1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #include <linux/module.h> 40 #include <linux/types.h> 41 #include <linux/kernel.h> 42 #include <linux/kmemcheck.h> 43 #include <linux/mm.h> 44 #include <linux/interrupt.h> 45 #include <linux/in.h> 46 #include <linux/inet.h> 47 #include <linux/slab.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 61 #include <net/protocol.h> 62 #include <net/dst.h> 63 #include <net/sock.h> 64 #include <net/checksum.h> 65 #include <net/xfrm.h> 66 67 #include <asm/uaccess.h> 68 #include <asm/system.h> 69 #include <trace/events/skb.h> 70 71 #include "kmap_skb.h" 72 73 static struct kmem_cache *skbuff_head_cache __read_mostly; 74 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 75 76 static void sock_pipe_buf_release(struct pipe_inode_info *pipe, 77 struct pipe_buffer *buf) 78 { 79 put_page(buf->page); 80 } 81 82 static void sock_pipe_buf_get(struct pipe_inode_info *pipe, 83 struct pipe_buffer *buf) 84 { 85 get_page(buf->page); 86 } 87 88 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe, 89 struct pipe_buffer *buf) 90 { 91 return 1; 92 } 93 94 95 /* Pipe buffer operations for a socket. */ 96 static const struct pipe_buf_operations sock_pipe_buf_ops = { 97 .can_merge = 0, 98 .map = generic_pipe_buf_map, 99 .unmap = generic_pipe_buf_unmap, 100 .confirm = generic_pipe_buf_confirm, 101 .release = sock_pipe_buf_release, 102 .steal = sock_pipe_buf_steal, 103 .get = sock_pipe_buf_get, 104 }; 105 106 /* 107 * Keep out-of-line to prevent kernel bloat. 108 * __builtin_return_address is not used because it is not always 109 * reliable. 110 */ 111 112 /** 113 * skb_over_panic - private function 114 * @skb: buffer 115 * @sz: size 116 * @here: address 117 * 118 * Out of line support code for skb_put(). Not user callable. 119 */ 120 static void skb_over_panic(struct sk_buff *skb, int sz, void *here) 121 { 122 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 123 "data:%p tail:%#lx end:%#lx dev:%s\n", 124 here, skb->len, sz, skb->head, skb->data, 125 (unsigned long)skb->tail, (unsigned long)skb->end, 126 skb->dev ? skb->dev->name : "<NULL>"); 127 BUG(); 128 } 129 130 /** 131 * skb_under_panic - private function 132 * @skb: buffer 133 * @sz: size 134 * @here: address 135 * 136 * Out of line support code for skb_push(). Not user callable. 137 */ 138 139 static void skb_under_panic(struct sk_buff *skb, int sz, void *here) 140 { 141 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 142 "data:%p tail:%#lx end:%#lx dev:%s\n", 143 here, skb->len, sz, skb->head, skb->data, 144 (unsigned long)skb->tail, (unsigned long)skb->end, 145 skb->dev ? skb->dev->name : "<NULL>"); 146 BUG(); 147 } 148 149 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 150 * 'private' fields and also do memory statistics to find all the 151 * [BEEP] leaks. 152 * 153 */ 154 155 /** 156 * __alloc_skb - allocate a network buffer 157 * @size: size to allocate 158 * @gfp_mask: allocation mask 159 * @fclone: allocate from fclone cache instead of head cache 160 * and allocate a cloned (child) skb 161 * @node: numa node to allocate memory on 162 * 163 * Allocate a new &sk_buff. The returned buffer has no headroom and a 164 * tail room of size bytes. The object has a reference count of one. 165 * The return is the buffer. On a failure the return is %NULL. 166 * 167 * Buffers may only be allocated from interrupts using a @gfp_mask of 168 * %GFP_ATOMIC. 169 */ 170 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 171 int fclone, int node) 172 { 173 struct kmem_cache *cache; 174 struct skb_shared_info *shinfo; 175 struct sk_buff *skb; 176 u8 *data; 177 178 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 179 180 /* Get the HEAD */ 181 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 182 if (!skb) 183 goto out; 184 prefetchw(skb); 185 186 size = SKB_DATA_ALIGN(size); 187 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info), 188 gfp_mask, node); 189 if (!data) 190 goto nodata; 191 prefetchw(data + size); 192 193 /* 194 * Only clear those fields we need to clear, not those that we will 195 * actually initialise below. Hence, don't put any more fields after 196 * the tail pointer in struct sk_buff! 197 */ 198 memset(skb, 0, offsetof(struct sk_buff, tail)); 199 skb->truesize = size + sizeof(struct sk_buff); 200 atomic_set(&skb->users, 1); 201 skb->head = data; 202 skb->data = data; 203 skb_reset_tail_pointer(skb); 204 skb->end = skb->tail + size; 205 kmemcheck_annotate_bitfield(skb, flags1); 206 kmemcheck_annotate_bitfield(skb, flags2); 207 #ifdef NET_SKBUFF_DATA_USES_OFFSET 208 skb->mac_header = ~0U; 209 #endif 210 211 /* make sure we initialize shinfo sequentially */ 212 shinfo = skb_shinfo(skb); 213 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 214 atomic_set(&shinfo->dataref, 1); 215 216 if (fclone) { 217 struct sk_buff *child = skb + 1; 218 atomic_t *fclone_ref = (atomic_t *) (child + 1); 219 220 kmemcheck_annotate_bitfield(child, flags1); 221 kmemcheck_annotate_bitfield(child, flags2); 222 skb->fclone = SKB_FCLONE_ORIG; 223 atomic_set(fclone_ref, 1); 224 225 child->fclone = SKB_FCLONE_UNAVAILABLE; 226 } 227 out: 228 return skb; 229 nodata: 230 kmem_cache_free(cache, skb); 231 skb = NULL; 232 goto out; 233 } 234 EXPORT_SYMBOL(__alloc_skb); 235 236 /** 237 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 238 * @dev: network device to receive on 239 * @length: length to allocate 240 * @gfp_mask: get_free_pages mask, passed to alloc_skb 241 * 242 * Allocate a new &sk_buff and assign it a usage count of one. The 243 * buffer has unspecified headroom built in. Users should allocate 244 * the headroom they think they need without accounting for the 245 * built in space. The built in space is used for optimisations. 246 * 247 * %NULL is returned if there is no free memory. 248 */ 249 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 250 unsigned int length, gfp_t gfp_mask) 251 { 252 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1; 253 struct sk_buff *skb; 254 255 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node); 256 if (likely(skb)) { 257 skb_reserve(skb, NET_SKB_PAD); 258 skb->dev = dev; 259 } 260 return skb; 261 } 262 EXPORT_SYMBOL(__netdev_alloc_skb); 263 264 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask) 265 { 266 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1; 267 struct page *page; 268 269 page = alloc_pages_node(node, gfp_mask, 0); 270 return page; 271 } 272 EXPORT_SYMBOL(__netdev_alloc_page); 273 274 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 275 int size) 276 { 277 skb_fill_page_desc(skb, i, page, off, size); 278 skb->len += size; 279 skb->data_len += size; 280 skb->truesize += size; 281 } 282 EXPORT_SYMBOL(skb_add_rx_frag); 283 284 /** 285 * dev_alloc_skb - allocate an skbuff for receiving 286 * @length: length to allocate 287 * 288 * Allocate a new &sk_buff and assign it a usage count of one. The 289 * buffer has unspecified headroom built in. Users should allocate 290 * the headroom they think they need without accounting for the 291 * built in space. The built in space is used for optimisations. 292 * 293 * %NULL is returned if there is no free memory. Although this function 294 * allocates memory it can be called from an interrupt. 295 */ 296 struct sk_buff *dev_alloc_skb(unsigned int length) 297 { 298 /* 299 * There is more code here than it seems: 300 * __dev_alloc_skb is an inline 301 */ 302 return __dev_alloc_skb(length, GFP_ATOMIC); 303 } 304 EXPORT_SYMBOL(dev_alloc_skb); 305 306 static void skb_drop_list(struct sk_buff **listp) 307 { 308 struct sk_buff *list = *listp; 309 310 *listp = NULL; 311 312 do { 313 struct sk_buff *this = list; 314 list = list->next; 315 kfree_skb(this); 316 } while (list); 317 } 318 319 static inline void skb_drop_fraglist(struct sk_buff *skb) 320 { 321 skb_drop_list(&skb_shinfo(skb)->frag_list); 322 } 323 324 static void skb_clone_fraglist(struct sk_buff *skb) 325 { 326 struct sk_buff *list; 327 328 skb_walk_frags(skb, list) 329 skb_get(list); 330 } 331 332 static void skb_release_data(struct sk_buff *skb) 333 { 334 if (!skb->cloned || 335 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 336 &skb_shinfo(skb)->dataref)) { 337 if (skb_shinfo(skb)->nr_frags) { 338 int i; 339 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 340 put_page(skb_shinfo(skb)->frags[i].page); 341 } 342 343 if (skb_has_frags(skb)) 344 skb_drop_fraglist(skb); 345 346 kfree(skb->head); 347 } 348 } 349 350 /* 351 * Free an skbuff by memory without cleaning the state. 352 */ 353 static void kfree_skbmem(struct sk_buff *skb) 354 { 355 struct sk_buff *other; 356 atomic_t *fclone_ref; 357 358 switch (skb->fclone) { 359 case SKB_FCLONE_UNAVAILABLE: 360 kmem_cache_free(skbuff_head_cache, skb); 361 break; 362 363 case SKB_FCLONE_ORIG: 364 fclone_ref = (atomic_t *) (skb + 2); 365 if (atomic_dec_and_test(fclone_ref)) 366 kmem_cache_free(skbuff_fclone_cache, skb); 367 break; 368 369 case SKB_FCLONE_CLONE: 370 fclone_ref = (atomic_t *) (skb + 1); 371 other = skb - 1; 372 373 /* The clone portion is available for 374 * fast-cloning again. 375 */ 376 skb->fclone = SKB_FCLONE_UNAVAILABLE; 377 378 if (atomic_dec_and_test(fclone_ref)) 379 kmem_cache_free(skbuff_fclone_cache, other); 380 break; 381 } 382 } 383 384 static void skb_release_head_state(struct sk_buff *skb) 385 { 386 skb_dst_drop(skb); 387 #ifdef CONFIG_XFRM 388 secpath_put(skb->sp); 389 #endif 390 if (skb->destructor) { 391 WARN_ON(in_irq()); 392 skb->destructor(skb); 393 } 394 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 395 nf_conntrack_put(skb->nfct); 396 nf_conntrack_put_reasm(skb->nfct_reasm); 397 #endif 398 #ifdef CONFIG_BRIDGE_NETFILTER 399 nf_bridge_put(skb->nf_bridge); 400 #endif 401 /* XXX: IS this still necessary? - JHS */ 402 #ifdef CONFIG_NET_SCHED 403 skb->tc_index = 0; 404 #ifdef CONFIG_NET_CLS_ACT 405 skb->tc_verd = 0; 406 #endif 407 #endif 408 } 409 410 /* Free everything but the sk_buff shell. */ 411 static void skb_release_all(struct sk_buff *skb) 412 { 413 skb_release_head_state(skb); 414 skb_release_data(skb); 415 } 416 417 /** 418 * __kfree_skb - private function 419 * @skb: buffer 420 * 421 * Free an sk_buff. Release anything attached to the buffer. 422 * Clean the state. This is an internal helper function. Users should 423 * always call kfree_skb 424 */ 425 426 void __kfree_skb(struct sk_buff *skb) 427 { 428 skb_release_all(skb); 429 kfree_skbmem(skb); 430 } 431 EXPORT_SYMBOL(__kfree_skb); 432 433 /** 434 * kfree_skb - free an sk_buff 435 * @skb: buffer to free 436 * 437 * Drop a reference to the buffer and free it if the usage count has 438 * hit zero. 439 */ 440 void kfree_skb(struct sk_buff *skb) 441 { 442 if (unlikely(!skb)) 443 return; 444 if (likely(atomic_read(&skb->users) == 1)) 445 smp_rmb(); 446 else if (likely(!atomic_dec_and_test(&skb->users))) 447 return; 448 trace_kfree_skb(skb, __builtin_return_address(0)); 449 __kfree_skb(skb); 450 } 451 EXPORT_SYMBOL(kfree_skb); 452 453 /** 454 * consume_skb - free an skbuff 455 * @skb: buffer to free 456 * 457 * Drop a ref to the buffer and free it if the usage count has hit zero 458 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 459 * is being dropped after a failure and notes that 460 */ 461 void consume_skb(struct sk_buff *skb) 462 { 463 if (unlikely(!skb)) 464 return; 465 if (likely(atomic_read(&skb->users) == 1)) 466 smp_rmb(); 467 else if (likely(!atomic_dec_and_test(&skb->users))) 468 return; 469 __kfree_skb(skb); 470 } 471 EXPORT_SYMBOL(consume_skb); 472 473 /** 474 * skb_recycle_check - check if skb can be reused for receive 475 * @skb: buffer 476 * @skb_size: minimum receive buffer size 477 * 478 * Checks that the skb passed in is not shared or cloned, and 479 * that it is linear and its head portion at least as large as 480 * skb_size so that it can be recycled as a receive buffer. 481 * If these conditions are met, this function does any necessary 482 * reference count dropping and cleans up the skbuff as if it 483 * just came from __alloc_skb(). 484 */ 485 bool skb_recycle_check(struct sk_buff *skb, int skb_size) 486 { 487 struct skb_shared_info *shinfo; 488 489 if (irqs_disabled()) 490 return false; 491 492 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE) 493 return false; 494 495 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD); 496 if (skb_end_pointer(skb) - skb->head < skb_size) 497 return false; 498 499 if (skb_shared(skb) || skb_cloned(skb)) 500 return false; 501 502 skb_release_head_state(skb); 503 504 shinfo = skb_shinfo(skb); 505 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 506 atomic_set(&shinfo->dataref, 1); 507 508 memset(skb, 0, offsetof(struct sk_buff, tail)); 509 skb->data = skb->head + NET_SKB_PAD; 510 skb_reset_tail_pointer(skb); 511 512 return true; 513 } 514 EXPORT_SYMBOL(skb_recycle_check); 515 516 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 517 { 518 new->tstamp = old->tstamp; 519 new->dev = old->dev; 520 new->transport_header = old->transport_header; 521 new->network_header = old->network_header; 522 new->mac_header = old->mac_header; 523 skb_dst_copy(new, old); 524 new->rxhash = old->rxhash; 525 #ifdef CONFIG_XFRM 526 new->sp = secpath_get(old->sp); 527 #endif 528 memcpy(new->cb, old->cb, sizeof(old->cb)); 529 new->csum = old->csum; 530 new->local_df = old->local_df; 531 new->pkt_type = old->pkt_type; 532 new->ip_summed = old->ip_summed; 533 skb_copy_queue_mapping(new, old); 534 new->priority = old->priority; 535 new->deliver_no_wcard = old->deliver_no_wcard; 536 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 537 new->ipvs_property = old->ipvs_property; 538 #endif 539 new->protocol = old->protocol; 540 new->mark = old->mark; 541 new->skb_iif = old->skb_iif; 542 __nf_copy(new, old); 543 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \ 544 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE) 545 new->nf_trace = old->nf_trace; 546 #endif 547 #ifdef CONFIG_NET_SCHED 548 new->tc_index = old->tc_index; 549 #ifdef CONFIG_NET_CLS_ACT 550 new->tc_verd = old->tc_verd; 551 #endif 552 #endif 553 new->vlan_tci = old->vlan_tci; 554 555 skb_copy_secmark(new, old); 556 } 557 558 /* 559 * You should not add any new code to this function. Add it to 560 * __copy_skb_header above instead. 561 */ 562 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 563 { 564 #define C(x) n->x = skb->x 565 566 n->next = n->prev = NULL; 567 n->sk = NULL; 568 __copy_skb_header(n, skb); 569 570 C(len); 571 C(data_len); 572 C(mac_len); 573 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 574 n->cloned = 1; 575 n->nohdr = 0; 576 n->destructor = NULL; 577 C(tail); 578 C(end); 579 C(head); 580 C(data); 581 C(truesize); 582 atomic_set(&n->users, 1); 583 584 atomic_inc(&(skb_shinfo(skb)->dataref)); 585 skb->cloned = 1; 586 587 return n; 588 #undef C 589 } 590 591 /** 592 * skb_morph - morph one skb into another 593 * @dst: the skb to receive the contents 594 * @src: the skb to supply the contents 595 * 596 * This is identical to skb_clone except that the target skb is 597 * supplied by the user. 598 * 599 * The target skb is returned upon exit. 600 */ 601 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 602 { 603 skb_release_all(dst); 604 return __skb_clone(dst, src); 605 } 606 EXPORT_SYMBOL_GPL(skb_morph); 607 608 /** 609 * skb_clone - duplicate an sk_buff 610 * @skb: buffer to clone 611 * @gfp_mask: allocation priority 612 * 613 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 614 * copies share the same packet data but not structure. The new 615 * buffer has a reference count of 1. If the allocation fails the 616 * function returns %NULL otherwise the new buffer is returned. 617 * 618 * If this function is called from an interrupt gfp_mask() must be 619 * %GFP_ATOMIC. 620 */ 621 622 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 623 { 624 struct sk_buff *n; 625 626 n = skb + 1; 627 if (skb->fclone == SKB_FCLONE_ORIG && 628 n->fclone == SKB_FCLONE_UNAVAILABLE) { 629 atomic_t *fclone_ref = (atomic_t *) (n + 1); 630 n->fclone = SKB_FCLONE_CLONE; 631 atomic_inc(fclone_ref); 632 } else { 633 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 634 if (!n) 635 return NULL; 636 637 kmemcheck_annotate_bitfield(n, flags1); 638 kmemcheck_annotate_bitfield(n, flags2); 639 n->fclone = SKB_FCLONE_UNAVAILABLE; 640 } 641 642 return __skb_clone(n, skb); 643 } 644 EXPORT_SYMBOL(skb_clone); 645 646 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 647 { 648 #ifndef NET_SKBUFF_DATA_USES_OFFSET 649 /* 650 * Shift between the two data areas in bytes 651 */ 652 unsigned long offset = new->data - old->data; 653 #endif 654 655 __copy_skb_header(new, old); 656 657 #ifndef NET_SKBUFF_DATA_USES_OFFSET 658 /* {transport,network,mac}_header are relative to skb->head */ 659 new->transport_header += offset; 660 new->network_header += offset; 661 if (skb_mac_header_was_set(new)) 662 new->mac_header += offset; 663 #endif 664 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 665 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 666 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 667 } 668 669 /** 670 * skb_copy - create private copy of an sk_buff 671 * @skb: buffer to copy 672 * @gfp_mask: allocation priority 673 * 674 * Make a copy of both an &sk_buff and its data. This is used when the 675 * caller wishes to modify the data and needs a private copy of the 676 * data to alter. Returns %NULL on failure or the pointer to the buffer 677 * on success. The returned buffer has a reference count of 1. 678 * 679 * As by-product this function converts non-linear &sk_buff to linear 680 * one, so that &sk_buff becomes completely private and caller is allowed 681 * to modify all the data of returned buffer. This means that this 682 * function is not recommended for use in circumstances when only 683 * header is going to be modified. Use pskb_copy() instead. 684 */ 685 686 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 687 { 688 int headerlen = skb->data - skb->head; 689 /* 690 * Allocate the copy buffer 691 */ 692 struct sk_buff *n; 693 #ifdef NET_SKBUFF_DATA_USES_OFFSET 694 n = alloc_skb(skb->end + skb->data_len, gfp_mask); 695 #else 696 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask); 697 #endif 698 if (!n) 699 return NULL; 700 701 /* Set the data pointer */ 702 skb_reserve(n, headerlen); 703 /* Set the tail pointer and length */ 704 skb_put(n, skb->len); 705 706 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 707 BUG(); 708 709 copy_skb_header(n, skb); 710 return n; 711 } 712 EXPORT_SYMBOL(skb_copy); 713 714 /** 715 * pskb_copy - create copy of an sk_buff with private head. 716 * @skb: buffer to copy 717 * @gfp_mask: allocation priority 718 * 719 * Make a copy of both an &sk_buff and part of its data, located 720 * in header. Fragmented data remain shared. This is used when 721 * the caller wishes to modify only header of &sk_buff and needs 722 * private copy of the header to alter. Returns %NULL on failure 723 * or the pointer to the buffer on success. 724 * The returned buffer has a reference count of 1. 725 */ 726 727 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 728 { 729 /* 730 * Allocate the copy buffer 731 */ 732 struct sk_buff *n; 733 #ifdef NET_SKBUFF_DATA_USES_OFFSET 734 n = alloc_skb(skb->end, gfp_mask); 735 #else 736 n = alloc_skb(skb->end - skb->head, gfp_mask); 737 #endif 738 if (!n) 739 goto out; 740 741 /* Set the data pointer */ 742 skb_reserve(n, skb->data - skb->head); 743 /* Set the tail pointer and length */ 744 skb_put(n, skb_headlen(skb)); 745 /* Copy the bytes */ 746 skb_copy_from_linear_data(skb, n->data, n->len); 747 748 n->truesize += skb->data_len; 749 n->data_len = skb->data_len; 750 n->len = skb->len; 751 752 if (skb_shinfo(skb)->nr_frags) { 753 int i; 754 755 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 756 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 757 get_page(skb_shinfo(n)->frags[i].page); 758 } 759 skb_shinfo(n)->nr_frags = i; 760 } 761 762 if (skb_has_frags(skb)) { 763 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 764 skb_clone_fraglist(n); 765 } 766 767 copy_skb_header(n, skb); 768 out: 769 return n; 770 } 771 EXPORT_SYMBOL(pskb_copy); 772 773 /** 774 * pskb_expand_head - reallocate header of &sk_buff 775 * @skb: buffer to reallocate 776 * @nhead: room to add at head 777 * @ntail: room to add at tail 778 * @gfp_mask: allocation priority 779 * 780 * Expands (or creates identical copy, if &nhead and &ntail are zero) 781 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 782 * reference count of 1. Returns zero in the case of success or error, 783 * if expansion failed. In the last case, &sk_buff is not changed. 784 * 785 * All the pointers pointing into skb header may change and must be 786 * reloaded after call to this function. 787 */ 788 789 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 790 gfp_t gfp_mask) 791 { 792 int i; 793 u8 *data; 794 #ifdef NET_SKBUFF_DATA_USES_OFFSET 795 int size = nhead + skb->end + ntail; 796 #else 797 int size = nhead + (skb->end - skb->head) + ntail; 798 #endif 799 long off; 800 801 BUG_ON(nhead < 0); 802 803 if (skb_shared(skb)) 804 BUG(); 805 806 size = SKB_DATA_ALIGN(size); 807 808 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 809 if (!data) 810 goto nodata; 811 812 /* Copy only real data... and, alas, header. This should be 813 * optimized for the cases when header is void. */ 814 #ifdef NET_SKBUFF_DATA_USES_OFFSET 815 memcpy(data + nhead, skb->head, skb->tail); 816 #else 817 memcpy(data + nhead, skb->head, skb->tail - skb->head); 818 #endif 819 memcpy(data + size, skb_end_pointer(skb), 820 sizeof(struct skb_shared_info)); 821 822 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 823 get_page(skb_shinfo(skb)->frags[i].page); 824 825 if (skb_has_frags(skb)) 826 skb_clone_fraglist(skb); 827 828 skb_release_data(skb); 829 830 off = (data + nhead) - skb->head; 831 832 skb->head = data; 833 skb->data += off; 834 #ifdef NET_SKBUFF_DATA_USES_OFFSET 835 skb->end = size; 836 off = nhead; 837 #else 838 skb->end = skb->head + size; 839 #endif 840 /* {transport,network,mac}_header and tail are relative to skb->head */ 841 skb->tail += off; 842 skb->transport_header += off; 843 skb->network_header += off; 844 if (skb_mac_header_was_set(skb)) 845 skb->mac_header += off; 846 skb->csum_start += nhead; 847 skb->cloned = 0; 848 skb->hdr_len = 0; 849 skb->nohdr = 0; 850 atomic_set(&skb_shinfo(skb)->dataref, 1); 851 return 0; 852 853 nodata: 854 return -ENOMEM; 855 } 856 EXPORT_SYMBOL(pskb_expand_head); 857 858 /* Make private copy of skb with writable head and some headroom */ 859 860 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 861 { 862 struct sk_buff *skb2; 863 int delta = headroom - skb_headroom(skb); 864 865 if (delta <= 0) 866 skb2 = pskb_copy(skb, GFP_ATOMIC); 867 else { 868 skb2 = skb_clone(skb, GFP_ATOMIC); 869 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 870 GFP_ATOMIC)) { 871 kfree_skb(skb2); 872 skb2 = NULL; 873 } 874 } 875 return skb2; 876 } 877 EXPORT_SYMBOL(skb_realloc_headroom); 878 879 /** 880 * skb_copy_expand - copy and expand sk_buff 881 * @skb: buffer to copy 882 * @newheadroom: new free bytes at head 883 * @newtailroom: new free bytes at tail 884 * @gfp_mask: allocation priority 885 * 886 * Make a copy of both an &sk_buff and its data and while doing so 887 * allocate additional space. 888 * 889 * This is used when the caller wishes to modify the data and needs a 890 * private copy of the data to alter as well as more space for new fields. 891 * Returns %NULL on failure or the pointer to the buffer 892 * on success. The returned buffer has a reference count of 1. 893 * 894 * You must pass %GFP_ATOMIC as the allocation priority if this function 895 * is called from an interrupt. 896 */ 897 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 898 int newheadroom, int newtailroom, 899 gfp_t gfp_mask) 900 { 901 /* 902 * Allocate the copy buffer 903 */ 904 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 905 gfp_mask); 906 int oldheadroom = skb_headroom(skb); 907 int head_copy_len, head_copy_off; 908 int off; 909 910 if (!n) 911 return NULL; 912 913 skb_reserve(n, newheadroom); 914 915 /* Set the tail pointer and length */ 916 skb_put(n, skb->len); 917 918 head_copy_len = oldheadroom; 919 head_copy_off = 0; 920 if (newheadroom <= head_copy_len) 921 head_copy_len = newheadroom; 922 else 923 head_copy_off = newheadroom - head_copy_len; 924 925 /* Copy the linear header and data. */ 926 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 927 skb->len + head_copy_len)) 928 BUG(); 929 930 copy_skb_header(n, skb); 931 932 off = newheadroom - oldheadroom; 933 n->csum_start += off; 934 #ifdef NET_SKBUFF_DATA_USES_OFFSET 935 n->transport_header += off; 936 n->network_header += off; 937 if (skb_mac_header_was_set(skb)) 938 n->mac_header += off; 939 #endif 940 941 return n; 942 } 943 EXPORT_SYMBOL(skb_copy_expand); 944 945 /** 946 * skb_pad - zero pad the tail of an skb 947 * @skb: buffer to pad 948 * @pad: space to pad 949 * 950 * Ensure that a buffer is followed by a padding area that is zero 951 * filled. Used by network drivers which may DMA or transfer data 952 * beyond the buffer end onto the wire. 953 * 954 * May return error in out of memory cases. The skb is freed on error. 955 */ 956 957 int skb_pad(struct sk_buff *skb, int pad) 958 { 959 int err; 960 int ntail; 961 962 /* If the skbuff is non linear tailroom is always zero.. */ 963 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 964 memset(skb->data+skb->len, 0, pad); 965 return 0; 966 } 967 968 ntail = skb->data_len + pad - (skb->end - skb->tail); 969 if (likely(skb_cloned(skb) || ntail > 0)) { 970 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 971 if (unlikely(err)) 972 goto free_skb; 973 } 974 975 /* FIXME: The use of this function with non-linear skb's really needs 976 * to be audited. 977 */ 978 err = skb_linearize(skb); 979 if (unlikely(err)) 980 goto free_skb; 981 982 memset(skb->data + skb->len, 0, pad); 983 return 0; 984 985 free_skb: 986 kfree_skb(skb); 987 return err; 988 } 989 EXPORT_SYMBOL(skb_pad); 990 991 /** 992 * skb_put - add data to a buffer 993 * @skb: buffer to use 994 * @len: amount of data to add 995 * 996 * This function extends the used data area of the buffer. If this would 997 * exceed the total buffer size the kernel will panic. A pointer to the 998 * first byte of the extra data is returned. 999 */ 1000 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 1001 { 1002 unsigned char *tmp = skb_tail_pointer(skb); 1003 SKB_LINEAR_ASSERT(skb); 1004 skb->tail += len; 1005 skb->len += len; 1006 if (unlikely(skb->tail > skb->end)) 1007 skb_over_panic(skb, len, __builtin_return_address(0)); 1008 return tmp; 1009 } 1010 EXPORT_SYMBOL(skb_put); 1011 1012 /** 1013 * skb_push - add data to the start of a buffer 1014 * @skb: buffer to use 1015 * @len: amount of data to add 1016 * 1017 * This function extends the used data area of the buffer at the buffer 1018 * start. If this would exceed the total buffer headroom the kernel will 1019 * panic. A pointer to the first byte of the extra data is returned. 1020 */ 1021 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 1022 { 1023 skb->data -= len; 1024 skb->len += len; 1025 if (unlikely(skb->data<skb->head)) 1026 skb_under_panic(skb, len, __builtin_return_address(0)); 1027 return skb->data; 1028 } 1029 EXPORT_SYMBOL(skb_push); 1030 1031 /** 1032 * skb_pull - remove data from the start of a buffer 1033 * @skb: buffer to use 1034 * @len: amount of data to remove 1035 * 1036 * This function removes data from the start of a buffer, returning 1037 * the memory to the headroom. A pointer to the next data in the buffer 1038 * is returned. Once the data has been pulled future pushes will overwrite 1039 * the old data. 1040 */ 1041 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 1042 { 1043 return skb_pull_inline(skb, len); 1044 } 1045 EXPORT_SYMBOL(skb_pull); 1046 1047 /** 1048 * skb_trim - remove end from a buffer 1049 * @skb: buffer to alter 1050 * @len: new length 1051 * 1052 * Cut the length of a buffer down by removing data from the tail. If 1053 * the buffer is already under the length specified it is not modified. 1054 * The skb must be linear. 1055 */ 1056 void skb_trim(struct sk_buff *skb, unsigned int len) 1057 { 1058 if (skb->len > len) 1059 __skb_trim(skb, len); 1060 } 1061 EXPORT_SYMBOL(skb_trim); 1062 1063 /* Trims skb to length len. It can change skb pointers. 1064 */ 1065 1066 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1067 { 1068 struct sk_buff **fragp; 1069 struct sk_buff *frag; 1070 int offset = skb_headlen(skb); 1071 int nfrags = skb_shinfo(skb)->nr_frags; 1072 int i; 1073 int err; 1074 1075 if (skb_cloned(skb) && 1076 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1077 return err; 1078 1079 i = 0; 1080 if (offset >= len) 1081 goto drop_pages; 1082 1083 for (; i < nfrags; i++) { 1084 int end = offset + skb_shinfo(skb)->frags[i].size; 1085 1086 if (end < len) { 1087 offset = end; 1088 continue; 1089 } 1090 1091 skb_shinfo(skb)->frags[i++].size = len - offset; 1092 1093 drop_pages: 1094 skb_shinfo(skb)->nr_frags = i; 1095 1096 for (; i < nfrags; i++) 1097 put_page(skb_shinfo(skb)->frags[i].page); 1098 1099 if (skb_has_frags(skb)) 1100 skb_drop_fraglist(skb); 1101 goto done; 1102 } 1103 1104 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1105 fragp = &frag->next) { 1106 int end = offset + frag->len; 1107 1108 if (skb_shared(frag)) { 1109 struct sk_buff *nfrag; 1110 1111 nfrag = skb_clone(frag, GFP_ATOMIC); 1112 if (unlikely(!nfrag)) 1113 return -ENOMEM; 1114 1115 nfrag->next = frag->next; 1116 kfree_skb(frag); 1117 frag = nfrag; 1118 *fragp = frag; 1119 } 1120 1121 if (end < len) { 1122 offset = end; 1123 continue; 1124 } 1125 1126 if (end > len && 1127 unlikely((err = pskb_trim(frag, len - offset)))) 1128 return err; 1129 1130 if (frag->next) 1131 skb_drop_list(&frag->next); 1132 break; 1133 } 1134 1135 done: 1136 if (len > skb_headlen(skb)) { 1137 skb->data_len -= skb->len - len; 1138 skb->len = len; 1139 } else { 1140 skb->len = len; 1141 skb->data_len = 0; 1142 skb_set_tail_pointer(skb, len); 1143 } 1144 1145 return 0; 1146 } 1147 EXPORT_SYMBOL(___pskb_trim); 1148 1149 /** 1150 * __pskb_pull_tail - advance tail of skb header 1151 * @skb: buffer to reallocate 1152 * @delta: number of bytes to advance tail 1153 * 1154 * The function makes a sense only on a fragmented &sk_buff, 1155 * it expands header moving its tail forward and copying necessary 1156 * data from fragmented part. 1157 * 1158 * &sk_buff MUST have reference count of 1. 1159 * 1160 * Returns %NULL (and &sk_buff does not change) if pull failed 1161 * or value of new tail of skb in the case of success. 1162 * 1163 * All the pointers pointing into skb header may change and must be 1164 * reloaded after call to this function. 1165 */ 1166 1167 /* Moves tail of skb head forward, copying data from fragmented part, 1168 * when it is necessary. 1169 * 1. It may fail due to malloc failure. 1170 * 2. It may change skb pointers. 1171 * 1172 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1173 */ 1174 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1175 { 1176 /* If skb has not enough free space at tail, get new one 1177 * plus 128 bytes for future expansions. If we have enough 1178 * room at tail, reallocate without expansion only if skb is cloned. 1179 */ 1180 int i, k, eat = (skb->tail + delta) - skb->end; 1181 1182 if (eat > 0 || skb_cloned(skb)) { 1183 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1184 GFP_ATOMIC)) 1185 return NULL; 1186 } 1187 1188 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1189 BUG(); 1190 1191 /* Optimization: no fragments, no reasons to preestimate 1192 * size of pulled pages. Superb. 1193 */ 1194 if (!skb_has_frags(skb)) 1195 goto pull_pages; 1196 1197 /* Estimate size of pulled pages. */ 1198 eat = delta; 1199 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1200 if (skb_shinfo(skb)->frags[i].size >= eat) 1201 goto pull_pages; 1202 eat -= skb_shinfo(skb)->frags[i].size; 1203 } 1204 1205 /* If we need update frag list, we are in troubles. 1206 * Certainly, it possible to add an offset to skb data, 1207 * but taking into account that pulling is expected to 1208 * be very rare operation, it is worth to fight against 1209 * further bloating skb head and crucify ourselves here instead. 1210 * Pure masohism, indeed. 8)8) 1211 */ 1212 if (eat) { 1213 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1214 struct sk_buff *clone = NULL; 1215 struct sk_buff *insp = NULL; 1216 1217 do { 1218 BUG_ON(!list); 1219 1220 if (list->len <= eat) { 1221 /* Eaten as whole. */ 1222 eat -= list->len; 1223 list = list->next; 1224 insp = list; 1225 } else { 1226 /* Eaten partially. */ 1227 1228 if (skb_shared(list)) { 1229 /* Sucks! We need to fork list. :-( */ 1230 clone = skb_clone(list, GFP_ATOMIC); 1231 if (!clone) 1232 return NULL; 1233 insp = list->next; 1234 list = clone; 1235 } else { 1236 /* This may be pulled without 1237 * problems. */ 1238 insp = list; 1239 } 1240 if (!pskb_pull(list, eat)) { 1241 kfree_skb(clone); 1242 return NULL; 1243 } 1244 break; 1245 } 1246 } while (eat); 1247 1248 /* Free pulled out fragments. */ 1249 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1250 skb_shinfo(skb)->frag_list = list->next; 1251 kfree_skb(list); 1252 } 1253 /* And insert new clone at head. */ 1254 if (clone) { 1255 clone->next = list; 1256 skb_shinfo(skb)->frag_list = clone; 1257 } 1258 } 1259 /* Success! Now we may commit changes to skb data. */ 1260 1261 pull_pages: 1262 eat = delta; 1263 k = 0; 1264 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1265 if (skb_shinfo(skb)->frags[i].size <= eat) { 1266 put_page(skb_shinfo(skb)->frags[i].page); 1267 eat -= skb_shinfo(skb)->frags[i].size; 1268 } else { 1269 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1270 if (eat) { 1271 skb_shinfo(skb)->frags[k].page_offset += eat; 1272 skb_shinfo(skb)->frags[k].size -= eat; 1273 eat = 0; 1274 } 1275 k++; 1276 } 1277 } 1278 skb_shinfo(skb)->nr_frags = k; 1279 1280 skb->tail += delta; 1281 skb->data_len -= delta; 1282 1283 return skb_tail_pointer(skb); 1284 } 1285 EXPORT_SYMBOL(__pskb_pull_tail); 1286 1287 /* Copy some data bits from skb to kernel buffer. */ 1288 1289 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1290 { 1291 int start = skb_headlen(skb); 1292 struct sk_buff *frag_iter; 1293 int i, copy; 1294 1295 if (offset > (int)skb->len - len) 1296 goto fault; 1297 1298 /* Copy header. */ 1299 if ((copy = start - offset) > 0) { 1300 if (copy > len) 1301 copy = len; 1302 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1303 if ((len -= copy) == 0) 1304 return 0; 1305 offset += copy; 1306 to += copy; 1307 } 1308 1309 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1310 int end; 1311 1312 WARN_ON(start > offset + len); 1313 1314 end = start + skb_shinfo(skb)->frags[i].size; 1315 if ((copy = end - offset) > 0) { 1316 u8 *vaddr; 1317 1318 if (copy > len) 1319 copy = len; 1320 1321 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1322 memcpy(to, 1323 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1324 offset - start, copy); 1325 kunmap_skb_frag(vaddr); 1326 1327 if ((len -= copy) == 0) 1328 return 0; 1329 offset += copy; 1330 to += copy; 1331 } 1332 start = end; 1333 } 1334 1335 skb_walk_frags(skb, frag_iter) { 1336 int end; 1337 1338 WARN_ON(start > offset + len); 1339 1340 end = start + frag_iter->len; 1341 if ((copy = end - offset) > 0) { 1342 if (copy > len) 1343 copy = len; 1344 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 1345 goto fault; 1346 if ((len -= copy) == 0) 1347 return 0; 1348 offset += copy; 1349 to += copy; 1350 } 1351 start = end; 1352 } 1353 if (!len) 1354 return 0; 1355 1356 fault: 1357 return -EFAULT; 1358 } 1359 EXPORT_SYMBOL(skb_copy_bits); 1360 1361 /* 1362 * Callback from splice_to_pipe(), if we need to release some pages 1363 * at the end of the spd in case we error'ed out in filling the pipe. 1364 */ 1365 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1366 { 1367 put_page(spd->pages[i]); 1368 } 1369 1370 static inline struct page *linear_to_page(struct page *page, unsigned int *len, 1371 unsigned int *offset, 1372 struct sk_buff *skb, struct sock *sk) 1373 { 1374 struct page *p = sk->sk_sndmsg_page; 1375 unsigned int off; 1376 1377 if (!p) { 1378 new_page: 1379 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0); 1380 if (!p) 1381 return NULL; 1382 1383 off = sk->sk_sndmsg_off = 0; 1384 /* hold one ref to this page until it's full */ 1385 } else { 1386 unsigned int mlen; 1387 1388 off = sk->sk_sndmsg_off; 1389 mlen = PAGE_SIZE - off; 1390 if (mlen < 64 && mlen < *len) { 1391 put_page(p); 1392 goto new_page; 1393 } 1394 1395 *len = min_t(unsigned int, *len, mlen); 1396 } 1397 1398 memcpy(page_address(p) + off, page_address(page) + *offset, *len); 1399 sk->sk_sndmsg_off += *len; 1400 *offset = off; 1401 get_page(p); 1402 1403 return p; 1404 } 1405 1406 /* 1407 * Fill page/offset/length into spd, if it can hold more pages. 1408 */ 1409 static inline int spd_fill_page(struct splice_pipe_desc *spd, 1410 struct pipe_inode_info *pipe, struct page *page, 1411 unsigned int *len, unsigned int offset, 1412 struct sk_buff *skb, int linear, 1413 struct sock *sk) 1414 { 1415 if (unlikely(spd->nr_pages == pipe->buffers)) 1416 return 1; 1417 1418 if (linear) { 1419 page = linear_to_page(page, len, &offset, skb, sk); 1420 if (!page) 1421 return 1; 1422 } else 1423 get_page(page); 1424 1425 spd->pages[spd->nr_pages] = page; 1426 spd->partial[spd->nr_pages].len = *len; 1427 spd->partial[spd->nr_pages].offset = offset; 1428 spd->nr_pages++; 1429 1430 return 0; 1431 } 1432 1433 static inline void __segment_seek(struct page **page, unsigned int *poff, 1434 unsigned int *plen, unsigned int off) 1435 { 1436 unsigned long n; 1437 1438 *poff += off; 1439 n = *poff / PAGE_SIZE; 1440 if (n) 1441 *page = nth_page(*page, n); 1442 1443 *poff = *poff % PAGE_SIZE; 1444 *plen -= off; 1445 } 1446 1447 static inline int __splice_segment(struct page *page, unsigned int poff, 1448 unsigned int plen, unsigned int *off, 1449 unsigned int *len, struct sk_buff *skb, 1450 struct splice_pipe_desc *spd, int linear, 1451 struct sock *sk, 1452 struct pipe_inode_info *pipe) 1453 { 1454 if (!*len) 1455 return 1; 1456 1457 /* skip this segment if already processed */ 1458 if (*off >= plen) { 1459 *off -= plen; 1460 return 0; 1461 } 1462 1463 /* ignore any bits we already processed */ 1464 if (*off) { 1465 __segment_seek(&page, &poff, &plen, *off); 1466 *off = 0; 1467 } 1468 1469 do { 1470 unsigned int flen = min(*len, plen); 1471 1472 /* the linear region may spread across several pages */ 1473 flen = min_t(unsigned int, flen, PAGE_SIZE - poff); 1474 1475 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk)) 1476 return 1; 1477 1478 __segment_seek(&page, &poff, &plen, flen); 1479 *len -= flen; 1480 1481 } while (*len && plen); 1482 1483 return 0; 1484 } 1485 1486 /* 1487 * Map linear and fragment data from the skb to spd. It reports failure if the 1488 * pipe is full or if we already spliced the requested length. 1489 */ 1490 static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 1491 unsigned int *offset, unsigned int *len, 1492 struct splice_pipe_desc *spd, struct sock *sk) 1493 { 1494 int seg; 1495 1496 /* 1497 * map the linear part 1498 */ 1499 if (__splice_segment(virt_to_page(skb->data), 1500 (unsigned long) skb->data & (PAGE_SIZE - 1), 1501 skb_headlen(skb), 1502 offset, len, skb, spd, 1, sk, pipe)) 1503 return 1; 1504 1505 /* 1506 * then map the fragments 1507 */ 1508 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1509 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1510 1511 if (__splice_segment(f->page, f->page_offset, f->size, 1512 offset, len, skb, spd, 0, sk, pipe)) 1513 return 1; 1514 } 1515 1516 return 0; 1517 } 1518 1519 /* 1520 * Map data from the skb to a pipe. Should handle both the linear part, 1521 * the fragments, and the frag list. It does NOT handle frag lists within 1522 * the frag list, if such a thing exists. We'd probably need to recurse to 1523 * handle that cleanly. 1524 */ 1525 int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 1526 struct pipe_inode_info *pipe, unsigned int tlen, 1527 unsigned int flags) 1528 { 1529 struct partial_page partial[PIPE_DEF_BUFFERS]; 1530 struct page *pages[PIPE_DEF_BUFFERS]; 1531 struct splice_pipe_desc spd = { 1532 .pages = pages, 1533 .partial = partial, 1534 .flags = flags, 1535 .ops = &sock_pipe_buf_ops, 1536 .spd_release = sock_spd_release, 1537 }; 1538 struct sk_buff *frag_iter; 1539 struct sock *sk = skb->sk; 1540 int ret = 0; 1541 1542 if (splice_grow_spd(pipe, &spd)) 1543 return -ENOMEM; 1544 1545 /* 1546 * __skb_splice_bits() only fails if the output has no room left, 1547 * so no point in going over the frag_list for the error case. 1548 */ 1549 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk)) 1550 goto done; 1551 else if (!tlen) 1552 goto done; 1553 1554 /* 1555 * now see if we have a frag_list to map 1556 */ 1557 skb_walk_frags(skb, frag_iter) { 1558 if (!tlen) 1559 break; 1560 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk)) 1561 break; 1562 } 1563 1564 done: 1565 if (spd.nr_pages) { 1566 /* 1567 * Drop the socket lock, otherwise we have reverse 1568 * locking dependencies between sk_lock and i_mutex 1569 * here as compared to sendfile(). We enter here 1570 * with the socket lock held, and splice_to_pipe() will 1571 * grab the pipe inode lock. For sendfile() emulation, 1572 * we call into ->sendpage() with the i_mutex lock held 1573 * and networking will grab the socket lock. 1574 */ 1575 release_sock(sk); 1576 ret = splice_to_pipe(pipe, &spd); 1577 lock_sock(sk); 1578 } 1579 1580 splice_shrink_spd(pipe, &spd); 1581 return ret; 1582 } 1583 1584 /** 1585 * skb_store_bits - store bits from kernel buffer to skb 1586 * @skb: destination buffer 1587 * @offset: offset in destination 1588 * @from: source buffer 1589 * @len: number of bytes to copy 1590 * 1591 * Copy the specified number of bytes from the source buffer to the 1592 * destination skb. This function handles all the messy bits of 1593 * traversing fragment lists and such. 1594 */ 1595 1596 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1597 { 1598 int start = skb_headlen(skb); 1599 struct sk_buff *frag_iter; 1600 int i, copy; 1601 1602 if (offset > (int)skb->len - len) 1603 goto fault; 1604 1605 if ((copy = start - offset) > 0) { 1606 if (copy > len) 1607 copy = len; 1608 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1609 if ((len -= copy) == 0) 1610 return 0; 1611 offset += copy; 1612 from += copy; 1613 } 1614 1615 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1616 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1617 int end; 1618 1619 WARN_ON(start > offset + len); 1620 1621 end = start + frag->size; 1622 if ((copy = end - offset) > 0) { 1623 u8 *vaddr; 1624 1625 if (copy > len) 1626 copy = len; 1627 1628 vaddr = kmap_skb_frag(frag); 1629 memcpy(vaddr + frag->page_offset + offset - start, 1630 from, copy); 1631 kunmap_skb_frag(vaddr); 1632 1633 if ((len -= copy) == 0) 1634 return 0; 1635 offset += copy; 1636 from += copy; 1637 } 1638 start = end; 1639 } 1640 1641 skb_walk_frags(skb, frag_iter) { 1642 int end; 1643 1644 WARN_ON(start > offset + len); 1645 1646 end = start + frag_iter->len; 1647 if ((copy = end - offset) > 0) { 1648 if (copy > len) 1649 copy = len; 1650 if (skb_store_bits(frag_iter, offset - start, 1651 from, copy)) 1652 goto fault; 1653 if ((len -= copy) == 0) 1654 return 0; 1655 offset += copy; 1656 from += copy; 1657 } 1658 start = end; 1659 } 1660 if (!len) 1661 return 0; 1662 1663 fault: 1664 return -EFAULT; 1665 } 1666 EXPORT_SYMBOL(skb_store_bits); 1667 1668 /* Checksum skb data. */ 1669 1670 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1671 int len, __wsum csum) 1672 { 1673 int start = skb_headlen(skb); 1674 int i, copy = start - offset; 1675 struct sk_buff *frag_iter; 1676 int pos = 0; 1677 1678 /* Checksum header. */ 1679 if (copy > 0) { 1680 if (copy > len) 1681 copy = len; 1682 csum = csum_partial(skb->data + offset, copy, csum); 1683 if ((len -= copy) == 0) 1684 return csum; 1685 offset += copy; 1686 pos = copy; 1687 } 1688 1689 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1690 int end; 1691 1692 WARN_ON(start > offset + len); 1693 1694 end = start + skb_shinfo(skb)->frags[i].size; 1695 if ((copy = end - offset) > 0) { 1696 __wsum csum2; 1697 u8 *vaddr; 1698 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1699 1700 if (copy > len) 1701 copy = len; 1702 vaddr = kmap_skb_frag(frag); 1703 csum2 = csum_partial(vaddr + frag->page_offset + 1704 offset - start, copy, 0); 1705 kunmap_skb_frag(vaddr); 1706 csum = csum_block_add(csum, csum2, pos); 1707 if (!(len -= copy)) 1708 return csum; 1709 offset += copy; 1710 pos += copy; 1711 } 1712 start = end; 1713 } 1714 1715 skb_walk_frags(skb, frag_iter) { 1716 int end; 1717 1718 WARN_ON(start > offset + len); 1719 1720 end = start + frag_iter->len; 1721 if ((copy = end - offset) > 0) { 1722 __wsum csum2; 1723 if (copy > len) 1724 copy = len; 1725 csum2 = skb_checksum(frag_iter, offset - start, 1726 copy, 0); 1727 csum = csum_block_add(csum, csum2, pos); 1728 if ((len -= copy) == 0) 1729 return csum; 1730 offset += copy; 1731 pos += copy; 1732 } 1733 start = end; 1734 } 1735 BUG_ON(len); 1736 1737 return csum; 1738 } 1739 EXPORT_SYMBOL(skb_checksum); 1740 1741 /* Both of above in one bottle. */ 1742 1743 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1744 u8 *to, int len, __wsum csum) 1745 { 1746 int start = skb_headlen(skb); 1747 int i, copy = start - offset; 1748 struct sk_buff *frag_iter; 1749 int pos = 0; 1750 1751 /* Copy header. */ 1752 if (copy > 0) { 1753 if (copy > len) 1754 copy = len; 1755 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1756 copy, csum); 1757 if ((len -= copy) == 0) 1758 return csum; 1759 offset += copy; 1760 to += copy; 1761 pos = copy; 1762 } 1763 1764 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1765 int end; 1766 1767 WARN_ON(start > offset + len); 1768 1769 end = start + skb_shinfo(skb)->frags[i].size; 1770 if ((copy = end - offset) > 0) { 1771 __wsum csum2; 1772 u8 *vaddr; 1773 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1774 1775 if (copy > len) 1776 copy = len; 1777 vaddr = kmap_skb_frag(frag); 1778 csum2 = csum_partial_copy_nocheck(vaddr + 1779 frag->page_offset + 1780 offset - start, to, 1781 copy, 0); 1782 kunmap_skb_frag(vaddr); 1783 csum = csum_block_add(csum, csum2, pos); 1784 if (!(len -= copy)) 1785 return csum; 1786 offset += copy; 1787 to += copy; 1788 pos += copy; 1789 } 1790 start = end; 1791 } 1792 1793 skb_walk_frags(skb, frag_iter) { 1794 __wsum csum2; 1795 int end; 1796 1797 WARN_ON(start > offset + len); 1798 1799 end = start + frag_iter->len; 1800 if ((copy = end - offset) > 0) { 1801 if (copy > len) 1802 copy = len; 1803 csum2 = skb_copy_and_csum_bits(frag_iter, 1804 offset - start, 1805 to, copy, 0); 1806 csum = csum_block_add(csum, csum2, pos); 1807 if ((len -= copy) == 0) 1808 return csum; 1809 offset += copy; 1810 to += copy; 1811 pos += copy; 1812 } 1813 start = end; 1814 } 1815 BUG_ON(len); 1816 return csum; 1817 } 1818 EXPORT_SYMBOL(skb_copy_and_csum_bits); 1819 1820 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1821 { 1822 __wsum csum; 1823 long csstart; 1824 1825 if (skb->ip_summed == CHECKSUM_PARTIAL) 1826 csstart = skb->csum_start - skb_headroom(skb); 1827 else 1828 csstart = skb_headlen(skb); 1829 1830 BUG_ON(csstart > skb_headlen(skb)); 1831 1832 skb_copy_from_linear_data(skb, to, csstart); 1833 1834 csum = 0; 1835 if (csstart != skb->len) 1836 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1837 skb->len - csstart, 0); 1838 1839 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1840 long csstuff = csstart + skb->csum_offset; 1841 1842 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 1843 } 1844 } 1845 EXPORT_SYMBOL(skb_copy_and_csum_dev); 1846 1847 /** 1848 * skb_dequeue - remove from the head of the queue 1849 * @list: list to dequeue from 1850 * 1851 * Remove the head of the list. The list lock is taken so the function 1852 * may be used safely with other locking list functions. The head item is 1853 * returned or %NULL if the list is empty. 1854 */ 1855 1856 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1857 { 1858 unsigned long flags; 1859 struct sk_buff *result; 1860 1861 spin_lock_irqsave(&list->lock, flags); 1862 result = __skb_dequeue(list); 1863 spin_unlock_irqrestore(&list->lock, flags); 1864 return result; 1865 } 1866 EXPORT_SYMBOL(skb_dequeue); 1867 1868 /** 1869 * skb_dequeue_tail - remove from the tail of the queue 1870 * @list: list to dequeue from 1871 * 1872 * Remove the tail of the list. The list lock is taken so the function 1873 * may be used safely with other locking list functions. The tail item is 1874 * returned or %NULL if the list is empty. 1875 */ 1876 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1877 { 1878 unsigned long flags; 1879 struct sk_buff *result; 1880 1881 spin_lock_irqsave(&list->lock, flags); 1882 result = __skb_dequeue_tail(list); 1883 spin_unlock_irqrestore(&list->lock, flags); 1884 return result; 1885 } 1886 EXPORT_SYMBOL(skb_dequeue_tail); 1887 1888 /** 1889 * skb_queue_purge - empty a list 1890 * @list: list to empty 1891 * 1892 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1893 * the list and one reference dropped. This function takes the list 1894 * lock and is atomic with respect to other list locking functions. 1895 */ 1896 void skb_queue_purge(struct sk_buff_head *list) 1897 { 1898 struct sk_buff *skb; 1899 while ((skb = skb_dequeue(list)) != NULL) 1900 kfree_skb(skb); 1901 } 1902 EXPORT_SYMBOL(skb_queue_purge); 1903 1904 /** 1905 * skb_queue_head - queue a buffer at the list head 1906 * @list: list to use 1907 * @newsk: buffer to queue 1908 * 1909 * Queue a buffer at the start of the list. This function takes the 1910 * list lock and can be used safely with other locking &sk_buff functions 1911 * safely. 1912 * 1913 * A buffer cannot be placed on two lists at the same time. 1914 */ 1915 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1916 { 1917 unsigned long flags; 1918 1919 spin_lock_irqsave(&list->lock, flags); 1920 __skb_queue_head(list, newsk); 1921 spin_unlock_irqrestore(&list->lock, flags); 1922 } 1923 EXPORT_SYMBOL(skb_queue_head); 1924 1925 /** 1926 * skb_queue_tail - queue a buffer at the list tail 1927 * @list: list to use 1928 * @newsk: buffer to queue 1929 * 1930 * Queue a buffer at the tail of the list. This function takes the 1931 * list lock and can be used safely with other locking &sk_buff functions 1932 * safely. 1933 * 1934 * A buffer cannot be placed on two lists at the same time. 1935 */ 1936 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1937 { 1938 unsigned long flags; 1939 1940 spin_lock_irqsave(&list->lock, flags); 1941 __skb_queue_tail(list, newsk); 1942 spin_unlock_irqrestore(&list->lock, flags); 1943 } 1944 EXPORT_SYMBOL(skb_queue_tail); 1945 1946 /** 1947 * skb_unlink - remove a buffer from a list 1948 * @skb: buffer to remove 1949 * @list: list to use 1950 * 1951 * Remove a packet from a list. The list locks are taken and this 1952 * function is atomic with respect to other list locked calls 1953 * 1954 * You must know what list the SKB is on. 1955 */ 1956 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1957 { 1958 unsigned long flags; 1959 1960 spin_lock_irqsave(&list->lock, flags); 1961 __skb_unlink(skb, list); 1962 spin_unlock_irqrestore(&list->lock, flags); 1963 } 1964 EXPORT_SYMBOL(skb_unlink); 1965 1966 /** 1967 * skb_append - append a buffer 1968 * @old: buffer to insert after 1969 * @newsk: buffer to insert 1970 * @list: list to use 1971 * 1972 * Place a packet after a given packet in a list. The list locks are taken 1973 * and this function is atomic with respect to other list locked calls. 1974 * A buffer cannot be placed on two lists at the same time. 1975 */ 1976 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1977 { 1978 unsigned long flags; 1979 1980 spin_lock_irqsave(&list->lock, flags); 1981 __skb_queue_after(list, old, newsk); 1982 spin_unlock_irqrestore(&list->lock, flags); 1983 } 1984 EXPORT_SYMBOL(skb_append); 1985 1986 /** 1987 * skb_insert - insert a buffer 1988 * @old: buffer to insert before 1989 * @newsk: buffer to insert 1990 * @list: list to use 1991 * 1992 * Place a packet before a given packet in a list. The list locks are 1993 * taken and this function is atomic with respect to other list locked 1994 * calls. 1995 * 1996 * A buffer cannot be placed on two lists at the same time. 1997 */ 1998 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1999 { 2000 unsigned long flags; 2001 2002 spin_lock_irqsave(&list->lock, flags); 2003 __skb_insert(newsk, old->prev, old, list); 2004 spin_unlock_irqrestore(&list->lock, flags); 2005 } 2006 EXPORT_SYMBOL(skb_insert); 2007 2008 static inline void skb_split_inside_header(struct sk_buff *skb, 2009 struct sk_buff* skb1, 2010 const u32 len, const int pos) 2011 { 2012 int i; 2013 2014 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2015 pos - len); 2016 /* And move data appendix as is. */ 2017 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2018 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2019 2020 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2021 skb_shinfo(skb)->nr_frags = 0; 2022 skb1->data_len = skb->data_len; 2023 skb1->len += skb1->data_len; 2024 skb->data_len = 0; 2025 skb->len = len; 2026 skb_set_tail_pointer(skb, len); 2027 } 2028 2029 static inline void skb_split_no_header(struct sk_buff *skb, 2030 struct sk_buff* skb1, 2031 const u32 len, int pos) 2032 { 2033 int i, k = 0; 2034 const int nfrags = skb_shinfo(skb)->nr_frags; 2035 2036 skb_shinfo(skb)->nr_frags = 0; 2037 skb1->len = skb1->data_len = skb->len - len; 2038 skb->len = len; 2039 skb->data_len = len - pos; 2040 2041 for (i = 0; i < nfrags; i++) { 2042 int size = skb_shinfo(skb)->frags[i].size; 2043 2044 if (pos + size > len) { 2045 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 2046 2047 if (pos < len) { 2048 /* Split frag. 2049 * We have two variants in this case: 2050 * 1. Move all the frag to the second 2051 * part, if it is possible. F.e. 2052 * this approach is mandatory for TUX, 2053 * where splitting is expensive. 2054 * 2. Split is accurately. We make this. 2055 */ 2056 get_page(skb_shinfo(skb)->frags[i].page); 2057 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 2058 skb_shinfo(skb1)->frags[0].size -= len - pos; 2059 skb_shinfo(skb)->frags[i].size = len - pos; 2060 skb_shinfo(skb)->nr_frags++; 2061 } 2062 k++; 2063 } else 2064 skb_shinfo(skb)->nr_frags++; 2065 pos += size; 2066 } 2067 skb_shinfo(skb1)->nr_frags = k; 2068 } 2069 2070 /** 2071 * skb_split - Split fragmented skb to two parts at length len. 2072 * @skb: the buffer to split 2073 * @skb1: the buffer to receive the second part 2074 * @len: new length for skb 2075 */ 2076 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 2077 { 2078 int pos = skb_headlen(skb); 2079 2080 if (len < pos) /* Split line is inside header. */ 2081 skb_split_inside_header(skb, skb1, len, pos); 2082 else /* Second chunk has no header, nothing to copy. */ 2083 skb_split_no_header(skb, skb1, len, pos); 2084 } 2085 EXPORT_SYMBOL(skb_split); 2086 2087 /* Shifting from/to a cloned skb is a no-go. 2088 * 2089 * Caller cannot keep skb_shinfo related pointers past calling here! 2090 */ 2091 static int skb_prepare_for_shift(struct sk_buff *skb) 2092 { 2093 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2094 } 2095 2096 /** 2097 * skb_shift - Shifts paged data partially from skb to another 2098 * @tgt: buffer into which tail data gets added 2099 * @skb: buffer from which the paged data comes from 2100 * @shiftlen: shift up to this many bytes 2101 * 2102 * Attempts to shift up to shiftlen worth of bytes, which may be less than 2103 * the length of the skb, from tgt to skb. Returns number bytes shifted. 2104 * It's up to caller to free skb if everything was shifted. 2105 * 2106 * If @tgt runs out of frags, the whole operation is aborted. 2107 * 2108 * Skb cannot include anything else but paged data while tgt is allowed 2109 * to have non-paged data as well. 2110 * 2111 * TODO: full sized shift could be optimized but that would need 2112 * specialized skb free'er to handle frags without up-to-date nr_frags. 2113 */ 2114 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 2115 { 2116 int from, to, merge, todo; 2117 struct skb_frag_struct *fragfrom, *fragto; 2118 2119 BUG_ON(shiftlen > skb->len); 2120 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */ 2121 2122 todo = shiftlen; 2123 from = 0; 2124 to = skb_shinfo(tgt)->nr_frags; 2125 fragfrom = &skb_shinfo(skb)->frags[from]; 2126 2127 /* Actual merge is delayed until the point when we know we can 2128 * commit all, so that we don't have to undo partial changes 2129 */ 2130 if (!to || 2131 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) { 2132 merge = -1; 2133 } else { 2134 merge = to - 1; 2135 2136 todo -= fragfrom->size; 2137 if (todo < 0) { 2138 if (skb_prepare_for_shift(skb) || 2139 skb_prepare_for_shift(tgt)) 2140 return 0; 2141 2142 /* All previous frag pointers might be stale! */ 2143 fragfrom = &skb_shinfo(skb)->frags[from]; 2144 fragto = &skb_shinfo(tgt)->frags[merge]; 2145 2146 fragto->size += shiftlen; 2147 fragfrom->size -= shiftlen; 2148 fragfrom->page_offset += shiftlen; 2149 2150 goto onlymerged; 2151 } 2152 2153 from++; 2154 } 2155 2156 /* Skip full, not-fitting skb to avoid expensive operations */ 2157 if ((shiftlen == skb->len) && 2158 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 2159 return 0; 2160 2161 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 2162 return 0; 2163 2164 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 2165 if (to == MAX_SKB_FRAGS) 2166 return 0; 2167 2168 fragfrom = &skb_shinfo(skb)->frags[from]; 2169 fragto = &skb_shinfo(tgt)->frags[to]; 2170 2171 if (todo >= fragfrom->size) { 2172 *fragto = *fragfrom; 2173 todo -= fragfrom->size; 2174 from++; 2175 to++; 2176 2177 } else { 2178 get_page(fragfrom->page); 2179 fragto->page = fragfrom->page; 2180 fragto->page_offset = fragfrom->page_offset; 2181 fragto->size = todo; 2182 2183 fragfrom->page_offset += todo; 2184 fragfrom->size -= todo; 2185 todo = 0; 2186 2187 to++; 2188 break; 2189 } 2190 } 2191 2192 /* Ready to "commit" this state change to tgt */ 2193 skb_shinfo(tgt)->nr_frags = to; 2194 2195 if (merge >= 0) { 2196 fragfrom = &skb_shinfo(skb)->frags[0]; 2197 fragto = &skb_shinfo(tgt)->frags[merge]; 2198 2199 fragto->size += fragfrom->size; 2200 put_page(fragfrom->page); 2201 } 2202 2203 /* Reposition in the original skb */ 2204 to = 0; 2205 while (from < skb_shinfo(skb)->nr_frags) 2206 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 2207 skb_shinfo(skb)->nr_frags = to; 2208 2209 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 2210 2211 onlymerged: 2212 /* Most likely the tgt won't ever need its checksum anymore, skb on 2213 * the other hand might need it if it needs to be resent 2214 */ 2215 tgt->ip_summed = CHECKSUM_PARTIAL; 2216 skb->ip_summed = CHECKSUM_PARTIAL; 2217 2218 /* Yak, is it really working this way? Some helper please? */ 2219 skb->len -= shiftlen; 2220 skb->data_len -= shiftlen; 2221 skb->truesize -= shiftlen; 2222 tgt->len += shiftlen; 2223 tgt->data_len += shiftlen; 2224 tgt->truesize += shiftlen; 2225 2226 return shiftlen; 2227 } 2228 2229 /** 2230 * skb_prepare_seq_read - Prepare a sequential read of skb data 2231 * @skb: the buffer to read 2232 * @from: lower offset of data to be read 2233 * @to: upper offset of data to be read 2234 * @st: state variable 2235 * 2236 * Initializes the specified state variable. Must be called before 2237 * invoking skb_seq_read() for the first time. 2238 */ 2239 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 2240 unsigned int to, struct skb_seq_state *st) 2241 { 2242 st->lower_offset = from; 2243 st->upper_offset = to; 2244 st->root_skb = st->cur_skb = skb; 2245 st->frag_idx = st->stepped_offset = 0; 2246 st->frag_data = NULL; 2247 } 2248 EXPORT_SYMBOL(skb_prepare_seq_read); 2249 2250 /** 2251 * skb_seq_read - Sequentially read skb data 2252 * @consumed: number of bytes consumed by the caller so far 2253 * @data: destination pointer for data to be returned 2254 * @st: state variable 2255 * 2256 * Reads a block of skb data at &consumed relative to the 2257 * lower offset specified to skb_prepare_seq_read(). Assigns 2258 * the head of the data block to &data and returns the length 2259 * of the block or 0 if the end of the skb data or the upper 2260 * offset has been reached. 2261 * 2262 * The caller is not required to consume all of the data 2263 * returned, i.e. &consumed is typically set to the number 2264 * of bytes already consumed and the next call to 2265 * skb_seq_read() will return the remaining part of the block. 2266 * 2267 * Note 1: The size of each block of data returned can be arbitary, 2268 * this limitation is the cost for zerocopy seqeuental 2269 * reads of potentially non linear data. 2270 * 2271 * Note 2: Fragment lists within fragments are not implemented 2272 * at the moment, state->root_skb could be replaced with 2273 * a stack for this purpose. 2274 */ 2275 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2276 struct skb_seq_state *st) 2277 { 2278 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2279 skb_frag_t *frag; 2280 2281 if (unlikely(abs_offset >= st->upper_offset)) 2282 return 0; 2283 2284 next_skb: 2285 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 2286 2287 if (abs_offset < block_limit && !st->frag_data) { 2288 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 2289 return block_limit - abs_offset; 2290 } 2291 2292 if (st->frag_idx == 0 && !st->frag_data) 2293 st->stepped_offset += skb_headlen(st->cur_skb); 2294 2295 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2296 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2297 block_limit = frag->size + st->stepped_offset; 2298 2299 if (abs_offset < block_limit) { 2300 if (!st->frag_data) 2301 st->frag_data = kmap_skb_frag(frag); 2302 2303 *data = (u8 *) st->frag_data + frag->page_offset + 2304 (abs_offset - st->stepped_offset); 2305 2306 return block_limit - abs_offset; 2307 } 2308 2309 if (st->frag_data) { 2310 kunmap_skb_frag(st->frag_data); 2311 st->frag_data = NULL; 2312 } 2313 2314 st->frag_idx++; 2315 st->stepped_offset += frag->size; 2316 } 2317 2318 if (st->frag_data) { 2319 kunmap_skb_frag(st->frag_data); 2320 st->frag_data = NULL; 2321 } 2322 2323 if (st->root_skb == st->cur_skb && skb_has_frags(st->root_skb)) { 2324 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2325 st->frag_idx = 0; 2326 goto next_skb; 2327 } else if (st->cur_skb->next) { 2328 st->cur_skb = st->cur_skb->next; 2329 st->frag_idx = 0; 2330 goto next_skb; 2331 } 2332 2333 return 0; 2334 } 2335 EXPORT_SYMBOL(skb_seq_read); 2336 2337 /** 2338 * skb_abort_seq_read - Abort a sequential read of skb data 2339 * @st: state variable 2340 * 2341 * Must be called if skb_seq_read() was not called until it 2342 * returned 0. 2343 */ 2344 void skb_abort_seq_read(struct skb_seq_state *st) 2345 { 2346 if (st->frag_data) 2347 kunmap_skb_frag(st->frag_data); 2348 } 2349 EXPORT_SYMBOL(skb_abort_seq_read); 2350 2351 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2352 2353 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2354 struct ts_config *conf, 2355 struct ts_state *state) 2356 { 2357 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2358 } 2359 2360 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2361 { 2362 skb_abort_seq_read(TS_SKB_CB(state)); 2363 } 2364 2365 /** 2366 * skb_find_text - Find a text pattern in skb data 2367 * @skb: the buffer to look in 2368 * @from: search offset 2369 * @to: search limit 2370 * @config: textsearch configuration 2371 * @state: uninitialized textsearch state variable 2372 * 2373 * Finds a pattern in the skb data according to the specified 2374 * textsearch configuration. Use textsearch_next() to retrieve 2375 * subsequent occurrences of the pattern. Returns the offset 2376 * to the first occurrence or UINT_MAX if no match was found. 2377 */ 2378 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2379 unsigned int to, struct ts_config *config, 2380 struct ts_state *state) 2381 { 2382 unsigned int ret; 2383 2384 config->get_next_block = skb_ts_get_next_block; 2385 config->finish = skb_ts_finish; 2386 2387 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 2388 2389 ret = textsearch_find(config, state); 2390 return (ret <= to - from ? ret : UINT_MAX); 2391 } 2392 EXPORT_SYMBOL(skb_find_text); 2393 2394 /** 2395 * skb_append_datato_frags: - append the user data to a skb 2396 * @sk: sock structure 2397 * @skb: skb structure to be appened with user data. 2398 * @getfrag: call back function to be used for getting the user data 2399 * @from: pointer to user message iov 2400 * @length: length of the iov message 2401 * 2402 * Description: This procedure append the user data in the fragment part 2403 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2404 */ 2405 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2406 int (*getfrag)(void *from, char *to, int offset, 2407 int len, int odd, struct sk_buff *skb), 2408 void *from, int length) 2409 { 2410 int frg_cnt = 0; 2411 skb_frag_t *frag = NULL; 2412 struct page *page = NULL; 2413 int copy, left; 2414 int offset = 0; 2415 int ret; 2416 2417 do { 2418 /* Return error if we don't have space for new frag */ 2419 frg_cnt = skb_shinfo(skb)->nr_frags; 2420 if (frg_cnt >= MAX_SKB_FRAGS) 2421 return -EFAULT; 2422 2423 /* allocate a new page for next frag */ 2424 page = alloc_pages(sk->sk_allocation, 0); 2425 2426 /* If alloc_page fails just return failure and caller will 2427 * free previous allocated pages by doing kfree_skb() 2428 */ 2429 if (page == NULL) 2430 return -ENOMEM; 2431 2432 /* initialize the next frag */ 2433 sk->sk_sndmsg_page = page; 2434 sk->sk_sndmsg_off = 0; 2435 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 2436 skb->truesize += PAGE_SIZE; 2437 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 2438 2439 /* get the new initialized frag */ 2440 frg_cnt = skb_shinfo(skb)->nr_frags; 2441 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 2442 2443 /* copy the user data to page */ 2444 left = PAGE_SIZE - frag->page_offset; 2445 copy = (length > left)? left : length; 2446 2447 ret = getfrag(from, (page_address(frag->page) + 2448 frag->page_offset + frag->size), 2449 offset, copy, 0, skb); 2450 if (ret < 0) 2451 return -EFAULT; 2452 2453 /* copy was successful so update the size parameters */ 2454 sk->sk_sndmsg_off += copy; 2455 frag->size += copy; 2456 skb->len += copy; 2457 skb->data_len += copy; 2458 offset += copy; 2459 length -= copy; 2460 2461 } while (length > 0); 2462 2463 return 0; 2464 } 2465 EXPORT_SYMBOL(skb_append_datato_frags); 2466 2467 /** 2468 * skb_pull_rcsum - pull skb and update receive checksum 2469 * @skb: buffer to update 2470 * @len: length of data pulled 2471 * 2472 * This function performs an skb_pull on the packet and updates 2473 * the CHECKSUM_COMPLETE checksum. It should be used on 2474 * receive path processing instead of skb_pull unless you know 2475 * that the checksum difference is zero (e.g., a valid IP header) 2476 * or you are setting ip_summed to CHECKSUM_NONE. 2477 */ 2478 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2479 { 2480 BUG_ON(len > skb->len); 2481 skb->len -= len; 2482 BUG_ON(skb->len < skb->data_len); 2483 skb_postpull_rcsum(skb, skb->data, len); 2484 return skb->data += len; 2485 } 2486 2487 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2488 2489 /** 2490 * skb_segment - Perform protocol segmentation on skb. 2491 * @skb: buffer to segment 2492 * @features: features for the output path (see dev->features) 2493 * 2494 * This function performs segmentation on the given skb. It returns 2495 * a pointer to the first in a list of new skbs for the segments. 2496 * In case of error it returns ERR_PTR(err). 2497 */ 2498 struct sk_buff *skb_segment(struct sk_buff *skb, int features) 2499 { 2500 struct sk_buff *segs = NULL; 2501 struct sk_buff *tail = NULL; 2502 struct sk_buff *fskb = skb_shinfo(skb)->frag_list; 2503 unsigned int mss = skb_shinfo(skb)->gso_size; 2504 unsigned int doffset = skb->data - skb_mac_header(skb); 2505 unsigned int offset = doffset; 2506 unsigned int headroom; 2507 unsigned int len; 2508 int sg = features & NETIF_F_SG; 2509 int nfrags = skb_shinfo(skb)->nr_frags; 2510 int err = -ENOMEM; 2511 int i = 0; 2512 int pos; 2513 2514 __skb_push(skb, doffset); 2515 headroom = skb_headroom(skb); 2516 pos = skb_headlen(skb); 2517 2518 do { 2519 struct sk_buff *nskb; 2520 skb_frag_t *frag; 2521 int hsize; 2522 int size; 2523 2524 len = skb->len - offset; 2525 if (len > mss) 2526 len = mss; 2527 2528 hsize = skb_headlen(skb) - offset; 2529 if (hsize < 0) 2530 hsize = 0; 2531 if (hsize > len || !sg) 2532 hsize = len; 2533 2534 if (!hsize && i >= nfrags) { 2535 BUG_ON(fskb->len != len); 2536 2537 pos += len; 2538 nskb = skb_clone(fskb, GFP_ATOMIC); 2539 fskb = fskb->next; 2540 2541 if (unlikely(!nskb)) 2542 goto err; 2543 2544 hsize = skb_end_pointer(nskb) - nskb->head; 2545 if (skb_cow_head(nskb, doffset + headroom)) { 2546 kfree_skb(nskb); 2547 goto err; 2548 } 2549 2550 nskb->truesize += skb_end_pointer(nskb) - nskb->head - 2551 hsize; 2552 skb_release_head_state(nskb); 2553 __skb_push(nskb, doffset); 2554 } else { 2555 nskb = alloc_skb(hsize + doffset + headroom, 2556 GFP_ATOMIC); 2557 2558 if (unlikely(!nskb)) 2559 goto err; 2560 2561 skb_reserve(nskb, headroom); 2562 __skb_put(nskb, doffset); 2563 } 2564 2565 if (segs) 2566 tail->next = nskb; 2567 else 2568 segs = nskb; 2569 tail = nskb; 2570 2571 __copy_skb_header(nskb, skb); 2572 nskb->mac_len = skb->mac_len; 2573 2574 skb_reset_mac_header(nskb); 2575 skb_set_network_header(nskb, skb->mac_len); 2576 nskb->transport_header = (nskb->network_header + 2577 skb_network_header_len(skb)); 2578 skb_copy_from_linear_data(skb, nskb->data, doffset); 2579 2580 if (fskb != skb_shinfo(skb)->frag_list) 2581 continue; 2582 2583 if (!sg) { 2584 nskb->ip_summed = CHECKSUM_NONE; 2585 nskb->csum = skb_copy_and_csum_bits(skb, offset, 2586 skb_put(nskb, len), 2587 len, 0); 2588 continue; 2589 } 2590 2591 frag = skb_shinfo(nskb)->frags; 2592 2593 skb_copy_from_linear_data_offset(skb, offset, 2594 skb_put(nskb, hsize), hsize); 2595 2596 while (pos < offset + len && i < nfrags) { 2597 *frag = skb_shinfo(skb)->frags[i]; 2598 get_page(frag->page); 2599 size = frag->size; 2600 2601 if (pos < offset) { 2602 frag->page_offset += offset - pos; 2603 frag->size -= offset - pos; 2604 } 2605 2606 skb_shinfo(nskb)->nr_frags++; 2607 2608 if (pos + size <= offset + len) { 2609 i++; 2610 pos += size; 2611 } else { 2612 frag->size -= pos + size - (offset + len); 2613 goto skip_fraglist; 2614 } 2615 2616 frag++; 2617 } 2618 2619 if (pos < offset + len) { 2620 struct sk_buff *fskb2 = fskb; 2621 2622 BUG_ON(pos + fskb->len != offset + len); 2623 2624 pos += fskb->len; 2625 fskb = fskb->next; 2626 2627 if (fskb2->next) { 2628 fskb2 = skb_clone(fskb2, GFP_ATOMIC); 2629 if (!fskb2) 2630 goto err; 2631 } else 2632 skb_get(fskb2); 2633 2634 SKB_FRAG_ASSERT(nskb); 2635 skb_shinfo(nskb)->frag_list = fskb2; 2636 } 2637 2638 skip_fraglist: 2639 nskb->data_len = len - hsize; 2640 nskb->len += nskb->data_len; 2641 nskb->truesize += nskb->data_len; 2642 } while ((offset += len) < skb->len); 2643 2644 return segs; 2645 2646 err: 2647 while ((skb = segs)) { 2648 segs = skb->next; 2649 kfree_skb(skb); 2650 } 2651 return ERR_PTR(err); 2652 } 2653 EXPORT_SYMBOL_GPL(skb_segment); 2654 2655 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2656 { 2657 struct sk_buff *p = *head; 2658 struct sk_buff *nskb; 2659 struct skb_shared_info *skbinfo = skb_shinfo(skb); 2660 struct skb_shared_info *pinfo = skb_shinfo(p); 2661 unsigned int headroom; 2662 unsigned int len = skb_gro_len(skb); 2663 unsigned int offset = skb_gro_offset(skb); 2664 unsigned int headlen = skb_headlen(skb); 2665 2666 if (p->len + len >= 65536) 2667 return -E2BIG; 2668 2669 if (pinfo->frag_list) 2670 goto merge; 2671 else if (headlen <= offset) { 2672 skb_frag_t *frag; 2673 skb_frag_t *frag2; 2674 int i = skbinfo->nr_frags; 2675 int nr_frags = pinfo->nr_frags + i; 2676 2677 offset -= headlen; 2678 2679 if (nr_frags > MAX_SKB_FRAGS) 2680 return -E2BIG; 2681 2682 pinfo->nr_frags = nr_frags; 2683 skbinfo->nr_frags = 0; 2684 2685 frag = pinfo->frags + nr_frags; 2686 frag2 = skbinfo->frags + i; 2687 do { 2688 *--frag = *--frag2; 2689 } while (--i); 2690 2691 frag->page_offset += offset; 2692 frag->size -= offset; 2693 2694 skb->truesize -= skb->data_len; 2695 skb->len -= skb->data_len; 2696 skb->data_len = 0; 2697 2698 NAPI_GRO_CB(skb)->free = 1; 2699 goto done; 2700 } else if (skb_gro_len(p) != pinfo->gso_size) 2701 return -E2BIG; 2702 2703 headroom = skb_headroom(p); 2704 nskb = netdev_alloc_skb(p->dev, headroom + skb_gro_offset(p)); 2705 if (unlikely(!nskb)) 2706 return -ENOMEM; 2707 2708 __copy_skb_header(nskb, p); 2709 nskb->mac_len = p->mac_len; 2710 2711 skb_reserve(nskb, headroom); 2712 __skb_put(nskb, skb_gro_offset(p)); 2713 2714 skb_set_mac_header(nskb, skb_mac_header(p) - p->data); 2715 skb_set_network_header(nskb, skb_network_offset(p)); 2716 skb_set_transport_header(nskb, skb_transport_offset(p)); 2717 2718 __skb_pull(p, skb_gro_offset(p)); 2719 memcpy(skb_mac_header(nskb), skb_mac_header(p), 2720 p->data - skb_mac_header(p)); 2721 2722 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p); 2723 skb_shinfo(nskb)->frag_list = p; 2724 skb_shinfo(nskb)->gso_size = pinfo->gso_size; 2725 pinfo->gso_size = 0; 2726 skb_header_release(p); 2727 nskb->prev = p; 2728 2729 nskb->data_len += p->len; 2730 nskb->truesize += p->len; 2731 nskb->len += p->len; 2732 2733 *head = nskb; 2734 nskb->next = p->next; 2735 p->next = NULL; 2736 2737 p = nskb; 2738 2739 merge: 2740 if (offset > headlen) { 2741 skbinfo->frags[0].page_offset += offset - headlen; 2742 skbinfo->frags[0].size -= offset - headlen; 2743 offset = headlen; 2744 } 2745 2746 __skb_pull(skb, offset); 2747 2748 p->prev->next = skb; 2749 p->prev = skb; 2750 skb_header_release(skb); 2751 2752 done: 2753 NAPI_GRO_CB(p)->count++; 2754 p->data_len += len; 2755 p->truesize += len; 2756 p->len += len; 2757 2758 NAPI_GRO_CB(skb)->same_flow = 1; 2759 return 0; 2760 } 2761 EXPORT_SYMBOL_GPL(skb_gro_receive); 2762 2763 void __init skb_init(void) 2764 { 2765 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 2766 sizeof(struct sk_buff), 2767 0, 2768 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2769 NULL); 2770 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 2771 (2*sizeof(struct sk_buff)) + 2772 sizeof(atomic_t), 2773 0, 2774 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2775 NULL); 2776 } 2777 2778 /** 2779 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 2780 * @skb: Socket buffer containing the buffers to be mapped 2781 * @sg: The scatter-gather list to map into 2782 * @offset: The offset into the buffer's contents to start mapping 2783 * @len: Length of buffer space to be mapped 2784 * 2785 * Fill the specified scatter-gather list with mappings/pointers into a 2786 * region of the buffer space attached to a socket buffer. 2787 */ 2788 static int 2789 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2790 { 2791 int start = skb_headlen(skb); 2792 int i, copy = start - offset; 2793 struct sk_buff *frag_iter; 2794 int elt = 0; 2795 2796 if (copy > 0) { 2797 if (copy > len) 2798 copy = len; 2799 sg_set_buf(sg, skb->data + offset, copy); 2800 elt++; 2801 if ((len -= copy) == 0) 2802 return elt; 2803 offset += copy; 2804 } 2805 2806 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2807 int end; 2808 2809 WARN_ON(start > offset + len); 2810 2811 end = start + skb_shinfo(skb)->frags[i].size; 2812 if ((copy = end - offset) > 0) { 2813 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2814 2815 if (copy > len) 2816 copy = len; 2817 sg_set_page(&sg[elt], frag->page, copy, 2818 frag->page_offset+offset-start); 2819 elt++; 2820 if (!(len -= copy)) 2821 return elt; 2822 offset += copy; 2823 } 2824 start = end; 2825 } 2826 2827 skb_walk_frags(skb, frag_iter) { 2828 int end; 2829 2830 WARN_ON(start > offset + len); 2831 2832 end = start + frag_iter->len; 2833 if ((copy = end - offset) > 0) { 2834 if (copy > len) 2835 copy = len; 2836 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start, 2837 copy); 2838 if ((len -= copy) == 0) 2839 return elt; 2840 offset += copy; 2841 } 2842 start = end; 2843 } 2844 BUG_ON(len); 2845 return elt; 2846 } 2847 2848 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2849 { 2850 int nsg = __skb_to_sgvec(skb, sg, offset, len); 2851 2852 sg_mark_end(&sg[nsg - 1]); 2853 2854 return nsg; 2855 } 2856 EXPORT_SYMBOL_GPL(skb_to_sgvec); 2857 2858 /** 2859 * skb_cow_data - Check that a socket buffer's data buffers are writable 2860 * @skb: The socket buffer to check. 2861 * @tailbits: Amount of trailing space to be added 2862 * @trailer: Returned pointer to the skb where the @tailbits space begins 2863 * 2864 * Make sure that the data buffers attached to a socket buffer are 2865 * writable. If they are not, private copies are made of the data buffers 2866 * and the socket buffer is set to use these instead. 2867 * 2868 * If @tailbits is given, make sure that there is space to write @tailbits 2869 * bytes of data beyond current end of socket buffer. @trailer will be 2870 * set to point to the skb in which this space begins. 2871 * 2872 * The number of scatterlist elements required to completely map the 2873 * COW'd and extended socket buffer will be returned. 2874 */ 2875 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 2876 { 2877 int copyflag; 2878 int elt; 2879 struct sk_buff *skb1, **skb_p; 2880 2881 /* If skb is cloned or its head is paged, reallocate 2882 * head pulling out all the pages (pages are considered not writable 2883 * at the moment even if they are anonymous). 2884 */ 2885 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 2886 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 2887 return -ENOMEM; 2888 2889 /* Easy case. Most of packets will go this way. */ 2890 if (!skb_has_frags(skb)) { 2891 /* A little of trouble, not enough of space for trailer. 2892 * This should not happen, when stack is tuned to generate 2893 * good frames. OK, on miss we reallocate and reserve even more 2894 * space, 128 bytes is fair. */ 2895 2896 if (skb_tailroom(skb) < tailbits && 2897 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 2898 return -ENOMEM; 2899 2900 /* Voila! */ 2901 *trailer = skb; 2902 return 1; 2903 } 2904 2905 /* Misery. We are in troubles, going to mincer fragments... */ 2906 2907 elt = 1; 2908 skb_p = &skb_shinfo(skb)->frag_list; 2909 copyflag = 0; 2910 2911 while ((skb1 = *skb_p) != NULL) { 2912 int ntail = 0; 2913 2914 /* The fragment is partially pulled by someone, 2915 * this can happen on input. Copy it and everything 2916 * after it. */ 2917 2918 if (skb_shared(skb1)) 2919 copyflag = 1; 2920 2921 /* If the skb is the last, worry about trailer. */ 2922 2923 if (skb1->next == NULL && tailbits) { 2924 if (skb_shinfo(skb1)->nr_frags || 2925 skb_has_frags(skb1) || 2926 skb_tailroom(skb1) < tailbits) 2927 ntail = tailbits + 128; 2928 } 2929 2930 if (copyflag || 2931 skb_cloned(skb1) || 2932 ntail || 2933 skb_shinfo(skb1)->nr_frags || 2934 skb_has_frags(skb1)) { 2935 struct sk_buff *skb2; 2936 2937 /* Fuck, we are miserable poor guys... */ 2938 if (ntail == 0) 2939 skb2 = skb_copy(skb1, GFP_ATOMIC); 2940 else 2941 skb2 = skb_copy_expand(skb1, 2942 skb_headroom(skb1), 2943 ntail, 2944 GFP_ATOMIC); 2945 if (unlikely(skb2 == NULL)) 2946 return -ENOMEM; 2947 2948 if (skb1->sk) 2949 skb_set_owner_w(skb2, skb1->sk); 2950 2951 /* Looking around. Are we still alive? 2952 * OK, link new skb, drop old one */ 2953 2954 skb2->next = skb1->next; 2955 *skb_p = skb2; 2956 kfree_skb(skb1); 2957 skb1 = skb2; 2958 } 2959 elt++; 2960 *trailer = skb1; 2961 skb_p = &skb1->next; 2962 } 2963 2964 return elt; 2965 } 2966 EXPORT_SYMBOL_GPL(skb_cow_data); 2967 2968 static void sock_rmem_free(struct sk_buff *skb) 2969 { 2970 struct sock *sk = skb->sk; 2971 2972 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 2973 } 2974 2975 /* 2976 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 2977 */ 2978 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 2979 { 2980 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 2981 (unsigned)sk->sk_rcvbuf) 2982 return -ENOMEM; 2983 2984 skb_orphan(skb); 2985 skb->sk = sk; 2986 skb->destructor = sock_rmem_free; 2987 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2988 2989 skb_queue_tail(&sk->sk_error_queue, skb); 2990 if (!sock_flag(sk, SOCK_DEAD)) 2991 sk->sk_data_ready(sk, skb->len); 2992 return 0; 2993 } 2994 EXPORT_SYMBOL(sock_queue_err_skb); 2995 2996 void skb_tstamp_tx(struct sk_buff *orig_skb, 2997 struct skb_shared_hwtstamps *hwtstamps) 2998 { 2999 struct sock *sk = orig_skb->sk; 3000 struct sock_exterr_skb *serr; 3001 struct sk_buff *skb; 3002 int err; 3003 3004 if (!sk) 3005 return; 3006 3007 skb = skb_clone(orig_skb, GFP_ATOMIC); 3008 if (!skb) 3009 return; 3010 3011 if (hwtstamps) { 3012 *skb_hwtstamps(skb) = 3013 *hwtstamps; 3014 } else { 3015 /* 3016 * no hardware time stamps available, 3017 * so keep the skb_shared_tx and only 3018 * store software time stamp 3019 */ 3020 skb->tstamp = ktime_get_real(); 3021 } 3022 3023 serr = SKB_EXT_ERR(skb); 3024 memset(serr, 0, sizeof(*serr)); 3025 serr->ee.ee_errno = ENOMSG; 3026 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 3027 3028 err = sock_queue_err_skb(sk, skb); 3029 3030 if (err) 3031 kfree_skb(skb); 3032 } 3033 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 3034 3035 3036 /** 3037 * skb_partial_csum_set - set up and verify partial csum values for packet 3038 * @skb: the skb to set 3039 * @start: the number of bytes after skb->data to start checksumming. 3040 * @off: the offset from start to place the checksum. 3041 * 3042 * For untrusted partially-checksummed packets, we need to make sure the values 3043 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 3044 * 3045 * This function checks and sets those values and skb->ip_summed: if this 3046 * returns false you should drop the packet. 3047 */ 3048 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 3049 { 3050 if (unlikely(start > skb_headlen(skb)) || 3051 unlikely((int)start + off > skb_headlen(skb) - 2)) { 3052 if (net_ratelimit()) 3053 printk(KERN_WARNING 3054 "bad partial csum: csum=%u/%u len=%u\n", 3055 start, off, skb_headlen(skb)); 3056 return false; 3057 } 3058 skb->ip_summed = CHECKSUM_PARTIAL; 3059 skb->csum_start = skb_headroom(skb) + start; 3060 skb->csum_offset = off; 3061 return true; 3062 } 3063 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 3064 3065 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 3066 { 3067 if (net_ratelimit()) 3068 pr_warning("%s: received packets cannot be forwarded" 3069 " while LRO is enabled\n", skb->dev->name); 3070 } 3071 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 3072