1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 #include <linux/kcov.h> 64 65 #include <net/protocol.h> 66 #include <net/dst.h> 67 #include <net/sock.h> 68 #include <net/checksum.h> 69 #include <net/ip6_checksum.h> 70 #include <net/xfrm.h> 71 #include <net/mpls.h> 72 #include <net/mptcp.h> 73 #include <net/mctp.h> 74 #include <net/page_pool.h> 75 76 #include <linux/uaccess.h> 77 #include <trace/events/skb.h> 78 #include <linux/highmem.h> 79 #include <linux/capability.h> 80 #include <linux/user_namespace.h> 81 #include <linux/indirect_call_wrapper.h> 82 83 #include "dev.h" 84 #include "sock_destructor.h" 85 86 struct kmem_cache *skbuff_head_cache __ro_after_init; 87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 88 #ifdef CONFIG_SKB_EXTENSIONS 89 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 90 #endif 91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 92 EXPORT_SYMBOL(sysctl_max_skb_frags); 93 94 #undef FN 95 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 96 const char * const drop_reasons[] = { 97 [SKB_CONSUMED] = "CONSUMED", 98 DEFINE_DROP_REASON(FN, FN) 99 }; 100 EXPORT_SYMBOL(drop_reasons); 101 102 /** 103 * skb_panic - private function for out-of-line support 104 * @skb: buffer 105 * @sz: size 106 * @addr: address 107 * @msg: skb_over_panic or skb_under_panic 108 * 109 * Out-of-line support for skb_put() and skb_push(). 110 * Called via the wrapper skb_over_panic() or skb_under_panic(). 111 * Keep out of line to prevent kernel bloat. 112 * __builtin_return_address is not used because it is not always reliable. 113 */ 114 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 115 const char msg[]) 116 { 117 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 118 msg, addr, skb->len, sz, skb->head, skb->data, 119 (unsigned long)skb->tail, (unsigned long)skb->end, 120 skb->dev ? skb->dev->name : "<NULL>"); 121 BUG(); 122 } 123 124 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 125 { 126 skb_panic(skb, sz, addr, __func__); 127 } 128 129 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 130 { 131 skb_panic(skb, sz, addr, __func__); 132 } 133 134 #define NAPI_SKB_CACHE_SIZE 64 135 #define NAPI_SKB_CACHE_BULK 16 136 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 137 138 #if PAGE_SIZE == SZ_4K 139 140 #define NAPI_HAS_SMALL_PAGE_FRAG 1 141 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc) 142 143 /* specialized page frag allocator using a single order 0 page 144 * and slicing it into 1K sized fragment. Constrained to systems 145 * with a very limited amount of 1K fragments fitting a single 146 * page - to avoid excessive truesize underestimation 147 */ 148 149 struct page_frag_1k { 150 void *va; 151 u16 offset; 152 bool pfmemalloc; 153 }; 154 155 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp) 156 { 157 struct page *page; 158 int offset; 159 160 offset = nc->offset - SZ_1K; 161 if (likely(offset >= 0)) 162 goto use_frag; 163 164 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 165 if (!page) 166 return NULL; 167 168 nc->va = page_address(page); 169 nc->pfmemalloc = page_is_pfmemalloc(page); 170 offset = PAGE_SIZE - SZ_1K; 171 page_ref_add(page, offset / SZ_1K); 172 173 use_frag: 174 nc->offset = offset; 175 return nc->va + offset; 176 } 177 #else 178 179 /* the small page is actually unused in this build; add dummy helpers 180 * to please the compiler and avoid later preprocessor's conditionals 181 */ 182 #define NAPI_HAS_SMALL_PAGE_FRAG 0 183 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false 184 185 struct page_frag_1k { 186 }; 187 188 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask) 189 { 190 return NULL; 191 } 192 193 #endif 194 195 struct napi_alloc_cache { 196 struct page_frag_cache page; 197 struct page_frag_1k page_small; 198 unsigned int skb_count; 199 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 200 }; 201 202 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 203 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 204 205 /* Double check that napi_get_frags() allocates skbs with 206 * skb->head being backed by slab, not a page fragment. 207 * This is to make sure bug fixed in 3226b158e67c 208 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 209 * does not accidentally come back. 210 */ 211 void napi_get_frags_check(struct napi_struct *napi) 212 { 213 struct sk_buff *skb; 214 215 local_bh_disable(); 216 skb = napi_get_frags(napi); 217 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag); 218 napi_free_frags(napi); 219 local_bh_enable(); 220 } 221 222 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 223 { 224 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 225 226 fragsz = SKB_DATA_ALIGN(fragsz); 227 228 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 229 } 230 EXPORT_SYMBOL(__napi_alloc_frag_align); 231 232 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 233 { 234 void *data; 235 236 fragsz = SKB_DATA_ALIGN(fragsz); 237 if (in_hardirq() || irqs_disabled()) { 238 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 239 240 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 241 } else { 242 struct napi_alloc_cache *nc; 243 244 local_bh_disable(); 245 nc = this_cpu_ptr(&napi_alloc_cache); 246 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 247 local_bh_enable(); 248 } 249 return data; 250 } 251 EXPORT_SYMBOL(__netdev_alloc_frag_align); 252 253 static struct sk_buff *napi_skb_cache_get(void) 254 { 255 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 256 struct sk_buff *skb; 257 258 if (unlikely(!nc->skb_count)) { 259 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, 260 GFP_ATOMIC, 261 NAPI_SKB_CACHE_BULK, 262 nc->skb_cache); 263 if (unlikely(!nc->skb_count)) 264 return NULL; 265 } 266 267 skb = nc->skb_cache[--nc->skb_count]; 268 kasan_unpoison_object_data(skbuff_head_cache, skb); 269 270 return skb; 271 } 272 273 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 274 unsigned int size) 275 { 276 struct skb_shared_info *shinfo; 277 278 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 279 280 /* Assumes caller memset cleared SKB */ 281 skb->truesize = SKB_TRUESIZE(size); 282 refcount_set(&skb->users, 1); 283 skb->head = data; 284 skb->data = data; 285 skb_reset_tail_pointer(skb); 286 skb_set_end_offset(skb, size); 287 skb->mac_header = (typeof(skb->mac_header))~0U; 288 skb->transport_header = (typeof(skb->transport_header))~0U; 289 skb->alloc_cpu = raw_smp_processor_id(); 290 /* make sure we initialize shinfo sequentially */ 291 shinfo = skb_shinfo(skb); 292 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 293 atomic_set(&shinfo->dataref, 1); 294 295 skb_set_kcov_handle(skb, kcov_common_handle()); 296 } 297 298 static inline void *__slab_build_skb(struct sk_buff *skb, void *data, 299 unsigned int *size) 300 { 301 void *resized; 302 303 /* Must find the allocation size (and grow it to match). */ 304 *size = ksize(data); 305 /* krealloc() will immediately return "data" when 306 * "ksize(data)" is requested: it is the existing upper 307 * bounds. As a result, GFP_ATOMIC will be ignored. Note 308 * that this "new" pointer needs to be passed back to the 309 * caller for use so the __alloc_size hinting will be 310 * tracked correctly. 311 */ 312 resized = krealloc(data, *size, GFP_ATOMIC); 313 WARN_ON_ONCE(resized != data); 314 return resized; 315 } 316 317 /* build_skb() variant which can operate on slab buffers. 318 * Note that this should be used sparingly as slab buffers 319 * cannot be combined efficiently by GRO! 320 */ 321 struct sk_buff *slab_build_skb(void *data) 322 { 323 struct sk_buff *skb; 324 unsigned int size; 325 326 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 327 if (unlikely(!skb)) 328 return NULL; 329 330 memset(skb, 0, offsetof(struct sk_buff, tail)); 331 data = __slab_build_skb(skb, data, &size); 332 __finalize_skb_around(skb, data, size); 333 334 return skb; 335 } 336 EXPORT_SYMBOL(slab_build_skb); 337 338 /* Caller must provide SKB that is memset cleared */ 339 static void __build_skb_around(struct sk_buff *skb, void *data, 340 unsigned int frag_size) 341 { 342 unsigned int size = frag_size; 343 344 /* frag_size == 0 is considered deprecated now. Callers 345 * using slab buffer should use slab_build_skb() instead. 346 */ 347 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 348 data = __slab_build_skb(skb, data, &size); 349 350 __finalize_skb_around(skb, data, size); 351 } 352 353 /** 354 * __build_skb - build a network buffer 355 * @data: data buffer provided by caller 356 * @frag_size: size of data (must not be 0) 357 * 358 * Allocate a new &sk_buff. Caller provides space holding head and 359 * skb_shared_info. @data must have been allocated from the page 360 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 361 * allocation is deprecated, and callers should use slab_build_skb() 362 * instead.) 363 * The return is the new skb buffer. 364 * On a failure the return is %NULL, and @data is not freed. 365 * Notes : 366 * Before IO, driver allocates only data buffer where NIC put incoming frame 367 * Driver should add room at head (NET_SKB_PAD) and 368 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 369 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 370 * before giving packet to stack. 371 * RX rings only contains data buffers, not full skbs. 372 */ 373 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 374 { 375 struct sk_buff *skb; 376 377 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 378 if (unlikely(!skb)) 379 return NULL; 380 381 memset(skb, 0, offsetof(struct sk_buff, tail)); 382 __build_skb_around(skb, data, frag_size); 383 384 return skb; 385 } 386 387 /* build_skb() is wrapper over __build_skb(), that specifically 388 * takes care of skb->head and skb->pfmemalloc 389 */ 390 struct sk_buff *build_skb(void *data, unsigned int frag_size) 391 { 392 struct sk_buff *skb = __build_skb(data, frag_size); 393 394 if (skb && frag_size) { 395 skb->head_frag = 1; 396 if (page_is_pfmemalloc(virt_to_head_page(data))) 397 skb->pfmemalloc = 1; 398 } 399 return skb; 400 } 401 EXPORT_SYMBOL(build_skb); 402 403 /** 404 * build_skb_around - build a network buffer around provided skb 405 * @skb: sk_buff provide by caller, must be memset cleared 406 * @data: data buffer provided by caller 407 * @frag_size: size of data 408 */ 409 struct sk_buff *build_skb_around(struct sk_buff *skb, 410 void *data, unsigned int frag_size) 411 { 412 if (unlikely(!skb)) 413 return NULL; 414 415 __build_skb_around(skb, data, frag_size); 416 417 if (frag_size) { 418 skb->head_frag = 1; 419 if (page_is_pfmemalloc(virt_to_head_page(data))) 420 skb->pfmemalloc = 1; 421 } 422 return skb; 423 } 424 EXPORT_SYMBOL(build_skb_around); 425 426 /** 427 * __napi_build_skb - build a network buffer 428 * @data: data buffer provided by caller 429 * @frag_size: size of data 430 * 431 * Version of __build_skb() that uses NAPI percpu caches to obtain 432 * skbuff_head instead of inplace allocation. 433 * 434 * Returns a new &sk_buff on success, %NULL on allocation failure. 435 */ 436 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 437 { 438 struct sk_buff *skb; 439 440 skb = napi_skb_cache_get(); 441 if (unlikely(!skb)) 442 return NULL; 443 444 memset(skb, 0, offsetof(struct sk_buff, tail)); 445 __build_skb_around(skb, data, frag_size); 446 447 return skb; 448 } 449 450 /** 451 * napi_build_skb - build a network buffer 452 * @data: data buffer provided by caller 453 * @frag_size: size of data 454 * 455 * Version of __napi_build_skb() that takes care of skb->head_frag 456 * and skb->pfmemalloc when the data is a page or page fragment. 457 * 458 * Returns a new &sk_buff on success, %NULL on allocation failure. 459 */ 460 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 461 { 462 struct sk_buff *skb = __napi_build_skb(data, frag_size); 463 464 if (likely(skb) && frag_size) { 465 skb->head_frag = 1; 466 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 467 } 468 469 return skb; 470 } 471 EXPORT_SYMBOL(napi_build_skb); 472 473 /* 474 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 475 * the caller if emergency pfmemalloc reserves are being used. If it is and 476 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 477 * may be used. Otherwise, the packet data may be discarded until enough 478 * memory is free 479 */ 480 static void *kmalloc_reserve(size_t size, gfp_t flags, int node, 481 bool *pfmemalloc) 482 { 483 void *obj; 484 bool ret_pfmemalloc = false; 485 486 /* 487 * Try a regular allocation, when that fails and we're not entitled 488 * to the reserves, fail. 489 */ 490 obj = kmalloc_node_track_caller(size, 491 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 492 node); 493 if (obj || !(gfp_pfmemalloc_allowed(flags))) 494 goto out; 495 496 /* Try again but now we are using pfmemalloc reserves */ 497 ret_pfmemalloc = true; 498 obj = kmalloc_node_track_caller(size, flags, node); 499 500 out: 501 if (pfmemalloc) 502 *pfmemalloc = ret_pfmemalloc; 503 504 return obj; 505 } 506 507 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 508 * 'private' fields and also do memory statistics to find all the 509 * [BEEP] leaks. 510 * 511 */ 512 513 /** 514 * __alloc_skb - allocate a network buffer 515 * @size: size to allocate 516 * @gfp_mask: allocation mask 517 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 518 * instead of head cache and allocate a cloned (child) skb. 519 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 520 * allocations in case the data is required for writeback 521 * @node: numa node to allocate memory on 522 * 523 * Allocate a new &sk_buff. The returned buffer has no headroom and a 524 * tail room of at least size bytes. The object has a reference count 525 * of one. The return is the buffer. On a failure the return is %NULL. 526 * 527 * Buffers may only be allocated from interrupts using a @gfp_mask of 528 * %GFP_ATOMIC. 529 */ 530 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 531 int flags, int node) 532 { 533 struct kmem_cache *cache; 534 struct sk_buff *skb; 535 unsigned int osize; 536 bool pfmemalloc; 537 u8 *data; 538 539 cache = (flags & SKB_ALLOC_FCLONE) 540 ? skbuff_fclone_cache : skbuff_head_cache; 541 542 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 543 gfp_mask |= __GFP_MEMALLOC; 544 545 /* Get the HEAD */ 546 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 547 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 548 skb = napi_skb_cache_get(); 549 else 550 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 551 if (unlikely(!skb)) 552 return NULL; 553 prefetchw(skb); 554 555 /* We do our best to align skb_shared_info on a separate cache 556 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 557 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 558 * Both skb->head and skb_shared_info are cache line aligned. 559 */ 560 size = SKB_DATA_ALIGN(size); 561 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 562 osize = kmalloc_size_roundup(size); 563 data = kmalloc_reserve(osize, gfp_mask, node, &pfmemalloc); 564 if (unlikely(!data)) 565 goto nodata; 566 /* kmalloc_size_roundup() might give us more room than requested. 567 * Put skb_shared_info exactly at the end of allocated zone, 568 * to allow max possible filling before reallocation. 569 */ 570 size = SKB_WITH_OVERHEAD(osize); 571 prefetchw(data + size); 572 573 /* 574 * Only clear those fields we need to clear, not those that we will 575 * actually initialise below. Hence, don't put any more fields after 576 * the tail pointer in struct sk_buff! 577 */ 578 memset(skb, 0, offsetof(struct sk_buff, tail)); 579 __build_skb_around(skb, data, osize); 580 skb->pfmemalloc = pfmemalloc; 581 582 if (flags & SKB_ALLOC_FCLONE) { 583 struct sk_buff_fclones *fclones; 584 585 fclones = container_of(skb, struct sk_buff_fclones, skb1); 586 587 skb->fclone = SKB_FCLONE_ORIG; 588 refcount_set(&fclones->fclone_ref, 1); 589 } 590 591 return skb; 592 593 nodata: 594 kmem_cache_free(cache, skb); 595 return NULL; 596 } 597 EXPORT_SYMBOL(__alloc_skb); 598 599 /** 600 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 601 * @dev: network device to receive on 602 * @len: length to allocate 603 * @gfp_mask: get_free_pages mask, passed to alloc_skb 604 * 605 * Allocate a new &sk_buff and assign it a usage count of one. The 606 * buffer has NET_SKB_PAD headroom built in. Users should allocate 607 * the headroom they think they need without accounting for the 608 * built in space. The built in space is used for optimisations. 609 * 610 * %NULL is returned if there is no free memory. 611 */ 612 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 613 gfp_t gfp_mask) 614 { 615 struct page_frag_cache *nc; 616 struct sk_buff *skb; 617 bool pfmemalloc; 618 void *data; 619 620 len += NET_SKB_PAD; 621 622 /* If requested length is either too small or too big, 623 * we use kmalloc() for skb->head allocation. 624 */ 625 if (len <= SKB_WITH_OVERHEAD(1024) || 626 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 627 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 628 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 629 if (!skb) 630 goto skb_fail; 631 goto skb_success; 632 } 633 634 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 635 len = SKB_DATA_ALIGN(len); 636 637 if (sk_memalloc_socks()) 638 gfp_mask |= __GFP_MEMALLOC; 639 640 if (in_hardirq() || irqs_disabled()) { 641 nc = this_cpu_ptr(&netdev_alloc_cache); 642 data = page_frag_alloc(nc, len, gfp_mask); 643 pfmemalloc = nc->pfmemalloc; 644 } else { 645 local_bh_disable(); 646 nc = this_cpu_ptr(&napi_alloc_cache.page); 647 data = page_frag_alloc(nc, len, gfp_mask); 648 pfmemalloc = nc->pfmemalloc; 649 local_bh_enable(); 650 } 651 652 if (unlikely(!data)) 653 return NULL; 654 655 skb = __build_skb(data, len); 656 if (unlikely(!skb)) { 657 skb_free_frag(data); 658 return NULL; 659 } 660 661 if (pfmemalloc) 662 skb->pfmemalloc = 1; 663 skb->head_frag = 1; 664 665 skb_success: 666 skb_reserve(skb, NET_SKB_PAD); 667 skb->dev = dev; 668 669 skb_fail: 670 return skb; 671 } 672 EXPORT_SYMBOL(__netdev_alloc_skb); 673 674 /** 675 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 676 * @napi: napi instance this buffer was allocated for 677 * @len: length to allocate 678 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 679 * 680 * Allocate a new sk_buff for use in NAPI receive. This buffer will 681 * attempt to allocate the head from a special reserved region used 682 * only for NAPI Rx allocation. By doing this we can save several 683 * CPU cycles by avoiding having to disable and re-enable IRQs. 684 * 685 * %NULL is returned if there is no free memory. 686 */ 687 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 688 gfp_t gfp_mask) 689 { 690 struct napi_alloc_cache *nc; 691 struct sk_buff *skb; 692 bool pfmemalloc; 693 void *data; 694 695 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 696 len += NET_SKB_PAD + NET_IP_ALIGN; 697 698 /* If requested length is either too small or too big, 699 * we use kmalloc() for skb->head allocation. 700 * When the small frag allocator is available, prefer it over kmalloc 701 * for small fragments 702 */ 703 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) || 704 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 705 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 706 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 707 NUMA_NO_NODE); 708 if (!skb) 709 goto skb_fail; 710 goto skb_success; 711 } 712 713 nc = this_cpu_ptr(&napi_alloc_cache); 714 715 if (sk_memalloc_socks()) 716 gfp_mask |= __GFP_MEMALLOC; 717 718 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) { 719 /* we are artificially inflating the allocation size, but 720 * that is not as bad as it may look like, as: 721 * - 'len' less than GRO_MAX_HEAD makes little sense 722 * - On most systems, larger 'len' values lead to fragment 723 * size above 512 bytes 724 * - kmalloc would use the kmalloc-1k slab for such values 725 * - Builds with smaller GRO_MAX_HEAD will very likely do 726 * little networking, as that implies no WiFi and no 727 * tunnels support, and 32 bits arches. 728 */ 729 len = SZ_1K; 730 731 data = page_frag_alloc_1k(&nc->page_small, gfp_mask); 732 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small); 733 } else { 734 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 735 len = SKB_DATA_ALIGN(len); 736 737 data = page_frag_alloc(&nc->page, len, gfp_mask); 738 pfmemalloc = nc->page.pfmemalloc; 739 } 740 741 if (unlikely(!data)) 742 return NULL; 743 744 skb = __napi_build_skb(data, len); 745 if (unlikely(!skb)) { 746 skb_free_frag(data); 747 return NULL; 748 } 749 750 if (pfmemalloc) 751 skb->pfmemalloc = 1; 752 skb->head_frag = 1; 753 754 skb_success: 755 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 756 skb->dev = napi->dev; 757 758 skb_fail: 759 return skb; 760 } 761 EXPORT_SYMBOL(__napi_alloc_skb); 762 763 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 764 int size, unsigned int truesize) 765 { 766 skb_fill_page_desc(skb, i, page, off, size); 767 skb->len += size; 768 skb->data_len += size; 769 skb->truesize += truesize; 770 } 771 EXPORT_SYMBOL(skb_add_rx_frag); 772 773 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 774 unsigned int truesize) 775 { 776 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 777 778 skb_frag_size_add(frag, size); 779 skb->len += size; 780 skb->data_len += size; 781 skb->truesize += truesize; 782 } 783 EXPORT_SYMBOL(skb_coalesce_rx_frag); 784 785 static void skb_drop_list(struct sk_buff **listp) 786 { 787 kfree_skb_list(*listp); 788 *listp = NULL; 789 } 790 791 static inline void skb_drop_fraglist(struct sk_buff *skb) 792 { 793 skb_drop_list(&skb_shinfo(skb)->frag_list); 794 } 795 796 static void skb_clone_fraglist(struct sk_buff *skb) 797 { 798 struct sk_buff *list; 799 800 skb_walk_frags(skb, list) 801 skb_get(list); 802 } 803 804 static bool skb_pp_recycle(struct sk_buff *skb, void *data) 805 { 806 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 807 return false; 808 return page_pool_return_skb_page(virt_to_page(data)); 809 } 810 811 static void skb_free_head(struct sk_buff *skb) 812 { 813 unsigned char *head = skb->head; 814 815 if (skb->head_frag) { 816 if (skb_pp_recycle(skb, head)) 817 return; 818 skb_free_frag(head); 819 } else { 820 kfree(head); 821 } 822 } 823 824 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason) 825 { 826 struct skb_shared_info *shinfo = skb_shinfo(skb); 827 int i; 828 829 if (skb->cloned && 830 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 831 &shinfo->dataref)) 832 goto exit; 833 834 if (skb_zcopy(skb)) { 835 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 836 837 skb_zcopy_clear(skb, true); 838 if (skip_unref) 839 goto free_head; 840 } 841 842 for (i = 0; i < shinfo->nr_frags; i++) 843 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 844 845 free_head: 846 if (shinfo->frag_list) 847 kfree_skb_list_reason(shinfo->frag_list, reason); 848 849 skb_free_head(skb); 850 exit: 851 /* When we clone an SKB we copy the reycling bit. The pp_recycle 852 * bit is only set on the head though, so in order to avoid races 853 * while trying to recycle fragments on __skb_frag_unref() we need 854 * to make one SKB responsible for triggering the recycle path. 855 * So disable the recycling bit if an SKB is cloned and we have 856 * additional references to the fragmented part of the SKB. 857 * Eventually the last SKB will have the recycling bit set and it's 858 * dataref set to 0, which will trigger the recycling 859 */ 860 skb->pp_recycle = 0; 861 } 862 863 /* 864 * Free an skbuff by memory without cleaning the state. 865 */ 866 static void kfree_skbmem(struct sk_buff *skb) 867 { 868 struct sk_buff_fclones *fclones; 869 870 switch (skb->fclone) { 871 case SKB_FCLONE_UNAVAILABLE: 872 kmem_cache_free(skbuff_head_cache, skb); 873 return; 874 875 case SKB_FCLONE_ORIG: 876 fclones = container_of(skb, struct sk_buff_fclones, skb1); 877 878 /* We usually free the clone (TX completion) before original skb 879 * This test would have no chance to be true for the clone, 880 * while here, branch prediction will be good. 881 */ 882 if (refcount_read(&fclones->fclone_ref) == 1) 883 goto fastpath; 884 break; 885 886 default: /* SKB_FCLONE_CLONE */ 887 fclones = container_of(skb, struct sk_buff_fclones, skb2); 888 break; 889 } 890 if (!refcount_dec_and_test(&fclones->fclone_ref)) 891 return; 892 fastpath: 893 kmem_cache_free(skbuff_fclone_cache, fclones); 894 } 895 896 void skb_release_head_state(struct sk_buff *skb) 897 { 898 skb_dst_drop(skb); 899 if (skb->destructor) { 900 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 901 skb->destructor(skb); 902 } 903 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 904 nf_conntrack_put(skb_nfct(skb)); 905 #endif 906 skb_ext_put(skb); 907 } 908 909 /* Free everything but the sk_buff shell. */ 910 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason) 911 { 912 skb_release_head_state(skb); 913 if (likely(skb->head)) 914 skb_release_data(skb, reason); 915 } 916 917 /** 918 * __kfree_skb - private function 919 * @skb: buffer 920 * 921 * Free an sk_buff. Release anything attached to the buffer. 922 * Clean the state. This is an internal helper function. Users should 923 * always call kfree_skb 924 */ 925 926 void __kfree_skb(struct sk_buff *skb) 927 { 928 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED); 929 kfree_skbmem(skb); 930 } 931 EXPORT_SYMBOL(__kfree_skb); 932 933 /** 934 * kfree_skb_reason - free an sk_buff with special reason 935 * @skb: buffer to free 936 * @reason: reason why this skb is dropped 937 * 938 * Drop a reference to the buffer and free it if the usage count has 939 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 940 * tracepoint. 941 */ 942 void __fix_address 943 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 944 { 945 if (unlikely(!skb_unref(skb))) 946 return; 947 948 DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX); 949 950 if (reason == SKB_CONSUMED) 951 trace_consume_skb(skb); 952 else 953 trace_kfree_skb(skb, __builtin_return_address(0), reason); 954 __kfree_skb(skb); 955 } 956 EXPORT_SYMBOL(kfree_skb_reason); 957 958 void kfree_skb_list_reason(struct sk_buff *segs, 959 enum skb_drop_reason reason) 960 { 961 while (segs) { 962 struct sk_buff *next = segs->next; 963 964 kfree_skb_reason(segs, reason); 965 segs = next; 966 } 967 } 968 EXPORT_SYMBOL(kfree_skb_list_reason); 969 970 /* Dump skb information and contents. 971 * 972 * Must only be called from net_ratelimit()-ed paths. 973 * 974 * Dumps whole packets if full_pkt, only headers otherwise. 975 */ 976 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 977 { 978 struct skb_shared_info *sh = skb_shinfo(skb); 979 struct net_device *dev = skb->dev; 980 struct sock *sk = skb->sk; 981 struct sk_buff *list_skb; 982 bool has_mac, has_trans; 983 int headroom, tailroom; 984 int i, len, seg_len; 985 986 if (full_pkt) 987 len = skb->len; 988 else 989 len = min_t(int, skb->len, MAX_HEADER + 128); 990 991 headroom = skb_headroom(skb); 992 tailroom = skb_tailroom(skb); 993 994 has_mac = skb_mac_header_was_set(skb); 995 has_trans = skb_transport_header_was_set(skb); 996 997 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 998 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 999 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1000 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1001 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 1002 level, skb->len, headroom, skb_headlen(skb), tailroom, 1003 has_mac ? skb->mac_header : -1, 1004 has_mac ? skb_mac_header_len(skb) : -1, 1005 skb->network_header, 1006 has_trans ? skb_network_header_len(skb) : -1, 1007 has_trans ? skb->transport_header : -1, 1008 sh->tx_flags, sh->nr_frags, 1009 sh->gso_size, sh->gso_type, sh->gso_segs, 1010 skb->csum, skb->ip_summed, skb->csum_complete_sw, 1011 skb->csum_valid, skb->csum_level, 1012 skb->hash, skb->sw_hash, skb->l4_hash, 1013 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 1014 1015 if (dev) 1016 printk("%sdev name=%s feat=%pNF\n", 1017 level, dev->name, &dev->features); 1018 if (sk) 1019 printk("%ssk family=%hu type=%u proto=%u\n", 1020 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1021 1022 if (full_pkt && headroom) 1023 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1024 16, 1, skb->head, headroom, false); 1025 1026 seg_len = min_t(int, skb_headlen(skb), len); 1027 if (seg_len) 1028 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1029 16, 1, skb->data, seg_len, false); 1030 len -= seg_len; 1031 1032 if (full_pkt && tailroom) 1033 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1034 16, 1, skb_tail_pointer(skb), tailroom, false); 1035 1036 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1037 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1038 u32 p_off, p_len, copied; 1039 struct page *p; 1040 u8 *vaddr; 1041 1042 skb_frag_foreach_page(frag, skb_frag_off(frag), 1043 skb_frag_size(frag), p, p_off, p_len, 1044 copied) { 1045 seg_len = min_t(int, p_len, len); 1046 vaddr = kmap_atomic(p); 1047 print_hex_dump(level, "skb frag: ", 1048 DUMP_PREFIX_OFFSET, 1049 16, 1, vaddr + p_off, seg_len, false); 1050 kunmap_atomic(vaddr); 1051 len -= seg_len; 1052 if (!len) 1053 break; 1054 } 1055 } 1056 1057 if (full_pkt && skb_has_frag_list(skb)) { 1058 printk("skb fraglist:\n"); 1059 skb_walk_frags(skb, list_skb) 1060 skb_dump(level, list_skb, true); 1061 } 1062 } 1063 EXPORT_SYMBOL(skb_dump); 1064 1065 /** 1066 * skb_tx_error - report an sk_buff xmit error 1067 * @skb: buffer that triggered an error 1068 * 1069 * Report xmit error if a device callback is tracking this skb. 1070 * skb must be freed afterwards. 1071 */ 1072 void skb_tx_error(struct sk_buff *skb) 1073 { 1074 if (skb) { 1075 skb_zcopy_downgrade_managed(skb); 1076 skb_zcopy_clear(skb, true); 1077 } 1078 } 1079 EXPORT_SYMBOL(skb_tx_error); 1080 1081 #ifdef CONFIG_TRACEPOINTS 1082 /** 1083 * consume_skb - free an skbuff 1084 * @skb: buffer to free 1085 * 1086 * Drop a ref to the buffer and free it if the usage count has hit zero 1087 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1088 * is being dropped after a failure and notes that 1089 */ 1090 void consume_skb(struct sk_buff *skb) 1091 { 1092 if (!skb_unref(skb)) 1093 return; 1094 1095 trace_consume_skb(skb); 1096 __kfree_skb(skb); 1097 } 1098 EXPORT_SYMBOL(consume_skb); 1099 #endif 1100 1101 /** 1102 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1103 * @skb: buffer to free 1104 * 1105 * Alike consume_skb(), but this variant assumes that this is the last 1106 * skb reference and all the head states have been already dropped 1107 */ 1108 void __consume_stateless_skb(struct sk_buff *skb) 1109 { 1110 trace_consume_skb(skb); 1111 skb_release_data(skb, SKB_CONSUMED); 1112 kfree_skbmem(skb); 1113 } 1114 1115 static void napi_skb_cache_put(struct sk_buff *skb) 1116 { 1117 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1118 u32 i; 1119 1120 kasan_poison_object_data(skbuff_head_cache, skb); 1121 nc->skb_cache[nc->skb_count++] = skb; 1122 1123 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1124 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1125 kasan_unpoison_object_data(skbuff_head_cache, 1126 nc->skb_cache[i]); 1127 1128 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF, 1129 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1130 nc->skb_count = NAPI_SKB_CACHE_HALF; 1131 } 1132 } 1133 1134 void __kfree_skb_defer(struct sk_buff *skb) 1135 { 1136 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1137 napi_skb_cache_put(skb); 1138 } 1139 1140 void napi_skb_free_stolen_head(struct sk_buff *skb) 1141 { 1142 if (unlikely(skb->slow_gro)) { 1143 nf_reset_ct(skb); 1144 skb_dst_drop(skb); 1145 skb_ext_put(skb); 1146 skb_orphan(skb); 1147 skb->slow_gro = 0; 1148 } 1149 napi_skb_cache_put(skb); 1150 } 1151 1152 void napi_consume_skb(struct sk_buff *skb, int budget) 1153 { 1154 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1155 if (unlikely(!budget)) { 1156 dev_consume_skb_any(skb); 1157 return; 1158 } 1159 1160 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1161 1162 if (!skb_unref(skb)) 1163 return; 1164 1165 /* if reaching here SKB is ready to free */ 1166 trace_consume_skb(skb); 1167 1168 /* if SKB is a clone, don't handle this case */ 1169 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1170 __kfree_skb(skb); 1171 return; 1172 } 1173 1174 skb_release_all(skb, SKB_CONSUMED); 1175 napi_skb_cache_put(skb); 1176 } 1177 EXPORT_SYMBOL(napi_consume_skb); 1178 1179 /* Make sure a field is contained by headers group */ 1180 #define CHECK_SKB_FIELD(field) \ 1181 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1182 offsetof(struct sk_buff, headers.field)); \ 1183 1184 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1185 { 1186 new->tstamp = old->tstamp; 1187 /* We do not copy old->sk */ 1188 new->dev = old->dev; 1189 memcpy(new->cb, old->cb, sizeof(old->cb)); 1190 skb_dst_copy(new, old); 1191 __skb_ext_copy(new, old); 1192 __nf_copy(new, old, false); 1193 1194 /* Note : this field could be in the headers group. 1195 * It is not yet because we do not want to have a 16 bit hole 1196 */ 1197 new->queue_mapping = old->queue_mapping; 1198 1199 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1200 CHECK_SKB_FIELD(protocol); 1201 CHECK_SKB_FIELD(csum); 1202 CHECK_SKB_FIELD(hash); 1203 CHECK_SKB_FIELD(priority); 1204 CHECK_SKB_FIELD(skb_iif); 1205 CHECK_SKB_FIELD(vlan_proto); 1206 CHECK_SKB_FIELD(vlan_tci); 1207 CHECK_SKB_FIELD(transport_header); 1208 CHECK_SKB_FIELD(network_header); 1209 CHECK_SKB_FIELD(mac_header); 1210 CHECK_SKB_FIELD(inner_protocol); 1211 CHECK_SKB_FIELD(inner_transport_header); 1212 CHECK_SKB_FIELD(inner_network_header); 1213 CHECK_SKB_FIELD(inner_mac_header); 1214 CHECK_SKB_FIELD(mark); 1215 #ifdef CONFIG_NETWORK_SECMARK 1216 CHECK_SKB_FIELD(secmark); 1217 #endif 1218 #ifdef CONFIG_NET_RX_BUSY_POLL 1219 CHECK_SKB_FIELD(napi_id); 1220 #endif 1221 CHECK_SKB_FIELD(alloc_cpu); 1222 #ifdef CONFIG_XPS 1223 CHECK_SKB_FIELD(sender_cpu); 1224 #endif 1225 #ifdef CONFIG_NET_SCHED 1226 CHECK_SKB_FIELD(tc_index); 1227 #endif 1228 1229 } 1230 1231 /* 1232 * You should not add any new code to this function. Add it to 1233 * __copy_skb_header above instead. 1234 */ 1235 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1236 { 1237 #define C(x) n->x = skb->x 1238 1239 n->next = n->prev = NULL; 1240 n->sk = NULL; 1241 __copy_skb_header(n, skb); 1242 1243 C(len); 1244 C(data_len); 1245 C(mac_len); 1246 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1247 n->cloned = 1; 1248 n->nohdr = 0; 1249 n->peeked = 0; 1250 C(pfmemalloc); 1251 C(pp_recycle); 1252 n->destructor = NULL; 1253 C(tail); 1254 C(end); 1255 C(head); 1256 C(head_frag); 1257 C(data); 1258 C(truesize); 1259 refcount_set(&n->users, 1); 1260 1261 atomic_inc(&(skb_shinfo(skb)->dataref)); 1262 skb->cloned = 1; 1263 1264 return n; 1265 #undef C 1266 } 1267 1268 /** 1269 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1270 * @first: first sk_buff of the msg 1271 */ 1272 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1273 { 1274 struct sk_buff *n; 1275 1276 n = alloc_skb(0, GFP_ATOMIC); 1277 if (!n) 1278 return NULL; 1279 1280 n->len = first->len; 1281 n->data_len = first->len; 1282 n->truesize = first->truesize; 1283 1284 skb_shinfo(n)->frag_list = first; 1285 1286 __copy_skb_header(n, first); 1287 n->destructor = NULL; 1288 1289 return n; 1290 } 1291 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1292 1293 /** 1294 * skb_morph - morph one skb into another 1295 * @dst: the skb to receive the contents 1296 * @src: the skb to supply the contents 1297 * 1298 * This is identical to skb_clone except that the target skb is 1299 * supplied by the user. 1300 * 1301 * The target skb is returned upon exit. 1302 */ 1303 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1304 { 1305 skb_release_all(dst, SKB_CONSUMED); 1306 return __skb_clone(dst, src); 1307 } 1308 EXPORT_SYMBOL_GPL(skb_morph); 1309 1310 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1311 { 1312 unsigned long max_pg, num_pg, new_pg, old_pg; 1313 struct user_struct *user; 1314 1315 if (capable(CAP_IPC_LOCK) || !size) 1316 return 0; 1317 1318 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1319 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1320 user = mmp->user ? : current_user(); 1321 1322 old_pg = atomic_long_read(&user->locked_vm); 1323 do { 1324 new_pg = old_pg + num_pg; 1325 if (new_pg > max_pg) 1326 return -ENOBUFS; 1327 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1328 1329 if (!mmp->user) { 1330 mmp->user = get_uid(user); 1331 mmp->num_pg = num_pg; 1332 } else { 1333 mmp->num_pg += num_pg; 1334 } 1335 1336 return 0; 1337 } 1338 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1339 1340 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1341 { 1342 if (mmp->user) { 1343 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1344 free_uid(mmp->user); 1345 } 1346 } 1347 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1348 1349 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1350 { 1351 struct ubuf_info_msgzc *uarg; 1352 struct sk_buff *skb; 1353 1354 WARN_ON_ONCE(!in_task()); 1355 1356 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1357 if (!skb) 1358 return NULL; 1359 1360 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1361 uarg = (void *)skb->cb; 1362 uarg->mmp.user = NULL; 1363 1364 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1365 kfree_skb(skb); 1366 return NULL; 1367 } 1368 1369 uarg->ubuf.callback = msg_zerocopy_callback; 1370 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1371 uarg->len = 1; 1372 uarg->bytelen = size; 1373 uarg->zerocopy = 1; 1374 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1375 refcount_set(&uarg->ubuf.refcnt, 1); 1376 sock_hold(sk); 1377 1378 return &uarg->ubuf; 1379 } 1380 1381 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1382 { 1383 return container_of((void *)uarg, struct sk_buff, cb); 1384 } 1385 1386 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1387 struct ubuf_info *uarg) 1388 { 1389 if (uarg) { 1390 struct ubuf_info_msgzc *uarg_zc; 1391 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1392 u32 bytelen, next; 1393 1394 /* there might be non MSG_ZEROCOPY users */ 1395 if (uarg->callback != msg_zerocopy_callback) 1396 return NULL; 1397 1398 /* realloc only when socket is locked (TCP, UDP cork), 1399 * so uarg->len and sk_zckey access is serialized 1400 */ 1401 if (!sock_owned_by_user(sk)) { 1402 WARN_ON_ONCE(1); 1403 return NULL; 1404 } 1405 1406 uarg_zc = uarg_to_msgzc(uarg); 1407 bytelen = uarg_zc->bytelen + size; 1408 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1409 /* TCP can create new skb to attach new uarg */ 1410 if (sk->sk_type == SOCK_STREAM) 1411 goto new_alloc; 1412 return NULL; 1413 } 1414 1415 next = (u32)atomic_read(&sk->sk_zckey); 1416 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1417 if (mm_account_pinned_pages(&uarg_zc->mmp, size)) 1418 return NULL; 1419 uarg_zc->len++; 1420 uarg_zc->bytelen = bytelen; 1421 atomic_set(&sk->sk_zckey, ++next); 1422 1423 /* no extra ref when appending to datagram (MSG_MORE) */ 1424 if (sk->sk_type == SOCK_STREAM) 1425 net_zcopy_get(uarg); 1426 1427 return uarg; 1428 } 1429 } 1430 1431 new_alloc: 1432 return msg_zerocopy_alloc(sk, size); 1433 } 1434 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1435 1436 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1437 { 1438 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1439 u32 old_lo, old_hi; 1440 u64 sum_len; 1441 1442 old_lo = serr->ee.ee_info; 1443 old_hi = serr->ee.ee_data; 1444 sum_len = old_hi - old_lo + 1ULL + len; 1445 1446 if (sum_len >= (1ULL << 32)) 1447 return false; 1448 1449 if (lo != old_hi + 1) 1450 return false; 1451 1452 serr->ee.ee_data += len; 1453 return true; 1454 } 1455 1456 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1457 { 1458 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1459 struct sock_exterr_skb *serr; 1460 struct sock *sk = skb->sk; 1461 struct sk_buff_head *q; 1462 unsigned long flags; 1463 bool is_zerocopy; 1464 u32 lo, hi; 1465 u16 len; 1466 1467 mm_unaccount_pinned_pages(&uarg->mmp); 1468 1469 /* if !len, there was only 1 call, and it was aborted 1470 * so do not queue a completion notification 1471 */ 1472 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1473 goto release; 1474 1475 len = uarg->len; 1476 lo = uarg->id; 1477 hi = uarg->id + len - 1; 1478 is_zerocopy = uarg->zerocopy; 1479 1480 serr = SKB_EXT_ERR(skb); 1481 memset(serr, 0, sizeof(*serr)); 1482 serr->ee.ee_errno = 0; 1483 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1484 serr->ee.ee_data = hi; 1485 serr->ee.ee_info = lo; 1486 if (!is_zerocopy) 1487 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1488 1489 q = &sk->sk_error_queue; 1490 spin_lock_irqsave(&q->lock, flags); 1491 tail = skb_peek_tail(q); 1492 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1493 !skb_zerocopy_notify_extend(tail, lo, len)) { 1494 __skb_queue_tail(q, skb); 1495 skb = NULL; 1496 } 1497 spin_unlock_irqrestore(&q->lock, flags); 1498 1499 sk_error_report(sk); 1500 1501 release: 1502 consume_skb(skb); 1503 sock_put(sk); 1504 } 1505 1506 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1507 bool success) 1508 { 1509 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1510 1511 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1512 1513 if (refcount_dec_and_test(&uarg->refcnt)) 1514 __msg_zerocopy_callback(uarg_zc); 1515 } 1516 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1517 1518 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1519 { 1520 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1521 1522 atomic_dec(&sk->sk_zckey); 1523 uarg_to_msgzc(uarg)->len--; 1524 1525 if (have_uref) 1526 msg_zerocopy_callback(NULL, uarg, true); 1527 } 1528 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1529 1530 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1531 struct msghdr *msg, int len, 1532 struct ubuf_info *uarg) 1533 { 1534 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1535 int err, orig_len = skb->len; 1536 1537 /* An skb can only point to one uarg. This edge case happens when 1538 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1539 */ 1540 if (orig_uarg && uarg != orig_uarg) 1541 return -EEXIST; 1542 1543 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1544 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1545 struct sock *save_sk = skb->sk; 1546 1547 /* Streams do not free skb on error. Reset to prev state. */ 1548 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1549 skb->sk = sk; 1550 ___pskb_trim(skb, orig_len); 1551 skb->sk = save_sk; 1552 return err; 1553 } 1554 1555 skb_zcopy_set(skb, uarg, NULL); 1556 return skb->len - orig_len; 1557 } 1558 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1559 1560 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1561 { 1562 int i; 1563 1564 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1565 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1566 skb_frag_ref(skb, i); 1567 } 1568 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1569 1570 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1571 gfp_t gfp_mask) 1572 { 1573 if (skb_zcopy(orig)) { 1574 if (skb_zcopy(nskb)) { 1575 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1576 if (!gfp_mask) { 1577 WARN_ON_ONCE(1); 1578 return -ENOMEM; 1579 } 1580 if (skb_uarg(nskb) == skb_uarg(orig)) 1581 return 0; 1582 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1583 return -EIO; 1584 } 1585 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1586 } 1587 return 0; 1588 } 1589 1590 /** 1591 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1592 * @skb: the skb to modify 1593 * @gfp_mask: allocation priority 1594 * 1595 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1596 * It will copy all frags into kernel and drop the reference 1597 * to userspace pages. 1598 * 1599 * If this function is called from an interrupt gfp_mask() must be 1600 * %GFP_ATOMIC. 1601 * 1602 * Returns 0 on success or a negative error code on failure 1603 * to allocate kernel memory to copy to. 1604 */ 1605 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1606 { 1607 int num_frags = skb_shinfo(skb)->nr_frags; 1608 struct page *page, *head = NULL; 1609 int i, new_frags; 1610 u32 d_off; 1611 1612 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1613 return -EINVAL; 1614 1615 if (!num_frags) 1616 goto release; 1617 1618 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1619 for (i = 0; i < new_frags; i++) { 1620 page = alloc_page(gfp_mask); 1621 if (!page) { 1622 while (head) { 1623 struct page *next = (struct page *)page_private(head); 1624 put_page(head); 1625 head = next; 1626 } 1627 return -ENOMEM; 1628 } 1629 set_page_private(page, (unsigned long)head); 1630 head = page; 1631 } 1632 1633 page = head; 1634 d_off = 0; 1635 for (i = 0; i < num_frags; i++) { 1636 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1637 u32 p_off, p_len, copied; 1638 struct page *p; 1639 u8 *vaddr; 1640 1641 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1642 p, p_off, p_len, copied) { 1643 u32 copy, done = 0; 1644 vaddr = kmap_atomic(p); 1645 1646 while (done < p_len) { 1647 if (d_off == PAGE_SIZE) { 1648 d_off = 0; 1649 page = (struct page *)page_private(page); 1650 } 1651 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1652 memcpy(page_address(page) + d_off, 1653 vaddr + p_off + done, copy); 1654 done += copy; 1655 d_off += copy; 1656 } 1657 kunmap_atomic(vaddr); 1658 } 1659 } 1660 1661 /* skb frags release userspace buffers */ 1662 for (i = 0; i < num_frags; i++) 1663 skb_frag_unref(skb, i); 1664 1665 /* skb frags point to kernel buffers */ 1666 for (i = 0; i < new_frags - 1; i++) { 1667 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1668 head = (struct page *)page_private(head); 1669 } 1670 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1671 skb_shinfo(skb)->nr_frags = new_frags; 1672 1673 release: 1674 skb_zcopy_clear(skb, false); 1675 return 0; 1676 } 1677 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1678 1679 /** 1680 * skb_clone - duplicate an sk_buff 1681 * @skb: buffer to clone 1682 * @gfp_mask: allocation priority 1683 * 1684 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1685 * copies share the same packet data but not structure. The new 1686 * buffer has a reference count of 1. If the allocation fails the 1687 * function returns %NULL otherwise the new buffer is returned. 1688 * 1689 * If this function is called from an interrupt gfp_mask() must be 1690 * %GFP_ATOMIC. 1691 */ 1692 1693 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1694 { 1695 struct sk_buff_fclones *fclones = container_of(skb, 1696 struct sk_buff_fclones, 1697 skb1); 1698 struct sk_buff *n; 1699 1700 if (skb_orphan_frags(skb, gfp_mask)) 1701 return NULL; 1702 1703 if (skb->fclone == SKB_FCLONE_ORIG && 1704 refcount_read(&fclones->fclone_ref) == 1) { 1705 n = &fclones->skb2; 1706 refcount_set(&fclones->fclone_ref, 2); 1707 n->fclone = SKB_FCLONE_CLONE; 1708 } else { 1709 if (skb_pfmemalloc(skb)) 1710 gfp_mask |= __GFP_MEMALLOC; 1711 1712 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1713 if (!n) 1714 return NULL; 1715 1716 n->fclone = SKB_FCLONE_UNAVAILABLE; 1717 } 1718 1719 return __skb_clone(n, skb); 1720 } 1721 EXPORT_SYMBOL(skb_clone); 1722 1723 void skb_headers_offset_update(struct sk_buff *skb, int off) 1724 { 1725 /* Only adjust this if it actually is csum_start rather than csum */ 1726 if (skb->ip_summed == CHECKSUM_PARTIAL) 1727 skb->csum_start += off; 1728 /* {transport,network,mac}_header and tail are relative to skb->head */ 1729 skb->transport_header += off; 1730 skb->network_header += off; 1731 if (skb_mac_header_was_set(skb)) 1732 skb->mac_header += off; 1733 skb->inner_transport_header += off; 1734 skb->inner_network_header += off; 1735 skb->inner_mac_header += off; 1736 } 1737 EXPORT_SYMBOL(skb_headers_offset_update); 1738 1739 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1740 { 1741 __copy_skb_header(new, old); 1742 1743 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1744 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1745 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1746 } 1747 EXPORT_SYMBOL(skb_copy_header); 1748 1749 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1750 { 1751 if (skb_pfmemalloc(skb)) 1752 return SKB_ALLOC_RX; 1753 return 0; 1754 } 1755 1756 /** 1757 * skb_copy - create private copy of an sk_buff 1758 * @skb: buffer to copy 1759 * @gfp_mask: allocation priority 1760 * 1761 * Make a copy of both an &sk_buff and its data. This is used when the 1762 * caller wishes to modify the data and needs a private copy of the 1763 * data to alter. Returns %NULL on failure or the pointer to the buffer 1764 * on success. The returned buffer has a reference count of 1. 1765 * 1766 * As by-product this function converts non-linear &sk_buff to linear 1767 * one, so that &sk_buff becomes completely private and caller is allowed 1768 * to modify all the data of returned buffer. This means that this 1769 * function is not recommended for use in circumstances when only 1770 * header is going to be modified. Use pskb_copy() instead. 1771 */ 1772 1773 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1774 { 1775 int headerlen = skb_headroom(skb); 1776 unsigned int size = skb_end_offset(skb) + skb->data_len; 1777 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1778 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1779 1780 if (!n) 1781 return NULL; 1782 1783 /* Set the data pointer */ 1784 skb_reserve(n, headerlen); 1785 /* Set the tail pointer and length */ 1786 skb_put(n, skb->len); 1787 1788 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1789 1790 skb_copy_header(n, skb); 1791 return n; 1792 } 1793 EXPORT_SYMBOL(skb_copy); 1794 1795 /** 1796 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1797 * @skb: buffer to copy 1798 * @headroom: headroom of new skb 1799 * @gfp_mask: allocation priority 1800 * @fclone: if true allocate the copy of the skb from the fclone 1801 * cache instead of the head cache; it is recommended to set this 1802 * to true for the cases where the copy will likely be cloned 1803 * 1804 * Make a copy of both an &sk_buff and part of its data, located 1805 * in header. Fragmented data remain shared. This is used when 1806 * the caller wishes to modify only header of &sk_buff and needs 1807 * private copy of the header to alter. Returns %NULL on failure 1808 * or the pointer to the buffer on success. 1809 * The returned buffer has a reference count of 1. 1810 */ 1811 1812 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1813 gfp_t gfp_mask, bool fclone) 1814 { 1815 unsigned int size = skb_headlen(skb) + headroom; 1816 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1817 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1818 1819 if (!n) 1820 goto out; 1821 1822 /* Set the data pointer */ 1823 skb_reserve(n, headroom); 1824 /* Set the tail pointer and length */ 1825 skb_put(n, skb_headlen(skb)); 1826 /* Copy the bytes */ 1827 skb_copy_from_linear_data(skb, n->data, n->len); 1828 1829 n->truesize += skb->data_len; 1830 n->data_len = skb->data_len; 1831 n->len = skb->len; 1832 1833 if (skb_shinfo(skb)->nr_frags) { 1834 int i; 1835 1836 if (skb_orphan_frags(skb, gfp_mask) || 1837 skb_zerocopy_clone(n, skb, gfp_mask)) { 1838 kfree_skb(n); 1839 n = NULL; 1840 goto out; 1841 } 1842 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1843 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1844 skb_frag_ref(skb, i); 1845 } 1846 skb_shinfo(n)->nr_frags = i; 1847 } 1848 1849 if (skb_has_frag_list(skb)) { 1850 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1851 skb_clone_fraglist(n); 1852 } 1853 1854 skb_copy_header(n, skb); 1855 out: 1856 return n; 1857 } 1858 EXPORT_SYMBOL(__pskb_copy_fclone); 1859 1860 /** 1861 * pskb_expand_head - reallocate header of &sk_buff 1862 * @skb: buffer to reallocate 1863 * @nhead: room to add at head 1864 * @ntail: room to add at tail 1865 * @gfp_mask: allocation priority 1866 * 1867 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1868 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1869 * reference count of 1. Returns zero in the case of success or error, 1870 * if expansion failed. In the last case, &sk_buff is not changed. 1871 * 1872 * All the pointers pointing into skb header may change and must be 1873 * reloaded after call to this function. 1874 */ 1875 1876 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1877 gfp_t gfp_mask) 1878 { 1879 unsigned int osize = skb_end_offset(skb); 1880 unsigned int size = osize + nhead + ntail; 1881 long off; 1882 u8 *data; 1883 int i; 1884 1885 BUG_ON(nhead < 0); 1886 1887 BUG_ON(skb_shared(skb)); 1888 1889 skb_zcopy_downgrade_managed(skb); 1890 1891 if (skb_pfmemalloc(skb)) 1892 gfp_mask |= __GFP_MEMALLOC; 1893 1894 size = SKB_DATA_ALIGN(size); 1895 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1896 size = kmalloc_size_roundup(size); 1897 data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL); 1898 if (!data) 1899 goto nodata; 1900 size = SKB_WITH_OVERHEAD(size); 1901 1902 /* Copy only real data... and, alas, header. This should be 1903 * optimized for the cases when header is void. 1904 */ 1905 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1906 1907 memcpy((struct skb_shared_info *)(data + size), 1908 skb_shinfo(skb), 1909 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1910 1911 /* 1912 * if shinfo is shared we must drop the old head gracefully, but if it 1913 * is not we can just drop the old head and let the existing refcount 1914 * be since all we did is relocate the values 1915 */ 1916 if (skb_cloned(skb)) { 1917 if (skb_orphan_frags(skb, gfp_mask)) 1918 goto nofrags; 1919 if (skb_zcopy(skb)) 1920 refcount_inc(&skb_uarg(skb)->refcnt); 1921 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1922 skb_frag_ref(skb, i); 1923 1924 if (skb_has_frag_list(skb)) 1925 skb_clone_fraglist(skb); 1926 1927 skb_release_data(skb, SKB_CONSUMED); 1928 } else { 1929 skb_free_head(skb); 1930 } 1931 off = (data + nhead) - skb->head; 1932 1933 skb->head = data; 1934 skb->head_frag = 0; 1935 skb->data += off; 1936 1937 skb_set_end_offset(skb, size); 1938 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1939 off = nhead; 1940 #endif 1941 skb->tail += off; 1942 skb_headers_offset_update(skb, nhead); 1943 skb->cloned = 0; 1944 skb->hdr_len = 0; 1945 skb->nohdr = 0; 1946 atomic_set(&skb_shinfo(skb)->dataref, 1); 1947 1948 skb_metadata_clear(skb); 1949 1950 /* It is not generally safe to change skb->truesize. 1951 * For the moment, we really care of rx path, or 1952 * when skb is orphaned (not attached to a socket). 1953 */ 1954 if (!skb->sk || skb->destructor == sock_edemux) 1955 skb->truesize += size - osize; 1956 1957 return 0; 1958 1959 nofrags: 1960 kfree(data); 1961 nodata: 1962 return -ENOMEM; 1963 } 1964 EXPORT_SYMBOL(pskb_expand_head); 1965 1966 /* Make private copy of skb with writable head and some headroom */ 1967 1968 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1969 { 1970 struct sk_buff *skb2; 1971 int delta = headroom - skb_headroom(skb); 1972 1973 if (delta <= 0) 1974 skb2 = pskb_copy(skb, GFP_ATOMIC); 1975 else { 1976 skb2 = skb_clone(skb, GFP_ATOMIC); 1977 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1978 GFP_ATOMIC)) { 1979 kfree_skb(skb2); 1980 skb2 = NULL; 1981 } 1982 } 1983 return skb2; 1984 } 1985 EXPORT_SYMBOL(skb_realloc_headroom); 1986 1987 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1988 { 1989 unsigned int saved_end_offset, saved_truesize; 1990 struct skb_shared_info *shinfo; 1991 int res; 1992 1993 saved_end_offset = skb_end_offset(skb); 1994 saved_truesize = skb->truesize; 1995 1996 res = pskb_expand_head(skb, 0, 0, pri); 1997 if (res) 1998 return res; 1999 2000 skb->truesize = saved_truesize; 2001 2002 if (likely(skb_end_offset(skb) == saved_end_offset)) 2003 return 0; 2004 2005 shinfo = skb_shinfo(skb); 2006 2007 /* We are about to change back skb->end, 2008 * we need to move skb_shinfo() to its new location. 2009 */ 2010 memmove(skb->head + saved_end_offset, 2011 shinfo, 2012 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2013 2014 skb_set_end_offset(skb, saved_end_offset); 2015 2016 return 0; 2017 } 2018 2019 /** 2020 * skb_expand_head - reallocate header of &sk_buff 2021 * @skb: buffer to reallocate 2022 * @headroom: needed headroom 2023 * 2024 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2025 * if possible; copies skb->sk to new skb as needed 2026 * and frees original skb in case of failures. 2027 * 2028 * It expect increased headroom and generates warning otherwise. 2029 */ 2030 2031 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2032 { 2033 int delta = headroom - skb_headroom(skb); 2034 int osize = skb_end_offset(skb); 2035 struct sock *sk = skb->sk; 2036 2037 if (WARN_ONCE(delta <= 0, 2038 "%s is expecting an increase in the headroom", __func__)) 2039 return skb; 2040 2041 delta = SKB_DATA_ALIGN(delta); 2042 /* pskb_expand_head() might crash, if skb is shared. */ 2043 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2044 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2045 2046 if (unlikely(!nskb)) 2047 goto fail; 2048 2049 if (sk) 2050 skb_set_owner_w(nskb, sk); 2051 consume_skb(skb); 2052 skb = nskb; 2053 } 2054 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2055 goto fail; 2056 2057 if (sk && is_skb_wmem(skb)) { 2058 delta = skb_end_offset(skb) - osize; 2059 refcount_add(delta, &sk->sk_wmem_alloc); 2060 skb->truesize += delta; 2061 } 2062 return skb; 2063 2064 fail: 2065 kfree_skb(skb); 2066 return NULL; 2067 } 2068 EXPORT_SYMBOL(skb_expand_head); 2069 2070 /** 2071 * skb_copy_expand - copy and expand sk_buff 2072 * @skb: buffer to copy 2073 * @newheadroom: new free bytes at head 2074 * @newtailroom: new free bytes at tail 2075 * @gfp_mask: allocation priority 2076 * 2077 * Make a copy of both an &sk_buff and its data and while doing so 2078 * allocate additional space. 2079 * 2080 * This is used when the caller wishes to modify the data and needs a 2081 * private copy of the data to alter as well as more space for new fields. 2082 * Returns %NULL on failure or the pointer to the buffer 2083 * on success. The returned buffer has a reference count of 1. 2084 * 2085 * You must pass %GFP_ATOMIC as the allocation priority if this function 2086 * is called from an interrupt. 2087 */ 2088 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2089 int newheadroom, int newtailroom, 2090 gfp_t gfp_mask) 2091 { 2092 /* 2093 * Allocate the copy buffer 2094 */ 2095 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 2096 gfp_mask, skb_alloc_rx_flag(skb), 2097 NUMA_NO_NODE); 2098 int oldheadroom = skb_headroom(skb); 2099 int head_copy_len, head_copy_off; 2100 2101 if (!n) 2102 return NULL; 2103 2104 skb_reserve(n, newheadroom); 2105 2106 /* Set the tail pointer and length */ 2107 skb_put(n, skb->len); 2108 2109 head_copy_len = oldheadroom; 2110 head_copy_off = 0; 2111 if (newheadroom <= head_copy_len) 2112 head_copy_len = newheadroom; 2113 else 2114 head_copy_off = newheadroom - head_copy_len; 2115 2116 /* Copy the linear header and data. */ 2117 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2118 skb->len + head_copy_len)); 2119 2120 skb_copy_header(n, skb); 2121 2122 skb_headers_offset_update(n, newheadroom - oldheadroom); 2123 2124 return n; 2125 } 2126 EXPORT_SYMBOL(skb_copy_expand); 2127 2128 /** 2129 * __skb_pad - zero pad the tail of an skb 2130 * @skb: buffer to pad 2131 * @pad: space to pad 2132 * @free_on_error: free buffer on error 2133 * 2134 * Ensure that a buffer is followed by a padding area that is zero 2135 * filled. Used by network drivers which may DMA or transfer data 2136 * beyond the buffer end onto the wire. 2137 * 2138 * May return error in out of memory cases. The skb is freed on error 2139 * if @free_on_error is true. 2140 */ 2141 2142 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2143 { 2144 int err; 2145 int ntail; 2146 2147 /* If the skbuff is non linear tailroom is always zero.. */ 2148 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2149 memset(skb->data+skb->len, 0, pad); 2150 return 0; 2151 } 2152 2153 ntail = skb->data_len + pad - (skb->end - skb->tail); 2154 if (likely(skb_cloned(skb) || ntail > 0)) { 2155 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2156 if (unlikely(err)) 2157 goto free_skb; 2158 } 2159 2160 /* FIXME: The use of this function with non-linear skb's really needs 2161 * to be audited. 2162 */ 2163 err = skb_linearize(skb); 2164 if (unlikely(err)) 2165 goto free_skb; 2166 2167 memset(skb->data + skb->len, 0, pad); 2168 return 0; 2169 2170 free_skb: 2171 if (free_on_error) 2172 kfree_skb(skb); 2173 return err; 2174 } 2175 EXPORT_SYMBOL(__skb_pad); 2176 2177 /** 2178 * pskb_put - add data to the tail of a potentially fragmented buffer 2179 * @skb: start of the buffer to use 2180 * @tail: tail fragment of the buffer to use 2181 * @len: amount of data to add 2182 * 2183 * This function extends the used data area of the potentially 2184 * fragmented buffer. @tail must be the last fragment of @skb -- or 2185 * @skb itself. If this would exceed the total buffer size the kernel 2186 * will panic. A pointer to the first byte of the extra data is 2187 * returned. 2188 */ 2189 2190 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2191 { 2192 if (tail != skb) { 2193 skb->data_len += len; 2194 skb->len += len; 2195 } 2196 return skb_put(tail, len); 2197 } 2198 EXPORT_SYMBOL_GPL(pskb_put); 2199 2200 /** 2201 * skb_put - add data to a buffer 2202 * @skb: buffer to use 2203 * @len: amount of data to add 2204 * 2205 * This function extends the used data area of the buffer. If this would 2206 * exceed the total buffer size the kernel will panic. A pointer to the 2207 * first byte of the extra data is returned. 2208 */ 2209 void *skb_put(struct sk_buff *skb, unsigned int len) 2210 { 2211 void *tmp = skb_tail_pointer(skb); 2212 SKB_LINEAR_ASSERT(skb); 2213 skb->tail += len; 2214 skb->len += len; 2215 if (unlikely(skb->tail > skb->end)) 2216 skb_over_panic(skb, len, __builtin_return_address(0)); 2217 return tmp; 2218 } 2219 EXPORT_SYMBOL(skb_put); 2220 2221 /** 2222 * skb_push - add data to the start of a buffer 2223 * @skb: buffer to use 2224 * @len: amount of data to add 2225 * 2226 * This function extends the used data area of the buffer at the buffer 2227 * start. If this would exceed the total buffer headroom the kernel will 2228 * panic. A pointer to the first byte of the extra data is returned. 2229 */ 2230 void *skb_push(struct sk_buff *skb, unsigned int len) 2231 { 2232 skb->data -= len; 2233 skb->len += len; 2234 if (unlikely(skb->data < skb->head)) 2235 skb_under_panic(skb, len, __builtin_return_address(0)); 2236 return skb->data; 2237 } 2238 EXPORT_SYMBOL(skb_push); 2239 2240 /** 2241 * skb_pull - remove data from the start of a buffer 2242 * @skb: buffer to use 2243 * @len: amount of data to remove 2244 * 2245 * This function removes data from the start of a buffer, returning 2246 * the memory to the headroom. A pointer to the next data in the buffer 2247 * is returned. Once the data has been pulled future pushes will overwrite 2248 * the old data. 2249 */ 2250 void *skb_pull(struct sk_buff *skb, unsigned int len) 2251 { 2252 return skb_pull_inline(skb, len); 2253 } 2254 EXPORT_SYMBOL(skb_pull); 2255 2256 /** 2257 * skb_pull_data - remove data from the start of a buffer returning its 2258 * original position. 2259 * @skb: buffer to use 2260 * @len: amount of data to remove 2261 * 2262 * This function removes data from the start of a buffer, returning 2263 * the memory to the headroom. A pointer to the original data in the buffer 2264 * is returned after checking if there is enough data to pull. Once the 2265 * data has been pulled future pushes will overwrite the old data. 2266 */ 2267 void *skb_pull_data(struct sk_buff *skb, size_t len) 2268 { 2269 void *data = skb->data; 2270 2271 if (skb->len < len) 2272 return NULL; 2273 2274 skb_pull(skb, len); 2275 2276 return data; 2277 } 2278 EXPORT_SYMBOL(skb_pull_data); 2279 2280 /** 2281 * skb_trim - remove end from a buffer 2282 * @skb: buffer to alter 2283 * @len: new length 2284 * 2285 * Cut the length of a buffer down by removing data from the tail. If 2286 * the buffer is already under the length specified it is not modified. 2287 * The skb must be linear. 2288 */ 2289 void skb_trim(struct sk_buff *skb, unsigned int len) 2290 { 2291 if (skb->len > len) 2292 __skb_trim(skb, len); 2293 } 2294 EXPORT_SYMBOL(skb_trim); 2295 2296 /* Trims skb to length len. It can change skb pointers. 2297 */ 2298 2299 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2300 { 2301 struct sk_buff **fragp; 2302 struct sk_buff *frag; 2303 int offset = skb_headlen(skb); 2304 int nfrags = skb_shinfo(skb)->nr_frags; 2305 int i; 2306 int err; 2307 2308 if (skb_cloned(skb) && 2309 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2310 return err; 2311 2312 i = 0; 2313 if (offset >= len) 2314 goto drop_pages; 2315 2316 for (; i < nfrags; i++) { 2317 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2318 2319 if (end < len) { 2320 offset = end; 2321 continue; 2322 } 2323 2324 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2325 2326 drop_pages: 2327 skb_shinfo(skb)->nr_frags = i; 2328 2329 for (; i < nfrags; i++) 2330 skb_frag_unref(skb, i); 2331 2332 if (skb_has_frag_list(skb)) 2333 skb_drop_fraglist(skb); 2334 goto done; 2335 } 2336 2337 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2338 fragp = &frag->next) { 2339 int end = offset + frag->len; 2340 2341 if (skb_shared(frag)) { 2342 struct sk_buff *nfrag; 2343 2344 nfrag = skb_clone(frag, GFP_ATOMIC); 2345 if (unlikely(!nfrag)) 2346 return -ENOMEM; 2347 2348 nfrag->next = frag->next; 2349 consume_skb(frag); 2350 frag = nfrag; 2351 *fragp = frag; 2352 } 2353 2354 if (end < len) { 2355 offset = end; 2356 continue; 2357 } 2358 2359 if (end > len && 2360 unlikely((err = pskb_trim(frag, len - offset)))) 2361 return err; 2362 2363 if (frag->next) 2364 skb_drop_list(&frag->next); 2365 break; 2366 } 2367 2368 done: 2369 if (len > skb_headlen(skb)) { 2370 skb->data_len -= skb->len - len; 2371 skb->len = len; 2372 } else { 2373 skb->len = len; 2374 skb->data_len = 0; 2375 skb_set_tail_pointer(skb, len); 2376 } 2377 2378 if (!skb->sk || skb->destructor == sock_edemux) 2379 skb_condense(skb); 2380 return 0; 2381 } 2382 EXPORT_SYMBOL(___pskb_trim); 2383 2384 /* Note : use pskb_trim_rcsum() instead of calling this directly 2385 */ 2386 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2387 { 2388 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2389 int delta = skb->len - len; 2390 2391 skb->csum = csum_block_sub(skb->csum, 2392 skb_checksum(skb, len, delta, 0), 2393 len); 2394 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2395 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2396 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2397 2398 if (offset + sizeof(__sum16) > hdlen) 2399 return -EINVAL; 2400 } 2401 return __pskb_trim(skb, len); 2402 } 2403 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2404 2405 /** 2406 * __pskb_pull_tail - advance tail of skb header 2407 * @skb: buffer to reallocate 2408 * @delta: number of bytes to advance tail 2409 * 2410 * The function makes a sense only on a fragmented &sk_buff, 2411 * it expands header moving its tail forward and copying necessary 2412 * data from fragmented part. 2413 * 2414 * &sk_buff MUST have reference count of 1. 2415 * 2416 * Returns %NULL (and &sk_buff does not change) if pull failed 2417 * or value of new tail of skb in the case of success. 2418 * 2419 * All the pointers pointing into skb header may change and must be 2420 * reloaded after call to this function. 2421 */ 2422 2423 /* Moves tail of skb head forward, copying data from fragmented part, 2424 * when it is necessary. 2425 * 1. It may fail due to malloc failure. 2426 * 2. It may change skb pointers. 2427 * 2428 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2429 */ 2430 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2431 { 2432 /* If skb has not enough free space at tail, get new one 2433 * plus 128 bytes for future expansions. If we have enough 2434 * room at tail, reallocate without expansion only if skb is cloned. 2435 */ 2436 int i, k, eat = (skb->tail + delta) - skb->end; 2437 2438 if (eat > 0 || skb_cloned(skb)) { 2439 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2440 GFP_ATOMIC)) 2441 return NULL; 2442 } 2443 2444 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2445 skb_tail_pointer(skb), delta)); 2446 2447 /* Optimization: no fragments, no reasons to preestimate 2448 * size of pulled pages. Superb. 2449 */ 2450 if (!skb_has_frag_list(skb)) 2451 goto pull_pages; 2452 2453 /* Estimate size of pulled pages. */ 2454 eat = delta; 2455 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2456 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2457 2458 if (size >= eat) 2459 goto pull_pages; 2460 eat -= size; 2461 } 2462 2463 /* If we need update frag list, we are in troubles. 2464 * Certainly, it is possible to add an offset to skb data, 2465 * but taking into account that pulling is expected to 2466 * be very rare operation, it is worth to fight against 2467 * further bloating skb head and crucify ourselves here instead. 2468 * Pure masohism, indeed. 8)8) 2469 */ 2470 if (eat) { 2471 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2472 struct sk_buff *clone = NULL; 2473 struct sk_buff *insp = NULL; 2474 2475 do { 2476 if (list->len <= eat) { 2477 /* Eaten as whole. */ 2478 eat -= list->len; 2479 list = list->next; 2480 insp = list; 2481 } else { 2482 /* Eaten partially. */ 2483 if (skb_is_gso(skb) && !list->head_frag && 2484 skb_headlen(list)) 2485 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2486 2487 if (skb_shared(list)) { 2488 /* Sucks! We need to fork list. :-( */ 2489 clone = skb_clone(list, GFP_ATOMIC); 2490 if (!clone) 2491 return NULL; 2492 insp = list->next; 2493 list = clone; 2494 } else { 2495 /* This may be pulled without 2496 * problems. */ 2497 insp = list; 2498 } 2499 if (!pskb_pull(list, eat)) { 2500 kfree_skb(clone); 2501 return NULL; 2502 } 2503 break; 2504 } 2505 } while (eat); 2506 2507 /* Free pulled out fragments. */ 2508 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2509 skb_shinfo(skb)->frag_list = list->next; 2510 consume_skb(list); 2511 } 2512 /* And insert new clone at head. */ 2513 if (clone) { 2514 clone->next = list; 2515 skb_shinfo(skb)->frag_list = clone; 2516 } 2517 } 2518 /* Success! Now we may commit changes to skb data. */ 2519 2520 pull_pages: 2521 eat = delta; 2522 k = 0; 2523 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2524 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2525 2526 if (size <= eat) { 2527 skb_frag_unref(skb, i); 2528 eat -= size; 2529 } else { 2530 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2531 2532 *frag = skb_shinfo(skb)->frags[i]; 2533 if (eat) { 2534 skb_frag_off_add(frag, eat); 2535 skb_frag_size_sub(frag, eat); 2536 if (!i) 2537 goto end; 2538 eat = 0; 2539 } 2540 k++; 2541 } 2542 } 2543 skb_shinfo(skb)->nr_frags = k; 2544 2545 end: 2546 skb->tail += delta; 2547 skb->data_len -= delta; 2548 2549 if (!skb->data_len) 2550 skb_zcopy_clear(skb, false); 2551 2552 return skb_tail_pointer(skb); 2553 } 2554 EXPORT_SYMBOL(__pskb_pull_tail); 2555 2556 /** 2557 * skb_copy_bits - copy bits from skb to kernel buffer 2558 * @skb: source skb 2559 * @offset: offset in source 2560 * @to: destination buffer 2561 * @len: number of bytes to copy 2562 * 2563 * Copy the specified number of bytes from the source skb to the 2564 * destination buffer. 2565 * 2566 * CAUTION ! : 2567 * If its prototype is ever changed, 2568 * check arch/{*}/net/{*}.S files, 2569 * since it is called from BPF assembly code. 2570 */ 2571 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2572 { 2573 int start = skb_headlen(skb); 2574 struct sk_buff *frag_iter; 2575 int i, copy; 2576 2577 if (offset > (int)skb->len - len) 2578 goto fault; 2579 2580 /* Copy header. */ 2581 if ((copy = start - offset) > 0) { 2582 if (copy > len) 2583 copy = len; 2584 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2585 if ((len -= copy) == 0) 2586 return 0; 2587 offset += copy; 2588 to += copy; 2589 } 2590 2591 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2592 int end; 2593 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2594 2595 WARN_ON(start > offset + len); 2596 2597 end = start + skb_frag_size(f); 2598 if ((copy = end - offset) > 0) { 2599 u32 p_off, p_len, copied; 2600 struct page *p; 2601 u8 *vaddr; 2602 2603 if (copy > len) 2604 copy = len; 2605 2606 skb_frag_foreach_page(f, 2607 skb_frag_off(f) + offset - start, 2608 copy, p, p_off, p_len, copied) { 2609 vaddr = kmap_atomic(p); 2610 memcpy(to + copied, vaddr + p_off, p_len); 2611 kunmap_atomic(vaddr); 2612 } 2613 2614 if ((len -= copy) == 0) 2615 return 0; 2616 offset += copy; 2617 to += copy; 2618 } 2619 start = end; 2620 } 2621 2622 skb_walk_frags(skb, frag_iter) { 2623 int end; 2624 2625 WARN_ON(start > offset + len); 2626 2627 end = start + frag_iter->len; 2628 if ((copy = end - offset) > 0) { 2629 if (copy > len) 2630 copy = len; 2631 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2632 goto fault; 2633 if ((len -= copy) == 0) 2634 return 0; 2635 offset += copy; 2636 to += copy; 2637 } 2638 start = end; 2639 } 2640 2641 if (!len) 2642 return 0; 2643 2644 fault: 2645 return -EFAULT; 2646 } 2647 EXPORT_SYMBOL(skb_copy_bits); 2648 2649 /* 2650 * Callback from splice_to_pipe(), if we need to release some pages 2651 * at the end of the spd in case we error'ed out in filling the pipe. 2652 */ 2653 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2654 { 2655 put_page(spd->pages[i]); 2656 } 2657 2658 static struct page *linear_to_page(struct page *page, unsigned int *len, 2659 unsigned int *offset, 2660 struct sock *sk) 2661 { 2662 struct page_frag *pfrag = sk_page_frag(sk); 2663 2664 if (!sk_page_frag_refill(sk, pfrag)) 2665 return NULL; 2666 2667 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2668 2669 memcpy(page_address(pfrag->page) + pfrag->offset, 2670 page_address(page) + *offset, *len); 2671 *offset = pfrag->offset; 2672 pfrag->offset += *len; 2673 2674 return pfrag->page; 2675 } 2676 2677 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2678 struct page *page, 2679 unsigned int offset) 2680 { 2681 return spd->nr_pages && 2682 spd->pages[spd->nr_pages - 1] == page && 2683 (spd->partial[spd->nr_pages - 1].offset + 2684 spd->partial[spd->nr_pages - 1].len == offset); 2685 } 2686 2687 /* 2688 * Fill page/offset/length into spd, if it can hold more pages. 2689 */ 2690 static bool spd_fill_page(struct splice_pipe_desc *spd, 2691 struct pipe_inode_info *pipe, struct page *page, 2692 unsigned int *len, unsigned int offset, 2693 bool linear, 2694 struct sock *sk) 2695 { 2696 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2697 return true; 2698 2699 if (linear) { 2700 page = linear_to_page(page, len, &offset, sk); 2701 if (!page) 2702 return true; 2703 } 2704 if (spd_can_coalesce(spd, page, offset)) { 2705 spd->partial[spd->nr_pages - 1].len += *len; 2706 return false; 2707 } 2708 get_page(page); 2709 spd->pages[spd->nr_pages] = page; 2710 spd->partial[spd->nr_pages].len = *len; 2711 spd->partial[spd->nr_pages].offset = offset; 2712 spd->nr_pages++; 2713 2714 return false; 2715 } 2716 2717 static bool __splice_segment(struct page *page, unsigned int poff, 2718 unsigned int plen, unsigned int *off, 2719 unsigned int *len, 2720 struct splice_pipe_desc *spd, bool linear, 2721 struct sock *sk, 2722 struct pipe_inode_info *pipe) 2723 { 2724 if (!*len) 2725 return true; 2726 2727 /* skip this segment if already processed */ 2728 if (*off >= plen) { 2729 *off -= plen; 2730 return false; 2731 } 2732 2733 /* ignore any bits we already processed */ 2734 poff += *off; 2735 plen -= *off; 2736 *off = 0; 2737 2738 do { 2739 unsigned int flen = min(*len, plen); 2740 2741 if (spd_fill_page(spd, pipe, page, &flen, poff, 2742 linear, sk)) 2743 return true; 2744 poff += flen; 2745 plen -= flen; 2746 *len -= flen; 2747 } while (*len && plen); 2748 2749 return false; 2750 } 2751 2752 /* 2753 * Map linear and fragment data from the skb to spd. It reports true if the 2754 * pipe is full or if we already spliced the requested length. 2755 */ 2756 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2757 unsigned int *offset, unsigned int *len, 2758 struct splice_pipe_desc *spd, struct sock *sk) 2759 { 2760 int seg; 2761 struct sk_buff *iter; 2762 2763 /* map the linear part : 2764 * If skb->head_frag is set, this 'linear' part is backed by a 2765 * fragment, and if the head is not shared with any clones then 2766 * we can avoid a copy since we own the head portion of this page. 2767 */ 2768 if (__splice_segment(virt_to_page(skb->data), 2769 (unsigned long) skb->data & (PAGE_SIZE - 1), 2770 skb_headlen(skb), 2771 offset, len, spd, 2772 skb_head_is_locked(skb), 2773 sk, pipe)) 2774 return true; 2775 2776 /* 2777 * then map the fragments 2778 */ 2779 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2780 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2781 2782 if (__splice_segment(skb_frag_page(f), 2783 skb_frag_off(f), skb_frag_size(f), 2784 offset, len, spd, false, sk, pipe)) 2785 return true; 2786 } 2787 2788 skb_walk_frags(skb, iter) { 2789 if (*offset >= iter->len) { 2790 *offset -= iter->len; 2791 continue; 2792 } 2793 /* __skb_splice_bits() only fails if the output has no room 2794 * left, so no point in going over the frag_list for the error 2795 * case. 2796 */ 2797 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2798 return true; 2799 } 2800 2801 return false; 2802 } 2803 2804 /* 2805 * Map data from the skb to a pipe. Should handle both the linear part, 2806 * the fragments, and the frag list. 2807 */ 2808 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2809 struct pipe_inode_info *pipe, unsigned int tlen, 2810 unsigned int flags) 2811 { 2812 struct partial_page partial[MAX_SKB_FRAGS]; 2813 struct page *pages[MAX_SKB_FRAGS]; 2814 struct splice_pipe_desc spd = { 2815 .pages = pages, 2816 .partial = partial, 2817 .nr_pages_max = MAX_SKB_FRAGS, 2818 .ops = &nosteal_pipe_buf_ops, 2819 .spd_release = sock_spd_release, 2820 }; 2821 int ret = 0; 2822 2823 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2824 2825 if (spd.nr_pages) 2826 ret = splice_to_pipe(pipe, &spd); 2827 2828 return ret; 2829 } 2830 EXPORT_SYMBOL_GPL(skb_splice_bits); 2831 2832 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg, 2833 struct kvec *vec, size_t num, size_t size) 2834 { 2835 struct socket *sock = sk->sk_socket; 2836 2837 if (!sock) 2838 return -EINVAL; 2839 return kernel_sendmsg(sock, msg, vec, num, size); 2840 } 2841 2842 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset, 2843 size_t size, int flags) 2844 { 2845 struct socket *sock = sk->sk_socket; 2846 2847 if (!sock) 2848 return -EINVAL; 2849 return kernel_sendpage(sock, page, offset, size, flags); 2850 } 2851 2852 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg, 2853 struct kvec *vec, size_t num, size_t size); 2854 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset, 2855 size_t size, int flags); 2856 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 2857 int len, sendmsg_func sendmsg, sendpage_func sendpage) 2858 { 2859 unsigned int orig_len = len; 2860 struct sk_buff *head = skb; 2861 unsigned short fragidx; 2862 int slen, ret; 2863 2864 do_frag_list: 2865 2866 /* Deal with head data */ 2867 while (offset < skb_headlen(skb) && len) { 2868 struct kvec kv; 2869 struct msghdr msg; 2870 2871 slen = min_t(int, len, skb_headlen(skb) - offset); 2872 kv.iov_base = skb->data + offset; 2873 kv.iov_len = slen; 2874 memset(&msg, 0, sizeof(msg)); 2875 msg.msg_flags = MSG_DONTWAIT; 2876 2877 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked, 2878 sendmsg_unlocked, sk, &msg, &kv, 1, slen); 2879 if (ret <= 0) 2880 goto error; 2881 2882 offset += ret; 2883 len -= ret; 2884 } 2885 2886 /* All the data was skb head? */ 2887 if (!len) 2888 goto out; 2889 2890 /* Make offset relative to start of frags */ 2891 offset -= skb_headlen(skb); 2892 2893 /* Find where we are in frag list */ 2894 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2895 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2896 2897 if (offset < skb_frag_size(frag)) 2898 break; 2899 2900 offset -= skb_frag_size(frag); 2901 } 2902 2903 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2904 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2905 2906 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2907 2908 while (slen) { 2909 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked, 2910 sendpage_unlocked, sk, 2911 skb_frag_page(frag), 2912 skb_frag_off(frag) + offset, 2913 slen, MSG_DONTWAIT); 2914 if (ret <= 0) 2915 goto error; 2916 2917 len -= ret; 2918 offset += ret; 2919 slen -= ret; 2920 } 2921 2922 offset = 0; 2923 } 2924 2925 if (len) { 2926 /* Process any frag lists */ 2927 2928 if (skb == head) { 2929 if (skb_has_frag_list(skb)) { 2930 skb = skb_shinfo(skb)->frag_list; 2931 goto do_frag_list; 2932 } 2933 } else if (skb->next) { 2934 skb = skb->next; 2935 goto do_frag_list; 2936 } 2937 } 2938 2939 out: 2940 return orig_len - len; 2941 2942 error: 2943 return orig_len == len ? ret : orig_len - len; 2944 } 2945 2946 /* Send skb data on a socket. Socket must be locked. */ 2947 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2948 int len) 2949 { 2950 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked, 2951 kernel_sendpage_locked); 2952 } 2953 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2954 2955 /* Send skb data on a socket. Socket must be unlocked. */ 2956 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2957 { 2958 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 2959 sendpage_unlocked); 2960 } 2961 2962 /** 2963 * skb_store_bits - store bits from kernel buffer to skb 2964 * @skb: destination buffer 2965 * @offset: offset in destination 2966 * @from: source buffer 2967 * @len: number of bytes to copy 2968 * 2969 * Copy the specified number of bytes from the source buffer to the 2970 * destination skb. This function handles all the messy bits of 2971 * traversing fragment lists and such. 2972 */ 2973 2974 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2975 { 2976 int start = skb_headlen(skb); 2977 struct sk_buff *frag_iter; 2978 int i, copy; 2979 2980 if (offset > (int)skb->len - len) 2981 goto fault; 2982 2983 if ((copy = start - offset) > 0) { 2984 if (copy > len) 2985 copy = len; 2986 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2987 if ((len -= copy) == 0) 2988 return 0; 2989 offset += copy; 2990 from += copy; 2991 } 2992 2993 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2994 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2995 int end; 2996 2997 WARN_ON(start > offset + len); 2998 2999 end = start + skb_frag_size(frag); 3000 if ((copy = end - offset) > 0) { 3001 u32 p_off, p_len, copied; 3002 struct page *p; 3003 u8 *vaddr; 3004 3005 if (copy > len) 3006 copy = len; 3007 3008 skb_frag_foreach_page(frag, 3009 skb_frag_off(frag) + offset - start, 3010 copy, p, p_off, p_len, copied) { 3011 vaddr = kmap_atomic(p); 3012 memcpy(vaddr + p_off, from + copied, p_len); 3013 kunmap_atomic(vaddr); 3014 } 3015 3016 if ((len -= copy) == 0) 3017 return 0; 3018 offset += copy; 3019 from += copy; 3020 } 3021 start = end; 3022 } 3023 3024 skb_walk_frags(skb, frag_iter) { 3025 int end; 3026 3027 WARN_ON(start > offset + len); 3028 3029 end = start + frag_iter->len; 3030 if ((copy = end - offset) > 0) { 3031 if (copy > len) 3032 copy = len; 3033 if (skb_store_bits(frag_iter, offset - start, 3034 from, copy)) 3035 goto fault; 3036 if ((len -= copy) == 0) 3037 return 0; 3038 offset += copy; 3039 from += copy; 3040 } 3041 start = end; 3042 } 3043 if (!len) 3044 return 0; 3045 3046 fault: 3047 return -EFAULT; 3048 } 3049 EXPORT_SYMBOL(skb_store_bits); 3050 3051 /* Checksum skb data. */ 3052 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3053 __wsum csum, const struct skb_checksum_ops *ops) 3054 { 3055 int start = skb_headlen(skb); 3056 int i, copy = start - offset; 3057 struct sk_buff *frag_iter; 3058 int pos = 0; 3059 3060 /* Checksum header. */ 3061 if (copy > 0) { 3062 if (copy > len) 3063 copy = len; 3064 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 3065 skb->data + offset, copy, csum); 3066 if ((len -= copy) == 0) 3067 return csum; 3068 offset += copy; 3069 pos = copy; 3070 } 3071 3072 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3073 int end; 3074 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3075 3076 WARN_ON(start > offset + len); 3077 3078 end = start + skb_frag_size(frag); 3079 if ((copy = end - offset) > 0) { 3080 u32 p_off, p_len, copied; 3081 struct page *p; 3082 __wsum csum2; 3083 u8 *vaddr; 3084 3085 if (copy > len) 3086 copy = len; 3087 3088 skb_frag_foreach_page(frag, 3089 skb_frag_off(frag) + offset - start, 3090 copy, p, p_off, p_len, copied) { 3091 vaddr = kmap_atomic(p); 3092 csum2 = INDIRECT_CALL_1(ops->update, 3093 csum_partial_ext, 3094 vaddr + p_off, p_len, 0); 3095 kunmap_atomic(vaddr); 3096 csum = INDIRECT_CALL_1(ops->combine, 3097 csum_block_add_ext, csum, 3098 csum2, pos, p_len); 3099 pos += p_len; 3100 } 3101 3102 if (!(len -= copy)) 3103 return csum; 3104 offset += copy; 3105 } 3106 start = end; 3107 } 3108 3109 skb_walk_frags(skb, frag_iter) { 3110 int end; 3111 3112 WARN_ON(start > offset + len); 3113 3114 end = start + frag_iter->len; 3115 if ((copy = end - offset) > 0) { 3116 __wsum csum2; 3117 if (copy > len) 3118 copy = len; 3119 csum2 = __skb_checksum(frag_iter, offset - start, 3120 copy, 0, ops); 3121 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 3122 csum, csum2, pos, copy); 3123 if ((len -= copy) == 0) 3124 return csum; 3125 offset += copy; 3126 pos += copy; 3127 } 3128 start = end; 3129 } 3130 BUG_ON(len); 3131 3132 return csum; 3133 } 3134 EXPORT_SYMBOL(__skb_checksum); 3135 3136 __wsum skb_checksum(const struct sk_buff *skb, int offset, 3137 int len, __wsum csum) 3138 { 3139 const struct skb_checksum_ops ops = { 3140 .update = csum_partial_ext, 3141 .combine = csum_block_add_ext, 3142 }; 3143 3144 return __skb_checksum(skb, offset, len, csum, &ops); 3145 } 3146 EXPORT_SYMBOL(skb_checksum); 3147 3148 /* Both of above in one bottle. */ 3149 3150 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3151 u8 *to, int len) 3152 { 3153 int start = skb_headlen(skb); 3154 int i, copy = start - offset; 3155 struct sk_buff *frag_iter; 3156 int pos = 0; 3157 __wsum csum = 0; 3158 3159 /* Copy header. */ 3160 if (copy > 0) { 3161 if (copy > len) 3162 copy = len; 3163 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3164 copy); 3165 if ((len -= copy) == 0) 3166 return csum; 3167 offset += copy; 3168 to += copy; 3169 pos = copy; 3170 } 3171 3172 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3173 int end; 3174 3175 WARN_ON(start > offset + len); 3176 3177 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3178 if ((copy = end - offset) > 0) { 3179 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3180 u32 p_off, p_len, copied; 3181 struct page *p; 3182 __wsum csum2; 3183 u8 *vaddr; 3184 3185 if (copy > len) 3186 copy = len; 3187 3188 skb_frag_foreach_page(frag, 3189 skb_frag_off(frag) + offset - start, 3190 copy, p, p_off, p_len, copied) { 3191 vaddr = kmap_atomic(p); 3192 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3193 to + copied, 3194 p_len); 3195 kunmap_atomic(vaddr); 3196 csum = csum_block_add(csum, csum2, pos); 3197 pos += p_len; 3198 } 3199 3200 if (!(len -= copy)) 3201 return csum; 3202 offset += copy; 3203 to += copy; 3204 } 3205 start = end; 3206 } 3207 3208 skb_walk_frags(skb, frag_iter) { 3209 __wsum csum2; 3210 int end; 3211 3212 WARN_ON(start > offset + len); 3213 3214 end = start + frag_iter->len; 3215 if ((copy = end - offset) > 0) { 3216 if (copy > len) 3217 copy = len; 3218 csum2 = skb_copy_and_csum_bits(frag_iter, 3219 offset - start, 3220 to, copy); 3221 csum = csum_block_add(csum, csum2, pos); 3222 if ((len -= copy) == 0) 3223 return csum; 3224 offset += copy; 3225 to += copy; 3226 pos += copy; 3227 } 3228 start = end; 3229 } 3230 BUG_ON(len); 3231 return csum; 3232 } 3233 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3234 3235 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3236 { 3237 __sum16 sum; 3238 3239 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3240 /* See comments in __skb_checksum_complete(). */ 3241 if (likely(!sum)) { 3242 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3243 !skb->csum_complete_sw) 3244 netdev_rx_csum_fault(skb->dev, skb); 3245 } 3246 if (!skb_shared(skb)) 3247 skb->csum_valid = !sum; 3248 return sum; 3249 } 3250 EXPORT_SYMBOL(__skb_checksum_complete_head); 3251 3252 /* This function assumes skb->csum already holds pseudo header's checksum, 3253 * which has been changed from the hardware checksum, for example, by 3254 * __skb_checksum_validate_complete(). And, the original skb->csum must 3255 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3256 * 3257 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3258 * zero. The new checksum is stored back into skb->csum unless the skb is 3259 * shared. 3260 */ 3261 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3262 { 3263 __wsum csum; 3264 __sum16 sum; 3265 3266 csum = skb_checksum(skb, 0, skb->len, 0); 3267 3268 sum = csum_fold(csum_add(skb->csum, csum)); 3269 /* This check is inverted, because we already knew the hardware 3270 * checksum is invalid before calling this function. So, if the 3271 * re-computed checksum is valid instead, then we have a mismatch 3272 * between the original skb->csum and skb_checksum(). This means either 3273 * the original hardware checksum is incorrect or we screw up skb->csum 3274 * when moving skb->data around. 3275 */ 3276 if (likely(!sum)) { 3277 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3278 !skb->csum_complete_sw) 3279 netdev_rx_csum_fault(skb->dev, skb); 3280 } 3281 3282 if (!skb_shared(skb)) { 3283 /* Save full packet checksum */ 3284 skb->csum = csum; 3285 skb->ip_summed = CHECKSUM_COMPLETE; 3286 skb->csum_complete_sw = 1; 3287 skb->csum_valid = !sum; 3288 } 3289 3290 return sum; 3291 } 3292 EXPORT_SYMBOL(__skb_checksum_complete); 3293 3294 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3295 { 3296 net_warn_ratelimited( 3297 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3298 __func__); 3299 return 0; 3300 } 3301 3302 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3303 int offset, int len) 3304 { 3305 net_warn_ratelimited( 3306 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3307 __func__); 3308 return 0; 3309 } 3310 3311 static const struct skb_checksum_ops default_crc32c_ops = { 3312 .update = warn_crc32c_csum_update, 3313 .combine = warn_crc32c_csum_combine, 3314 }; 3315 3316 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3317 &default_crc32c_ops; 3318 EXPORT_SYMBOL(crc32c_csum_stub); 3319 3320 /** 3321 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3322 * @from: source buffer 3323 * 3324 * Calculates the amount of linear headroom needed in the 'to' skb passed 3325 * into skb_zerocopy(). 3326 */ 3327 unsigned int 3328 skb_zerocopy_headlen(const struct sk_buff *from) 3329 { 3330 unsigned int hlen = 0; 3331 3332 if (!from->head_frag || 3333 skb_headlen(from) < L1_CACHE_BYTES || 3334 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3335 hlen = skb_headlen(from); 3336 if (!hlen) 3337 hlen = from->len; 3338 } 3339 3340 if (skb_has_frag_list(from)) 3341 hlen = from->len; 3342 3343 return hlen; 3344 } 3345 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3346 3347 /** 3348 * skb_zerocopy - Zero copy skb to skb 3349 * @to: destination buffer 3350 * @from: source buffer 3351 * @len: number of bytes to copy from source buffer 3352 * @hlen: size of linear headroom in destination buffer 3353 * 3354 * Copies up to `len` bytes from `from` to `to` by creating references 3355 * to the frags in the source buffer. 3356 * 3357 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3358 * headroom in the `to` buffer. 3359 * 3360 * Return value: 3361 * 0: everything is OK 3362 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3363 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3364 */ 3365 int 3366 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3367 { 3368 int i, j = 0; 3369 int plen = 0; /* length of skb->head fragment */ 3370 int ret; 3371 struct page *page; 3372 unsigned int offset; 3373 3374 BUG_ON(!from->head_frag && !hlen); 3375 3376 /* dont bother with small payloads */ 3377 if (len <= skb_tailroom(to)) 3378 return skb_copy_bits(from, 0, skb_put(to, len), len); 3379 3380 if (hlen) { 3381 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3382 if (unlikely(ret)) 3383 return ret; 3384 len -= hlen; 3385 } else { 3386 plen = min_t(int, skb_headlen(from), len); 3387 if (plen) { 3388 page = virt_to_head_page(from->head); 3389 offset = from->data - (unsigned char *)page_address(page); 3390 __skb_fill_page_desc(to, 0, page, offset, plen); 3391 get_page(page); 3392 j = 1; 3393 len -= plen; 3394 } 3395 } 3396 3397 skb_len_add(to, len + plen); 3398 3399 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3400 skb_tx_error(from); 3401 return -ENOMEM; 3402 } 3403 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3404 3405 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3406 int size; 3407 3408 if (!len) 3409 break; 3410 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3411 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3412 len); 3413 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3414 len -= size; 3415 skb_frag_ref(to, j); 3416 j++; 3417 } 3418 skb_shinfo(to)->nr_frags = j; 3419 3420 return 0; 3421 } 3422 EXPORT_SYMBOL_GPL(skb_zerocopy); 3423 3424 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3425 { 3426 __wsum csum; 3427 long csstart; 3428 3429 if (skb->ip_summed == CHECKSUM_PARTIAL) 3430 csstart = skb_checksum_start_offset(skb); 3431 else 3432 csstart = skb_headlen(skb); 3433 3434 BUG_ON(csstart > skb_headlen(skb)); 3435 3436 skb_copy_from_linear_data(skb, to, csstart); 3437 3438 csum = 0; 3439 if (csstart != skb->len) 3440 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3441 skb->len - csstart); 3442 3443 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3444 long csstuff = csstart + skb->csum_offset; 3445 3446 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3447 } 3448 } 3449 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3450 3451 /** 3452 * skb_dequeue - remove from the head of the queue 3453 * @list: list to dequeue from 3454 * 3455 * Remove the head of the list. The list lock is taken so the function 3456 * may be used safely with other locking list functions. The head item is 3457 * returned or %NULL if the list is empty. 3458 */ 3459 3460 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3461 { 3462 unsigned long flags; 3463 struct sk_buff *result; 3464 3465 spin_lock_irqsave(&list->lock, flags); 3466 result = __skb_dequeue(list); 3467 spin_unlock_irqrestore(&list->lock, flags); 3468 return result; 3469 } 3470 EXPORT_SYMBOL(skb_dequeue); 3471 3472 /** 3473 * skb_dequeue_tail - remove from the tail of the queue 3474 * @list: list to dequeue from 3475 * 3476 * Remove the tail of the list. The list lock is taken so the function 3477 * may be used safely with other locking list functions. The tail item is 3478 * returned or %NULL if the list is empty. 3479 */ 3480 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3481 { 3482 unsigned long flags; 3483 struct sk_buff *result; 3484 3485 spin_lock_irqsave(&list->lock, flags); 3486 result = __skb_dequeue_tail(list); 3487 spin_unlock_irqrestore(&list->lock, flags); 3488 return result; 3489 } 3490 EXPORT_SYMBOL(skb_dequeue_tail); 3491 3492 /** 3493 * skb_queue_purge - empty a list 3494 * @list: list to empty 3495 * 3496 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3497 * the list and one reference dropped. This function takes the list 3498 * lock and is atomic with respect to other list locking functions. 3499 */ 3500 void skb_queue_purge(struct sk_buff_head *list) 3501 { 3502 struct sk_buff *skb; 3503 while ((skb = skb_dequeue(list)) != NULL) 3504 kfree_skb(skb); 3505 } 3506 EXPORT_SYMBOL(skb_queue_purge); 3507 3508 /** 3509 * skb_rbtree_purge - empty a skb rbtree 3510 * @root: root of the rbtree to empty 3511 * Return value: the sum of truesizes of all purged skbs. 3512 * 3513 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3514 * the list and one reference dropped. This function does not take 3515 * any lock. Synchronization should be handled by the caller (e.g., TCP 3516 * out-of-order queue is protected by the socket lock). 3517 */ 3518 unsigned int skb_rbtree_purge(struct rb_root *root) 3519 { 3520 struct rb_node *p = rb_first(root); 3521 unsigned int sum = 0; 3522 3523 while (p) { 3524 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3525 3526 p = rb_next(p); 3527 rb_erase(&skb->rbnode, root); 3528 sum += skb->truesize; 3529 kfree_skb(skb); 3530 } 3531 return sum; 3532 } 3533 3534 /** 3535 * skb_queue_head - queue a buffer at the list head 3536 * @list: list to use 3537 * @newsk: buffer to queue 3538 * 3539 * Queue a buffer at the start of the list. This function takes the 3540 * list lock and can be used safely with other locking &sk_buff functions 3541 * safely. 3542 * 3543 * A buffer cannot be placed on two lists at the same time. 3544 */ 3545 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3546 { 3547 unsigned long flags; 3548 3549 spin_lock_irqsave(&list->lock, flags); 3550 __skb_queue_head(list, newsk); 3551 spin_unlock_irqrestore(&list->lock, flags); 3552 } 3553 EXPORT_SYMBOL(skb_queue_head); 3554 3555 /** 3556 * skb_queue_tail - queue a buffer at the list tail 3557 * @list: list to use 3558 * @newsk: buffer to queue 3559 * 3560 * Queue a buffer at the tail of the list. This function takes the 3561 * list lock and can be used safely with other locking &sk_buff functions 3562 * safely. 3563 * 3564 * A buffer cannot be placed on two lists at the same time. 3565 */ 3566 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3567 { 3568 unsigned long flags; 3569 3570 spin_lock_irqsave(&list->lock, flags); 3571 __skb_queue_tail(list, newsk); 3572 spin_unlock_irqrestore(&list->lock, flags); 3573 } 3574 EXPORT_SYMBOL(skb_queue_tail); 3575 3576 /** 3577 * skb_unlink - remove a buffer from a list 3578 * @skb: buffer to remove 3579 * @list: list to use 3580 * 3581 * Remove a packet from a list. The list locks are taken and this 3582 * function is atomic with respect to other list locked calls 3583 * 3584 * You must know what list the SKB is on. 3585 */ 3586 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3587 { 3588 unsigned long flags; 3589 3590 spin_lock_irqsave(&list->lock, flags); 3591 __skb_unlink(skb, list); 3592 spin_unlock_irqrestore(&list->lock, flags); 3593 } 3594 EXPORT_SYMBOL(skb_unlink); 3595 3596 /** 3597 * skb_append - append a buffer 3598 * @old: buffer to insert after 3599 * @newsk: buffer to insert 3600 * @list: list to use 3601 * 3602 * Place a packet after a given packet in a list. The list locks are taken 3603 * and this function is atomic with respect to other list locked calls. 3604 * A buffer cannot be placed on two lists at the same time. 3605 */ 3606 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3607 { 3608 unsigned long flags; 3609 3610 spin_lock_irqsave(&list->lock, flags); 3611 __skb_queue_after(list, old, newsk); 3612 spin_unlock_irqrestore(&list->lock, flags); 3613 } 3614 EXPORT_SYMBOL(skb_append); 3615 3616 static inline void skb_split_inside_header(struct sk_buff *skb, 3617 struct sk_buff* skb1, 3618 const u32 len, const int pos) 3619 { 3620 int i; 3621 3622 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3623 pos - len); 3624 /* And move data appendix as is. */ 3625 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3626 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3627 3628 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3629 skb_shinfo(skb)->nr_frags = 0; 3630 skb1->data_len = skb->data_len; 3631 skb1->len += skb1->data_len; 3632 skb->data_len = 0; 3633 skb->len = len; 3634 skb_set_tail_pointer(skb, len); 3635 } 3636 3637 static inline void skb_split_no_header(struct sk_buff *skb, 3638 struct sk_buff* skb1, 3639 const u32 len, int pos) 3640 { 3641 int i, k = 0; 3642 const int nfrags = skb_shinfo(skb)->nr_frags; 3643 3644 skb_shinfo(skb)->nr_frags = 0; 3645 skb1->len = skb1->data_len = skb->len - len; 3646 skb->len = len; 3647 skb->data_len = len - pos; 3648 3649 for (i = 0; i < nfrags; i++) { 3650 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3651 3652 if (pos + size > len) { 3653 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3654 3655 if (pos < len) { 3656 /* Split frag. 3657 * We have two variants in this case: 3658 * 1. Move all the frag to the second 3659 * part, if it is possible. F.e. 3660 * this approach is mandatory for TUX, 3661 * where splitting is expensive. 3662 * 2. Split is accurately. We make this. 3663 */ 3664 skb_frag_ref(skb, i); 3665 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3666 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3667 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3668 skb_shinfo(skb)->nr_frags++; 3669 } 3670 k++; 3671 } else 3672 skb_shinfo(skb)->nr_frags++; 3673 pos += size; 3674 } 3675 skb_shinfo(skb1)->nr_frags = k; 3676 } 3677 3678 /** 3679 * skb_split - Split fragmented skb to two parts at length len. 3680 * @skb: the buffer to split 3681 * @skb1: the buffer to receive the second part 3682 * @len: new length for skb 3683 */ 3684 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3685 { 3686 int pos = skb_headlen(skb); 3687 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 3688 3689 skb_zcopy_downgrade_managed(skb); 3690 3691 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 3692 skb_zerocopy_clone(skb1, skb, 0); 3693 if (len < pos) /* Split line is inside header. */ 3694 skb_split_inside_header(skb, skb1, len, pos); 3695 else /* Second chunk has no header, nothing to copy. */ 3696 skb_split_no_header(skb, skb1, len, pos); 3697 } 3698 EXPORT_SYMBOL(skb_split); 3699 3700 /* Shifting from/to a cloned skb is a no-go. 3701 * 3702 * Caller cannot keep skb_shinfo related pointers past calling here! 3703 */ 3704 static int skb_prepare_for_shift(struct sk_buff *skb) 3705 { 3706 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 3707 } 3708 3709 /** 3710 * skb_shift - Shifts paged data partially from skb to another 3711 * @tgt: buffer into which tail data gets added 3712 * @skb: buffer from which the paged data comes from 3713 * @shiftlen: shift up to this many bytes 3714 * 3715 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3716 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3717 * It's up to caller to free skb if everything was shifted. 3718 * 3719 * If @tgt runs out of frags, the whole operation is aborted. 3720 * 3721 * Skb cannot include anything else but paged data while tgt is allowed 3722 * to have non-paged data as well. 3723 * 3724 * TODO: full sized shift could be optimized but that would need 3725 * specialized skb free'er to handle frags without up-to-date nr_frags. 3726 */ 3727 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3728 { 3729 int from, to, merge, todo; 3730 skb_frag_t *fragfrom, *fragto; 3731 3732 BUG_ON(shiftlen > skb->len); 3733 3734 if (skb_headlen(skb)) 3735 return 0; 3736 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3737 return 0; 3738 3739 todo = shiftlen; 3740 from = 0; 3741 to = skb_shinfo(tgt)->nr_frags; 3742 fragfrom = &skb_shinfo(skb)->frags[from]; 3743 3744 /* Actual merge is delayed until the point when we know we can 3745 * commit all, so that we don't have to undo partial changes 3746 */ 3747 if (!to || 3748 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3749 skb_frag_off(fragfrom))) { 3750 merge = -1; 3751 } else { 3752 merge = to - 1; 3753 3754 todo -= skb_frag_size(fragfrom); 3755 if (todo < 0) { 3756 if (skb_prepare_for_shift(skb) || 3757 skb_prepare_for_shift(tgt)) 3758 return 0; 3759 3760 /* All previous frag pointers might be stale! */ 3761 fragfrom = &skb_shinfo(skb)->frags[from]; 3762 fragto = &skb_shinfo(tgt)->frags[merge]; 3763 3764 skb_frag_size_add(fragto, shiftlen); 3765 skb_frag_size_sub(fragfrom, shiftlen); 3766 skb_frag_off_add(fragfrom, shiftlen); 3767 3768 goto onlymerged; 3769 } 3770 3771 from++; 3772 } 3773 3774 /* Skip full, not-fitting skb to avoid expensive operations */ 3775 if ((shiftlen == skb->len) && 3776 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3777 return 0; 3778 3779 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3780 return 0; 3781 3782 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3783 if (to == MAX_SKB_FRAGS) 3784 return 0; 3785 3786 fragfrom = &skb_shinfo(skb)->frags[from]; 3787 fragto = &skb_shinfo(tgt)->frags[to]; 3788 3789 if (todo >= skb_frag_size(fragfrom)) { 3790 *fragto = *fragfrom; 3791 todo -= skb_frag_size(fragfrom); 3792 from++; 3793 to++; 3794 3795 } else { 3796 __skb_frag_ref(fragfrom); 3797 skb_frag_page_copy(fragto, fragfrom); 3798 skb_frag_off_copy(fragto, fragfrom); 3799 skb_frag_size_set(fragto, todo); 3800 3801 skb_frag_off_add(fragfrom, todo); 3802 skb_frag_size_sub(fragfrom, todo); 3803 todo = 0; 3804 3805 to++; 3806 break; 3807 } 3808 } 3809 3810 /* Ready to "commit" this state change to tgt */ 3811 skb_shinfo(tgt)->nr_frags = to; 3812 3813 if (merge >= 0) { 3814 fragfrom = &skb_shinfo(skb)->frags[0]; 3815 fragto = &skb_shinfo(tgt)->frags[merge]; 3816 3817 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3818 __skb_frag_unref(fragfrom, skb->pp_recycle); 3819 } 3820 3821 /* Reposition in the original skb */ 3822 to = 0; 3823 while (from < skb_shinfo(skb)->nr_frags) 3824 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3825 skb_shinfo(skb)->nr_frags = to; 3826 3827 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3828 3829 onlymerged: 3830 /* Most likely the tgt won't ever need its checksum anymore, skb on 3831 * the other hand might need it if it needs to be resent 3832 */ 3833 tgt->ip_summed = CHECKSUM_PARTIAL; 3834 skb->ip_summed = CHECKSUM_PARTIAL; 3835 3836 skb_len_add(skb, -shiftlen); 3837 skb_len_add(tgt, shiftlen); 3838 3839 return shiftlen; 3840 } 3841 3842 /** 3843 * skb_prepare_seq_read - Prepare a sequential read of skb data 3844 * @skb: the buffer to read 3845 * @from: lower offset of data to be read 3846 * @to: upper offset of data to be read 3847 * @st: state variable 3848 * 3849 * Initializes the specified state variable. Must be called before 3850 * invoking skb_seq_read() for the first time. 3851 */ 3852 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3853 unsigned int to, struct skb_seq_state *st) 3854 { 3855 st->lower_offset = from; 3856 st->upper_offset = to; 3857 st->root_skb = st->cur_skb = skb; 3858 st->frag_idx = st->stepped_offset = 0; 3859 st->frag_data = NULL; 3860 st->frag_off = 0; 3861 } 3862 EXPORT_SYMBOL(skb_prepare_seq_read); 3863 3864 /** 3865 * skb_seq_read - Sequentially read skb data 3866 * @consumed: number of bytes consumed by the caller so far 3867 * @data: destination pointer for data to be returned 3868 * @st: state variable 3869 * 3870 * Reads a block of skb data at @consumed relative to the 3871 * lower offset specified to skb_prepare_seq_read(). Assigns 3872 * the head of the data block to @data and returns the length 3873 * of the block or 0 if the end of the skb data or the upper 3874 * offset has been reached. 3875 * 3876 * The caller is not required to consume all of the data 3877 * returned, i.e. @consumed is typically set to the number 3878 * of bytes already consumed and the next call to 3879 * skb_seq_read() will return the remaining part of the block. 3880 * 3881 * Note 1: The size of each block of data returned can be arbitrary, 3882 * this limitation is the cost for zerocopy sequential 3883 * reads of potentially non linear data. 3884 * 3885 * Note 2: Fragment lists within fragments are not implemented 3886 * at the moment, state->root_skb could be replaced with 3887 * a stack for this purpose. 3888 */ 3889 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3890 struct skb_seq_state *st) 3891 { 3892 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3893 skb_frag_t *frag; 3894 3895 if (unlikely(abs_offset >= st->upper_offset)) { 3896 if (st->frag_data) { 3897 kunmap_atomic(st->frag_data); 3898 st->frag_data = NULL; 3899 } 3900 return 0; 3901 } 3902 3903 next_skb: 3904 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3905 3906 if (abs_offset < block_limit && !st->frag_data) { 3907 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3908 return block_limit - abs_offset; 3909 } 3910 3911 if (st->frag_idx == 0 && !st->frag_data) 3912 st->stepped_offset += skb_headlen(st->cur_skb); 3913 3914 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3915 unsigned int pg_idx, pg_off, pg_sz; 3916 3917 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3918 3919 pg_idx = 0; 3920 pg_off = skb_frag_off(frag); 3921 pg_sz = skb_frag_size(frag); 3922 3923 if (skb_frag_must_loop(skb_frag_page(frag))) { 3924 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3925 pg_off = offset_in_page(pg_off + st->frag_off); 3926 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3927 PAGE_SIZE - pg_off); 3928 } 3929 3930 block_limit = pg_sz + st->stepped_offset; 3931 if (abs_offset < block_limit) { 3932 if (!st->frag_data) 3933 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3934 3935 *data = (u8 *)st->frag_data + pg_off + 3936 (abs_offset - st->stepped_offset); 3937 3938 return block_limit - abs_offset; 3939 } 3940 3941 if (st->frag_data) { 3942 kunmap_atomic(st->frag_data); 3943 st->frag_data = NULL; 3944 } 3945 3946 st->stepped_offset += pg_sz; 3947 st->frag_off += pg_sz; 3948 if (st->frag_off == skb_frag_size(frag)) { 3949 st->frag_off = 0; 3950 st->frag_idx++; 3951 } 3952 } 3953 3954 if (st->frag_data) { 3955 kunmap_atomic(st->frag_data); 3956 st->frag_data = NULL; 3957 } 3958 3959 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3960 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3961 st->frag_idx = 0; 3962 goto next_skb; 3963 } else if (st->cur_skb->next) { 3964 st->cur_skb = st->cur_skb->next; 3965 st->frag_idx = 0; 3966 goto next_skb; 3967 } 3968 3969 return 0; 3970 } 3971 EXPORT_SYMBOL(skb_seq_read); 3972 3973 /** 3974 * skb_abort_seq_read - Abort a sequential read of skb data 3975 * @st: state variable 3976 * 3977 * Must be called if skb_seq_read() was not called until it 3978 * returned 0. 3979 */ 3980 void skb_abort_seq_read(struct skb_seq_state *st) 3981 { 3982 if (st->frag_data) 3983 kunmap_atomic(st->frag_data); 3984 } 3985 EXPORT_SYMBOL(skb_abort_seq_read); 3986 3987 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3988 3989 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3990 struct ts_config *conf, 3991 struct ts_state *state) 3992 { 3993 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3994 } 3995 3996 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3997 { 3998 skb_abort_seq_read(TS_SKB_CB(state)); 3999 } 4000 4001 /** 4002 * skb_find_text - Find a text pattern in skb data 4003 * @skb: the buffer to look in 4004 * @from: search offset 4005 * @to: search limit 4006 * @config: textsearch configuration 4007 * 4008 * Finds a pattern in the skb data according to the specified 4009 * textsearch configuration. Use textsearch_next() to retrieve 4010 * subsequent occurrences of the pattern. Returns the offset 4011 * to the first occurrence or UINT_MAX if no match was found. 4012 */ 4013 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4014 unsigned int to, struct ts_config *config) 4015 { 4016 struct ts_state state; 4017 unsigned int ret; 4018 4019 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4020 4021 config->get_next_block = skb_ts_get_next_block; 4022 config->finish = skb_ts_finish; 4023 4024 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4025 4026 ret = textsearch_find(config, &state); 4027 return (ret <= to - from ? ret : UINT_MAX); 4028 } 4029 EXPORT_SYMBOL(skb_find_text); 4030 4031 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4032 int offset, size_t size) 4033 { 4034 int i = skb_shinfo(skb)->nr_frags; 4035 4036 if (skb_can_coalesce(skb, i, page, offset)) { 4037 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4038 } else if (i < MAX_SKB_FRAGS) { 4039 skb_zcopy_downgrade_managed(skb); 4040 get_page(page); 4041 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4042 } else { 4043 return -EMSGSIZE; 4044 } 4045 4046 return 0; 4047 } 4048 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4049 4050 /** 4051 * skb_pull_rcsum - pull skb and update receive checksum 4052 * @skb: buffer to update 4053 * @len: length of data pulled 4054 * 4055 * This function performs an skb_pull on the packet and updates 4056 * the CHECKSUM_COMPLETE checksum. It should be used on 4057 * receive path processing instead of skb_pull unless you know 4058 * that the checksum difference is zero (e.g., a valid IP header) 4059 * or you are setting ip_summed to CHECKSUM_NONE. 4060 */ 4061 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4062 { 4063 unsigned char *data = skb->data; 4064 4065 BUG_ON(len > skb->len); 4066 __skb_pull(skb, len); 4067 skb_postpull_rcsum(skb, data, len); 4068 return skb->data; 4069 } 4070 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4071 4072 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4073 { 4074 skb_frag_t head_frag; 4075 struct page *page; 4076 4077 page = virt_to_head_page(frag_skb->head); 4078 __skb_frag_set_page(&head_frag, page); 4079 skb_frag_off_set(&head_frag, frag_skb->data - 4080 (unsigned char *)page_address(page)); 4081 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 4082 return head_frag; 4083 } 4084 4085 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4086 netdev_features_t features, 4087 unsigned int offset) 4088 { 4089 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4090 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4091 unsigned int delta_truesize = 0; 4092 unsigned int delta_len = 0; 4093 struct sk_buff *tail = NULL; 4094 struct sk_buff *nskb, *tmp; 4095 int len_diff, err; 4096 4097 skb_push(skb, -skb_network_offset(skb) + offset); 4098 4099 skb_shinfo(skb)->frag_list = NULL; 4100 4101 do { 4102 nskb = list_skb; 4103 list_skb = list_skb->next; 4104 4105 err = 0; 4106 delta_truesize += nskb->truesize; 4107 if (skb_shared(nskb)) { 4108 tmp = skb_clone(nskb, GFP_ATOMIC); 4109 if (tmp) { 4110 consume_skb(nskb); 4111 nskb = tmp; 4112 err = skb_unclone(nskb, GFP_ATOMIC); 4113 } else { 4114 err = -ENOMEM; 4115 } 4116 } 4117 4118 if (!tail) 4119 skb->next = nskb; 4120 else 4121 tail->next = nskb; 4122 4123 if (unlikely(err)) { 4124 nskb->next = list_skb; 4125 goto err_linearize; 4126 } 4127 4128 tail = nskb; 4129 4130 delta_len += nskb->len; 4131 4132 skb_push(nskb, -skb_network_offset(nskb) + offset); 4133 4134 skb_release_head_state(nskb); 4135 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4136 __copy_skb_header(nskb, skb); 4137 4138 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4139 nskb->transport_header += len_diff; 4140 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4141 nskb->data - tnl_hlen, 4142 offset + tnl_hlen); 4143 4144 if (skb_needs_linearize(nskb, features) && 4145 __skb_linearize(nskb)) 4146 goto err_linearize; 4147 4148 } while (list_skb); 4149 4150 skb->truesize = skb->truesize - delta_truesize; 4151 skb->data_len = skb->data_len - delta_len; 4152 skb->len = skb->len - delta_len; 4153 4154 skb_gso_reset(skb); 4155 4156 skb->prev = tail; 4157 4158 if (skb_needs_linearize(skb, features) && 4159 __skb_linearize(skb)) 4160 goto err_linearize; 4161 4162 skb_get(skb); 4163 4164 return skb; 4165 4166 err_linearize: 4167 kfree_skb_list(skb->next); 4168 skb->next = NULL; 4169 return ERR_PTR(-ENOMEM); 4170 } 4171 EXPORT_SYMBOL_GPL(skb_segment_list); 4172 4173 /** 4174 * skb_segment - Perform protocol segmentation on skb. 4175 * @head_skb: buffer to segment 4176 * @features: features for the output path (see dev->features) 4177 * 4178 * This function performs segmentation on the given skb. It returns 4179 * a pointer to the first in a list of new skbs for the segments. 4180 * In case of error it returns ERR_PTR(err). 4181 */ 4182 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4183 netdev_features_t features) 4184 { 4185 struct sk_buff *segs = NULL; 4186 struct sk_buff *tail = NULL; 4187 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4188 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 4189 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4190 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4191 struct sk_buff *frag_skb = head_skb; 4192 unsigned int offset = doffset; 4193 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4194 unsigned int partial_segs = 0; 4195 unsigned int headroom; 4196 unsigned int len = head_skb->len; 4197 __be16 proto; 4198 bool csum, sg; 4199 int nfrags = skb_shinfo(head_skb)->nr_frags; 4200 int err = -ENOMEM; 4201 int i = 0; 4202 int pos; 4203 4204 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4205 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4206 struct sk_buff *check_skb; 4207 4208 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4209 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4210 /* gso_size is untrusted, and we have a frag_list with 4211 * a linear non head_frag item. 4212 * 4213 * If head_skb's headlen does not fit requested gso_size, 4214 * it means that the frag_list members do NOT terminate 4215 * on exact gso_size boundaries. Hence we cannot perform 4216 * skb_frag_t page sharing. Therefore we must fallback to 4217 * copying the frag_list skbs; we do so by disabling SG. 4218 */ 4219 features &= ~NETIF_F_SG; 4220 break; 4221 } 4222 } 4223 } 4224 4225 __skb_push(head_skb, doffset); 4226 proto = skb_network_protocol(head_skb, NULL); 4227 if (unlikely(!proto)) 4228 return ERR_PTR(-EINVAL); 4229 4230 sg = !!(features & NETIF_F_SG); 4231 csum = !!can_checksum_protocol(features, proto); 4232 4233 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4234 if (!(features & NETIF_F_GSO_PARTIAL)) { 4235 struct sk_buff *iter; 4236 unsigned int frag_len; 4237 4238 if (!list_skb || 4239 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4240 goto normal; 4241 4242 /* If we get here then all the required 4243 * GSO features except frag_list are supported. 4244 * Try to split the SKB to multiple GSO SKBs 4245 * with no frag_list. 4246 * Currently we can do that only when the buffers don't 4247 * have a linear part and all the buffers except 4248 * the last are of the same length. 4249 */ 4250 frag_len = list_skb->len; 4251 skb_walk_frags(head_skb, iter) { 4252 if (frag_len != iter->len && iter->next) 4253 goto normal; 4254 if (skb_headlen(iter) && !iter->head_frag) 4255 goto normal; 4256 4257 len -= iter->len; 4258 } 4259 4260 if (len != frag_len) 4261 goto normal; 4262 } 4263 4264 /* GSO partial only requires that we trim off any excess that 4265 * doesn't fit into an MSS sized block, so take care of that 4266 * now. 4267 */ 4268 partial_segs = len / mss; 4269 if (partial_segs > 1) 4270 mss *= partial_segs; 4271 else 4272 partial_segs = 0; 4273 } 4274 4275 normal: 4276 headroom = skb_headroom(head_skb); 4277 pos = skb_headlen(head_skb); 4278 4279 do { 4280 struct sk_buff *nskb; 4281 skb_frag_t *nskb_frag; 4282 int hsize; 4283 int size; 4284 4285 if (unlikely(mss == GSO_BY_FRAGS)) { 4286 len = list_skb->len; 4287 } else { 4288 len = head_skb->len - offset; 4289 if (len > mss) 4290 len = mss; 4291 } 4292 4293 hsize = skb_headlen(head_skb) - offset; 4294 4295 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4296 (skb_headlen(list_skb) == len || sg)) { 4297 BUG_ON(skb_headlen(list_skb) > len); 4298 4299 i = 0; 4300 nfrags = skb_shinfo(list_skb)->nr_frags; 4301 frag = skb_shinfo(list_skb)->frags; 4302 frag_skb = list_skb; 4303 pos += skb_headlen(list_skb); 4304 4305 while (pos < offset + len) { 4306 BUG_ON(i >= nfrags); 4307 4308 size = skb_frag_size(frag); 4309 if (pos + size > offset + len) 4310 break; 4311 4312 i++; 4313 pos += size; 4314 frag++; 4315 } 4316 4317 nskb = skb_clone(list_skb, GFP_ATOMIC); 4318 list_skb = list_skb->next; 4319 4320 if (unlikely(!nskb)) 4321 goto err; 4322 4323 if (unlikely(pskb_trim(nskb, len))) { 4324 kfree_skb(nskb); 4325 goto err; 4326 } 4327 4328 hsize = skb_end_offset(nskb); 4329 if (skb_cow_head(nskb, doffset + headroom)) { 4330 kfree_skb(nskb); 4331 goto err; 4332 } 4333 4334 nskb->truesize += skb_end_offset(nskb) - hsize; 4335 skb_release_head_state(nskb); 4336 __skb_push(nskb, doffset); 4337 } else { 4338 if (hsize < 0) 4339 hsize = 0; 4340 if (hsize > len || !sg) 4341 hsize = len; 4342 4343 nskb = __alloc_skb(hsize + doffset + headroom, 4344 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4345 NUMA_NO_NODE); 4346 4347 if (unlikely(!nskb)) 4348 goto err; 4349 4350 skb_reserve(nskb, headroom); 4351 __skb_put(nskb, doffset); 4352 } 4353 4354 if (segs) 4355 tail->next = nskb; 4356 else 4357 segs = nskb; 4358 tail = nskb; 4359 4360 __copy_skb_header(nskb, head_skb); 4361 4362 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4363 skb_reset_mac_len(nskb); 4364 4365 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4366 nskb->data - tnl_hlen, 4367 doffset + tnl_hlen); 4368 4369 if (nskb->len == len + doffset) 4370 goto perform_csum_check; 4371 4372 if (!sg) { 4373 if (!csum) { 4374 if (!nskb->remcsum_offload) 4375 nskb->ip_summed = CHECKSUM_NONE; 4376 SKB_GSO_CB(nskb)->csum = 4377 skb_copy_and_csum_bits(head_skb, offset, 4378 skb_put(nskb, 4379 len), 4380 len); 4381 SKB_GSO_CB(nskb)->csum_start = 4382 skb_headroom(nskb) + doffset; 4383 } else { 4384 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4385 goto err; 4386 } 4387 continue; 4388 } 4389 4390 nskb_frag = skb_shinfo(nskb)->frags; 4391 4392 skb_copy_from_linear_data_offset(head_skb, offset, 4393 skb_put(nskb, hsize), hsize); 4394 4395 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4396 SKBFL_SHARED_FRAG; 4397 4398 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4399 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4400 goto err; 4401 4402 while (pos < offset + len) { 4403 if (i >= nfrags) { 4404 i = 0; 4405 nfrags = skb_shinfo(list_skb)->nr_frags; 4406 frag = skb_shinfo(list_skb)->frags; 4407 frag_skb = list_skb; 4408 if (!skb_headlen(list_skb)) { 4409 BUG_ON(!nfrags); 4410 } else { 4411 BUG_ON(!list_skb->head_frag); 4412 4413 /* to make room for head_frag. */ 4414 i--; 4415 frag--; 4416 } 4417 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4418 skb_zerocopy_clone(nskb, frag_skb, 4419 GFP_ATOMIC)) 4420 goto err; 4421 4422 list_skb = list_skb->next; 4423 } 4424 4425 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4426 MAX_SKB_FRAGS)) { 4427 net_warn_ratelimited( 4428 "skb_segment: too many frags: %u %u\n", 4429 pos, mss); 4430 err = -EINVAL; 4431 goto err; 4432 } 4433 4434 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4435 __skb_frag_ref(nskb_frag); 4436 size = skb_frag_size(nskb_frag); 4437 4438 if (pos < offset) { 4439 skb_frag_off_add(nskb_frag, offset - pos); 4440 skb_frag_size_sub(nskb_frag, offset - pos); 4441 } 4442 4443 skb_shinfo(nskb)->nr_frags++; 4444 4445 if (pos + size <= offset + len) { 4446 i++; 4447 frag++; 4448 pos += size; 4449 } else { 4450 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4451 goto skip_fraglist; 4452 } 4453 4454 nskb_frag++; 4455 } 4456 4457 skip_fraglist: 4458 nskb->data_len = len - hsize; 4459 nskb->len += nskb->data_len; 4460 nskb->truesize += nskb->data_len; 4461 4462 perform_csum_check: 4463 if (!csum) { 4464 if (skb_has_shared_frag(nskb) && 4465 __skb_linearize(nskb)) 4466 goto err; 4467 4468 if (!nskb->remcsum_offload) 4469 nskb->ip_summed = CHECKSUM_NONE; 4470 SKB_GSO_CB(nskb)->csum = 4471 skb_checksum(nskb, doffset, 4472 nskb->len - doffset, 0); 4473 SKB_GSO_CB(nskb)->csum_start = 4474 skb_headroom(nskb) + doffset; 4475 } 4476 } while ((offset += len) < head_skb->len); 4477 4478 /* Some callers want to get the end of the list. 4479 * Put it in segs->prev to avoid walking the list. 4480 * (see validate_xmit_skb_list() for example) 4481 */ 4482 segs->prev = tail; 4483 4484 if (partial_segs) { 4485 struct sk_buff *iter; 4486 int type = skb_shinfo(head_skb)->gso_type; 4487 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4488 4489 /* Update type to add partial and then remove dodgy if set */ 4490 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4491 type &= ~SKB_GSO_DODGY; 4492 4493 /* Update GSO info and prepare to start updating headers on 4494 * our way back down the stack of protocols. 4495 */ 4496 for (iter = segs; iter; iter = iter->next) { 4497 skb_shinfo(iter)->gso_size = gso_size; 4498 skb_shinfo(iter)->gso_segs = partial_segs; 4499 skb_shinfo(iter)->gso_type = type; 4500 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4501 } 4502 4503 if (tail->len - doffset <= gso_size) 4504 skb_shinfo(tail)->gso_size = 0; 4505 else if (tail != segs) 4506 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4507 } 4508 4509 /* Following permits correct backpressure, for protocols 4510 * using skb_set_owner_w(). 4511 * Idea is to tranfert ownership from head_skb to last segment. 4512 */ 4513 if (head_skb->destructor == sock_wfree) { 4514 swap(tail->truesize, head_skb->truesize); 4515 swap(tail->destructor, head_skb->destructor); 4516 swap(tail->sk, head_skb->sk); 4517 } 4518 return segs; 4519 4520 err: 4521 kfree_skb_list(segs); 4522 return ERR_PTR(err); 4523 } 4524 EXPORT_SYMBOL_GPL(skb_segment); 4525 4526 #ifdef CONFIG_SKB_EXTENSIONS 4527 #define SKB_EXT_ALIGN_VALUE 8 4528 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4529 4530 static const u8 skb_ext_type_len[] = { 4531 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4532 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4533 #endif 4534 #ifdef CONFIG_XFRM 4535 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4536 #endif 4537 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4538 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4539 #endif 4540 #if IS_ENABLED(CONFIG_MPTCP) 4541 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4542 #endif 4543 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4544 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4545 #endif 4546 }; 4547 4548 static __always_inline unsigned int skb_ext_total_length(void) 4549 { 4550 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4551 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4552 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4553 #endif 4554 #ifdef CONFIG_XFRM 4555 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4556 #endif 4557 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4558 skb_ext_type_len[TC_SKB_EXT] + 4559 #endif 4560 #if IS_ENABLED(CONFIG_MPTCP) 4561 skb_ext_type_len[SKB_EXT_MPTCP] + 4562 #endif 4563 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4564 skb_ext_type_len[SKB_EXT_MCTP] + 4565 #endif 4566 0; 4567 } 4568 4569 static void skb_extensions_init(void) 4570 { 4571 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4572 BUILD_BUG_ON(skb_ext_total_length() > 255); 4573 4574 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4575 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4576 0, 4577 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4578 NULL); 4579 } 4580 #else 4581 static void skb_extensions_init(void) {} 4582 #endif 4583 4584 void __init skb_init(void) 4585 { 4586 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4587 sizeof(struct sk_buff), 4588 0, 4589 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4590 offsetof(struct sk_buff, cb), 4591 sizeof_field(struct sk_buff, cb), 4592 NULL); 4593 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4594 sizeof(struct sk_buff_fclones), 4595 0, 4596 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4597 NULL); 4598 skb_extensions_init(); 4599 } 4600 4601 static int 4602 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4603 unsigned int recursion_level) 4604 { 4605 int start = skb_headlen(skb); 4606 int i, copy = start - offset; 4607 struct sk_buff *frag_iter; 4608 int elt = 0; 4609 4610 if (unlikely(recursion_level >= 24)) 4611 return -EMSGSIZE; 4612 4613 if (copy > 0) { 4614 if (copy > len) 4615 copy = len; 4616 sg_set_buf(sg, skb->data + offset, copy); 4617 elt++; 4618 if ((len -= copy) == 0) 4619 return elt; 4620 offset += copy; 4621 } 4622 4623 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4624 int end; 4625 4626 WARN_ON(start > offset + len); 4627 4628 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4629 if ((copy = end - offset) > 0) { 4630 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4631 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4632 return -EMSGSIZE; 4633 4634 if (copy > len) 4635 copy = len; 4636 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4637 skb_frag_off(frag) + offset - start); 4638 elt++; 4639 if (!(len -= copy)) 4640 return elt; 4641 offset += copy; 4642 } 4643 start = end; 4644 } 4645 4646 skb_walk_frags(skb, frag_iter) { 4647 int end, ret; 4648 4649 WARN_ON(start > offset + len); 4650 4651 end = start + frag_iter->len; 4652 if ((copy = end - offset) > 0) { 4653 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4654 return -EMSGSIZE; 4655 4656 if (copy > len) 4657 copy = len; 4658 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4659 copy, recursion_level + 1); 4660 if (unlikely(ret < 0)) 4661 return ret; 4662 elt += ret; 4663 if ((len -= copy) == 0) 4664 return elt; 4665 offset += copy; 4666 } 4667 start = end; 4668 } 4669 BUG_ON(len); 4670 return elt; 4671 } 4672 4673 /** 4674 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4675 * @skb: Socket buffer containing the buffers to be mapped 4676 * @sg: The scatter-gather list to map into 4677 * @offset: The offset into the buffer's contents to start mapping 4678 * @len: Length of buffer space to be mapped 4679 * 4680 * Fill the specified scatter-gather list with mappings/pointers into a 4681 * region of the buffer space attached to a socket buffer. Returns either 4682 * the number of scatterlist items used, or -EMSGSIZE if the contents 4683 * could not fit. 4684 */ 4685 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4686 { 4687 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4688 4689 if (nsg <= 0) 4690 return nsg; 4691 4692 sg_mark_end(&sg[nsg - 1]); 4693 4694 return nsg; 4695 } 4696 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4697 4698 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4699 * sglist without mark the sg which contain last skb data as the end. 4700 * So the caller can mannipulate sg list as will when padding new data after 4701 * the first call without calling sg_unmark_end to expend sg list. 4702 * 4703 * Scenario to use skb_to_sgvec_nomark: 4704 * 1. sg_init_table 4705 * 2. skb_to_sgvec_nomark(payload1) 4706 * 3. skb_to_sgvec_nomark(payload2) 4707 * 4708 * This is equivalent to: 4709 * 1. sg_init_table 4710 * 2. skb_to_sgvec(payload1) 4711 * 3. sg_unmark_end 4712 * 4. skb_to_sgvec(payload2) 4713 * 4714 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4715 * is more preferable. 4716 */ 4717 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4718 int offset, int len) 4719 { 4720 return __skb_to_sgvec(skb, sg, offset, len, 0); 4721 } 4722 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4723 4724 4725 4726 /** 4727 * skb_cow_data - Check that a socket buffer's data buffers are writable 4728 * @skb: The socket buffer to check. 4729 * @tailbits: Amount of trailing space to be added 4730 * @trailer: Returned pointer to the skb where the @tailbits space begins 4731 * 4732 * Make sure that the data buffers attached to a socket buffer are 4733 * writable. If they are not, private copies are made of the data buffers 4734 * and the socket buffer is set to use these instead. 4735 * 4736 * If @tailbits is given, make sure that there is space to write @tailbits 4737 * bytes of data beyond current end of socket buffer. @trailer will be 4738 * set to point to the skb in which this space begins. 4739 * 4740 * The number of scatterlist elements required to completely map the 4741 * COW'd and extended socket buffer will be returned. 4742 */ 4743 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4744 { 4745 int copyflag; 4746 int elt; 4747 struct sk_buff *skb1, **skb_p; 4748 4749 /* If skb is cloned or its head is paged, reallocate 4750 * head pulling out all the pages (pages are considered not writable 4751 * at the moment even if they are anonymous). 4752 */ 4753 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4754 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4755 return -ENOMEM; 4756 4757 /* Easy case. Most of packets will go this way. */ 4758 if (!skb_has_frag_list(skb)) { 4759 /* A little of trouble, not enough of space for trailer. 4760 * This should not happen, when stack is tuned to generate 4761 * good frames. OK, on miss we reallocate and reserve even more 4762 * space, 128 bytes is fair. */ 4763 4764 if (skb_tailroom(skb) < tailbits && 4765 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4766 return -ENOMEM; 4767 4768 /* Voila! */ 4769 *trailer = skb; 4770 return 1; 4771 } 4772 4773 /* Misery. We are in troubles, going to mincer fragments... */ 4774 4775 elt = 1; 4776 skb_p = &skb_shinfo(skb)->frag_list; 4777 copyflag = 0; 4778 4779 while ((skb1 = *skb_p) != NULL) { 4780 int ntail = 0; 4781 4782 /* The fragment is partially pulled by someone, 4783 * this can happen on input. Copy it and everything 4784 * after it. */ 4785 4786 if (skb_shared(skb1)) 4787 copyflag = 1; 4788 4789 /* If the skb is the last, worry about trailer. */ 4790 4791 if (skb1->next == NULL && tailbits) { 4792 if (skb_shinfo(skb1)->nr_frags || 4793 skb_has_frag_list(skb1) || 4794 skb_tailroom(skb1) < tailbits) 4795 ntail = tailbits + 128; 4796 } 4797 4798 if (copyflag || 4799 skb_cloned(skb1) || 4800 ntail || 4801 skb_shinfo(skb1)->nr_frags || 4802 skb_has_frag_list(skb1)) { 4803 struct sk_buff *skb2; 4804 4805 /* Fuck, we are miserable poor guys... */ 4806 if (ntail == 0) 4807 skb2 = skb_copy(skb1, GFP_ATOMIC); 4808 else 4809 skb2 = skb_copy_expand(skb1, 4810 skb_headroom(skb1), 4811 ntail, 4812 GFP_ATOMIC); 4813 if (unlikely(skb2 == NULL)) 4814 return -ENOMEM; 4815 4816 if (skb1->sk) 4817 skb_set_owner_w(skb2, skb1->sk); 4818 4819 /* Looking around. Are we still alive? 4820 * OK, link new skb, drop old one */ 4821 4822 skb2->next = skb1->next; 4823 *skb_p = skb2; 4824 kfree_skb(skb1); 4825 skb1 = skb2; 4826 } 4827 elt++; 4828 *trailer = skb1; 4829 skb_p = &skb1->next; 4830 } 4831 4832 return elt; 4833 } 4834 EXPORT_SYMBOL_GPL(skb_cow_data); 4835 4836 static void sock_rmem_free(struct sk_buff *skb) 4837 { 4838 struct sock *sk = skb->sk; 4839 4840 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4841 } 4842 4843 static void skb_set_err_queue(struct sk_buff *skb) 4844 { 4845 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4846 * So, it is safe to (mis)use it to mark skbs on the error queue. 4847 */ 4848 skb->pkt_type = PACKET_OUTGOING; 4849 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4850 } 4851 4852 /* 4853 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4854 */ 4855 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4856 { 4857 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4858 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4859 return -ENOMEM; 4860 4861 skb_orphan(skb); 4862 skb->sk = sk; 4863 skb->destructor = sock_rmem_free; 4864 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4865 skb_set_err_queue(skb); 4866 4867 /* before exiting rcu section, make sure dst is refcounted */ 4868 skb_dst_force(skb); 4869 4870 skb_queue_tail(&sk->sk_error_queue, skb); 4871 if (!sock_flag(sk, SOCK_DEAD)) 4872 sk_error_report(sk); 4873 return 0; 4874 } 4875 EXPORT_SYMBOL(sock_queue_err_skb); 4876 4877 static bool is_icmp_err_skb(const struct sk_buff *skb) 4878 { 4879 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4880 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4881 } 4882 4883 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4884 { 4885 struct sk_buff_head *q = &sk->sk_error_queue; 4886 struct sk_buff *skb, *skb_next = NULL; 4887 bool icmp_next = false; 4888 unsigned long flags; 4889 4890 spin_lock_irqsave(&q->lock, flags); 4891 skb = __skb_dequeue(q); 4892 if (skb && (skb_next = skb_peek(q))) { 4893 icmp_next = is_icmp_err_skb(skb_next); 4894 if (icmp_next) 4895 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4896 } 4897 spin_unlock_irqrestore(&q->lock, flags); 4898 4899 if (is_icmp_err_skb(skb) && !icmp_next) 4900 sk->sk_err = 0; 4901 4902 if (skb_next) 4903 sk_error_report(sk); 4904 4905 return skb; 4906 } 4907 EXPORT_SYMBOL(sock_dequeue_err_skb); 4908 4909 /** 4910 * skb_clone_sk - create clone of skb, and take reference to socket 4911 * @skb: the skb to clone 4912 * 4913 * This function creates a clone of a buffer that holds a reference on 4914 * sk_refcnt. Buffers created via this function are meant to be 4915 * returned using sock_queue_err_skb, or free via kfree_skb. 4916 * 4917 * When passing buffers allocated with this function to sock_queue_err_skb 4918 * it is necessary to wrap the call with sock_hold/sock_put in order to 4919 * prevent the socket from being released prior to being enqueued on 4920 * the sk_error_queue. 4921 */ 4922 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4923 { 4924 struct sock *sk = skb->sk; 4925 struct sk_buff *clone; 4926 4927 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4928 return NULL; 4929 4930 clone = skb_clone(skb, GFP_ATOMIC); 4931 if (!clone) { 4932 sock_put(sk); 4933 return NULL; 4934 } 4935 4936 clone->sk = sk; 4937 clone->destructor = sock_efree; 4938 4939 return clone; 4940 } 4941 EXPORT_SYMBOL(skb_clone_sk); 4942 4943 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4944 struct sock *sk, 4945 int tstype, 4946 bool opt_stats) 4947 { 4948 struct sock_exterr_skb *serr; 4949 int err; 4950 4951 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4952 4953 serr = SKB_EXT_ERR(skb); 4954 memset(serr, 0, sizeof(*serr)); 4955 serr->ee.ee_errno = ENOMSG; 4956 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4957 serr->ee.ee_info = tstype; 4958 serr->opt_stats = opt_stats; 4959 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4960 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4961 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4962 if (sk_is_tcp(sk)) 4963 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 4964 } 4965 4966 err = sock_queue_err_skb(sk, skb); 4967 4968 if (err) 4969 kfree_skb(skb); 4970 } 4971 4972 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4973 { 4974 bool ret; 4975 4976 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 4977 return true; 4978 4979 read_lock_bh(&sk->sk_callback_lock); 4980 ret = sk->sk_socket && sk->sk_socket->file && 4981 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4982 read_unlock_bh(&sk->sk_callback_lock); 4983 return ret; 4984 } 4985 4986 void skb_complete_tx_timestamp(struct sk_buff *skb, 4987 struct skb_shared_hwtstamps *hwtstamps) 4988 { 4989 struct sock *sk = skb->sk; 4990 4991 if (!skb_may_tx_timestamp(sk, false)) 4992 goto err; 4993 4994 /* Take a reference to prevent skb_orphan() from freeing the socket, 4995 * but only if the socket refcount is not zero. 4996 */ 4997 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4998 *skb_hwtstamps(skb) = *hwtstamps; 4999 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5000 sock_put(sk); 5001 return; 5002 } 5003 5004 err: 5005 kfree_skb(skb); 5006 } 5007 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5008 5009 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5010 const struct sk_buff *ack_skb, 5011 struct skb_shared_hwtstamps *hwtstamps, 5012 struct sock *sk, int tstype) 5013 { 5014 struct sk_buff *skb; 5015 bool tsonly, opt_stats = false; 5016 5017 if (!sk) 5018 return; 5019 5020 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5021 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5022 return; 5023 5024 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5025 if (!skb_may_tx_timestamp(sk, tsonly)) 5026 return; 5027 5028 if (tsonly) { 5029 #ifdef CONFIG_INET 5030 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5031 sk_is_tcp(sk)) { 5032 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5033 ack_skb); 5034 opt_stats = true; 5035 } else 5036 #endif 5037 skb = alloc_skb(0, GFP_ATOMIC); 5038 } else { 5039 skb = skb_clone(orig_skb, GFP_ATOMIC); 5040 } 5041 if (!skb) 5042 return; 5043 5044 if (tsonly) { 5045 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5046 SKBTX_ANY_TSTAMP; 5047 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5048 } 5049 5050 if (hwtstamps) 5051 *skb_hwtstamps(skb) = *hwtstamps; 5052 else 5053 __net_timestamp(skb); 5054 5055 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5056 } 5057 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5058 5059 void skb_tstamp_tx(struct sk_buff *orig_skb, 5060 struct skb_shared_hwtstamps *hwtstamps) 5061 { 5062 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5063 SCM_TSTAMP_SND); 5064 } 5065 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5066 5067 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5068 { 5069 struct sock *sk = skb->sk; 5070 struct sock_exterr_skb *serr; 5071 int err = 1; 5072 5073 skb->wifi_acked_valid = 1; 5074 skb->wifi_acked = acked; 5075 5076 serr = SKB_EXT_ERR(skb); 5077 memset(serr, 0, sizeof(*serr)); 5078 serr->ee.ee_errno = ENOMSG; 5079 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5080 5081 /* Take a reference to prevent skb_orphan() from freeing the socket, 5082 * but only if the socket refcount is not zero. 5083 */ 5084 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5085 err = sock_queue_err_skb(sk, skb); 5086 sock_put(sk); 5087 } 5088 if (err) 5089 kfree_skb(skb); 5090 } 5091 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5092 5093 /** 5094 * skb_partial_csum_set - set up and verify partial csum values for packet 5095 * @skb: the skb to set 5096 * @start: the number of bytes after skb->data to start checksumming. 5097 * @off: the offset from start to place the checksum. 5098 * 5099 * For untrusted partially-checksummed packets, we need to make sure the values 5100 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5101 * 5102 * This function checks and sets those values and skb->ip_summed: if this 5103 * returns false you should drop the packet. 5104 */ 5105 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5106 { 5107 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5108 u32 csum_start = skb_headroom(skb) + (u32)start; 5109 5110 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 5111 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5112 start, off, skb_headroom(skb), skb_headlen(skb)); 5113 return false; 5114 } 5115 skb->ip_summed = CHECKSUM_PARTIAL; 5116 skb->csum_start = csum_start; 5117 skb->csum_offset = off; 5118 skb_set_transport_header(skb, start); 5119 return true; 5120 } 5121 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5122 5123 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5124 unsigned int max) 5125 { 5126 if (skb_headlen(skb) >= len) 5127 return 0; 5128 5129 /* If we need to pullup then pullup to the max, so we 5130 * won't need to do it again. 5131 */ 5132 if (max > skb->len) 5133 max = skb->len; 5134 5135 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5136 return -ENOMEM; 5137 5138 if (skb_headlen(skb) < len) 5139 return -EPROTO; 5140 5141 return 0; 5142 } 5143 5144 #define MAX_TCP_HDR_LEN (15 * 4) 5145 5146 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5147 typeof(IPPROTO_IP) proto, 5148 unsigned int off) 5149 { 5150 int err; 5151 5152 switch (proto) { 5153 case IPPROTO_TCP: 5154 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5155 off + MAX_TCP_HDR_LEN); 5156 if (!err && !skb_partial_csum_set(skb, off, 5157 offsetof(struct tcphdr, 5158 check))) 5159 err = -EPROTO; 5160 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5161 5162 case IPPROTO_UDP: 5163 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5164 off + sizeof(struct udphdr)); 5165 if (!err && !skb_partial_csum_set(skb, off, 5166 offsetof(struct udphdr, 5167 check))) 5168 err = -EPROTO; 5169 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5170 } 5171 5172 return ERR_PTR(-EPROTO); 5173 } 5174 5175 /* This value should be large enough to cover a tagged ethernet header plus 5176 * maximally sized IP and TCP or UDP headers. 5177 */ 5178 #define MAX_IP_HDR_LEN 128 5179 5180 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5181 { 5182 unsigned int off; 5183 bool fragment; 5184 __sum16 *csum; 5185 int err; 5186 5187 fragment = false; 5188 5189 err = skb_maybe_pull_tail(skb, 5190 sizeof(struct iphdr), 5191 MAX_IP_HDR_LEN); 5192 if (err < 0) 5193 goto out; 5194 5195 if (ip_is_fragment(ip_hdr(skb))) 5196 fragment = true; 5197 5198 off = ip_hdrlen(skb); 5199 5200 err = -EPROTO; 5201 5202 if (fragment) 5203 goto out; 5204 5205 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5206 if (IS_ERR(csum)) 5207 return PTR_ERR(csum); 5208 5209 if (recalculate) 5210 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5211 ip_hdr(skb)->daddr, 5212 skb->len - off, 5213 ip_hdr(skb)->protocol, 0); 5214 err = 0; 5215 5216 out: 5217 return err; 5218 } 5219 5220 /* This value should be large enough to cover a tagged ethernet header plus 5221 * an IPv6 header, all options, and a maximal TCP or UDP header. 5222 */ 5223 #define MAX_IPV6_HDR_LEN 256 5224 5225 #define OPT_HDR(type, skb, off) \ 5226 (type *)(skb_network_header(skb) + (off)) 5227 5228 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5229 { 5230 int err; 5231 u8 nexthdr; 5232 unsigned int off; 5233 unsigned int len; 5234 bool fragment; 5235 bool done; 5236 __sum16 *csum; 5237 5238 fragment = false; 5239 done = false; 5240 5241 off = sizeof(struct ipv6hdr); 5242 5243 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5244 if (err < 0) 5245 goto out; 5246 5247 nexthdr = ipv6_hdr(skb)->nexthdr; 5248 5249 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5250 while (off <= len && !done) { 5251 switch (nexthdr) { 5252 case IPPROTO_DSTOPTS: 5253 case IPPROTO_HOPOPTS: 5254 case IPPROTO_ROUTING: { 5255 struct ipv6_opt_hdr *hp; 5256 5257 err = skb_maybe_pull_tail(skb, 5258 off + 5259 sizeof(struct ipv6_opt_hdr), 5260 MAX_IPV6_HDR_LEN); 5261 if (err < 0) 5262 goto out; 5263 5264 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5265 nexthdr = hp->nexthdr; 5266 off += ipv6_optlen(hp); 5267 break; 5268 } 5269 case IPPROTO_AH: { 5270 struct ip_auth_hdr *hp; 5271 5272 err = skb_maybe_pull_tail(skb, 5273 off + 5274 sizeof(struct ip_auth_hdr), 5275 MAX_IPV6_HDR_LEN); 5276 if (err < 0) 5277 goto out; 5278 5279 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5280 nexthdr = hp->nexthdr; 5281 off += ipv6_authlen(hp); 5282 break; 5283 } 5284 case IPPROTO_FRAGMENT: { 5285 struct frag_hdr *hp; 5286 5287 err = skb_maybe_pull_tail(skb, 5288 off + 5289 sizeof(struct frag_hdr), 5290 MAX_IPV6_HDR_LEN); 5291 if (err < 0) 5292 goto out; 5293 5294 hp = OPT_HDR(struct frag_hdr, skb, off); 5295 5296 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5297 fragment = true; 5298 5299 nexthdr = hp->nexthdr; 5300 off += sizeof(struct frag_hdr); 5301 break; 5302 } 5303 default: 5304 done = true; 5305 break; 5306 } 5307 } 5308 5309 err = -EPROTO; 5310 5311 if (!done || fragment) 5312 goto out; 5313 5314 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5315 if (IS_ERR(csum)) 5316 return PTR_ERR(csum); 5317 5318 if (recalculate) 5319 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5320 &ipv6_hdr(skb)->daddr, 5321 skb->len - off, nexthdr, 0); 5322 err = 0; 5323 5324 out: 5325 return err; 5326 } 5327 5328 /** 5329 * skb_checksum_setup - set up partial checksum offset 5330 * @skb: the skb to set up 5331 * @recalculate: if true the pseudo-header checksum will be recalculated 5332 */ 5333 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5334 { 5335 int err; 5336 5337 switch (skb->protocol) { 5338 case htons(ETH_P_IP): 5339 err = skb_checksum_setup_ipv4(skb, recalculate); 5340 break; 5341 5342 case htons(ETH_P_IPV6): 5343 err = skb_checksum_setup_ipv6(skb, recalculate); 5344 break; 5345 5346 default: 5347 err = -EPROTO; 5348 break; 5349 } 5350 5351 return err; 5352 } 5353 EXPORT_SYMBOL(skb_checksum_setup); 5354 5355 /** 5356 * skb_checksum_maybe_trim - maybe trims the given skb 5357 * @skb: the skb to check 5358 * @transport_len: the data length beyond the network header 5359 * 5360 * Checks whether the given skb has data beyond the given transport length. 5361 * If so, returns a cloned skb trimmed to this transport length. 5362 * Otherwise returns the provided skb. Returns NULL in error cases 5363 * (e.g. transport_len exceeds skb length or out-of-memory). 5364 * 5365 * Caller needs to set the skb transport header and free any returned skb if it 5366 * differs from the provided skb. 5367 */ 5368 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5369 unsigned int transport_len) 5370 { 5371 struct sk_buff *skb_chk; 5372 unsigned int len = skb_transport_offset(skb) + transport_len; 5373 int ret; 5374 5375 if (skb->len < len) 5376 return NULL; 5377 else if (skb->len == len) 5378 return skb; 5379 5380 skb_chk = skb_clone(skb, GFP_ATOMIC); 5381 if (!skb_chk) 5382 return NULL; 5383 5384 ret = pskb_trim_rcsum(skb_chk, len); 5385 if (ret) { 5386 kfree_skb(skb_chk); 5387 return NULL; 5388 } 5389 5390 return skb_chk; 5391 } 5392 5393 /** 5394 * skb_checksum_trimmed - validate checksum of an skb 5395 * @skb: the skb to check 5396 * @transport_len: the data length beyond the network header 5397 * @skb_chkf: checksum function to use 5398 * 5399 * Applies the given checksum function skb_chkf to the provided skb. 5400 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5401 * 5402 * If the skb has data beyond the given transport length, then a 5403 * trimmed & cloned skb is checked and returned. 5404 * 5405 * Caller needs to set the skb transport header and free any returned skb if it 5406 * differs from the provided skb. 5407 */ 5408 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5409 unsigned int transport_len, 5410 __sum16(*skb_chkf)(struct sk_buff *skb)) 5411 { 5412 struct sk_buff *skb_chk; 5413 unsigned int offset = skb_transport_offset(skb); 5414 __sum16 ret; 5415 5416 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5417 if (!skb_chk) 5418 goto err; 5419 5420 if (!pskb_may_pull(skb_chk, offset)) 5421 goto err; 5422 5423 skb_pull_rcsum(skb_chk, offset); 5424 ret = skb_chkf(skb_chk); 5425 skb_push_rcsum(skb_chk, offset); 5426 5427 if (ret) 5428 goto err; 5429 5430 return skb_chk; 5431 5432 err: 5433 if (skb_chk && skb_chk != skb) 5434 kfree_skb(skb_chk); 5435 5436 return NULL; 5437 5438 } 5439 EXPORT_SYMBOL(skb_checksum_trimmed); 5440 5441 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5442 { 5443 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5444 skb->dev->name); 5445 } 5446 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5447 5448 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5449 { 5450 if (head_stolen) { 5451 skb_release_head_state(skb); 5452 kmem_cache_free(skbuff_head_cache, skb); 5453 } else { 5454 __kfree_skb(skb); 5455 } 5456 } 5457 EXPORT_SYMBOL(kfree_skb_partial); 5458 5459 /** 5460 * skb_try_coalesce - try to merge skb to prior one 5461 * @to: prior buffer 5462 * @from: buffer to add 5463 * @fragstolen: pointer to boolean 5464 * @delta_truesize: how much more was allocated than was requested 5465 */ 5466 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5467 bool *fragstolen, int *delta_truesize) 5468 { 5469 struct skb_shared_info *to_shinfo, *from_shinfo; 5470 int i, delta, len = from->len; 5471 5472 *fragstolen = false; 5473 5474 if (skb_cloned(to)) 5475 return false; 5476 5477 /* In general, avoid mixing slab allocated and page_pool allocated 5478 * pages within the same SKB. However when @to is not pp_recycle and 5479 * @from is cloned, we can transition frag pages from page_pool to 5480 * reference counted. 5481 * 5482 * On the other hand, don't allow coalescing two pp_recycle SKBs if 5483 * @from is cloned, in case the SKB is using page_pool fragment 5484 * references (PP_FLAG_PAGE_FRAG). Since we only take full page 5485 * references for cloned SKBs at the moment that would result in 5486 * inconsistent reference counts. 5487 */ 5488 if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from))) 5489 return false; 5490 5491 if (len <= skb_tailroom(to)) { 5492 if (len) 5493 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5494 *delta_truesize = 0; 5495 return true; 5496 } 5497 5498 to_shinfo = skb_shinfo(to); 5499 from_shinfo = skb_shinfo(from); 5500 if (to_shinfo->frag_list || from_shinfo->frag_list) 5501 return false; 5502 if (skb_zcopy(to) || skb_zcopy(from)) 5503 return false; 5504 5505 if (skb_headlen(from) != 0) { 5506 struct page *page; 5507 unsigned int offset; 5508 5509 if (to_shinfo->nr_frags + 5510 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5511 return false; 5512 5513 if (skb_head_is_locked(from)) 5514 return false; 5515 5516 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5517 5518 page = virt_to_head_page(from->head); 5519 offset = from->data - (unsigned char *)page_address(page); 5520 5521 skb_fill_page_desc(to, to_shinfo->nr_frags, 5522 page, offset, skb_headlen(from)); 5523 *fragstolen = true; 5524 } else { 5525 if (to_shinfo->nr_frags + 5526 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5527 return false; 5528 5529 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5530 } 5531 5532 WARN_ON_ONCE(delta < len); 5533 5534 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5535 from_shinfo->frags, 5536 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5537 to_shinfo->nr_frags += from_shinfo->nr_frags; 5538 5539 if (!skb_cloned(from)) 5540 from_shinfo->nr_frags = 0; 5541 5542 /* if the skb is not cloned this does nothing 5543 * since we set nr_frags to 0. 5544 */ 5545 for (i = 0; i < from_shinfo->nr_frags; i++) 5546 __skb_frag_ref(&from_shinfo->frags[i]); 5547 5548 to->truesize += delta; 5549 to->len += len; 5550 to->data_len += len; 5551 5552 *delta_truesize = delta; 5553 return true; 5554 } 5555 EXPORT_SYMBOL(skb_try_coalesce); 5556 5557 /** 5558 * skb_scrub_packet - scrub an skb 5559 * 5560 * @skb: buffer to clean 5561 * @xnet: packet is crossing netns 5562 * 5563 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5564 * into/from a tunnel. Some information have to be cleared during these 5565 * operations. 5566 * skb_scrub_packet can also be used to clean a skb before injecting it in 5567 * another namespace (@xnet == true). We have to clear all information in the 5568 * skb that could impact namespace isolation. 5569 */ 5570 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5571 { 5572 skb->pkt_type = PACKET_HOST; 5573 skb->skb_iif = 0; 5574 skb->ignore_df = 0; 5575 skb_dst_drop(skb); 5576 skb_ext_reset(skb); 5577 nf_reset_ct(skb); 5578 nf_reset_trace(skb); 5579 5580 #ifdef CONFIG_NET_SWITCHDEV 5581 skb->offload_fwd_mark = 0; 5582 skb->offload_l3_fwd_mark = 0; 5583 #endif 5584 5585 if (!xnet) 5586 return; 5587 5588 ipvs_reset(skb); 5589 skb->mark = 0; 5590 skb_clear_tstamp(skb); 5591 } 5592 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5593 5594 /** 5595 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5596 * 5597 * @skb: GSO skb 5598 * 5599 * skb_gso_transport_seglen is used to determine the real size of the 5600 * individual segments, including Layer4 headers (TCP/UDP). 5601 * 5602 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5603 */ 5604 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5605 { 5606 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5607 unsigned int thlen = 0; 5608 5609 if (skb->encapsulation) { 5610 thlen = skb_inner_transport_header(skb) - 5611 skb_transport_header(skb); 5612 5613 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5614 thlen += inner_tcp_hdrlen(skb); 5615 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5616 thlen = tcp_hdrlen(skb); 5617 } else if (unlikely(skb_is_gso_sctp(skb))) { 5618 thlen = sizeof(struct sctphdr); 5619 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5620 thlen = sizeof(struct udphdr); 5621 } 5622 /* UFO sets gso_size to the size of the fragmentation 5623 * payload, i.e. the size of the L4 (UDP) header is already 5624 * accounted for. 5625 */ 5626 return thlen + shinfo->gso_size; 5627 } 5628 5629 /** 5630 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5631 * 5632 * @skb: GSO skb 5633 * 5634 * skb_gso_network_seglen is used to determine the real size of the 5635 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5636 * 5637 * The MAC/L2 header is not accounted for. 5638 */ 5639 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5640 { 5641 unsigned int hdr_len = skb_transport_header(skb) - 5642 skb_network_header(skb); 5643 5644 return hdr_len + skb_gso_transport_seglen(skb); 5645 } 5646 5647 /** 5648 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5649 * 5650 * @skb: GSO skb 5651 * 5652 * skb_gso_mac_seglen is used to determine the real size of the 5653 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5654 * headers (TCP/UDP). 5655 */ 5656 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5657 { 5658 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5659 5660 return hdr_len + skb_gso_transport_seglen(skb); 5661 } 5662 5663 /** 5664 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5665 * 5666 * There are a couple of instances where we have a GSO skb, and we 5667 * want to determine what size it would be after it is segmented. 5668 * 5669 * We might want to check: 5670 * - L3+L4+payload size (e.g. IP forwarding) 5671 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5672 * 5673 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5674 * 5675 * @skb: GSO skb 5676 * 5677 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5678 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5679 * 5680 * @max_len: The maximum permissible length. 5681 * 5682 * Returns true if the segmented length <= max length. 5683 */ 5684 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5685 unsigned int seg_len, 5686 unsigned int max_len) { 5687 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5688 const struct sk_buff *iter; 5689 5690 if (shinfo->gso_size != GSO_BY_FRAGS) 5691 return seg_len <= max_len; 5692 5693 /* Undo this so we can re-use header sizes */ 5694 seg_len -= GSO_BY_FRAGS; 5695 5696 skb_walk_frags(skb, iter) { 5697 if (seg_len + skb_headlen(iter) > max_len) 5698 return false; 5699 } 5700 5701 return true; 5702 } 5703 5704 /** 5705 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5706 * 5707 * @skb: GSO skb 5708 * @mtu: MTU to validate against 5709 * 5710 * skb_gso_validate_network_len validates if a given skb will fit a 5711 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5712 * payload. 5713 */ 5714 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5715 { 5716 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5717 } 5718 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5719 5720 /** 5721 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5722 * 5723 * @skb: GSO skb 5724 * @len: length to validate against 5725 * 5726 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5727 * length once split, including L2, L3 and L4 headers and the payload. 5728 */ 5729 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5730 { 5731 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5732 } 5733 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5734 5735 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5736 { 5737 int mac_len, meta_len; 5738 void *meta; 5739 5740 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5741 kfree_skb(skb); 5742 return NULL; 5743 } 5744 5745 mac_len = skb->data - skb_mac_header(skb); 5746 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5747 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5748 mac_len - VLAN_HLEN - ETH_TLEN); 5749 } 5750 5751 meta_len = skb_metadata_len(skb); 5752 if (meta_len) { 5753 meta = skb_metadata_end(skb) - meta_len; 5754 memmove(meta + VLAN_HLEN, meta, meta_len); 5755 } 5756 5757 skb->mac_header += VLAN_HLEN; 5758 return skb; 5759 } 5760 5761 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5762 { 5763 struct vlan_hdr *vhdr; 5764 u16 vlan_tci; 5765 5766 if (unlikely(skb_vlan_tag_present(skb))) { 5767 /* vlan_tci is already set-up so leave this for another time */ 5768 return skb; 5769 } 5770 5771 skb = skb_share_check(skb, GFP_ATOMIC); 5772 if (unlikely(!skb)) 5773 goto err_free; 5774 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5775 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5776 goto err_free; 5777 5778 vhdr = (struct vlan_hdr *)skb->data; 5779 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5780 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5781 5782 skb_pull_rcsum(skb, VLAN_HLEN); 5783 vlan_set_encap_proto(skb, vhdr); 5784 5785 skb = skb_reorder_vlan_header(skb); 5786 if (unlikely(!skb)) 5787 goto err_free; 5788 5789 skb_reset_network_header(skb); 5790 if (!skb_transport_header_was_set(skb)) 5791 skb_reset_transport_header(skb); 5792 skb_reset_mac_len(skb); 5793 5794 return skb; 5795 5796 err_free: 5797 kfree_skb(skb); 5798 return NULL; 5799 } 5800 EXPORT_SYMBOL(skb_vlan_untag); 5801 5802 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 5803 { 5804 if (!pskb_may_pull(skb, write_len)) 5805 return -ENOMEM; 5806 5807 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5808 return 0; 5809 5810 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5811 } 5812 EXPORT_SYMBOL(skb_ensure_writable); 5813 5814 /* remove VLAN header from packet and update csum accordingly. 5815 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5816 */ 5817 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5818 { 5819 struct vlan_hdr *vhdr; 5820 int offset = skb->data - skb_mac_header(skb); 5821 int err; 5822 5823 if (WARN_ONCE(offset, 5824 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5825 offset)) { 5826 return -EINVAL; 5827 } 5828 5829 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5830 if (unlikely(err)) 5831 return err; 5832 5833 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5834 5835 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5836 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5837 5838 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5839 __skb_pull(skb, VLAN_HLEN); 5840 5841 vlan_set_encap_proto(skb, vhdr); 5842 skb->mac_header += VLAN_HLEN; 5843 5844 if (skb_network_offset(skb) < ETH_HLEN) 5845 skb_set_network_header(skb, ETH_HLEN); 5846 5847 skb_reset_mac_len(skb); 5848 5849 return err; 5850 } 5851 EXPORT_SYMBOL(__skb_vlan_pop); 5852 5853 /* Pop a vlan tag either from hwaccel or from payload. 5854 * Expects skb->data at mac header. 5855 */ 5856 int skb_vlan_pop(struct sk_buff *skb) 5857 { 5858 u16 vlan_tci; 5859 __be16 vlan_proto; 5860 int err; 5861 5862 if (likely(skb_vlan_tag_present(skb))) { 5863 __vlan_hwaccel_clear_tag(skb); 5864 } else { 5865 if (unlikely(!eth_type_vlan(skb->protocol))) 5866 return 0; 5867 5868 err = __skb_vlan_pop(skb, &vlan_tci); 5869 if (err) 5870 return err; 5871 } 5872 /* move next vlan tag to hw accel tag */ 5873 if (likely(!eth_type_vlan(skb->protocol))) 5874 return 0; 5875 5876 vlan_proto = skb->protocol; 5877 err = __skb_vlan_pop(skb, &vlan_tci); 5878 if (unlikely(err)) 5879 return err; 5880 5881 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5882 return 0; 5883 } 5884 EXPORT_SYMBOL(skb_vlan_pop); 5885 5886 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5887 * Expects skb->data at mac header. 5888 */ 5889 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5890 { 5891 if (skb_vlan_tag_present(skb)) { 5892 int offset = skb->data - skb_mac_header(skb); 5893 int err; 5894 5895 if (WARN_ONCE(offset, 5896 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5897 offset)) { 5898 return -EINVAL; 5899 } 5900 5901 err = __vlan_insert_tag(skb, skb->vlan_proto, 5902 skb_vlan_tag_get(skb)); 5903 if (err) 5904 return err; 5905 5906 skb->protocol = skb->vlan_proto; 5907 skb->mac_len += VLAN_HLEN; 5908 5909 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5910 } 5911 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5912 return 0; 5913 } 5914 EXPORT_SYMBOL(skb_vlan_push); 5915 5916 /** 5917 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5918 * 5919 * @skb: Socket buffer to modify 5920 * 5921 * Drop the Ethernet header of @skb. 5922 * 5923 * Expects that skb->data points to the mac header and that no VLAN tags are 5924 * present. 5925 * 5926 * Returns 0 on success, -errno otherwise. 5927 */ 5928 int skb_eth_pop(struct sk_buff *skb) 5929 { 5930 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5931 skb_network_offset(skb) < ETH_HLEN) 5932 return -EPROTO; 5933 5934 skb_pull_rcsum(skb, ETH_HLEN); 5935 skb_reset_mac_header(skb); 5936 skb_reset_mac_len(skb); 5937 5938 return 0; 5939 } 5940 EXPORT_SYMBOL(skb_eth_pop); 5941 5942 /** 5943 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5944 * 5945 * @skb: Socket buffer to modify 5946 * @dst: Destination MAC address of the new header 5947 * @src: Source MAC address of the new header 5948 * 5949 * Prepend @skb with a new Ethernet header. 5950 * 5951 * Expects that skb->data points to the mac header, which must be empty. 5952 * 5953 * Returns 0 on success, -errno otherwise. 5954 */ 5955 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5956 const unsigned char *src) 5957 { 5958 struct ethhdr *eth; 5959 int err; 5960 5961 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5962 return -EPROTO; 5963 5964 err = skb_cow_head(skb, sizeof(*eth)); 5965 if (err < 0) 5966 return err; 5967 5968 skb_push(skb, sizeof(*eth)); 5969 skb_reset_mac_header(skb); 5970 skb_reset_mac_len(skb); 5971 5972 eth = eth_hdr(skb); 5973 ether_addr_copy(eth->h_dest, dst); 5974 ether_addr_copy(eth->h_source, src); 5975 eth->h_proto = skb->protocol; 5976 5977 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5978 5979 return 0; 5980 } 5981 EXPORT_SYMBOL(skb_eth_push); 5982 5983 /* Update the ethertype of hdr and the skb csum value if required. */ 5984 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5985 __be16 ethertype) 5986 { 5987 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5988 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5989 5990 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5991 } 5992 5993 hdr->h_proto = ethertype; 5994 } 5995 5996 /** 5997 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5998 * the packet 5999 * 6000 * @skb: buffer 6001 * @mpls_lse: MPLS label stack entry to push 6002 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6003 * @mac_len: length of the MAC header 6004 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6005 * ethernet 6006 * 6007 * Expects skb->data at mac header. 6008 * 6009 * Returns 0 on success, -errno otherwise. 6010 */ 6011 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6012 int mac_len, bool ethernet) 6013 { 6014 struct mpls_shim_hdr *lse; 6015 int err; 6016 6017 if (unlikely(!eth_p_mpls(mpls_proto))) 6018 return -EINVAL; 6019 6020 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6021 if (skb->encapsulation) 6022 return -EINVAL; 6023 6024 err = skb_cow_head(skb, MPLS_HLEN); 6025 if (unlikely(err)) 6026 return err; 6027 6028 if (!skb->inner_protocol) { 6029 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6030 skb_set_inner_protocol(skb, skb->protocol); 6031 } 6032 6033 skb_push(skb, MPLS_HLEN); 6034 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6035 mac_len); 6036 skb_reset_mac_header(skb); 6037 skb_set_network_header(skb, mac_len); 6038 skb_reset_mac_len(skb); 6039 6040 lse = mpls_hdr(skb); 6041 lse->label_stack_entry = mpls_lse; 6042 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6043 6044 if (ethernet && mac_len >= ETH_HLEN) 6045 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6046 skb->protocol = mpls_proto; 6047 6048 return 0; 6049 } 6050 EXPORT_SYMBOL_GPL(skb_mpls_push); 6051 6052 /** 6053 * skb_mpls_pop() - pop the outermost MPLS header 6054 * 6055 * @skb: buffer 6056 * @next_proto: ethertype of header after popped MPLS header 6057 * @mac_len: length of the MAC header 6058 * @ethernet: flag to indicate if the packet is ethernet 6059 * 6060 * Expects skb->data at mac header. 6061 * 6062 * Returns 0 on success, -errno otherwise. 6063 */ 6064 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6065 bool ethernet) 6066 { 6067 int err; 6068 6069 if (unlikely(!eth_p_mpls(skb->protocol))) 6070 return 0; 6071 6072 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6073 if (unlikely(err)) 6074 return err; 6075 6076 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6077 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6078 mac_len); 6079 6080 __skb_pull(skb, MPLS_HLEN); 6081 skb_reset_mac_header(skb); 6082 skb_set_network_header(skb, mac_len); 6083 6084 if (ethernet && mac_len >= ETH_HLEN) { 6085 struct ethhdr *hdr; 6086 6087 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6088 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6089 skb_mod_eth_type(skb, hdr, next_proto); 6090 } 6091 skb->protocol = next_proto; 6092 6093 return 0; 6094 } 6095 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6096 6097 /** 6098 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6099 * 6100 * @skb: buffer 6101 * @mpls_lse: new MPLS label stack entry to update to 6102 * 6103 * Expects skb->data at mac header. 6104 * 6105 * Returns 0 on success, -errno otherwise. 6106 */ 6107 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6108 { 6109 int err; 6110 6111 if (unlikely(!eth_p_mpls(skb->protocol))) 6112 return -EINVAL; 6113 6114 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6115 if (unlikely(err)) 6116 return err; 6117 6118 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6119 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6120 6121 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6122 } 6123 6124 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6125 6126 return 0; 6127 } 6128 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6129 6130 /** 6131 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6132 * 6133 * @skb: buffer 6134 * 6135 * Expects skb->data at mac header. 6136 * 6137 * Returns 0 on success, -errno otherwise. 6138 */ 6139 int skb_mpls_dec_ttl(struct sk_buff *skb) 6140 { 6141 u32 lse; 6142 u8 ttl; 6143 6144 if (unlikely(!eth_p_mpls(skb->protocol))) 6145 return -EINVAL; 6146 6147 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6148 return -ENOMEM; 6149 6150 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6151 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6152 if (!--ttl) 6153 return -EINVAL; 6154 6155 lse &= ~MPLS_LS_TTL_MASK; 6156 lse |= ttl << MPLS_LS_TTL_SHIFT; 6157 6158 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6159 } 6160 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6161 6162 /** 6163 * alloc_skb_with_frags - allocate skb with page frags 6164 * 6165 * @header_len: size of linear part 6166 * @data_len: needed length in frags 6167 * @max_page_order: max page order desired. 6168 * @errcode: pointer to error code if any 6169 * @gfp_mask: allocation mask 6170 * 6171 * This can be used to allocate a paged skb, given a maximal order for frags. 6172 */ 6173 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6174 unsigned long data_len, 6175 int max_page_order, 6176 int *errcode, 6177 gfp_t gfp_mask) 6178 { 6179 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 6180 unsigned long chunk; 6181 struct sk_buff *skb; 6182 struct page *page; 6183 int i; 6184 6185 *errcode = -EMSGSIZE; 6186 /* Note this test could be relaxed, if we succeed to allocate 6187 * high order pages... 6188 */ 6189 if (npages > MAX_SKB_FRAGS) 6190 return NULL; 6191 6192 *errcode = -ENOBUFS; 6193 skb = alloc_skb(header_len, gfp_mask); 6194 if (!skb) 6195 return NULL; 6196 6197 skb->truesize += npages << PAGE_SHIFT; 6198 6199 for (i = 0; npages > 0; i++) { 6200 int order = max_page_order; 6201 6202 while (order) { 6203 if (npages >= 1 << order) { 6204 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6205 __GFP_COMP | 6206 __GFP_NOWARN, 6207 order); 6208 if (page) 6209 goto fill_page; 6210 /* Do not retry other high order allocations */ 6211 order = 1; 6212 max_page_order = 0; 6213 } 6214 order--; 6215 } 6216 page = alloc_page(gfp_mask); 6217 if (!page) 6218 goto failure; 6219 fill_page: 6220 chunk = min_t(unsigned long, data_len, 6221 PAGE_SIZE << order); 6222 skb_fill_page_desc(skb, i, page, 0, chunk); 6223 data_len -= chunk; 6224 npages -= 1 << order; 6225 } 6226 return skb; 6227 6228 failure: 6229 kfree_skb(skb); 6230 return NULL; 6231 } 6232 EXPORT_SYMBOL(alloc_skb_with_frags); 6233 6234 /* carve out the first off bytes from skb when off < headlen */ 6235 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6236 const int headlen, gfp_t gfp_mask) 6237 { 6238 int i; 6239 unsigned int size = skb_end_offset(skb); 6240 int new_hlen = headlen - off; 6241 u8 *data; 6242 6243 if (skb_pfmemalloc(skb)) 6244 gfp_mask |= __GFP_MEMALLOC; 6245 6246 size = SKB_DATA_ALIGN(size); 6247 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 6248 size = kmalloc_size_roundup(size); 6249 data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL); 6250 if (!data) 6251 return -ENOMEM; 6252 size = SKB_WITH_OVERHEAD(size); 6253 6254 /* Copy real data, and all frags */ 6255 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6256 skb->len -= off; 6257 6258 memcpy((struct skb_shared_info *)(data + size), 6259 skb_shinfo(skb), 6260 offsetof(struct skb_shared_info, 6261 frags[skb_shinfo(skb)->nr_frags])); 6262 if (skb_cloned(skb)) { 6263 /* drop the old head gracefully */ 6264 if (skb_orphan_frags(skb, gfp_mask)) { 6265 kfree(data); 6266 return -ENOMEM; 6267 } 6268 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6269 skb_frag_ref(skb, i); 6270 if (skb_has_frag_list(skb)) 6271 skb_clone_fraglist(skb); 6272 skb_release_data(skb, SKB_CONSUMED); 6273 } else { 6274 /* we can reuse existing recount- all we did was 6275 * relocate values 6276 */ 6277 skb_free_head(skb); 6278 } 6279 6280 skb->head = data; 6281 skb->data = data; 6282 skb->head_frag = 0; 6283 skb_set_end_offset(skb, size); 6284 skb_set_tail_pointer(skb, skb_headlen(skb)); 6285 skb_headers_offset_update(skb, 0); 6286 skb->cloned = 0; 6287 skb->hdr_len = 0; 6288 skb->nohdr = 0; 6289 atomic_set(&skb_shinfo(skb)->dataref, 1); 6290 6291 return 0; 6292 } 6293 6294 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6295 6296 /* carve out the first eat bytes from skb's frag_list. May recurse into 6297 * pskb_carve() 6298 */ 6299 static int pskb_carve_frag_list(struct sk_buff *skb, 6300 struct skb_shared_info *shinfo, int eat, 6301 gfp_t gfp_mask) 6302 { 6303 struct sk_buff *list = shinfo->frag_list; 6304 struct sk_buff *clone = NULL; 6305 struct sk_buff *insp = NULL; 6306 6307 do { 6308 if (!list) { 6309 pr_err("Not enough bytes to eat. Want %d\n", eat); 6310 return -EFAULT; 6311 } 6312 if (list->len <= eat) { 6313 /* Eaten as whole. */ 6314 eat -= list->len; 6315 list = list->next; 6316 insp = list; 6317 } else { 6318 /* Eaten partially. */ 6319 if (skb_shared(list)) { 6320 clone = skb_clone(list, gfp_mask); 6321 if (!clone) 6322 return -ENOMEM; 6323 insp = list->next; 6324 list = clone; 6325 } else { 6326 /* This may be pulled without problems. */ 6327 insp = list; 6328 } 6329 if (pskb_carve(list, eat, gfp_mask) < 0) { 6330 kfree_skb(clone); 6331 return -ENOMEM; 6332 } 6333 break; 6334 } 6335 } while (eat); 6336 6337 /* Free pulled out fragments. */ 6338 while ((list = shinfo->frag_list) != insp) { 6339 shinfo->frag_list = list->next; 6340 consume_skb(list); 6341 } 6342 /* And insert new clone at head. */ 6343 if (clone) { 6344 clone->next = list; 6345 shinfo->frag_list = clone; 6346 } 6347 return 0; 6348 } 6349 6350 /* carve off first len bytes from skb. Split line (off) is in the 6351 * non-linear part of skb 6352 */ 6353 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6354 int pos, gfp_t gfp_mask) 6355 { 6356 int i, k = 0; 6357 unsigned int size = skb_end_offset(skb); 6358 u8 *data; 6359 const int nfrags = skb_shinfo(skb)->nr_frags; 6360 struct skb_shared_info *shinfo; 6361 6362 if (skb_pfmemalloc(skb)) 6363 gfp_mask |= __GFP_MEMALLOC; 6364 6365 size = SKB_DATA_ALIGN(size); 6366 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 6367 size = kmalloc_size_roundup(size); 6368 data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL); 6369 if (!data) 6370 return -ENOMEM; 6371 size = SKB_WITH_OVERHEAD(size); 6372 6373 memcpy((struct skb_shared_info *)(data + size), 6374 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6375 if (skb_orphan_frags(skb, gfp_mask)) { 6376 kfree(data); 6377 return -ENOMEM; 6378 } 6379 shinfo = (struct skb_shared_info *)(data + size); 6380 for (i = 0; i < nfrags; i++) { 6381 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6382 6383 if (pos + fsize > off) { 6384 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6385 6386 if (pos < off) { 6387 /* Split frag. 6388 * We have two variants in this case: 6389 * 1. Move all the frag to the second 6390 * part, if it is possible. F.e. 6391 * this approach is mandatory for TUX, 6392 * where splitting is expensive. 6393 * 2. Split is accurately. We make this. 6394 */ 6395 skb_frag_off_add(&shinfo->frags[0], off - pos); 6396 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6397 } 6398 skb_frag_ref(skb, i); 6399 k++; 6400 } 6401 pos += fsize; 6402 } 6403 shinfo->nr_frags = k; 6404 if (skb_has_frag_list(skb)) 6405 skb_clone_fraglist(skb); 6406 6407 /* split line is in frag list */ 6408 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6409 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6410 if (skb_has_frag_list(skb)) 6411 kfree_skb_list(skb_shinfo(skb)->frag_list); 6412 kfree(data); 6413 return -ENOMEM; 6414 } 6415 skb_release_data(skb, SKB_CONSUMED); 6416 6417 skb->head = data; 6418 skb->head_frag = 0; 6419 skb->data = data; 6420 skb_set_end_offset(skb, size); 6421 skb_reset_tail_pointer(skb); 6422 skb_headers_offset_update(skb, 0); 6423 skb->cloned = 0; 6424 skb->hdr_len = 0; 6425 skb->nohdr = 0; 6426 skb->len -= off; 6427 skb->data_len = skb->len; 6428 atomic_set(&skb_shinfo(skb)->dataref, 1); 6429 return 0; 6430 } 6431 6432 /* remove len bytes from the beginning of the skb */ 6433 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6434 { 6435 int headlen = skb_headlen(skb); 6436 6437 if (len < headlen) 6438 return pskb_carve_inside_header(skb, len, headlen, gfp); 6439 else 6440 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6441 } 6442 6443 /* Extract to_copy bytes starting at off from skb, and return this in 6444 * a new skb 6445 */ 6446 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6447 int to_copy, gfp_t gfp) 6448 { 6449 struct sk_buff *clone = skb_clone(skb, gfp); 6450 6451 if (!clone) 6452 return NULL; 6453 6454 if (pskb_carve(clone, off, gfp) < 0 || 6455 pskb_trim(clone, to_copy)) { 6456 kfree_skb(clone); 6457 return NULL; 6458 } 6459 return clone; 6460 } 6461 EXPORT_SYMBOL(pskb_extract); 6462 6463 /** 6464 * skb_condense - try to get rid of fragments/frag_list if possible 6465 * @skb: buffer 6466 * 6467 * Can be used to save memory before skb is added to a busy queue. 6468 * If packet has bytes in frags and enough tail room in skb->head, 6469 * pull all of them, so that we can free the frags right now and adjust 6470 * truesize. 6471 * Notes: 6472 * We do not reallocate skb->head thus can not fail. 6473 * Caller must re-evaluate skb->truesize if needed. 6474 */ 6475 void skb_condense(struct sk_buff *skb) 6476 { 6477 if (skb->data_len) { 6478 if (skb->data_len > skb->end - skb->tail || 6479 skb_cloned(skb)) 6480 return; 6481 6482 /* Nice, we can free page frag(s) right now */ 6483 __pskb_pull_tail(skb, skb->data_len); 6484 } 6485 /* At this point, skb->truesize might be over estimated, 6486 * because skb had a fragment, and fragments do not tell 6487 * their truesize. 6488 * When we pulled its content into skb->head, fragment 6489 * was freed, but __pskb_pull_tail() could not possibly 6490 * adjust skb->truesize, not knowing the frag truesize. 6491 */ 6492 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6493 } 6494 EXPORT_SYMBOL(skb_condense); 6495 6496 #ifdef CONFIG_SKB_EXTENSIONS 6497 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6498 { 6499 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6500 } 6501 6502 /** 6503 * __skb_ext_alloc - allocate a new skb extensions storage 6504 * 6505 * @flags: See kmalloc(). 6506 * 6507 * Returns the newly allocated pointer. The pointer can later attached to a 6508 * skb via __skb_ext_set(). 6509 * Note: caller must handle the skb_ext as an opaque data. 6510 */ 6511 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6512 { 6513 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6514 6515 if (new) { 6516 memset(new->offset, 0, sizeof(new->offset)); 6517 refcount_set(&new->refcnt, 1); 6518 } 6519 6520 return new; 6521 } 6522 6523 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6524 unsigned int old_active) 6525 { 6526 struct skb_ext *new; 6527 6528 if (refcount_read(&old->refcnt) == 1) 6529 return old; 6530 6531 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6532 if (!new) 6533 return NULL; 6534 6535 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6536 refcount_set(&new->refcnt, 1); 6537 6538 #ifdef CONFIG_XFRM 6539 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6540 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6541 unsigned int i; 6542 6543 for (i = 0; i < sp->len; i++) 6544 xfrm_state_hold(sp->xvec[i]); 6545 } 6546 #endif 6547 __skb_ext_put(old); 6548 return new; 6549 } 6550 6551 /** 6552 * __skb_ext_set - attach the specified extension storage to this skb 6553 * @skb: buffer 6554 * @id: extension id 6555 * @ext: extension storage previously allocated via __skb_ext_alloc() 6556 * 6557 * Existing extensions, if any, are cleared. 6558 * 6559 * Returns the pointer to the extension. 6560 */ 6561 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6562 struct skb_ext *ext) 6563 { 6564 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6565 6566 skb_ext_put(skb); 6567 newlen = newoff + skb_ext_type_len[id]; 6568 ext->chunks = newlen; 6569 ext->offset[id] = newoff; 6570 skb->extensions = ext; 6571 skb->active_extensions = 1 << id; 6572 return skb_ext_get_ptr(ext, id); 6573 } 6574 6575 /** 6576 * skb_ext_add - allocate space for given extension, COW if needed 6577 * @skb: buffer 6578 * @id: extension to allocate space for 6579 * 6580 * Allocates enough space for the given extension. 6581 * If the extension is already present, a pointer to that extension 6582 * is returned. 6583 * 6584 * If the skb was cloned, COW applies and the returned memory can be 6585 * modified without changing the extension space of clones buffers. 6586 * 6587 * Returns pointer to the extension or NULL on allocation failure. 6588 */ 6589 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6590 { 6591 struct skb_ext *new, *old = NULL; 6592 unsigned int newlen, newoff; 6593 6594 if (skb->active_extensions) { 6595 old = skb->extensions; 6596 6597 new = skb_ext_maybe_cow(old, skb->active_extensions); 6598 if (!new) 6599 return NULL; 6600 6601 if (__skb_ext_exist(new, id)) 6602 goto set_active; 6603 6604 newoff = new->chunks; 6605 } else { 6606 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6607 6608 new = __skb_ext_alloc(GFP_ATOMIC); 6609 if (!new) 6610 return NULL; 6611 } 6612 6613 newlen = newoff + skb_ext_type_len[id]; 6614 new->chunks = newlen; 6615 new->offset[id] = newoff; 6616 set_active: 6617 skb->slow_gro = 1; 6618 skb->extensions = new; 6619 skb->active_extensions |= 1 << id; 6620 return skb_ext_get_ptr(new, id); 6621 } 6622 EXPORT_SYMBOL(skb_ext_add); 6623 6624 #ifdef CONFIG_XFRM 6625 static void skb_ext_put_sp(struct sec_path *sp) 6626 { 6627 unsigned int i; 6628 6629 for (i = 0; i < sp->len; i++) 6630 xfrm_state_put(sp->xvec[i]); 6631 } 6632 #endif 6633 6634 #ifdef CONFIG_MCTP_FLOWS 6635 static void skb_ext_put_mctp(struct mctp_flow *flow) 6636 { 6637 if (flow->key) 6638 mctp_key_unref(flow->key); 6639 } 6640 #endif 6641 6642 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6643 { 6644 struct skb_ext *ext = skb->extensions; 6645 6646 skb->active_extensions &= ~(1 << id); 6647 if (skb->active_extensions == 0) { 6648 skb->extensions = NULL; 6649 __skb_ext_put(ext); 6650 #ifdef CONFIG_XFRM 6651 } else if (id == SKB_EXT_SEC_PATH && 6652 refcount_read(&ext->refcnt) == 1) { 6653 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6654 6655 skb_ext_put_sp(sp); 6656 sp->len = 0; 6657 #endif 6658 } 6659 } 6660 EXPORT_SYMBOL(__skb_ext_del); 6661 6662 void __skb_ext_put(struct skb_ext *ext) 6663 { 6664 /* If this is last clone, nothing can increment 6665 * it after check passes. Avoids one atomic op. 6666 */ 6667 if (refcount_read(&ext->refcnt) == 1) 6668 goto free_now; 6669 6670 if (!refcount_dec_and_test(&ext->refcnt)) 6671 return; 6672 free_now: 6673 #ifdef CONFIG_XFRM 6674 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6675 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6676 #endif 6677 #ifdef CONFIG_MCTP_FLOWS 6678 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6679 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6680 #endif 6681 6682 kmem_cache_free(skbuff_ext_cache, ext); 6683 } 6684 EXPORT_SYMBOL(__skb_ext_put); 6685 #endif /* CONFIG_SKB_EXTENSIONS */ 6686 6687 /** 6688 * skb_attempt_defer_free - queue skb for remote freeing 6689 * @skb: buffer 6690 * 6691 * Put @skb in a per-cpu list, using the cpu which 6692 * allocated the skb/pages to reduce false sharing 6693 * and memory zone spinlock contention. 6694 */ 6695 void skb_attempt_defer_free(struct sk_buff *skb) 6696 { 6697 int cpu = skb->alloc_cpu; 6698 struct softnet_data *sd; 6699 unsigned long flags; 6700 unsigned int defer_max; 6701 bool kick; 6702 6703 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 6704 !cpu_online(cpu) || 6705 cpu == raw_smp_processor_id()) { 6706 nodefer: __kfree_skb(skb); 6707 return; 6708 } 6709 6710 sd = &per_cpu(softnet_data, cpu); 6711 defer_max = READ_ONCE(sysctl_skb_defer_max); 6712 if (READ_ONCE(sd->defer_count) >= defer_max) 6713 goto nodefer; 6714 6715 spin_lock_irqsave(&sd->defer_lock, flags); 6716 /* Send an IPI every time queue reaches half capacity. */ 6717 kick = sd->defer_count == (defer_max >> 1); 6718 /* Paired with the READ_ONCE() few lines above */ 6719 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 6720 6721 skb->next = sd->defer_list; 6722 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 6723 WRITE_ONCE(sd->defer_list, skb); 6724 spin_unlock_irqrestore(&sd->defer_lock, flags); 6725 6726 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 6727 * if we are unlucky enough (this seems very unlikely). 6728 */ 6729 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) 6730 smp_call_function_single_async(cpu, &sd->defer_csd); 6731 } 6732