xref: /linux/net/core/page_pool.c (revision f17c69649c698e4df3cfe0010b7bbf142dec3e40)
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * page_pool.c
4  *	Author:	Jesper Dangaard Brouer <netoptimizer@brouer.com>
5  *	Copyright (C) 2016 Red Hat, Inc.
6  */
7 
8 #include <linux/types.h>
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/device.h>
12 
13 #include <net/page_pool/helpers.h>
14 #include <net/xdp.h>
15 
16 #include <linux/dma-direction.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/page-flags.h>
19 #include <linux/mm.h> /* for put_page() */
20 #include <linux/poison.h>
21 #include <linux/ethtool.h>
22 #include <linux/netdevice.h>
23 
24 #include <trace/events/page_pool.h>
25 
26 #include "page_pool_priv.h"
27 
28 #define DEFER_TIME (msecs_to_jiffies(1000))
29 #define DEFER_WARN_INTERVAL (60 * HZ)
30 
31 #define BIAS_MAX	LONG_MAX
32 
33 #ifdef CONFIG_PAGE_POOL_STATS
34 /* alloc_stat_inc is intended to be used in softirq context */
35 #define alloc_stat_inc(pool, __stat)	(pool->alloc_stats.__stat++)
36 /* recycle_stat_inc is safe to use when preemption is possible. */
37 #define recycle_stat_inc(pool, __stat)							\
38 	do {										\
39 		struct page_pool_recycle_stats __percpu *s = pool->recycle_stats;	\
40 		this_cpu_inc(s->__stat);						\
41 	} while (0)
42 
43 #define recycle_stat_add(pool, __stat, val)						\
44 	do {										\
45 		struct page_pool_recycle_stats __percpu *s = pool->recycle_stats;	\
46 		this_cpu_add(s->__stat, val);						\
47 	} while (0)
48 
49 static const char pp_stats[][ETH_GSTRING_LEN] = {
50 	"rx_pp_alloc_fast",
51 	"rx_pp_alloc_slow",
52 	"rx_pp_alloc_slow_ho",
53 	"rx_pp_alloc_empty",
54 	"rx_pp_alloc_refill",
55 	"rx_pp_alloc_waive",
56 	"rx_pp_recycle_cached",
57 	"rx_pp_recycle_cache_full",
58 	"rx_pp_recycle_ring",
59 	"rx_pp_recycle_ring_full",
60 	"rx_pp_recycle_released_ref",
61 };
62 
63 /**
64  * page_pool_get_stats() - fetch page pool stats
65  * @pool:	pool from which page was allocated
66  * @stats:	struct page_pool_stats to fill in
67  *
68  * Retrieve statistics about the page_pool. This API is only available
69  * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``.
70  * A pointer to a caller allocated struct page_pool_stats structure
71  * is passed to this API which is filled in. The caller can then report
72  * those stats to the user (perhaps via ethtool, debugfs, etc.).
73  */
74 bool page_pool_get_stats(struct page_pool *pool,
75 			 struct page_pool_stats *stats)
76 {
77 	int cpu = 0;
78 
79 	if (!stats)
80 		return false;
81 
82 	/* The caller is responsible to initialize stats. */
83 	stats->alloc_stats.fast += pool->alloc_stats.fast;
84 	stats->alloc_stats.slow += pool->alloc_stats.slow;
85 	stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order;
86 	stats->alloc_stats.empty += pool->alloc_stats.empty;
87 	stats->alloc_stats.refill += pool->alloc_stats.refill;
88 	stats->alloc_stats.waive += pool->alloc_stats.waive;
89 
90 	for_each_possible_cpu(cpu) {
91 		const struct page_pool_recycle_stats *pcpu =
92 			per_cpu_ptr(pool->recycle_stats, cpu);
93 
94 		stats->recycle_stats.cached += pcpu->cached;
95 		stats->recycle_stats.cache_full += pcpu->cache_full;
96 		stats->recycle_stats.ring += pcpu->ring;
97 		stats->recycle_stats.ring_full += pcpu->ring_full;
98 		stats->recycle_stats.released_refcnt += pcpu->released_refcnt;
99 	}
100 
101 	return true;
102 }
103 EXPORT_SYMBOL(page_pool_get_stats);
104 
105 u8 *page_pool_ethtool_stats_get_strings(u8 *data)
106 {
107 	int i;
108 
109 	for (i = 0; i < ARRAY_SIZE(pp_stats); i++) {
110 		memcpy(data, pp_stats[i], ETH_GSTRING_LEN);
111 		data += ETH_GSTRING_LEN;
112 	}
113 
114 	return data;
115 }
116 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings);
117 
118 int page_pool_ethtool_stats_get_count(void)
119 {
120 	return ARRAY_SIZE(pp_stats);
121 }
122 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count);
123 
124 u64 *page_pool_ethtool_stats_get(u64 *data, void *stats)
125 {
126 	struct page_pool_stats *pool_stats = stats;
127 
128 	*data++ = pool_stats->alloc_stats.fast;
129 	*data++ = pool_stats->alloc_stats.slow;
130 	*data++ = pool_stats->alloc_stats.slow_high_order;
131 	*data++ = pool_stats->alloc_stats.empty;
132 	*data++ = pool_stats->alloc_stats.refill;
133 	*data++ = pool_stats->alloc_stats.waive;
134 	*data++ = pool_stats->recycle_stats.cached;
135 	*data++ = pool_stats->recycle_stats.cache_full;
136 	*data++ = pool_stats->recycle_stats.ring;
137 	*data++ = pool_stats->recycle_stats.ring_full;
138 	*data++ = pool_stats->recycle_stats.released_refcnt;
139 
140 	return data;
141 }
142 EXPORT_SYMBOL(page_pool_ethtool_stats_get);
143 
144 #else
145 #define alloc_stat_inc(pool, __stat)
146 #define recycle_stat_inc(pool, __stat)
147 #define recycle_stat_add(pool, __stat, val)
148 #endif
149 
150 static bool page_pool_producer_lock(struct page_pool *pool)
151 	__acquires(&pool->ring.producer_lock)
152 {
153 	bool in_softirq = in_softirq();
154 
155 	if (in_softirq)
156 		spin_lock(&pool->ring.producer_lock);
157 	else
158 		spin_lock_bh(&pool->ring.producer_lock);
159 
160 	return in_softirq;
161 }
162 
163 static void page_pool_producer_unlock(struct page_pool *pool,
164 				      bool in_softirq)
165 	__releases(&pool->ring.producer_lock)
166 {
167 	if (in_softirq)
168 		spin_unlock(&pool->ring.producer_lock);
169 	else
170 		spin_unlock_bh(&pool->ring.producer_lock);
171 }
172 
173 static int page_pool_init(struct page_pool *pool,
174 			  const struct page_pool_params *params)
175 {
176 	unsigned int ring_qsize = 1024; /* Default */
177 
178 	memcpy(&pool->p, &params->fast, sizeof(pool->p));
179 	memcpy(&pool->slow, &params->slow, sizeof(pool->slow));
180 
181 	/* Validate only known flags were used */
182 	if (pool->p.flags & ~(PP_FLAG_ALL))
183 		return -EINVAL;
184 
185 	if (pool->p.pool_size)
186 		ring_qsize = pool->p.pool_size;
187 
188 	/* Sanity limit mem that can be pinned down */
189 	if (ring_qsize > 32768)
190 		return -E2BIG;
191 
192 	/* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
193 	 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
194 	 * which is the XDP_TX use-case.
195 	 */
196 	if (pool->p.flags & PP_FLAG_DMA_MAP) {
197 		if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
198 		    (pool->p.dma_dir != DMA_BIDIRECTIONAL))
199 			return -EINVAL;
200 	}
201 
202 	if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) {
203 		/* In order to request DMA-sync-for-device the page
204 		 * needs to be mapped
205 		 */
206 		if (!(pool->p.flags & PP_FLAG_DMA_MAP))
207 			return -EINVAL;
208 
209 		if (!pool->p.max_len)
210 			return -EINVAL;
211 
212 		/* pool->p.offset has to be set according to the address
213 		 * offset used by the DMA engine to start copying rx data
214 		 */
215 	}
216 
217 	pool->has_init_callback = !!pool->slow.init_callback;
218 
219 #ifdef CONFIG_PAGE_POOL_STATS
220 	pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats);
221 	if (!pool->recycle_stats)
222 		return -ENOMEM;
223 #endif
224 
225 	if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) {
226 #ifdef CONFIG_PAGE_POOL_STATS
227 		free_percpu(pool->recycle_stats);
228 #endif
229 		return -ENOMEM;
230 	}
231 
232 	atomic_set(&pool->pages_state_release_cnt, 0);
233 
234 	/* Driver calling page_pool_create() also call page_pool_destroy() */
235 	refcount_set(&pool->user_cnt, 1);
236 
237 	if (pool->p.flags & PP_FLAG_DMA_MAP)
238 		get_device(pool->p.dev);
239 
240 	return 0;
241 }
242 
243 static void page_pool_uninit(struct page_pool *pool)
244 {
245 	ptr_ring_cleanup(&pool->ring, NULL);
246 
247 	if (pool->p.flags & PP_FLAG_DMA_MAP)
248 		put_device(pool->p.dev);
249 
250 #ifdef CONFIG_PAGE_POOL_STATS
251 	free_percpu(pool->recycle_stats);
252 #endif
253 }
254 
255 /**
256  * page_pool_create() - create a page pool.
257  * @params: parameters, see struct page_pool_params
258  */
259 struct page_pool *page_pool_create(const struct page_pool_params *params)
260 {
261 	struct page_pool *pool;
262 	int err;
263 
264 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
265 	if (!pool)
266 		return ERR_PTR(-ENOMEM);
267 
268 	err = page_pool_init(pool, params);
269 	if (err < 0)
270 		goto err_free;
271 
272 	err = page_pool_list(pool);
273 	if (err)
274 		goto err_uninit;
275 
276 	return pool;
277 
278 err_uninit:
279 	page_pool_uninit(pool);
280 err_free:
281 	pr_warn("%s() gave up with errno %d\n", __func__, err);
282 	kfree(pool);
283 	return ERR_PTR(err);
284 }
285 EXPORT_SYMBOL(page_pool_create);
286 
287 static void page_pool_return_page(struct page_pool *pool, struct page *page);
288 
289 noinline
290 static struct page *page_pool_refill_alloc_cache(struct page_pool *pool)
291 {
292 	struct ptr_ring *r = &pool->ring;
293 	struct page *page;
294 	int pref_nid; /* preferred NUMA node */
295 
296 	/* Quicker fallback, avoid locks when ring is empty */
297 	if (__ptr_ring_empty(r)) {
298 		alloc_stat_inc(pool, empty);
299 		return NULL;
300 	}
301 
302 	/* Softirq guarantee CPU and thus NUMA node is stable. This,
303 	 * assumes CPU refilling driver RX-ring will also run RX-NAPI.
304 	 */
305 #ifdef CONFIG_NUMA
306 	pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid;
307 #else
308 	/* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */
309 	pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */
310 #endif
311 
312 	/* Refill alloc array, but only if NUMA match */
313 	do {
314 		page = __ptr_ring_consume(r);
315 		if (unlikely(!page))
316 			break;
317 
318 		if (likely(page_to_nid(page) == pref_nid)) {
319 			pool->alloc.cache[pool->alloc.count++] = page;
320 		} else {
321 			/* NUMA mismatch;
322 			 * (1) release 1 page to page-allocator and
323 			 * (2) break out to fallthrough to alloc_pages_node.
324 			 * This limit stress on page buddy alloactor.
325 			 */
326 			page_pool_return_page(pool, page);
327 			alloc_stat_inc(pool, waive);
328 			page = NULL;
329 			break;
330 		}
331 	} while (pool->alloc.count < PP_ALLOC_CACHE_REFILL);
332 
333 	/* Return last page */
334 	if (likely(pool->alloc.count > 0)) {
335 		page = pool->alloc.cache[--pool->alloc.count];
336 		alloc_stat_inc(pool, refill);
337 	}
338 
339 	return page;
340 }
341 
342 /* fast path */
343 static struct page *__page_pool_get_cached(struct page_pool *pool)
344 {
345 	struct page *page;
346 
347 	/* Caller MUST guarantee safe non-concurrent access, e.g. softirq */
348 	if (likely(pool->alloc.count)) {
349 		/* Fast-path */
350 		page = pool->alloc.cache[--pool->alloc.count];
351 		alloc_stat_inc(pool, fast);
352 	} else {
353 		page = page_pool_refill_alloc_cache(pool);
354 	}
355 
356 	return page;
357 }
358 
359 static void page_pool_dma_sync_for_device(struct page_pool *pool,
360 					  struct page *page,
361 					  unsigned int dma_sync_size)
362 {
363 	dma_addr_t dma_addr = page_pool_get_dma_addr(page);
364 
365 	dma_sync_size = min(dma_sync_size, pool->p.max_len);
366 	dma_sync_single_range_for_device(pool->p.dev, dma_addr,
367 					 pool->p.offset, dma_sync_size,
368 					 pool->p.dma_dir);
369 }
370 
371 static bool page_pool_dma_map(struct page_pool *pool, struct page *page)
372 {
373 	dma_addr_t dma;
374 
375 	/* Setup DMA mapping: use 'struct page' area for storing DMA-addr
376 	 * since dma_addr_t can be either 32 or 64 bits and does not always fit
377 	 * into page private data (i.e 32bit cpu with 64bit DMA caps)
378 	 * This mapping is kept for lifetime of page, until leaving pool.
379 	 */
380 	dma = dma_map_page_attrs(pool->p.dev, page, 0,
381 				 (PAGE_SIZE << pool->p.order),
382 				 pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC |
383 						  DMA_ATTR_WEAK_ORDERING);
384 	if (dma_mapping_error(pool->p.dev, dma))
385 		return false;
386 
387 	if (page_pool_set_dma_addr(page, dma))
388 		goto unmap_failed;
389 
390 	if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
391 		page_pool_dma_sync_for_device(pool, page, pool->p.max_len);
392 
393 	return true;
394 
395 unmap_failed:
396 	WARN_ON_ONCE("unexpected DMA address, please report to netdev@");
397 	dma_unmap_page_attrs(pool->p.dev, dma,
398 			     PAGE_SIZE << pool->p.order, pool->p.dma_dir,
399 			     DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
400 	return false;
401 }
402 
403 static void page_pool_set_pp_info(struct page_pool *pool,
404 				  struct page *page)
405 {
406 	page->pp = pool;
407 	page->pp_magic |= PP_SIGNATURE;
408 
409 	/* Ensuring all pages have been split into one fragment initially:
410 	 * page_pool_set_pp_info() is only called once for every page when it
411 	 * is allocated from the page allocator and page_pool_fragment_page()
412 	 * is dirtying the same cache line as the page->pp_magic above, so
413 	 * the overhead is negligible.
414 	 */
415 	page_pool_fragment_page(page, 1);
416 	if (pool->has_init_callback)
417 		pool->slow.init_callback(page, pool->slow.init_arg);
418 }
419 
420 static void page_pool_clear_pp_info(struct page *page)
421 {
422 	page->pp_magic = 0;
423 	page->pp = NULL;
424 }
425 
426 static struct page *__page_pool_alloc_page_order(struct page_pool *pool,
427 						 gfp_t gfp)
428 {
429 	struct page *page;
430 
431 	gfp |= __GFP_COMP;
432 	page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
433 	if (unlikely(!page))
434 		return NULL;
435 
436 	if ((pool->p.flags & PP_FLAG_DMA_MAP) &&
437 	    unlikely(!page_pool_dma_map(pool, page))) {
438 		put_page(page);
439 		return NULL;
440 	}
441 
442 	alloc_stat_inc(pool, slow_high_order);
443 	page_pool_set_pp_info(pool, page);
444 
445 	/* Track how many pages are held 'in-flight' */
446 	pool->pages_state_hold_cnt++;
447 	trace_page_pool_state_hold(pool, page, pool->pages_state_hold_cnt);
448 	return page;
449 }
450 
451 /* slow path */
452 noinline
453 static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool,
454 						 gfp_t gfp)
455 {
456 	const int bulk = PP_ALLOC_CACHE_REFILL;
457 	unsigned int pp_flags = pool->p.flags;
458 	unsigned int pp_order = pool->p.order;
459 	struct page *page;
460 	int i, nr_pages;
461 
462 	/* Don't support bulk alloc for high-order pages */
463 	if (unlikely(pp_order))
464 		return __page_pool_alloc_page_order(pool, gfp);
465 
466 	/* Unnecessary as alloc cache is empty, but guarantees zero count */
467 	if (unlikely(pool->alloc.count > 0))
468 		return pool->alloc.cache[--pool->alloc.count];
469 
470 	/* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */
471 	memset(&pool->alloc.cache, 0, sizeof(void *) * bulk);
472 
473 	nr_pages = alloc_pages_bulk_array_node(gfp, pool->p.nid, bulk,
474 					       pool->alloc.cache);
475 	if (unlikely(!nr_pages))
476 		return NULL;
477 
478 	/* Pages have been filled into alloc.cache array, but count is zero and
479 	 * page element have not been (possibly) DMA mapped.
480 	 */
481 	for (i = 0; i < nr_pages; i++) {
482 		page = pool->alloc.cache[i];
483 		if ((pp_flags & PP_FLAG_DMA_MAP) &&
484 		    unlikely(!page_pool_dma_map(pool, page))) {
485 			put_page(page);
486 			continue;
487 		}
488 
489 		page_pool_set_pp_info(pool, page);
490 		pool->alloc.cache[pool->alloc.count++] = page;
491 		/* Track how many pages are held 'in-flight' */
492 		pool->pages_state_hold_cnt++;
493 		trace_page_pool_state_hold(pool, page,
494 					   pool->pages_state_hold_cnt);
495 	}
496 
497 	/* Return last page */
498 	if (likely(pool->alloc.count > 0)) {
499 		page = pool->alloc.cache[--pool->alloc.count];
500 		alloc_stat_inc(pool, slow);
501 	} else {
502 		page = NULL;
503 	}
504 
505 	/* When page just alloc'ed is should/must have refcnt 1. */
506 	return page;
507 }
508 
509 /* For using page_pool replace: alloc_pages() API calls, but provide
510  * synchronization guarantee for allocation side.
511  */
512 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
513 {
514 	struct page *page;
515 
516 	/* Fast-path: Get a page from cache */
517 	page = __page_pool_get_cached(pool);
518 	if (page)
519 		return page;
520 
521 	/* Slow-path: cache empty, do real allocation */
522 	page = __page_pool_alloc_pages_slow(pool, gfp);
523 	return page;
524 }
525 EXPORT_SYMBOL(page_pool_alloc_pages);
526 
527 /* Calculate distance between two u32 values, valid if distance is below 2^(31)
528  *  https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution
529  */
530 #define _distance(a, b)	(s32)((a) - (b))
531 
532 static s32 page_pool_inflight(struct page_pool *pool)
533 {
534 	u32 release_cnt = atomic_read(&pool->pages_state_release_cnt);
535 	u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt);
536 	s32 inflight;
537 
538 	inflight = _distance(hold_cnt, release_cnt);
539 
540 	trace_page_pool_release(pool, inflight, hold_cnt, release_cnt);
541 	WARN(inflight < 0, "Negative(%d) inflight packet-pages", inflight);
542 
543 	return inflight;
544 }
545 
546 /* Disconnects a page (from a page_pool).  API users can have a need
547  * to disconnect a page (from a page_pool), to allow it to be used as
548  * a regular page (that will eventually be returned to the normal
549  * page-allocator via put_page).
550  */
551 static void page_pool_return_page(struct page_pool *pool, struct page *page)
552 {
553 	dma_addr_t dma;
554 	int count;
555 
556 	if (!(pool->p.flags & PP_FLAG_DMA_MAP))
557 		/* Always account for inflight pages, even if we didn't
558 		 * map them
559 		 */
560 		goto skip_dma_unmap;
561 
562 	dma = page_pool_get_dma_addr(page);
563 
564 	/* When page is unmapped, it cannot be returned to our pool */
565 	dma_unmap_page_attrs(pool->p.dev, dma,
566 			     PAGE_SIZE << pool->p.order, pool->p.dma_dir,
567 			     DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
568 	page_pool_set_dma_addr(page, 0);
569 skip_dma_unmap:
570 	page_pool_clear_pp_info(page);
571 
572 	/* This may be the last page returned, releasing the pool, so
573 	 * it is not safe to reference pool afterwards.
574 	 */
575 	count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt);
576 	trace_page_pool_state_release(pool, page, count);
577 
578 	put_page(page);
579 	/* An optimization would be to call __free_pages(page, pool->p.order)
580 	 * knowing page is not part of page-cache (thus avoiding a
581 	 * __page_cache_release() call).
582 	 */
583 }
584 
585 static bool page_pool_recycle_in_ring(struct page_pool *pool, struct page *page)
586 {
587 	int ret;
588 	/* BH protection not needed if current is softirq */
589 	if (in_softirq())
590 		ret = ptr_ring_produce(&pool->ring, page);
591 	else
592 		ret = ptr_ring_produce_bh(&pool->ring, page);
593 
594 	if (!ret) {
595 		recycle_stat_inc(pool, ring);
596 		return true;
597 	}
598 
599 	return false;
600 }
601 
602 /* Only allow direct recycling in special circumstances, into the
603  * alloc side cache.  E.g. during RX-NAPI processing for XDP_DROP use-case.
604  *
605  * Caller must provide appropriate safe context.
606  */
607 static bool page_pool_recycle_in_cache(struct page *page,
608 				       struct page_pool *pool)
609 {
610 	if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) {
611 		recycle_stat_inc(pool, cache_full);
612 		return false;
613 	}
614 
615 	/* Caller MUST have verified/know (page_ref_count(page) == 1) */
616 	pool->alloc.cache[pool->alloc.count++] = page;
617 	recycle_stat_inc(pool, cached);
618 	return true;
619 }
620 
621 /* If the page refcnt == 1, this will try to recycle the page.
622  * if PP_FLAG_DMA_SYNC_DEV is set, we'll try to sync the DMA area for
623  * the configured size min(dma_sync_size, pool->max_len).
624  * If the page refcnt != 1, then the page will be returned to memory
625  * subsystem.
626  */
627 static __always_inline struct page *
628 __page_pool_put_page(struct page_pool *pool, struct page *page,
629 		     unsigned int dma_sync_size, bool allow_direct)
630 {
631 	lockdep_assert_no_hardirq();
632 
633 	/* This allocator is optimized for the XDP mode that uses
634 	 * one-frame-per-page, but have fallbacks that act like the
635 	 * regular page allocator APIs.
636 	 *
637 	 * refcnt == 1 means page_pool owns page, and can recycle it.
638 	 *
639 	 * page is NOT reusable when allocated when system is under
640 	 * some pressure. (page_is_pfmemalloc)
641 	 */
642 	if (likely(page_ref_count(page) == 1 && !page_is_pfmemalloc(page))) {
643 		/* Read barrier done in page_ref_count / READ_ONCE */
644 
645 		if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
646 			page_pool_dma_sync_for_device(pool, page,
647 						      dma_sync_size);
648 
649 		if (allow_direct && in_softirq() &&
650 		    page_pool_recycle_in_cache(page, pool))
651 			return NULL;
652 
653 		/* Page found as candidate for recycling */
654 		return page;
655 	}
656 	/* Fallback/non-XDP mode: API user have elevated refcnt.
657 	 *
658 	 * Many drivers split up the page into fragments, and some
659 	 * want to keep doing this to save memory and do refcnt based
660 	 * recycling. Support this use case too, to ease drivers
661 	 * switching between XDP/non-XDP.
662 	 *
663 	 * In-case page_pool maintains the DMA mapping, API user must
664 	 * call page_pool_put_page once.  In this elevated refcnt
665 	 * case, the DMA is unmapped/released, as driver is likely
666 	 * doing refcnt based recycle tricks, meaning another process
667 	 * will be invoking put_page.
668 	 */
669 	recycle_stat_inc(pool, released_refcnt);
670 	page_pool_return_page(pool, page);
671 
672 	return NULL;
673 }
674 
675 void page_pool_put_defragged_page(struct page_pool *pool, struct page *page,
676 				  unsigned int dma_sync_size, bool allow_direct)
677 {
678 	page = __page_pool_put_page(pool, page, dma_sync_size, allow_direct);
679 	if (page && !page_pool_recycle_in_ring(pool, page)) {
680 		/* Cache full, fallback to free pages */
681 		recycle_stat_inc(pool, ring_full);
682 		page_pool_return_page(pool, page);
683 	}
684 }
685 EXPORT_SYMBOL(page_pool_put_defragged_page);
686 
687 /**
688  * page_pool_put_page_bulk() - release references on multiple pages
689  * @pool:	pool from which pages were allocated
690  * @data:	array holding page pointers
691  * @count:	number of pages in @data
692  *
693  * Tries to refill a number of pages into the ptr_ring cache holding ptr_ring
694  * producer lock. If the ptr_ring is full, page_pool_put_page_bulk()
695  * will release leftover pages to the page allocator.
696  * page_pool_put_page_bulk() is suitable to be run inside the driver NAPI tx
697  * completion loop for the XDP_REDIRECT use case.
698  *
699  * Please note the caller must not use data area after running
700  * page_pool_put_page_bulk(), as this function overwrites it.
701  */
702 void page_pool_put_page_bulk(struct page_pool *pool, void **data,
703 			     int count)
704 {
705 	int i, bulk_len = 0;
706 	bool in_softirq;
707 
708 	for (i = 0; i < count; i++) {
709 		struct page *page = virt_to_head_page(data[i]);
710 
711 		/* It is not the last user for the page frag case */
712 		if (!page_pool_is_last_frag(page))
713 			continue;
714 
715 		page = __page_pool_put_page(pool, page, -1, false);
716 		/* Approved for bulk recycling in ptr_ring cache */
717 		if (page)
718 			data[bulk_len++] = page;
719 	}
720 
721 	if (unlikely(!bulk_len))
722 		return;
723 
724 	/* Bulk producer into ptr_ring page_pool cache */
725 	in_softirq = page_pool_producer_lock(pool);
726 	for (i = 0; i < bulk_len; i++) {
727 		if (__ptr_ring_produce(&pool->ring, data[i])) {
728 			/* ring full */
729 			recycle_stat_inc(pool, ring_full);
730 			break;
731 		}
732 	}
733 	recycle_stat_add(pool, ring, i);
734 	page_pool_producer_unlock(pool, in_softirq);
735 
736 	/* Hopefully all pages was return into ptr_ring */
737 	if (likely(i == bulk_len))
738 		return;
739 
740 	/* ptr_ring cache full, free remaining pages outside producer lock
741 	 * since put_page() with refcnt == 1 can be an expensive operation
742 	 */
743 	for (; i < bulk_len; i++)
744 		page_pool_return_page(pool, data[i]);
745 }
746 EXPORT_SYMBOL(page_pool_put_page_bulk);
747 
748 static struct page *page_pool_drain_frag(struct page_pool *pool,
749 					 struct page *page)
750 {
751 	long drain_count = BIAS_MAX - pool->frag_users;
752 
753 	/* Some user is still using the page frag */
754 	if (likely(page_pool_defrag_page(page, drain_count)))
755 		return NULL;
756 
757 	if (page_ref_count(page) == 1 && !page_is_pfmemalloc(page)) {
758 		if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
759 			page_pool_dma_sync_for_device(pool, page, -1);
760 
761 		return page;
762 	}
763 
764 	page_pool_return_page(pool, page);
765 	return NULL;
766 }
767 
768 static void page_pool_free_frag(struct page_pool *pool)
769 {
770 	long drain_count = BIAS_MAX - pool->frag_users;
771 	struct page *page = pool->frag_page;
772 
773 	pool->frag_page = NULL;
774 
775 	if (!page || page_pool_defrag_page(page, drain_count))
776 		return;
777 
778 	page_pool_return_page(pool, page);
779 }
780 
781 struct page *page_pool_alloc_frag(struct page_pool *pool,
782 				  unsigned int *offset,
783 				  unsigned int size, gfp_t gfp)
784 {
785 	unsigned int max_size = PAGE_SIZE << pool->p.order;
786 	struct page *page = pool->frag_page;
787 
788 	if (WARN_ON(size > max_size))
789 		return NULL;
790 
791 	size = ALIGN(size, dma_get_cache_alignment());
792 	*offset = pool->frag_offset;
793 
794 	if (page && *offset + size > max_size) {
795 		page = page_pool_drain_frag(pool, page);
796 		if (page) {
797 			alloc_stat_inc(pool, fast);
798 			goto frag_reset;
799 		}
800 	}
801 
802 	if (!page) {
803 		page = page_pool_alloc_pages(pool, gfp);
804 		if (unlikely(!page)) {
805 			pool->frag_page = NULL;
806 			return NULL;
807 		}
808 
809 		pool->frag_page = page;
810 
811 frag_reset:
812 		pool->frag_users = 1;
813 		*offset = 0;
814 		pool->frag_offset = size;
815 		page_pool_fragment_page(page, BIAS_MAX);
816 		return page;
817 	}
818 
819 	pool->frag_users++;
820 	pool->frag_offset = *offset + size;
821 	alloc_stat_inc(pool, fast);
822 	return page;
823 }
824 EXPORT_SYMBOL(page_pool_alloc_frag);
825 
826 static void page_pool_empty_ring(struct page_pool *pool)
827 {
828 	struct page *page;
829 
830 	/* Empty recycle ring */
831 	while ((page = ptr_ring_consume_bh(&pool->ring))) {
832 		/* Verify the refcnt invariant of cached pages */
833 		if (!(page_ref_count(page) == 1))
834 			pr_crit("%s() page_pool refcnt %d violation\n",
835 				__func__, page_ref_count(page));
836 
837 		page_pool_return_page(pool, page);
838 	}
839 }
840 
841 static void __page_pool_destroy(struct page_pool *pool)
842 {
843 	if (pool->disconnect)
844 		pool->disconnect(pool);
845 
846 	page_pool_unlist(pool);
847 	page_pool_uninit(pool);
848 	kfree(pool);
849 }
850 
851 static void page_pool_empty_alloc_cache_once(struct page_pool *pool)
852 {
853 	struct page *page;
854 
855 	if (pool->destroy_cnt)
856 		return;
857 
858 	/* Empty alloc cache, assume caller made sure this is
859 	 * no-longer in use, and page_pool_alloc_pages() cannot be
860 	 * call concurrently.
861 	 */
862 	while (pool->alloc.count) {
863 		page = pool->alloc.cache[--pool->alloc.count];
864 		page_pool_return_page(pool, page);
865 	}
866 }
867 
868 static void page_pool_scrub(struct page_pool *pool)
869 {
870 	page_pool_empty_alloc_cache_once(pool);
871 	pool->destroy_cnt++;
872 
873 	/* No more consumers should exist, but producers could still
874 	 * be in-flight.
875 	 */
876 	page_pool_empty_ring(pool);
877 }
878 
879 static int page_pool_release(struct page_pool *pool)
880 {
881 	int inflight;
882 
883 	page_pool_scrub(pool);
884 	inflight = page_pool_inflight(pool);
885 	if (!inflight)
886 		__page_pool_destroy(pool);
887 
888 	return inflight;
889 }
890 
891 static void page_pool_release_retry(struct work_struct *wq)
892 {
893 	struct delayed_work *dwq = to_delayed_work(wq);
894 	struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw);
895 	int inflight;
896 
897 	inflight = page_pool_release(pool);
898 	if (!inflight)
899 		return;
900 
901 	/* Periodic warning */
902 	if (time_after_eq(jiffies, pool->defer_warn)) {
903 		int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ;
904 
905 		pr_warn("%s() stalled pool shutdown %d inflight %d sec\n",
906 			__func__, inflight, sec);
907 		pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
908 	}
909 
910 	/* Still not ready to be disconnected, retry later */
911 	schedule_delayed_work(&pool->release_dw, DEFER_TIME);
912 }
913 
914 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *),
915 			   struct xdp_mem_info *mem)
916 {
917 	refcount_inc(&pool->user_cnt);
918 	pool->disconnect = disconnect;
919 	pool->xdp_mem_id = mem->id;
920 }
921 
922 void page_pool_unlink_napi(struct page_pool *pool)
923 {
924 	if (!pool->p.napi)
925 		return;
926 
927 	/* To avoid races with recycling and additional barriers make sure
928 	 * pool and NAPI are unlinked when NAPI is disabled.
929 	 */
930 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &pool->p.napi->state) ||
931 		READ_ONCE(pool->p.napi->list_owner) != -1);
932 
933 	WRITE_ONCE(pool->p.napi, NULL);
934 }
935 EXPORT_SYMBOL(page_pool_unlink_napi);
936 
937 void page_pool_destroy(struct page_pool *pool)
938 {
939 	if (!pool)
940 		return;
941 
942 	if (!page_pool_put(pool))
943 		return;
944 
945 	page_pool_unlink_napi(pool);
946 	page_pool_free_frag(pool);
947 
948 	if (!page_pool_release(pool))
949 		return;
950 
951 	pool->defer_start = jiffies;
952 	pool->defer_warn  = jiffies + DEFER_WARN_INTERVAL;
953 
954 	INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry);
955 	schedule_delayed_work(&pool->release_dw, DEFER_TIME);
956 }
957 EXPORT_SYMBOL(page_pool_destroy);
958 
959 /* Caller must provide appropriate safe context, e.g. NAPI. */
960 void page_pool_update_nid(struct page_pool *pool, int new_nid)
961 {
962 	struct page *page;
963 
964 	trace_page_pool_update_nid(pool, new_nid);
965 	pool->p.nid = new_nid;
966 
967 	/* Flush pool alloc cache, as refill will check NUMA node */
968 	while (pool->alloc.count) {
969 		page = pool->alloc.cache[--pool->alloc.count];
970 		page_pool_return_page(pool, page);
971 	}
972 }
973 EXPORT_SYMBOL(page_pool_update_nid);
974