int frag_size)
263 {
264 	struct skb_shared_info *shinfo;
265 	unsigned int size = frag_size ? : ksize(data);
266 
267 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
268 
269 	/* Assumes caller memset cleared SKB */
270 	skb->truesize = SKB_TRUESIZE(size);
271 	refcount_set(&skb->users, 1);
272 	skb->head = data;
273 	skb->data = data;
274 	skb_reset_tail_pointer(skb);
275 	skb->end = skb->tail + size;
276 	skb->mac_header = (typeof(skb->mac_header))~0U;
277 	skb->transport_header = (typeof(skb->transport_header))~0U;
278 
279 	/* make sure we initialize shinfo sequentially */
280 	shinfo = skb_shinfo(skb);
281 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
282 	atomic_set(&shinfo->dataref, 1);
283 
284 	return skb;
285 }
286 
287 /**
288  * __build_skb - build a network buffer
289  * @data: data buffer provided by caller
290  * @frag_size: size of data, or 0 if head was kmalloced
291  *
292  * Allocate a new &sk_buff. Caller provides space holding head and
293  * skb_shared_info. @data must have been allocated by kmalloc() only if
294  * @frag_size is 0, otherwise data should come from the page allocator
295  *  or vmalloc()
296  * The return is the new skb buffer.
297  * On a failure the return is %NULL, and @data is not freed.
298  * Notes :
299  *  Before IO, driver allocates only data buffer where NIC put incoming frame
300  *  Driver should add room at head (NET_SKB_PAD) and
301  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
302  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
303  *  before giving packet to stack.
304  *  RX rings only contains data buffers, not full skbs.
305  */
306 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
307 {
308 	struct sk_buff *skb;
309 
310 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
311 	if (unlikely(!skb))
312 		return NULL;
313 
314 	memset(skb, 0, offsetof(struct sk_buff, tail));
315 
316 	return __build_skb_around(skb, data, frag_size);
317 }
318 
319 /* build_skb() is wrapper over __build_skb(), that specifically
320  * takes care of skb->head and skb->pfmemalloc
321  * This means that if @frag_size is not zero, then @data must be backed
322  * by a page fragment, not kmalloc() or vmalloc()
323  */
324 struct sk_buff *build_skb(void *data, unsigned int frag_size)
325 {
326 	struct sk_buff *skb = __build_skb(data, frag_size);
327 
328 	if (skb && frag_size) {
329 		skb->head_frag = 1;
330 		if (page_is_pfmemalloc(virt_to_head_page(data)))
331 			skb->pfmemalloc = 1;
332 	}
333 	return skb;
334 }
335 EXPORT_SYMBOL(build_skb);
336 
337 /**
338  * build_skb_around - build a network buffer around provided skb
339  * @skb: sk_buff provide by caller, must be memset cleared
340  * @data: data buffer provided by caller
341  * @frag_size: size of data, or 0 if head was kmalloced
342  */
343 struct sk_buff *build_skb_around(struct sk_buff *skb,
344 				 void *data, unsigned int frag_size)
345 {
346 	if (unlikely(!skb))
347 		return NULL;
348 
349 	skb = __build_skb_around(skb, data, frag_size);
350 
351 	if (skb && frag_size) {
352 		skb->head_frag = 1;
353 		if (page_is_pfmemalloc(virt_to_head_page(data)))
354 			skb->pfmemalloc = 1;
355 	}
356 	return skb;
357 }
358 EXPORT_SYMBOL(build_skb_around);
359 
360 #define NAPI_SKB_CACHE_SIZE	64
361 
362 struct napi_alloc_cache {
363 	struct page_frag_cache page;
364 	unsigned int skb_count;
365 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
366 };
367 
368 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
369 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
370 
371 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
372 {
373 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
374 
375 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
376 }
377 
378 void *napi_alloc_frag(unsigned int fragsz)
379 {
380 	fragsz = SKB_DATA_ALIGN(fragsz);
381 
382 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
383 }
384 EXPORT_SYMBOL(napi_alloc_frag);
385 
386 /**
387  * netdev_alloc_frag - allocate a page fragment
388  * @fragsz: fragment size
389  *
390  * Allocates a frag from a page for receive buffer.
391  * Uses GFP_ATOMIC allocations.
392  */
393 void *netdev_alloc_frag(unsigned int fragsz)
394 {
395 	struct page_frag_cache *nc;
396 	void *data;
397 
398 	fragsz = SKB_DATA_ALIGN(fragsz);
399 	if (in_irq() || irqs_disabled()) {
400 		nc = this_cpu_ptr(&netdev_alloc_cache);
401 		data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
402 	} else {
403 		local_bh_disable();
404 		data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
405 		local_bh_enable();
406 	}
407 	return data;
408 }
409 EXPORT_SYMBOL(netdev_alloc_frag);
410 
411 /**
412  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
413  *	@dev: network device to receive on
414  *	@len: length to allocate
415  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
416  *
417  *	Allocate a new &sk_buff and assign it a usage count of one. The
418  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
419  *	the headroom they think they need without accounting for the
420  *	built in space. The built in space is used for optimisations.
421  *
422  *	%NULL is returned if there is no free memory.
423  */
424 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
425 				   gfp_t gfp_mask)
426 {
427 	struct page_frag_cache *nc;
428 	struct sk_buff *skb;
429 	bool pfmemalloc;
430 	void *data;
431 
432 	len += NET_SKB_PAD;
433 
434 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
435 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
436 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
437 		if (!skb)
438 			goto skb_fail;
439 		goto skb_success;
440 	}
441 
442 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
443 	len = SKB_DATA_ALIGN(len);
444 
445 	if (sk_memalloc_socks())
446 		gfp_mask |= __GFP_MEMALLOC;
447 
448 	if (in_irq() || irqs_disabled()) {
449 		nc = this_cpu_ptr(&netdev_alloc_cache);
450 		data = page_frag_alloc(nc, len, gfp_mask);
451 		pfmemalloc = nc->pfmemalloc;
452 	} else {
453 		local_bh_disable();
454 		nc = this_cpu_ptr(&napi_alloc_cache.page);
455 		data = page_frag_alloc(nc, len, gfp_mask);
456 		pfmemalloc = nc->pfmemalloc;
457 		local_bh_enable();
458 	}
459 
460 	if (unlikely(!data))
461 		return NULL;
462 
463 	skb = __build_skb(data, len);
464 	if (unlikely(!skb)) {
465 		skb_free_frag(data);
466 		return NULL;
467 	}
468 
469 	/* use OR instead of assignment to avoid clearing of bits in mask */
470 	if (pfmemalloc)
471 		skb->pfmemalloc = 1;
472 	skb->head_frag = 1;
473 
474 skb_success:
475 	skb_reserve(skb, NET_SKB_PAD);
476 	skb->dev = dev;
477 
478 skb_fail:
479 	return skb;
480 }
481 EXPORT_SYMBOL(__netdev_alloc_skb);
482 
483 /**
484  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
485  *	@napi: napi instance this buffer was allocated for
486  *	@len: length to allocate
487  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
488  *
489  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
490  *	attempt to allocate the head from a special reserved region used
491  *	only for NAPI Rx allocation.  By doing this we can save several
492  *	CPU cycles by avoiding having to disable and re-enable IRQs.
493  *
494  *	%NULL is returned if there is no free memory.
495  */
496 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
497 				 gfp_t gfp_mask)
498 {
499 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
500 	struct sk_buff *skb;
501 	void *data;
502 
503 	len += NET_SKB_PAD + NET_IP_ALIGN;
504 
505 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
506 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
507 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
508 		if (!skb)
509 			goto skb_fail;
510 		goto skb_success;
511 	}
512 
513 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
514 	len = SKB_DATA_ALIGN(len);
515 
516 	if (sk_memalloc_socks())
517 		gfp_mask |= __GFP_MEMALLOC;
518 
519 	data = page_frag_alloc(&nc->page, len, gfp_mask);
520 	if (unlikely(!data))
521 		return NULL;
522 
523 	skb = __build_skb(data, len);
524 	if (unlikely(!skb)) {
525 		skb_free_frag(data);
526 		return NULL;
527 	}
528 
529 	/* use OR instead of assignment to avoid clearing of bits in mask */
530 	if (nc->page.pfmemalloc)
531 		skb->pfmemalloc = 1;
532 	skb->head_frag = 1;
533 
534 skb_success:
535 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
536 	skb->dev = napi->dev;
537 
538 skb_fail:
539 	return skb;
540 }
541 EXPORT_SYMBOL(__napi_alloc_skb);
542 
543 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
544 		     int size, unsigned int truesize)
545 {
546 	skb_fill_page_desc(skb, i, page, off, size);
547 	skb->len += size;
548 	skb->data_len += size;
549 	skb->truesize += truesize;
550 }
551 EXPORT_SYMBOL(skb_add_rx_frag);
552 
553 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
554 			  unsigned int truesize)
555 {
556 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
557 
558 	skb_frag_size_add(frag, size);
559 	skb->len += size;
560 	skb->data_len += size;
561 	skb->truesize += truesize;
562 }
563 EXPORT_SYMBOL(skb_coalesce_rx_frag);
564 
565 static void skb_drop_list(struct sk_buff **listp)
566 {
567 	kfree_skb_list(*listp);
568 	*listp = NULL;
569 }
570 
571 static inline void skb_drop_fraglist(struct sk_buff *skb)
572 {
573 	skb_drop_list(&skb_shinfo(skb)->frag_list);
574 }
575 
576 static void skb_clone_fraglist(struct sk_buff *skb)
577 {
578 	struct sk_buff *list;
579 
580 	skb_walk_frags(skb, list)
581 		skb_get(list);
582 }
583 
584 static void skb_free_head(struct sk_buff *skb)
585 {
586 	unsigned char *head = skb->head;
587 
588 	if (skb->head_frag)
589 		skb_free_frag(head);
590 	else
591 		kfree(head);
592 }
593 
594 static void skb_release_data(struct sk_buff *skb)
595 {
596 	struct skb_shared_info *shinfo = skb_shinfo(skb);
597 	int i;
598 
599 	if (skb->cloned &&
600 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
601 			      &shinfo->dataref))
602 		return;
603 
604 	for (i = 0; i < shinfo->nr_frags; i++)
605 		__skb_frag_unref(&shinfo->frags[i]);
606 
607 	if (shinfo->frag_list)
608 		kfree_skb_list(shinfo->frag_list);
609 
610 	skb_zcopy_clear(skb, true);
611 	skb_free_head(skb);
612 }
613 
614 /*
615  *	Free an skbuff by memory without cleaning the state.
616  */
617 static void kfree_skbmem(struct sk_buff *skb)
618 {
619 	struct sk_buff_fclones *fclones;
620 
621 	switch (skb->fclone) {
622 	case SKB_FCLONE_UNAVAILABLE:
623 		kmem_cache_free(skbuff_head_cache, skb);
624 		return;
625 
626 	case SKB_FCLONE_ORIG:
627 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
628 
629 		/* We usually free the clone (TX completion) before original skb
630 		 * This test would have no chance to be true for the clone,
631 		 * while here, branch prediction will be good.
632 		 */
633 		if (refcount_read(&fclones->fclone_ref) == 1)
634 			goto fastpath;
635 		break;
636 
637 	default: /* SKB_FCLONE_CLONE */
638 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
639 		break;
640 	}
641 	if (!refcount_dec_and_test(&fclones->fclone_ref))
642 		return;
643 fastpath:
644 	kmem_cache_free(skbuff_fclone_cache, fclones);
645 }
646 
647 void skb_release_head_state(struct sk_buff *skb)
648 {
649 	skb_dst_drop(skb);
650 	if (skb->destructor) {
651 		WARN_ON(in_irq());
652 		skb->destructor(skb);
653 	}
654 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
655 	nf_conntrack_put(skb_nfct(skb));
656 #endif
657 	skb_ext_put(skb);
658 }
659 
660 /* Free everything but the sk_buff shell. */
661 static void skb_release_all(struct sk_buff *skb)
662 {
663 	skb_release_head_state(skb);
664 	if (likely(skb->head))
665 		skb_release_data(skb);
666 }
667 
668 /**
669  *	__kfree_skb - private function
670  *	@skb: buffer
671  *
672  *	Free an sk_buff. Release anything attached to the buffer.
673  *	Clean the state. This is an internal helper function. Users should
674  *	always call kfree_skb
675  */
676 
677 void __kfree_skb(struct sk_buff *skb)
678 {
679 	skb_release_all(skb);
680 	kfree_skbmem(skb);
681 }
682 EXPORT_SYMBOL(__kfree_skb);
683 
684 /**
685  *	kfree_skb - free an sk_buff
686  *	@skb: buffer to free
687  *
688  *	Drop a reference to the buffer and free it if the usage count has
689  *	hit zero.
690  */
691 void kfree_skb(struct sk_buff *skb)
692 {
693 	if (!skb_unref(skb))
694 		return;
695 
696 	trace_kfree_skb(skb, __builtin_return_address(0));
697 	__kfree_skb(skb);
698 }
699 EXPORT_SYMBOL(kfree_skb);
700 
701 void kfree_skb_list(struct sk_buff *segs)
702 {
703 	while (segs) {
704 		struct sk_buff *next = segs->next;
705 
706 		kfree_skb(segs);
707 		segs = next;
708 	}
709 }
710 EXPORT_SYMBOL(kfree_skb_list);
711 
712 /* Dump skb information and contents.
713  *
714  * Must only be called from net_ratelimit()-ed paths.
715  *
716  * Dumps up to can_dump_full whole packets if full_pkt, headers otherwise.
717  */
718 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
719 {
720 	static atomic_t can_dump_full = ATOMIC_INIT(5);
721 	struct skb_shared_info *sh = skb_shinfo(skb);
722 	struct net_device *dev = skb->dev;
723 	struct sock *sk = skb->sk;
724 	struct sk_buff *list_skb;
725 	bool has_mac, has_trans;
726 	int headroom, tailroom;
727 	int i, len, seg_len;
728 
729 	if (full_pkt)
730 		full_pkt = atomic_dec_if_positive(&can_dump_full) >= 0;
731 
732 	if (full_pkt)
733 		len = skb->len;
734 	else
735 		len = min_t(int, skb->len, MAX_HEADER + 128);
736 
737 	headroom = skb_headroom(skb);
738 	tailroom = skb_tailroom(skb);
739 
740 	has_mac = skb_mac_header_was_set(skb);
741 	has_trans = skb_transport_header_was_set(skb);
742 
743 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
744 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
745 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
746 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
747 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
748 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
749 	       has_mac ? skb->mac_header : -1,
750 	       has_mac ? skb_mac_header_len(skb) : -1,
751 	       skb->network_header,
752 	       has_trans ? skb_network_header_len(skb) : -1,
753 	       has_trans ? skb->transport_header : -1,
754 	       sh->tx_flags, sh->nr_frags,
755 	       sh->gso_size, sh->gso_type, sh->gso_segs,
756 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
757 	       skb->csum_valid, skb->csum_level,
758 	       skb->hash, skb->sw_hash, skb->l4_hash,
759 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
760 
761 	if (dev)
762 		printk("%sdev name=%s feat=0x%pNF\n",
763 		       level, dev->name, &dev->features);
764 	if (sk)
765 		printk("%ssk family=%hu type=%u proto=%u\n",
766 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
767 
768 	if (full_pkt && headroom)
769 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
770 			       16, 1, skb->head, headroom, false);
771 
772 	seg_len = min_t(int, skb_headlen(skb), len);
773 	if (seg_len)
774 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
775 			       16, 1, skb->data, seg_len, false);
776 	len -= seg_len;
777 
778 	if (full_pkt && tailroom)
779 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
780 			       16, 1, skb_tail_pointer(skb), tailroom, false);
781 
782 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
783 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
784 		u32 p_off, p_len, copied;
785 		struct page *p;
786 		u8 *vaddr;
787 
788 		skb_frag_foreach_page(frag, frag->page_offset,
789 				      skb_frag_size(frag), p, p_off, p_len,
790 				      copied) {
791 			seg_len = min_t(int, p_len, len);
792 			vaddr = kmap_atomic(p);
793 			print_hex_dump(level, "skb frag:     ",
794 				       DUMP_PREFIX_OFFSET,
795 				       16, 1, vaddr + p_off, seg_len, false);
796 			kunmap_atomic(vaddr);
797 			len -= seg_len;
798 			if (!len)
799 				break;
800 		}
801 	}
802 
803 	if (full_pkt && skb_has_frag_list(skb)) {
804 		printk("skb fraglist:\n");
805 		skb_walk_frags(skb, list_skb)
806 			skb_dump(level, list_skb, true);
807 	}
808 }
809 EXPORT_SYMBOL(skb_dump);
810 
811 /**
812  *	skb_tx_error - report an sk_buff xmit error
813  *	@skb: buffer that triggered an error
814  *
815  *	Report xmit error if a device callback is tracking this skb.
816  *	skb must be freed afterwards.
817  */
818 void skb_tx_error(struct sk_buff *skb)
819 {
820 	skb_zcopy_clear(skb, true);
821 }
822 EXPORT_SYMBOL(skb_tx_error);
823 
824 /**
825  *	consume_skb - free an skbuff
826  *	@skb: buffer to free
827  *
828  *	Drop a ref to the buffer and free it if the usage count has hit zero
829  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
830  *	is being dropped after a failure and notes that
831  */
832 void consume_skb(struct sk_buff *skb)
833 {
834 	if (!skb_unref(skb))
835 		return;
836 
837 	trace_consume_skb(skb);
838 	__kfree_skb(skb);
839 }
840 EXPORT_SYMBOL(consume_skb);
841 
842 /**
843  *	consume_stateless_skb - free an skbuff, assuming it is stateless
844  *	@skb: buffer to free
845  *
846  *	Alike consume_skb(), but this variant assumes that this is the last
847  *	skb reference and all the head states have been already dropped
848  */
849 void __consume_stateless_skb(struct sk_buff *skb)
850 {
851 	trace_consume_skb(skb);
852 	skb_release_data(skb);
853 	kfree_skbmem(skb);
854 }
855 
856 void __kfree_skb_flush(void)
857 {
858 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
859 
860 	/* flush skb_cache if containing objects */
861 	if (nc->skb_count) {
862 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
863 				     nc->skb_cache);
864 		nc->skb_count = 0;
865 	}
866 }
867 
868 static inline void _kfree_skb_defer(struct sk_buff *skb)
869 {
870 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
871 
872 	/* drop skb->head and call any destructors for packet */
873 	skb_release_all(skb);
874 
875 	/* record skb to CPU local list */
876 	nc->skb_cache[nc->skb_count++] = skb;
877 
878 #ifdef CONFIG_SLUB
879 	/* SLUB writes into objects when freeing */
880 	prefetchw(skb);
881 #endif
882 
883 	/* flush skb_cache if it is filled */
884 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
885 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
886 				     nc->skb_cache);
887 		nc->skb_count = 0;
888 	}
889 }
890 void __kfree_skb_defer(struct sk_buff *skb)
891 {
892 	_kfree_skb_defer(skb);
893 }
894 
895 void napi_consume_skb(struct sk_buff *skb, int budget)
896 {
897 	if (unlikely(!skb))
898 		return;
899 
900 	/* Zero budget indicate non-NAPI context called us, like netpoll */
901 	if (unlikely(!budget)) {
902 		dev_consume_skb_any(skb);
903 		return;
904 	}
905 
906 	if (!skb_unref(skb))
907 		return;
908 
909 	/* if reaching here SKB is ready to free */
910 	trace_consume_skb(skb);
911 
912 	/* if SKB is a clone, don't handle this case */
913 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
914 		__kfree_skb(skb);
915 		return;
916 	}
917 
918 	_kfree_skb_defer(skb);
919 }
920 EXPORT_SYMBOL(napi_consume_skb);
921 
922 /* Make sure a field is enclosed inside headers_start/headers_end section */
923 #define CHECK_SKB_FIELD(field) \
924 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
925 		     offsetof(struct sk_buff, headers_start));	\
926 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
927 		     offsetof(struct sk_buff, headers_end));	\
928 
929 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
930 {
931 	new->tstamp		= old->tstamp;
932 	/* We do not copy old->sk */
933 	new->dev		= old->dev;
934 	memcpy(new->cb, old->cb, sizeof(old->cb));
935 	skb_dst_copy(new, old);
936 	__skb_ext_copy(new, old);
937 	__nf_copy(new, old, false);
938 
939 	/* Note : this field could be in headers_start/headers_end section
940 	 * It is not yet because we do not want to have a 16 bit hole
941 	 */
942 	new->queue_mapping = old->queue_mapping;
943 
944 	memcpy(&new->headers_start, &old->headers_start,
945 	       offsetof(struct sk_buff, headers_end) -
946 	       offsetof(struct sk_buff, headers_start));
947 	CHECK_SKB_FIELD(protocol);
948 	CHECK_SKB_FIELD(csum);
949 	CHECK_SKB_FIELD(hash);
950 	CHECK_SKB_FIELD(priority);
951 	CHECK_SKB_FIELD(skb_iif);
952 	CHECK_SKB_FIELD(vlan_proto);
953 	CHECK_SKB_FIELD(vlan_tci);
954 	CHECK_SKB_FIELD(transport_header);
955 	CHECK_SKB_FIELD(network_header);
956 	CHECK_SKB_FIELD(mac_header);
957 	CHECK_SKB_FIELD(inner_protocol);
958 	CHECK_SKB_FIELD(inner_transport_header);
959 	CHECK_SKB_FIELD(inner_network_header);
960 	CHECK_SKB_FIELD(inner_mac_header);
961 	CHECK_SKB_FIELD(mark);
962 #ifdef CONFIG_NETWORK_SECMARK
963 	CHECK_SKB_FIELD(secmark);
964 #endif
965 #ifdef CONFIG_NET_RX_BUSY_POLL
966 	CHECK_SKB_FIELD(napi_id);
967 #endif
968 #ifdef CONFIG_XPS
969 	CHECK_SKB_FIELD(sender_cpu);
970 #endif
971 #ifdef CONFIG_NET_SCHED
972 	CHECK_SKB_FIELD(tc_index);
973 #endif
974 
975 }
976 
977 /*
978  * You should not add any new code to this function.  Add it to
979  * __copy_skb_header above instead.
980  */
981 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
982 {
983 #define C(x) n->x = skb->x
984 
985 	n->next = n->prev = NULL;
986 	n->sk = NULL;
987 	__copy_skb_header(n, skb);
988 
989 	C(len);
990 	C(data_len);
991 	C(mac_len);
992 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
993 	n->cloned = 1;
994 	n->nohdr = 0;
995 	n->peeked = 0;
996 	C(pfmemalloc);
997 	n->destructor = NULL;
998 	C(tail);
999 	C(end);
1000 	C(head);
1001 	C(head_frag);
1002 	C(data);
1003 	C(truesize);
1004 	refcount_set(&n->users, 1);
1005 
1006 	atomic_inc(&(skb_shinfo(skb)->dataref));
1007 	skb->cloned = 1;
1008 
1009 	return n;
1010 #undef C
1011 }
1012 
1013 /**
1014  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1015  * @first: first sk_buff of the msg
1016  */
1017 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1018 {
1019 	struct sk_buff *n;
1020 
1021 	n = alloc_skb(0, GFP_ATOMIC);
1022 	if (!n)
1023 		return NULL;
1024 
1025 	n->len = first->len;
1026 	n->data_len = first->len;
1027 	n->truesize = first->truesize;
1028 
1029 	skb_shinfo(n)->frag_list = first;
1030 
1031 	__copy_skb_header(n, first);
1032 	n->destructor = NULL;
1033 
1034 	return n;
1035 }
1036 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1037 
1038 /**
1039  *	skb_morph	-	morph one skb into another
1040  *	@dst: the skb to receive the contents
1041  *	@src: the skb to supply the contents
1042  *
1043  *	This is identical to skb_clone except that the target skb is
1044  *	supplied by the user.
1045  *
1046  *	The target skb is returned upon exit.
1047  */
1048 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1049 {
1050 	skb_release_all(dst);
1051 	return __skb_clone(dst, src);
1052 }
1053 EXPORT_SYMBOL_GPL(skb_morph);
1054 
1055 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1056 {
1057 	unsigned long max_pg, num_pg, new_pg, old_pg;
1058 	struct user_struct *user;
1059 
1060 	if (capable(CAP_IPC_LOCK) || !size)
1061 		return 0;
1062 
1063 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1064 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1065 	user = mmp->user ? : current_user();
1066 
1067 	do {
1068 		old_pg = atomic_long_read(&user->locked_vm);
1069 		new_pg = old_pg + num_pg;
1070 		if (new_pg > max_pg)
1071 			return -ENOBUFS;
1072 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1073 		 old_pg);
1074 
1075 	if (!mmp->user) {
1076 		mmp->user = get_uid(user);
1077 		mmp->num_pg = num_pg;
1078 	} else {
1079 		mmp->num_pg += num_pg;
1080 	}
1081 
1082 	return 0;
1083 }
1084 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1085 
1086 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1087 {
1088 	if (mmp->user) {
1089 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1090 		free_uid(mmp->user);
1091 	}
1092 }
1093 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1094 
1095 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1096 {
1097 	struct ubuf_info *uarg;
1098 	struct sk_buff *skb;
1099 
1100 	WARN_ON_ONCE(!in_task());
1101 
1102 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1103 	if (!skb)
1104 		return NULL;
1105 
1106 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1107 	uarg = (void *)skb->cb;
1108 	uarg->mmp.user = NULL;
1109 
1110 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1111 		kfree_skb(skb);
1112 		return NULL;
1113 	}
1114 
1115 	uarg->callback = sock_zerocopy_callback;
1116 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1117 	uarg->len = 1;
1118 	uarg->bytelen = size;
1119 	uarg->zerocopy = 1;
1120 	refcount_set(&uarg->refcnt, 1);
1121 	sock_hold(sk);
1122 
1123 	return uarg;
1124 }
1125 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1126 
1127 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1128 {
1129 	return container_of((void *)uarg, struct sk_buff, cb);
1130 }
1131 
1132 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1133 					struct ubuf_info *uarg)
1134 {
1135 	if (uarg) {
1136 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1137 		u32 bytelen, next;
1138 
1139 		/* realloc only when socket is locked (TCP, UDP cork),
1140 		 * so uarg->len and sk_zckey access is serialized
1141 		 */
1142 		if (!sock_owned_by_user(sk)) {
1143 			WARN_ON_ONCE(1);
1144 			return NULL;
1145 		}
1146 
1147 		bytelen = uarg->bytelen + size;
1148 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1149 			/* TCP can create new skb to attach new uarg */
1150 			if (sk->sk_type == SOCK_STREAM)
1151 				goto new_alloc;
1152 			return NULL;
1153 		}
1154 
1155 		next = (u32)atomic_read(&sk->sk_zckey);
1156 		if ((u32)(uarg->id + uarg->len) == next) {
1157 			if (mm_account_pinned_pages(&uarg->mmp, size))
1158 				return NULL;
1159 			uarg->len++;
1160 			uarg->bytelen = bytelen;
1161 			atomic_set(&sk->sk_zckey, ++next);
1162 
1163 			/* no extra ref when appending to datagram (MSG_MORE) */
1164 			if (sk->sk_type == SOCK_STREAM)
1165 				sock_zerocopy_get(uarg);
1166 
1167 			return uarg;
1168 		}
1169 	}
1170 
1171 new_alloc:
1172 	return sock_zerocopy_alloc(sk, size);
1173 }
1174 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1175 
1176 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1177 {
1178 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1179 	u32 old_lo, old_hi;
1180 	u64 sum_len;
1181 
1182 	old_lo = serr->ee.ee_info;
1183 	old_hi = serr->ee.ee_data;
1184 	sum_len = old_hi - old_lo + 1ULL + len;
1185 
1186 	if (sum_len >= (1ULL << 32))
1187 		return false;
1188 
1189 	if (lo != old_hi + 1)
1190 		return false;
1191 
1192 	serr->ee.ee_data += len;
1193 	return true;
1194 }
1195 
1196 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1197 {
1198 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1199 	struct sock_exterr_skb *serr;
1200 	struct sock *sk = skb->sk;
1201 	struct sk_buff_head *q;
1202 	unsigned long flags;
1203 	u32 lo, hi;
1204 	u16 len;
1205 
1206 	mm_unaccount_pinned_pages(&uarg->mmp);
1207 
1208 	/* if !len, there was only 1 call, and it was aborted
1209 	 * so do not queue a completion notification
1210 	 */
1211 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1212 		goto release;
1213 
1214 	len = uarg->len;
1215 	lo = uarg->id;
1216 	hi = uarg->id + len - 1;
1217 
1218 	serr = SKB_EXT_ERR(skb);
1219 	memset(serr, 0, sizeof(*serr));
1220 	serr->ee.ee_errno = 0;
1221 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1222 	serr->ee.ee_data = hi;
1223 	serr->ee.ee_info = lo;
1224 	if (!success)
1225 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1226 
1227 	q = &sk->sk_error_queue;
1228 	spin_lock_irqsave(&q->lock, flags);
1229 	tail = skb_peek_tail(q);
1230 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1231 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1232 		__skb_queue_tail(q, skb);
1233 		skb = NULL;
1234 	}
1235 	spin_unlock_irqrestore(&q->lock, flags);
1236 
1237 	sk->sk_error_report(sk);
1238 
1239 release:
1240 	consume_skb(skb);
1241 	sock_put(sk);
1242 }
1243 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1244 
1245 void sock_zerocopy_put(struct ubuf_info *uarg)
1246 {
1247 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1248 		if (uarg->callback)
1249 			uarg->callback(uarg, uarg->zerocopy);
1250 		else
1251 			consume_skb(skb_from_uarg(uarg));
1252 	}
1253 }
1254 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1255 
1256 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1257 {
1258 	if (uarg) {
1259 		struct sock *sk = skb_from_uarg(uarg)->sk;
1260 
1261 		atomic_dec(&sk->sk_zckey);
1262 		uarg->len--;
1263 
1264 		if (have_uref)
1265 			sock_zerocopy_put(uarg);
1266 	}
1267 }
1268 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1269 
1270 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1271 {
1272 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1273 }
1274 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1275 
1276 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1277 			     struct msghdr *msg, int len,
1278 			     struct ubuf_info *uarg)
1279 {
1280 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1281 	struct iov_iter orig_iter = msg->msg_iter;
1282 	int err, orig_len = skb->len;
1283 
1284 	/* An skb can only point to one uarg. This edge case happens when
1285 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1286 	 */
1287 	if (orig_uarg && uarg != orig_uarg)
1288 		return -EEXIST;
1289 
1290 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1291 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1292 		struct sock *save_sk = skb->sk;
1293 
1294 		/* Streams do not free skb on error. Reset to prev state. */
1295 		msg->msg_iter = orig_iter;
1296 		skb->sk = sk;
1297 		___pskb_trim(skb, orig_len);
1298 		skb->sk = save_sk;
1299 		return err;
1300 	}
1301 
1302 	skb_zcopy_set(skb, uarg, NULL);
1303 	return skb->len - orig_len;
1304 }
1305 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1306 
1307 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1308 			      gfp_t gfp_mask)
1309 {
1310 	if (skb_zcopy(orig)) {
1311 		if (skb_zcopy(nskb)) {
1312 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1313 			if (!gfp_mask) {
1314 				WARN_ON_ONCE(1);
1315 				return -ENOMEM;
1316 			}
1317 			if (skb_uarg(nskb) == skb_uarg(orig))
1318 				return 0;
1319 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1320 				return -EIO;
1321 		}
1322 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1323 	}
1324 	return 0;
1325 }
1326 
1327 /**
1328  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1329  *	@skb: the skb to modify
1330  *	@gfp_mask: allocation priority
1331  *
1332  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1333  *	It will copy all frags into kernel and drop the reference
1334  *	to userspace pages.
1335  *
1336  *	If this function is called from an interrupt gfp_mask() must be
1337  *	%GFP_ATOMIC.
1338  *
1339  *	Returns 0 on success or a negative error code on failure
1340  *	to allocate kernel memory to copy to.
1341  */
1342 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1343 {
1344 	int num_frags = skb_shinfo(skb)->nr_frags;
1345 	struct page *page, *head = NULL;
1346 	int i, new_frags;
1347 	u32 d_off;
1348 
1349 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1350 		return -EINVAL;
1351 
1352 	if (!num_frags)
1353 		goto release;
1354 
1355 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1356 	for (i = 0; i < new_frags; i++) {
1357 		page = alloc_page(gfp_mask);
1358 		if (!page) {
1359 			while (head) {
1360 				struct page *next = (struct page *)page_private(head);
1361 				put_page(head);
1362 				head = next;
1363 			}
1364 			return -ENOMEM;
1365 		}
1366 		set_page_private(page, (unsigned long)head);
1367 		head = page;
1368 	}
1369 
1370 	page = head;
1371 	d_off = 0;
1372 	for (i = 0; i < num_frags; i++) {
1373 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1374 		u32 p_off, p_len, copied;
1375 		struct page *p;
1376 		u8 *vaddr;
1377 
1378 		skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1379 				      p, p_off, p_len, copied) {
1380 			u32 copy, done = 0;
1381 			vaddr = kmap_atomic(p);
1382 
1383 			while (done < p_len) {
1384 				if (d_off == PAGE_SIZE) {
1385 					d_off = 0;
1386 					page = (struct page *)page_private(page);
1387 				}
1388 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1389 				memcpy(page_address(page) + d_off,
1390 				       vaddr + p_off + done, copy);
1391 				done += copy;
1392 				d_off += copy;
1393 			}
1394 			kunmap_atomic(vaddr);
1395 		}
1396 	}
1397 
1398 	/* skb frags release userspace buffers */
1399 	for (i = 0; i < num_frags; i++)
1400 		skb_frag_unref(skb, i);
1401 
1402 	/* skb frags point to kernel buffers */
1403 	for (i = 0; i < new_frags - 1; i++) {
1404 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1405 		head = (struct page *)page_private(head);
1406 	}
1407 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1408 	skb_shinfo(skb)->nr_frags = new_frags;
1409 
1410 release:
1411 	skb_zcopy_clear(skb, false);
1412 	return 0;
1413 }
1414 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1415 
1416 /**
1417  *	skb_clone	-	duplicate an sk_buff
1418  *	@skb: buffer to clone
1419  *	@gfp_mask: allocation priority
1420  *
1421  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1422  *	copies share the same packet data but not structure. The new
1423  *	buffer has a reference count of 1. If the allocation fails the
1424  *	function returns %NULL otherwise the new buffer is returned.
1425  *
1426  *	If this function is called from an interrupt gfp_mask() must be
1427  *	%GFP_ATOMIC.
1428  */
1429 
1430 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1431 {
1432 	struct sk_buff_fclones *fclones = container_of(skb,
1433 						       struct sk_buff_fclones,
1434 						       skb1);
1435 	struct sk_buff *n;
1436 
1437 	if (skb_orphan_frags(skb, gfp_mask))
1438 		return NULL;
1439 
1440 	if (skb->fclone == SKB_FCLONE_ORIG &&
1441 	    refcount_read(&fclones->fclone_ref) == 1) {
1442 		n = &fclones->skb2;
1443 		refcount_set(&fclones->fclone_ref, 2);
1444 	} else {
1445 		if (skb_pfmemalloc(skb))
1446 			gfp_mask |= __GFP_MEMALLOC;
1447 
1448 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1449 		if (!n)
1450 			return NULL;
1451 
1452 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1453 	}
1454 
1455 	return __skb_clone(n, skb);
1456 }
1457 EXPORT_SYMBOL(skb_clone);
1458 
1459 void skb_headers_offset_update(struct sk_buff *skb, int off)
1460 {
1461 	/* Only adjust this if it actually is csum_start rather than csum */
1462 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1463 		skb->csum_start += off;
1464 	/* {transport,network,mac}_header and tail are relative to skb->head */
1465 	skb->transport_header += off;
1466 	skb->network_header   += off;
1467 	if (skb_mac_header_was_set(skb))
1468 		skb->mac_header += off;
1469 	skb->inner_transport_header += off;
1470 	skb->inner_network_header += off;
1471 	skb->inner_mac_header += off;
1472 }
1473 EXPORT_SYMBOL(skb_headers_offset_update);
1474 
1475 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1476 {
1477 	__copy_skb_header(new, old);
1478 
1479 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1480 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1481 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1482 }
1483 EXPORT_SYMBOL(skb_copy_header);
1484 
1485 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1486 {
1487 	if (skb_pfmemalloc(skb))
1488 		return SKB_ALLOC_RX;
1489 	return 0;
1490 }
1491 
1492 /**
1493  *	skb_copy	-	create private copy of an sk_buff
1494  *	@skb: buffer to copy
1495  *	@gfp_mask: allocation priority
1496  *
1497  *	Make a copy of both an &sk_buff and its data. This is used when the
1498  *	caller wishes to modify the data and needs a private copy of the
1499  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1500  *	on success. The returned buffer has a reference count of 1.
1501  *
1502  *	As by-product this function converts non-linear &sk_buff to linear
1503  *	one, so that &sk_buff becomes completely private and caller is allowed
1504  *	to modify all the data of returned buffer. This means that this
1505  *	function is not recommended for use in circumstances when only
1506  *	header is going to be modified. Use pskb_copy() instead.
1507  */
1508 
1509 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1510 {
1511 	int headerlen = skb_headroom(skb);
1512 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1513 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1514 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1515 
1516 	if (!n)
1517 		return NULL;
1518 
1519 	/* Set the data pointer */
1520 	skb_reserve(n, headerlen);
1521 	/* Set the tail pointer and length */
1522 	skb_put(n, skb->len);
1523 
1524 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1525 
1526 	skb_copy_header(n, skb);
1527 	return n;
1528 }
1529 EXPORT_SYMBOL(skb_copy);
1530 
1531 /**
1532  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1533  *	@skb: buffer to copy
1534  *	@headroom: headroom of new skb
1535  *	@gfp_mask: allocation priority
1536  *	@fclone: if true allocate the copy of the skb from the fclone
1537  *	cache instead of the head cache; it is recommended to set this
1538  *	to true for the cases where the copy will likely be cloned
1539  *
1540  *	Make a copy of both an &sk_buff and part of its data, located
1541  *	in header. Fragmented data remain shared. This is used when
1542  *	the caller wishes to modify only header of &sk_buff and needs
1543  *	private copy of the header to alter. Returns %NULL on failure
1544  *	or the pointer to the buffer on success.
1545  *	The returned buffer has a reference count of 1.
1546  */
1547 
1548 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1549 				   gfp_t gfp_mask, bool fclone)
1550 {
1551 	unsigned int size = skb_headlen(skb) + headroom;
1552 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1553 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1554 
1555 	if (!n)
1556 		goto out;
1557 
1558 	/* Set the data pointer */
1559 	skb_reserve(n, headroom);
1560 	/* Set the tail pointer and length */
1561 	skb_put(n, skb_headlen(skb));
1562 	/* Copy the bytes */
1563 	skb_copy_from_linear_data(skb, n->data, n->len);
1564 
1565 	n->truesize += skb->data_len;
1566 	n->data_len  = skb->data_len;
1567 	n->len	     = skb->len;
1568 
1569 	if (skb_shinfo(skb)->nr_frags) {
1570 		int i;
1571 
1572 		if (skb_orphan_frags(skb, gfp_mask) ||
1573 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1574 			kfree_skb(n);
1575 			n = NULL;
1576 			goto out;
1577 		}
1578 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1579 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1580 			skb_frag_ref(skb, i);
1581 		}
1582 		skb_shinfo(n)->nr_frags = i;
1583 	}
1584 
1585 	if (skb_has_frag_list(skb)) {
1586 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1587 		skb_clone_fraglist(n);
1588 	}
1589 
1590 	skb_copy_header(n, skb);
1591 out:
1592 	return n;
1593 }
1594 EXPORT_SYMBOL(__pskb_copy_fclone);
1595 
1596 /**
1597  *	pskb_expand_head - reallocate header of &sk_buff
1598  *	@skb: buffer to reallocate
1599  *	@nhead: room to add at head
1600  *	@ntail: room to add at tail
1601  *	@gfp_mask: allocation priority
1602  *
1603  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1604  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1605  *	reference count of 1. Returns zero in the case of success or error,
1606  *	if expansion failed. In the last case, &sk_buff is not changed.
1607  *
1608  *	All the pointers pointing into skb header may change and must be
1609  *	reloaded after call to this function.
1610  */
1611 
1612 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1613 		     gfp_t gfp_mask)
1614 {
1615 	int i, osize = skb_end_offset(skb);
1616 	int size = osize + nhead + ntail;
1617 	long off;
1618 	u8 *data;
1619 
1620 	BUG_ON(nhead < 0);
1621 
1622 	BUG_ON(skb_shared(skb));
1623 
1624 	size = SKB_DATA_ALIGN(size);
1625 
1626 	if (skb_pfmemalloc(skb))
1627 		gfp_mask |= __GFP_MEMALLOC;
1628 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1629 			       gfp_mask, NUMA_NO_NODE, NULL);
1630 	if (!data)
1631 		goto nodata;
1632 	size = SKB_WITH_OVERHEAD(ksize(data));
1633 
1634 	/* Copy only real data... and, alas, header. This should be
1635 	 * optimized for the cases when header is void.
1636 	 */
1637 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1638 
1639 	memcpy((struct skb_shared_info *)(data + size),
1640 	       skb_shinfo(skb),
1641 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1642 
1643 	/*
1644 	 * if shinfo is shared we must drop the old head gracefully, but if it
1645 	 * is not we can just drop the old head and let the existing refcount
1646 	 * be since all we did is relocate the values
1647 	 */
1648 	if (skb_cloned(skb)) {
1649 		if (skb_orphan_frags(skb, gfp_mask))
1650 			goto nofrags;
1651 		if (skb_zcopy(skb))
1652 			refcount_inc(&skb_uarg(skb)->refcnt);
1653 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1654 			skb_frag_ref(skb, i);
1655 
1656 		if (skb_has_frag_list(skb))
1657 			skb_clone_fraglist(skb);
1658 
1659 		skb_release_data(skb);
1660 	} else {
1661 		skb_free_head(skb);
1662 	}
1663 	off = (data + nhead) - skb->head;
1664 
1665 	skb->head     = data;
1666 	skb->head_frag = 0;
1667 	skb->data    += off;
1668 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1669 	skb->end      = size;
1670 	off           = nhead;
1671 #else
1672 	skb->end      = skb->head + size;
1673 #endif
1674 	skb->tail	      += off;
1675 	skb_headers_offset_update(skb, nhead);
1676 	skb->cloned   = 0;
1677 	skb->hdr_len  = 0;
1678 	skb->nohdr    = 0;
1679 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1680 
1681 	skb_metadata_clear(skb);
1682 
1683 	/* It is not generally safe to change skb->truesize.
1684 	 * For the moment, we really care of rx path, or
1685 	 * when skb is orphaned (not attached to a socket).
1686 	 */
1687 	if (!skb->sk || skb->destructor == sock_edemux)
1688 		skb->truesize += size - osize;
1689 
1690 	return 0;
1691 
1692 nofrags:
1693 	kfree(data);
1694 nodata:
1695 	return -ENOMEM;
1696 }
1697 EXPORT_SYMBOL(pskb_expand_head);
1698 
1699 /* Make private copy of skb with writable head and some headroom */
1700 
1701 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1702 {
1703 	struct sk_buff *skb2;
1704 	int delta = headroom - skb_headroom(skb);
1705 
1706 	if (delta <= 0)
1707 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1708 	else {
1709 		skb2 = skb_clone(skb, GFP_ATOMIC);
1710 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1711 					     GFP_ATOMIC)) {
1712 			kfree_skb(skb2);
1713 			skb2 = NULL;
1714 		}
1715 	}
1716 	return skb2;
1717 }
1718 EXPORT_SYMBOL(skb_realloc_headroom);
1719 
1720 /**
1721  *	skb_copy_expand	-	copy and expand sk_buff
1722  *	@skb: buffer to copy
1723  *	@newheadroom: new free bytes at head
1724  *	@newtailroom: new free bytes at tail
1725  *	@gfp_mask: allocation priority
1726  *
1727  *	Make a copy of both an &sk_buff and its data and while doing so
1728  *	allocate additional space.
1729  *
1730  *	This is used when the caller wishes to modify the data and needs a
1731  *	private copy of the data to alter as well as more space for new fields.
1732  *	Returns %NULL on failure or the pointer to the buffer
1733  *	on success. The returned buffer has a reference count of 1.
1734  *
1735  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1736  *	is called from an interrupt.
1737  */
1738 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1739 				int newheadroom, int newtailroom,
1740 				gfp_t gfp_mask)
1741 {
1742 	/*
1743 	 *	Allocate the copy buffer
1744 	 */
1745 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1746 					gfp_mask, skb_alloc_rx_flag(skb),
1747 					NUMA_NO_NODE);
1748 	int oldheadroom = skb_headroom(skb);
1749 	int head_copy_len, head_copy_off;
1750 
1751 	if (!n)
1752 		return NULL;
1753 
1754 	skb_reserve(n, newheadroom);
1755 
1756 	/* Set the tail pointer and length */
1757 	skb_put(n, skb->len);
1758 
1759 	head_copy_len = oldheadroom;
1760 	head_copy_off = 0;
1761 	if (newheadroom <= head_copy_len)
1762 		head_copy_len = newheadroom;
1763 	else
1764 		head_copy_off = newheadroom - head_copy_len;
1765 
1766 	/* Copy the linear header and data. */
1767 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1768 			     skb->len + head_copy_len));
1769 
1770 	skb_copy_header(n, skb);
1771 
1772 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1773 
1774 	return n;
1775 }
1776 EXPORT_SYMBOL(skb_copy_expand);
1777 
1778 /**
1779  *	__skb_pad		-	zero pad the tail of an skb
1780  *	@skb: buffer to pad
1781  *	@pad: space to pad
1782  *	@free_on_error: free buffer on error
1783  *
1784  *	Ensure that a buffer is followed by a padding area that is zero
1785  *	filled. Used by network drivers which may DMA or transfer data
1786  *	beyond the buffer end onto the wire.
1787  *
1788  *	May return error in out of memory cases. The skb is freed on error
1789  *	if @free_on_error is true.
1790  */
1791 
1792 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1793 {
1794 	int err;
1795 	int ntail;
1796 
1797 	/* If the skbuff is non linear tailroom is always zero.. */
1798 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1799 		memset(skb->data+skb->len, 0, pad);
1800 		return 0;
1801 	}
1802 
1803 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1804 	if (likely(skb_cloned(skb) || ntail > 0)) {
1805 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1806 		if (unlikely(err))
1807 			goto free_skb;
1808 	}
1809 
1810 	/* FIXME: The use of this function with non-linear skb's really needs
1811 	 * to be audited.
1812 	 */
1813 	err = skb_linearize(skb);
1814 	if (unlikely(err))
1815 		goto free_skb;
1816 
1817 	memset(skb->data + skb->len, 0, pad);
1818 	return 0;
1819 
1820 free_skb:
1821 	if (free_on_error)
1822 		kfree_skb(skb);
1823 	return err;
1824 }
1825 EXPORT_SYMBOL(__skb_pad);
1826 
1827 /**
1828  *	pskb_put - add data to the tail of a potentially fragmented buffer
1829  *	@skb: start of the buffer to use
1830  *	@tail: tail fragment of the buffer to use
1831  *	@len: amount of data to add
1832  *
1833  *	This function extends the used data area of the potentially
1834  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1835  *	@skb itself. If this would exceed the total buffer size the kernel
1836  *	will panic. A pointer to the first byte of the extra data is
1837  *	returned.
1838  */
1839 
1840 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1841 {
1842 	if (tail != skb) {
1843 		skb->data_len += len;
1844 		skb->len += len;
1845 	}
1846 	return skb_put(tail, len);
1847 }
1848 EXPORT_SYMBOL_GPL(pskb_put);
1849 
1850 /**
1851  *	skb_put - add data to a buffer
1852  *	@skb: buffer to use
1853  *	@len: amount of data to add
1854  *
1855  *	This function extends the used data area of the buffer. If this would
1856  *	exceed the total buffer size the kernel will panic. A pointer to the
1857  *	first byte of the extra data is returned.
1858  */
1859 void *skb_put(struct sk_buff *skb, unsigned int len)
1860 {
1861 	void *tmp = skb_tail_pointer(skb);
1862 	SKB_LINEAR_ASSERT(skb);
1863 	skb->tail += len;
1864 	skb->len  += len;
1865 	if (unlikely(skb->tail > skb->end))
1866 		skb_over_panic(skb, len, __builtin_return_address(0));
1867 	return tmp;
1868 }
1869 EXPORT_SYMBOL(skb_put);
1870 
1871 /**
1872  *	skb_push - add data to the start of a buffer
1873  *	@skb: buffer to use
1874  *	@len: amount of data to add
1875  *
1876  *	This function extends the used data area of the buffer at the buffer
1877  *	start. If this would exceed the total buffer headroom the kernel will
1878  *	panic. A pointer to the first byte of the extra data is returned.
1879  */
1880 void *skb_push(struct sk_buff *skb, unsigned int len)
1881 {
1882 	skb->data -= len;
1883 	skb->len  += len;
1884 	if (unlikely(skb->data < skb->head))
1885 		skb_under_panic(skb, len, __builtin_return_address(0));
1886 	return skb->data;
1887 }
1888 EXPORT_SYMBOL(skb_push);
1889 
1890 /**
1891  *	skb_pull - remove data from the start of a buffer
1892  *	@skb: buffer to use
1893  *	@len: amount of data to remove
1894  *
1895  *	This function removes data from the start of a buffer, returning
1896  *	the memory to the headroom. A pointer to the next data in the buffer
1897  *	is returned. Once the data has been pulled future pushes will overwrite
1898  *	the old data.
1899  */
1900 void *skb_pull(struct sk_buff *skb, unsigned int len)
1901 {
1902 	return skb_pull_inline(skb, len);
1903 }
1904 EXPORT_SYMBOL(skb_pull);
1905 
1906 /**
1907  *	skb_trim - remove end from a buffer
1908  *	@skb: buffer to alter
1909  *	@len: new length
1910  *
1911  *	Cut the length of a buffer down by removing data from the tail. If
1912  *	the buffer is already under the length specified it is not modified.
1913  *	The skb must be linear.
1914  */
1915 void skb_trim(struct sk_buff *skb, unsigned int len)
1916 {
1917 	if (skb->len > len)
1918 		__skb_trim(skb, len);
1919 }
1920 EXPORT_SYMBOL(skb_trim);
1921 
1922 /* Trims skb to length len. It can change skb pointers.
1923  */
1924 
1925 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1926 {
1927 	struct sk_buff **fragp;
1928 	struct sk_buff *frag;
1929 	int offset = skb_headlen(skb);
1930 	int nfrags = skb_shinfo(skb)->nr_frags;
1931 	int i;
1932 	int err;
1933 
1934 	if (skb_cloned(skb) &&
1935 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1936 		return err;
1937 
1938 	i = 0;
1939 	if (offset >= len)
1940 		goto drop_pages;
1941 
1942 	for (; i < nfrags; i++) {
1943 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1944 
1945 		if (end < len) {
1946 			offset = end;
1947 			continue;
1948 		}
1949 
1950 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1951 
1952 drop_pages:
1953 		skb_shinfo(skb)->nr_frags = i;
1954 
1955 		for (; i < nfrags; i++)
1956 			skb_frag_unref(skb, i);
1957 
1958 		if (skb_has_frag_list(skb))
1959 			skb_drop_fraglist(skb);
1960 		goto done;
1961 	}
1962 
1963 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1964 	     fragp = &frag->next) {
1965 		int end = offset + frag->len;
1966 
1967 		if (skb_shared(frag)) {
1968 			struct sk_buff *nfrag;
1969 
1970 			nfrag = skb_clone(frag, GFP_ATOMIC);
1971 			if (unlikely(!nfrag))
1972 				return -ENOMEM;
1973 
1974 			nfrag->next = frag->next;
1975 			consume_skb(frag);
1976 			frag = nfrag;
1977 			*fragp = frag;
1978 		}
1979 
1980 		if (end < len) {
1981 			offset = end;
1982 			continue;
1983 		}
1984 
1985 		if (end > len &&
1986 		    unlikely((err = pskb_trim(frag, len - offset))))
1987 			return err;
1988 
1989 		if (frag->next)
1990 			skb_drop_list(&frag->next);
1991 		break;
1992 	}
1993 
1994 done:
1995 	if (len > skb_headlen(skb)) {
1996 		skb->data_len -= skb->len - len;
1997 		skb->len       = len;
1998 	} else {
1999 		skb->len       = len;
2000 		skb->data_len  = 0;
2001 		skb_set_tail_pointer(skb, len);
2002 	}
2003 
2004 	if (!skb->sk || skb->destructor == sock_edemux)
2005 		skb_condense(skb);
2006 	return 0;
2007 }
2008 EXPORT_SYMBOL(___pskb_trim);
2009 
2010 /* Note : use pskb_trim_rcsum() instead of calling this directly
2011  */
2012 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2013 {
2014 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2015 		int delta = skb->len - len;
2016 
2017 		skb->csum = csum_block_sub(skb->csum,
2018 					   skb_checksum(skb, len, delta, 0),
2019 					   len);
2020 	}
2021 	return __pskb_trim(skb, len);
2022 }
2023 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2024 
2025 /**
2026  *	__pskb_pull_tail - advance tail of skb header
2027  *	@skb: buffer to reallocate
2028  *	@delta: number of bytes to advance tail
2029  *
2030  *	The function makes a sense only on a fragmented &sk_buff,
2031  *	it expands header moving its tail forward and copying necessary
2032  *	data from fragmented part.
2033  *
2034  *	&sk_buff MUST have reference count of 1.
2035  *
2036  *	Returns %NULL (and &sk_buff does not change) if pull failed
2037  *	or value of new tail of skb in the case of success.
2038  *
2039  *	All the pointers pointing into skb header may change and must be
2040  *	reloaded after call to this function.
2041  */
2042 
2043 /* Moves tail of skb head forward, copying data from fragmented part,
2044  * when it is necessary.
2045  * 1. It may fail due to malloc failure.
2046  * 2. It may change skb pointers.
2047  *
2048  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2049  */
2050 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2051 {
2052 	/* If skb has not enough free space at tail, get new one
2053 	 * plus 128 bytes for future expansions. If we have enough
2054 	 * room at tail, reallocate without expansion only if skb is cloned.
2055 	 */
2056 	int i, k, eat = (skb->tail + delta) - skb->end;
2057 
2058 	if (eat > 0 || skb_cloned(skb)) {
2059 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2060 				     GFP_ATOMIC))
2061 			return NULL;
2062 	}
2063 
2064 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2065 			     skb_tail_pointer(skb), delta));
2066 
2067 	/* Optimization: no fragments, no reasons to preestimate
2068 	 * size of pulled pages. Superb.
2069 	 */
2070 	if (!skb_has_frag_list(skb))
2071 		goto pull_pages;
2072 
2073 	/* Estimate size of pulled pages. */
2074 	eat = delta;
2075 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2076 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2077 
2078 		if (size >= eat)
2079 			goto pull_pages;
2080 		eat -= size;
2081 	}
2082 
2083 	/* If we need update frag list, we are in troubles.
2084 	 * Certainly, it is possible to add an offset to skb data,
2085 	 * but taking into account that pulling is expected to
2086 	 * be very rare operation, it is worth to fight against
2087 	 * further bloating skb head and crucify ourselves here instead.
2088 	 * Pure masohism, indeed. 8)8)
2089 	 */
2090 	if (eat) {
2091 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2092 		struct sk_buff *clone = NULL;
2093 		struct sk_buff *insp = NULL;
2094 
2095 		do {
2096 			if (list->len <= eat) {
2097 				/* Eaten as whole. */
2098 				eat -= list->len;
2099 				list = list->next;
2100 				insp = list;
2101 			} else {
2102 				/* Eaten partially. */
2103 
2104 				if (skb_shared(list)) {
2105 					/* Sucks! We need to fork list. :-( */
2106 					clone = skb_clone(list, GFP_ATOMIC);
2107 					if (!clone)
2108 						return NULL;
2109 					insp = list->next;
2110 					list = clone;
2111 				} else {
2112 					/* This may be pulled without
2113 					 * problems. */
2114 					insp = list;
2115 				}
2116 				if (!pskb_pull(list, eat)) {
2117 					kfree_skb(clone);
2118 					return NULL;
2119 				}
2120 				break;
2121 			}
2122 		} while (eat);
2123 
2124 		/* Free pulled out fragments. */
2125 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2126 			skb_shinfo(skb)->frag_list = list->next;
2127 			kfree_skb(list);
2128 		}
2129 		/* And insert new clone at head. */
2130 		if (clone) {
2131 			clone->next = list;
2132 			skb_shinfo(skb)->frag_list = clone;
2133 		}
2134 	}
2135 	/* Success! Now we may commit changes to skb data. */
2136 
2137 pull_pages:
2138 	eat = delta;
2139 	k = 0;
2140 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2141 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2142 
2143 		if (size <= eat) {
2144 			skb_frag_unref(skb, i);
2145 			eat -= size;
2146 		} else {
2147 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
2148 			if (eat) {
2149 				skb_shinfo(skb)->frags[k].page_offset += eat;
2150 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
2151 				if (!i)
2152 					goto end;
2153 				eat = 0;
2154 			}
2155 			k++;
2156 		}
2157 	}
2158 	skb_shinfo(skb)->nr_frags = k;
2159 
2160 end:
2161 	skb->tail     += delta;
2162 	skb->data_len -= delta;
2163 
2164 	if (!skb->data_len)
2165 		skb_zcopy_clear(skb, false);
2166 
2167 	return skb_tail_pointer(skb);
2168 }
2169 EXPORT_SYMBOL(__pskb_pull_tail);
2170 
2171 /**
2172  *	skb_copy_bits - copy bits from skb to kernel buffer
2173  *	@skb: source skb
2174  *	@offset: offset in source
2175  *	@to: destination buffer
2176  *	@len: number of bytes to copy
2177  *
2178  *	Copy the specified number of bytes from the source skb to the
2179  *	destination buffer.
2180  *
2181  *	CAUTION ! :
2182  *		If its prototype is ever changed,
2183  *		check arch/{*}/net/{*}.S files,
2184  *		since it is called from BPF assembly code.
2185  */
2186 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2187 {
2188 	int start = skb_headlen(skb);
2189 	struct sk_buff *frag_iter;
2190 	int i, copy;
2191 
2192 	if (offset > (int)skb->len - len)
2193 		goto fault;
2194 
2195 	/* Copy header. */
2196 	if ((copy = start - offset) > 0) {
2197 		if (copy > len)
2198 			copy = len;
2199 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2200 		if ((len -= copy) == 0)
2201 			return 0;
2202 		offset += copy;
2203 		to     += copy;
2204 	}
2205 
2206 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2207 		int end;
2208 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2209 
2210 		WARN_ON(start > offset + len);
2211 
2212 		end = start + skb_frag_size(f);
2213 		if ((copy = end - offset) > 0) {
2214 			u32 p_off, p_len, copied;
2215 			struct page *p;
2216 			u8 *vaddr;
2217 
2218 			if (copy > len)
2219 				copy = len;
2220 
2221 			skb_frag_foreach_page(f,
2222 					      f->page_offset + offset - start,
2223 					      copy, p, p_off, p_len, copied) {
2224 				vaddr = kmap_atomic(p);
2225 				memcpy(to + copied, vaddr + p_off, p_len);
2226 				kunmap_atomic(vaddr);
2227 			}
2228 
2229 			if ((len -= copy) == 0)
2230 				return 0;
2231 			offset += copy;
2232 			to     += copy;
2233 		}
2234 		start = end;
2235 	}
2236 
2237 	skb_walk_frags(skb, frag_iter) {
2238 		int end;
2239 
2240 		WARN_ON(start > offset + len);
2241 
2242 		end = start + frag_iter->len;
2243 		if ((copy = end - offset) > 0) {
2244 			if (copy > len)
2245 				copy = len;
2246 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2247 				goto fault;
2248 			if ((len -= copy) == 0)
2249 				return 0;
2250 			offset += copy;
2251 			to     += copy;
2252 		}
2253 		start = end;
2254 	}
2255 
2256 	if (!len)
2257 		return 0;
2258 
2259 fault:
2260 	return -EFAULT;
2261 }
2262 EXPORT_SYMBOL(skb_copy_bits);
2263 
2264 /*
2265  * Callback from splice_to_pipe(), if we need to release some pages
2266  * at the end of the spd in case we error'ed out in filling the pipe.
2267  */
2268 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2269 {
2270 	put_page(spd->pages[i]);
2271 }
2272 
2273 static struct page *linear_to_page(struct page *page, unsigned int *len,
2274 				   unsigned int *offset,
2275 				   struct sock *sk)
2276 {
2277 	struct page_frag *pfrag = sk_page_frag(sk);
2278 
2279 	if (!sk_page_frag_refill(sk, pfrag))
2280 		return NULL;
2281 
2282 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2283 
2284 	memcpy(page_address(pfrag->page) + pfrag->offset,
2285 	       page_address(page) + *offset, *len);
2286 	*offset = pfrag->offset;
2287 	pfrag->offset += *len;
2288 
2289 	return pfrag->page;
2290 }
2291 
2292 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2293 			     struct page *page,
2294 			     unsigned int offset)
2295 {
2296 	return	spd->nr_pages &&
2297 		spd->pages[spd->nr_pages - 1] == page &&
2298 		(spd->partial[spd->nr_pages - 1].offset +
2299 		 spd->partial[spd->nr_pages - 1].len == offset);
2300 }
2301 
2302 /*
2303  * Fill page/offset/length into spd, if it can hold more pages.
2304  */
2305 static bool spd_fill_page(struct splice_pipe_desc *spd,
2306 			  struct pipe_inode_info *pipe, struct page *page,
2307 			  unsigned int *len, unsigned int offset,
2308 			  bool linear,
2309 			  struct sock *sk)
2310 {
2311 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2312 		return true;
2313 
2314 	if (linear) {
2315 		page = linear_to_page(page, len, &offset, sk);
2316 		if (!page)
2317 			return true;
2318 	}
2319 	if (spd_can_coalesce(spd, page, offset)) {
2320 		spd->partial[spd->nr_pages - 1].len += *len;
2321 		return false;
2322 	}
2323 	get_page(page);
2324 	spd->pages[spd->nr_pages] = page;
2325 	spd->partial[spd->nr_pages].len = *len;
2326 	spd->partial[spd->nr_pages].offset = offset;
2327 	spd->nr_pages++;
2328 
2329 	return false;
2330 }
2331 
2332 static bool __splice_segment(struct page *page, unsigned int poff,
2333 			     unsigned int plen, unsigned int *off,
2334 			     unsigned int *len,
2335 			     struct splice_pipe_desc *spd, bool linear,
2336 			     struct sock *sk,
2337 			     struct pipe_inode_info *pipe)
2338 {
2339 	if (!*len)
2340 		return true;
2341 
2342 	/* skip this segment if already processed */
2343 	if (*off >= plen) {
2344 		*off -= plen;
2345 		return false;
2346 	}
2347 
2348 	/* ignore any bits we already processed */
2349 	poff += *off;
2350 	plen -= *off;
2351 	*off = 0;
2352 
2353 	do {
2354 		unsigned int flen = min(*len, plen);
2355 
2356 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2357 				  linear, sk))
2358 			return true;
2359 		poff += flen;
2360 		plen -= flen;
2361 		*len -= flen;
2362 	} while (*len && plen);
2363 
2364 	return false;
2365 }
2366 
2367 /*
2368  * Map linear and fragment data from the skb to spd. It reports true if the
2369  * pipe is full or if we already spliced the requested length.
2370  */
2371 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2372 			      unsigned int *offset, unsigned int *len,
2373 			      struct splice_pipe_desc *spd, struct sock *sk)
2374 {
2375 	int seg;
2376 	struct sk_buff *iter;
2377 
2378 	/* map the linear part :
2379 	 * If skb->head_frag is set, this 'linear' part is backed by a
2380 	 * fragment, and if the head is not shared with any clones then
2381 	 * we can avoid a copy since we own the head portion of this page.
2382 	 */
2383 	if (__splice_segment(virt_to_page(skb->data),
2384 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2385 			     skb_headlen(skb),
2386 			     offset, len, spd,
2387 			     skb_head_is_locked(skb),
2388 			     sk, pipe))
2389 		return true;
2390 
2391 	/*
2392 	 * then map the fragments
2393 	 */
2394 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2395 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2396 
2397 		if (__splice_segment(skb_frag_page(f),
2398 				     f->page_offset, skb_frag_size(f),
2399 				     offset, len, spd, false, sk, pipe))
2400 			return true;
2401 	}
2402 
2403 	skb_walk_frags(skb, iter) {
2404 		if (*offset >= iter->len) {
2405 			*offset -= iter->len;
2406 			continue;
2407 		}
2408 		/* __skb_splice_bits() only fails if the output has no room
2409 		 * left, so no point in going over the frag_list for the error
2410 		 * case.
2411 		 */
2412 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2413 			return true;
2414 	}
2415 
2416 	return false;
2417 }
2418 
2419 /*
2420  * Map data from the skb to a pipe. Should handle both the linear part,
2421  * the fragments, and the frag list.
2422  */
2423 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2424 		    struct pipe_inode_info *pipe, unsigned int tlen,
2425 		    unsigned int flags)
2426 {
2427 	struct partial_page partial[MAX_SKB_FRAGS];
2428 	struct page *pages[MAX_SKB_FRAGS];
2429 	struct splice_pipe_desc spd = {
2430 		.pages = pages,
2431 		.partial = partial,
2432 		.nr_pages_max = MAX_SKB_FRAGS,
2433 		.ops = &nosteal_pipe_buf_ops,
2434 		.spd_release = sock_spd_release,
2435 	};
2436 	int ret = 0;
2437 
2438 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2439 
2440 	if (spd.nr_pages)
2441 		ret = splice_to_pipe(pipe, &spd);
2442 
2443 	return ret;
2444 }
2445 EXPORT_SYMBOL_GPL(skb_splice_bits);
2446 
2447 /* Send skb data on a socket. Socket must be locked. */
2448 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2449 			 int len)
2450 {
2451 	unsigned int orig_len = len;
2452 	struct sk_buff *head = skb;
2453 	unsigned short fragidx;
2454 	int slen, ret;
2455 
2456 do_frag_list:
2457 
2458 	/* Deal with head data */
2459 	while (offset < skb_headlen(skb) && len) {
2460 		struct kvec kv;
2461 		struct msghdr msg;
2462 
2463 		slen = min_t(int, len, skb_headlen(skb) - offset);
2464 		kv.iov_base = skb->data + offset;
2465 		kv.iov_len = slen;
2466 		memset(&msg, 0, sizeof(msg));
2467 		msg.msg_flags = MSG_DONTWAIT;
2468 
2469 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2470 		if (ret <= 0)
2471 			goto error;
2472 
2473 		offset += ret;
2474 		len -= ret;
2475 	}
2476 
2477 	/* All the data was skb head? */
2478 	if (!len)
2479 		goto out;
2480 
2481 	/* Make offset relative to start of frags */
2482 	offset -= skb_headlen(skb);
2483 
2484 	/* Find where we are in frag list */
2485 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2486 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2487 
2488 		if (offset < skb_frag_size(frag))
2489 			break;
2490 
2491 		offset -= skb_frag_size(frag);
2492 	}
2493 
2494 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2495 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2496 
2497 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2498 
2499 		while (slen) {
2500 			ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2501 						     frag->page_offset + offset,
2502 						     slen, MSG_DONTWAIT);
2503 			if (ret <= 0)
2504 				goto error;
2505 
2506 			len -= ret;
2507 			offset += ret;
2508 			slen -= ret;
2509 		}
2510 
2511 		offset = 0;
2512 	}
2513 
2514 	if (len) {
2515 		/* Process any frag lists */
2516 
2517 		if (skb == head) {
2518 			if (skb_has_frag_list(skb)) {
2519 				skb = skb_shinfo(skb)->frag_list;
2520 				goto do_frag_list;
2521 			}
2522 		} else if (skb->next) {
2523 			skb = skb->next;
2524 			goto do_frag_list;
2525 		}
2526 	}
2527 
2528 out:
2529 	return orig_len - len;
2530 
2531 error:
2532 	return orig_len == len ? ret : orig_len - len;
2533 }
2534 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2535 
2536 /**
2537  *	skb_store_bits - store bits from kernel buffer to skb
2538  *	@skb: destination buffer
2539  *	@offset: offset in destination
2540  *	@from: source buffer
2541  *	@len: number of bytes to copy
2542  *
2543  *	Copy the specified number of bytes from the source buffer to the
2544  *	destination skb.  This function handles all the messy bits of
2545  *	traversing fragment lists and such.
2546  */
2547 
2548 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2549 {
2550 	int start = skb_headlen(skb);
2551 	struct sk_buff *frag_iter;
2552 	int i, copy;
2553 
2554 	if (offset > (int)skb->len - len)
2555 		goto fault;
2556 
2557 	if ((copy = start - offset) > 0) {
2558 		if (copy > len)
2559 			copy = len;
2560 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2561 		if ((len -= copy) == 0)
2562 			return 0;
2563 		offset += copy;
2564 		from += copy;
2565 	}
2566 
2567 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2568 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2569 		int end;
2570 
2571 		WARN_ON(start > offset + len);
2572 
2573 		end = start + skb_frag_size(frag);
2574 		if ((copy = end - offset) > 0) {
2575 			u32 p_off, p_len, copied;
2576 			struct page *p;
2577 			u8 *vaddr;
2578 
2579 			if (copy > len)
2580 				copy = len;
2581 
2582 			skb_frag_foreach_page(frag,
2583 					      frag->page_offset + offset - start,
2584 					      copy, p, p_off, p_len, copied) {
2585 				vaddr = kmap_atomic(p);
2586 				memcpy(vaddr + p_off, from + copied, p_len);
2587 				kunmap_atomic(vaddr);
2588 			}
2589 
2590 			if ((len -= copy) == 0)
2591 				return 0;
2592 			offset += copy;
2593 			from += copy;
2594 		}
2595 		start = end;
2596 	}
2597 
2598 	skb_walk_frags(skb, frag_iter) {
2599 		int end;
2600 
2601 		WARN_ON(start > offset + len);
2602 
2603 		end = start + frag_iter->len;
2604 		if ((copy = end - offset) > 0) {
2605 			if (copy > len)
2606 				copy = len;
2607 			if (skb_store_bits(frag_iter, offset - start,
2608 					   from, copy))
2609 				goto fault;
2610 			if ((len -= copy) == 0)
2611 				return 0;
2612 			offset += copy;
2613 			from += copy;
2614 		}
2615 		start = end;
2616 	}
2617 	if (!len)
2618 		return 0;
2619 
2620 fault:
2621 	return -EFAULT;
2622 }
2623 EXPORT_SYMBOL(skb_store_bits);
2624 
2625 /* Checksum skb data. */
2626 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2627 		      __wsum csum, const struct skb_checksum_ops *ops)
2628 {
2629 	int start = skb_headlen(skb);
2630 	int i, copy = start - offset;
2631 	struct sk_buff *frag_iter;
2632 	int pos = 0;
2633 
2634 	/* Checksum header. */
2635 	if (copy > 0) {
2636 		if (copy > len)
2637 			copy = len;
2638 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2639 				       skb->data + offset, copy, csum);
2640 		if ((len -= copy) == 0)
2641 			return csum;
2642 		offset += copy;
2643 		pos	= copy;
2644 	}
2645 
2646 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2647 		int end;
2648 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2649 
2650 		WARN_ON(start > offset + len);
2651 
2652 		end = start + skb_frag_size(frag);
2653 		if ((copy = end - offset) > 0) {
2654 			u32 p_off, p_len, copied;
2655 			struct page *p;
2656 			__wsum csum2;
2657 			u8 *vaddr;
2658 
2659 			if (copy > len)
2660 				copy = len;
2661 
2662 			skb_frag_foreach_page(frag,
2663 					      frag->page_offset + offset - start,
2664 					      copy, p, p_off, p_len, copied) {
2665 				vaddr = kmap_atomic(p);
2666 				csum2 = INDIRECT_CALL_1(ops->update,
2667 							csum_partial_ext,
2668 							vaddr + p_off, p_len, 0);
2669 				kunmap_atomic(vaddr);
2670 				csum = INDIRECT_CALL_1(ops->combine,
2671 						       csum_block_add_ext, csum,
2672 						       csum2, pos, p_len);
2673 				pos += p_len;
2674 			}
2675 
2676 			if (!(len -= copy))
2677 				return csum;
2678 			offset += copy;
2679 		}
2680 		start = end;
2681 	}
2682 
2683 	skb_walk_frags(skb, frag_iter) {
2684 		int end;
2685 
2686 		WARN_ON(start > offset + len);
2687 
2688 		end = start + frag_iter->len;
2689 		if ((copy = end - offset) > 0) {
2690 			__wsum csum2;
2691 			if (copy > len)
2692 				copy = len;
2693 			csum2 = __skb_checksum(frag_iter, offset - start,
2694 					       copy, 0, ops);
2695 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2696 					       csum, csum2, pos, copy);
2697 			if ((len -= copy) == 0)
2698 				return csum;
2699 			offset += copy;
2700 			pos    += copy;
2701 		}
2702 		start = end;
2703 	}
2704 	BUG_ON(len);
2705 
2706 	return csum;
2707 }
2708 EXPORT_SYMBOL(__skb_checksum);
2709 
2710 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2711 		    int len, __wsum csum)
2712 {
2713 	const struct skb_checksum_ops ops = {
2714 		.update  = csum_partial_ext,
2715 		.combine = csum_block_add_ext,
2716 	};
2717 
2718 	return __skb_checksum(skb, offset, len, csum, &ops);
2719 }
2720 EXPORT_SYMBOL(skb_checksum);
2721 
2722 /* Both of above in one bottle. */
2723 
2724 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2725 				    u8 *to, int len, __wsum csum)
2726 {
2727 	int start = skb_headlen(skb);
2728 	int i, copy = start - offset;
2729 	struct sk_buff *frag_iter;
2730 	int pos = 0;
2731 
2732 	/* Copy header. */
2733 	if (copy > 0) {
2734 		if (copy > len)
2735 			copy = len;
2736 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2737 						 copy, csum);
2738 		if ((len -= copy) == 0)
2739 			return csum;
2740 		offset += copy;
2741 		to     += copy;
2742 		pos	= copy;
2743 	}
2744 
2745 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2746 		int end;
2747 
2748 		WARN_ON(start > offset + len);
2749 
2750 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2751 		if ((copy = end - offset) > 0) {
2752 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2753 			u32 p_off, p_len, copied;
2754 			struct page *p;
2755 			__wsum csum2;
2756 			u8 *vaddr;
2757 
2758 			if (copy > len)
2759 				copy = len;
2760 
2761 			skb_frag_foreach_page(frag,
2762 					      frag->page_offset + offset - start,
2763 					      copy, p, p_off, p_len, copied) {
2764 				vaddr = kmap_atomic(p);
2765 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2766 								  to + copied,
2767 								  p_len, 0);
2768 				kunmap_atomic(vaddr);
2769 				csum = csum_block_add(csum, csum2, pos);
2770 				pos += p_len;
2771 			}
2772 
2773 			if (!(len -= copy))
2774 				return csum;
2775 			offset += copy;
2776 			to     += copy;
2777 		}
2778 		start = end;
2779 	}
2780 
2781 	skb_walk_frags(skb, frag_iter) {
2782 		__wsum csum2;
2783 		int end;
2784 
2785 		WARN_ON(start > offset + len);
2786 
2787 		end = start + frag_iter->len;
2788 		if ((copy = end - offset) > 0) {
2789 			if (copy > len)
2790 				copy = len;
2791 			csum2 = skb_copy_and_csum_bits(frag_iter,
2792 						       offset - start,
2793 						       to, copy, 0);
2794 			csum = csum_block_add(csum, csum2, pos);
2795 			if ((len -= copy) == 0)
2796 				return csum;
2797 			offset += copy;
2798 			to     += copy;
2799 			pos    += copy;
2800 		}
2801 		start = end;
2802 	}
2803 	BUG_ON(len);
2804 	return csum;
2805 }
2806 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2807 
2808 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2809 {
2810 	__sum16 sum;
2811 
2812 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2813 	/* See comments in __skb_checksum_complete(). */
2814 	if (likely(!sum)) {
2815 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2816 		    !skb->csum_complete_sw)
2817 			netdev_rx_csum_fault(skb->dev, skb);
2818 	}
2819 	if (!skb_shared(skb))
2820 		skb->csum_valid = !sum;
2821 	return sum;
2822 }
2823 EXPORT_SYMBOL(__skb_checksum_complete_head);
2824 
2825 /* This function assumes skb->csum already holds pseudo header's checksum,
2826  * which has been changed from the hardware checksum, for example, by
2827  * __skb_checksum_validate_complete(). And, the original skb->csum must
2828  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2829  *
2830  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2831  * zero. The new checksum is stored back into skb->csum unless the skb is
2832  * shared.
2833  */
2834 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2835 {
2836 	__wsum csum;
2837 	__sum16 sum;
2838 
2839 	csum = skb_checksum(skb, 0, skb->len, 0);
2840 
2841 	sum = csum_fold(csum_add(skb->csum, csum));
2842 	/* This check is inverted, because we already knew the hardware
2843 	 * checksum is invalid before calling this function. So, if the
2844 	 * re-computed checksum is valid instead, then we have a mismatch
2845 	 * between the original skb->csum and skb_checksum(). This means either
2846 	 * the original hardware checksum is incorrect or we screw up skb->csum
2847 	 * when moving skb->data around.
2848 	 */
2849 	if (likely(!sum)) {
2850 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2851 		    !skb->csum_complete_sw)
2852 			netdev_rx_csum_fault(skb->dev, skb);
2853 	}
2854 
2855 	if (!skb_shared(skb)) {
2856 		/* Save full packet checksum */
2857 		skb->csum = csum;
2858 		skb->ip_summed = CHECKSUM_COMPLETE;
2859 		skb->csum_complete_sw = 1;
2860 		skb->csum_valid = !sum;
2861 	}
2862 
2863 	return sum;
2864 }
2865 EXPORT_SYMBOL(__skb_checksum_complete);
2866 
2867 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2868 {
2869 	net_warn_ratelimited(
2870 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2871 		__func__);
2872 	return 0;
2873 }
2874 
2875 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2876 				       int offset, int len)
2877 {
2878 	net_warn_ratelimited(
2879 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2880 		__func__);
2881 	return 0;
2882 }
2883 
2884 static const struct skb_checksum_ops default_crc32c_ops = {
2885 	.update  = warn_crc32c_csum_update,
2886 	.combine = warn_crc32c_csum_combine,
2887 };
2888 
2889 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2890 	&default_crc32c_ops;
2891 EXPORT_SYMBOL(crc32c_csum_stub);
2892 
2893  /**
2894  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2895  *	@from: source buffer
2896  *
2897  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2898  *	into skb_zerocopy().
2899  */
2900 unsigned int
2901 skb_zerocopy_headlen(const struct sk_buff *from)
2902 {
2903 	unsigned int hlen = 0;
2904 
2905 	if (!from->head_frag ||
2906 	    skb_headlen(from) < L1_CACHE_BYTES ||
2907 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2908 		hlen = skb_headlen(from);
2909 
2910 	if (skb_has_frag_list(from))
2911 		hlen = from->len;
2912 
2913 	return hlen;
2914 }
2915 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2916 
2917 /**
2918  *	skb_zerocopy - Zero copy skb to skb
2919  *	@to: destination buffer
2920  *	@from: source buffer
2921  *	@len: number of bytes to copy from source buffer
2922  *	@hlen: size of linear headroom in destination buffer
2923  *
2924  *	Copies up to `len` bytes from `from` to `to` by creating references
2925  *	to the frags in the source buffer.
2926  *
2927  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2928  *	headroom in the `to` buffer.
2929  *
2930  *	Return value:
2931  *	0: everything is OK
2932  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2933  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2934  */
2935 int
2936 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2937 {
2938 	int i, j = 0;
2939 	int plen = 0; /* length of skb->head fragment */
2940 	int ret;
2941 	struct page *page;
2942 	unsigned int offset;
2943 
2944 	BUG_ON(!from->head_frag && !hlen);
2945 
2946 	/* dont bother with small payloads */
2947 	if (len <= skb_tailroom(to))
2948 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2949 
2950 	if (hlen) {
2951 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2952 		if (unlikely(ret))
2953 			return ret;
2954 		len -= hlen;
2955 	} else {
2956 		plen = min_t(int, skb_headlen(from), len);
2957 		if (plen) {
2958 			page = virt_to_head_page(from->head);
2959 			offset = from->data - (unsigned char *)page_address(page);
2960 			__skb_fill_page_desc(to, 0, page, offset, plen);
2961 			get_page(page);
2962 			j = 1;
2963 			len -= plen;
2964 		}
2965 	}
2966 
2967 	to->truesize += len + plen;
2968 	to->len += len + plen;
2969 	to->data_len += len + plen;
2970 
2971 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2972 		skb_tx_error(from);
2973 		return -ENOMEM;
2974 	}
2975 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2976 
2977 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2978 		int size;
2979 
2980 		if (!len)
2981 			break;
2982 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2983 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
2984 					len);
2985 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
2986 		len -= size;
2987 		skb_frag_ref(to, j);
2988 		j++;
2989 	}
2990 	skb_shinfo(to)->nr_frags = j;
2991 
2992 	return 0;
2993 }
2994 EXPORT_SYMBOL_GPL(skb_zerocopy);
2995 
2996 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2997 {
2998 	__wsum csum;
2999 	long csstart;
3000 
3001 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3002 		csstart = skb_checksum_start_offset(skb);
3003 	else
3004 		csstart = skb_headlen(skb);
3005 
3006 	BUG_ON(csstart > skb_headlen(skb));
3007 
3008 	skb_copy_from_linear_data(skb, to, csstart);
3009 
3010 	csum = 0;
3011 	if (csstart != skb->len)
3012 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3013 					      skb->len - csstart, 0);
3014 
3015 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3016 		long csstuff = csstart + skb->csum_offset;
3017 
3018 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3019 	}
3020 }
3021 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3022 
3023 /**
3024  *	skb_dequeue - remove from the head of the queue
3025  *	@list: list to dequeue from
3026  *
3027  *	Remove the head of the list. The list lock is taken so the function
3028  *	may be used safely with other locking list functions. The head item is
3029  *	returned or %NULL if the list is empty.
3030  */
3031 
3032 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3033 {
3034 	unsigned long flags;
3035 	struct sk_buff *result;
3036 
3037 	spin_lock_irqsave(&list->lock, flags);
3038 	result = __skb_dequeue(list);
3039 	spin_unlock_irqrestore(&list->lock, flags);
3040 	return result;
3041 }
3042 EXPORT_SYMBOL(skb_dequeue);
3043 
3044 /**
3045  *	skb_dequeue_tail - remove from the tail of the queue
3046  *	@list: list to dequeue from
3047  *
3048  *	Remove the tail of the list. The list lock is taken so the function
3049  *	may be used safely with other locking list functions. The tail item is
3050  *	returned or %NULL if the list is empty.
3051  */
3052 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3053 {
3054 	unsigned long flags;
3055 	struct sk_buff *result;
3056 
3057 	spin_lock_irqsave(&list->lock, flags);
3058 	result = __skb_dequeue_tail(list);
3059 	spin_unlock_irqrestore(&list->lock, flags);
3060 	return result;
3061 }
3062 EXPORT_SYMBOL(skb_dequeue_tail);
3063 
3064 /**
3065  *	skb_queue_purge - empty a list
3066  *	@list: list to empty
3067  *
3068  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3069  *	the list and one reference dropped. This function takes the list
3070  *	lock and is atomic with respect to other list locking functions.
3071  */
3072 void skb_queue_purge(struct sk_buff_head *list)
3073 {
3074 	struct sk_buff *skb;
3075 	while ((skb = skb_dequeue(list)) != NULL)
3076 		kfree_skb(skb);
3077 }
3078 EXPORT_SYMBOL(skb_queue_purge);
3079 
3080 /**
3081  *	skb_rbtree_purge - empty a skb rbtree
3082  *	@root: root of the rbtree to empty
3083  *	Return value: the sum of truesizes of all purged skbs.
3084  *
3085  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3086  *	the list and one reference dropped. This function does not take
3087  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3088  *	out-of-order queue is protected by the socket lock).
3089  */
3090 unsigned int skb_rbtree_purge(struct rb_root *root)
3091 {
3092 	struct rb_node *p = rb_first(root);
3093 	unsigned int sum = 0;
3094 
3095 	while (p) {
3096 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3097 
3098 		p = rb_next(p);
3099 		rb_erase(&skb->rbnode, root);
3100 		sum += skb->truesize;
3101 		kfree_skb(skb);
3102 	}
3103 	return sum;
3104 }
3105 
3106 /**
3107  *	skb_queue_head - queue a buffer at the list head
3108  *	@list: list to use
3109  *	@newsk: buffer to queue
3110  *
3111  *	Queue a buffer at the start of the list. This function takes the
3112  *	list lock and can be used safely with other locking &sk_buff functions
3113  *	safely.
3114  *
3115  *	A buffer cannot be placed on two lists at the same time.
3116  */
3117 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3118 {
3119 	unsigned long flags;
3120 
3121 	spin_lock_irqsave(&list->lock, flags);
3122 	__skb_queue_head(list, newsk);
3123 	spin_unlock_irqrestore(&list->lock, flags);
3124 }
3125 EXPORT_SYMBOL(skb_queue_head);
3126 
3127 /**
3128  *	skb_queue_tail - queue a buffer at the list tail
3129  *	@list: list to use
3130  *	@newsk: buffer to queue
3131  *
3132  *	Queue a buffer at the tail of the list. This function takes the
3133  *	list lock and can be used safely with other locking &sk_buff functions
3134  *	safely.
3135  *
3136  *	A buffer cannot be placed on two lists at the same time.
3137  */
3138 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3139 {
3140 	unsigned long flags;
3141 
3142 	spin_lock_irqsave(&list->lock, flags);
3143 	__skb_queue_tail(list, newsk);
3144 	spin_unlock_irqrestore(&list->lock, flags);
3145 }
3146 EXPORT_SYMBOL(skb_queue_tail);
3147 
3148 /**
3149  *	skb_unlink	-	remove a buffer from a list
3150  *	@skb: buffer to remove
3151  *	@list: list to use
3152  *
3153  *	Remove a packet from a list. The list locks are taken and this
3154  *	function is atomic with respect to other list locked calls
3155  *
3156  *	You must know what list the SKB is on.
3157  */
3158 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3159 {
3160 	unsigned long flags;
3161 
3162 	spin_lock_irqsave(&list->lock, flags);
3163 	__skb_unlink(skb, list);
3164 	spin_unlock_irqrestore(&list->lock, flags);
3165 }
3166 EXPORT_SYMBOL(skb_unlink);
3167 
3168 /**
3169  *	skb_append	-	append a buffer
3170  *	@old: buffer to insert after
3171  *	@newsk: buffer to insert
3172  *	@list: list to use
3173  *
3174  *	Place a packet after a given packet in a list. The list locks are taken
3175  *	and this function is atomic with respect to other list locked calls.
3176  *	A buffer cannot be placed on two lists at the same time.
3177  */
3178 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3179 {
3180 	unsigned long flags;
3181 
3182 	spin_lock_irqsave(&list->lock, flags);
3183 	__skb_queue_after(list, old, newsk);
3184 	spin_unlock_irqrestore(&list->lock, flags);
3185 }
3186 EXPORT_SYMBOL(skb_append);
3187 
3188 static inline void skb_split_inside_header(struct sk_buff *skb,
3189 					   struct sk_buff* skb1,
3190 					   const u32 len, const int pos)
3191 {
3192 	int i;
3193 
3194 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3195 					 pos - len);
3196 	/* And move data appendix as is. */
3197 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3198 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3199 
3200 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3201 	skb_shinfo(skb)->nr_frags  = 0;
3202 	skb1->data_len		   = skb->data_len;
3203 	skb1->len		   += skb1->data_len;
3204 	skb->data_len		   = 0;
3205 	skb->len		   = len;
3206 	skb_set_tail_pointer(skb, len);
3207 }
3208 
3209 static inline void skb_split_no_header(struct sk_buff *skb,
3210 				       struct sk_buff* skb1,
3211 				       const u32 len, int pos)
3212 {
3213 	int i, k = 0;
3214 	const int nfrags = skb_shinfo(skb)->nr_frags;
3215 
3216 	skb_shinfo(skb)->nr_frags = 0;
3217 	skb1->len		  = skb1->data_len = skb->len - len;
3218 	skb->len		  = len;
3219 	skb->data_len		  = len - pos;
3220 
3221 	for (i = 0; i < nfrags; i++) {
3222 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3223 
3224 		if (pos + size > len) {
3225 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3226 
3227 			if (pos < len) {
3228 				/* Split frag.
3229 				 * We have two variants in this case:
3230 				 * 1. Move all the frag to the second
3231 				 *    part, if it is possible. F.e.
3232 				 *    this approach is mandatory for TUX,
3233 				 *    where splitting is expensive.
3234 				 * 2. Split is accurately. We make this.
3235 				 */
3236 				skb_frag_ref(skb, i);
3237 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3238 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3239 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3240 				skb_shinfo(skb)->nr_frags++;
3241 			}
3242 			k++;
3243 		} else
3244 			skb_shinfo(skb)->nr_frags++;
3245 		pos += size;
3246 	}
3247 	skb_shinfo(skb1)->nr_frags = k;
3248 }
3249 
3250 /**
3251  * skb_split - Split fragmented skb to two parts at length len.
3252  * @skb: the buffer to split
3253  * @skb1: the buffer to receive the second part
3254  * @len: new length for skb
3255  */
3256 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3257 {
3258 	int pos = skb_headlen(skb);
3259 
3260 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3261 				      SKBTX_SHARED_FRAG;
3262 	skb_zerocopy_clone(skb1, skb, 0);
3263 	if (len < pos)	/* Split line is inside header. */
3264 		skb_split_inside_header(skb, skb1, len, pos);
3265 	else		/* Second chunk has no header, nothing to copy. */
3266 		skb_split_no_header(skb, skb1, len, pos);
3267 }
3268 EXPORT_SYMBOL(skb_split);
3269 
3270 /* Shifting from/to a cloned skb is a no-go.
3271  *
3272  * Caller cannot keep skb_shinfo related pointers past calling here!
3273  */
3274 static int skb_prepare_for_shift(struct sk_buff *skb)
3275 {
3276 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3277 }
3278 
3279 /**
3280  * skb_shift - Shifts paged data partially from skb to another
3281  * @tgt: buffer into which tail data gets added
3282  * @skb: buffer from which the paged data comes from
3283  * @shiftlen: shift up to this many bytes
3284  *
3285  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3286  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3287  * It's up to caller to free skb if everything was shifted.
3288  *
3289  * If @tgt runs out of frags, the whole operation is aborted.
3290  *
3291  * Skb cannot include anything else but paged data while tgt is allowed
3292  * to have non-paged data as well.
3293  *
3294  * TODO: full sized shift could be optimized but that would need
3295  * specialized skb free'er to handle frags without up-to-date nr_frags.
3296  */
3297 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3298 {
3299 	int from, to, merge, todo;
3300 	skb_frag_t *fragfrom, *fragto;
3301 
3302 	BUG_ON(shiftlen > skb->len);
3303 
3304 	if (skb_headlen(skb))
3305 		return 0;
3306 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3307 		return 0;
3308 
3309 	todo = shiftlen;
3310 	from = 0;
3311 	to = skb_shinfo(tgt)->nr_frags;
3312 	fragfrom = &skb_shinfo(skb)->frags[from];
3313 
3314 	/* Actual merge is delayed until the point when we know we can
3315 	 * commit all, so that we don't have to undo partial changes
3316 	 */
3317 	if (!to ||
3318 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3319 			      fragfrom->page_offset)) {
3320 		merge = -1;
3321 	} else {
3322 		merge = to - 1;
3323 
3324 		todo -= skb_frag_size(fragfrom);
3325 		if (todo < 0) {
3326 			if (skb_prepare_for_shift(skb) ||
3327 			    skb_prepare_for_shift(tgt))
3328 				return 0;
3329 
3330 			/* All previous frag pointers might be stale! */
3331 			fragfrom = &skb_shinfo(skb)->frags[from];
3332 			fragto = &skb_shinfo(tgt)->frags[merge];
3333 
3334 			skb_frag_size_add(fragto, shiftlen);
3335 			skb_frag_size_sub(fragfrom, shiftlen);
3336 			fragfrom->page_offset += shiftlen;
3337 
3338 			goto onlymerged;
3339 		}
3340 
3341 		from++;
3342 	}
3343 
3344 	/* Skip full, not-fitting skb to avoid expensive operations */
3345 	if ((shiftlen == skb->len) &&
3346 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3347 		return 0;
3348 
3349 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3350 		return 0;
3351 
3352 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3353 		if (to == MAX_SKB_FRAGS)
3354 			return 0;
3355 
3356 		fragfrom = &skb_shinfo(skb)->frags[from];
3357 		fragto = &skb_shinfo(tgt)->frags[to];
3358 
3359 		if (todo >= skb_frag_size(fragfrom)) {
3360 			*fragto = *fragfrom;
3361 			todo -= skb_frag_size(fragfrom);
3362 			from++;
3363 			to++;
3364 
3365 		} else {
3366 			__skb_frag_ref(fragfrom);
3367 			fragto->bv_page = fragfrom->bv_page;
3368 			fragto->page_offset = fragfrom->page_offset;
3369 			skb_frag_size_set(fragto, todo);
3370 
3371 			fragfrom->page_offset += todo;
3372 			skb_frag_size_sub(fragfrom, todo);
3373 			todo = 0;
3374 
3375 			to++;
3376 			break;
3377 		}
3378 	}
3379 
3380 	/* Ready to "commit" this state change to tgt */
3381 	skb_shinfo(tgt)->nr_frags = to;
3382 
3383 	if (merge >= 0) {
3384 		fragfrom = &skb_shinfo(skb)->frags[0];
3385 		fragto = &skb_shinfo(tgt)->frags[merge];
3386 
3387 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3388 		__skb_frag_unref(fragfrom);
3389 	}
3390 
3391 	/* Reposition in the original skb */
3392 	to = 0;
3393 	while (from < skb_shinfo(skb)->nr_frags)
3394 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3395 	skb_shinfo(skb)->nr_frags = to;
3396 
3397 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3398 
3399 onlymerged:
3400 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3401 	 * the other hand might need it if it needs to be resent
3402 	 */
3403 	tgt->ip_summed = CHECKSUM_PARTIAL;
3404 	skb->ip_summed = CHECKSUM_PARTIAL;
3405 
3406 	/* Yak, is it really working this way? Some helper please? */
3407 	skb->len -= shiftlen;
3408 	skb->data_len -= shiftlen;
3409 	skb->truesize -= shiftlen;
3410 	tgt->len += shiftlen;
3411 	tgt->data_len += shiftlen;
3412 	tgt->truesize += shiftlen;
3413 
3414 	return shiftlen;
3415 }
3416 
3417 /**
3418  * skb_prepare_seq_read - Prepare a sequential read of skb data
3419  * @skb: the buffer to read
3420  * @from: lower offset of data to be read
3421  * @to: upper offset of data to be read
3422  * @st: state variable
3423  *
3424  * Initializes the specified state variable. Must be called before
3425  * invoking skb_seq_read() for the first time.
3426  */
3427 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3428 			  unsigned int to, struct skb_seq_state *st)
3429 {
3430 	st->lower_offset = from;
3431 	st->upper_offset = to;
3432 	st->root_skb = st->cur_skb = skb;
3433 	st->frag_idx = st->stepped_offset = 0;
3434 	st->frag_data = NULL;
3435 }
3436 EXPORT_SYMBOL(skb_prepare_seq_read);
3437 
3438 /**
3439  * skb_seq_read - Sequentially read skb data
3440  * @consumed: number of bytes consumed by the caller so far
3441  * @data: destination pointer for data to be returned
3442  * @st: state variable
3443  *
3444  * Reads a block of skb data at @consumed relative to the
3445  * lower offset specified to skb_prepare_seq_read(). Assigns
3446  * the head of the data block to @data and returns the length
3447  * of the block or 0 if the end of the skb data or the upper
3448  * offset has been reached.
3449  *
3450  * The caller is not required to consume all of the data
3451  * returned, i.e. @consumed is typically set to the number
3452  * of bytes already consumed and the next call to
3453  * skb_seq_read() will return the remaining part of the block.
3454  *
3455  * Note 1: The size of each block of data returned can be arbitrary,
3456  *       this limitation is the cost for zerocopy sequential
3457  *       reads of potentially non linear data.
3458  *
3459  * Note 2: Fragment lists within fragments are not implemented
3460  *       at the moment, state->root_skb could be replaced with
3461  *       a stack for this purpose.
3462  */
3463 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3464 			  struct skb_seq_state *st)
3465 {
3466 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3467 	skb_frag_t *frag;
3468 
3469 	if (unlikely(abs_offset >= st->upper_offset)) {
3470 		if (st->frag_data) {
3471 			kunmap_atomic(st->frag_data);
3472 			st->frag_data = NULL;
3473 		}
3474 		return 0;
3475 	}
3476 
3477 next_skb:
3478 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3479 
3480 	if (abs_offset < block_limit && !st->frag_data) {
3481 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3482 		return block_limit - abs_offset;
3483 	}
3484 
3485 	if (st->frag_idx == 0 && !st->frag_data)
3486 		st->stepped_offset += skb_headlen(st->cur_skb);
3487 
3488 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3489 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3490 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3491 
3492 		if (abs_offset < block_limit) {
3493 			if (!st->frag_data)
3494 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3495 
3496 			*data = (u8 *) st->frag_data + frag->page_offset +
3497 				(abs_offset - st->stepped_offset);
3498 
3499 			return block_limit - abs_offset;
3500 		}
3501 
3502 		if (st->frag_data) {
3503 			kunmap_atomic(st->frag_data);
3504 			st->frag_data = NULL;
3505 		}
3506 
3507 		st->frag_idx++;
3508 		st->stepped_offset += skb_frag_size(frag);
3509 	}
3510 
3511 	if (st->frag_data) {
3512 		kunmap_atomic(st->frag_data);
3513 		st->frag_data = NULL;
3514 	}
3515 
3516 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3517 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3518 		st->frag_idx = 0;
3519 		goto next_skb;
3520 	} else if (st->cur_skb->next) {
3521 		st->cur_skb = st->cur_skb->next;
3522 		st->frag_idx = 0;
3523 		goto next_skb;
3524 	}
3525 
3526 	return 0;
3527 }
3528 EXPORT_SYMBOL(skb_seq_read);
3529 
3530 /**
3531  * skb_abort_seq_read - Abort a sequential read of skb data
3532  * @st: state variable
3533  *
3534  * Must be called if skb_seq_read() was not called until it
3535  * returned 0.
3536  */
3537 void skb_abort_seq_read(struct skb_seq_state *st)
3538 {
3539 	if (st->frag_data)
3540 		kunmap_atomic(st->frag_data);
3541 }
3542 EXPORT_SYMBOL(skb_abort_seq_read);
3543 
3544 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3545 
3546 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3547 					  struct ts_config *conf,
3548 					  struct ts_state *state)
3549 {
3550 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3551 }
3552 
3553 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3554 {
3555 	skb_abort_seq_read(TS_SKB_CB(state));
3556 }
3557 
3558 /**
3559  * skb_find_text - Find a text pattern in skb data
3560  * @skb: the buffer to look in
3561  * @from: search offset
3562  * @to: search limit
3563  * @config: textsearch configuration
3564  *
3565  * Finds a pattern in the skb data according to the specified
3566  * textsearch configuration. Use textsearch_next() to retrieve
3567  * subsequent occurrences of the pattern. Returns the offset
3568  * to the first occurrence or UINT_MAX if no match was found.
3569  */
3570 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3571 			   unsigned int to, struct ts_config *config)
3572 {
3573 	struct ts_state state;
3574 	unsigned int ret;
3575 
3576 	config->get_next_block = skb_ts_get_next_block;
3577 	config->finish = skb_ts_finish;
3578 
3579 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3580 
3581 	ret = textsearch_find(config, &state);
3582 	return (ret <= to - from ? ret : UINT_MAX);
3583 }
3584 EXPORT_SYMBOL(skb_find_text);
3585 
3586 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3587 			 int offset, size_t size)
3588 {
3589 	int i = skb_shinfo(skb)->nr_frags;
3590 
3591 	if (skb_can_coalesce(skb, i, page, offset)) {
3592 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3593 	} else if (i < MAX_SKB_FRAGS) {
3594 		get_page(page);
3595 		skb_fill_page_desc(skb, i, page, offset, size);
3596 	} else {
3597 		return -EMSGSIZE;
3598 	}
3599 
3600 	return 0;
3601 }
3602 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3603 
3604 /**
3605  *	skb_pull_rcsum - pull skb and update receive checksum
3606  *	@skb: buffer to update
3607  *	@len: length of data pulled
3608  *
3609  *	This function performs an skb_pull on the packet and updates
3610  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3611  *	receive path processing instead of skb_pull unless you know
3612  *	that the checksum difference is zero (e.g., a valid IP header)
3613  *	or you are setting ip_summed to CHECKSUM_NONE.
3614  */
3615 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3616 {
3617 	unsigned char *data = skb->data;
3618 
3619 	BUG_ON(len > skb->len);
3620 	__skb_pull(skb, len);
3621 	skb_postpull_rcsum(skb, data, len);
3622 	return skb->data;
3623 }
3624 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3625 
3626 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3627 {
3628 	skb_frag_t head_frag;
3629 	struct page *page;
3630 
3631 	page = virt_to_head_page(frag_skb->head);
3632 	__skb_frag_set_page(&head_frag, page);
3633 	head_frag.page_offset = frag_skb->data -
3634 		(unsigned char *)page_address(page);
3635 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3636 	return head_frag;
3637 }
3638 
3639 /**
3640  *	skb_segment - Perform protocol segmentation on skb.
3641  *	@head_skb: buffer to segment
3642  *	@features: features for the output path (see dev->features)
3643  *
3644  *	This function performs segmentation on the given skb.  It returns
3645  *	a pointer to the first in a list of new skbs for the segments.
3646  *	In case of error it returns ERR_PTR(err).
3647  */
3648 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3649 			    netdev_features_t features)
3650 {
3651 	struct sk_buff *segs = NULL;
3652 	struct sk_buff *tail = NULL;
3653 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3654 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3655 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3656 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3657 	struct sk_buff *frag_skb = head_skb;
3658 	unsigned int offset = doffset;
3659 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3660 	unsigned int partial_segs = 0;
3661 	unsigned int headroom;
3662 	unsigned int len = head_skb->len;
3663 	__be16 proto;
3664 	bool csum, sg;
3665 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3666 	int err = -ENOMEM;
3667 	int i = 0;
3668 	int pos;
3669 	int dummy;
3670 
3671 	__skb_push(head_skb, doffset);
3672 	proto = skb_network_protocol(head_skb, &dummy);
3673 	if (unlikely(!proto))
3674 		return ERR_PTR(-EINVAL);
3675 
3676 	sg = !!(features & NETIF_F_SG);
3677 	csum = !!can_checksum_protocol(features, proto);
3678 
3679 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3680 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3681 			struct sk_buff *iter;
3682 			unsigned int frag_len;
3683 
3684 			if (!list_skb ||
3685 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3686 				goto normal;
3687 
3688 			/* If we get here then all the required
3689 			 * GSO features except frag_list are supported.
3690 			 * Try to split the SKB to multiple GSO SKBs
3691 			 * with no frag_list.
3692 			 * Currently we can do that only when the buffers don't
3693 			 * have a linear part and all the buffers except
3694 			 * the last are of the same length.
3695 			 */
3696 			frag_len = list_skb->len;
3697 			skb_walk_frags(head_skb, iter) {
3698 				if (frag_len != iter->len && iter->next)
3699 					goto normal;
3700 				if (skb_headlen(iter) && !iter->head_frag)
3701 					goto normal;
3702 
3703 				len -= iter->len;
3704 			}
3705 
3706 			if (len != frag_len)
3707 				goto normal;
3708 		}
3709 
3710 		/* GSO partial only requires that we trim off any excess that
3711 		 * doesn't fit into an MSS sized block, so take care of that
3712 		 * now.
3713 		 */
3714 		partial_segs = len / mss;
3715 		if (partial_segs > 1)
3716 			mss *= partial_segs;
3717 		else
3718 			partial_segs = 0;
3719 	}
3720 
3721 normal:
3722 	headroom = skb_headroom(head_skb);
3723 	pos = skb_headlen(head_skb);
3724 
3725 	do {
3726 		struct sk_buff *nskb;
3727 		skb_frag_t *nskb_frag;
3728 		int hsize;
3729 		int size;
3730 
3731 		if (unlikely(mss == GSO_BY_FRAGS)) {
3732 			len = list_skb->len;
3733 		} else {
3734 			len = head_skb->len - offset;
3735 			if (len > mss)
3736 				len = mss;
3737 		}
3738 
3739 		hsize = skb_headlen(head_skb) - offset;
3740 		if (hsize < 0)
3741 			hsize = 0;
3742 		if (hsize > len || !sg)
3743 			hsize = len;
3744 
3745 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3746 		    (skb_headlen(list_skb) == len || sg)) {
3747 			BUG_ON(skb_headlen(list_skb) > len);
3748 
3749 			i = 0;
3750 			nfrags = skb_shinfo(list_skb)->nr_frags;
3751 			frag = skb_shinfo(list_skb)->frags;
3752 			frag_skb = list_skb;
3753 			pos += skb_headlen(list_skb);
3754 
3755 			while (pos < offset + len) {
3756 				BUG_ON(i >= nfrags);
3757 
3758 				size = skb_frag_size(frag);
3759 				if (pos + size > offset + len)
3760 					break;
3761 
3762 				i++;
3763 				pos += size;
3764 				frag++;
3765 			}
3766 
3767 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3768 			list_skb = list_skb->next;
3769 
3770 			if (unlikely(!nskb))
3771 				goto err;
3772 
3773 			if (unlikely(pskb_trim(nskb, len))) {
3774 				kfree_skb(nskb);
3775 				goto err;
3776 			}
3777 
3778 			hsize = skb_end_offset(nskb);
3779 			if (skb_cow_head(nskb, doffset + headroom)) {
3780 				kfree_skb(nskb);
3781 				goto err;
3782 			}
3783 
3784 			nskb->truesize += skb_end_offset(nskb) - hsize;
3785 			skb_release_head_state(nskb);
3786 			__skb_push(nskb, doffset);
3787 		} else {
3788 			nskb = __alloc_skb(hsize + doffset + headroom,
3789 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3790 					   NUMA_NO_NODE);
3791 
3792 			if (unlikely(!nskb))
3793 				goto err;
3794 
3795 			skb_reserve(nskb, headroom);
3796 			__skb_put(nskb, doffset);
3797 		}
3798 
3799 		if (segs)
3800 			tail->next = nskb;
3801 		else
3802 			segs = nskb;
3803 		tail = nskb;
3804 
3805 		__copy_skb_header(nskb, head_skb);
3806 
3807 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3808 		skb_reset_mac_len(nskb);
3809 
3810 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3811 						 nskb->data - tnl_hlen,
3812 						 doffset + tnl_hlen);
3813 
3814 		if (nskb->len == len + doffset)
3815 			goto perform_csum_check;
3816 
3817 		if (!sg) {
3818 			if (!nskb->remcsum_offload)
3819 				nskb->ip_summed = CHECKSUM_NONE;
3820 			SKB_GSO_CB(nskb)->csum =
3821 				skb_copy_and_csum_bits(head_skb, offset,
3822 						       skb_put(nskb, len),
3823 						       len, 0);
3824 			SKB_GSO_CB(nskb)->csum_start =
3825 				skb_headroom(nskb) + doffset;
3826 			continue;
3827 		}
3828 
3829 		nskb_frag = skb_shinfo(nskb)->frags;
3830 
3831 		skb_copy_from_linear_data_offset(head_skb, offset,
3832 						 skb_put(nskb, hsize), hsize);
3833 
3834 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3835 					      SKBTX_SHARED_FRAG;
3836 
3837 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3838 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3839 			goto err;
3840 
3841 		while (pos < offset + len) {
3842 			if (i >= nfrags) {
3843 				i = 0;
3844 				nfrags = skb_shinfo(list_skb)->nr_frags;
3845 				frag = skb_shinfo(list_skb)->frags;
3846 				frag_skb = list_skb;
3847 				if (!skb_headlen(list_skb)) {
3848 					BUG_ON(!nfrags);
3849 				} else {
3850 					BUG_ON(!list_skb->head_frag);
3851 
3852 					/* to make room for head_frag. */
3853 					i--;
3854 					frag--;
3855 				}
3856 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3857 				    skb_zerocopy_clone(nskb, frag_skb,
3858 						       GFP_ATOMIC))
3859 					goto err;
3860 
3861 				list_skb = list_skb->next;
3862 			}
3863 
3864 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3865 				     MAX_SKB_FRAGS)) {
3866 				net_warn_ratelimited(
3867 					"skb_segment: too many frags: %u %u\n",
3868 					pos, mss);
3869 				err = -EINVAL;
3870 				goto err;
3871 			}
3872 
3873 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3874 			__skb_frag_ref(nskb_frag);
3875 			size = skb_frag_size(nskb_frag);
3876 
3877 			if (pos < offset) {
3878 				nskb_frag->page_offset += offset - pos;
3879 				skb_frag_size_sub(nskb_frag, offset - pos);
3880 			}
3881 
3882 			skb_shinfo(nskb)->nr_frags++;
3883 
3884 			if (pos + size <= offset + len) {
3885 				i++;
3886 				frag++;
3887 				pos += size;
3888 			} else {
3889 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3890 				goto skip_fraglist;
3891 			}
3892 
3893 			nskb_frag++;
3894 		}
3895 
3896 skip_fraglist:
3897 		nskb->data_len = len - hsize;
3898 		nskb->len += nskb->data_len;
3899 		nskb->truesize += nskb->data_len;
3900 
3901 perform_csum_check:
3902 		if (!csum) {
3903 			if (skb_has_shared_frag(nskb) &&
3904 			    __skb_linearize(nskb))
3905 				goto err;
3906 
3907 			if (!nskb->remcsum_offload)
3908 				nskb->ip_summed = CHECKSUM_NONE;
3909 			SKB_GSO_CB(nskb)->csum =
3910 				skb_checksum(nskb, doffset,
3911 					     nskb->len - doffset, 0);
3912 			SKB_GSO_CB(nskb)->csum_start =
3913 				skb_headroom(nskb) + doffset;
3914 		}
3915 	} while ((offset += len) < head_skb->len);
3916 
3917 	/* Some callers want to get the end of the list.
3918 	 * Put it in segs->prev to avoid walking the list.
3919 	 * (see validate_xmit_skb_list() for example)
3920 	 */
3921 	segs->prev = tail;
3922 
3923 	if (partial_segs) {
3924 		struct sk_buff *iter;
3925 		int type = skb_shinfo(head_skb)->gso_type;
3926 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3927 
3928 		/* Update type to add partial and then remove dodgy if set */
3929 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3930 		type &= ~SKB_GSO_DODGY;
3931 
3932 		/* Update GSO info and prepare to start updating headers on
3933 		 * our way back down the stack of protocols.
3934 		 */
3935 		for (iter = segs; iter; iter = iter->next) {
3936 			skb_shinfo(iter)->gso_size = gso_size;
3937 			skb_shinfo(iter)->gso_segs = partial_segs;
3938 			skb_shinfo(iter)->gso_type = type;
3939 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3940 		}
3941 
3942 		if (tail->len - doffset <= gso_size)
3943 			skb_shinfo(tail)->gso_size = 0;
3944 		else if (tail != segs)
3945 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3946 	}
3947 
3948 	/* Following permits correct backpressure, for protocols
3949 	 * using skb_set_owner_w().
3950 	 * Idea is to tranfert ownership from head_skb to last segment.
3951 	 */
3952 	if (head_skb->destructor == sock_wfree) {
3953 		swap(tail->truesize, head_skb->truesize);
3954 		swap(tail->destructor, head_skb->destructor);
3955 		swap(tail->sk, head_skb->sk);
3956 	}
3957 	return segs;
3958 
3959 err:
3960 	kfree_skb_list(segs);
3961 	return ERR_PTR(err);
3962 }
3963 EXPORT_SYMBOL_GPL(skb_segment);
3964 
3965 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
3966 {
3967 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3968 	unsigned int offset = skb_gro_offset(skb);
3969 	unsigned int headlen = skb_headlen(skb);
3970 	unsigned int len = skb_gro_len(skb);
3971 	unsigned int delta_truesize;
3972 	struct sk_buff *lp;
3973 
3974 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
3975 		return -E2BIG;
3976 
3977 	lp = NAPI_GRO_CB(p)->last;
3978 	pinfo = skb_shinfo(lp);
3979 
3980 	if (headlen <= offset) {
3981 		skb_frag_t *frag;
3982 		skb_frag_t *frag2;
3983 		int i = skbinfo->nr_frags;
3984 		int nr_frags = pinfo->nr_frags + i;
3985 
3986 		if (nr_frags > MAX_SKB_FRAGS)
3987 			goto merge;
3988 
3989 		offset -= headlen;
3990 		pinfo->nr_frags = nr_frags;
3991 		skbinfo->nr_frags = 0;
3992 
3993 		frag = pinfo->frags + nr_frags;
3994 		frag2 = skbinfo->frags + i;
3995 		do {
3996 			*--frag = *--frag2;
3997 		} while (--i);
3998 
3999 		frag->page_offset += offset;
4000 		skb_frag_size_sub(frag, offset);
4001 
4002 		/* all fragments truesize : remove (head size + sk_buff) */
4003 		delta_truesize = skb->truesize -
4004 				 SKB_TRUESIZE(skb_end_offset(skb));
4005 
4006 		skb->truesize -= skb->data_len;
4007 		skb->len -= skb->data_len;
4008 		skb->data_len = 0;
4009 
4010 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4011 		goto done;
4012 	} else if (skb->head_frag) {
4013 		int nr_frags = pinfo->nr_frags;
4014 		skb_frag_t *frag = pinfo->frags + nr_frags;
4015 		struct page *page = virt_to_head_page(skb->head);
4016 		unsigned int first_size = headlen - offset;
4017 		unsigned int first_offset;
4018 
4019 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4020 			goto merge;
4021 
4022 		first_offset = skb->data -
4023 			       (unsigned char *)page_address(page) +
4024 			       offset;
4025 
4026 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4027 
4028 		__skb_frag_set_page(frag, page);
4029 		frag->page_offset = first_offset;
4030 		skb_frag_size_set(frag, first_size);
4031 
4032 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4033 		/* We dont need to clear skbinfo->nr_frags here */
4034 
4035 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4036 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4037 		goto done;
4038 	}
4039 
4040 merge:
4041 	delta_truesize = skb->truesize;
4042 	if (offset > headlen) {
4043 		unsigned int eat = offset - headlen;
4044 
4045 		skbinfo->frags[0].page_offset += eat;
4046 		skb_frag_size_sub(&skbinfo->frags[0], eat);
4047 		skb->data_len -= eat;
4048 		skb->len -= eat;
4049 		offset = headlen;
4050 	}
4051 
4052 	__skb_pull(skb, offset);
4053 
4054 	if (NAPI_GRO_CB(p)->last == p)
4055 		skb_shinfo(p)->frag_list = skb;
4056 	else
4057 		NAPI_GRO_CB(p)->last->next = skb;
4058 	NAPI_GRO_CB(p)->last = skb;
4059 	__skb_header_release(skb);
4060 	lp = p;
4061 
4062 done:
4063 	NAPI_GRO_CB(p)->count++;
4064 	p->data_len += len;
4065 	p->truesize += delta_truesize;
4066 	p->len += len;
4067 	if (lp != p) {
4068 		lp->data_len += len;
4069 		lp->truesize += delta_truesize;
4070 		lp->len += len;
4071 	}
4072 	NAPI_GRO_CB(skb)->same_flow = 1;
4073 	return 0;
4074 }
4075 EXPORT_SYMBOL_GPL(skb_gro_receive);
4076 
4077 #ifdef CONFIG_SKB_EXTENSIONS
4078 #define SKB_EXT_ALIGN_VALUE	8
4079 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4080 
4081 static const u8 skb_ext_type_len[] = {
4082 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4083 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4084 #endif
4085 #ifdef CONFIG_XFRM
4086 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4087 #endif
4088 };
4089 
4090 static __always_inline unsigned int skb_ext_total_length(void)
4091 {
4092 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4093 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4094 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4095 #endif
4096 #ifdef CONFIG_XFRM
4097 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4098 #endif
4099 		0;
4100 }
4101 
4102 static void skb_extensions_init(void)
4103 {
4104 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4105 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4106 
4107 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4108 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4109 					     0,
4110 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4111 					     NULL);
4112 }
4113 #else
4114 static void skb_extensions_init(void) {}
4115 #endif
4116 
4117 void __init skb_init(void)
4118 {
4119 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4120 					      sizeof(struct sk_buff),
4121 					      0,
4122 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4123 					      offsetof(struct sk_buff, cb),
4124 					      sizeof_field(struct sk_buff, cb),
4125 					      NULL);
4126 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4127 						sizeof(struct sk_buff_fclones),
4128 						0,
4129 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4130 						NULL);
4131 	skb_extensions_init();
4132 }
4133 
4134 static int
4135 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4136 	       unsigned int recursion_level)
4137 {
4138 	int start = skb_headlen(skb);
4139 	int i, copy = start - offset;
4140 	struct sk_buff *frag_iter;
4141 	int elt = 0;
4142 
4143 	if (unlikely(recursion_level >= 24))
4144 		return -EMSGSIZE;
4145 
4146 	if (copy > 0) {
4147 		if (copy > len)
4148 			copy = len;
4149 		sg_set_buf(sg, skb->data + offset, copy);
4150 		elt++;
4151 		if ((len -= copy) == 0)
4152 			return elt;
4153 		offset += copy;
4154 	}
4155 
4156 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4157 		int end;
4158 
4159 		WARN_ON(start > offset + len);
4160 
4161 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4162 		if ((copy = end - offset) > 0) {
4163 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4164 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4165 				return -EMSGSIZE;
4166 
4167 			if (copy > len)
4168 				copy = len;
4169 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4170 					frag->page_offset+offset-start);
4171 			elt++;
4172 			if (!(len -= copy))
4173 				return elt;
4174 			offset += copy;
4175 		}
4176 		start = end;
4177 	}
4178 
4179 	skb_walk_frags(skb, frag_iter) {
4180 		int end, ret;
4181 
4182 		WARN_ON(start > offset + len);
4183 
4184 		end = start + frag_iter->len;
4185 		if ((copy = end - offset) > 0) {
4186 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4187 				return -EMSGSIZE;
4188 
4189 			if (copy > len)
4190 				copy = len;
4191 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4192 					      copy, recursion_level + 1);
4193 			if (unlikely(ret < 0))
4194 				return ret;
4195 			elt += ret;
4196 			if ((len -= copy) == 0)
4197 				return elt;
4198 			offset += copy;
4199 		}
4200 		start = end;
4201 	}
4202 	BUG_ON(len);
4203 	return elt;
4204 }
4205 
4206 /**
4207  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4208  *	@skb: Socket buffer containing the buffers to be mapped
4209  *	@sg: The scatter-gather list to map into
4210  *	@offset: The offset into the buffer's contents to start mapping
4211  *	@len: Length of buffer space to be mapped
4212  *
4213  *	Fill the specified scatter-gather list with mappings/pointers into a
4214  *	region of the buffer space attached to a socket buffer. Returns either
4215  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4216  *	could not fit.
4217  */
4218 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4219 {
4220 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4221 
4222 	if (nsg <= 0)
4223 		return nsg;
4224 
4225 	sg_mark_end(&sg[nsg - 1]);
4226 
4227 	return nsg;
4228 }
4229 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4230 
4231 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4232  * sglist without mark the sg which contain last skb data as the end.
4233  * So the caller can mannipulate sg list as will when padding new data after
4234  * the first call without calling sg_unmark_end to expend sg list.
4235  *
4236  * Scenario to use skb_to_sgvec_nomark:
4237  * 1. sg_init_table
4238  * 2. skb_to_sgvec_nomark(payload1)
4239  * 3. skb_to_sgvec_nomark(payload2)
4240  *
4241  * This is equivalent to:
4242  * 1. sg_init_table
4243  * 2. skb_to_sgvec(payload1)
4244  * 3. sg_unmark_end
4245  * 4. skb_to_sgvec(payload2)
4246  *
4247  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4248  * is more preferable.
4249  */
4250 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4251 			int offset, int len)
4252 {
4253 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4254 }
4255 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4256 
4257 
4258 
4259 /**
4260  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4261  *	@skb: The socket buffer to check.
4262  *	@tailbits: Amount of trailing space to be added
4263  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4264  *
4265  *	Make sure that the data buffers attached to a socket buffer are
4266  *	writable. If they are not, private copies are made of the data buffers
4267  *	and the socket buffer is set to use these instead.
4268  *
4269  *	If @tailbits is given, make sure that there is space to write @tailbits
4270  *	bytes of data beyond current end of socket buffer.  @trailer will be
4271  *	set to point to the skb in which this space begins.
4272  *
4273  *	The number of scatterlist elements required to completely map the
4274  *	COW'd and extended socket buffer will be returned.
4275  */
4276 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4277 {
4278 	int copyflag;
4279 	int elt;
4280 	struct sk_buff *skb1, **skb_p;
4281 
4282 	/* If skb is cloned or its head is paged, reallocate
4283 	 * head pulling out all the pages (pages are considered not writable
4284 	 * at the moment even if they are anonymous).
4285 	 */
4286 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4287 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4288 		return -ENOMEM;
4289 
4290 	/* Easy case. Most of packets will go this way. */
4291 	if (!skb_has_frag_list(skb)) {
4292 		/* A little of trouble, not enough of space for trailer.
4293 		 * This should not happen, when stack is tuned to generate
4294 		 * good frames. OK, on miss we reallocate and reserve even more
4295 		 * space, 128 bytes is fair. */
4296 
4297 		if (skb_tailroom(skb) < tailbits &&
4298 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4299 			return -ENOMEM;
4300 
4301 		/* Voila! */
4302 		*trailer = skb;
4303 		return 1;
4304 	}
4305 
4306 	/* Misery. We are in troubles, going to mincer fragments... */
4307 
4308 	elt = 1;
4309 	skb_p = &skb_shinfo(skb)->frag_list;
4310 	copyflag = 0;
4311 
4312 	while ((skb1 = *skb_p) != NULL) {
4313 		int ntail = 0;
4314 
4315 		/* The fragment is partially pulled by someone,
4316 		 * this can happen on input. Copy it and everything
4317 		 * after it. */
4318 
4319 		if (skb_shared(skb1))
4320 			copyflag = 1;
4321 
4322 		/* If the skb is the last, worry about trailer. */
4323 
4324 		if (skb1->next == NULL && tailbits) {
4325 			if (skb_shinfo(skb1)->nr_frags ||
4326 			    skb_has_frag_list(skb1) ||
4327 			    skb_tailroom(skb1) < tailbits)
4328 				ntail = tailbits + 128;
4329 		}
4330 
4331 		if (copyflag ||
4332 		    skb_cloned(skb1) ||
4333 		    ntail ||
4334 		    skb_shinfo(skb1)->nr_frags ||
4335 		    skb_has_frag_list(skb1)) {
4336 			struct sk_buff *skb2;
4337 
4338 			/* Fuck, we are miserable poor guys... */
4339 			if (ntail == 0)
4340 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4341 			else
4342 				skb2 = skb_copy_expand(skb1,
4343 						       skb_headroom(skb1),
4344 						       ntail,
4345 						       GFP_ATOMIC);
4346 			if (unlikely(skb2 == NULL))
4347 				return -ENOMEM;
4348 
4349 			if (skb1->sk)
4350 				skb_set_owner_w(skb2, skb1->sk);
4351 
4352 			/* Looking around. Are we still alive?
4353 			 * OK, link new skb, drop old one */
4354 
4355 			skb2->next = skb1->next;
4356 			*skb_p = skb2;
4357 			kfree_skb(skb1);
4358 			skb1 = skb2;
4359 		}
4360 		elt++;
4361 		*trailer = skb1;
4362 		skb_p = &skb1->next;
4363 	}
4364 
4365 	return elt;
4366 }
4367 EXPORT_SYMBOL_GPL(skb_cow_data);
4368 
4369 static void sock_rmem_free(struct sk_buff *skb)
4370 {
4371 	struct sock *sk = skb->sk;
4372 
4373 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4374 }
4375 
4376 static void skb_set_err_queue(struct sk_buff *skb)
4377 {
4378 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4379 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4380 	 */
4381 	skb->pkt_type = PACKET_OUTGOING;
4382 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4383 }
4384 
4385 /*
4386  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4387  */
4388 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4389 {
4390 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4391 	    (unsigned int)sk->sk_rcvbuf)
4392 		return -ENOMEM;
4393 
4394 	skb_orphan(skb);
4395 	skb->sk = sk;
4396 	skb->destructor = sock_rmem_free;
4397 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4398 	skb_set_err_queue(skb);
4399 
4400 	/* before exiting rcu section, make sure dst is refcounted */
4401 	skb_dst_force(skb);
4402 
4403 	skb_queue_tail(&sk->sk_error_queue, skb);
4404 	if (!sock_flag(sk, SOCK_DEAD))
4405 		sk->sk_error_report(sk);
4406 	return 0;
4407 }
4408 EXPORT_SYMBOL(sock_queue_err_skb);
4409 
4410 static bool is_icmp_err_skb(const struct sk_buff *skb)
4411 {
4412 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4413 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4414 }
4415 
4416 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4417 {
4418 	struct sk_buff_head *q = &sk->sk_error_queue;
4419 	struct sk_buff *skb, *skb_next = NULL;
4420 	bool icmp_next = false;
4421 	unsigned long flags;
4422 
4423 	spin_lock_irqsave(&q->lock, flags);
4424 	skb = __skb_dequeue(q);
4425 	if (skb && (skb_next = skb_peek(q))) {
4426 		icmp_next = is_icmp_err_skb(skb_next);
4427 		if (icmp_next)
4428 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4429 	}
4430 	spin_unlock_irqrestore(&q->lock, flags);
4431 
4432 	if (is_icmp_err_skb(skb) && !icmp_next)
4433 		sk->sk_err = 0;
4434 
4435 	if (skb_next)
4436 		sk->sk_error_report(sk);
4437 
4438 	return skb;
4439 }
4440 EXPORT_SYMBOL(sock_dequeue_err_skb);
4441 
4442 /**
4443  * skb_clone_sk - create clone of skb, and take reference to socket
4444  * @skb: the skb to clone
4445  *
4446  * This function creates a clone of a buffer that holds a reference on
4447  * sk_refcnt.  Buffers created via this function are meant to be
4448  * returned using sock_queue_err_skb, or free via kfree_skb.
4449  *
4450  * When passing buffers allocated with this function to sock_queue_err_skb
4451  * it is necessary to wrap the call with sock_hold/sock_put in order to
4452  * prevent the socket from being released prior to being enqueued on
4453  * the sk_error_queue.
4454  */
4455 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4456 {
4457 	struct sock *sk = skb->sk;
4458 	struct sk_buff *clone;
4459 
4460 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4461 		return NULL;
4462 
4463 	clone = skb_clone(skb, GFP_ATOMIC);
4464 	if (!clone) {
4465 		sock_put(sk);
4466 		return NULL;
4467 	}
4468 
4469 	clone->sk = sk;
4470 	clone->destructor = sock_efree;
4471 
4472 	return clone;
4473 }
4474 EXPORT_SYMBOL(skb_clone_sk);
4475 
4476 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4477 					struct sock *sk,
4478 					int tstype,
4479 					bool opt_stats)
4480 {
4481 	struct sock_exterr_skb *serr;
4482 	int err;
4483 
4484 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4485 
4486 	serr = SKB_EXT_ERR(skb);
4487 	memset(serr, 0, sizeof(*serr));
4488 	serr->ee.ee_errno = ENOMSG;
4489 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4490 	serr->ee.ee_info = tstype;
4491 	serr->opt_stats = opt_stats;
4492 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4493 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4494 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4495 		if (sk->sk_protocol == IPPROTO_TCP &&
4496 		    sk->sk_type == SOCK_STREAM)
4497 			serr->ee.ee_data -= sk->sk_tskey;
4498 	}
4499 
4500 	err = sock_queue_err_skb(sk, skb);
4501 
4502 	if (err)
4503 		kfree_skb(skb);
4504 }
4505 
4506 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4507 {
4508 	bool ret;
4509 
4510 	if (likely(sysctl_tstamp_allow_data || tsonly))
4511 		return true;
4512 
4513 	read_lock_bh(&sk->sk_callback_lock);
4514 	ret = sk->sk_socket && sk->sk_socket->file &&
4515 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4516 	read_unlock_bh(&sk->sk_callback_lock);
4517 	return ret;
4518 }
4519 
4520 void skb_complete_tx_timestamp(struct sk_buff *skb,
4521 			       struct skb_shared_hwtstamps *hwtstamps)
4522 {
4523 	struct sock *sk = skb->sk;
4524 
4525 	if (!skb_may_tx_timestamp(sk, false))
4526 		goto err;
4527 
4528 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4529 	 * but only if the socket refcount is not zero.
4530 	 */
4531 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4532 		*skb_hwtstamps(skb) = *hwtstamps;
4533 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4534 		sock_put(sk);
4535 		return;
4536 	}
4537 
4538 err:
4539 	kfree_skb(skb);
4540 }
4541 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4542 
4543 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4544 		     struct skb_shared_hwtstamps *hwtstamps,
4545 		     struct sock *sk, int tstype)
4546 {
4547 	struct sk_buff *skb;
4548 	bool tsonly, opt_stats = false;
4549 
4550 	if (!sk)
4551 		return;
4552 
4553 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4554 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4555 		return;
4556 
4557 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4558 	if (!skb_may_tx_timestamp(sk, tsonly))
4559 		return;
4560 
4561 	if (tsonly) {
4562 #ifdef CONFIG_INET
4563 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4564 		    sk->sk_protocol == IPPROTO_TCP &&
4565 		    sk->sk_type == SOCK_STREAM) {
4566 			skb = tcp_get_timestamping_opt_stats(sk);
4567 			opt_stats = true;
4568 		} else
4569 #endif
4570 			skb = alloc_skb(0, GFP_ATOMIC);
4571 	} else {
4572 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4573 	}
4574 	if (!skb)
4575 		return;
4576 
4577 	if (tsonly) {
4578 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4579 					     SKBTX_ANY_TSTAMP;
4580 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4581 	}
4582 
4583 	if (hwtstamps)
4584 		*skb_hwtstamps(skb) = *hwtstamps;
4585 	else
4586 		skb->tstamp = ktime_get_real();
4587 
4588 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4589 }
4590 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4591 
4592 void skb_tstamp_tx(struct sk_buff *orig_skb,
4593 		   struct skb_shared_hwtstamps *hwtstamps)
4594 {
4595 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4596 			       SCM_TSTAMP_SND);
4597 }
4598 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4599 
4600 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4601 {
4602 	struct sock *sk = skb->sk;
4603 	struct sock_exterr_skb *serr;
4604 	int err = 1;
4605 
4606 	skb->wifi_acked_valid = 1;
4607 	skb->wifi_acked = acked;
4608 
4609 	serr = SKB_EXT_ERR(skb);
4610 	memset(serr, 0, sizeof(*serr));
4611 	serr->ee.ee_errno = ENOMSG;
4612 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4613 
4614 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4615 	 * but only if the socket refcount is not zero.
4616 	 */
4617 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4618 		err = sock_queue_err_skb(sk, skb);
4619 		sock_put(sk);
4620 	}
4621 	if (err)
4622 		kfree_skb(skb);
4623 }
4624 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4625 
4626 /**
4627  * skb_partial_csum_set - set up and verify partial csum values for packet
4628  * @skb: the skb to set
4629  * @start: the number of bytes after skb->data to start checksumming.
4630  * @off: the offset from start to place the checksum.
4631  *
4632  * For untrusted partially-checksummed packets, we need to make sure the values
4633  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4634  *
4635  * This function checks and sets those values and skb->ip_summed: if this
4636  * returns false you should drop the packet.
4637  */
4638 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4639 {
4640 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4641 	u32 csum_start = skb_headroom(skb) + (u32)start;
4642 
4643 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4644 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4645 				     start, off, skb_headroom(skb), skb_headlen(skb));
4646 		return false;
4647 	}
4648 	skb->ip_summed = CHECKSUM_PARTIAL;
4649 	skb->csum_start = csum_start;
4650 	skb->csum_offset = off;
4651 	skb_set_transport_header(skb, start);
4652 	return true;
4653 }
4654 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4655 
4656 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4657 			       unsigned int max)
4658 {
4659 	if (skb_headlen(skb) >= len)
4660 		return 0;
4661 
4662 	/* If we need to pullup then pullup to the max, so we
4663 	 * won't need to do it again.
4664 	 */
4665 	if (max > skb->len)
4666 		max = skb->len;
4667 
4668 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4669 		return -ENOMEM;
4670 
4671 	if (skb_headlen(skb) < len)
4672 		return -EPROTO;
4673 
4674 	return 0;
4675 }
4676 
4677 #define MAX_TCP_HDR_LEN (15 * 4)
4678 
4679 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4680 				      typeof(IPPROTO_IP) proto,
4681 				      unsigned int off)
4682 {
4683 	switch (proto) {
4684 		int err;
4685 
4686 	case IPPROTO_TCP:
4687 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4688 					  off + MAX_TCP_HDR_LEN);
4689 		if (!err && !skb_partial_csum_set(skb, off,
4690 						  offsetof(struct tcphdr,
4691 							   check)))
4692 			err = -EPROTO;
4693 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4694 
4695 	case IPPROTO_UDP:
4696 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4697 					  off + sizeof(struct udphdr));
4698 		if (!err && !skb_partial_csum_set(skb, off,
4699 						  offsetof(struct udphdr,
4700 							   check)))
4701 			err = -EPROTO;
4702 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4703 	}
4704 
4705 	return ERR_PTR(-EPROTO);
4706 }
4707 
4708 /* This value should be large enough to cover a tagged ethernet header plus
4709  * maximally sized IP and TCP or UDP headers.
4710  */
4711 #define MAX_IP_HDR_LEN 128
4712 
4713 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4714 {
4715 	unsigned int off;
4716 	bool fragment;
4717 	__sum16 *csum;
4718 	int err;
4719 
4720 	fragment = false;
4721 
4722 	err = skb_maybe_pull_tail(skb,
4723 				  sizeof(struct iphdr),
4724 				  MAX_IP_HDR_LEN);
4725 	if (err < 0)
4726 		goto out;
4727 
4728 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4729 		fragment = true;
4730 
4731 	off = ip_hdrlen(skb);
4732 
4733 	err = -EPROTO;
4734 
4735 	if (fragment)
4736 		goto out;
4737 
4738 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4739 	if (IS_ERR(csum))
4740 		return PTR_ERR(csum);
4741 
4742 	if (recalculate)
4743 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4744 					   ip_hdr(skb)->daddr,
4745 					   skb->len - off,
4746 					   ip_hdr(skb)->protocol, 0);
4747 	err = 0;
4748 
4749 out:
4750 	return err;
4751 }
4752 
4753 /* This value should be large enough to cover a tagged ethernet header plus
4754  * an IPv6 header, all options, and a maximal TCP or UDP header.
4755  */
4756 #define MAX_IPV6_HDR_LEN 256
4757 
4758 #define OPT_HDR(type, skb, off) \
4759 	(type *)(skb_network_header(skb) + (off))
4760 
4761 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4762 {
4763 	int err;
4764 	u8 nexthdr;
4765 	unsigned int off;
4766 	unsigned int len;
4767 	bool fragment;
4768 	bool done;
4769 	__sum16 *csum;
4770 
4771 	fragment = false;
4772 	done = false;
4773 
4774 	off = sizeof(struct ipv6hdr);
4775 
4776 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4777 	if (err < 0)
4778 		goto out;
4779 
4780 	nexthdr = ipv6_hdr(skb)->nexthdr;
4781 
4782 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4783 	while (off <= len && !done) {
4784 		switch (nexthdr) {
4785 		case IPPROTO_DSTOPTS:
4786 		case IPPROTO_HOPOPTS:
4787 		case IPPROTO_ROUTING: {
4788 			struct ipv6_opt_hdr *hp;
4789 
4790 			err = skb_maybe_pull_tail(skb,
4791 						  off +
4792 						  sizeof(struct ipv6_opt_hdr),
4793 						  MAX_IPV6_HDR_LEN);
4794 			if (err < 0)
4795 				goto out;
4796 
4797 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4798 			nexthdr = hp->nexthdr;
4799 			off += ipv6_optlen(hp);
4800 			break;
4801 		}
4802 		case IPPROTO_AH: {
4803 			struct ip_auth_hdr *hp;
4804 
4805 			err = skb_maybe_pull_tail(skb,
4806 						  off +
4807 						  sizeof(struct ip_auth_hdr),
4808 						  MAX_IPV6_HDR_LEN);
4809 			if (err < 0)
4810 				goto out;
4811 
4812 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4813 			nexthdr = hp->nexthdr;
4814 			off += ipv6_authlen(hp);
4815 			break;
4816 		}
4817 		case IPPROTO_FRAGMENT: {
4818 			struct frag_hdr *hp;
4819 
4820 			err = skb_maybe_pull_tail(skb,
4821 						  off +
4822 						  sizeof(struct frag_hdr),
4823 						  MAX_IPV6_HDR_LEN);
4824 			if (err < 0)
4825 				goto out;
4826 
4827 			hp = OPT_HDR(struct frag_hdr, skb, off);
4828 
4829 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4830 				fragment = true;
4831 
4832 			nexthdr = hp->nexthdr;
4833 			off += sizeof(struct frag_hdr);
4834 			break;
4835 		}
4836 		default:
4837 			done = true;
4838 			break;
4839 		}
4840 	}
4841 
4842 	err = -EPROTO;
4843 
4844 	if (!done || fragment)
4845 		goto out;
4846 
4847 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4848 	if (IS_ERR(csum))
4849 		return PTR_ERR(csum);
4850 
4851 	if (recalculate)
4852 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4853 					 &ipv6_hdr(skb)->daddr,
4854 					 skb->len - off, nexthdr, 0);
4855 	err = 0;
4856 
4857 out:
4858 	return err;
4859 }
4860 
4861 /**
4862  * skb_checksum_setup - set up partial checksum offset
4863  * @skb: the skb to set up
4864  * @recalculate: if true the pseudo-header checksum will be recalculated
4865  */
4866 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4867 {
4868 	int err;
4869 
4870 	switch (skb->protocol) {
4871 	case htons(ETH_P_IP):
4872 		err = skb_checksum_setup_ipv4(skb, recalculate);
4873 		break;
4874 
4875 	case htons(ETH_P_IPV6):
4876 		err = skb_checksum_setup_ipv6(skb, recalculate);
4877 		break;
4878 
4879 	default:
4880 		err = -EPROTO;
4881 		break;
4882 	}
4883 
4884 	return err;
4885 }
4886 EXPORT_SYMBOL(skb_checksum_setup);
4887 
4888 /**
4889  * skb_checksum_maybe_trim - maybe trims the given skb
4890  * @skb: the skb to check
4891  * @transport_len: the data length beyond the network header
4892  *
4893  * Checks whether the given skb has data beyond the given transport length.
4894  * If so, returns a cloned skb trimmed to this transport length.
4895  * Otherwise returns the provided skb. Returns NULL in error cases
4896  * (e.g. transport_len exceeds skb length or out-of-memory).
4897  *
4898  * Caller needs to set the skb transport header and free any returned skb if it
4899  * differs from the provided skb.
4900  */
4901 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4902 					       unsigned int transport_len)
4903 {
4904 	struct sk_buff *skb_chk;
4905 	unsigned int len = skb_transport_offset(skb) + transport_len;
4906 	int ret;
4907 
4908 	if (skb->len < len)
4909 		return NULL;
4910 	else if (skb->len == len)
4911 		return skb;
4912 
4913 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4914 	if (!skb_chk)
4915 		return NULL;
4916 
4917 	ret = pskb_trim_rcsum(skb_chk, len);
4918 	if (ret) {
4919 		kfree_skb(skb_chk);
4920 		return NULL;
4921 	}
4922 
4923 	return skb_chk;
4924 }
4925 
4926 /**
4927  * skb_checksum_trimmed - validate checksum of an skb
4928  * @skb: the skb to check
4929  * @transport_len: the data length beyond the network header
4930  * @skb_chkf: checksum function to use
4931  *
4932  * Applies the given checksum function skb_chkf to the provided skb.
4933  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4934  *
4935  * If the skb has data beyond the given transport length, then a
4936  * trimmed & cloned skb is checked and returned.
4937  *
4938  * Caller needs to set the skb transport header and free any returned skb if it
4939  * differs from the provided skb.
4940  */
4941 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4942 				     unsigned int transport_len,
4943 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4944 {
4945 	struct sk_buff *skb_chk;
4946 	unsigned int offset = skb_transport_offset(skb);
4947 	__sum16 ret;
4948 
4949 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4950 	if (!skb_chk)
4951 		goto err;
4952 
4953 	if (!pskb_may_pull(skb_chk, offset))
4954 		goto err;
4955 
4956 	skb_pull_rcsum(skb_chk, offset);
4957 	ret = skb_chkf(skb_chk);
4958 	skb_push_rcsum(skb_chk, offset);
4959 
4960 	if (ret)
4961 		goto err;
4962 
4963 	return skb_chk;
4964 
4965 err:
4966 	if (skb_chk && skb_chk != skb)
4967 		kfree_skb(skb_chk);
4968 
4969 	return NULL;
4970 
4971 }
4972 EXPORT_SYMBOL(skb_checksum_trimmed);
4973 
4974 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4975 {
4976 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4977 			     skb->dev->name);
4978 }
4979 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4980 
4981 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4982 {
4983 	if (head_stolen) {
4984 		skb_release_head_state(skb);
4985 		kmem_cache_free(skbuff_head_cache, skb);
4986 	} else {
4987 		__kfree_skb(skb);
4988 	}
4989 }
4990 EXPORT_SYMBOL(kfree_skb_partial);
4991 
4992 /**
4993  * skb_try_coalesce - try to merge skb to prior one
4994  * @to: prior buffer
4995  * @from: buffer to add
4996  * @fragstolen: pointer to boolean
4997  * @delta_truesize: how much more was allocated than was requested
4998  */
4999 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5000 		      bool *fragstolen, int *delta_truesize)
5001 {
5002 	struct skb_shared_info *to_shinfo, *from_shinfo;
5003 	int i, delta, len = from->len;
5004 
5005 	*fragstolen = false;
5006 
5007 	if (skb_cloned(to))
5008 		return false;
5009 
5010 	if (len <= skb_tailroom(to)) {
5011 		if (len)
5012 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5013 		*delta_truesize = 0;
5014 		return true;
5015 	}
5016 
5017 	to_shinfo = skb_shinfo(to);
5018 	from_shinfo = skb_shinfo(from);
5019 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5020 		return false;
5021 	if (skb_zcopy(to) || skb_zcopy(from))
5022 		return false;
5023 
5024 	if (skb_headlen(from) != 0) {
5025 		struct page *page;
5026 		unsigned int offset;
5027 
5028 		if (to_shinfo->nr_frags +
5029 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5030 			return false;
5031 
5032 		if (skb_head_is_locked(from))
5033 			return false;
5034 
5035 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5036 
5037 		page = virt_to_head_page(from->head);
5038 		offset = from->data - (unsigned char *)page_address(page);
5039 
5040 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5041 				   page, offset, skb_headlen(from));
5042 		*fragstolen = true;
5043 	} else {
5044 		if (to_shinfo->nr_frags +
5045 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5046 			return false;
5047 
5048 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5049 	}
5050 
5051 	WARN_ON_ONCE(delta < len);
5052 
5053 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5054 	       from_shinfo->frags,
5055 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5056 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5057 
5058 	if (!skb_cloned(from))
5059 		from_shinfo->nr_frags = 0;
5060 
5061 	/* if the skb is not cloned this does nothing
5062 	 * since we set nr_frags to 0.
5063 	 */
5064 	for (i = 0; i < from_shinfo->nr_frags; i++)
5065 		__skb_frag_ref(&from_shinfo->frags[i]);
5066 
5067 	to->truesize += delta;
5068 	to->len += len;
5069 	to->data_len += len;
5070 
5071 	*delta_truesize = delta;
5072 	return true;
5073 }
5074 EXPORT_SYMBOL(skb_try_coalesce);
5075 
5076 /**
5077  * skb_scrub_packet - scrub an skb
5078  *
5079  * @skb: buffer to clean
5080  * @xnet: packet is crossing netns
5081  *
5082  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5083  * into/from a tunnel. Some information have to be cleared during these
5084  * operations.
5085  * skb_scrub_packet can also be used to clean a skb before injecting it in
5086  * another namespace (@xnet == true). We have to clear all information in the
5087  * skb that could impact namespace isolation.
5088  */
5089 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5090 {
5091 	skb->pkt_type = PACKET_HOST;
5092 	skb->skb_iif = 0;
5093 	skb->ignore_df = 0;
5094 	skb_dst_drop(skb);
5095 	secpath_reset(skb);
5096 	nf_reset(skb);
5097 	nf_reset_trace(skb);
5098 
5099 #ifdef CONFIG_NET_SWITCHDEV
5100 	skb->offload_fwd_mark = 0;
5101 	skb->offload_l3_fwd_mark = 0;
5102 #endif
5103 
5104 	if (!xnet)
5105 		return;
5106 
5107 	ipvs_reset(skb);
5108 	skb->mark = 0;
5109 	skb->tstamp = 0;
5110 }
5111 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5112 
5113 /**
5114  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5115  *
5116  * @skb: GSO skb
5117  *
5118  * skb_gso_transport_seglen is used to determine the real size of the
5119  * individual segments, including Layer4 headers (TCP/UDP).
5120  *
5121  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5122  */
5123 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5124 {
5125 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5126 	unsigned int thlen = 0;
5127 
5128 	if (skb->encapsulation) {
5129 		thlen = skb_inner_transport_header(skb) -
5130 			skb_transport_header(skb);
5131 
5132 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5133 			thlen += inner_tcp_hdrlen(skb);
5134 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5135 		thlen = tcp_hdrlen(skb);
5136 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5137 		thlen = sizeof(struct sctphdr);
5138 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5139 		thlen = sizeof(struct udphdr);
5140 	}
5141 	/* UFO sets gso_size to the size of the fragmentation
5142 	 * payload, i.e. the size of the L4 (UDP) header is already
5143 	 * accounted for.
5144 	 */
5145 	return thlen + shinfo->gso_size;
5146 }
5147 
5148 /**
5149  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5150  *
5151  * @skb: GSO skb
5152  *
5153  * skb_gso_network_seglen is used to determine the real size of the
5154  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5155  *
5156  * The MAC/L2 header is not accounted for.
5157  */
5158 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5159 {
5160 	unsigned int hdr_len = skb_transport_header(skb) -
5161 			       skb_network_header(skb);
5162 
5163 	return hdr_len + skb_gso_transport_seglen(skb);
5164 }
5165 
5166 /**
5167  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5168  *
5169  * @skb: GSO skb
5170  *
5171  * skb_gso_mac_seglen is used to determine the real size of the
5172  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5173  * headers (TCP/UDP).
5174  */
5175 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5176 {
5177 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5178 
5179 	return hdr_len + skb_gso_transport_seglen(skb);
5180 }
5181 
5182 /**
5183  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5184  *
5185  * There are a couple of instances where we have a GSO skb, and we
5186  * want to determine what size it would be after it is segmented.
5187  *
5188  * We might want to check:
5189  * -    L3+L4+payload size (e.g. IP forwarding)
5190  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5191  *
5192  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5193  *
5194  * @skb: GSO skb
5195  *
5196  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5197  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5198  *
5199  * @max_len: The maximum permissible length.
5200  *
5201  * Returns true if the segmented length <= max length.
5202  */
5203 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5204 				      unsigned int seg_len,
5205 				      unsigned int max_len) {
5206 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5207 	const struct sk_buff *iter;
5208 
5209 	if (shinfo->gso_size != GSO_BY_FRAGS)
5210 		return seg_len <= max_len;
5211 
5212 	/* Undo this so we can re-use header sizes */
5213 	seg_len -= GSO_BY_FRAGS;
5214 
5215 	skb_walk_frags(skb, iter) {
5216 		if (seg_len + skb_headlen(iter) > max_len)
5217 			return false;
5218 	}
5219 
5220 	return true;
5221 }
5222 
5223 /**
5224  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5225  *
5226  * @skb: GSO skb
5227  * @mtu: MTU to validate against
5228  *
5229  * skb_gso_validate_network_len validates if a given skb will fit a
5230  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5231  * payload.
5232  */
5233 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5234 {
5235 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5236 }
5237 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5238 
5239 /**
5240  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5241  *
5242  * @skb: GSO skb
5243  * @len: length to validate against
5244  *
5245  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5246  * length once split, including L2, L3 and L4 headers and the payload.
5247  */
5248 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5249 {
5250 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5251 }
5252 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5253 
5254 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5255 {
5256 	int mac_len, meta_len;
5257 	void *meta;
5258 
5259 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5260 		kfree_skb(skb);
5261 		return NULL;
5262 	}
5263 
5264 	mac_len = skb->data - skb_mac_header(skb);
5265 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5266 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5267 			mac_len - VLAN_HLEN - ETH_TLEN);
5268 	}
5269 
5270 	meta_len = skb_metadata_len(skb);
5271 	if (meta_len) {
5272 		meta = skb_metadata_end(skb) - meta_len;
5273 		memmove(meta + VLAN_HLEN, meta, meta_len);
5274 	}
5275 
5276 	skb->mac_header += VLAN_HLEN;
5277 	return skb;
5278 }
5279 
5280 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5281 {
5282 	struct vlan_hdr *vhdr;
5283 	u16 vlan_tci;
5284 
5285 	if (unlikely(skb_vlan_tag_present(skb))) {
5286 		/* vlan_tci is already set-up so leave this for another time */
5287 		return skb;
5288 	}
5289 
5290 	skb = skb_share_check(skb, GFP_ATOMIC);
5291 	if (unlikely(!skb))
5292 		goto err_free;
5293 
5294 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5295 		goto err_free;
5296 
5297 	vhdr = (struct vlan_hdr *)skb->data;
5298 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5299 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5300 
5301 	skb_pull_rcsum(skb, VLAN_HLEN);
5302 	vlan_set_encap_proto(skb, vhdr);
5303 
5304 	skb = skb_reorder_vlan_header(skb);
5305 	if (unlikely(!skb))
5306 		goto err_free;
5307 
5308 	skb_reset_network_header(skb);
5309 	skb_reset_transport_header(skb);
5310 	skb_reset_mac_len(skb);
5311 
5312 	return skb;
5313 
5314 err_free:
5315 	kfree_skb(skb);
5316 	return NULL;
5317 }
5318 EXPORT_SYMBOL(skb_vlan_untag);
5319 
5320 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5321 {
5322 	if (!pskb_may_pull(skb, write_len))
5323 		return -ENOMEM;
5324 
5325 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5326 		return 0;
5327 
5328 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5329 }
5330 EXPORT_SYMBOL(skb_ensure_writable);
5331 
5332 /* remove VLAN header from packet and update csum accordingly.
5333  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5334  */
5335 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5336 {
5337 	struct vlan_hdr *vhdr;
5338 	int offset = skb->data - skb_mac_header(skb);
5339 	int err;
5340 
5341 	if (WARN_ONCE(offset,
5342 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5343 		      offset)) {
5344 		return -EINVAL;
5345 	}
5346 
5347 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5348 	if (unlikely(err))
5349 		return err;
5350 
5351 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5352 
5353 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5354 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5355 
5356 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5357 	__skb_pull(skb, VLAN_HLEN);
5358 
5359 	vlan_set_encap_proto(skb, vhdr);
5360 	skb->mac_header += VLAN_HLEN;
5361 
5362 	if (skb_network_offset(skb) < ETH_HLEN)
5363 		skb_set_network_header(skb, ETH_HLEN);
5364 
5365 	skb_reset_mac_len(skb);
5366 
5367 	return err;
5368 }
5369 EXPORT_SYMBOL(__skb_vlan_pop);
5370 
5371 /* Pop a vlan tag either from hwaccel or from payload.
5372  * Expects skb->data at mac header.
5373  */
5374 int skb_vlan_pop(struct sk_buff *skb)
5375 {
5376 	u16 vlan_tci;
5377 	__be16 vlan_proto;
5378 	int err;
5379 
5380 	if (likely(skb_vlan_tag_present(skb))) {
5381 		__vlan_hwaccel_clear_tag(skb);
5382 	} else {
5383 		if (unlikely(!eth_type_vlan(skb->protocol)))
5384 			return 0;
5385 
5386 		err = __skb_vlan_pop(skb, &vlan_tci);
5387 		if (err)
5388 			return err;
5389 	}
5390 	/* move next vlan tag to hw accel tag */
5391 	if (likely(!eth_type_vlan(skb->protocol)))
5392 		return 0;
5393 
5394 	vlan_proto = skb->protocol;
5395 	err = __skb_vlan_pop(skb, &vlan_tci);
5396 	if (unlikely(err))
5397 		return err;
5398 
5399 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5400 	return 0;
5401 }
5402 EXPORT_SYMBOL(skb_vlan_pop);
5403 
5404 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5405  * Expects skb->data at mac header.
5406  */
5407 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5408 {
5409 	if (skb_vlan_tag_present(skb)) {
5410 		int offset = skb->data - skb_mac_header(skb);
5411 		int err;
5412 
5413 		if (WARN_ONCE(offset,
5414 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5415 			      offset)) {
5416 			return -EINVAL;
5417 		}
5418 
5419 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5420 					skb_vlan_tag_get(skb));
5421 		if (err)
5422 			return err;
5423 
5424 		skb->protocol = skb->vlan_proto;
5425 		skb->mac_len += VLAN_HLEN;
5426 
5427 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5428 	}
5429 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5430 	return 0;
5431 }
5432 EXPORT_SYMBOL(skb_vlan_push);
5433 
5434 /* Update the ethertype of hdr and the skb csum value if required. */
5435 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5436 			     __be16 ethertype)
5437 {
5438 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5439 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5440 
5441 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5442 	}
5443 
5444 	hdr->h_proto = ethertype;
5445 }
5446 
5447 /**
5448  * skb_mpls_push() - push a new MPLS header after the mac header
5449  *
5450  * @skb: buffer
5451  * @mpls_lse: MPLS label stack entry to push
5452  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5453  *
5454  * Expects skb->data at mac header.
5455  *
5456  * Returns 0 on success, -errno otherwise.
5457  */
5458 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto)
5459 {
5460 	struct mpls_shim_hdr *lse;
5461 	int err;
5462 
5463 	if (unlikely(!eth_p_mpls(mpls_proto)))
5464 		return -EINVAL;
5465 
5466 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5467 	if (skb->encapsulation)
5468 		return -EINVAL;
5469 
5470 	err = skb_cow_head(skb, MPLS_HLEN);
5471 	if (unlikely(err))
5472 		return err;
5473 
5474 	if (!skb->inner_protocol) {
5475 		skb_set_inner_network_header(skb, skb->mac_len);
5476 		skb_set_inner_protocol(skb, skb->protocol);
5477 	}
5478 
5479 	skb_push(skb, MPLS_HLEN);
5480 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5481 		skb->mac_len);
5482 	skb_reset_mac_header(skb);
5483 	skb_set_network_header(skb, skb->mac_len);
5484 
5485 	lse = mpls_hdr(skb);
5486 	lse->label_stack_entry = mpls_lse;
5487 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5488 
5489 	if (skb->dev && skb->dev->type == ARPHRD_ETHER)
5490 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5491 	skb->protocol = mpls_proto;
5492 
5493 	return 0;
5494 }
5495 EXPORT_SYMBOL_GPL(skb_mpls_push);
5496 
5497 /**
5498  * skb_mpls_pop() - pop the outermost MPLS header
5499  *
5500  * @skb: buffer
5501  * @next_proto: ethertype of header after popped MPLS header
5502  *
5503  * Expects skb->data at mac header.
5504  *
5505  * Returns 0 on success, -errno otherwise.
5506  */
5507 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto)
5508 {
5509 	int err;
5510 
5511 	if (unlikely(!eth_p_mpls(skb->protocol)))
5512 		return -EINVAL;
5513 
5514 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5515 	if (unlikely(err))
5516 		return err;
5517 
5518 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5519 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5520 		skb->mac_len);
5521 
5522 	__skb_pull(skb, MPLS_HLEN);
5523 	skb_reset_mac_header(skb);
5524 	skb_set_network_header(skb, skb->mac_len);
5525 
5526 	if (skb->dev && skb->dev->type == ARPHRD_ETHER) {
5527 		struct ethhdr *hdr;
5528 
5529 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5530 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5531 		skb_mod_eth_type(skb, hdr, next_proto);
5532 	}
5533 	skb->protocol = next_proto;
5534 
5535 	return 0;
5536 }
5537 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5538 
5539 /**
5540  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5541  *
5542  * @skb: buffer
5543  * @mpls_lse: new MPLS label stack entry to update to
5544  *
5545  * Expects skb->data at mac header.
5546  *
5547  * Returns 0 on success, -errno otherwise.
5548  */
5549 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5550 {
5551 	int err;
5552 
5553 	if (unlikely(!eth_p_mpls(skb->protocol)))
5554 		return -EINVAL;
5555 
5556 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5557 	if (unlikely(err))
5558 		return err;
5559 
5560 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5561 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5562 
5563 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5564 	}
5565 
5566 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5567 
5568 	return 0;
5569 }
5570 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5571 
5572 /**
5573  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5574  *
5575  * @skb: buffer
5576  *
5577  * Expects skb->data at mac header.
5578  *
5579  * Returns 0 on success, -errno otherwise.
5580  */
5581 int skb_mpls_dec_ttl(struct sk_buff *skb)
5582 {
5583 	u32 lse;
5584 	u8 ttl;
5585 
5586 	if (unlikely(!eth_p_mpls(skb->protocol)))
5587 		return -EINVAL;
5588 
5589 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5590 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5591 	if (!--ttl)
5592 		return -EINVAL;
5593 
5594 	lse &= ~MPLS_LS_TTL_MASK;
5595 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5596 
5597 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5598 }
5599 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5600 
5601 /**
5602  * alloc_skb_with_frags - allocate skb with page frags
5603  *
5604  * @header_len: size of linear part
5605  * @data_len: needed length in frags
5606  * @max_page_order: max page order desired.
5607  * @errcode: pointer to error code if any
5608  * @gfp_mask: allocation mask
5609  *
5610  * This can be used to allocate a paged skb, given a maximal order for frags.
5611  */
5612 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5613 				     unsigned long data_len,
5614 				     int max_page_order,
5615 				     int *errcode,
5616 				     gfp_t gfp_mask)
5617 {
5618 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5619 	unsigned long chunk;
5620 	struct sk_buff *skb;
5621 	struct page *page;
5622 	int i;
5623 
5624 	*errcode = -EMSGSIZE;
5625 	/* Note this test could be relaxed, if we succeed to allocate
5626 	 * high order pages...
5627 	 */
5628 	if (npages > MAX_SKB_FRAGS)
5629 		return NULL;
5630 
5631 	*errcode = -ENOBUFS;
5632 	skb = alloc_skb(header_len, gfp_mask);
5633 	if (!skb)
5634 		return NULL;
5635 
5636 	skb->truesize += npages << PAGE_SHIFT;
5637 
5638 	for (i = 0; npages > 0; i++) {
5639 		int order = max_page_order;
5640 
5641 		while (order) {
5642 			if (npages >= 1 << order) {
5643 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5644 						   __GFP_COMP |
5645 						   __GFP_NOWARN,
5646 						   order);
5647 				if (page)
5648 					goto fill_page;
5649 				/* Do not retry other high order allocations */
5650 				order = 1;
5651 				max_page_order = 0;
5652 			}
5653 			order--;
5654 		}
5655 		page = alloc_page(gfp_mask);
5656 		if (!page)
5657 			goto failure;
5658 fill_page:
5659 		chunk = min_t(unsigned long, data_len,
5660 			      PAGE_SIZE << order);
5661 		skb_fill_page_desc(skb, i, page, 0, chunk);
5662 		data_len -= chunk;
5663 		npages -= 1 << order;
5664 	}
5665 	return skb;
5666 
5667 failure:
5668 	kfree_skb(skb);
5669 	return NULL;
5670 }
5671 EXPORT_SYMBOL(alloc_skb_with_frags);
5672 
5673 /* carve out the first off bytes from skb when off < headlen */
5674 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5675 				    const int headlen, gfp_t gfp_mask)
5676 {
5677 	int i;
5678 	int size = skb_end_offset(skb);
5679 	int new_hlen = headlen - off;
5680 	u8 *data;
5681 
5682 	size = SKB_DATA_ALIGN(size);
5683 
5684 	if (skb_pfmemalloc(skb))
5685 		gfp_mask |= __GFP_MEMALLOC;
5686 	data = kmalloc_reserve(size +
5687 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5688 			       gfp_mask, NUMA_NO_NODE, NULL);
5689 	if (!data)
5690 		return -ENOMEM;
5691 
5692 	size = SKB_WITH_OVERHEAD(ksize(data));
5693 
5694 	/* Copy real data, and all frags */
5695 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5696 	skb->len -= off;
5697 
5698 	memcpy((struct skb_shared_info *)(data + size),
5699 	       skb_shinfo(skb),
5700 	       offsetof(struct skb_shared_info,
5701 			frags[skb_shinfo(skb)->nr_frags]));
5702 	if (skb_cloned(skb)) {
5703 		/* drop the old head gracefully */
5704 		if (skb_orphan_frags(skb, gfp_mask)) {
5705 			kfree(data);
5706 			return -ENOMEM;
5707 		}
5708 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5709 			skb_frag_ref(skb, i);
5710 		if (skb_has_frag_list(skb))
5711 			skb_clone_fraglist(skb);
5712 		skb_release_data(skb);
5713 	} else {
5714 		/* we can reuse existing recount- all we did was
5715 		 * relocate values
5716 		 */
5717 		skb_free_head(skb);
5718 	}
5719 
5720 	skb->head = data;
5721 	skb->data = data;
5722 	skb->head_frag = 0;
5723 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5724 	skb->end = size;
5725 #else
5726 	skb->end = skb->head + size;
5727 #endif
5728 	skb_set_tail_pointer(skb, skb_headlen(skb));
5729 	skb_headers_offset_update(skb, 0);
5730 	skb->cloned = 0;
5731 	skb->hdr_len = 0;
5732 	skb->nohdr = 0;
5733 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5734 
5735 	return 0;
5736 }
5737 
5738 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5739 
5740 /* carve out the first eat bytes from skb's frag_list. May recurse into
5741  * pskb_carve()
5742  */
5743 static int pskb_carve_frag_list(struct sk_buff *skb,
5744 				struct skb_shared_info *shinfo, int eat,
5745 				gfp_t gfp_mask)
5746 {
5747 	struct sk_buff *list = shinfo->frag_list;
5748 	struct sk_buff *clone = NULL;
5749 	struct sk_buff *insp = NULL;
5750 
5751 	do {
5752 		if (!list) {
5753 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5754 			return -EFAULT;
5755 		}
5756 		if (list->len <= eat) {
5757 			/* Eaten as whole. */
5758 			eat -= list->len;
5759 			list = list->next;
5760 			insp = list;
5761 		} else {
5762 			/* Eaten partially. */
5763 			if (skb_shared(list)) {
5764 				clone = skb_clone(list, gfp_mask);
5765 				if (!clone)
5766 					return -ENOMEM;
5767 				insp = list->next;
5768 				list = clone;
5769 			} else {
5770 				/* This may be pulled without problems. */
5771 				insp = list;
5772 			}
5773 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5774 				kfree_skb(clone);
5775 				return -ENOMEM;
5776 			}
5777 			break;
5778 		}
5779 	} while (eat);
5780 
5781 	/* Free pulled out fragments. */
5782 	while ((list = shinfo->frag_list) != insp) {
5783 		shinfo->frag_list = list->next;
5784 		kfree_skb(list);
5785 	}
5786 	/* And insert new clone at head. */
5787 	if (clone) {
5788 		clone->next = list;
5789 		shinfo->frag_list = clone;
5790 	}
5791 	return 0;
5792 }
5793 
5794 /* carve off first len bytes from skb. Split line (off) is in the
5795  * non-linear part of skb
5796  */
5797 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5798 				       int pos, gfp_t gfp_mask)
5799 {
5800 	int i, k = 0;
5801 	int size = skb_end_offset(skb);
5802 	u8 *data;
5803 	const int nfrags = skb_shinfo(skb)->nr_frags;
5804 	struct skb_shared_info *shinfo;
5805 
5806 	size = SKB_DATA_ALIGN(size);
5807 
5808 	if (skb_pfmemalloc(skb))
5809 		gfp_mask |= __GFP_MEMALLOC;
5810 	data = kmalloc_reserve(size +
5811 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5812 			       gfp_mask, NUMA_NO_NODE, NULL);
5813 	if (!data)
5814 		return -ENOMEM;
5815 
5816 	size = SKB_WITH_OVERHEAD(ksize(data));
5817 
5818 	memcpy((struct skb_shared_info *)(data + size),
5819 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5820 					 frags[skb_shinfo(skb)->nr_frags]));
5821 	if (skb_orphan_frags(skb, gfp_mask)) {
5822 		kfree(data);
5823 		return -ENOMEM;
5824 	}
5825 	shinfo = (struct skb_shared_info *)(data + size);
5826 	for (i = 0; i < nfrags; i++) {
5827 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5828 
5829 		if (pos + fsize > off) {
5830 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5831 
5832 			if (pos < off) {
5833 				/* Split frag.
5834 				 * We have two variants in this case:
5835 				 * 1. Move all the frag to the second
5836 				 *    part, if it is possible. F.e.
5837 				 *    this approach is mandatory for TUX,
5838 				 *    where splitting is expensive.
5839 				 * 2. Split is accurately. We make this.
5840 				 */
5841 				shinfo->frags[0].page_offset += off - pos;
5842 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5843 			}
5844 			skb_frag_ref(skb, i);
5845 			k++;
5846 		}
5847 		pos += fsize;
5848 	}
5849 	shinfo->nr_frags = k;
5850 	if (skb_has_frag_list(skb))
5851 		skb_clone_fraglist(skb);
5852 
5853 	if (k == 0) {
5854 		/* split line is in frag list */
5855 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5856 	}
5857 	skb_release_data(skb);
5858 
5859 	skb->head = data;
5860 	skb->head_frag = 0;
5861 	skb->data = data;
5862 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5863 	skb->end = size;
5864 #else
5865 	skb->end = skb->head + size;
5866 #endif
5867 	skb_reset_tail_pointer(skb);
5868 	skb_headers_offset_update(skb, 0);
5869 	skb->cloned   = 0;
5870 	skb->hdr_len  = 0;
5871 	skb->nohdr    = 0;
5872 	skb->len -= off;
5873 	skb->data_len = skb->len;
5874 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5875 	return 0;
5876 }
5877 
5878 /* remove len bytes from the beginning of the skb */
5879 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5880 {
5881 	int headlen = skb_headlen(skb);
5882 
5883 	if (len < headlen)
5884 		return pskb_carve_inside_header(skb, len, headlen, gfp);
5885 	else
5886 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5887 }
5888 
5889 /* Extract to_copy bytes starting at off from skb, and return this in
5890  * a new skb
5891  */
5892 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5893 			     int to_copy, gfp_t gfp)
5894 {
5895 	struct sk_buff  *clone = skb_clone(skb, gfp);
5896 
5897 	if (!clone)
5898 		return NULL;
5899 
5900 	if (pskb_carve(clone, off, gfp) < 0 ||
5901 	    pskb_trim(clone, to_copy)) {
5902 		kfree_skb(clone);
5903 		return NULL;
5904 	}
5905 	return clone;
5906 }
5907 EXPORT_SYMBOL(pskb_extract);
5908 
5909 /**
5910  * skb_condense - try to get rid of fragments/frag_list if possible
5911  * @skb: buffer
5912  *
5913  * Can be used to save memory before skb is added to a busy queue.
5914  * If packet has bytes in frags and enough tail room in skb->head,
5915  * pull all of them, so that we can free the frags right now and adjust
5916  * truesize.
5917  * Notes:
5918  *	We do not reallocate skb->head thus can not fail.
5919  *	Caller must re-evaluate skb->truesize if needed.
5920  */
5921 void skb_condense(struct sk_buff *skb)
5922 {
5923 	if (skb->data_len) {
5924 		if (skb->data_len > skb->end - skb->tail ||
5925 		    skb_cloned(skb))
5926 			return;
5927 
5928 		/* Nice, we can free page frag(s) right now */
5929 		__pskb_pull_tail(skb, skb->data_len);
5930 	}
5931 	/* At this point, skb->truesize might be over estimated,
5932 	 * because skb had a fragment, and fragments do not tell
5933 	 * their truesize.
5934 	 * When we pulled its content into skb->head, fragment
5935 	 * was freed, but __pskb_pull_tail() could not possibly
5936 	 * adjust skb->truesize, not knowing the frag truesize.
5937 	 */
5938 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5939 }
5940 
5941 #ifdef CONFIG_SKB_EXTENSIONS
5942 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
5943 {
5944 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
5945 }
5946 
5947 static struct skb_ext *skb_ext_alloc(void)
5948 {
5949 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
5950 
5951 	if (new) {
5952 		memset(new->offset, 0, sizeof(new->offset));
5953 		refcount_set(&new->refcnt, 1);
5954 	}
5955 
5956 	return new;
5957 }
5958 
5959 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
5960 					 unsigned int old_active)
5961 {
5962 	struct skb_ext *new;
5963 
5964 	if (refcount_read(&old->refcnt) == 1)
5965 		return old;
5966 
5967 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
5968 	if (!new)
5969 		return NULL;
5970 
5971 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
5972 	refcount_set(&new->refcnt, 1);
5973 
5974 #ifdef CONFIG_XFRM
5975 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
5976 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
5977 		unsigned int i;
5978 
5979 		for (i = 0; i < sp->len; i++)
5980 			xfrm_state_hold(sp->xvec[i]);
5981 	}
5982 #endif
5983 	__skb_ext_put(old);
5984 	return new;
5985 }
5986 
5987 /**
5988  * skb_ext_add - allocate space for given extension, COW if needed
5989  * @skb: buffer
5990  * @id: extension to allocate space for
5991  *
5992  * Allocates enough space for the given extension.
5993  * If the extension is already present, a pointer to that extension
5994  * is returned.
5995  *
5996  * If the skb was cloned, COW applies and the returned memory can be
5997  * modified without changing the extension space of clones buffers.
5998  *
5999  * Returns pointer to the extension or NULL on allocation failure.
6000  */
6001 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6002 {
6003 	struct skb_ext *new, *old = NULL;
6004 	unsigned int newlen, newoff;
6005 
6006 	if (skb->active_extensions) {
6007 		old = skb->extensions;
6008 
6009 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6010 		if (!new)
6011 			return NULL;
6012 
6013 		if (__skb_ext_exist(new, id))
6014 			goto set_active;
6015 
6016 		newoff = new->chunks;
6017 	} else {
6018 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6019 
6020 		new = skb_ext_alloc();
6021 		if (!new)
6022 			return NULL;
6023 	}
6024 
6025 	newlen = newoff + skb_ext_type_len[id];
6026 	new->chunks = newlen;
6027 	new->offset[id] = newoff;
6028 set_active:
6029 	skb->extensions = new;
6030 	skb->active_extensions |= 1 << id;
6031 	return skb_ext_get_ptr(new, id);
6032 }
6033 EXPORT_SYMBOL(skb_ext_add);
6034 
6035 #ifdef CONFIG_XFRM
6036 static void skb_ext_put_sp(struct sec_path *sp)
6037 {
6038 	unsigned int i;
6039 
6040 	for (i = 0; i < sp->len; i++)
6041 		xfrm_state_put(sp->xvec[i]);
6042 }
6043 #endif
6044 
6045 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6046 {
6047 	struct skb_ext *ext = skb->extensions;
6048 
6049 	skb->active_extensions &= ~(1 << id);
6050 	if (skb->active_extensions == 0) {
6051 		skb->extensions = NULL;
6052 		__skb_ext_put(ext);
6053 #ifdef CONFIG_XFRM
6054 	} else if (id == SKB_EXT_SEC_PATH &&
6055 		   refcount_read(&ext->refcnt) == 1) {
6056 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6057 
6058 		skb_ext_put_sp(sp);
6059 		sp->len = 0;
6060 #endif
6061 	}
6062 }
6063 EXPORT_SYMBOL(__skb_ext_del);
6064 
6065 void __skb_ext_put(struct skb_ext *ext)
6066 {
6067 	/* If this is last clone, nothing can increment
6068 	 * it after check passes.  Avoids one atomic op.
6069 	 */
6070 	if (refcount_read(&ext->refcnt) == 1)
6071 		goto free_now;
6072 
6073 	if (!refcount_dec_and_test(&ext->refcnt))
6074 		return;
6075 free_now:
6076 #ifdef CONFIG_XFRM
6077 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6078 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6079 #endif
6080 
6081 	kmem_cache_free(skbuff_ext_cache, ext);
6082 }
6083 EXPORT_SYMBOL(__skb_ext_put);
6084 #endif /* CONFIG_SKB_EXTENSIONS */
6085