1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 #include <linux/kcov.h> 64 65 #include <net/protocol.h> 66 #include <net/dst.h> 67 #include <net/sock.h> 68 #include <net/checksum.h> 69 #include <net/ip6_checksum.h> 70 #include <net/xfrm.h> 71 #include <net/mpls.h> 72 #include <net/mptcp.h> 73 #include <net/mctp.h> 74 #include <net/page_pool.h> 75 76 #include <linux/uaccess.h> 77 #include <trace/events/skb.h> 78 #include <linux/highmem.h> 79 #include <linux/capability.h> 80 #include <linux/user_namespace.h> 81 #include <linux/indirect_call_wrapper.h> 82 83 #include "datagram.h" 84 #include "sock_destructor.h" 85 86 struct kmem_cache *skbuff_head_cache __ro_after_init; 87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 88 #ifdef CONFIG_SKB_EXTENSIONS 89 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 90 #endif 91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 92 EXPORT_SYMBOL(sysctl_max_skb_frags); 93 94 /** 95 * skb_panic - private function for out-of-line support 96 * @skb: buffer 97 * @sz: size 98 * @addr: address 99 * @msg: skb_over_panic or skb_under_panic 100 * 101 * Out-of-line support for skb_put() and skb_push(). 102 * Called via the wrapper skb_over_panic() or skb_under_panic(). 103 * Keep out of line to prevent kernel bloat. 104 * __builtin_return_address is not used because it is not always reliable. 105 */ 106 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 107 const char msg[]) 108 { 109 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 110 msg, addr, skb->len, sz, skb->head, skb->data, 111 (unsigned long)skb->tail, (unsigned long)skb->end, 112 skb->dev ? skb->dev->name : "<NULL>"); 113 BUG(); 114 } 115 116 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 117 { 118 skb_panic(skb, sz, addr, __func__); 119 } 120 121 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 122 { 123 skb_panic(skb, sz, addr, __func__); 124 } 125 126 #define NAPI_SKB_CACHE_SIZE 64 127 #define NAPI_SKB_CACHE_BULK 16 128 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 129 130 struct napi_alloc_cache { 131 struct page_frag_cache page; 132 unsigned int skb_count; 133 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 134 }; 135 136 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 137 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 138 139 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 140 { 141 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 142 143 fragsz = SKB_DATA_ALIGN(fragsz); 144 145 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 146 } 147 EXPORT_SYMBOL(__napi_alloc_frag_align); 148 149 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 150 { 151 void *data; 152 153 fragsz = SKB_DATA_ALIGN(fragsz); 154 if (in_hardirq() || irqs_disabled()) { 155 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 156 157 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 158 } else { 159 struct napi_alloc_cache *nc; 160 161 local_bh_disable(); 162 nc = this_cpu_ptr(&napi_alloc_cache); 163 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 164 local_bh_enable(); 165 } 166 return data; 167 } 168 EXPORT_SYMBOL(__netdev_alloc_frag_align); 169 170 static struct sk_buff *napi_skb_cache_get(void) 171 { 172 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 173 struct sk_buff *skb; 174 175 if (unlikely(!nc->skb_count)) 176 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, 177 GFP_ATOMIC, 178 NAPI_SKB_CACHE_BULK, 179 nc->skb_cache); 180 if (unlikely(!nc->skb_count)) 181 return NULL; 182 183 skb = nc->skb_cache[--nc->skb_count]; 184 kasan_unpoison_object_data(skbuff_head_cache, skb); 185 186 return skb; 187 } 188 189 /* Caller must provide SKB that is memset cleared */ 190 static void __build_skb_around(struct sk_buff *skb, void *data, 191 unsigned int frag_size) 192 { 193 struct skb_shared_info *shinfo; 194 unsigned int size = frag_size ? : ksize(data); 195 196 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 197 198 /* Assumes caller memset cleared SKB */ 199 skb->truesize = SKB_TRUESIZE(size); 200 refcount_set(&skb->users, 1); 201 skb->head = data; 202 skb->data = data; 203 skb_reset_tail_pointer(skb); 204 skb_set_end_offset(skb, size); 205 skb->mac_header = (typeof(skb->mac_header))~0U; 206 skb->transport_header = (typeof(skb->transport_header))~0U; 207 208 /* make sure we initialize shinfo sequentially */ 209 shinfo = skb_shinfo(skb); 210 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 211 atomic_set(&shinfo->dataref, 1); 212 213 skb_set_kcov_handle(skb, kcov_common_handle()); 214 } 215 216 /** 217 * __build_skb - build a network buffer 218 * @data: data buffer provided by caller 219 * @frag_size: size of data, or 0 if head was kmalloced 220 * 221 * Allocate a new &sk_buff. Caller provides space holding head and 222 * skb_shared_info. @data must have been allocated by kmalloc() only if 223 * @frag_size is 0, otherwise data should come from the page allocator 224 * or vmalloc() 225 * The return is the new skb buffer. 226 * On a failure the return is %NULL, and @data is not freed. 227 * Notes : 228 * Before IO, driver allocates only data buffer where NIC put incoming frame 229 * Driver should add room at head (NET_SKB_PAD) and 230 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 231 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 232 * before giving packet to stack. 233 * RX rings only contains data buffers, not full skbs. 234 */ 235 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 236 { 237 struct sk_buff *skb; 238 239 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 240 if (unlikely(!skb)) 241 return NULL; 242 243 memset(skb, 0, offsetof(struct sk_buff, tail)); 244 __build_skb_around(skb, data, frag_size); 245 246 return skb; 247 } 248 249 /* build_skb() is wrapper over __build_skb(), that specifically 250 * takes care of skb->head and skb->pfmemalloc 251 * This means that if @frag_size is not zero, then @data must be backed 252 * by a page fragment, not kmalloc() or vmalloc() 253 */ 254 struct sk_buff *build_skb(void *data, unsigned int frag_size) 255 { 256 struct sk_buff *skb = __build_skb(data, frag_size); 257 258 if (skb && frag_size) { 259 skb->head_frag = 1; 260 if (page_is_pfmemalloc(virt_to_head_page(data))) 261 skb->pfmemalloc = 1; 262 } 263 return skb; 264 } 265 EXPORT_SYMBOL(build_skb); 266 267 /** 268 * build_skb_around - build a network buffer around provided skb 269 * @skb: sk_buff provide by caller, must be memset cleared 270 * @data: data buffer provided by caller 271 * @frag_size: size of data, or 0 if head was kmalloced 272 */ 273 struct sk_buff *build_skb_around(struct sk_buff *skb, 274 void *data, unsigned int frag_size) 275 { 276 if (unlikely(!skb)) 277 return NULL; 278 279 __build_skb_around(skb, data, frag_size); 280 281 if (frag_size) { 282 skb->head_frag = 1; 283 if (page_is_pfmemalloc(virt_to_head_page(data))) 284 skb->pfmemalloc = 1; 285 } 286 return skb; 287 } 288 EXPORT_SYMBOL(build_skb_around); 289 290 /** 291 * __napi_build_skb - build a network buffer 292 * @data: data buffer provided by caller 293 * @frag_size: size of data, or 0 if head was kmalloced 294 * 295 * Version of __build_skb() that uses NAPI percpu caches to obtain 296 * skbuff_head instead of inplace allocation. 297 * 298 * Returns a new &sk_buff on success, %NULL on allocation failure. 299 */ 300 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 301 { 302 struct sk_buff *skb; 303 304 skb = napi_skb_cache_get(); 305 if (unlikely(!skb)) 306 return NULL; 307 308 memset(skb, 0, offsetof(struct sk_buff, tail)); 309 __build_skb_around(skb, data, frag_size); 310 311 return skb; 312 } 313 314 /** 315 * napi_build_skb - build a network buffer 316 * @data: data buffer provided by caller 317 * @frag_size: size of data, or 0 if head was kmalloced 318 * 319 * Version of __napi_build_skb() that takes care of skb->head_frag 320 * and skb->pfmemalloc when the data is a page or page fragment. 321 * 322 * Returns a new &sk_buff on success, %NULL on allocation failure. 323 */ 324 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 325 { 326 struct sk_buff *skb = __napi_build_skb(data, frag_size); 327 328 if (likely(skb) && frag_size) { 329 skb->head_frag = 1; 330 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 331 } 332 333 return skb; 334 } 335 EXPORT_SYMBOL(napi_build_skb); 336 337 /* 338 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 339 * the caller if emergency pfmemalloc reserves are being used. If it is and 340 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 341 * may be used. Otherwise, the packet data may be discarded until enough 342 * memory is free 343 */ 344 static void *kmalloc_reserve(size_t size, gfp_t flags, int node, 345 bool *pfmemalloc) 346 { 347 void *obj; 348 bool ret_pfmemalloc = false; 349 350 /* 351 * Try a regular allocation, when that fails and we're not entitled 352 * to the reserves, fail. 353 */ 354 obj = kmalloc_node_track_caller(size, 355 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 356 node); 357 if (obj || !(gfp_pfmemalloc_allowed(flags))) 358 goto out; 359 360 /* Try again but now we are using pfmemalloc reserves */ 361 ret_pfmemalloc = true; 362 obj = kmalloc_node_track_caller(size, flags, node); 363 364 out: 365 if (pfmemalloc) 366 *pfmemalloc = ret_pfmemalloc; 367 368 return obj; 369 } 370 371 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 372 * 'private' fields and also do memory statistics to find all the 373 * [BEEP] leaks. 374 * 375 */ 376 377 /** 378 * __alloc_skb - allocate a network buffer 379 * @size: size to allocate 380 * @gfp_mask: allocation mask 381 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 382 * instead of head cache and allocate a cloned (child) skb. 383 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 384 * allocations in case the data is required for writeback 385 * @node: numa node to allocate memory on 386 * 387 * Allocate a new &sk_buff. The returned buffer has no headroom and a 388 * tail room of at least size bytes. The object has a reference count 389 * of one. The return is the buffer. On a failure the return is %NULL. 390 * 391 * Buffers may only be allocated from interrupts using a @gfp_mask of 392 * %GFP_ATOMIC. 393 */ 394 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 395 int flags, int node) 396 { 397 struct kmem_cache *cache; 398 struct sk_buff *skb; 399 unsigned int osize; 400 bool pfmemalloc; 401 u8 *data; 402 403 cache = (flags & SKB_ALLOC_FCLONE) 404 ? skbuff_fclone_cache : skbuff_head_cache; 405 406 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 407 gfp_mask |= __GFP_MEMALLOC; 408 409 /* Get the HEAD */ 410 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 411 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 412 skb = napi_skb_cache_get(); 413 else 414 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 415 if (unlikely(!skb)) 416 return NULL; 417 prefetchw(skb); 418 419 /* We do our best to align skb_shared_info on a separate cache 420 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 421 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 422 * Both skb->head and skb_shared_info are cache line aligned. 423 */ 424 size = SKB_DATA_ALIGN(size); 425 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 426 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 427 if (unlikely(!data)) 428 goto nodata; 429 /* kmalloc(size) might give us more room than requested. 430 * Put skb_shared_info exactly at the end of allocated zone, 431 * to allow max possible filling before reallocation. 432 */ 433 osize = ksize(data); 434 size = SKB_WITH_OVERHEAD(osize); 435 prefetchw(data + size); 436 437 /* 438 * Only clear those fields we need to clear, not those that we will 439 * actually initialise below. Hence, don't put any more fields after 440 * the tail pointer in struct sk_buff! 441 */ 442 memset(skb, 0, offsetof(struct sk_buff, tail)); 443 __build_skb_around(skb, data, osize); 444 skb->pfmemalloc = pfmemalloc; 445 446 if (flags & SKB_ALLOC_FCLONE) { 447 struct sk_buff_fclones *fclones; 448 449 fclones = container_of(skb, struct sk_buff_fclones, skb1); 450 451 skb->fclone = SKB_FCLONE_ORIG; 452 refcount_set(&fclones->fclone_ref, 1); 453 454 fclones->skb2.fclone = SKB_FCLONE_CLONE; 455 } 456 457 return skb; 458 459 nodata: 460 kmem_cache_free(cache, skb); 461 return NULL; 462 } 463 EXPORT_SYMBOL(__alloc_skb); 464 465 /** 466 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 467 * @dev: network device to receive on 468 * @len: length to allocate 469 * @gfp_mask: get_free_pages mask, passed to alloc_skb 470 * 471 * Allocate a new &sk_buff and assign it a usage count of one. The 472 * buffer has NET_SKB_PAD headroom built in. Users should allocate 473 * the headroom they think they need without accounting for the 474 * built in space. The built in space is used for optimisations. 475 * 476 * %NULL is returned if there is no free memory. 477 */ 478 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 479 gfp_t gfp_mask) 480 { 481 struct page_frag_cache *nc; 482 struct sk_buff *skb; 483 bool pfmemalloc; 484 void *data; 485 486 len += NET_SKB_PAD; 487 488 /* If requested length is either too small or too big, 489 * we use kmalloc() for skb->head allocation. 490 */ 491 if (len <= SKB_WITH_OVERHEAD(1024) || 492 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 493 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 494 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 495 if (!skb) 496 goto skb_fail; 497 goto skb_success; 498 } 499 500 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 501 len = SKB_DATA_ALIGN(len); 502 503 if (sk_memalloc_socks()) 504 gfp_mask |= __GFP_MEMALLOC; 505 506 if (in_hardirq() || irqs_disabled()) { 507 nc = this_cpu_ptr(&netdev_alloc_cache); 508 data = page_frag_alloc(nc, len, gfp_mask); 509 pfmemalloc = nc->pfmemalloc; 510 } else { 511 local_bh_disable(); 512 nc = this_cpu_ptr(&napi_alloc_cache.page); 513 data = page_frag_alloc(nc, len, gfp_mask); 514 pfmemalloc = nc->pfmemalloc; 515 local_bh_enable(); 516 } 517 518 if (unlikely(!data)) 519 return NULL; 520 521 skb = __build_skb(data, len); 522 if (unlikely(!skb)) { 523 skb_free_frag(data); 524 return NULL; 525 } 526 527 if (pfmemalloc) 528 skb->pfmemalloc = 1; 529 skb->head_frag = 1; 530 531 skb_success: 532 skb_reserve(skb, NET_SKB_PAD); 533 skb->dev = dev; 534 535 skb_fail: 536 return skb; 537 } 538 EXPORT_SYMBOL(__netdev_alloc_skb); 539 540 /** 541 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 542 * @napi: napi instance this buffer was allocated for 543 * @len: length to allocate 544 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 545 * 546 * Allocate a new sk_buff for use in NAPI receive. This buffer will 547 * attempt to allocate the head from a special reserved region used 548 * only for NAPI Rx allocation. By doing this we can save several 549 * CPU cycles by avoiding having to disable and re-enable IRQs. 550 * 551 * %NULL is returned if there is no free memory. 552 */ 553 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 554 gfp_t gfp_mask) 555 { 556 struct napi_alloc_cache *nc; 557 struct sk_buff *skb; 558 void *data; 559 560 len += NET_SKB_PAD + NET_IP_ALIGN; 561 562 /* If requested length is either too small or too big, 563 * we use kmalloc() for skb->head allocation. 564 */ 565 if (len <= SKB_WITH_OVERHEAD(1024) || 566 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 567 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 568 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 569 NUMA_NO_NODE); 570 if (!skb) 571 goto skb_fail; 572 goto skb_success; 573 } 574 575 nc = this_cpu_ptr(&napi_alloc_cache); 576 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 577 len = SKB_DATA_ALIGN(len); 578 579 if (sk_memalloc_socks()) 580 gfp_mask |= __GFP_MEMALLOC; 581 582 data = page_frag_alloc(&nc->page, len, gfp_mask); 583 if (unlikely(!data)) 584 return NULL; 585 586 skb = __napi_build_skb(data, len); 587 if (unlikely(!skb)) { 588 skb_free_frag(data); 589 return NULL; 590 } 591 592 if (nc->page.pfmemalloc) 593 skb->pfmemalloc = 1; 594 skb->head_frag = 1; 595 596 skb_success: 597 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 598 skb->dev = napi->dev; 599 600 skb_fail: 601 return skb; 602 } 603 EXPORT_SYMBOL(__napi_alloc_skb); 604 605 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 606 int size, unsigned int truesize) 607 { 608 skb_fill_page_desc(skb, i, page, off, size); 609 skb->len += size; 610 skb->data_len += size; 611 skb->truesize += truesize; 612 } 613 EXPORT_SYMBOL(skb_add_rx_frag); 614 615 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 616 unsigned int truesize) 617 { 618 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 619 620 skb_frag_size_add(frag, size); 621 skb->len += size; 622 skb->data_len += size; 623 skb->truesize += truesize; 624 } 625 EXPORT_SYMBOL(skb_coalesce_rx_frag); 626 627 static void skb_drop_list(struct sk_buff **listp) 628 { 629 kfree_skb_list(*listp); 630 *listp = NULL; 631 } 632 633 static inline void skb_drop_fraglist(struct sk_buff *skb) 634 { 635 skb_drop_list(&skb_shinfo(skb)->frag_list); 636 } 637 638 static void skb_clone_fraglist(struct sk_buff *skb) 639 { 640 struct sk_buff *list; 641 642 skb_walk_frags(skb, list) 643 skb_get(list); 644 } 645 646 static void skb_free_head(struct sk_buff *skb) 647 { 648 unsigned char *head = skb->head; 649 650 if (skb->head_frag) { 651 if (skb_pp_recycle(skb, head)) 652 return; 653 skb_free_frag(head); 654 } else { 655 kfree(head); 656 } 657 } 658 659 static void skb_release_data(struct sk_buff *skb) 660 { 661 struct skb_shared_info *shinfo = skb_shinfo(skb); 662 int i; 663 664 if (skb->cloned && 665 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 666 &shinfo->dataref)) 667 goto exit; 668 669 skb_zcopy_clear(skb, true); 670 671 for (i = 0; i < shinfo->nr_frags; i++) 672 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 673 674 if (shinfo->frag_list) 675 kfree_skb_list(shinfo->frag_list); 676 677 skb_free_head(skb); 678 exit: 679 /* When we clone an SKB we copy the reycling bit. The pp_recycle 680 * bit is only set on the head though, so in order to avoid races 681 * while trying to recycle fragments on __skb_frag_unref() we need 682 * to make one SKB responsible for triggering the recycle path. 683 * So disable the recycling bit if an SKB is cloned and we have 684 * additional references to the fragmented part of the SKB. 685 * Eventually the last SKB will have the recycling bit set and it's 686 * dataref set to 0, which will trigger the recycling 687 */ 688 skb->pp_recycle = 0; 689 } 690 691 /* 692 * Free an skbuff by memory without cleaning the state. 693 */ 694 static void kfree_skbmem(struct sk_buff *skb) 695 { 696 struct sk_buff_fclones *fclones; 697 698 switch (skb->fclone) { 699 case SKB_FCLONE_UNAVAILABLE: 700 kmem_cache_free(skbuff_head_cache, skb); 701 return; 702 703 case SKB_FCLONE_ORIG: 704 fclones = container_of(skb, struct sk_buff_fclones, skb1); 705 706 /* We usually free the clone (TX completion) before original skb 707 * This test would have no chance to be true for the clone, 708 * while here, branch prediction will be good. 709 */ 710 if (refcount_read(&fclones->fclone_ref) == 1) 711 goto fastpath; 712 break; 713 714 default: /* SKB_FCLONE_CLONE */ 715 fclones = container_of(skb, struct sk_buff_fclones, skb2); 716 break; 717 } 718 if (!refcount_dec_and_test(&fclones->fclone_ref)) 719 return; 720 fastpath: 721 kmem_cache_free(skbuff_fclone_cache, fclones); 722 } 723 724 void skb_release_head_state(struct sk_buff *skb) 725 { 726 skb_dst_drop(skb); 727 if (skb->destructor) { 728 WARN_ON(in_hardirq()); 729 skb->destructor(skb); 730 } 731 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 732 nf_conntrack_put(skb_nfct(skb)); 733 #endif 734 skb_ext_put(skb); 735 } 736 737 /* Free everything but the sk_buff shell. */ 738 static void skb_release_all(struct sk_buff *skb) 739 { 740 skb_release_head_state(skb); 741 if (likely(skb->head)) 742 skb_release_data(skb); 743 } 744 745 /** 746 * __kfree_skb - private function 747 * @skb: buffer 748 * 749 * Free an sk_buff. Release anything attached to the buffer. 750 * Clean the state. This is an internal helper function. Users should 751 * always call kfree_skb 752 */ 753 754 void __kfree_skb(struct sk_buff *skb) 755 { 756 skb_release_all(skb); 757 kfree_skbmem(skb); 758 } 759 EXPORT_SYMBOL(__kfree_skb); 760 761 /** 762 * kfree_skb_reason - free an sk_buff with special reason 763 * @skb: buffer to free 764 * @reason: reason why this skb is dropped 765 * 766 * Drop a reference to the buffer and free it if the usage count has 767 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 768 * tracepoint. 769 */ 770 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 771 { 772 if (!skb_unref(skb)) 773 return; 774 775 trace_kfree_skb(skb, __builtin_return_address(0), reason); 776 __kfree_skb(skb); 777 } 778 EXPORT_SYMBOL(kfree_skb_reason); 779 780 void kfree_skb_list(struct sk_buff *segs) 781 { 782 while (segs) { 783 struct sk_buff *next = segs->next; 784 785 kfree_skb(segs); 786 segs = next; 787 } 788 } 789 EXPORT_SYMBOL(kfree_skb_list); 790 791 /* Dump skb information and contents. 792 * 793 * Must only be called from net_ratelimit()-ed paths. 794 * 795 * Dumps whole packets if full_pkt, only headers otherwise. 796 */ 797 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 798 { 799 struct skb_shared_info *sh = skb_shinfo(skb); 800 struct net_device *dev = skb->dev; 801 struct sock *sk = skb->sk; 802 struct sk_buff *list_skb; 803 bool has_mac, has_trans; 804 int headroom, tailroom; 805 int i, len, seg_len; 806 807 if (full_pkt) 808 len = skb->len; 809 else 810 len = min_t(int, skb->len, MAX_HEADER + 128); 811 812 headroom = skb_headroom(skb); 813 tailroom = skb_tailroom(skb); 814 815 has_mac = skb_mac_header_was_set(skb); 816 has_trans = skb_transport_header_was_set(skb); 817 818 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 819 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 820 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 821 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 822 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 823 level, skb->len, headroom, skb_headlen(skb), tailroom, 824 has_mac ? skb->mac_header : -1, 825 has_mac ? skb_mac_header_len(skb) : -1, 826 skb->network_header, 827 has_trans ? skb_network_header_len(skb) : -1, 828 has_trans ? skb->transport_header : -1, 829 sh->tx_flags, sh->nr_frags, 830 sh->gso_size, sh->gso_type, sh->gso_segs, 831 skb->csum, skb->ip_summed, skb->csum_complete_sw, 832 skb->csum_valid, skb->csum_level, 833 skb->hash, skb->sw_hash, skb->l4_hash, 834 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 835 836 if (dev) 837 printk("%sdev name=%s feat=%pNF\n", 838 level, dev->name, &dev->features); 839 if (sk) 840 printk("%ssk family=%hu type=%u proto=%u\n", 841 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 842 843 if (full_pkt && headroom) 844 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 845 16, 1, skb->head, headroom, false); 846 847 seg_len = min_t(int, skb_headlen(skb), len); 848 if (seg_len) 849 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 850 16, 1, skb->data, seg_len, false); 851 len -= seg_len; 852 853 if (full_pkt && tailroom) 854 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 855 16, 1, skb_tail_pointer(skb), tailroom, false); 856 857 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 858 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 859 u32 p_off, p_len, copied; 860 struct page *p; 861 u8 *vaddr; 862 863 skb_frag_foreach_page(frag, skb_frag_off(frag), 864 skb_frag_size(frag), p, p_off, p_len, 865 copied) { 866 seg_len = min_t(int, p_len, len); 867 vaddr = kmap_atomic(p); 868 print_hex_dump(level, "skb frag: ", 869 DUMP_PREFIX_OFFSET, 870 16, 1, vaddr + p_off, seg_len, false); 871 kunmap_atomic(vaddr); 872 len -= seg_len; 873 if (!len) 874 break; 875 } 876 } 877 878 if (full_pkt && skb_has_frag_list(skb)) { 879 printk("skb fraglist:\n"); 880 skb_walk_frags(skb, list_skb) 881 skb_dump(level, list_skb, true); 882 } 883 } 884 EXPORT_SYMBOL(skb_dump); 885 886 /** 887 * skb_tx_error - report an sk_buff xmit error 888 * @skb: buffer that triggered an error 889 * 890 * Report xmit error if a device callback is tracking this skb. 891 * skb must be freed afterwards. 892 */ 893 void skb_tx_error(struct sk_buff *skb) 894 { 895 skb_zcopy_clear(skb, true); 896 } 897 EXPORT_SYMBOL(skb_tx_error); 898 899 #ifdef CONFIG_TRACEPOINTS 900 /** 901 * consume_skb - free an skbuff 902 * @skb: buffer to free 903 * 904 * Drop a ref to the buffer and free it if the usage count has hit zero 905 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 906 * is being dropped after a failure and notes that 907 */ 908 void consume_skb(struct sk_buff *skb) 909 { 910 if (!skb_unref(skb)) 911 return; 912 913 trace_consume_skb(skb); 914 __kfree_skb(skb); 915 } 916 EXPORT_SYMBOL(consume_skb); 917 #endif 918 919 /** 920 * __consume_stateless_skb - free an skbuff, assuming it is stateless 921 * @skb: buffer to free 922 * 923 * Alike consume_skb(), but this variant assumes that this is the last 924 * skb reference and all the head states have been already dropped 925 */ 926 void __consume_stateless_skb(struct sk_buff *skb) 927 { 928 trace_consume_skb(skb); 929 skb_release_data(skb); 930 kfree_skbmem(skb); 931 } 932 933 static void napi_skb_cache_put(struct sk_buff *skb) 934 { 935 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 936 u32 i; 937 938 kasan_poison_object_data(skbuff_head_cache, skb); 939 nc->skb_cache[nc->skb_count++] = skb; 940 941 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 942 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 943 kasan_unpoison_object_data(skbuff_head_cache, 944 nc->skb_cache[i]); 945 946 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF, 947 nc->skb_cache + NAPI_SKB_CACHE_HALF); 948 nc->skb_count = NAPI_SKB_CACHE_HALF; 949 } 950 } 951 952 void __kfree_skb_defer(struct sk_buff *skb) 953 { 954 skb_release_all(skb); 955 napi_skb_cache_put(skb); 956 } 957 958 void napi_skb_free_stolen_head(struct sk_buff *skb) 959 { 960 if (unlikely(skb->slow_gro)) { 961 nf_reset_ct(skb); 962 skb_dst_drop(skb); 963 skb_ext_put(skb); 964 skb_orphan(skb); 965 skb->slow_gro = 0; 966 } 967 napi_skb_cache_put(skb); 968 } 969 970 void napi_consume_skb(struct sk_buff *skb, int budget) 971 { 972 /* Zero budget indicate non-NAPI context called us, like netpoll */ 973 if (unlikely(!budget)) { 974 dev_consume_skb_any(skb); 975 return; 976 } 977 978 lockdep_assert_in_softirq(); 979 980 if (!skb_unref(skb)) 981 return; 982 983 /* if reaching here SKB is ready to free */ 984 trace_consume_skb(skb); 985 986 /* if SKB is a clone, don't handle this case */ 987 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 988 __kfree_skb(skb); 989 return; 990 } 991 992 skb_release_all(skb); 993 napi_skb_cache_put(skb); 994 } 995 EXPORT_SYMBOL(napi_consume_skb); 996 997 /* Make sure a field is contained by headers group */ 998 #define CHECK_SKB_FIELD(field) \ 999 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1000 offsetof(struct sk_buff, headers.field)); \ 1001 1002 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1003 { 1004 new->tstamp = old->tstamp; 1005 /* We do not copy old->sk */ 1006 new->dev = old->dev; 1007 memcpy(new->cb, old->cb, sizeof(old->cb)); 1008 skb_dst_copy(new, old); 1009 __skb_ext_copy(new, old); 1010 __nf_copy(new, old, false); 1011 1012 /* Note : this field could be in the headers group. 1013 * It is not yet because we do not want to have a 16 bit hole 1014 */ 1015 new->queue_mapping = old->queue_mapping; 1016 1017 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1018 CHECK_SKB_FIELD(protocol); 1019 CHECK_SKB_FIELD(csum); 1020 CHECK_SKB_FIELD(hash); 1021 CHECK_SKB_FIELD(priority); 1022 CHECK_SKB_FIELD(skb_iif); 1023 CHECK_SKB_FIELD(vlan_proto); 1024 CHECK_SKB_FIELD(vlan_tci); 1025 CHECK_SKB_FIELD(transport_header); 1026 CHECK_SKB_FIELD(network_header); 1027 CHECK_SKB_FIELD(mac_header); 1028 CHECK_SKB_FIELD(inner_protocol); 1029 CHECK_SKB_FIELD(inner_transport_header); 1030 CHECK_SKB_FIELD(inner_network_header); 1031 CHECK_SKB_FIELD(inner_mac_header); 1032 CHECK_SKB_FIELD(mark); 1033 #ifdef CONFIG_NETWORK_SECMARK 1034 CHECK_SKB_FIELD(secmark); 1035 #endif 1036 #ifdef CONFIG_NET_RX_BUSY_POLL 1037 CHECK_SKB_FIELD(napi_id); 1038 #endif 1039 #ifdef CONFIG_XPS 1040 CHECK_SKB_FIELD(sender_cpu); 1041 #endif 1042 #ifdef CONFIG_NET_SCHED 1043 CHECK_SKB_FIELD(tc_index); 1044 #endif 1045 1046 } 1047 1048 /* 1049 * You should not add any new code to this function. Add it to 1050 * __copy_skb_header above instead. 1051 */ 1052 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1053 { 1054 #define C(x) n->x = skb->x 1055 1056 n->next = n->prev = NULL; 1057 n->sk = NULL; 1058 __copy_skb_header(n, skb); 1059 1060 C(len); 1061 C(data_len); 1062 C(mac_len); 1063 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1064 n->cloned = 1; 1065 n->nohdr = 0; 1066 n->peeked = 0; 1067 C(pfmemalloc); 1068 C(pp_recycle); 1069 n->destructor = NULL; 1070 C(tail); 1071 C(end); 1072 C(head); 1073 C(head_frag); 1074 C(data); 1075 C(truesize); 1076 refcount_set(&n->users, 1); 1077 1078 atomic_inc(&(skb_shinfo(skb)->dataref)); 1079 skb->cloned = 1; 1080 1081 return n; 1082 #undef C 1083 } 1084 1085 /** 1086 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1087 * @first: first sk_buff of the msg 1088 */ 1089 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1090 { 1091 struct sk_buff *n; 1092 1093 n = alloc_skb(0, GFP_ATOMIC); 1094 if (!n) 1095 return NULL; 1096 1097 n->len = first->len; 1098 n->data_len = first->len; 1099 n->truesize = first->truesize; 1100 1101 skb_shinfo(n)->frag_list = first; 1102 1103 __copy_skb_header(n, first); 1104 n->destructor = NULL; 1105 1106 return n; 1107 } 1108 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1109 1110 /** 1111 * skb_morph - morph one skb into another 1112 * @dst: the skb to receive the contents 1113 * @src: the skb to supply the contents 1114 * 1115 * This is identical to skb_clone except that the target skb is 1116 * supplied by the user. 1117 * 1118 * The target skb is returned upon exit. 1119 */ 1120 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1121 { 1122 skb_release_all(dst); 1123 return __skb_clone(dst, src); 1124 } 1125 EXPORT_SYMBOL_GPL(skb_morph); 1126 1127 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1128 { 1129 unsigned long max_pg, num_pg, new_pg, old_pg; 1130 struct user_struct *user; 1131 1132 if (capable(CAP_IPC_LOCK) || !size) 1133 return 0; 1134 1135 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1136 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1137 user = mmp->user ? : current_user(); 1138 1139 do { 1140 old_pg = atomic_long_read(&user->locked_vm); 1141 new_pg = old_pg + num_pg; 1142 if (new_pg > max_pg) 1143 return -ENOBUFS; 1144 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1145 old_pg); 1146 1147 if (!mmp->user) { 1148 mmp->user = get_uid(user); 1149 mmp->num_pg = num_pg; 1150 } else { 1151 mmp->num_pg += num_pg; 1152 } 1153 1154 return 0; 1155 } 1156 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1157 1158 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1159 { 1160 if (mmp->user) { 1161 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1162 free_uid(mmp->user); 1163 } 1164 } 1165 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1166 1167 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1168 { 1169 struct ubuf_info *uarg; 1170 struct sk_buff *skb; 1171 1172 WARN_ON_ONCE(!in_task()); 1173 1174 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1175 if (!skb) 1176 return NULL; 1177 1178 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1179 uarg = (void *)skb->cb; 1180 uarg->mmp.user = NULL; 1181 1182 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1183 kfree_skb(skb); 1184 return NULL; 1185 } 1186 1187 uarg->callback = msg_zerocopy_callback; 1188 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1189 uarg->len = 1; 1190 uarg->bytelen = size; 1191 uarg->zerocopy = 1; 1192 uarg->flags = SKBFL_ZEROCOPY_FRAG; 1193 refcount_set(&uarg->refcnt, 1); 1194 sock_hold(sk); 1195 1196 return uarg; 1197 } 1198 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc); 1199 1200 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1201 { 1202 return container_of((void *)uarg, struct sk_buff, cb); 1203 } 1204 1205 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1206 struct ubuf_info *uarg) 1207 { 1208 if (uarg) { 1209 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1210 u32 bytelen, next; 1211 1212 /* realloc only when socket is locked (TCP, UDP cork), 1213 * so uarg->len and sk_zckey access is serialized 1214 */ 1215 if (!sock_owned_by_user(sk)) { 1216 WARN_ON_ONCE(1); 1217 return NULL; 1218 } 1219 1220 bytelen = uarg->bytelen + size; 1221 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1222 /* TCP can create new skb to attach new uarg */ 1223 if (sk->sk_type == SOCK_STREAM) 1224 goto new_alloc; 1225 return NULL; 1226 } 1227 1228 next = (u32)atomic_read(&sk->sk_zckey); 1229 if ((u32)(uarg->id + uarg->len) == next) { 1230 if (mm_account_pinned_pages(&uarg->mmp, size)) 1231 return NULL; 1232 uarg->len++; 1233 uarg->bytelen = bytelen; 1234 atomic_set(&sk->sk_zckey, ++next); 1235 1236 /* no extra ref when appending to datagram (MSG_MORE) */ 1237 if (sk->sk_type == SOCK_STREAM) 1238 net_zcopy_get(uarg); 1239 1240 return uarg; 1241 } 1242 } 1243 1244 new_alloc: 1245 return msg_zerocopy_alloc(sk, size); 1246 } 1247 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1248 1249 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1250 { 1251 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1252 u32 old_lo, old_hi; 1253 u64 sum_len; 1254 1255 old_lo = serr->ee.ee_info; 1256 old_hi = serr->ee.ee_data; 1257 sum_len = old_hi - old_lo + 1ULL + len; 1258 1259 if (sum_len >= (1ULL << 32)) 1260 return false; 1261 1262 if (lo != old_hi + 1) 1263 return false; 1264 1265 serr->ee.ee_data += len; 1266 return true; 1267 } 1268 1269 static void __msg_zerocopy_callback(struct ubuf_info *uarg) 1270 { 1271 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1272 struct sock_exterr_skb *serr; 1273 struct sock *sk = skb->sk; 1274 struct sk_buff_head *q; 1275 unsigned long flags; 1276 bool is_zerocopy; 1277 u32 lo, hi; 1278 u16 len; 1279 1280 mm_unaccount_pinned_pages(&uarg->mmp); 1281 1282 /* if !len, there was only 1 call, and it was aborted 1283 * so do not queue a completion notification 1284 */ 1285 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1286 goto release; 1287 1288 len = uarg->len; 1289 lo = uarg->id; 1290 hi = uarg->id + len - 1; 1291 is_zerocopy = uarg->zerocopy; 1292 1293 serr = SKB_EXT_ERR(skb); 1294 memset(serr, 0, sizeof(*serr)); 1295 serr->ee.ee_errno = 0; 1296 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1297 serr->ee.ee_data = hi; 1298 serr->ee.ee_info = lo; 1299 if (!is_zerocopy) 1300 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1301 1302 q = &sk->sk_error_queue; 1303 spin_lock_irqsave(&q->lock, flags); 1304 tail = skb_peek_tail(q); 1305 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1306 !skb_zerocopy_notify_extend(tail, lo, len)) { 1307 __skb_queue_tail(q, skb); 1308 skb = NULL; 1309 } 1310 spin_unlock_irqrestore(&q->lock, flags); 1311 1312 sk_error_report(sk); 1313 1314 release: 1315 consume_skb(skb); 1316 sock_put(sk); 1317 } 1318 1319 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1320 bool success) 1321 { 1322 uarg->zerocopy = uarg->zerocopy & success; 1323 1324 if (refcount_dec_and_test(&uarg->refcnt)) 1325 __msg_zerocopy_callback(uarg); 1326 } 1327 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1328 1329 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1330 { 1331 struct sock *sk = skb_from_uarg(uarg)->sk; 1332 1333 atomic_dec(&sk->sk_zckey); 1334 uarg->len--; 1335 1336 if (have_uref) 1337 msg_zerocopy_callback(NULL, uarg, true); 1338 } 1339 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1340 1341 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1342 { 1343 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1344 } 1345 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1346 1347 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1348 struct msghdr *msg, int len, 1349 struct ubuf_info *uarg) 1350 { 1351 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1352 struct iov_iter orig_iter = msg->msg_iter; 1353 int err, orig_len = skb->len; 1354 1355 /* An skb can only point to one uarg. This edge case happens when 1356 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1357 */ 1358 if (orig_uarg && uarg != orig_uarg) 1359 return -EEXIST; 1360 1361 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1362 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1363 struct sock *save_sk = skb->sk; 1364 1365 /* Streams do not free skb on error. Reset to prev state. */ 1366 msg->msg_iter = orig_iter; 1367 skb->sk = sk; 1368 ___pskb_trim(skb, orig_len); 1369 skb->sk = save_sk; 1370 return err; 1371 } 1372 1373 skb_zcopy_set(skb, uarg, NULL); 1374 return skb->len - orig_len; 1375 } 1376 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1377 1378 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1379 gfp_t gfp_mask) 1380 { 1381 if (skb_zcopy(orig)) { 1382 if (skb_zcopy(nskb)) { 1383 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1384 if (!gfp_mask) { 1385 WARN_ON_ONCE(1); 1386 return -ENOMEM; 1387 } 1388 if (skb_uarg(nskb) == skb_uarg(orig)) 1389 return 0; 1390 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1391 return -EIO; 1392 } 1393 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1394 } 1395 return 0; 1396 } 1397 1398 /** 1399 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1400 * @skb: the skb to modify 1401 * @gfp_mask: allocation priority 1402 * 1403 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1404 * It will copy all frags into kernel and drop the reference 1405 * to userspace pages. 1406 * 1407 * If this function is called from an interrupt gfp_mask() must be 1408 * %GFP_ATOMIC. 1409 * 1410 * Returns 0 on success or a negative error code on failure 1411 * to allocate kernel memory to copy to. 1412 */ 1413 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1414 { 1415 int num_frags = skb_shinfo(skb)->nr_frags; 1416 struct page *page, *head = NULL; 1417 int i, new_frags; 1418 u32 d_off; 1419 1420 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1421 return -EINVAL; 1422 1423 if (!num_frags) 1424 goto release; 1425 1426 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1427 for (i = 0; i < new_frags; i++) { 1428 page = alloc_page(gfp_mask); 1429 if (!page) { 1430 while (head) { 1431 struct page *next = (struct page *)page_private(head); 1432 put_page(head); 1433 head = next; 1434 } 1435 return -ENOMEM; 1436 } 1437 set_page_private(page, (unsigned long)head); 1438 head = page; 1439 } 1440 1441 page = head; 1442 d_off = 0; 1443 for (i = 0; i < num_frags; i++) { 1444 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1445 u32 p_off, p_len, copied; 1446 struct page *p; 1447 u8 *vaddr; 1448 1449 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1450 p, p_off, p_len, copied) { 1451 u32 copy, done = 0; 1452 vaddr = kmap_atomic(p); 1453 1454 while (done < p_len) { 1455 if (d_off == PAGE_SIZE) { 1456 d_off = 0; 1457 page = (struct page *)page_private(page); 1458 } 1459 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1460 memcpy(page_address(page) + d_off, 1461 vaddr + p_off + done, copy); 1462 done += copy; 1463 d_off += copy; 1464 } 1465 kunmap_atomic(vaddr); 1466 } 1467 } 1468 1469 /* skb frags release userspace buffers */ 1470 for (i = 0; i < num_frags; i++) 1471 skb_frag_unref(skb, i); 1472 1473 /* skb frags point to kernel buffers */ 1474 for (i = 0; i < new_frags - 1; i++) { 1475 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1476 head = (struct page *)page_private(head); 1477 } 1478 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1479 skb_shinfo(skb)->nr_frags = new_frags; 1480 1481 release: 1482 skb_zcopy_clear(skb, false); 1483 return 0; 1484 } 1485 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1486 1487 /** 1488 * skb_clone - duplicate an sk_buff 1489 * @skb: buffer to clone 1490 * @gfp_mask: allocation priority 1491 * 1492 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1493 * copies share the same packet data but not structure. The new 1494 * buffer has a reference count of 1. If the allocation fails the 1495 * function returns %NULL otherwise the new buffer is returned. 1496 * 1497 * If this function is called from an interrupt gfp_mask() must be 1498 * %GFP_ATOMIC. 1499 */ 1500 1501 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1502 { 1503 struct sk_buff_fclones *fclones = container_of(skb, 1504 struct sk_buff_fclones, 1505 skb1); 1506 struct sk_buff *n; 1507 1508 if (skb_orphan_frags(skb, gfp_mask)) 1509 return NULL; 1510 1511 if (skb->fclone == SKB_FCLONE_ORIG && 1512 refcount_read(&fclones->fclone_ref) == 1) { 1513 n = &fclones->skb2; 1514 refcount_set(&fclones->fclone_ref, 2); 1515 } else { 1516 if (skb_pfmemalloc(skb)) 1517 gfp_mask |= __GFP_MEMALLOC; 1518 1519 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1520 if (!n) 1521 return NULL; 1522 1523 n->fclone = SKB_FCLONE_UNAVAILABLE; 1524 } 1525 1526 return __skb_clone(n, skb); 1527 } 1528 EXPORT_SYMBOL(skb_clone); 1529 1530 void skb_headers_offset_update(struct sk_buff *skb, int off) 1531 { 1532 /* Only adjust this if it actually is csum_start rather than csum */ 1533 if (skb->ip_summed == CHECKSUM_PARTIAL) 1534 skb->csum_start += off; 1535 /* {transport,network,mac}_header and tail are relative to skb->head */ 1536 skb->transport_header += off; 1537 skb->network_header += off; 1538 if (skb_mac_header_was_set(skb)) 1539 skb->mac_header += off; 1540 skb->inner_transport_header += off; 1541 skb->inner_network_header += off; 1542 skb->inner_mac_header += off; 1543 } 1544 EXPORT_SYMBOL(skb_headers_offset_update); 1545 1546 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1547 { 1548 __copy_skb_header(new, old); 1549 1550 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1551 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1552 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1553 } 1554 EXPORT_SYMBOL(skb_copy_header); 1555 1556 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1557 { 1558 if (skb_pfmemalloc(skb)) 1559 return SKB_ALLOC_RX; 1560 return 0; 1561 } 1562 1563 /** 1564 * skb_copy - create private copy of an sk_buff 1565 * @skb: buffer to copy 1566 * @gfp_mask: allocation priority 1567 * 1568 * Make a copy of both an &sk_buff and its data. This is used when the 1569 * caller wishes to modify the data and needs a private copy of the 1570 * data to alter. Returns %NULL on failure or the pointer to the buffer 1571 * on success. The returned buffer has a reference count of 1. 1572 * 1573 * As by-product this function converts non-linear &sk_buff to linear 1574 * one, so that &sk_buff becomes completely private and caller is allowed 1575 * to modify all the data of returned buffer. This means that this 1576 * function is not recommended for use in circumstances when only 1577 * header is going to be modified. Use pskb_copy() instead. 1578 */ 1579 1580 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1581 { 1582 int headerlen = skb_headroom(skb); 1583 unsigned int size = skb_end_offset(skb) + skb->data_len; 1584 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1585 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1586 1587 if (!n) 1588 return NULL; 1589 1590 /* Set the data pointer */ 1591 skb_reserve(n, headerlen); 1592 /* Set the tail pointer and length */ 1593 skb_put(n, skb->len); 1594 1595 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1596 1597 skb_copy_header(n, skb); 1598 return n; 1599 } 1600 EXPORT_SYMBOL(skb_copy); 1601 1602 /** 1603 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1604 * @skb: buffer to copy 1605 * @headroom: headroom of new skb 1606 * @gfp_mask: allocation priority 1607 * @fclone: if true allocate the copy of the skb from the fclone 1608 * cache instead of the head cache; it is recommended to set this 1609 * to true for the cases where the copy will likely be cloned 1610 * 1611 * Make a copy of both an &sk_buff and part of its data, located 1612 * in header. Fragmented data remain shared. This is used when 1613 * the caller wishes to modify only header of &sk_buff and needs 1614 * private copy of the header to alter. Returns %NULL on failure 1615 * or the pointer to the buffer on success. 1616 * The returned buffer has a reference count of 1. 1617 */ 1618 1619 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1620 gfp_t gfp_mask, bool fclone) 1621 { 1622 unsigned int size = skb_headlen(skb) + headroom; 1623 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1624 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1625 1626 if (!n) 1627 goto out; 1628 1629 /* Set the data pointer */ 1630 skb_reserve(n, headroom); 1631 /* Set the tail pointer and length */ 1632 skb_put(n, skb_headlen(skb)); 1633 /* Copy the bytes */ 1634 skb_copy_from_linear_data(skb, n->data, n->len); 1635 1636 n->truesize += skb->data_len; 1637 n->data_len = skb->data_len; 1638 n->len = skb->len; 1639 1640 if (skb_shinfo(skb)->nr_frags) { 1641 int i; 1642 1643 if (skb_orphan_frags(skb, gfp_mask) || 1644 skb_zerocopy_clone(n, skb, gfp_mask)) { 1645 kfree_skb(n); 1646 n = NULL; 1647 goto out; 1648 } 1649 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1650 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1651 skb_frag_ref(skb, i); 1652 } 1653 skb_shinfo(n)->nr_frags = i; 1654 } 1655 1656 if (skb_has_frag_list(skb)) { 1657 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1658 skb_clone_fraglist(n); 1659 } 1660 1661 skb_copy_header(n, skb); 1662 out: 1663 return n; 1664 } 1665 EXPORT_SYMBOL(__pskb_copy_fclone); 1666 1667 /** 1668 * pskb_expand_head - reallocate header of &sk_buff 1669 * @skb: buffer to reallocate 1670 * @nhead: room to add at head 1671 * @ntail: room to add at tail 1672 * @gfp_mask: allocation priority 1673 * 1674 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1675 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1676 * reference count of 1. Returns zero in the case of success or error, 1677 * if expansion failed. In the last case, &sk_buff is not changed. 1678 * 1679 * All the pointers pointing into skb header may change and must be 1680 * reloaded after call to this function. 1681 */ 1682 1683 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1684 gfp_t gfp_mask) 1685 { 1686 int i, osize = skb_end_offset(skb); 1687 int size = osize + nhead + ntail; 1688 long off; 1689 u8 *data; 1690 1691 BUG_ON(nhead < 0); 1692 1693 BUG_ON(skb_shared(skb)); 1694 1695 size = SKB_DATA_ALIGN(size); 1696 1697 if (skb_pfmemalloc(skb)) 1698 gfp_mask |= __GFP_MEMALLOC; 1699 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1700 gfp_mask, NUMA_NO_NODE, NULL); 1701 if (!data) 1702 goto nodata; 1703 size = SKB_WITH_OVERHEAD(ksize(data)); 1704 1705 /* Copy only real data... and, alas, header. This should be 1706 * optimized for the cases when header is void. 1707 */ 1708 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1709 1710 memcpy((struct skb_shared_info *)(data + size), 1711 skb_shinfo(skb), 1712 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1713 1714 /* 1715 * if shinfo is shared we must drop the old head gracefully, but if it 1716 * is not we can just drop the old head and let the existing refcount 1717 * be since all we did is relocate the values 1718 */ 1719 if (skb_cloned(skb)) { 1720 if (skb_orphan_frags(skb, gfp_mask)) 1721 goto nofrags; 1722 if (skb_zcopy(skb)) 1723 refcount_inc(&skb_uarg(skb)->refcnt); 1724 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1725 skb_frag_ref(skb, i); 1726 1727 if (skb_has_frag_list(skb)) 1728 skb_clone_fraglist(skb); 1729 1730 skb_release_data(skb); 1731 } else { 1732 skb_free_head(skb); 1733 } 1734 off = (data + nhead) - skb->head; 1735 1736 skb->head = data; 1737 skb->head_frag = 0; 1738 skb->data += off; 1739 1740 skb_set_end_offset(skb, size); 1741 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1742 off = nhead; 1743 #endif 1744 skb->tail += off; 1745 skb_headers_offset_update(skb, nhead); 1746 skb->cloned = 0; 1747 skb->hdr_len = 0; 1748 skb->nohdr = 0; 1749 atomic_set(&skb_shinfo(skb)->dataref, 1); 1750 1751 skb_metadata_clear(skb); 1752 1753 /* It is not generally safe to change skb->truesize. 1754 * For the moment, we really care of rx path, or 1755 * when skb is orphaned (not attached to a socket). 1756 */ 1757 if (!skb->sk || skb->destructor == sock_edemux) 1758 skb->truesize += size - osize; 1759 1760 return 0; 1761 1762 nofrags: 1763 kfree(data); 1764 nodata: 1765 return -ENOMEM; 1766 } 1767 EXPORT_SYMBOL(pskb_expand_head); 1768 1769 /* Make private copy of skb with writable head and some headroom */ 1770 1771 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1772 { 1773 struct sk_buff *skb2; 1774 int delta = headroom - skb_headroom(skb); 1775 1776 if (delta <= 0) 1777 skb2 = pskb_copy(skb, GFP_ATOMIC); 1778 else { 1779 skb2 = skb_clone(skb, GFP_ATOMIC); 1780 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1781 GFP_ATOMIC)) { 1782 kfree_skb(skb2); 1783 skb2 = NULL; 1784 } 1785 } 1786 return skb2; 1787 } 1788 EXPORT_SYMBOL(skb_realloc_headroom); 1789 1790 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1791 { 1792 unsigned int saved_end_offset, saved_truesize; 1793 struct skb_shared_info *shinfo; 1794 int res; 1795 1796 saved_end_offset = skb_end_offset(skb); 1797 saved_truesize = skb->truesize; 1798 1799 res = pskb_expand_head(skb, 0, 0, pri); 1800 if (res) 1801 return res; 1802 1803 skb->truesize = saved_truesize; 1804 1805 if (likely(skb_end_offset(skb) == saved_end_offset)) 1806 return 0; 1807 1808 shinfo = skb_shinfo(skb); 1809 1810 /* We are about to change back skb->end, 1811 * we need to move skb_shinfo() to its new location. 1812 */ 1813 memmove(skb->head + saved_end_offset, 1814 shinfo, 1815 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 1816 1817 skb_set_end_offset(skb, saved_end_offset); 1818 1819 return 0; 1820 } 1821 1822 /** 1823 * skb_expand_head - reallocate header of &sk_buff 1824 * @skb: buffer to reallocate 1825 * @headroom: needed headroom 1826 * 1827 * Unlike skb_realloc_headroom, this one does not allocate a new skb 1828 * if possible; copies skb->sk to new skb as needed 1829 * and frees original skb in case of failures. 1830 * 1831 * It expect increased headroom and generates warning otherwise. 1832 */ 1833 1834 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 1835 { 1836 int delta = headroom - skb_headroom(skb); 1837 int osize = skb_end_offset(skb); 1838 struct sock *sk = skb->sk; 1839 1840 if (WARN_ONCE(delta <= 0, 1841 "%s is expecting an increase in the headroom", __func__)) 1842 return skb; 1843 1844 delta = SKB_DATA_ALIGN(delta); 1845 /* pskb_expand_head() might crash, if skb is shared. */ 1846 if (skb_shared(skb) || !is_skb_wmem(skb)) { 1847 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 1848 1849 if (unlikely(!nskb)) 1850 goto fail; 1851 1852 if (sk) 1853 skb_set_owner_w(nskb, sk); 1854 consume_skb(skb); 1855 skb = nskb; 1856 } 1857 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 1858 goto fail; 1859 1860 if (sk && is_skb_wmem(skb)) { 1861 delta = skb_end_offset(skb) - osize; 1862 refcount_add(delta, &sk->sk_wmem_alloc); 1863 skb->truesize += delta; 1864 } 1865 return skb; 1866 1867 fail: 1868 kfree_skb(skb); 1869 return NULL; 1870 } 1871 EXPORT_SYMBOL(skb_expand_head); 1872 1873 /** 1874 * skb_copy_expand - copy and expand sk_buff 1875 * @skb: buffer to copy 1876 * @newheadroom: new free bytes at head 1877 * @newtailroom: new free bytes at tail 1878 * @gfp_mask: allocation priority 1879 * 1880 * Make a copy of both an &sk_buff and its data and while doing so 1881 * allocate additional space. 1882 * 1883 * This is used when the caller wishes to modify the data and needs a 1884 * private copy of the data to alter as well as more space for new fields. 1885 * Returns %NULL on failure or the pointer to the buffer 1886 * on success. The returned buffer has a reference count of 1. 1887 * 1888 * You must pass %GFP_ATOMIC as the allocation priority if this function 1889 * is called from an interrupt. 1890 */ 1891 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1892 int newheadroom, int newtailroom, 1893 gfp_t gfp_mask) 1894 { 1895 /* 1896 * Allocate the copy buffer 1897 */ 1898 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1899 gfp_mask, skb_alloc_rx_flag(skb), 1900 NUMA_NO_NODE); 1901 int oldheadroom = skb_headroom(skb); 1902 int head_copy_len, head_copy_off; 1903 1904 if (!n) 1905 return NULL; 1906 1907 skb_reserve(n, newheadroom); 1908 1909 /* Set the tail pointer and length */ 1910 skb_put(n, skb->len); 1911 1912 head_copy_len = oldheadroom; 1913 head_copy_off = 0; 1914 if (newheadroom <= head_copy_len) 1915 head_copy_len = newheadroom; 1916 else 1917 head_copy_off = newheadroom - head_copy_len; 1918 1919 /* Copy the linear header and data. */ 1920 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1921 skb->len + head_copy_len)); 1922 1923 skb_copy_header(n, skb); 1924 1925 skb_headers_offset_update(n, newheadroom - oldheadroom); 1926 1927 return n; 1928 } 1929 EXPORT_SYMBOL(skb_copy_expand); 1930 1931 /** 1932 * __skb_pad - zero pad the tail of an skb 1933 * @skb: buffer to pad 1934 * @pad: space to pad 1935 * @free_on_error: free buffer on error 1936 * 1937 * Ensure that a buffer is followed by a padding area that is zero 1938 * filled. Used by network drivers which may DMA or transfer data 1939 * beyond the buffer end onto the wire. 1940 * 1941 * May return error in out of memory cases. The skb is freed on error 1942 * if @free_on_error is true. 1943 */ 1944 1945 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1946 { 1947 int err; 1948 int ntail; 1949 1950 /* If the skbuff is non linear tailroom is always zero.. */ 1951 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1952 memset(skb->data+skb->len, 0, pad); 1953 return 0; 1954 } 1955 1956 ntail = skb->data_len + pad - (skb->end - skb->tail); 1957 if (likely(skb_cloned(skb) || ntail > 0)) { 1958 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1959 if (unlikely(err)) 1960 goto free_skb; 1961 } 1962 1963 /* FIXME: The use of this function with non-linear skb's really needs 1964 * to be audited. 1965 */ 1966 err = skb_linearize(skb); 1967 if (unlikely(err)) 1968 goto free_skb; 1969 1970 memset(skb->data + skb->len, 0, pad); 1971 return 0; 1972 1973 free_skb: 1974 if (free_on_error) 1975 kfree_skb(skb); 1976 return err; 1977 } 1978 EXPORT_SYMBOL(__skb_pad); 1979 1980 /** 1981 * pskb_put - add data to the tail of a potentially fragmented buffer 1982 * @skb: start of the buffer to use 1983 * @tail: tail fragment of the buffer to use 1984 * @len: amount of data to add 1985 * 1986 * This function extends the used data area of the potentially 1987 * fragmented buffer. @tail must be the last fragment of @skb -- or 1988 * @skb itself. If this would exceed the total buffer size the kernel 1989 * will panic. A pointer to the first byte of the extra data is 1990 * returned. 1991 */ 1992 1993 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1994 { 1995 if (tail != skb) { 1996 skb->data_len += len; 1997 skb->len += len; 1998 } 1999 return skb_put(tail, len); 2000 } 2001 EXPORT_SYMBOL_GPL(pskb_put); 2002 2003 /** 2004 * skb_put - add data to a buffer 2005 * @skb: buffer to use 2006 * @len: amount of data to add 2007 * 2008 * This function extends the used data area of the buffer. If this would 2009 * exceed the total buffer size the kernel will panic. A pointer to the 2010 * first byte of the extra data is returned. 2011 */ 2012 void *skb_put(struct sk_buff *skb, unsigned int len) 2013 { 2014 void *tmp = skb_tail_pointer(skb); 2015 SKB_LINEAR_ASSERT(skb); 2016 skb->tail += len; 2017 skb->len += len; 2018 if (unlikely(skb->tail > skb->end)) 2019 skb_over_panic(skb, len, __builtin_return_address(0)); 2020 return tmp; 2021 } 2022 EXPORT_SYMBOL(skb_put); 2023 2024 /** 2025 * skb_push - add data to the start of a buffer 2026 * @skb: buffer to use 2027 * @len: amount of data to add 2028 * 2029 * This function extends the used data area of the buffer at the buffer 2030 * start. If this would exceed the total buffer headroom the kernel will 2031 * panic. A pointer to the first byte of the extra data is returned. 2032 */ 2033 void *skb_push(struct sk_buff *skb, unsigned int len) 2034 { 2035 skb->data -= len; 2036 skb->len += len; 2037 if (unlikely(skb->data < skb->head)) 2038 skb_under_panic(skb, len, __builtin_return_address(0)); 2039 return skb->data; 2040 } 2041 EXPORT_SYMBOL(skb_push); 2042 2043 /** 2044 * skb_pull - remove data from the start of a buffer 2045 * @skb: buffer to use 2046 * @len: amount of data to remove 2047 * 2048 * This function removes data from the start of a buffer, returning 2049 * the memory to the headroom. A pointer to the next data in the buffer 2050 * is returned. Once the data has been pulled future pushes will overwrite 2051 * the old data. 2052 */ 2053 void *skb_pull(struct sk_buff *skb, unsigned int len) 2054 { 2055 return skb_pull_inline(skb, len); 2056 } 2057 EXPORT_SYMBOL(skb_pull); 2058 2059 /** 2060 * skb_pull_data - remove data from the start of a buffer returning its 2061 * original position. 2062 * @skb: buffer to use 2063 * @len: amount of data to remove 2064 * 2065 * This function removes data from the start of a buffer, returning 2066 * the memory to the headroom. A pointer to the original data in the buffer 2067 * is returned after checking if there is enough data to pull. Once the 2068 * data has been pulled future pushes will overwrite the old data. 2069 */ 2070 void *skb_pull_data(struct sk_buff *skb, size_t len) 2071 { 2072 void *data = skb->data; 2073 2074 if (skb->len < len) 2075 return NULL; 2076 2077 skb_pull(skb, len); 2078 2079 return data; 2080 } 2081 EXPORT_SYMBOL(skb_pull_data); 2082 2083 /** 2084 * skb_trim - remove end from a buffer 2085 * @skb: buffer to alter 2086 * @len: new length 2087 * 2088 * Cut the length of a buffer down by removing data from the tail. If 2089 * the buffer is already under the length specified it is not modified. 2090 * The skb must be linear. 2091 */ 2092 void skb_trim(struct sk_buff *skb, unsigned int len) 2093 { 2094 if (skb->len > len) 2095 __skb_trim(skb, len); 2096 } 2097 EXPORT_SYMBOL(skb_trim); 2098 2099 /* Trims skb to length len. It can change skb pointers. 2100 */ 2101 2102 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2103 { 2104 struct sk_buff **fragp; 2105 struct sk_buff *frag; 2106 int offset = skb_headlen(skb); 2107 int nfrags = skb_shinfo(skb)->nr_frags; 2108 int i; 2109 int err; 2110 2111 if (skb_cloned(skb) && 2112 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2113 return err; 2114 2115 i = 0; 2116 if (offset >= len) 2117 goto drop_pages; 2118 2119 for (; i < nfrags; i++) { 2120 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2121 2122 if (end < len) { 2123 offset = end; 2124 continue; 2125 } 2126 2127 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2128 2129 drop_pages: 2130 skb_shinfo(skb)->nr_frags = i; 2131 2132 for (; i < nfrags; i++) 2133 skb_frag_unref(skb, i); 2134 2135 if (skb_has_frag_list(skb)) 2136 skb_drop_fraglist(skb); 2137 goto done; 2138 } 2139 2140 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2141 fragp = &frag->next) { 2142 int end = offset + frag->len; 2143 2144 if (skb_shared(frag)) { 2145 struct sk_buff *nfrag; 2146 2147 nfrag = skb_clone(frag, GFP_ATOMIC); 2148 if (unlikely(!nfrag)) 2149 return -ENOMEM; 2150 2151 nfrag->next = frag->next; 2152 consume_skb(frag); 2153 frag = nfrag; 2154 *fragp = frag; 2155 } 2156 2157 if (end < len) { 2158 offset = end; 2159 continue; 2160 } 2161 2162 if (end > len && 2163 unlikely((err = pskb_trim(frag, len - offset)))) 2164 return err; 2165 2166 if (frag->next) 2167 skb_drop_list(&frag->next); 2168 break; 2169 } 2170 2171 done: 2172 if (len > skb_headlen(skb)) { 2173 skb->data_len -= skb->len - len; 2174 skb->len = len; 2175 } else { 2176 skb->len = len; 2177 skb->data_len = 0; 2178 skb_set_tail_pointer(skb, len); 2179 } 2180 2181 if (!skb->sk || skb->destructor == sock_edemux) 2182 skb_condense(skb); 2183 return 0; 2184 } 2185 EXPORT_SYMBOL(___pskb_trim); 2186 2187 /* Note : use pskb_trim_rcsum() instead of calling this directly 2188 */ 2189 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2190 { 2191 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2192 int delta = skb->len - len; 2193 2194 skb->csum = csum_block_sub(skb->csum, 2195 skb_checksum(skb, len, delta, 0), 2196 len); 2197 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2198 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2199 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2200 2201 if (offset + sizeof(__sum16) > hdlen) 2202 return -EINVAL; 2203 } 2204 return __pskb_trim(skb, len); 2205 } 2206 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2207 2208 /** 2209 * __pskb_pull_tail - advance tail of skb header 2210 * @skb: buffer to reallocate 2211 * @delta: number of bytes to advance tail 2212 * 2213 * The function makes a sense only on a fragmented &sk_buff, 2214 * it expands header moving its tail forward and copying necessary 2215 * data from fragmented part. 2216 * 2217 * &sk_buff MUST have reference count of 1. 2218 * 2219 * Returns %NULL (and &sk_buff does not change) if pull failed 2220 * or value of new tail of skb in the case of success. 2221 * 2222 * All the pointers pointing into skb header may change and must be 2223 * reloaded after call to this function. 2224 */ 2225 2226 /* Moves tail of skb head forward, copying data from fragmented part, 2227 * when it is necessary. 2228 * 1. It may fail due to malloc failure. 2229 * 2. It may change skb pointers. 2230 * 2231 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2232 */ 2233 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2234 { 2235 /* If skb has not enough free space at tail, get new one 2236 * plus 128 bytes for future expansions. If we have enough 2237 * room at tail, reallocate without expansion only if skb is cloned. 2238 */ 2239 int i, k, eat = (skb->tail + delta) - skb->end; 2240 2241 if (eat > 0 || skb_cloned(skb)) { 2242 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2243 GFP_ATOMIC)) 2244 return NULL; 2245 } 2246 2247 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2248 skb_tail_pointer(skb), delta)); 2249 2250 /* Optimization: no fragments, no reasons to preestimate 2251 * size of pulled pages. Superb. 2252 */ 2253 if (!skb_has_frag_list(skb)) 2254 goto pull_pages; 2255 2256 /* Estimate size of pulled pages. */ 2257 eat = delta; 2258 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2259 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2260 2261 if (size >= eat) 2262 goto pull_pages; 2263 eat -= size; 2264 } 2265 2266 /* If we need update frag list, we are in troubles. 2267 * Certainly, it is possible to add an offset to skb data, 2268 * but taking into account that pulling is expected to 2269 * be very rare operation, it is worth to fight against 2270 * further bloating skb head and crucify ourselves here instead. 2271 * Pure masohism, indeed. 8)8) 2272 */ 2273 if (eat) { 2274 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2275 struct sk_buff *clone = NULL; 2276 struct sk_buff *insp = NULL; 2277 2278 do { 2279 if (list->len <= eat) { 2280 /* Eaten as whole. */ 2281 eat -= list->len; 2282 list = list->next; 2283 insp = list; 2284 } else { 2285 /* Eaten partially. */ 2286 2287 if (skb_shared(list)) { 2288 /* Sucks! We need to fork list. :-( */ 2289 clone = skb_clone(list, GFP_ATOMIC); 2290 if (!clone) 2291 return NULL; 2292 insp = list->next; 2293 list = clone; 2294 } else { 2295 /* This may be pulled without 2296 * problems. */ 2297 insp = list; 2298 } 2299 if (!pskb_pull(list, eat)) { 2300 kfree_skb(clone); 2301 return NULL; 2302 } 2303 break; 2304 } 2305 } while (eat); 2306 2307 /* Free pulled out fragments. */ 2308 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2309 skb_shinfo(skb)->frag_list = list->next; 2310 consume_skb(list); 2311 } 2312 /* And insert new clone at head. */ 2313 if (clone) { 2314 clone->next = list; 2315 skb_shinfo(skb)->frag_list = clone; 2316 } 2317 } 2318 /* Success! Now we may commit changes to skb data. */ 2319 2320 pull_pages: 2321 eat = delta; 2322 k = 0; 2323 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2324 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2325 2326 if (size <= eat) { 2327 skb_frag_unref(skb, i); 2328 eat -= size; 2329 } else { 2330 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2331 2332 *frag = skb_shinfo(skb)->frags[i]; 2333 if (eat) { 2334 skb_frag_off_add(frag, eat); 2335 skb_frag_size_sub(frag, eat); 2336 if (!i) 2337 goto end; 2338 eat = 0; 2339 } 2340 k++; 2341 } 2342 } 2343 skb_shinfo(skb)->nr_frags = k; 2344 2345 end: 2346 skb->tail += delta; 2347 skb->data_len -= delta; 2348 2349 if (!skb->data_len) 2350 skb_zcopy_clear(skb, false); 2351 2352 return skb_tail_pointer(skb); 2353 } 2354 EXPORT_SYMBOL(__pskb_pull_tail); 2355 2356 /** 2357 * skb_copy_bits - copy bits from skb to kernel buffer 2358 * @skb: source skb 2359 * @offset: offset in source 2360 * @to: destination buffer 2361 * @len: number of bytes to copy 2362 * 2363 * Copy the specified number of bytes from the source skb to the 2364 * destination buffer. 2365 * 2366 * CAUTION ! : 2367 * If its prototype is ever changed, 2368 * check arch/{*}/net/{*}.S files, 2369 * since it is called from BPF assembly code. 2370 */ 2371 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2372 { 2373 int start = skb_headlen(skb); 2374 struct sk_buff *frag_iter; 2375 int i, copy; 2376 2377 if (offset > (int)skb->len - len) 2378 goto fault; 2379 2380 /* Copy header. */ 2381 if ((copy = start - offset) > 0) { 2382 if (copy > len) 2383 copy = len; 2384 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2385 if ((len -= copy) == 0) 2386 return 0; 2387 offset += copy; 2388 to += copy; 2389 } 2390 2391 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2392 int end; 2393 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2394 2395 WARN_ON(start > offset + len); 2396 2397 end = start + skb_frag_size(f); 2398 if ((copy = end - offset) > 0) { 2399 u32 p_off, p_len, copied; 2400 struct page *p; 2401 u8 *vaddr; 2402 2403 if (copy > len) 2404 copy = len; 2405 2406 skb_frag_foreach_page(f, 2407 skb_frag_off(f) + offset - start, 2408 copy, p, p_off, p_len, copied) { 2409 vaddr = kmap_atomic(p); 2410 memcpy(to + copied, vaddr + p_off, p_len); 2411 kunmap_atomic(vaddr); 2412 } 2413 2414 if ((len -= copy) == 0) 2415 return 0; 2416 offset += copy; 2417 to += copy; 2418 } 2419 start = end; 2420 } 2421 2422 skb_walk_frags(skb, frag_iter) { 2423 int end; 2424 2425 WARN_ON(start > offset + len); 2426 2427 end = start + frag_iter->len; 2428 if ((copy = end - offset) > 0) { 2429 if (copy > len) 2430 copy = len; 2431 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2432 goto fault; 2433 if ((len -= copy) == 0) 2434 return 0; 2435 offset += copy; 2436 to += copy; 2437 } 2438 start = end; 2439 } 2440 2441 if (!len) 2442 return 0; 2443 2444 fault: 2445 return -EFAULT; 2446 } 2447 EXPORT_SYMBOL(skb_copy_bits); 2448 2449 /* 2450 * Callback from splice_to_pipe(), if we need to release some pages 2451 * at the end of the spd in case we error'ed out in filling the pipe. 2452 */ 2453 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2454 { 2455 put_page(spd->pages[i]); 2456 } 2457 2458 static struct page *linear_to_page(struct page *page, unsigned int *len, 2459 unsigned int *offset, 2460 struct sock *sk) 2461 { 2462 struct page_frag *pfrag = sk_page_frag(sk); 2463 2464 if (!sk_page_frag_refill(sk, pfrag)) 2465 return NULL; 2466 2467 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2468 2469 memcpy(page_address(pfrag->page) + pfrag->offset, 2470 page_address(page) + *offset, *len); 2471 *offset = pfrag->offset; 2472 pfrag->offset += *len; 2473 2474 return pfrag->page; 2475 } 2476 2477 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2478 struct page *page, 2479 unsigned int offset) 2480 { 2481 return spd->nr_pages && 2482 spd->pages[spd->nr_pages - 1] == page && 2483 (spd->partial[spd->nr_pages - 1].offset + 2484 spd->partial[spd->nr_pages - 1].len == offset); 2485 } 2486 2487 /* 2488 * Fill page/offset/length into spd, if it can hold more pages. 2489 */ 2490 static bool spd_fill_page(struct splice_pipe_desc *spd, 2491 struct pipe_inode_info *pipe, struct page *page, 2492 unsigned int *len, unsigned int offset, 2493 bool linear, 2494 struct sock *sk) 2495 { 2496 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2497 return true; 2498 2499 if (linear) { 2500 page = linear_to_page(page, len, &offset, sk); 2501 if (!page) 2502 return true; 2503 } 2504 if (spd_can_coalesce(spd, page, offset)) { 2505 spd->partial[spd->nr_pages - 1].len += *len; 2506 return false; 2507 } 2508 get_page(page); 2509 spd->pages[spd->nr_pages] = page; 2510 spd->partial[spd->nr_pages].len = *len; 2511 spd->partial[spd->nr_pages].offset = offset; 2512 spd->nr_pages++; 2513 2514 return false; 2515 } 2516 2517 static bool __splice_segment(struct page *page, unsigned int poff, 2518 unsigned int plen, unsigned int *off, 2519 unsigned int *len, 2520 struct splice_pipe_desc *spd, bool linear, 2521 struct sock *sk, 2522 struct pipe_inode_info *pipe) 2523 { 2524 if (!*len) 2525 return true; 2526 2527 /* skip this segment if already processed */ 2528 if (*off >= plen) { 2529 *off -= plen; 2530 return false; 2531 } 2532 2533 /* ignore any bits we already processed */ 2534 poff += *off; 2535 plen -= *off; 2536 *off = 0; 2537 2538 do { 2539 unsigned int flen = min(*len, plen); 2540 2541 if (spd_fill_page(spd, pipe, page, &flen, poff, 2542 linear, sk)) 2543 return true; 2544 poff += flen; 2545 plen -= flen; 2546 *len -= flen; 2547 } while (*len && plen); 2548 2549 return false; 2550 } 2551 2552 /* 2553 * Map linear and fragment data from the skb to spd. It reports true if the 2554 * pipe is full or if we already spliced the requested length. 2555 */ 2556 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2557 unsigned int *offset, unsigned int *len, 2558 struct splice_pipe_desc *spd, struct sock *sk) 2559 { 2560 int seg; 2561 struct sk_buff *iter; 2562 2563 /* map the linear part : 2564 * If skb->head_frag is set, this 'linear' part is backed by a 2565 * fragment, and if the head is not shared with any clones then 2566 * we can avoid a copy since we own the head portion of this page. 2567 */ 2568 if (__splice_segment(virt_to_page(skb->data), 2569 (unsigned long) skb->data & (PAGE_SIZE - 1), 2570 skb_headlen(skb), 2571 offset, len, spd, 2572 skb_head_is_locked(skb), 2573 sk, pipe)) 2574 return true; 2575 2576 /* 2577 * then map the fragments 2578 */ 2579 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2580 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2581 2582 if (__splice_segment(skb_frag_page(f), 2583 skb_frag_off(f), skb_frag_size(f), 2584 offset, len, spd, false, sk, pipe)) 2585 return true; 2586 } 2587 2588 skb_walk_frags(skb, iter) { 2589 if (*offset >= iter->len) { 2590 *offset -= iter->len; 2591 continue; 2592 } 2593 /* __skb_splice_bits() only fails if the output has no room 2594 * left, so no point in going over the frag_list for the error 2595 * case. 2596 */ 2597 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2598 return true; 2599 } 2600 2601 return false; 2602 } 2603 2604 /* 2605 * Map data from the skb to a pipe. Should handle both the linear part, 2606 * the fragments, and the frag list. 2607 */ 2608 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2609 struct pipe_inode_info *pipe, unsigned int tlen, 2610 unsigned int flags) 2611 { 2612 struct partial_page partial[MAX_SKB_FRAGS]; 2613 struct page *pages[MAX_SKB_FRAGS]; 2614 struct splice_pipe_desc spd = { 2615 .pages = pages, 2616 .partial = partial, 2617 .nr_pages_max = MAX_SKB_FRAGS, 2618 .ops = &nosteal_pipe_buf_ops, 2619 .spd_release = sock_spd_release, 2620 }; 2621 int ret = 0; 2622 2623 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2624 2625 if (spd.nr_pages) 2626 ret = splice_to_pipe(pipe, &spd); 2627 2628 return ret; 2629 } 2630 EXPORT_SYMBOL_GPL(skb_splice_bits); 2631 2632 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg, 2633 struct kvec *vec, size_t num, size_t size) 2634 { 2635 struct socket *sock = sk->sk_socket; 2636 2637 if (!sock) 2638 return -EINVAL; 2639 return kernel_sendmsg(sock, msg, vec, num, size); 2640 } 2641 2642 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset, 2643 size_t size, int flags) 2644 { 2645 struct socket *sock = sk->sk_socket; 2646 2647 if (!sock) 2648 return -EINVAL; 2649 return kernel_sendpage(sock, page, offset, size, flags); 2650 } 2651 2652 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg, 2653 struct kvec *vec, size_t num, size_t size); 2654 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset, 2655 size_t size, int flags); 2656 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 2657 int len, sendmsg_func sendmsg, sendpage_func sendpage) 2658 { 2659 unsigned int orig_len = len; 2660 struct sk_buff *head = skb; 2661 unsigned short fragidx; 2662 int slen, ret; 2663 2664 do_frag_list: 2665 2666 /* Deal with head data */ 2667 while (offset < skb_headlen(skb) && len) { 2668 struct kvec kv; 2669 struct msghdr msg; 2670 2671 slen = min_t(int, len, skb_headlen(skb) - offset); 2672 kv.iov_base = skb->data + offset; 2673 kv.iov_len = slen; 2674 memset(&msg, 0, sizeof(msg)); 2675 msg.msg_flags = MSG_DONTWAIT; 2676 2677 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked, 2678 sendmsg_unlocked, sk, &msg, &kv, 1, slen); 2679 if (ret <= 0) 2680 goto error; 2681 2682 offset += ret; 2683 len -= ret; 2684 } 2685 2686 /* All the data was skb head? */ 2687 if (!len) 2688 goto out; 2689 2690 /* Make offset relative to start of frags */ 2691 offset -= skb_headlen(skb); 2692 2693 /* Find where we are in frag list */ 2694 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2695 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2696 2697 if (offset < skb_frag_size(frag)) 2698 break; 2699 2700 offset -= skb_frag_size(frag); 2701 } 2702 2703 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2704 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2705 2706 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2707 2708 while (slen) { 2709 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked, 2710 sendpage_unlocked, sk, 2711 skb_frag_page(frag), 2712 skb_frag_off(frag) + offset, 2713 slen, MSG_DONTWAIT); 2714 if (ret <= 0) 2715 goto error; 2716 2717 len -= ret; 2718 offset += ret; 2719 slen -= ret; 2720 } 2721 2722 offset = 0; 2723 } 2724 2725 if (len) { 2726 /* Process any frag lists */ 2727 2728 if (skb == head) { 2729 if (skb_has_frag_list(skb)) { 2730 skb = skb_shinfo(skb)->frag_list; 2731 goto do_frag_list; 2732 } 2733 } else if (skb->next) { 2734 skb = skb->next; 2735 goto do_frag_list; 2736 } 2737 } 2738 2739 out: 2740 return orig_len - len; 2741 2742 error: 2743 return orig_len == len ? ret : orig_len - len; 2744 } 2745 2746 /* Send skb data on a socket. Socket must be locked. */ 2747 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2748 int len) 2749 { 2750 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked, 2751 kernel_sendpage_locked); 2752 } 2753 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2754 2755 /* Send skb data on a socket. Socket must be unlocked. */ 2756 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2757 { 2758 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 2759 sendpage_unlocked); 2760 } 2761 2762 /** 2763 * skb_store_bits - store bits from kernel buffer to skb 2764 * @skb: destination buffer 2765 * @offset: offset in destination 2766 * @from: source buffer 2767 * @len: number of bytes to copy 2768 * 2769 * Copy the specified number of bytes from the source buffer to the 2770 * destination skb. This function handles all the messy bits of 2771 * traversing fragment lists and such. 2772 */ 2773 2774 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2775 { 2776 int start = skb_headlen(skb); 2777 struct sk_buff *frag_iter; 2778 int i, copy; 2779 2780 if (offset > (int)skb->len - len) 2781 goto fault; 2782 2783 if ((copy = start - offset) > 0) { 2784 if (copy > len) 2785 copy = len; 2786 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2787 if ((len -= copy) == 0) 2788 return 0; 2789 offset += copy; 2790 from += copy; 2791 } 2792 2793 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2794 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2795 int end; 2796 2797 WARN_ON(start > offset + len); 2798 2799 end = start + skb_frag_size(frag); 2800 if ((copy = end - offset) > 0) { 2801 u32 p_off, p_len, copied; 2802 struct page *p; 2803 u8 *vaddr; 2804 2805 if (copy > len) 2806 copy = len; 2807 2808 skb_frag_foreach_page(frag, 2809 skb_frag_off(frag) + offset - start, 2810 copy, p, p_off, p_len, copied) { 2811 vaddr = kmap_atomic(p); 2812 memcpy(vaddr + p_off, from + copied, p_len); 2813 kunmap_atomic(vaddr); 2814 } 2815 2816 if ((len -= copy) == 0) 2817 return 0; 2818 offset += copy; 2819 from += copy; 2820 } 2821 start = end; 2822 } 2823 2824 skb_walk_frags(skb, frag_iter) { 2825 int end; 2826 2827 WARN_ON(start > offset + len); 2828 2829 end = start + frag_iter->len; 2830 if ((copy = end - offset) > 0) { 2831 if (copy > len) 2832 copy = len; 2833 if (skb_store_bits(frag_iter, offset - start, 2834 from, copy)) 2835 goto fault; 2836 if ((len -= copy) == 0) 2837 return 0; 2838 offset += copy; 2839 from += copy; 2840 } 2841 start = end; 2842 } 2843 if (!len) 2844 return 0; 2845 2846 fault: 2847 return -EFAULT; 2848 } 2849 EXPORT_SYMBOL(skb_store_bits); 2850 2851 /* Checksum skb data. */ 2852 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2853 __wsum csum, const struct skb_checksum_ops *ops) 2854 { 2855 int start = skb_headlen(skb); 2856 int i, copy = start - offset; 2857 struct sk_buff *frag_iter; 2858 int pos = 0; 2859 2860 /* Checksum header. */ 2861 if (copy > 0) { 2862 if (copy > len) 2863 copy = len; 2864 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2865 skb->data + offset, copy, csum); 2866 if ((len -= copy) == 0) 2867 return csum; 2868 offset += copy; 2869 pos = copy; 2870 } 2871 2872 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2873 int end; 2874 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2875 2876 WARN_ON(start > offset + len); 2877 2878 end = start + skb_frag_size(frag); 2879 if ((copy = end - offset) > 0) { 2880 u32 p_off, p_len, copied; 2881 struct page *p; 2882 __wsum csum2; 2883 u8 *vaddr; 2884 2885 if (copy > len) 2886 copy = len; 2887 2888 skb_frag_foreach_page(frag, 2889 skb_frag_off(frag) + offset - start, 2890 copy, p, p_off, p_len, copied) { 2891 vaddr = kmap_atomic(p); 2892 csum2 = INDIRECT_CALL_1(ops->update, 2893 csum_partial_ext, 2894 vaddr + p_off, p_len, 0); 2895 kunmap_atomic(vaddr); 2896 csum = INDIRECT_CALL_1(ops->combine, 2897 csum_block_add_ext, csum, 2898 csum2, pos, p_len); 2899 pos += p_len; 2900 } 2901 2902 if (!(len -= copy)) 2903 return csum; 2904 offset += copy; 2905 } 2906 start = end; 2907 } 2908 2909 skb_walk_frags(skb, frag_iter) { 2910 int end; 2911 2912 WARN_ON(start > offset + len); 2913 2914 end = start + frag_iter->len; 2915 if ((copy = end - offset) > 0) { 2916 __wsum csum2; 2917 if (copy > len) 2918 copy = len; 2919 csum2 = __skb_checksum(frag_iter, offset - start, 2920 copy, 0, ops); 2921 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2922 csum, csum2, pos, copy); 2923 if ((len -= copy) == 0) 2924 return csum; 2925 offset += copy; 2926 pos += copy; 2927 } 2928 start = end; 2929 } 2930 BUG_ON(len); 2931 2932 return csum; 2933 } 2934 EXPORT_SYMBOL(__skb_checksum); 2935 2936 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2937 int len, __wsum csum) 2938 { 2939 const struct skb_checksum_ops ops = { 2940 .update = csum_partial_ext, 2941 .combine = csum_block_add_ext, 2942 }; 2943 2944 return __skb_checksum(skb, offset, len, csum, &ops); 2945 } 2946 EXPORT_SYMBOL(skb_checksum); 2947 2948 /* Both of above in one bottle. */ 2949 2950 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2951 u8 *to, int len) 2952 { 2953 int start = skb_headlen(skb); 2954 int i, copy = start - offset; 2955 struct sk_buff *frag_iter; 2956 int pos = 0; 2957 __wsum csum = 0; 2958 2959 /* Copy header. */ 2960 if (copy > 0) { 2961 if (copy > len) 2962 copy = len; 2963 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2964 copy); 2965 if ((len -= copy) == 0) 2966 return csum; 2967 offset += copy; 2968 to += copy; 2969 pos = copy; 2970 } 2971 2972 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2973 int end; 2974 2975 WARN_ON(start > offset + len); 2976 2977 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2978 if ((copy = end - offset) > 0) { 2979 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2980 u32 p_off, p_len, copied; 2981 struct page *p; 2982 __wsum csum2; 2983 u8 *vaddr; 2984 2985 if (copy > len) 2986 copy = len; 2987 2988 skb_frag_foreach_page(frag, 2989 skb_frag_off(frag) + offset - start, 2990 copy, p, p_off, p_len, copied) { 2991 vaddr = kmap_atomic(p); 2992 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2993 to + copied, 2994 p_len); 2995 kunmap_atomic(vaddr); 2996 csum = csum_block_add(csum, csum2, pos); 2997 pos += p_len; 2998 } 2999 3000 if (!(len -= copy)) 3001 return csum; 3002 offset += copy; 3003 to += copy; 3004 } 3005 start = end; 3006 } 3007 3008 skb_walk_frags(skb, frag_iter) { 3009 __wsum csum2; 3010 int end; 3011 3012 WARN_ON(start > offset + len); 3013 3014 end = start + frag_iter->len; 3015 if ((copy = end - offset) > 0) { 3016 if (copy > len) 3017 copy = len; 3018 csum2 = skb_copy_and_csum_bits(frag_iter, 3019 offset - start, 3020 to, copy); 3021 csum = csum_block_add(csum, csum2, pos); 3022 if ((len -= copy) == 0) 3023 return csum; 3024 offset += copy; 3025 to += copy; 3026 pos += copy; 3027 } 3028 start = end; 3029 } 3030 BUG_ON(len); 3031 return csum; 3032 } 3033 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3034 3035 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3036 { 3037 __sum16 sum; 3038 3039 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3040 /* See comments in __skb_checksum_complete(). */ 3041 if (likely(!sum)) { 3042 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3043 !skb->csum_complete_sw) 3044 netdev_rx_csum_fault(skb->dev, skb); 3045 } 3046 if (!skb_shared(skb)) 3047 skb->csum_valid = !sum; 3048 return sum; 3049 } 3050 EXPORT_SYMBOL(__skb_checksum_complete_head); 3051 3052 /* This function assumes skb->csum already holds pseudo header's checksum, 3053 * which has been changed from the hardware checksum, for example, by 3054 * __skb_checksum_validate_complete(). And, the original skb->csum must 3055 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3056 * 3057 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3058 * zero. The new checksum is stored back into skb->csum unless the skb is 3059 * shared. 3060 */ 3061 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3062 { 3063 __wsum csum; 3064 __sum16 sum; 3065 3066 csum = skb_checksum(skb, 0, skb->len, 0); 3067 3068 sum = csum_fold(csum_add(skb->csum, csum)); 3069 /* This check is inverted, because we already knew the hardware 3070 * checksum is invalid before calling this function. So, if the 3071 * re-computed checksum is valid instead, then we have a mismatch 3072 * between the original skb->csum and skb_checksum(). This means either 3073 * the original hardware checksum is incorrect or we screw up skb->csum 3074 * when moving skb->data around. 3075 */ 3076 if (likely(!sum)) { 3077 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3078 !skb->csum_complete_sw) 3079 netdev_rx_csum_fault(skb->dev, skb); 3080 } 3081 3082 if (!skb_shared(skb)) { 3083 /* Save full packet checksum */ 3084 skb->csum = csum; 3085 skb->ip_summed = CHECKSUM_COMPLETE; 3086 skb->csum_complete_sw = 1; 3087 skb->csum_valid = !sum; 3088 } 3089 3090 return sum; 3091 } 3092 EXPORT_SYMBOL(__skb_checksum_complete); 3093 3094 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3095 { 3096 net_warn_ratelimited( 3097 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3098 __func__); 3099 return 0; 3100 } 3101 3102 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3103 int offset, int len) 3104 { 3105 net_warn_ratelimited( 3106 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3107 __func__); 3108 return 0; 3109 } 3110 3111 static const struct skb_checksum_ops default_crc32c_ops = { 3112 .update = warn_crc32c_csum_update, 3113 .combine = warn_crc32c_csum_combine, 3114 }; 3115 3116 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3117 &default_crc32c_ops; 3118 EXPORT_SYMBOL(crc32c_csum_stub); 3119 3120 /** 3121 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3122 * @from: source buffer 3123 * 3124 * Calculates the amount of linear headroom needed in the 'to' skb passed 3125 * into skb_zerocopy(). 3126 */ 3127 unsigned int 3128 skb_zerocopy_headlen(const struct sk_buff *from) 3129 { 3130 unsigned int hlen = 0; 3131 3132 if (!from->head_frag || 3133 skb_headlen(from) < L1_CACHE_BYTES || 3134 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3135 hlen = skb_headlen(from); 3136 if (!hlen) 3137 hlen = from->len; 3138 } 3139 3140 if (skb_has_frag_list(from)) 3141 hlen = from->len; 3142 3143 return hlen; 3144 } 3145 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3146 3147 /** 3148 * skb_zerocopy - Zero copy skb to skb 3149 * @to: destination buffer 3150 * @from: source buffer 3151 * @len: number of bytes to copy from source buffer 3152 * @hlen: size of linear headroom in destination buffer 3153 * 3154 * Copies up to `len` bytes from `from` to `to` by creating references 3155 * to the frags in the source buffer. 3156 * 3157 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3158 * headroom in the `to` buffer. 3159 * 3160 * Return value: 3161 * 0: everything is OK 3162 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3163 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3164 */ 3165 int 3166 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3167 { 3168 int i, j = 0; 3169 int plen = 0; /* length of skb->head fragment */ 3170 int ret; 3171 struct page *page; 3172 unsigned int offset; 3173 3174 BUG_ON(!from->head_frag && !hlen); 3175 3176 /* dont bother with small payloads */ 3177 if (len <= skb_tailroom(to)) 3178 return skb_copy_bits(from, 0, skb_put(to, len), len); 3179 3180 if (hlen) { 3181 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3182 if (unlikely(ret)) 3183 return ret; 3184 len -= hlen; 3185 } else { 3186 plen = min_t(int, skb_headlen(from), len); 3187 if (plen) { 3188 page = virt_to_head_page(from->head); 3189 offset = from->data - (unsigned char *)page_address(page); 3190 __skb_fill_page_desc(to, 0, page, offset, plen); 3191 get_page(page); 3192 j = 1; 3193 len -= plen; 3194 } 3195 } 3196 3197 to->truesize += len + plen; 3198 to->len += len + plen; 3199 to->data_len += len + plen; 3200 3201 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3202 skb_tx_error(from); 3203 return -ENOMEM; 3204 } 3205 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3206 3207 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3208 int size; 3209 3210 if (!len) 3211 break; 3212 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3213 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3214 len); 3215 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3216 len -= size; 3217 skb_frag_ref(to, j); 3218 j++; 3219 } 3220 skb_shinfo(to)->nr_frags = j; 3221 3222 return 0; 3223 } 3224 EXPORT_SYMBOL_GPL(skb_zerocopy); 3225 3226 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3227 { 3228 __wsum csum; 3229 long csstart; 3230 3231 if (skb->ip_summed == CHECKSUM_PARTIAL) 3232 csstart = skb_checksum_start_offset(skb); 3233 else 3234 csstart = skb_headlen(skb); 3235 3236 BUG_ON(csstart > skb_headlen(skb)); 3237 3238 skb_copy_from_linear_data(skb, to, csstart); 3239 3240 csum = 0; 3241 if (csstart != skb->len) 3242 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3243 skb->len - csstart); 3244 3245 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3246 long csstuff = csstart + skb->csum_offset; 3247 3248 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3249 } 3250 } 3251 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3252 3253 /** 3254 * skb_dequeue - remove from the head of the queue 3255 * @list: list to dequeue from 3256 * 3257 * Remove the head of the list. The list lock is taken so the function 3258 * may be used safely with other locking list functions. The head item is 3259 * returned or %NULL if the list is empty. 3260 */ 3261 3262 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3263 { 3264 unsigned long flags; 3265 struct sk_buff *result; 3266 3267 spin_lock_irqsave(&list->lock, flags); 3268 result = __skb_dequeue(list); 3269 spin_unlock_irqrestore(&list->lock, flags); 3270 return result; 3271 } 3272 EXPORT_SYMBOL(skb_dequeue); 3273 3274 /** 3275 * skb_dequeue_tail - remove from the tail of the queue 3276 * @list: list to dequeue from 3277 * 3278 * Remove the tail of the list. The list lock is taken so the function 3279 * may be used safely with other locking list functions. The tail item is 3280 * returned or %NULL if the list is empty. 3281 */ 3282 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3283 { 3284 unsigned long flags; 3285 struct sk_buff *result; 3286 3287 spin_lock_irqsave(&list->lock, flags); 3288 result = __skb_dequeue_tail(list); 3289 spin_unlock_irqrestore(&list->lock, flags); 3290 return result; 3291 } 3292 EXPORT_SYMBOL(skb_dequeue_tail); 3293 3294 /** 3295 * skb_queue_purge - empty a list 3296 * @list: list to empty 3297 * 3298 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3299 * the list and one reference dropped. This function takes the list 3300 * lock and is atomic with respect to other list locking functions. 3301 */ 3302 void skb_queue_purge(struct sk_buff_head *list) 3303 { 3304 struct sk_buff *skb; 3305 while ((skb = skb_dequeue(list)) != NULL) 3306 kfree_skb(skb); 3307 } 3308 EXPORT_SYMBOL(skb_queue_purge); 3309 3310 /** 3311 * skb_rbtree_purge - empty a skb rbtree 3312 * @root: root of the rbtree to empty 3313 * Return value: the sum of truesizes of all purged skbs. 3314 * 3315 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3316 * the list and one reference dropped. This function does not take 3317 * any lock. Synchronization should be handled by the caller (e.g., TCP 3318 * out-of-order queue is protected by the socket lock). 3319 */ 3320 unsigned int skb_rbtree_purge(struct rb_root *root) 3321 { 3322 struct rb_node *p = rb_first(root); 3323 unsigned int sum = 0; 3324 3325 while (p) { 3326 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3327 3328 p = rb_next(p); 3329 rb_erase(&skb->rbnode, root); 3330 sum += skb->truesize; 3331 kfree_skb(skb); 3332 } 3333 return sum; 3334 } 3335 3336 /** 3337 * skb_queue_head - queue a buffer at the list head 3338 * @list: list to use 3339 * @newsk: buffer to queue 3340 * 3341 * Queue a buffer at the start of the list. This function takes the 3342 * list lock and can be used safely with other locking &sk_buff functions 3343 * safely. 3344 * 3345 * A buffer cannot be placed on two lists at the same time. 3346 */ 3347 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3348 { 3349 unsigned long flags; 3350 3351 spin_lock_irqsave(&list->lock, flags); 3352 __skb_queue_head(list, newsk); 3353 spin_unlock_irqrestore(&list->lock, flags); 3354 } 3355 EXPORT_SYMBOL(skb_queue_head); 3356 3357 /** 3358 * skb_queue_tail - queue a buffer at the list tail 3359 * @list: list to use 3360 * @newsk: buffer to queue 3361 * 3362 * Queue a buffer at the tail of the list. This function takes the 3363 * list lock and can be used safely with other locking &sk_buff functions 3364 * safely. 3365 * 3366 * A buffer cannot be placed on two lists at the same time. 3367 */ 3368 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3369 { 3370 unsigned long flags; 3371 3372 spin_lock_irqsave(&list->lock, flags); 3373 __skb_queue_tail(list, newsk); 3374 spin_unlock_irqrestore(&list->lock, flags); 3375 } 3376 EXPORT_SYMBOL(skb_queue_tail); 3377 3378 /** 3379 * skb_unlink - remove a buffer from a list 3380 * @skb: buffer to remove 3381 * @list: list to use 3382 * 3383 * Remove a packet from a list. The list locks are taken and this 3384 * function is atomic with respect to other list locked calls 3385 * 3386 * You must know what list the SKB is on. 3387 */ 3388 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3389 { 3390 unsigned long flags; 3391 3392 spin_lock_irqsave(&list->lock, flags); 3393 __skb_unlink(skb, list); 3394 spin_unlock_irqrestore(&list->lock, flags); 3395 } 3396 EXPORT_SYMBOL(skb_unlink); 3397 3398 /** 3399 * skb_append - append a buffer 3400 * @old: buffer to insert after 3401 * @newsk: buffer to insert 3402 * @list: list to use 3403 * 3404 * Place a packet after a given packet in a list. The list locks are taken 3405 * and this function is atomic with respect to other list locked calls. 3406 * A buffer cannot be placed on two lists at the same time. 3407 */ 3408 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3409 { 3410 unsigned long flags; 3411 3412 spin_lock_irqsave(&list->lock, flags); 3413 __skb_queue_after(list, old, newsk); 3414 spin_unlock_irqrestore(&list->lock, flags); 3415 } 3416 EXPORT_SYMBOL(skb_append); 3417 3418 static inline void skb_split_inside_header(struct sk_buff *skb, 3419 struct sk_buff* skb1, 3420 const u32 len, const int pos) 3421 { 3422 int i; 3423 3424 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3425 pos - len); 3426 /* And move data appendix as is. */ 3427 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3428 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3429 3430 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3431 skb_shinfo(skb)->nr_frags = 0; 3432 skb1->data_len = skb->data_len; 3433 skb1->len += skb1->data_len; 3434 skb->data_len = 0; 3435 skb->len = len; 3436 skb_set_tail_pointer(skb, len); 3437 } 3438 3439 static inline void skb_split_no_header(struct sk_buff *skb, 3440 struct sk_buff* skb1, 3441 const u32 len, int pos) 3442 { 3443 int i, k = 0; 3444 const int nfrags = skb_shinfo(skb)->nr_frags; 3445 3446 skb_shinfo(skb)->nr_frags = 0; 3447 skb1->len = skb1->data_len = skb->len - len; 3448 skb->len = len; 3449 skb->data_len = len - pos; 3450 3451 for (i = 0; i < nfrags; i++) { 3452 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3453 3454 if (pos + size > len) { 3455 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3456 3457 if (pos < len) { 3458 /* Split frag. 3459 * We have two variants in this case: 3460 * 1. Move all the frag to the second 3461 * part, if it is possible. F.e. 3462 * this approach is mandatory for TUX, 3463 * where splitting is expensive. 3464 * 2. Split is accurately. We make this. 3465 */ 3466 skb_frag_ref(skb, i); 3467 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3468 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3469 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3470 skb_shinfo(skb)->nr_frags++; 3471 } 3472 k++; 3473 } else 3474 skb_shinfo(skb)->nr_frags++; 3475 pos += size; 3476 } 3477 skb_shinfo(skb1)->nr_frags = k; 3478 } 3479 3480 /** 3481 * skb_split - Split fragmented skb to two parts at length len. 3482 * @skb: the buffer to split 3483 * @skb1: the buffer to receive the second part 3484 * @len: new length for skb 3485 */ 3486 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3487 { 3488 int pos = skb_headlen(skb); 3489 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 3490 3491 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 3492 skb_zerocopy_clone(skb1, skb, 0); 3493 if (len < pos) /* Split line is inside header. */ 3494 skb_split_inside_header(skb, skb1, len, pos); 3495 else /* Second chunk has no header, nothing to copy. */ 3496 skb_split_no_header(skb, skb1, len, pos); 3497 } 3498 EXPORT_SYMBOL(skb_split); 3499 3500 /* Shifting from/to a cloned skb is a no-go. 3501 * 3502 * Caller cannot keep skb_shinfo related pointers past calling here! 3503 */ 3504 static int skb_prepare_for_shift(struct sk_buff *skb) 3505 { 3506 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 3507 } 3508 3509 /** 3510 * skb_shift - Shifts paged data partially from skb to another 3511 * @tgt: buffer into which tail data gets added 3512 * @skb: buffer from which the paged data comes from 3513 * @shiftlen: shift up to this many bytes 3514 * 3515 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3516 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3517 * It's up to caller to free skb if everything was shifted. 3518 * 3519 * If @tgt runs out of frags, the whole operation is aborted. 3520 * 3521 * Skb cannot include anything else but paged data while tgt is allowed 3522 * to have non-paged data as well. 3523 * 3524 * TODO: full sized shift could be optimized but that would need 3525 * specialized skb free'er to handle frags without up-to-date nr_frags. 3526 */ 3527 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3528 { 3529 int from, to, merge, todo; 3530 skb_frag_t *fragfrom, *fragto; 3531 3532 BUG_ON(shiftlen > skb->len); 3533 3534 if (skb_headlen(skb)) 3535 return 0; 3536 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3537 return 0; 3538 3539 todo = shiftlen; 3540 from = 0; 3541 to = skb_shinfo(tgt)->nr_frags; 3542 fragfrom = &skb_shinfo(skb)->frags[from]; 3543 3544 /* Actual merge is delayed until the point when we know we can 3545 * commit all, so that we don't have to undo partial changes 3546 */ 3547 if (!to || 3548 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3549 skb_frag_off(fragfrom))) { 3550 merge = -1; 3551 } else { 3552 merge = to - 1; 3553 3554 todo -= skb_frag_size(fragfrom); 3555 if (todo < 0) { 3556 if (skb_prepare_for_shift(skb) || 3557 skb_prepare_for_shift(tgt)) 3558 return 0; 3559 3560 /* All previous frag pointers might be stale! */ 3561 fragfrom = &skb_shinfo(skb)->frags[from]; 3562 fragto = &skb_shinfo(tgt)->frags[merge]; 3563 3564 skb_frag_size_add(fragto, shiftlen); 3565 skb_frag_size_sub(fragfrom, shiftlen); 3566 skb_frag_off_add(fragfrom, shiftlen); 3567 3568 goto onlymerged; 3569 } 3570 3571 from++; 3572 } 3573 3574 /* Skip full, not-fitting skb to avoid expensive operations */ 3575 if ((shiftlen == skb->len) && 3576 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3577 return 0; 3578 3579 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3580 return 0; 3581 3582 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3583 if (to == MAX_SKB_FRAGS) 3584 return 0; 3585 3586 fragfrom = &skb_shinfo(skb)->frags[from]; 3587 fragto = &skb_shinfo(tgt)->frags[to]; 3588 3589 if (todo >= skb_frag_size(fragfrom)) { 3590 *fragto = *fragfrom; 3591 todo -= skb_frag_size(fragfrom); 3592 from++; 3593 to++; 3594 3595 } else { 3596 __skb_frag_ref(fragfrom); 3597 skb_frag_page_copy(fragto, fragfrom); 3598 skb_frag_off_copy(fragto, fragfrom); 3599 skb_frag_size_set(fragto, todo); 3600 3601 skb_frag_off_add(fragfrom, todo); 3602 skb_frag_size_sub(fragfrom, todo); 3603 todo = 0; 3604 3605 to++; 3606 break; 3607 } 3608 } 3609 3610 /* Ready to "commit" this state change to tgt */ 3611 skb_shinfo(tgt)->nr_frags = to; 3612 3613 if (merge >= 0) { 3614 fragfrom = &skb_shinfo(skb)->frags[0]; 3615 fragto = &skb_shinfo(tgt)->frags[merge]; 3616 3617 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3618 __skb_frag_unref(fragfrom, skb->pp_recycle); 3619 } 3620 3621 /* Reposition in the original skb */ 3622 to = 0; 3623 while (from < skb_shinfo(skb)->nr_frags) 3624 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3625 skb_shinfo(skb)->nr_frags = to; 3626 3627 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3628 3629 onlymerged: 3630 /* Most likely the tgt won't ever need its checksum anymore, skb on 3631 * the other hand might need it if it needs to be resent 3632 */ 3633 tgt->ip_summed = CHECKSUM_PARTIAL; 3634 skb->ip_summed = CHECKSUM_PARTIAL; 3635 3636 /* Yak, is it really working this way? Some helper please? */ 3637 skb->len -= shiftlen; 3638 skb->data_len -= shiftlen; 3639 skb->truesize -= shiftlen; 3640 tgt->len += shiftlen; 3641 tgt->data_len += shiftlen; 3642 tgt->truesize += shiftlen; 3643 3644 return shiftlen; 3645 } 3646 3647 /** 3648 * skb_prepare_seq_read - Prepare a sequential read of skb data 3649 * @skb: the buffer to read 3650 * @from: lower offset of data to be read 3651 * @to: upper offset of data to be read 3652 * @st: state variable 3653 * 3654 * Initializes the specified state variable. Must be called before 3655 * invoking skb_seq_read() for the first time. 3656 */ 3657 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3658 unsigned int to, struct skb_seq_state *st) 3659 { 3660 st->lower_offset = from; 3661 st->upper_offset = to; 3662 st->root_skb = st->cur_skb = skb; 3663 st->frag_idx = st->stepped_offset = 0; 3664 st->frag_data = NULL; 3665 st->frag_off = 0; 3666 } 3667 EXPORT_SYMBOL(skb_prepare_seq_read); 3668 3669 /** 3670 * skb_seq_read - Sequentially read skb data 3671 * @consumed: number of bytes consumed by the caller so far 3672 * @data: destination pointer for data to be returned 3673 * @st: state variable 3674 * 3675 * Reads a block of skb data at @consumed relative to the 3676 * lower offset specified to skb_prepare_seq_read(). Assigns 3677 * the head of the data block to @data and returns the length 3678 * of the block or 0 if the end of the skb data or the upper 3679 * offset has been reached. 3680 * 3681 * The caller is not required to consume all of the data 3682 * returned, i.e. @consumed is typically set to the number 3683 * of bytes already consumed and the next call to 3684 * skb_seq_read() will return the remaining part of the block. 3685 * 3686 * Note 1: The size of each block of data returned can be arbitrary, 3687 * this limitation is the cost for zerocopy sequential 3688 * reads of potentially non linear data. 3689 * 3690 * Note 2: Fragment lists within fragments are not implemented 3691 * at the moment, state->root_skb could be replaced with 3692 * a stack for this purpose. 3693 */ 3694 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3695 struct skb_seq_state *st) 3696 { 3697 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3698 skb_frag_t *frag; 3699 3700 if (unlikely(abs_offset >= st->upper_offset)) { 3701 if (st->frag_data) { 3702 kunmap_atomic(st->frag_data); 3703 st->frag_data = NULL; 3704 } 3705 return 0; 3706 } 3707 3708 next_skb: 3709 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3710 3711 if (abs_offset < block_limit && !st->frag_data) { 3712 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3713 return block_limit - abs_offset; 3714 } 3715 3716 if (st->frag_idx == 0 && !st->frag_data) 3717 st->stepped_offset += skb_headlen(st->cur_skb); 3718 3719 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3720 unsigned int pg_idx, pg_off, pg_sz; 3721 3722 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3723 3724 pg_idx = 0; 3725 pg_off = skb_frag_off(frag); 3726 pg_sz = skb_frag_size(frag); 3727 3728 if (skb_frag_must_loop(skb_frag_page(frag))) { 3729 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3730 pg_off = offset_in_page(pg_off + st->frag_off); 3731 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3732 PAGE_SIZE - pg_off); 3733 } 3734 3735 block_limit = pg_sz + st->stepped_offset; 3736 if (abs_offset < block_limit) { 3737 if (!st->frag_data) 3738 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3739 3740 *data = (u8 *)st->frag_data + pg_off + 3741 (abs_offset - st->stepped_offset); 3742 3743 return block_limit - abs_offset; 3744 } 3745 3746 if (st->frag_data) { 3747 kunmap_atomic(st->frag_data); 3748 st->frag_data = NULL; 3749 } 3750 3751 st->stepped_offset += pg_sz; 3752 st->frag_off += pg_sz; 3753 if (st->frag_off == skb_frag_size(frag)) { 3754 st->frag_off = 0; 3755 st->frag_idx++; 3756 } 3757 } 3758 3759 if (st->frag_data) { 3760 kunmap_atomic(st->frag_data); 3761 st->frag_data = NULL; 3762 } 3763 3764 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3765 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3766 st->frag_idx = 0; 3767 goto next_skb; 3768 } else if (st->cur_skb->next) { 3769 st->cur_skb = st->cur_skb->next; 3770 st->frag_idx = 0; 3771 goto next_skb; 3772 } 3773 3774 return 0; 3775 } 3776 EXPORT_SYMBOL(skb_seq_read); 3777 3778 /** 3779 * skb_abort_seq_read - Abort a sequential read of skb data 3780 * @st: state variable 3781 * 3782 * Must be called if skb_seq_read() was not called until it 3783 * returned 0. 3784 */ 3785 void skb_abort_seq_read(struct skb_seq_state *st) 3786 { 3787 if (st->frag_data) 3788 kunmap_atomic(st->frag_data); 3789 } 3790 EXPORT_SYMBOL(skb_abort_seq_read); 3791 3792 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3793 3794 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3795 struct ts_config *conf, 3796 struct ts_state *state) 3797 { 3798 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3799 } 3800 3801 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3802 { 3803 skb_abort_seq_read(TS_SKB_CB(state)); 3804 } 3805 3806 /** 3807 * skb_find_text - Find a text pattern in skb data 3808 * @skb: the buffer to look in 3809 * @from: search offset 3810 * @to: search limit 3811 * @config: textsearch configuration 3812 * 3813 * Finds a pattern in the skb data according to the specified 3814 * textsearch configuration. Use textsearch_next() to retrieve 3815 * subsequent occurrences of the pattern. Returns the offset 3816 * to the first occurrence or UINT_MAX if no match was found. 3817 */ 3818 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3819 unsigned int to, struct ts_config *config) 3820 { 3821 struct ts_state state; 3822 unsigned int ret; 3823 3824 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 3825 3826 config->get_next_block = skb_ts_get_next_block; 3827 config->finish = skb_ts_finish; 3828 3829 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3830 3831 ret = textsearch_find(config, &state); 3832 return (ret <= to - from ? ret : UINT_MAX); 3833 } 3834 EXPORT_SYMBOL(skb_find_text); 3835 3836 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3837 int offset, size_t size) 3838 { 3839 int i = skb_shinfo(skb)->nr_frags; 3840 3841 if (skb_can_coalesce(skb, i, page, offset)) { 3842 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3843 } else if (i < MAX_SKB_FRAGS) { 3844 get_page(page); 3845 skb_fill_page_desc(skb, i, page, offset, size); 3846 } else { 3847 return -EMSGSIZE; 3848 } 3849 3850 return 0; 3851 } 3852 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3853 3854 /** 3855 * skb_pull_rcsum - pull skb and update receive checksum 3856 * @skb: buffer to update 3857 * @len: length of data pulled 3858 * 3859 * This function performs an skb_pull on the packet and updates 3860 * the CHECKSUM_COMPLETE checksum. It should be used on 3861 * receive path processing instead of skb_pull unless you know 3862 * that the checksum difference is zero (e.g., a valid IP header) 3863 * or you are setting ip_summed to CHECKSUM_NONE. 3864 */ 3865 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3866 { 3867 unsigned char *data = skb->data; 3868 3869 BUG_ON(len > skb->len); 3870 __skb_pull(skb, len); 3871 skb_postpull_rcsum(skb, data, len); 3872 return skb->data; 3873 } 3874 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3875 3876 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3877 { 3878 skb_frag_t head_frag; 3879 struct page *page; 3880 3881 page = virt_to_head_page(frag_skb->head); 3882 __skb_frag_set_page(&head_frag, page); 3883 skb_frag_off_set(&head_frag, frag_skb->data - 3884 (unsigned char *)page_address(page)); 3885 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3886 return head_frag; 3887 } 3888 3889 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3890 netdev_features_t features, 3891 unsigned int offset) 3892 { 3893 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3894 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3895 unsigned int delta_truesize = 0; 3896 unsigned int delta_len = 0; 3897 struct sk_buff *tail = NULL; 3898 struct sk_buff *nskb, *tmp; 3899 int err; 3900 3901 skb_push(skb, -skb_network_offset(skb) + offset); 3902 3903 skb_shinfo(skb)->frag_list = NULL; 3904 3905 do { 3906 nskb = list_skb; 3907 list_skb = list_skb->next; 3908 3909 err = 0; 3910 if (skb_shared(nskb)) { 3911 tmp = skb_clone(nskb, GFP_ATOMIC); 3912 if (tmp) { 3913 consume_skb(nskb); 3914 nskb = tmp; 3915 err = skb_unclone(nskb, GFP_ATOMIC); 3916 } else { 3917 err = -ENOMEM; 3918 } 3919 } 3920 3921 if (!tail) 3922 skb->next = nskb; 3923 else 3924 tail->next = nskb; 3925 3926 if (unlikely(err)) { 3927 nskb->next = list_skb; 3928 goto err_linearize; 3929 } 3930 3931 tail = nskb; 3932 3933 delta_len += nskb->len; 3934 delta_truesize += nskb->truesize; 3935 3936 skb_push(nskb, -skb_network_offset(nskb) + offset); 3937 3938 skb_release_head_state(nskb); 3939 __copy_skb_header(nskb, skb); 3940 3941 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3942 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3943 nskb->data - tnl_hlen, 3944 offset + tnl_hlen); 3945 3946 if (skb_needs_linearize(nskb, features) && 3947 __skb_linearize(nskb)) 3948 goto err_linearize; 3949 3950 } while (list_skb); 3951 3952 skb->truesize = skb->truesize - delta_truesize; 3953 skb->data_len = skb->data_len - delta_len; 3954 skb->len = skb->len - delta_len; 3955 3956 skb_gso_reset(skb); 3957 3958 skb->prev = tail; 3959 3960 if (skb_needs_linearize(skb, features) && 3961 __skb_linearize(skb)) 3962 goto err_linearize; 3963 3964 skb_get(skb); 3965 3966 return skb; 3967 3968 err_linearize: 3969 kfree_skb_list(skb->next); 3970 skb->next = NULL; 3971 return ERR_PTR(-ENOMEM); 3972 } 3973 EXPORT_SYMBOL_GPL(skb_segment_list); 3974 3975 /** 3976 * skb_segment - Perform protocol segmentation on skb. 3977 * @head_skb: buffer to segment 3978 * @features: features for the output path (see dev->features) 3979 * 3980 * This function performs segmentation on the given skb. It returns 3981 * a pointer to the first in a list of new skbs for the segments. 3982 * In case of error it returns ERR_PTR(err). 3983 */ 3984 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3985 netdev_features_t features) 3986 { 3987 struct sk_buff *segs = NULL; 3988 struct sk_buff *tail = NULL; 3989 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3990 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3991 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3992 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3993 struct sk_buff *frag_skb = head_skb; 3994 unsigned int offset = doffset; 3995 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3996 unsigned int partial_segs = 0; 3997 unsigned int headroom; 3998 unsigned int len = head_skb->len; 3999 __be16 proto; 4000 bool csum, sg; 4001 int nfrags = skb_shinfo(head_skb)->nr_frags; 4002 int err = -ENOMEM; 4003 int i = 0; 4004 int pos; 4005 4006 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 4007 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 4008 /* gso_size is untrusted, and we have a frag_list with a linear 4009 * non head_frag head. 4010 * 4011 * (we assume checking the first list_skb member suffices; 4012 * i.e if either of the list_skb members have non head_frag 4013 * head, then the first one has too). 4014 * 4015 * If head_skb's headlen does not fit requested gso_size, it 4016 * means that the frag_list members do NOT terminate on exact 4017 * gso_size boundaries. Hence we cannot perform skb_frag_t page 4018 * sharing. Therefore we must fallback to copying the frag_list 4019 * skbs; we do so by disabling SG. 4020 */ 4021 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 4022 features &= ~NETIF_F_SG; 4023 } 4024 4025 __skb_push(head_skb, doffset); 4026 proto = skb_network_protocol(head_skb, NULL); 4027 if (unlikely(!proto)) 4028 return ERR_PTR(-EINVAL); 4029 4030 sg = !!(features & NETIF_F_SG); 4031 csum = !!can_checksum_protocol(features, proto); 4032 4033 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4034 if (!(features & NETIF_F_GSO_PARTIAL)) { 4035 struct sk_buff *iter; 4036 unsigned int frag_len; 4037 4038 if (!list_skb || 4039 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4040 goto normal; 4041 4042 /* If we get here then all the required 4043 * GSO features except frag_list are supported. 4044 * Try to split the SKB to multiple GSO SKBs 4045 * with no frag_list. 4046 * Currently we can do that only when the buffers don't 4047 * have a linear part and all the buffers except 4048 * the last are of the same length. 4049 */ 4050 frag_len = list_skb->len; 4051 skb_walk_frags(head_skb, iter) { 4052 if (frag_len != iter->len && iter->next) 4053 goto normal; 4054 if (skb_headlen(iter) && !iter->head_frag) 4055 goto normal; 4056 4057 len -= iter->len; 4058 } 4059 4060 if (len != frag_len) 4061 goto normal; 4062 } 4063 4064 /* GSO partial only requires that we trim off any excess that 4065 * doesn't fit into an MSS sized block, so take care of that 4066 * now. 4067 */ 4068 partial_segs = len / mss; 4069 if (partial_segs > 1) 4070 mss *= partial_segs; 4071 else 4072 partial_segs = 0; 4073 } 4074 4075 normal: 4076 headroom = skb_headroom(head_skb); 4077 pos = skb_headlen(head_skb); 4078 4079 do { 4080 struct sk_buff *nskb; 4081 skb_frag_t *nskb_frag; 4082 int hsize; 4083 int size; 4084 4085 if (unlikely(mss == GSO_BY_FRAGS)) { 4086 len = list_skb->len; 4087 } else { 4088 len = head_skb->len - offset; 4089 if (len > mss) 4090 len = mss; 4091 } 4092 4093 hsize = skb_headlen(head_skb) - offset; 4094 4095 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4096 (skb_headlen(list_skb) == len || sg)) { 4097 BUG_ON(skb_headlen(list_skb) > len); 4098 4099 i = 0; 4100 nfrags = skb_shinfo(list_skb)->nr_frags; 4101 frag = skb_shinfo(list_skb)->frags; 4102 frag_skb = list_skb; 4103 pos += skb_headlen(list_skb); 4104 4105 while (pos < offset + len) { 4106 BUG_ON(i >= nfrags); 4107 4108 size = skb_frag_size(frag); 4109 if (pos + size > offset + len) 4110 break; 4111 4112 i++; 4113 pos += size; 4114 frag++; 4115 } 4116 4117 nskb = skb_clone(list_skb, GFP_ATOMIC); 4118 list_skb = list_skb->next; 4119 4120 if (unlikely(!nskb)) 4121 goto err; 4122 4123 if (unlikely(pskb_trim(nskb, len))) { 4124 kfree_skb(nskb); 4125 goto err; 4126 } 4127 4128 hsize = skb_end_offset(nskb); 4129 if (skb_cow_head(nskb, doffset + headroom)) { 4130 kfree_skb(nskb); 4131 goto err; 4132 } 4133 4134 nskb->truesize += skb_end_offset(nskb) - hsize; 4135 skb_release_head_state(nskb); 4136 __skb_push(nskb, doffset); 4137 } else { 4138 if (hsize < 0) 4139 hsize = 0; 4140 if (hsize > len || !sg) 4141 hsize = len; 4142 4143 nskb = __alloc_skb(hsize + doffset + headroom, 4144 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4145 NUMA_NO_NODE); 4146 4147 if (unlikely(!nskb)) 4148 goto err; 4149 4150 skb_reserve(nskb, headroom); 4151 __skb_put(nskb, doffset); 4152 } 4153 4154 if (segs) 4155 tail->next = nskb; 4156 else 4157 segs = nskb; 4158 tail = nskb; 4159 4160 __copy_skb_header(nskb, head_skb); 4161 4162 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4163 skb_reset_mac_len(nskb); 4164 4165 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4166 nskb->data - tnl_hlen, 4167 doffset + tnl_hlen); 4168 4169 if (nskb->len == len + doffset) 4170 goto perform_csum_check; 4171 4172 if (!sg) { 4173 if (!csum) { 4174 if (!nskb->remcsum_offload) 4175 nskb->ip_summed = CHECKSUM_NONE; 4176 SKB_GSO_CB(nskb)->csum = 4177 skb_copy_and_csum_bits(head_skb, offset, 4178 skb_put(nskb, 4179 len), 4180 len); 4181 SKB_GSO_CB(nskb)->csum_start = 4182 skb_headroom(nskb) + doffset; 4183 } else { 4184 skb_copy_bits(head_skb, offset, 4185 skb_put(nskb, len), 4186 len); 4187 } 4188 continue; 4189 } 4190 4191 nskb_frag = skb_shinfo(nskb)->frags; 4192 4193 skb_copy_from_linear_data_offset(head_skb, offset, 4194 skb_put(nskb, hsize), hsize); 4195 4196 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4197 SKBFL_SHARED_FRAG; 4198 4199 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4200 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4201 goto err; 4202 4203 while (pos < offset + len) { 4204 if (i >= nfrags) { 4205 i = 0; 4206 nfrags = skb_shinfo(list_skb)->nr_frags; 4207 frag = skb_shinfo(list_skb)->frags; 4208 frag_skb = list_skb; 4209 if (!skb_headlen(list_skb)) { 4210 BUG_ON(!nfrags); 4211 } else { 4212 BUG_ON(!list_skb->head_frag); 4213 4214 /* to make room for head_frag. */ 4215 i--; 4216 frag--; 4217 } 4218 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4219 skb_zerocopy_clone(nskb, frag_skb, 4220 GFP_ATOMIC)) 4221 goto err; 4222 4223 list_skb = list_skb->next; 4224 } 4225 4226 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4227 MAX_SKB_FRAGS)) { 4228 net_warn_ratelimited( 4229 "skb_segment: too many frags: %u %u\n", 4230 pos, mss); 4231 err = -EINVAL; 4232 goto err; 4233 } 4234 4235 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4236 __skb_frag_ref(nskb_frag); 4237 size = skb_frag_size(nskb_frag); 4238 4239 if (pos < offset) { 4240 skb_frag_off_add(nskb_frag, offset - pos); 4241 skb_frag_size_sub(nskb_frag, offset - pos); 4242 } 4243 4244 skb_shinfo(nskb)->nr_frags++; 4245 4246 if (pos + size <= offset + len) { 4247 i++; 4248 frag++; 4249 pos += size; 4250 } else { 4251 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4252 goto skip_fraglist; 4253 } 4254 4255 nskb_frag++; 4256 } 4257 4258 skip_fraglist: 4259 nskb->data_len = len - hsize; 4260 nskb->len += nskb->data_len; 4261 nskb->truesize += nskb->data_len; 4262 4263 perform_csum_check: 4264 if (!csum) { 4265 if (skb_has_shared_frag(nskb) && 4266 __skb_linearize(nskb)) 4267 goto err; 4268 4269 if (!nskb->remcsum_offload) 4270 nskb->ip_summed = CHECKSUM_NONE; 4271 SKB_GSO_CB(nskb)->csum = 4272 skb_checksum(nskb, doffset, 4273 nskb->len - doffset, 0); 4274 SKB_GSO_CB(nskb)->csum_start = 4275 skb_headroom(nskb) + doffset; 4276 } 4277 } while ((offset += len) < head_skb->len); 4278 4279 /* Some callers want to get the end of the list. 4280 * Put it in segs->prev to avoid walking the list. 4281 * (see validate_xmit_skb_list() for example) 4282 */ 4283 segs->prev = tail; 4284 4285 if (partial_segs) { 4286 struct sk_buff *iter; 4287 int type = skb_shinfo(head_skb)->gso_type; 4288 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4289 4290 /* Update type to add partial and then remove dodgy if set */ 4291 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4292 type &= ~SKB_GSO_DODGY; 4293 4294 /* Update GSO info and prepare to start updating headers on 4295 * our way back down the stack of protocols. 4296 */ 4297 for (iter = segs; iter; iter = iter->next) { 4298 skb_shinfo(iter)->gso_size = gso_size; 4299 skb_shinfo(iter)->gso_segs = partial_segs; 4300 skb_shinfo(iter)->gso_type = type; 4301 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4302 } 4303 4304 if (tail->len - doffset <= gso_size) 4305 skb_shinfo(tail)->gso_size = 0; 4306 else if (tail != segs) 4307 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4308 } 4309 4310 /* Following permits correct backpressure, for protocols 4311 * using skb_set_owner_w(). 4312 * Idea is to tranfert ownership from head_skb to last segment. 4313 */ 4314 if (head_skb->destructor == sock_wfree) { 4315 swap(tail->truesize, head_skb->truesize); 4316 swap(tail->destructor, head_skb->destructor); 4317 swap(tail->sk, head_skb->sk); 4318 } 4319 return segs; 4320 4321 err: 4322 kfree_skb_list(segs); 4323 return ERR_PTR(err); 4324 } 4325 EXPORT_SYMBOL_GPL(skb_segment); 4326 4327 #ifdef CONFIG_SKB_EXTENSIONS 4328 #define SKB_EXT_ALIGN_VALUE 8 4329 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4330 4331 static const u8 skb_ext_type_len[] = { 4332 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4333 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4334 #endif 4335 #ifdef CONFIG_XFRM 4336 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4337 #endif 4338 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4339 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4340 #endif 4341 #if IS_ENABLED(CONFIG_MPTCP) 4342 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4343 #endif 4344 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4345 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4346 #endif 4347 }; 4348 4349 static __always_inline unsigned int skb_ext_total_length(void) 4350 { 4351 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4352 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4353 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4354 #endif 4355 #ifdef CONFIG_XFRM 4356 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4357 #endif 4358 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4359 skb_ext_type_len[TC_SKB_EXT] + 4360 #endif 4361 #if IS_ENABLED(CONFIG_MPTCP) 4362 skb_ext_type_len[SKB_EXT_MPTCP] + 4363 #endif 4364 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4365 skb_ext_type_len[SKB_EXT_MCTP] + 4366 #endif 4367 0; 4368 } 4369 4370 static void skb_extensions_init(void) 4371 { 4372 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4373 BUILD_BUG_ON(skb_ext_total_length() > 255); 4374 4375 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4376 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4377 0, 4378 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4379 NULL); 4380 } 4381 #else 4382 static void skb_extensions_init(void) {} 4383 #endif 4384 4385 void __init skb_init(void) 4386 { 4387 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4388 sizeof(struct sk_buff), 4389 0, 4390 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4391 offsetof(struct sk_buff, cb), 4392 sizeof_field(struct sk_buff, cb), 4393 NULL); 4394 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4395 sizeof(struct sk_buff_fclones), 4396 0, 4397 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4398 NULL); 4399 skb_extensions_init(); 4400 } 4401 4402 static int 4403 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4404 unsigned int recursion_level) 4405 { 4406 int start = skb_headlen(skb); 4407 int i, copy = start - offset; 4408 struct sk_buff *frag_iter; 4409 int elt = 0; 4410 4411 if (unlikely(recursion_level >= 24)) 4412 return -EMSGSIZE; 4413 4414 if (copy > 0) { 4415 if (copy > len) 4416 copy = len; 4417 sg_set_buf(sg, skb->data + offset, copy); 4418 elt++; 4419 if ((len -= copy) == 0) 4420 return elt; 4421 offset += copy; 4422 } 4423 4424 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4425 int end; 4426 4427 WARN_ON(start > offset + len); 4428 4429 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4430 if ((copy = end - offset) > 0) { 4431 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4432 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4433 return -EMSGSIZE; 4434 4435 if (copy > len) 4436 copy = len; 4437 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4438 skb_frag_off(frag) + offset - start); 4439 elt++; 4440 if (!(len -= copy)) 4441 return elt; 4442 offset += copy; 4443 } 4444 start = end; 4445 } 4446 4447 skb_walk_frags(skb, frag_iter) { 4448 int end, ret; 4449 4450 WARN_ON(start > offset + len); 4451 4452 end = start + frag_iter->len; 4453 if ((copy = end - offset) > 0) { 4454 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4455 return -EMSGSIZE; 4456 4457 if (copy > len) 4458 copy = len; 4459 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4460 copy, recursion_level + 1); 4461 if (unlikely(ret < 0)) 4462 return ret; 4463 elt += ret; 4464 if ((len -= copy) == 0) 4465 return elt; 4466 offset += copy; 4467 } 4468 start = end; 4469 } 4470 BUG_ON(len); 4471 return elt; 4472 } 4473 4474 /** 4475 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4476 * @skb: Socket buffer containing the buffers to be mapped 4477 * @sg: The scatter-gather list to map into 4478 * @offset: The offset into the buffer's contents to start mapping 4479 * @len: Length of buffer space to be mapped 4480 * 4481 * Fill the specified scatter-gather list with mappings/pointers into a 4482 * region of the buffer space attached to a socket buffer. Returns either 4483 * the number of scatterlist items used, or -EMSGSIZE if the contents 4484 * could not fit. 4485 */ 4486 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4487 { 4488 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4489 4490 if (nsg <= 0) 4491 return nsg; 4492 4493 sg_mark_end(&sg[nsg - 1]); 4494 4495 return nsg; 4496 } 4497 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4498 4499 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4500 * sglist without mark the sg which contain last skb data as the end. 4501 * So the caller can mannipulate sg list as will when padding new data after 4502 * the first call without calling sg_unmark_end to expend sg list. 4503 * 4504 * Scenario to use skb_to_sgvec_nomark: 4505 * 1. sg_init_table 4506 * 2. skb_to_sgvec_nomark(payload1) 4507 * 3. skb_to_sgvec_nomark(payload2) 4508 * 4509 * This is equivalent to: 4510 * 1. sg_init_table 4511 * 2. skb_to_sgvec(payload1) 4512 * 3. sg_unmark_end 4513 * 4. skb_to_sgvec(payload2) 4514 * 4515 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4516 * is more preferable. 4517 */ 4518 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4519 int offset, int len) 4520 { 4521 return __skb_to_sgvec(skb, sg, offset, len, 0); 4522 } 4523 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4524 4525 4526 4527 /** 4528 * skb_cow_data - Check that a socket buffer's data buffers are writable 4529 * @skb: The socket buffer to check. 4530 * @tailbits: Amount of trailing space to be added 4531 * @trailer: Returned pointer to the skb where the @tailbits space begins 4532 * 4533 * Make sure that the data buffers attached to a socket buffer are 4534 * writable. If they are not, private copies are made of the data buffers 4535 * and the socket buffer is set to use these instead. 4536 * 4537 * If @tailbits is given, make sure that there is space to write @tailbits 4538 * bytes of data beyond current end of socket buffer. @trailer will be 4539 * set to point to the skb in which this space begins. 4540 * 4541 * The number of scatterlist elements required to completely map the 4542 * COW'd and extended socket buffer will be returned. 4543 */ 4544 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4545 { 4546 int copyflag; 4547 int elt; 4548 struct sk_buff *skb1, **skb_p; 4549 4550 /* If skb is cloned or its head is paged, reallocate 4551 * head pulling out all the pages (pages are considered not writable 4552 * at the moment even if they are anonymous). 4553 */ 4554 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4555 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4556 return -ENOMEM; 4557 4558 /* Easy case. Most of packets will go this way. */ 4559 if (!skb_has_frag_list(skb)) { 4560 /* A little of trouble, not enough of space for trailer. 4561 * This should not happen, when stack is tuned to generate 4562 * good frames. OK, on miss we reallocate and reserve even more 4563 * space, 128 bytes is fair. */ 4564 4565 if (skb_tailroom(skb) < tailbits && 4566 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4567 return -ENOMEM; 4568 4569 /* Voila! */ 4570 *trailer = skb; 4571 return 1; 4572 } 4573 4574 /* Misery. We are in troubles, going to mincer fragments... */ 4575 4576 elt = 1; 4577 skb_p = &skb_shinfo(skb)->frag_list; 4578 copyflag = 0; 4579 4580 while ((skb1 = *skb_p) != NULL) { 4581 int ntail = 0; 4582 4583 /* The fragment is partially pulled by someone, 4584 * this can happen on input. Copy it and everything 4585 * after it. */ 4586 4587 if (skb_shared(skb1)) 4588 copyflag = 1; 4589 4590 /* If the skb is the last, worry about trailer. */ 4591 4592 if (skb1->next == NULL && tailbits) { 4593 if (skb_shinfo(skb1)->nr_frags || 4594 skb_has_frag_list(skb1) || 4595 skb_tailroom(skb1) < tailbits) 4596 ntail = tailbits + 128; 4597 } 4598 4599 if (copyflag || 4600 skb_cloned(skb1) || 4601 ntail || 4602 skb_shinfo(skb1)->nr_frags || 4603 skb_has_frag_list(skb1)) { 4604 struct sk_buff *skb2; 4605 4606 /* Fuck, we are miserable poor guys... */ 4607 if (ntail == 0) 4608 skb2 = skb_copy(skb1, GFP_ATOMIC); 4609 else 4610 skb2 = skb_copy_expand(skb1, 4611 skb_headroom(skb1), 4612 ntail, 4613 GFP_ATOMIC); 4614 if (unlikely(skb2 == NULL)) 4615 return -ENOMEM; 4616 4617 if (skb1->sk) 4618 skb_set_owner_w(skb2, skb1->sk); 4619 4620 /* Looking around. Are we still alive? 4621 * OK, link new skb, drop old one */ 4622 4623 skb2->next = skb1->next; 4624 *skb_p = skb2; 4625 kfree_skb(skb1); 4626 skb1 = skb2; 4627 } 4628 elt++; 4629 *trailer = skb1; 4630 skb_p = &skb1->next; 4631 } 4632 4633 return elt; 4634 } 4635 EXPORT_SYMBOL_GPL(skb_cow_data); 4636 4637 static void sock_rmem_free(struct sk_buff *skb) 4638 { 4639 struct sock *sk = skb->sk; 4640 4641 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4642 } 4643 4644 static void skb_set_err_queue(struct sk_buff *skb) 4645 { 4646 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4647 * So, it is safe to (mis)use it to mark skbs on the error queue. 4648 */ 4649 skb->pkt_type = PACKET_OUTGOING; 4650 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4651 } 4652 4653 /* 4654 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4655 */ 4656 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4657 { 4658 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4659 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4660 return -ENOMEM; 4661 4662 skb_orphan(skb); 4663 skb->sk = sk; 4664 skb->destructor = sock_rmem_free; 4665 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4666 skb_set_err_queue(skb); 4667 4668 /* before exiting rcu section, make sure dst is refcounted */ 4669 skb_dst_force(skb); 4670 4671 skb_queue_tail(&sk->sk_error_queue, skb); 4672 if (!sock_flag(sk, SOCK_DEAD)) 4673 sk_error_report(sk); 4674 return 0; 4675 } 4676 EXPORT_SYMBOL(sock_queue_err_skb); 4677 4678 static bool is_icmp_err_skb(const struct sk_buff *skb) 4679 { 4680 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4681 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4682 } 4683 4684 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4685 { 4686 struct sk_buff_head *q = &sk->sk_error_queue; 4687 struct sk_buff *skb, *skb_next = NULL; 4688 bool icmp_next = false; 4689 unsigned long flags; 4690 4691 spin_lock_irqsave(&q->lock, flags); 4692 skb = __skb_dequeue(q); 4693 if (skb && (skb_next = skb_peek(q))) { 4694 icmp_next = is_icmp_err_skb(skb_next); 4695 if (icmp_next) 4696 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4697 } 4698 spin_unlock_irqrestore(&q->lock, flags); 4699 4700 if (is_icmp_err_skb(skb) && !icmp_next) 4701 sk->sk_err = 0; 4702 4703 if (skb_next) 4704 sk_error_report(sk); 4705 4706 return skb; 4707 } 4708 EXPORT_SYMBOL(sock_dequeue_err_skb); 4709 4710 /** 4711 * skb_clone_sk - create clone of skb, and take reference to socket 4712 * @skb: the skb to clone 4713 * 4714 * This function creates a clone of a buffer that holds a reference on 4715 * sk_refcnt. Buffers created via this function are meant to be 4716 * returned using sock_queue_err_skb, or free via kfree_skb. 4717 * 4718 * When passing buffers allocated with this function to sock_queue_err_skb 4719 * it is necessary to wrap the call with sock_hold/sock_put in order to 4720 * prevent the socket from being released prior to being enqueued on 4721 * the sk_error_queue. 4722 */ 4723 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4724 { 4725 struct sock *sk = skb->sk; 4726 struct sk_buff *clone; 4727 4728 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4729 return NULL; 4730 4731 clone = skb_clone(skb, GFP_ATOMIC); 4732 if (!clone) { 4733 sock_put(sk); 4734 return NULL; 4735 } 4736 4737 clone->sk = sk; 4738 clone->destructor = sock_efree; 4739 4740 return clone; 4741 } 4742 EXPORT_SYMBOL(skb_clone_sk); 4743 4744 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4745 struct sock *sk, 4746 int tstype, 4747 bool opt_stats) 4748 { 4749 struct sock_exterr_skb *serr; 4750 int err; 4751 4752 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4753 4754 serr = SKB_EXT_ERR(skb); 4755 memset(serr, 0, sizeof(*serr)); 4756 serr->ee.ee_errno = ENOMSG; 4757 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4758 serr->ee.ee_info = tstype; 4759 serr->opt_stats = opt_stats; 4760 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4761 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4762 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4763 if (sk_is_tcp(sk)) 4764 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 4765 } 4766 4767 err = sock_queue_err_skb(sk, skb); 4768 4769 if (err) 4770 kfree_skb(skb); 4771 } 4772 4773 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4774 { 4775 bool ret; 4776 4777 if (likely(sysctl_tstamp_allow_data || tsonly)) 4778 return true; 4779 4780 read_lock_bh(&sk->sk_callback_lock); 4781 ret = sk->sk_socket && sk->sk_socket->file && 4782 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4783 read_unlock_bh(&sk->sk_callback_lock); 4784 return ret; 4785 } 4786 4787 void skb_complete_tx_timestamp(struct sk_buff *skb, 4788 struct skb_shared_hwtstamps *hwtstamps) 4789 { 4790 struct sock *sk = skb->sk; 4791 4792 if (!skb_may_tx_timestamp(sk, false)) 4793 goto err; 4794 4795 /* Take a reference to prevent skb_orphan() from freeing the socket, 4796 * but only if the socket refcount is not zero. 4797 */ 4798 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4799 *skb_hwtstamps(skb) = *hwtstamps; 4800 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4801 sock_put(sk); 4802 return; 4803 } 4804 4805 err: 4806 kfree_skb(skb); 4807 } 4808 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4809 4810 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4811 const struct sk_buff *ack_skb, 4812 struct skb_shared_hwtstamps *hwtstamps, 4813 struct sock *sk, int tstype) 4814 { 4815 struct sk_buff *skb; 4816 bool tsonly, opt_stats = false; 4817 4818 if (!sk) 4819 return; 4820 4821 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4822 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4823 return; 4824 4825 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4826 if (!skb_may_tx_timestamp(sk, tsonly)) 4827 return; 4828 4829 if (tsonly) { 4830 #ifdef CONFIG_INET 4831 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4832 sk_is_tcp(sk)) { 4833 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 4834 ack_skb); 4835 opt_stats = true; 4836 } else 4837 #endif 4838 skb = alloc_skb(0, GFP_ATOMIC); 4839 } else { 4840 skb = skb_clone(orig_skb, GFP_ATOMIC); 4841 } 4842 if (!skb) 4843 return; 4844 4845 if (tsonly) { 4846 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4847 SKBTX_ANY_TSTAMP; 4848 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4849 } 4850 4851 if (hwtstamps) 4852 *skb_hwtstamps(skb) = *hwtstamps; 4853 else 4854 skb->tstamp = ktime_get_real(); 4855 4856 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4857 } 4858 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4859 4860 void skb_tstamp_tx(struct sk_buff *orig_skb, 4861 struct skb_shared_hwtstamps *hwtstamps) 4862 { 4863 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 4864 SCM_TSTAMP_SND); 4865 } 4866 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4867 4868 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4869 { 4870 struct sock *sk = skb->sk; 4871 struct sock_exterr_skb *serr; 4872 int err = 1; 4873 4874 skb->wifi_acked_valid = 1; 4875 skb->wifi_acked = acked; 4876 4877 serr = SKB_EXT_ERR(skb); 4878 memset(serr, 0, sizeof(*serr)); 4879 serr->ee.ee_errno = ENOMSG; 4880 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4881 4882 /* Take a reference to prevent skb_orphan() from freeing the socket, 4883 * but only if the socket refcount is not zero. 4884 */ 4885 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4886 err = sock_queue_err_skb(sk, skb); 4887 sock_put(sk); 4888 } 4889 if (err) 4890 kfree_skb(skb); 4891 } 4892 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4893 4894 /** 4895 * skb_partial_csum_set - set up and verify partial csum values for packet 4896 * @skb: the skb to set 4897 * @start: the number of bytes after skb->data to start checksumming. 4898 * @off: the offset from start to place the checksum. 4899 * 4900 * For untrusted partially-checksummed packets, we need to make sure the values 4901 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4902 * 4903 * This function checks and sets those values and skb->ip_summed: if this 4904 * returns false you should drop the packet. 4905 */ 4906 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4907 { 4908 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4909 u32 csum_start = skb_headroom(skb) + (u32)start; 4910 4911 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4912 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4913 start, off, skb_headroom(skb), skb_headlen(skb)); 4914 return false; 4915 } 4916 skb->ip_summed = CHECKSUM_PARTIAL; 4917 skb->csum_start = csum_start; 4918 skb->csum_offset = off; 4919 skb_set_transport_header(skb, start); 4920 return true; 4921 } 4922 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4923 4924 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4925 unsigned int max) 4926 { 4927 if (skb_headlen(skb) >= len) 4928 return 0; 4929 4930 /* If we need to pullup then pullup to the max, so we 4931 * won't need to do it again. 4932 */ 4933 if (max > skb->len) 4934 max = skb->len; 4935 4936 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4937 return -ENOMEM; 4938 4939 if (skb_headlen(skb) < len) 4940 return -EPROTO; 4941 4942 return 0; 4943 } 4944 4945 #define MAX_TCP_HDR_LEN (15 * 4) 4946 4947 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4948 typeof(IPPROTO_IP) proto, 4949 unsigned int off) 4950 { 4951 int err; 4952 4953 switch (proto) { 4954 case IPPROTO_TCP: 4955 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4956 off + MAX_TCP_HDR_LEN); 4957 if (!err && !skb_partial_csum_set(skb, off, 4958 offsetof(struct tcphdr, 4959 check))) 4960 err = -EPROTO; 4961 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4962 4963 case IPPROTO_UDP: 4964 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4965 off + sizeof(struct udphdr)); 4966 if (!err && !skb_partial_csum_set(skb, off, 4967 offsetof(struct udphdr, 4968 check))) 4969 err = -EPROTO; 4970 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4971 } 4972 4973 return ERR_PTR(-EPROTO); 4974 } 4975 4976 /* This value should be large enough to cover a tagged ethernet header plus 4977 * maximally sized IP and TCP or UDP headers. 4978 */ 4979 #define MAX_IP_HDR_LEN 128 4980 4981 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4982 { 4983 unsigned int off; 4984 bool fragment; 4985 __sum16 *csum; 4986 int err; 4987 4988 fragment = false; 4989 4990 err = skb_maybe_pull_tail(skb, 4991 sizeof(struct iphdr), 4992 MAX_IP_HDR_LEN); 4993 if (err < 0) 4994 goto out; 4995 4996 if (ip_is_fragment(ip_hdr(skb))) 4997 fragment = true; 4998 4999 off = ip_hdrlen(skb); 5000 5001 err = -EPROTO; 5002 5003 if (fragment) 5004 goto out; 5005 5006 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5007 if (IS_ERR(csum)) 5008 return PTR_ERR(csum); 5009 5010 if (recalculate) 5011 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5012 ip_hdr(skb)->daddr, 5013 skb->len - off, 5014 ip_hdr(skb)->protocol, 0); 5015 err = 0; 5016 5017 out: 5018 return err; 5019 } 5020 5021 /* This value should be large enough to cover a tagged ethernet header plus 5022 * an IPv6 header, all options, and a maximal TCP or UDP header. 5023 */ 5024 #define MAX_IPV6_HDR_LEN 256 5025 5026 #define OPT_HDR(type, skb, off) \ 5027 (type *)(skb_network_header(skb) + (off)) 5028 5029 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5030 { 5031 int err; 5032 u8 nexthdr; 5033 unsigned int off; 5034 unsigned int len; 5035 bool fragment; 5036 bool done; 5037 __sum16 *csum; 5038 5039 fragment = false; 5040 done = false; 5041 5042 off = sizeof(struct ipv6hdr); 5043 5044 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5045 if (err < 0) 5046 goto out; 5047 5048 nexthdr = ipv6_hdr(skb)->nexthdr; 5049 5050 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5051 while (off <= len && !done) { 5052 switch (nexthdr) { 5053 case IPPROTO_DSTOPTS: 5054 case IPPROTO_HOPOPTS: 5055 case IPPROTO_ROUTING: { 5056 struct ipv6_opt_hdr *hp; 5057 5058 err = skb_maybe_pull_tail(skb, 5059 off + 5060 sizeof(struct ipv6_opt_hdr), 5061 MAX_IPV6_HDR_LEN); 5062 if (err < 0) 5063 goto out; 5064 5065 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5066 nexthdr = hp->nexthdr; 5067 off += ipv6_optlen(hp); 5068 break; 5069 } 5070 case IPPROTO_AH: { 5071 struct ip_auth_hdr *hp; 5072 5073 err = skb_maybe_pull_tail(skb, 5074 off + 5075 sizeof(struct ip_auth_hdr), 5076 MAX_IPV6_HDR_LEN); 5077 if (err < 0) 5078 goto out; 5079 5080 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5081 nexthdr = hp->nexthdr; 5082 off += ipv6_authlen(hp); 5083 break; 5084 } 5085 case IPPROTO_FRAGMENT: { 5086 struct frag_hdr *hp; 5087 5088 err = skb_maybe_pull_tail(skb, 5089 off + 5090 sizeof(struct frag_hdr), 5091 MAX_IPV6_HDR_LEN); 5092 if (err < 0) 5093 goto out; 5094 5095 hp = OPT_HDR(struct frag_hdr, skb, off); 5096 5097 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5098 fragment = true; 5099 5100 nexthdr = hp->nexthdr; 5101 off += sizeof(struct frag_hdr); 5102 break; 5103 } 5104 default: 5105 done = true; 5106 break; 5107 } 5108 } 5109 5110 err = -EPROTO; 5111 5112 if (!done || fragment) 5113 goto out; 5114 5115 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5116 if (IS_ERR(csum)) 5117 return PTR_ERR(csum); 5118 5119 if (recalculate) 5120 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5121 &ipv6_hdr(skb)->daddr, 5122 skb->len - off, nexthdr, 0); 5123 err = 0; 5124 5125 out: 5126 return err; 5127 } 5128 5129 /** 5130 * skb_checksum_setup - set up partial checksum offset 5131 * @skb: the skb to set up 5132 * @recalculate: if true the pseudo-header checksum will be recalculated 5133 */ 5134 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5135 { 5136 int err; 5137 5138 switch (skb->protocol) { 5139 case htons(ETH_P_IP): 5140 err = skb_checksum_setup_ipv4(skb, recalculate); 5141 break; 5142 5143 case htons(ETH_P_IPV6): 5144 err = skb_checksum_setup_ipv6(skb, recalculate); 5145 break; 5146 5147 default: 5148 err = -EPROTO; 5149 break; 5150 } 5151 5152 return err; 5153 } 5154 EXPORT_SYMBOL(skb_checksum_setup); 5155 5156 /** 5157 * skb_checksum_maybe_trim - maybe trims the given skb 5158 * @skb: the skb to check 5159 * @transport_len: the data length beyond the network header 5160 * 5161 * Checks whether the given skb has data beyond the given transport length. 5162 * If so, returns a cloned skb trimmed to this transport length. 5163 * Otherwise returns the provided skb. Returns NULL in error cases 5164 * (e.g. transport_len exceeds skb length or out-of-memory). 5165 * 5166 * Caller needs to set the skb transport header and free any returned skb if it 5167 * differs from the provided skb. 5168 */ 5169 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5170 unsigned int transport_len) 5171 { 5172 struct sk_buff *skb_chk; 5173 unsigned int len = skb_transport_offset(skb) + transport_len; 5174 int ret; 5175 5176 if (skb->len < len) 5177 return NULL; 5178 else if (skb->len == len) 5179 return skb; 5180 5181 skb_chk = skb_clone(skb, GFP_ATOMIC); 5182 if (!skb_chk) 5183 return NULL; 5184 5185 ret = pskb_trim_rcsum(skb_chk, len); 5186 if (ret) { 5187 kfree_skb(skb_chk); 5188 return NULL; 5189 } 5190 5191 return skb_chk; 5192 } 5193 5194 /** 5195 * skb_checksum_trimmed - validate checksum of an skb 5196 * @skb: the skb to check 5197 * @transport_len: the data length beyond the network header 5198 * @skb_chkf: checksum function to use 5199 * 5200 * Applies the given checksum function skb_chkf to the provided skb. 5201 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5202 * 5203 * If the skb has data beyond the given transport length, then a 5204 * trimmed & cloned skb is checked and returned. 5205 * 5206 * Caller needs to set the skb transport header and free any returned skb if it 5207 * differs from the provided skb. 5208 */ 5209 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5210 unsigned int transport_len, 5211 __sum16(*skb_chkf)(struct sk_buff *skb)) 5212 { 5213 struct sk_buff *skb_chk; 5214 unsigned int offset = skb_transport_offset(skb); 5215 __sum16 ret; 5216 5217 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5218 if (!skb_chk) 5219 goto err; 5220 5221 if (!pskb_may_pull(skb_chk, offset)) 5222 goto err; 5223 5224 skb_pull_rcsum(skb_chk, offset); 5225 ret = skb_chkf(skb_chk); 5226 skb_push_rcsum(skb_chk, offset); 5227 5228 if (ret) 5229 goto err; 5230 5231 return skb_chk; 5232 5233 err: 5234 if (skb_chk && skb_chk != skb) 5235 kfree_skb(skb_chk); 5236 5237 return NULL; 5238 5239 } 5240 EXPORT_SYMBOL(skb_checksum_trimmed); 5241 5242 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5243 { 5244 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5245 skb->dev->name); 5246 } 5247 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5248 5249 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5250 { 5251 if (head_stolen) { 5252 skb_release_head_state(skb); 5253 kmem_cache_free(skbuff_head_cache, skb); 5254 } else { 5255 __kfree_skb(skb); 5256 } 5257 } 5258 EXPORT_SYMBOL(kfree_skb_partial); 5259 5260 /** 5261 * skb_try_coalesce - try to merge skb to prior one 5262 * @to: prior buffer 5263 * @from: buffer to add 5264 * @fragstolen: pointer to boolean 5265 * @delta_truesize: how much more was allocated than was requested 5266 */ 5267 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5268 bool *fragstolen, int *delta_truesize) 5269 { 5270 struct skb_shared_info *to_shinfo, *from_shinfo; 5271 int i, delta, len = from->len; 5272 5273 *fragstolen = false; 5274 5275 if (skb_cloned(to)) 5276 return false; 5277 5278 /* The page pool signature of struct page will eventually figure out 5279 * which pages can be recycled or not but for now let's prohibit slab 5280 * allocated and page_pool allocated SKBs from being coalesced. 5281 */ 5282 if (to->pp_recycle != from->pp_recycle) 5283 return false; 5284 5285 if (len <= skb_tailroom(to)) { 5286 if (len) 5287 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5288 *delta_truesize = 0; 5289 return true; 5290 } 5291 5292 to_shinfo = skb_shinfo(to); 5293 from_shinfo = skb_shinfo(from); 5294 if (to_shinfo->frag_list || from_shinfo->frag_list) 5295 return false; 5296 if (skb_zcopy(to) || skb_zcopy(from)) 5297 return false; 5298 5299 if (skb_headlen(from) != 0) { 5300 struct page *page; 5301 unsigned int offset; 5302 5303 if (to_shinfo->nr_frags + 5304 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5305 return false; 5306 5307 if (skb_head_is_locked(from)) 5308 return false; 5309 5310 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5311 5312 page = virt_to_head_page(from->head); 5313 offset = from->data - (unsigned char *)page_address(page); 5314 5315 skb_fill_page_desc(to, to_shinfo->nr_frags, 5316 page, offset, skb_headlen(from)); 5317 *fragstolen = true; 5318 } else { 5319 if (to_shinfo->nr_frags + 5320 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5321 return false; 5322 5323 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5324 } 5325 5326 WARN_ON_ONCE(delta < len); 5327 5328 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5329 from_shinfo->frags, 5330 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5331 to_shinfo->nr_frags += from_shinfo->nr_frags; 5332 5333 if (!skb_cloned(from)) 5334 from_shinfo->nr_frags = 0; 5335 5336 /* if the skb is not cloned this does nothing 5337 * since we set nr_frags to 0. 5338 */ 5339 for (i = 0; i < from_shinfo->nr_frags; i++) 5340 __skb_frag_ref(&from_shinfo->frags[i]); 5341 5342 to->truesize += delta; 5343 to->len += len; 5344 to->data_len += len; 5345 5346 *delta_truesize = delta; 5347 return true; 5348 } 5349 EXPORT_SYMBOL(skb_try_coalesce); 5350 5351 /** 5352 * skb_scrub_packet - scrub an skb 5353 * 5354 * @skb: buffer to clean 5355 * @xnet: packet is crossing netns 5356 * 5357 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5358 * into/from a tunnel. Some information have to be cleared during these 5359 * operations. 5360 * skb_scrub_packet can also be used to clean a skb before injecting it in 5361 * another namespace (@xnet == true). We have to clear all information in the 5362 * skb that could impact namespace isolation. 5363 */ 5364 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5365 { 5366 skb->pkt_type = PACKET_HOST; 5367 skb->skb_iif = 0; 5368 skb->ignore_df = 0; 5369 skb_dst_drop(skb); 5370 skb_ext_reset(skb); 5371 nf_reset_ct(skb); 5372 nf_reset_trace(skb); 5373 5374 #ifdef CONFIG_NET_SWITCHDEV 5375 skb->offload_fwd_mark = 0; 5376 skb->offload_l3_fwd_mark = 0; 5377 #endif 5378 5379 if (!xnet) 5380 return; 5381 5382 ipvs_reset(skb); 5383 skb->mark = 0; 5384 skb->tstamp = 0; 5385 } 5386 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5387 5388 /** 5389 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5390 * 5391 * @skb: GSO skb 5392 * 5393 * skb_gso_transport_seglen is used to determine the real size of the 5394 * individual segments, including Layer4 headers (TCP/UDP). 5395 * 5396 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5397 */ 5398 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5399 { 5400 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5401 unsigned int thlen = 0; 5402 5403 if (skb->encapsulation) { 5404 thlen = skb_inner_transport_header(skb) - 5405 skb_transport_header(skb); 5406 5407 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5408 thlen += inner_tcp_hdrlen(skb); 5409 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5410 thlen = tcp_hdrlen(skb); 5411 } else if (unlikely(skb_is_gso_sctp(skb))) { 5412 thlen = sizeof(struct sctphdr); 5413 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5414 thlen = sizeof(struct udphdr); 5415 } 5416 /* UFO sets gso_size to the size of the fragmentation 5417 * payload, i.e. the size of the L4 (UDP) header is already 5418 * accounted for. 5419 */ 5420 return thlen + shinfo->gso_size; 5421 } 5422 5423 /** 5424 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5425 * 5426 * @skb: GSO skb 5427 * 5428 * skb_gso_network_seglen is used to determine the real size of the 5429 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5430 * 5431 * The MAC/L2 header is not accounted for. 5432 */ 5433 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5434 { 5435 unsigned int hdr_len = skb_transport_header(skb) - 5436 skb_network_header(skb); 5437 5438 return hdr_len + skb_gso_transport_seglen(skb); 5439 } 5440 5441 /** 5442 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5443 * 5444 * @skb: GSO skb 5445 * 5446 * skb_gso_mac_seglen is used to determine the real size of the 5447 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5448 * headers (TCP/UDP). 5449 */ 5450 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5451 { 5452 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5453 5454 return hdr_len + skb_gso_transport_seglen(skb); 5455 } 5456 5457 /** 5458 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5459 * 5460 * There are a couple of instances where we have a GSO skb, and we 5461 * want to determine what size it would be after it is segmented. 5462 * 5463 * We might want to check: 5464 * - L3+L4+payload size (e.g. IP forwarding) 5465 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5466 * 5467 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5468 * 5469 * @skb: GSO skb 5470 * 5471 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5472 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5473 * 5474 * @max_len: The maximum permissible length. 5475 * 5476 * Returns true if the segmented length <= max length. 5477 */ 5478 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5479 unsigned int seg_len, 5480 unsigned int max_len) { 5481 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5482 const struct sk_buff *iter; 5483 5484 if (shinfo->gso_size != GSO_BY_FRAGS) 5485 return seg_len <= max_len; 5486 5487 /* Undo this so we can re-use header sizes */ 5488 seg_len -= GSO_BY_FRAGS; 5489 5490 skb_walk_frags(skb, iter) { 5491 if (seg_len + skb_headlen(iter) > max_len) 5492 return false; 5493 } 5494 5495 return true; 5496 } 5497 5498 /** 5499 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5500 * 5501 * @skb: GSO skb 5502 * @mtu: MTU to validate against 5503 * 5504 * skb_gso_validate_network_len validates if a given skb will fit a 5505 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5506 * payload. 5507 */ 5508 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5509 { 5510 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5511 } 5512 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5513 5514 /** 5515 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5516 * 5517 * @skb: GSO skb 5518 * @len: length to validate against 5519 * 5520 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5521 * length once split, including L2, L3 and L4 headers and the payload. 5522 */ 5523 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5524 { 5525 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5526 } 5527 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5528 5529 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5530 { 5531 int mac_len, meta_len; 5532 void *meta; 5533 5534 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5535 kfree_skb(skb); 5536 return NULL; 5537 } 5538 5539 mac_len = skb->data - skb_mac_header(skb); 5540 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5541 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5542 mac_len - VLAN_HLEN - ETH_TLEN); 5543 } 5544 5545 meta_len = skb_metadata_len(skb); 5546 if (meta_len) { 5547 meta = skb_metadata_end(skb) - meta_len; 5548 memmove(meta + VLAN_HLEN, meta, meta_len); 5549 } 5550 5551 skb->mac_header += VLAN_HLEN; 5552 return skb; 5553 } 5554 5555 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5556 { 5557 struct vlan_hdr *vhdr; 5558 u16 vlan_tci; 5559 5560 if (unlikely(skb_vlan_tag_present(skb))) { 5561 /* vlan_tci is already set-up so leave this for another time */ 5562 return skb; 5563 } 5564 5565 skb = skb_share_check(skb, GFP_ATOMIC); 5566 if (unlikely(!skb)) 5567 goto err_free; 5568 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5569 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5570 goto err_free; 5571 5572 vhdr = (struct vlan_hdr *)skb->data; 5573 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5574 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5575 5576 skb_pull_rcsum(skb, VLAN_HLEN); 5577 vlan_set_encap_proto(skb, vhdr); 5578 5579 skb = skb_reorder_vlan_header(skb); 5580 if (unlikely(!skb)) 5581 goto err_free; 5582 5583 skb_reset_network_header(skb); 5584 if (!skb_transport_header_was_set(skb)) 5585 skb_reset_transport_header(skb); 5586 skb_reset_mac_len(skb); 5587 5588 return skb; 5589 5590 err_free: 5591 kfree_skb(skb); 5592 return NULL; 5593 } 5594 EXPORT_SYMBOL(skb_vlan_untag); 5595 5596 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5597 { 5598 if (!pskb_may_pull(skb, write_len)) 5599 return -ENOMEM; 5600 5601 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5602 return 0; 5603 5604 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5605 } 5606 EXPORT_SYMBOL(skb_ensure_writable); 5607 5608 /* remove VLAN header from packet and update csum accordingly. 5609 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5610 */ 5611 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5612 { 5613 struct vlan_hdr *vhdr; 5614 int offset = skb->data - skb_mac_header(skb); 5615 int err; 5616 5617 if (WARN_ONCE(offset, 5618 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5619 offset)) { 5620 return -EINVAL; 5621 } 5622 5623 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5624 if (unlikely(err)) 5625 return err; 5626 5627 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5628 5629 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5630 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5631 5632 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5633 __skb_pull(skb, VLAN_HLEN); 5634 5635 vlan_set_encap_proto(skb, vhdr); 5636 skb->mac_header += VLAN_HLEN; 5637 5638 if (skb_network_offset(skb) < ETH_HLEN) 5639 skb_set_network_header(skb, ETH_HLEN); 5640 5641 skb_reset_mac_len(skb); 5642 5643 return err; 5644 } 5645 EXPORT_SYMBOL(__skb_vlan_pop); 5646 5647 /* Pop a vlan tag either from hwaccel or from payload. 5648 * Expects skb->data at mac header. 5649 */ 5650 int skb_vlan_pop(struct sk_buff *skb) 5651 { 5652 u16 vlan_tci; 5653 __be16 vlan_proto; 5654 int err; 5655 5656 if (likely(skb_vlan_tag_present(skb))) { 5657 __vlan_hwaccel_clear_tag(skb); 5658 } else { 5659 if (unlikely(!eth_type_vlan(skb->protocol))) 5660 return 0; 5661 5662 err = __skb_vlan_pop(skb, &vlan_tci); 5663 if (err) 5664 return err; 5665 } 5666 /* move next vlan tag to hw accel tag */ 5667 if (likely(!eth_type_vlan(skb->protocol))) 5668 return 0; 5669 5670 vlan_proto = skb->protocol; 5671 err = __skb_vlan_pop(skb, &vlan_tci); 5672 if (unlikely(err)) 5673 return err; 5674 5675 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5676 return 0; 5677 } 5678 EXPORT_SYMBOL(skb_vlan_pop); 5679 5680 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5681 * Expects skb->data at mac header. 5682 */ 5683 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5684 { 5685 if (skb_vlan_tag_present(skb)) { 5686 int offset = skb->data - skb_mac_header(skb); 5687 int err; 5688 5689 if (WARN_ONCE(offset, 5690 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5691 offset)) { 5692 return -EINVAL; 5693 } 5694 5695 err = __vlan_insert_tag(skb, skb->vlan_proto, 5696 skb_vlan_tag_get(skb)); 5697 if (err) 5698 return err; 5699 5700 skb->protocol = skb->vlan_proto; 5701 skb->mac_len += VLAN_HLEN; 5702 5703 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5704 } 5705 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5706 return 0; 5707 } 5708 EXPORT_SYMBOL(skb_vlan_push); 5709 5710 /** 5711 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5712 * 5713 * @skb: Socket buffer to modify 5714 * 5715 * Drop the Ethernet header of @skb. 5716 * 5717 * Expects that skb->data points to the mac header and that no VLAN tags are 5718 * present. 5719 * 5720 * Returns 0 on success, -errno otherwise. 5721 */ 5722 int skb_eth_pop(struct sk_buff *skb) 5723 { 5724 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5725 skb_network_offset(skb) < ETH_HLEN) 5726 return -EPROTO; 5727 5728 skb_pull_rcsum(skb, ETH_HLEN); 5729 skb_reset_mac_header(skb); 5730 skb_reset_mac_len(skb); 5731 5732 return 0; 5733 } 5734 EXPORT_SYMBOL(skb_eth_pop); 5735 5736 /** 5737 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5738 * 5739 * @skb: Socket buffer to modify 5740 * @dst: Destination MAC address of the new header 5741 * @src: Source MAC address of the new header 5742 * 5743 * Prepend @skb with a new Ethernet header. 5744 * 5745 * Expects that skb->data points to the mac header, which must be empty. 5746 * 5747 * Returns 0 on success, -errno otherwise. 5748 */ 5749 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5750 const unsigned char *src) 5751 { 5752 struct ethhdr *eth; 5753 int err; 5754 5755 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5756 return -EPROTO; 5757 5758 err = skb_cow_head(skb, sizeof(*eth)); 5759 if (err < 0) 5760 return err; 5761 5762 skb_push(skb, sizeof(*eth)); 5763 skb_reset_mac_header(skb); 5764 skb_reset_mac_len(skb); 5765 5766 eth = eth_hdr(skb); 5767 ether_addr_copy(eth->h_dest, dst); 5768 ether_addr_copy(eth->h_source, src); 5769 eth->h_proto = skb->protocol; 5770 5771 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5772 5773 return 0; 5774 } 5775 EXPORT_SYMBOL(skb_eth_push); 5776 5777 /* Update the ethertype of hdr and the skb csum value if required. */ 5778 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5779 __be16 ethertype) 5780 { 5781 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5782 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5783 5784 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5785 } 5786 5787 hdr->h_proto = ethertype; 5788 } 5789 5790 /** 5791 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5792 * the packet 5793 * 5794 * @skb: buffer 5795 * @mpls_lse: MPLS label stack entry to push 5796 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5797 * @mac_len: length of the MAC header 5798 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5799 * ethernet 5800 * 5801 * Expects skb->data at mac header. 5802 * 5803 * Returns 0 on success, -errno otherwise. 5804 */ 5805 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5806 int mac_len, bool ethernet) 5807 { 5808 struct mpls_shim_hdr *lse; 5809 int err; 5810 5811 if (unlikely(!eth_p_mpls(mpls_proto))) 5812 return -EINVAL; 5813 5814 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5815 if (skb->encapsulation) 5816 return -EINVAL; 5817 5818 err = skb_cow_head(skb, MPLS_HLEN); 5819 if (unlikely(err)) 5820 return err; 5821 5822 if (!skb->inner_protocol) { 5823 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5824 skb_set_inner_protocol(skb, skb->protocol); 5825 } 5826 5827 skb_push(skb, MPLS_HLEN); 5828 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5829 mac_len); 5830 skb_reset_mac_header(skb); 5831 skb_set_network_header(skb, mac_len); 5832 skb_reset_mac_len(skb); 5833 5834 lse = mpls_hdr(skb); 5835 lse->label_stack_entry = mpls_lse; 5836 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5837 5838 if (ethernet && mac_len >= ETH_HLEN) 5839 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5840 skb->protocol = mpls_proto; 5841 5842 return 0; 5843 } 5844 EXPORT_SYMBOL_GPL(skb_mpls_push); 5845 5846 /** 5847 * skb_mpls_pop() - pop the outermost MPLS header 5848 * 5849 * @skb: buffer 5850 * @next_proto: ethertype of header after popped MPLS header 5851 * @mac_len: length of the MAC header 5852 * @ethernet: flag to indicate if the packet is ethernet 5853 * 5854 * Expects skb->data at mac header. 5855 * 5856 * Returns 0 on success, -errno otherwise. 5857 */ 5858 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5859 bool ethernet) 5860 { 5861 int err; 5862 5863 if (unlikely(!eth_p_mpls(skb->protocol))) 5864 return 0; 5865 5866 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5867 if (unlikely(err)) 5868 return err; 5869 5870 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5871 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5872 mac_len); 5873 5874 __skb_pull(skb, MPLS_HLEN); 5875 skb_reset_mac_header(skb); 5876 skb_set_network_header(skb, mac_len); 5877 5878 if (ethernet && mac_len >= ETH_HLEN) { 5879 struct ethhdr *hdr; 5880 5881 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5882 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5883 skb_mod_eth_type(skb, hdr, next_proto); 5884 } 5885 skb->protocol = next_proto; 5886 5887 return 0; 5888 } 5889 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5890 5891 /** 5892 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5893 * 5894 * @skb: buffer 5895 * @mpls_lse: new MPLS label stack entry to update to 5896 * 5897 * Expects skb->data at mac header. 5898 * 5899 * Returns 0 on success, -errno otherwise. 5900 */ 5901 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5902 { 5903 int err; 5904 5905 if (unlikely(!eth_p_mpls(skb->protocol))) 5906 return -EINVAL; 5907 5908 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5909 if (unlikely(err)) 5910 return err; 5911 5912 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5913 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5914 5915 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5916 } 5917 5918 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5919 5920 return 0; 5921 } 5922 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5923 5924 /** 5925 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5926 * 5927 * @skb: buffer 5928 * 5929 * Expects skb->data at mac header. 5930 * 5931 * Returns 0 on success, -errno otherwise. 5932 */ 5933 int skb_mpls_dec_ttl(struct sk_buff *skb) 5934 { 5935 u32 lse; 5936 u8 ttl; 5937 5938 if (unlikely(!eth_p_mpls(skb->protocol))) 5939 return -EINVAL; 5940 5941 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 5942 return -ENOMEM; 5943 5944 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5945 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5946 if (!--ttl) 5947 return -EINVAL; 5948 5949 lse &= ~MPLS_LS_TTL_MASK; 5950 lse |= ttl << MPLS_LS_TTL_SHIFT; 5951 5952 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5953 } 5954 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5955 5956 /** 5957 * alloc_skb_with_frags - allocate skb with page frags 5958 * 5959 * @header_len: size of linear part 5960 * @data_len: needed length in frags 5961 * @max_page_order: max page order desired. 5962 * @errcode: pointer to error code if any 5963 * @gfp_mask: allocation mask 5964 * 5965 * This can be used to allocate a paged skb, given a maximal order for frags. 5966 */ 5967 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5968 unsigned long data_len, 5969 int max_page_order, 5970 int *errcode, 5971 gfp_t gfp_mask) 5972 { 5973 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5974 unsigned long chunk; 5975 struct sk_buff *skb; 5976 struct page *page; 5977 int i; 5978 5979 *errcode = -EMSGSIZE; 5980 /* Note this test could be relaxed, if we succeed to allocate 5981 * high order pages... 5982 */ 5983 if (npages > MAX_SKB_FRAGS) 5984 return NULL; 5985 5986 *errcode = -ENOBUFS; 5987 skb = alloc_skb(header_len, gfp_mask); 5988 if (!skb) 5989 return NULL; 5990 5991 skb->truesize += npages << PAGE_SHIFT; 5992 5993 for (i = 0; npages > 0; i++) { 5994 int order = max_page_order; 5995 5996 while (order) { 5997 if (npages >= 1 << order) { 5998 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5999 __GFP_COMP | 6000 __GFP_NOWARN, 6001 order); 6002 if (page) 6003 goto fill_page; 6004 /* Do not retry other high order allocations */ 6005 order = 1; 6006 max_page_order = 0; 6007 } 6008 order--; 6009 } 6010 page = alloc_page(gfp_mask); 6011 if (!page) 6012 goto failure; 6013 fill_page: 6014 chunk = min_t(unsigned long, data_len, 6015 PAGE_SIZE << order); 6016 skb_fill_page_desc(skb, i, page, 0, chunk); 6017 data_len -= chunk; 6018 npages -= 1 << order; 6019 } 6020 return skb; 6021 6022 failure: 6023 kfree_skb(skb); 6024 return NULL; 6025 } 6026 EXPORT_SYMBOL(alloc_skb_with_frags); 6027 6028 /* carve out the first off bytes from skb when off < headlen */ 6029 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6030 const int headlen, gfp_t gfp_mask) 6031 { 6032 int i; 6033 int size = skb_end_offset(skb); 6034 int new_hlen = headlen - off; 6035 u8 *data; 6036 6037 size = SKB_DATA_ALIGN(size); 6038 6039 if (skb_pfmemalloc(skb)) 6040 gfp_mask |= __GFP_MEMALLOC; 6041 data = kmalloc_reserve(size + 6042 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6043 gfp_mask, NUMA_NO_NODE, NULL); 6044 if (!data) 6045 return -ENOMEM; 6046 6047 size = SKB_WITH_OVERHEAD(ksize(data)); 6048 6049 /* Copy real data, and all frags */ 6050 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6051 skb->len -= off; 6052 6053 memcpy((struct skb_shared_info *)(data + size), 6054 skb_shinfo(skb), 6055 offsetof(struct skb_shared_info, 6056 frags[skb_shinfo(skb)->nr_frags])); 6057 if (skb_cloned(skb)) { 6058 /* drop the old head gracefully */ 6059 if (skb_orphan_frags(skb, gfp_mask)) { 6060 kfree(data); 6061 return -ENOMEM; 6062 } 6063 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6064 skb_frag_ref(skb, i); 6065 if (skb_has_frag_list(skb)) 6066 skb_clone_fraglist(skb); 6067 skb_release_data(skb); 6068 } else { 6069 /* we can reuse existing recount- all we did was 6070 * relocate values 6071 */ 6072 skb_free_head(skb); 6073 } 6074 6075 skb->head = data; 6076 skb->data = data; 6077 skb->head_frag = 0; 6078 skb_set_end_offset(skb, size); 6079 skb_set_tail_pointer(skb, skb_headlen(skb)); 6080 skb_headers_offset_update(skb, 0); 6081 skb->cloned = 0; 6082 skb->hdr_len = 0; 6083 skb->nohdr = 0; 6084 atomic_set(&skb_shinfo(skb)->dataref, 1); 6085 6086 return 0; 6087 } 6088 6089 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6090 6091 /* carve out the first eat bytes from skb's frag_list. May recurse into 6092 * pskb_carve() 6093 */ 6094 static int pskb_carve_frag_list(struct sk_buff *skb, 6095 struct skb_shared_info *shinfo, int eat, 6096 gfp_t gfp_mask) 6097 { 6098 struct sk_buff *list = shinfo->frag_list; 6099 struct sk_buff *clone = NULL; 6100 struct sk_buff *insp = NULL; 6101 6102 do { 6103 if (!list) { 6104 pr_err("Not enough bytes to eat. Want %d\n", eat); 6105 return -EFAULT; 6106 } 6107 if (list->len <= eat) { 6108 /* Eaten as whole. */ 6109 eat -= list->len; 6110 list = list->next; 6111 insp = list; 6112 } else { 6113 /* Eaten partially. */ 6114 if (skb_shared(list)) { 6115 clone = skb_clone(list, gfp_mask); 6116 if (!clone) 6117 return -ENOMEM; 6118 insp = list->next; 6119 list = clone; 6120 } else { 6121 /* This may be pulled without problems. */ 6122 insp = list; 6123 } 6124 if (pskb_carve(list, eat, gfp_mask) < 0) { 6125 kfree_skb(clone); 6126 return -ENOMEM; 6127 } 6128 break; 6129 } 6130 } while (eat); 6131 6132 /* Free pulled out fragments. */ 6133 while ((list = shinfo->frag_list) != insp) { 6134 shinfo->frag_list = list->next; 6135 consume_skb(list); 6136 } 6137 /* And insert new clone at head. */ 6138 if (clone) { 6139 clone->next = list; 6140 shinfo->frag_list = clone; 6141 } 6142 return 0; 6143 } 6144 6145 /* carve off first len bytes from skb. Split line (off) is in the 6146 * non-linear part of skb 6147 */ 6148 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6149 int pos, gfp_t gfp_mask) 6150 { 6151 int i, k = 0; 6152 int size = skb_end_offset(skb); 6153 u8 *data; 6154 const int nfrags = skb_shinfo(skb)->nr_frags; 6155 struct skb_shared_info *shinfo; 6156 6157 size = SKB_DATA_ALIGN(size); 6158 6159 if (skb_pfmemalloc(skb)) 6160 gfp_mask |= __GFP_MEMALLOC; 6161 data = kmalloc_reserve(size + 6162 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6163 gfp_mask, NUMA_NO_NODE, NULL); 6164 if (!data) 6165 return -ENOMEM; 6166 6167 size = SKB_WITH_OVERHEAD(ksize(data)); 6168 6169 memcpy((struct skb_shared_info *)(data + size), 6170 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6171 if (skb_orphan_frags(skb, gfp_mask)) { 6172 kfree(data); 6173 return -ENOMEM; 6174 } 6175 shinfo = (struct skb_shared_info *)(data + size); 6176 for (i = 0; i < nfrags; i++) { 6177 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6178 6179 if (pos + fsize > off) { 6180 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6181 6182 if (pos < off) { 6183 /* Split frag. 6184 * We have two variants in this case: 6185 * 1. Move all the frag to the second 6186 * part, if it is possible. F.e. 6187 * this approach is mandatory for TUX, 6188 * where splitting is expensive. 6189 * 2. Split is accurately. We make this. 6190 */ 6191 skb_frag_off_add(&shinfo->frags[0], off - pos); 6192 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6193 } 6194 skb_frag_ref(skb, i); 6195 k++; 6196 } 6197 pos += fsize; 6198 } 6199 shinfo->nr_frags = k; 6200 if (skb_has_frag_list(skb)) 6201 skb_clone_fraglist(skb); 6202 6203 /* split line is in frag list */ 6204 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6205 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6206 if (skb_has_frag_list(skb)) 6207 kfree_skb_list(skb_shinfo(skb)->frag_list); 6208 kfree(data); 6209 return -ENOMEM; 6210 } 6211 skb_release_data(skb); 6212 6213 skb->head = data; 6214 skb->head_frag = 0; 6215 skb->data = data; 6216 skb_set_end_offset(skb, size); 6217 skb_reset_tail_pointer(skb); 6218 skb_headers_offset_update(skb, 0); 6219 skb->cloned = 0; 6220 skb->hdr_len = 0; 6221 skb->nohdr = 0; 6222 skb->len -= off; 6223 skb->data_len = skb->len; 6224 atomic_set(&skb_shinfo(skb)->dataref, 1); 6225 return 0; 6226 } 6227 6228 /* remove len bytes from the beginning of the skb */ 6229 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6230 { 6231 int headlen = skb_headlen(skb); 6232 6233 if (len < headlen) 6234 return pskb_carve_inside_header(skb, len, headlen, gfp); 6235 else 6236 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6237 } 6238 6239 /* Extract to_copy bytes starting at off from skb, and return this in 6240 * a new skb 6241 */ 6242 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6243 int to_copy, gfp_t gfp) 6244 { 6245 struct sk_buff *clone = skb_clone(skb, gfp); 6246 6247 if (!clone) 6248 return NULL; 6249 6250 if (pskb_carve(clone, off, gfp) < 0 || 6251 pskb_trim(clone, to_copy)) { 6252 kfree_skb(clone); 6253 return NULL; 6254 } 6255 return clone; 6256 } 6257 EXPORT_SYMBOL(pskb_extract); 6258 6259 /** 6260 * skb_condense - try to get rid of fragments/frag_list if possible 6261 * @skb: buffer 6262 * 6263 * Can be used to save memory before skb is added to a busy queue. 6264 * If packet has bytes in frags and enough tail room in skb->head, 6265 * pull all of them, so that we can free the frags right now and adjust 6266 * truesize. 6267 * Notes: 6268 * We do not reallocate skb->head thus can not fail. 6269 * Caller must re-evaluate skb->truesize if needed. 6270 */ 6271 void skb_condense(struct sk_buff *skb) 6272 { 6273 if (skb->data_len) { 6274 if (skb->data_len > skb->end - skb->tail || 6275 skb_cloned(skb)) 6276 return; 6277 6278 /* Nice, we can free page frag(s) right now */ 6279 __pskb_pull_tail(skb, skb->data_len); 6280 } 6281 /* At this point, skb->truesize might be over estimated, 6282 * because skb had a fragment, and fragments do not tell 6283 * their truesize. 6284 * When we pulled its content into skb->head, fragment 6285 * was freed, but __pskb_pull_tail() could not possibly 6286 * adjust skb->truesize, not knowing the frag truesize. 6287 */ 6288 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6289 } 6290 6291 #ifdef CONFIG_SKB_EXTENSIONS 6292 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6293 { 6294 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6295 } 6296 6297 /** 6298 * __skb_ext_alloc - allocate a new skb extensions storage 6299 * 6300 * @flags: See kmalloc(). 6301 * 6302 * Returns the newly allocated pointer. The pointer can later attached to a 6303 * skb via __skb_ext_set(). 6304 * Note: caller must handle the skb_ext as an opaque data. 6305 */ 6306 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6307 { 6308 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6309 6310 if (new) { 6311 memset(new->offset, 0, sizeof(new->offset)); 6312 refcount_set(&new->refcnt, 1); 6313 } 6314 6315 return new; 6316 } 6317 6318 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6319 unsigned int old_active) 6320 { 6321 struct skb_ext *new; 6322 6323 if (refcount_read(&old->refcnt) == 1) 6324 return old; 6325 6326 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6327 if (!new) 6328 return NULL; 6329 6330 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6331 refcount_set(&new->refcnt, 1); 6332 6333 #ifdef CONFIG_XFRM 6334 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6335 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6336 unsigned int i; 6337 6338 for (i = 0; i < sp->len; i++) 6339 xfrm_state_hold(sp->xvec[i]); 6340 } 6341 #endif 6342 __skb_ext_put(old); 6343 return new; 6344 } 6345 6346 /** 6347 * __skb_ext_set - attach the specified extension storage to this skb 6348 * @skb: buffer 6349 * @id: extension id 6350 * @ext: extension storage previously allocated via __skb_ext_alloc() 6351 * 6352 * Existing extensions, if any, are cleared. 6353 * 6354 * Returns the pointer to the extension. 6355 */ 6356 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6357 struct skb_ext *ext) 6358 { 6359 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6360 6361 skb_ext_put(skb); 6362 newlen = newoff + skb_ext_type_len[id]; 6363 ext->chunks = newlen; 6364 ext->offset[id] = newoff; 6365 skb->extensions = ext; 6366 skb->active_extensions = 1 << id; 6367 return skb_ext_get_ptr(ext, id); 6368 } 6369 6370 /** 6371 * skb_ext_add - allocate space for given extension, COW if needed 6372 * @skb: buffer 6373 * @id: extension to allocate space for 6374 * 6375 * Allocates enough space for the given extension. 6376 * If the extension is already present, a pointer to that extension 6377 * is returned. 6378 * 6379 * If the skb was cloned, COW applies and the returned memory can be 6380 * modified without changing the extension space of clones buffers. 6381 * 6382 * Returns pointer to the extension or NULL on allocation failure. 6383 */ 6384 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6385 { 6386 struct skb_ext *new, *old = NULL; 6387 unsigned int newlen, newoff; 6388 6389 if (skb->active_extensions) { 6390 old = skb->extensions; 6391 6392 new = skb_ext_maybe_cow(old, skb->active_extensions); 6393 if (!new) 6394 return NULL; 6395 6396 if (__skb_ext_exist(new, id)) 6397 goto set_active; 6398 6399 newoff = new->chunks; 6400 } else { 6401 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6402 6403 new = __skb_ext_alloc(GFP_ATOMIC); 6404 if (!new) 6405 return NULL; 6406 } 6407 6408 newlen = newoff + skb_ext_type_len[id]; 6409 new->chunks = newlen; 6410 new->offset[id] = newoff; 6411 set_active: 6412 skb->slow_gro = 1; 6413 skb->extensions = new; 6414 skb->active_extensions |= 1 << id; 6415 return skb_ext_get_ptr(new, id); 6416 } 6417 EXPORT_SYMBOL(skb_ext_add); 6418 6419 #ifdef CONFIG_XFRM 6420 static void skb_ext_put_sp(struct sec_path *sp) 6421 { 6422 unsigned int i; 6423 6424 for (i = 0; i < sp->len; i++) 6425 xfrm_state_put(sp->xvec[i]); 6426 } 6427 #endif 6428 6429 #ifdef CONFIG_MCTP_FLOWS 6430 static void skb_ext_put_mctp(struct mctp_flow *flow) 6431 { 6432 if (flow->key) 6433 mctp_key_unref(flow->key); 6434 } 6435 #endif 6436 6437 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6438 { 6439 struct skb_ext *ext = skb->extensions; 6440 6441 skb->active_extensions &= ~(1 << id); 6442 if (skb->active_extensions == 0) { 6443 skb->extensions = NULL; 6444 __skb_ext_put(ext); 6445 #ifdef CONFIG_XFRM 6446 } else if (id == SKB_EXT_SEC_PATH && 6447 refcount_read(&ext->refcnt) == 1) { 6448 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6449 6450 skb_ext_put_sp(sp); 6451 sp->len = 0; 6452 #endif 6453 } 6454 } 6455 EXPORT_SYMBOL(__skb_ext_del); 6456 6457 void __skb_ext_put(struct skb_ext *ext) 6458 { 6459 /* If this is last clone, nothing can increment 6460 * it after check passes. Avoids one atomic op. 6461 */ 6462 if (refcount_read(&ext->refcnt) == 1) 6463 goto free_now; 6464 6465 if (!refcount_dec_and_test(&ext->refcnt)) 6466 return; 6467 free_now: 6468 #ifdef CONFIG_XFRM 6469 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6470 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6471 #endif 6472 #ifdef CONFIG_MCTP_FLOWS 6473 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6474 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6475 #endif 6476 6477 kmem_cache_free(skbuff_ext_cache, ext); 6478 } 6479 EXPORT_SYMBOL(__skb_ext_put); 6480 #endif /* CONFIG_SKB_EXTENSIONS */ 6481