xref: /linux/net/core/skbuff.c (revision 0d0950a968009fd6e5c2a3763b2c6e81b3805b05)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/mctp.h>
74 #include <net/page_pool.h>
75 
76 #include <linux/uaccess.h>
77 #include <trace/events/skb.h>
78 #include <linux/highmem.h>
79 #include <linux/capability.h>
80 #include <linux/user_namespace.h>
81 #include <linux/indirect_call_wrapper.h>
82 
83 #include "dev.h"
84 #include "sock_destructor.h"
85 
86 struct kmem_cache *skbuff_head_cache __ro_after_init;
87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88 #ifdef CONFIG_SKB_EXTENSIONS
89 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90 #endif
91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92 EXPORT_SYMBOL(sysctl_max_skb_frags);
93 
94 #undef FN
95 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
96 const char * const drop_reasons[] = {
97 	[SKB_CONSUMED] = "CONSUMED",
98 	DEFINE_DROP_REASON(FN, FN)
99 };
100 EXPORT_SYMBOL(drop_reasons);
101 
102 /**
103  *	skb_panic - private function for out-of-line support
104  *	@skb:	buffer
105  *	@sz:	size
106  *	@addr:	address
107  *	@msg:	skb_over_panic or skb_under_panic
108  *
109  *	Out-of-line support for skb_put() and skb_push().
110  *	Called via the wrapper skb_over_panic() or skb_under_panic().
111  *	Keep out of line to prevent kernel bloat.
112  *	__builtin_return_address is not used because it is not always reliable.
113  */
114 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
115 		      const char msg[])
116 {
117 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
118 		 msg, addr, skb->len, sz, skb->head, skb->data,
119 		 (unsigned long)skb->tail, (unsigned long)skb->end,
120 		 skb->dev ? skb->dev->name : "<NULL>");
121 	BUG();
122 }
123 
124 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
125 {
126 	skb_panic(skb, sz, addr, __func__);
127 }
128 
129 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
130 {
131 	skb_panic(skb, sz, addr, __func__);
132 }
133 
134 #define NAPI_SKB_CACHE_SIZE	64
135 #define NAPI_SKB_CACHE_BULK	16
136 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
137 
138 #if PAGE_SIZE == SZ_4K
139 
140 #define NAPI_HAS_SMALL_PAGE_FRAG	1
141 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
142 
143 /* specialized page frag allocator using a single order 0 page
144  * and slicing it into 1K sized fragment. Constrained to systems
145  * with a very limited amount of 1K fragments fitting a single
146  * page - to avoid excessive truesize underestimation
147  */
148 
149 struct page_frag_1k {
150 	void *va;
151 	u16 offset;
152 	bool pfmemalloc;
153 };
154 
155 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
156 {
157 	struct page *page;
158 	int offset;
159 
160 	offset = nc->offset - SZ_1K;
161 	if (likely(offset >= 0))
162 		goto use_frag;
163 
164 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
165 	if (!page)
166 		return NULL;
167 
168 	nc->va = page_address(page);
169 	nc->pfmemalloc = page_is_pfmemalloc(page);
170 	offset = PAGE_SIZE - SZ_1K;
171 	page_ref_add(page, offset / SZ_1K);
172 
173 use_frag:
174 	nc->offset = offset;
175 	return nc->va + offset;
176 }
177 #else
178 
179 /* the small page is actually unused in this build; add dummy helpers
180  * to please the compiler and avoid later preprocessor's conditionals
181  */
182 #define NAPI_HAS_SMALL_PAGE_FRAG	0
183 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
184 
185 struct page_frag_1k {
186 };
187 
188 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
189 {
190 	return NULL;
191 }
192 
193 #endif
194 
195 struct napi_alloc_cache {
196 	struct page_frag_cache page;
197 	struct page_frag_1k page_small;
198 	unsigned int skb_count;
199 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
200 };
201 
202 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
203 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
204 
205 /* Double check that napi_get_frags() allocates skbs with
206  * skb->head being backed by slab, not a page fragment.
207  * This is to make sure bug fixed in 3226b158e67c
208  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
209  * does not accidentally come back.
210  */
211 void napi_get_frags_check(struct napi_struct *napi)
212 {
213 	struct sk_buff *skb;
214 
215 	local_bh_disable();
216 	skb = napi_get_frags(napi);
217 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
218 	napi_free_frags(napi);
219 	local_bh_enable();
220 }
221 
222 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
223 {
224 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
225 
226 	fragsz = SKB_DATA_ALIGN(fragsz);
227 
228 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
229 }
230 EXPORT_SYMBOL(__napi_alloc_frag_align);
231 
232 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
233 {
234 	void *data;
235 
236 	fragsz = SKB_DATA_ALIGN(fragsz);
237 	if (in_hardirq() || irqs_disabled()) {
238 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
239 
240 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
241 	} else {
242 		struct napi_alloc_cache *nc;
243 
244 		local_bh_disable();
245 		nc = this_cpu_ptr(&napi_alloc_cache);
246 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
247 		local_bh_enable();
248 	}
249 	return data;
250 }
251 EXPORT_SYMBOL(__netdev_alloc_frag_align);
252 
253 static struct sk_buff *napi_skb_cache_get(void)
254 {
255 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
256 	struct sk_buff *skb;
257 
258 	if (unlikely(!nc->skb_count)) {
259 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
260 						      GFP_ATOMIC,
261 						      NAPI_SKB_CACHE_BULK,
262 						      nc->skb_cache);
263 		if (unlikely(!nc->skb_count))
264 			return NULL;
265 	}
266 
267 	skb = nc->skb_cache[--nc->skb_count];
268 	kasan_unpoison_object_data(skbuff_head_cache, skb);
269 
270 	return skb;
271 }
272 
273 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
274 					 unsigned int size)
275 {
276 	struct skb_shared_info *shinfo;
277 
278 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
279 
280 	/* Assumes caller memset cleared SKB */
281 	skb->truesize = SKB_TRUESIZE(size);
282 	refcount_set(&skb->users, 1);
283 	skb->head = data;
284 	skb->data = data;
285 	skb_reset_tail_pointer(skb);
286 	skb_set_end_offset(skb, size);
287 	skb->mac_header = (typeof(skb->mac_header))~0U;
288 	skb->transport_header = (typeof(skb->transport_header))~0U;
289 	skb->alloc_cpu = raw_smp_processor_id();
290 	/* make sure we initialize shinfo sequentially */
291 	shinfo = skb_shinfo(skb);
292 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
293 	atomic_set(&shinfo->dataref, 1);
294 
295 	skb_set_kcov_handle(skb, kcov_common_handle());
296 }
297 
298 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
299 				     unsigned int *size)
300 {
301 	void *resized;
302 
303 	/* Must find the allocation size (and grow it to match). */
304 	*size = ksize(data);
305 	/* krealloc() will immediately return "data" when
306 	 * "ksize(data)" is requested: it is the existing upper
307 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
308 	 * that this "new" pointer needs to be passed back to the
309 	 * caller for use so the __alloc_size hinting will be
310 	 * tracked correctly.
311 	 */
312 	resized = krealloc(data, *size, GFP_ATOMIC);
313 	WARN_ON_ONCE(resized != data);
314 	return resized;
315 }
316 
317 /* build_skb() variant which can operate on slab buffers.
318  * Note that this should be used sparingly as slab buffers
319  * cannot be combined efficiently by GRO!
320  */
321 struct sk_buff *slab_build_skb(void *data)
322 {
323 	struct sk_buff *skb;
324 	unsigned int size;
325 
326 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
327 	if (unlikely(!skb))
328 		return NULL;
329 
330 	memset(skb, 0, offsetof(struct sk_buff, tail));
331 	data = __slab_build_skb(skb, data, &size);
332 	__finalize_skb_around(skb, data, size);
333 
334 	return skb;
335 }
336 EXPORT_SYMBOL(slab_build_skb);
337 
338 /* Caller must provide SKB that is memset cleared */
339 static void __build_skb_around(struct sk_buff *skb, void *data,
340 			       unsigned int frag_size)
341 {
342 	unsigned int size = frag_size;
343 
344 	/* frag_size == 0 is considered deprecated now. Callers
345 	 * using slab buffer should use slab_build_skb() instead.
346 	 */
347 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
348 		data = __slab_build_skb(skb, data, &size);
349 
350 	__finalize_skb_around(skb, data, size);
351 }
352 
353 /**
354  * __build_skb - build a network buffer
355  * @data: data buffer provided by caller
356  * @frag_size: size of data (must not be 0)
357  *
358  * Allocate a new &sk_buff. Caller provides space holding head and
359  * skb_shared_info. @data must have been allocated from the page
360  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
361  * allocation is deprecated, and callers should use slab_build_skb()
362  * instead.)
363  * The return is the new skb buffer.
364  * On a failure the return is %NULL, and @data is not freed.
365  * Notes :
366  *  Before IO, driver allocates only data buffer where NIC put incoming frame
367  *  Driver should add room at head (NET_SKB_PAD) and
368  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
369  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
370  *  before giving packet to stack.
371  *  RX rings only contains data buffers, not full skbs.
372  */
373 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
374 {
375 	struct sk_buff *skb;
376 
377 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
378 	if (unlikely(!skb))
379 		return NULL;
380 
381 	memset(skb, 0, offsetof(struct sk_buff, tail));
382 	__build_skb_around(skb, data, frag_size);
383 
384 	return skb;
385 }
386 
387 /* build_skb() is wrapper over __build_skb(), that specifically
388  * takes care of skb->head and skb->pfmemalloc
389  */
390 struct sk_buff *build_skb(void *data, unsigned int frag_size)
391 {
392 	struct sk_buff *skb = __build_skb(data, frag_size);
393 
394 	if (skb && frag_size) {
395 		skb->head_frag = 1;
396 		if (page_is_pfmemalloc(virt_to_head_page(data)))
397 			skb->pfmemalloc = 1;
398 	}
399 	return skb;
400 }
401 EXPORT_SYMBOL(build_skb);
402 
403 /**
404  * build_skb_around - build a network buffer around provided skb
405  * @skb: sk_buff provide by caller, must be memset cleared
406  * @data: data buffer provided by caller
407  * @frag_size: size of data
408  */
409 struct sk_buff *build_skb_around(struct sk_buff *skb,
410 				 void *data, unsigned int frag_size)
411 {
412 	if (unlikely(!skb))
413 		return NULL;
414 
415 	__build_skb_around(skb, data, frag_size);
416 
417 	if (frag_size) {
418 		skb->head_frag = 1;
419 		if (page_is_pfmemalloc(virt_to_head_page(data)))
420 			skb->pfmemalloc = 1;
421 	}
422 	return skb;
423 }
424 EXPORT_SYMBOL(build_skb_around);
425 
426 /**
427  * __napi_build_skb - build a network buffer
428  * @data: data buffer provided by caller
429  * @frag_size: size of data
430  *
431  * Version of __build_skb() that uses NAPI percpu caches to obtain
432  * skbuff_head instead of inplace allocation.
433  *
434  * Returns a new &sk_buff on success, %NULL on allocation failure.
435  */
436 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
437 {
438 	struct sk_buff *skb;
439 
440 	skb = napi_skb_cache_get();
441 	if (unlikely(!skb))
442 		return NULL;
443 
444 	memset(skb, 0, offsetof(struct sk_buff, tail));
445 	__build_skb_around(skb, data, frag_size);
446 
447 	return skb;
448 }
449 
450 /**
451  * napi_build_skb - build a network buffer
452  * @data: data buffer provided by caller
453  * @frag_size: size of data
454  *
455  * Version of __napi_build_skb() that takes care of skb->head_frag
456  * and skb->pfmemalloc when the data is a page or page fragment.
457  *
458  * Returns a new &sk_buff on success, %NULL on allocation failure.
459  */
460 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
461 {
462 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
463 
464 	if (likely(skb) && frag_size) {
465 		skb->head_frag = 1;
466 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
467 	}
468 
469 	return skb;
470 }
471 EXPORT_SYMBOL(napi_build_skb);
472 
473 /*
474  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
475  * the caller if emergency pfmemalloc reserves are being used. If it is and
476  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
477  * may be used. Otherwise, the packet data may be discarded until enough
478  * memory is free
479  */
480 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
481 			     bool *pfmemalloc)
482 {
483 	void *obj;
484 	bool ret_pfmemalloc = false;
485 
486 	/*
487 	 * Try a regular allocation, when that fails and we're not entitled
488 	 * to the reserves, fail.
489 	 */
490 	obj = kmalloc_node_track_caller(size,
491 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
492 					node);
493 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
494 		goto out;
495 
496 	/* Try again but now we are using pfmemalloc reserves */
497 	ret_pfmemalloc = true;
498 	obj = kmalloc_node_track_caller(size, flags, node);
499 
500 out:
501 	if (pfmemalloc)
502 		*pfmemalloc = ret_pfmemalloc;
503 
504 	return obj;
505 }
506 
507 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
508  *	'private' fields and also do memory statistics to find all the
509  *	[BEEP] leaks.
510  *
511  */
512 
513 /**
514  *	__alloc_skb	-	allocate a network buffer
515  *	@size: size to allocate
516  *	@gfp_mask: allocation mask
517  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
518  *		instead of head cache and allocate a cloned (child) skb.
519  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
520  *		allocations in case the data is required for writeback
521  *	@node: numa node to allocate memory on
522  *
523  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
524  *	tail room of at least size bytes. The object has a reference count
525  *	of one. The return is the buffer. On a failure the return is %NULL.
526  *
527  *	Buffers may only be allocated from interrupts using a @gfp_mask of
528  *	%GFP_ATOMIC.
529  */
530 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
531 			    int flags, int node)
532 {
533 	struct kmem_cache *cache;
534 	struct sk_buff *skb;
535 	unsigned int osize;
536 	bool pfmemalloc;
537 	u8 *data;
538 
539 	cache = (flags & SKB_ALLOC_FCLONE)
540 		? skbuff_fclone_cache : skbuff_head_cache;
541 
542 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
543 		gfp_mask |= __GFP_MEMALLOC;
544 
545 	/* Get the HEAD */
546 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
547 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
548 		skb = napi_skb_cache_get();
549 	else
550 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
551 	if (unlikely(!skb))
552 		return NULL;
553 	prefetchw(skb);
554 
555 	/* We do our best to align skb_shared_info on a separate cache
556 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
557 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
558 	 * Both skb->head and skb_shared_info are cache line aligned.
559 	 */
560 	size = SKB_DATA_ALIGN(size);
561 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
562 	osize = kmalloc_size_roundup(size);
563 	data = kmalloc_reserve(osize, gfp_mask, node, &pfmemalloc);
564 	if (unlikely(!data))
565 		goto nodata;
566 	/* kmalloc_size_roundup() might give us more room than requested.
567 	 * Put skb_shared_info exactly at the end of allocated zone,
568 	 * to allow max possible filling before reallocation.
569 	 */
570 	size = SKB_WITH_OVERHEAD(osize);
571 	prefetchw(data + size);
572 
573 	/*
574 	 * Only clear those fields we need to clear, not those that we will
575 	 * actually initialise below. Hence, don't put any more fields after
576 	 * the tail pointer in struct sk_buff!
577 	 */
578 	memset(skb, 0, offsetof(struct sk_buff, tail));
579 	__build_skb_around(skb, data, osize);
580 	skb->pfmemalloc = pfmemalloc;
581 
582 	if (flags & SKB_ALLOC_FCLONE) {
583 		struct sk_buff_fclones *fclones;
584 
585 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
586 
587 		skb->fclone = SKB_FCLONE_ORIG;
588 		refcount_set(&fclones->fclone_ref, 1);
589 	}
590 
591 	return skb;
592 
593 nodata:
594 	kmem_cache_free(cache, skb);
595 	return NULL;
596 }
597 EXPORT_SYMBOL(__alloc_skb);
598 
599 /**
600  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
601  *	@dev: network device to receive on
602  *	@len: length to allocate
603  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
604  *
605  *	Allocate a new &sk_buff and assign it a usage count of one. The
606  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
607  *	the headroom they think they need without accounting for the
608  *	built in space. The built in space is used for optimisations.
609  *
610  *	%NULL is returned if there is no free memory.
611  */
612 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
613 				   gfp_t gfp_mask)
614 {
615 	struct page_frag_cache *nc;
616 	struct sk_buff *skb;
617 	bool pfmemalloc;
618 	void *data;
619 
620 	len += NET_SKB_PAD;
621 
622 	/* If requested length is either too small or too big,
623 	 * we use kmalloc() for skb->head allocation.
624 	 */
625 	if (len <= SKB_WITH_OVERHEAD(1024) ||
626 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
627 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
628 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
629 		if (!skb)
630 			goto skb_fail;
631 		goto skb_success;
632 	}
633 
634 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
635 	len = SKB_DATA_ALIGN(len);
636 
637 	if (sk_memalloc_socks())
638 		gfp_mask |= __GFP_MEMALLOC;
639 
640 	if (in_hardirq() || irqs_disabled()) {
641 		nc = this_cpu_ptr(&netdev_alloc_cache);
642 		data = page_frag_alloc(nc, len, gfp_mask);
643 		pfmemalloc = nc->pfmemalloc;
644 	} else {
645 		local_bh_disable();
646 		nc = this_cpu_ptr(&napi_alloc_cache.page);
647 		data = page_frag_alloc(nc, len, gfp_mask);
648 		pfmemalloc = nc->pfmemalloc;
649 		local_bh_enable();
650 	}
651 
652 	if (unlikely(!data))
653 		return NULL;
654 
655 	skb = __build_skb(data, len);
656 	if (unlikely(!skb)) {
657 		skb_free_frag(data);
658 		return NULL;
659 	}
660 
661 	if (pfmemalloc)
662 		skb->pfmemalloc = 1;
663 	skb->head_frag = 1;
664 
665 skb_success:
666 	skb_reserve(skb, NET_SKB_PAD);
667 	skb->dev = dev;
668 
669 skb_fail:
670 	return skb;
671 }
672 EXPORT_SYMBOL(__netdev_alloc_skb);
673 
674 /**
675  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
676  *	@napi: napi instance this buffer was allocated for
677  *	@len: length to allocate
678  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
679  *
680  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
681  *	attempt to allocate the head from a special reserved region used
682  *	only for NAPI Rx allocation.  By doing this we can save several
683  *	CPU cycles by avoiding having to disable and re-enable IRQs.
684  *
685  *	%NULL is returned if there is no free memory.
686  */
687 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
688 				 gfp_t gfp_mask)
689 {
690 	struct napi_alloc_cache *nc;
691 	struct sk_buff *skb;
692 	bool pfmemalloc;
693 	void *data;
694 
695 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
696 	len += NET_SKB_PAD + NET_IP_ALIGN;
697 
698 	/* If requested length is either too small or too big,
699 	 * we use kmalloc() for skb->head allocation.
700 	 * When the small frag allocator is available, prefer it over kmalloc
701 	 * for small fragments
702 	 */
703 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
704 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
705 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
706 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
707 				  NUMA_NO_NODE);
708 		if (!skb)
709 			goto skb_fail;
710 		goto skb_success;
711 	}
712 
713 	nc = this_cpu_ptr(&napi_alloc_cache);
714 
715 	if (sk_memalloc_socks())
716 		gfp_mask |= __GFP_MEMALLOC;
717 
718 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
719 		/* we are artificially inflating the allocation size, but
720 		 * that is not as bad as it may look like, as:
721 		 * - 'len' less than GRO_MAX_HEAD makes little sense
722 		 * - On most systems, larger 'len' values lead to fragment
723 		 *   size above 512 bytes
724 		 * - kmalloc would use the kmalloc-1k slab for such values
725 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
726 		 *   little networking, as that implies no WiFi and no
727 		 *   tunnels support, and 32 bits arches.
728 		 */
729 		len = SZ_1K;
730 
731 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
732 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
733 	} else {
734 		len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
735 		len = SKB_DATA_ALIGN(len);
736 
737 		data = page_frag_alloc(&nc->page, len, gfp_mask);
738 		pfmemalloc = nc->page.pfmemalloc;
739 	}
740 
741 	if (unlikely(!data))
742 		return NULL;
743 
744 	skb = __napi_build_skb(data, len);
745 	if (unlikely(!skb)) {
746 		skb_free_frag(data);
747 		return NULL;
748 	}
749 
750 	if (pfmemalloc)
751 		skb->pfmemalloc = 1;
752 	skb->head_frag = 1;
753 
754 skb_success:
755 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
756 	skb->dev = napi->dev;
757 
758 skb_fail:
759 	return skb;
760 }
761 EXPORT_SYMBOL(__napi_alloc_skb);
762 
763 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
764 		     int size, unsigned int truesize)
765 {
766 	skb_fill_page_desc(skb, i, page, off, size);
767 	skb->len += size;
768 	skb->data_len += size;
769 	skb->truesize += truesize;
770 }
771 EXPORT_SYMBOL(skb_add_rx_frag);
772 
773 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
774 			  unsigned int truesize)
775 {
776 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
777 
778 	skb_frag_size_add(frag, size);
779 	skb->len += size;
780 	skb->data_len += size;
781 	skb->truesize += truesize;
782 }
783 EXPORT_SYMBOL(skb_coalesce_rx_frag);
784 
785 static void skb_drop_list(struct sk_buff **listp)
786 {
787 	kfree_skb_list(*listp);
788 	*listp = NULL;
789 }
790 
791 static inline void skb_drop_fraglist(struct sk_buff *skb)
792 {
793 	skb_drop_list(&skb_shinfo(skb)->frag_list);
794 }
795 
796 static void skb_clone_fraglist(struct sk_buff *skb)
797 {
798 	struct sk_buff *list;
799 
800 	skb_walk_frags(skb, list)
801 		skb_get(list);
802 }
803 
804 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
805 {
806 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
807 		return false;
808 	return page_pool_return_skb_page(virt_to_page(data));
809 }
810 
811 static void skb_free_head(struct sk_buff *skb)
812 {
813 	unsigned char *head = skb->head;
814 
815 	if (skb->head_frag) {
816 		if (skb_pp_recycle(skb, head))
817 			return;
818 		skb_free_frag(head);
819 	} else {
820 		kfree(head);
821 	}
822 }
823 
824 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
825 {
826 	struct skb_shared_info *shinfo = skb_shinfo(skb);
827 	int i;
828 
829 	if (skb->cloned &&
830 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
831 			      &shinfo->dataref))
832 		goto exit;
833 
834 	if (skb_zcopy(skb)) {
835 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
836 
837 		skb_zcopy_clear(skb, true);
838 		if (skip_unref)
839 			goto free_head;
840 	}
841 
842 	for (i = 0; i < shinfo->nr_frags; i++)
843 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
844 
845 free_head:
846 	if (shinfo->frag_list)
847 		kfree_skb_list_reason(shinfo->frag_list, reason);
848 
849 	skb_free_head(skb);
850 exit:
851 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
852 	 * bit is only set on the head though, so in order to avoid races
853 	 * while trying to recycle fragments on __skb_frag_unref() we need
854 	 * to make one SKB responsible for triggering the recycle path.
855 	 * So disable the recycling bit if an SKB is cloned and we have
856 	 * additional references to the fragmented part of the SKB.
857 	 * Eventually the last SKB will have the recycling bit set and it's
858 	 * dataref set to 0, which will trigger the recycling
859 	 */
860 	skb->pp_recycle = 0;
861 }
862 
863 /*
864  *	Free an skbuff by memory without cleaning the state.
865  */
866 static void kfree_skbmem(struct sk_buff *skb)
867 {
868 	struct sk_buff_fclones *fclones;
869 
870 	switch (skb->fclone) {
871 	case SKB_FCLONE_UNAVAILABLE:
872 		kmem_cache_free(skbuff_head_cache, skb);
873 		return;
874 
875 	case SKB_FCLONE_ORIG:
876 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
877 
878 		/* We usually free the clone (TX completion) before original skb
879 		 * This test would have no chance to be true for the clone,
880 		 * while here, branch prediction will be good.
881 		 */
882 		if (refcount_read(&fclones->fclone_ref) == 1)
883 			goto fastpath;
884 		break;
885 
886 	default: /* SKB_FCLONE_CLONE */
887 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
888 		break;
889 	}
890 	if (!refcount_dec_and_test(&fclones->fclone_ref))
891 		return;
892 fastpath:
893 	kmem_cache_free(skbuff_fclone_cache, fclones);
894 }
895 
896 void skb_release_head_state(struct sk_buff *skb)
897 {
898 	skb_dst_drop(skb);
899 	if (skb->destructor) {
900 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
901 		skb->destructor(skb);
902 	}
903 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
904 	nf_conntrack_put(skb_nfct(skb));
905 #endif
906 	skb_ext_put(skb);
907 }
908 
909 /* Free everything but the sk_buff shell. */
910 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
911 {
912 	skb_release_head_state(skb);
913 	if (likely(skb->head))
914 		skb_release_data(skb, reason);
915 }
916 
917 /**
918  *	__kfree_skb - private function
919  *	@skb: buffer
920  *
921  *	Free an sk_buff. Release anything attached to the buffer.
922  *	Clean the state. This is an internal helper function. Users should
923  *	always call kfree_skb
924  */
925 
926 void __kfree_skb(struct sk_buff *skb)
927 {
928 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
929 	kfree_skbmem(skb);
930 }
931 EXPORT_SYMBOL(__kfree_skb);
932 
933 /**
934  *	kfree_skb_reason - free an sk_buff with special reason
935  *	@skb: buffer to free
936  *	@reason: reason why this skb is dropped
937  *
938  *	Drop a reference to the buffer and free it if the usage count has
939  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
940  *	tracepoint.
941  */
942 void __fix_address
943 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
944 {
945 	if (unlikely(!skb_unref(skb)))
946 		return;
947 
948 	DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX);
949 
950 	if (reason == SKB_CONSUMED)
951 		trace_consume_skb(skb);
952 	else
953 		trace_kfree_skb(skb, __builtin_return_address(0), reason);
954 	__kfree_skb(skb);
955 }
956 EXPORT_SYMBOL(kfree_skb_reason);
957 
958 void kfree_skb_list_reason(struct sk_buff *segs,
959 			   enum skb_drop_reason reason)
960 {
961 	while (segs) {
962 		struct sk_buff *next = segs->next;
963 
964 		kfree_skb_reason(segs, reason);
965 		segs = next;
966 	}
967 }
968 EXPORT_SYMBOL(kfree_skb_list_reason);
969 
970 /* Dump skb information and contents.
971  *
972  * Must only be called from net_ratelimit()-ed paths.
973  *
974  * Dumps whole packets if full_pkt, only headers otherwise.
975  */
976 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
977 {
978 	struct skb_shared_info *sh = skb_shinfo(skb);
979 	struct net_device *dev = skb->dev;
980 	struct sock *sk = skb->sk;
981 	struct sk_buff *list_skb;
982 	bool has_mac, has_trans;
983 	int headroom, tailroom;
984 	int i, len, seg_len;
985 
986 	if (full_pkt)
987 		len = skb->len;
988 	else
989 		len = min_t(int, skb->len, MAX_HEADER + 128);
990 
991 	headroom = skb_headroom(skb);
992 	tailroom = skb_tailroom(skb);
993 
994 	has_mac = skb_mac_header_was_set(skb);
995 	has_trans = skb_transport_header_was_set(skb);
996 
997 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
998 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
999 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1000 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1001 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1002 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1003 	       has_mac ? skb->mac_header : -1,
1004 	       has_mac ? skb_mac_header_len(skb) : -1,
1005 	       skb->network_header,
1006 	       has_trans ? skb_network_header_len(skb) : -1,
1007 	       has_trans ? skb->transport_header : -1,
1008 	       sh->tx_flags, sh->nr_frags,
1009 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1010 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
1011 	       skb->csum_valid, skb->csum_level,
1012 	       skb->hash, skb->sw_hash, skb->l4_hash,
1013 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1014 
1015 	if (dev)
1016 		printk("%sdev name=%s feat=%pNF\n",
1017 		       level, dev->name, &dev->features);
1018 	if (sk)
1019 		printk("%ssk family=%hu type=%u proto=%u\n",
1020 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1021 
1022 	if (full_pkt && headroom)
1023 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1024 			       16, 1, skb->head, headroom, false);
1025 
1026 	seg_len = min_t(int, skb_headlen(skb), len);
1027 	if (seg_len)
1028 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1029 			       16, 1, skb->data, seg_len, false);
1030 	len -= seg_len;
1031 
1032 	if (full_pkt && tailroom)
1033 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1034 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1035 
1036 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1037 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1038 		u32 p_off, p_len, copied;
1039 		struct page *p;
1040 		u8 *vaddr;
1041 
1042 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1043 				      skb_frag_size(frag), p, p_off, p_len,
1044 				      copied) {
1045 			seg_len = min_t(int, p_len, len);
1046 			vaddr = kmap_atomic(p);
1047 			print_hex_dump(level, "skb frag:     ",
1048 				       DUMP_PREFIX_OFFSET,
1049 				       16, 1, vaddr + p_off, seg_len, false);
1050 			kunmap_atomic(vaddr);
1051 			len -= seg_len;
1052 			if (!len)
1053 				break;
1054 		}
1055 	}
1056 
1057 	if (full_pkt && skb_has_frag_list(skb)) {
1058 		printk("skb fraglist:\n");
1059 		skb_walk_frags(skb, list_skb)
1060 			skb_dump(level, list_skb, true);
1061 	}
1062 }
1063 EXPORT_SYMBOL(skb_dump);
1064 
1065 /**
1066  *	skb_tx_error - report an sk_buff xmit error
1067  *	@skb: buffer that triggered an error
1068  *
1069  *	Report xmit error if a device callback is tracking this skb.
1070  *	skb must be freed afterwards.
1071  */
1072 void skb_tx_error(struct sk_buff *skb)
1073 {
1074 	if (skb) {
1075 		skb_zcopy_downgrade_managed(skb);
1076 		skb_zcopy_clear(skb, true);
1077 	}
1078 }
1079 EXPORT_SYMBOL(skb_tx_error);
1080 
1081 #ifdef CONFIG_TRACEPOINTS
1082 /**
1083  *	consume_skb - free an skbuff
1084  *	@skb: buffer to free
1085  *
1086  *	Drop a ref to the buffer and free it if the usage count has hit zero
1087  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1088  *	is being dropped after a failure and notes that
1089  */
1090 void consume_skb(struct sk_buff *skb)
1091 {
1092 	if (!skb_unref(skb))
1093 		return;
1094 
1095 	trace_consume_skb(skb);
1096 	__kfree_skb(skb);
1097 }
1098 EXPORT_SYMBOL(consume_skb);
1099 #endif
1100 
1101 /**
1102  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1103  *	@skb: buffer to free
1104  *
1105  *	Alike consume_skb(), but this variant assumes that this is the last
1106  *	skb reference and all the head states have been already dropped
1107  */
1108 void __consume_stateless_skb(struct sk_buff *skb)
1109 {
1110 	trace_consume_skb(skb);
1111 	skb_release_data(skb, SKB_CONSUMED);
1112 	kfree_skbmem(skb);
1113 }
1114 
1115 static void napi_skb_cache_put(struct sk_buff *skb)
1116 {
1117 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1118 	u32 i;
1119 
1120 	kasan_poison_object_data(skbuff_head_cache, skb);
1121 	nc->skb_cache[nc->skb_count++] = skb;
1122 
1123 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1124 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1125 			kasan_unpoison_object_data(skbuff_head_cache,
1126 						   nc->skb_cache[i]);
1127 
1128 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
1129 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1130 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1131 	}
1132 }
1133 
1134 void __kfree_skb_defer(struct sk_buff *skb)
1135 {
1136 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1137 	napi_skb_cache_put(skb);
1138 }
1139 
1140 void napi_skb_free_stolen_head(struct sk_buff *skb)
1141 {
1142 	if (unlikely(skb->slow_gro)) {
1143 		nf_reset_ct(skb);
1144 		skb_dst_drop(skb);
1145 		skb_ext_put(skb);
1146 		skb_orphan(skb);
1147 		skb->slow_gro = 0;
1148 	}
1149 	napi_skb_cache_put(skb);
1150 }
1151 
1152 void napi_consume_skb(struct sk_buff *skb, int budget)
1153 {
1154 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1155 	if (unlikely(!budget)) {
1156 		dev_consume_skb_any(skb);
1157 		return;
1158 	}
1159 
1160 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1161 
1162 	if (!skb_unref(skb))
1163 		return;
1164 
1165 	/* if reaching here SKB is ready to free */
1166 	trace_consume_skb(skb);
1167 
1168 	/* if SKB is a clone, don't handle this case */
1169 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1170 		__kfree_skb(skb);
1171 		return;
1172 	}
1173 
1174 	skb_release_all(skb, SKB_CONSUMED);
1175 	napi_skb_cache_put(skb);
1176 }
1177 EXPORT_SYMBOL(napi_consume_skb);
1178 
1179 /* Make sure a field is contained by headers group */
1180 #define CHECK_SKB_FIELD(field) \
1181 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1182 		     offsetof(struct sk_buff, headers.field));	\
1183 
1184 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1185 {
1186 	new->tstamp		= old->tstamp;
1187 	/* We do not copy old->sk */
1188 	new->dev		= old->dev;
1189 	memcpy(new->cb, old->cb, sizeof(old->cb));
1190 	skb_dst_copy(new, old);
1191 	__skb_ext_copy(new, old);
1192 	__nf_copy(new, old, false);
1193 
1194 	/* Note : this field could be in the headers group.
1195 	 * It is not yet because we do not want to have a 16 bit hole
1196 	 */
1197 	new->queue_mapping = old->queue_mapping;
1198 
1199 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1200 	CHECK_SKB_FIELD(protocol);
1201 	CHECK_SKB_FIELD(csum);
1202 	CHECK_SKB_FIELD(hash);
1203 	CHECK_SKB_FIELD(priority);
1204 	CHECK_SKB_FIELD(skb_iif);
1205 	CHECK_SKB_FIELD(vlan_proto);
1206 	CHECK_SKB_FIELD(vlan_tci);
1207 	CHECK_SKB_FIELD(transport_header);
1208 	CHECK_SKB_FIELD(network_header);
1209 	CHECK_SKB_FIELD(mac_header);
1210 	CHECK_SKB_FIELD(inner_protocol);
1211 	CHECK_SKB_FIELD(inner_transport_header);
1212 	CHECK_SKB_FIELD(inner_network_header);
1213 	CHECK_SKB_FIELD(inner_mac_header);
1214 	CHECK_SKB_FIELD(mark);
1215 #ifdef CONFIG_NETWORK_SECMARK
1216 	CHECK_SKB_FIELD(secmark);
1217 #endif
1218 #ifdef CONFIG_NET_RX_BUSY_POLL
1219 	CHECK_SKB_FIELD(napi_id);
1220 #endif
1221 	CHECK_SKB_FIELD(alloc_cpu);
1222 #ifdef CONFIG_XPS
1223 	CHECK_SKB_FIELD(sender_cpu);
1224 #endif
1225 #ifdef CONFIG_NET_SCHED
1226 	CHECK_SKB_FIELD(tc_index);
1227 #endif
1228 
1229 }
1230 
1231 /*
1232  * You should not add any new code to this function.  Add it to
1233  * __copy_skb_header above instead.
1234  */
1235 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1236 {
1237 #define C(x) n->x = skb->x
1238 
1239 	n->next = n->prev = NULL;
1240 	n->sk = NULL;
1241 	__copy_skb_header(n, skb);
1242 
1243 	C(len);
1244 	C(data_len);
1245 	C(mac_len);
1246 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1247 	n->cloned = 1;
1248 	n->nohdr = 0;
1249 	n->peeked = 0;
1250 	C(pfmemalloc);
1251 	C(pp_recycle);
1252 	n->destructor = NULL;
1253 	C(tail);
1254 	C(end);
1255 	C(head);
1256 	C(head_frag);
1257 	C(data);
1258 	C(truesize);
1259 	refcount_set(&n->users, 1);
1260 
1261 	atomic_inc(&(skb_shinfo(skb)->dataref));
1262 	skb->cloned = 1;
1263 
1264 	return n;
1265 #undef C
1266 }
1267 
1268 /**
1269  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1270  * @first: first sk_buff of the msg
1271  */
1272 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1273 {
1274 	struct sk_buff *n;
1275 
1276 	n = alloc_skb(0, GFP_ATOMIC);
1277 	if (!n)
1278 		return NULL;
1279 
1280 	n->len = first->len;
1281 	n->data_len = first->len;
1282 	n->truesize = first->truesize;
1283 
1284 	skb_shinfo(n)->frag_list = first;
1285 
1286 	__copy_skb_header(n, first);
1287 	n->destructor = NULL;
1288 
1289 	return n;
1290 }
1291 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1292 
1293 /**
1294  *	skb_morph	-	morph one skb into another
1295  *	@dst: the skb to receive the contents
1296  *	@src: the skb to supply the contents
1297  *
1298  *	This is identical to skb_clone except that the target skb is
1299  *	supplied by the user.
1300  *
1301  *	The target skb is returned upon exit.
1302  */
1303 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1304 {
1305 	skb_release_all(dst, SKB_CONSUMED);
1306 	return __skb_clone(dst, src);
1307 }
1308 EXPORT_SYMBOL_GPL(skb_morph);
1309 
1310 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1311 {
1312 	unsigned long max_pg, num_pg, new_pg, old_pg;
1313 	struct user_struct *user;
1314 
1315 	if (capable(CAP_IPC_LOCK) || !size)
1316 		return 0;
1317 
1318 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1319 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1320 	user = mmp->user ? : current_user();
1321 
1322 	old_pg = atomic_long_read(&user->locked_vm);
1323 	do {
1324 		new_pg = old_pg + num_pg;
1325 		if (new_pg > max_pg)
1326 			return -ENOBUFS;
1327 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1328 
1329 	if (!mmp->user) {
1330 		mmp->user = get_uid(user);
1331 		mmp->num_pg = num_pg;
1332 	} else {
1333 		mmp->num_pg += num_pg;
1334 	}
1335 
1336 	return 0;
1337 }
1338 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1339 
1340 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1341 {
1342 	if (mmp->user) {
1343 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1344 		free_uid(mmp->user);
1345 	}
1346 }
1347 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1348 
1349 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1350 {
1351 	struct ubuf_info_msgzc *uarg;
1352 	struct sk_buff *skb;
1353 
1354 	WARN_ON_ONCE(!in_task());
1355 
1356 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1357 	if (!skb)
1358 		return NULL;
1359 
1360 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1361 	uarg = (void *)skb->cb;
1362 	uarg->mmp.user = NULL;
1363 
1364 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1365 		kfree_skb(skb);
1366 		return NULL;
1367 	}
1368 
1369 	uarg->ubuf.callback = msg_zerocopy_callback;
1370 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1371 	uarg->len = 1;
1372 	uarg->bytelen = size;
1373 	uarg->zerocopy = 1;
1374 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1375 	refcount_set(&uarg->ubuf.refcnt, 1);
1376 	sock_hold(sk);
1377 
1378 	return &uarg->ubuf;
1379 }
1380 
1381 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1382 {
1383 	return container_of((void *)uarg, struct sk_buff, cb);
1384 }
1385 
1386 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1387 				       struct ubuf_info *uarg)
1388 {
1389 	if (uarg) {
1390 		struct ubuf_info_msgzc *uarg_zc;
1391 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1392 		u32 bytelen, next;
1393 
1394 		/* there might be non MSG_ZEROCOPY users */
1395 		if (uarg->callback != msg_zerocopy_callback)
1396 			return NULL;
1397 
1398 		/* realloc only when socket is locked (TCP, UDP cork),
1399 		 * so uarg->len and sk_zckey access is serialized
1400 		 */
1401 		if (!sock_owned_by_user(sk)) {
1402 			WARN_ON_ONCE(1);
1403 			return NULL;
1404 		}
1405 
1406 		uarg_zc = uarg_to_msgzc(uarg);
1407 		bytelen = uarg_zc->bytelen + size;
1408 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1409 			/* TCP can create new skb to attach new uarg */
1410 			if (sk->sk_type == SOCK_STREAM)
1411 				goto new_alloc;
1412 			return NULL;
1413 		}
1414 
1415 		next = (u32)atomic_read(&sk->sk_zckey);
1416 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1417 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1418 				return NULL;
1419 			uarg_zc->len++;
1420 			uarg_zc->bytelen = bytelen;
1421 			atomic_set(&sk->sk_zckey, ++next);
1422 
1423 			/* no extra ref when appending to datagram (MSG_MORE) */
1424 			if (sk->sk_type == SOCK_STREAM)
1425 				net_zcopy_get(uarg);
1426 
1427 			return uarg;
1428 		}
1429 	}
1430 
1431 new_alloc:
1432 	return msg_zerocopy_alloc(sk, size);
1433 }
1434 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1435 
1436 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1437 {
1438 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1439 	u32 old_lo, old_hi;
1440 	u64 sum_len;
1441 
1442 	old_lo = serr->ee.ee_info;
1443 	old_hi = serr->ee.ee_data;
1444 	sum_len = old_hi - old_lo + 1ULL + len;
1445 
1446 	if (sum_len >= (1ULL << 32))
1447 		return false;
1448 
1449 	if (lo != old_hi + 1)
1450 		return false;
1451 
1452 	serr->ee.ee_data += len;
1453 	return true;
1454 }
1455 
1456 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1457 {
1458 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1459 	struct sock_exterr_skb *serr;
1460 	struct sock *sk = skb->sk;
1461 	struct sk_buff_head *q;
1462 	unsigned long flags;
1463 	bool is_zerocopy;
1464 	u32 lo, hi;
1465 	u16 len;
1466 
1467 	mm_unaccount_pinned_pages(&uarg->mmp);
1468 
1469 	/* if !len, there was only 1 call, and it was aborted
1470 	 * so do not queue a completion notification
1471 	 */
1472 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1473 		goto release;
1474 
1475 	len = uarg->len;
1476 	lo = uarg->id;
1477 	hi = uarg->id + len - 1;
1478 	is_zerocopy = uarg->zerocopy;
1479 
1480 	serr = SKB_EXT_ERR(skb);
1481 	memset(serr, 0, sizeof(*serr));
1482 	serr->ee.ee_errno = 0;
1483 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1484 	serr->ee.ee_data = hi;
1485 	serr->ee.ee_info = lo;
1486 	if (!is_zerocopy)
1487 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1488 
1489 	q = &sk->sk_error_queue;
1490 	spin_lock_irqsave(&q->lock, flags);
1491 	tail = skb_peek_tail(q);
1492 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1493 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1494 		__skb_queue_tail(q, skb);
1495 		skb = NULL;
1496 	}
1497 	spin_unlock_irqrestore(&q->lock, flags);
1498 
1499 	sk_error_report(sk);
1500 
1501 release:
1502 	consume_skb(skb);
1503 	sock_put(sk);
1504 }
1505 
1506 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1507 			   bool success)
1508 {
1509 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1510 
1511 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1512 
1513 	if (refcount_dec_and_test(&uarg->refcnt))
1514 		__msg_zerocopy_callback(uarg_zc);
1515 }
1516 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1517 
1518 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1519 {
1520 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1521 
1522 	atomic_dec(&sk->sk_zckey);
1523 	uarg_to_msgzc(uarg)->len--;
1524 
1525 	if (have_uref)
1526 		msg_zerocopy_callback(NULL, uarg, true);
1527 }
1528 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1529 
1530 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1531 			     struct msghdr *msg, int len,
1532 			     struct ubuf_info *uarg)
1533 {
1534 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1535 	int err, orig_len = skb->len;
1536 
1537 	/* An skb can only point to one uarg. This edge case happens when
1538 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1539 	 */
1540 	if (orig_uarg && uarg != orig_uarg)
1541 		return -EEXIST;
1542 
1543 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1544 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1545 		struct sock *save_sk = skb->sk;
1546 
1547 		/* Streams do not free skb on error. Reset to prev state. */
1548 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1549 		skb->sk = sk;
1550 		___pskb_trim(skb, orig_len);
1551 		skb->sk = save_sk;
1552 		return err;
1553 	}
1554 
1555 	skb_zcopy_set(skb, uarg, NULL);
1556 	return skb->len - orig_len;
1557 }
1558 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1559 
1560 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1561 {
1562 	int i;
1563 
1564 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1565 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1566 		skb_frag_ref(skb, i);
1567 }
1568 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1569 
1570 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1571 			      gfp_t gfp_mask)
1572 {
1573 	if (skb_zcopy(orig)) {
1574 		if (skb_zcopy(nskb)) {
1575 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1576 			if (!gfp_mask) {
1577 				WARN_ON_ONCE(1);
1578 				return -ENOMEM;
1579 			}
1580 			if (skb_uarg(nskb) == skb_uarg(orig))
1581 				return 0;
1582 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1583 				return -EIO;
1584 		}
1585 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1586 	}
1587 	return 0;
1588 }
1589 
1590 /**
1591  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1592  *	@skb: the skb to modify
1593  *	@gfp_mask: allocation priority
1594  *
1595  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1596  *	It will copy all frags into kernel and drop the reference
1597  *	to userspace pages.
1598  *
1599  *	If this function is called from an interrupt gfp_mask() must be
1600  *	%GFP_ATOMIC.
1601  *
1602  *	Returns 0 on success or a negative error code on failure
1603  *	to allocate kernel memory to copy to.
1604  */
1605 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1606 {
1607 	int num_frags = skb_shinfo(skb)->nr_frags;
1608 	struct page *page, *head = NULL;
1609 	int i, new_frags;
1610 	u32 d_off;
1611 
1612 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1613 		return -EINVAL;
1614 
1615 	if (!num_frags)
1616 		goto release;
1617 
1618 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1619 	for (i = 0; i < new_frags; i++) {
1620 		page = alloc_page(gfp_mask);
1621 		if (!page) {
1622 			while (head) {
1623 				struct page *next = (struct page *)page_private(head);
1624 				put_page(head);
1625 				head = next;
1626 			}
1627 			return -ENOMEM;
1628 		}
1629 		set_page_private(page, (unsigned long)head);
1630 		head = page;
1631 	}
1632 
1633 	page = head;
1634 	d_off = 0;
1635 	for (i = 0; i < num_frags; i++) {
1636 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1637 		u32 p_off, p_len, copied;
1638 		struct page *p;
1639 		u8 *vaddr;
1640 
1641 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1642 				      p, p_off, p_len, copied) {
1643 			u32 copy, done = 0;
1644 			vaddr = kmap_atomic(p);
1645 
1646 			while (done < p_len) {
1647 				if (d_off == PAGE_SIZE) {
1648 					d_off = 0;
1649 					page = (struct page *)page_private(page);
1650 				}
1651 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1652 				memcpy(page_address(page) + d_off,
1653 				       vaddr + p_off + done, copy);
1654 				done += copy;
1655 				d_off += copy;
1656 			}
1657 			kunmap_atomic(vaddr);
1658 		}
1659 	}
1660 
1661 	/* skb frags release userspace buffers */
1662 	for (i = 0; i < num_frags; i++)
1663 		skb_frag_unref(skb, i);
1664 
1665 	/* skb frags point to kernel buffers */
1666 	for (i = 0; i < new_frags - 1; i++) {
1667 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1668 		head = (struct page *)page_private(head);
1669 	}
1670 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1671 	skb_shinfo(skb)->nr_frags = new_frags;
1672 
1673 release:
1674 	skb_zcopy_clear(skb, false);
1675 	return 0;
1676 }
1677 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1678 
1679 /**
1680  *	skb_clone	-	duplicate an sk_buff
1681  *	@skb: buffer to clone
1682  *	@gfp_mask: allocation priority
1683  *
1684  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1685  *	copies share the same packet data but not structure. The new
1686  *	buffer has a reference count of 1. If the allocation fails the
1687  *	function returns %NULL otherwise the new buffer is returned.
1688  *
1689  *	If this function is called from an interrupt gfp_mask() must be
1690  *	%GFP_ATOMIC.
1691  */
1692 
1693 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1694 {
1695 	struct sk_buff_fclones *fclones = container_of(skb,
1696 						       struct sk_buff_fclones,
1697 						       skb1);
1698 	struct sk_buff *n;
1699 
1700 	if (skb_orphan_frags(skb, gfp_mask))
1701 		return NULL;
1702 
1703 	if (skb->fclone == SKB_FCLONE_ORIG &&
1704 	    refcount_read(&fclones->fclone_ref) == 1) {
1705 		n = &fclones->skb2;
1706 		refcount_set(&fclones->fclone_ref, 2);
1707 		n->fclone = SKB_FCLONE_CLONE;
1708 	} else {
1709 		if (skb_pfmemalloc(skb))
1710 			gfp_mask |= __GFP_MEMALLOC;
1711 
1712 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1713 		if (!n)
1714 			return NULL;
1715 
1716 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1717 	}
1718 
1719 	return __skb_clone(n, skb);
1720 }
1721 EXPORT_SYMBOL(skb_clone);
1722 
1723 void skb_headers_offset_update(struct sk_buff *skb, int off)
1724 {
1725 	/* Only adjust this if it actually is csum_start rather than csum */
1726 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1727 		skb->csum_start += off;
1728 	/* {transport,network,mac}_header and tail are relative to skb->head */
1729 	skb->transport_header += off;
1730 	skb->network_header   += off;
1731 	if (skb_mac_header_was_set(skb))
1732 		skb->mac_header += off;
1733 	skb->inner_transport_header += off;
1734 	skb->inner_network_header += off;
1735 	skb->inner_mac_header += off;
1736 }
1737 EXPORT_SYMBOL(skb_headers_offset_update);
1738 
1739 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1740 {
1741 	__copy_skb_header(new, old);
1742 
1743 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1744 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1745 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1746 }
1747 EXPORT_SYMBOL(skb_copy_header);
1748 
1749 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1750 {
1751 	if (skb_pfmemalloc(skb))
1752 		return SKB_ALLOC_RX;
1753 	return 0;
1754 }
1755 
1756 /**
1757  *	skb_copy	-	create private copy of an sk_buff
1758  *	@skb: buffer to copy
1759  *	@gfp_mask: allocation priority
1760  *
1761  *	Make a copy of both an &sk_buff and its data. This is used when the
1762  *	caller wishes to modify the data and needs a private copy of the
1763  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1764  *	on success. The returned buffer has a reference count of 1.
1765  *
1766  *	As by-product this function converts non-linear &sk_buff to linear
1767  *	one, so that &sk_buff becomes completely private and caller is allowed
1768  *	to modify all the data of returned buffer. This means that this
1769  *	function is not recommended for use in circumstances when only
1770  *	header is going to be modified. Use pskb_copy() instead.
1771  */
1772 
1773 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1774 {
1775 	int headerlen = skb_headroom(skb);
1776 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1777 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1778 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1779 
1780 	if (!n)
1781 		return NULL;
1782 
1783 	/* Set the data pointer */
1784 	skb_reserve(n, headerlen);
1785 	/* Set the tail pointer and length */
1786 	skb_put(n, skb->len);
1787 
1788 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1789 
1790 	skb_copy_header(n, skb);
1791 	return n;
1792 }
1793 EXPORT_SYMBOL(skb_copy);
1794 
1795 /**
1796  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1797  *	@skb: buffer to copy
1798  *	@headroom: headroom of new skb
1799  *	@gfp_mask: allocation priority
1800  *	@fclone: if true allocate the copy of the skb from the fclone
1801  *	cache instead of the head cache; it is recommended to set this
1802  *	to true for the cases where the copy will likely be cloned
1803  *
1804  *	Make a copy of both an &sk_buff and part of its data, located
1805  *	in header. Fragmented data remain shared. This is used when
1806  *	the caller wishes to modify only header of &sk_buff and needs
1807  *	private copy of the header to alter. Returns %NULL on failure
1808  *	or the pointer to the buffer on success.
1809  *	The returned buffer has a reference count of 1.
1810  */
1811 
1812 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1813 				   gfp_t gfp_mask, bool fclone)
1814 {
1815 	unsigned int size = skb_headlen(skb) + headroom;
1816 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1817 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1818 
1819 	if (!n)
1820 		goto out;
1821 
1822 	/* Set the data pointer */
1823 	skb_reserve(n, headroom);
1824 	/* Set the tail pointer and length */
1825 	skb_put(n, skb_headlen(skb));
1826 	/* Copy the bytes */
1827 	skb_copy_from_linear_data(skb, n->data, n->len);
1828 
1829 	n->truesize += skb->data_len;
1830 	n->data_len  = skb->data_len;
1831 	n->len	     = skb->len;
1832 
1833 	if (skb_shinfo(skb)->nr_frags) {
1834 		int i;
1835 
1836 		if (skb_orphan_frags(skb, gfp_mask) ||
1837 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1838 			kfree_skb(n);
1839 			n = NULL;
1840 			goto out;
1841 		}
1842 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1843 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1844 			skb_frag_ref(skb, i);
1845 		}
1846 		skb_shinfo(n)->nr_frags = i;
1847 	}
1848 
1849 	if (skb_has_frag_list(skb)) {
1850 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1851 		skb_clone_fraglist(n);
1852 	}
1853 
1854 	skb_copy_header(n, skb);
1855 out:
1856 	return n;
1857 }
1858 EXPORT_SYMBOL(__pskb_copy_fclone);
1859 
1860 /**
1861  *	pskb_expand_head - reallocate header of &sk_buff
1862  *	@skb: buffer to reallocate
1863  *	@nhead: room to add at head
1864  *	@ntail: room to add at tail
1865  *	@gfp_mask: allocation priority
1866  *
1867  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1868  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1869  *	reference count of 1. Returns zero in the case of success or error,
1870  *	if expansion failed. In the last case, &sk_buff is not changed.
1871  *
1872  *	All the pointers pointing into skb header may change and must be
1873  *	reloaded after call to this function.
1874  */
1875 
1876 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1877 		     gfp_t gfp_mask)
1878 {
1879 	unsigned int osize = skb_end_offset(skb);
1880 	unsigned int size = osize + nhead + ntail;
1881 	long off;
1882 	u8 *data;
1883 	int i;
1884 
1885 	BUG_ON(nhead < 0);
1886 
1887 	BUG_ON(skb_shared(skb));
1888 
1889 	skb_zcopy_downgrade_managed(skb);
1890 
1891 	if (skb_pfmemalloc(skb))
1892 		gfp_mask |= __GFP_MEMALLOC;
1893 
1894 	size = SKB_DATA_ALIGN(size);
1895 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1896 	size = kmalloc_size_roundup(size);
1897 	data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
1898 	if (!data)
1899 		goto nodata;
1900 	size = SKB_WITH_OVERHEAD(size);
1901 
1902 	/* Copy only real data... and, alas, header. This should be
1903 	 * optimized for the cases when header is void.
1904 	 */
1905 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1906 
1907 	memcpy((struct skb_shared_info *)(data + size),
1908 	       skb_shinfo(skb),
1909 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1910 
1911 	/*
1912 	 * if shinfo is shared we must drop the old head gracefully, but if it
1913 	 * is not we can just drop the old head and let the existing refcount
1914 	 * be since all we did is relocate the values
1915 	 */
1916 	if (skb_cloned(skb)) {
1917 		if (skb_orphan_frags(skb, gfp_mask))
1918 			goto nofrags;
1919 		if (skb_zcopy(skb))
1920 			refcount_inc(&skb_uarg(skb)->refcnt);
1921 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1922 			skb_frag_ref(skb, i);
1923 
1924 		if (skb_has_frag_list(skb))
1925 			skb_clone_fraglist(skb);
1926 
1927 		skb_release_data(skb, SKB_CONSUMED);
1928 	} else {
1929 		skb_free_head(skb);
1930 	}
1931 	off = (data + nhead) - skb->head;
1932 
1933 	skb->head     = data;
1934 	skb->head_frag = 0;
1935 	skb->data    += off;
1936 
1937 	skb_set_end_offset(skb, size);
1938 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1939 	off           = nhead;
1940 #endif
1941 	skb->tail	      += off;
1942 	skb_headers_offset_update(skb, nhead);
1943 	skb->cloned   = 0;
1944 	skb->hdr_len  = 0;
1945 	skb->nohdr    = 0;
1946 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1947 
1948 	skb_metadata_clear(skb);
1949 
1950 	/* It is not generally safe to change skb->truesize.
1951 	 * For the moment, we really care of rx path, or
1952 	 * when skb is orphaned (not attached to a socket).
1953 	 */
1954 	if (!skb->sk || skb->destructor == sock_edemux)
1955 		skb->truesize += size - osize;
1956 
1957 	return 0;
1958 
1959 nofrags:
1960 	kfree(data);
1961 nodata:
1962 	return -ENOMEM;
1963 }
1964 EXPORT_SYMBOL(pskb_expand_head);
1965 
1966 /* Make private copy of skb with writable head and some headroom */
1967 
1968 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1969 {
1970 	struct sk_buff *skb2;
1971 	int delta = headroom - skb_headroom(skb);
1972 
1973 	if (delta <= 0)
1974 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1975 	else {
1976 		skb2 = skb_clone(skb, GFP_ATOMIC);
1977 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1978 					     GFP_ATOMIC)) {
1979 			kfree_skb(skb2);
1980 			skb2 = NULL;
1981 		}
1982 	}
1983 	return skb2;
1984 }
1985 EXPORT_SYMBOL(skb_realloc_headroom);
1986 
1987 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1988 {
1989 	unsigned int saved_end_offset, saved_truesize;
1990 	struct skb_shared_info *shinfo;
1991 	int res;
1992 
1993 	saved_end_offset = skb_end_offset(skb);
1994 	saved_truesize = skb->truesize;
1995 
1996 	res = pskb_expand_head(skb, 0, 0, pri);
1997 	if (res)
1998 		return res;
1999 
2000 	skb->truesize = saved_truesize;
2001 
2002 	if (likely(skb_end_offset(skb) == saved_end_offset))
2003 		return 0;
2004 
2005 	shinfo = skb_shinfo(skb);
2006 
2007 	/* We are about to change back skb->end,
2008 	 * we need to move skb_shinfo() to its new location.
2009 	 */
2010 	memmove(skb->head + saved_end_offset,
2011 		shinfo,
2012 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2013 
2014 	skb_set_end_offset(skb, saved_end_offset);
2015 
2016 	return 0;
2017 }
2018 
2019 /**
2020  *	skb_expand_head - reallocate header of &sk_buff
2021  *	@skb: buffer to reallocate
2022  *	@headroom: needed headroom
2023  *
2024  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2025  *	if possible; copies skb->sk to new skb as needed
2026  *	and frees original skb in case of failures.
2027  *
2028  *	It expect increased headroom and generates warning otherwise.
2029  */
2030 
2031 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2032 {
2033 	int delta = headroom - skb_headroom(skb);
2034 	int osize = skb_end_offset(skb);
2035 	struct sock *sk = skb->sk;
2036 
2037 	if (WARN_ONCE(delta <= 0,
2038 		      "%s is expecting an increase in the headroom", __func__))
2039 		return skb;
2040 
2041 	delta = SKB_DATA_ALIGN(delta);
2042 	/* pskb_expand_head() might crash, if skb is shared. */
2043 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2044 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2045 
2046 		if (unlikely(!nskb))
2047 			goto fail;
2048 
2049 		if (sk)
2050 			skb_set_owner_w(nskb, sk);
2051 		consume_skb(skb);
2052 		skb = nskb;
2053 	}
2054 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2055 		goto fail;
2056 
2057 	if (sk && is_skb_wmem(skb)) {
2058 		delta = skb_end_offset(skb) - osize;
2059 		refcount_add(delta, &sk->sk_wmem_alloc);
2060 		skb->truesize += delta;
2061 	}
2062 	return skb;
2063 
2064 fail:
2065 	kfree_skb(skb);
2066 	return NULL;
2067 }
2068 EXPORT_SYMBOL(skb_expand_head);
2069 
2070 /**
2071  *	skb_copy_expand	-	copy and expand sk_buff
2072  *	@skb: buffer to copy
2073  *	@newheadroom: new free bytes at head
2074  *	@newtailroom: new free bytes at tail
2075  *	@gfp_mask: allocation priority
2076  *
2077  *	Make a copy of both an &sk_buff and its data and while doing so
2078  *	allocate additional space.
2079  *
2080  *	This is used when the caller wishes to modify the data and needs a
2081  *	private copy of the data to alter as well as more space for new fields.
2082  *	Returns %NULL on failure or the pointer to the buffer
2083  *	on success. The returned buffer has a reference count of 1.
2084  *
2085  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2086  *	is called from an interrupt.
2087  */
2088 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2089 				int newheadroom, int newtailroom,
2090 				gfp_t gfp_mask)
2091 {
2092 	/*
2093 	 *	Allocate the copy buffer
2094 	 */
2095 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2096 					gfp_mask, skb_alloc_rx_flag(skb),
2097 					NUMA_NO_NODE);
2098 	int oldheadroom = skb_headroom(skb);
2099 	int head_copy_len, head_copy_off;
2100 
2101 	if (!n)
2102 		return NULL;
2103 
2104 	skb_reserve(n, newheadroom);
2105 
2106 	/* Set the tail pointer and length */
2107 	skb_put(n, skb->len);
2108 
2109 	head_copy_len = oldheadroom;
2110 	head_copy_off = 0;
2111 	if (newheadroom <= head_copy_len)
2112 		head_copy_len = newheadroom;
2113 	else
2114 		head_copy_off = newheadroom - head_copy_len;
2115 
2116 	/* Copy the linear header and data. */
2117 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2118 			     skb->len + head_copy_len));
2119 
2120 	skb_copy_header(n, skb);
2121 
2122 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2123 
2124 	return n;
2125 }
2126 EXPORT_SYMBOL(skb_copy_expand);
2127 
2128 /**
2129  *	__skb_pad		-	zero pad the tail of an skb
2130  *	@skb: buffer to pad
2131  *	@pad: space to pad
2132  *	@free_on_error: free buffer on error
2133  *
2134  *	Ensure that a buffer is followed by a padding area that is zero
2135  *	filled. Used by network drivers which may DMA or transfer data
2136  *	beyond the buffer end onto the wire.
2137  *
2138  *	May return error in out of memory cases. The skb is freed on error
2139  *	if @free_on_error is true.
2140  */
2141 
2142 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2143 {
2144 	int err;
2145 	int ntail;
2146 
2147 	/* If the skbuff is non linear tailroom is always zero.. */
2148 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2149 		memset(skb->data+skb->len, 0, pad);
2150 		return 0;
2151 	}
2152 
2153 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2154 	if (likely(skb_cloned(skb) || ntail > 0)) {
2155 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2156 		if (unlikely(err))
2157 			goto free_skb;
2158 	}
2159 
2160 	/* FIXME: The use of this function with non-linear skb's really needs
2161 	 * to be audited.
2162 	 */
2163 	err = skb_linearize(skb);
2164 	if (unlikely(err))
2165 		goto free_skb;
2166 
2167 	memset(skb->data + skb->len, 0, pad);
2168 	return 0;
2169 
2170 free_skb:
2171 	if (free_on_error)
2172 		kfree_skb(skb);
2173 	return err;
2174 }
2175 EXPORT_SYMBOL(__skb_pad);
2176 
2177 /**
2178  *	pskb_put - add data to the tail of a potentially fragmented buffer
2179  *	@skb: start of the buffer to use
2180  *	@tail: tail fragment of the buffer to use
2181  *	@len: amount of data to add
2182  *
2183  *	This function extends the used data area of the potentially
2184  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2185  *	@skb itself. If this would exceed the total buffer size the kernel
2186  *	will panic. A pointer to the first byte of the extra data is
2187  *	returned.
2188  */
2189 
2190 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2191 {
2192 	if (tail != skb) {
2193 		skb->data_len += len;
2194 		skb->len += len;
2195 	}
2196 	return skb_put(tail, len);
2197 }
2198 EXPORT_SYMBOL_GPL(pskb_put);
2199 
2200 /**
2201  *	skb_put - add data to a buffer
2202  *	@skb: buffer to use
2203  *	@len: amount of data to add
2204  *
2205  *	This function extends the used data area of the buffer. If this would
2206  *	exceed the total buffer size the kernel will panic. A pointer to the
2207  *	first byte of the extra data is returned.
2208  */
2209 void *skb_put(struct sk_buff *skb, unsigned int len)
2210 {
2211 	void *tmp = skb_tail_pointer(skb);
2212 	SKB_LINEAR_ASSERT(skb);
2213 	skb->tail += len;
2214 	skb->len  += len;
2215 	if (unlikely(skb->tail > skb->end))
2216 		skb_over_panic(skb, len, __builtin_return_address(0));
2217 	return tmp;
2218 }
2219 EXPORT_SYMBOL(skb_put);
2220 
2221 /**
2222  *	skb_push - add data to the start of a buffer
2223  *	@skb: buffer to use
2224  *	@len: amount of data to add
2225  *
2226  *	This function extends the used data area of the buffer at the buffer
2227  *	start. If this would exceed the total buffer headroom the kernel will
2228  *	panic. A pointer to the first byte of the extra data is returned.
2229  */
2230 void *skb_push(struct sk_buff *skb, unsigned int len)
2231 {
2232 	skb->data -= len;
2233 	skb->len  += len;
2234 	if (unlikely(skb->data < skb->head))
2235 		skb_under_panic(skb, len, __builtin_return_address(0));
2236 	return skb->data;
2237 }
2238 EXPORT_SYMBOL(skb_push);
2239 
2240 /**
2241  *	skb_pull - remove data from the start of a buffer
2242  *	@skb: buffer to use
2243  *	@len: amount of data to remove
2244  *
2245  *	This function removes data from the start of a buffer, returning
2246  *	the memory to the headroom. A pointer to the next data in the buffer
2247  *	is returned. Once the data has been pulled future pushes will overwrite
2248  *	the old data.
2249  */
2250 void *skb_pull(struct sk_buff *skb, unsigned int len)
2251 {
2252 	return skb_pull_inline(skb, len);
2253 }
2254 EXPORT_SYMBOL(skb_pull);
2255 
2256 /**
2257  *	skb_pull_data - remove data from the start of a buffer returning its
2258  *	original position.
2259  *	@skb: buffer to use
2260  *	@len: amount of data to remove
2261  *
2262  *	This function removes data from the start of a buffer, returning
2263  *	the memory to the headroom. A pointer to the original data in the buffer
2264  *	is returned after checking if there is enough data to pull. Once the
2265  *	data has been pulled future pushes will overwrite the old data.
2266  */
2267 void *skb_pull_data(struct sk_buff *skb, size_t len)
2268 {
2269 	void *data = skb->data;
2270 
2271 	if (skb->len < len)
2272 		return NULL;
2273 
2274 	skb_pull(skb, len);
2275 
2276 	return data;
2277 }
2278 EXPORT_SYMBOL(skb_pull_data);
2279 
2280 /**
2281  *	skb_trim - remove end from a buffer
2282  *	@skb: buffer to alter
2283  *	@len: new length
2284  *
2285  *	Cut the length of a buffer down by removing data from the tail. If
2286  *	the buffer is already under the length specified it is not modified.
2287  *	The skb must be linear.
2288  */
2289 void skb_trim(struct sk_buff *skb, unsigned int len)
2290 {
2291 	if (skb->len > len)
2292 		__skb_trim(skb, len);
2293 }
2294 EXPORT_SYMBOL(skb_trim);
2295 
2296 /* Trims skb to length len. It can change skb pointers.
2297  */
2298 
2299 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2300 {
2301 	struct sk_buff **fragp;
2302 	struct sk_buff *frag;
2303 	int offset = skb_headlen(skb);
2304 	int nfrags = skb_shinfo(skb)->nr_frags;
2305 	int i;
2306 	int err;
2307 
2308 	if (skb_cloned(skb) &&
2309 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2310 		return err;
2311 
2312 	i = 0;
2313 	if (offset >= len)
2314 		goto drop_pages;
2315 
2316 	for (; i < nfrags; i++) {
2317 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2318 
2319 		if (end < len) {
2320 			offset = end;
2321 			continue;
2322 		}
2323 
2324 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2325 
2326 drop_pages:
2327 		skb_shinfo(skb)->nr_frags = i;
2328 
2329 		for (; i < nfrags; i++)
2330 			skb_frag_unref(skb, i);
2331 
2332 		if (skb_has_frag_list(skb))
2333 			skb_drop_fraglist(skb);
2334 		goto done;
2335 	}
2336 
2337 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2338 	     fragp = &frag->next) {
2339 		int end = offset + frag->len;
2340 
2341 		if (skb_shared(frag)) {
2342 			struct sk_buff *nfrag;
2343 
2344 			nfrag = skb_clone(frag, GFP_ATOMIC);
2345 			if (unlikely(!nfrag))
2346 				return -ENOMEM;
2347 
2348 			nfrag->next = frag->next;
2349 			consume_skb(frag);
2350 			frag = nfrag;
2351 			*fragp = frag;
2352 		}
2353 
2354 		if (end < len) {
2355 			offset = end;
2356 			continue;
2357 		}
2358 
2359 		if (end > len &&
2360 		    unlikely((err = pskb_trim(frag, len - offset))))
2361 			return err;
2362 
2363 		if (frag->next)
2364 			skb_drop_list(&frag->next);
2365 		break;
2366 	}
2367 
2368 done:
2369 	if (len > skb_headlen(skb)) {
2370 		skb->data_len -= skb->len - len;
2371 		skb->len       = len;
2372 	} else {
2373 		skb->len       = len;
2374 		skb->data_len  = 0;
2375 		skb_set_tail_pointer(skb, len);
2376 	}
2377 
2378 	if (!skb->sk || skb->destructor == sock_edemux)
2379 		skb_condense(skb);
2380 	return 0;
2381 }
2382 EXPORT_SYMBOL(___pskb_trim);
2383 
2384 /* Note : use pskb_trim_rcsum() instead of calling this directly
2385  */
2386 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2387 {
2388 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2389 		int delta = skb->len - len;
2390 
2391 		skb->csum = csum_block_sub(skb->csum,
2392 					   skb_checksum(skb, len, delta, 0),
2393 					   len);
2394 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2395 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2396 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2397 
2398 		if (offset + sizeof(__sum16) > hdlen)
2399 			return -EINVAL;
2400 	}
2401 	return __pskb_trim(skb, len);
2402 }
2403 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2404 
2405 /**
2406  *	__pskb_pull_tail - advance tail of skb header
2407  *	@skb: buffer to reallocate
2408  *	@delta: number of bytes to advance tail
2409  *
2410  *	The function makes a sense only on a fragmented &sk_buff,
2411  *	it expands header moving its tail forward and copying necessary
2412  *	data from fragmented part.
2413  *
2414  *	&sk_buff MUST have reference count of 1.
2415  *
2416  *	Returns %NULL (and &sk_buff does not change) if pull failed
2417  *	or value of new tail of skb in the case of success.
2418  *
2419  *	All the pointers pointing into skb header may change and must be
2420  *	reloaded after call to this function.
2421  */
2422 
2423 /* Moves tail of skb head forward, copying data from fragmented part,
2424  * when it is necessary.
2425  * 1. It may fail due to malloc failure.
2426  * 2. It may change skb pointers.
2427  *
2428  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2429  */
2430 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2431 {
2432 	/* If skb has not enough free space at tail, get new one
2433 	 * plus 128 bytes for future expansions. If we have enough
2434 	 * room at tail, reallocate without expansion only if skb is cloned.
2435 	 */
2436 	int i, k, eat = (skb->tail + delta) - skb->end;
2437 
2438 	if (eat > 0 || skb_cloned(skb)) {
2439 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2440 				     GFP_ATOMIC))
2441 			return NULL;
2442 	}
2443 
2444 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2445 			     skb_tail_pointer(skb), delta));
2446 
2447 	/* Optimization: no fragments, no reasons to preestimate
2448 	 * size of pulled pages. Superb.
2449 	 */
2450 	if (!skb_has_frag_list(skb))
2451 		goto pull_pages;
2452 
2453 	/* Estimate size of pulled pages. */
2454 	eat = delta;
2455 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2456 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2457 
2458 		if (size >= eat)
2459 			goto pull_pages;
2460 		eat -= size;
2461 	}
2462 
2463 	/* If we need update frag list, we are in troubles.
2464 	 * Certainly, it is possible to add an offset to skb data,
2465 	 * but taking into account that pulling is expected to
2466 	 * be very rare operation, it is worth to fight against
2467 	 * further bloating skb head and crucify ourselves here instead.
2468 	 * Pure masohism, indeed. 8)8)
2469 	 */
2470 	if (eat) {
2471 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2472 		struct sk_buff *clone = NULL;
2473 		struct sk_buff *insp = NULL;
2474 
2475 		do {
2476 			if (list->len <= eat) {
2477 				/* Eaten as whole. */
2478 				eat -= list->len;
2479 				list = list->next;
2480 				insp = list;
2481 			} else {
2482 				/* Eaten partially. */
2483 				if (skb_is_gso(skb) && !list->head_frag &&
2484 				    skb_headlen(list))
2485 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2486 
2487 				if (skb_shared(list)) {
2488 					/* Sucks! We need to fork list. :-( */
2489 					clone = skb_clone(list, GFP_ATOMIC);
2490 					if (!clone)
2491 						return NULL;
2492 					insp = list->next;
2493 					list = clone;
2494 				} else {
2495 					/* This may be pulled without
2496 					 * problems. */
2497 					insp = list;
2498 				}
2499 				if (!pskb_pull(list, eat)) {
2500 					kfree_skb(clone);
2501 					return NULL;
2502 				}
2503 				break;
2504 			}
2505 		} while (eat);
2506 
2507 		/* Free pulled out fragments. */
2508 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2509 			skb_shinfo(skb)->frag_list = list->next;
2510 			consume_skb(list);
2511 		}
2512 		/* And insert new clone at head. */
2513 		if (clone) {
2514 			clone->next = list;
2515 			skb_shinfo(skb)->frag_list = clone;
2516 		}
2517 	}
2518 	/* Success! Now we may commit changes to skb data. */
2519 
2520 pull_pages:
2521 	eat = delta;
2522 	k = 0;
2523 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2524 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2525 
2526 		if (size <= eat) {
2527 			skb_frag_unref(skb, i);
2528 			eat -= size;
2529 		} else {
2530 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2531 
2532 			*frag = skb_shinfo(skb)->frags[i];
2533 			if (eat) {
2534 				skb_frag_off_add(frag, eat);
2535 				skb_frag_size_sub(frag, eat);
2536 				if (!i)
2537 					goto end;
2538 				eat = 0;
2539 			}
2540 			k++;
2541 		}
2542 	}
2543 	skb_shinfo(skb)->nr_frags = k;
2544 
2545 end:
2546 	skb->tail     += delta;
2547 	skb->data_len -= delta;
2548 
2549 	if (!skb->data_len)
2550 		skb_zcopy_clear(skb, false);
2551 
2552 	return skb_tail_pointer(skb);
2553 }
2554 EXPORT_SYMBOL(__pskb_pull_tail);
2555 
2556 /**
2557  *	skb_copy_bits - copy bits from skb to kernel buffer
2558  *	@skb: source skb
2559  *	@offset: offset in source
2560  *	@to: destination buffer
2561  *	@len: number of bytes to copy
2562  *
2563  *	Copy the specified number of bytes from the source skb to the
2564  *	destination buffer.
2565  *
2566  *	CAUTION ! :
2567  *		If its prototype is ever changed,
2568  *		check arch/{*}/net/{*}.S files,
2569  *		since it is called from BPF assembly code.
2570  */
2571 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2572 {
2573 	int start = skb_headlen(skb);
2574 	struct sk_buff *frag_iter;
2575 	int i, copy;
2576 
2577 	if (offset > (int)skb->len - len)
2578 		goto fault;
2579 
2580 	/* Copy header. */
2581 	if ((copy = start - offset) > 0) {
2582 		if (copy > len)
2583 			copy = len;
2584 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2585 		if ((len -= copy) == 0)
2586 			return 0;
2587 		offset += copy;
2588 		to     += copy;
2589 	}
2590 
2591 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2592 		int end;
2593 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2594 
2595 		WARN_ON(start > offset + len);
2596 
2597 		end = start + skb_frag_size(f);
2598 		if ((copy = end - offset) > 0) {
2599 			u32 p_off, p_len, copied;
2600 			struct page *p;
2601 			u8 *vaddr;
2602 
2603 			if (copy > len)
2604 				copy = len;
2605 
2606 			skb_frag_foreach_page(f,
2607 					      skb_frag_off(f) + offset - start,
2608 					      copy, p, p_off, p_len, copied) {
2609 				vaddr = kmap_atomic(p);
2610 				memcpy(to + copied, vaddr + p_off, p_len);
2611 				kunmap_atomic(vaddr);
2612 			}
2613 
2614 			if ((len -= copy) == 0)
2615 				return 0;
2616 			offset += copy;
2617 			to     += copy;
2618 		}
2619 		start = end;
2620 	}
2621 
2622 	skb_walk_frags(skb, frag_iter) {
2623 		int end;
2624 
2625 		WARN_ON(start > offset + len);
2626 
2627 		end = start + frag_iter->len;
2628 		if ((copy = end - offset) > 0) {
2629 			if (copy > len)
2630 				copy = len;
2631 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2632 				goto fault;
2633 			if ((len -= copy) == 0)
2634 				return 0;
2635 			offset += copy;
2636 			to     += copy;
2637 		}
2638 		start = end;
2639 	}
2640 
2641 	if (!len)
2642 		return 0;
2643 
2644 fault:
2645 	return -EFAULT;
2646 }
2647 EXPORT_SYMBOL(skb_copy_bits);
2648 
2649 /*
2650  * Callback from splice_to_pipe(), if we need to release some pages
2651  * at the end of the spd in case we error'ed out in filling the pipe.
2652  */
2653 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2654 {
2655 	put_page(spd->pages[i]);
2656 }
2657 
2658 static struct page *linear_to_page(struct page *page, unsigned int *len,
2659 				   unsigned int *offset,
2660 				   struct sock *sk)
2661 {
2662 	struct page_frag *pfrag = sk_page_frag(sk);
2663 
2664 	if (!sk_page_frag_refill(sk, pfrag))
2665 		return NULL;
2666 
2667 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2668 
2669 	memcpy(page_address(pfrag->page) + pfrag->offset,
2670 	       page_address(page) + *offset, *len);
2671 	*offset = pfrag->offset;
2672 	pfrag->offset += *len;
2673 
2674 	return pfrag->page;
2675 }
2676 
2677 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2678 			     struct page *page,
2679 			     unsigned int offset)
2680 {
2681 	return	spd->nr_pages &&
2682 		spd->pages[spd->nr_pages - 1] == page &&
2683 		(spd->partial[spd->nr_pages - 1].offset +
2684 		 spd->partial[spd->nr_pages - 1].len == offset);
2685 }
2686 
2687 /*
2688  * Fill page/offset/length into spd, if it can hold more pages.
2689  */
2690 static bool spd_fill_page(struct splice_pipe_desc *spd,
2691 			  struct pipe_inode_info *pipe, struct page *page,
2692 			  unsigned int *len, unsigned int offset,
2693 			  bool linear,
2694 			  struct sock *sk)
2695 {
2696 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2697 		return true;
2698 
2699 	if (linear) {
2700 		page = linear_to_page(page, len, &offset, sk);
2701 		if (!page)
2702 			return true;
2703 	}
2704 	if (spd_can_coalesce(spd, page, offset)) {
2705 		spd->partial[spd->nr_pages - 1].len += *len;
2706 		return false;
2707 	}
2708 	get_page(page);
2709 	spd->pages[spd->nr_pages] = page;
2710 	spd->partial[spd->nr_pages].len = *len;
2711 	spd->partial[spd->nr_pages].offset = offset;
2712 	spd->nr_pages++;
2713 
2714 	return false;
2715 }
2716 
2717 static bool __splice_segment(struct page *page, unsigned int poff,
2718 			     unsigned int plen, unsigned int *off,
2719 			     unsigned int *len,
2720 			     struct splice_pipe_desc *spd, bool linear,
2721 			     struct sock *sk,
2722 			     struct pipe_inode_info *pipe)
2723 {
2724 	if (!*len)
2725 		return true;
2726 
2727 	/* skip this segment if already processed */
2728 	if (*off >= plen) {
2729 		*off -= plen;
2730 		return false;
2731 	}
2732 
2733 	/* ignore any bits we already processed */
2734 	poff += *off;
2735 	plen -= *off;
2736 	*off = 0;
2737 
2738 	do {
2739 		unsigned int flen = min(*len, plen);
2740 
2741 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2742 				  linear, sk))
2743 			return true;
2744 		poff += flen;
2745 		plen -= flen;
2746 		*len -= flen;
2747 	} while (*len && plen);
2748 
2749 	return false;
2750 }
2751 
2752 /*
2753  * Map linear and fragment data from the skb to spd. It reports true if the
2754  * pipe is full or if we already spliced the requested length.
2755  */
2756 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2757 			      unsigned int *offset, unsigned int *len,
2758 			      struct splice_pipe_desc *spd, struct sock *sk)
2759 {
2760 	int seg;
2761 	struct sk_buff *iter;
2762 
2763 	/* map the linear part :
2764 	 * If skb->head_frag is set, this 'linear' part is backed by a
2765 	 * fragment, and if the head is not shared with any clones then
2766 	 * we can avoid a copy since we own the head portion of this page.
2767 	 */
2768 	if (__splice_segment(virt_to_page(skb->data),
2769 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2770 			     skb_headlen(skb),
2771 			     offset, len, spd,
2772 			     skb_head_is_locked(skb),
2773 			     sk, pipe))
2774 		return true;
2775 
2776 	/*
2777 	 * then map the fragments
2778 	 */
2779 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2780 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2781 
2782 		if (__splice_segment(skb_frag_page(f),
2783 				     skb_frag_off(f), skb_frag_size(f),
2784 				     offset, len, spd, false, sk, pipe))
2785 			return true;
2786 	}
2787 
2788 	skb_walk_frags(skb, iter) {
2789 		if (*offset >= iter->len) {
2790 			*offset -= iter->len;
2791 			continue;
2792 		}
2793 		/* __skb_splice_bits() only fails if the output has no room
2794 		 * left, so no point in going over the frag_list for the error
2795 		 * case.
2796 		 */
2797 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2798 			return true;
2799 	}
2800 
2801 	return false;
2802 }
2803 
2804 /*
2805  * Map data from the skb to a pipe. Should handle both the linear part,
2806  * the fragments, and the frag list.
2807  */
2808 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2809 		    struct pipe_inode_info *pipe, unsigned int tlen,
2810 		    unsigned int flags)
2811 {
2812 	struct partial_page partial[MAX_SKB_FRAGS];
2813 	struct page *pages[MAX_SKB_FRAGS];
2814 	struct splice_pipe_desc spd = {
2815 		.pages = pages,
2816 		.partial = partial,
2817 		.nr_pages_max = MAX_SKB_FRAGS,
2818 		.ops = &nosteal_pipe_buf_ops,
2819 		.spd_release = sock_spd_release,
2820 	};
2821 	int ret = 0;
2822 
2823 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2824 
2825 	if (spd.nr_pages)
2826 		ret = splice_to_pipe(pipe, &spd);
2827 
2828 	return ret;
2829 }
2830 EXPORT_SYMBOL_GPL(skb_splice_bits);
2831 
2832 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2833 			    struct kvec *vec, size_t num, size_t size)
2834 {
2835 	struct socket *sock = sk->sk_socket;
2836 
2837 	if (!sock)
2838 		return -EINVAL;
2839 	return kernel_sendmsg(sock, msg, vec, num, size);
2840 }
2841 
2842 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2843 			     size_t size, int flags)
2844 {
2845 	struct socket *sock = sk->sk_socket;
2846 
2847 	if (!sock)
2848 		return -EINVAL;
2849 	return kernel_sendpage(sock, page, offset, size, flags);
2850 }
2851 
2852 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2853 			    struct kvec *vec, size_t num, size_t size);
2854 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2855 			     size_t size, int flags);
2856 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2857 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2858 {
2859 	unsigned int orig_len = len;
2860 	struct sk_buff *head = skb;
2861 	unsigned short fragidx;
2862 	int slen, ret;
2863 
2864 do_frag_list:
2865 
2866 	/* Deal with head data */
2867 	while (offset < skb_headlen(skb) && len) {
2868 		struct kvec kv;
2869 		struct msghdr msg;
2870 
2871 		slen = min_t(int, len, skb_headlen(skb) - offset);
2872 		kv.iov_base = skb->data + offset;
2873 		kv.iov_len = slen;
2874 		memset(&msg, 0, sizeof(msg));
2875 		msg.msg_flags = MSG_DONTWAIT;
2876 
2877 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2878 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2879 		if (ret <= 0)
2880 			goto error;
2881 
2882 		offset += ret;
2883 		len -= ret;
2884 	}
2885 
2886 	/* All the data was skb head? */
2887 	if (!len)
2888 		goto out;
2889 
2890 	/* Make offset relative to start of frags */
2891 	offset -= skb_headlen(skb);
2892 
2893 	/* Find where we are in frag list */
2894 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2895 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2896 
2897 		if (offset < skb_frag_size(frag))
2898 			break;
2899 
2900 		offset -= skb_frag_size(frag);
2901 	}
2902 
2903 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2904 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2905 
2906 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2907 
2908 		while (slen) {
2909 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2910 					      sendpage_unlocked, sk,
2911 					      skb_frag_page(frag),
2912 					      skb_frag_off(frag) + offset,
2913 					      slen, MSG_DONTWAIT);
2914 			if (ret <= 0)
2915 				goto error;
2916 
2917 			len -= ret;
2918 			offset += ret;
2919 			slen -= ret;
2920 		}
2921 
2922 		offset = 0;
2923 	}
2924 
2925 	if (len) {
2926 		/* Process any frag lists */
2927 
2928 		if (skb == head) {
2929 			if (skb_has_frag_list(skb)) {
2930 				skb = skb_shinfo(skb)->frag_list;
2931 				goto do_frag_list;
2932 			}
2933 		} else if (skb->next) {
2934 			skb = skb->next;
2935 			goto do_frag_list;
2936 		}
2937 	}
2938 
2939 out:
2940 	return orig_len - len;
2941 
2942 error:
2943 	return orig_len == len ? ret : orig_len - len;
2944 }
2945 
2946 /* Send skb data on a socket. Socket must be locked. */
2947 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2948 			 int len)
2949 {
2950 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2951 			       kernel_sendpage_locked);
2952 }
2953 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2954 
2955 /* Send skb data on a socket. Socket must be unlocked. */
2956 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2957 {
2958 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2959 			       sendpage_unlocked);
2960 }
2961 
2962 /**
2963  *	skb_store_bits - store bits from kernel buffer to skb
2964  *	@skb: destination buffer
2965  *	@offset: offset in destination
2966  *	@from: source buffer
2967  *	@len: number of bytes to copy
2968  *
2969  *	Copy the specified number of bytes from the source buffer to the
2970  *	destination skb.  This function handles all the messy bits of
2971  *	traversing fragment lists and such.
2972  */
2973 
2974 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2975 {
2976 	int start = skb_headlen(skb);
2977 	struct sk_buff *frag_iter;
2978 	int i, copy;
2979 
2980 	if (offset > (int)skb->len - len)
2981 		goto fault;
2982 
2983 	if ((copy = start - offset) > 0) {
2984 		if (copy > len)
2985 			copy = len;
2986 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2987 		if ((len -= copy) == 0)
2988 			return 0;
2989 		offset += copy;
2990 		from += copy;
2991 	}
2992 
2993 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2994 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2995 		int end;
2996 
2997 		WARN_ON(start > offset + len);
2998 
2999 		end = start + skb_frag_size(frag);
3000 		if ((copy = end - offset) > 0) {
3001 			u32 p_off, p_len, copied;
3002 			struct page *p;
3003 			u8 *vaddr;
3004 
3005 			if (copy > len)
3006 				copy = len;
3007 
3008 			skb_frag_foreach_page(frag,
3009 					      skb_frag_off(frag) + offset - start,
3010 					      copy, p, p_off, p_len, copied) {
3011 				vaddr = kmap_atomic(p);
3012 				memcpy(vaddr + p_off, from + copied, p_len);
3013 				kunmap_atomic(vaddr);
3014 			}
3015 
3016 			if ((len -= copy) == 0)
3017 				return 0;
3018 			offset += copy;
3019 			from += copy;
3020 		}
3021 		start = end;
3022 	}
3023 
3024 	skb_walk_frags(skb, frag_iter) {
3025 		int end;
3026 
3027 		WARN_ON(start > offset + len);
3028 
3029 		end = start + frag_iter->len;
3030 		if ((copy = end - offset) > 0) {
3031 			if (copy > len)
3032 				copy = len;
3033 			if (skb_store_bits(frag_iter, offset - start,
3034 					   from, copy))
3035 				goto fault;
3036 			if ((len -= copy) == 0)
3037 				return 0;
3038 			offset += copy;
3039 			from += copy;
3040 		}
3041 		start = end;
3042 	}
3043 	if (!len)
3044 		return 0;
3045 
3046 fault:
3047 	return -EFAULT;
3048 }
3049 EXPORT_SYMBOL(skb_store_bits);
3050 
3051 /* Checksum skb data. */
3052 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3053 		      __wsum csum, const struct skb_checksum_ops *ops)
3054 {
3055 	int start = skb_headlen(skb);
3056 	int i, copy = start - offset;
3057 	struct sk_buff *frag_iter;
3058 	int pos = 0;
3059 
3060 	/* Checksum header. */
3061 	if (copy > 0) {
3062 		if (copy > len)
3063 			copy = len;
3064 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3065 				       skb->data + offset, copy, csum);
3066 		if ((len -= copy) == 0)
3067 			return csum;
3068 		offset += copy;
3069 		pos	= copy;
3070 	}
3071 
3072 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3073 		int end;
3074 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3075 
3076 		WARN_ON(start > offset + len);
3077 
3078 		end = start + skb_frag_size(frag);
3079 		if ((copy = end - offset) > 0) {
3080 			u32 p_off, p_len, copied;
3081 			struct page *p;
3082 			__wsum csum2;
3083 			u8 *vaddr;
3084 
3085 			if (copy > len)
3086 				copy = len;
3087 
3088 			skb_frag_foreach_page(frag,
3089 					      skb_frag_off(frag) + offset - start,
3090 					      copy, p, p_off, p_len, copied) {
3091 				vaddr = kmap_atomic(p);
3092 				csum2 = INDIRECT_CALL_1(ops->update,
3093 							csum_partial_ext,
3094 							vaddr + p_off, p_len, 0);
3095 				kunmap_atomic(vaddr);
3096 				csum = INDIRECT_CALL_1(ops->combine,
3097 						       csum_block_add_ext, csum,
3098 						       csum2, pos, p_len);
3099 				pos += p_len;
3100 			}
3101 
3102 			if (!(len -= copy))
3103 				return csum;
3104 			offset += copy;
3105 		}
3106 		start = end;
3107 	}
3108 
3109 	skb_walk_frags(skb, frag_iter) {
3110 		int end;
3111 
3112 		WARN_ON(start > offset + len);
3113 
3114 		end = start + frag_iter->len;
3115 		if ((copy = end - offset) > 0) {
3116 			__wsum csum2;
3117 			if (copy > len)
3118 				copy = len;
3119 			csum2 = __skb_checksum(frag_iter, offset - start,
3120 					       copy, 0, ops);
3121 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3122 					       csum, csum2, pos, copy);
3123 			if ((len -= copy) == 0)
3124 				return csum;
3125 			offset += copy;
3126 			pos    += copy;
3127 		}
3128 		start = end;
3129 	}
3130 	BUG_ON(len);
3131 
3132 	return csum;
3133 }
3134 EXPORT_SYMBOL(__skb_checksum);
3135 
3136 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3137 		    int len, __wsum csum)
3138 {
3139 	const struct skb_checksum_ops ops = {
3140 		.update  = csum_partial_ext,
3141 		.combine = csum_block_add_ext,
3142 	};
3143 
3144 	return __skb_checksum(skb, offset, len, csum, &ops);
3145 }
3146 EXPORT_SYMBOL(skb_checksum);
3147 
3148 /* Both of above in one bottle. */
3149 
3150 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3151 				    u8 *to, int len)
3152 {
3153 	int start = skb_headlen(skb);
3154 	int i, copy = start - offset;
3155 	struct sk_buff *frag_iter;
3156 	int pos = 0;
3157 	__wsum csum = 0;
3158 
3159 	/* Copy header. */
3160 	if (copy > 0) {
3161 		if (copy > len)
3162 			copy = len;
3163 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3164 						 copy);
3165 		if ((len -= copy) == 0)
3166 			return csum;
3167 		offset += copy;
3168 		to     += copy;
3169 		pos	= copy;
3170 	}
3171 
3172 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3173 		int end;
3174 
3175 		WARN_ON(start > offset + len);
3176 
3177 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3178 		if ((copy = end - offset) > 0) {
3179 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3180 			u32 p_off, p_len, copied;
3181 			struct page *p;
3182 			__wsum csum2;
3183 			u8 *vaddr;
3184 
3185 			if (copy > len)
3186 				copy = len;
3187 
3188 			skb_frag_foreach_page(frag,
3189 					      skb_frag_off(frag) + offset - start,
3190 					      copy, p, p_off, p_len, copied) {
3191 				vaddr = kmap_atomic(p);
3192 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3193 								  to + copied,
3194 								  p_len);
3195 				kunmap_atomic(vaddr);
3196 				csum = csum_block_add(csum, csum2, pos);
3197 				pos += p_len;
3198 			}
3199 
3200 			if (!(len -= copy))
3201 				return csum;
3202 			offset += copy;
3203 			to     += copy;
3204 		}
3205 		start = end;
3206 	}
3207 
3208 	skb_walk_frags(skb, frag_iter) {
3209 		__wsum csum2;
3210 		int end;
3211 
3212 		WARN_ON(start > offset + len);
3213 
3214 		end = start + frag_iter->len;
3215 		if ((copy = end - offset) > 0) {
3216 			if (copy > len)
3217 				copy = len;
3218 			csum2 = skb_copy_and_csum_bits(frag_iter,
3219 						       offset - start,
3220 						       to, copy);
3221 			csum = csum_block_add(csum, csum2, pos);
3222 			if ((len -= copy) == 0)
3223 				return csum;
3224 			offset += copy;
3225 			to     += copy;
3226 			pos    += copy;
3227 		}
3228 		start = end;
3229 	}
3230 	BUG_ON(len);
3231 	return csum;
3232 }
3233 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3234 
3235 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3236 {
3237 	__sum16 sum;
3238 
3239 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3240 	/* See comments in __skb_checksum_complete(). */
3241 	if (likely(!sum)) {
3242 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3243 		    !skb->csum_complete_sw)
3244 			netdev_rx_csum_fault(skb->dev, skb);
3245 	}
3246 	if (!skb_shared(skb))
3247 		skb->csum_valid = !sum;
3248 	return sum;
3249 }
3250 EXPORT_SYMBOL(__skb_checksum_complete_head);
3251 
3252 /* This function assumes skb->csum already holds pseudo header's checksum,
3253  * which has been changed from the hardware checksum, for example, by
3254  * __skb_checksum_validate_complete(). And, the original skb->csum must
3255  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3256  *
3257  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3258  * zero. The new checksum is stored back into skb->csum unless the skb is
3259  * shared.
3260  */
3261 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3262 {
3263 	__wsum csum;
3264 	__sum16 sum;
3265 
3266 	csum = skb_checksum(skb, 0, skb->len, 0);
3267 
3268 	sum = csum_fold(csum_add(skb->csum, csum));
3269 	/* This check is inverted, because we already knew the hardware
3270 	 * checksum is invalid before calling this function. So, if the
3271 	 * re-computed checksum is valid instead, then we have a mismatch
3272 	 * between the original skb->csum and skb_checksum(). This means either
3273 	 * the original hardware checksum is incorrect or we screw up skb->csum
3274 	 * when moving skb->data around.
3275 	 */
3276 	if (likely(!sum)) {
3277 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3278 		    !skb->csum_complete_sw)
3279 			netdev_rx_csum_fault(skb->dev, skb);
3280 	}
3281 
3282 	if (!skb_shared(skb)) {
3283 		/* Save full packet checksum */
3284 		skb->csum = csum;
3285 		skb->ip_summed = CHECKSUM_COMPLETE;
3286 		skb->csum_complete_sw = 1;
3287 		skb->csum_valid = !sum;
3288 	}
3289 
3290 	return sum;
3291 }
3292 EXPORT_SYMBOL(__skb_checksum_complete);
3293 
3294 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3295 {
3296 	net_warn_ratelimited(
3297 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3298 		__func__);
3299 	return 0;
3300 }
3301 
3302 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3303 				       int offset, int len)
3304 {
3305 	net_warn_ratelimited(
3306 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3307 		__func__);
3308 	return 0;
3309 }
3310 
3311 static const struct skb_checksum_ops default_crc32c_ops = {
3312 	.update  = warn_crc32c_csum_update,
3313 	.combine = warn_crc32c_csum_combine,
3314 };
3315 
3316 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3317 	&default_crc32c_ops;
3318 EXPORT_SYMBOL(crc32c_csum_stub);
3319 
3320  /**
3321  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3322  *	@from: source buffer
3323  *
3324  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3325  *	into skb_zerocopy().
3326  */
3327 unsigned int
3328 skb_zerocopy_headlen(const struct sk_buff *from)
3329 {
3330 	unsigned int hlen = 0;
3331 
3332 	if (!from->head_frag ||
3333 	    skb_headlen(from) < L1_CACHE_BYTES ||
3334 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3335 		hlen = skb_headlen(from);
3336 		if (!hlen)
3337 			hlen = from->len;
3338 	}
3339 
3340 	if (skb_has_frag_list(from))
3341 		hlen = from->len;
3342 
3343 	return hlen;
3344 }
3345 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3346 
3347 /**
3348  *	skb_zerocopy - Zero copy skb to skb
3349  *	@to: destination buffer
3350  *	@from: source buffer
3351  *	@len: number of bytes to copy from source buffer
3352  *	@hlen: size of linear headroom in destination buffer
3353  *
3354  *	Copies up to `len` bytes from `from` to `to` by creating references
3355  *	to the frags in the source buffer.
3356  *
3357  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3358  *	headroom in the `to` buffer.
3359  *
3360  *	Return value:
3361  *	0: everything is OK
3362  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3363  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3364  */
3365 int
3366 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3367 {
3368 	int i, j = 0;
3369 	int plen = 0; /* length of skb->head fragment */
3370 	int ret;
3371 	struct page *page;
3372 	unsigned int offset;
3373 
3374 	BUG_ON(!from->head_frag && !hlen);
3375 
3376 	/* dont bother with small payloads */
3377 	if (len <= skb_tailroom(to))
3378 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3379 
3380 	if (hlen) {
3381 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3382 		if (unlikely(ret))
3383 			return ret;
3384 		len -= hlen;
3385 	} else {
3386 		plen = min_t(int, skb_headlen(from), len);
3387 		if (plen) {
3388 			page = virt_to_head_page(from->head);
3389 			offset = from->data - (unsigned char *)page_address(page);
3390 			__skb_fill_page_desc(to, 0, page, offset, plen);
3391 			get_page(page);
3392 			j = 1;
3393 			len -= plen;
3394 		}
3395 	}
3396 
3397 	skb_len_add(to, len + plen);
3398 
3399 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3400 		skb_tx_error(from);
3401 		return -ENOMEM;
3402 	}
3403 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3404 
3405 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3406 		int size;
3407 
3408 		if (!len)
3409 			break;
3410 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3411 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3412 					len);
3413 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3414 		len -= size;
3415 		skb_frag_ref(to, j);
3416 		j++;
3417 	}
3418 	skb_shinfo(to)->nr_frags = j;
3419 
3420 	return 0;
3421 }
3422 EXPORT_SYMBOL_GPL(skb_zerocopy);
3423 
3424 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3425 {
3426 	__wsum csum;
3427 	long csstart;
3428 
3429 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3430 		csstart = skb_checksum_start_offset(skb);
3431 	else
3432 		csstart = skb_headlen(skb);
3433 
3434 	BUG_ON(csstart > skb_headlen(skb));
3435 
3436 	skb_copy_from_linear_data(skb, to, csstart);
3437 
3438 	csum = 0;
3439 	if (csstart != skb->len)
3440 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3441 					      skb->len - csstart);
3442 
3443 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3444 		long csstuff = csstart + skb->csum_offset;
3445 
3446 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3447 	}
3448 }
3449 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3450 
3451 /**
3452  *	skb_dequeue - remove from the head of the queue
3453  *	@list: list to dequeue from
3454  *
3455  *	Remove the head of the list. The list lock is taken so the function
3456  *	may be used safely with other locking list functions. The head item is
3457  *	returned or %NULL if the list is empty.
3458  */
3459 
3460 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3461 {
3462 	unsigned long flags;
3463 	struct sk_buff *result;
3464 
3465 	spin_lock_irqsave(&list->lock, flags);
3466 	result = __skb_dequeue(list);
3467 	spin_unlock_irqrestore(&list->lock, flags);
3468 	return result;
3469 }
3470 EXPORT_SYMBOL(skb_dequeue);
3471 
3472 /**
3473  *	skb_dequeue_tail - remove from the tail of the queue
3474  *	@list: list to dequeue from
3475  *
3476  *	Remove the tail of the list. The list lock is taken so the function
3477  *	may be used safely with other locking list functions. The tail item is
3478  *	returned or %NULL if the list is empty.
3479  */
3480 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3481 {
3482 	unsigned long flags;
3483 	struct sk_buff *result;
3484 
3485 	spin_lock_irqsave(&list->lock, flags);
3486 	result = __skb_dequeue_tail(list);
3487 	spin_unlock_irqrestore(&list->lock, flags);
3488 	return result;
3489 }
3490 EXPORT_SYMBOL(skb_dequeue_tail);
3491 
3492 /**
3493  *	skb_queue_purge - empty a list
3494  *	@list: list to empty
3495  *
3496  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3497  *	the list and one reference dropped. This function takes the list
3498  *	lock and is atomic with respect to other list locking functions.
3499  */
3500 void skb_queue_purge(struct sk_buff_head *list)
3501 {
3502 	struct sk_buff *skb;
3503 	while ((skb = skb_dequeue(list)) != NULL)
3504 		kfree_skb(skb);
3505 }
3506 EXPORT_SYMBOL(skb_queue_purge);
3507 
3508 /**
3509  *	skb_rbtree_purge - empty a skb rbtree
3510  *	@root: root of the rbtree to empty
3511  *	Return value: the sum of truesizes of all purged skbs.
3512  *
3513  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3514  *	the list and one reference dropped. This function does not take
3515  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3516  *	out-of-order queue is protected by the socket lock).
3517  */
3518 unsigned int skb_rbtree_purge(struct rb_root *root)
3519 {
3520 	struct rb_node *p = rb_first(root);
3521 	unsigned int sum = 0;
3522 
3523 	while (p) {
3524 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3525 
3526 		p = rb_next(p);
3527 		rb_erase(&skb->rbnode, root);
3528 		sum += skb->truesize;
3529 		kfree_skb(skb);
3530 	}
3531 	return sum;
3532 }
3533 
3534 /**
3535  *	skb_queue_head - queue a buffer at the list head
3536  *	@list: list to use
3537  *	@newsk: buffer to queue
3538  *
3539  *	Queue a buffer at the start of the list. This function takes the
3540  *	list lock and can be used safely with other locking &sk_buff functions
3541  *	safely.
3542  *
3543  *	A buffer cannot be placed on two lists at the same time.
3544  */
3545 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3546 {
3547 	unsigned long flags;
3548 
3549 	spin_lock_irqsave(&list->lock, flags);
3550 	__skb_queue_head(list, newsk);
3551 	spin_unlock_irqrestore(&list->lock, flags);
3552 }
3553 EXPORT_SYMBOL(skb_queue_head);
3554 
3555 /**
3556  *	skb_queue_tail - queue a buffer at the list tail
3557  *	@list: list to use
3558  *	@newsk: buffer to queue
3559  *
3560  *	Queue a buffer at the tail of the list. This function takes the
3561  *	list lock and can be used safely with other locking &sk_buff functions
3562  *	safely.
3563  *
3564  *	A buffer cannot be placed on two lists at the same time.
3565  */
3566 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3567 {
3568 	unsigned long flags;
3569 
3570 	spin_lock_irqsave(&list->lock, flags);
3571 	__skb_queue_tail(list, newsk);
3572 	spin_unlock_irqrestore(&list->lock, flags);
3573 }
3574 EXPORT_SYMBOL(skb_queue_tail);
3575 
3576 /**
3577  *	skb_unlink	-	remove a buffer from a list
3578  *	@skb: buffer to remove
3579  *	@list: list to use
3580  *
3581  *	Remove a packet from a list. The list locks are taken and this
3582  *	function is atomic with respect to other list locked calls
3583  *
3584  *	You must know what list the SKB is on.
3585  */
3586 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3587 {
3588 	unsigned long flags;
3589 
3590 	spin_lock_irqsave(&list->lock, flags);
3591 	__skb_unlink(skb, list);
3592 	spin_unlock_irqrestore(&list->lock, flags);
3593 }
3594 EXPORT_SYMBOL(skb_unlink);
3595 
3596 /**
3597  *	skb_append	-	append a buffer
3598  *	@old: buffer to insert after
3599  *	@newsk: buffer to insert
3600  *	@list: list to use
3601  *
3602  *	Place a packet after a given packet in a list. The list locks are taken
3603  *	and this function is atomic with respect to other list locked calls.
3604  *	A buffer cannot be placed on two lists at the same time.
3605  */
3606 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3607 {
3608 	unsigned long flags;
3609 
3610 	spin_lock_irqsave(&list->lock, flags);
3611 	__skb_queue_after(list, old, newsk);
3612 	spin_unlock_irqrestore(&list->lock, flags);
3613 }
3614 EXPORT_SYMBOL(skb_append);
3615 
3616 static inline void skb_split_inside_header(struct sk_buff *skb,
3617 					   struct sk_buff* skb1,
3618 					   const u32 len, const int pos)
3619 {
3620 	int i;
3621 
3622 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3623 					 pos - len);
3624 	/* And move data appendix as is. */
3625 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3626 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3627 
3628 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3629 	skb_shinfo(skb)->nr_frags  = 0;
3630 	skb1->data_len		   = skb->data_len;
3631 	skb1->len		   += skb1->data_len;
3632 	skb->data_len		   = 0;
3633 	skb->len		   = len;
3634 	skb_set_tail_pointer(skb, len);
3635 }
3636 
3637 static inline void skb_split_no_header(struct sk_buff *skb,
3638 				       struct sk_buff* skb1,
3639 				       const u32 len, int pos)
3640 {
3641 	int i, k = 0;
3642 	const int nfrags = skb_shinfo(skb)->nr_frags;
3643 
3644 	skb_shinfo(skb)->nr_frags = 0;
3645 	skb1->len		  = skb1->data_len = skb->len - len;
3646 	skb->len		  = len;
3647 	skb->data_len		  = len - pos;
3648 
3649 	for (i = 0; i < nfrags; i++) {
3650 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3651 
3652 		if (pos + size > len) {
3653 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3654 
3655 			if (pos < len) {
3656 				/* Split frag.
3657 				 * We have two variants in this case:
3658 				 * 1. Move all the frag to the second
3659 				 *    part, if it is possible. F.e.
3660 				 *    this approach is mandatory for TUX,
3661 				 *    where splitting is expensive.
3662 				 * 2. Split is accurately. We make this.
3663 				 */
3664 				skb_frag_ref(skb, i);
3665 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3666 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3667 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3668 				skb_shinfo(skb)->nr_frags++;
3669 			}
3670 			k++;
3671 		} else
3672 			skb_shinfo(skb)->nr_frags++;
3673 		pos += size;
3674 	}
3675 	skb_shinfo(skb1)->nr_frags = k;
3676 }
3677 
3678 /**
3679  * skb_split - Split fragmented skb to two parts at length len.
3680  * @skb: the buffer to split
3681  * @skb1: the buffer to receive the second part
3682  * @len: new length for skb
3683  */
3684 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3685 {
3686 	int pos = skb_headlen(skb);
3687 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3688 
3689 	skb_zcopy_downgrade_managed(skb);
3690 
3691 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3692 	skb_zerocopy_clone(skb1, skb, 0);
3693 	if (len < pos)	/* Split line is inside header. */
3694 		skb_split_inside_header(skb, skb1, len, pos);
3695 	else		/* Second chunk has no header, nothing to copy. */
3696 		skb_split_no_header(skb, skb1, len, pos);
3697 }
3698 EXPORT_SYMBOL(skb_split);
3699 
3700 /* Shifting from/to a cloned skb is a no-go.
3701  *
3702  * Caller cannot keep skb_shinfo related pointers past calling here!
3703  */
3704 static int skb_prepare_for_shift(struct sk_buff *skb)
3705 {
3706 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3707 }
3708 
3709 /**
3710  * skb_shift - Shifts paged data partially from skb to another
3711  * @tgt: buffer into which tail data gets added
3712  * @skb: buffer from which the paged data comes from
3713  * @shiftlen: shift up to this many bytes
3714  *
3715  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3716  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3717  * It's up to caller to free skb if everything was shifted.
3718  *
3719  * If @tgt runs out of frags, the whole operation is aborted.
3720  *
3721  * Skb cannot include anything else but paged data while tgt is allowed
3722  * to have non-paged data as well.
3723  *
3724  * TODO: full sized shift could be optimized but that would need
3725  * specialized skb free'er to handle frags without up-to-date nr_frags.
3726  */
3727 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3728 {
3729 	int from, to, merge, todo;
3730 	skb_frag_t *fragfrom, *fragto;
3731 
3732 	BUG_ON(shiftlen > skb->len);
3733 
3734 	if (skb_headlen(skb))
3735 		return 0;
3736 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3737 		return 0;
3738 
3739 	todo = shiftlen;
3740 	from = 0;
3741 	to = skb_shinfo(tgt)->nr_frags;
3742 	fragfrom = &skb_shinfo(skb)->frags[from];
3743 
3744 	/* Actual merge is delayed until the point when we know we can
3745 	 * commit all, so that we don't have to undo partial changes
3746 	 */
3747 	if (!to ||
3748 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3749 			      skb_frag_off(fragfrom))) {
3750 		merge = -1;
3751 	} else {
3752 		merge = to - 1;
3753 
3754 		todo -= skb_frag_size(fragfrom);
3755 		if (todo < 0) {
3756 			if (skb_prepare_for_shift(skb) ||
3757 			    skb_prepare_for_shift(tgt))
3758 				return 0;
3759 
3760 			/* All previous frag pointers might be stale! */
3761 			fragfrom = &skb_shinfo(skb)->frags[from];
3762 			fragto = &skb_shinfo(tgt)->frags[merge];
3763 
3764 			skb_frag_size_add(fragto, shiftlen);
3765 			skb_frag_size_sub(fragfrom, shiftlen);
3766 			skb_frag_off_add(fragfrom, shiftlen);
3767 
3768 			goto onlymerged;
3769 		}
3770 
3771 		from++;
3772 	}
3773 
3774 	/* Skip full, not-fitting skb to avoid expensive operations */
3775 	if ((shiftlen == skb->len) &&
3776 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3777 		return 0;
3778 
3779 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3780 		return 0;
3781 
3782 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3783 		if (to == MAX_SKB_FRAGS)
3784 			return 0;
3785 
3786 		fragfrom = &skb_shinfo(skb)->frags[from];
3787 		fragto = &skb_shinfo(tgt)->frags[to];
3788 
3789 		if (todo >= skb_frag_size(fragfrom)) {
3790 			*fragto = *fragfrom;
3791 			todo -= skb_frag_size(fragfrom);
3792 			from++;
3793 			to++;
3794 
3795 		} else {
3796 			__skb_frag_ref(fragfrom);
3797 			skb_frag_page_copy(fragto, fragfrom);
3798 			skb_frag_off_copy(fragto, fragfrom);
3799 			skb_frag_size_set(fragto, todo);
3800 
3801 			skb_frag_off_add(fragfrom, todo);
3802 			skb_frag_size_sub(fragfrom, todo);
3803 			todo = 0;
3804 
3805 			to++;
3806 			break;
3807 		}
3808 	}
3809 
3810 	/* Ready to "commit" this state change to tgt */
3811 	skb_shinfo(tgt)->nr_frags = to;
3812 
3813 	if (merge >= 0) {
3814 		fragfrom = &skb_shinfo(skb)->frags[0];
3815 		fragto = &skb_shinfo(tgt)->frags[merge];
3816 
3817 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3818 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3819 	}
3820 
3821 	/* Reposition in the original skb */
3822 	to = 0;
3823 	while (from < skb_shinfo(skb)->nr_frags)
3824 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3825 	skb_shinfo(skb)->nr_frags = to;
3826 
3827 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3828 
3829 onlymerged:
3830 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3831 	 * the other hand might need it if it needs to be resent
3832 	 */
3833 	tgt->ip_summed = CHECKSUM_PARTIAL;
3834 	skb->ip_summed = CHECKSUM_PARTIAL;
3835 
3836 	skb_len_add(skb, -shiftlen);
3837 	skb_len_add(tgt, shiftlen);
3838 
3839 	return shiftlen;
3840 }
3841 
3842 /**
3843  * skb_prepare_seq_read - Prepare a sequential read of skb data
3844  * @skb: the buffer to read
3845  * @from: lower offset of data to be read
3846  * @to: upper offset of data to be read
3847  * @st: state variable
3848  *
3849  * Initializes the specified state variable. Must be called before
3850  * invoking skb_seq_read() for the first time.
3851  */
3852 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3853 			  unsigned int to, struct skb_seq_state *st)
3854 {
3855 	st->lower_offset = from;
3856 	st->upper_offset = to;
3857 	st->root_skb = st->cur_skb = skb;
3858 	st->frag_idx = st->stepped_offset = 0;
3859 	st->frag_data = NULL;
3860 	st->frag_off = 0;
3861 }
3862 EXPORT_SYMBOL(skb_prepare_seq_read);
3863 
3864 /**
3865  * skb_seq_read - Sequentially read skb data
3866  * @consumed: number of bytes consumed by the caller so far
3867  * @data: destination pointer for data to be returned
3868  * @st: state variable
3869  *
3870  * Reads a block of skb data at @consumed relative to the
3871  * lower offset specified to skb_prepare_seq_read(). Assigns
3872  * the head of the data block to @data and returns the length
3873  * of the block or 0 if the end of the skb data or the upper
3874  * offset has been reached.
3875  *
3876  * The caller is not required to consume all of the data
3877  * returned, i.e. @consumed is typically set to the number
3878  * of bytes already consumed and the next call to
3879  * skb_seq_read() will return the remaining part of the block.
3880  *
3881  * Note 1: The size of each block of data returned can be arbitrary,
3882  *       this limitation is the cost for zerocopy sequential
3883  *       reads of potentially non linear data.
3884  *
3885  * Note 2: Fragment lists within fragments are not implemented
3886  *       at the moment, state->root_skb could be replaced with
3887  *       a stack for this purpose.
3888  */
3889 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3890 			  struct skb_seq_state *st)
3891 {
3892 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3893 	skb_frag_t *frag;
3894 
3895 	if (unlikely(abs_offset >= st->upper_offset)) {
3896 		if (st->frag_data) {
3897 			kunmap_atomic(st->frag_data);
3898 			st->frag_data = NULL;
3899 		}
3900 		return 0;
3901 	}
3902 
3903 next_skb:
3904 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3905 
3906 	if (abs_offset < block_limit && !st->frag_data) {
3907 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3908 		return block_limit - abs_offset;
3909 	}
3910 
3911 	if (st->frag_idx == 0 && !st->frag_data)
3912 		st->stepped_offset += skb_headlen(st->cur_skb);
3913 
3914 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3915 		unsigned int pg_idx, pg_off, pg_sz;
3916 
3917 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3918 
3919 		pg_idx = 0;
3920 		pg_off = skb_frag_off(frag);
3921 		pg_sz = skb_frag_size(frag);
3922 
3923 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3924 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3925 			pg_off = offset_in_page(pg_off + st->frag_off);
3926 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3927 						    PAGE_SIZE - pg_off);
3928 		}
3929 
3930 		block_limit = pg_sz + st->stepped_offset;
3931 		if (abs_offset < block_limit) {
3932 			if (!st->frag_data)
3933 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3934 
3935 			*data = (u8 *)st->frag_data + pg_off +
3936 				(abs_offset - st->stepped_offset);
3937 
3938 			return block_limit - abs_offset;
3939 		}
3940 
3941 		if (st->frag_data) {
3942 			kunmap_atomic(st->frag_data);
3943 			st->frag_data = NULL;
3944 		}
3945 
3946 		st->stepped_offset += pg_sz;
3947 		st->frag_off += pg_sz;
3948 		if (st->frag_off == skb_frag_size(frag)) {
3949 			st->frag_off = 0;
3950 			st->frag_idx++;
3951 		}
3952 	}
3953 
3954 	if (st->frag_data) {
3955 		kunmap_atomic(st->frag_data);
3956 		st->frag_data = NULL;
3957 	}
3958 
3959 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3960 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3961 		st->frag_idx = 0;
3962 		goto next_skb;
3963 	} else if (st->cur_skb->next) {
3964 		st->cur_skb = st->cur_skb->next;
3965 		st->frag_idx = 0;
3966 		goto next_skb;
3967 	}
3968 
3969 	return 0;
3970 }
3971 EXPORT_SYMBOL(skb_seq_read);
3972 
3973 /**
3974  * skb_abort_seq_read - Abort a sequential read of skb data
3975  * @st: state variable
3976  *
3977  * Must be called if skb_seq_read() was not called until it
3978  * returned 0.
3979  */
3980 void skb_abort_seq_read(struct skb_seq_state *st)
3981 {
3982 	if (st->frag_data)
3983 		kunmap_atomic(st->frag_data);
3984 }
3985 EXPORT_SYMBOL(skb_abort_seq_read);
3986 
3987 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3988 
3989 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3990 					  struct ts_config *conf,
3991 					  struct ts_state *state)
3992 {
3993 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3994 }
3995 
3996 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3997 {
3998 	skb_abort_seq_read(TS_SKB_CB(state));
3999 }
4000 
4001 /**
4002  * skb_find_text - Find a text pattern in skb data
4003  * @skb: the buffer to look in
4004  * @from: search offset
4005  * @to: search limit
4006  * @config: textsearch configuration
4007  *
4008  * Finds a pattern in the skb data according to the specified
4009  * textsearch configuration. Use textsearch_next() to retrieve
4010  * subsequent occurrences of the pattern. Returns the offset
4011  * to the first occurrence or UINT_MAX if no match was found.
4012  */
4013 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4014 			   unsigned int to, struct ts_config *config)
4015 {
4016 	struct ts_state state;
4017 	unsigned int ret;
4018 
4019 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4020 
4021 	config->get_next_block = skb_ts_get_next_block;
4022 	config->finish = skb_ts_finish;
4023 
4024 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4025 
4026 	ret = textsearch_find(config, &state);
4027 	return (ret <= to - from ? ret : UINT_MAX);
4028 }
4029 EXPORT_SYMBOL(skb_find_text);
4030 
4031 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4032 			 int offset, size_t size)
4033 {
4034 	int i = skb_shinfo(skb)->nr_frags;
4035 
4036 	if (skb_can_coalesce(skb, i, page, offset)) {
4037 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4038 	} else if (i < MAX_SKB_FRAGS) {
4039 		skb_zcopy_downgrade_managed(skb);
4040 		get_page(page);
4041 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4042 	} else {
4043 		return -EMSGSIZE;
4044 	}
4045 
4046 	return 0;
4047 }
4048 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4049 
4050 /**
4051  *	skb_pull_rcsum - pull skb and update receive checksum
4052  *	@skb: buffer to update
4053  *	@len: length of data pulled
4054  *
4055  *	This function performs an skb_pull on the packet and updates
4056  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4057  *	receive path processing instead of skb_pull unless you know
4058  *	that the checksum difference is zero (e.g., a valid IP header)
4059  *	or you are setting ip_summed to CHECKSUM_NONE.
4060  */
4061 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4062 {
4063 	unsigned char *data = skb->data;
4064 
4065 	BUG_ON(len > skb->len);
4066 	__skb_pull(skb, len);
4067 	skb_postpull_rcsum(skb, data, len);
4068 	return skb->data;
4069 }
4070 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4071 
4072 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4073 {
4074 	skb_frag_t head_frag;
4075 	struct page *page;
4076 
4077 	page = virt_to_head_page(frag_skb->head);
4078 	__skb_frag_set_page(&head_frag, page);
4079 	skb_frag_off_set(&head_frag, frag_skb->data -
4080 			 (unsigned char *)page_address(page));
4081 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
4082 	return head_frag;
4083 }
4084 
4085 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4086 				 netdev_features_t features,
4087 				 unsigned int offset)
4088 {
4089 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4090 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4091 	unsigned int delta_truesize = 0;
4092 	unsigned int delta_len = 0;
4093 	struct sk_buff *tail = NULL;
4094 	struct sk_buff *nskb, *tmp;
4095 	int len_diff, err;
4096 
4097 	skb_push(skb, -skb_network_offset(skb) + offset);
4098 
4099 	skb_shinfo(skb)->frag_list = NULL;
4100 
4101 	do {
4102 		nskb = list_skb;
4103 		list_skb = list_skb->next;
4104 
4105 		err = 0;
4106 		delta_truesize += nskb->truesize;
4107 		if (skb_shared(nskb)) {
4108 			tmp = skb_clone(nskb, GFP_ATOMIC);
4109 			if (tmp) {
4110 				consume_skb(nskb);
4111 				nskb = tmp;
4112 				err = skb_unclone(nskb, GFP_ATOMIC);
4113 			} else {
4114 				err = -ENOMEM;
4115 			}
4116 		}
4117 
4118 		if (!tail)
4119 			skb->next = nskb;
4120 		else
4121 			tail->next = nskb;
4122 
4123 		if (unlikely(err)) {
4124 			nskb->next = list_skb;
4125 			goto err_linearize;
4126 		}
4127 
4128 		tail = nskb;
4129 
4130 		delta_len += nskb->len;
4131 
4132 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4133 
4134 		skb_release_head_state(nskb);
4135 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4136 		__copy_skb_header(nskb, skb);
4137 
4138 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4139 		nskb->transport_header += len_diff;
4140 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4141 						 nskb->data - tnl_hlen,
4142 						 offset + tnl_hlen);
4143 
4144 		if (skb_needs_linearize(nskb, features) &&
4145 		    __skb_linearize(nskb))
4146 			goto err_linearize;
4147 
4148 	} while (list_skb);
4149 
4150 	skb->truesize = skb->truesize - delta_truesize;
4151 	skb->data_len = skb->data_len - delta_len;
4152 	skb->len = skb->len - delta_len;
4153 
4154 	skb_gso_reset(skb);
4155 
4156 	skb->prev = tail;
4157 
4158 	if (skb_needs_linearize(skb, features) &&
4159 	    __skb_linearize(skb))
4160 		goto err_linearize;
4161 
4162 	skb_get(skb);
4163 
4164 	return skb;
4165 
4166 err_linearize:
4167 	kfree_skb_list(skb->next);
4168 	skb->next = NULL;
4169 	return ERR_PTR(-ENOMEM);
4170 }
4171 EXPORT_SYMBOL_GPL(skb_segment_list);
4172 
4173 /**
4174  *	skb_segment - Perform protocol segmentation on skb.
4175  *	@head_skb: buffer to segment
4176  *	@features: features for the output path (see dev->features)
4177  *
4178  *	This function performs segmentation on the given skb.  It returns
4179  *	a pointer to the first in a list of new skbs for the segments.
4180  *	In case of error it returns ERR_PTR(err).
4181  */
4182 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4183 			    netdev_features_t features)
4184 {
4185 	struct sk_buff *segs = NULL;
4186 	struct sk_buff *tail = NULL;
4187 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4188 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
4189 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4190 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4191 	struct sk_buff *frag_skb = head_skb;
4192 	unsigned int offset = doffset;
4193 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4194 	unsigned int partial_segs = 0;
4195 	unsigned int headroom;
4196 	unsigned int len = head_skb->len;
4197 	__be16 proto;
4198 	bool csum, sg;
4199 	int nfrags = skb_shinfo(head_skb)->nr_frags;
4200 	int err = -ENOMEM;
4201 	int i = 0;
4202 	int pos;
4203 
4204 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4205 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4206 		struct sk_buff *check_skb;
4207 
4208 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4209 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4210 				/* gso_size is untrusted, and we have a frag_list with
4211 				 * a linear non head_frag item.
4212 				 *
4213 				 * If head_skb's headlen does not fit requested gso_size,
4214 				 * it means that the frag_list members do NOT terminate
4215 				 * on exact gso_size boundaries. Hence we cannot perform
4216 				 * skb_frag_t page sharing. Therefore we must fallback to
4217 				 * copying the frag_list skbs; we do so by disabling SG.
4218 				 */
4219 				features &= ~NETIF_F_SG;
4220 				break;
4221 			}
4222 		}
4223 	}
4224 
4225 	__skb_push(head_skb, doffset);
4226 	proto = skb_network_protocol(head_skb, NULL);
4227 	if (unlikely(!proto))
4228 		return ERR_PTR(-EINVAL);
4229 
4230 	sg = !!(features & NETIF_F_SG);
4231 	csum = !!can_checksum_protocol(features, proto);
4232 
4233 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4234 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4235 			struct sk_buff *iter;
4236 			unsigned int frag_len;
4237 
4238 			if (!list_skb ||
4239 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4240 				goto normal;
4241 
4242 			/* If we get here then all the required
4243 			 * GSO features except frag_list are supported.
4244 			 * Try to split the SKB to multiple GSO SKBs
4245 			 * with no frag_list.
4246 			 * Currently we can do that only when the buffers don't
4247 			 * have a linear part and all the buffers except
4248 			 * the last are of the same length.
4249 			 */
4250 			frag_len = list_skb->len;
4251 			skb_walk_frags(head_skb, iter) {
4252 				if (frag_len != iter->len && iter->next)
4253 					goto normal;
4254 				if (skb_headlen(iter) && !iter->head_frag)
4255 					goto normal;
4256 
4257 				len -= iter->len;
4258 			}
4259 
4260 			if (len != frag_len)
4261 				goto normal;
4262 		}
4263 
4264 		/* GSO partial only requires that we trim off any excess that
4265 		 * doesn't fit into an MSS sized block, so take care of that
4266 		 * now.
4267 		 */
4268 		partial_segs = len / mss;
4269 		if (partial_segs > 1)
4270 			mss *= partial_segs;
4271 		else
4272 			partial_segs = 0;
4273 	}
4274 
4275 normal:
4276 	headroom = skb_headroom(head_skb);
4277 	pos = skb_headlen(head_skb);
4278 
4279 	do {
4280 		struct sk_buff *nskb;
4281 		skb_frag_t *nskb_frag;
4282 		int hsize;
4283 		int size;
4284 
4285 		if (unlikely(mss == GSO_BY_FRAGS)) {
4286 			len = list_skb->len;
4287 		} else {
4288 			len = head_skb->len - offset;
4289 			if (len > mss)
4290 				len = mss;
4291 		}
4292 
4293 		hsize = skb_headlen(head_skb) - offset;
4294 
4295 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4296 		    (skb_headlen(list_skb) == len || sg)) {
4297 			BUG_ON(skb_headlen(list_skb) > len);
4298 
4299 			i = 0;
4300 			nfrags = skb_shinfo(list_skb)->nr_frags;
4301 			frag = skb_shinfo(list_skb)->frags;
4302 			frag_skb = list_skb;
4303 			pos += skb_headlen(list_skb);
4304 
4305 			while (pos < offset + len) {
4306 				BUG_ON(i >= nfrags);
4307 
4308 				size = skb_frag_size(frag);
4309 				if (pos + size > offset + len)
4310 					break;
4311 
4312 				i++;
4313 				pos += size;
4314 				frag++;
4315 			}
4316 
4317 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4318 			list_skb = list_skb->next;
4319 
4320 			if (unlikely(!nskb))
4321 				goto err;
4322 
4323 			if (unlikely(pskb_trim(nskb, len))) {
4324 				kfree_skb(nskb);
4325 				goto err;
4326 			}
4327 
4328 			hsize = skb_end_offset(nskb);
4329 			if (skb_cow_head(nskb, doffset + headroom)) {
4330 				kfree_skb(nskb);
4331 				goto err;
4332 			}
4333 
4334 			nskb->truesize += skb_end_offset(nskb) - hsize;
4335 			skb_release_head_state(nskb);
4336 			__skb_push(nskb, doffset);
4337 		} else {
4338 			if (hsize < 0)
4339 				hsize = 0;
4340 			if (hsize > len || !sg)
4341 				hsize = len;
4342 
4343 			nskb = __alloc_skb(hsize + doffset + headroom,
4344 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4345 					   NUMA_NO_NODE);
4346 
4347 			if (unlikely(!nskb))
4348 				goto err;
4349 
4350 			skb_reserve(nskb, headroom);
4351 			__skb_put(nskb, doffset);
4352 		}
4353 
4354 		if (segs)
4355 			tail->next = nskb;
4356 		else
4357 			segs = nskb;
4358 		tail = nskb;
4359 
4360 		__copy_skb_header(nskb, head_skb);
4361 
4362 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4363 		skb_reset_mac_len(nskb);
4364 
4365 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4366 						 nskb->data - tnl_hlen,
4367 						 doffset + tnl_hlen);
4368 
4369 		if (nskb->len == len + doffset)
4370 			goto perform_csum_check;
4371 
4372 		if (!sg) {
4373 			if (!csum) {
4374 				if (!nskb->remcsum_offload)
4375 					nskb->ip_summed = CHECKSUM_NONE;
4376 				SKB_GSO_CB(nskb)->csum =
4377 					skb_copy_and_csum_bits(head_skb, offset,
4378 							       skb_put(nskb,
4379 								       len),
4380 							       len);
4381 				SKB_GSO_CB(nskb)->csum_start =
4382 					skb_headroom(nskb) + doffset;
4383 			} else {
4384 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4385 					goto err;
4386 			}
4387 			continue;
4388 		}
4389 
4390 		nskb_frag = skb_shinfo(nskb)->frags;
4391 
4392 		skb_copy_from_linear_data_offset(head_skb, offset,
4393 						 skb_put(nskb, hsize), hsize);
4394 
4395 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4396 					   SKBFL_SHARED_FRAG;
4397 
4398 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4399 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4400 			goto err;
4401 
4402 		while (pos < offset + len) {
4403 			if (i >= nfrags) {
4404 				i = 0;
4405 				nfrags = skb_shinfo(list_skb)->nr_frags;
4406 				frag = skb_shinfo(list_skb)->frags;
4407 				frag_skb = list_skb;
4408 				if (!skb_headlen(list_skb)) {
4409 					BUG_ON(!nfrags);
4410 				} else {
4411 					BUG_ON(!list_skb->head_frag);
4412 
4413 					/* to make room for head_frag. */
4414 					i--;
4415 					frag--;
4416 				}
4417 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4418 				    skb_zerocopy_clone(nskb, frag_skb,
4419 						       GFP_ATOMIC))
4420 					goto err;
4421 
4422 				list_skb = list_skb->next;
4423 			}
4424 
4425 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4426 				     MAX_SKB_FRAGS)) {
4427 				net_warn_ratelimited(
4428 					"skb_segment: too many frags: %u %u\n",
4429 					pos, mss);
4430 				err = -EINVAL;
4431 				goto err;
4432 			}
4433 
4434 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4435 			__skb_frag_ref(nskb_frag);
4436 			size = skb_frag_size(nskb_frag);
4437 
4438 			if (pos < offset) {
4439 				skb_frag_off_add(nskb_frag, offset - pos);
4440 				skb_frag_size_sub(nskb_frag, offset - pos);
4441 			}
4442 
4443 			skb_shinfo(nskb)->nr_frags++;
4444 
4445 			if (pos + size <= offset + len) {
4446 				i++;
4447 				frag++;
4448 				pos += size;
4449 			} else {
4450 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4451 				goto skip_fraglist;
4452 			}
4453 
4454 			nskb_frag++;
4455 		}
4456 
4457 skip_fraglist:
4458 		nskb->data_len = len - hsize;
4459 		nskb->len += nskb->data_len;
4460 		nskb->truesize += nskb->data_len;
4461 
4462 perform_csum_check:
4463 		if (!csum) {
4464 			if (skb_has_shared_frag(nskb) &&
4465 			    __skb_linearize(nskb))
4466 				goto err;
4467 
4468 			if (!nskb->remcsum_offload)
4469 				nskb->ip_summed = CHECKSUM_NONE;
4470 			SKB_GSO_CB(nskb)->csum =
4471 				skb_checksum(nskb, doffset,
4472 					     nskb->len - doffset, 0);
4473 			SKB_GSO_CB(nskb)->csum_start =
4474 				skb_headroom(nskb) + doffset;
4475 		}
4476 	} while ((offset += len) < head_skb->len);
4477 
4478 	/* Some callers want to get the end of the list.
4479 	 * Put it in segs->prev to avoid walking the list.
4480 	 * (see validate_xmit_skb_list() for example)
4481 	 */
4482 	segs->prev = tail;
4483 
4484 	if (partial_segs) {
4485 		struct sk_buff *iter;
4486 		int type = skb_shinfo(head_skb)->gso_type;
4487 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4488 
4489 		/* Update type to add partial and then remove dodgy if set */
4490 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4491 		type &= ~SKB_GSO_DODGY;
4492 
4493 		/* Update GSO info and prepare to start updating headers on
4494 		 * our way back down the stack of protocols.
4495 		 */
4496 		for (iter = segs; iter; iter = iter->next) {
4497 			skb_shinfo(iter)->gso_size = gso_size;
4498 			skb_shinfo(iter)->gso_segs = partial_segs;
4499 			skb_shinfo(iter)->gso_type = type;
4500 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4501 		}
4502 
4503 		if (tail->len - doffset <= gso_size)
4504 			skb_shinfo(tail)->gso_size = 0;
4505 		else if (tail != segs)
4506 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4507 	}
4508 
4509 	/* Following permits correct backpressure, for protocols
4510 	 * using skb_set_owner_w().
4511 	 * Idea is to tranfert ownership from head_skb to last segment.
4512 	 */
4513 	if (head_skb->destructor == sock_wfree) {
4514 		swap(tail->truesize, head_skb->truesize);
4515 		swap(tail->destructor, head_skb->destructor);
4516 		swap(tail->sk, head_skb->sk);
4517 	}
4518 	return segs;
4519 
4520 err:
4521 	kfree_skb_list(segs);
4522 	return ERR_PTR(err);
4523 }
4524 EXPORT_SYMBOL_GPL(skb_segment);
4525 
4526 #ifdef CONFIG_SKB_EXTENSIONS
4527 #define SKB_EXT_ALIGN_VALUE	8
4528 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4529 
4530 static const u8 skb_ext_type_len[] = {
4531 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4532 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4533 #endif
4534 #ifdef CONFIG_XFRM
4535 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4536 #endif
4537 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4538 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4539 #endif
4540 #if IS_ENABLED(CONFIG_MPTCP)
4541 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4542 #endif
4543 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4544 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4545 #endif
4546 };
4547 
4548 static __always_inline unsigned int skb_ext_total_length(void)
4549 {
4550 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4551 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4552 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4553 #endif
4554 #ifdef CONFIG_XFRM
4555 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4556 #endif
4557 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4558 		skb_ext_type_len[TC_SKB_EXT] +
4559 #endif
4560 #if IS_ENABLED(CONFIG_MPTCP)
4561 		skb_ext_type_len[SKB_EXT_MPTCP] +
4562 #endif
4563 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4564 		skb_ext_type_len[SKB_EXT_MCTP] +
4565 #endif
4566 		0;
4567 }
4568 
4569 static void skb_extensions_init(void)
4570 {
4571 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4572 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4573 
4574 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4575 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4576 					     0,
4577 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4578 					     NULL);
4579 }
4580 #else
4581 static void skb_extensions_init(void) {}
4582 #endif
4583 
4584 void __init skb_init(void)
4585 {
4586 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4587 					      sizeof(struct sk_buff),
4588 					      0,
4589 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4590 					      offsetof(struct sk_buff, cb),
4591 					      sizeof_field(struct sk_buff, cb),
4592 					      NULL);
4593 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4594 						sizeof(struct sk_buff_fclones),
4595 						0,
4596 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4597 						NULL);
4598 	skb_extensions_init();
4599 }
4600 
4601 static int
4602 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4603 	       unsigned int recursion_level)
4604 {
4605 	int start = skb_headlen(skb);
4606 	int i, copy = start - offset;
4607 	struct sk_buff *frag_iter;
4608 	int elt = 0;
4609 
4610 	if (unlikely(recursion_level >= 24))
4611 		return -EMSGSIZE;
4612 
4613 	if (copy > 0) {
4614 		if (copy > len)
4615 			copy = len;
4616 		sg_set_buf(sg, skb->data + offset, copy);
4617 		elt++;
4618 		if ((len -= copy) == 0)
4619 			return elt;
4620 		offset += copy;
4621 	}
4622 
4623 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4624 		int end;
4625 
4626 		WARN_ON(start > offset + len);
4627 
4628 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4629 		if ((copy = end - offset) > 0) {
4630 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4631 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4632 				return -EMSGSIZE;
4633 
4634 			if (copy > len)
4635 				copy = len;
4636 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4637 				    skb_frag_off(frag) + offset - start);
4638 			elt++;
4639 			if (!(len -= copy))
4640 				return elt;
4641 			offset += copy;
4642 		}
4643 		start = end;
4644 	}
4645 
4646 	skb_walk_frags(skb, frag_iter) {
4647 		int end, ret;
4648 
4649 		WARN_ON(start > offset + len);
4650 
4651 		end = start + frag_iter->len;
4652 		if ((copy = end - offset) > 0) {
4653 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4654 				return -EMSGSIZE;
4655 
4656 			if (copy > len)
4657 				copy = len;
4658 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4659 					      copy, recursion_level + 1);
4660 			if (unlikely(ret < 0))
4661 				return ret;
4662 			elt += ret;
4663 			if ((len -= copy) == 0)
4664 				return elt;
4665 			offset += copy;
4666 		}
4667 		start = end;
4668 	}
4669 	BUG_ON(len);
4670 	return elt;
4671 }
4672 
4673 /**
4674  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4675  *	@skb: Socket buffer containing the buffers to be mapped
4676  *	@sg: The scatter-gather list to map into
4677  *	@offset: The offset into the buffer's contents to start mapping
4678  *	@len: Length of buffer space to be mapped
4679  *
4680  *	Fill the specified scatter-gather list with mappings/pointers into a
4681  *	region of the buffer space attached to a socket buffer. Returns either
4682  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4683  *	could not fit.
4684  */
4685 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4686 {
4687 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4688 
4689 	if (nsg <= 0)
4690 		return nsg;
4691 
4692 	sg_mark_end(&sg[nsg - 1]);
4693 
4694 	return nsg;
4695 }
4696 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4697 
4698 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4699  * sglist without mark the sg which contain last skb data as the end.
4700  * So the caller can mannipulate sg list as will when padding new data after
4701  * the first call without calling sg_unmark_end to expend sg list.
4702  *
4703  * Scenario to use skb_to_sgvec_nomark:
4704  * 1. sg_init_table
4705  * 2. skb_to_sgvec_nomark(payload1)
4706  * 3. skb_to_sgvec_nomark(payload2)
4707  *
4708  * This is equivalent to:
4709  * 1. sg_init_table
4710  * 2. skb_to_sgvec(payload1)
4711  * 3. sg_unmark_end
4712  * 4. skb_to_sgvec(payload2)
4713  *
4714  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4715  * is more preferable.
4716  */
4717 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4718 			int offset, int len)
4719 {
4720 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4721 }
4722 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4723 
4724 
4725 
4726 /**
4727  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4728  *	@skb: The socket buffer to check.
4729  *	@tailbits: Amount of trailing space to be added
4730  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4731  *
4732  *	Make sure that the data buffers attached to a socket buffer are
4733  *	writable. If they are not, private copies are made of the data buffers
4734  *	and the socket buffer is set to use these instead.
4735  *
4736  *	If @tailbits is given, make sure that there is space to write @tailbits
4737  *	bytes of data beyond current end of socket buffer.  @trailer will be
4738  *	set to point to the skb in which this space begins.
4739  *
4740  *	The number of scatterlist elements required to completely map the
4741  *	COW'd and extended socket buffer will be returned.
4742  */
4743 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4744 {
4745 	int copyflag;
4746 	int elt;
4747 	struct sk_buff *skb1, **skb_p;
4748 
4749 	/* If skb is cloned or its head is paged, reallocate
4750 	 * head pulling out all the pages (pages are considered not writable
4751 	 * at the moment even if they are anonymous).
4752 	 */
4753 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4754 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4755 		return -ENOMEM;
4756 
4757 	/* Easy case. Most of packets will go this way. */
4758 	if (!skb_has_frag_list(skb)) {
4759 		/* A little of trouble, not enough of space for trailer.
4760 		 * This should not happen, when stack is tuned to generate
4761 		 * good frames. OK, on miss we reallocate and reserve even more
4762 		 * space, 128 bytes is fair. */
4763 
4764 		if (skb_tailroom(skb) < tailbits &&
4765 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4766 			return -ENOMEM;
4767 
4768 		/* Voila! */
4769 		*trailer = skb;
4770 		return 1;
4771 	}
4772 
4773 	/* Misery. We are in troubles, going to mincer fragments... */
4774 
4775 	elt = 1;
4776 	skb_p = &skb_shinfo(skb)->frag_list;
4777 	copyflag = 0;
4778 
4779 	while ((skb1 = *skb_p) != NULL) {
4780 		int ntail = 0;
4781 
4782 		/* The fragment is partially pulled by someone,
4783 		 * this can happen on input. Copy it and everything
4784 		 * after it. */
4785 
4786 		if (skb_shared(skb1))
4787 			copyflag = 1;
4788 
4789 		/* If the skb is the last, worry about trailer. */
4790 
4791 		if (skb1->next == NULL && tailbits) {
4792 			if (skb_shinfo(skb1)->nr_frags ||
4793 			    skb_has_frag_list(skb1) ||
4794 			    skb_tailroom(skb1) < tailbits)
4795 				ntail = tailbits + 128;
4796 		}
4797 
4798 		if (copyflag ||
4799 		    skb_cloned(skb1) ||
4800 		    ntail ||
4801 		    skb_shinfo(skb1)->nr_frags ||
4802 		    skb_has_frag_list(skb1)) {
4803 			struct sk_buff *skb2;
4804 
4805 			/* Fuck, we are miserable poor guys... */
4806 			if (ntail == 0)
4807 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4808 			else
4809 				skb2 = skb_copy_expand(skb1,
4810 						       skb_headroom(skb1),
4811 						       ntail,
4812 						       GFP_ATOMIC);
4813 			if (unlikely(skb2 == NULL))
4814 				return -ENOMEM;
4815 
4816 			if (skb1->sk)
4817 				skb_set_owner_w(skb2, skb1->sk);
4818 
4819 			/* Looking around. Are we still alive?
4820 			 * OK, link new skb, drop old one */
4821 
4822 			skb2->next = skb1->next;
4823 			*skb_p = skb2;
4824 			kfree_skb(skb1);
4825 			skb1 = skb2;
4826 		}
4827 		elt++;
4828 		*trailer = skb1;
4829 		skb_p = &skb1->next;
4830 	}
4831 
4832 	return elt;
4833 }
4834 EXPORT_SYMBOL_GPL(skb_cow_data);
4835 
4836 static void sock_rmem_free(struct sk_buff *skb)
4837 {
4838 	struct sock *sk = skb->sk;
4839 
4840 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4841 }
4842 
4843 static void skb_set_err_queue(struct sk_buff *skb)
4844 {
4845 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4846 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4847 	 */
4848 	skb->pkt_type = PACKET_OUTGOING;
4849 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4850 }
4851 
4852 /*
4853  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4854  */
4855 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4856 {
4857 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4858 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4859 		return -ENOMEM;
4860 
4861 	skb_orphan(skb);
4862 	skb->sk = sk;
4863 	skb->destructor = sock_rmem_free;
4864 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4865 	skb_set_err_queue(skb);
4866 
4867 	/* before exiting rcu section, make sure dst is refcounted */
4868 	skb_dst_force(skb);
4869 
4870 	skb_queue_tail(&sk->sk_error_queue, skb);
4871 	if (!sock_flag(sk, SOCK_DEAD))
4872 		sk_error_report(sk);
4873 	return 0;
4874 }
4875 EXPORT_SYMBOL(sock_queue_err_skb);
4876 
4877 static bool is_icmp_err_skb(const struct sk_buff *skb)
4878 {
4879 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4880 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4881 }
4882 
4883 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4884 {
4885 	struct sk_buff_head *q = &sk->sk_error_queue;
4886 	struct sk_buff *skb, *skb_next = NULL;
4887 	bool icmp_next = false;
4888 	unsigned long flags;
4889 
4890 	spin_lock_irqsave(&q->lock, flags);
4891 	skb = __skb_dequeue(q);
4892 	if (skb && (skb_next = skb_peek(q))) {
4893 		icmp_next = is_icmp_err_skb(skb_next);
4894 		if (icmp_next)
4895 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4896 	}
4897 	spin_unlock_irqrestore(&q->lock, flags);
4898 
4899 	if (is_icmp_err_skb(skb) && !icmp_next)
4900 		sk->sk_err = 0;
4901 
4902 	if (skb_next)
4903 		sk_error_report(sk);
4904 
4905 	return skb;
4906 }
4907 EXPORT_SYMBOL(sock_dequeue_err_skb);
4908 
4909 /**
4910  * skb_clone_sk - create clone of skb, and take reference to socket
4911  * @skb: the skb to clone
4912  *
4913  * This function creates a clone of a buffer that holds a reference on
4914  * sk_refcnt.  Buffers created via this function are meant to be
4915  * returned using sock_queue_err_skb, or free via kfree_skb.
4916  *
4917  * When passing buffers allocated with this function to sock_queue_err_skb
4918  * it is necessary to wrap the call with sock_hold/sock_put in order to
4919  * prevent the socket from being released prior to being enqueued on
4920  * the sk_error_queue.
4921  */
4922 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4923 {
4924 	struct sock *sk = skb->sk;
4925 	struct sk_buff *clone;
4926 
4927 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4928 		return NULL;
4929 
4930 	clone = skb_clone(skb, GFP_ATOMIC);
4931 	if (!clone) {
4932 		sock_put(sk);
4933 		return NULL;
4934 	}
4935 
4936 	clone->sk = sk;
4937 	clone->destructor = sock_efree;
4938 
4939 	return clone;
4940 }
4941 EXPORT_SYMBOL(skb_clone_sk);
4942 
4943 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4944 					struct sock *sk,
4945 					int tstype,
4946 					bool opt_stats)
4947 {
4948 	struct sock_exterr_skb *serr;
4949 	int err;
4950 
4951 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4952 
4953 	serr = SKB_EXT_ERR(skb);
4954 	memset(serr, 0, sizeof(*serr));
4955 	serr->ee.ee_errno = ENOMSG;
4956 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4957 	serr->ee.ee_info = tstype;
4958 	serr->opt_stats = opt_stats;
4959 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4960 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4961 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4962 		if (sk_is_tcp(sk))
4963 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
4964 	}
4965 
4966 	err = sock_queue_err_skb(sk, skb);
4967 
4968 	if (err)
4969 		kfree_skb(skb);
4970 }
4971 
4972 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4973 {
4974 	bool ret;
4975 
4976 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
4977 		return true;
4978 
4979 	read_lock_bh(&sk->sk_callback_lock);
4980 	ret = sk->sk_socket && sk->sk_socket->file &&
4981 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4982 	read_unlock_bh(&sk->sk_callback_lock);
4983 	return ret;
4984 }
4985 
4986 void skb_complete_tx_timestamp(struct sk_buff *skb,
4987 			       struct skb_shared_hwtstamps *hwtstamps)
4988 {
4989 	struct sock *sk = skb->sk;
4990 
4991 	if (!skb_may_tx_timestamp(sk, false))
4992 		goto err;
4993 
4994 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4995 	 * but only if the socket refcount is not zero.
4996 	 */
4997 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4998 		*skb_hwtstamps(skb) = *hwtstamps;
4999 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5000 		sock_put(sk);
5001 		return;
5002 	}
5003 
5004 err:
5005 	kfree_skb(skb);
5006 }
5007 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5008 
5009 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5010 		     const struct sk_buff *ack_skb,
5011 		     struct skb_shared_hwtstamps *hwtstamps,
5012 		     struct sock *sk, int tstype)
5013 {
5014 	struct sk_buff *skb;
5015 	bool tsonly, opt_stats = false;
5016 
5017 	if (!sk)
5018 		return;
5019 
5020 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5021 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5022 		return;
5023 
5024 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5025 	if (!skb_may_tx_timestamp(sk, tsonly))
5026 		return;
5027 
5028 	if (tsonly) {
5029 #ifdef CONFIG_INET
5030 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5031 		    sk_is_tcp(sk)) {
5032 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5033 							     ack_skb);
5034 			opt_stats = true;
5035 		} else
5036 #endif
5037 			skb = alloc_skb(0, GFP_ATOMIC);
5038 	} else {
5039 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5040 	}
5041 	if (!skb)
5042 		return;
5043 
5044 	if (tsonly) {
5045 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5046 					     SKBTX_ANY_TSTAMP;
5047 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5048 	}
5049 
5050 	if (hwtstamps)
5051 		*skb_hwtstamps(skb) = *hwtstamps;
5052 	else
5053 		__net_timestamp(skb);
5054 
5055 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5056 }
5057 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5058 
5059 void skb_tstamp_tx(struct sk_buff *orig_skb,
5060 		   struct skb_shared_hwtstamps *hwtstamps)
5061 {
5062 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5063 			       SCM_TSTAMP_SND);
5064 }
5065 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5066 
5067 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5068 {
5069 	struct sock *sk = skb->sk;
5070 	struct sock_exterr_skb *serr;
5071 	int err = 1;
5072 
5073 	skb->wifi_acked_valid = 1;
5074 	skb->wifi_acked = acked;
5075 
5076 	serr = SKB_EXT_ERR(skb);
5077 	memset(serr, 0, sizeof(*serr));
5078 	serr->ee.ee_errno = ENOMSG;
5079 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5080 
5081 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5082 	 * but only if the socket refcount is not zero.
5083 	 */
5084 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5085 		err = sock_queue_err_skb(sk, skb);
5086 		sock_put(sk);
5087 	}
5088 	if (err)
5089 		kfree_skb(skb);
5090 }
5091 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5092 
5093 /**
5094  * skb_partial_csum_set - set up and verify partial csum values for packet
5095  * @skb: the skb to set
5096  * @start: the number of bytes after skb->data to start checksumming.
5097  * @off: the offset from start to place the checksum.
5098  *
5099  * For untrusted partially-checksummed packets, we need to make sure the values
5100  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5101  *
5102  * This function checks and sets those values and skb->ip_summed: if this
5103  * returns false you should drop the packet.
5104  */
5105 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5106 {
5107 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5108 	u32 csum_start = skb_headroom(skb) + (u32)start;
5109 
5110 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
5111 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5112 				     start, off, skb_headroom(skb), skb_headlen(skb));
5113 		return false;
5114 	}
5115 	skb->ip_summed = CHECKSUM_PARTIAL;
5116 	skb->csum_start = csum_start;
5117 	skb->csum_offset = off;
5118 	skb_set_transport_header(skb, start);
5119 	return true;
5120 }
5121 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5122 
5123 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5124 			       unsigned int max)
5125 {
5126 	if (skb_headlen(skb) >= len)
5127 		return 0;
5128 
5129 	/* If we need to pullup then pullup to the max, so we
5130 	 * won't need to do it again.
5131 	 */
5132 	if (max > skb->len)
5133 		max = skb->len;
5134 
5135 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5136 		return -ENOMEM;
5137 
5138 	if (skb_headlen(skb) < len)
5139 		return -EPROTO;
5140 
5141 	return 0;
5142 }
5143 
5144 #define MAX_TCP_HDR_LEN (15 * 4)
5145 
5146 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5147 				      typeof(IPPROTO_IP) proto,
5148 				      unsigned int off)
5149 {
5150 	int err;
5151 
5152 	switch (proto) {
5153 	case IPPROTO_TCP:
5154 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5155 					  off + MAX_TCP_HDR_LEN);
5156 		if (!err && !skb_partial_csum_set(skb, off,
5157 						  offsetof(struct tcphdr,
5158 							   check)))
5159 			err = -EPROTO;
5160 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5161 
5162 	case IPPROTO_UDP:
5163 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5164 					  off + sizeof(struct udphdr));
5165 		if (!err && !skb_partial_csum_set(skb, off,
5166 						  offsetof(struct udphdr,
5167 							   check)))
5168 			err = -EPROTO;
5169 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5170 	}
5171 
5172 	return ERR_PTR(-EPROTO);
5173 }
5174 
5175 /* This value should be large enough to cover a tagged ethernet header plus
5176  * maximally sized IP and TCP or UDP headers.
5177  */
5178 #define MAX_IP_HDR_LEN 128
5179 
5180 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5181 {
5182 	unsigned int off;
5183 	bool fragment;
5184 	__sum16 *csum;
5185 	int err;
5186 
5187 	fragment = false;
5188 
5189 	err = skb_maybe_pull_tail(skb,
5190 				  sizeof(struct iphdr),
5191 				  MAX_IP_HDR_LEN);
5192 	if (err < 0)
5193 		goto out;
5194 
5195 	if (ip_is_fragment(ip_hdr(skb)))
5196 		fragment = true;
5197 
5198 	off = ip_hdrlen(skb);
5199 
5200 	err = -EPROTO;
5201 
5202 	if (fragment)
5203 		goto out;
5204 
5205 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5206 	if (IS_ERR(csum))
5207 		return PTR_ERR(csum);
5208 
5209 	if (recalculate)
5210 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5211 					   ip_hdr(skb)->daddr,
5212 					   skb->len - off,
5213 					   ip_hdr(skb)->protocol, 0);
5214 	err = 0;
5215 
5216 out:
5217 	return err;
5218 }
5219 
5220 /* This value should be large enough to cover a tagged ethernet header plus
5221  * an IPv6 header, all options, and a maximal TCP or UDP header.
5222  */
5223 #define MAX_IPV6_HDR_LEN 256
5224 
5225 #define OPT_HDR(type, skb, off) \
5226 	(type *)(skb_network_header(skb) + (off))
5227 
5228 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5229 {
5230 	int err;
5231 	u8 nexthdr;
5232 	unsigned int off;
5233 	unsigned int len;
5234 	bool fragment;
5235 	bool done;
5236 	__sum16 *csum;
5237 
5238 	fragment = false;
5239 	done = false;
5240 
5241 	off = sizeof(struct ipv6hdr);
5242 
5243 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5244 	if (err < 0)
5245 		goto out;
5246 
5247 	nexthdr = ipv6_hdr(skb)->nexthdr;
5248 
5249 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5250 	while (off <= len && !done) {
5251 		switch (nexthdr) {
5252 		case IPPROTO_DSTOPTS:
5253 		case IPPROTO_HOPOPTS:
5254 		case IPPROTO_ROUTING: {
5255 			struct ipv6_opt_hdr *hp;
5256 
5257 			err = skb_maybe_pull_tail(skb,
5258 						  off +
5259 						  sizeof(struct ipv6_opt_hdr),
5260 						  MAX_IPV6_HDR_LEN);
5261 			if (err < 0)
5262 				goto out;
5263 
5264 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5265 			nexthdr = hp->nexthdr;
5266 			off += ipv6_optlen(hp);
5267 			break;
5268 		}
5269 		case IPPROTO_AH: {
5270 			struct ip_auth_hdr *hp;
5271 
5272 			err = skb_maybe_pull_tail(skb,
5273 						  off +
5274 						  sizeof(struct ip_auth_hdr),
5275 						  MAX_IPV6_HDR_LEN);
5276 			if (err < 0)
5277 				goto out;
5278 
5279 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5280 			nexthdr = hp->nexthdr;
5281 			off += ipv6_authlen(hp);
5282 			break;
5283 		}
5284 		case IPPROTO_FRAGMENT: {
5285 			struct frag_hdr *hp;
5286 
5287 			err = skb_maybe_pull_tail(skb,
5288 						  off +
5289 						  sizeof(struct frag_hdr),
5290 						  MAX_IPV6_HDR_LEN);
5291 			if (err < 0)
5292 				goto out;
5293 
5294 			hp = OPT_HDR(struct frag_hdr, skb, off);
5295 
5296 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5297 				fragment = true;
5298 
5299 			nexthdr = hp->nexthdr;
5300 			off += sizeof(struct frag_hdr);
5301 			break;
5302 		}
5303 		default:
5304 			done = true;
5305 			break;
5306 		}
5307 	}
5308 
5309 	err = -EPROTO;
5310 
5311 	if (!done || fragment)
5312 		goto out;
5313 
5314 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5315 	if (IS_ERR(csum))
5316 		return PTR_ERR(csum);
5317 
5318 	if (recalculate)
5319 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5320 					 &ipv6_hdr(skb)->daddr,
5321 					 skb->len - off, nexthdr, 0);
5322 	err = 0;
5323 
5324 out:
5325 	return err;
5326 }
5327 
5328 /**
5329  * skb_checksum_setup - set up partial checksum offset
5330  * @skb: the skb to set up
5331  * @recalculate: if true the pseudo-header checksum will be recalculated
5332  */
5333 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5334 {
5335 	int err;
5336 
5337 	switch (skb->protocol) {
5338 	case htons(ETH_P_IP):
5339 		err = skb_checksum_setup_ipv4(skb, recalculate);
5340 		break;
5341 
5342 	case htons(ETH_P_IPV6):
5343 		err = skb_checksum_setup_ipv6(skb, recalculate);
5344 		break;
5345 
5346 	default:
5347 		err = -EPROTO;
5348 		break;
5349 	}
5350 
5351 	return err;
5352 }
5353 EXPORT_SYMBOL(skb_checksum_setup);
5354 
5355 /**
5356  * skb_checksum_maybe_trim - maybe trims the given skb
5357  * @skb: the skb to check
5358  * @transport_len: the data length beyond the network header
5359  *
5360  * Checks whether the given skb has data beyond the given transport length.
5361  * If so, returns a cloned skb trimmed to this transport length.
5362  * Otherwise returns the provided skb. Returns NULL in error cases
5363  * (e.g. transport_len exceeds skb length or out-of-memory).
5364  *
5365  * Caller needs to set the skb transport header and free any returned skb if it
5366  * differs from the provided skb.
5367  */
5368 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5369 					       unsigned int transport_len)
5370 {
5371 	struct sk_buff *skb_chk;
5372 	unsigned int len = skb_transport_offset(skb) + transport_len;
5373 	int ret;
5374 
5375 	if (skb->len < len)
5376 		return NULL;
5377 	else if (skb->len == len)
5378 		return skb;
5379 
5380 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5381 	if (!skb_chk)
5382 		return NULL;
5383 
5384 	ret = pskb_trim_rcsum(skb_chk, len);
5385 	if (ret) {
5386 		kfree_skb(skb_chk);
5387 		return NULL;
5388 	}
5389 
5390 	return skb_chk;
5391 }
5392 
5393 /**
5394  * skb_checksum_trimmed - validate checksum of an skb
5395  * @skb: the skb to check
5396  * @transport_len: the data length beyond the network header
5397  * @skb_chkf: checksum function to use
5398  *
5399  * Applies the given checksum function skb_chkf to the provided skb.
5400  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5401  *
5402  * If the skb has data beyond the given transport length, then a
5403  * trimmed & cloned skb is checked and returned.
5404  *
5405  * Caller needs to set the skb transport header and free any returned skb if it
5406  * differs from the provided skb.
5407  */
5408 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5409 				     unsigned int transport_len,
5410 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5411 {
5412 	struct sk_buff *skb_chk;
5413 	unsigned int offset = skb_transport_offset(skb);
5414 	__sum16 ret;
5415 
5416 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5417 	if (!skb_chk)
5418 		goto err;
5419 
5420 	if (!pskb_may_pull(skb_chk, offset))
5421 		goto err;
5422 
5423 	skb_pull_rcsum(skb_chk, offset);
5424 	ret = skb_chkf(skb_chk);
5425 	skb_push_rcsum(skb_chk, offset);
5426 
5427 	if (ret)
5428 		goto err;
5429 
5430 	return skb_chk;
5431 
5432 err:
5433 	if (skb_chk && skb_chk != skb)
5434 		kfree_skb(skb_chk);
5435 
5436 	return NULL;
5437 
5438 }
5439 EXPORT_SYMBOL(skb_checksum_trimmed);
5440 
5441 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5442 {
5443 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5444 			     skb->dev->name);
5445 }
5446 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5447 
5448 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5449 {
5450 	if (head_stolen) {
5451 		skb_release_head_state(skb);
5452 		kmem_cache_free(skbuff_head_cache, skb);
5453 	} else {
5454 		__kfree_skb(skb);
5455 	}
5456 }
5457 EXPORT_SYMBOL(kfree_skb_partial);
5458 
5459 /**
5460  * skb_try_coalesce - try to merge skb to prior one
5461  * @to: prior buffer
5462  * @from: buffer to add
5463  * @fragstolen: pointer to boolean
5464  * @delta_truesize: how much more was allocated than was requested
5465  */
5466 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5467 		      bool *fragstolen, int *delta_truesize)
5468 {
5469 	struct skb_shared_info *to_shinfo, *from_shinfo;
5470 	int i, delta, len = from->len;
5471 
5472 	*fragstolen = false;
5473 
5474 	if (skb_cloned(to))
5475 		return false;
5476 
5477 	/* In general, avoid mixing slab allocated and page_pool allocated
5478 	 * pages within the same SKB. However when @to is not pp_recycle and
5479 	 * @from is cloned, we can transition frag pages from page_pool to
5480 	 * reference counted.
5481 	 *
5482 	 * On the other hand, don't allow coalescing two pp_recycle SKBs if
5483 	 * @from is cloned, in case the SKB is using page_pool fragment
5484 	 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5485 	 * references for cloned SKBs at the moment that would result in
5486 	 * inconsistent reference counts.
5487 	 */
5488 	if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from)))
5489 		return false;
5490 
5491 	if (len <= skb_tailroom(to)) {
5492 		if (len)
5493 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5494 		*delta_truesize = 0;
5495 		return true;
5496 	}
5497 
5498 	to_shinfo = skb_shinfo(to);
5499 	from_shinfo = skb_shinfo(from);
5500 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5501 		return false;
5502 	if (skb_zcopy(to) || skb_zcopy(from))
5503 		return false;
5504 
5505 	if (skb_headlen(from) != 0) {
5506 		struct page *page;
5507 		unsigned int offset;
5508 
5509 		if (to_shinfo->nr_frags +
5510 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5511 			return false;
5512 
5513 		if (skb_head_is_locked(from))
5514 			return false;
5515 
5516 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5517 
5518 		page = virt_to_head_page(from->head);
5519 		offset = from->data - (unsigned char *)page_address(page);
5520 
5521 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5522 				   page, offset, skb_headlen(from));
5523 		*fragstolen = true;
5524 	} else {
5525 		if (to_shinfo->nr_frags +
5526 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5527 			return false;
5528 
5529 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5530 	}
5531 
5532 	WARN_ON_ONCE(delta < len);
5533 
5534 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5535 	       from_shinfo->frags,
5536 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5537 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5538 
5539 	if (!skb_cloned(from))
5540 		from_shinfo->nr_frags = 0;
5541 
5542 	/* if the skb is not cloned this does nothing
5543 	 * since we set nr_frags to 0.
5544 	 */
5545 	for (i = 0; i < from_shinfo->nr_frags; i++)
5546 		__skb_frag_ref(&from_shinfo->frags[i]);
5547 
5548 	to->truesize += delta;
5549 	to->len += len;
5550 	to->data_len += len;
5551 
5552 	*delta_truesize = delta;
5553 	return true;
5554 }
5555 EXPORT_SYMBOL(skb_try_coalesce);
5556 
5557 /**
5558  * skb_scrub_packet - scrub an skb
5559  *
5560  * @skb: buffer to clean
5561  * @xnet: packet is crossing netns
5562  *
5563  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5564  * into/from a tunnel. Some information have to be cleared during these
5565  * operations.
5566  * skb_scrub_packet can also be used to clean a skb before injecting it in
5567  * another namespace (@xnet == true). We have to clear all information in the
5568  * skb that could impact namespace isolation.
5569  */
5570 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5571 {
5572 	skb->pkt_type = PACKET_HOST;
5573 	skb->skb_iif = 0;
5574 	skb->ignore_df = 0;
5575 	skb_dst_drop(skb);
5576 	skb_ext_reset(skb);
5577 	nf_reset_ct(skb);
5578 	nf_reset_trace(skb);
5579 
5580 #ifdef CONFIG_NET_SWITCHDEV
5581 	skb->offload_fwd_mark = 0;
5582 	skb->offload_l3_fwd_mark = 0;
5583 #endif
5584 
5585 	if (!xnet)
5586 		return;
5587 
5588 	ipvs_reset(skb);
5589 	skb->mark = 0;
5590 	skb_clear_tstamp(skb);
5591 }
5592 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5593 
5594 /**
5595  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5596  *
5597  * @skb: GSO skb
5598  *
5599  * skb_gso_transport_seglen is used to determine the real size of the
5600  * individual segments, including Layer4 headers (TCP/UDP).
5601  *
5602  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5603  */
5604 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5605 {
5606 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5607 	unsigned int thlen = 0;
5608 
5609 	if (skb->encapsulation) {
5610 		thlen = skb_inner_transport_header(skb) -
5611 			skb_transport_header(skb);
5612 
5613 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5614 			thlen += inner_tcp_hdrlen(skb);
5615 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5616 		thlen = tcp_hdrlen(skb);
5617 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5618 		thlen = sizeof(struct sctphdr);
5619 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5620 		thlen = sizeof(struct udphdr);
5621 	}
5622 	/* UFO sets gso_size to the size of the fragmentation
5623 	 * payload, i.e. the size of the L4 (UDP) header is already
5624 	 * accounted for.
5625 	 */
5626 	return thlen + shinfo->gso_size;
5627 }
5628 
5629 /**
5630  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5631  *
5632  * @skb: GSO skb
5633  *
5634  * skb_gso_network_seglen is used to determine the real size of the
5635  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5636  *
5637  * The MAC/L2 header is not accounted for.
5638  */
5639 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5640 {
5641 	unsigned int hdr_len = skb_transport_header(skb) -
5642 			       skb_network_header(skb);
5643 
5644 	return hdr_len + skb_gso_transport_seglen(skb);
5645 }
5646 
5647 /**
5648  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5649  *
5650  * @skb: GSO skb
5651  *
5652  * skb_gso_mac_seglen is used to determine the real size of the
5653  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5654  * headers (TCP/UDP).
5655  */
5656 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5657 {
5658 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5659 
5660 	return hdr_len + skb_gso_transport_seglen(skb);
5661 }
5662 
5663 /**
5664  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5665  *
5666  * There are a couple of instances where we have a GSO skb, and we
5667  * want to determine what size it would be after it is segmented.
5668  *
5669  * We might want to check:
5670  * -    L3+L4+payload size (e.g. IP forwarding)
5671  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5672  *
5673  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5674  *
5675  * @skb: GSO skb
5676  *
5677  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5678  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5679  *
5680  * @max_len: The maximum permissible length.
5681  *
5682  * Returns true if the segmented length <= max length.
5683  */
5684 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5685 				      unsigned int seg_len,
5686 				      unsigned int max_len) {
5687 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5688 	const struct sk_buff *iter;
5689 
5690 	if (shinfo->gso_size != GSO_BY_FRAGS)
5691 		return seg_len <= max_len;
5692 
5693 	/* Undo this so we can re-use header sizes */
5694 	seg_len -= GSO_BY_FRAGS;
5695 
5696 	skb_walk_frags(skb, iter) {
5697 		if (seg_len + skb_headlen(iter) > max_len)
5698 			return false;
5699 	}
5700 
5701 	return true;
5702 }
5703 
5704 /**
5705  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5706  *
5707  * @skb: GSO skb
5708  * @mtu: MTU to validate against
5709  *
5710  * skb_gso_validate_network_len validates if a given skb will fit a
5711  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5712  * payload.
5713  */
5714 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5715 {
5716 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5717 }
5718 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5719 
5720 /**
5721  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5722  *
5723  * @skb: GSO skb
5724  * @len: length to validate against
5725  *
5726  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5727  * length once split, including L2, L3 and L4 headers and the payload.
5728  */
5729 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5730 {
5731 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5732 }
5733 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5734 
5735 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5736 {
5737 	int mac_len, meta_len;
5738 	void *meta;
5739 
5740 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5741 		kfree_skb(skb);
5742 		return NULL;
5743 	}
5744 
5745 	mac_len = skb->data - skb_mac_header(skb);
5746 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5747 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5748 			mac_len - VLAN_HLEN - ETH_TLEN);
5749 	}
5750 
5751 	meta_len = skb_metadata_len(skb);
5752 	if (meta_len) {
5753 		meta = skb_metadata_end(skb) - meta_len;
5754 		memmove(meta + VLAN_HLEN, meta, meta_len);
5755 	}
5756 
5757 	skb->mac_header += VLAN_HLEN;
5758 	return skb;
5759 }
5760 
5761 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5762 {
5763 	struct vlan_hdr *vhdr;
5764 	u16 vlan_tci;
5765 
5766 	if (unlikely(skb_vlan_tag_present(skb))) {
5767 		/* vlan_tci is already set-up so leave this for another time */
5768 		return skb;
5769 	}
5770 
5771 	skb = skb_share_check(skb, GFP_ATOMIC);
5772 	if (unlikely(!skb))
5773 		goto err_free;
5774 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5775 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5776 		goto err_free;
5777 
5778 	vhdr = (struct vlan_hdr *)skb->data;
5779 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5780 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5781 
5782 	skb_pull_rcsum(skb, VLAN_HLEN);
5783 	vlan_set_encap_proto(skb, vhdr);
5784 
5785 	skb = skb_reorder_vlan_header(skb);
5786 	if (unlikely(!skb))
5787 		goto err_free;
5788 
5789 	skb_reset_network_header(skb);
5790 	if (!skb_transport_header_was_set(skb))
5791 		skb_reset_transport_header(skb);
5792 	skb_reset_mac_len(skb);
5793 
5794 	return skb;
5795 
5796 err_free:
5797 	kfree_skb(skb);
5798 	return NULL;
5799 }
5800 EXPORT_SYMBOL(skb_vlan_untag);
5801 
5802 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5803 {
5804 	if (!pskb_may_pull(skb, write_len))
5805 		return -ENOMEM;
5806 
5807 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5808 		return 0;
5809 
5810 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5811 }
5812 EXPORT_SYMBOL(skb_ensure_writable);
5813 
5814 /* remove VLAN header from packet and update csum accordingly.
5815  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5816  */
5817 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5818 {
5819 	struct vlan_hdr *vhdr;
5820 	int offset = skb->data - skb_mac_header(skb);
5821 	int err;
5822 
5823 	if (WARN_ONCE(offset,
5824 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5825 		      offset)) {
5826 		return -EINVAL;
5827 	}
5828 
5829 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5830 	if (unlikely(err))
5831 		return err;
5832 
5833 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5834 
5835 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5836 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5837 
5838 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5839 	__skb_pull(skb, VLAN_HLEN);
5840 
5841 	vlan_set_encap_proto(skb, vhdr);
5842 	skb->mac_header += VLAN_HLEN;
5843 
5844 	if (skb_network_offset(skb) < ETH_HLEN)
5845 		skb_set_network_header(skb, ETH_HLEN);
5846 
5847 	skb_reset_mac_len(skb);
5848 
5849 	return err;
5850 }
5851 EXPORT_SYMBOL(__skb_vlan_pop);
5852 
5853 /* Pop a vlan tag either from hwaccel or from payload.
5854  * Expects skb->data at mac header.
5855  */
5856 int skb_vlan_pop(struct sk_buff *skb)
5857 {
5858 	u16 vlan_tci;
5859 	__be16 vlan_proto;
5860 	int err;
5861 
5862 	if (likely(skb_vlan_tag_present(skb))) {
5863 		__vlan_hwaccel_clear_tag(skb);
5864 	} else {
5865 		if (unlikely(!eth_type_vlan(skb->protocol)))
5866 			return 0;
5867 
5868 		err = __skb_vlan_pop(skb, &vlan_tci);
5869 		if (err)
5870 			return err;
5871 	}
5872 	/* move next vlan tag to hw accel tag */
5873 	if (likely(!eth_type_vlan(skb->protocol)))
5874 		return 0;
5875 
5876 	vlan_proto = skb->protocol;
5877 	err = __skb_vlan_pop(skb, &vlan_tci);
5878 	if (unlikely(err))
5879 		return err;
5880 
5881 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5882 	return 0;
5883 }
5884 EXPORT_SYMBOL(skb_vlan_pop);
5885 
5886 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5887  * Expects skb->data at mac header.
5888  */
5889 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5890 {
5891 	if (skb_vlan_tag_present(skb)) {
5892 		int offset = skb->data - skb_mac_header(skb);
5893 		int err;
5894 
5895 		if (WARN_ONCE(offset,
5896 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5897 			      offset)) {
5898 			return -EINVAL;
5899 		}
5900 
5901 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5902 					skb_vlan_tag_get(skb));
5903 		if (err)
5904 			return err;
5905 
5906 		skb->protocol = skb->vlan_proto;
5907 		skb->mac_len += VLAN_HLEN;
5908 
5909 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5910 	}
5911 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5912 	return 0;
5913 }
5914 EXPORT_SYMBOL(skb_vlan_push);
5915 
5916 /**
5917  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5918  *
5919  * @skb: Socket buffer to modify
5920  *
5921  * Drop the Ethernet header of @skb.
5922  *
5923  * Expects that skb->data points to the mac header and that no VLAN tags are
5924  * present.
5925  *
5926  * Returns 0 on success, -errno otherwise.
5927  */
5928 int skb_eth_pop(struct sk_buff *skb)
5929 {
5930 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5931 	    skb_network_offset(skb) < ETH_HLEN)
5932 		return -EPROTO;
5933 
5934 	skb_pull_rcsum(skb, ETH_HLEN);
5935 	skb_reset_mac_header(skb);
5936 	skb_reset_mac_len(skb);
5937 
5938 	return 0;
5939 }
5940 EXPORT_SYMBOL(skb_eth_pop);
5941 
5942 /**
5943  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5944  *
5945  * @skb: Socket buffer to modify
5946  * @dst: Destination MAC address of the new header
5947  * @src: Source MAC address of the new header
5948  *
5949  * Prepend @skb with a new Ethernet header.
5950  *
5951  * Expects that skb->data points to the mac header, which must be empty.
5952  *
5953  * Returns 0 on success, -errno otherwise.
5954  */
5955 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5956 		 const unsigned char *src)
5957 {
5958 	struct ethhdr *eth;
5959 	int err;
5960 
5961 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5962 		return -EPROTO;
5963 
5964 	err = skb_cow_head(skb, sizeof(*eth));
5965 	if (err < 0)
5966 		return err;
5967 
5968 	skb_push(skb, sizeof(*eth));
5969 	skb_reset_mac_header(skb);
5970 	skb_reset_mac_len(skb);
5971 
5972 	eth = eth_hdr(skb);
5973 	ether_addr_copy(eth->h_dest, dst);
5974 	ether_addr_copy(eth->h_source, src);
5975 	eth->h_proto = skb->protocol;
5976 
5977 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5978 
5979 	return 0;
5980 }
5981 EXPORT_SYMBOL(skb_eth_push);
5982 
5983 /* Update the ethertype of hdr and the skb csum value if required. */
5984 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5985 			     __be16 ethertype)
5986 {
5987 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5988 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5989 
5990 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5991 	}
5992 
5993 	hdr->h_proto = ethertype;
5994 }
5995 
5996 /**
5997  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5998  *                   the packet
5999  *
6000  * @skb: buffer
6001  * @mpls_lse: MPLS label stack entry to push
6002  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6003  * @mac_len: length of the MAC header
6004  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6005  *            ethernet
6006  *
6007  * Expects skb->data at mac header.
6008  *
6009  * Returns 0 on success, -errno otherwise.
6010  */
6011 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6012 		  int mac_len, bool ethernet)
6013 {
6014 	struct mpls_shim_hdr *lse;
6015 	int err;
6016 
6017 	if (unlikely(!eth_p_mpls(mpls_proto)))
6018 		return -EINVAL;
6019 
6020 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6021 	if (skb->encapsulation)
6022 		return -EINVAL;
6023 
6024 	err = skb_cow_head(skb, MPLS_HLEN);
6025 	if (unlikely(err))
6026 		return err;
6027 
6028 	if (!skb->inner_protocol) {
6029 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6030 		skb_set_inner_protocol(skb, skb->protocol);
6031 	}
6032 
6033 	skb_push(skb, MPLS_HLEN);
6034 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6035 		mac_len);
6036 	skb_reset_mac_header(skb);
6037 	skb_set_network_header(skb, mac_len);
6038 	skb_reset_mac_len(skb);
6039 
6040 	lse = mpls_hdr(skb);
6041 	lse->label_stack_entry = mpls_lse;
6042 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6043 
6044 	if (ethernet && mac_len >= ETH_HLEN)
6045 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6046 	skb->protocol = mpls_proto;
6047 
6048 	return 0;
6049 }
6050 EXPORT_SYMBOL_GPL(skb_mpls_push);
6051 
6052 /**
6053  * skb_mpls_pop() - pop the outermost MPLS header
6054  *
6055  * @skb: buffer
6056  * @next_proto: ethertype of header after popped MPLS header
6057  * @mac_len: length of the MAC header
6058  * @ethernet: flag to indicate if the packet is ethernet
6059  *
6060  * Expects skb->data at mac header.
6061  *
6062  * Returns 0 on success, -errno otherwise.
6063  */
6064 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6065 		 bool ethernet)
6066 {
6067 	int err;
6068 
6069 	if (unlikely(!eth_p_mpls(skb->protocol)))
6070 		return 0;
6071 
6072 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6073 	if (unlikely(err))
6074 		return err;
6075 
6076 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6077 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6078 		mac_len);
6079 
6080 	__skb_pull(skb, MPLS_HLEN);
6081 	skb_reset_mac_header(skb);
6082 	skb_set_network_header(skb, mac_len);
6083 
6084 	if (ethernet && mac_len >= ETH_HLEN) {
6085 		struct ethhdr *hdr;
6086 
6087 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6088 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6089 		skb_mod_eth_type(skb, hdr, next_proto);
6090 	}
6091 	skb->protocol = next_proto;
6092 
6093 	return 0;
6094 }
6095 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6096 
6097 /**
6098  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6099  *
6100  * @skb: buffer
6101  * @mpls_lse: new MPLS label stack entry to update to
6102  *
6103  * Expects skb->data at mac header.
6104  *
6105  * Returns 0 on success, -errno otherwise.
6106  */
6107 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6108 {
6109 	int err;
6110 
6111 	if (unlikely(!eth_p_mpls(skb->protocol)))
6112 		return -EINVAL;
6113 
6114 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6115 	if (unlikely(err))
6116 		return err;
6117 
6118 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6119 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6120 
6121 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6122 	}
6123 
6124 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6125 
6126 	return 0;
6127 }
6128 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6129 
6130 /**
6131  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6132  *
6133  * @skb: buffer
6134  *
6135  * Expects skb->data at mac header.
6136  *
6137  * Returns 0 on success, -errno otherwise.
6138  */
6139 int skb_mpls_dec_ttl(struct sk_buff *skb)
6140 {
6141 	u32 lse;
6142 	u8 ttl;
6143 
6144 	if (unlikely(!eth_p_mpls(skb->protocol)))
6145 		return -EINVAL;
6146 
6147 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6148 		return -ENOMEM;
6149 
6150 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6151 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6152 	if (!--ttl)
6153 		return -EINVAL;
6154 
6155 	lse &= ~MPLS_LS_TTL_MASK;
6156 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6157 
6158 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6159 }
6160 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6161 
6162 /**
6163  * alloc_skb_with_frags - allocate skb with page frags
6164  *
6165  * @header_len: size of linear part
6166  * @data_len: needed length in frags
6167  * @max_page_order: max page order desired.
6168  * @errcode: pointer to error code if any
6169  * @gfp_mask: allocation mask
6170  *
6171  * This can be used to allocate a paged skb, given a maximal order for frags.
6172  */
6173 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6174 				     unsigned long data_len,
6175 				     int max_page_order,
6176 				     int *errcode,
6177 				     gfp_t gfp_mask)
6178 {
6179 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6180 	unsigned long chunk;
6181 	struct sk_buff *skb;
6182 	struct page *page;
6183 	int i;
6184 
6185 	*errcode = -EMSGSIZE;
6186 	/* Note this test could be relaxed, if we succeed to allocate
6187 	 * high order pages...
6188 	 */
6189 	if (npages > MAX_SKB_FRAGS)
6190 		return NULL;
6191 
6192 	*errcode = -ENOBUFS;
6193 	skb = alloc_skb(header_len, gfp_mask);
6194 	if (!skb)
6195 		return NULL;
6196 
6197 	skb->truesize += npages << PAGE_SHIFT;
6198 
6199 	for (i = 0; npages > 0; i++) {
6200 		int order = max_page_order;
6201 
6202 		while (order) {
6203 			if (npages >= 1 << order) {
6204 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6205 						   __GFP_COMP |
6206 						   __GFP_NOWARN,
6207 						   order);
6208 				if (page)
6209 					goto fill_page;
6210 				/* Do not retry other high order allocations */
6211 				order = 1;
6212 				max_page_order = 0;
6213 			}
6214 			order--;
6215 		}
6216 		page = alloc_page(gfp_mask);
6217 		if (!page)
6218 			goto failure;
6219 fill_page:
6220 		chunk = min_t(unsigned long, data_len,
6221 			      PAGE_SIZE << order);
6222 		skb_fill_page_desc(skb, i, page, 0, chunk);
6223 		data_len -= chunk;
6224 		npages -= 1 << order;
6225 	}
6226 	return skb;
6227 
6228 failure:
6229 	kfree_skb(skb);
6230 	return NULL;
6231 }
6232 EXPORT_SYMBOL(alloc_skb_with_frags);
6233 
6234 /* carve out the first off bytes from skb when off < headlen */
6235 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6236 				    const int headlen, gfp_t gfp_mask)
6237 {
6238 	int i;
6239 	unsigned int size = skb_end_offset(skb);
6240 	int new_hlen = headlen - off;
6241 	u8 *data;
6242 
6243 	if (skb_pfmemalloc(skb))
6244 		gfp_mask |= __GFP_MEMALLOC;
6245 
6246 	size = SKB_DATA_ALIGN(size);
6247 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
6248 	size = kmalloc_size_roundup(size);
6249 	data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
6250 	if (!data)
6251 		return -ENOMEM;
6252 	size = SKB_WITH_OVERHEAD(size);
6253 
6254 	/* Copy real data, and all frags */
6255 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6256 	skb->len -= off;
6257 
6258 	memcpy((struct skb_shared_info *)(data + size),
6259 	       skb_shinfo(skb),
6260 	       offsetof(struct skb_shared_info,
6261 			frags[skb_shinfo(skb)->nr_frags]));
6262 	if (skb_cloned(skb)) {
6263 		/* drop the old head gracefully */
6264 		if (skb_orphan_frags(skb, gfp_mask)) {
6265 			kfree(data);
6266 			return -ENOMEM;
6267 		}
6268 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6269 			skb_frag_ref(skb, i);
6270 		if (skb_has_frag_list(skb))
6271 			skb_clone_fraglist(skb);
6272 		skb_release_data(skb, SKB_CONSUMED);
6273 	} else {
6274 		/* we can reuse existing recount- all we did was
6275 		 * relocate values
6276 		 */
6277 		skb_free_head(skb);
6278 	}
6279 
6280 	skb->head = data;
6281 	skb->data = data;
6282 	skb->head_frag = 0;
6283 	skb_set_end_offset(skb, size);
6284 	skb_set_tail_pointer(skb, skb_headlen(skb));
6285 	skb_headers_offset_update(skb, 0);
6286 	skb->cloned = 0;
6287 	skb->hdr_len = 0;
6288 	skb->nohdr = 0;
6289 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6290 
6291 	return 0;
6292 }
6293 
6294 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6295 
6296 /* carve out the first eat bytes from skb's frag_list. May recurse into
6297  * pskb_carve()
6298  */
6299 static int pskb_carve_frag_list(struct sk_buff *skb,
6300 				struct skb_shared_info *shinfo, int eat,
6301 				gfp_t gfp_mask)
6302 {
6303 	struct sk_buff *list = shinfo->frag_list;
6304 	struct sk_buff *clone = NULL;
6305 	struct sk_buff *insp = NULL;
6306 
6307 	do {
6308 		if (!list) {
6309 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6310 			return -EFAULT;
6311 		}
6312 		if (list->len <= eat) {
6313 			/* Eaten as whole. */
6314 			eat -= list->len;
6315 			list = list->next;
6316 			insp = list;
6317 		} else {
6318 			/* Eaten partially. */
6319 			if (skb_shared(list)) {
6320 				clone = skb_clone(list, gfp_mask);
6321 				if (!clone)
6322 					return -ENOMEM;
6323 				insp = list->next;
6324 				list = clone;
6325 			} else {
6326 				/* This may be pulled without problems. */
6327 				insp = list;
6328 			}
6329 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6330 				kfree_skb(clone);
6331 				return -ENOMEM;
6332 			}
6333 			break;
6334 		}
6335 	} while (eat);
6336 
6337 	/* Free pulled out fragments. */
6338 	while ((list = shinfo->frag_list) != insp) {
6339 		shinfo->frag_list = list->next;
6340 		consume_skb(list);
6341 	}
6342 	/* And insert new clone at head. */
6343 	if (clone) {
6344 		clone->next = list;
6345 		shinfo->frag_list = clone;
6346 	}
6347 	return 0;
6348 }
6349 
6350 /* carve off first len bytes from skb. Split line (off) is in the
6351  * non-linear part of skb
6352  */
6353 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6354 				       int pos, gfp_t gfp_mask)
6355 {
6356 	int i, k = 0;
6357 	unsigned int size = skb_end_offset(skb);
6358 	u8 *data;
6359 	const int nfrags = skb_shinfo(skb)->nr_frags;
6360 	struct skb_shared_info *shinfo;
6361 
6362 	if (skb_pfmemalloc(skb))
6363 		gfp_mask |= __GFP_MEMALLOC;
6364 
6365 	size = SKB_DATA_ALIGN(size);
6366 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
6367 	size = kmalloc_size_roundup(size);
6368 	data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
6369 	if (!data)
6370 		return -ENOMEM;
6371 	size = SKB_WITH_OVERHEAD(size);
6372 
6373 	memcpy((struct skb_shared_info *)(data + size),
6374 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6375 	if (skb_orphan_frags(skb, gfp_mask)) {
6376 		kfree(data);
6377 		return -ENOMEM;
6378 	}
6379 	shinfo = (struct skb_shared_info *)(data + size);
6380 	for (i = 0; i < nfrags; i++) {
6381 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6382 
6383 		if (pos + fsize > off) {
6384 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6385 
6386 			if (pos < off) {
6387 				/* Split frag.
6388 				 * We have two variants in this case:
6389 				 * 1. Move all the frag to the second
6390 				 *    part, if it is possible. F.e.
6391 				 *    this approach is mandatory for TUX,
6392 				 *    where splitting is expensive.
6393 				 * 2. Split is accurately. We make this.
6394 				 */
6395 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6396 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6397 			}
6398 			skb_frag_ref(skb, i);
6399 			k++;
6400 		}
6401 		pos += fsize;
6402 	}
6403 	shinfo->nr_frags = k;
6404 	if (skb_has_frag_list(skb))
6405 		skb_clone_fraglist(skb);
6406 
6407 	/* split line is in frag list */
6408 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6409 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6410 		if (skb_has_frag_list(skb))
6411 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6412 		kfree(data);
6413 		return -ENOMEM;
6414 	}
6415 	skb_release_data(skb, SKB_CONSUMED);
6416 
6417 	skb->head = data;
6418 	skb->head_frag = 0;
6419 	skb->data = data;
6420 	skb_set_end_offset(skb, size);
6421 	skb_reset_tail_pointer(skb);
6422 	skb_headers_offset_update(skb, 0);
6423 	skb->cloned   = 0;
6424 	skb->hdr_len  = 0;
6425 	skb->nohdr    = 0;
6426 	skb->len -= off;
6427 	skb->data_len = skb->len;
6428 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6429 	return 0;
6430 }
6431 
6432 /* remove len bytes from the beginning of the skb */
6433 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6434 {
6435 	int headlen = skb_headlen(skb);
6436 
6437 	if (len < headlen)
6438 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6439 	else
6440 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6441 }
6442 
6443 /* Extract to_copy bytes starting at off from skb, and return this in
6444  * a new skb
6445  */
6446 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6447 			     int to_copy, gfp_t gfp)
6448 {
6449 	struct sk_buff  *clone = skb_clone(skb, gfp);
6450 
6451 	if (!clone)
6452 		return NULL;
6453 
6454 	if (pskb_carve(clone, off, gfp) < 0 ||
6455 	    pskb_trim(clone, to_copy)) {
6456 		kfree_skb(clone);
6457 		return NULL;
6458 	}
6459 	return clone;
6460 }
6461 EXPORT_SYMBOL(pskb_extract);
6462 
6463 /**
6464  * skb_condense - try to get rid of fragments/frag_list if possible
6465  * @skb: buffer
6466  *
6467  * Can be used to save memory before skb is added to a busy queue.
6468  * If packet has bytes in frags and enough tail room in skb->head,
6469  * pull all of them, so that we can free the frags right now and adjust
6470  * truesize.
6471  * Notes:
6472  *	We do not reallocate skb->head thus can not fail.
6473  *	Caller must re-evaluate skb->truesize if needed.
6474  */
6475 void skb_condense(struct sk_buff *skb)
6476 {
6477 	if (skb->data_len) {
6478 		if (skb->data_len > skb->end - skb->tail ||
6479 		    skb_cloned(skb))
6480 			return;
6481 
6482 		/* Nice, we can free page frag(s) right now */
6483 		__pskb_pull_tail(skb, skb->data_len);
6484 	}
6485 	/* At this point, skb->truesize might be over estimated,
6486 	 * because skb had a fragment, and fragments do not tell
6487 	 * their truesize.
6488 	 * When we pulled its content into skb->head, fragment
6489 	 * was freed, but __pskb_pull_tail() could not possibly
6490 	 * adjust skb->truesize, not knowing the frag truesize.
6491 	 */
6492 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6493 }
6494 EXPORT_SYMBOL(skb_condense);
6495 
6496 #ifdef CONFIG_SKB_EXTENSIONS
6497 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6498 {
6499 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6500 }
6501 
6502 /**
6503  * __skb_ext_alloc - allocate a new skb extensions storage
6504  *
6505  * @flags: See kmalloc().
6506  *
6507  * Returns the newly allocated pointer. The pointer can later attached to a
6508  * skb via __skb_ext_set().
6509  * Note: caller must handle the skb_ext as an opaque data.
6510  */
6511 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6512 {
6513 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6514 
6515 	if (new) {
6516 		memset(new->offset, 0, sizeof(new->offset));
6517 		refcount_set(&new->refcnt, 1);
6518 	}
6519 
6520 	return new;
6521 }
6522 
6523 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6524 					 unsigned int old_active)
6525 {
6526 	struct skb_ext *new;
6527 
6528 	if (refcount_read(&old->refcnt) == 1)
6529 		return old;
6530 
6531 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6532 	if (!new)
6533 		return NULL;
6534 
6535 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6536 	refcount_set(&new->refcnt, 1);
6537 
6538 #ifdef CONFIG_XFRM
6539 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6540 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6541 		unsigned int i;
6542 
6543 		for (i = 0; i < sp->len; i++)
6544 			xfrm_state_hold(sp->xvec[i]);
6545 	}
6546 #endif
6547 	__skb_ext_put(old);
6548 	return new;
6549 }
6550 
6551 /**
6552  * __skb_ext_set - attach the specified extension storage to this skb
6553  * @skb: buffer
6554  * @id: extension id
6555  * @ext: extension storage previously allocated via __skb_ext_alloc()
6556  *
6557  * Existing extensions, if any, are cleared.
6558  *
6559  * Returns the pointer to the extension.
6560  */
6561 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6562 		    struct skb_ext *ext)
6563 {
6564 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6565 
6566 	skb_ext_put(skb);
6567 	newlen = newoff + skb_ext_type_len[id];
6568 	ext->chunks = newlen;
6569 	ext->offset[id] = newoff;
6570 	skb->extensions = ext;
6571 	skb->active_extensions = 1 << id;
6572 	return skb_ext_get_ptr(ext, id);
6573 }
6574 
6575 /**
6576  * skb_ext_add - allocate space for given extension, COW if needed
6577  * @skb: buffer
6578  * @id: extension to allocate space for
6579  *
6580  * Allocates enough space for the given extension.
6581  * If the extension is already present, a pointer to that extension
6582  * is returned.
6583  *
6584  * If the skb was cloned, COW applies and the returned memory can be
6585  * modified without changing the extension space of clones buffers.
6586  *
6587  * Returns pointer to the extension or NULL on allocation failure.
6588  */
6589 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6590 {
6591 	struct skb_ext *new, *old = NULL;
6592 	unsigned int newlen, newoff;
6593 
6594 	if (skb->active_extensions) {
6595 		old = skb->extensions;
6596 
6597 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6598 		if (!new)
6599 			return NULL;
6600 
6601 		if (__skb_ext_exist(new, id))
6602 			goto set_active;
6603 
6604 		newoff = new->chunks;
6605 	} else {
6606 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6607 
6608 		new = __skb_ext_alloc(GFP_ATOMIC);
6609 		if (!new)
6610 			return NULL;
6611 	}
6612 
6613 	newlen = newoff + skb_ext_type_len[id];
6614 	new->chunks = newlen;
6615 	new->offset[id] = newoff;
6616 set_active:
6617 	skb->slow_gro = 1;
6618 	skb->extensions = new;
6619 	skb->active_extensions |= 1 << id;
6620 	return skb_ext_get_ptr(new, id);
6621 }
6622 EXPORT_SYMBOL(skb_ext_add);
6623 
6624 #ifdef CONFIG_XFRM
6625 static void skb_ext_put_sp(struct sec_path *sp)
6626 {
6627 	unsigned int i;
6628 
6629 	for (i = 0; i < sp->len; i++)
6630 		xfrm_state_put(sp->xvec[i]);
6631 }
6632 #endif
6633 
6634 #ifdef CONFIG_MCTP_FLOWS
6635 static void skb_ext_put_mctp(struct mctp_flow *flow)
6636 {
6637 	if (flow->key)
6638 		mctp_key_unref(flow->key);
6639 }
6640 #endif
6641 
6642 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6643 {
6644 	struct skb_ext *ext = skb->extensions;
6645 
6646 	skb->active_extensions &= ~(1 << id);
6647 	if (skb->active_extensions == 0) {
6648 		skb->extensions = NULL;
6649 		__skb_ext_put(ext);
6650 #ifdef CONFIG_XFRM
6651 	} else if (id == SKB_EXT_SEC_PATH &&
6652 		   refcount_read(&ext->refcnt) == 1) {
6653 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6654 
6655 		skb_ext_put_sp(sp);
6656 		sp->len = 0;
6657 #endif
6658 	}
6659 }
6660 EXPORT_SYMBOL(__skb_ext_del);
6661 
6662 void __skb_ext_put(struct skb_ext *ext)
6663 {
6664 	/* If this is last clone, nothing can increment
6665 	 * it after check passes.  Avoids one atomic op.
6666 	 */
6667 	if (refcount_read(&ext->refcnt) == 1)
6668 		goto free_now;
6669 
6670 	if (!refcount_dec_and_test(&ext->refcnt))
6671 		return;
6672 free_now:
6673 #ifdef CONFIG_XFRM
6674 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6675 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6676 #endif
6677 #ifdef CONFIG_MCTP_FLOWS
6678 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6679 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6680 #endif
6681 
6682 	kmem_cache_free(skbuff_ext_cache, ext);
6683 }
6684 EXPORT_SYMBOL(__skb_ext_put);
6685 #endif /* CONFIG_SKB_EXTENSIONS */
6686 
6687 /**
6688  * skb_attempt_defer_free - queue skb for remote freeing
6689  * @skb: buffer
6690  *
6691  * Put @skb in a per-cpu list, using the cpu which
6692  * allocated the skb/pages to reduce false sharing
6693  * and memory zone spinlock contention.
6694  */
6695 void skb_attempt_defer_free(struct sk_buff *skb)
6696 {
6697 	int cpu = skb->alloc_cpu;
6698 	struct softnet_data *sd;
6699 	unsigned long flags;
6700 	unsigned int defer_max;
6701 	bool kick;
6702 
6703 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6704 	    !cpu_online(cpu) ||
6705 	    cpu == raw_smp_processor_id()) {
6706 nodefer:	__kfree_skb(skb);
6707 		return;
6708 	}
6709 
6710 	sd = &per_cpu(softnet_data, cpu);
6711 	defer_max = READ_ONCE(sysctl_skb_defer_max);
6712 	if (READ_ONCE(sd->defer_count) >= defer_max)
6713 		goto nodefer;
6714 
6715 	spin_lock_irqsave(&sd->defer_lock, flags);
6716 	/* Send an IPI every time queue reaches half capacity. */
6717 	kick = sd->defer_count == (defer_max >> 1);
6718 	/* Paired with the READ_ONCE() few lines above */
6719 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6720 
6721 	skb->next = sd->defer_list;
6722 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
6723 	WRITE_ONCE(sd->defer_list, skb);
6724 	spin_unlock_irqrestore(&sd->defer_lock, flags);
6725 
6726 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6727 	 * if we are unlucky enough (this seems very unlikely).
6728 	 */
6729 	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6730 		smp_call_function_single_async(cpu, &sd->defer_csd);
6731 }
6732