xref: /linux/net/core/request_sock.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * NET		Generic infrastructure for Network protocols.
3  *
4  * Authors:	Arnaldo Carvalho de Melo <acme@conectiva.com.br>
5  *
6  * 		From code originally in include/net/tcp.h
7  *
8  *		This program is free software; you can redistribute it and/or
9  *		modify it under the terms of the GNU General Public License
10  *		as published by the Free Software Foundation; either version
11  *		2 of the License, or (at your option) any later version.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/tcp.h>
19 #include <linux/vmalloc.h>
20 
21 #include <net/request_sock.h>
22 
23 /*
24  * Maximum number of SYN_RECV sockets in queue per LISTEN socket.
25  * One SYN_RECV socket costs about 80bytes on a 32bit machine.
26  * It would be better to replace it with a global counter for all sockets
27  * but then some measure against one socket starving all other sockets
28  * would be needed.
29  *
30  * The minimum value of it is 128. Experiments with real servers show that
31  * it is absolutely not enough even at 100conn/sec. 256 cures most
32  * of problems.
33  * This value is adjusted to 128 for low memory machines,
34  * and it will increase in proportion to the memory of machine.
35  * Note : Dont forget somaxconn that may limit backlog too.
36  */
37 
38 void reqsk_queue_alloc(struct request_sock_queue *queue)
39 {
40 	spin_lock_init(&queue->rskq_lock);
41 
42 	spin_lock_init(&queue->fastopenq.lock);
43 	queue->fastopenq.rskq_rst_head = NULL;
44 	queue->fastopenq.rskq_rst_tail = NULL;
45 	queue->fastopenq.qlen = 0;
46 
47 	queue->rskq_accept_head = NULL;
48 }
49 
50 /*
51  * This function is called to set a Fast Open socket's "fastopen_rsk" field
52  * to NULL when a TFO socket no longer needs to access the request_sock.
53  * This happens only after 3WHS has been either completed or aborted (e.g.,
54  * RST is received).
55  *
56  * Before TFO, a child socket is created only after 3WHS is completed,
57  * hence it never needs to access the request_sock. things get a lot more
58  * complex with TFO. A child socket, accepted or not, has to access its
59  * request_sock for 3WHS processing, e.g., to retransmit SYN-ACK pkts,
60  * until 3WHS is either completed or aborted. Afterwards the req will stay
61  * until either the child socket is accepted, or in the rare case when the
62  * listener is closed before the child is accepted.
63  *
64  * In short, a request socket is only freed after BOTH 3WHS has completed
65  * (or aborted) and the child socket has been accepted (or listener closed).
66  * When a child socket is accepted, its corresponding req->sk is set to
67  * NULL since it's no longer needed. More importantly, "req->sk == NULL"
68  * will be used by the code below to determine if a child socket has been
69  * accepted or not, and the check is protected by the fastopenq->lock
70  * described below.
71  *
72  * Note that fastopen_rsk is only accessed from the child socket's context
73  * with its socket lock held. But a request_sock (req) can be accessed by
74  * both its child socket through fastopen_rsk, and a listener socket through
75  * icsk_accept_queue.rskq_accept_head. To protect the access a simple spin
76  * lock per listener "icsk->icsk_accept_queue.fastopenq->lock" is created.
77  * only in the rare case when both the listener and the child locks are held,
78  * e.g., in inet_csk_listen_stop() do we not need to acquire the lock.
79  * The lock also protects other fields such as fastopenq->qlen, which is
80  * decremented by this function when fastopen_rsk is no longer needed.
81  *
82  * Note that another solution was to simply use the existing socket lock
83  * from the listener. But first socket lock is difficult to use. It is not
84  * a simple spin lock - one must consider sock_owned_by_user() and arrange
85  * to use sk_add_backlog() stuff. But what really makes it infeasible is the
86  * locking hierarchy violation. E.g., inet_csk_listen_stop() may try to
87  * acquire a child's lock while holding listener's socket lock. A corner
88  * case might also exist in tcp_v4_hnd_req() that will trigger this locking
89  * order.
90  *
91  * This function also sets "treq->tfo_listener" to false.
92  * treq->tfo_listener is used by the listener so it is protected by the
93  * fastopenq->lock in this function.
94  */
95 void reqsk_fastopen_remove(struct sock *sk, struct request_sock *req,
96 			   bool reset)
97 {
98 	struct sock *lsk = req->rsk_listener;
99 	struct fastopen_queue *fastopenq;
100 
101 	fastopenq = &inet_csk(lsk)->icsk_accept_queue.fastopenq;
102 
103 	tcp_sk(sk)->fastopen_rsk = NULL;
104 	spin_lock_bh(&fastopenq->lock);
105 	fastopenq->qlen--;
106 	tcp_rsk(req)->tfo_listener = false;
107 	if (req->sk)	/* the child socket hasn't been accepted yet */
108 		goto out;
109 
110 	if (!reset || lsk->sk_state != TCP_LISTEN) {
111 		/* If the listener has been closed don't bother with the
112 		 * special RST handling below.
113 		 */
114 		spin_unlock_bh(&fastopenq->lock);
115 		reqsk_put(req);
116 		return;
117 	}
118 	/* Wait for 60secs before removing a req that has triggered RST.
119 	 * This is a simple defense against TFO spoofing attack - by
120 	 * counting the req against fastopen.max_qlen, and disabling
121 	 * TFO when the qlen exceeds max_qlen.
122 	 *
123 	 * For more details see CoNext'11 "TCP Fast Open" paper.
124 	 */
125 	req->rsk_timer.expires = jiffies + 60*HZ;
126 	if (fastopenq->rskq_rst_head == NULL)
127 		fastopenq->rskq_rst_head = req;
128 	else
129 		fastopenq->rskq_rst_tail->dl_next = req;
130 
131 	req->dl_next = NULL;
132 	fastopenq->rskq_rst_tail = req;
133 	fastopenq->qlen++;
134 out:
135 	spin_unlock_bh(&fastopenq->lock);
136 }
137