1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/skbuff_ref.h> 55 #include <linux/splice.h> 56 #include <linux/cache.h> 57 #include <linux/rtnetlink.h> 58 #include <linux/init.h> 59 #include <linux/scatterlist.h> 60 #include <linux/errqueue.h> 61 #include <linux/prefetch.h> 62 #include <linux/bitfield.h> 63 #include <linux/if_vlan.h> 64 #include <linux/mpls.h> 65 #include <linux/kcov.h> 66 #include <linux/iov_iter.h> 67 68 #include <net/protocol.h> 69 #include <net/dst.h> 70 #include <net/sock.h> 71 #include <net/checksum.h> 72 #include <net/gro.h> 73 #include <net/gso.h> 74 #include <net/hotdata.h> 75 #include <net/ip6_checksum.h> 76 #include <net/xfrm.h> 77 #include <net/mpls.h> 78 #include <net/mptcp.h> 79 #include <net/mctp.h> 80 #include <net/page_pool/helpers.h> 81 #include <net/dropreason.h> 82 83 #include <linux/uaccess.h> 84 #include <trace/events/skb.h> 85 #include <linux/highmem.h> 86 #include <linux/capability.h> 87 #include <linux/user_namespace.h> 88 #include <linux/indirect_call_wrapper.h> 89 #include <linux/textsearch.h> 90 91 #include "dev.h" 92 #include "netmem_priv.h" 93 #include "sock_destructor.h" 94 95 #ifdef CONFIG_SKB_EXTENSIONS 96 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 97 #endif 98 99 #define GRO_MAX_HEAD_PAD (GRO_MAX_HEAD + NET_SKB_PAD + NET_IP_ALIGN) 100 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(max(MAX_TCP_HEADER, \ 101 GRO_MAX_HEAD_PAD)) 102 103 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 104 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 105 * size, and we can differentiate heads from skb_small_head_cache 106 * vs system slabs by looking at their size (skb_end_offset()). 107 */ 108 #define SKB_SMALL_HEAD_CACHE_SIZE \ 109 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 110 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 111 SKB_SMALL_HEAD_SIZE) 112 113 #define SKB_SMALL_HEAD_HEADROOM \ 114 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 115 116 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use 117 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the 118 * netmem is a page. 119 */ 120 static_assert(offsetof(struct bio_vec, bv_page) == 121 offsetof(skb_frag_t, netmem)); 122 static_assert(sizeof_field(struct bio_vec, bv_page) == 123 sizeof_field(skb_frag_t, netmem)); 124 125 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len)); 126 static_assert(sizeof_field(struct bio_vec, bv_len) == 127 sizeof_field(skb_frag_t, len)); 128 129 static_assert(offsetof(struct bio_vec, bv_offset) == 130 offsetof(skb_frag_t, offset)); 131 static_assert(sizeof_field(struct bio_vec, bv_offset) == 132 sizeof_field(skb_frag_t, offset)); 133 134 #undef FN 135 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 136 static const char * const drop_reasons[] = { 137 [SKB_CONSUMED] = "CONSUMED", 138 DEFINE_DROP_REASON(FN, FN) 139 }; 140 141 static const struct drop_reason_list drop_reasons_core = { 142 .reasons = drop_reasons, 143 .n_reasons = ARRAY_SIZE(drop_reasons), 144 }; 145 146 const struct drop_reason_list __rcu * 147 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 148 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 149 }; 150 EXPORT_SYMBOL(drop_reasons_by_subsys); 151 152 /** 153 * drop_reasons_register_subsys - register another drop reason subsystem 154 * @subsys: the subsystem to register, must not be the core 155 * @list: the list of drop reasons within the subsystem, must point to 156 * a statically initialized list 157 */ 158 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 159 const struct drop_reason_list *list) 160 { 161 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 162 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 163 "invalid subsystem %d\n", subsys)) 164 return; 165 166 /* must point to statically allocated memory, so INIT is OK */ 167 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 168 } 169 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 170 171 /** 172 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 173 * @subsys: the subsystem to remove, must not be the core 174 * 175 * Note: This will synchronize_rcu() to ensure no users when it returns. 176 */ 177 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 178 { 179 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 180 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 181 "invalid subsystem %d\n", subsys)) 182 return; 183 184 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 185 186 synchronize_rcu(); 187 } 188 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 189 190 /** 191 * skb_panic - private function for out-of-line support 192 * @skb: buffer 193 * @sz: size 194 * @addr: address 195 * @msg: skb_over_panic or skb_under_panic 196 * 197 * Out-of-line support for skb_put() and skb_push(). 198 * Called via the wrapper skb_over_panic() or skb_under_panic(). 199 * Keep out of line to prevent kernel bloat. 200 * __builtin_return_address is not used because it is not always reliable. 201 */ 202 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 203 const char msg[]) 204 { 205 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 206 msg, addr, skb->len, sz, skb->head, skb->data, 207 (unsigned long)skb->tail, (unsigned long)skb->end, 208 skb->dev ? skb->dev->name : "<NULL>"); 209 BUG(); 210 } 211 212 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 213 { 214 skb_panic(skb, sz, addr, __func__); 215 } 216 217 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 218 { 219 skb_panic(skb, sz, addr, __func__); 220 } 221 222 #define NAPI_SKB_CACHE_SIZE 64 223 #define NAPI_SKB_CACHE_BULK 16 224 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 225 226 struct napi_alloc_cache { 227 local_lock_t bh_lock; 228 struct page_frag_cache page; 229 unsigned int skb_count; 230 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 231 }; 232 233 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 234 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = { 235 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 236 }; 237 238 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 239 { 240 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 241 void *data; 242 243 fragsz = SKB_DATA_ALIGN(fragsz); 244 245 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 246 data = __page_frag_alloc_align(&nc->page, fragsz, 247 GFP_ATOMIC | __GFP_NOWARN, align_mask); 248 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 249 return data; 250 251 } 252 EXPORT_SYMBOL(__napi_alloc_frag_align); 253 254 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 255 { 256 void *data; 257 258 if (in_hardirq() || irqs_disabled()) { 259 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 260 261 fragsz = SKB_DATA_ALIGN(fragsz); 262 data = __page_frag_alloc_align(nc, fragsz, 263 GFP_ATOMIC | __GFP_NOWARN, 264 align_mask); 265 } else { 266 local_bh_disable(); 267 data = __napi_alloc_frag_align(fragsz, align_mask); 268 local_bh_enable(); 269 } 270 return data; 271 } 272 EXPORT_SYMBOL(__netdev_alloc_frag_align); 273 274 static struct sk_buff *napi_skb_cache_get(void) 275 { 276 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 277 struct sk_buff *skb; 278 279 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 280 if (unlikely(!nc->skb_count)) { 281 nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 282 GFP_ATOMIC | __GFP_NOWARN, 283 NAPI_SKB_CACHE_BULK, 284 nc->skb_cache); 285 if (unlikely(!nc->skb_count)) { 286 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 287 return NULL; 288 } 289 } 290 291 skb = nc->skb_cache[--nc->skb_count]; 292 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 293 kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache)); 294 295 return skb; 296 } 297 298 /** 299 * napi_skb_cache_get_bulk - obtain a number of zeroed skb heads from the cache 300 * @skbs: pointer to an at least @n-sized array to fill with skb pointers 301 * @n: number of entries to provide 302 * 303 * Tries to obtain @n &sk_buff entries from the NAPI percpu cache and writes 304 * the pointers into the provided array @skbs. If there are less entries 305 * available, tries to replenish the cache and bulk-allocates the diff from 306 * the MM layer if needed. 307 * The heads are being zeroed with either memset() or %__GFP_ZERO, so they are 308 * ready for {,__}build_skb_around() and don't have any data buffers attached. 309 * Must be called *only* from the BH context. 310 * 311 * Return: number of successfully allocated skbs (@n if no actual allocation 312 * needed or kmem_cache_alloc_bulk() didn't fail). 313 */ 314 u32 napi_skb_cache_get_bulk(void **skbs, u32 n) 315 { 316 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 317 u32 bulk, total = n; 318 319 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 320 321 if (nc->skb_count >= n) 322 goto get; 323 324 /* No enough cached skbs. Try refilling the cache first */ 325 bulk = min(NAPI_SKB_CACHE_SIZE - nc->skb_count, NAPI_SKB_CACHE_BULK); 326 nc->skb_count += kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 327 GFP_ATOMIC | __GFP_NOWARN, bulk, 328 &nc->skb_cache[nc->skb_count]); 329 if (likely(nc->skb_count >= n)) 330 goto get; 331 332 /* Still not enough. Bulk-allocate the missing part directly, zeroed */ 333 n -= kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 334 GFP_ATOMIC | __GFP_ZERO | __GFP_NOWARN, 335 n - nc->skb_count, &skbs[nc->skb_count]); 336 if (likely(nc->skb_count >= n)) 337 goto get; 338 339 /* kmem_cache didn't allocate the number we need, limit the output */ 340 total -= n - nc->skb_count; 341 n = nc->skb_count; 342 343 get: 344 for (u32 base = nc->skb_count - n, i = 0; i < n; i++) { 345 u32 cache_size = kmem_cache_size(net_hotdata.skbuff_cache); 346 347 skbs[i] = nc->skb_cache[base + i]; 348 349 kasan_mempool_unpoison_object(skbs[i], cache_size); 350 memset(skbs[i], 0, offsetof(struct sk_buff, tail)); 351 } 352 353 nc->skb_count -= n; 354 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 355 356 return total; 357 } 358 EXPORT_SYMBOL_GPL(napi_skb_cache_get_bulk); 359 360 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 361 unsigned int size) 362 { 363 struct skb_shared_info *shinfo; 364 365 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 366 367 /* Assumes caller memset cleared SKB */ 368 skb->truesize = SKB_TRUESIZE(size); 369 refcount_set(&skb->users, 1); 370 skb->head = data; 371 skb->data = data; 372 skb_reset_tail_pointer(skb); 373 skb_set_end_offset(skb, size); 374 skb->mac_header = (typeof(skb->mac_header))~0U; 375 skb->transport_header = (typeof(skb->transport_header))~0U; 376 skb->alloc_cpu = raw_smp_processor_id(); 377 /* make sure we initialize shinfo sequentially */ 378 shinfo = skb_shinfo(skb); 379 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 380 atomic_set(&shinfo->dataref, 1); 381 382 skb_set_kcov_handle(skb, kcov_common_handle()); 383 } 384 385 static inline void *__slab_build_skb(struct sk_buff *skb, void *data, 386 unsigned int *size) 387 { 388 void *resized; 389 390 /* Must find the allocation size (and grow it to match). */ 391 *size = ksize(data); 392 /* krealloc() will immediately return "data" when 393 * "ksize(data)" is requested: it is the existing upper 394 * bounds. As a result, GFP_ATOMIC will be ignored. Note 395 * that this "new" pointer needs to be passed back to the 396 * caller for use so the __alloc_size hinting will be 397 * tracked correctly. 398 */ 399 resized = krealloc(data, *size, GFP_ATOMIC); 400 WARN_ON_ONCE(resized != data); 401 return resized; 402 } 403 404 /* build_skb() variant which can operate on slab buffers. 405 * Note that this should be used sparingly as slab buffers 406 * cannot be combined efficiently by GRO! 407 */ 408 struct sk_buff *slab_build_skb(void *data) 409 { 410 struct sk_buff *skb; 411 unsigned int size; 412 413 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, 414 GFP_ATOMIC | __GFP_NOWARN); 415 if (unlikely(!skb)) 416 return NULL; 417 418 memset(skb, 0, offsetof(struct sk_buff, tail)); 419 data = __slab_build_skb(skb, data, &size); 420 __finalize_skb_around(skb, data, size); 421 422 return skb; 423 } 424 EXPORT_SYMBOL(slab_build_skb); 425 426 /* Caller must provide SKB that is memset cleared */ 427 static void __build_skb_around(struct sk_buff *skb, void *data, 428 unsigned int frag_size) 429 { 430 unsigned int size = frag_size; 431 432 /* frag_size == 0 is considered deprecated now. Callers 433 * using slab buffer should use slab_build_skb() instead. 434 */ 435 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 436 data = __slab_build_skb(skb, data, &size); 437 438 __finalize_skb_around(skb, data, size); 439 } 440 441 /** 442 * __build_skb - build a network buffer 443 * @data: data buffer provided by caller 444 * @frag_size: size of data (must not be 0) 445 * 446 * Allocate a new &sk_buff. Caller provides space holding head and 447 * skb_shared_info. @data must have been allocated from the page 448 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 449 * allocation is deprecated, and callers should use slab_build_skb() 450 * instead.) 451 * The return is the new skb buffer. 452 * On a failure the return is %NULL, and @data is not freed. 453 * Notes : 454 * Before IO, driver allocates only data buffer where NIC put incoming frame 455 * Driver should add room at head (NET_SKB_PAD) and 456 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 457 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 458 * before giving packet to stack. 459 * RX rings only contains data buffers, not full skbs. 460 */ 461 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 462 { 463 struct sk_buff *skb; 464 465 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, 466 GFP_ATOMIC | __GFP_NOWARN); 467 if (unlikely(!skb)) 468 return NULL; 469 470 memset(skb, 0, offsetof(struct sk_buff, tail)); 471 __build_skb_around(skb, data, frag_size); 472 473 return skb; 474 } 475 476 /* build_skb() is wrapper over __build_skb(), that specifically 477 * takes care of skb->head and skb->pfmemalloc 478 */ 479 struct sk_buff *build_skb(void *data, unsigned int frag_size) 480 { 481 struct sk_buff *skb = __build_skb(data, frag_size); 482 483 if (likely(skb && frag_size)) { 484 skb->head_frag = 1; 485 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 486 } 487 return skb; 488 } 489 EXPORT_SYMBOL(build_skb); 490 491 /** 492 * build_skb_around - build a network buffer around provided skb 493 * @skb: sk_buff provide by caller, must be memset cleared 494 * @data: data buffer provided by caller 495 * @frag_size: size of data 496 */ 497 struct sk_buff *build_skb_around(struct sk_buff *skb, 498 void *data, unsigned int frag_size) 499 { 500 if (unlikely(!skb)) 501 return NULL; 502 503 __build_skb_around(skb, data, frag_size); 504 505 if (frag_size) { 506 skb->head_frag = 1; 507 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 508 } 509 return skb; 510 } 511 EXPORT_SYMBOL(build_skb_around); 512 513 /** 514 * __napi_build_skb - build a network buffer 515 * @data: data buffer provided by caller 516 * @frag_size: size of data 517 * 518 * Version of __build_skb() that uses NAPI percpu caches to obtain 519 * skbuff_head instead of inplace allocation. 520 * 521 * Returns a new &sk_buff on success, %NULL on allocation failure. 522 */ 523 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 524 { 525 struct sk_buff *skb; 526 527 skb = napi_skb_cache_get(); 528 if (unlikely(!skb)) 529 return NULL; 530 531 memset(skb, 0, offsetof(struct sk_buff, tail)); 532 __build_skb_around(skb, data, frag_size); 533 534 return skb; 535 } 536 537 /** 538 * napi_build_skb - build a network buffer 539 * @data: data buffer provided by caller 540 * @frag_size: size of data 541 * 542 * Version of __napi_build_skb() that takes care of skb->head_frag 543 * and skb->pfmemalloc when the data is a page or page fragment. 544 * 545 * Returns a new &sk_buff on success, %NULL on allocation failure. 546 */ 547 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 548 { 549 struct sk_buff *skb = __napi_build_skb(data, frag_size); 550 551 if (likely(skb) && frag_size) { 552 skb->head_frag = 1; 553 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 554 } 555 556 return skb; 557 } 558 EXPORT_SYMBOL(napi_build_skb); 559 560 /* 561 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 562 * the caller if emergency pfmemalloc reserves are being used. If it is and 563 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 564 * may be used. Otherwise, the packet data may be discarded until enough 565 * memory is free 566 */ 567 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 568 bool *pfmemalloc) 569 { 570 bool ret_pfmemalloc = false; 571 size_t obj_size; 572 void *obj; 573 574 obj_size = SKB_HEAD_ALIGN(*size); 575 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 576 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 577 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, 578 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 579 node); 580 *size = SKB_SMALL_HEAD_CACHE_SIZE; 581 if (obj || !(gfp_pfmemalloc_allowed(flags))) 582 goto out; 583 /* Try again but now we are using pfmemalloc reserves */ 584 ret_pfmemalloc = true; 585 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node); 586 goto out; 587 } 588 589 obj_size = kmalloc_size_roundup(obj_size); 590 /* The following cast might truncate high-order bits of obj_size, this 591 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. 592 */ 593 *size = (unsigned int)obj_size; 594 595 /* 596 * Try a regular allocation, when that fails and we're not entitled 597 * to the reserves, fail. 598 */ 599 obj = kmalloc_node_track_caller(obj_size, 600 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 601 node); 602 if (obj || !(gfp_pfmemalloc_allowed(flags))) 603 goto out; 604 605 /* Try again but now we are using pfmemalloc reserves */ 606 ret_pfmemalloc = true; 607 obj = kmalloc_node_track_caller(obj_size, flags, node); 608 609 out: 610 if (pfmemalloc) 611 *pfmemalloc = ret_pfmemalloc; 612 613 return obj; 614 } 615 616 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 617 * 'private' fields and also do memory statistics to find all the 618 * [BEEP] leaks. 619 * 620 */ 621 622 /** 623 * __alloc_skb - allocate a network buffer 624 * @size: size to allocate 625 * @gfp_mask: allocation mask 626 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 627 * instead of head cache and allocate a cloned (child) skb. 628 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 629 * allocations in case the data is required for writeback 630 * @node: numa node to allocate memory on 631 * 632 * Allocate a new &sk_buff. The returned buffer has no headroom and a 633 * tail room of at least size bytes. The object has a reference count 634 * of one. The return is the buffer. On a failure the return is %NULL. 635 * 636 * Buffers may only be allocated from interrupts using a @gfp_mask of 637 * %GFP_ATOMIC. 638 */ 639 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 640 int flags, int node) 641 { 642 struct kmem_cache *cache; 643 struct sk_buff *skb; 644 bool pfmemalloc; 645 u8 *data; 646 647 cache = (flags & SKB_ALLOC_FCLONE) 648 ? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache; 649 650 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 651 gfp_mask |= __GFP_MEMALLOC; 652 653 /* Get the HEAD */ 654 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 655 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 656 skb = napi_skb_cache_get(); 657 else 658 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 659 if (unlikely(!skb)) 660 return NULL; 661 prefetchw(skb); 662 663 /* We do our best to align skb_shared_info on a separate cache 664 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 665 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 666 * Both skb->head and skb_shared_info are cache line aligned. 667 */ 668 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 669 if (unlikely(!data)) 670 goto nodata; 671 /* kmalloc_size_roundup() might give us more room than requested. 672 * Put skb_shared_info exactly at the end of allocated zone, 673 * to allow max possible filling before reallocation. 674 */ 675 prefetchw(data + SKB_WITH_OVERHEAD(size)); 676 677 /* 678 * Only clear those fields we need to clear, not those that we will 679 * actually initialise below. Hence, don't put any more fields after 680 * the tail pointer in struct sk_buff! 681 */ 682 memset(skb, 0, offsetof(struct sk_buff, tail)); 683 __build_skb_around(skb, data, size); 684 skb->pfmemalloc = pfmemalloc; 685 686 if (flags & SKB_ALLOC_FCLONE) { 687 struct sk_buff_fclones *fclones; 688 689 fclones = container_of(skb, struct sk_buff_fclones, skb1); 690 691 skb->fclone = SKB_FCLONE_ORIG; 692 refcount_set(&fclones->fclone_ref, 1); 693 } 694 695 return skb; 696 697 nodata: 698 kmem_cache_free(cache, skb); 699 return NULL; 700 } 701 EXPORT_SYMBOL(__alloc_skb); 702 703 /** 704 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 705 * @dev: network device to receive on 706 * @len: length to allocate 707 * @gfp_mask: get_free_pages mask, passed to alloc_skb 708 * 709 * Allocate a new &sk_buff and assign it a usage count of one. The 710 * buffer has NET_SKB_PAD headroom built in. Users should allocate 711 * the headroom they think they need without accounting for the 712 * built in space. The built in space is used for optimisations. 713 * 714 * %NULL is returned if there is no free memory. 715 */ 716 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 717 gfp_t gfp_mask) 718 { 719 struct page_frag_cache *nc; 720 struct sk_buff *skb; 721 bool pfmemalloc; 722 void *data; 723 724 len += NET_SKB_PAD; 725 726 /* If requested length is either too small or too big, 727 * we use kmalloc() for skb->head allocation. 728 */ 729 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) || 730 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 731 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 732 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 733 if (!skb) 734 goto skb_fail; 735 goto skb_success; 736 } 737 738 len = SKB_HEAD_ALIGN(len); 739 740 if (sk_memalloc_socks()) 741 gfp_mask |= __GFP_MEMALLOC; 742 743 if (in_hardirq() || irqs_disabled()) { 744 nc = this_cpu_ptr(&netdev_alloc_cache); 745 data = page_frag_alloc(nc, len, gfp_mask); 746 pfmemalloc = page_frag_cache_is_pfmemalloc(nc); 747 } else { 748 local_bh_disable(); 749 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 750 751 nc = this_cpu_ptr(&napi_alloc_cache.page); 752 data = page_frag_alloc(nc, len, gfp_mask); 753 pfmemalloc = page_frag_cache_is_pfmemalloc(nc); 754 755 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 756 local_bh_enable(); 757 } 758 759 if (unlikely(!data)) 760 return NULL; 761 762 skb = __build_skb(data, len); 763 if (unlikely(!skb)) { 764 skb_free_frag(data); 765 return NULL; 766 } 767 768 if (pfmemalloc) 769 skb->pfmemalloc = 1; 770 skb->head_frag = 1; 771 772 skb_success: 773 skb_reserve(skb, NET_SKB_PAD); 774 skb->dev = dev; 775 776 skb_fail: 777 return skb; 778 } 779 EXPORT_SYMBOL(__netdev_alloc_skb); 780 781 /** 782 * napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 783 * @napi: napi instance this buffer was allocated for 784 * @len: length to allocate 785 * 786 * Allocate a new sk_buff for use in NAPI receive. This buffer will 787 * attempt to allocate the head from a special reserved region used 788 * only for NAPI Rx allocation. By doing this we can save several 789 * CPU cycles by avoiding having to disable and re-enable IRQs. 790 * 791 * %NULL is returned if there is no free memory. 792 */ 793 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len) 794 { 795 gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN; 796 struct napi_alloc_cache *nc; 797 struct sk_buff *skb; 798 bool pfmemalloc; 799 void *data; 800 801 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 802 len += NET_SKB_PAD + NET_IP_ALIGN; 803 804 /* If requested length is either too small or too big, 805 * we use kmalloc() for skb->head allocation. 806 */ 807 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) || 808 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 809 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 810 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 811 NUMA_NO_NODE); 812 if (!skb) 813 goto skb_fail; 814 goto skb_success; 815 } 816 817 len = SKB_HEAD_ALIGN(len); 818 819 if (sk_memalloc_socks()) 820 gfp_mask |= __GFP_MEMALLOC; 821 822 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 823 nc = this_cpu_ptr(&napi_alloc_cache); 824 825 data = page_frag_alloc(&nc->page, len, gfp_mask); 826 pfmemalloc = page_frag_cache_is_pfmemalloc(&nc->page); 827 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 828 829 if (unlikely(!data)) 830 return NULL; 831 832 skb = __napi_build_skb(data, len); 833 if (unlikely(!skb)) { 834 skb_free_frag(data); 835 return NULL; 836 } 837 838 if (pfmemalloc) 839 skb->pfmemalloc = 1; 840 skb->head_frag = 1; 841 842 skb_success: 843 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 844 skb->dev = napi->dev; 845 846 skb_fail: 847 return skb; 848 } 849 EXPORT_SYMBOL(napi_alloc_skb); 850 851 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 852 int off, int size, unsigned int truesize) 853 { 854 DEBUG_NET_WARN_ON_ONCE(size > truesize); 855 856 skb_fill_netmem_desc(skb, i, netmem, off, size); 857 skb->len += size; 858 skb->data_len += size; 859 skb->truesize += truesize; 860 } 861 EXPORT_SYMBOL(skb_add_rx_frag_netmem); 862 863 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 864 unsigned int truesize) 865 { 866 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 867 868 DEBUG_NET_WARN_ON_ONCE(size > truesize); 869 870 skb_frag_size_add(frag, size); 871 skb->len += size; 872 skb->data_len += size; 873 skb->truesize += truesize; 874 } 875 EXPORT_SYMBOL(skb_coalesce_rx_frag); 876 877 static void skb_drop_list(struct sk_buff **listp) 878 { 879 kfree_skb_list(*listp); 880 *listp = NULL; 881 } 882 883 static inline void skb_drop_fraglist(struct sk_buff *skb) 884 { 885 skb_drop_list(&skb_shinfo(skb)->frag_list); 886 } 887 888 static void skb_clone_fraglist(struct sk_buff *skb) 889 { 890 struct sk_buff *list; 891 892 skb_walk_frags(skb, list) 893 skb_get(list); 894 } 895 896 static bool is_pp_netmem(netmem_ref netmem) 897 { 898 return (netmem_get_pp_magic(netmem) & ~0x3UL) == PP_SIGNATURE; 899 } 900 901 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 902 unsigned int headroom) 903 { 904 #if IS_ENABLED(CONFIG_PAGE_POOL) 905 u32 size, truesize, len, max_head_size, off; 906 struct sk_buff *skb = *pskb, *nskb; 907 int err, i, head_off; 908 void *data; 909 910 /* XDP does not support fraglist so we need to linearize 911 * the skb. 912 */ 913 if (skb_has_frag_list(skb)) 914 return -EOPNOTSUPP; 915 916 max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom); 917 if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE) 918 return -ENOMEM; 919 920 size = min_t(u32, skb->len, max_head_size); 921 truesize = SKB_HEAD_ALIGN(size) + headroom; 922 data = page_pool_dev_alloc_va(pool, &truesize); 923 if (!data) 924 return -ENOMEM; 925 926 nskb = napi_build_skb(data, truesize); 927 if (!nskb) { 928 page_pool_free_va(pool, data, true); 929 return -ENOMEM; 930 } 931 932 skb_reserve(nskb, headroom); 933 skb_copy_header(nskb, skb); 934 skb_mark_for_recycle(nskb); 935 936 err = skb_copy_bits(skb, 0, nskb->data, size); 937 if (err) { 938 consume_skb(nskb); 939 return err; 940 } 941 skb_put(nskb, size); 942 943 head_off = skb_headroom(nskb) - skb_headroom(skb); 944 skb_headers_offset_update(nskb, head_off); 945 946 off = size; 947 len = skb->len - off; 948 for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) { 949 struct page *page; 950 u32 page_off; 951 952 size = min_t(u32, len, PAGE_SIZE); 953 truesize = size; 954 955 page = page_pool_dev_alloc(pool, &page_off, &truesize); 956 if (!page) { 957 consume_skb(nskb); 958 return -ENOMEM; 959 } 960 961 skb_add_rx_frag(nskb, i, page, page_off, size, truesize); 962 err = skb_copy_bits(skb, off, page_address(page) + page_off, 963 size); 964 if (err) { 965 consume_skb(nskb); 966 return err; 967 } 968 969 len -= size; 970 off += size; 971 } 972 973 consume_skb(skb); 974 *pskb = nskb; 975 976 return 0; 977 #else 978 return -EOPNOTSUPP; 979 #endif 980 } 981 EXPORT_SYMBOL(skb_pp_cow_data); 982 983 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 984 const struct bpf_prog *prog) 985 { 986 if (!prog->aux->xdp_has_frags) 987 return -EINVAL; 988 989 return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM); 990 } 991 EXPORT_SYMBOL(skb_cow_data_for_xdp); 992 993 #if IS_ENABLED(CONFIG_PAGE_POOL) 994 bool napi_pp_put_page(netmem_ref netmem) 995 { 996 netmem = netmem_compound_head(netmem); 997 998 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation 999 * in order to preserve any existing bits, such as bit 0 for the 1000 * head page of compound page and bit 1 for pfmemalloc page, so 1001 * mask those bits for freeing side when doing below checking, 1002 * and page_is_pfmemalloc() is checked in __page_pool_put_page() 1003 * to avoid recycling the pfmemalloc page. 1004 */ 1005 if (unlikely(!is_pp_netmem(netmem))) 1006 return false; 1007 1008 page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false); 1009 1010 return true; 1011 } 1012 EXPORT_SYMBOL(napi_pp_put_page); 1013 #endif 1014 1015 static bool skb_pp_recycle(struct sk_buff *skb, void *data) 1016 { 1017 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 1018 return false; 1019 return napi_pp_put_page(page_to_netmem(virt_to_page(data))); 1020 } 1021 1022 /** 1023 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb 1024 * @skb: page pool aware skb 1025 * 1026 * Increase the fragment reference count (pp_ref_count) of a skb. This is 1027 * intended to gain fragment references only for page pool aware skbs, 1028 * i.e. when skb->pp_recycle is true, and not for fragments in a 1029 * non-pp-recycling skb. It has a fallback to increase references on normal 1030 * pages, as page pool aware skbs may also have normal page fragments. 1031 */ 1032 static int skb_pp_frag_ref(struct sk_buff *skb) 1033 { 1034 struct skb_shared_info *shinfo; 1035 netmem_ref head_netmem; 1036 int i; 1037 1038 if (!skb->pp_recycle) 1039 return -EINVAL; 1040 1041 shinfo = skb_shinfo(skb); 1042 1043 for (i = 0; i < shinfo->nr_frags; i++) { 1044 head_netmem = netmem_compound_head(shinfo->frags[i].netmem); 1045 if (likely(is_pp_netmem(head_netmem))) 1046 page_pool_ref_netmem(head_netmem); 1047 else 1048 page_ref_inc(netmem_to_page(head_netmem)); 1049 } 1050 return 0; 1051 } 1052 1053 static void skb_kfree_head(void *head, unsigned int end_offset) 1054 { 1055 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 1056 kmem_cache_free(net_hotdata.skb_small_head_cache, head); 1057 else 1058 kfree(head); 1059 } 1060 1061 static void skb_free_head(struct sk_buff *skb) 1062 { 1063 unsigned char *head = skb->head; 1064 1065 if (skb->head_frag) { 1066 if (skb_pp_recycle(skb, head)) 1067 return; 1068 skb_free_frag(head); 1069 } else { 1070 skb_kfree_head(head, skb_end_offset(skb)); 1071 } 1072 } 1073 1074 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason) 1075 { 1076 struct skb_shared_info *shinfo = skb_shinfo(skb); 1077 int i; 1078 1079 if (!skb_data_unref(skb, shinfo)) 1080 goto exit; 1081 1082 if (skb_zcopy(skb)) { 1083 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 1084 1085 skb_zcopy_clear(skb, true); 1086 if (skip_unref) 1087 goto free_head; 1088 } 1089 1090 for (i = 0; i < shinfo->nr_frags; i++) 1091 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 1092 1093 free_head: 1094 if (shinfo->frag_list) 1095 kfree_skb_list_reason(shinfo->frag_list, reason); 1096 1097 skb_free_head(skb); 1098 exit: 1099 /* When we clone an SKB we copy the reycling bit. The pp_recycle 1100 * bit is only set on the head though, so in order to avoid races 1101 * while trying to recycle fragments on __skb_frag_unref() we need 1102 * to make one SKB responsible for triggering the recycle path. 1103 * So disable the recycling bit if an SKB is cloned and we have 1104 * additional references to the fragmented part of the SKB. 1105 * Eventually the last SKB will have the recycling bit set and it's 1106 * dataref set to 0, which will trigger the recycling 1107 */ 1108 skb->pp_recycle = 0; 1109 } 1110 1111 /* 1112 * Free an skbuff by memory without cleaning the state. 1113 */ 1114 static void kfree_skbmem(struct sk_buff *skb) 1115 { 1116 struct sk_buff_fclones *fclones; 1117 1118 switch (skb->fclone) { 1119 case SKB_FCLONE_UNAVAILABLE: 1120 kmem_cache_free(net_hotdata.skbuff_cache, skb); 1121 return; 1122 1123 case SKB_FCLONE_ORIG: 1124 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1125 1126 /* We usually free the clone (TX completion) before original skb 1127 * This test would have no chance to be true for the clone, 1128 * while here, branch prediction will be good. 1129 */ 1130 if (refcount_read(&fclones->fclone_ref) == 1) 1131 goto fastpath; 1132 break; 1133 1134 default: /* SKB_FCLONE_CLONE */ 1135 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1136 break; 1137 } 1138 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1139 return; 1140 fastpath: 1141 kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones); 1142 } 1143 1144 void skb_release_head_state(struct sk_buff *skb) 1145 { 1146 skb_dst_drop(skb); 1147 if (skb->destructor) { 1148 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1149 skb->destructor(skb); 1150 } 1151 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 1152 nf_conntrack_put(skb_nfct(skb)); 1153 #endif 1154 skb_ext_put(skb); 1155 } 1156 1157 /* Free everything but the sk_buff shell. */ 1158 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason) 1159 { 1160 skb_release_head_state(skb); 1161 if (likely(skb->head)) 1162 skb_release_data(skb, reason); 1163 } 1164 1165 /** 1166 * __kfree_skb - private function 1167 * @skb: buffer 1168 * 1169 * Free an sk_buff. Release anything attached to the buffer. 1170 * Clean the state. This is an internal helper function. Users should 1171 * always call kfree_skb 1172 */ 1173 1174 void __kfree_skb(struct sk_buff *skb) 1175 { 1176 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1177 kfree_skbmem(skb); 1178 } 1179 EXPORT_SYMBOL(__kfree_skb); 1180 1181 static __always_inline 1182 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, 1183 enum skb_drop_reason reason) 1184 { 1185 if (unlikely(!skb_unref(skb))) 1186 return false; 1187 1188 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1189 u32_get_bits(reason, 1190 SKB_DROP_REASON_SUBSYS_MASK) >= 1191 SKB_DROP_REASON_SUBSYS_NUM); 1192 1193 if (reason == SKB_CONSUMED) 1194 trace_consume_skb(skb, __builtin_return_address(0)); 1195 else 1196 trace_kfree_skb(skb, __builtin_return_address(0), reason, sk); 1197 return true; 1198 } 1199 1200 /** 1201 * sk_skb_reason_drop - free an sk_buff with special reason 1202 * @sk: the socket to receive @skb, or NULL if not applicable 1203 * @skb: buffer to free 1204 * @reason: reason why this skb is dropped 1205 * 1206 * Drop a reference to the buffer and free it if the usage count has hit 1207 * zero. Meanwhile, pass the receiving socket and drop reason to 1208 * 'kfree_skb' tracepoint. 1209 */ 1210 void __fix_address 1211 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason) 1212 { 1213 if (__sk_skb_reason_drop(sk, skb, reason)) 1214 __kfree_skb(skb); 1215 } 1216 EXPORT_SYMBOL(sk_skb_reason_drop); 1217 1218 #define KFREE_SKB_BULK_SIZE 16 1219 1220 struct skb_free_array { 1221 unsigned int skb_count; 1222 void *skb_array[KFREE_SKB_BULK_SIZE]; 1223 }; 1224 1225 static void kfree_skb_add_bulk(struct sk_buff *skb, 1226 struct skb_free_array *sa, 1227 enum skb_drop_reason reason) 1228 { 1229 /* if SKB is a clone, don't handle this case */ 1230 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1231 __kfree_skb(skb); 1232 return; 1233 } 1234 1235 skb_release_all(skb, reason); 1236 sa->skb_array[sa->skb_count++] = skb; 1237 1238 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1239 kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE, 1240 sa->skb_array); 1241 sa->skb_count = 0; 1242 } 1243 } 1244 1245 void __fix_address 1246 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1247 { 1248 struct skb_free_array sa; 1249 1250 sa.skb_count = 0; 1251 1252 while (segs) { 1253 struct sk_buff *next = segs->next; 1254 1255 if (__sk_skb_reason_drop(NULL, segs, reason)) { 1256 skb_poison_list(segs); 1257 kfree_skb_add_bulk(segs, &sa, reason); 1258 } 1259 1260 segs = next; 1261 } 1262 1263 if (sa.skb_count) 1264 kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array); 1265 } 1266 EXPORT_SYMBOL(kfree_skb_list_reason); 1267 1268 /* Dump skb information and contents. 1269 * 1270 * Must only be called from net_ratelimit()-ed paths. 1271 * 1272 * Dumps whole packets if full_pkt, only headers otherwise. 1273 */ 1274 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1275 { 1276 struct skb_shared_info *sh = skb_shinfo(skb); 1277 struct net_device *dev = skb->dev; 1278 struct sock *sk = skb->sk; 1279 struct sk_buff *list_skb; 1280 bool has_mac, has_trans; 1281 int headroom, tailroom; 1282 int i, len, seg_len; 1283 1284 if (full_pkt) 1285 len = skb->len; 1286 else 1287 len = min_t(int, skb->len, MAX_HEADER + 128); 1288 1289 headroom = skb_headroom(skb); 1290 tailroom = skb_tailroom(skb); 1291 1292 has_mac = skb_mac_header_was_set(skb); 1293 has_trans = skb_transport_header_was_set(skb); 1294 1295 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1296 "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n" 1297 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1298 "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1299 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n" 1300 "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n" 1301 "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n", 1302 level, skb->len, headroom, skb_headlen(skb), tailroom, 1303 has_mac ? skb->mac_header : -1, 1304 has_mac ? skb_mac_header_len(skb) : -1, 1305 skb->mac_len, 1306 skb->network_header, 1307 has_trans ? skb_network_header_len(skb) : -1, 1308 has_trans ? skb->transport_header : -1, 1309 sh->tx_flags, sh->nr_frags, 1310 sh->gso_size, sh->gso_type, sh->gso_segs, 1311 skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed, 1312 skb->csum_complete_sw, skb->csum_valid, skb->csum_level, 1313 skb->hash, skb->sw_hash, skb->l4_hash, 1314 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif, 1315 skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all, 1316 skb->encapsulation, skb->inner_protocol, skb->inner_mac_header, 1317 skb->inner_network_header, skb->inner_transport_header); 1318 1319 if (dev) 1320 printk("%sdev name=%s feat=%pNF\n", 1321 level, dev->name, &dev->features); 1322 if (sk) 1323 printk("%ssk family=%hu type=%u proto=%u\n", 1324 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1325 1326 if (full_pkt && headroom) 1327 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1328 16, 1, skb->head, headroom, false); 1329 1330 seg_len = min_t(int, skb_headlen(skb), len); 1331 if (seg_len) 1332 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1333 16, 1, skb->data, seg_len, false); 1334 len -= seg_len; 1335 1336 if (full_pkt && tailroom) 1337 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1338 16, 1, skb_tail_pointer(skb), tailroom, false); 1339 1340 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1341 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1342 u32 p_off, p_len, copied; 1343 struct page *p; 1344 u8 *vaddr; 1345 1346 if (skb_frag_is_net_iov(frag)) { 1347 printk("%sskb frag %d: not readable\n", level, i); 1348 len -= skb_frag_size(frag); 1349 if (!len) 1350 break; 1351 continue; 1352 } 1353 1354 skb_frag_foreach_page(frag, skb_frag_off(frag), 1355 skb_frag_size(frag), p, p_off, p_len, 1356 copied) { 1357 seg_len = min_t(int, p_len, len); 1358 vaddr = kmap_atomic(p); 1359 print_hex_dump(level, "skb frag: ", 1360 DUMP_PREFIX_OFFSET, 1361 16, 1, vaddr + p_off, seg_len, false); 1362 kunmap_atomic(vaddr); 1363 len -= seg_len; 1364 if (!len) 1365 break; 1366 } 1367 } 1368 1369 if (full_pkt && skb_has_frag_list(skb)) { 1370 printk("skb fraglist:\n"); 1371 skb_walk_frags(skb, list_skb) 1372 skb_dump(level, list_skb, true); 1373 } 1374 } 1375 EXPORT_SYMBOL(skb_dump); 1376 1377 /** 1378 * skb_tx_error - report an sk_buff xmit error 1379 * @skb: buffer that triggered an error 1380 * 1381 * Report xmit error if a device callback is tracking this skb. 1382 * skb must be freed afterwards. 1383 */ 1384 void skb_tx_error(struct sk_buff *skb) 1385 { 1386 if (skb) { 1387 skb_zcopy_downgrade_managed(skb); 1388 skb_zcopy_clear(skb, true); 1389 } 1390 } 1391 EXPORT_SYMBOL(skb_tx_error); 1392 1393 #ifdef CONFIG_TRACEPOINTS 1394 /** 1395 * consume_skb - free an skbuff 1396 * @skb: buffer to free 1397 * 1398 * Drop a ref to the buffer and free it if the usage count has hit zero 1399 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1400 * is being dropped after a failure and notes that 1401 */ 1402 void consume_skb(struct sk_buff *skb) 1403 { 1404 if (!skb_unref(skb)) 1405 return; 1406 1407 trace_consume_skb(skb, __builtin_return_address(0)); 1408 __kfree_skb(skb); 1409 } 1410 EXPORT_SYMBOL(consume_skb); 1411 #endif 1412 1413 /** 1414 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1415 * @skb: buffer to free 1416 * 1417 * Alike consume_skb(), but this variant assumes that this is the last 1418 * skb reference and all the head states have been already dropped 1419 */ 1420 void __consume_stateless_skb(struct sk_buff *skb) 1421 { 1422 trace_consume_skb(skb, __builtin_return_address(0)); 1423 skb_release_data(skb, SKB_CONSUMED); 1424 kfree_skbmem(skb); 1425 } 1426 1427 static void napi_skb_cache_put(struct sk_buff *skb) 1428 { 1429 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1430 u32 i; 1431 1432 if (!kasan_mempool_poison_object(skb)) 1433 return; 1434 1435 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 1436 nc->skb_cache[nc->skb_count++] = skb; 1437 1438 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1439 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1440 kasan_mempool_unpoison_object(nc->skb_cache[i], 1441 kmem_cache_size(net_hotdata.skbuff_cache)); 1442 1443 kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF, 1444 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1445 nc->skb_count = NAPI_SKB_CACHE_HALF; 1446 } 1447 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 1448 } 1449 1450 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1451 { 1452 skb_release_all(skb, reason); 1453 napi_skb_cache_put(skb); 1454 } 1455 1456 void napi_skb_free_stolen_head(struct sk_buff *skb) 1457 { 1458 if (unlikely(skb->slow_gro)) { 1459 nf_reset_ct(skb); 1460 skb_dst_drop(skb); 1461 skb_ext_put(skb); 1462 skb_orphan(skb); 1463 skb->slow_gro = 0; 1464 } 1465 napi_skb_cache_put(skb); 1466 } 1467 1468 void napi_consume_skb(struct sk_buff *skb, int budget) 1469 { 1470 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1471 if (unlikely(!budget)) { 1472 dev_consume_skb_any(skb); 1473 return; 1474 } 1475 1476 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1477 1478 if (!skb_unref(skb)) 1479 return; 1480 1481 /* if reaching here SKB is ready to free */ 1482 trace_consume_skb(skb, __builtin_return_address(0)); 1483 1484 /* if SKB is a clone, don't handle this case */ 1485 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1486 __kfree_skb(skb); 1487 return; 1488 } 1489 1490 skb_release_all(skb, SKB_CONSUMED); 1491 napi_skb_cache_put(skb); 1492 } 1493 EXPORT_SYMBOL(napi_consume_skb); 1494 1495 /* Make sure a field is contained by headers group */ 1496 #define CHECK_SKB_FIELD(field) \ 1497 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1498 offsetof(struct sk_buff, headers.field)); \ 1499 1500 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1501 { 1502 new->tstamp = old->tstamp; 1503 /* We do not copy old->sk */ 1504 new->dev = old->dev; 1505 memcpy(new->cb, old->cb, sizeof(old->cb)); 1506 skb_dst_copy(new, old); 1507 __skb_ext_copy(new, old); 1508 __nf_copy(new, old, false); 1509 1510 /* Note : this field could be in the headers group. 1511 * It is not yet because we do not want to have a 16 bit hole 1512 */ 1513 new->queue_mapping = old->queue_mapping; 1514 1515 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1516 CHECK_SKB_FIELD(protocol); 1517 CHECK_SKB_FIELD(csum); 1518 CHECK_SKB_FIELD(hash); 1519 CHECK_SKB_FIELD(priority); 1520 CHECK_SKB_FIELD(skb_iif); 1521 CHECK_SKB_FIELD(vlan_proto); 1522 CHECK_SKB_FIELD(vlan_tci); 1523 CHECK_SKB_FIELD(transport_header); 1524 CHECK_SKB_FIELD(network_header); 1525 CHECK_SKB_FIELD(mac_header); 1526 CHECK_SKB_FIELD(inner_protocol); 1527 CHECK_SKB_FIELD(inner_transport_header); 1528 CHECK_SKB_FIELD(inner_network_header); 1529 CHECK_SKB_FIELD(inner_mac_header); 1530 CHECK_SKB_FIELD(mark); 1531 #ifdef CONFIG_NETWORK_SECMARK 1532 CHECK_SKB_FIELD(secmark); 1533 #endif 1534 #ifdef CONFIG_NET_RX_BUSY_POLL 1535 CHECK_SKB_FIELD(napi_id); 1536 #endif 1537 CHECK_SKB_FIELD(alloc_cpu); 1538 #ifdef CONFIG_XPS 1539 CHECK_SKB_FIELD(sender_cpu); 1540 #endif 1541 #ifdef CONFIG_NET_SCHED 1542 CHECK_SKB_FIELD(tc_index); 1543 #endif 1544 1545 } 1546 1547 /* 1548 * You should not add any new code to this function. Add it to 1549 * __copy_skb_header above instead. 1550 */ 1551 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1552 { 1553 #define C(x) n->x = skb->x 1554 1555 n->next = n->prev = NULL; 1556 n->sk = NULL; 1557 __copy_skb_header(n, skb); 1558 1559 C(len); 1560 C(data_len); 1561 C(mac_len); 1562 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1563 n->cloned = 1; 1564 n->nohdr = 0; 1565 n->peeked = 0; 1566 C(pfmemalloc); 1567 C(pp_recycle); 1568 n->destructor = NULL; 1569 C(tail); 1570 C(end); 1571 C(head); 1572 C(head_frag); 1573 C(data); 1574 C(truesize); 1575 refcount_set(&n->users, 1); 1576 1577 atomic_inc(&(skb_shinfo(skb)->dataref)); 1578 skb->cloned = 1; 1579 1580 return n; 1581 #undef C 1582 } 1583 1584 /** 1585 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1586 * @first: first sk_buff of the msg 1587 */ 1588 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1589 { 1590 struct sk_buff *n; 1591 1592 n = alloc_skb(0, GFP_ATOMIC); 1593 if (!n) 1594 return NULL; 1595 1596 n->len = first->len; 1597 n->data_len = first->len; 1598 n->truesize = first->truesize; 1599 1600 skb_shinfo(n)->frag_list = first; 1601 1602 __copy_skb_header(n, first); 1603 n->destructor = NULL; 1604 1605 return n; 1606 } 1607 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1608 1609 /** 1610 * skb_morph - morph one skb into another 1611 * @dst: the skb to receive the contents 1612 * @src: the skb to supply the contents 1613 * 1614 * This is identical to skb_clone except that the target skb is 1615 * supplied by the user. 1616 * 1617 * The target skb is returned upon exit. 1618 */ 1619 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1620 { 1621 skb_release_all(dst, SKB_CONSUMED); 1622 return __skb_clone(dst, src); 1623 } 1624 EXPORT_SYMBOL_GPL(skb_morph); 1625 1626 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1627 { 1628 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1629 struct user_struct *user; 1630 1631 if (capable(CAP_IPC_LOCK) || !size) 1632 return 0; 1633 1634 rlim = rlimit(RLIMIT_MEMLOCK); 1635 if (rlim == RLIM_INFINITY) 1636 return 0; 1637 1638 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1639 max_pg = rlim >> PAGE_SHIFT; 1640 user = mmp->user ? : current_user(); 1641 1642 old_pg = atomic_long_read(&user->locked_vm); 1643 do { 1644 new_pg = old_pg + num_pg; 1645 if (new_pg > max_pg) 1646 return -ENOBUFS; 1647 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1648 1649 if (!mmp->user) { 1650 mmp->user = get_uid(user); 1651 mmp->num_pg = num_pg; 1652 } else { 1653 mmp->num_pg += num_pg; 1654 } 1655 1656 return 0; 1657 } 1658 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1659 1660 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1661 { 1662 if (mmp->user) { 1663 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1664 free_uid(mmp->user); 1665 } 1666 } 1667 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1668 1669 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1670 { 1671 struct ubuf_info_msgzc *uarg; 1672 struct sk_buff *skb; 1673 1674 WARN_ON_ONCE(!in_task()); 1675 1676 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1677 if (!skb) 1678 return NULL; 1679 1680 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1681 uarg = (void *)skb->cb; 1682 uarg->mmp.user = NULL; 1683 1684 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1685 kfree_skb(skb); 1686 return NULL; 1687 } 1688 1689 uarg->ubuf.ops = &msg_zerocopy_ubuf_ops; 1690 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1691 uarg->len = 1; 1692 uarg->bytelen = size; 1693 uarg->zerocopy = 1; 1694 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1695 refcount_set(&uarg->ubuf.refcnt, 1); 1696 sock_hold(sk); 1697 1698 return &uarg->ubuf; 1699 } 1700 1701 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1702 { 1703 return container_of((void *)uarg, struct sk_buff, cb); 1704 } 1705 1706 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1707 struct ubuf_info *uarg) 1708 { 1709 if (uarg) { 1710 struct ubuf_info_msgzc *uarg_zc; 1711 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1712 u32 bytelen, next; 1713 1714 /* there might be non MSG_ZEROCOPY users */ 1715 if (uarg->ops != &msg_zerocopy_ubuf_ops) 1716 return NULL; 1717 1718 /* realloc only when socket is locked (TCP, UDP cork), 1719 * so uarg->len and sk_zckey access is serialized 1720 */ 1721 if (!sock_owned_by_user(sk)) { 1722 WARN_ON_ONCE(1); 1723 return NULL; 1724 } 1725 1726 uarg_zc = uarg_to_msgzc(uarg); 1727 bytelen = uarg_zc->bytelen + size; 1728 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1729 /* TCP can create new skb to attach new uarg */ 1730 if (sk->sk_type == SOCK_STREAM) 1731 goto new_alloc; 1732 return NULL; 1733 } 1734 1735 next = (u32)atomic_read(&sk->sk_zckey); 1736 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1737 if (mm_account_pinned_pages(&uarg_zc->mmp, size)) 1738 return NULL; 1739 uarg_zc->len++; 1740 uarg_zc->bytelen = bytelen; 1741 atomic_set(&sk->sk_zckey, ++next); 1742 1743 /* no extra ref when appending to datagram (MSG_MORE) */ 1744 if (sk->sk_type == SOCK_STREAM) 1745 net_zcopy_get(uarg); 1746 1747 return uarg; 1748 } 1749 } 1750 1751 new_alloc: 1752 return msg_zerocopy_alloc(sk, size); 1753 } 1754 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1755 1756 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1757 { 1758 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1759 u32 old_lo, old_hi; 1760 u64 sum_len; 1761 1762 old_lo = serr->ee.ee_info; 1763 old_hi = serr->ee.ee_data; 1764 sum_len = old_hi - old_lo + 1ULL + len; 1765 1766 if (sum_len >= (1ULL << 32)) 1767 return false; 1768 1769 if (lo != old_hi + 1) 1770 return false; 1771 1772 serr->ee.ee_data += len; 1773 return true; 1774 } 1775 1776 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1777 { 1778 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1779 struct sock_exterr_skb *serr; 1780 struct sock *sk = skb->sk; 1781 struct sk_buff_head *q; 1782 unsigned long flags; 1783 bool is_zerocopy; 1784 u32 lo, hi; 1785 u16 len; 1786 1787 mm_unaccount_pinned_pages(&uarg->mmp); 1788 1789 /* if !len, there was only 1 call, and it was aborted 1790 * so do not queue a completion notification 1791 */ 1792 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1793 goto release; 1794 1795 len = uarg->len; 1796 lo = uarg->id; 1797 hi = uarg->id + len - 1; 1798 is_zerocopy = uarg->zerocopy; 1799 1800 serr = SKB_EXT_ERR(skb); 1801 memset(serr, 0, sizeof(*serr)); 1802 serr->ee.ee_errno = 0; 1803 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1804 serr->ee.ee_data = hi; 1805 serr->ee.ee_info = lo; 1806 if (!is_zerocopy) 1807 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1808 1809 q = &sk->sk_error_queue; 1810 spin_lock_irqsave(&q->lock, flags); 1811 tail = skb_peek_tail(q); 1812 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1813 !skb_zerocopy_notify_extend(tail, lo, len)) { 1814 __skb_queue_tail(q, skb); 1815 skb = NULL; 1816 } 1817 spin_unlock_irqrestore(&q->lock, flags); 1818 1819 sk_error_report(sk); 1820 1821 release: 1822 consume_skb(skb); 1823 sock_put(sk); 1824 } 1825 1826 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg, 1827 bool success) 1828 { 1829 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1830 1831 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1832 1833 if (refcount_dec_and_test(&uarg->refcnt)) 1834 __msg_zerocopy_callback(uarg_zc); 1835 } 1836 1837 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1838 { 1839 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1840 1841 atomic_dec(&sk->sk_zckey); 1842 uarg_to_msgzc(uarg)->len--; 1843 1844 if (have_uref) 1845 msg_zerocopy_complete(NULL, uarg, true); 1846 } 1847 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1848 1849 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = { 1850 .complete = msg_zerocopy_complete, 1851 }; 1852 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops); 1853 1854 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1855 struct msghdr *msg, int len, 1856 struct ubuf_info *uarg) 1857 { 1858 int err, orig_len = skb->len; 1859 1860 if (uarg->ops->link_skb) { 1861 err = uarg->ops->link_skb(skb, uarg); 1862 if (err) 1863 return err; 1864 } else { 1865 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1866 1867 /* An skb can only point to one uarg. This edge case happens 1868 * when TCP appends to an skb, but zerocopy_realloc triggered 1869 * a new alloc. 1870 */ 1871 if (orig_uarg && uarg != orig_uarg) 1872 return -EEXIST; 1873 } 1874 1875 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1876 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1877 struct sock *save_sk = skb->sk; 1878 1879 /* Streams do not free skb on error. Reset to prev state. */ 1880 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1881 skb->sk = sk; 1882 ___pskb_trim(skb, orig_len); 1883 skb->sk = save_sk; 1884 return err; 1885 } 1886 1887 skb_zcopy_set(skb, uarg, NULL); 1888 return skb->len - orig_len; 1889 } 1890 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1891 1892 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1893 { 1894 int i; 1895 1896 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1897 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1898 skb_frag_ref(skb, i); 1899 } 1900 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1901 1902 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1903 gfp_t gfp_mask) 1904 { 1905 if (skb_zcopy(orig)) { 1906 if (skb_zcopy(nskb)) { 1907 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1908 if (!gfp_mask) { 1909 WARN_ON_ONCE(1); 1910 return -ENOMEM; 1911 } 1912 if (skb_uarg(nskb) == skb_uarg(orig)) 1913 return 0; 1914 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1915 return -EIO; 1916 } 1917 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1918 } 1919 return 0; 1920 } 1921 1922 /** 1923 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1924 * @skb: the skb to modify 1925 * @gfp_mask: allocation priority 1926 * 1927 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1928 * It will copy all frags into kernel and drop the reference 1929 * to userspace pages. 1930 * 1931 * If this function is called from an interrupt gfp_mask() must be 1932 * %GFP_ATOMIC. 1933 * 1934 * Returns 0 on success or a negative error code on failure 1935 * to allocate kernel memory to copy to. 1936 */ 1937 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1938 { 1939 int num_frags = skb_shinfo(skb)->nr_frags; 1940 struct page *page, *head = NULL; 1941 int i, order, psize, new_frags; 1942 u32 d_off; 1943 1944 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1945 return -EINVAL; 1946 1947 if (!skb_frags_readable(skb)) 1948 return -EFAULT; 1949 1950 if (!num_frags) 1951 goto release; 1952 1953 /* We might have to allocate high order pages, so compute what minimum 1954 * page order is needed. 1955 */ 1956 order = 0; 1957 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1958 order++; 1959 psize = (PAGE_SIZE << order); 1960 1961 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1962 for (i = 0; i < new_frags; i++) { 1963 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1964 if (!page) { 1965 while (head) { 1966 struct page *next = (struct page *)page_private(head); 1967 put_page(head); 1968 head = next; 1969 } 1970 return -ENOMEM; 1971 } 1972 set_page_private(page, (unsigned long)head); 1973 head = page; 1974 } 1975 1976 page = head; 1977 d_off = 0; 1978 for (i = 0; i < num_frags; i++) { 1979 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1980 u32 p_off, p_len, copied; 1981 struct page *p; 1982 u8 *vaddr; 1983 1984 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1985 p, p_off, p_len, copied) { 1986 u32 copy, done = 0; 1987 vaddr = kmap_atomic(p); 1988 1989 while (done < p_len) { 1990 if (d_off == psize) { 1991 d_off = 0; 1992 page = (struct page *)page_private(page); 1993 } 1994 copy = min_t(u32, psize - d_off, p_len - done); 1995 memcpy(page_address(page) + d_off, 1996 vaddr + p_off + done, copy); 1997 done += copy; 1998 d_off += copy; 1999 } 2000 kunmap_atomic(vaddr); 2001 } 2002 } 2003 2004 /* skb frags release userspace buffers */ 2005 for (i = 0; i < num_frags; i++) 2006 skb_frag_unref(skb, i); 2007 2008 /* skb frags point to kernel buffers */ 2009 for (i = 0; i < new_frags - 1; i++) { 2010 __skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize); 2011 head = (struct page *)page_private(head); 2012 } 2013 __skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0, 2014 d_off); 2015 skb_shinfo(skb)->nr_frags = new_frags; 2016 2017 release: 2018 skb_zcopy_clear(skb, false); 2019 return 0; 2020 } 2021 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 2022 2023 /** 2024 * skb_clone - duplicate an sk_buff 2025 * @skb: buffer to clone 2026 * @gfp_mask: allocation priority 2027 * 2028 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 2029 * copies share the same packet data but not structure. The new 2030 * buffer has a reference count of 1. If the allocation fails the 2031 * function returns %NULL otherwise the new buffer is returned. 2032 * 2033 * If this function is called from an interrupt gfp_mask() must be 2034 * %GFP_ATOMIC. 2035 */ 2036 2037 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 2038 { 2039 struct sk_buff_fclones *fclones = container_of(skb, 2040 struct sk_buff_fclones, 2041 skb1); 2042 struct sk_buff *n; 2043 2044 if (skb_orphan_frags(skb, gfp_mask)) 2045 return NULL; 2046 2047 if (skb->fclone == SKB_FCLONE_ORIG && 2048 refcount_read(&fclones->fclone_ref) == 1) { 2049 n = &fclones->skb2; 2050 refcount_set(&fclones->fclone_ref, 2); 2051 n->fclone = SKB_FCLONE_CLONE; 2052 } else { 2053 if (skb_pfmemalloc(skb)) 2054 gfp_mask |= __GFP_MEMALLOC; 2055 2056 n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask); 2057 if (!n) 2058 return NULL; 2059 2060 n->fclone = SKB_FCLONE_UNAVAILABLE; 2061 } 2062 2063 return __skb_clone(n, skb); 2064 } 2065 EXPORT_SYMBOL(skb_clone); 2066 2067 void skb_headers_offset_update(struct sk_buff *skb, int off) 2068 { 2069 /* Only adjust this if it actually is csum_start rather than csum */ 2070 if (skb->ip_summed == CHECKSUM_PARTIAL) 2071 skb->csum_start += off; 2072 /* {transport,network,mac}_header and tail are relative to skb->head */ 2073 skb->transport_header += off; 2074 skb->network_header += off; 2075 if (skb_mac_header_was_set(skb)) 2076 skb->mac_header += off; 2077 skb->inner_transport_header += off; 2078 skb->inner_network_header += off; 2079 skb->inner_mac_header += off; 2080 } 2081 EXPORT_SYMBOL(skb_headers_offset_update); 2082 2083 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 2084 { 2085 __copy_skb_header(new, old); 2086 2087 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 2088 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 2089 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 2090 } 2091 EXPORT_SYMBOL(skb_copy_header); 2092 2093 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 2094 { 2095 if (skb_pfmemalloc(skb)) 2096 return SKB_ALLOC_RX; 2097 return 0; 2098 } 2099 2100 /** 2101 * skb_copy - create private copy of an sk_buff 2102 * @skb: buffer to copy 2103 * @gfp_mask: allocation priority 2104 * 2105 * Make a copy of both an &sk_buff and its data. This is used when the 2106 * caller wishes to modify the data and needs a private copy of the 2107 * data to alter. Returns %NULL on failure or the pointer to the buffer 2108 * on success. The returned buffer has a reference count of 1. 2109 * 2110 * As by-product this function converts non-linear &sk_buff to linear 2111 * one, so that &sk_buff becomes completely private and caller is allowed 2112 * to modify all the data of returned buffer. This means that this 2113 * function is not recommended for use in circumstances when only 2114 * header is going to be modified. Use pskb_copy() instead. 2115 */ 2116 2117 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 2118 { 2119 struct sk_buff *n; 2120 unsigned int size; 2121 int headerlen; 2122 2123 if (!skb_frags_readable(skb)) 2124 return NULL; 2125 2126 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2127 return NULL; 2128 2129 headerlen = skb_headroom(skb); 2130 size = skb_end_offset(skb) + skb->data_len; 2131 n = __alloc_skb(size, gfp_mask, 2132 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 2133 if (!n) 2134 return NULL; 2135 2136 /* Set the data pointer */ 2137 skb_reserve(n, headerlen); 2138 /* Set the tail pointer and length */ 2139 skb_put(n, skb->len); 2140 2141 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 2142 2143 skb_copy_header(n, skb); 2144 return n; 2145 } 2146 EXPORT_SYMBOL(skb_copy); 2147 2148 /** 2149 * __pskb_copy_fclone - create copy of an sk_buff with private head. 2150 * @skb: buffer to copy 2151 * @headroom: headroom of new skb 2152 * @gfp_mask: allocation priority 2153 * @fclone: if true allocate the copy of the skb from the fclone 2154 * cache instead of the head cache; it is recommended to set this 2155 * to true for the cases where the copy will likely be cloned 2156 * 2157 * Make a copy of both an &sk_buff and part of its data, located 2158 * in header. Fragmented data remain shared. This is used when 2159 * the caller wishes to modify only header of &sk_buff and needs 2160 * private copy of the header to alter. Returns %NULL on failure 2161 * or the pointer to the buffer on success. 2162 * The returned buffer has a reference count of 1. 2163 */ 2164 2165 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2166 gfp_t gfp_mask, bool fclone) 2167 { 2168 unsigned int size = skb_headlen(skb) + headroom; 2169 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2170 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2171 2172 if (!n) 2173 goto out; 2174 2175 /* Set the data pointer */ 2176 skb_reserve(n, headroom); 2177 /* Set the tail pointer and length */ 2178 skb_put(n, skb_headlen(skb)); 2179 /* Copy the bytes */ 2180 skb_copy_from_linear_data(skb, n->data, n->len); 2181 2182 n->truesize += skb->data_len; 2183 n->data_len = skb->data_len; 2184 n->len = skb->len; 2185 2186 if (skb_shinfo(skb)->nr_frags) { 2187 int i; 2188 2189 if (skb_orphan_frags(skb, gfp_mask) || 2190 skb_zerocopy_clone(n, skb, gfp_mask)) { 2191 kfree_skb(n); 2192 n = NULL; 2193 goto out; 2194 } 2195 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2196 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2197 skb_frag_ref(skb, i); 2198 } 2199 skb_shinfo(n)->nr_frags = i; 2200 } 2201 2202 if (skb_has_frag_list(skb)) { 2203 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2204 skb_clone_fraglist(n); 2205 } 2206 2207 skb_copy_header(n, skb); 2208 out: 2209 return n; 2210 } 2211 EXPORT_SYMBOL(__pskb_copy_fclone); 2212 2213 /** 2214 * pskb_expand_head - reallocate header of &sk_buff 2215 * @skb: buffer to reallocate 2216 * @nhead: room to add at head 2217 * @ntail: room to add at tail 2218 * @gfp_mask: allocation priority 2219 * 2220 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2221 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2222 * reference count of 1. Returns zero in the case of success or error, 2223 * if expansion failed. In the last case, &sk_buff is not changed. 2224 * 2225 * All the pointers pointing into skb header may change and must be 2226 * reloaded after call to this function. 2227 */ 2228 2229 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2230 gfp_t gfp_mask) 2231 { 2232 unsigned int osize = skb_end_offset(skb); 2233 unsigned int size = osize + nhead + ntail; 2234 long off; 2235 u8 *data; 2236 int i; 2237 2238 BUG_ON(nhead < 0); 2239 2240 BUG_ON(skb_shared(skb)); 2241 2242 skb_zcopy_downgrade_managed(skb); 2243 2244 if (skb_pfmemalloc(skb)) 2245 gfp_mask |= __GFP_MEMALLOC; 2246 2247 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2248 if (!data) 2249 goto nodata; 2250 size = SKB_WITH_OVERHEAD(size); 2251 2252 /* Copy only real data... and, alas, header. This should be 2253 * optimized for the cases when header is void. 2254 */ 2255 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2256 2257 memcpy((struct skb_shared_info *)(data + size), 2258 skb_shinfo(skb), 2259 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2260 2261 /* 2262 * if shinfo is shared we must drop the old head gracefully, but if it 2263 * is not we can just drop the old head and let the existing refcount 2264 * be since all we did is relocate the values 2265 */ 2266 if (skb_cloned(skb)) { 2267 if (skb_orphan_frags(skb, gfp_mask)) 2268 goto nofrags; 2269 if (skb_zcopy(skb)) 2270 refcount_inc(&skb_uarg(skb)->refcnt); 2271 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2272 skb_frag_ref(skb, i); 2273 2274 if (skb_has_frag_list(skb)) 2275 skb_clone_fraglist(skb); 2276 2277 skb_release_data(skb, SKB_CONSUMED); 2278 } else { 2279 skb_free_head(skb); 2280 } 2281 off = (data + nhead) - skb->head; 2282 2283 skb->head = data; 2284 skb->head_frag = 0; 2285 skb->data += off; 2286 2287 skb_set_end_offset(skb, size); 2288 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2289 off = nhead; 2290 #endif 2291 skb->tail += off; 2292 skb_headers_offset_update(skb, nhead); 2293 skb->cloned = 0; 2294 skb->hdr_len = 0; 2295 skb->nohdr = 0; 2296 atomic_set(&skb_shinfo(skb)->dataref, 1); 2297 2298 skb_metadata_clear(skb); 2299 2300 /* It is not generally safe to change skb->truesize. 2301 * For the moment, we really care of rx path, or 2302 * when skb is orphaned (not attached to a socket). 2303 */ 2304 if (!skb->sk || skb->destructor == sock_edemux) 2305 skb->truesize += size - osize; 2306 2307 return 0; 2308 2309 nofrags: 2310 skb_kfree_head(data, size); 2311 nodata: 2312 return -ENOMEM; 2313 } 2314 EXPORT_SYMBOL(pskb_expand_head); 2315 2316 /* Make private copy of skb with writable head and some headroom */ 2317 2318 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2319 { 2320 struct sk_buff *skb2; 2321 int delta = headroom - skb_headroom(skb); 2322 2323 if (delta <= 0) 2324 skb2 = pskb_copy(skb, GFP_ATOMIC); 2325 else { 2326 skb2 = skb_clone(skb, GFP_ATOMIC); 2327 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2328 GFP_ATOMIC)) { 2329 kfree_skb(skb2); 2330 skb2 = NULL; 2331 } 2332 } 2333 return skb2; 2334 } 2335 EXPORT_SYMBOL(skb_realloc_headroom); 2336 2337 /* Note: We plan to rework this in linux-6.4 */ 2338 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2339 { 2340 unsigned int saved_end_offset, saved_truesize; 2341 struct skb_shared_info *shinfo; 2342 int res; 2343 2344 saved_end_offset = skb_end_offset(skb); 2345 saved_truesize = skb->truesize; 2346 2347 res = pskb_expand_head(skb, 0, 0, pri); 2348 if (res) 2349 return res; 2350 2351 skb->truesize = saved_truesize; 2352 2353 if (likely(skb_end_offset(skb) == saved_end_offset)) 2354 return 0; 2355 2356 /* We can not change skb->end if the original or new value 2357 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2358 */ 2359 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2360 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2361 /* We think this path should not be taken. 2362 * Add a temporary trace to warn us just in case. 2363 */ 2364 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2365 saved_end_offset, skb_end_offset(skb)); 2366 WARN_ON_ONCE(1); 2367 return 0; 2368 } 2369 2370 shinfo = skb_shinfo(skb); 2371 2372 /* We are about to change back skb->end, 2373 * we need to move skb_shinfo() to its new location. 2374 */ 2375 memmove(skb->head + saved_end_offset, 2376 shinfo, 2377 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2378 2379 skb_set_end_offset(skb, saved_end_offset); 2380 2381 return 0; 2382 } 2383 2384 /** 2385 * skb_expand_head - reallocate header of &sk_buff 2386 * @skb: buffer to reallocate 2387 * @headroom: needed headroom 2388 * 2389 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2390 * if possible; copies skb->sk to new skb as needed 2391 * and frees original skb in case of failures. 2392 * 2393 * It expect increased headroom and generates warning otherwise. 2394 */ 2395 2396 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2397 { 2398 int delta = headroom - skb_headroom(skb); 2399 int osize = skb_end_offset(skb); 2400 struct sock *sk = skb->sk; 2401 2402 if (WARN_ONCE(delta <= 0, 2403 "%s is expecting an increase in the headroom", __func__)) 2404 return skb; 2405 2406 delta = SKB_DATA_ALIGN(delta); 2407 /* pskb_expand_head() might crash, if skb is shared. */ 2408 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2409 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2410 2411 if (unlikely(!nskb)) 2412 goto fail; 2413 2414 if (sk) 2415 skb_set_owner_w(nskb, sk); 2416 consume_skb(skb); 2417 skb = nskb; 2418 } 2419 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2420 goto fail; 2421 2422 if (sk && is_skb_wmem(skb)) { 2423 delta = skb_end_offset(skb) - osize; 2424 refcount_add(delta, &sk->sk_wmem_alloc); 2425 skb->truesize += delta; 2426 } 2427 return skb; 2428 2429 fail: 2430 kfree_skb(skb); 2431 return NULL; 2432 } 2433 EXPORT_SYMBOL(skb_expand_head); 2434 2435 /** 2436 * skb_copy_expand - copy and expand sk_buff 2437 * @skb: buffer to copy 2438 * @newheadroom: new free bytes at head 2439 * @newtailroom: new free bytes at tail 2440 * @gfp_mask: allocation priority 2441 * 2442 * Make a copy of both an &sk_buff and its data and while doing so 2443 * allocate additional space. 2444 * 2445 * This is used when the caller wishes to modify the data and needs a 2446 * private copy of the data to alter as well as more space for new fields. 2447 * Returns %NULL on failure or the pointer to the buffer 2448 * on success. The returned buffer has a reference count of 1. 2449 * 2450 * You must pass %GFP_ATOMIC as the allocation priority if this function 2451 * is called from an interrupt. 2452 */ 2453 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2454 int newheadroom, int newtailroom, 2455 gfp_t gfp_mask) 2456 { 2457 /* 2458 * Allocate the copy buffer 2459 */ 2460 int head_copy_len, head_copy_off; 2461 struct sk_buff *n; 2462 int oldheadroom; 2463 2464 if (!skb_frags_readable(skb)) 2465 return NULL; 2466 2467 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2468 return NULL; 2469 2470 oldheadroom = skb_headroom(skb); 2471 n = __alloc_skb(newheadroom + skb->len + newtailroom, 2472 gfp_mask, skb_alloc_rx_flag(skb), 2473 NUMA_NO_NODE); 2474 if (!n) 2475 return NULL; 2476 2477 skb_reserve(n, newheadroom); 2478 2479 /* Set the tail pointer and length */ 2480 skb_put(n, skb->len); 2481 2482 head_copy_len = oldheadroom; 2483 head_copy_off = 0; 2484 if (newheadroom <= head_copy_len) 2485 head_copy_len = newheadroom; 2486 else 2487 head_copy_off = newheadroom - head_copy_len; 2488 2489 /* Copy the linear header and data. */ 2490 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2491 skb->len + head_copy_len)); 2492 2493 skb_copy_header(n, skb); 2494 2495 skb_headers_offset_update(n, newheadroom - oldheadroom); 2496 2497 return n; 2498 } 2499 EXPORT_SYMBOL(skb_copy_expand); 2500 2501 /** 2502 * __skb_pad - zero pad the tail of an skb 2503 * @skb: buffer to pad 2504 * @pad: space to pad 2505 * @free_on_error: free buffer on error 2506 * 2507 * Ensure that a buffer is followed by a padding area that is zero 2508 * filled. Used by network drivers which may DMA or transfer data 2509 * beyond the buffer end onto the wire. 2510 * 2511 * May return error in out of memory cases. The skb is freed on error 2512 * if @free_on_error is true. 2513 */ 2514 2515 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2516 { 2517 int err; 2518 int ntail; 2519 2520 /* If the skbuff is non linear tailroom is always zero.. */ 2521 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2522 memset(skb->data+skb->len, 0, pad); 2523 return 0; 2524 } 2525 2526 ntail = skb->data_len + pad - (skb->end - skb->tail); 2527 if (likely(skb_cloned(skb) || ntail > 0)) { 2528 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2529 if (unlikely(err)) 2530 goto free_skb; 2531 } 2532 2533 /* FIXME: The use of this function with non-linear skb's really needs 2534 * to be audited. 2535 */ 2536 err = skb_linearize(skb); 2537 if (unlikely(err)) 2538 goto free_skb; 2539 2540 memset(skb->data + skb->len, 0, pad); 2541 return 0; 2542 2543 free_skb: 2544 if (free_on_error) 2545 kfree_skb(skb); 2546 return err; 2547 } 2548 EXPORT_SYMBOL(__skb_pad); 2549 2550 /** 2551 * pskb_put - add data to the tail of a potentially fragmented buffer 2552 * @skb: start of the buffer to use 2553 * @tail: tail fragment of the buffer to use 2554 * @len: amount of data to add 2555 * 2556 * This function extends the used data area of the potentially 2557 * fragmented buffer. @tail must be the last fragment of @skb -- or 2558 * @skb itself. If this would exceed the total buffer size the kernel 2559 * will panic. A pointer to the first byte of the extra data is 2560 * returned. 2561 */ 2562 2563 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2564 { 2565 if (tail != skb) { 2566 skb->data_len += len; 2567 skb->len += len; 2568 } 2569 return skb_put(tail, len); 2570 } 2571 EXPORT_SYMBOL_GPL(pskb_put); 2572 2573 /** 2574 * skb_put - add data to a buffer 2575 * @skb: buffer to use 2576 * @len: amount of data to add 2577 * 2578 * This function extends the used data area of the buffer. If this would 2579 * exceed the total buffer size the kernel will panic. A pointer to the 2580 * first byte of the extra data is returned. 2581 */ 2582 void *skb_put(struct sk_buff *skb, unsigned int len) 2583 { 2584 void *tmp = skb_tail_pointer(skb); 2585 SKB_LINEAR_ASSERT(skb); 2586 skb->tail += len; 2587 skb->len += len; 2588 if (unlikely(skb->tail > skb->end)) 2589 skb_over_panic(skb, len, __builtin_return_address(0)); 2590 return tmp; 2591 } 2592 EXPORT_SYMBOL(skb_put); 2593 2594 /** 2595 * skb_push - add data to the start of a buffer 2596 * @skb: buffer to use 2597 * @len: amount of data to add 2598 * 2599 * This function extends the used data area of the buffer at the buffer 2600 * start. If this would exceed the total buffer headroom the kernel will 2601 * panic. A pointer to the first byte of the extra data is returned. 2602 */ 2603 void *skb_push(struct sk_buff *skb, unsigned int len) 2604 { 2605 skb->data -= len; 2606 skb->len += len; 2607 if (unlikely(skb->data < skb->head)) 2608 skb_under_panic(skb, len, __builtin_return_address(0)); 2609 return skb->data; 2610 } 2611 EXPORT_SYMBOL(skb_push); 2612 2613 /** 2614 * skb_pull - remove data from the start of a buffer 2615 * @skb: buffer to use 2616 * @len: amount of data to remove 2617 * 2618 * This function removes data from the start of a buffer, returning 2619 * the memory to the headroom. A pointer to the next data in the buffer 2620 * is returned. Once the data has been pulled future pushes will overwrite 2621 * the old data. 2622 */ 2623 void *skb_pull(struct sk_buff *skb, unsigned int len) 2624 { 2625 return skb_pull_inline(skb, len); 2626 } 2627 EXPORT_SYMBOL(skb_pull); 2628 2629 /** 2630 * skb_pull_data - remove data from the start of a buffer returning its 2631 * original position. 2632 * @skb: buffer to use 2633 * @len: amount of data to remove 2634 * 2635 * This function removes data from the start of a buffer, returning 2636 * the memory to the headroom. A pointer to the original data in the buffer 2637 * is returned after checking if there is enough data to pull. Once the 2638 * data has been pulled future pushes will overwrite the old data. 2639 */ 2640 void *skb_pull_data(struct sk_buff *skb, size_t len) 2641 { 2642 void *data = skb->data; 2643 2644 if (skb->len < len) 2645 return NULL; 2646 2647 skb_pull(skb, len); 2648 2649 return data; 2650 } 2651 EXPORT_SYMBOL(skb_pull_data); 2652 2653 /** 2654 * skb_trim - remove end from a buffer 2655 * @skb: buffer to alter 2656 * @len: new length 2657 * 2658 * Cut the length of a buffer down by removing data from the tail. If 2659 * the buffer is already under the length specified it is not modified. 2660 * The skb must be linear. 2661 */ 2662 void skb_trim(struct sk_buff *skb, unsigned int len) 2663 { 2664 if (skb->len > len) 2665 __skb_trim(skb, len); 2666 } 2667 EXPORT_SYMBOL(skb_trim); 2668 2669 /* Trims skb to length len. It can change skb pointers. 2670 */ 2671 2672 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2673 { 2674 struct sk_buff **fragp; 2675 struct sk_buff *frag; 2676 int offset = skb_headlen(skb); 2677 int nfrags = skb_shinfo(skb)->nr_frags; 2678 int i; 2679 int err; 2680 2681 if (skb_cloned(skb) && 2682 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2683 return err; 2684 2685 i = 0; 2686 if (offset >= len) 2687 goto drop_pages; 2688 2689 for (; i < nfrags; i++) { 2690 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2691 2692 if (end < len) { 2693 offset = end; 2694 continue; 2695 } 2696 2697 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2698 2699 drop_pages: 2700 skb_shinfo(skb)->nr_frags = i; 2701 2702 for (; i < nfrags; i++) 2703 skb_frag_unref(skb, i); 2704 2705 if (skb_has_frag_list(skb)) 2706 skb_drop_fraglist(skb); 2707 goto done; 2708 } 2709 2710 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2711 fragp = &frag->next) { 2712 int end = offset + frag->len; 2713 2714 if (skb_shared(frag)) { 2715 struct sk_buff *nfrag; 2716 2717 nfrag = skb_clone(frag, GFP_ATOMIC); 2718 if (unlikely(!nfrag)) 2719 return -ENOMEM; 2720 2721 nfrag->next = frag->next; 2722 consume_skb(frag); 2723 frag = nfrag; 2724 *fragp = frag; 2725 } 2726 2727 if (end < len) { 2728 offset = end; 2729 continue; 2730 } 2731 2732 if (end > len && 2733 unlikely((err = pskb_trim(frag, len - offset)))) 2734 return err; 2735 2736 if (frag->next) 2737 skb_drop_list(&frag->next); 2738 break; 2739 } 2740 2741 done: 2742 if (len > skb_headlen(skb)) { 2743 skb->data_len -= skb->len - len; 2744 skb->len = len; 2745 } else { 2746 skb->len = len; 2747 skb->data_len = 0; 2748 skb_set_tail_pointer(skb, len); 2749 } 2750 2751 if (!skb->sk || skb->destructor == sock_edemux) 2752 skb_condense(skb); 2753 return 0; 2754 } 2755 EXPORT_SYMBOL(___pskb_trim); 2756 2757 /* Note : use pskb_trim_rcsum() instead of calling this directly 2758 */ 2759 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2760 { 2761 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2762 int delta = skb->len - len; 2763 2764 skb->csum = csum_block_sub(skb->csum, 2765 skb_checksum(skb, len, delta, 0), 2766 len); 2767 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2768 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2769 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2770 2771 if (offset + sizeof(__sum16) > hdlen) 2772 return -EINVAL; 2773 } 2774 return __pskb_trim(skb, len); 2775 } 2776 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2777 2778 /** 2779 * __pskb_pull_tail - advance tail of skb header 2780 * @skb: buffer to reallocate 2781 * @delta: number of bytes to advance tail 2782 * 2783 * The function makes a sense only on a fragmented &sk_buff, 2784 * it expands header moving its tail forward and copying necessary 2785 * data from fragmented part. 2786 * 2787 * &sk_buff MUST have reference count of 1. 2788 * 2789 * Returns %NULL (and &sk_buff does not change) if pull failed 2790 * or value of new tail of skb in the case of success. 2791 * 2792 * All the pointers pointing into skb header may change and must be 2793 * reloaded after call to this function. 2794 */ 2795 2796 /* Moves tail of skb head forward, copying data from fragmented part, 2797 * when it is necessary. 2798 * 1. It may fail due to malloc failure. 2799 * 2. It may change skb pointers. 2800 * 2801 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2802 */ 2803 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2804 { 2805 /* If skb has not enough free space at tail, get new one 2806 * plus 128 bytes for future expansions. If we have enough 2807 * room at tail, reallocate without expansion only if skb is cloned. 2808 */ 2809 int i, k, eat = (skb->tail + delta) - skb->end; 2810 2811 if (!skb_frags_readable(skb)) 2812 return NULL; 2813 2814 if (eat > 0 || skb_cloned(skb)) { 2815 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2816 GFP_ATOMIC)) 2817 return NULL; 2818 } 2819 2820 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2821 skb_tail_pointer(skb), delta)); 2822 2823 /* Optimization: no fragments, no reasons to preestimate 2824 * size of pulled pages. Superb. 2825 */ 2826 if (!skb_has_frag_list(skb)) 2827 goto pull_pages; 2828 2829 /* Estimate size of pulled pages. */ 2830 eat = delta; 2831 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2832 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2833 2834 if (size >= eat) 2835 goto pull_pages; 2836 eat -= size; 2837 } 2838 2839 /* If we need update frag list, we are in troubles. 2840 * Certainly, it is possible to add an offset to skb data, 2841 * but taking into account that pulling is expected to 2842 * be very rare operation, it is worth to fight against 2843 * further bloating skb head and crucify ourselves here instead. 2844 * Pure masohism, indeed. 8)8) 2845 */ 2846 if (eat) { 2847 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2848 struct sk_buff *clone = NULL; 2849 struct sk_buff *insp = NULL; 2850 2851 do { 2852 if (list->len <= eat) { 2853 /* Eaten as whole. */ 2854 eat -= list->len; 2855 list = list->next; 2856 insp = list; 2857 } else { 2858 /* Eaten partially. */ 2859 if (skb_is_gso(skb) && !list->head_frag && 2860 skb_headlen(list)) 2861 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2862 2863 if (skb_shared(list)) { 2864 /* Sucks! We need to fork list. :-( */ 2865 clone = skb_clone(list, GFP_ATOMIC); 2866 if (!clone) 2867 return NULL; 2868 insp = list->next; 2869 list = clone; 2870 } else { 2871 /* This may be pulled without 2872 * problems. */ 2873 insp = list; 2874 } 2875 if (!pskb_pull(list, eat)) { 2876 kfree_skb(clone); 2877 return NULL; 2878 } 2879 break; 2880 } 2881 } while (eat); 2882 2883 /* Free pulled out fragments. */ 2884 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2885 skb_shinfo(skb)->frag_list = list->next; 2886 consume_skb(list); 2887 } 2888 /* And insert new clone at head. */ 2889 if (clone) { 2890 clone->next = list; 2891 skb_shinfo(skb)->frag_list = clone; 2892 } 2893 } 2894 /* Success! Now we may commit changes to skb data. */ 2895 2896 pull_pages: 2897 eat = delta; 2898 k = 0; 2899 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2900 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2901 2902 if (size <= eat) { 2903 skb_frag_unref(skb, i); 2904 eat -= size; 2905 } else { 2906 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2907 2908 *frag = skb_shinfo(skb)->frags[i]; 2909 if (eat) { 2910 skb_frag_off_add(frag, eat); 2911 skb_frag_size_sub(frag, eat); 2912 if (!i) 2913 goto end; 2914 eat = 0; 2915 } 2916 k++; 2917 } 2918 } 2919 skb_shinfo(skb)->nr_frags = k; 2920 2921 end: 2922 skb->tail += delta; 2923 skb->data_len -= delta; 2924 2925 if (!skb->data_len) 2926 skb_zcopy_clear(skb, false); 2927 2928 return skb_tail_pointer(skb); 2929 } 2930 EXPORT_SYMBOL(__pskb_pull_tail); 2931 2932 /** 2933 * skb_copy_bits - copy bits from skb to kernel buffer 2934 * @skb: source skb 2935 * @offset: offset in source 2936 * @to: destination buffer 2937 * @len: number of bytes to copy 2938 * 2939 * Copy the specified number of bytes from the source skb to the 2940 * destination buffer. 2941 * 2942 * CAUTION ! : 2943 * If its prototype is ever changed, 2944 * check arch/{*}/net/{*}.S files, 2945 * since it is called from BPF assembly code. 2946 */ 2947 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2948 { 2949 int start = skb_headlen(skb); 2950 struct sk_buff *frag_iter; 2951 int i, copy; 2952 2953 if (offset > (int)skb->len - len) 2954 goto fault; 2955 2956 /* Copy header. */ 2957 if ((copy = start - offset) > 0) { 2958 if (copy > len) 2959 copy = len; 2960 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2961 if ((len -= copy) == 0) 2962 return 0; 2963 offset += copy; 2964 to += copy; 2965 } 2966 2967 if (!skb_frags_readable(skb)) 2968 goto fault; 2969 2970 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2971 int end; 2972 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2973 2974 WARN_ON(start > offset + len); 2975 2976 end = start + skb_frag_size(f); 2977 if ((copy = end - offset) > 0) { 2978 u32 p_off, p_len, copied; 2979 struct page *p; 2980 u8 *vaddr; 2981 2982 if (copy > len) 2983 copy = len; 2984 2985 skb_frag_foreach_page(f, 2986 skb_frag_off(f) + offset - start, 2987 copy, p, p_off, p_len, copied) { 2988 vaddr = kmap_atomic(p); 2989 memcpy(to + copied, vaddr + p_off, p_len); 2990 kunmap_atomic(vaddr); 2991 } 2992 2993 if ((len -= copy) == 0) 2994 return 0; 2995 offset += copy; 2996 to += copy; 2997 } 2998 start = end; 2999 } 3000 3001 skb_walk_frags(skb, frag_iter) { 3002 int end; 3003 3004 WARN_ON(start > offset + len); 3005 3006 end = start + frag_iter->len; 3007 if ((copy = end - offset) > 0) { 3008 if (copy > len) 3009 copy = len; 3010 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 3011 goto fault; 3012 if ((len -= copy) == 0) 3013 return 0; 3014 offset += copy; 3015 to += copy; 3016 } 3017 start = end; 3018 } 3019 3020 if (!len) 3021 return 0; 3022 3023 fault: 3024 return -EFAULT; 3025 } 3026 EXPORT_SYMBOL(skb_copy_bits); 3027 3028 /* 3029 * Callback from splice_to_pipe(), if we need to release some pages 3030 * at the end of the spd in case we error'ed out in filling the pipe. 3031 */ 3032 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 3033 { 3034 put_page(spd->pages[i]); 3035 } 3036 3037 static struct page *linear_to_page(struct page *page, unsigned int *len, 3038 unsigned int *offset, 3039 struct sock *sk) 3040 { 3041 struct page_frag *pfrag = sk_page_frag(sk); 3042 3043 if (!sk_page_frag_refill(sk, pfrag)) 3044 return NULL; 3045 3046 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 3047 3048 memcpy(page_address(pfrag->page) + pfrag->offset, 3049 page_address(page) + *offset, *len); 3050 *offset = pfrag->offset; 3051 pfrag->offset += *len; 3052 3053 return pfrag->page; 3054 } 3055 3056 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 3057 struct page *page, 3058 unsigned int offset) 3059 { 3060 return spd->nr_pages && 3061 spd->pages[spd->nr_pages - 1] == page && 3062 (spd->partial[spd->nr_pages - 1].offset + 3063 spd->partial[spd->nr_pages - 1].len == offset); 3064 } 3065 3066 /* 3067 * Fill page/offset/length into spd, if it can hold more pages. 3068 */ 3069 static bool spd_fill_page(struct splice_pipe_desc *spd, 3070 struct pipe_inode_info *pipe, struct page *page, 3071 unsigned int *len, unsigned int offset, 3072 bool linear, 3073 struct sock *sk) 3074 { 3075 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 3076 return true; 3077 3078 if (linear) { 3079 page = linear_to_page(page, len, &offset, sk); 3080 if (!page) 3081 return true; 3082 } 3083 if (spd_can_coalesce(spd, page, offset)) { 3084 spd->partial[spd->nr_pages - 1].len += *len; 3085 return false; 3086 } 3087 get_page(page); 3088 spd->pages[spd->nr_pages] = page; 3089 spd->partial[spd->nr_pages].len = *len; 3090 spd->partial[spd->nr_pages].offset = offset; 3091 spd->nr_pages++; 3092 3093 return false; 3094 } 3095 3096 static bool __splice_segment(struct page *page, unsigned int poff, 3097 unsigned int plen, unsigned int *off, 3098 unsigned int *len, 3099 struct splice_pipe_desc *spd, bool linear, 3100 struct sock *sk, 3101 struct pipe_inode_info *pipe) 3102 { 3103 if (!*len) 3104 return true; 3105 3106 /* skip this segment if already processed */ 3107 if (*off >= plen) { 3108 *off -= plen; 3109 return false; 3110 } 3111 3112 /* ignore any bits we already processed */ 3113 poff += *off; 3114 plen -= *off; 3115 *off = 0; 3116 3117 do { 3118 unsigned int flen = min(*len, plen); 3119 3120 if (spd_fill_page(spd, pipe, page, &flen, poff, 3121 linear, sk)) 3122 return true; 3123 poff += flen; 3124 plen -= flen; 3125 *len -= flen; 3126 } while (*len && plen); 3127 3128 return false; 3129 } 3130 3131 /* 3132 * Map linear and fragment data from the skb to spd. It reports true if the 3133 * pipe is full or if we already spliced the requested length. 3134 */ 3135 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 3136 unsigned int *offset, unsigned int *len, 3137 struct splice_pipe_desc *spd, struct sock *sk) 3138 { 3139 int seg; 3140 struct sk_buff *iter; 3141 3142 /* map the linear part : 3143 * If skb->head_frag is set, this 'linear' part is backed by a 3144 * fragment, and if the head is not shared with any clones then 3145 * we can avoid a copy since we own the head portion of this page. 3146 */ 3147 if (__splice_segment(virt_to_page(skb->data), 3148 (unsigned long) skb->data & (PAGE_SIZE - 1), 3149 skb_headlen(skb), 3150 offset, len, spd, 3151 skb_head_is_locked(skb), 3152 sk, pipe)) 3153 return true; 3154 3155 /* 3156 * then map the fragments 3157 */ 3158 if (!skb_frags_readable(skb)) 3159 return false; 3160 3161 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 3162 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 3163 3164 if (WARN_ON_ONCE(!skb_frag_page(f))) 3165 return false; 3166 3167 if (__splice_segment(skb_frag_page(f), 3168 skb_frag_off(f), skb_frag_size(f), 3169 offset, len, spd, false, sk, pipe)) 3170 return true; 3171 } 3172 3173 skb_walk_frags(skb, iter) { 3174 if (*offset >= iter->len) { 3175 *offset -= iter->len; 3176 continue; 3177 } 3178 /* __skb_splice_bits() only fails if the output has no room 3179 * left, so no point in going over the frag_list for the error 3180 * case. 3181 */ 3182 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 3183 return true; 3184 } 3185 3186 return false; 3187 } 3188 3189 /* 3190 * Map data from the skb to a pipe. Should handle both the linear part, 3191 * the fragments, and the frag list. 3192 */ 3193 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3194 struct pipe_inode_info *pipe, unsigned int tlen, 3195 unsigned int flags) 3196 { 3197 struct partial_page partial[MAX_SKB_FRAGS]; 3198 struct page *pages[MAX_SKB_FRAGS]; 3199 struct splice_pipe_desc spd = { 3200 .pages = pages, 3201 .partial = partial, 3202 .nr_pages_max = MAX_SKB_FRAGS, 3203 .ops = &nosteal_pipe_buf_ops, 3204 .spd_release = sock_spd_release, 3205 }; 3206 int ret = 0; 3207 3208 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3209 3210 if (spd.nr_pages) 3211 ret = splice_to_pipe(pipe, &spd); 3212 3213 return ret; 3214 } 3215 EXPORT_SYMBOL_GPL(skb_splice_bits); 3216 3217 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3218 { 3219 struct socket *sock = sk->sk_socket; 3220 size_t size = msg_data_left(msg); 3221 3222 if (!sock) 3223 return -EINVAL; 3224 3225 if (!sock->ops->sendmsg_locked) 3226 return sock_no_sendmsg_locked(sk, msg, size); 3227 3228 return sock->ops->sendmsg_locked(sk, msg, size); 3229 } 3230 3231 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3232 { 3233 struct socket *sock = sk->sk_socket; 3234 3235 if (!sock) 3236 return -EINVAL; 3237 return sock_sendmsg(sock, msg); 3238 } 3239 3240 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3241 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3242 int len, sendmsg_func sendmsg) 3243 { 3244 unsigned int orig_len = len; 3245 struct sk_buff *head = skb; 3246 unsigned short fragidx; 3247 int slen, ret; 3248 3249 do_frag_list: 3250 3251 /* Deal with head data */ 3252 while (offset < skb_headlen(skb) && len) { 3253 struct kvec kv; 3254 struct msghdr msg; 3255 3256 slen = min_t(int, len, skb_headlen(skb) - offset); 3257 kv.iov_base = skb->data + offset; 3258 kv.iov_len = slen; 3259 memset(&msg, 0, sizeof(msg)); 3260 msg.msg_flags = MSG_DONTWAIT; 3261 3262 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3263 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3264 sendmsg_unlocked, sk, &msg); 3265 if (ret <= 0) 3266 goto error; 3267 3268 offset += ret; 3269 len -= ret; 3270 } 3271 3272 /* All the data was skb head? */ 3273 if (!len) 3274 goto out; 3275 3276 /* Make offset relative to start of frags */ 3277 offset -= skb_headlen(skb); 3278 3279 /* Find where we are in frag list */ 3280 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3281 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3282 3283 if (offset < skb_frag_size(frag)) 3284 break; 3285 3286 offset -= skb_frag_size(frag); 3287 } 3288 3289 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3290 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3291 3292 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3293 3294 while (slen) { 3295 struct bio_vec bvec; 3296 struct msghdr msg = { 3297 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT, 3298 }; 3299 3300 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3301 skb_frag_off(frag) + offset); 3302 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3303 slen); 3304 3305 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3306 sendmsg_unlocked, sk, &msg); 3307 if (ret <= 0) 3308 goto error; 3309 3310 len -= ret; 3311 offset += ret; 3312 slen -= ret; 3313 } 3314 3315 offset = 0; 3316 } 3317 3318 if (len) { 3319 /* Process any frag lists */ 3320 3321 if (skb == head) { 3322 if (skb_has_frag_list(skb)) { 3323 skb = skb_shinfo(skb)->frag_list; 3324 goto do_frag_list; 3325 } 3326 } else if (skb->next) { 3327 skb = skb->next; 3328 goto do_frag_list; 3329 } 3330 } 3331 3332 out: 3333 return orig_len - len; 3334 3335 error: 3336 return orig_len == len ? ret : orig_len - len; 3337 } 3338 3339 /* Send skb data on a socket. Socket must be locked. */ 3340 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3341 int len) 3342 { 3343 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked); 3344 } 3345 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3346 3347 /* Send skb data on a socket. Socket must be unlocked. */ 3348 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3349 { 3350 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked); 3351 } 3352 3353 /** 3354 * skb_store_bits - store bits from kernel buffer to skb 3355 * @skb: destination buffer 3356 * @offset: offset in destination 3357 * @from: source buffer 3358 * @len: number of bytes to copy 3359 * 3360 * Copy the specified number of bytes from the source buffer to the 3361 * destination skb. This function handles all the messy bits of 3362 * traversing fragment lists and such. 3363 */ 3364 3365 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3366 { 3367 int start = skb_headlen(skb); 3368 struct sk_buff *frag_iter; 3369 int i, copy; 3370 3371 if (offset > (int)skb->len - len) 3372 goto fault; 3373 3374 if ((copy = start - offset) > 0) { 3375 if (copy > len) 3376 copy = len; 3377 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3378 if ((len -= copy) == 0) 3379 return 0; 3380 offset += copy; 3381 from += copy; 3382 } 3383 3384 if (!skb_frags_readable(skb)) 3385 goto fault; 3386 3387 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3388 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3389 int end; 3390 3391 WARN_ON(start > offset + len); 3392 3393 end = start + skb_frag_size(frag); 3394 if ((copy = end - offset) > 0) { 3395 u32 p_off, p_len, copied; 3396 struct page *p; 3397 u8 *vaddr; 3398 3399 if (copy > len) 3400 copy = len; 3401 3402 skb_frag_foreach_page(frag, 3403 skb_frag_off(frag) + offset - start, 3404 copy, p, p_off, p_len, copied) { 3405 vaddr = kmap_atomic(p); 3406 memcpy(vaddr + p_off, from + copied, p_len); 3407 kunmap_atomic(vaddr); 3408 } 3409 3410 if ((len -= copy) == 0) 3411 return 0; 3412 offset += copy; 3413 from += copy; 3414 } 3415 start = end; 3416 } 3417 3418 skb_walk_frags(skb, frag_iter) { 3419 int end; 3420 3421 WARN_ON(start > offset + len); 3422 3423 end = start + frag_iter->len; 3424 if ((copy = end - offset) > 0) { 3425 if (copy > len) 3426 copy = len; 3427 if (skb_store_bits(frag_iter, offset - start, 3428 from, copy)) 3429 goto fault; 3430 if ((len -= copy) == 0) 3431 return 0; 3432 offset += copy; 3433 from += copy; 3434 } 3435 start = end; 3436 } 3437 if (!len) 3438 return 0; 3439 3440 fault: 3441 return -EFAULT; 3442 } 3443 EXPORT_SYMBOL(skb_store_bits); 3444 3445 /* Checksum skb data. */ 3446 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3447 __wsum csum, const struct skb_checksum_ops *ops) 3448 { 3449 int start = skb_headlen(skb); 3450 int i, copy = start - offset; 3451 struct sk_buff *frag_iter; 3452 int pos = 0; 3453 3454 /* Checksum header. */ 3455 if (copy > 0) { 3456 if (copy > len) 3457 copy = len; 3458 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 3459 skb->data + offset, copy, csum); 3460 if ((len -= copy) == 0) 3461 return csum; 3462 offset += copy; 3463 pos = copy; 3464 } 3465 3466 if (WARN_ON_ONCE(!skb_frags_readable(skb))) 3467 return 0; 3468 3469 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3470 int end; 3471 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3472 3473 WARN_ON(start > offset + len); 3474 3475 end = start + skb_frag_size(frag); 3476 if ((copy = end - offset) > 0) { 3477 u32 p_off, p_len, copied; 3478 struct page *p; 3479 __wsum csum2; 3480 u8 *vaddr; 3481 3482 if (copy > len) 3483 copy = len; 3484 3485 skb_frag_foreach_page(frag, 3486 skb_frag_off(frag) + offset - start, 3487 copy, p, p_off, p_len, copied) { 3488 vaddr = kmap_atomic(p); 3489 csum2 = INDIRECT_CALL_1(ops->update, 3490 csum_partial_ext, 3491 vaddr + p_off, p_len, 0); 3492 kunmap_atomic(vaddr); 3493 csum = INDIRECT_CALL_1(ops->combine, 3494 csum_block_add_ext, csum, 3495 csum2, pos, p_len); 3496 pos += p_len; 3497 } 3498 3499 if (!(len -= copy)) 3500 return csum; 3501 offset += copy; 3502 } 3503 start = end; 3504 } 3505 3506 skb_walk_frags(skb, frag_iter) { 3507 int end; 3508 3509 WARN_ON(start > offset + len); 3510 3511 end = start + frag_iter->len; 3512 if ((copy = end - offset) > 0) { 3513 __wsum csum2; 3514 if (copy > len) 3515 copy = len; 3516 csum2 = __skb_checksum(frag_iter, offset - start, 3517 copy, 0, ops); 3518 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 3519 csum, csum2, pos, copy); 3520 if ((len -= copy) == 0) 3521 return csum; 3522 offset += copy; 3523 pos += copy; 3524 } 3525 start = end; 3526 } 3527 BUG_ON(len); 3528 3529 return csum; 3530 } 3531 EXPORT_SYMBOL(__skb_checksum); 3532 3533 __wsum skb_checksum(const struct sk_buff *skb, int offset, 3534 int len, __wsum csum) 3535 { 3536 const struct skb_checksum_ops ops = { 3537 .update = csum_partial_ext, 3538 .combine = csum_block_add_ext, 3539 }; 3540 3541 return __skb_checksum(skb, offset, len, csum, &ops); 3542 } 3543 EXPORT_SYMBOL(skb_checksum); 3544 3545 /* Both of above in one bottle. */ 3546 3547 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3548 u8 *to, int len) 3549 { 3550 int start = skb_headlen(skb); 3551 int i, copy = start - offset; 3552 struct sk_buff *frag_iter; 3553 int pos = 0; 3554 __wsum csum = 0; 3555 3556 /* Copy header. */ 3557 if (copy > 0) { 3558 if (copy > len) 3559 copy = len; 3560 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3561 copy); 3562 if ((len -= copy) == 0) 3563 return csum; 3564 offset += copy; 3565 to += copy; 3566 pos = copy; 3567 } 3568 3569 if (!skb_frags_readable(skb)) 3570 return 0; 3571 3572 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3573 int end; 3574 3575 WARN_ON(start > offset + len); 3576 3577 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3578 if ((copy = end - offset) > 0) { 3579 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3580 u32 p_off, p_len, copied; 3581 struct page *p; 3582 __wsum csum2; 3583 u8 *vaddr; 3584 3585 if (copy > len) 3586 copy = len; 3587 3588 skb_frag_foreach_page(frag, 3589 skb_frag_off(frag) + offset - start, 3590 copy, p, p_off, p_len, copied) { 3591 vaddr = kmap_atomic(p); 3592 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3593 to + copied, 3594 p_len); 3595 kunmap_atomic(vaddr); 3596 csum = csum_block_add(csum, csum2, pos); 3597 pos += p_len; 3598 } 3599 3600 if (!(len -= copy)) 3601 return csum; 3602 offset += copy; 3603 to += copy; 3604 } 3605 start = end; 3606 } 3607 3608 skb_walk_frags(skb, frag_iter) { 3609 __wsum csum2; 3610 int end; 3611 3612 WARN_ON(start > offset + len); 3613 3614 end = start + frag_iter->len; 3615 if ((copy = end - offset) > 0) { 3616 if (copy > len) 3617 copy = len; 3618 csum2 = skb_copy_and_csum_bits(frag_iter, 3619 offset - start, 3620 to, copy); 3621 csum = csum_block_add(csum, csum2, pos); 3622 if ((len -= copy) == 0) 3623 return csum; 3624 offset += copy; 3625 to += copy; 3626 pos += copy; 3627 } 3628 start = end; 3629 } 3630 BUG_ON(len); 3631 return csum; 3632 } 3633 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3634 3635 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3636 { 3637 __sum16 sum; 3638 3639 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3640 /* See comments in __skb_checksum_complete(). */ 3641 if (likely(!sum)) { 3642 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3643 !skb->csum_complete_sw) 3644 netdev_rx_csum_fault(skb->dev, skb); 3645 } 3646 if (!skb_shared(skb)) 3647 skb->csum_valid = !sum; 3648 return sum; 3649 } 3650 EXPORT_SYMBOL(__skb_checksum_complete_head); 3651 3652 /* This function assumes skb->csum already holds pseudo header's checksum, 3653 * which has been changed from the hardware checksum, for example, by 3654 * __skb_checksum_validate_complete(). And, the original skb->csum must 3655 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3656 * 3657 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3658 * zero. The new checksum is stored back into skb->csum unless the skb is 3659 * shared. 3660 */ 3661 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3662 { 3663 __wsum csum; 3664 __sum16 sum; 3665 3666 csum = skb_checksum(skb, 0, skb->len, 0); 3667 3668 sum = csum_fold(csum_add(skb->csum, csum)); 3669 /* This check is inverted, because we already knew the hardware 3670 * checksum is invalid before calling this function. So, if the 3671 * re-computed checksum is valid instead, then we have a mismatch 3672 * between the original skb->csum and skb_checksum(). This means either 3673 * the original hardware checksum is incorrect or we screw up skb->csum 3674 * when moving skb->data around. 3675 */ 3676 if (likely(!sum)) { 3677 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3678 !skb->csum_complete_sw) 3679 netdev_rx_csum_fault(skb->dev, skb); 3680 } 3681 3682 if (!skb_shared(skb)) { 3683 /* Save full packet checksum */ 3684 skb->csum = csum; 3685 skb->ip_summed = CHECKSUM_COMPLETE; 3686 skb->csum_complete_sw = 1; 3687 skb->csum_valid = !sum; 3688 } 3689 3690 return sum; 3691 } 3692 EXPORT_SYMBOL(__skb_checksum_complete); 3693 3694 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3695 { 3696 net_warn_ratelimited( 3697 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3698 __func__); 3699 return 0; 3700 } 3701 3702 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3703 int offset, int len) 3704 { 3705 net_warn_ratelimited( 3706 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3707 __func__); 3708 return 0; 3709 } 3710 3711 static const struct skb_checksum_ops default_crc32c_ops = { 3712 .update = warn_crc32c_csum_update, 3713 .combine = warn_crc32c_csum_combine, 3714 }; 3715 3716 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3717 &default_crc32c_ops; 3718 EXPORT_SYMBOL(crc32c_csum_stub); 3719 3720 /** 3721 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3722 * @from: source buffer 3723 * 3724 * Calculates the amount of linear headroom needed in the 'to' skb passed 3725 * into skb_zerocopy(). 3726 */ 3727 unsigned int 3728 skb_zerocopy_headlen(const struct sk_buff *from) 3729 { 3730 unsigned int hlen = 0; 3731 3732 if (!from->head_frag || 3733 skb_headlen(from) < L1_CACHE_BYTES || 3734 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3735 hlen = skb_headlen(from); 3736 if (!hlen) 3737 hlen = from->len; 3738 } 3739 3740 if (skb_has_frag_list(from)) 3741 hlen = from->len; 3742 3743 return hlen; 3744 } 3745 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3746 3747 /** 3748 * skb_zerocopy - Zero copy skb to skb 3749 * @to: destination buffer 3750 * @from: source buffer 3751 * @len: number of bytes to copy from source buffer 3752 * @hlen: size of linear headroom in destination buffer 3753 * 3754 * Copies up to `len` bytes from `from` to `to` by creating references 3755 * to the frags in the source buffer. 3756 * 3757 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3758 * headroom in the `to` buffer. 3759 * 3760 * Return value: 3761 * 0: everything is OK 3762 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3763 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3764 */ 3765 int 3766 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3767 { 3768 int i, j = 0; 3769 int plen = 0; /* length of skb->head fragment */ 3770 int ret; 3771 struct page *page; 3772 unsigned int offset; 3773 3774 BUG_ON(!from->head_frag && !hlen); 3775 3776 /* dont bother with small payloads */ 3777 if (len <= skb_tailroom(to)) 3778 return skb_copy_bits(from, 0, skb_put(to, len), len); 3779 3780 if (hlen) { 3781 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3782 if (unlikely(ret)) 3783 return ret; 3784 len -= hlen; 3785 } else { 3786 plen = min_t(int, skb_headlen(from), len); 3787 if (plen) { 3788 page = virt_to_head_page(from->head); 3789 offset = from->data - (unsigned char *)page_address(page); 3790 __skb_fill_netmem_desc(to, 0, page_to_netmem(page), 3791 offset, plen); 3792 get_page(page); 3793 j = 1; 3794 len -= plen; 3795 } 3796 } 3797 3798 skb_len_add(to, len + plen); 3799 3800 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3801 skb_tx_error(from); 3802 return -ENOMEM; 3803 } 3804 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3805 3806 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3807 int size; 3808 3809 if (!len) 3810 break; 3811 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3812 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3813 len); 3814 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3815 len -= size; 3816 skb_frag_ref(to, j); 3817 j++; 3818 } 3819 skb_shinfo(to)->nr_frags = j; 3820 3821 return 0; 3822 } 3823 EXPORT_SYMBOL_GPL(skb_zerocopy); 3824 3825 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3826 { 3827 __wsum csum; 3828 long csstart; 3829 3830 if (skb->ip_summed == CHECKSUM_PARTIAL) 3831 csstart = skb_checksum_start_offset(skb); 3832 else 3833 csstart = skb_headlen(skb); 3834 3835 BUG_ON(csstart > skb_headlen(skb)); 3836 3837 skb_copy_from_linear_data(skb, to, csstart); 3838 3839 csum = 0; 3840 if (csstart != skb->len) 3841 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3842 skb->len - csstart); 3843 3844 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3845 long csstuff = csstart + skb->csum_offset; 3846 3847 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3848 } 3849 } 3850 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3851 3852 /** 3853 * skb_dequeue - remove from the head of the queue 3854 * @list: list to dequeue from 3855 * 3856 * Remove the head of the list. The list lock is taken so the function 3857 * may be used safely with other locking list functions. The head item is 3858 * returned or %NULL if the list is empty. 3859 */ 3860 3861 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3862 { 3863 unsigned long flags; 3864 struct sk_buff *result; 3865 3866 spin_lock_irqsave(&list->lock, flags); 3867 result = __skb_dequeue(list); 3868 spin_unlock_irqrestore(&list->lock, flags); 3869 return result; 3870 } 3871 EXPORT_SYMBOL(skb_dequeue); 3872 3873 /** 3874 * skb_dequeue_tail - remove from the tail of the queue 3875 * @list: list to dequeue from 3876 * 3877 * Remove the tail of the list. The list lock is taken so the function 3878 * may be used safely with other locking list functions. The tail item is 3879 * returned or %NULL if the list is empty. 3880 */ 3881 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3882 { 3883 unsigned long flags; 3884 struct sk_buff *result; 3885 3886 spin_lock_irqsave(&list->lock, flags); 3887 result = __skb_dequeue_tail(list); 3888 spin_unlock_irqrestore(&list->lock, flags); 3889 return result; 3890 } 3891 EXPORT_SYMBOL(skb_dequeue_tail); 3892 3893 /** 3894 * skb_queue_purge_reason - empty a list 3895 * @list: list to empty 3896 * @reason: drop reason 3897 * 3898 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3899 * the list and one reference dropped. This function takes the list 3900 * lock and is atomic with respect to other list locking functions. 3901 */ 3902 void skb_queue_purge_reason(struct sk_buff_head *list, 3903 enum skb_drop_reason reason) 3904 { 3905 struct sk_buff_head tmp; 3906 unsigned long flags; 3907 3908 if (skb_queue_empty_lockless(list)) 3909 return; 3910 3911 __skb_queue_head_init(&tmp); 3912 3913 spin_lock_irqsave(&list->lock, flags); 3914 skb_queue_splice_init(list, &tmp); 3915 spin_unlock_irqrestore(&list->lock, flags); 3916 3917 __skb_queue_purge_reason(&tmp, reason); 3918 } 3919 EXPORT_SYMBOL(skb_queue_purge_reason); 3920 3921 /** 3922 * skb_rbtree_purge - empty a skb rbtree 3923 * @root: root of the rbtree to empty 3924 * Return value: the sum of truesizes of all purged skbs. 3925 * 3926 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3927 * the list and one reference dropped. This function does not take 3928 * any lock. Synchronization should be handled by the caller (e.g., TCP 3929 * out-of-order queue is protected by the socket lock). 3930 */ 3931 unsigned int skb_rbtree_purge(struct rb_root *root) 3932 { 3933 struct rb_node *p = rb_first(root); 3934 unsigned int sum = 0; 3935 3936 while (p) { 3937 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3938 3939 p = rb_next(p); 3940 rb_erase(&skb->rbnode, root); 3941 sum += skb->truesize; 3942 kfree_skb(skb); 3943 } 3944 return sum; 3945 } 3946 3947 void skb_errqueue_purge(struct sk_buff_head *list) 3948 { 3949 struct sk_buff *skb, *next; 3950 struct sk_buff_head kill; 3951 unsigned long flags; 3952 3953 __skb_queue_head_init(&kill); 3954 3955 spin_lock_irqsave(&list->lock, flags); 3956 skb_queue_walk_safe(list, skb, next) { 3957 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || 3958 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) 3959 continue; 3960 __skb_unlink(skb, list); 3961 __skb_queue_tail(&kill, skb); 3962 } 3963 spin_unlock_irqrestore(&list->lock, flags); 3964 __skb_queue_purge(&kill); 3965 } 3966 EXPORT_SYMBOL(skb_errqueue_purge); 3967 3968 /** 3969 * skb_queue_head - queue a buffer at the list head 3970 * @list: list to use 3971 * @newsk: buffer to queue 3972 * 3973 * Queue a buffer at the start of the list. This function takes the 3974 * list lock and can be used safely with other locking &sk_buff functions 3975 * safely. 3976 * 3977 * A buffer cannot be placed on two lists at the same time. 3978 */ 3979 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3980 { 3981 unsigned long flags; 3982 3983 spin_lock_irqsave(&list->lock, flags); 3984 __skb_queue_head(list, newsk); 3985 spin_unlock_irqrestore(&list->lock, flags); 3986 } 3987 EXPORT_SYMBOL(skb_queue_head); 3988 3989 /** 3990 * skb_queue_tail - queue a buffer at the list tail 3991 * @list: list to use 3992 * @newsk: buffer to queue 3993 * 3994 * Queue a buffer at the tail of the list. This function takes the 3995 * list lock and can be used safely with other locking &sk_buff functions 3996 * safely. 3997 * 3998 * A buffer cannot be placed on two lists at the same time. 3999 */ 4000 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 4001 { 4002 unsigned long flags; 4003 4004 spin_lock_irqsave(&list->lock, flags); 4005 __skb_queue_tail(list, newsk); 4006 spin_unlock_irqrestore(&list->lock, flags); 4007 } 4008 EXPORT_SYMBOL(skb_queue_tail); 4009 4010 /** 4011 * skb_unlink - remove a buffer from a list 4012 * @skb: buffer to remove 4013 * @list: list to use 4014 * 4015 * Remove a packet from a list. The list locks are taken and this 4016 * function is atomic with respect to other list locked calls 4017 * 4018 * You must know what list the SKB is on. 4019 */ 4020 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 4021 { 4022 unsigned long flags; 4023 4024 spin_lock_irqsave(&list->lock, flags); 4025 __skb_unlink(skb, list); 4026 spin_unlock_irqrestore(&list->lock, flags); 4027 } 4028 EXPORT_SYMBOL(skb_unlink); 4029 4030 /** 4031 * skb_append - append a buffer 4032 * @old: buffer to insert after 4033 * @newsk: buffer to insert 4034 * @list: list to use 4035 * 4036 * Place a packet after a given packet in a list. The list locks are taken 4037 * and this function is atomic with respect to other list locked calls. 4038 * A buffer cannot be placed on two lists at the same time. 4039 */ 4040 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 4041 { 4042 unsigned long flags; 4043 4044 spin_lock_irqsave(&list->lock, flags); 4045 __skb_queue_after(list, old, newsk); 4046 spin_unlock_irqrestore(&list->lock, flags); 4047 } 4048 EXPORT_SYMBOL(skb_append); 4049 4050 static inline void skb_split_inside_header(struct sk_buff *skb, 4051 struct sk_buff* skb1, 4052 const u32 len, const int pos) 4053 { 4054 int i; 4055 4056 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 4057 pos - len); 4058 /* And move data appendix as is. */ 4059 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 4060 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 4061 4062 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 4063 skb1->unreadable = skb->unreadable; 4064 skb_shinfo(skb)->nr_frags = 0; 4065 skb1->data_len = skb->data_len; 4066 skb1->len += skb1->data_len; 4067 skb->data_len = 0; 4068 skb->len = len; 4069 skb_set_tail_pointer(skb, len); 4070 } 4071 4072 static inline void skb_split_no_header(struct sk_buff *skb, 4073 struct sk_buff* skb1, 4074 const u32 len, int pos) 4075 { 4076 int i, k = 0; 4077 const int nfrags = skb_shinfo(skb)->nr_frags; 4078 4079 skb_shinfo(skb)->nr_frags = 0; 4080 skb1->len = skb1->data_len = skb->len - len; 4081 skb->len = len; 4082 skb->data_len = len - pos; 4083 4084 for (i = 0; i < nfrags; i++) { 4085 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 4086 4087 if (pos + size > len) { 4088 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 4089 4090 if (pos < len) { 4091 /* Split frag. 4092 * We have two variants in this case: 4093 * 1. Move all the frag to the second 4094 * part, if it is possible. F.e. 4095 * this approach is mandatory for TUX, 4096 * where splitting is expensive. 4097 * 2. Split is accurately. We make this. 4098 */ 4099 skb_frag_ref(skb, i); 4100 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 4101 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 4102 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 4103 skb_shinfo(skb)->nr_frags++; 4104 } 4105 k++; 4106 } else 4107 skb_shinfo(skb)->nr_frags++; 4108 pos += size; 4109 } 4110 skb_shinfo(skb1)->nr_frags = k; 4111 4112 skb1->unreadable = skb->unreadable; 4113 } 4114 4115 /** 4116 * skb_split - Split fragmented skb to two parts at length len. 4117 * @skb: the buffer to split 4118 * @skb1: the buffer to receive the second part 4119 * @len: new length for skb 4120 */ 4121 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 4122 { 4123 int pos = skb_headlen(skb); 4124 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 4125 4126 skb_zcopy_downgrade_managed(skb); 4127 4128 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 4129 skb_zerocopy_clone(skb1, skb, 0); 4130 if (len < pos) /* Split line is inside header. */ 4131 skb_split_inside_header(skb, skb1, len, pos); 4132 else /* Second chunk has no header, nothing to copy. */ 4133 skb_split_no_header(skb, skb1, len, pos); 4134 } 4135 EXPORT_SYMBOL(skb_split); 4136 4137 /* Shifting from/to a cloned skb is a no-go. 4138 * 4139 * Caller cannot keep skb_shinfo related pointers past calling here! 4140 */ 4141 static int skb_prepare_for_shift(struct sk_buff *skb) 4142 { 4143 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 4144 } 4145 4146 /** 4147 * skb_shift - Shifts paged data partially from skb to another 4148 * @tgt: buffer into which tail data gets added 4149 * @skb: buffer from which the paged data comes from 4150 * @shiftlen: shift up to this many bytes 4151 * 4152 * Attempts to shift up to shiftlen worth of bytes, which may be less than 4153 * the length of the skb, from skb to tgt. Returns number bytes shifted. 4154 * It's up to caller to free skb if everything was shifted. 4155 * 4156 * If @tgt runs out of frags, the whole operation is aborted. 4157 * 4158 * Skb cannot include anything else but paged data while tgt is allowed 4159 * to have non-paged data as well. 4160 * 4161 * TODO: full sized shift could be optimized but that would need 4162 * specialized skb free'er to handle frags without up-to-date nr_frags. 4163 */ 4164 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 4165 { 4166 int from, to, merge, todo; 4167 skb_frag_t *fragfrom, *fragto; 4168 4169 BUG_ON(shiftlen > skb->len); 4170 4171 if (skb_headlen(skb)) 4172 return 0; 4173 if (skb_zcopy(tgt) || skb_zcopy(skb)) 4174 return 0; 4175 4176 DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle); 4177 DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb)); 4178 4179 todo = shiftlen; 4180 from = 0; 4181 to = skb_shinfo(tgt)->nr_frags; 4182 fragfrom = &skb_shinfo(skb)->frags[from]; 4183 4184 /* Actual merge is delayed until the point when we know we can 4185 * commit all, so that we don't have to undo partial changes 4186 */ 4187 if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 4188 skb_frag_off(fragfrom))) { 4189 merge = -1; 4190 } else { 4191 merge = to - 1; 4192 4193 todo -= skb_frag_size(fragfrom); 4194 if (todo < 0) { 4195 if (skb_prepare_for_shift(skb) || 4196 skb_prepare_for_shift(tgt)) 4197 return 0; 4198 4199 /* All previous frag pointers might be stale! */ 4200 fragfrom = &skb_shinfo(skb)->frags[from]; 4201 fragto = &skb_shinfo(tgt)->frags[merge]; 4202 4203 skb_frag_size_add(fragto, shiftlen); 4204 skb_frag_size_sub(fragfrom, shiftlen); 4205 skb_frag_off_add(fragfrom, shiftlen); 4206 4207 goto onlymerged; 4208 } 4209 4210 from++; 4211 } 4212 4213 /* Skip full, not-fitting skb to avoid expensive operations */ 4214 if ((shiftlen == skb->len) && 4215 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 4216 return 0; 4217 4218 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 4219 return 0; 4220 4221 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 4222 if (to == MAX_SKB_FRAGS) 4223 return 0; 4224 4225 fragfrom = &skb_shinfo(skb)->frags[from]; 4226 fragto = &skb_shinfo(tgt)->frags[to]; 4227 4228 if (todo >= skb_frag_size(fragfrom)) { 4229 *fragto = *fragfrom; 4230 todo -= skb_frag_size(fragfrom); 4231 from++; 4232 to++; 4233 4234 } else { 4235 __skb_frag_ref(fragfrom); 4236 skb_frag_page_copy(fragto, fragfrom); 4237 skb_frag_off_copy(fragto, fragfrom); 4238 skb_frag_size_set(fragto, todo); 4239 4240 skb_frag_off_add(fragfrom, todo); 4241 skb_frag_size_sub(fragfrom, todo); 4242 todo = 0; 4243 4244 to++; 4245 break; 4246 } 4247 } 4248 4249 /* Ready to "commit" this state change to tgt */ 4250 skb_shinfo(tgt)->nr_frags = to; 4251 4252 if (merge >= 0) { 4253 fragfrom = &skb_shinfo(skb)->frags[0]; 4254 fragto = &skb_shinfo(tgt)->frags[merge]; 4255 4256 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4257 __skb_frag_unref(fragfrom, skb->pp_recycle); 4258 } 4259 4260 /* Reposition in the original skb */ 4261 to = 0; 4262 while (from < skb_shinfo(skb)->nr_frags) 4263 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4264 skb_shinfo(skb)->nr_frags = to; 4265 4266 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4267 4268 onlymerged: 4269 /* Most likely the tgt won't ever need its checksum anymore, skb on 4270 * the other hand might need it if it needs to be resent 4271 */ 4272 tgt->ip_summed = CHECKSUM_PARTIAL; 4273 skb->ip_summed = CHECKSUM_PARTIAL; 4274 4275 skb_len_add(skb, -shiftlen); 4276 skb_len_add(tgt, shiftlen); 4277 4278 return shiftlen; 4279 } 4280 4281 /** 4282 * skb_prepare_seq_read - Prepare a sequential read of skb data 4283 * @skb: the buffer to read 4284 * @from: lower offset of data to be read 4285 * @to: upper offset of data to be read 4286 * @st: state variable 4287 * 4288 * Initializes the specified state variable. Must be called before 4289 * invoking skb_seq_read() for the first time. 4290 */ 4291 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4292 unsigned int to, struct skb_seq_state *st) 4293 { 4294 st->lower_offset = from; 4295 st->upper_offset = to; 4296 st->root_skb = st->cur_skb = skb; 4297 st->frag_idx = st->stepped_offset = 0; 4298 st->frag_data = NULL; 4299 st->frag_off = 0; 4300 } 4301 EXPORT_SYMBOL(skb_prepare_seq_read); 4302 4303 /** 4304 * skb_seq_read - Sequentially read skb data 4305 * @consumed: number of bytes consumed by the caller so far 4306 * @data: destination pointer for data to be returned 4307 * @st: state variable 4308 * 4309 * Reads a block of skb data at @consumed relative to the 4310 * lower offset specified to skb_prepare_seq_read(). Assigns 4311 * the head of the data block to @data and returns the length 4312 * of the block or 0 if the end of the skb data or the upper 4313 * offset has been reached. 4314 * 4315 * The caller is not required to consume all of the data 4316 * returned, i.e. @consumed is typically set to the number 4317 * of bytes already consumed and the next call to 4318 * skb_seq_read() will return the remaining part of the block. 4319 * 4320 * Note 1: The size of each block of data returned can be arbitrary, 4321 * this limitation is the cost for zerocopy sequential 4322 * reads of potentially non linear data. 4323 * 4324 * Note 2: Fragment lists within fragments are not implemented 4325 * at the moment, state->root_skb could be replaced with 4326 * a stack for this purpose. 4327 */ 4328 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4329 struct skb_seq_state *st) 4330 { 4331 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4332 skb_frag_t *frag; 4333 4334 if (unlikely(abs_offset >= st->upper_offset)) { 4335 if (st->frag_data) { 4336 kunmap_atomic(st->frag_data); 4337 st->frag_data = NULL; 4338 } 4339 return 0; 4340 } 4341 4342 next_skb: 4343 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4344 4345 if (abs_offset < block_limit && !st->frag_data) { 4346 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4347 return block_limit - abs_offset; 4348 } 4349 4350 if (!skb_frags_readable(st->cur_skb)) 4351 return 0; 4352 4353 if (st->frag_idx == 0 && !st->frag_data) 4354 st->stepped_offset += skb_headlen(st->cur_skb); 4355 4356 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4357 unsigned int pg_idx, pg_off, pg_sz; 4358 4359 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4360 4361 pg_idx = 0; 4362 pg_off = skb_frag_off(frag); 4363 pg_sz = skb_frag_size(frag); 4364 4365 if (skb_frag_must_loop(skb_frag_page(frag))) { 4366 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4367 pg_off = offset_in_page(pg_off + st->frag_off); 4368 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4369 PAGE_SIZE - pg_off); 4370 } 4371 4372 block_limit = pg_sz + st->stepped_offset; 4373 if (abs_offset < block_limit) { 4374 if (!st->frag_data) 4375 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4376 4377 *data = (u8 *)st->frag_data + pg_off + 4378 (abs_offset - st->stepped_offset); 4379 4380 return block_limit - abs_offset; 4381 } 4382 4383 if (st->frag_data) { 4384 kunmap_atomic(st->frag_data); 4385 st->frag_data = NULL; 4386 } 4387 4388 st->stepped_offset += pg_sz; 4389 st->frag_off += pg_sz; 4390 if (st->frag_off == skb_frag_size(frag)) { 4391 st->frag_off = 0; 4392 st->frag_idx++; 4393 } 4394 } 4395 4396 if (st->frag_data) { 4397 kunmap_atomic(st->frag_data); 4398 st->frag_data = NULL; 4399 } 4400 4401 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4402 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4403 st->frag_idx = 0; 4404 goto next_skb; 4405 } else if (st->cur_skb->next) { 4406 st->cur_skb = st->cur_skb->next; 4407 st->frag_idx = 0; 4408 goto next_skb; 4409 } 4410 4411 return 0; 4412 } 4413 EXPORT_SYMBOL(skb_seq_read); 4414 4415 /** 4416 * skb_abort_seq_read - Abort a sequential read of skb data 4417 * @st: state variable 4418 * 4419 * Must be called if skb_seq_read() was not called until it 4420 * returned 0. 4421 */ 4422 void skb_abort_seq_read(struct skb_seq_state *st) 4423 { 4424 if (st->frag_data) 4425 kunmap_atomic(st->frag_data); 4426 } 4427 EXPORT_SYMBOL(skb_abort_seq_read); 4428 4429 /** 4430 * skb_copy_seq_read() - copy from a skb_seq_state to a buffer 4431 * @st: source skb_seq_state 4432 * @offset: offset in source 4433 * @to: destination buffer 4434 * @len: number of bytes to copy 4435 * 4436 * Copy @len bytes from @offset bytes into the source @st to the destination 4437 * buffer @to. `offset` should increase (or be unchanged) with each subsequent 4438 * call to this function. If offset needs to decrease from the previous use `st` 4439 * should be reset first. 4440 * 4441 * Return: 0 on success or -EINVAL if the copy ended early 4442 */ 4443 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len) 4444 { 4445 const u8 *data; 4446 u32 sqlen; 4447 4448 for (;;) { 4449 sqlen = skb_seq_read(offset, &data, st); 4450 if (sqlen == 0) 4451 return -EINVAL; 4452 if (sqlen >= len) { 4453 memcpy(to, data, len); 4454 return 0; 4455 } 4456 memcpy(to, data, sqlen); 4457 to += sqlen; 4458 offset += sqlen; 4459 len -= sqlen; 4460 } 4461 } 4462 EXPORT_SYMBOL(skb_copy_seq_read); 4463 4464 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4465 4466 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4467 struct ts_config *conf, 4468 struct ts_state *state) 4469 { 4470 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4471 } 4472 4473 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4474 { 4475 skb_abort_seq_read(TS_SKB_CB(state)); 4476 } 4477 4478 /** 4479 * skb_find_text - Find a text pattern in skb data 4480 * @skb: the buffer to look in 4481 * @from: search offset 4482 * @to: search limit 4483 * @config: textsearch configuration 4484 * 4485 * Finds a pattern in the skb data according to the specified 4486 * textsearch configuration. Use textsearch_next() to retrieve 4487 * subsequent occurrences of the pattern. Returns the offset 4488 * to the first occurrence or UINT_MAX if no match was found. 4489 */ 4490 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4491 unsigned int to, struct ts_config *config) 4492 { 4493 unsigned int patlen = config->ops->get_pattern_len(config); 4494 struct ts_state state; 4495 unsigned int ret; 4496 4497 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4498 4499 config->get_next_block = skb_ts_get_next_block; 4500 config->finish = skb_ts_finish; 4501 4502 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4503 4504 ret = textsearch_find(config, &state); 4505 return (ret + patlen <= to - from ? ret : UINT_MAX); 4506 } 4507 EXPORT_SYMBOL(skb_find_text); 4508 4509 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4510 int offset, size_t size, size_t max_frags) 4511 { 4512 int i = skb_shinfo(skb)->nr_frags; 4513 4514 if (skb_can_coalesce(skb, i, page, offset)) { 4515 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4516 } else if (i < max_frags) { 4517 skb_zcopy_downgrade_managed(skb); 4518 get_page(page); 4519 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4520 } else { 4521 return -EMSGSIZE; 4522 } 4523 4524 return 0; 4525 } 4526 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4527 4528 /** 4529 * skb_pull_rcsum - pull skb and update receive checksum 4530 * @skb: buffer to update 4531 * @len: length of data pulled 4532 * 4533 * This function performs an skb_pull on the packet and updates 4534 * the CHECKSUM_COMPLETE checksum. It should be used on 4535 * receive path processing instead of skb_pull unless you know 4536 * that the checksum difference is zero (e.g., a valid IP header) 4537 * or you are setting ip_summed to CHECKSUM_NONE. 4538 */ 4539 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4540 { 4541 unsigned char *data = skb->data; 4542 4543 BUG_ON(len > skb->len); 4544 __skb_pull(skb, len); 4545 skb_postpull_rcsum(skb, data, len); 4546 return skb->data; 4547 } 4548 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4549 4550 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4551 { 4552 skb_frag_t head_frag; 4553 struct page *page; 4554 4555 page = virt_to_head_page(frag_skb->head); 4556 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4557 (unsigned char *)page_address(page), 4558 skb_headlen(frag_skb)); 4559 return head_frag; 4560 } 4561 4562 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4563 netdev_features_t features, 4564 unsigned int offset) 4565 { 4566 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4567 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4568 unsigned int delta_truesize = 0; 4569 unsigned int delta_len = 0; 4570 struct sk_buff *tail = NULL; 4571 struct sk_buff *nskb, *tmp; 4572 int len_diff, err; 4573 4574 skb_push(skb, -skb_network_offset(skb) + offset); 4575 4576 /* Ensure the head is writeable before touching the shared info */ 4577 err = skb_unclone(skb, GFP_ATOMIC); 4578 if (err) 4579 goto err_linearize; 4580 4581 skb_shinfo(skb)->frag_list = NULL; 4582 4583 while (list_skb) { 4584 nskb = list_skb; 4585 list_skb = list_skb->next; 4586 4587 err = 0; 4588 delta_truesize += nskb->truesize; 4589 if (skb_shared(nskb)) { 4590 tmp = skb_clone(nskb, GFP_ATOMIC); 4591 if (tmp) { 4592 consume_skb(nskb); 4593 nskb = tmp; 4594 err = skb_unclone(nskb, GFP_ATOMIC); 4595 } else { 4596 err = -ENOMEM; 4597 } 4598 } 4599 4600 if (!tail) 4601 skb->next = nskb; 4602 else 4603 tail->next = nskb; 4604 4605 if (unlikely(err)) { 4606 nskb->next = list_skb; 4607 goto err_linearize; 4608 } 4609 4610 tail = nskb; 4611 4612 delta_len += nskb->len; 4613 4614 skb_push(nskb, -skb_network_offset(nskb) + offset); 4615 4616 skb_release_head_state(nskb); 4617 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4618 __copy_skb_header(nskb, skb); 4619 4620 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4621 nskb->transport_header += len_diff; 4622 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4623 nskb->data - tnl_hlen, 4624 offset + tnl_hlen); 4625 4626 if (skb_needs_linearize(nskb, features) && 4627 __skb_linearize(nskb)) 4628 goto err_linearize; 4629 } 4630 4631 skb->truesize = skb->truesize - delta_truesize; 4632 skb->data_len = skb->data_len - delta_len; 4633 skb->len = skb->len - delta_len; 4634 4635 skb_gso_reset(skb); 4636 4637 skb->prev = tail; 4638 4639 if (skb_needs_linearize(skb, features) && 4640 __skb_linearize(skb)) 4641 goto err_linearize; 4642 4643 skb_get(skb); 4644 4645 return skb; 4646 4647 err_linearize: 4648 kfree_skb_list(skb->next); 4649 skb->next = NULL; 4650 return ERR_PTR(-ENOMEM); 4651 } 4652 EXPORT_SYMBOL_GPL(skb_segment_list); 4653 4654 /** 4655 * skb_segment - Perform protocol segmentation on skb. 4656 * @head_skb: buffer to segment 4657 * @features: features for the output path (see dev->features) 4658 * 4659 * This function performs segmentation on the given skb. It returns 4660 * a pointer to the first in a list of new skbs for the segments. 4661 * In case of error it returns ERR_PTR(err). 4662 */ 4663 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4664 netdev_features_t features) 4665 { 4666 struct sk_buff *segs = NULL; 4667 struct sk_buff *tail = NULL; 4668 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4669 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4670 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4671 unsigned int offset = doffset; 4672 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4673 unsigned int partial_segs = 0; 4674 unsigned int headroom; 4675 unsigned int len = head_skb->len; 4676 struct sk_buff *frag_skb; 4677 skb_frag_t *frag; 4678 __be16 proto; 4679 bool csum, sg; 4680 int err = -ENOMEM; 4681 int i = 0; 4682 int nfrags, pos; 4683 4684 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4685 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4686 struct sk_buff *check_skb; 4687 4688 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4689 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4690 /* gso_size is untrusted, and we have a frag_list with 4691 * a linear non head_frag item. 4692 * 4693 * If head_skb's headlen does not fit requested gso_size, 4694 * it means that the frag_list members do NOT terminate 4695 * on exact gso_size boundaries. Hence we cannot perform 4696 * skb_frag_t page sharing. Therefore we must fallback to 4697 * copying the frag_list skbs; we do so by disabling SG. 4698 */ 4699 features &= ~NETIF_F_SG; 4700 break; 4701 } 4702 } 4703 } 4704 4705 __skb_push(head_skb, doffset); 4706 proto = skb_network_protocol(head_skb, NULL); 4707 if (unlikely(!proto)) 4708 return ERR_PTR(-EINVAL); 4709 4710 sg = !!(features & NETIF_F_SG); 4711 csum = !!can_checksum_protocol(features, proto); 4712 4713 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4714 if (!(features & NETIF_F_GSO_PARTIAL)) { 4715 struct sk_buff *iter; 4716 unsigned int frag_len; 4717 4718 if (!list_skb || 4719 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4720 goto normal; 4721 4722 /* If we get here then all the required 4723 * GSO features except frag_list are supported. 4724 * Try to split the SKB to multiple GSO SKBs 4725 * with no frag_list. 4726 * Currently we can do that only when the buffers don't 4727 * have a linear part and all the buffers except 4728 * the last are of the same length. 4729 */ 4730 frag_len = list_skb->len; 4731 skb_walk_frags(head_skb, iter) { 4732 if (frag_len != iter->len && iter->next) 4733 goto normal; 4734 if (skb_headlen(iter) && !iter->head_frag) 4735 goto normal; 4736 4737 len -= iter->len; 4738 } 4739 4740 if (len != frag_len) 4741 goto normal; 4742 } 4743 4744 /* GSO partial only requires that we trim off any excess that 4745 * doesn't fit into an MSS sized block, so take care of that 4746 * now. 4747 * Cap len to not accidentally hit GSO_BY_FRAGS. 4748 */ 4749 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss; 4750 if (partial_segs > 1) 4751 mss *= partial_segs; 4752 else 4753 partial_segs = 0; 4754 } 4755 4756 normal: 4757 headroom = skb_headroom(head_skb); 4758 pos = skb_headlen(head_skb); 4759 4760 if (skb_orphan_frags(head_skb, GFP_ATOMIC)) 4761 return ERR_PTR(-ENOMEM); 4762 4763 nfrags = skb_shinfo(head_skb)->nr_frags; 4764 frag = skb_shinfo(head_skb)->frags; 4765 frag_skb = head_skb; 4766 4767 do { 4768 struct sk_buff *nskb; 4769 skb_frag_t *nskb_frag; 4770 int hsize; 4771 int size; 4772 4773 if (unlikely(mss == GSO_BY_FRAGS)) { 4774 len = list_skb->len; 4775 } else { 4776 len = head_skb->len - offset; 4777 if (len > mss) 4778 len = mss; 4779 } 4780 4781 hsize = skb_headlen(head_skb) - offset; 4782 4783 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4784 (skb_headlen(list_skb) == len || sg)) { 4785 BUG_ON(skb_headlen(list_skb) > len); 4786 4787 nskb = skb_clone(list_skb, GFP_ATOMIC); 4788 if (unlikely(!nskb)) 4789 goto err; 4790 4791 i = 0; 4792 nfrags = skb_shinfo(list_skb)->nr_frags; 4793 frag = skb_shinfo(list_skb)->frags; 4794 frag_skb = list_skb; 4795 pos += skb_headlen(list_skb); 4796 4797 while (pos < offset + len) { 4798 BUG_ON(i >= nfrags); 4799 4800 size = skb_frag_size(frag); 4801 if (pos + size > offset + len) 4802 break; 4803 4804 i++; 4805 pos += size; 4806 frag++; 4807 } 4808 4809 list_skb = list_skb->next; 4810 4811 if (unlikely(pskb_trim(nskb, len))) { 4812 kfree_skb(nskb); 4813 goto err; 4814 } 4815 4816 hsize = skb_end_offset(nskb); 4817 if (skb_cow_head(nskb, doffset + headroom)) { 4818 kfree_skb(nskb); 4819 goto err; 4820 } 4821 4822 nskb->truesize += skb_end_offset(nskb) - hsize; 4823 skb_release_head_state(nskb); 4824 __skb_push(nskb, doffset); 4825 } else { 4826 if (hsize < 0) 4827 hsize = 0; 4828 if (hsize > len || !sg) 4829 hsize = len; 4830 4831 nskb = __alloc_skb(hsize + doffset + headroom, 4832 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4833 NUMA_NO_NODE); 4834 4835 if (unlikely(!nskb)) 4836 goto err; 4837 4838 skb_reserve(nskb, headroom); 4839 __skb_put(nskb, doffset); 4840 } 4841 4842 if (segs) 4843 tail->next = nskb; 4844 else 4845 segs = nskb; 4846 tail = nskb; 4847 4848 __copy_skb_header(nskb, head_skb); 4849 4850 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4851 skb_reset_mac_len(nskb); 4852 4853 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4854 nskb->data - tnl_hlen, 4855 doffset + tnl_hlen); 4856 4857 if (nskb->len == len + doffset) 4858 goto perform_csum_check; 4859 4860 if (!sg) { 4861 if (!csum) { 4862 if (!nskb->remcsum_offload) 4863 nskb->ip_summed = CHECKSUM_NONE; 4864 SKB_GSO_CB(nskb)->csum = 4865 skb_copy_and_csum_bits(head_skb, offset, 4866 skb_put(nskb, 4867 len), 4868 len); 4869 SKB_GSO_CB(nskb)->csum_start = 4870 skb_headroom(nskb) + doffset; 4871 } else { 4872 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4873 goto err; 4874 } 4875 continue; 4876 } 4877 4878 nskb_frag = skb_shinfo(nskb)->frags; 4879 4880 skb_copy_from_linear_data_offset(head_skb, offset, 4881 skb_put(nskb, hsize), hsize); 4882 4883 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4884 SKBFL_SHARED_FRAG; 4885 4886 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4887 goto err; 4888 4889 while (pos < offset + len) { 4890 if (i >= nfrags) { 4891 if (skb_orphan_frags(list_skb, GFP_ATOMIC) || 4892 skb_zerocopy_clone(nskb, list_skb, 4893 GFP_ATOMIC)) 4894 goto err; 4895 4896 i = 0; 4897 nfrags = skb_shinfo(list_skb)->nr_frags; 4898 frag = skb_shinfo(list_skb)->frags; 4899 frag_skb = list_skb; 4900 if (!skb_headlen(list_skb)) { 4901 BUG_ON(!nfrags); 4902 } else { 4903 BUG_ON(!list_skb->head_frag); 4904 4905 /* to make room for head_frag. */ 4906 i--; 4907 frag--; 4908 } 4909 4910 list_skb = list_skb->next; 4911 } 4912 4913 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4914 MAX_SKB_FRAGS)) { 4915 net_warn_ratelimited( 4916 "skb_segment: too many frags: %u %u\n", 4917 pos, mss); 4918 err = -EINVAL; 4919 goto err; 4920 } 4921 4922 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4923 __skb_frag_ref(nskb_frag); 4924 size = skb_frag_size(nskb_frag); 4925 4926 if (pos < offset) { 4927 skb_frag_off_add(nskb_frag, offset - pos); 4928 skb_frag_size_sub(nskb_frag, offset - pos); 4929 } 4930 4931 skb_shinfo(nskb)->nr_frags++; 4932 4933 if (pos + size <= offset + len) { 4934 i++; 4935 frag++; 4936 pos += size; 4937 } else { 4938 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4939 goto skip_fraglist; 4940 } 4941 4942 nskb_frag++; 4943 } 4944 4945 skip_fraglist: 4946 nskb->data_len = len - hsize; 4947 nskb->len += nskb->data_len; 4948 nskb->truesize += nskb->data_len; 4949 4950 perform_csum_check: 4951 if (!csum) { 4952 if (skb_has_shared_frag(nskb) && 4953 __skb_linearize(nskb)) 4954 goto err; 4955 4956 if (!nskb->remcsum_offload) 4957 nskb->ip_summed = CHECKSUM_NONE; 4958 SKB_GSO_CB(nskb)->csum = 4959 skb_checksum(nskb, doffset, 4960 nskb->len - doffset, 0); 4961 SKB_GSO_CB(nskb)->csum_start = 4962 skb_headroom(nskb) + doffset; 4963 } 4964 } while ((offset += len) < head_skb->len); 4965 4966 /* Some callers want to get the end of the list. 4967 * Put it in segs->prev to avoid walking the list. 4968 * (see validate_xmit_skb_list() for example) 4969 */ 4970 segs->prev = tail; 4971 4972 if (partial_segs) { 4973 struct sk_buff *iter; 4974 int type = skb_shinfo(head_skb)->gso_type; 4975 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4976 4977 /* Update type to add partial and then remove dodgy if set */ 4978 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4979 type &= ~SKB_GSO_DODGY; 4980 4981 /* Update GSO info and prepare to start updating headers on 4982 * our way back down the stack of protocols. 4983 */ 4984 for (iter = segs; iter; iter = iter->next) { 4985 skb_shinfo(iter)->gso_size = gso_size; 4986 skb_shinfo(iter)->gso_segs = partial_segs; 4987 skb_shinfo(iter)->gso_type = type; 4988 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4989 } 4990 4991 if (tail->len - doffset <= gso_size) 4992 skb_shinfo(tail)->gso_size = 0; 4993 else if (tail != segs) 4994 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4995 } 4996 4997 /* Following permits correct backpressure, for protocols 4998 * using skb_set_owner_w(). 4999 * Idea is to tranfert ownership from head_skb to last segment. 5000 */ 5001 if (head_skb->destructor == sock_wfree) { 5002 swap(tail->truesize, head_skb->truesize); 5003 swap(tail->destructor, head_skb->destructor); 5004 swap(tail->sk, head_skb->sk); 5005 } 5006 return segs; 5007 5008 err: 5009 kfree_skb_list(segs); 5010 return ERR_PTR(err); 5011 } 5012 EXPORT_SYMBOL_GPL(skb_segment); 5013 5014 #ifdef CONFIG_SKB_EXTENSIONS 5015 #define SKB_EXT_ALIGN_VALUE 8 5016 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 5017 5018 static const u8 skb_ext_type_len[] = { 5019 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 5020 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 5021 #endif 5022 #ifdef CONFIG_XFRM 5023 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 5024 #endif 5025 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 5026 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 5027 #endif 5028 #if IS_ENABLED(CONFIG_MPTCP) 5029 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 5030 #endif 5031 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 5032 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 5033 #endif 5034 }; 5035 5036 static __always_inline unsigned int skb_ext_total_length(void) 5037 { 5038 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); 5039 int i; 5040 5041 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) 5042 l += skb_ext_type_len[i]; 5043 5044 return l; 5045 } 5046 5047 static void skb_extensions_init(void) 5048 { 5049 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 5050 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL) 5051 BUILD_BUG_ON(skb_ext_total_length() > 255); 5052 #endif 5053 5054 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 5055 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 5056 0, 5057 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5058 NULL); 5059 } 5060 #else 5061 static void skb_extensions_init(void) {} 5062 #endif 5063 5064 /* The SKB kmem_cache slab is critical for network performance. Never 5065 * merge/alias the slab with similar sized objects. This avoids fragmentation 5066 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. 5067 */ 5068 #ifndef CONFIG_SLUB_TINY 5069 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE 5070 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ 5071 #define FLAG_SKB_NO_MERGE 0 5072 #endif 5073 5074 void __init skb_init(void) 5075 { 5076 net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 5077 sizeof(struct sk_buff), 5078 0, 5079 SLAB_HWCACHE_ALIGN|SLAB_PANIC| 5080 FLAG_SKB_NO_MERGE, 5081 offsetof(struct sk_buff, cb), 5082 sizeof_field(struct sk_buff, cb), 5083 NULL); 5084 net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 5085 sizeof(struct sk_buff_fclones), 5086 0, 5087 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5088 NULL); 5089 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 5090 * struct skb_shared_info is located at the end of skb->head, 5091 * and should not be copied to/from user. 5092 */ 5093 net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 5094 SKB_SMALL_HEAD_CACHE_SIZE, 5095 0, 5096 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 5097 0, 5098 SKB_SMALL_HEAD_HEADROOM, 5099 NULL); 5100 skb_extensions_init(); 5101 } 5102 5103 static int 5104 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 5105 unsigned int recursion_level) 5106 { 5107 int start = skb_headlen(skb); 5108 int i, copy = start - offset; 5109 struct sk_buff *frag_iter; 5110 int elt = 0; 5111 5112 if (unlikely(recursion_level >= 24)) 5113 return -EMSGSIZE; 5114 5115 if (copy > 0) { 5116 if (copy > len) 5117 copy = len; 5118 sg_set_buf(sg, skb->data + offset, copy); 5119 elt++; 5120 if ((len -= copy) == 0) 5121 return elt; 5122 offset += copy; 5123 } 5124 5125 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 5126 int end; 5127 5128 WARN_ON(start > offset + len); 5129 5130 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 5131 if ((copy = end - offset) > 0) { 5132 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 5133 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5134 return -EMSGSIZE; 5135 5136 if (copy > len) 5137 copy = len; 5138 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 5139 skb_frag_off(frag) + offset - start); 5140 elt++; 5141 if (!(len -= copy)) 5142 return elt; 5143 offset += copy; 5144 } 5145 start = end; 5146 } 5147 5148 skb_walk_frags(skb, frag_iter) { 5149 int end, ret; 5150 5151 WARN_ON(start > offset + len); 5152 5153 end = start + frag_iter->len; 5154 if ((copy = end - offset) > 0) { 5155 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5156 return -EMSGSIZE; 5157 5158 if (copy > len) 5159 copy = len; 5160 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 5161 copy, recursion_level + 1); 5162 if (unlikely(ret < 0)) 5163 return ret; 5164 elt += ret; 5165 if ((len -= copy) == 0) 5166 return elt; 5167 offset += copy; 5168 } 5169 start = end; 5170 } 5171 BUG_ON(len); 5172 return elt; 5173 } 5174 5175 /** 5176 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 5177 * @skb: Socket buffer containing the buffers to be mapped 5178 * @sg: The scatter-gather list to map into 5179 * @offset: The offset into the buffer's contents to start mapping 5180 * @len: Length of buffer space to be mapped 5181 * 5182 * Fill the specified scatter-gather list with mappings/pointers into a 5183 * region of the buffer space attached to a socket buffer. Returns either 5184 * the number of scatterlist items used, or -EMSGSIZE if the contents 5185 * could not fit. 5186 */ 5187 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 5188 { 5189 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 5190 5191 if (nsg <= 0) 5192 return nsg; 5193 5194 sg_mark_end(&sg[nsg - 1]); 5195 5196 return nsg; 5197 } 5198 EXPORT_SYMBOL_GPL(skb_to_sgvec); 5199 5200 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 5201 * sglist without mark the sg which contain last skb data as the end. 5202 * So the caller can mannipulate sg list as will when padding new data after 5203 * the first call without calling sg_unmark_end to expend sg list. 5204 * 5205 * Scenario to use skb_to_sgvec_nomark: 5206 * 1. sg_init_table 5207 * 2. skb_to_sgvec_nomark(payload1) 5208 * 3. skb_to_sgvec_nomark(payload2) 5209 * 5210 * This is equivalent to: 5211 * 1. sg_init_table 5212 * 2. skb_to_sgvec(payload1) 5213 * 3. sg_unmark_end 5214 * 4. skb_to_sgvec(payload2) 5215 * 5216 * When mapping multiple payload conditionally, skb_to_sgvec_nomark 5217 * is more preferable. 5218 */ 5219 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 5220 int offset, int len) 5221 { 5222 return __skb_to_sgvec(skb, sg, offset, len, 0); 5223 } 5224 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 5225 5226 5227 5228 /** 5229 * skb_cow_data - Check that a socket buffer's data buffers are writable 5230 * @skb: The socket buffer to check. 5231 * @tailbits: Amount of trailing space to be added 5232 * @trailer: Returned pointer to the skb where the @tailbits space begins 5233 * 5234 * Make sure that the data buffers attached to a socket buffer are 5235 * writable. If they are not, private copies are made of the data buffers 5236 * and the socket buffer is set to use these instead. 5237 * 5238 * If @tailbits is given, make sure that there is space to write @tailbits 5239 * bytes of data beyond current end of socket buffer. @trailer will be 5240 * set to point to the skb in which this space begins. 5241 * 5242 * The number of scatterlist elements required to completely map the 5243 * COW'd and extended socket buffer will be returned. 5244 */ 5245 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 5246 { 5247 int copyflag; 5248 int elt; 5249 struct sk_buff *skb1, **skb_p; 5250 5251 /* If skb is cloned or its head is paged, reallocate 5252 * head pulling out all the pages (pages are considered not writable 5253 * at the moment even if they are anonymous). 5254 */ 5255 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 5256 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 5257 return -ENOMEM; 5258 5259 /* Easy case. Most of packets will go this way. */ 5260 if (!skb_has_frag_list(skb)) { 5261 /* A little of trouble, not enough of space for trailer. 5262 * This should not happen, when stack is tuned to generate 5263 * good frames. OK, on miss we reallocate and reserve even more 5264 * space, 128 bytes is fair. */ 5265 5266 if (skb_tailroom(skb) < tailbits && 5267 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 5268 return -ENOMEM; 5269 5270 /* Voila! */ 5271 *trailer = skb; 5272 return 1; 5273 } 5274 5275 /* Misery. We are in troubles, going to mincer fragments... */ 5276 5277 elt = 1; 5278 skb_p = &skb_shinfo(skb)->frag_list; 5279 copyflag = 0; 5280 5281 while ((skb1 = *skb_p) != NULL) { 5282 int ntail = 0; 5283 5284 /* The fragment is partially pulled by someone, 5285 * this can happen on input. Copy it and everything 5286 * after it. */ 5287 5288 if (skb_shared(skb1)) 5289 copyflag = 1; 5290 5291 /* If the skb is the last, worry about trailer. */ 5292 5293 if (skb1->next == NULL && tailbits) { 5294 if (skb_shinfo(skb1)->nr_frags || 5295 skb_has_frag_list(skb1) || 5296 skb_tailroom(skb1) < tailbits) 5297 ntail = tailbits + 128; 5298 } 5299 5300 if (copyflag || 5301 skb_cloned(skb1) || 5302 ntail || 5303 skb_shinfo(skb1)->nr_frags || 5304 skb_has_frag_list(skb1)) { 5305 struct sk_buff *skb2; 5306 5307 /* Fuck, we are miserable poor guys... */ 5308 if (ntail == 0) 5309 skb2 = skb_copy(skb1, GFP_ATOMIC); 5310 else 5311 skb2 = skb_copy_expand(skb1, 5312 skb_headroom(skb1), 5313 ntail, 5314 GFP_ATOMIC); 5315 if (unlikely(skb2 == NULL)) 5316 return -ENOMEM; 5317 5318 if (skb1->sk) 5319 skb_set_owner_w(skb2, skb1->sk); 5320 5321 /* Looking around. Are we still alive? 5322 * OK, link new skb, drop old one */ 5323 5324 skb2->next = skb1->next; 5325 *skb_p = skb2; 5326 kfree_skb(skb1); 5327 skb1 = skb2; 5328 } 5329 elt++; 5330 *trailer = skb1; 5331 skb_p = &skb1->next; 5332 } 5333 5334 return elt; 5335 } 5336 EXPORT_SYMBOL_GPL(skb_cow_data); 5337 5338 static void sock_rmem_free(struct sk_buff *skb) 5339 { 5340 struct sock *sk = skb->sk; 5341 5342 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5343 } 5344 5345 static void skb_set_err_queue(struct sk_buff *skb) 5346 { 5347 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5348 * So, it is safe to (mis)use it to mark skbs on the error queue. 5349 */ 5350 skb->pkt_type = PACKET_OUTGOING; 5351 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5352 } 5353 5354 /* 5355 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5356 */ 5357 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5358 { 5359 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5360 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5361 return -ENOMEM; 5362 5363 skb_orphan(skb); 5364 skb->sk = sk; 5365 skb->destructor = sock_rmem_free; 5366 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5367 skb_set_err_queue(skb); 5368 5369 /* before exiting rcu section, make sure dst is refcounted */ 5370 skb_dst_force(skb); 5371 5372 skb_queue_tail(&sk->sk_error_queue, skb); 5373 if (!sock_flag(sk, SOCK_DEAD)) 5374 sk_error_report(sk); 5375 return 0; 5376 } 5377 EXPORT_SYMBOL(sock_queue_err_skb); 5378 5379 static bool is_icmp_err_skb(const struct sk_buff *skb) 5380 { 5381 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5382 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5383 } 5384 5385 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5386 { 5387 struct sk_buff_head *q = &sk->sk_error_queue; 5388 struct sk_buff *skb, *skb_next = NULL; 5389 bool icmp_next = false; 5390 unsigned long flags; 5391 5392 if (skb_queue_empty_lockless(q)) 5393 return NULL; 5394 5395 spin_lock_irqsave(&q->lock, flags); 5396 skb = __skb_dequeue(q); 5397 if (skb && (skb_next = skb_peek(q))) { 5398 icmp_next = is_icmp_err_skb(skb_next); 5399 if (icmp_next) 5400 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5401 } 5402 spin_unlock_irqrestore(&q->lock, flags); 5403 5404 if (is_icmp_err_skb(skb) && !icmp_next) 5405 sk->sk_err = 0; 5406 5407 if (skb_next) 5408 sk_error_report(sk); 5409 5410 return skb; 5411 } 5412 EXPORT_SYMBOL(sock_dequeue_err_skb); 5413 5414 /** 5415 * skb_clone_sk - create clone of skb, and take reference to socket 5416 * @skb: the skb to clone 5417 * 5418 * This function creates a clone of a buffer that holds a reference on 5419 * sk_refcnt. Buffers created via this function are meant to be 5420 * returned using sock_queue_err_skb, or free via kfree_skb. 5421 * 5422 * When passing buffers allocated with this function to sock_queue_err_skb 5423 * it is necessary to wrap the call with sock_hold/sock_put in order to 5424 * prevent the socket from being released prior to being enqueued on 5425 * the sk_error_queue. 5426 */ 5427 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5428 { 5429 struct sock *sk = skb->sk; 5430 struct sk_buff *clone; 5431 5432 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5433 return NULL; 5434 5435 clone = skb_clone(skb, GFP_ATOMIC); 5436 if (!clone) { 5437 sock_put(sk); 5438 return NULL; 5439 } 5440 5441 clone->sk = sk; 5442 clone->destructor = sock_efree; 5443 5444 return clone; 5445 } 5446 EXPORT_SYMBOL(skb_clone_sk); 5447 5448 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5449 struct sock *sk, 5450 int tstype, 5451 bool opt_stats) 5452 { 5453 struct sock_exterr_skb *serr; 5454 int err; 5455 5456 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5457 5458 serr = SKB_EXT_ERR(skb); 5459 memset(serr, 0, sizeof(*serr)); 5460 serr->ee.ee_errno = ENOMSG; 5461 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5462 serr->ee.ee_info = tstype; 5463 serr->opt_stats = opt_stats; 5464 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5465 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 5466 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5467 if (sk_is_tcp(sk)) 5468 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5469 } 5470 5471 err = sock_queue_err_skb(sk, skb); 5472 5473 if (err) 5474 kfree_skb(skb); 5475 } 5476 5477 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5478 { 5479 bool ret; 5480 5481 if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data))) 5482 return true; 5483 5484 read_lock_bh(&sk->sk_callback_lock); 5485 ret = sk->sk_socket && sk->sk_socket->file && 5486 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5487 read_unlock_bh(&sk->sk_callback_lock); 5488 return ret; 5489 } 5490 5491 void skb_complete_tx_timestamp(struct sk_buff *skb, 5492 struct skb_shared_hwtstamps *hwtstamps) 5493 { 5494 struct sock *sk = skb->sk; 5495 5496 if (!skb_may_tx_timestamp(sk, false)) 5497 goto err; 5498 5499 /* Take a reference to prevent skb_orphan() from freeing the socket, 5500 * but only if the socket refcount is not zero. 5501 */ 5502 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5503 *skb_hwtstamps(skb) = *hwtstamps; 5504 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5505 sock_put(sk); 5506 return; 5507 } 5508 5509 err: 5510 kfree_skb(skb); 5511 } 5512 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5513 5514 static bool skb_tstamp_tx_report_so_timestamping(struct sk_buff *skb, 5515 struct skb_shared_hwtstamps *hwtstamps, 5516 int tstype) 5517 { 5518 switch (tstype) { 5519 case SCM_TSTAMP_SCHED: 5520 return skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP; 5521 case SCM_TSTAMP_SND: 5522 return skb_shinfo(skb)->tx_flags & (hwtstamps ? SKBTX_HW_TSTAMP_NOBPF : 5523 SKBTX_SW_TSTAMP); 5524 case SCM_TSTAMP_ACK: 5525 return TCP_SKB_CB(skb)->txstamp_ack & TSTAMP_ACK_SK; 5526 case SCM_TSTAMP_COMPLETION: 5527 return skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP; 5528 } 5529 5530 return false; 5531 } 5532 5533 static void skb_tstamp_tx_report_bpf_timestamping(struct sk_buff *skb, 5534 struct skb_shared_hwtstamps *hwtstamps, 5535 struct sock *sk, 5536 int tstype) 5537 { 5538 int op; 5539 5540 switch (tstype) { 5541 case SCM_TSTAMP_SCHED: 5542 op = BPF_SOCK_OPS_TSTAMP_SCHED_CB; 5543 break; 5544 case SCM_TSTAMP_SND: 5545 if (hwtstamps) { 5546 op = BPF_SOCK_OPS_TSTAMP_SND_HW_CB; 5547 *skb_hwtstamps(skb) = *hwtstamps; 5548 } else { 5549 op = BPF_SOCK_OPS_TSTAMP_SND_SW_CB; 5550 } 5551 break; 5552 case SCM_TSTAMP_ACK: 5553 op = BPF_SOCK_OPS_TSTAMP_ACK_CB; 5554 break; 5555 default: 5556 return; 5557 } 5558 5559 bpf_skops_tx_timestamping(sk, skb, op); 5560 } 5561 5562 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5563 const struct sk_buff *ack_skb, 5564 struct skb_shared_hwtstamps *hwtstamps, 5565 struct sock *sk, int tstype) 5566 { 5567 struct sk_buff *skb; 5568 bool tsonly, opt_stats = false; 5569 u32 tsflags; 5570 5571 if (!sk) 5572 return; 5573 5574 if (skb_shinfo(orig_skb)->tx_flags & SKBTX_BPF) 5575 skb_tstamp_tx_report_bpf_timestamping(orig_skb, hwtstamps, 5576 sk, tstype); 5577 5578 if (!skb_tstamp_tx_report_so_timestamping(orig_skb, hwtstamps, tstype)) 5579 return; 5580 5581 tsflags = READ_ONCE(sk->sk_tsflags); 5582 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5583 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5584 return; 5585 5586 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5587 if (!skb_may_tx_timestamp(sk, tsonly)) 5588 return; 5589 5590 if (tsonly) { 5591 #ifdef CONFIG_INET 5592 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5593 sk_is_tcp(sk)) { 5594 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5595 ack_skb); 5596 opt_stats = true; 5597 } else 5598 #endif 5599 skb = alloc_skb(0, GFP_ATOMIC); 5600 } else { 5601 skb = skb_clone(orig_skb, GFP_ATOMIC); 5602 5603 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5604 kfree_skb(skb); 5605 return; 5606 } 5607 } 5608 if (!skb) 5609 return; 5610 5611 if (tsonly) { 5612 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5613 SKBTX_ANY_TSTAMP; 5614 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5615 } 5616 5617 if (hwtstamps) 5618 *skb_hwtstamps(skb) = *hwtstamps; 5619 else 5620 __net_timestamp(skb); 5621 5622 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5623 } 5624 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5625 5626 void skb_tstamp_tx(struct sk_buff *orig_skb, 5627 struct skb_shared_hwtstamps *hwtstamps) 5628 { 5629 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5630 SCM_TSTAMP_SND); 5631 } 5632 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5633 5634 #ifdef CONFIG_WIRELESS 5635 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5636 { 5637 struct sock *sk = skb->sk; 5638 struct sock_exterr_skb *serr; 5639 int err = 1; 5640 5641 skb->wifi_acked_valid = 1; 5642 skb->wifi_acked = acked; 5643 5644 serr = SKB_EXT_ERR(skb); 5645 memset(serr, 0, sizeof(*serr)); 5646 serr->ee.ee_errno = ENOMSG; 5647 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5648 5649 /* Take a reference to prevent skb_orphan() from freeing the socket, 5650 * but only if the socket refcount is not zero. 5651 */ 5652 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5653 err = sock_queue_err_skb(sk, skb); 5654 sock_put(sk); 5655 } 5656 if (err) 5657 kfree_skb(skb); 5658 } 5659 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5660 #endif /* CONFIG_WIRELESS */ 5661 5662 /** 5663 * skb_partial_csum_set - set up and verify partial csum values for packet 5664 * @skb: the skb to set 5665 * @start: the number of bytes after skb->data to start checksumming. 5666 * @off: the offset from start to place the checksum. 5667 * 5668 * For untrusted partially-checksummed packets, we need to make sure the values 5669 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5670 * 5671 * This function checks and sets those values and skb->ip_summed: if this 5672 * returns false you should drop the packet. 5673 */ 5674 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5675 { 5676 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5677 u32 csum_start = skb_headroom(skb) + (u32)start; 5678 5679 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5680 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5681 start, off, skb_headroom(skb), skb_headlen(skb)); 5682 return false; 5683 } 5684 skb->ip_summed = CHECKSUM_PARTIAL; 5685 skb->csum_start = csum_start; 5686 skb->csum_offset = off; 5687 skb->transport_header = csum_start; 5688 return true; 5689 } 5690 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5691 5692 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5693 unsigned int max) 5694 { 5695 if (skb_headlen(skb) >= len) 5696 return 0; 5697 5698 /* If we need to pullup then pullup to the max, so we 5699 * won't need to do it again. 5700 */ 5701 if (max > skb->len) 5702 max = skb->len; 5703 5704 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5705 return -ENOMEM; 5706 5707 if (skb_headlen(skb) < len) 5708 return -EPROTO; 5709 5710 return 0; 5711 } 5712 5713 #define MAX_TCP_HDR_LEN (15 * 4) 5714 5715 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5716 typeof(IPPROTO_IP) proto, 5717 unsigned int off) 5718 { 5719 int err; 5720 5721 switch (proto) { 5722 case IPPROTO_TCP: 5723 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5724 off + MAX_TCP_HDR_LEN); 5725 if (!err && !skb_partial_csum_set(skb, off, 5726 offsetof(struct tcphdr, 5727 check))) 5728 err = -EPROTO; 5729 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5730 5731 case IPPROTO_UDP: 5732 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5733 off + sizeof(struct udphdr)); 5734 if (!err && !skb_partial_csum_set(skb, off, 5735 offsetof(struct udphdr, 5736 check))) 5737 err = -EPROTO; 5738 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5739 } 5740 5741 return ERR_PTR(-EPROTO); 5742 } 5743 5744 /* This value should be large enough to cover a tagged ethernet header plus 5745 * maximally sized IP and TCP or UDP headers. 5746 */ 5747 #define MAX_IP_HDR_LEN 128 5748 5749 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5750 { 5751 unsigned int off; 5752 bool fragment; 5753 __sum16 *csum; 5754 int err; 5755 5756 fragment = false; 5757 5758 err = skb_maybe_pull_tail(skb, 5759 sizeof(struct iphdr), 5760 MAX_IP_HDR_LEN); 5761 if (err < 0) 5762 goto out; 5763 5764 if (ip_is_fragment(ip_hdr(skb))) 5765 fragment = true; 5766 5767 off = ip_hdrlen(skb); 5768 5769 err = -EPROTO; 5770 5771 if (fragment) 5772 goto out; 5773 5774 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5775 if (IS_ERR(csum)) 5776 return PTR_ERR(csum); 5777 5778 if (recalculate) 5779 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5780 ip_hdr(skb)->daddr, 5781 skb->len - off, 5782 ip_hdr(skb)->protocol, 0); 5783 err = 0; 5784 5785 out: 5786 return err; 5787 } 5788 5789 /* This value should be large enough to cover a tagged ethernet header plus 5790 * an IPv6 header, all options, and a maximal TCP or UDP header. 5791 */ 5792 #define MAX_IPV6_HDR_LEN 256 5793 5794 #define OPT_HDR(type, skb, off) \ 5795 (type *)(skb_network_header(skb) + (off)) 5796 5797 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5798 { 5799 int err; 5800 u8 nexthdr; 5801 unsigned int off; 5802 unsigned int len; 5803 bool fragment; 5804 bool done; 5805 __sum16 *csum; 5806 5807 fragment = false; 5808 done = false; 5809 5810 off = sizeof(struct ipv6hdr); 5811 5812 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5813 if (err < 0) 5814 goto out; 5815 5816 nexthdr = ipv6_hdr(skb)->nexthdr; 5817 5818 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5819 while (off <= len && !done) { 5820 switch (nexthdr) { 5821 case IPPROTO_DSTOPTS: 5822 case IPPROTO_HOPOPTS: 5823 case IPPROTO_ROUTING: { 5824 struct ipv6_opt_hdr *hp; 5825 5826 err = skb_maybe_pull_tail(skb, 5827 off + 5828 sizeof(struct ipv6_opt_hdr), 5829 MAX_IPV6_HDR_LEN); 5830 if (err < 0) 5831 goto out; 5832 5833 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5834 nexthdr = hp->nexthdr; 5835 off += ipv6_optlen(hp); 5836 break; 5837 } 5838 case IPPROTO_AH: { 5839 struct ip_auth_hdr *hp; 5840 5841 err = skb_maybe_pull_tail(skb, 5842 off + 5843 sizeof(struct ip_auth_hdr), 5844 MAX_IPV6_HDR_LEN); 5845 if (err < 0) 5846 goto out; 5847 5848 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5849 nexthdr = hp->nexthdr; 5850 off += ipv6_authlen(hp); 5851 break; 5852 } 5853 case IPPROTO_FRAGMENT: { 5854 struct frag_hdr *hp; 5855 5856 err = skb_maybe_pull_tail(skb, 5857 off + 5858 sizeof(struct frag_hdr), 5859 MAX_IPV6_HDR_LEN); 5860 if (err < 0) 5861 goto out; 5862 5863 hp = OPT_HDR(struct frag_hdr, skb, off); 5864 5865 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5866 fragment = true; 5867 5868 nexthdr = hp->nexthdr; 5869 off += sizeof(struct frag_hdr); 5870 break; 5871 } 5872 default: 5873 done = true; 5874 break; 5875 } 5876 } 5877 5878 err = -EPROTO; 5879 5880 if (!done || fragment) 5881 goto out; 5882 5883 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5884 if (IS_ERR(csum)) 5885 return PTR_ERR(csum); 5886 5887 if (recalculate) 5888 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5889 &ipv6_hdr(skb)->daddr, 5890 skb->len - off, nexthdr, 0); 5891 err = 0; 5892 5893 out: 5894 return err; 5895 } 5896 5897 /** 5898 * skb_checksum_setup - set up partial checksum offset 5899 * @skb: the skb to set up 5900 * @recalculate: if true the pseudo-header checksum will be recalculated 5901 */ 5902 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5903 { 5904 int err; 5905 5906 switch (skb->protocol) { 5907 case htons(ETH_P_IP): 5908 err = skb_checksum_setup_ipv4(skb, recalculate); 5909 break; 5910 5911 case htons(ETH_P_IPV6): 5912 err = skb_checksum_setup_ipv6(skb, recalculate); 5913 break; 5914 5915 default: 5916 err = -EPROTO; 5917 break; 5918 } 5919 5920 return err; 5921 } 5922 EXPORT_SYMBOL(skb_checksum_setup); 5923 5924 /** 5925 * skb_checksum_maybe_trim - maybe trims the given skb 5926 * @skb: the skb to check 5927 * @transport_len: the data length beyond the network header 5928 * 5929 * Checks whether the given skb has data beyond the given transport length. 5930 * If so, returns a cloned skb trimmed to this transport length. 5931 * Otherwise returns the provided skb. Returns NULL in error cases 5932 * (e.g. transport_len exceeds skb length or out-of-memory). 5933 * 5934 * Caller needs to set the skb transport header and free any returned skb if it 5935 * differs from the provided skb. 5936 */ 5937 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5938 unsigned int transport_len) 5939 { 5940 struct sk_buff *skb_chk; 5941 unsigned int len = skb_transport_offset(skb) + transport_len; 5942 int ret; 5943 5944 if (skb->len < len) 5945 return NULL; 5946 else if (skb->len == len) 5947 return skb; 5948 5949 skb_chk = skb_clone(skb, GFP_ATOMIC); 5950 if (!skb_chk) 5951 return NULL; 5952 5953 ret = pskb_trim_rcsum(skb_chk, len); 5954 if (ret) { 5955 kfree_skb(skb_chk); 5956 return NULL; 5957 } 5958 5959 return skb_chk; 5960 } 5961 5962 /** 5963 * skb_checksum_trimmed - validate checksum of an skb 5964 * @skb: the skb to check 5965 * @transport_len: the data length beyond the network header 5966 * @skb_chkf: checksum function to use 5967 * 5968 * Applies the given checksum function skb_chkf to the provided skb. 5969 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5970 * 5971 * If the skb has data beyond the given transport length, then a 5972 * trimmed & cloned skb is checked and returned. 5973 * 5974 * Caller needs to set the skb transport header and free any returned skb if it 5975 * differs from the provided skb. 5976 */ 5977 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5978 unsigned int transport_len, 5979 __sum16(*skb_chkf)(struct sk_buff *skb)) 5980 { 5981 struct sk_buff *skb_chk; 5982 unsigned int offset = skb_transport_offset(skb); 5983 __sum16 ret; 5984 5985 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5986 if (!skb_chk) 5987 goto err; 5988 5989 if (!pskb_may_pull(skb_chk, offset)) 5990 goto err; 5991 5992 skb_pull_rcsum(skb_chk, offset); 5993 ret = skb_chkf(skb_chk); 5994 skb_push_rcsum(skb_chk, offset); 5995 5996 if (ret) 5997 goto err; 5998 5999 return skb_chk; 6000 6001 err: 6002 if (skb_chk && skb_chk != skb) 6003 kfree_skb(skb_chk); 6004 6005 return NULL; 6006 6007 } 6008 EXPORT_SYMBOL(skb_checksum_trimmed); 6009 6010 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 6011 { 6012 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 6013 skb->dev->name); 6014 } 6015 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 6016 6017 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 6018 { 6019 if (head_stolen) { 6020 skb_release_head_state(skb); 6021 kmem_cache_free(net_hotdata.skbuff_cache, skb); 6022 } else { 6023 __kfree_skb(skb); 6024 } 6025 } 6026 EXPORT_SYMBOL(kfree_skb_partial); 6027 6028 /** 6029 * skb_try_coalesce - try to merge skb to prior one 6030 * @to: prior buffer 6031 * @from: buffer to add 6032 * @fragstolen: pointer to boolean 6033 * @delta_truesize: how much more was allocated than was requested 6034 */ 6035 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 6036 bool *fragstolen, int *delta_truesize) 6037 { 6038 struct skb_shared_info *to_shinfo, *from_shinfo; 6039 int i, delta, len = from->len; 6040 6041 *fragstolen = false; 6042 6043 if (skb_cloned(to)) 6044 return false; 6045 6046 /* In general, avoid mixing page_pool and non-page_pool allocated 6047 * pages within the same SKB. In theory we could take full 6048 * references if @from is cloned and !@to->pp_recycle but its 6049 * tricky (due to potential race with the clone disappearing) and 6050 * rare, so not worth dealing with. 6051 */ 6052 if (to->pp_recycle != from->pp_recycle) 6053 return false; 6054 6055 if (skb_frags_readable(from) != skb_frags_readable(to)) 6056 return false; 6057 6058 if (len <= skb_tailroom(to) && skb_frags_readable(from)) { 6059 if (len) 6060 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 6061 *delta_truesize = 0; 6062 return true; 6063 } 6064 6065 to_shinfo = skb_shinfo(to); 6066 from_shinfo = skb_shinfo(from); 6067 if (to_shinfo->frag_list || from_shinfo->frag_list) 6068 return false; 6069 if (skb_zcopy(to) || skb_zcopy(from)) 6070 return false; 6071 6072 if (skb_headlen(from) != 0) { 6073 struct page *page; 6074 unsigned int offset; 6075 6076 if (to_shinfo->nr_frags + 6077 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 6078 return false; 6079 6080 if (skb_head_is_locked(from)) 6081 return false; 6082 6083 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 6084 6085 page = virt_to_head_page(from->head); 6086 offset = from->data - (unsigned char *)page_address(page); 6087 6088 skb_fill_page_desc(to, to_shinfo->nr_frags, 6089 page, offset, skb_headlen(from)); 6090 *fragstolen = true; 6091 } else { 6092 if (to_shinfo->nr_frags + 6093 from_shinfo->nr_frags > MAX_SKB_FRAGS) 6094 return false; 6095 6096 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 6097 } 6098 6099 WARN_ON_ONCE(delta < len); 6100 6101 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 6102 from_shinfo->frags, 6103 from_shinfo->nr_frags * sizeof(skb_frag_t)); 6104 to_shinfo->nr_frags += from_shinfo->nr_frags; 6105 6106 if (!skb_cloned(from)) 6107 from_shinfo->nr_frags = 0; 6108 6109 /* if the skb is not cloned this does nothing 6110 * since we set nr_frags to 0. 6111 */ 6112 if (skb_pp_frag_ref(from)) { 6113 for (i = 0; i < from_shinfo->nr_frags; i++) 6114 __skb_frag_ref(&from_shinfo->frags[i]); 6115 } 6116 6117 to->truesize += delta; 6118 to->len += len; 6119 to->data_len += len; 6120 6121 *delta_truesize = delta; 6122 return true; 6123 } 6124 EXPORT_SYMBOL(skb_try_coalesce); 6125 6126 /** 6127 * skb_scrub_packet - scrub an skb 6128 * 6129 * @skb: buffer to clean 6130 * @xnet: packet is crossing netns 6131 * 6132 * skb_scrub_packet can be used after encapsulating or decapsulating a packet 6133 * into/from a tunnel. Some information have to be cleared during these 6134 * operations. 6135 * skb_scrub_packet can also be used to clean a skb before injecting it in 6136 * another namespace (@xnet == true). We have to clear all information in the 6137 * skb that could impact namespace isolation. 6138 */ 6139 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 6140 { 6141 skb->pkt_type = PACKET_HOST; 6142 skb->skb_iif = 0; 6143 skb->ignore_df = 0; 6144 skb_dst_drop(skb); 6145 skb_ext_reset(skb); 6146 nf_reset_ct(skb); 6147 nf_reset_trace(skb); 6148 6149 #ifdef CONFIG_NET_SWITCHDEV 6150 skb->offload_fwd_mark = 0; 6151 skb->offload_l3_fwd_mark = 0; 6152 #endif 6153 ipvs_reset(skb); 6154 6155 if (!xnet) 6156 return; 6157 6158 skb->mark = 0; 6159 skb_clear_tstamp(skb); 6160 } 6161 EXPORT_SYMBOL_GPL(skb_scrub_packet); 6162 6163 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 6164 { 6165 int mac_len, meta_len; 6166 void *meta; 6167 6168 if (skb_cow(skb, skb_headroom(skb)) < 0) { 6169 kfree_skb(skb); 6170 return NULL; 6171 } 6172 6173 mac_len = skb->data - skb_mac_header(skb); 6174 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 6175 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 6176 mac_len - VLAN_HLEN - ETH_TLEN); 6177 } 6178 6179 meta_len = skb_metadata_len(skb); 6180 if (meta_len) { 6181 meta = skb_metadata_end(skb) - meta_len; 6182 memmove(meta + VLAN_HLEN, meta, meta_len); 6183 } 6184 6185 skb->mac_header += VLAN_HLEN; 6186 return skb; 6187 } 6188 6189 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 6190 { 6191 struct vlan_hdr *vhdr; 6192 u16 vlan_tci; 6193 6194 if (unlikely(skb_vlan_tag_present(skb))) { 6195 /* vlan_tci is already set-up so leave this for another time */ 6196 return skb; 6197 } 6198 6199 skb = skb_share_check(skb, GFP_ATOMIC); 6200 if (unlikely(!skb)) 6201 goto err_free; 6202 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 6203 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 6204 goto err_free; 6205 6206 vhdr = (struct vlan_hdr *)skb->data; 6207 vlan_tci = ntohs(vhdr->h_vlan_TCI); 6208 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 6209 6210 skb_pull_rcsum(skb, VLAN_HLEN); 6211 vlan_set_encap_proto(skb, vhdr); 6212 6213 skb = skb_reorder_vlan_header(skb); 6214 if (unlikely(!skb)) 6215 goto err_free; 6216 6217 skb_reset_network_header(skb); 6218 if (!skb_transport_header_was_set(skb)) 6219 skb_reset_transport_header(skb); 6220 skb_reset_mac_len(skb); 6221 6222 return skb; 6223 6224 err_free: 6225 kfree_skb(skb); 6226 return NULL; 6227 } 6228 EXPORT_SYMBOL(skb_vlan_untag); 6229 6230 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 6231 { 6232 if (!pskb_may_pull(skb, write_len)) 6233 return -ENOMEM; 6234 6235 if (!skb_frags_readable(skb)) 6236 return -EFAULT; 6237 6238 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 6239 return 0; 6240 6241 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 6242 } 6243 EXPORT_SYMBOL(skb_ensure_writable); 6244 6245 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev) 6246 { 6247 int needed_headroom = dev->needed_headroom; 6248 int needed_tailroom = dev->needed_tailroom; 6249 6250 /* For tail taggers, we need to pad short frames ourselves, to ensure 6251 * that the tail tag does not fail at its role of being at the end of 6252 * the packet, once the conduit interface pads the frame. Account for 6253 * that pad length here, and pad later. 6254 */ 6255 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN)) 6256 needed_tailroom += ETH_ZLEN - skb->len; 6257 /* skb_headroom() returns unsigned int... */ 6258 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0); 6259 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0); 6260 6261 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb))) 6262 /* No reallocation needed, yay! */ 6263 return 0; 6264 6265 return pskb_expand_head(skb, needed_headroom, needed_tailroom, 6266 GFP_ATOMIC); 6267 } 6268 EXPORT_SYMBOL(skb_ensure_writable_head_tail); 6269 6270 /* remove VLAN header from packet and update csum accordingly. 6271 * expects a non skb_vlan_tag_present skb with a vlan tag payload 6272 */ 6273 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 6274 { 6275 int offset = skb->data - skb_mac_header(skb); 6276 int err; 6277 6278 if (WARN_ONCE(offset, 6279 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 6280 offset)) { 6281 return -EINVAL; 6282 } 6283 6284 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 6285 if (unlikely(err)) 6286 return err; 6287 6288 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6289 6290 vlan_remove_tag(skb, vlan_tci); 6291 6292 skb->mac_header += VLAN_HLEN; 6293 6294 if (skb_network_offset(skb) < ETH_HLEN) 6295 skb_set_network_header(skb, ETH_HLEN); 6296 6297 skb_reset_mac_len(skb); 6298 6299 return err; 6300 } 6301 EXPORT_SYMBOL(__skb_vlan_pop); 6302 6303 /* Pop a vlan tag either from hwaccel or from payload. 6304 * Expects skb->data at mac header. 6305 */ 6306 int skb_vlan_pop(struct sk_buff *skb) 6307 { 6308 u16 vlan_tci; 6309 __be16 vlan_proto; 6310 int err; 6311 6312 if (likely(skb_vlan_tag_present(skb))) { 6313 __vlan_hwaccel_clear_tag(skb); 6314 } else { 6315 if (unlikely(!eth_type_vlan(skb->protocol))) 6316 return 0; 6317 6318 err = __skb_vlan_pop(skb, &vlan_tci); 6319 if (err) 6320 return err; 6321 } 6322 /* move next vlan tag to hw accel tag */ 6323 if (likely(!eth_type_vlan(skb->protocol))) 6324 return 0; 6325 6326 vlan_proto = skb->protocol; 6327 err = __skb_vlan_pop(skb, &vlan_tci); 6328 if (unlikely(err)) 6329 return err; 6330 6331 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6332 return 0; 6333 } 6334 EXPORT_SYMBOL(skb_vlan_pop); 6335 6336 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 6337 * Expects skb->data at mac header. 6338 */ 6339 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6340 { 6341 if (skb_vlan_tag_present(skb)) { 6342 int offset = skb->data - skb_mac_header(skb); 6343 int err; 6344 6345 if (WARN_ONCE(offset, 6346 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6347 offset)) { 6348 return -EINVAL; 6349 } 6350 6351 err = __vlan_insert_tag(skb, skb->vlan_proto, 6352 skb_vlan_tag_get(skb)); 6353 if (err) 6354 return err; 6355 6356 skb->protocol = skb->vlan_proto; 6357 skb->network_header -= VLAN_HLEN; 6358 6359 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6360 } 6361 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6362 return 0; 6363 } 6364 EXPORT_SYMBOL(skb_vlan_push); 6365 6366 /** 6367 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6368 * 6369 * @skb: Socket buffer to modify 6370 * 6371 * Drop the Ethernet header of @skb. 6372 * 6373 * Expects that skb->data points to the mac header and that no VLAN tags are 6374 * present. 6375 * 6376 * Returns 0 on success, -errno otherwise. 6377 */ 6378 int skb_eth_pop(struct sk_buff *skb) 6379 { 6380 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6381 skb_network_offset(skb) < ETH_HLEN) 6382 return -EPROTO; 6383 6384 skb_pull_rcsum(skb, ETH_HLEN); 6385 skb_reset_mac_header(skb); 6386 skb_reset_mac_len(skb); 6387 6388 return 0; 6389 } 6390 EXPORT_SYMBOL(skb_eth_pop); 6391 6392 /** 6393 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6394 * 6395 * @skb: Socket buffer to modify 6396 * @dst: Destination MAC address of the new header 6397 * @src: Source MAC address of the new header 6398 * 6399 * Prepend @skb with a new Ethernet header. 6400 * 6401 * Expects that skb->data points to the mac header, which must be empty. 6402 * 6403 * Returns 0 on success, -errno otherwise. 6404 */ 6405 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6406 const unsigned char *src) 6407 { 6408 struct ethhdr *eth; 6409 int err; 6410 6411 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6412 return -EPROTO; 6413 6414 err = skb_cow_head(skb, sizeof(*eth)); 6415 if (err < 0) 6416 return err; 6417 6418 skb_push(skb, sizeof(*eth)); 6419 skb_reset_mac_header(skb); 6420 skb_reset_mac_len(skb); 6421 6422 eth = eth_hdr(skb); 6423 ether_addr_copy(eth->h_dest, dst); 6424 ether_addr_copy(eth->h_source, src); 6425 eth->h_proto = skb->protocol; 6426 6427 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6428 6429 return 0; 6430 } 6431 EXPORT_SYMBOL(skb_eth_push); 6432 6433 /* Update the ethertype of hdr and the skb csum value if required. */ 6434 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6435 __be16 ethertype) 6436 { 6437 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6438 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6439 6440 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6441 } 6442 6443 hdr->h_proto = ethertype; 6444 } 6445 6446 /** 6447 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6448 * the packet 6449 * 6450 * @skb: buffer 6451 * @mpls_lse: MPLS label stack entry to push 6452 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6453 * @mac_len: length of the MAC header 6454 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6455 * ethernet 6456 * 6457 * Expects skb->data at mac header. 6458 * 6459 * Returns 0 on success, -errno otherwise. 6460 */ 6461 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6462 int mac_len, bool ethernet) 6463 { 6464 struct mpls_shim_hdr *lse; 6465 int err; 6466 6467 if (unlikely(!eth_p_mpls(mpls_proto))) 6468 return -EINVAL; 6469 6470 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6471 if (skb->encapsulation) 6472 return -EINVAL; 6473 6474 err = skb_cow_head(skb, MPLS_HLEN); 6475 if (unlikely(err)) 6476 return err; 6477 6478 if (!skb->inner_protocol) { 6479 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6480 skb_set_inner_protocol(skb, skb->protocol); 6481 } 6482 6483 skb_push(skb, MPLS_HLEN); 6484 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6485 mac_len); 6486 skb_reset_mac_header(skb); 6487 skb_set_network_header(skb, mac_len); 6488 skb_reset_mac_len(skb); 6489 6490 lse = mpls_hdr(skb); 6491 lse->label_stack_entry = mpls_lse; 6492 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6493 6494 if (ethernet && mac_len >= ETH_HLEN) 6495 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6496 skb->protocol = mpls_proto; 6497 6498 return 0; 6499 } 6500 EXPORT_SYMBOL_GPL(skb_mpls_push); 6501 6502 /** 6503 * skb_mpls_pop() - pop the outermost MPLS header 6504 * 6505 * @skb: buffer 6506 * @next_proto: ethertype of header after popped MPLS header 6507 * @mac_len: length of the MAC header 6508 * @ethernet: flag to indicate if the packet is ethernet 6509 * 6510 * Expects skb->data at mac header. 6511 * 6512 * Returns 0 on success, -errno otherwise. 6513 */ 6514 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6515 bool ethernet) 6516 { 6517 int err; 6518 6519 if (unlikely(!eth_p_mpls(skb->protocol))) 6520 return 0; 6521 6522 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6523 if (unlikely(err)) 6524 return err; 6525 6526 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6527 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6528 mac_len); 6529 6530 __skb_pull(skb, MPLS_HLEN); 6531 skb_reset_mac_header(skb); 6532 skb_set_network_header(skb, mac_len); 6533 6534 if (ethernet && mac_len >= ETH_HLEN) { 6535 struct ethhdr *hdr; 6536 6537 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6538 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6539 skb_mod_eth_type(skb, hdr, next_proto); 6540 } 6541 skb->protocol = next_proto; 6542 6543 return 0; 6544 } 6545 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6546 6547 /** 6548 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6549 * 6550 * @skb: buffer 6551 * @mpls_lse: new MPLS label stack entry to update to 6552 * 6553 * Expects skb->data at mac header. 6554 * 6555 * Returns 0 on success, -errno otherwise. 6556 */ 6557 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6558 { 6559 int err; 6560 6561 if (unlikely(!eth_p_mpls(skb->protocol))) 6562 return -EINVAL; 6563 6564 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6565 if (unlikely(err)) 6566 return err; 6567 6568 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6569 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6570 6571 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6572 } 6573 6574 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6575 6576 return 0; 6577 } 6578 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6579 6580 /** 6581 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6582 * 6583 * @skb: buffer 6584 * 6585 * Expects skb->data at mac header. 6586 * 6587 * Returns 0 on success, -errno otherwise. 6588 */ 6589 int skb_mpls_dec_ttl(struct sk_buff *skb) 6590 { 6591 u32 lse; 6592 u8 ttl; 6593 6594 if (unlikely(!eth_p_mpls(skb->protocol))) 6595 return -EINVAL; 6596 6597 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6598 return -ENOMEM; 6599 6600 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6601 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6602 if (!--ttl) 6603 return -EINVAL; 6604 6605 lse &= ~MPLS_LS_TTL_MASK; 6606 lse |= ttl << MPLS_LS_TTL_SHIFT; 6607 6608 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6609 } 6610 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6611 6612 /** 6613 * alloc_skb_with_frags - allocate skb with page frags 6614 * 6615 * @header_len: size of linear part 6616 * @data_len: needed length in frags 6617 * @order: max page order desired. 6618 * @errcode: pointer to error code if any 6619 * @gfp_mask: allocation mask 6620 * 6621 * This can be used to allocate a paged skb, given a maximal order for frags. 6622 */ 6623 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6624 unsigned long data_len, 6625 int order, 6626 int *errcode, 6627 gfp_t gfp_mask) 6628 { 6629 unsigned long chunk; 6630 struct sk_buff *skb; 6631 struct page *page; 6632 int nr_frags = 0; 6633 6634 *errcode = -EMSGSIZE; 6635 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6636 return NULL; 6637 6638 *errcode = -ENOBUFS; 6639 skb = alloc_skb(header_len, gfp_mask); 6640 if (!skb) 6641 return NULL; 6642 6643 while (data_len) { 6644 if (nr_frags == MAX_SKB_FRAGS - 1) 6645 goto failure; 6646 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6647 order--; 6648 6649 if (order) { 6650 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6651 __GFP_COMP | 6652 __GFP_NOWARN, 6653 order); 6654 if (!page) { 6655 order--; 6656 continue; 6657 } 6658 } else { 6659 page = alloc_page(gfp_mask); 6660 if (!page) 6661 goto failure; 6662 } 6663 chunk = min_t(unsigned long, data_len, 6664 PAGE_SIZE << order); 6665 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6666 nr_frags++; 6667 skb->truesize += (PAGE_SIZE << order); 6668 data_len -= chunk; 6669 } 6670 return skb; 6671 6672 failure: 6673 kfree_skb(skb); 6674 return NULL; 6675 } 6676 EXPORT_SYMBOL(alloc_skb_with_frags); 6677 6678 /* carve out the first off bytes from skb when off < headlen */ 6679 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6680 const int headlen, gfp_t gfp_mask) 6681 { 6682 int i; 6683 unsigned int size = skb_end_offset(skb); 6684 int new_hlen = headlen - off; 6685 u8 *data; 6686 6687 if (skb_pfmemalloc(skb)) 6688 gfp_mask |= __GFP_MEMALLOC; 6689 6690 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6691 if (!data) 6692 return -ENOMEM; 6693 size = SKB_WITH_OVERHEAD(size); 6694 6695 /* Copy real data, and all frags */ 6696 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6697 skb->len -= off; 6698 6699 memcpy((struct skb_shared_info *)(data + size), 6700 skb_shinfo(skb), 6701 offsetof(struct skb_shared_info, 6702 frags[skb_shinfo(skb)->nr_frags])); 6703 if (skb_cloned(skb)) { 6704 /* drop the old head gracefully */ 6705 if (skb_orphan_frags(skb, gfp_mask)) { 6706 skb_kfree_head(data, size); 6707 return -ENOMEM; 6708 } 6709 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6710 skb_frag_ref(skb, i); 6711 if (skb_has_frag_list(skb)) 6712 skb_clone_fraglist(skb); 6713 skb_release_data(skb, SKB_CONSUMED); 6714 } else { 6715 /* we can reuse existing recount- all we did was 6716 * relocate values 6717 */ 6718 skb_free_head(skb); 6719 } 6720 6721 skb->head = data; 6722 skb->data = data; 6723 skb->head_frag = 0; 6724 skb_set_end_offset(skb, size); 6725 skb_set_tail_pointer(skb, skb_headlen(skb)); 6726 skb_headers_offset_update(skb, 0); 6727 skb->cloned = 0; 6728 skb->hdr_len = 0; 6729 skb->nohdr = 0; 6730 atomic_set(&skb_shinfo(skb)->dataref, 1); 6731 6732 return 0; 6733 } 6734 6735 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6736 6737 /* carve out the first eat bytes from skb's frag_list. May recurse into 6738 * pskb_carve() 6739 */ 6740 static int pskb_carve_frag_list(struct sk_buff *skb, 6741 struct skb_shared_info *shinfo, int eat, 6742 gfp_t gfp_mask) 6743 { 6744 struct sk_buff *list = shinfo->frag_list; 6745 struct sk_buff *clone = NULL; 6746 struct sk_buff *insp = NULL; 6747 6748 do { 6749 if (!list) { 6750 pr_err("Not enough bytes to eat. Want %d\n", eat); 6751 return -EFAULT; 6752 } 6753 if (list->len <= eat) { 6754 /* Eaten as whole. */ 6755 eat -= list->len; 6756 list = list->next; 6757 insp = list; 6758 } else { 6759 /* Eaten partially. */ 6760 if (skb_shared(list)) { 6761 clone = skb_clone(list, gfp_mask); 6762 if (!clone) 6763 return -ENOMEM; 6764 insp = list->next; 6765 list = clone; 6766 } else { 6767 /* This may be pulled without problems. */ 6768 insp = list; 6769 } 6770 if (pskb_carve(list, eat, gfp_mask) < 0) { 6771 kfree_skb(clone); 6772 return -ENOMEM; 6773 } 6774 break; 6775 } 6776 } while (eat); 6777 6778 /* Free pulled out fragments. */ 6779 while ((list = shinfo->frag_list) != insp) { 6780 shinfo->frag_list = list->next; 6781 consume_skb(list); 6782 } 6783 /* And insert new clone at head. */ 6784 if (clone) { 6785 clone->next = list; 6786 shinfo->frag_list = clone; 6787 } 6788 return 0; 6789 } 6790 6791 /* carve off first len bytes from skb. Split line (off) is in the 6792 * non-linear part of skb 6793 */ 6794 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6795 int pos, gfp_t gfp_mask) 6796 { 6797 int i, k = 0; 6798 unsigned int size = skb_end_offset(skb); 6799 u8 *data; 6800 const int nfrags = skb_shinfo(skb)->nr_frags; 6801 struct skb_shared_info *shinfo; 6802 6803 if (skb_pfmemalloc(skb)) 6804 gfp_mask |= __GFP_MEMALLOC; 6805 6806 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6807 if (!data) 6808 return -ENOMEM; 6809 size = SKB_WITH_OVERHEAD(size); 6810 6811 memcpy((struct skb_shared_info *)(data + size), 6812 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6813 if (skb_orphan_frags(skb, gfp_mask)) { 6814 skb_kfree_head(data, size); 6815 return -ENOMEM; 6816 } 6817 shinfo = (struct skb_shared_info *)(data + size); 6818 for (i = 0; i < nfrags; i++) { 6819 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6820 6821 if (pos + fsize > off) { 6822 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6823 6824 if (pos < off) { 6825 /* Split frag. 6826 * We have two variants in this case: 6827 * 1. Move all the frag to the second 6828 * part, if it is possible. F.e. 6829 * this approach is mandatory for TUX, 6830 * where splitting is expensive. 6831 * 2. Split is accurately. We make this. 6832 */ 6833 skb_frag_off_add(&shinfo->frags[0], off - pos); 6834 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6835 } 6836 skb_frag_ref(skb, i); 6837 k++; 6838 } 6839 pos += fsize; 6840 } 6841 shinfo->nr_frags = k; 6842 if (skb_has_frag_list(skb)) 6843 skb_clone_fraglist(skb); 6844 6845 /* split line is in frag list */ 6846 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6847 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6848 if (skb_has_frag_list(skb)) 6849 kfree_skb_list(skb_shinfo(skb)->frag_list); 6850 skb_kfree_head(data, size); 6851 return -ENOMEM; 6852 } 6853 skb_release_data(skb, SKB_CONSUMED); 6854 6855 skb->head = data; 6856 skb->head_frag = 0; 6857 skb->data = data; 6858 skb_set_end_offset(skb, size); 6859 skb_reset_tail_pointer(skb); 6860 skb_headers_offset_update(skb, 0); 6861 skb->cloned = 0; 6862 skb->hdr_len = 0; 6863 skb->nohdr = 0; 6864 skb->len -= off; 6865 skb->data_len = skb->len; 6866 atomic_set(&skb_shinfo(skb)->dataref, 1); 6867 return 0; 6868 } 6869 6870 /* remove len bytes from the beginning of the skb */ 6871 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6872 { 6873 int headlen = skb_headlen(skb); 6874 6875 if (len < headlen) 6876 return pskb_carve_inside_header(skb, len, headlen, gfp); 6877 else 6878 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6879 } 6880 6881 /* Extract to_copy bytes starting at off from skb, and return this in 6882 * a new skb 6883 */ 6884 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6885 int to_copy, gfp_t gfp) 6886 { 6887 struct sk_buff *clone = skb_clone(skb, gfp); 6888 6889 if (!clone) 6890 return NULL; 6891 6892 if (pskb_carve(clone, off, gfp) < 0 || 6893 pskb_trim(clone, to_copy)) { 6894 kfree_skb(clone); 6895 return NULL; 6896 } 6897 return clone; 6898 } 6899 EXPORT_SYMBOL(pskb_extract); 6900 6901 /** 6902 * skb_condense - try to get rid of fragments/frag_list if possible 6903 * @skb: buffer 6904 * 6905 * Can be used to save memory before skb is added to a busy queue. 6906 * If packet has bytes in frags and enough tail room in skb->head, 6907 * pull all of them, so that we can free the frags right now and adjust 6908 * truesize. 6909 * Notes: 6910 * We do not reallocate skb->head thus can not fail. 6911 * Caller must re-evaluate skb->truesize if needed. 6912 */ 6913 void skb_condense(struct sk_buff *skb) 6914 { 6915 if (skb->data_len) { 6916 if (skb->data_len > skb->end - skb->tail || 6917 skb_cloned(skb) || !skb_frags_readable(skb)) 6918 return; 6919 6920 /* Nice, we can free page frag(s) right now */ 6921 __pskb_pull_tail(skb, skb->data_len); 6922 } 6923 /* At this point, skb->truesize might be over estimated, 6924 * because skb had a fragment, and fragments do not tell 6925 * their truesize. 6926 * When we pulled its content into skb->head, fragment 6927 * was freed, but __pskb_pull_tail() could not possibly 6928 * adjust skb->truesize, not knowing the frag truesize. 6929 */ 6930 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6931 } 6932 EXPORT_SYMBOL(skb_condense); 6933 6934 #ifdef CONFIG_SKB_EXTENSIONS 6935 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6936 { 6937 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6938 } 6939 6940 /** 6941 * __skb_ext_alloc - allocate a new skb extensions storage 6942 * 6943 * @flags: See kmalloc(). 6944 * 6945 * Returns the newly allocated pointer. The pointer can later attached to a 6946 * skb via __skb_ext_set(). 6947 * Note: caller must handle the skb_ext as an opaque data. 6948 */ 6949 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6950 { 6951 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6952 6953 if (new) { 6954 memset(new->offset, 0, sizeof(new->offset)); 6955 refcount_set(&new->refcnt, 1); 6956 } 6957 6958 return new; 6959 } 6960 6961 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6962 unsigned int old_active) 6963 { 6964 struct skb_ext *new; 6965 6966 if (refcount_read(&old->refcnt) == 1) 6967 return old; 6968 6969 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6970 if (!new) 6971 return NULL; 6972 6973 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6974 refcount_set(&new->refcnt, 1); 6975 6976 #ifdef CONFIG_XFRM 6977 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6978 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6979 unsigned int i; 6980 6981 for (i = 0; i < sp->len; i++) 6982 xfrm_state_hold(sp->xvec[i]); 6983 } 6984 #endif 6985 #ifdef CONFIG_MCTP_FLOWS 6986 if (old_active & (1 << SKB_EXT_MCTP)) { 6987 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP); 6988 6989 if (flow->key) 6990 refcount_inc(&flow->key->refs); 6991 } 6992 #endif 6993 __skb_ext_put(old); 6994 return new; 6995 } 6996 6997 /** 6998 * __skb_ext_set - attach the specified extension storage to this skb 6999 * @skb: buffer 7000 * @id: extension id 7001 * @ext: extension storage previously allocated via __skb_ext_alloc() 7002 * 7003 * Existing extensions, if any, are cleared. 7004 * 7005 * Returns the pointer to the extension. 7006 */ 7007 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 7008 struct skb_ext *ext) 7009 { 7010 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 7011 7012 skb_ext_put(skb); 7013 newlen = newoff + skb_ext_type_len[id]; 7014 ext->chunks = newlen; 7015 ext->offset[id] = newoff; 7016 skb->extensions = ext; 7017 skb->active_extensions = 1 << id; 7018 return skb_ext_get_ptr(ext, id); 7019 } 7020 7021 /** 7022 * skb_ext_add - allocate space for given extension, COW if needed 7023 * @skb: buffer 7024 * @id: extension to allocate space for 7025 * 7026 * Allocates enough space for the given extension. 7027 * If the extension is already present, a pointer to that extension 7028 * is returned. 7029 * 7030 * If the skb was cloned, COW applies and the returned memory can be 7031 * modified without changing the extension space of clones buffers. 7032 * 7033 * Returns pointer to the extension or NULL on allocation failure. 7034 */ 7035 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 7036 { 7037 struct skb_ext *new, *old = NULL; 7038 unsigned int newlen, newoff; 7039 7040 if (skb->active_extensions) { 7041 old = skb->extensions; 7042 7043 new = skb_ext_maybe_cow(old, skb->active_extensions); 7044 if (!new) 7045 return NULL; 7046 7047 if (__skb_ext_exist(new, id)) 7048 goto set_active; 7049 7050 newoff = new->chunks; 7051 } else { 7052 newoff = SKB_EXT_CHUNKSIZEOF(*new); 7053 7054 new = __skb_ext_alloc(GFP_ATOMIC); 7055 if (!new) 7056 return NULL; 7057 } 7058 7059 newlen = newoff + skb_ext_type_len[id]; 7060 new->chunks = newlen; 7061 new->offset[id] = newoff; 7062 set_active: 7063 skb->slow_gro = 1; 7064 skb->extensions = new; 7065 skb->active_extensions |= 1 << id; 7066 return skb_ext_get_ptr(new, id); 7067 } 7068 EXPORT_SYMBOL(skb_ext_add); 7069 7070 #ifdef CONFIG_XFRM 7071 static void skb_ext_put_sp(struct sec_path *sp) 7072 { 7073 unsigned int i; 7074 7075 for (i = 0; i < sp->len; i++) 7076 xfrm_state_put(sp->xvec[i]); 7077 } 7078 #endif 7079 7080 #ifdef CONFIG_MCTP_FLOWS 7081 static void skb_ext_put_mctp(struct mctp_flow *flow) 7082 { 7083 if (flow->key) 7084 mctp_key_unref(flow->key); 7085 } 7086 #endif 7087 7088 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 7089 { 7090 struct skb_ext *ext = skb->extensions; 7091 7092 skb->active_extensions &= ~(1 << id); 7093 if (skb->active_extensions == 0) { 7094 skb->extensions = NULL; 7095 __skb_ext_put(ext); 7096 #ifdef CONFIG_XFRM 7097 } else if (id == SKB_EXT_SEC_PATH && 7098 refcount_read(&ext->refcnt) == 1) { 7099 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 7100 7101 skb_ext_put_sp(sp); 7102 sp->len = 0; 7103 #endif 7104 } 7105 } 7106 EXPORT_SYMBOL(__skb_ext_del); 7107 7108 void __skb_ext_put(struct skb_ext *ext) 7109 { 7110 /* If this is last clone, nothing can increment 7111 * it after check passes. Avoids one atomic op. 7112 */ 7113 if (refcount_read(&ext->refcnt) == 1) 7114 goto free_now; 7115 7116 if (!refcount_dec_and_test(&ext->refcnt)) 7117 return; 7118 free_now: 7119 #ifdef CONFIG_XFRM 7120 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 7121 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 7122 #endif 7123 #ifdef CONFIG_MCTP_FLOWS 7124 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 7125 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 7126 #endif 7127 7128 kmem_cache_free(skbuff_ext_cache, ext); 7129 } 7130 EXPORT_SYMBOL(__skb_ext_put); 7131 #endif /* CONFIG_SKB_EXTENSIONS */ 7132 7133 static void kfree_skb_napi_cache(struct sk_buff *skb) 7134 { 7135 /* if SKB is a clone, don't handle this case */ 7136 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 7137 __kfree_skb(skb); 7138 return; 7139 } 7140 7141 local_bh_disable(); 7142 __napi_kfree_skb(skb, SKB_CONSUMED); 7143 local_bh_enable(); 7144 } 7145 7146 /** 7147 * skb_attempt_defer_free - queue skb for remote freeing 7148 * @skb: buffer 7149 * 7150 * Put @skb in a per-cpu list, using the cpu which 7151 * allocated the skb/pages to reduce false sharing 7152 * and memory zone spinlock contention. 7153 */ 7154 void skb_attempt_defer_free(struct sk_buff *skb) 7155 { 7156 int cpu = skb->alloc_cpu; 7157 struct softnet_data *sd; 7158 unsigned int defer_max; 7159 bool kick; 7160 7161 if (cpu == raw_smp_processor_id() || 7162 WARN_ON_ONCE(cpu >= nr_cpu_ids) || 7163 !cpu_online(cpu)) { 7164 nodefer: kfree_skb_napi_cache(skb); 7165 return; 7166 } 7167 7168 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 7169 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 7170 7171 sd = &per_cpu(softnet_data, cpu); 7172 defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max); 7173 if (READ_ONCE(sd->defer_count) >= defer_max) 7174 goto nodefer; 7175 7176 spin_lock_bh(&sd->defer_lock); 7177 /* Send an IPI every time queue reaches half capacity. */ 7178 kick = sd->defer_count == (defer_max >> 1); 7179 /* Paired with the READ_ONCE() few lines above */ 7180 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 7181 7182 skb->next = sd->defer_list; 7183 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 7184 WRITE_ONCE(sd->defer_list, skb); 7185 spin_unlock_bh(&sd->defer_lock); 7186 7187 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 7188 * if we are unlucky enough (this seems very unlikely). 7189 */ 7190 if (unlikely(kick)) 7191 kick_defer_list_purge(sd, cpu); 7192 } 7193 7194 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 7195 size_t offset, size_t len) 7196 { 7197 const char *kaddr; 7198 __wsum csum; 7199 7200 kaddr = kmap_local_page(page); 7201 csum = csum_partial(kaddr + offset, len, 0); 7202 kunmap_local(kaddr); 7203 skb->csum = csum_block_add(skb->csum, csum, skb->len); 7204 } 7205 7206 /** 7207 * skb_splice_from_iter - Splice (or copy) pages to skbuff 7208 * @skb: The buffer to add pages to 7209 * @iter: Iterator representing the pages to be added 7210 * @maxsize: Maximum amount of pages to be added 7211 * @gfp: Allocation flags 7212 * 7213 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 7214 * extracts pages from an iterator and adds them to the socket buffer if 7215 * possible, copying them to fragments if not possible (such as if they're slab 7216 * pages). 7217 * 7218 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 7219 * insufficient space in the buffer to transfer anything. 7220 */ 7221 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 7222 ssize_t maxsize, gfp_t gfp) 7223 { 7224 size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags); 7225 struct page *pages[8], **ppages = pages; 7226 ssize_t spliced = 0, ret = 0; 7227 unsigned int i; 7228 7229 while (iter->count > 0) { 7230 ssize_t space, nr, len; 7231 size_t off; 7232 7233 ret = -EMSGSIZE; 7234 space = frag_limit - skb_shinfo(skb)->nr_frags; 7235 if (space < 0) 7236 break; 7237 7238 /* We might be able to coalesce without increasing nr_frags */ 7239 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 7240 7241 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 7242 if (len <= 0) { 7243 ret = len ?: -EIO; 7244 break; 7245 } 7246 7247 i = 0; 7248 do { 7249 struct page *page = pages[i++]; 7250 size_t part = min_t(size_t, PAGE_SIZE - off, len); 7251 7252 ret = -EIO; 7253 if (WARN_ON_ONCE(!sendpage_ok(page))) 7254 goto out; 7255 7256 ret = skb_append_pagefrags(skb, page, off, part, 7257 frag_limit); 7258 if (ret < 0) { 7259 iov_iter_revert(iter, len); 7260 goto out; 7261 } 7262 7263 if (skb->ip_summed == CHECKSUM_NONE) 7264 skb_splice_csum_page(skb, page, off, part); 7265 7266 off = 0; 7267 spliced += part; 7268 maxsize -= part; 7269 len -= part; 7270 } while (len > 0); 7271 7272 if (maxsize <= 0) 7273 break; 7274 } 7275 7276 out: 7277 skb_len_add(skb, spliced); 7278 return spliced ?: ret; 7279 } 7280 EXPORT_SYMBOL(skb_splice_from_iter); 7281 7282 static __always_inline 7283 size_t memcpy_from_iter_csum(void *iter_from, size_t progress, 7284 size_t len, void *to, void *priv2) 7285 { 7286 __wsum *csum = priv2; 7287 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len); 7288 7289 *csum = csum_block_add(*csum, next, progress); 7290 return 0; 7291 } 7292 7293 static __always_inline 7294 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress, 7295 size_t len, void *to, void *priv2) 7296 { 7297 __wsum next, *csum = priv2; 7298 7299 next = csum_and_copy_from_user(iter_from, to + progress, len); 7300 *csum = csum_block_add(*csum, next, progress); 7301 return next ? 0 : len; 7302 } 7303 7304 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, 7305 __wsum *csum, struct iov_iter *i) 7306 { 7307 size_t copied; 7308 7309 if (WARN_ON_ONCE(!i->data_source)) 7310 return false; 7311 copied = iterate_and_advance2(i, bytes, addr, csum, 7312 copy_from_user_iter_csum, 7313 memcpy_from_iter_csum); 7314 if (likely(copied == bytes)) 7315 return true; 7316 iov_iter_revert(i, copied); 7317 return false; 7318 } 7319 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 7320