xref: /linux/net/core/skbuff.c (revision 06ce23ad57c8e378b86ef3f439b2e08bcb5d05eb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/mctp.h>
74 #include <net/page_pool.h>
75 
76 #include <linux/uaccess.h>
77 #include <trace/events/skb.h>
78 #include <linux/highmem.h>
79 #include <linux/capability.h>
80 #include <linux/user_namespace.h>
81 #include <linux/indirect_call_wrapper.h>
82 #include <linux/textsearch.h>
83 
84 #include "dev.h"
85 #include "sock_destructor.h"
86 
87 struct kmem_cache *skbuff_cache __ro_after_init;
88 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
89 #ifdef CONFIG_SKB_EXTENSIONS
90 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
91 #endif
92 
93 /* skb_small_head_cache and related code is only supported
94  * for CONFIG_SLAB and CONFIG_SLUB.
95  * As soon as SLOB is removed from the kernel, we can clean up this.
96  */
97 #if !defined(CONFIG_SLOB)
98 # define HAVE_SKB_SMALL_HEAD_CACHE 1
99 #endif
100 
101 #ifdef HAVE_SKB_SMALL_HEAD_CACHE
102 static struct kmem_cache *skb_small_head_cache __ro_after_init;
103 
104 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
105 
106 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
107  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
108  * size, and we can differentiate heads from skb_small_head_cache
109  * vs system slabs by looking at their size (skb_end_offset()).
110  */
111 #define SKB_SMALL_HEAD_CACHE_SIZE					\
112 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
113 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
114 		SKB_SMALL_HEAD_SIZE)
115 
116 #define SKB_SMALL_HEAD_HEADROOM						\
117 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
118 #endif /* HAVE_SKB_SMALL_HEAD_CACHE */
119 
120 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
121 EXPORT_SYMBOL(sysctl_max_skb_frags);
122 
123 #undef FN
124 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
125 const char * const drop_reasons[] = {
126 	[SKB_CONSUMED] = "CONSUMED",
127 	DEFINE_DROP_REASON(FN, FN)
128 };
129 EXPORT_SYMBOL(drop_reasons);
130 
131 /**
132  *	skb_panic - private function for out-of-line support
133  *	@skb:	buffer
134  *	@sz:	size
135  *	@addr:	address
136  *	@msg:	skb_over_panic or skb_under_panic
137  *
138  *	Out-of-line support for skb_put() and skb_push().
139  *	Called via the wrapper skb_over_panic() or skb_under_panic().
140  *	Keep out of line to prevent kernel bloat.
141  *	__builtin_return_address is not used because it is not always reliable.
142  */
143 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
144 		      const char msg[])
145 {
146 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
147 		 msg, addr, skb->len, sz, skb->head, skb->data,
148 		 (unsigned long)skb->tail, (unsigned long)skb->end,
149 		 skb->dev ? skb->dev->name : "<NULL>");
150 	BUG();
151 }
152 
153 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
154 {
155 	skb_panic(skb, sz, addr, __func__);
156 }
157 
158 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
159 {
160 	skb_panic(skb, sz, addr, __func__);
161 }
162 
163 #define NAPI_SKB_CACHE_SIZE	64
164 #define NAPI_SKB_CACHE_BULK	16
165 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
166 
167 #if PAGE_SIZE == SZ_4K
168 
169 #define NAPI_HAS_SMALL_PAGE_FRAG	1
170 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
171 
172 /* specialized page frag allocator using a single order 0 page
173  * and slicing it into 1K sized fragment. Constrained to systems
174  * with a very limited amount of 1K fragments fitting a single
175  * page - to avoid excessive truesize underestimation
176  */
177 
178 struct page_frag_1k {
179 	void *va;
180 	u16 offset;
181 	bool pfmemalloc;
182 };
183 
184 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
185 {
186 	struct page *page;
187 	int offset;
188 
189 	offset = nc->offset - SZ_1K;
190 	if (likely(offset >= 0))
191 		goto use_frag;
192 
193 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
194 	if (!page)
195 		return NULL;
196 
197 	nc->va = page_address(page);
198 	nc->pfmemalloc = page_is_pfmemalloc(page);
199 	offset = PAGE_SIZE - SZ_1K;
200 	page_ref_add(page, offset / SZ_1K);
201 
202 use_frag:
203 	nc->offset = offset;
204 	return nc->va + offset;
205 }
206 #else
207 
208 /* the small page is actually unused in this build; add dummy helpers
209  * to please the compiler and avoid later preprocessor's conditionals
210  */
211 #define NAPI_HAS_SMALL_PAGE_FRAG	0
212 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
213 
214 struct page_frag_1k {
215 };
216 
217 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
218 {
219 	return NULL;
220 }
221 
222 #endif
223 
224 struct napi_alloc_cache {
225 	struct page_frag_cache page;
226 	struct page_frag_1k page_small;
227 	unsigned int skb_count;
228 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
229 };
230 
231 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
232 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
233 
234 /* Double check that napi_get_frags() allocates skbs with
235  * skb->head being backed by slab, not a page fragment.
236  * This is to make sure bug fixed in 3226b158e67c
237  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
238  * does not accidentally come back.
239  */
240 void napi_get_frags_check(struct napi_struct *napi)
241 {
242 	struct sk_buff *skb;
243 
244 	local_bh_disable();
245 	skb = napi_get_frags(napi);
246 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
247 	napi_free_frags(napi);
248 	local_bh_enable();
249 }
250 
251 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
252 {
253 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
254 
255 	fragsz = SKB_DATA_ALIGN(fragsz);
256 
257 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
258 }
259 EXPORT_SYMBOL(__napi_alloc_frag_align);
260 
261 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
262 {
263 	void *data;
264 
265 	fragsz = SKB_DATA_ALIGN(fragsz);
266 	if (in_hardirq() || irqs_disabled()) {
267 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
268 
269 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
270 	} else {
271 		struct napi_alloc_cache *nc;
272 
273 		local_bh_disable();
274 		nc = this_cpu_ptr(&napi_alloc_cache);
275 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
276 		local_bh_enable();
277 	}
278 	return data;
279 }
280 EXPORT_SYMBOL(__netdev_alloc_frag_align);
281 
282 static struct sk_buff *napi_skb_cache_get(void)
283 {
284 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
285 	struct sk_buff *skb;
286 
287 	if (unlikely(!nc->skb_count)) {
288 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache,
289 						      GFP_ATOMIC,
290 						      NAPI_SKB_CACHE_BULK,
291 						      nc->skb_cache);
292 		if (unlikely(!nc->skb_count))
293 			return NULL;
294 	}
295 
296 	skb = nc->skb_cache[--nc->skb_count];
297 	kasan_unpoison_object_data(skbuff_cache, skb);
298 
299 	return skb;
300 }
301 
302 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
303 					 unsigned int size)
304 {
305 	struct skb_shared_info *shinfo;
306 
307 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
308 
309 	/* Assumes caller memset cleared SKB */
310 	skb->truesize = SKB_TRUESIZE(size);
311 	refcount_set(&skb->users, 1);
312 	skb->head = data;
313 	skb->data = data;
314 	skb_reset_tail_pointer(skb);
315 	skb_set_end_offset(skb, size);
316 	skb->mac_header = (typeof(skb->mac_header))~0U;
317 	skb->transport_header = (typeof(skb->transport_header))~0U;
318 	skb->alloc_cpu = raw_smp_processor_id();
319 	/* make sure we initialize shinfo sequentially */
320 	shinfo = skb_shinfo(skb);
321 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
322 	atomic_set(&shinfo->dataref, 1);
323 
324 	skb_set_kcov_handle(skb, kcov_common_handle());
325 }
326 
327 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
328 				     unsigned int *size)
329 {
330 	void *resized;
331 
332 	/* Must find the allocation size (and grow it to match). */
333 	*size = ksize(data);
334 	/* krealloc() will immediately return "data" when
335 	 * "ksize(data)" is requested: it is the existing upper
336 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
337 	 * that this "new" pointer needs to be passed back to the
338 	 * caller for use so the __alloc_size hinting will be
339 	 * tracked correctly.
340 	 */
341 	resized = krealloc(data, *size, GFP_ATOMIC);
342 	WARN_ON_ONCE(resized != data);
343 	return resized;
344 }
345 
346 /* build_skb() variant which can operate on slab buffers.
347  * Note that this should be used sparingly as slab buffers
348  * cannot be combined efficiently by GRO!
349  */
350 struct sk_buff *slab_build_skb(void *data)
351 {
352 	struct sk_buff *skb;
353 	unsigned int size;
354 
355 	skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
356 	if (unlikely(!skb))
357 		return NULL;
358 
359 	memset(skb, 0, offsetof(struct sk_buff, tail));
360 	data = __slab_build_skb(skb, data, &size);
361 	__finalize_skb_around(skb, data, size);
362 
363 	return skb;
364 }
365 EXPORT_SYMBOL(slab_build_skb);
366 
367 /* Caller must provide SKB that is memset cleared */
368 static void __build_skb_around(struct sk_buff *skb, void *data,
369 			       unsigned int frag_size)
370 {
371 	unsigned int size = frag_size;
372 
373 	/* frag_size == 0 is considered deprecated now. Callers
374 	 * using slab buffer should use slab_build_skb() instead.
375 	 */
376 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
377 		data = __slab_build_skb(skb, data, &size);
378 
379 	__finalize_skb_around(skb, data, size);
380 }
381 
382 /**
383  * __build_skb - build a network buffer
384  * @data: data buffer provided by caller
385  * @frag_size: size of data (must not be 0)
386  *
387  * Allocate a new &sk_buff. Caller provides space holding head and
388  * skb_shared_info. @data must have been allocated from the page
389  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
390  * allocation is deprecated, and callers should use slab_build_skb()
391  * instead.)
392  * The return is the new skb buffer.
393  * On a failure the return is %NULL, and @data is not freed.
394  * Notes :
395  *  Before IO, driver allocates only data buffer where NIC put incoming frame
396  *  Driver should add room at head (NET_SKB_PAD) and
397  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
398  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
399  *  before giving packet to stack.
400  *  RX rings only contains data buffers, not full skbs.
401  */
402 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
403 {
404 	struct sk_buff *skb;
405 
406 	skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
407 	if (unlikely(!skb))
408 		return NULL;
409 
410 	memset(skb, 0, offsetof(struct sk_buff, tail));
411 	__build_skb_around(skb, data, frag_size);
412 
413 	return skb;
414 }
415 
416 /* build_skb() is wrapper over __build_skb(), that specifically
417  * takes care of skb->head and skb->pfmemalloc
418  */
419 struct sk_buff *build_skb(void *data, unsigned int frag_size)
420 {
421 	struct sk_buff *skb = __build_skb(data, frag_size);
422 
423 	if (likely(skb && frag_size)) {
424 		skb->head_frag = 1;
425 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
426 	}
427 	return skb;
428 }
429 EXPORT_SYMBOL(build_skb);
430 
431 /**
432  * build_skb_around - build a network buffer around provided skb
433  * @skb: sk_buff provide by caller, must be memset cleared
434  * @data: data buffer provided by caller
435  * @frag_size: size of data
436  */
437 struct sk_buff *build_skb_around(struct sk_buff *skb,
438 				 void *data, unsigned int frag_size)
439 {
440 	if (unlikely(!skb))
441 		return NULL;
442 
443 	__build_skb_around(skb, data, frag_size);
444 
445 	if (frag_size) {
446 		skb->head_frag = 1;
447 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
448 	}
449 	return skb;
450 }
451 EXPORT_SYMBOL(build_skb_around);
452 
453 /**
454  * __napi_build_skb - build a network buffer
455  * @data: data buffer provided by caller
456  * @frag_size: size of data
457  *
458  * Version of __build_skb() that uses NAPI percpu caches to obtain
459  * skbuff_head instead of inplace allocation.
460  *
461  * Returns a new &sk_buff on success, %NULL on allocation failure.
462  */
463 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
464 {
465 	struct sk_buff *skb;
466 
467 	skb = napi_skb_cache_get();
468 	if (unlikely(!skb))
469 		return NULL;
470 
471 	memset(skb, 0, offsetof(struct sk_buff, tail));
472 	__build_skb_around(skb, data, frag_size);
473 
474 	return skb;
475 }
476 
477 /**
478  * napi_build_skb - build a network buffer
479  * @data: data buffer provided by caller
480  * @frag_size: size of data
481  *
482  * Version of __napi_build_skb() that takes care of skb->head_frag
483  * and skb->pfmemalloc when the data is a page or page fragment.
484  *
485  * Returns a new &sk_buff on success, %NULL on allocation failure.
486  */
487 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
488 {
489 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
490 
491 	if (likely(skb) && frag_size) {
492 		skb->head_frag = 1;
493 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
494 	}
495 
496 	return skb;
497 }
498 EXPORT_SYMBOL(napi_build_skb);
499 
500 /*
501  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
502  * the caller if emergency pfmemalloc reserves are being used. If it is and
503  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
504  * may be used. Otherwise, the packet data may be discarded until enough
505  * memory is free
506  */
507 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
508 			     bool *pfmemalloc)
509 {
510 	bool ret_pfmemalloc = false;
511 	unsigned int obj_size;
512 	void *obj;
513 
514 	obj_size = SKB_HEAD_ALIGN(*size);
515 #ifdef HAVE_SKB_SMALL_HEAD_CACHE
516 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
517 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
518 		obj = kmem_cache_alloc_node(skb_small_head_cache,
519 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
520 				node);
521 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
522 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
523 			goto out;
524 		/* Try again but now we are using pfmemalloc reserves */
525 		ret_pfmemalloc = true;
526 		obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node);
527 		goto out;
528 	}
529 #endif
530 	*size = obj_size = kmalloc_size_roundup(obj_size);
531 	/*
532 	 * Try a regular allocation, when that fails and we're not entitled
533 	 * to the reserves, fail.
534 	 */
535 	obj = kmalloc_node_track_caller(obj_size,
536 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
537 					node);
538 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
539 		goto out;
540 
541 	/* Try again but now we are using pfmemalloc reserves */
542 	ret_pfmemalloc = true;
543 	obj = kmalloc_node_track_caller(obj_size, flags, node);
544 
545 out:
546 	if (pfmemalloc)
547 		*pfmemalloc = ret_pfmemalloc;
548 
549 	return obj;
550 }
551 
552 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
553  *	'private' fields and also do memory statistics to find all the
554  *	[BEEP] leaks.
555  *
556  */
557 
558 /**
559  *	__alloc_skb	-	allocate a network buffer
560  *	@size: size to allocate
561  *	@gfp_mask: allocation mask
562  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
563  *		instead of head cache and allocate a cloned (child) skb.
564  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
565  *		allocations in case the data is required for writeback
566  *	@node: numa node to allocate memory on
567  *
568  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
569  *	tail room of at least size bytes. The object has a reference count
570  *	of one. The return is the buffer. On a failure the return is %NULL.
571  *
572  *	Buffers may only be allocated from interrupts using a @gfp_mask of
573  *	%GFP_ATOMIC.
574  */
575 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
576 			    int flags, int node)
577 {
578 	struct kmem_cache *cache;
579 	struct sk_buff *skb;
580 	bool pfmemalloc;
581 	u8 *data;
582 
583 	cache = (flags & SKB_ALLOC_FCLONE)
584 		? skbuff_fclone_cache : skbuff_cache;
585 
586 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
587 		gfp_mask |= __GFP_MEMALLOC;
588 
589 	/* Get the HEAD */
590 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
591 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
592 		skb = napi_skb_cache_get();
593 	else
594 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
595 	if (unlikely(!skb))
596 		return NULL;
597 	prefetchw(skb);
598 
599 	/* We do our best to align skb_shared_info on a separate cache
600 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
601 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
602 	 * Both skb->head and skb_shared_info are cache line aligned.
603 	 */
604 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
605 	if (unlikely(!data))
606 		goto nodata;
607 	/* kmalloc_size_roundup() might give us more room than requested.
608 	 * Put skb_shared_info exactly at the end of allocated zone,
609 	 * to allow max possible filling before reallocation.
610 	 */
611 	prefetchw(data + SKB_WITH_OVERHEAD(size));
612 
613 	/*
614 	 * Only clear those fields we need to clear, not those that we will
615 	 * actually initialise below. Hence, don't put any more fields after
616 	 * the tail pointer in struct sk_buff!
617 	 */
618 	memset(skb, 0, offsetof(struct sk_buff, tail));
619 	__build_skb_around(skb, data, size);
620 	skb->pfmemalloc = pfmemalloc;
621 
622 	if (flags & SKB_ALLOC_FCLONE) {
623 		struct sk_buff_fclones *fclones;
624 
625 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
626 
627 		skb->fclone = SKB_FCLONE_ORIG;
628 		refcount_set(&fclones->fclone_ref, 1);
629 	}
630 
631 	return skb;
632 
633 nodata:
634 	kmem_cache_free(cache, skb);
635 	return NULL;
636 }
637 EXPORT_SYMBOL(__alloc_skb);
638 
639 /**
640  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
641  *	@dev: network device to receive on
642  *	@len: length to allocate
643  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
644  *
645  *	Allocate a new &sk_buff and assign it a usage count of one. The
646  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
647  *	the headroom they think they need without accounting for the
648  *	built in space. The built in space is used for optimisations.
649  *
650  *	%NULL is returned if there is no free memory.
651  */
652 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
653 				   gfp_t gfp_mask)
654 {
655 	struct page_frag_cache *nc;
656 	struct sk_buff *skb;
657 	bool pfmemalloc;
658 	void *data;
659 
660 	len += NET_SKB_PAD;
661 
662 	/* If requested length is either too small or too big,
663 	 * we use kmalloc() for skb->head allocation.
664 	 */
665 	if (len <= SKB_WITH_OVERHEAD(1024) ||
666 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
667 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
668 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
669 		if (!skb)
670 			goto skb_fail;
671 		goto skb_success;
672 	}
673 
674 	len = SKB_HEAD_ALIGN(len);
675 
676 	if (sk_memalloc_socks())
677 		gfp_mask |= __GFP_MEMALLOC;
678 
679 	if (in_hardirq() || irqs_disabled()) {
680 		nc = this_cpu_ptr(&netdev_alloc_cache);
681 		data = page_frag_alloc(nc, len, gfp_mask);
682 		pfmemalloc = nc->pfmemalloc;
683 	} else {
684 		local_bh_disable();
685 		nc = this_cpu_ptr(&napi_alloc_cache.page);
686 		data = page_frag_alloc(nc, len, gfp_mask);
687 		pfmemalloc = nc->pfmemalloc;
688 		local_bh_enable();
689 	}
690 
691 	if (unlikely(!data))
692 		return NULL;
693 
694 	skb = __build_skb(data, len);
695 	if (unlikely(!skb)) {
696 		skb_free_frag(data);
697 		return NULL;
698 	}
699 
700 	if (pfmemalloc)
701 		skb->pfmemalloc = 1;
702 	skb->head_frag = 1;
703 
704 skb_success:
705 	skb_reserve(skb, NET_SKB_PAD);
706 	skb->dev = dev;
707 
708 skb_fail:
709 	return skb;
710 }
711 EXPORT_SYMBOL(__netdev_alloc_skb);
712 
713 /**
714  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
715  *	@napi: napi instance this buffer was allocated for
716  *	@len: length to allocate
717  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
718  *
719  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
720  *	attempt to allocate the head from a special reserved region used
721  *	only for NAPI Rx allocation.  By doing this we can save several
722  *	CPU cycles by avoiding having to disable and re-enable IRQs.
723  *
724  *	%NULL is returned if there is no free memory.
725  */
726 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
727 				 gfp_t gfp_mask)
728 {
729 	struct napi_alloc_cache *nc;
730 	struct sk_buff *skb;
731 	bool pfmemalloc;
732 	void *data;
733 
734 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
735 	len += NET_SKB_PAD + NET_IP_ALIGN;
736 
737 	/* If requested length is either too small or too big,
738 	 * we use kmalloc() for skb->head allocation.
739 	 * When the small frag allocator is available, prefer it over kmalloc
740 	 * for small fragments
741 	 */
742 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
743 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
744 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
745 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
746 				  NUMA_NO_NODE);
747 		if (!skb)
748 			goto skb_fail;
749 		goto skb_success;
750 	}
751 
752 	nc = this_cpu_ptr(&napi_alloc_cache);
753 
754 	if (sk_memalloc_socks())
755 		gfp_mask |= __GFP_MEMALLOC;
756 
757 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
758 		/* we are artificially inflating the allocation size, but
759 		 * that is not as bad as it may look like, as:
760 		 * - 'len' less than GRO_MAX_HEAD makes little sense
761 		 * - On most systems, larger 'len' values lead to fragment
762 		 *   size above 512 bytes
763 		 * - kmalloc would use the kmalloc-1k slab for such values
764 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
765 		 *   little networking, as that implies no WiFi and no
766 		 *   tunnels support, and 32 bits arches.
767 		 */
768 		len = SZ_1K;
769 
770 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
771 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
772 	} else {
773 		len = SKB_HEAD_ALIGN(len);
774 
775 		data = page_frag_alloc(&nc->page, len, gfp_mask);
776 		pfmemalloc = nc->page.pfmemalloc;
777 	}
778 
779 	if (unlikely(!data))
780 		return NULL;
781 
782 	skb = __napi_build_skb(data, len);
783 	if (unlikely(!skb)) {
784 		skb_free_frag(data);
785 		return NULL;
786 	}
787 
788 	if (pfmemalloc)
789 		skb->pfmemalloc = 1;
790 	skb->head_frag = 1;
791 
792 skb_success:
793 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
794 	skb->dev = napi->dev;
795 
796 skb_fail:
797 	return skb;
798 }
799 EXPORT_SYMBOL(__napi_alloc_skb);
800 
801 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
802 		     int size, unsigned int truesize)
803 {
804 	skb_fill_page_desc(skb, i, page, off, size);
805 	skb->len += size;
806 	skb->data_len += size;
807 	skb->truesize += truesize;
808 }
809 EXPORT_SYMBOL(skb_add_rx_frag);
810 
811 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
812 			  unsigned int truesize)
813 {
814 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
815 
816 	skb_frag_size_add(frag, size);
817 	skb->len += size;
818 	skb->data_len += size;
819 	skb->truesize += truesize;
820 }
821 EXPORT_SYMBOL(skb_coalesce_rx_frag);
822 
823 static void skb_drop_list(struct sk_buff **listp)
824 {
825 	kfree_skb_list(*listp);
826 	*listp = NULL;
827 }
828 
829 static inline void skb_drop_fraglist(struct sk_buff *skb)
830 {
831 	skb_drop_list(&skb_shinfo(skb)->frag_list);
832 }
833 
834 static void skb_clone_fraglist(struct sk_buff *skb)
835 {
836 	struct sk_buff *list;
837 
838 	skb_walk_frags(skb, list)
839 		skb_get(list);
840 }
841 
842 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
843 {
844 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
845 		return false;
846 	return page_pool_return_skb_page(virt_to_page(data));
847 }
848 
849 static void skb_kfree_head(void *head, unsigned int end_offset)
850 {
851 #ifdef HAVE_SKB_SMALL_HEAD_CACHE
852 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
853 		kmem_cache_free(skb_small_head_cache, head);
854 	else
855 #endif
856 		kfree(head);
857 }
858 
859 static void skb_free_head(struct sk_buff *skb)
860 {
861 	unsigned char *head = skb->head;
862 
863 	if (skb->head_frag) {
864 		if (skb_pp_recycle(skb, head))
865 			return;
866 		skb_free_frag(head);
867 	} else {
868 		skb_kfree_head(head, skb_end_offset(skb));
869 	}
870 }
871 
872 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
873 {
874 	struct skb_shared_info *shinfo = skb_shinfo(skb);
875 	int i;
876 
877 	if (skb->cloned &&
878 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
879 			      &shinfo->dataref))
880 		goto exit;
881 
882 	if (skb_zcopy(skb)) {
883 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
884 
885 		skb_zcopy_clear(skb, true);
886 		if (skip_unref)
887 			goto free_head;
888 	}
889 
890 	for (i = 0; i < shinfo->nr_frags; i++)
891 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
892 
893 free_head:
894 	if (shinfo->frag_list)
895 		kfree_skb_list_reason(shinfo->frag_list, reason);
896 
897 	skb_free_head(skb);
898 exit:
899 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
900 	 * bit is only set on the head though, so in order to avoid races
901 	 * while trying to recycle fragments on __skb_frag_unref() we need
902 	 * to make one SKB responsible for triggering the recycle path.
903 	 * So disable the recycling bit if an SKB is cloned and we have
904 	 * additional references to the fragmented part of the SKB.
905 	 * Eventually the last SKB will have the recycling bit set and it's
906 	 * dataref set to 0, which will trigger the recycling
907 	 */
908 	skb->pp_recycle = 0;
909 }
910 
911 /*
912  *	Free an skbuff by memory without cleaning the state.
913  */
914 static void kfree_skbmem(struct sk_buff *skb)
915 {
916 	struct sk_buff_fclones *fclones;
917 
918 	switch (skb->fclone) {
919 	case SKB_FCLONE_UNAVAILABLE:
920 		kmem_cache_free(skbuff_cache, skb);
921 		return;
922 
923 	case SKB_FCLONE_ORIG:
924 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
925 
926 		/* We usually free the clone (TX completion) before original skb
927 		 * This test would have no chance to be true for the clone,
928 		 * while here, branch prediction will be good.
929 		 */
930 		if (refcount_read(&fclones->fclone_ref) == 1)
931 			goto fastpath;
932 		break;
933 
934 	default: /* SKB_FCLONE_CLONE */
935 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
936 		break;
937 	}
938 	if (!refcount_dec_and_test(&fclones->fclone_ref))
939 		return;
940 fastpath:
941 	kmem_cache_free(skbuff_fclone_cache, fclones);
942 }
943 
944 void skb_release_head_state(struct sk_buff *skb)
945 {
946 	skb_dst_drop(skb);
947 	if (skb->destructor) {
948 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
949 		skb->destructor(skb);
950 	}
951 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
952 	nf_conntrack_put(skb_nfct(skb));
953 #endif
954 	skb_ext_put(skb);
955 }
956 
957 /* Free everything but the sk_buff shell. */
958 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
959 {
960 	skb_release_head_state(skb);
961 	if (likely(skb->head))
962 		skb_release_data(skb, reason);
963 }
964 
965 /**
966  *	__kfree_skb - private function
967  *	@skb: buffer
968  *
969  *	Free an sk_buff. Release anything attached to the buffer.
970  *	Clean the state. This is an internal helper function. Users should
971  *	always call kfree_skb
972  */
973 
974 void __kfree_skb(struct sk_buff *skb)
975 {
976 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
977 	kfree_skbmem(skb);
978 }
979 EXPORT_SYMBOL(__kfree_skb);
980 
981 static __always_inline
982 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
983 {
984 	if (unlikely(!skb_unref(skb)))
985 		return false;
986 
987 	DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX);
988 
989 	if (reason == SKB_CONSUMED)
990 		trace_consume_skb(skb, __builtin_return_address(0));
991 	else
992 		trace_kfree_skb(skb, __builtin_return_address(0), reason);
993 	return true;
994 }
995 
996 /**
997  *	kfree_skb_reason - free an sk_buff with special reason
998  *	@skb: buffer to free
999  *	@reason: reason why this skb is dropped
1000  *
1001  *	Drop a reference to the buffer and free it if the usage count has
1002  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1003  *	tracepoint.
1004  */
1005 void __fix_address
1006 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1007 {
1008 	if (__kfree_skb_reason(skb, reason))
1009 		__kfree_skb(skb);
1010 }
1011 EXPORT_SYMBOL(kfree_skb_reason);
1012 
1013 #define KFREE_SKB_BULK_SIZE	16
1014 
1015 struct skb_free_array {
1016 	unsigned int skb_count;
1017 	void *skb_array[KFREE_SKB_BULK_SIZE];
1018 };
1019 
1020 static void kfree_skb_add_bulk(struct sk_buff *skb,
1021 			       struct skb_free_array *sa,
1022 			       enum skb_drop_reason reason)
1023 {
1024 	/* if SKB is a clone, don't handle this case */
1025 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1026 		__kfree_skb(skb);
1027 		return;
1028 	}
1029 
1030 	skb_release_all(skb, reason);
1031 	sa->skb_array[sa->skb_count++] = skb;
1032 
1033 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1034 		kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE,
1035 				     sa->skb_array);
1036 		sa->skb_count = 0;
1037 	}
1038 }
1039 
1040 void __fix_address
1041 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1042 {
1043 	struct skb_free_array sa;
1044 
1045 	sa.skb_count = 0;
1046 
1047 	while (segs) {
1048 		struct sk_buff *next = segs->next;
1049 
1050 		if (__kfree_skb_reason(segs, reason)) {
1051 			skb_poison_list(segs);
1052 			kfree_skb_add_bulk(segs, &sa, reason);
1053 		}
1054 
1055 		segs = next;
1056 	}
1057 
1058 	if (sa.skb_count)
1059 		kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array);
1060 }
1061 EXPORT_SYMBOL(kfree_skb_list_reason);
1062 
1063 /* Dump skb information and contents.
1064  *
1065  * Must only be called from net_ratelimit()-ed paths.
1066  *
1067  * Dumps whole packets if full_pkt, only headers otherwise.
1068  */
1069 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1070 {
1071 	struct skb_shared_info *sh = skb_shinfo(skb);
1072 	struct net_device *dev = skb->dev;
1073 	struct sock *sk = skb->sk;
1074 	struct sk_buff *list_skb;
1075 	bool has_mac, has_trans;
1076 	int headroom, tailroom;
1077 	int i, len, seg_len;
1078 
1079 	if (full_pkt)
1080 		len = skb->len;
1081 	else
1082 		len = min_t(int, skb->len, MAX_HEADER + 128);
1083 
1084 	headroom = skb_headroom(skb);
1085 	tailroom = skb_tailroom(skb);
1086 
1087 	has_mac = skb_mac_header_was_set(skb);
1088 	has_trans = skb_transport_header_was_set(skb);
1089 
1090 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1091 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1092 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1093 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1094 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1095 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1096 	       has_mac ? skb->mac_header : -1,
1097 	       has_mac ? skb_mac_header_len(skb) : -1,
1098 	       skb->network_header,
1099 	       has_trans ? skb_network_header_len(skb) : -1,
1100 	       has_trans ? skb->transport_header : -1,
1101 	       sh->tx_flags, sh->nr_frags,
1102 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1103 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
1104 	       skb->csum_valid, skb->csum_level,
1105 	       skb->hash, skb->sw_hash, skb->l4_hash,
1106 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1107 
1108 	if (dev)
1109 		printk("%sdev name=%s feat=%pNF\n",
1110 		       level, dev->name, &dev->features);
1111 	if (sk)
1112 		printk("%ssk family=%hu type=%u proto=%u\n",
1113 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1114 
1115 	if (full_pkt && headroom)
1116 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1117 			       16, 1, skb->head, headroom, false);
1118 
1119 	seg_len = min_t(int, skb_headlen(skb), len);
1120 	if (seg_len)
1121 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1122 			       16, 1, skb->data, seg_len, false);
1123 	len -= seg_len;
1124 
1125 	if (full_pkt && tailroom)
1126 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1127 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1128 
1129 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1130 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1131 		u32 p_off, p_len, copied;
1132 		struct page *p;
1133 		u8 *vaddr;
1134 
1135 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1136 				      skb_frag_size(frag), p, p_off, p_len,
1137 				      copied) {
1138 			seg_len = min_t(int, p_len, len);
1139 			vaddr = kmap_atomic(p);
1140 			print_hex_dump(level, "skb frag:     ",
1141 				       DUMP_PREFIX_OFFSET,
1142 				       16, 1, vaddr + p_off, seg_len, false);
1143 			kunmap_atomic(vaddr);
1144 			len -= seg_len;
1145 			if (!len)
1146 				break;
1147 		}
1148 	}
1149 
1150 	if (full_pkt && skb_has_frag_list(skb)) {
1151 		printk("skb fraglist:\n");
1152 		skb_walk_frags(skb, list_skb)
1153 			skb_dump(level, list_skb, true);
1154 	}
1155 }
1156 EXPORT_SYMBOL(skb_dump);
1157 
1158 /**
1159  *	skb_tx_error - report an sk_buff xmit error
1160  *	@skb: buffer that triggered an error
1161  *
1162  *	Report xmit error if a device callback is tracking this skb.
1163  *	skb must be freed afterwards.
1164  */
1165 void skb_tx_error(struct sk_buff *skb)
1166 {
1167 	if (skb) {
1168 		skb_zcopy_downgrade_managed(skb);
1169 		skb_zcopy_clear(skb, true);
1170 	}
1171 }
1172 EXPORT_SYMBOL(skb_tx_error);
1173 
1174 #ifdef CONFIG_TRACEPOINTS
1175 /**
1176  *	consume_skb - free an skbuff
1177  *	@skb: buffer to free
1178  *
1179  *	Drop a ref to the buffer and free it if the usage count has hit zero
1180  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1181  *	is being dropped after a failure and notes that
1182  */
1183 void consume_skb(struct sk_buff *skb)
1184 {
1185 	if (!skb_unref(skb))
1186 		return;
1187 
1188 	trace_consume_skb(skb, __builtin_return_address(0));
1189 	__kfree_skb(skb);
1190 }
1191 EXPORT_SYMBOL(consume_skb);
1192 #endif
1193 
1194 /**
1195  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1196  *	@skb: buffer to free
1197  *
1198  *	Alike consume_skb(), but this variant assumes that this is the last
1199  *	skb reference and all the head states have been already dropped
1200  */
1201 void __consume_stateless_skb(struct sk_buff *skb)
1202 {
1203 	trace_consume_skb(skb, __builtin_return_address(0));
1204 	skb_release_data(skb, SKB_CONSUMED);
1205 	kfree_skbmem(skb);
1206 }
1207 
1208 static void napi_skb_cache_put(struct sk_buff *skb)
1209 {
1210 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1211 	u32 i;
1212 
1213 	kasan_poison_object_data(skbuff_cache, skb);
1214 	nc->skb_cache[nc->skb_count++] = skb;
1215 
1216 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1217 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1218 			kasan_unpoison_object_data(skbuff_cache,
1219 						   nc->skb_cache[i]);
1220 
1221 		kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF,
1222 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1223 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1224 	}
1225 }
1226 
1227 void __kfree_skb_defer(struct sk_buff *skb)
1228 {
1229 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1230 	napi_skb_cache_put(skb);
1231 }
1232 
1233 void napi_skb_free_stolen_head(struct sk_buff *skb)
1234 {
1235 	if (unlikely(skb->slow_gro)) {
1236 		nf_reset_ct(skb);
1237 		skb_dst_drop(skb);
1238 		skb_ext_put(skb);
1239 		skb_orphan(skb);
1240 		skb->slow_gro = 0;
1241 	}
1242 	napi_skb_cache_put(skb);
1243 }
1244 
1245 void napi_consume_skb(struct sk_buff *skb, int budget)
1246 {
1247 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1248 	if (unlikely(!budget)) {
1249 		dev_consume_skb_any(skb);
1250 		return;
1251 	}
1252 
1253 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1254 
1255 	if (!skb_unref(skb))
1256 		return;
1257 
1258 	/* if reaching here SKB is ready to free */
1259 	trace_consume_skb(skb, __builtin_return_address(0));
1260 
1261 	/* if SKB is a clone, don't handle this case */
1262 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1263 		__kfree_skb(skb);
1264 		return;
1265 	}
1266 
1267 	skb_release_all(skb, SKB_CONSUMED);
1268 	napi_skb_cache_put(skb);
1269 }
1270 EXPORT_SYMBOL(napi_consume_skb);
1271 
1272 /* Make sure a field is contained by headers group */
1273 #define CHECK_SKB_FIELD(field) \
1274 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1275 		     offsetof(struct sk_buff, headers.field));	\
1276 
1277 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1278 {
1279 	new->tstamp		= old->tstamp;
1280 	/* We do not copy old->sk */
1281 	new->dev		= old->dev;
1282 	memcpy(new->cb, old->cb, sizeof(old->cb));
1283 	skb_dst_copy(new, old);
1284 	__skb_ext_copy(new, old);
1285 	__nf_copy(new, old, false);
1286 
1287 	/* Note : this field could be in the headers group.
1288 	 * It is not yet because we do not want to have a 16 bit hole
1289 	 */
1290 	new->queue_mapping = old->queue_mapping;
1291 
1292 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1293 	CHECK_SKB_FIELD(protocol);
1294 	CHECK_SKB_FIELD(csum);
1295 	CHECK_SKB_FIELD(hash);
1296 	CHECK_SKB_FIELD(priority);
1297 	CHECK_SKB_FIELD(skb_iif);
1298 	CHECK_SKB_FIELD(vlan_proto);
1299 	CHECK_SKB_FIELD(vlan_tci);
1300 	CHECK_SKB_FIELD(transport_header);
1301 	CHECK_SKB_FIELD(network_header);
1302 	CHECK_SKB_FIELD(mac_header);
1303 	CHECK_SKB_FIELD(inner_protocol);
1304 	CHECK_SKB_FIELD(inner_transport_header);
1305 	CHECK_SKB_FIELD(inner_network_header);
1306 	CHECK_SKB_FIELD(inner_mac_header);
1307 	CHECK_SKB_FIELD(mark);
1308 #ifdef CONFIG_NETWORK_SECMARK
1309 	CHECK_SKB_FIELD(secmark);
1310 #endif
1311 #ifdef CONFIG_NET_RX_BUSY_POLL
1312 	CHECK_SKB_FIELD(napi_id);
1313 #endif
1314 	CHECK_SKB_FIELD(alloc_cpu);
1315 #ifdef CONFIG_XPS
1316 	CHECK_SKB_FIELD(sender_cpu);
1317 #endif
1318 #ifdef CONFIG_NET_SCHED
1319 	CHECK_SKB_FIELD(tc_index);
1320 #endif
1321 
1322 }
1323 
1324 /*
1325  * You should not add any new code to this function.  Add it to
1326  * __copy_skb_header above instead.
1327  */
1328 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1329 {
1330 #define C(x) n->x = skb->x
1331 
1332 	n->next = n->prev = NULL;
1333 	n->sk = NULL;
1334 	__copy_skb_header(n, skb);
1335 
1336 	C(len);
1337 	C(data_len);
1338 	C(mac_len);
1339 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1340 	n->cloned = 1;
1341 	n->nohdr = 0;
1342 	n->peeked = 0;
1343 	C(pfmemalloc);
1344 	C(pp_recycle);
1345 	n->destructor = NULL;
1346 	C(tail);
1347 	C(end);
1348 	C(head);
1349 	C(head_frag);
1350 	C(data);
1351 	C(truesize);
1352 	refcount_set(&n->users, 1);
1353 
1354 	atomic_inc(&(skb_shinfo(skb)->dataref));
1355 	skb->cloned = 1;
1356 
1357 	return n;
1358 #undef C
1359 }
1360 
1361 /**
1362  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1363  * @first: first sk_buff of the msg
1364  */
1365 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1366 {
1367 	struct sk_buff *n;
1368 
1369 	n = alloc_skb(0, GFP_ATOMIC);
1370 	if (!n)
1371 		return NULL;
1372 
1373 	n->len = first->len;
1374 	n->data_len = first->len;
1375 	n->truesize = first->truesize;
1376 
1377 	skb_shinfo(n)->frag_list = first;
1378 
1379 	__copy_skb_header(n, first);
1380 	n->destructor = NULL;
1381 
1382 	return n;
1383 }
1384 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1385 
1386 /**
1387  *	skb_morph	-	morph one skb into another
1388  *	@dst: the skb to receive the contents
1389  *	@src: the skb to supply the contents
1390  *
1391  *	This is identical to skb_clone except that the target skb is
1392  *	supplied by the user.
1393  *
1394  *	The target skb is returned upon exit.
1395  */
1396 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1397 {
1398 	skb_release_all(dst, SKB_CONSUMED);
1399 	return __skb_clone(dst, src);
1400 }
1401 EXPORT_SYMBOL_GPL(skb_morph);
1402 
1403 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1404 {
1405 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1406 	struct user_struct *user;
1407 
1408 	if (capable(CAP_IPC_LOCK) || !size)
1409 		return 0;
1410 
1411 	rlim = rlimit(RLIMIT_MEMLOCK);
1412 	if (rlim == RLIM_INFINITY)
1413 		return 0;
1414 
1415 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1416 	max_pg = rlim >> PAGE_SHIFT;
1417 	user = mmp->user ? : current_user();
1418 
1419 	old_pg = atomic_long_read(&user->locked_vm);
1420 	do {
1421 		new_pg = old_pg + num_pg;
1422 		if (new_pg > max_pg)
1423 			return -ENOBUFS;
1424 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1425 
1426 	if (!mmp->user) {
1427 		mmp->user = get_uid(user);
1428 		mmp->num_pg = num_pg;
1429 	} else {
1430 		mmp->num_pg += num_pg;
1431 	}
1432 
1433 	return 0;
1434 }
1435 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1436 
1437 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1438 {
1439 	if (mmp->user) {
1440 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1441 		free_uid(mmp->user);
1442 	}
1443 }
1444 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1445 
1446 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1447 {
1448 	struct ubuf_info_msgzc *uarg;
1449 	struct sk_buff *skb;
1450 
1451 	WARN_ON_ONCE(!in_task());
1452 
1453 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1454 	if (!skb)
1455 		return NULL;
1456 
1457 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1458 	uarg = (void *)skb->cb;
1459 	uarg->mmp.user = NULL;
1460 
1461 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1462 		kfree_skb(skb);
1463 		return NULL;
1464 	}
1465 
1466 	uarg->ubuf.callback = msg_zerocopy_callback;
1467 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1468 	uarg->len = 1;
1469 	uarg->bytelen = size;
1470 	uarg->zerocopy = 1;
1471 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1472 	refcount_set(&uarg->ubuf.refcnt, 1);
1473 	sock_hold(sk);
1474 
1475 	return &uarg->ubuf;
1476 }
1477 
1478 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1479 {
1480 	return container_of((void *)uarg, struct sk_buff, cb);
1481 }
1482 
1483 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1484 				       struct ubuf_info *uarg)
1485 {
1486 	if (uarg) {
1487 		struct ubuf_info_msgzc *uarg_zc;
1488 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1489 		u32 bytelen, next;
1490 
1491 		/* there might be non MSG_ZEROCOPY users */
1492 		if (uarg->callback != msg_zerocopy_callback)
1493 			return NULL;
1494 
1495 		/* realloc only when socket is locked (TCP, UDP cork),
1496 		 * so uarg->len and sk_zckey access is serialized
1497 		 */
1498 		if (!sock_owned_by_user(sk)) {
1499 			WARN_ON_ONCE(1);
1500 			return NULL;
1501 		}
1502 
1503 		uarg_zc = uarg_to_msgzc(uarg);
1504 		bytelen = uarg_zc->bytelen + size;
1505 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1506 			/* TCP can create new skb to attach new uarg */
1507 			if (sk->sk_type == SOCK_STREAM)
1508 				goto new_alloc;
1509 			return NULL;
1510 		}
1511 
1512 		next = (u32)atomic_read(&sk->sk_zckey);
1513 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1514 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1515 				return NULL;
1516 			uarg_zc->len++;
1517 			uarg_zc->bytelen = bytelen;
1518 			atomic_set(&sk->sk_zckey, ++next);
1519 
1520 			/* no extra ref when appending to datagram (MSG_MORE) */
1521 			if (sk->sk_type == SOCK_STREAM)
1522 				net_zcopy_get(uarg);
1523 
1524 			return uarg;
1525 		}
1526 	}
1527 
1528 new_alloc:
1529 	return msg_zerocopy_alloc(sk, size);
1530 }
1531 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1532 
1533 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1534 {
1535 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1536 	u32 old_lo, old_hi;
1537 	u64 sum_len;
1538 
1539 	old_lo = serr->ee.ee_info;
1540 	old_hi = serr->ee.ee_data;
1541 	sum_len = old_hi - old_lo + 1ULL + len;
1542 
1543 	if (sum_len >= (1ULL << 32))
1544 		return false;
1545 
1546 	if (lo != old_hi + 1)
1547 		return false;
1548 
1549 	serr->ee.ee_data += len;
1550 	return true;
1551 }
1552 
1553 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1554 {
1555 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1556 	struct sock_exterr_skb *serr;
1557 	struct sock *sk = skb->sk;
1558 	struct sk_buff_head *q;
1559 	unsigned long flags;
1560 	bool is_zerocopy;
1561 	u32 lo, hi;
1562 	u16 len;
1563 
1564 	mm_unaccount_pinned_pages(&uarg->mmp);
1565 
1566 	/* if !len, there was only 1 call, and it was aborted
1567 	 * so do not queue a completion notification
1568 	 */
1569 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1570 		goto release;
1571 
1572 	len = uarg->len;
1573 	lo = uarg->id;
1574 	hi = uarg->id + len - 1;
1575 	is_zerocopy = uarg->zerocopy;
1576 
1577 	serr = SKB_EXT_ERR(skb);
1578 	memset(serr, 0, sizeof(*serr));
1579 	serr->ee.ee_errno = 0;
1580 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1581 	serr->ee.ee_data = hi;
1582 	serr->ee.ee_info = lo;
1583 	if (!is_zerocopy)
1584 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1585 
1586 	q = &sk->sk_error_queue;
1587 	spin_lock_irqsave(&q->lock, flags);
1588 	tail = skb_peek_tail(q);
1589 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1590 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1591 		__skb_queue_tail(q, skb);
1592 		skb = NULL;
1593 	}
1594 	spin_unlock_irqrestore(&q->lock, flags);
1595 
1596 	sk_error_report(sk);
1597 
1598 release:
1599 	consume_skb(skb);
1600 	sock_put(sk);
1601 }
1602 
1603 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1604 			   bool success)
1605 {
1606 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1607 
1608 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1609 
1610 	if (refcount_dec_and_test(&uarg->refcnt))
1611 		__msg_zerocopy_callback(uarg_zc);
1612 }
1613 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1614 
1615 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1616 {
1617 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1618 
1619 	atomic_dec(&sk->sk_zckey);
1620 	uarg_to_msgzc(uarg)->len--;
1621 
1622 	if (have_uref)
1623 		msg_zerocopy_callback(NULL, uarg, true);
1624 }
1625 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1626 
1627 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1628 			     struct msghdr *msg, int len,
1629 			     struct ubuf_info *uarg)
1630 {
1631 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1632 	int err, orig_len = skb->len;
1633 
1634 	/* An skb can only point to one uarg. This edge case happens when
1635 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1636 	 */
1637 	if (orig_uarg && uarg != orig_uarg)
1638 		return -EEXIST;
1639 
1640 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1641 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1642 		struct sock *save_sk = skb->sk;
1643 
1644 		/* Streams do not free skb on error. Reset to prev state. */
1645 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1646 		skb->sk = sk;
1647 		___pskb_trim(skb, orig_len);
1648 		skb->sk = save_sk;
1649 		return err;
1650 	}
1651 
1652 	skb_zcopy_set(skb, uarg, NULL);
1653 	return skb->len - orig_len;
1654 }
1655 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1656 
1657 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1658 {
1659 	int i;
1660 
1661 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1662 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1663 		skb_frag_ref(skb, i);
1664 }
1665 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1666 
1667 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1668 			      gfp_t gfp_mask)
1669 {
1670 	if (skb_zcopy(orig)) {
1671 		if (skb_zcopy(nskb)) {
1672 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1673 			if (!gfp_mask) {
1674 				WARN_ON_ONCE(1);
1675 				return -ENOMEM;
1676 			}
1677 			if (skb_uarg(nskb) == skb_uarg(orig))
1678 				return 0;
1679 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1680 				return -EIO;
1681 		}
1682 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1683 	}
1684 	return 0;
1685 }
1686 
1687 /**
1688  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1689  *	@skb: the skb to modify
1690  *	@gfp_mask: allocation priority
1691  *
1692  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1693  *	It will copy all frags into kernel and drop the reference
1694  *	to userspace pages.
1695  *
1696  *	If this function is called from an interrupt gfp_mask() must be
1697  *	%GFP_ATOMIC.
1698  *
1699  *	Returns 0 on success or a negative error code on failure
1700  *	to allocate kernel memory to copy to.
1701  */
1702 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1703 {
1704 	int num_frags = skb_shinfo(skb)->nr_frags;
1705 	struct page *page, *head = NULL;
1706 	int i, new_frags;
1707 	u32 d_off;
1708 
1709 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1710 		return -EINVAL;
1711 
1712 	if (!num_frags)
1713 		goto release;
1714 
1715 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1716 	for (i = 0; i < new_frags; i++) {
1717 		page = alloc_page(gfp_mask);
1718 		if (!page) {
1719 			while (head) {
1720 				struct page *next = (struct page *)page_private(head);
1721 				put_page(head);
1722 				head = next;
1723 			}
1724 			return -ENOMEM;
1725 		}
1726 		set_page_private(page, (unsigned long)head);
1727 		head = page;
1728 	}
1729 
1730 	page = head;
1731 	d_off = 0;
1732 	for (i = 0; i < num_frags; i++) {
1733 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1734 		u32 p_off, p_len, copied;
1735 		struct page *p;
1736 		u8 *vaddr;
1737 
1738 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1739 				      p, p_off, p_len, copied) {
1740 			u32 copy, done = 0;
1741 			vaddr = kmap_atomic(p);
1742 
1743 			while (done < p_len) {
1744 				if (d_off == PAGE_SIZE) {
1745 					d_off = 0;
1746 					page = (struct page *)page_private(page);
1747 				}
1748 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1749 				memcpy(page_address(page) + d_off,
1750 				       vaddr + p_off + done, copy);
1751 				done += copy;
1752 				d_off += copy;
1753 			}
1754 			kunmap_atomic(vaddr);
1755 		}
1756 	}
1757 
1758 	/* skb frags release userspace buffers */
1759 	for (i = 0; i < num_frags; i++)
1760 		skb_frag_unref(skb, i);
1761 
1762 	/* skb frags point to kernel buffers */
1763 	for (i = 0; i < new_frags - 1; i++) {
1764 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1765 		head = (struct page *)page_private(head);
1766 	}
1767 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1768 	skb_shinfo(skb)->nr_frags = new_frags;
1769 
1770 release:
1771 	skb_zcopy_clear(skb, false);
1772 	return 0;
1773 }
1774 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1775 
1776 /**
1777  *	skb_clone	-	duplicate an sk_buff
1778  *	@skb: buffer to clone
1779  *	@gfp_mask: allocation priority
1780  *
1781  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1782  *	copies share the same packet data but not structure. The new
1783  *	buffer has a reference count of 1. If the allocation fails the
1784  *	function returns %NULL otherwise the new buffer is returned.
1785  *
1786  *	If this function is called from an interrupt gfp_mask() must be
1787  *	%GFP_ATOMIC.
1788  */
1789 
1790 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1791 {
1792 	struct sk_buff_fclones *fclones = container_of(skb,
1793 						       struct sk_buff_fclones,
1794 						       skb1);
1795 	struct sk_buff *n;
1796 
1797 	if (skb_orphan_frags(skb, gfp_mask))
1798 		return NULL;
1799 
1800 	if (skb->fclone == SKB_FCLONE_ORIG &&
1801 	    refcount_read(&fclones->fclone_ref) == 1) {
1802 		n = &fclones->skb2;
1803 		refcount_set(&fclones->fclone_ref, 2);
1804 		n->fclone = SKB_FCLONE_CLONE;
1805 	} else {
1806 		if (skb_pfmemalloc(skb))
1807 			gfp_mask |= __GFP_MEMALLOC;
1808 
1809 		n = kmem_cache_alloc(skbuff_cache, gfp_mask);
1810 		if (!n)
1811 			return NULL;
1812 
1813 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1814 	}
1815 
1816 	return __skb_clone(n, skb);
1817 }
1818 EXPORT_SYMBOL(skb_clone);
1819 
1820 void skb_headers_offset_update(struct sk_buff *skb, int off)
1821 {
1822 	/* Only adjust this if it actually is csum_start rather than csum */
1823 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1824 		skb->csum_start += off;
1825 	/* {transport,network,mac}_header and tail are relative to skb->head */
1826 	skb->transport_header += off;
1827 	skb->network_header   += off;
1828 	if (skb_mac_header_was_set(skb))
1829 		skb->mac_header += off;
1830 	skb->inner_transport_header += off;
1831 	skb->inner_network_header += off;
1832 	skb->inner_mac_header += off;
1833 }
1834 EXPORT_SYMBOL(skb_headers_offset_update);
1835 
1836 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1837 {
1838 	__copy_skb_header(new, old);
1839 
1840 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1841 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1842 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1843 }
1844 EXPORT_SYMBOL(skb_copy_header);
1845 
1846 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1847 {
1848 	if (skb_pfmemalloc(skb))
1849 		return SKB_ALLOC_RX;
1850 	return 0;
1851 }
1852 
1853 /**
1854  *	skb_copy	-	create private copy of an sk_buff
1855  *	@skb: buffer to copy
1856  *	@gfp_mask: allocation priority
1857  *
1858  *	Make a copy of both an &sk_buff and its data. This is used when the
1859  *	caller wishes to modify the data and needs a private copy of the
1860  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1861  *	on success. The returned buffer has a reference count of 1.
1862  *
1863  *	As by-product this function converts non-linear &sk_buff to linear
1864  *	one, so that &sk_buff becomes completely private and caller is allowed
1865  *	to modify all the data of returned buffer. This means that this
1866  *	function is not recommended for use in circumstances when only
1867  *	header is going to be modified. Use pskb_copy() instead.
1868  */
1869 
1870 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1871 {
1872 	int headerlen = skb_headroom(skb);
1873 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1874 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1875 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1876 
1877 	if (!n)
1878 		return NULL;
1879 
1880 	/* Set the data pointer */
1881 	skb_reserve(n, headerlen);
1882 	/* Set the tail pointer and length */
1883 	skb_put(n, skb->len);
1884 
1885 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1886 
1887 	skb_copy_header(n, skb);
1888 	return n;
1889 }
1890 EXPORT_SYMBOL(skb_copy);
1891 
1892 /**
1893  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1894  *	@skb: buffer to copy
1895  *	@headroom: headroom of new skb
1896  *	@gfp_mask: allocation priority
1897  *	@fclone: if true allocate the copy of the skb from the fclone
1898  *	cache instead of the head cache; it is recommended to set this
1899  *	to true for the cases where the copy will likely be cloned
1900  *
1901  *	Make a copy of both an &sk_buff and part of its data, located
1902  *	in header. Fragmented data remain shared. This is used when
1903  *	the caller wishes to modify only header of &sk_buff and needs
1904  *	private copy of the header to alter. Returns %NULL on failure
1905  *	or the pointer to the buffer on success.
1906  *	The returned buffer has a reference count of 1.
1907  */
1908 
1909 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1910 				   gfp_t gfp_mask, bool fclone)
1911 {
1912 	unsigned int size = skb_headlen(skb) + headroom;
1913 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1914 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1915 
1916 	if (!n)
1917 		goto out;
1918 
1919 	/* Set the data pointer */
1920 	skb_reserve(n, headroom);
1921 	/* Set the tail pointer and length */
1922 	skb_put(n, skb_headlen(skb));
1923 	/* Copy the bytes */
1924 	skb_copy_from_linear_data(skb, n->data, n->len);
1925 
1926 	n->truesize += skb->data_len;
1927 	n->data_len  = skb->data_len;
1928 	n->len	     = skb->len;
1929 
1930 	if (skb_shinfo(skb)->nr_frags) {
1931 		int i;
1932 
1933 		if (skb_orphan_frags(skb, gfp_mask) ||
1934 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1935 			kfree_skb(n);
1936 			n = NULL;
1937 			goto out;
1938 		}
1939 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1940 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1941 			skb_frag_ref(skb, i);
1942 		}
1943 		skb_shinfo(n)->nr_frags = i;
1944 	}
1945 
1946 	if (skb_has_frag_list(skb)) {
1947 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1948 		skb_clone_fraglist(n);
1949 	}
1950 
1951 	skb_copy_header(n, skb);
1952 out:
1953 	return n;
1954 }
1955 EXPORT_SYMBOL(__pskb_copy_fclone);
1956 
1957 /**
1958  *	pskb_expand_head - reallocate header of &sk_buff
1959  *	@skb: buffer to reallocate
1960  *	@nhead: room to add at head
1961  *	@ntail: room to add at tail
1962  *	@gfp_mask: allocation priority
1963  *
1964  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1965  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1966  *	reference count of 1. Returns zero in the case of success or error,
1967  *	if expansion failed. In the last case, &sk_buff is not changed.
1968  *
1969  *	All the pointers pointing into skb header may change and must be
1970  *	reloaded after call to this function.
1971  */
1972 
1973 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1974 		     gfp_t gfp_mask)
1975 {
1976 	unsigned int osize = skb_end_offset(skb);
1977 	unsigned int size = osize + nhead + ntail;
1978 	long off;
1979 	u8 *data;
1980 	int i;
1981 
1982 	BUG_ON(nhead < 0);
1983 
1984 	BUG_ON(skb_shared(skb));
1985 
1986 	skb_zcopy_downgrade_managed(skb);
1987 
1988 	if (skb_pfmemalloc(skb))
1989 		gfp_mask |= __GFP_MEMALLOC;
1990 
1991 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
1992 	if (!data)
1993 		goto nodata;
1994 	size = SKB_WITH_OVERHEAD(size);
1995 
1996 	/* Copy only real data... and, alas, header. This should be
1997 	 * optimized for the cases when header is void.
1998 	 */
1999 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2000 
2001 	memcpy((struct skb_shared_info *)(data + size),
2002 	       skb_shinfo(skb),
2003 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2004 
2005 	/*
2006 	 * if shinfo is shared we must drop the old head gracefully, but if it
2007 	 * is not we can just drop the old head and let the existing refcount
2008 	 * be since all we did is relocate the values
2009 	 */
2010 	if (skb_cloned(skb)) {
2011 		if (skb_orphan_frags(skb, gfp_mask))
2012 			goto nofrags;
2013 		if (skb_zcopy(skb))
2014 			refcount_inc(&skb_uarg(skb)->refcnt);
2015 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2016 			skb_frag_ref(skb, i);
2017 
2018 		if (skb_has_frag_list(skb))
2019 			skb_clone_fraglist(skb);
2020 
2021 		skb_release_data(skb, SKB_CONSUMED);
2022 	} else {
2023 		skb_free_head(skb);
2024 	}
2025 	off = (data + nhead) - skb->head;
2026 
2027 	skb->head     = data;
2028 	skb->head_frag = 0;
2029 	skb->data    += off;
2030 
2031 	skb_set_end_offset(skb, size);
2032 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2033 	off           = nhead;
2034 #endif
2035 	skb->tail	      += off;
2036 	skb_headers_offset_update(skb, nhead);
2037 	skb->cloned   = 0;
2038 	skb->hdr_len  = 0;
2039 	skb->nohdr    = 0;
2040 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2041 
2042 	skb_metadata_clear(skb);
2043 
2044 	/* It is not generally safe to change skb->truesize.
2045 	 * For the moment, we really care of rx path, or
2046 	 * when skb is orphaned (not attached to a socket).
2047 	 */
2048 	if (!skb->sk || skb->destructor == sock_edemux)
2049 		skb->truesize += size - osize;
2050 
2051 	return 0;
2052 
2053 nofrags:
2054 	skb_kfree_head(data, size);
2055 nodata:
2056 	return -ENOMEM;
2057 }
2058 EXPORT_SYMBOL(pskb_expand_head);
2059 
2060 /* Make private copy of skb with writable head and some headroom */
2061 
2062 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2063 {
2064 	struct sk_buff *skb2;
2065 	int delta = headroom - skb_headroom(skb);
2066 
2067 	if (delta <= 0)
2068 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2069 	else {
2070 		skb2 = skb_clone(skb, GFP_ATOMIC);
2071 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2072 					     GFP_ATOMIC)) {
2073 			kfree_skb(skb2);
2074 			skb2 = NULL;
2075 		}
2076 	}
2077 	return skb2;
2078 }
2079 EXPORT_SYMBOL(skb_realloc_headroom);
2080 
2081 /* Note: We plan to rework this in linux-6.4 */
2082 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2083 {
2084 	unsigned int saved_end_offset, saved_truesize;
2085 	struct skb_shared_info *shinfo;
2086 	int res;
2087 
2088 	saved_end_offset = skb_end_offset(skb);
2089 	saved_truesize = skb->truesize;
2090 
2091 	res = pskb_expand_head(skb, 0, 0, pri);
2092 	if (res)
2093 		return res;
2094 
2095 	skb->truesize = saved_truesize;
2096 
2097 	if (likely(skb_end_offset(skb) == saved_end_offset))
2098 		return 0;
2099 
2100 #ifdef HAVE_SKB_SMALL_HEAD_CACHE
2101 	/* We can not change skb->end if the original or new value
2102 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2103 	 */
2104 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2105 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2106 		/* We think this path should not be taken.
2107 		 * Add a temporary trace to warn us just in case.
2108 		 */
2109 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2110 			    saved_end_offset, skb_end_offset(skb));
2111 		WARN_ON_ONCE(1);
2112 		return 0;
2113 	}
2114 #endif
2115 
2116 	shinfo = skb_shinfo(skb);
2117 
2118 	/* We are about to change back skb->end,
2119 	 * we need to move skb_shinfo() to its new location.
2120 	 */
2121 	memmove(skb->head + saved_end_offset,
2122 		shinfo,
2123 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2124 
2125 	skb_set_end_offset(skb, saved_end_offset);
2126 
2127 	return 0;
2128 }
2129 
2130 /**
2131  *	skb_expand_head - reallocate header of &sk_buff
2132  *	@skb: buffer to reallocate
2133  *	@headroom: needed headroom
2134  *
2135  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2136  *	if possible; copies skb->sk to new skb as needed
2137  *	and frees original skb in case of failures.
2138  *
2139  *	It expect increased headroom and generates warning otherwise.
2140  */
2141 
2142 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2143 {
2144 	int delta = headroom - skb_headroom(skb);
2145 	int osize = skb_end_offset(skb);
2146 	struct sock *sk = skb->sk;
2147 
2148 	if (WARN_ONCE(delta <= 0,
2149 		      "%s is expecting an increase in the headroom", __func__))
2150 		return skb;
2151 
2152 	delta = SKB_DATA_ALIGN(delta);
2153 	/* pskb_expand_head() might crash, if skb is shared. */
2154 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2155 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2156 
2157 		if (unlikely(!nskb))
2158 			goto fail;
2159 
2160 		if (sk)
2161 			skb_set_owner_w(nskb, sk);
2162 		consume_skb(skb);
2163 		skb = nskb;
2164 	}
2165 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2166 		goto fail;
2167 
2168 	if (sk && is_skb_wmem(skb)) {
2169 		delta = skb_end_offset(skb) - osize;
2170 		refcount_add(delta, &sk->sk_wmem_alloc);
2171 		skb->truesize += delta;
2172 	}
2173 	return skb;
2174 
2175 fail:
2176 	kfree_skb(skb);
2177 	return NULL;
2178 }
2179 EXPORT_SYMBOL(skb_expand_head);
2180 
2181 /**
2182  *	skb_copy_expand	-	copy and expand sk_buff
2183  *	@skb: buffer to copy
2184  *	@newheadroom: new free bytes at head
2185  *	@newtailroom: new free bytes at tail
2186  *	@gfp_mask: allocation priority
2187  *
2188  *	Make a copy of both an &sk_buff and its data and while doing so
2189  *	allocate additional space.
2190  *
2191  *	This is used when the caller wishes to modify the data and needs a
2192  *	private copy of the data to alter as well as more space for new fields.
2193  *	Returns %NULL on failure or the pointer to the buffer
2194  *	on success. The returned buffer has a reference count of 1.
2195  *
2196  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2197  *	is called from an interrupt.
2198  */
2199 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2200 				int newheadroom, int newtailroom,
2201 				gfp_t gfp_mask)
2202 {
2203 	/*
2204 	 *	Allocate the copy buffer
2205 	 */
2206 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2207 					gfp_mask, skb_alloc_rx_flag(skb),
2208 					NUMA_NO_NODE);
2209 	int oldheadroom = skb_headroom(skb);
2210 	int head_copy_len, head_copy_off;
2211 
2212 	if (!n)
2213 		return NULL;
2214 
2215 	skb_reserve(n, newheadroom);
2216 
2217 	/* Set the tail pointer and length */
2218 	skb_put(n, skb->len);
2219 
2220 	head_copy_len = oldheadroom;
2221 	head_copy_off = 0;
2222 	if (newheadroom <= head_copy_len)
2223 		head_copy_len = newheadroom;
2224 	else
2225 		head_copy_off = newheadroom - head_copy_len;
2226 
2227 	/* Copy the linear header and data. */
2228 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2229 			     skb->len + head_copy_len));
2230 
2231 	skb_copy_header(n, skb);
2232 
2233 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2234 
2235 	return n;
2236 }
2237 EXPORT_SYMBOL(skb_copy_expand);
2238 
2239 /**
2240  *	__skb_pad		-	zero pad the tail of an skb
2241  *	@skb: buffer to pad
2242  *	@pad: space to pad
2243  *	@free_on_error: free buffer on error
2244  *
2245  *	Ensure that a buffer is followed by a padding area that is zero
2246  *	filled. Used by network drivers which may DMA or transfer data
2247  *	beyond the buffer end onto the wire.
2248  *
2249  *	May return error in out of memory cases. The skb is freed on error
2250  *	if @free_on_error is true.
2251  */
2252 
2253 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2254 {
2255 	int err;
2256 	int ntail;
2257 
2258 	/* If the skbuff is non linear tailroom is always zero.. */
2259 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2260 		memset(skb->data+skb->len, 0, pad);
2261 		return 0;
2262 	}
2263 
2264 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2265 	if (likely(skb_cloned(skb) || ntail > 0)) {
2266 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2267 		if (unlikely(err))
2268 			goto free_skb;
2269 	}
2270 
2271 	/* FIXME: The use of this function with non-linear skb's really needs
2272 	 * to be audited.
2273 	 */
2274 	err = skb_linearize(skb);
2275 	if (unlikely(err))
2276 		goto free_skb;
2277 
2278 	memset(skb->data + skb->len, 0, pad);
2279 	return 0;
2280 
2281 free_skb:
2282 	if (free_on_error)
2283 		kfree_skb(skb);
2284 	return err;
2285 }
2286 EXPORT_SYMBOL(__skb_pad);
2287 
2288 /**
2289  *	pskb_put - add data to the tail of a potentially fragmented buffer
2290  *	@skb: start of the buffer to use
2291  *	@tail: tail fragment of the buffer to use
2292  *	@len: amount of data to add
2293  *
2294  *	This function extends the used data area of the potentially
2295  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2296  *	@skb itself. If this would exceed the total buffer size the kernel
2297  *	will panic. A pointer to the first byte of the extra data is
2298  *	returned.
2299  */
2300 
2301 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2302 {
2303 	if (tail != skb) {
2304 		skb->data_len += len;
2305 		skb->len += len;
2306 	}
2307 	return skb_put(tail, len);
2308 }
2309 EXPORT_SYMBOL_GPL(pskb_put);
2310 
2311 /**
2312  *	skb_put - add data to a buffer
2313  *	@skb: buffer to use
2314  *	@len: amount of data to add
2315  *
2316  *	This function extends the used data area of the buffer. If this would
2317  *	exceed the total buffer size the kernel will panic. A pointer to the
2318  *	first byte of the extra data is returned.
2319  */
2320 void *skb_put(struct sk_buff *skb, unsigned int len)
2321 {
2322 	void *tmp = skb_tail_pointer(skb);
2323 	SKB_LINEAR_ASSERT(skb);
2324 	skb->tail += len;
2325 	skb->len  += len;
2326 	if (unlikely(skb->tail > skb->end))
2327 		skb_over_panic(skb, len, __builtin_return_address(0));
2328 	return tmp;
2329 }
2330 EXPORT_SYMBOL(skb_put);
2331 
2332 /**
2333  *	skb_push - add data to the start of a buffer
2334  *	@skb: buffer to use
2335  *	@len: amount of data to add
2336  *
2337  *	This function extends the used data area of the buffer at the buffer
2338  *	start. If this would exceed the total buffer headroom the kernel will
2339  *	panic. A pointer to the first byte of the extra data is returned.
2340  */
2341 void *skb_push(struct sk_buff *skb, unsigned int len)
2342 {
2343 	skb->data -= len;
2344 	skb->len  += len;
2345 	if (unlikely(skb->data < skb->head))
2346 		skb_under_panic(skb, len, __builtin_return_address(0));
2347 	return skb->data;
2348 }
2349 EXPORT_SYMBOL(skb_push);
2350 
2351 /**
2352  *	skb_pull - remove data from the start of a buffer
2353  *	@skb: buffer to use
2354  *	@len: amount of data to remove
2355  *
2356  *	This function removes data from the start of a buffer, returning
2357  *	the memory to the headroom. A pointer to the next data in the buffer
2358  *	is returned. Once the data has been pulled future pushes will overwrite
2359  *	the old data.
2360  */
2361 void *skb_pull(struct sk_buff *skb, unsigned int len)
2362 {
2363 	return skb_pull_inline(skb, len);
2364 }
2365 EXPORT_SYMBOL(skb_pull);
2366 
2367 /**
2368  *	skb_pull_data - remove data from the start of a buffer returning its
2369  *	original position.
2370  *	@skb: buffer to use
2371  *	@len: amount of data to remove
2372  *
2373  *	This function removes data from the start of a buffer, returning
2374  *	the memory to the headroom. A pointer to the original data in the buffer
2375  *	is returned after checking if there is enough data to pull. Once the
2376  *	data has been pulled future pushes will overwrite the old data.
2377  */
2378 void *skb_pull_data(struct sk_buff *skb, size_t len)
2379 {
2380 	void *data = skb->data;
2381 
2382 	if (skb->len < len)
2383 		return NULL;
2384 
2385 	skb_pull(skb, len);
2386 
2387 	return data;
2388 }
2389 EXPORT_SYMBOL(skb_pull_data);
2390 
2391 /**
2392  *	skb_trim - remove end from a buffer
2393  *	@skb: buffer to alter
2394  *	@len: new length
2395  *
2396  *	Cut the length of a buffer down by removing data from the tail. If
2397  *	the buffer is already under the length specified it is not modified.
2398  *	The skb must be linear.
2399  */
2400 void skb_trim(struct sk_buff *skb, unsigned int len)
2401 {
2402 	if (skb->len > len)
2403 		__skb_trim(skb, len);
2404 }
2405 EXPORT_SYMBOL(skb_trim);
2406 
2407 /* Trims skb to length len. It can change skb pointers.
2408  */
2409 
2410 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2411 {
2412 	struct sk_buff **fragp;
2413 	struct sk_buff *frag;
2414 	int offset = skb_headlen(skb);
2415 	int nfrags = skb_shinfo(skb)->nr_frags;
2416 	int i;
2417 	int err;
2418 
2419 	if (skb_cloned(skb) &&
2420 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2421 		return err;
2422 
2423 	i = 0;
2424 	if (offset >= len)
2425 		goto drop_pages;
2426 
2427 	for (; i < nfrags; i++) {
2428 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2429 
2430 		if (end < len) {
2431 			offset = end;
2432 			continue;
2433 		}
2434 
2435 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2436 
2437 drop_pages:
2438 		skb_shinfo(skb)->nr_frags = i;
2439 
2440 		for (; i < nfrags; i++)
2441 			skb_frag_unref(skb, i);
2442 
2443 		if (skb_has_frag_list(skb))
2444 			skb_drop_fraglist(skb);
2445 		goto done;
2446 	}
2447 
2448 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2449 	     fragp = &frag->next) {
2450 		int end = offset + frag->len;
2451 
2452 		if (skb_shared(frag)) {
2453 			struct sk_buff *nfrag;
2454 
2455 			nfrag = skb_clone(frag, GFP_ATOMIC);
2456 			if (unlikely(!nfrag))
2457 				return -ENOMEM;
2458 
2459 			nfrag->next = frag->next;
2460 			consume_skb(frag);
2461 			frag = nfrag;
2462 			*fragp = frag;
2463 		}
2464 
2465 		if (end < len) {
2466 			offset = end;
2467 			continue;
2468 		}
2469 
2470 		if (end > len &&
2471 		    unlikely((err = pskb_trim(frag, len - offset))))
2472 			return err;
2473 
2474 		if (frag->next)
2475 			skb_drop_list(&frag->next);
2476 		break;
2477 	}
2478 
2479 done:
2480 	if (len > skb_headlen(skb)) {
2481 		skb->data_len -= skb->len - len;
2482 		skb->len       = len;
2483 	} else {
2484 		skb->len       = len;
2485 		skb->data_len  = 0;
2486 		skb_set_tail_pointer(skb, len);
2487 	}
2488 
2489 	if (!skb->sk || skb->destructor == sock_edemux)
2490 		skb_condense(skb);
2491 	return 0;
2492 }
2493 EXPORT_SYMBOL(___pskb_trim);
2494 
2495 /* Note : use pskb_trim_rcsum() instead of calling this directly
2496  */
2497 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2498 {
2499 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2500 		int delta = skb->len - len;
2501 
2502 		skb->csum = csum_block_sub(skb->csum,
2503 					   skb_checksum(skb, len, delta, 0),
2504 					   len);
2505 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2506 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2507 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2508 
2509 		if (offset + sizeof(__sum16) > hdlen)
2510 			return -EINVAL;
2511 	}
2512 	return __pskb_trim(skb, len);
2513 }
2514 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2515 
2516 /**
2517  *	__pskb_pull_tail - advance tail of skb header
2518  *	@skb: buffer to reallocate
2519  *	@delta: number of bytes to advance tail
2520  *
2521  *	The function makes a sense only on a fragmented &sk_buff,
2522  *	it expands header moving its tail forward and copying necessary
2523  *	data from fragmented part.
2524  *
2525  *	&sk_buff MUST have reference count of 1.
2526  *
2527  *	Returns %NULL (and &sk_buff does not change) if pull failed
2528  *	or value of new tail of skb in the case of success.
2529  *
2530  *	All the pointers pointing into skb header may change and must be
2531  *	reloaded after call to this function.
2532  */
2533 
2534 /* Moves tail of skb head forward, copying data from fragmented part,
2535  * when it is necessary.
2536  * 1. It may fail due to malloc failure.
2537  * 2. It may change skb pointers.
2538  *
2539  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2540  */
2541 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2542 {
2543 	/* If skb has not enough free space at tail, get new one
2544 	 * plus 128 bytes for future expansions. If we have enough
2545 	 * room at tail, reallocate without expansion only if skb is cloned.
2546 	 */
2547 	int i, k, eat = (skb->tail + delta) - skb->end;
2548 
2549 	if (eat > 0 || skb_cloned(skb)) {
2550 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2551 				     GFP_ATOMIC))
2552 			return NULL;
2553 	}
2554 
2555 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2556 			     skb_tail_pointer(skb), delta));
2557 
2558 	/* Optimization: no fragments, no reasons to preestimate
2559 	 * size of pulled pages. Superb.
2560 	 */
2561 	if (!skb_has_frag_list(skb))
2562 		goto pull_pages;
2563 
2564 	/* Estimate size of pulled pages. */
2565 	eat = delta;
2566 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2567 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2568 
2569 		if (size >= eat)
2570 			goto pull_pages;
2571 		eat -= size;
2572 	}
2573 
2574 	/* If we need update frag list, we are in troubles.
2575 	 * Certainly, it is possible to add an offset to skb data,
2576 	 * but taking into account that pulling is expected to
2577 	 * be very rare operation, it is worth to fight against
2578 	 * further bloating skb head and crucify ourselves here instead.
2579 	 * Pure masohism, indeed. 8)8)
2580 	 */
2581 	if (eat) {
2582 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2583 		struct sk_buff *clone = NULL;
2584 		struct sk_buff *insp = NULL;
2585 
2586 		do {
2587 			if (list->len <= eat) {
2588 				/* Eaten as whole. */
2589 				eat -= list->len;
2590 				list = list->next;
2591 				insp = list;
2592 			} else {
2593 				/* Eaten partially. */
2594 				if (skb_is_gso(skb) && !list->head_frag &&
2595 				    skb_headlen(list))
2596 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2597 
2598 				if (skb_shared(list)) {
2599 					/* Sucks! We need to fork list. :-( */
2600 					clone = skb_clone(list, GFP_ATOMIC);
2601 					if (!clone)
2602 						return NULL;
2603 					insp = list->next;
2604 					list = clone;
2605 				} else {
2606 					/* This may be pulled without
2607 					 * problems. */
2608 					insp = list;
2609 				}
2610 				if (!pskb_pull(list, eat)) {
2611 					kfree_skb(clone);
2612 					return NULL;
2613 				}
2614 				break;
2615 			}
2616 		} while (eat);
2617 
2618 		/* Free pulled out fragments. */
2619 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2620 			skb_shinfo(skb)->frag_list = list->next;
2621 			consume_skb(list);
2622 		}
2623 		/* And insert new clone at head. */
2624 		if (clone) {
2625 			clone->next = list;
2626 			skb_shinfo(skb)->frag_list = clone;
2627 		}
2628 	}
2629 	/* Success! Now we may commit changes to skb data. */
2630 
2631 pull_pages:
2632 	eat = delta;
2633 	k = 0;
2634 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2635 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2636 
2637 		if (size <= eat) {
2638 			skb_frag_unref(skb, i);
2639 			eat -= size;
2640 		} else {
2641 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2642 
2643 			*frag = skb_shinfo(skb)->frags[i];
2644 			if (eat) {
2645 				skb_frag_off_add(frag, eat);
2646 				skb_frag_size_sub(frag, eat);
2647 				if (!i)
2648 					goto end;
2649 				eat = 0;
2650 			}
2651 			k++;
2652 		}
2653 	}
2654 	skb_shinfo(skb)->nr_frags = k;
2655 
2656 end:
2657 	skb->tail     += delta;
2658 	skb->data_len -= delta;
2659 
2660 	if (!skb->data_len)
2661 		skb_zcopy_clear(skb, false);
2662 
2663 	return skb_tail_pointer(skb);
2664 }
2665 EXPORT_SYMBOL(__pskb_pull_tail);
2666 
2667 /**
2668  *	skb_copy_bits - copy bits from skb to kernel buffer
2669  *	@skb: source skb
2670  *	@offset: offset in source
2671  *	@to: destination buffer
2672  *	@len: number of bytes to copy
2673  *
2674  *	Copy the specified number of bytes from the source skb to the
2675  *	destination buffer.
2676  *
2677  *	CAUTION ! :
2678  *		If its prototype is ever changed,
2679  *		check arch/{*}/net/{*}.S files,
2680  *		since it is called from BPF assembly code.
2681  */
2682 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2683 {
2684 	int start = skb_headlen(skb);
2685 	struct sk_buff *frag_iter;
2686 	int i, copy;
2687 
2688 	if (offset > (int)skb->len - len)
2689 		goto fault;
2690 
2691 	/* Copy header. */
2692 	if ((copy = start - offset) > 0) {
2693 		if (copy > len)
2694 			copy = len;
2695 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2696 		if ((len -= copy) == 0)
2697 			return 0;
2698 		offset += copy;
2699 		to     += copy;
2700 	}
2701 
2702 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2703 		int end;
2704 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2705 
2706 		WARN_ON(start > offset + len);
2707 
2708 		end = start + skb_frag_size(f);
2709 		if ((copy = end - offset) > 0) {
2710 			u32 p_off, p_len, copied;
2711 			struct page *p;
2712 			u8 *vaddr;
2713 
2714 			if (copy > len)
2715 				copy = len;
2716 
2717 			skb_frag_foreach_page(f,
2718 					      skb_frag_off(f) + offset - start,
2719 					      copy, p, p_off, p_len, copied) {
2720 				vaddr = kmap_atomic(p);
2721 				memcpy(to + copied, vaddr + p_off, p_len);
2722 				kunmap_atomic(vaddr);
2723 			}
2724 
2725 			if ((len -= copy) == 0)
2726 				return 0;
2727 			offset += copy;
2728 			to     += copy;
2729 		}
2730 		start = end;
2731 	}
2732 
2733 	skb_walk_frags(skb, frag_iter) {
2734 		int end;
2735 
2736 		WARN_ON(start > offset + len);
2737 
2738 		end = start + frag_iter->len;
2739 		if ((copy = end - offset) > 0) {
2740 			if (copy > len)
2741 				copy = len;
2742 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2743 				goto fault;
2744 			if ((len -= copy) == 0)
2745 				return 0;
2746 			offset += copy;
2747 			to     += copy;
2748 		}
2749 		start = end;
2750 	}
2751 
2752 	if (!len)
2753 		return 0;
2754 
2755 fault:
2756 	return -EFAULT;
2757 }
2758 EXPORT_SYMBOL(skb_copy_bits);
2759 
2760 /*
2761  * Callback from splice_to_pipe(), if we need to release some pages
2762  * at the end of the spd in case we error'ed out in filling the pipe.
2763  */
2764 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2765 {
2766 	put_page(spd->pages[i]);
2767 }
2768 
2769 static struct page *linear_to_page(struct page *page, unsigned int *len,
2770 				   unsigned int *offset,
2771 				   struct sock *sk)
2772 {
2773 	struct page_frag *pfrag = sk_page_frag(sk);
2774 
2775 	if (!sk_page_frag_refill(sk, pfrag))
2776 		return NULL;
2777 
2778 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2779 
2780 	memcpy(page_address(pfrag->page) + pfrag->offset,
2781 	       page_address(page) + *offset, *len);
2782 	*offset = pfrag->offset;
2783 	pfrag->offset += *len;
2784 
2785 	return pfrag->page;
2786 }
2787 
2788 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2789 			     struct page *page,
2790 			     unsigned int offset)
2791 {
2792 	return	spd->nr_pages &&
2793 		spd->pages[spd->nr_pages - 1] == page &&
2794 		(spd->partial[spd->nr_pages - 1].offset +
2795 		 spd->partial[spd->nr_pages - 1].len == offset);
2796 }
2797 
2798 /*
2799  * Fill page/offset/length into spd, if it can hold more pages.
2800  */
2801 static bool spd_fill_page(struct splice_pipe_desc *spd,
2802 			  struct pipe_inode_info *pipe, struct page *page,
2803 			  unsigned int *len, unsigned int offset,
2804 			  bool linear,
2805 			  struct sock *sk)
2806 {
2807 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2808 		return true;
2809 
2810 	if (linear) {
2811 		page = linear_to_page(page, len, &offset, sk);
2812 		if (!page)
2813 			return true;
2814 	}
2815 	if (spd_can_coalesce(spd, page, offset)) {
2816 		spd->partial[spd->nr_pages - 1].len += *len;
2817 		return false;
2818 	}
2819 	get_page(page);
2820 	spd->pages[spd->nr_pages] = page;
2821 	spd->partial[spd->nr_pages].len = *len;
2822 	spd->partial[spd->nr_pages].offset = offset;
2823 	spd->nr_pages++;
2824 
2825 	return false;
2826 }
2827 
2828 static bool __splice_segment(struct page *page, unsigned int poff,
2829 			     unsigned int plen, unsigned int *off,
2830 			     unsigned int *len,
2831 			     struct splice_pipe_desc *spd, bool linear,
2832 			     struct sock *sk,
2833 			     struct pipe_inode_info *pipe)
2834 {
2835 	if (!*len)
2836 		return true;
2837 
2838 	/* skip this segment if already processed */
2839 	if (*off >= plen) {
2840 		*off -= plen;
2841 		return false;
2842 	}
2843 
2844 	/* ignore any bits we already processed */
2845 	poff += *off;
2846 	plen -= *off;
2847 	*off = 0;
2848 
2849 	do {
2850 		unsigned int flen = min(*len, plen);
2851 
2852 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2853 				  linear, sk))
2854 			return true;
2855 		poff += flen;
2856 		plen -= flen;
2857 		*len -= flen;
2858 	} while (*len && plen);
2859 
2860 	return false;
2861 }
2862 
2863 /*
2864  * Map linear and fragment data from the skb to spd. It reports true if the
2865  * pipe is full or if we already spliced the requested length.
2866  */
2867 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2868 			      unsigned int *offset, unsigned int *len,
2869 			      struct splice_pipe_desc *spd, struct sock *sk)
2870 {
2871 	int seg;
2872 	struct sk_buff *iter;
2873 
2874 	/* map the linear part :
2875 	 * If skb->head_frag is set, this 'linear' part is backed by a
2876 	 * fragment, and if the head is not shared with any clones then
2877 	 * we can avoid a copy since we own the head portion of this page.
2878 	 */
2879 	if (__splice_segment(virt_to_page(skb->data),
2880 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2881 			     skb_headlen(skb),
2882 			     offset, len, spd,
2883 			     skb_head_is_locked(skb),
2884 			     sk, pipe))
2885 		return true;
2886 
2887 	/*
2888 	 * then map the fragments
2889 	 */
2890 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2891 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2892 
2893 		if (__splice_segment(skb_frag_page(f),
2894 				     skb_frag_off(f), skb_frag_size(f),
2895 				     offset, len, spd, false, sk, pipe))
2896 			return true;
2897 	}
2898 
2899 	skb_walk_frags(skb, iter) {
2900 		if (*offset >= iter->len) {
2901 			*offset -= iter->len;
2902 			continue;
2903 		}
2904 		/* __skb_splice_bits() only fails if the output has no room
2905 		 * left, so no point in going over the frag_list for the error
2906 		 * case.
2907 		 */
2908 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2909 			return true;
2910 	}
2911 
2912 	return false;
2913 }
2914 
2915 /*
2916  * Map data from the skb to a pipe. Should handle both the linear part,
2917  * the fragments, and the frag list.
2918  */
2919 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2920 		    struct pipe_inode_info *pipe, unsigned int tlen,
2921 		    unsigned int flags)
2922 {
2923 	struct partial_page partial[MAX_SKB_FRAGS];
2924 	struct page *pages[MAX_SKB_FRAGS];
2925 	struct splice_pipe_desc spd = {
2926 		.pages = pages,
2927 		.partial = partial,
2928 		.nr_pages_max = MAX_SKB_FRAGS,
2929 		.ops = &nosteal_pipe_buf_ops,
2930 		.spd_release = sock_spd_release,
2931 	};
2932 	int ret = 0;
2933 
2934 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2935 
2936 	if (spd.nr_pages)
2937 		ret = splice_to_pipe(pipe, &spd);
2938 
2939 	return ret;
2940 }
2941 EXPORT_SYMBOL_GPL(skb_splice_bits);
2942 
2943 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2944 			    struct kvec *vec, size_t num, size_t size)
2945 {
2946 	struct socket *sock = sk->sk_socket;
2947 
2948 	if (!sock)
2949 		return -EINVAL;
2950 	return kernel_sendmsg(sock, msg, vec, num, size);
2951 }
2952 
2953 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2954 			     size_t size, int flags)
2955 {
2956 	struct socket *sock = sk->sk_socket;
2957 
2958 	if (!sock)
2959 		return -EINVAL;
2960 	return kernel_sendpage(sock, page, offset, size, flags);
2961 }
2962 
2963 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2964 			    struct kvec *vec, size_t num, size_t size);
2965 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2966 			     size_t size, int flags);
2967 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2968 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2969 {
2970 	unsigned int orig_len = len;
2971 	struct sk_buff *head = skb;
2972 	unsigned short fragidx;
2973 	int slen, ret;
2974 
2975 do_frag_list:
2976 
2977 	/* Deal with head data */
2978 	while (offset < skb_headlen(skb) && len) {
2979 		struct kvec kv;
2980 		struct msghdr msg;
2981 
2982 		slen = min_t(int, len, skb_headlen(skb) - offset);
2983 		kv.iov_base = skb->data + offset;
2984 		kv.iov_len = slen;
2985 		memset(&msg, 0, sizeof(msg));
2986 		msg.msg_flags = MSG_DONTWAIT;
2987 
2988 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2989 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2990 		if (ret <= 0)
2991 			goto error;
2992 
2993 		offset += ret;
2994 		len -= ret;
2995 	}
2996 
2997 	/* All the data was skb head? */
2998 	if (!len)
2999 		goto out;
3000 
3001 	/* Make offset relative to start of frags */
3002 	offset -= skb_headlen(skb);
3003 
3004 	/* Find where we are in frag list */
3005 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3006 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3007 
3008 		if (offset < skb_frag_size(frag))
3009 			break;
3010 
3011 		offset -= skb_frag_size(frag);
3012 	}
3013 
3014 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3015 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3016 
3017 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3018 
3019 		while (slen) {
3020 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
3021 					      sendpage_unlocked, sk,
3022 					      skb_frag_page(frag),
3023 					      skb_frag_off(frag) + offset,
3024 					      slen, MSG_DONTWAIT);
3025 			if (ret <= 0)
3026 				goto error;
3027 
3028 			len -= ret;
3029 			offset += ret;
3030 			slen -= ret;
3031 		}
3032 
3033 		offset = 0;
3034 	}
3035 
3036 	if (len) {
3037 		/* Process any frag lists */
3038 
3039 		if (skb == head) {
3040 			if (skb_has_frag_list(skb)) {
3041 				skb = skb_shinfo(skb)->frag_list;
3042 				goto do_frag_list;
3043 			}
3044 		} else if (skb->next) {
3045 			skb = skb->next;
3046 			goto do_frag_list;
3047 		}
3048 	}
3049 
3050 out:
3051 	return orig_len - len;
3052 
3053 error:
3054 	return orig_len == len ? ret : orig_len - len;
3055 }
3056 
3057 /* Send skb data on a socket. Socket must be locked. */
3058 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3059 			 int len)
3060 {
3061 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
3062 			       kernel_sendpage_locked);
3063 }
3064 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3065 
3066 /* Send skb data on a socket. Socket must be unlocked. */
3067 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3068 {
3069 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
3070 			       sendpage_unlocked);
3071 }
3072 
3073 /**
3074  *	skb_store_bits - store bits from kernel buffer to skb
3075  *	@skb: destination buffer
3076  *	@offset: offset in destination
3077  *	@from: source buffer
3078  *	@len: number of bytes to copy
3079  *
3080  *	Copy the specified number of bytes from the source buffer to the
3081  *	destination skb.  This function handles all the messy bits of
3082  *	traversing fragment lists and such.
3083  */
3084 
3085 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3086 {
3087 	int start = skb_headlen(skb);
3088 	struct sk_buff *frag_iter;
3089 	int i, copy;
3090 
3091 	if (offset > (int)skb->len - len)
3092 		goto fault;
3093 
3094 	if ((copy = start - offset) > 0) {
3095 		if (copy > len)
3096 			copy = len;
3097 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3098 		if ((len -= copy) == 0)
3099 			return 0;
3100 		offset += copy;
3101 		from += copy;
3102 	}
3103 
3104 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3105 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3106 		int end;
3107 
3108 		WARN_ON(start > offset + len);
3109 
3110 		end = start + skb_frag_size(frag);
3111 		if ((copy = end - offset) > 0) {
3112 			u32 p_off, p_len, copied;
3113 			struct page *p;
3114 			u8 *vaddr;
3115 
3116 			if (copy > len)
3117 				copy = len;
3118 
3119 			skb_frag_foreach_page(frag,
3120 					      skb_frag_off(frag) + offset - start,
3121 					      copy, p, p_off, p_len, copied) {
3122 				vaddr = kmap_atomic(p);
3123 				memcpy(vaddr + p_off, from + copied, p_len);
3124 				kunmap_atomic(vaddr);
3125 			}
3126 
3127 			if ((len -= copy) == 0)
3128 				return 0;
3129 			offset += copy;
3130 			from += copy;
3131 		}
3132 		start = end;
3133 	}
3134 
3135 	skb_walk_frags(skb, frag_iter) {
3136 		int end;
3137 
3138 		WARN_ON(start > offset + len);
3139 
3140 		end = start + frag_iter->len;
3141 		if ((copy = end - offset) > 0) {
3142 			if (copy > len)
3143 				copy = len;
3144 			if (skb_store_bits(frag_iter, offset - start,
3145 					   from, copy))
3146 				goto fault;
3147 			if ((len -= copy) == 0)
3148 				return 0;
3149 			offset += copy;
3150 			from += copy;
3151 		}
3152 		start = end;
3153 	}
3154 	if (!len)
3155 		return 0;
3156 
3157 fault:
3158 	return -EFAULT;
3159 }
3160 EXPORT_SYMBOL(skb_store_bits);
3161 
3162 /* Checksum skb data. */
3163 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3164 		      __wsum csum, const struct skb_checksum_ops *ops)
3165 {
3166 	int start = skb_headlen(skb);
3167 	int i, copy = start - offset;
3168 	struct sk_buff *frag_iter;
3169 	int pos = 0;
3170 
3171 	/* Checksum header. */
3172 	if (copy > 0) {
3173 		if (copy > len)
3174 			copy = len;
3175 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3176 				       skb->data + offset, copy, csum);
3177 		if ((len -= copy) == 0)
3178 			return csum;
3179 		offset += copy;
3180 		pos	= copy;
3181 	}
3182 
3183 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3184 		int end;
3185 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3186 
3187 		WARN_ON(start > offset + len);
3188 
3189 		end = start + skb_frag_size(frag);
3190 		if ((copy = end - offset) > 0) {
3191 			u32 p_off, p_len, copied;
3192 			struct page *p;
3193 			__wsum csum2;
3194 			u8 *vaddr;
3195 
3196 			if (copy > len)
3197 				copy = len;
3198 
3199 			skb_frag_foreach_page(frag,
3200 					      skb_frag_off(frag) + offset - start,
3201 					      copy, p, p_off, p_len, copied) {
3202 				vaddr = kmap_atomic(p);
3203 				csum2 = INDIRECT_CALL_1(ops->update,
3204 							csum_partial_ext,
3205 							vaddr + p_off, p_len, 0);
3206 				kunmap_atomic(vaddr);
3207 				csum = INDIRECT_CALL_1(ops->combine,
3208 						       csum_block_add_ext, csum,
3209 						       csum2, pos, p_len);
3210 				pos += p_len;
3211 			}
3212 
3213 			if (!(len -= copy))
3214 				return csum;
3215 			offset += copy;
3216 		}
3217 		start = end;
3218 	}
3219 
3220 	skb_walk_frags(skb, frag_iter) {
3221 		int end;
3222 
3223 		WARN_ON(start > offset + len);
3224 
3225 		end = start + frag_iter->len;
3226 		if ((copy = end - offset) > 0) {
3227 			__wsum csum2;
3228 			if (copy > len)
3229 				copy = len;
3230 			csum2 = __skb_checksum(frag_iter, offset - start,
3231 					       copy, 0, ops);
3232 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3233 					       csum, csum2, pos, copy);
3234 			if ((len -= copy) == 0)
3235 				return csum;
3236 			offset += copy;
3237 			pos    += copy;
3238 		}
3239 		start = end;
3240 	}
3241 	BUG_ON(len);
3242 
3243 	return csum;
3244 }
3245 EXPORT_SYMBOL(__skb_checksum);
3246 
3247 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3248 		    int len, __wsum csum)
3249 {
3250 	const struct skb_checksum_ops ops = {
3251 		.update  = csum_partial_ext,
3252 		.combine = csum_block_add_ext,
3253 	};
3254 
3255 	return __skb_checksum(skb, offset, len, csum, &ops);
3256 }
3257 EXPORT_SYMBOL(skb_checksum);
3258 
3259 /* Both of above in one bottle. */
3260 
3261 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3262 				    u8 *to, int len)
3263 {
3264 	int start = skb_headlen(skb);
3265 	int i, copy = start - offset;
3266 	struct sk_buff *frag_iter;
3267 	int pos = 0;
3268 	__wsum csum = 0;
3269 
3270 	/* Copy header. */
3271 	if (copy > 0) {
3272 		if (copy > len)
3273 			copy = len;
3274 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3275 						 copy);
3276 		if ((len -= copy) == 0)
3277 			return csum;
3278 		offset += copy;
3279 		to     += copy;
3280 		pos	= copy;
3281 	}
3282 
3283 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3284 		int end;
3285 
3286 		WARN_ON(start > offset + len);
3287 
3288 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3289 		if ((copy = end - offset) > 0) {
3290 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3291 			u32 p_off, p_len, copied;
3292 			struct page *p;
3293 			__wsum csum2;
3294 			u8 *vaddr;
3295 
3296 			if (copy > len)
3297 				copy = len;
3298 
3299 			skb_frag_foreach_page(frag,
3300 					      skb_frag_off(frag) + offset - start,
3301 					      copy, p, p_off, p_len, copied) {
3302 				vaddr = kmap_atomic(p);
3303 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3304 								  to + copied,
3305 								  p_len);
3306 				kunmap_atomic(vaddr);
3307 				csum = csum_block_add(csum, csum2, pos);
3308 				pos += p_len;
3309 			}
3310 
3311 			if (!(len -= copy))
3312 				return csum;
3313 			offset += copy;
3314 			to     += copy;
3315 		}
3316 		start = end;
3317 	}
3318 
3319 	skb_walk_frags(skb, frag_iter) {
3320 		__wsum csum2;
3321 		int end;
3322 
3323 		WARN_ON(start > offset + len);
3324 
3325 		end = start + frag_iter->len;
3326 		if ((copy = end - offset) > 0) {
3327 			if (copy > len)
3328 				copy = len;
3329 			csum2 = skb_copy_and_csum_bits(frag_iter,
3330 						       offset - start,
3331 						       to, copy);
3332 			csum = csum_block_add(csum, csum2, pos);
3333 			if ((len -= copy) == 0)
3334 				return csum;
3335 			offset += copy;
3336 			to     += copy;
3337 			pos    += copy;
3338 		}
3339 		start = end;
3340 	}
3341 	BUG_ON(len);
3342 	return csum;
3343 }
3344 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3345 
3346 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3347 {
3348 	__sum16 sum;
3349 
3350 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3351 	/* See comments in __skb_checksum_complete(). */
3352 	if (likely(!sum)) {
3353 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3354 		    !skb->csum_complete_sw)
3355 			netdev_rx_csum_fault(skb->dev, skb);
3356 	}
3357 	if (!skb_shared(skb))
3358 		skb->csum_valid = !sum;
3359 	return sum;
3360 }
3361 EXPORT_SYMBOL(__skb_checksum_complete_head);
3362 
3363 /* This function assumes skb->csum already holds pseudo header's checksum,
3364  * which has been changed from the hardware checksum, for example, by
3365  * __skb_checksum_validate_complete(). And, the original skb->csum must
3366  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3367  *
3368  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3369  * zero. The new checksum is stored back into skb->csum unless the skb is
3370  * shared.
3371  */
3372 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3373 {
3374 	__wsum csum;
3375 	__sum16 sum;
3376 
3377 	csum = skb_checksum(skb, 0, skb->len, 0);
3378 
3379 	sum = csum_fold(csum_add(skb->csum, csum));
3380 	/* This check is inverted, because we already knew the hardware
3381 	 * checksum is invalid before calling this function. So, if the
3382 	 * re-computed checksum is valid instead, then we have a mismatch
3383 	 * between the original skb->csum and skb_checksum(). This means either
3384 	 * the original hardware checksum is incorrect or we screw up skb->csum
3385 	 * when moving skb->data around.
3386 	 */
3387 	if (likely(!sum)) {
3388 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3389 		    !skb->csum_complete_sw)
3390 			netdev_rx_csum_fault(skb->dev, skb);
3391 	}
3392 
3393 	if (!skb_shared(skb)) {
3394 		/* Save full packet checksum */
3395 		skb->csum = csum;
3396 		skb->ip_summed = CHECKSUM_COMPLETE;
3397 		skb->csum_complete_sw = 1;
3398 		skb->csum_valid = !sum;
3399 	}
3400 
3401 	return sum;
3402 }
3403 EXPORT_SYMBOL(__skb_checksum_complete);
3404 
3405 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3406 {
3407 	net_warn_ratelimited(
3408 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3409 		__func__);
3410 	return 0;
3411 }
3412 
3413 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3414 				       int offset, int len)
3415 {
3416 	net_warn_ratelimited(
3417 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3418 		__func__);
3419 	return 0;
3420 }
3421 
3422 static const struct skb_checksum_ops default_crc32c_ops = {
3423 	.update  = warn_crc32c_csum_update,
3424 	.combine = warn_crc32c_csum_combine,
3425 };
3426 
3427 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3428 	&default_crc32c_ops;
3429 EXPORT_SYMBOL(crc32c_csum_stub);
3430 
3431  /**
3432  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3433  *	@from: source buffer
3434  *
3435  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3436  *	into skb_zerocopy().
3437  */
3438 unsigned int
3439 skb_zerocopy_headlen(const struct sk_buff *from)
3440 {
3441 	unsigned int hlen = 0;
3442 
3443 	if (!from->head_frag ||
3444 	    skb_headlen(from) < L1_CACHE_BYTES ||
3445 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3446 		hlen = skb_headlen(from);
3447 		if (!hlen)
3448 			hlen = from->len;
3449 	}
3450 
3451 	if (skb_has_frag_list(from))
3452 		hlen = from->len;
3453 
3454 	return hlen;
3455 }
3456 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3457 
3458 /**
3459  *	skb_zerocopy - Zero copy skb to skb
3460  *	@to: destination buffer
3461  *	@from: source buffer
3462  *	@len: number of bytes to copy from source buffer
3463  *	@hlen: size of linear headroom in destination buffer
3464  *
3465  *	Copies up to `len` bytes from `from` to `to` by creating references
3466  *	to the frags in the source buffer.
3467  *
3468  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3469  *	headroom in the `to` buffer.
3470  *
3471  *	Return value:
3472  *	0: everything is OK
3473  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3474  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3475  */
3476 int
3477 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3478 {
3479 	int i, j = 0;
3480 	int plen = 0; /* length of skb->head fragment */
3481 	int ret;
3482 	struct page *page;
3483 	unsigned int offset;
3484 
3485 	BUG_ON(!from->head_frag && !hlen);
3486 
3487 	/* dont bother with small payloads */
3488 	if (len <= skb_tailroom(to))
3489 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3490 
3491 	if (hlen) {
3492 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3493 		if (unlikely(ret))
3494 			return ret;
3495 		len -= hlen;
3496 	} else {
3497 		plen = min_t(int, skb_headlen(from), len);
3498 		if (plen) {
3499 			page = virt_to_head_page(from->head);
3500 			offset = from->data - (unsigned char *)page_address(page);
3501 			__skb_fill_page_desc(to, 0, page, offset, plen);
3502 			get_page(page);
3503 			j = 1;
3504 			len -= plen;
3505 		}
3506 	}
3507 
3508 	skb_len_add(to, len + plen);
3509 
3510 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3511 		skb_tx_error(from);
3512 		return -ENOMEM;
3513 	}
3514 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3515 
3516 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3517 		int size;
3518 
3519 		if (!len)
3520 			break;
3521 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3522 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3523 					len);
3524 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3525 		len -= size;
3526 		skb_frag_ref(to, j);
3527 		j++;
3528 	}
3529 	skb_shinfo(to)->nr_frags = j;
3530 
3531 	return 0;
3532 }
3533 EXPORT_SYMBOL_GPL(skb_zerocopy);
3534 
3535 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3536 {
3537 	__wsum csum;
3538 	long csstart;
3539 
3540 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3541 		csstart = skb_checksum_start_offset(skb);
3542 	else
3543 		csstart = skb_headlen(skb);
3544 
3545 	BUG_ON(csstart > skb_headlen(skb));
3546 
3547 	skb_copy_from_linear_data(skb, to, csstart);
3548 
3549 	csum = 0;
3550 	if (csstart != skb->len)
3551 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3552 					      skb->len - csstart);
3553 
3554 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3555 		long csstuff = csstart + skb->csum_offset;
3556 
3557 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3558 	}
3559 }
3560 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3561 
3562 /**
3563  *	skb_dequeue - remove from the head of the queue
3564  *	@list: list to dequeue from
3565  *
3566  *	Remove the head of the list. The list lock is taken so the function
3567  *	may be used safely with other locking list functions. The head item is
3568  *	returned or %NULL if the list is empty.
3569  */
3570 
3571 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3572 {
3573 	unsigned long flags;
3574 	struct sk_buff *result;
3575 
3576 	spin_lock_irqsave(&list->lock, flags);
3577 	result = __skb_dequeue(list);
3578 	spin_unlock_irqrestore(&list->lock, flags);
3579 	return result;
3580 }
3581 EXPORT_SYMBOL(skb_dequeue);
3582 
3583 /**
3584  *	skb_dequeue_tail - remove from the tail of the queue
3585  *	@list: list to dequeue from
3586  *
3587  *	Remove the tail of the list. The list lock is taken so the function
3588  *	may be used safely with other locking list functions. The tail item is
3589  *	returned or %NULL if the list is empty.
3590  */
3591 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3592 {
3593 	unsigned long flags;
3594 	struct sk_buff *result;
3595 
3596 	spin_lock_irqsave(&list->lock, flags);
3597 	result = __skb_dequeue_tail(list);
3598 	spin_unlock_irqrestore(&list->lock, flags);
3599 	return result;
3600 }
3601 EXPORT_SYMBOL(skb_dequeue_tail);
3602 
3603 /**
3604  *	skb_queue_purge - empty a list
3605  *	@list: list to empty
3606  *
3607  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3608  *	the list and one reference dropped. This function takes the list
3609  *	lock and is atomic with respect to other list locking functions.
3610  */
3611 void skb_queue_purge(struct sk_buff_head *list)
3612 {
3613 	struct sk_buff *skb;
3614 	while ((skb = skb_dequeue(list)) != NULL)
3615 		kfree_skb(skb);
3616 }
3617 EXPORT_SYMBOL(skb_queue_purge);
3618 
3619 /**
3620  *	skb_rbtree_purge - empty a skb rbtree
3621  *	@root: root of the rbtree to empty
3622  *	Return value: the sum of truesizes of all purged skbs.
3623  *
3624  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3625  *	the list and one reference dropped. This function does not take
3626  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3627  *	out-of-order queue is protected by the socket lock).
3628  */
3629 unsigned int skb_rbtree_purge(struct rb_root *root)
3630 {
3631 	struct rb_node *p = rb_first(root);
3632 	unsigned int sum = 0;
3633 
3634 	while (p) {
3635 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3636 
3637 		p = rb_next(p);
3638 		rb_erase(&skb->rbnode, root);
3639 		sum += skb->truesize;
3640 		kfree_skb(skb);
3641 	}
3642 	return sum;
3643 }
3644 
3645 /**
3646  *	skb_queue_head - queue a buffer at the list head
3647  *	@list: list to use
3648  *	@newsk: buffer to queue
3649  *
3650  *	Queue a buffer at the start of the list. This function takes the
3651  *	list lock and can be used safely with other locking &sk_buff functions
3652  *	safely.
3653  *
3654  *	A buffer cannot be placed on two lists at the same time.
3655  */
3656 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3657 {
3658 	unsigned long flags;
3659 
3660 	spin_lock_irqsave(&list->lock, flags);
3661 	__skb_queue_head(list, newsk);
3662 	spin_unlock_irqrestore(&list->lock, flags);
3663 }
3664 EXPORT_SYMBOL(skb_queue_head);
3665 
3666 /**
3667  *	skb_queue_tail - queue a buffer at the list tail
3668  *	@list: list to use
3669  *	@newsk: buffer to queue
3670  *
3671  *	Queue a buffer at the tail of the list. This function takes the
3672  *	list lock and can be used safely with other locking &sk_buff functions
3673  *	safely.
3674  *
3675  *	A buffer cannot be placed on two lists at the same time.
3676  */
3677 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3678 {
3679 	unsigned long flags;
3680 
3681 	spin_lock_irqsave(&list->lock, flags);
3682 	__skb_queue_tail(list, newsk);
3683 	spin_unlock_irqrestore(&list->lock, flags);
3684 }
3685 EXPORT_SYMBOL(skb_queue_tail);
3686 
3687 /**
3688  *	skb_unlink	-	remove a buffer from a list
3689  *	@skb: buffer to remove
3690  *	@list: list to use
3691  *
3692  *	Remove a packet from a list. The list locks are taken and this
3693  *	function is atomic with respect to other list locked calls
3694  *
3695  *	You must know what list the SKB is on.
3696  */
3697 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3698 {
3699 	unsigned long flags;
3700 
3701 	spin_lock_irqsave(&list->lock, flags);
3702 	__skb_unlink(skb, list);
3703 	spin_unlock_irqrestore(&list->lock, flags);
3704 }
3705 EXPORT_SYMBOL(skb_unlink);
3706 
3707 /**
3708  *	skb_append	-	append a buffer
3709  *	@old: buffer to insert after
3710  *	@newsk: buffer to insert
3711  *	@list: list to use
3712  *
3713  *	Place a packet after a given packet in a list. The list locks are taken
3714  *	and this function is atomic with respect to other list locked calls.
3715  *	A buffer cannot be placed on two lists at the same time.
3716  */
3717 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3718 {
3719 	unsigned long flags;
3720 
3721 	spin_lock_irqsave(&list->lock, flags);
3722 	__skb_queue_after(list, old, newsk);
3723 	spin_unlock_irqrestore(&list->lock, flags);
3724 }
3725 EXPORT_SYMBOL(skb_append);
3726 
3727 static inline void skb_split_inside_header(struct sk_buff *skb,
3728 					   struct sk_buff* skb1,
3729 					   const u32 len, const int pos)
3730 {
3731 	int i;
3732 
3733 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3734 					 pos - len);
3735 	/* And move data appendix as is. */
3736 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3737 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3738 
3739 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3740 	skb_shinfo(skb)->nr_frags  = 0;
3741 	skb1->data_len		   = skb->data_len;
3742 	skb1->len		   += skb1->data_len;
3743 	skb->data_len		   = 0;
3744 	skb->len		   = len;
3745 	skb_set_tail_pointer(skb, len);
3746 }
3747 
3748 static inline void skb_split_no_header(struct sk_buff *skb,
3749 				       struct sk_buff* skb1,
3750 				       const u32 len, int pos)
3751 {
3752 	int i, k = 0;
3753 	const int nfrags = skb_shinfo(skb)->nr_frags;
3754 
3755 	skb_shinfo(skb)->nr_frags = 0;
3756 	skb1->len		  = skb1->data_len = skb->len - len;
3757 	skb->len		  = len;
3758 	skb->data_len		  = len - pos;
3759 
3760 	for (i = 0; i < nfrags; i++) {
3761 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3762 
3763 		if (pos + size > len) {
3764 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3765 
3766 			if (pos < len) {
3767 				/* Split frag.
3768 				 * We have two variants in this case:
3769 				 * 1. Move all the frag to the second
3770 				 *    part, if it is possible. F.e.
3771 				 *    this approach is mandatory for TUX,
3772 				 *    where splitting is expensive.
3773 				 * 2. Split is accurately. We make this.
3774 				 */
3775 				skb_frag_ref(skb, i);
3776 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3777 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3778 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3779 				skb_shinfo(skb)->nr_frags++;
3780 			}
3781 			k++;
3782 		} else
3783 			skb_shinfo(skb)->nr_frags++;
3784 		pos += size;
3785 	}
3786 	skb_shinfo(skb1)->nr_frags = k;
3787 }
3788 
3789 /**
3790  * skb_split - Split fragmented skb to two parts at length len.
3791  * @skb: the buffer to split
3792  * @skb1: the buffer to receive the second part
3793  * @len: new length for skb
3794  */
3795 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3796 {
3797 	int pos = skb_headlen(skb);
3798 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3799 
3800 	skb_zcopy_downgrade_managed(skb);
3801 
3802 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3803 	skb_zerocopy_clone(skb1, skb, 0);
3804 	if (len < pos)	/* Split line is inside header. */
3805 		skb_split_inside_header(skb, skb1, len, pos);
3806 	else		/* Second chunk has no header, nothing to copy. */
3807 		skb_split_no_header(skb, skb1, len, pos);
3808 }
3809 EXPORT_SYMBOL(skb_split);
3810 
3811 /* Shifting from/to a cloned skb is a no-go.
3812  *
3813  * Caller cannot keep skb_shinfo related pointers past calling here!
3814  */
3815 static int skb_prepare_for_shift(struct sk_buff *skb)
3816 {
3817 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3818 }
3819 
3820 /**
3821  * skb_shift - Shifts paged data partially from skb to another
3822  * @tgt: buffer into which tail data gets added
3823  * @skb: buffer from which the paged data comes from
3824  * @shiftlen: shift up to this many bytes
3825  *
3826  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3827  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3828  * It's up to caller to free skb if everything was shifted.
3829  *
3830  * If @tgt runs out of frags, the whole operation is aborted.
3831  *
3832  * Skb cannot include anything else but paged data while tgt is allowed
3833  * to have non-paged data as well.
3834  *
3835  * TODO: full sized shift could be optimized but that would need
3836  * specialized skb free'er to handle frags without up-to-date nr_frags.
3837  */
3838 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3839 {
3840 	int from, to, merge, todo;
3841 	skb_frag_t *fragfrom, *fragto;
3842 
3843 	BUG_ON(shiftlen > skb->len);
3844 
3845 	if (skb_headlen(skb))
3846 		return 0;
3847 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3848 		return 0;
3849 
3850 	todo = shiftlen;
3851 	from = 0;
3852 	to = skb_shinfo(tgt)->nr_frags;
3853 	fragfrom = &skb_shinfo(skb)->frags[from];
3854 
3855 	/* Actual merge is delayed until the point when we know we can
3856 	 * commit all, so that we don't have to undo partial changes
3857 	 */
3858 	if (!to ||
3859 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3860 			      skb_frag_off(fragfrom))) {
3861 		merge = -1;
3862 	} else {
3863 		merge = to - 1;
3864 
3865 		todo -= skb_frag_size(fragfrom);
3866 		if (todo < 0) {
3867 			if (skb_prepare_for_shift(skb) ||
3868 			    skb_prepare_for_shift(tgt))
3869 				return 0;
3870 
3871 			/* All previous frag pointers might be stale! */
3872 			fragfrom = &skb_shinfo(skb)->frags[from];
3873 			fragto = &skb_shinfo(tgt)->frags[merge];
3874 
3875 			skb_frag_size_add(fragto, shiftlen);
3876 			skb_frag_size_sub(fragfrom, shiftlen);
3877 			skb_frag_off_add(fragfrom, shiftlen);
3878 
3879 			goto onlymerged;
3880 		}
3881 
3882 		from++;
3883 	}
3884 
3885 	/* Skip full, not-fitting skb to avoid expensive operations */
3886 	if ((shiftlen == skb->len) &&
3887 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3888 		return 0;
3889 
3890 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3891 		return 0;
3892 
3893 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3894 		if (to == MAX_SKB_FRAGS)
3895 			return 0;
3896 
3897 		fragfrom = &skb_shinfo(skb)->frags[from];
3898 		fragto = &skb_shinfo(tgt)->frags[to];
3899 
3900 		if (todo >= skb_frag_size(fragfrom)) {
3901 			*fragto = *fragfrom;
3902 			todo -= skb_frag_size(fragfrom);
3903 			from++;
3904 			to++;
3905 
3906 		} else {
3907 			__skb_frag_ref(fragfrom);
3908 			skb_frag_page_copy(fragto, fragfrom);
3909 			skb_frag_off_copy(fragto, fragfrom);
3910 			skb_frag_size_set(fragto, todo);
3911 
3912 			skb_frag_off_add(fragfrom, todo);
3913 			skb_frag_size_sub(fragfrom, todo);
3914 			todo = 0;
3915 
3916 			to++;
3917 			break;
3918 		}
3919 	}
3920 
3921 	/* Ready to "commit" this state change to tgt */
3922 	skb_shinfo(tgt)->nr_frags = to;
3923 
3924 	if (merge >= 0) {
3925 		fragfrom = &skb_shinfo(skb)->frags[0];
3926 		fragto = &skb_shinfo(tgt)->frags[merge];
3927 
3928 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3929 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3930 	}
3931 
3932 	/* Reposition in the original skb */
3933 	to = 0;
3934 	while (from < skb_shinfo(skb)->nr_frags)
3935 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3936 	skb_shinfo(skb)->nr_frags = to;
3937 
3938 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3939 
3940 onlymerged:
3941 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3942 	 * the other hand might need it if it needs to be resent
3943 	 */
3944 	tgt->ip_summed = CHECKSUM_PARTIAL;
3945 	skb->ip_summed = CHECKSUM_PARTIAL;
3946 
3947 	skb_len_add(skb, -shiftlen);
3948 	skb_len_add(tgt, shiftlen);
3949 
3950 	return shiftlen;
3951 }
3952 
3953 /**
3954  * skb_prepare_seq_read - Prepare a sequential read of skb data
3955  * @skb: the buffer to read
3956  * @from: lower offset of data to be read
3957  * @to: upper offset of data to be read
3958  * @st: state variable
3959  *
3960  * Initializes the specified state variable. Must be called before
3961  * invoking skb_seq_read() for the first time.
3962  */
3963 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3964 			  unsigned int to, struct skb_seq_state *st)
3965 {
3966 	st->lower_offset = from;
3967 	st->upper_offset = to;
3968 	st->root_skb = st->cur_skb = skb;
3969 	st->frag_idx = st->stepped_offset = 0;
3970 	st->frag_data = NULL;
3971 	st->frag_off = 0;
3972 }
3973 EXPORT_SYMBOL(skb_prepare_seq_read);
3974 
3975 /**
3976  * skb_seq_read - Sequentially read skb data
3977  * @consumed: number of bytes consumed by the caller so far
3978  * @data: destination pointer for data to be returned
3979  * @st: state variable
3980  *
3981  * Reads a block of skb data at @consumed relative to the
3982  * lower offset specified to skb_prepare_seq_read(). Assigns
3983  * the head of the data block to @data and returns the length
3984  * of the block or 0 if the end of the skb data or the upper
3985  * offset has been reached.
3986  *
3987  * The caller is not required to consume all of the data
3988  * returned, i.e. @consumed is typically set to the number
3989  * of bytes already consumed and the next call to
3990  * skb_seq_read() will return the remaining part of the block.
3991  *
3992  * Note 1: The size of each block of data returned can be arbitrary,
3993  *       this limitation is the cost for zerocopy sequential
3994  *       reads of potentially non linear data.
3995  *
3996  * Note 2: Fragment lists within fragments are not implemented
3997  *       at the moment, state->root_skb could be replaced with
3998  *       a stack for this purpose.
3999  */
4000 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4001 			  struct skb_seq_state *st)
4002 {
4003 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4004 	skb_frag_t *frag;
4005 
4006 	if (unlikely(abs_offset >= st->upper_offset)) {
4007 		if (st->frag_data) {
4008 			kunmap_atomic(st->frag_data);
4009 			st->frag_data = NULL;
4010 		}
4011 		return 0;
4012 	}
4013 
4014 next_skb:
4015 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4016 
4017 	if (abs_offset < block_limit && !st->frag_data) {
4018 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4019 		return block_limit - abs_offset;
4020 	}
4021 
4022 	if (st->frag_idx == 0 && !st->frag_data)
4023 		st->stepped_offset += skb_headlen(st->cur_skb);
4024 
4025 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4026 		unsigned int pg_idx, pg_off, pg_sz;
4027 
4028 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4029 
4030 		pg_idx = 0;
4031 		pg_off = skb_frag_off(frag);
4032 		pg_sz = skb_frag_size(frag);
4033 
4034 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4035 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4036 			pg_off = offset_in_page(pg_off + st->frag_off);
4037 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4038 						    PAGE_SIZE - pg_off);
4039 		}
4040 
4041 		block_limit = pg_sz + st->stepped_offset;
4042 		if (abs_offset < block_limit) {
4043 			if (!st->frag_data)
4044 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4045 
4046 			*data = (u8 *)st->frag_data + pg_off +
4047 				(abs_offset - st->stepped_offset);
4048 
4049 			return block_limit - abs_offset;
4050 		}
4051 
4052 		if (st->frag_data) {
4053 			kunmap_atomic(st->frag_data);
4054 			st->frag_data = NULL;
4055 		}
4056 
4057 		st->stepped_offset += pg_sz;
4058 		st->frag_off += pg_sz;
4059 		if (st->frag_off == skb_frag_size(frag)) {
4060 			st->frag_off = 0;
4061 			st->frag_idx++;
4062 		}
4063 	}
4064 
4065 	if (st->frag_data) {
4066 		kunmap_atomic(st->frag_data);
4067 		st->frag_data = NULL;
4068 	}
4069 
4070 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4071 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4072 		st->frag_idx = 0;
4073 		goto next_skb;
4074 	} else if (st->cur_skb->next) {
4075 		st->cur_skb = st->cur_skb->next;
4076 		st->frag_idx = 0;
4077 		goto next_skb;
4078 	}
4079 
4080 	return 0;
4081 }
4082 EXPORT_SYMBOL(skb_seq_read);
4083 
4084 /**
4085  * skb_abort_seq_read - Abort a sequential read of skb data
4086  * @st: state variable
4087  *
4088  * Must be called if skb_seq_read() was not called until it
4089  * returned 0.
4090  */
4091 void skb_abort_seq_read(struct skb_seq_state *st)
4092 {
4093 	if (st->frag_data)
4094 		kunmap_atomic(st->frag_data);
4095 }
4096 EXPORT_SYMBOL(skb_abort_seq_read);
4097 
4098 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4099 
4100 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4101 					  struct ts_config *conf,
4102 					  struct ts_state *state)
4103 {
4104 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4105 }
4106 
4107 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4108 {
4109 	skb_abort_seq_read(TS_SKB_CB(state));
4110 }
4111 
4112 /**
4113  * skb_find_text - Find a text pattern in skb data
4114  * @skb: the buffer to look in
4115  * @from: search offset
4116  * @to: search limit
4117  * @config: textsearch configuration
4118  *
4119  * Finds a pattern in the skb data according to the specified
4120  * textsearch configuration. Use textsearch_next() to retrieve
4121  * subsequent occurrences of the pattern. Returns the offset
4122  * to the first occurrence or UINT_MAX if no match was found.
4123  */
4124 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4125 			   unsigned int to, struct ts_config *config)
4126 {
4127 	struct ts_state state;
4128 	unsigned int ret;
4129 
4130 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4131 
4132 	config->get_next_block = skb_ts_get_next_block;
4133 	config->finish = skb_ts_finish;
4134 
4135 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4136 
4137 	ret = textsearch_find(config, &state);
4138 	return (ret <= to - from ? ret : UINT_MAX);
4139 }
4140 EXPORT_SYMBOL(skb_find_text);
4141 
4142 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4143 			 int offset, size_t size)
4144 {
4145 	int i = skb_shinfo(skb)->nr_frags;
4146 
4147 	if (skb_can_coalesce(skb, i, page, offset)) {
4148 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4149 	} else if (i < MAX_SKB_FRAGS) {
4150 		skb_zcopy_downgrade_managed(skb);
4151 		get_page(page);
4152 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4153 	} else {
4154 		return -EMSGSIZE;
4155 	}
4156 
4157 	return 0;
4158 }
4159 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4160 
4161 /**
4162  *	skb_pull_rcsum - pull skb and update receive checksum
4163  *	@skb: buffer to update
4164  *	@len: length of data pulled
4165  *
4166  *	This function performs an skb_pull on the packet and updates
4167  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4168  *	receive path processing instead of skb_pull unless you know
4169  *	that the checksum difference is zero (e.g., a valid IP header)
4170  *	or you are setting ip_summed to CHECKSUM_NONE.
4171  */
4172 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4173 {
4174 	unsigned char *data = skb->data;
4175 
4176 	BUG_ON(len > skb->len);
4177 	__skb_pull(skb, len);
4178 	skb_postpull_rcsum(skb, data, len);
4179 	return skb->data;
4180 }
4181 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4182 
4183 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4184 {
4185 	skb_frag_t head_frag;
4186 	struct page *page;
4187 
4188 	page = virt_to_head_page(frag_skb->head);
4189 	__skb_frag_set_page(&head_frag, page);
4190 	skb_frag_off_set(&head_frag, frag_skb->data -
4191 			 (unsigned char *)page_address(page));
4192 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
4193 	return head_frag;
4194 }
4195 
4196 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4197 				 netdev_features_t features,
4198 				 unsigned int offset)
4199 {
4200 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4201 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4202 	unsigned int delta_truesize = 0;
4203 	unsigned int delta_len = 0;
4204 	struct sk_buff *tail = NULL;
4205 	struct sk_buff *nskb, *tmp;
4206 	int len_diff, err;
4207 
4208 	skb_push(skb, -skb_network_offset(skb) + offset);
4209 
4210 	skb_shinfo(skb)->frag_list = NULL;
4211 
4212 	while (list_skb) {
4213 		nskb = list_skb;
4214 		list_skb = list_skb->next;
4215 
4216 		err = 0;
4217 		delta_truesize += nskb->truesize;
4218 		if (skb_shared(nskb)) {
4219 			tmp = skb_clone(nskb, GFP_ATOMIC);
4220 			if (tmp) {
4221 				consume_skb(nskb);
4222 				nskb = tmp;
4223 				err = skb_unclone(nskb, GFP_ATOMIC);
4224 			} else {
4225 				err = -ENOMEM;
4226 			}
4227 		}
4228 
4229 		if (!tail)
4230 			skb->next = nskb;
4231 		else
4232 			tail->next = nskb;
4233 
4234 		if (unlikely(err)) {
4235 			nskb->next = list_skb;
4236 			goto err_linearize;
4237 		}
4238 
4239 		tail = nskb;
4240 
4241 		delta_len += nskb->len;
4242 
4243 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4244 
4245 		skb_release_head_state(nskb);
4246 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4247 		__copy_skb_header(nskb, skb);
4248 
4249 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4250 		nskb->transport_header += len_diff;
4251 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4252 						 nskb->data - tnl_hlen,
4253 						 offset + tnl_hlen);
4254 
4255 		if (skb_needs_linearize(nskb, features) &&
4256 		    __skb_linearize(nskb))
4257 			goto err_linearize;
4258 	}
4259 
4260 	skb->truesize = skb->truesize - delta_truesize;
4261 	skb->data_len = skb->data_len - delta_len;
4262 	skb->len = skb->len - delta_len;
4263 
4264 	skb_gso_reset(skb);
4265 
4266 	skb->prev = tail;
4267 
4268 	if (skb_needs_linearize(skb, features) &&
4269 	    __skb_linearize(skb))
4270 		goto err_linearize;
4271 
4272 	skb_get(skb);
4273 
4274 	return skb;
4275 
4276 err_linearize:
4277 	kfree_skb_list(skb->next);
4278 	skb->next = NULL;
4279 	return ERR_PTR(-ENOMEM);
4280 }
4281 EXPORT_SYMBOL_GPL(skb_segment_list);
4282 
4283 /**
4284  *	skb_segment - Perform protocol segmentation on skb.
4285  *	@head_skb: buffer to segment
4286  *	@features: features for the output path (see dev->features)
4287  *
4288  *	This function performs segmentation on the given skb.  It returns
4289  *	a pointer to the first in a list of new skbs for the segments.
4290  *	In case of error it returns ERR_PTR(err).
4291  */
4292 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4293 			    netdev_features_t features)
4294 {
4295 	struct sk_buff *segs = NULL;
4296 	struct sk_buff *tail = NULL;
4297 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4298 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
4299 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4300 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4301 	struct sk_buff *frag_skb = head_skb;
4302 	unsigned int offset = doffset;
4303 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4304 	unsigned int partial_segs = 0;
4305 	unsigned int headroom;
4306 	unsigned int len = head_skb->len;
4307 	__be16 proto;
4308 	bool csum, sg;
4309 	int nfrags = skb_shinfo(head_skb)->nr_frags;
4310 	int err = -ENOMEM;
4311 	int i = 0;
4312 	int pos;
4313 
4314 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4315 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4316 		struct sk_buff *check_skb;
4317 
4318 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4319 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4320 				/* gso_size is untrusted, and we have a frag_list with
4321 				 * a linear non head_frag item.
4322 				 *
4323 				 * If head_skb's headlen does not fit requested gso_size,
4324 				 * it means that the frag_list members do NOT terminate
4325 				 * on exact gso_size boundaries. Hence we cannot perform
4326 				 * skb_frag_t page sharing. Therefore we must fallback to
4327 				 * copying the frag_list skbs; we do so by disabling SG.
4328 				 */
4329 				features &= ~NETIF_F_SG;
4330 				break;
4331 			}
4332 		}
4333 	}
4334 
4335 	__skb_push(head_skb, doffset);
4336 	proto = skb_network_protocol(head_skb, NULL);
4337 	if (unlikely(!proto))
4338 		return ERR_PTR(-EINVAL);
4339 
4340 	sg = !!(features & NETIF_F_SG);
4341 	csum = !!can_checksum_protocol(features, proto);
4342 
4343 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4344 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4345 			struct sk_buff *iter;
4346 			unsigned int frag_len;
4347 
4348 			if (!list_skb ||
4349 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4350 				goto normal;
4351 
4352 			/* If we get here then all the required
4353 			 * GSO features except frag_list are supported.
4354 			 * Try to split the SKB to multiple GSO SKBs
4355 			 * with no frag_list.
4356 			 * Currently we can do that only when the buffers don't
4357 			 * have a linear part and all the buffers except
4358 			 * the last are of the same length.
4359 			 */
4360 			frag_len = list_skb->len;
4361 			skb_walk_frags(head_skb, iter) {
4362 				if (frag_len != iter->len && iter->next)
4363 					goto normal;
4364 				if (skb_headlen(iter) && !iter->head_frag)
4365 					goto normal;
4366 
4367 				len -= iter->len;
4368 			}
4369 
4370 			if (len != frag_len)
4371 				goto normal;
4372 		}
4373 
4374 		/* GSO partial only requires that we trim off any excess that
4375 		 * doesn't fit into an MSS sized block, so take care of that
4376 		 * now.
4377 		 */
4378 		partial_segs = len / mss;
4379 		if (partial_segs > 1)
4380 			mss *= partial_segs;
4381 		else
4382 			partial_segs = 0;
4383 	}
4384 
4385 normal:
4386 	headroom = skb_headroom(head_skb);
4387 	pos = skb_headlen(head_skb);
4388 
4389 	do {
4390 		struct sk_buff *nskb;
4391 		skb_frag_t *nskb_frag;
4392 		int hsize;
4393 		int size;
4394 
4395 		if (unlikely(mss == GSO_BY_FRAGS)) {
4396 			len = list_skb->len;
4397 		} else {
4398 			len = head_skb->len - offset;
4399 			if (len > mss)
4400 				len = mss;
4401 		}
4402 
4403 		hsize = skb_headlen(head_skb) - offset;
4404 
4405 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4406 		    (skb_headlen(list_skb) == len || sg)) {
4407 			BUG_ON(skb_headlen(list_skb) > len);
4408 
4409 			i = 0;
4410 			nfrags = skb_shinfo(list_skb)->nr_frags;
4411 			frag = skb_shinfo(list_skb)->frags;
4412 			frag_skb = list_skb;
4413 			pos += skb_headlen(list_skb);
4414 
4415 			while (pos < offset + len) {
4416 				BUG_ON(i >= nfrags);
4417 
4418 				size = skb_frag_size(frag);
4419 				if (pos + size > offset + len)
4420 					break;
4421 
4422 				i++;
4423 				pos += size;
4424 				frag++;
4425 			}
4426 
4427 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4428 			list_skb = list_skb->next;
4429 
4430 			if (unlikely(!nskb))
4431 				goto err;
4432 
4433 			if (unlikely(pskb_trim(nskb, len))) {
4434 				kfree_skb(nskb);
4435 				goto err;
4436 			}
4437 
4438 			hsize = skb_end_offset(nskb);
4439 			if (skb_cow_head(nskb, doffset + headroom)) {
4440 				kfree_skb(nskb);
4441 				goto err;
4442 			}
4443 
4444 			nskb->truesize += skb_end_offset(nskb) - hsize;
4445 			skb_release_head_state(nskb);
4446 			__skb_push(nskb, doffset);
4447 		} else {
4448 			if (hsize < 0)
4449 				hsize = 0;
4450 			if (hsize > len || !sg)
4451 				hsize = len;
4452 
4453 			nskb = __alloc_skb(hsize + doffset + headroom,
4454 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4455 					   NUMA_NO_NODE);
4456 
4457 			if (unlikely(!nskb))
4458 				goto err;
4459 
4460 			skb_reserve(nskb, headroom);
4461 			__skb_put(nskb, doffset);
4462 		}
4463 
4464 		if (segs)
4465 			tail->next = nskb;
4466 		else
4467 			segs = nskb;
4468 		tail = nskb;
4469 
4470 		__copy_skb_header(nskb, head_skb);
4471 
4472 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4473 		skb_reset_mac_len(nskb);
4474 
4475 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4476 						 nskb->data - tnl_hlen,
4477 						 doffset + tnl_hlen);
4478 
4479 		if (nskb->len == len + doffset)
4480 			goto perform_csum_check;
4481 
4482 		if (!sg) {
4483 			if (!csum) {
4484 				if (!nskb->remcsum_offload)
4485 					nskb->ip_summed = CHECKSUM_NONE;
4486 				SKB_GSO_CB(nskb)->csum =
4487 					skb_copy_and_csum_bits(head_skb, offset,
4488 							       skb_put(nskb,
4489 								       len),
4490 							       len);
4491 				SKB_GSO_CB(nskb)->csum_start =
4492 					skb_headroom(nskb) + doffset;
4493 			} else {
4494 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4495 					goto err;
4496 			}
4497 			continue;
4498 		}
4499 
4500 		nskb_frag = skb_shinfo(nskb)->frags;
4501 
4502 		skb_copy_from_linear_data_offset(head_skb, offset,
4503 						 skb_put(nskb, hsize), hsize);
4504 
4505 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4506 					   SKBFL_SHARED_FRAG;
4507 
4508 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4509 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4510 			goto err;
4511 
4512 		while (pos < offset + len) {
4513 			if (i >= nfrags) {
4514 				i = 0;
4515 				nfrags = skb_shinfo(list_skb)->nr_frags;
4516 				frag = skb_shinfo(list_skb)->frags;
4517 				frag_skb = list_skb;
4518 				if (!skb_headlen(list_skb)) {
4519 					BUG_ON(!nfrags);
4520 				} else {
4521 					BUG_ON(!list_skb->head_frag);
4522 
4523 					/* to make room for head_frag. */
4524 					i--;
4525 					frag--;
4526 				}
4527 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4528 				    skb_zerocopy_clone(nskb, frag_skb,
4529 						       GFP_ATOMIC))
4530 					goto err;
4531 
4532 				list_skb = list_skb->next;
4533 			}
4534 
4535 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4536 				     MAX_SKB_FRAGS)) {
4537 				net_warn_ratelimited(
4538 					"skb_segment: too many frags: %u %u\n",
4539 					pos, mss);
4540 				err = -EINVAL;
4541 				goto err;
4542 			}
4543 
4544 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4545 			__skb_frag_ref(nskb_frag);
4546 			size = skb_frag_size(nskb_frag);
4547 
4548 			if (pos < offset) {
4549 				skb_frag_off_add(nskb_frag, offset - pos);
4550 				skb_frag_size_sub(nskb_frag, offset - pos);
4551 			}
4552 
4553 			skb_shinfo(nskb)->nr_frags++;
4554 
4555 			if (pos + size <= offset + len) {
4556 				i++;
4557 				frag++;
4558 				pos += size;
4559 			} else {
4560 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4561 				goto skip_fraglist;
4562 			}
4563 
4564 			nskb_frag++;
4565 		}
4566 
4567 skip_fraglist:
4568 		nskb->data_len = len - hsize;
4569 		nskb->len += nskb->data_len;
4570 		nskb->truesize += nskb->data_len;
4571 
4572 perform_csum_check:
4573 		if (!csum) {
4574 			if (skb_has_shared_frag(nskb) &&
4575 			    __skb_linearize(nskb))
4576 				goto err;
4577 
4578 			if (!nskb->remcsum_offload)
4579 				nskb->ip_summed = CHECKSUM_NONE;
4580 			SKB_GSO_CB(nskb)->csum =
4581 				skb_checksum(nskb, doffset,
4582 					     nskb->len - doffset, 0);
4583 			SKB_GSO_CB(nskb)->csum_start =
4584 				skb_headroom(nskb) + doffset;
4585 		}
4586 	} while ((offset += len) < head_skb->len);
4587 
4588 	/* Some callers want to get the end of the list.
4589 	 * Put it in segs->prev to avoid walking the list.
4590 	 * (see validate_xmit_skb_list() for example)
4591 	 */
4592 	segs->prev = tail;
4593 
4594 	if (partial_segs) {
4595 		struct sk_buff *iter;
4596 		int type = skb_shinfo(head_skb)->gso_type;
4597 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4598 
4599 		/* Update type to add partial and then remove dodgy if set */
4600 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4601 		type &= ~SKB_GSO_DODGY;
4602 
4603 		/* Update GSO info and prepare to start updating headers on
4604 		 * our way back down the stack of protocols.
4605 		 */
4606 		for (iter = segs; iter; iter = iter->next) {
4607 			skb_shinfo(iter)->gso_size = gso_size;
4608 			skb_shinfo(iter)->gso_segs = partial_segs;
4609 			skb_shinfo(iter)->gso_type = type;
4610 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4611 		}
4612 
4613 		if (tail->len - doffset <= gso_size)
4614 			skb_shinfo(tail)->gso_size = 0;
4615 		else if (tail != segs)
4616 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4617 	}
4618 
4619 	/* Following permits correct backpressure, for protocols
4620 	 * using skb_set_owner_w().
4621 	 * Idea is to tranfert ownership from head_skb to last segment.
4622 	 */
4623 	if (head_skb->destructor == sock_wfree) {
4624 		swap(tail->truesize, head_skb->truesize);
4625 		swap(tail->destructor, head_skb->destructor);
4626 		swap(tail->sk, head_skb->sk);
4627 	}
4628 	return segs;
4629 
4630 err:
4631 	kfree_skb_list(segs);
4632 	return ERR_PTR(err);
4633 }
4634 EXPORT_SYMBOL_GPL(skb_segment);
4635 
4636 #ifdef CONFIG_SKB_EXTENSIONS
4637 #define SKB_EXT_ALIGN_VALUE	8
4638 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4639 
4640 static const u8 skb_ext_type_len[] = {
4641 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4642 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4643 #endif
4644 #ifdef CONFIG_XFRM
4645 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4646 #endif
4647 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4648 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4649 #endif
4650 #if IS_ENABLED(CONFIG_MPTCP)
4651 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4652 #endif
4653 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4654 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4655 #endif
4656 };
4657 
4658 static __always_inline unsigned int skb_ext_total_length(void)
4659 {
4660 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4661 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4662 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4663 #endif
4664 #ifdef CONFIG_XFRM
4665 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4666 #endif
4667 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4668 		skb_ext_type_len[TC_SKB_EXT] +
4669 #endif
4670 #if IS_ENABLED(CONFIG_MPTCP)
4671 		skb_ext_type_len[SKB_EXT_MPTCP] +
4672 #endif
4673 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4674 		skb_ext_type_len[SKB_EXT_MCTP] +
4675 #endif
4676 		0;
4677 }
4678 
4679 static void skb_extensions_init(void)
4680 {
4681 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4682 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4683 
4684 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4685 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4686 					     0,
4687 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4688 					     NULL);
4689 }
4690 #else
4691 static void skb_extensions_init(void) {}
4692 #endif
4693 
4694 void __init skb_init(void)
4695 {
4696 	skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4697 					      sizeof(struct sk_buff),
4698 					      0,
4699 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4700 					      offsetof(struct sk_buff, cb),
4701 					      sizeof_field(struct sk_buff, cb),
4702 					      NULL);
4703 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4704 						sizeof(struct sk_buff_fclones),
4705 						0,
4706 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4707 						NULL);
4708 #ifdef HAVE_SKB_SMALL_HEAD_CACHE
4709 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
4710 	 * struct skb_shared_info is located at the end of skb->head,
4711 	 * and should not be copied to/from user.
4712 	 */
4713 	skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
4714 						SKB_SMALL_HEAD_CACHE_SIZE,
4715 						0,
4716 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
4717 						0,
4718 						SKB_SMALL_HEAD_HEADROOM,
4719 						NULL);
4720 #endif
4721 	skb_extensions_init();
4722 }
4723 
4724 static int
4725 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4726 	       unsigned int recursion_level)
4727 {
4728 	int start = skb_headlen(skb);
4729 	int i, copy = start - offset;
4730 	struct sk_buff *frag_iter;
4731 	int elt = 0;
4732 
4733 	if (unlikely(recursion_level >= 24))
4734 		return -EMSGSIZE;
4735 
4736 	if (copy > 0) {
4737 		if (copy > len)
4738 			copy = len;
4739 		sg_set_buf(sg, skb->data + offset, copy);
4740 		elt++;
4741 		if ((len -= copy) == 0)
4742 			return elt;
4743 		offset += copy;
4744 	}
4745 
4746 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4747 		int end;
4748 
4749 		WARN_ON(start > offset + len);
4750 
4751 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4752 		if ((copy = end - offset) > 0) {
4753 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4754 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4755 				return -EMSGSIZE;
4756 
4757 			if (copy > len)
4758 				copy = len;
4759 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4760 				    skb_frag_off(frag) + offset - start);
4761 			elt++;
4762 			if (!(len -= copy))
4763 				return elt;
4764 			offset += copy;
4765 		}
4766 		start = end;
4767 	}
4768 
4769 	skb_walk_frags(skb, frag_iter) {
4770 		int end, ret;
4771 
4772 		WARN_ON(start > offset + len);
4773 
4774 		end = start + frag_iter->len;
4775 		if ((copy = end - offset) > 0) {
4776 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4777 				return -EMSGSIZE;
4778 
4779 			if (copy > len)
4780 				copy = len;
4781 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4782 					      copy, recursion_level + 1);
4783 			if (unlikely(ret < 0))
4784 				return ret;
4785 			elt += ret;
4786 			if ((len -= copy) == 0)
4787 				return elt;
4788 			offset += copy;
4789 		}
4790 		start = end;
4791 	}
4792 	BUG_ON(len);
4793 	return elt;
4794 }
4795 
4796 /**
4797  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4798  *	@skb: Socket buffer containing the buffers to be mapped
4799  *	@sg: The scatter-gather list to map into
4800  *	@offset: The offset into the buffer's contents to start mapping
4801  *	@len: Length of buffer space to be mapped
4802  *
4803  *	Fill the specified scatter-gather list with mappings/pointers into a
4804  *	region of the buffer space attached to a socket buffer. Returns either
4805  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4806  *	could not fit.
4807  */
4808 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4809 {
4810 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4811 
4812 	if (nsg <= 0)
4813 		return nsg;
4814 
4815 	sg_mark_end(&sg[nsg - 1]);
4816 
4817 	return nsg;
4818 }
4819 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4820 
4821 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4822  * sglist without mark the sg which contain last skb data as the end.
4823  * So the caller can mannipulate sg list as will when padding new data after
4824  * the first call without calling sg_unmark_end to expend sg list.
4825  *
4826  * Scenario to use skb_to_sgvec_nomark:
4827  * 1. sg_init_table
4828  * 2. skb_to_sgvec_nomark(payload1)
4829  * 3. skb_to_sgvec_nomark(payload2)
4830  *
4831  * This is equivalent to:
4832  * 1. sg_init_table
4833  * 2. skb_to_sgvec(payload1)
4834  * 3. sg_unmark_end
4835  * 4. skb_to_sgvec(payload2)
4836  *
4837  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4838  * is more preferable.
4839  */
4840 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4841 			int offset, int len)
4842 {
4843 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4844 }
4845 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4846 
4847 
4848 
4849 /**
4850  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4851  *	@skb: The socket buffer to check.
4852  *	@tailbits: Amount of trailing space to be added
4853  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4854  *
4855  *	Make sure that the data buffers attached to a socket buffer are
4856  *	writable. If they are not, private copies are made of the data buffers
4857  *	and the socket buffer is set to use these instead.
4858  *
4859  *	If @tailbits is given, make sure that there is space to write @tailbits
4860  *	bytes of data beyond current end of socket buffer.  @trailer will be
4861  *	set to point to the skb in which this space begins.
4862  *
4863  *	The number of scatterlist elements required to completely map the
4864  *	COW'd and extended socket buffer will be returned.
4865  */
4866 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4867 {
4868 	int copyflag;
4869 	int elt;
4870 	struct sk_buff *skb1, **skb_p;
4871 
4872 	/* If skb is cloned or its head is paged, reallocate
4873 	 * head pulling out all the pages (pages are considered not writable
4874 	 * at the moment even if they are anonymous).
4875 	 */
4876 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4877 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4878 		return -ENOMEM;
4879 
4880 	/* Easy case. Most of packets will go this way. */
4881 	if (!skb_has_frag_list(skb)) {
4882 		/* A little of trouble, not enough of space for trailer.
4883 		 * This should not happen, when stack is tuned to generate
4884 		 * good frames. OK, on miss we reallocate and reserve even more
4885 		 * space, 128 bytes is fair. */
4886 
4887 		if (skb_tailroom(skb) < tailbits &&
4888 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4889 			return -ENOMEM;
4890 
4891 		/* Voila! */
4892 		*trailer = skb;
4893 		return 1;
4894 	}
4895 
4896 	/* Misery. We are in troubles, going to mincer fragments... */
4897 
4898 	elt = 1;
4899 	skb_p = &skb_shinfo(skb)->frag_list;
4900 	copyflag = 0;
4901 
4902 	while ((skb1 = *skb_p) != NULL) {
4903 		int ntail = 0;
4904 
4905 		/* The fragment is partially pulled by someone,
4906 		 * this can happen on input. Copy it and everything
4907 		 * after it. */
4908 
4909 		if (skb_shared(skb1))
4910 			copyflag = 1;
4911 
4912 		/* If the skb is the last, worry about trailer. */
4913 
4914 		if (skb1->next == NULL && tailbits) {
4915 			if (skb_shinfo(skb1)->nr_frags ||
4916 			    skb_has_frag_list(skb1) ||
4917 			    skb_tailroom(skb1) < tailbits)
4918 				ntail = tailbits + 128;
4919 		}
4920 
4921 		if (copyflag ||
4922 		    skb_cloned(skb1) ||
4923 		    ntail ||
4924 		    skb_shinfo(skb1)->nr_frags ||
4925 		    skb_has_frag_list(skb1)) {
4926 			struct sk_buff *skb2;
4927 
4928 			/* Fuck, we are miserable poor guys... */
4929 			if (ntail == 0)
4930 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4931 			else
4932 				skb2 = skb_copy_expand(skb1,
4933 						       skb_headroom(skb1),
4934 						       ntail,
4935 						       GFP_ATOMIC);
4936 			if (unlikely(skb2 == NULL))
4937 				return -ENOMEM;
4938 
4939 			if (skb1->sk)
4940 				skb_set_owner_w(skb2, skb1->sk);
4941 
4942 			/* Looking around. Are we still alive?
4943 			 * OK, link new skb, drop old one */
4944 
4945 			skb2->next = skb1->next;
4946 			*skb_p = skb2;
4947 			kfree_skb(skb1);
4948 			skb1 = skb2;
4949 		}
4950 		elt++;
4951 		*trailer = skb1;
4952 		skb_p = &skb1->next;
4953 	}
4954 
4955 	return elt;
4956 }
4957 EXPORT_SYMBOL_GPL(skb_cow_data);
4958 
4959 static void sock_rmem_free(struct sk_buff *skb)
4960 {
4961 	struct sock *sk = skb->sk;
4962 
4963 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4964 }
4965 
4966 static void skb_set_err_queue(struct sk_buff *skb)
4967 {
4968 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4969 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4970 	 */
4971 	skb->pkt_type = PACKET_OUTGOING;
4972 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4973 }
4974 
4975 /*
4976  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4977  */
4978 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4979 {
4980 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4981 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4982 		return -ENOMEM;
4983 
4984 	skb_orphan(skb);
4985 	skb->sk = sk;
4986 	skb->destructor = sock_rmem_free;
4987 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4988 	skb_set_err_queue(skb);
4989 
4990 	/* before exiting rcu section, make sure dst is refcounted */
4991 	skb_dst_force(skb);
4992 
4993 	skb_queue_tail(&sk->sk_error_queue, skb);
4994 	if (!sock_flag(sk, SOCK_DEAD))
4995 		sk_error_report(sk);
4996 	return 0;
4997 }
4998 EXPORT_SYMBOL(sock_queue_err_skb);
4999 
5000 static bool is_icmp_err_skb(const struct sk_buff *skb)
5001 {
5002 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5003 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5004 }
5005 
5006 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5007 {
5008 	struct sk_buff_head *q = &sk->sk_error_queue;
5009 	struct sk_buff *skb, *skb_next = NULL;
5010 	bool icmp_next = false;
5011 	unsigned long flags;
5012 
5013 	spin_lock_irqsave(&q->lock, flags);
5014 	skb = __skb_dequeue(q);
5015 	if (skb && (skb_next = skb_peek(q))) {
5016 		icmp_next = is_icmp_err_skb(skb_next);
5017 		if (icmp_next)
5018 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5019 	}
5020 	spin_unlock_irqrestore(&q->lock, flags);
5021 
5022 	if (is_icmp_err_skb(skb) && !icmp_next)
5023 		sk->sk_err = 0;
5024 
5025 	if (skb_next)
5026 		sk_error_report(sk);
5027 
5028 	return skb;
5029 }
5030 EXPORT_SYMBOL(sock_dequeue_err_skb);
5031 
5032 /**
5033  * skb_clone_sk - create clone of skb, and take reference to socket
5034  * @skb: the skb to clone
5035  *
5036  * This function creates a clone of a buffer that holds a reference on
5037  * sk_refcnt.  Buffers created via this function are meant to be
5038  * returned using sock_queue_err_skb, or free via kfree_skb.
5039  *
5040  * When passing buffers allocated with this function to sock_queue_err_skb
5041  * it is necessary to wrap the call with sock_hold/sock_put in order to
5042  * prevent the socket from being released prior to being enqueued on
5043  * the sk_error_queue.
5044  */
5045 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5046 {
5047 	struct sock *sk = skb->sk;
5048 	struct sk_buff *clone;
5049 
5050 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5051 		return NULL;
5052 
5053 	clone = skb_clone(skb, GFP_ATOMIC);
5054 	if (!clone) {
5055 		sock_put(sk);
5056 		return NULL;
5057 	}
5058 
5059 	clone->sk = sk;
5060 	clone->destructor = sock_efree;
5061 
5062 	return clone;
5063 }
5064 EXPORT_SYMBOL(skb_clone_sk);
5065 
5066 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5067 					struct sock *sk,
5068 					int tstype,
5069 					bool opt_stats)
5070 {
5071 	struct sock_exterr_skb *serr;
5072 	int err;
5073 
5074 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5075 
5076 	serr = SKB_EXT_ERR(skb);
5077 	memset(serr, 0, sizeof(*serr));
5078 	serr->ee.ee_errno = ENOMSG;
5079 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5080 	serr->ee.ee_info = tstype;
5081 	serr->opt_stats = opt_stats;
5082 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5083 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
5084 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5085 		if (sk_is_tcp(sk))
5086 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5087 	}
5088 
5089 	err = sock_queue_err_skb(sk, skb);
5090 
5091 	if (err)
5092 		kfree_skb(skb);
5093 }
5094 
5095 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5096 {
5097 	bool ret;
5098 
5099 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5100 		return true;
5101 
5102 	read_lock_bh(&sk->sk_callback_lock);
5103 	ret = sk->sk_socket && sk->sk_socket->file &&
5104 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5105 	read_unlock_bh(&sk->sk_callback_lock);
5106 	return ret;
5107 }
5108 
5109 void skb_complete_tx_timestamp(struct sk_buff *skb,
5110 			       struct skb_shared_hwtstamps *hwtstamps)
5111 {
5112 	struct sock *sk = skb->sk;
5113 
5114 	if (!skb_may_tx_timestamp(sk, false))
5115 		goto err;
5116 
5117 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5118 	 * but only if the socket refcount is not zero.
5119 	 */
5120 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5121 		*skb_hwtstamps(skb) = *hwtstamps;
5122 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5123 		sock_put(sk);
5124 		return;
5125 	}
5126 
5127 err:
5128 	kfree_skb(skb);
5129 }
5130 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5131 
5132 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5133 		     const struct sk_buff *ack_skb,
5134 		     struct skb_shared_hwtstamps *hwtstamps,
5135 		     struct sock *sk, int tstype)
5136 {
5137 	struct sk_buff *skb;
5138 	bool tsonly, opt_stats = false;
5139 
5140 	if (!sk)
5141 		return;
5142 
5143 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5144 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5145 		return;
5146 
5147 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5148 	if (!skb_may_tx_timestamp(sk, tsonly))
5149 		return;
5150 
5151 	if (tsonly) {
5152 #ifdef CONFIG_INET
5153 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5154 		    sk_is_tcp(sk)) {
5155 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5156 							     ack_skb);
5157 			opt_stats = true;
5158 		} else
5159 #endif
5160 			skb = alloc_skb(0, GFP_ATOMIC);
5161 	} else {
5162 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5163 	}
5164 	if (!skb)
5165 		return;
5166 
5167 	if (tsonly) {
5168 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5169 					     SKBTX_ANY_TSTAMP;
5170 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5171 	}
5172 
5173 	if (hwtstamps)
5174 		*skb_hwtstamps(skb) = *hwtstamps;
5175 	else
5176 		__net_timestamp(skb);
5177 
5178 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5179 }
5180 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5181 
5182 void skb_tstamp_tx(struct sk_buff *orig_skb,
5183 		   struct skb_shared_hwtstamps *hwtstamps)
5184 {
5185 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5186 			       SCM_TSTAMP_SND);
5187 }
5188 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5189 
5190 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5191 {
5192 	struct sock *sk = skb->sk;
5193 	struct sock_exterr_skb *serr;
5194 	int err = 1;
5195 
5196 	skb->wifi_acked_valid = 1;
5197 	skb->wifi_acked = acked;
5198 
5199 	serr = SKB_EXT_ERR(skb);
5200 	memset(serr, 0, sizeof(*serr));
5201 	serr->ee.ee_errno = ENOMSG;
5202 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5203 
5204 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5205 	 * but only if the socket refcount is not zero.
5206 	 */
5207 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5208 		err = sock_queue_err_skb(sk, skb);
5209 		sock_put(sk);
5210 	}
5211 	if (err)
5212 		kfree_skb(skb);
5213 }
5214 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5215 
5216 /**
5217  * skb_partial_csum_set - set up and verify partial csum values for packet
5218  * @skb: the skb to set
5219  * @start: the number of bytes after skb->data to start checksumming.
5220  * @off: the offset from start to place the checksum.
5221  *
5222  * For untrusted partially-checksummed packets, we need to make sure the values
5223  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5224  *
5225  * This function checks and sets those values and skb->ip_summed: if this
5226  * returns false you should drop the packet.
5227  */
5228 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5229 {
5230 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5231 	u32 csum_start = skb_headroom(skb) + (u32)start;
5232 
5233 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
5234 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5235 				     start, off, skb_headroom(skb), skb_headlen(skb));
5236 		return false;
5237 	}
5238 	skb->ip_summed = CHECKSUM_PARTIAL;
5239 	skb->csum_start = csum_start;
5240 	skb->csum_offset = off;
5241 	skb_set_transport_header(skb, start);
5242 	return true;
5243 }
5244 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5245 
5246 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5247 			       unsigned int max)
5248 {
5249 	if (skb_headlen(skb) >= len)
5250 		return 0;
5251 
5252 	/* If we need to pullup then pullup to the max, so we
5253 	 * won't need to do it again.
5254 	 */
5255 	if (max > skb->len)
5256 		max = skb->len;
5257 
5258 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5259 		return -ENOMEM;
5260 
5261 	if (skb_headlen(skb) < len)
5262 		return -EPROTO;
5263 
5264 	return 0;
5265 }
5266 
5267 #define MAX_TCP_HDR_LEN (15 * 4)
5268 
5269 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5270 				      typeof(IPPROTO_IP) proto,
5271 				      unsigned int off)
5272 {
5273 	int err;
5274 
5275 	switch (proto) {
5276 	case IPPROTO_TCP:
5277 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5278 					  off + MAX_TCP_HDR_LEN);
5279 		if (!err && !skb_partial_csum_set(skb, off,
5280 						  offsetof(struct tcphdr,
5281 							   check)))
5282 			err = -EPROTO;
5283 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5284 
5285 	case IPPROTO_UDP:
5286 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5287 					  off + sizeof(struct udphdr));
5288 		if (!err && !skb_partial_csum_set(skb, off,
5289 						  offsetof(struct udphdr,
5290 							   check)))
5291 			err = -EPROTO;
5292 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5293 	}
5294 
5295 	return ERR_PTR(-EPROTO);
5296 }
5297 
5298 /* This value should be large enough to cover a tagged ethernet header plus
5299  * maximally sized IP and TCP or UDP headers.
5300  */
5301 #define MAX_IP_HDR_LEN 128
5302 
5303 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5304 {
5305 	unsigned int off;
5306 	bool fragment;
5307 	__sum16 *csum;
5308 	int err;
5309 
5310 	fragment = false;
5311 
5312 	err = skb_maybe_pull_tail(skb,
5313 				  sizeof(struct iphdr),
5314 				  MAX_IP_HDR_LEN);
5315 	if (err < 0)
5316 		goto out;
5317 
5318 	if (ip_is_fragment(ip_hdr(skb)))
5319 		fragment = true;
5320 
5321 	off = ip_hdrlen(skb);
5322 
5323 	err = -EPROTO;
5324 
5325 	if (fragment)
5326 		goto out;
5327 
5328 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5329 	if (IS_ERR(csum))
5330 		return PTR_ERR(csum);
5331 
5332 	if (recalculate)
5333 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5334 					   ip_hdr(skb)->daddr,
5335 					   skb->len - off,
5336 					   ip_hdr(skb)->protocol, 0);
5337 	err = 0;
5338 
5339 out:
5340 	return err;
5341 }
5342 
5343 /* This value should be large enough to cover a tagged ethernet header plus
5344  * an IPv6 header, all options, and a maximal TCP or UDP header.
5345  */
5346 #define MAX_IPV6_HDR_LEN 256
5347 
5348 #define OPT_HDR(type, skb, off) \
5349 	(type *)(skb_network_header(skb) + (off))
5350 
5351 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5352 {
5353 	int err;
5354 	u8 nexthdr;
5355 	unsigned int off;
5356 	unsigned int len;
5357 	bool fragment;
5358 	bool done;
5359 	__sum16 *csum;
5360 
5361 	fragment = false;
5362 	done = false;
5363 
5364 	off = sizeof(struct ipv6hdr);
5365 
5366 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5367 	if (err < 0)
5368 		goto out;
5369 
5370 	nexthdr = ipv6_hdr(skb)->nexthdr;
5371 
5372 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5373 	while (off <= len && !done) {
5374 		switch (nexthdr) {
5375 		case IPPROTO_DSTOPTS:
5376 		case IPPROTO_HOPOPTS:
5377 		case IPPROTO_ROUTING: {
5378 			struct ipv6_opt_hdr *hp;
5379 
5380 			err = skb_maybe_pull_tail(skb,
5381 						  off +
5382 						  sizeof(struct ipv6_opt_hdr),
5383 						  MAX_IPV6_HDR_LEN);
5384 			if (err < 0)
5385 				goto out;
5386 
5387 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5388 			nexthdr = hp->nexthdr;
5389 			off += ipv6_optlen(hp);
5390 			break;
5391 		}
5392 		case IPPROTO_AH: {
5393 			struct ip_auth_hdr *hp;
5394 
5395 			err = skb_maybe_pull_tail(skb,
5396 						  off +
5397 						  sizeof(struct ip_auth_hdr),
5398 						  MAX_IPV6_HDR_LEN);
5399 			if (err < 0)
5400 				goto out;
5401 
5402 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5403 			nexthdr = hp->nexthdr;
5404 			off += ipv6_authlen(hp);
5405 			break;
5406 		}
5407 		case IPPROTO_FRAGMENT: {
5408 			struct frag_hdr *hp;
5409 
5410 			err = skb_maybe_pull_tail(skb,
5411 						  off +
5412 						  sizeof(struct frag_hdr),
5413 						  MAX_IPV6_HDR_LEN);
5414 			if (err < 0)
5415 				goto out;
5416 
5417 			hp = OPT_HDR(struct frag_hdr, skb, off);
5418 
5419 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5420 				fragment = true;
5421 
5422 			nexthdr = hp->nexthdr;
5423 			off += sizeof(struct frag_hdr);
5424 			break;
5425 		}
5426 		default:
5427 			done = true;
5428 			break;
5429 		}
5430 	}
5431 
5432 	err = -EPROTO;
5433 
5434 	if (!done || fragment)
5435 		goto out;
5436 
5437 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5438 	if (IS_ERR(csum))
5439 		return PTR_ERR(csum);
5440 
5441 	if (recalculate)
5442 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5443 					 &ipv6_hdr(skb)->daddr,
5444 					 skb->len - off, nexthdr, 0);
5445 	err = 0;
5446 
5447 out:
5448 	return err;
5449 }
5450 
5451 /**
5452  * skb_checksum_setup - set up partial checksum offset
5453  * @skb: the skb to set up
5454  * @recalculate: if true the pseudo-header checksum will be recalculated
5455  */
5456 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5457 {
5458 	int err;
5459 
5460 	switch (skb->protocol) {
5461 	case htons(ETH_P_IP):
5462 		err = skb_checksum_setup_ipv4(skb, recalculate);
5463 		break;
5464 
5465 	case htons(ETH_P_IPV6):
5466 		err = skb_checksum_setup_ipv6(skb, recalculate);
5467 		break;
5468 
5469 	default:
5470 		err = -EPROTO;
5471 		break;
5472 	}
5473 
5474 	return err;
5475 }
5476 EXPORT_SYMBOL(skb_checksum_setup);
5477 
5478 /**
5479  * skb_checksum_maybe_trim - maybe trims the given skb
5480  * @skb: the skb to check
5481  * @transport_len: the data length beyond the network header
5482  *
5483  * Checks whether the given skb has data beyond the given transport length.
5484  * If so, returns a cloned skb trimmed to this transport length.
5485  * Otherwise returns the provided skb. Returns NULL in error cases
5486  * (e.g. transport_len exceeds skb length or out-of-memory).
5487  *
5488  * Caller needs to set the skb transport header and free any returned skb if it
5489  * differs from the provided skb.
5490  */
5491 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5492 					       unsigned int transport_len)
5493 {
5494 	struct sk_buff *skb_chk;
5495 	unsigned int len = skb_transport_offset(skb) + transport_len;
5496 	int ret;
5497 
5498 	if (skb->len < len)
5499 		return NULL;
5500 	else if (skb->len == len)
5501 		return skb;
5502 
5503 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5504 	if (!skb_chk)
5505 		return NULL;
5506 
5507 	ret = pskb_trim_rcsum(skb_chk, len);
5508 	if (ret) {
5509 		kfree_skb(skb_chk);
5510 		return NULL;
5511 	}
5512 
5513 	return skb_chk;
5514 }
5515 
5516 /**
5517  * skb_checksum_trimmed - validate checksum of an skb
5518  * @skb: the skb to check
5519  * @transport_len: the data length beyond the network header
5520  * @skb_chkf: checksum function to use
5521  *
5522  * Applies the given checksum function skb_chkf to the provided skb.
5523  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5524  *
5525  * If the skb has data beyond the given transport length, then a
5526  * trimmed & cloned skb is checked and returned.
5527  *
5528  * Caller needs to set the skb transport header and free any returned skb if it
5529  * differs from the provided skb.
5530  */
5531 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5532 				     unsigned int transport_len,
5533 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5534 {
5535 	struct sk_buff *skb_chk;
5536 	unsigned int offset = skb_transport_offset(skb);
5537 	__sum16 ret;
5538 
5539 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5540 	if (!skb_chk)
5541 		goto err;
5542 
5543 	if (!pskb_may_pull(skb_chk, offset))
5544 		goto err;
5545 
5546 	skb_pull_rcsum(skb_chk, offset);
5547 	ret = skb_chkf(skb_chk);
5548 	skb_push_rcsum(skb_chk, offset);
5549 
5550 	if (ret)
5551 		goto err;
5552 
5553 	return skb_chk;
5554 
5555 err:
5556 	if (skb_chk && skb_chk != skb)
5557 		kfree_skb(skb_chk);
5558 
5559 	return NULL;
5560 
5561 }
5562 EXPORT_SYMBOL(skb_checksum_trimmed);
5563 
5564 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5565 {
5566 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5567 			     skb->dev->name);
5568 }
5569 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5570 
5571 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5572 {
5573 	if (head_stolen) {
5574 		skb_release_head_state(skb);
5575 		kmem_cache_free(skbuff_cache, skb);
5576 	} else {
5577 		__kfree_skb(skb);
5578 	}
5579 }
5580 EXPORT_SYMBOL(kfree_skb_partial);
5581 
5582 /**
5583  * skb_try_coalesce - try to merge skb to prior one
5584  * @to: prior buffer
5585  * @from: buffer to add
5586  * @fragstolen: pointer to boolean
5587  * @delta_truesize: how much more was allocated than was requested
5588  */
5589 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5590 		      bool *fragstolen, int *delta_truesize)
5591 {
5592 	struct skb_shared_info *to_shinfo, *from_shinfo;
5593 	int i, delta, len = from->len;
5594 
5595 	*fragstolen = false;
5596 
5597 	if (skb_cloned(to))
5598 		return false;
5599 
5600 	/* In general, avoid mixing slab allocated and page_pool allocated
5601 	 * pages within the same SKB. However when @to is not pp_recycle and
5602 	 * @from is cloned, we can transition frag pages from page_pool to
5603 	 * reference counted.
5604 	 *
5605 	 * On the other hand, don't allow coalescing two pp_recycle SKBs if
5606 	 * @from is cloned, in case the SKB is using page_pool fragment
5607 	 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5608 	 * references for cloned SKBs at the moment that would result in
5609 	 * inconsistent reference counts.
5610 	 */
5611 	if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from)))
5612 		return false;
5613 
5614 	if (len <= skb_tailroom(to)) {
5615 		if (len)
5616 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5617 		*delta_truesize = 0;
5618 		return true;
5619 	}
5620 
5621 	to_shinfo = skb_shinfo(to);
5622 	from_shinfo = skb_shinfo(from);
5623 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5624 		return false;
5625 	if (skb_zcopy(to) || skb_zcopy(from))
5626 		return false;
5627 
5628 	if (skb_headlen(from) != 0) {
5629 		struct page *page;
5630 		unsigned int offset;
5631 
5632 		if (to_shinfo->nr_frags +
5633 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5634 			return false;
5635 
5636 		if (skb_head_is_locked(from))
5637 			return false;
5638 
5639 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5640 
5641 		page = virt_to_head_page(from->head);
5642 		offset = from->data - (unsigned char *)page_address(page);
5643 
5644 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5645 				   page, offset, skb_headlen(from));
5646 		*fragstolen = true;
5647 	} else {
5648 		if (to_shinfo->nr_frags +
5649 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5650 			return false;
5651 
5652 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5653 	}
5654 
5655 	WARN_ON_ONCE(delta < len);
5656 
5657 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5658 	       from_shinfo->frags,
5659 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5660 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5661 
5662 	if (!skb_cloned(from))
5663 		from_shinfo->nr_frags = 0;
5664 
5665 	/* if the skb is not cloned this does nothing
5666 	 * since we set nr_frags to 0.
5667 	 */
5668 	for (i = 0; i < from_shinfo->nr_frags; i++)
5669 		__skb_frag_ref(&from_shinfo->frags[i]);
5670 
5671 	to->truesize += delta;
5672 	to->len += len;
5673 	to->data_len += len;
5674 
5675 	*delta_truesize = delta;
5676 	return true;
5677 }
5678 EXPORT_SYMBOL(skb_try_coalesce);
5679 
5680 /**
5681  * skb_scrub_packet - scrub an skb
5682  *
5683  * @skb: buffer to clean
5684  * @xnet: packet is crossing netns
5685  *
5686  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5687  * into/from a tunnel. Some information have to be cleared during these
5688  * operations.
5689  * skb_scrub_packet can also be used to clean a skb before injecting it in
5690  * another namespace (@xnet == true). We have to clear all information in the
5691  * skb that could impact namespace isolation.
5692  */
5693 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5694 {
5695 	skb->pkt_type = PACKET_HOST;
5696 	skb->skb_iif = 0;
5697 	skb->ignore_df = 0;
5698 	skb_dst_drop(skb);
5699 	skb_ext_reset(skb);
5700 	nf_reset_ct(skb);
5701 	nf_reset_trace(skb);
5702 
5703 #ifdef CONFIG_NET_SWITCHDEV
5704 	skb->offload_fwd_mark = 0;
5705 	skb->offload_l3_fwd_mark = 0;
5706 #endif
5707 
5708 	if (!xnet)
5709 		return;
5710 
5711 	ipvs_reset(skb);
5712 	skb->mark = 0;
5713 	skb_clear_tstamp(skb);
5714 }
5715 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5716 
5717 /**
5718  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5719  *
5720  * @skb: GSO skb
5721  *
5722  * skb_gso_transport_seglen is used to determine the real size of the
5723  * individual segments, including Layer4 headers (TCP/UDP).
5724  *
5725  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5726  */
5727 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5728 {
5729 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5730 	unsigned int thlen = 0;
5731 
5732 	if (skb->encapsulation) {
5733 		thlen = skb_inner_transport_header(skb) -
5734 			skb_transport_header(skb);
5735 
5736 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5737 			thlen += inner_tcp_hdrlen(skb);
5738 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5739 		thlen = tcp_hdrlen(skb);
5740 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5741 		thlen = sizeof(struct sctphdr);
5742 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5743 		thlen = sizeof(struct udphdr);
5744 	}
5745 	/* UFO sets gso_size to the size of the fragmentation
5746 	 * payload, i.e. the size of the L4 (UDP) header is already
5747 	 * accounted for.
5748 	 */
5749 	return thlen + shinfo->gso_size;
5750 }
5751 
5752 /**
5753  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5754  *
5755  * @skb: GSO skb
5756  *
5757  * skb_gso_network_seglen is used to determine the real size of the
5758  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5759  *
5760  * The MAC/L2 header is not accounted for.
5761  */
5762 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5763 {
5764 	unsigned int hdr_len = skb_transport_header(skb) -
5765 			       skb_network_header(skb);
5766 
5767 	return hdr_len + skb_gso_transport_seglen(skb);
5768 }
5769 
5770 /**
5771  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5772  *
5773  * @skb: GSO skb
5774  *
5775  * skb_gso_mac_seglen is used to determine the real size of the
5776  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5777  * headers (TCP/UDP).
5778  */
5779 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5780 {
5781 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5782 
5783 	return hdr_len + skb_gso_transport_seglen(skb);
5784 }
5785 
5786 /**
5787  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5788  *
5789  * There are a couple of instances where we have a GSO skb, and we
5790  * want to determine what size it would be after it is segmented.
5791  *
5792  * We might want to check:
5793  * -    L3+L4+payload size (e.g. IP forwarding)
5794  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5795  *
5796  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5797  *
5798  * @skb: GSO skb
5799  *
5800  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5801  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5802  *
5803  * @max_len: The maximum permissible length.
5804  *
5805  * Returns true if the segmented length <= max length.
5806  */
5807 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5808 				      unsigned int seg_len,
5809 				      unsigned int max_len) {
5810 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5811 	const struct sk_buff *iter;
5812 
5813 	if (shinfo->gso_size != GSO_BY_FRAGS)
5814 		return seg_len <= max_len;
5815 
5816 	/* Undo this so we can re-use header sizes */
5817 	seg_len -= GSO_BY_FRAGS;
5818 
5819 	skb_walk_frags(skb, iter) {
5820 		if (seg_len + skb_headlen(iter) > max_len)
5821 			return false;
5822 	}
5823 
5824 	return true;
5825 }
5826 
5827 /**
5828  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5829  *
5830  * @skb: GSO skb
5831  * @mtu: MTU to validate against
5832  *
5833  * skb_gso_validate_network_len validates if a given skb will fit a
5834  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5835  * payload.
5836  */
5837 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5838 {
5839 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5840 }
5841 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5842 
5843 /**
5844  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5845  *
5846  * @skb: GSO skb
5847  * @len: length to validate against
5848  *
5849  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5850  * length once split, including L2, L3 and L4 headers and the payload.
5851  */
5852 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5853 {
5854 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5855 }
5856 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5857 
5858 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5859 {
5860 	int mac_len, meta_len;
5861 	void *meta;
5862 
5863 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5864 		kfree_skb(skb);
5865 		return NULL;
5866 	}
5867 
5868 	mac_len = skb->data - skb_mac_header(skb);
5869 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5870 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5871 			mac_len - VLAN_HLEN - ETH_TLEN);
5872 	}
5873 
5874 	meta_len = skb_metadata_len(skb);
5875 	if (meta_len) {
5876 		meta = skb_metadata_end(skb) - meta_len;
5877 		memmove(meta + VLAN_HLEN, meta, meta_len);
5878 	}
5879 
5880 	skb->mac_header += VLAN_HLEN;
5881 	return skb;
5882 }
5883 
5884 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5885 {
5886 	struct vlan_hdr *vhdr;
5887 	u16 vlan_tci;
5888 
5889 	if (unlikely(skb_vlan_tag_present(skb))) {
5890 		/* vlan_tci is already set-up so leave this for another time */
5891 		return skb;
5892 	}
5893 
5894 	skb = skb_share_check(skb, GFP_ATOMIC);
5895 	if (unlikely(!skb))
5896 		goto err_free;
5897 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5898 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5899 		goto err_free;
5900 
5901 	vhdr = (struct vlan_hdr *)skb->data;
5902 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5903 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5904 
5905 	skb_pull_rcsum(skb, VLAN_HLEN);
5906 	vlan_set_encap_proto(skb, vhdr);
5907 
5908 	skb = skb_reorder_vlan_header(skb);
5909 	if (unlikely(!skb))
5910 		goto err_free;
5911 
5912 	skb_reset_network_header(skb);
5913 	if (!skb_transport_header_was_set(skb))
5914 		skb_reset_transport_header(skb);
5915 	skb_reset_mac_len(skb);
5916 
5917 	return skb;
5918 
5919 err_free:
5920 	kfree_skb(skb);
5921 	return NULL;
5922 }
5923 EXPORT_SYMBOL(skb_vlan_untag);
5924 
5925 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5926 {
5927 	if (!pskb_may_pull(skb, write_len))
5928 		return -ENOMEM;
5929 
5930 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5931 		return 0;
5932 
5933 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5934 }
5935 EXPORT_SYMBOL(skb_ensure_writable);
5936 
5937 /* remove VLAN header from packet and update csum accordingly.
5938  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5939  */
5940 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5941 {
5942 	struct vlan_hdr *vhdr;
5943 	int offset = skb->data - skb_mac_header(skb);
5944 	int err;
5945 
5946 	if (WARN_ONCE(offset,
5947 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5948 		      offset)) {
5949 		return -EINVAL;
5950 	}
5951 
5952 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5953 	if (unlikely(err))
5954 		return err;
5955 
5956 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5957 
5958 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5959 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5960 
5961 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5962 	__skb_pull(skb, VLAN_HLEN);
5963 
5964 	vlan_set_encap_proto(skb, vhdr);
5965 	skb->mac_header += VLAN_HLEN;
5966 
5967 	if (skb_network_offset(skb) < ETH_HLEN)
5968 		skb_set_network_header(skb, ETH_HLEN);
5969 
5970 	skb_reset_mac_len(skb);
5971 
5972 	return err;
5973 }
5974 EXPORT_SYMBOL(__skb_vlan_pop);
5975 
5976 /* Pop a vlan tag either from hwaccel or from payload.
5977  * Expects skb->data at mac header.
5978  */
5979 int skb_vlan_pop(struct sk_buff *skb)
5980 {
5981 	u16 vlan_tci;
5982 	__be16 vlan_proto;
5983 	int err;
5984 
5985 	if (likely(skb_vlan_tag_present(skb))) {
5986 		__vlan_hwaccel_clear_tag(skb);
5987 	} else {
5988 		if (unlikely(!eth_type_vlan(skb->protocol)))
5989 			return 0;
5990 
5991 		err = __skb_vlan_pop(skb, &vlan_tci);
5992 		if (err)
5993 			return err;
5994 	}
5995 	/* move next vlan tag to hw accel tag */
5996 	if (likely(!eth_type_vlan(skb->protocol)))
5997 		return 0;
5998 
5999 	vlan_proto = skb->protocol;
6000 	err = __skb_vlan_pop(skb, &vlan_tci);
6001 	if (unlikely(err))
6002 		return err;
6003 
6004 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6005 	return 0;
6006 }
6007 EXPORT_SYMBOL(skb_vlan_pop);
6008 
6009 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6010  * Expects skb->data at mac header.
6011  */
6012 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6013 {
6014 	if (skb_vlan_tag_present(skb)) {
6015 		int offset = skb->data - skb_mac_header(skb);
6016 		int err;
6017 
6018 		if (WARN_ONCE(offset,
6019 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6020 			      offset)) {
6021 			return -EINVAL;
6022 		}
6023 
6024 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6025 					skb_vlan_tag_get(skb));
6026 		if (err)
6027 			return err;
6028 
6029 		skb->protocol = skb->vlan_proto;
6030 		skb->mac_len += VLAN_HLEN;
6031 
6032 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6033 	}
6034 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6035 	return 0;
6036 }
6037 EXPORT_SYMBOL(skb_vlan_push);
6038 
6039 /**
6040  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6041  *
6042  * @skb: Socket buffer to modify
6043  *
6044  * Drop the Ethernet header of @skb.
6045  *
6046  * Expects that skb->data points to the mac header and that no VLAN tags are
6047  * present.
6048  *
6049  * Returns 0 on success, -errno otherwise.
6050  */
6051 int skb_eth_pop(struct sk_buff *skb)
6052 {
6053 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6054 	    skb_network_offset(skb) < ETH_HLEN)
6055 		return -EPROTO;
6056 
6057 	skb_pull_rcsum(skb, ETH_HLEN);
6058 	skb_reset_mac_header(skb);
6059 	skb_reset_mac_len(skb);
6060 
6061 	return 0;
6062 }
6063 EXPORT_SYMBOL(skb_eth_pop);
6064 
6065 /**
6066  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6067  *
6068  * @skb: Socket buffer to modify
6069  * @dst: Destination MAC address of the new header
6070  * @src: Source MAC address of the new header
6071  *
6072  * Prepend @skb with a new Ethernet header.
6073  *
6074  * Expects that skb->data points to the mac header, which must be empty.
6075  *
6076  * Returns 0 on success, -errno otherwise.
6077  */
6078 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6079 		 const unsigned char *src)
6080 {
6081 	struct ethhdr *eth;
6082 	int err;
6083 
6084 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6085 		return -EPROTO;
6086 
6087 	err = skb_cow_head(skb, sizeof(*eth));
6088 	if (err < 0)
6089 		return err;
6090 
6091 	skb_push(skb, sizeof(*eth));
6092 	skb_reset_mac_header(skb);
6093 	skb_reset_mac_len(skb);
6094 
6095 	eth = eth_hdr(skb);
6096 	ether_addr_copy(eth->h_dest, dst);
6097 	ether_addr_copy(eth->h_source, src);
6098 	eth->h_proto = skb->protocol;
6099 
6100 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6101 
6102 	return 0;
6103 }
6104 EXPORT_SYMBOL(skb_eth_push);
6105 
6106 /* Update the ethertype of hdr and the skb csum value if required. */
6107 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6108 			     __be16 ethertype)
6109 {
6110 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6111 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6112 
6113 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6114 	}
6115 
6116 	hdr->h_proto = ethertype;
6117 }
6118 
6119 /**
6120  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6121  *                   the packet
6122  *
6123  * @skb: buffer
6124  * @mpls_lse: MPLS label stack entry to push
6125  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6126  * @mac_len: length of the MAC header
6127  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6128  *            ethernet
6129  *
6130  * Expects skb->data at mac header.
6131  *
6132  * Returns 0 on success, -errno otherwise.
6133  */
6134 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6135 		  int mac_len, bool ethernet)
6136 {
6137 	struct mpls_shim_hdr *lse;
6138 	int err;
6139 
6140 	if (unlikely(!eth_p_mpls(mpls_proto)))
6141 		return -EINVAL;
6142 
6143 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6144 	if (skb->encapsulation)
6145 		return -EINVAL;
6146 
6147 	err = skb_cow_head(skb, MPLS_HLEN);
6148 	if (unlikely(err))
6149 		return err;
6150 
6151 	if (!skb->inner_protocol) {
6152 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6153 		skb_set_inner_protocol(skb, skb->protocol);
6154 	}
6155 
6156 	skb_push(skb, MPLS_HLEN);
6157 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6158 		mac_len);
6159 	skb_reset_mac_header(skb);
6160 	skb_set_network_header(skb, mac_len);
6161 	skb_reset_mac_len(skb);
6162 
6163 	lse = mpls_hdr(skb);
6164 	lse->label_stack_entry = mpls_lse;
6165 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6166 
6167 	if (ethernet && mac_len >= ETH_HLEN)
6168 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6169 	skb->protocol = mpls_proto;
6170 
6171 	return 0;
6172 }
6173 EXPORT_SYMBOL_GPL(skb_mpls_push);
6174 
6175 /**
6176  * skb_mpls_pop() - pop the outermost MPLS header
6177  *
6178  * @skb: buffer
6179  * @next_proto: ethertype of header after popped MPLS header
6180  * @mac_len: length of the MAC header
6181  * @ethernet: flag to indicate if the packet is ethernet
6182  *
6183  * Expects skb->data at mac header.
6184  *
6185  * Returns 0 on success, -errno otherwise.
6186  */
6187 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6188 		 bool ethernet)
6189 {
6190 	int err;
6191 
6192 	if (unlikely(!eth_p_mpls(skb->protocol)))
6193 		return 0;
6194 
6195 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6196 	if (unlikely(err))
6197 		return err;
6198 
6199 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6200 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6201 		mac_len);
6202 
6203 	__skb_pull(skb, MPLS_HLEN);
6204 	skb_reset_mac_header(skb);
6205 	skb_set_network_header(skb, mac_len);
6206 
6207 	if (ethernet && mac_len >= ETH_HLEN) {
6208 		struct ethhdr *hdr;
6209 
6210 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6211 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6212 		skb_mod_eth_type(skb, hdr, next_proto);
6213 	}
6214 	skb->protocol = next_proto;
6215 
6216 	return 0;
6217 }
6218 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6219 
6220 /**
6221  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6222  *
6223  * @skb: buffer
6224  * @mpls_lse: new MPLS label stack entry to update to
6225  *
6226  * Expects skb->data at mac header.
6227  *
6228  * Returns 0 on success, -errno otherwise.
6229  */
6230 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6231 {
6232 	int err;
6233 
6234 	if (unlikely(!eth_p_mpls(skb->protocol)))
6235 		return -EINVAL;
6236 
6237 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6238 	if (unlikely(err))
6239 		return err;
6240 
6241 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6242 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6243 
6244 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6245 	}
6246 
6247 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6248 
6249 	return 0;
6250 }
6251 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6252 
6253 /**
6254  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6255  *
6256  * @skb: buffer
6257  *
6258  * Expects skb->data at mac header.
6259  *
6260  * Returns 0 on success, -errno otherwise.
6261  */
6262 int skb_mpls_dec_ttl(struct sk_buff *skb)
6263 {
6264 	u32 lse;
6265 	u8 ttl;
6266 
6267 	if (unlikely(!eth_p_mpls(skb->protocol)))
6268 		return -EINVAL;
6269 
6270 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6271 		return -ENOMEM;
6272 
6273 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6274 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6275 	if (!--ttl)
6276 		return -EINVAL;
6277 
6278 	lse &= ~MPLS_LS_TTL_MASK;
6279 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6280 
6281 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6282 }
6283 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6284 
6285 /**
6286  * alloc_skb_with_frags - allocate skb with page frags
6287  *
6288  * @header_len: size of linear part
6289  * @data_len: needed length in frags
6290  * @max_page_order: max page order desired.
6291  * @errcode: pointer to error code if any
6292  * @gfp_mask: allocation mask
6293  *
6294  * This can be used to allocate a paged skb, given a maximal order for frags.
6295  */
6296 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6297 				     unsigned long data_len,
6298 				     int max_page_order,
6299 				     int *errcode,
6300 				     gfp_t gfp_mask)
6301 {
6302 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6303 	unsigned long chunk;
6304 	struct sk_buff *skb;
6305 	struct page *page;
6306 	int i;
6307 
6308 	*errcode = -EMSGSIZE;
6309 	/* Note this test could be relaxed, if we succeed to allocate
6310 	 * high order pages...
6311 	 */
6312 	if (npages > MAX_SKB_FRAGS)
6313 		return NULL;
6314 
6315 	*errcode = -ENOBUFS;
6316 	skb = alloc_skb(header_len, gfp_mask);
6317 	if (!skb)
6318 		return NULL;
6319 
6320 	skb->truesize += npages << PAGE_SHIFT;
6321 
6322 	for (i = 0; npages > 0; i++) {
6323 		int order = max_page_order;
6324 
6325 		while (order) {
6326 			if (npages >= 1 << order) {
6327 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6328 						   __GFP_COMP |
6329 						   __GFP_NOWARN,
6330 						   order);
6331 				if (page)
6332 					goto fill_page;
6333 				/* Do not retry other high order allocations */
6334 				order = 1;
6335 				max_page_order = 0;
6336 			}
6337 			order--;
6338 		}
6339 		page = alloc_page(gfp_mask);
6340 		if (!page)
6341 			goto failure;
6342 fill_page:
6343 		chunk = min_t(unsigned long, data_len,
6344 			      PAGE_SIZE << order);
6345 		skb_fill_page_desc(skb, i, page, 0, chunk);
6346 		data_len -= chunk;
6347 		npages -= 1 << order;
6348 	}
6349 	return skb;
6350 
6351 failure:
6352 	kfree_skb(skb);
6353 	return NULL;
6354 }
6355 EXPORT_SYMBOL(alloc_skb_with_frags);
6356 
6357 /* carve out the first off bytes from skb when off < headlen */
6358 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6359 				    const int headlen, gfp_t gfp_mask)
6360 {
6361 	int i;
6362 	unsigned int size = skb_end_offset(skb);
6363 	int new_hlen = headlen - off;
6364 	u8 *data;
6365 
6366 	if (skb_pfmemalloc(skb))
6367 		gfp_mask |= __GFP_MEMALLOC;
6368 
6369 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6370 	if (!data)
6371 		return -ENOMEM;
6372 	size = SKB_WITH_OVERHEAD(size);
6373 
6374 	/* Copy real data, and all frags */
6375 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6376 	skb->len -= off;
6377 
6378 	memcpy((struct skb_shared_info *)(data + size),
6379 	       skb_shinfo(skb),
6380 	       offsetof(struct skb_shared_info,
6381 			frags[skb_shinfo(skb)->nr_frags]));
6382 	if (skb_cloned(skb)) {
6383 		/* drop the old head gracefully */
6384 		if (skb_orphan_frags(skb, gfp_mask)) {
6385 			skb_kfree_head(data, size);
6386 			return -ENOMEM;
6387 		}
6388 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6389 			skb_frag_ref(skb, i);
6390 		if (skb_has_frag_list(skb))
6391 			skb_clone_fraglist(skb);
6392 		skb_release_data(skb, SKB_CONSUMED);
6393 	} else {
6394 		/* we can reuse existing recount- all we did was
6395 		 * relocate values
6396 		 */
6397 		skb_free_head(skb);
6398 	}
6399 
6400 	skb->head = data;
6401 	skb->data = data;
6402 	skb->head_frag = 0;
6403 	skb_set_end_offset(skb, size);
6404 	skb_set_tail_pointer(skb, skb_headlen(skb));
6405 	skb_headers_offset_update(skb, 0);
6406 	skb->cloned = 0;
6407 	skb->hdr_len = 0;
6408 	skb->nohdr = 0;
6409 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6410 
6411 	return 0;
6412 }
6413 
6414 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6415 
6416 /* carve out the first eat bytes from skb's frag_list. May recurse into
6417  * pskb_carve()
6418  */
6419 static int pskb_carve_frag_list(struct sk_buff *skb,
6420 				struct skb_shared_info *shinfo, int eat,
6421 				gfp_t gfp_mask)
6422 {
6423 	struct sk_buff *list = shinfo->frag_list;
6424 	struct sk_buff *clone = NULL;
6425 	struct sk_buff *insp = NULL;
6426 
6427 	do {
6428 		if (!list) {
6429 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6430 			return -EFAULT;
6431 		}
6432 		if (list->len <= eat) {
6433 			/* Eaten as whole. */
6434 			eat -= list->len;
6435 			list = list->next;
6436 			insp = list;
6437 		} else {
6438 			/* Eaten partially. */
6439 			if (skb_shared(list)) {
6440 				clone = skb_clone(list, gfp_mask);
6441 				if (!clone)
6442 					return -ENOMEM;
6443 				insp = list->next;
6444 				list = clone;
6445 			} else {
6446 				/* This may be pulled without problems. */
6447 				insp = list;
6448 			}
6449 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6450 				kfree_skb(clone);
6451 				return -ENOMEM;
6452 			}
6453 			break;
6454 		}
6455 	} while (eat);
6456 
6457 	/* Free pulled out fragments. */
6458 	while ((list = shinfo->frag_list) != insp) {
6459 		shinfo->frag_list = list->next;
6460 		consume_skb(list);
6461 	}
6462 	/* And insert new clone at head. */
6463 	if (clone) {
6464 		clone->next = list;
6465 		shinfo->frag_list = clone;
6466 	}
6467 	return 0;
6468 }
6469 
6470 /* carve off first len bytes from skb. Split line (off) is in the
6471  * non-linear part of skb
6472  */
6473 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6474 				       int pos, gfp_t gfp_mask)
6475 {
6476 	int i, k = 0;
6477 	unsigned int size = skb_end_offset(skb);
6478 	u8 *data;
6479 	const int nfrags = skb_shinfo(skb)->nr_frags;
6480 	struct skb_shared_info *shinfo;
6481 
6482 	if (skb_pfmemalloc(skb))
6483 		gfp_mask |= __GFP_MEMALLOC;
6484 
6485 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6486 	if (!data)
6487 		return -ENOMEM;
6488 	size = SKB_WITH_OVERHEAD(size);
6489 
6490 	memcpy((struct skb_shared_info *)(data + size),
6491 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6492 	if (skb_orphan_frags(skb, gfp_mask)) {
6493 		skb_kfree_head(data, size);
6494 		return -ENOMEM;
6495 	}
6496 	shinfo = (struct skb_shared_info *)(data + size);
6497 	for (i = 0; i < nfrags; i++) {
6498 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6499 
6500 		if (pos + fsize > off) {
6501 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6502 
6503 			if (pos < off) {
6504 				/* Split frag.
6505 				 * We have two variants in this case:
6506 				 * 1. Move all the frag to the second
6507 				 *    part, if it is possible. F.e.
6508 				 *    this approach is mandatory for TUX,
6509 				 *    where splitting is expensive.
6510 				 * 2. Split is accurately. We make this.
6511 				 */
6512 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6513 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6514 			}
6515 			skb_frag_ref(skb, i);
6516 			k++;
6517 		}
6518 		pos += fsize;
6519 	}
6520 	shinfo->nr_frags = k;
6521 	if (skb_has_frag_list(skb))
6522 		skb_clone_fraglist(skb);
6523 
6524 	/* split line is in frag list */
6525 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6526 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6527 		if (skb_has_frag_list(skb))
6528 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6529 		skb_kfree_head(data, size);
6530 		return -ENOMEM;
6531 	}
6532 	skb_release_data(skb, SKB_CONSUMED);
6533 
6534 	skb->head = data;
6535 	skb->head_frag = 0;
6536 	skb->data = data;
6537 	skb_set_end_offset(skb, size);
6538 	skb_reset_tail_pointer(skb);
6539 	skb_headers_offset_update(skb, 0);
6540 	skb->cloned   = 0;
6541 	skb->hdr_len  = 0;
6542 	skb->nohdr    = 0;
6543 	skb->len -= off;
6544 	skb->data_len = skb->len;
6545 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6546 	return 0;
6547 }
6548 
6549 /* remove len bytes from the beginning of the skb */
6550 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6551 {
6552 	int headlen = skb_headlen(skb);
6553 
6554 	if (len < headlen)
6555 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6556 	else
6557 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6558 }
6559 
6560 /* Extract to_copy bytes starting at off from skb, and return this in
6561  * a new skb
6562  */
6563 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6564 			     int to_copy, gfp_t gfp)
6565 {
6566 	struct sk_buff  *clone = skb_clone(skb, gfp);
6567 
6568 	if (!clone)
6569 		return NULL;
6570 
6571 	if (pskb_carve(clone, off, gfp) < 0 ||
6572 	    pskb_trim(clone, to_copy)) {
6573 		kfree_skb(clone);
6574 		return NULL;
6575 	}
6576 	return clone;
6577 }
6578 EXPORT_SYMBOL(pskb_extract);
6579 
6580 /**
6581  * skb_condense - try to get rid of fragments/frag_list if possible
6582  * @skb: buffer
6583  *
6584  * Can be used to save memory before skb is added to a busy queue.
6585  * If packet has bytes in frags and enough tail room in skb->head,
6586  * pull all of them, so that we can free the frags right now and adjust
6587  * truesize.
6588  * Notes:
6589  *	We do not reallocate skb->head thus can not fail.
6590  *	Caller must re-evaluate skb->truesize if needed.
6591  */
6592 void skb_condense(struct sk_buff *skb)
6593 {
6594 	if (skb->data_len) {
6595 		if (skb->data_len > skb->end - skb->tail ||
6596 		    skb_cloned(skb))
6597 			return;
6598 
6599 		/* Nice, we can free page frag(s) right now */
6600 		__pskb_pull_tail(skb, skb->data_len);
6601 	}
6602 	/* At this point, skb->truesize might be over estimated,
6603 	 * because skb had a fragment, and fragments do not tell
6604 	 * their truesize.
6605 	 * When we pulled its content into skb->head, fragment
6606 	 * was freed, but __pskb_pull_tail() could not possibly
6607 	 * adjust skb->truesize, not knowing the frag truesize.
6608 	 */
6609 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6610 }
6611 EXPORT_SYMBOL(skb_condense);
6612 
6613 #ifdef CONFIG_SKB_EXTENSIONS
6614 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6615 {
6616 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6617 }
6618 
6619 /**
6620  * __skb_ext_alloc - allocate a new skb extensions storage
6621  *
6622  * @flags: See kmalloc().
6623  *
6624  * Returns the newly allocated pointer. The pointer can later attached to a
6625  * skb via __skb_ext_set().
6626  * Note: caller must handle the skb_ext as an opaque data.
6627  */
6628 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6629 {
6630 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6631 
6632 	if (new) {
6633 		memset(new->offset, 0, sizeof(new->offset));
6634 		refcount_set(&new->refcnt, 1);
6635 	}
6636 
6637 	return new;
6638 }
6639 
6640 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6641 					 unsigned int old_active)
6642 {
6643 	struct skb_ext *new;
6644 
6645 	if (refcount_read(&old->refcnt) == 1)
6646 		return old;
6647 
6648 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6649 	if (!new)
6650 		return NULL;
6651 
6652 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6653 	refcount_set(&new->refcnt, 1);
6654 
6655 #ifdef CONFIG_XFRM
6656 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6657 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6658 		unsigned int i;
6659 
6660 		for (i = 0; i < sp->len; i++)
6661 			xfrm_state_hold(sp->xvec[i]);
6662 	}
6663 #endif
6664 	__skb_ext_put(old);
6665 	return new;
6666 }
6667 
6668 /**
6669  * __skb_ext_set - attach the specified extension storage to this skb
6670  * @skb: buffer
6671  * @id: extension id
6672  * @ext: extension storage previously allocated via __skb_ext_alloc()
6673  *
6674  * Existing extensions, if any, are cleared.
6675  *
6676  * Returns the pointer to the extension.
6677  */
6678 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6679 		    struct skb_ext *ext)
6680 {
6681 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6682 
6683 	skb_ext_put(skb);
6684 	newlen = newoff + skb_ext_type_len[id];
6685 	ext->chunks = newlen;
6686 	ext->offset[id] = newoff;
6687 	skb->extensions = ext;
6688 	skb->active_extensions = 1 << id;
6689 	return skb_ext_get_ptr(ext, id);
6690 }
6691 
6692 /**
6693  * skb_ext_add - allocate space for given extension, COW if needed
6694  * @skb: buffer
6695  * @id: extension to allocate space for
6696  *
6697  * Allocates enough space for the given extension.
6698  * If the extension is already present, a pointer to that extension
6699  * is returned.
6700  *
6701  * If the skb was cloned, COW applies and the returned memory can be
6702  * modified without changing the extension space of clones buffers.
6703  *
6704  * Returns pointer to the extension or NULL on allocation failure.
6705  */
6706 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6707 {
6708 	struct skb_ext *new, *old = NULL;
6709 	unsigned int newlen, newoff;
6710 
6711 	if (skb->active_extensions) {
6712 		old = skb->extensions;
6713 
6714 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6715 		if (!new)
6716 			return NULL;
6717 
6718 		if (__skb_ext_exist(new, id))
6719 			goto set_active;
6720 
6721 		newoff = new->chunks;
6722 	} else {
6723 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6724 
6725 		new = __skb_ext_alloc(GFP_ATOMIC);
6726 		if (!new)
6727 			return NULL;
6728 	}
6729 
6730 	newlen = newoff + skb_ext_type_len[id];
6731 	new->chunks = newlen;
6732 	new->offset[id] = newoff;
6733 set_active:
6734 	skb->slow_gro = 1;
6735 	skb->extensions = new;
6736 	skb->active_extensions |= 1 << id;
6737 	return skb_ext_get_ptr(new, id);
6738 }
6739 EXPORT_SYMBOL(skb_ext_add);
6740 
6741 #ifdef CONFIG_XFRM
6742 static void skb_ext_put_sp(struct sec_path *sp)
6743 {
6744 	unsigned int i;
6745 
6746 	for (i = 0; i < sp->len; i++)
6747 		xfrm_state_put(sp->xvec[i]);
6748 }
6749 #endif
6750 
6751 #ifdef CONFIG_MCTP_FLOWS
6752 static void skb_ext_put_mctp(struct mctp_flow *flow)
6753 {
6754 	if (flow->key)
6755 		mctp_key_unref(flow->key);
6756 }
6757 #endif
6758 
6759 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6760 {
6761 	struct skb_ext *ext = skb->extensions;
6762 
6763 	skb->active_extensions &= ~(1 << id);
6764 	if (skb->active_extensions == 0) {
6765 		skb->extensions = NULL;
6766 		__skb_ext_put(ext);
6767 #ifdef CONFIG_XFRM
6768 	} else if (id == SKB_EXT_SEC_PATH &&
6769 		   refcount_read(&ext->refcnt) == 1) {
6770 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6771 
6772 		skb_ext_put_sp(sp);
6773 		sp->len = 0;
6774 #endif
6775 	}
6776 }
6777 EXPORT_SYMBOL(__skb_ext_del);
6778 
6779 void __skb_ext_put(struct skb_ext *ext)
6780 {
6781 	/* If this is last clone, nothing can increment
6782 	 * it after check passes.  Avoids one atomic op.
6783 	 */
6784 	if (refcount_read(&ext->refcnt) == 1)
6785 		goto free_now;
6786 
6787 	if (!refcount_dec_and_test(&ext->refcnt))
6788 		return;
6789 free_now:
6790 #ifdef CONFIG_XFRM
6791 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6792 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6793 #endif
6794 #ifdef CONFIG_MCTP_FLOWS
6795 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6796 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6797 #endif
6798 
6799 	kmem_cache_free(skbuff_ext_cache, ext);
6800 }
6801 EXPORT_SYMBOL(__skb_ext_put);
6802 #endif /* CONFIG_SKB_EXTENSIONS */
6803 
6804 /**
6805  * skb_attempt_defer_free - queue skb for remote freeing
6806  * @skb: buffer
6807  *
6808  * Put @skb in a per-cpu list, using the cpu which
6809  * allocated the skb/pages to reduce false sharing
6810  * and memory zone spinlock contention.
6811  */
6812 void skb_attempt_defer_free(struct sk_buff *skb)
6813 {
6814 	int cpu = skb->alloc_cpu;
6815 	struct softnet_data *sd;
6816 	unsigned long flags;
6817 	unsigned int defer_max;
6818 	bool kick;
6819 
6820 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6821 	    !cpu_online(cpu) ||
6822 	    cpu == raw_smp_processor_id()) {
6823 nodefer:	__kfree_skb(skb);
6824 		return;
6825 	}
6826 
6827 	sd = &per_cpu(softnet_data, cpu);
6828 	defer_max = READ_ONCE(sysctl_skb_defer_max);
6829 	if (READ_ONCE(sd->defer_count) >= defer_max)
6830 		goto nodefer;
6831 
6832 	spin_lock_irqsave(&sd->defer_lock, flags);
6833 	/* Send an IPI every time queue reaches half capacity. */
6834 	kick = sd->defer_count == (defer_max >> 1);
6835 	/* Paired with the READ_ONCE() few lines above */
6836 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6837 
6838 	skb->next = sd->defer_list;
6839 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
6840 	WRITE_ONCE(sd->defer_list, skb);
6841 	spin_unlock_irqrestore(&sd->defer_lock, flags);
6842 
6843 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6844 	 * if we are unlucky enough (this seems very unlikely).
6845 	 */
6846 	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6847 		smp_call_function_single_async(cpu, &sd->defer_csd);
6848 }
6849