xref: /linux/net/core/page_pool.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * page_pool.c
4  *	Author:	Jesper Dangaard Brouer <netoptimizer@brouer.com>
5  *	Copyright (C) 2016 Red Hat, Inc.
6  */
7 
8 #include <linux/types.h>
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/device.h>
12 
13 #include <net/page_pool/helpers.h>
14 #include <net/xdp.h>
15 
16 #include <linux/dma-direction.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/page-flags.h>
19 #include <linux/mm.h> /* for put_page() */
20 #include <linux/poison.h>
21 #include <linux/ethtool.h>
22 #include <linux/netdevice.h>
23 
24 #include <trace/events/page_pool.h>
25 
26 #include "page_pool_priv.h"
27 
28 #define DEFER_TIME (msecs_to_jiffies(1000))
29 #define DEFER_WARN_INTERVAL (60 * HZ)
30 
31 #define BIAS_MAX	(LONG_MAX >> 1)
32 
33 #ifdef CONFIG_PAGE_POOL_STATS
34 static DEFINE_PER_CPU(struct page_pool_recycle_stats, pp_system_recycle_stats);
35 
36 /* alloc_stat_inc is intended to be used in softirq context */
37 #define alloc_stat_inc(pool, __stat)	(pool->alloc_stats.__stat++)
38 /* recycle_stat_inc is safe to use when preemption is possible. */
39 #define recycle_stat_inc(pool, __stat)							\
40 	do {										\
41 		struct page_pool_recycle_stats __percpu *s = pool->recycle_stats;	\
42 		this_cpu_inc(s->__stat);						\
43 	} while (0)
44 
45 #define recycle_stat_add(pool, __stat, val)						\
46 	do {										\
47 		struct page_pool_recycle_stats __percpu *s = pool->recycle_stats;	\
48 		this_cpu_add(s->__stat, val);						\
49 	} while (0)
50 
51 static const char pp_stats[][ETH_GSTRING_LEN] = {
52 	"rx_pp_alloc_fast",
53 	"rx_pp_alloc_slow",
54 	"rx_pp_alloc_slow_ho",
55 	"rx_pp_alloc_empty",
56 	"rx_pp_alloc_refill",
57 	"rx_pp_alloc_waive",
58 	"rx_pp_recycle_cached",
59 	"rx_pp_recycle_cache_full",
60 	"rx_pp_recycle_ring",
61 	"rx_pp_recycle_ring_full",
62 	"rx_pp_recycle_released_ref",
63 };
64 
65 /**
66  * page_pool_get_stats() - fetch page pool stats
67  * @pool:	pool from which page was allocated
68  * @stats:	struct page_pool_stats to fill in
69  *
70  * Retrieve statistics about the page_pool. This API is only available
71  * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``.
72  * A pointer to a caller allocated struct page_pool_stats structure
73  * is passed to this API which is filled in. The caller can then report
74  * those stats to the user (perhaps via ethtool, debugfs, etc.).
75  */
76 bool page_pool_get_stats(const struct page_pool *pool,
77 			 struct page_pool_stats *stats)
78 {
79 	int cpu = 0;
80 
81 	if (!stats)
82 		return false;
83 
84 	/* The caller is responsible to initialize stats. */
85 	stats->alloc_stats.fast += pool->alloc_stats.fast;
86 	stats->alloc_stats.slow += pool->alloc_stats.slow;
87 	stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order;
88 	stats->alloc_stats.empty += pool->alloc_stats.empty;
89 	stats->alloc_stats.refill += pool->alloc_stats.refill;
90 	stats->alloc_stats.waive += pool->alloc_stats.waive;
91 
92 	for_each_possible_cpu(cpu) {
93 		const struct page_pool_recycle_stats *pcpu =
94 			per_cpu_ptr(pool->recycle_stats, cpu);
95 
96 		stats->recycle_stats.cached += pcpu->cached;
97 		stats->recycle_stats.cache_full += pcpu->cache_full;
98 		stats->recycle_stats.ring += pcpu->ring;
99 		stats->recycle_stats.ring_full += pcpu->ring_full;
100 		stats->recycle_stats.released_refcnt += pcpu->released_refcnt;
101 	}
102 
103 	return true;
104 }
105 EXPORT_SYMBOL(page_pool_get_stats);
106 
107 u8 *page_pool_ethtool_stats_get_strings(u8 *data)
108 {
109 	int i;
110 
111 	for (i = 0; i < ARRAY_SIZE(pp_stats); i++) {
112 		memcpy(data, pp_stats[i], ETH_GSTRING_LEN);
113 		data += ETH_GSTRING_LEN;
114 	}
115 
116 	return data;
117 }
118 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings);
119 
120 int page_pool_ethtool_stats_get_count(void)
121 {
122 	return ARRAY_SIZE(pp_stats);
123 }
124 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count);
125 
126 u64 *page_pool_ethtool_stats_get(u64 *data, void *stats)
127 {
128 	struct page_pool_stats *pool_stats = stats;
129 
130 	*data++ = pool_stats->alloc_stats.fast;
131 	*data++ = pool_stats->alloc_stats.slow;
132 	*data++ = pool_stats->alloc_stats.slow_high_order;
133 	*data++ = pool_stats->alloc_stats.empty;
134 	*data++ = pool_stats->alloc_stats.refill;
135 	*data++ = pool_stats->alloc_stats.waive;
136 	*data++ = pool_stats->recycle_stats.cached;
137 	*data++ = pool_stats->recycle_stats.cache_full;
138 	*data++ = pool_stats->recycle_stats.ring;
139 	*data++ = pool_stats->recycle_stats.ring_full;
140 	*data++ = pool_stats->recycle_stats.released_refcnt;
141 
142 	return data;
143 }
144 EXPORT_SYMBOL(page_pool_ethtool_stats_get);
145 
146 #else
147 #define alloc_stat_inc(pool, __stat)
148 #define recycle_stat_inc(pool, __stat)
149 #define recycle_stat_add(pool, __stat, val)
150 #endif
151 
152 static bool page_pool_producer_lock(struct page_pool *pool)
153 	__acquires(&pool->ring.producer_lock)
154 {
155 	bool in_softirq = in_softirq();
156 
157 	if (in_softirq)
158 		spin_lock(&pool->ring.producer_lock);
159 	else
160 		spin_lock_bh(&pool->ring.producer_lock);
161 
162 	return in_softirq;
163 }
164 
165 static void page_pool_producer_unlock(struct page_pool *pool,
166 				      bool in_softirq)
167 	__releases(&pool->ring.producer_lock)
168 {
169 	if (in_softirq)
170 		spin_unlock(&pool->ring.producer_lock);
171 	else
172 		spin_unlock_bh(&pool->ring.producer_lock);
173 }
174 
175 static int page_pool_init(struct page_pool *pool,
176 			  const struct page_pool_params *params,
177 			  int cpuid)
178 {
179 	unsigned int ring_qsize = 1024; /* Default */
180 
181 	memcpy(&pool->p, &params->fast, sizeof(pool->p));
182 	memcpy(&pool->slow, &params->slow, sizeof(pool->slow));
183 
184 	pool->cpuid = cpuid;
185 
186 	/* Validate only known flags were used */
187 	if (pool->p.flags & ~(PP_FLAG_ALL))
188 		return -EINVAL;
189 
190 	if (pool->p.pool_size)
191 		ring_qsize = pool->p.pool_size;
192 
193 	/* Sanity limit mem that can be pinned down */
194 	if (ring_qsize > 32768)
195 		return -E2BIG;
196 
197 	/* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
198 	 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
199 	 * which is the XDP_TX use-case.
200 	 */
201 	if (pool->p.flags & PP_FLAG_DMA_MAP) {
202 		if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
203 		    (pool->p.dma_dir != DMA_BIDIRECTIONAL))
204 			return -EINVAL;
205 	}
206 
207 	if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) {
208 		/* In order to request DMA-sync-for-device the page
209 		 * needs to be mapped
210 		 */
211 		if (!(pool->p.flags & PP_FLAG_DMA_MAP))
212 			return -EINVAL;
213 
214 		if (!pool->p.max_len)
215 			return -EINVAL;
216 
217 		/* pool->p.offset has to be set according to the address
218 		 * offset used by the DMA engine to start copying rx data
219 		 */
220 	}
221 
222 	pool->has_init_callback = !!pool->slow.init_callback;
223 
224 #ifdef CONFIG_PAGE_POOL_STATS
225 	if (!(pool->p.flags & PP_FLAG_SYSTEM_POOL)) {
226 		pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats);
227 		if (!pool->recycle_stats)
228 			return -ENOMEM;
229 	} else {
230 		/* For system page pool instance we use a singular stats object
231 		 * instead of allocating a separate percpu variable for each
232 		 * (also percpu) page pool instance.
233 		 */
234 		pool->recycle_stats = &pp_system_recycle_stats;
235 	}
236 #endif
237 
238 	if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) {
239 #ifdef CONFIG_PAGE_POOL_STATS
240 		if (!(pool->p.flags & PP_FLAG_SYSTEM_POOL))
241 			free_percpu(pool->recycle_stats);
242 #endif
243 		return -ENOMEM;
244 	}
245 
246 	atomic_set(&pool->pages_state_release_cnt, 0);
247 
248 	/* Driver calling page_pool_create() also call page_pool_destroy() */
249 	refcount_set(&pool->user_cnt, 1);
250 
251 	if (pool->p.flags & PP_FLAG_DMA_MAP)
252 		get_device(pool->p.dev);
253 
254 	return 0;
255 }
256 
257 static void page_pool_uninit(struct page_pool *pool)
258 {
259 	ptr_ring_cleanup(&pool->ring, NULL);
260 
261 	if (pool->p.flags & PP_FLAG_DMA_MAP)
262 		put_device(pool->p.dev);
263 
264 #ifdef CONFIG_PAGE_POOL_STATS
265 	if (!(pool->p.flags & PP_FLAG_SYSTEM_POOL))
266 		free_percpu(pool->recycle_stats);
267 #endif
268 }
269 
270 /**
271  * page_pool_create_percpu() - create a page pool for a given cpu.
272  * @params: parameters, see struct page_pool_params
273  * @cpuid: cpu identifier
274  */
275 struct page_pool *
276 page_pool_create_percpu(const struct page_pool_params *params, int cpuid)
277 {
278 	struct page_pool *pool;
279 	int err;
280 
281 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
282 	if (!pool)
283 		return ERR_PTR(-ENOMEM);
284 
285 	err = page_pool_init(pool, params, cpuid);
286 	if (err < 0)
287 		goto err_free;
288 
289 	err = page_pool_list(pool);
290 	if (err)
291 		goto err_uninit;
292 
293 	return pool;
294 
295 err_uninit:
296 	page_pool_uninit(pool);
297 err_free:
298 	pr_warn("%s() gave up with errno %d\n", __func__, err);
299 	kfree(pool);
300 	return ERR_PTR(err);
301 }
302 EXPORT_SYMBOL(page_pool_create_percpu);
303 
304 /**
305  * page_pool_create() - create a page pool
306  * @params: parameters, see struct page_pool_params
307  */
308 struct page_pool *page_pool_create(const struct page_pool_params *params)
309 {
310 	return page_pool_create_percpu(params, -1);
311 }
312 EXPORT_SYMBOL(page_pool_create);
313 
314 static void page_pool_return_page(struct page_pool *pool, struct page *page);
315 
316 noinline
317 static struct page *page_pool_refill_alloc_cache(struct page_pool *pool)
318 {
319 	struct ptr_ring *r = &pool->ring;
320 	struct page *page;
321 	int pref_nid; /* preferred NUMA node */
322 
323 	/* Quicker fallback, avoid locks when ring is empty */
324 	if (__ptr_ring_empty(r)) {
325 		alloc_stat_inc(pool, empty);
326 		return NULL;
327 	}
328 
329 	/* Softirq guarantee CPU and thus NUMA node is stable. This,
330 	 * assumes CPU refilling driver RX-ring will also run RX-NAPI.
331 	 */
332 #ifdef CONFIG_NUMA
333 	pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid;
334 #else
335 	/* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */
336 	pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */
337 #endif
338 
339 	/* Refill alloc array, but only if NUMA match */
340 	do {
341 		page = __ptr_ring_consume(r);
342 		if (unlikely(!page))
343 			break;
344 
345 		if (likely(page_to_nid(page) == pref_nid)) {
346 			pool->alloc.cache[pool->alloc.count++] = page;
347 		} else {
348 			/* NUMA mismatch;
349 			 * (1) release 1 page to page-allocator and
350 			 * (2) break out to fallthrough to alloc_pages_node.
351 			 * This limit stress on page buddy alloactor.
352 			 */
353 			page_pool_return_page(pool, page);
354 			alloc_stat_inc(pool, waive);
355 			page = NULL;
356 			break;
357 		}
358 	} while (pool->alloc.count < PP_ALLOC_CACHE_REFILL);
359 
360 	/* Return last page */
361 	if (likely(pool->alloc.count > 0)) {
362 		page = pool->alloc.cache[--pool->alloc.count];
363 		alloc_stat_inc(pool, refill);
364 	}
365 
366 	return page;
367 }
368 
369 /* fast path */
370 static struct page *__page_pool_get_cached(struct page_pool *pool)
371 {
372 	struct page *page;
373 
374 	/* Caller MUST guarantee safe non-concurrent access, e.g. softirq */
375 	if (likely(pool->alloc.count)) {
376 		/* Fast-path */
377 		page = pool->alloc.cache[--pool->alloc.count];
378 		alloc_stat_inc(pool, fast);
379 	} else {
380 		page = page_pool_refill_alloc_cache(pool);
381 	}
382 
383 	return page;
384 }
385 
386 static void page_pool_dma_sync_for_device(struct page_pool *pool,
387 					  struct page *page,
388 					  unsigned int dma_sync_size)
389 {
390 	dma_addr_t dma_addr = page_pool_get_dma_addr(page);
391 
392 	dma_sync_size = min(dma_sync_size, pool->p.max_len);
393 	dma_sync_single_range_for_device(pool->p.dev, dma_addr,
394 					 pool->p.offset, dma_sync_size,
395 					 pool->p.dma_dir);
396 }
397 
398 static bool page_pool_dma_map(struct page_pool *pool, struct page *page)
399 {
400 	dma_addr_t dma;
401 
402 	/* Setup DMA mapping: use 'struct page' area for storing DMA-addr
403 	 * since dma_addr_t can be either 32 or 64 bits and does not always fit
404 	 * into page private data (i.e 32bit cpu with 64bit DMA caps)
405 	 * This mapping is kept for lifetime of page, until leaving pool.
406 	 */
407 	dma = dma_map_page_attrs(pool->p.dev, page, 0,
408 				 (PAGE_SIZE << pool->p.order),
409 				 pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC |
410 						  DMA_ATTR_WEAK_ORDERING);
411 	if (dma_mapping_error(pool->p.dev, dma))
412 		return false;
413 
414 	if (page_pool_set_dma_addr(page, dma))
415 		goto unmap_failed;
416 
417 	if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
418 		page_pool_dma_sync_for_device(pool, page, pool->p.max_len);
419 
420 	return true;
421 
422 unmap_failed:
423 	WARN_ON_ONCE("unexpected DMA address, please report to netdev@");
424 	dma_unmap_page_attrs(pool->p.dev, dma,
425 			     PAGE_SIZE << pool->p.order, pool->p.dma_dir,
426 			     DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
427 	return false;
428 }
429 
430 static void page_pool_set_pp_info(struct page_pool *pool,
431 				  struct page *page)
432 {
433 	page->pp = pool;
434 	page->pp_magic |= PP_SIGNATURE;
435 
436 	/* Ensuring all pages have been split into one fragment initially:
437 	 * page_pool_set_pp_info() is only called once for every page when it
438 	 * is allocated from the page allocator and page_pool_fragment_page()
439 	 * is dirtying the same cache line as the page->pp_magic above, so
440 	 * the overhead is negligible.
441 	 */
442 	page_pool_fragment_page(page, 1);
443 	if (pool->has_init_callback)
444 		pool->slow.init_callback(page, pool->slow.init_arg);
445 }
446 
447 static void page_pool_clear_pp_info(struct page *page)
448 {
449 	page->pp_magic = 0;
450 	page->pp = NULL;
451 }
452 
453 static struct page *__page_pool_alloc_page_order(struct page_pool *pool,
454 						 gfp_t gfp)
455 {
456 	struct page *page;
457 
458 	gfp |= __GFP_COMP;
459 	page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
460 	if (unlikely(!page))
461 		return NULL;
462 
463 	if ((pool->p.flags & PP_FLAG_DMA_MAP) &&
464 	    unlikely(!page_pool_dma_map(pool, page))) {
465 		put_page(page);
466 		return NULL;
467 	}
468 
469 	alloc_stat_inc(pool, slow_high_order);
470 	page_pool_set_pp_info(pool, page);
471 
472 	/* Track how many pages are held 'in-flight' */
473 	pool->pages_state_hold_cnt++;
474 	trace_page_pool_state_hold(pool, page, pool->pages_state_hold_cnt);
475 	return page;
476 }
477 
478 /* slow path */
479 noinline
480 static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool,
481 						 gfp_t gfp)
482 {
483 	const int bulk = PP_ALLOC_CACHE_REFILL;
484 	unsigned int pp_flags = pool->p.flags;
485 	unsigned int pp_order = pool->p.order;
486 	struct page *page;
487 	int i, nr_pages;
488 
489 	/* Don't support bulk alloc for high-order pages */
490 	if (unlikely(pp_order))
491 		return __page_pool_alloc_page_order(pool, gfp);
492 
493 	/* Unnecessary as alloc cache is empty, but guarantees zero count */
494 	if (unlikely(pool->alloc.count > 0))
495 		return pool->alloc.cache[--pool->alloc.count];
496 
497 	/* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */
498 	memset(&pool->alloc.cache, 0, sizeof(void *) * bulk);
499 
500 	nr_pages = alloc_pages_bulk_array_node(gfp, pool->p.nid, bulk,
501 					       pool->alloc.cache);
502 	if (unlikely(!nr_pages))
503 		return NULL;
504 
505 	/* Pages have been filled into alloc.cache array, but count is zero and
506 	 * page element have not been (possibly) DMA mapped.
507 	 */
508 	for (i = 0; i < nr_pages; i++) {
509 		page = pool->alloc.cache[i];
510 		if ((pp_flags & PP_FLAG_DMA_MAP) &&
511 		    unlikely(!page_pool_dma_map(pool, page))) {
512 			put_page(page);
513 			continue;
514 		}
515 
516 		page_pool_set_pp_info(pool, page);
517 		pool->alloc.cache[pool->alloc.count++] = page;
518 		/* Track how many pages are held 'in-flight' */
519 		pool->pages_state_hold_cnt++;
520 		trace_page_pool_state_hold(pool, page,
521 					   pool->pages_state_hold_cnt);
522 	}
523 
524 	/* Return last page */
525 	if (likely(pool->alloc.count > 0)) {
526 		page = pool->alloc.cache[--pool->alloc.count];
527 		alloc_stat_inc(pool, slow);
528 	} else {
529 		page = NULL;
530 	}
531 
532 	/* When page just alloc'ed is should/must have refcnt 1. */
533 	return page;
534 }
535 
536 /* For using page_pool replace: alloc_pages() API calls, but provide
537  * synchronization guarantee for allocation side.
538  */
539 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
540 {
541 	struct page *page;
542 
543 	/* Fast-path: Get a page from cache */
544 	page = __page_pool_get_cached(pool);
545 	if (page)
546 		return page;
547 
548 	/* Slow-path: cache empty, do real allocation */
549 	page = __page_pool_alloc_pages_slow(pool, gfp);
550 	return page;
551 }
552 EXPORT_SYMBOL(page_pool_alloc_pages);
553 
554 /* Calculate distance between two u32 values, valid if distance is below 2^(31)
555  *  https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution
556  */
557 #define _distance(a, b)	(s32)((a) - (b))
558 
559 s32 page_pool_inflight(const struct page_pool *pool, bool strict)
560 {
561 	u32 release_cnt = atomic_read(&pool->pages_state_release_cnt);
562 	u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt);
563 	s32 inflight;
564 
565 	inflight = _distance(hold_cnt, release_cnt);
566 
567 	if (strict) {
568 		trace_page_pool_release(pool, inflight, hold_cnt, release_cnt);
569 		WARN(inflight < 0, "Negative(%d) inflight packet-pages",
570 		     inflight);
571 	} else {
572 		inflight = max(0, inflight);
573 	}
574 
575 	return inflight;
576 }
577 
578 static __always_inline
579 void __page_pool_release_page_dma(struct page_pool *pool, struct page *page)
580 {
581 	dma_addr_t dma;
582 
583 	if (!(pool->p.flags & PP_FLAG_DMA_MAP))
584 		/* Always account for inflight pages, even if we didn't
585 		 * map them
586 		 */
587 		return;
588 
589 	dma = page_pool_get_dma_addr(page);
590 
591 	/* When page is unmapped, it cannot be returned to our pool */
592 	dma_unmap_page_attrs(pool->p.dev, dma,
593 			     PAGE_SIZE << pool->p.order, pool->p.dma_dir,
594 			     DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
595 	page_pool_set_dma_addr(page, 0);
596 }
597 
598 /* Disconnects a page (from a page_pool).  API users can have a need
599  * to disconnect a page (from a page_pool), to allow it to be used as
600  * a regular page (that will eventually be returned to the normal
601  * page-allocator via put_page).
602  */
603 void page_pool_return_page(struct page_pool *pool, struct page *page)
604 {
605 	int count;
606 
607 	__page_pool_release_page_dma(pool, page);
608 
609 	page_pool_clear_pp_info(page);
610 
611 	/* This may be the last page returned, releasing the pool, so
612 	 * it is not safe to reference pool afterwards.
613 	 */
614 	count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt);
615 	trace_page_pool_state_release(pool, page, count);
616 
617 	put_page(page);
618 	/* An optimization would be to call __free_pages(page, pool->p.order)
619 	 * knowing page is not part of page-cache (thus avoiding a
620 	 * __page_cache_release() call).
621 	 */
622 }
623 
624 static bool page_pool_recycle_in_ring(struct page_pool *pool, struct page *page)
625 {
626 	int ret;
627 	/* BH protection not needed if current is softirq */
628 	if (in_softirq())
629 		ret = ptr_ring_produce(&pool->ring, page);
630 	else
631 		ret = ptr_ring_produce_bh(&pool->ring, page);
632 
633 	if (!ret) {
634 		recycle_stat_inc(pool, ring);
635 		return true;
636 	}
637 
638 	return false;
639 }
640 
641 /* Only allow direct recycling in special circumstances, into the
642  * alloc side cache.  E.g. during RX-NAPI processing for XDP_DROP use-case.
643  *
644  * Caller must provide appropriate safe context.
645  */
646 static bool page_pool_recycle_in_cache(struct page *page,
647 				       struct page_pool *pool)
648 {
649 	if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) {
650 		recycle_stat_inc(pool, cache_full);
651 		return false;
652 	}
653 
654 	/* Caller MUST have verified/know (page_ref_count(page) == 1) */
655 	pool->alloc.cache[pool->alloc.count++] = page;
656 	recycle_stat_inc(pool, cached);
657 	return true;
658 }
659 
660 static bool __page_pool_page_can_be_recycled(const struct page *page)
661 {
662 	return page_ref_count(page) == 1 && !page_is_pfmemalloc(page);
663 }
664 
665 /* If the page refcnt == 1, this will try to recycle the page.
666  * if PP_FLAG_DMA_SYNC_DEV is set, we'll try to sync the DMA area for
667  * the configured size min(dma_sync_size, pool->max_len).
668  * If the page refcnt != 1, then the page will be returned to memory
669  * subsystem.
670  */
671 static __always_inline struct page *
672 __page_pool_put_page(struct page_pool *pool, struct page *page,
673 		     unsigned int dma_sync_size, bool allow_direct)
674 {
675 	lockdep_assert_no_hardirq();
676 
677 	/* This allocator is optimized for the XDP mode that uses
678 	 * one-frame-per-page, but have fallbacks that act like the
679 	 * regular page allocator APIs.
680 	 *
681 	 * refcnt == 1 means page_pool owns page, and can recycle it.
682 	 *
683 	 * page is NOT reusable when allocated when system is under
684 	 * some pressure. (page_is_pfmemalloc)
685 	 */
686 	if (likely(__page_pool_page_can_be_recycled(page))) {
687 		/* Read barrier done in page_ref_count / READ_ONCE */
688 
689 		if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
690 			page_pool_dma_sync_for_device(pool, page,
691 						      dma_sync_size);
692 
693 		if (allow_direct && in_softirq() &&
694 		    page_pool_recycle_in_cache(page, pool))
695 			return NULL;
696 
697 		/* Page found as candidate for recycling */
698 		return page;
699 	}
700 	/* Fallback/non-XDP mode: API user have elevated refcnt.
701 	 *
702 	 * Many drivers split up the page into fragments, and some
703 	 * want to keep doing this to save memory and do refcnt based
704 	 * recycling. Support this use case too, to ease drivers
705 	 * switching between XDP/non-XDP.
706 	 *
707 	 * In-case page_pool maintains the DMA mapping, API user must
708 	 * call page_pool_put_page once.  In this elevated refcnt
709 	 * case, the DMA is unmapped/released, as driver is likely
710 	 * doing refcnt based recycle tricks, meaning another process
711 	 * will be invoking put_page.
712 	 */
713 	recycle_stat_inc(pool, released_refcnt);
714 	page_pool_return_page(pool, page);
715 
716 	return NULL;
717 }
718 
719 void page_pool_put_unrefed_page(struct page_pool *pool, struct page *page,
720 				unsigned int dma_sync_size, bool allow_direct)
721 {
722 	page = __page_pool_put_page(pool, page, dma_sync_size, allow_direct);
723 	if (page && !page_pool_recycle_in_ring(pool, page)) {
724 		/* Cache full, fallback to free pages */
725 		recycle_stat_inc(pool, ring_full);
726 		page_pool_return_page(pool, page);
727 	}
728 }
729 EXPORT_SYMBOL(page_pool_put_unrefed_page);
730 
731 /**
732  * page_pool_put_page_bulk() - release references on multiple pages
733  * @pool:	pool from which pages were allocated
734  * @data:	array holding page pointers
735  * @count:	number of pages in @data
736  *
737  * Tries to refill a number of pages into the ptr_ring cache holding ptr_ring
738  * producer lock. If the ptr_ring is full, page_pool_put_page_bulk()
739  * will release leftover pages to the page allocator.
740  * page_pool_put_page_bulk() is suitable to be run inside the driver NAPI tx
741  * completion loop for the XDP_REDIRECT use case.
742  *
743  * Please note the caller must not use data area after running
744  * page_pool_put_page_bulk(), as this function overwrites it.
745  */
746 void page_pool_put_page_bulk(struct page_pool *pool, void **data,
747 			     int count)
748 {
749 	int i, bulk_len = 0;
750 	bool in_softirq;
751 
752 	for (i = 0; i < count; i++) {
753 		struct page *page = virt_to_head_page(data[i]);
754 
755 		/* It is not the last user for the page frag case */
756 		if (!page_pool_is_last_ref(page))
757 			continue;
758 
759 		page = __page_pool_put_page(pool, page, -1, false);
760 		/* Approved for bulk recycling in ptr_ring cache */
761 		if (page)
762 			data[bulk_len++] = page;
763 	}
764 
765 	if (unlikely(!bulk_len))
766 		return;
767 
768 	/* Bulk producer into ptr_ring page_pool cache */
769 	in_softirq = page_pool_producer_lock(pool);
770 	for (i = 0; i < bulk_len; i++) {
771 		if (__ptr_ring_produce(&pool->ring, data[i])) {
772 			/* ring full */
773 			recycle_stat_inc(pool, ring_full);
774 			break;
775 		}
776 	}
777 	recycle_stat_add(pool, ring, i);
778 	page_pool_producer_unlock(pool, in_softirq);
779 
780 	/* Hopefully all pages was return into ptr_ring */
781 	if (likely(i == bulk_len))
782 		return;
783 
784 	/* ptr_ring cache full, free remaining pages outside producer lock
785 	 * since put_page() with refcnt == 1 can be an expensive operation
786 	 */
787 	for (; i < bulk_len; i++)
788 		page_pool_return_page(pool, data[i]);
789 }
790 EXPORT_SYMBOL(page_pool_put_page_bulk);
791 
792 static struct page *page_pool_drain_frag(struct page_pool *pool,
793 					 struct page *page)
794 {
795 	long drain_count = BIAS_MAX - pool->frag_users;
796 
797 	/* Some user is still using the page frag */
798 	if (likely(page_pool_unref_page(page, drain_count)))
799 		return NULL;
800 
801 	if (__page_pool_page_can_be_recycled(page)) {
802 		if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
803 			page_pool_dma_sync_for_device(pool, page, -1);
804 
805 		return page;
806 	}
807 
808 	page_pool_return_page(pool, page);
809 	return NULL;
810 }
811 
812 static void page_pool_free_frag(struct page_pool *pool)
813 {
814 	long drain_count = BIAS_MAX - pool->frag_users;
815 	struct page *page = pool->frag_page;
816 
817 	pool->frag_page = NULL;
818 
819 	if (!page || page_pool_unref_page(page, drain_count))
820 		return;
821 
822 	page_pool_return_page(pool, page);
823 }
824 
825 struct page *page_pool_alloc_frag(struct page_pool *pool,
826 				  unsigned int *offset,
827 				  unsigned int size, gfp_t gfp)
828 {
829 	unsigned int max_size = PAGE_SIZE << pool->p.order;
830 	struct page *page = pool->frag_page;
831 
832 	if (WARN_ON(size > max_size))
833 		return NULL;
834 
835 	size = ALIGN(size, dma_get_cache_alignment());
836 	*offset = pool->frag_offset;
837 
838 	if (page && *offset + size > max_size) {
839 		page = page_pool_drain_frag(pool, page);
840 		if (page) {
841 			alloc_stat_inc(pool, fast);
842 			goto frag_reset;
843 		}
844 	}
845 
846 	if (!page) {
847 		page = page_pool_alloc_pages(pool, gfp);
848 		if (unlikely(!page)) {
849 			pool->frag_page = NULL;
850 			return NULL;
851 		}
852 
853 		pool->frag_page = page;
854 
855 frag_reset:
856 		pool->frag_users = 1;
857 		*offset = 0;
858 		pool->frag_offset = size;
859 		page_pool_fragment_page(page, BIAS_MAX);
860 		return page;
861 	}
862 
863 	pool->frag_users++;
864 	pool->frag_offset = *offset + size;
865 	alloc_stat_inc(pool, fast);
866 	return page;
867 }
868 EXPORT_SYMBOL(page_pool_alloc_frag);
869 
870 static void page_pool_empty_ring(struct page_pool *pool)
871 {
872 	struct page *page;
873 
874 	/* Empty recycle ring */
875 	while ((page = ptr_ring_consume_bh(&pool->ring))) {
876 		/* Verify the refcnt invariant of cached pages */
877 		if (!(page_ref_count(page) == 1))
878 			pr_crit("%s() page_pool refcnt %d violation\n",
879 				__func__, page_ref_count(page));
880 
881 		page_pool_return_page(pool, page);
882 	}
883 }
884 
885 static void __page_pool_destroy(struct page_pool *pool)
886 {
887 	if (pool->disconnect)
888 		pool->disconnect(pool);
889 
890 	page_pool_unlist(pool);
891 	page_pool_uninit(pool);
892 	kfree(pool);
893 }
894 
895 static void page_pool_empty_alloc_cache_once(struct page_pool *pool)
896 {
897 	struct page *page;
898 
899 	if (pool->destroy_cnt)
900 		return;
901 
902 	/* Empty alloc cache, assume caller made sure this is
903 	 * no-longer in use, and page_pool_alloc_pages() cannot be
904 	 * call concurrently.
905 	 */
906 	while (pool->alloc.count) {
907 		page = pool->alloc.cache[--pool->alloc.count];
908 		page_pool_return_page(pool, page);
909 	}
910 }
911 
912 static void page_pool_scrub(struct page_pool *pool)
913 {
914 	page_pool_empty_alloc_cache_once(pool);
915 	pool->destroy_cnt++;
916 
917 	/* No more consumers should exist, but producers could still
918 	 * be in-flight.
919 	 */
920 	page_pool_empty_ring(pool);
921 }
922 
923 static int page_pool_release(struct page_pool *pool)
924 {
925 	int inflight;
926 
927 	page_pool_scrub(pool);
928 	inflight = page_pool_inflight(pool, true);
929 	if (!inflight)
930 		__page_pool_destroy(pool);
931 
932 	return inflight;
933 }
934 
935 static void page_pool_release_retry(struct work_struct *wq)
936 {
937 	struct delayed_work *dwq = to_delayed_work(wq);
938 	struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw);
939 	void *netdev;
940 	int inflight;
941 
942 	inflight = page_pool_release(pool);
943 	if (!inflight)
944 		return;
945 
946 	/* Periodic warning for page pools the user can't see */
947 	netdev = READ_ONCE(pool->slow.netdev);
948 	if (time_after_eq(jiffies, pool->defer_warn) &&
949 	    (!netdev || netdev == NET_PTR_POISON)) {
950 		int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ;
951 
952 		pr_warn("%s() stalled pool shutdown: id %u, %d inflight %d sec\n",
953 			__func__, pool->user.id, inflight, sec);
954 		pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
955 	}
956 
957 	/* Still not ready to be disconnected, retry later */
958 	schedule_delayed_work(&pool->release_dw, DEFER_TIME);
959 }
960 
961 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *),
962 			   struct xdp_mem_info *mem)
963 {
964 	refcount_inc(&pool->user_cnt);
965 	pool->disconnect = disconnect;
966 	pool->xdp_mem_id = mem->id;
967 }
968 
969 static void page_pool_disable_direct_recycling(struct page_pool *pool)
970 {
971 	/* Disable direct recycling based on pool->cpuid.
972 	 * Paired with READ_ONCE() in napi_pp_put_page().
973 	 */
974 	WRITE_ONCE(pool->cpuid, -1);
975 
976 	if (!pool->p.napi)
977 		return;
978 
979 	/* To avoid races with recycling and additional barriers make sure
980 	 * pool and NAPI are unlinked when NAPI is disabled.
981 	 */
982 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &pool->p.napi->state) ||
983 		READ_ONCE(pool->p.napi->list_owner) != -1);
984 
985 	WRITE_ONCE(pool->p.napi, NULL);
986 }
987 
988 void page_pool_destroy(struct page_pool *pool)
989 {
990 	if (!pool)
991 		return;
992 
993 	if (!page_pool_put(pool))
994 		return;
995 
996 	page_pool_disable_direct_recycling(pool);
997 	page_pool_free_frag(pool);
998 
999 	if (!page_pool_release(pool))
1000 		return;
1001 
1002 	page_pool_detached(pool);
1003 	pool->defer_start = jiffies;
1004 	pool->defer_warn  = jiffies + DEFER_WARN_INTERVAL;
1005 
1006 	INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry);
1007 	schedule_delayed_work(&pool->release_dw, DEFER_TIME);
1008 }
1009 EXPORT_SYMBOL(page_pool_destroy);
1010 
1011 /* Caller must provide appropriate safe context, e.g. NAPI. */
1012 void page_pool_update_nid(struct page_pool *pool, int new_nid)
1013 {
1014 	struct page *page;
1015 
1016 	trace_page_pool_update_nid(pool, new_nid);
1017 	pool->p.nid = new_nid;
1018 
1019 	/* Flush pool alloc cache, as refill will check NUMA node */
1020 	while (pool->alloc.count) {
1021 		page = pool->alloc.cache[--pool->alloc.count];
1022 		page_pool_return_page(pool, page);
1023 	}
1024 }
1025 EXPORT_SYMBOL(page_pool_update_nid);
1026