1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * page_pool.c 4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com> 5 * Copyright (C) 2016 Red Hat, Inc. 6 */ 7 8 #include <linux/error-injection.h> 9 #include <linux/types.h> 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/device.h> 13 14 #include <net/page_pool/helpers.h> 15 #include <net/xdp.h> 16 17 #include <linux/dma-direction.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/page-flags.h> 20 #include <linux/mm.h> /* for put_page() */ 21 #include <linux/poison.h> 22 #include <linux/ethtool.h> 23 #include <linux/netdevice.h> 24 25 #include <trace/events/page_pool.h> 26 27 #include "page_pool_priv.h" 28 29 #define DEFER_TIME (msecs_to_jiffies(1000)) 30 #define DEFER_WARN_INTERVAL (60 * HZ) 31 32 #define BIAS_MAX (LONG_MAX >> 1) 33 34 #ifdef CONFIG_PAGE_POOL_STATS 35 static DEFINE_PER_CPU(struct page_pool_recycle_stats, pp_system_recycle_stats); 36 37 /* alloc_stat_inc is intended to be used in softirq context */ 38 #define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++) 39 /* recycle_stat_inc is safe to use when preemption is possible. */ 40 #define recycle_stat_inc(pool, __stat) \ 41 do { \ 42 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 43 this_cpu_inc(s->__stat); \ 44 } while (0) 45 46 #define recycle_stat_add(pool, __stat, val) \ 47 do { \ 48 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 49 this_cpu_add(s->__stat, val); \ 50 } while (0) 51 52 static const char pp_stats[][ETH_GSTRING_LEN] = { 53 "rx_pp_alloc_fast", 54 "rx_pp_alloc_slow", 55 "rx_pp_alloc_slow_ho", 56 "rx_pp_alloc_empty", 57 "rx_pp_alloc_refill", 58 "rx_pp_alloc_waive", 59 "rx_pp_recycle_cached", 60 "rx_pp_recycle_cache_full", 61 "rx_pp_recycle_ring", 62 "rx_pp_recycle_ring_full", 63 "rx_pp_recycle_released_ref", 64 }; 65 66 /** 67 * page_pool_get_stats() - fetch page pool stats 68 * @pool: pool from which page was allocated 69 * @stats: struct page_pool_stats to fill in 70 * 71 * Retrieve statistics about the page_pool. This API is only available 72 * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``. 73 * A pointer to a caller allocated struct page_pool_stats structure 74 * is passed to this API which is filled in. The caller can then report 75 * those stats to the user (perhaps via ethtool, debugfs, etc.). 76 */ 77 bool page_pool_get_stats(const struct page_pool *pool, 78 struct page_pool_stats *stats) 79 { 80 int cpu = 0; 81 82 if (!stats) 83 return false; 84 85 /* The caller is responsible to initialize stats. */ 86 stats->alloc_stats.fast += pool->alloc_stats.fast; 87 stats->alloc_stats.slow += pool->alloc_stats.slow; 88 stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order; 89 stats->alloc_stats.empty += pool->alloc_stats.empty; 90 stats->alloc_stats.refill += pool->alloc_stats.refill; 91 stats->alloc_stats.waive += pool->alloc_stats.waive; 92 93 for_each_possible_cpu(cpu) { 94 const struct page_pool_recycle_stats *pcpu = 95 per_cpu_ptr(pool->recycle_stats, cpu); 96 97 stats->recycle_stats.cached += pcpu->cached; 98 stats->recycle_stats.cache_full += pcpu->cache_full; 99 stats->recycle_stats.ring += pcpu->ring; 100 stats->recycle_stats.ring_full += pcpu->ring_full; 101 stats->recycle_stats.released_refcnt += pcpu->released_refcnt; 102 } 103 104 return true; 105 } 106 EXPORT_SYMBOL(page_pool_get_stats); 107 108 u8 *page_pool_ethtool_stats_get_strings(u8 *data) 109 { 110 int i; 111 112 for (i = 0; i < ARRAY_SIZE(pp_stats); i++) { 113 memcpy(data, pp_stats[i], ETH_GSTRING_LEN); 114 data += ETH_GSTRING_LEN; 115 } 116 117 return data; 118 } 119 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings); 120 121 int page_pool_ethtool_stats_get_count(void) 122 { 123 return ARRAY_SIZE(pp_stats); 124 } 125 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count); 126 127 u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats) 128 { 129 const struct page_pool_stats *pool_stats = stats; 130 131 *data++ = pool_stats->alloc_stats.fast; 132 *data++ = pool_stats->alloc_stats.slow; 133 *data++ = pool_stats->alloc_stats.slow_high_order; 134 *data++ = pool_stats->alloc_stats.empty; 135 *data++ = pool_stats->alloc_stats.refill; 136 *data++ = pool_stats->alloc_stats.waive; 137 *data++ = pool_stats->recycle_stats.cached; 138 *data++ = pool_stats->recycle_stats.cache_full; 139 *data++ = pool_stats->recycle_stats.ring; 140 *data++ = pool_stats->recycle_stats.ring_full; 141 *data++ = pool_stats->recycle_stats.released_refcnt; 142 143 return data; 144 } 145 EXPORT_SYMBOL(page_pool_ethtool_stats_get); 146 147 #else 148 #define alloc_stat_inc(pool, __stat) 149 #define recycle_stat_inc(pool, __stat) 150 #define recycle_stat_add(pool, __stat, val) 151 #endif 152 153 static bool page_pool_producer_lock(struct page_pool *pool) 154 __acquires(&pool->ring.producer_lock) 155 { 156 bool in_softirq = in_softirq(); 157 158 if (in_softirq) 159 spin_lock(&pool->ring.producer_lock); 160 else 161 spin_lock_bh(&pool->ring.producer_lock); 162 163 return in_softirq; 164 } 165 166 static void page_pool_producer_unlock(struct page_pool *pool, 167 bool in_softirq) 168 __releases(&pool->ring.producer_lock) 169 { 170 if (in_softirq) 171 spin_unlock(&pool->ring.producer_lock); 172 else 173 spin_unlock_bh(&pool->ring.producer_lock); 174 } 175 176 static int page_pool_init(struct page_pool *pool, 177 const struct page_pool_params *params, 178 int cpuid) 179 { 180 unsigned int ring_qsize = 1024; /* Default */ 181 182 memcpy(&pool->p, ¶ms->fast, sizeof(pool->p)); 183 memcpy(&pool->slow, ¶ms->slow, sizeof(pool->slow)); 184 185 pool->cpuid = cpuid; 186 187 /* Validate only known flags were used */ 188 if (pool->p.flags & ~(PP_FLAG_ALL)) 189 return -EINVAL; 190 191 if (pool->p.pool_size) 192 ring_qsize = pool->p.pool_size; 193 194 /* Sanity limit mem that can be pinned down */ 195 if (ring_qsize > 32768) 196 return -E2BIG; 197 198 /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL. 199 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending, 200 * which is the XDP_TX use-case. 201 */ 202 if (pool->p.flags & PP_FLAG_DMA_MAP) { 203 if ((pool->p.dma_dir != DMA_FROM_DEVICE) && 204 (pool->p.dma_dir != DMA_BIDIRECTIONAL)) 205 return -EINVAL; 206 } 207 208 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) { 209 /* In order to request DMA-sync-for-device the page 210 * needs to be mapped 211 */ 212 if (!(pool->p.flags & PP_FLAG_DMA_MAP)) 213 return -EINVAL; 214 215 if (!pool->p.max_len) 216 return -EINVAL; 217 218 /* pool->p.offset has to be set according to the address 219 * offset used by the DMA engine to start copying rx data 220 */ 221 } 222 223 pool->has_init_callback = !!pool->slow.init_callback; 224 225 #ifdef CONFIG_PAGE_POOL_STATS 226 if (!(pool->p.flags & PP_FLAG_SYSTEM_POOL)) { 227 pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats); 228 if (!pool->recycle_stats) 229 return -ENOMEM; 230 } else { 231 /* For system page pool instance we use a singular stats object 232 * instead of allocating a separate percpu variable for each 233 * (also percpu) page pool instance. 234 */ 235 pool->recycle_stats = &pp_system_recycle_stats; 236 } 237 #endif 238 239 if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) { 240 #ifdef CONFIG_PAGE_POOL_STATS 241 if (!(pool->p.flags & PP_FLAG_SYSTEM_POOL)) 242 free_percpu(pool->recycle_stats); 243 #endif 244 return -ENOMEM; 245 } 246 247 atomic_set(&pool->pages_state_release_cnt, 0); 248 249 /* Driver calling page_pool_create() also call page_pool_destroy() */ 250 refcount_set(&pool->user_cnt, 1); 251 252 if (pool->p.flags & PP_FLAG_DMA_MAP) 253 get_device(pool->p.dev); 254 255 return 0; 256 } 257 258 static void page_pool_uninit(struct page_pool *pool) 259 { 260 ptr_ring_cleanup(&pool->ring, NULL); 261 262 if (pool->p.flags & PP_FLAG_DMA_MAP) 263 put_device(pool->p.dev); 264 265 #ifdef CONFIG_PAGE_POOL_STATS 266 if (!(pool->p.flags & PP_FLAG_SYSTEM_POOL)) 267 free_percpu(pool->recycle_stats); 268 #endif 269 } 270 271 /** 272 * page_pool_create_percpu() - create a page pool for a given cpu. 273 * @params: parameters, see struct page_pool_params 274 * @cpuid: cpu identifier 275 */ 276 struct page_pool * 277 page_pool_create_percpu(const struct page_pool_params *params, int cpuid) 278 { 279 struct page_pool *pool; 280 int err; 281 282 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid); 283 if (!pool) 284 return ERR_PTR(-ENOMEM); 285 286 err = page_pool_init(pool, params, cpuid); 287 if (err < 0) 288 goto err_free; 289 290 err = page_pool_list(pool); 291 if (err) 292 goto err_uninit; 293 294 return pool; 295 296 err_uninit: 297 page_pool_uninit(pool); 298 err_free: 299 pr_warn("%s() gave up with errno %d\n", __func__, err); 300 kfree(pool); 301 return ERR_PTR(err); 302 } 303 EXPORT_SYMBOL(page_pool_create_percpu); 304 305 /** 306 * page_pool_create() - create a page pool 307 * @params: parameters, see struct page_pool_params 308 */ 309 struct page_pool *page_pool_create(const struct page_pool_params *params) 310 { 311 return page_pool_create_percpu(params, -1); 312 } 313 EXPORT_SYMBOL(page_pool_create); 314 315 static void page_pool_return_page(struct page_pool *pool, struct page *page); 316 317 noinline 318 static struct page *page_pool_refill_alloc_cache(struct page_pool *pool) 319 { 320 struct ptr_ring *r = &pool->ring; 321 struct page *page; 322 int pref_nid; /* preferred NUMA node */ 323 324 /* Quicker fallback, avoid locks when ring is empty */ 325 if (__ptr_ring_empty(r)) { 326 alloc_stat_inc(pool, empty); 327 return NULL; 328 } 329 330 /* Softirq guarantee CPU and thus NUMA node is stable. This, 331 * assumes CPU refilling driver RX-ring will also run RX-NAPI. 332 */ 333 #ifdef CONFIG_NUMA 334 pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid; 335 #else 336 /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */ 337 pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */ 338 #endif 339 340 /* Refill alloc array, but only if NUMA match */ 341 do { 342 page = __ptr_ring_consume(r); 343 if (unlikely(!page)) 344 break; 345 346 if (likely(page_to_nid(page) == pref_nid)) { 347 pool->alloc.cache[pool->alloc.count++] = page; 348 } else { 349 /* NUMA mismatch; 350 * (1) release 1 page to page-allocator and 351 * (2) break out to fallthrough to alloc_pages_node. 352 * This limit stress on page buddy alloactor. 353 */ 354 page_pool_return_page(pool, page); 355 alloc_stat_inc(pool, waive); 356 page = NULL; 357 break; 358 } 359 } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL); 360 361 /* Return last page */ 362 if (likely(pool->alloc.count > 0)) { 363 page = pool->alloc.cache[--pool->alloc.count]; 364 alloc_stat_inc(pool, refill); 365 } 366 367 return page; 368 } 369 370 /* fast path */ 371 static struct page *__page_pool_get_cached(struct page_pool *pool) 372 { 373 struct page *page; 374 375 /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */ 376 if (likely(pool->alloc.count)) { 377 /* Fast-path */ 378 page = pool->alloc.cache[--pool->alloc.count]; 379 alloc_stat_inc(pool, fast); 380 } else { 381 page = page_pool_refill_alloc_cache(pool); 382 } 383 384 return page; 385 } 386 387 static void page_pool_dma_sync_for_device(const struct page_pool *pool, 388 const struct page *page, 389 unsigned int dma_sync_size) 390 { 391 dma_addr_t dma_addr = page_pool_get_dma_addr(page); 392 393 dma_sync_size = min(dma_sync_size, pool->p.max_len); 394 dma_sync_single_range_for_device(pool->p.dev, dma_addr, 395 pool->p.offset, dma_sync_size, 396 pool->p.dma_dir); 397 } 398 399 static bool page_pool_dma_map(struct page_pool *pool, struct page *page) 400 { 401 dma_addr_t dma; 402 403 /* Setup DMA mapping: use 'struct page' area for storing DMA-addr 404 * since dma_addr_t can be either 32 or 64 bits and does not always fit 405 * into page private data (i.e 32bit cpu with 64bit DMA caps) 406 * This mapping is kept for lifetime of page, until leaving pool. 407 */ 408 dma = dma_map_page_attrs(pool->p.dev, page, 0, 409 (PAGE_SIZE << pool->p.order), 410 pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC | 411 DMA_ATTR_WEAK_ORDERING); 412 if (dma_mapping_error(pool->p.dev, dma)) 413 return false; 414 415 if (page_pool_set_dma_addr(page, dma)) 416 goto unmap_failed; 417 418 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) 419 page_pool_dma_sync_for_device(pool, page, pool->p.max_len); 420 421 return true; 422 423 unmap_failed: 424 WARN_ON_ONCE("unexpected DMA address, please report to netdev@"); 425 dma_unmap_page_attrs(pool->p.dev, dma, 426 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 427 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 428 return false; 429 } 430 431 static void page_pool_set_pp_info(struct page_pool *pool, 432 struct page *page) 433 { 434 page->pp = pool; 435 page->pp_magic |= PP_SIGNATURE; 436 437 /* Ensuring all pages have been split into one fragment initially: 438 * page_pool_set_pp_info() is only called once for every page when it 439 * is allocated from the page allocator and page_pool_fragment_page() 440 * is dirtying the same cache line as the page->pp_magic above, so 441 * the overhead is negligible. 442 */ 443 page_pool_fragment_page(page, 1); 444 if (pool->has_init_callback) 445 pool->slow.init_callback(page, pool->slow.init_arg); 446 } 447 448 static void page_pool_clear_pp_info(struct page *page) 449 { 450 page->pp_magic = 0; 451 page->pp = NULL; 452 } 453 454 static struct page *__page_pool_alloc_page_order(struct page_pool *pool, 455 gfp_t gfp) 456 { 457 struct page *page; 458 459 gfp |= __GFP_COMP; 460 page = alloc_pages_node(pool->p.nid, gfp, pool->p.order); 461 if (unlikely(!page)) 462 return NULL; 463 464 if ((pool->p.flags & PP_FLAG_DMA_MAP) && 465 unlikely(!page_pool_dma_map(pool, page))) { 466 put_page(page); 467 return NULL; 468 } 469 470 alloc_stat_inc(pool, slow_high_order); 471 page_pool_set_pp_info(pool, page); 472 473 /* Track how many pages are held 'in-flight' */ 474 pool->pages_state_hold_cnt++; 475 trace_page_pool_state_hold(pool, page, pool->pages_state_hold_cnt); 476 return page; 477 } 478 479 /* slow path */ 480 noinline 481 static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool, 482 gfp_t gfp) 483 { 484 const int bulk = PP_ALLOC_CACHE_REFILL; 485 unsigned int pp_flags = pool->p.flags; 486 unsigned int pp_order = pool->p.order; 487 struct page *page; 488 int i, nr_pages; 489 490 /* Don't support bulk alloc for high-order pages */ 491 if (unlikely(pp_order)) 492 return __page_pool_alloc_page_order(pool, gfp); 493 494 /* Unnecessary as alloc cache is empty, but guarantees zero count */ 495 if (unlikely(pool->alloc.count > 0)) 496 return pool->alloc.cache[--pool->alloc.count]; 497 498 /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */ 499 memset(&pool->alloc.cache, 0, sizeof(void *) * bulk); 500 501 nr_pages = alloc_pages_bulk_array_node(gfp, pool->p.nid, bulk, 502 pool->alloc.cache); 503 if (unlikely(!nr_pages)) 504 return NULL; 505 506 /* Pages have been filled into alloc.cache array, but count is zero and 507 * page element have not been (possibly) DMA mapped. 508 */ 509 for (i = 0; i < nr_pages; i++) { 510 page = pool->alloc.cache[i]; 511 if ((pp_flags & PP_FLAG_DMA_MAP) && 512 unlikely(!page_pool_dma_map(pool, page))) { 513 put_page(page); 514 continue; 515 } 516 517 page_pool_set_pp_info(pool, page); 518 pool->alloc.cache[pool->alloc.count++] = page; 519 /* Track how many pages are held 'in-flight' */ 520 pool->pages_state_hold_cnt++; 521 trace_page_pool_state_hold(pool, page, 522 pool->pages_state_hold_cnt); 523 } 524 525 /* Return last page */ 526 if (likely(pool->alloc.count > 0)) { 527 page = pool->alloc.cache[--pool->alloc.count]; 528 alloc_stat_inc(pool, slow); 529 } else { 530 page = NULL; 531 } 532 533 /* When page just alloc'ed is should/must have refcnt 1. */ 534 return page; 535 } 536 537 /* For using page_pool replace: alloc_pages() API calls, but provide 538 * synchronization guarantee for allocation side. 539 */ 540 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp) 541 { 542 struct page *page; 543 544 /* Fast-path: Get a page from cache */ 545 page = __page_pool_get_cached(pool); 546 if (page) 547 return page; 548 549 /* Slow-path: cache empty, do real allocation */ 550 page = __page_pool_alloc_pages_slow(pool, gfp); 551 return page; 552 } 553 EXPORT_SYMBOL(page_pool_alloc_pages); 554 ALLOW_ERROR_INJECTION(page_pool_alloc_pages, NULL); 555 556 /* Calculate distance between two u32 values, valid if distance is below 2^(31) 557 * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution 558 */ 559 #define _distance(a, b) (s32)((a) - (b)) 560 561 s32 page_pool_inflight(const struct page_pool *pool, bool strict) 562 { 563 u32 release_cnt = atomic_read(&pool->pages_state_release_cnt); 564 u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt); 565 s32 inflight; 566 567 inflight = _distance(hold_cnt, release_cnt); 568 569 if (strict) { 570 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt); 571 WARN(inflight < 0, "Negative(%d) inflight packet-pages", 572 inflight); 573 } else { 574 inflight = max(0, inflight); 575 } 576 577 return inflight; 578 } 579 580 static __always_inline 581 void __page_pool_release_page_dma(struct page_pool *pool, struct page *page) 582 { 583 dma_addr_t dma; 584 585 if (!(pool->p.flags & PP_FLAG_DMA_MAP)) 586 /* Always account for inflight pages, even if we didn't 587 * map them 588 */ 589 return; 590 591 dma = page_pool_get_dma_addr(page); 592 593 /* When page is unmapped, it cannot be returned to our pool */ 594 dma_unmap_page_attrs(pool->p.dev, dma, 595 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 596 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 597 page_pool_set_dma_addr(page, 0); 598 } 599 600 /* Disconnects a page (from a page_pool). API users can have a need 601 * to disconnect a page (from a page_pool), to allow it to be used as 602 * a regular page (that will eventually be returned to the normal 603 * page-allocator via put_page). 604 */ 605 void page_pool_return_page(struct page_pool *pool, struct page *page) 606 { 607 int count; 608 609 __page_pool_release_page_dma(pool, page); 610 611 page_pool_clear_pp_info(page); 612 613 /* This may be the last page returned, releasing the pool, so 614 * it is not safe to reference pool afterwards. 615 */ 616 count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt); 617 trace_page_pool_state_release(pool, page, count); 618 619 put_page(page); 620 /* An optimization would be to call __free_pages(page, pool->p.order) 621 * knowing page is not part of page-cache (thus avoiding a 622 * __page_cache_release() call). 623 */ 624 } 625 626 static bool page_pool_recycle_in_ring(struct page_pool *pool, struct page *page) 627 { 628 int ret; 629 /* BH protection not needed if current is softirq */ 630 if (in_softirq()) 631 ret = ptr_ring_produce(&pool->ring, page); 632 else 633 ret = ptr_ring_produce_bh(&pool->ring, page); 634 635 if (!ret) { 636 recycle_stat_inc(pool, ring); 637 return true; 638 } 639 640 return false; 641 } 642 643 /* Only allow direct recycling in special circumstances, into the 644 * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case. 645 * 646 * Caller must provide appropriate safe context. 647 */ 648 static bool page_pool_recycle_in_cache(struct page *page, 649 struct page_pool *pool) 650 { 651 if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) { 652 recycle_stat_inc(pool, cache_full); 653 return false; 654 } 655 656 /* Caller MUST have verified/know (page_ref_count(page) == 1) */ 657 pool->alloc.cache[pool->alloc.count++] = page; 658 recycle_stat_inc(pool, cached); 659 return true; 660 } 661 662 static bool __page_pool_page_can_be_recycled(const struct page *page) 663 { 664 return page_ref_count(page) == 1 && !page_is_pfmemalloc(page); 665 } 666 667 /* If the page refcnt == 1, this will try to recycle the page. 668 * if PP_FLAG_DMA_SYNC_DEV is set, we'll try to sync the DMA area for 669 * the configured size min(dma_sync_size, pool->max_len). 670 * If the page refcnt != 1, then the page will be returned to memory 671 * subsystem. 672 */ 673 static __always_inline struct page * 674 __page_pool_put_page(struct page_pool *pool, struct page *page, 675 unsigned int dma_sync_size, bool allow_direct) 676 { 677 lockdep_assert_no_hardirq(); 678 679 /* This allocator is optimized for the XDP mode that uses 680 * one-frame-per-page, but have fallbacks that act like the 681 * regular page allocator APIs. 682 * 683 * refcnt == 1 means page_pool owns page, and can recycle it. 684 * 685 * page is NOT reusable when allocated when system is under 686 * some pressure. (page_is_pfmemalloc) 687 */ 688 if (likely(__page_pool_page_can_be_recycled(page))) { 689 /* Read barrier done in page_ref_count / READ_ONCE */ 690 691 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) 692 page_pool_dma_sync_for_device(pool, page, 693 dma_sync_size); 694 695 if (allow_direct && page_pool_recycle_in_cache(page, pool)) 696 return NULL; 697 698 /* Page found as candidate for recycling */ 699 return page; 700 } 701 /* Fallback/non-XDP mode: API user have elevated refcnt. 702 * 703 * Many drivers split up the page into fragments, and some 704 * want to keep doing this to save memory and do refcnt based 705 * recycling. Support this use case too, to ease drivers 706 * switching between XDP/non-XDP. 707 * 708 * In-case page_pool maintains the DMA mapping, API user must 709 * call page_pool_put_page once. In this elevated refcnt 710 * case, the DMA is unmapped/released, as driver is likely 711 * doing refcnt based recycle tricks, meaning another process 712 * will be invoking put_page. 713 */ 714 recycle_stat_inc(pool, released_refcnt); 715 page_pool_return_page(pool, page); 716 717 return NULL; 718 } 719 720 static bool page_pool_napi_local(const struct page_pool *pool) 721 { 722 const struct napi_struct *napi; 723 u32 cpuid; 724 725 if (unlikely(!in_softirq())) 726 return false; 727 728 /* Allow direct recycle if we have reasons to believe that we are 729 * in the same context as the consumer would run, so there's 730 * no possible race. 731 * __page_pool_put_page() makes sure we're not in hardirq context 732 * and interrupts are enabled prior to accessing the cache. 733 */ 734 cpuid = smp_processor_id(); 735 if (READ_ONCE(pool->cpuid) == cpuid) 736 return true; 737 738 napi = READ_ONCE(pool->p.napi); 739 740 return napi && READ_ONCE(napi->list_owner) == cpuid; 741 } 742 743 void page_pool_put_unrefed_page(struct page_pool *pool, struct page *page, 744 unsigned int dma_sync_size, bool allow_direct) 745 { 746 if (!allow_direct) 747 allow_direct = page_pool_napi_local(pool); 748 749 page = __page_pool_put_page(pool, page, dma_sync_size, allow_direct); 750 if (page && !page_pool_recycle_in_ring(pool, page)) { 751 /* Cache full, fallback to free pages */ 752 recycle_stat_inc(pool, ring_full); 753 page_pool_return_page(pool, page); 754 } 755 } 756 EXPORT_SYMBOL(page_pool_put_unrefed_page); 757 758 /** 759 * page_pool_put_page_bulk() - release references on multiple pages 760 * @pool: pool from which pages were allocated 761 * @data: array holding page pointers 762 * @count: number of pages in @data 763 * 764 * Tries to refill a number of pages into the ptr_ring cache holding ptr_ring 765 * producer lock. If the ptr_ring is full, page_pool_put_page_bulk() 766 * will release leftover pages to the page allocator. 767 * page_pool_put_page_bulk() is suitable to be run inside the driver NAPI tx 768 * completion loop for the XDP_REDIRECT use case. 769 * 770 * Please note the caller must not use data area after running 771 * page_pool_put_page_bulk(), as this function overwrites it. 772 */ 773 void page_pool_put_page_bulk(struct page_pool *pool, void **data, 774 int count) 775 { 776 int i, bulk_len = 0; 777 bool allow_direct; 778 bool in_softirq; 779 780 allow_direct = page_pool_napi_local(pool); 781 782 for (i = 0; i < count; i++) { 783 struct page *page = virt_to_head_page(data[i]); 784 785 /* It is not the last user for the page frag case */ 786 if (!page_pool_is_last_ref(page)) 787 continue; 788 789 page = __page_pool_put_page(pool, page, -1, allow_direct); 790 /* Approved for bulk recycling in ptr_ring cache */ 791 if (page) 792 data[bulk_len++] = page; 793 } 794 795 if (!bulk_len) 796 return; 797 798 /* Bulk producer into ptr_ring page_pool cache */ 799 in_softirq = page_pool_producer_lock(pool); 800 for (i = 0; i < bulk_len; i++) { 801 if (__ptr_ring_produce(&pool->ring, data[i])) { 802 /* ring full */ 803 recycle_stat_inc(pool, ring_full); 804 break; 805 } 806 } 807 recycle_stat_add(pool, ring, i); 808 page_pool_producer_unlock(pool, in_softirq); 809 810 /* Hopefully all pages was return into ptr_ring */ 811 if (likely(i == bulk_len)) 812 return; 813 814 /* ptr_ring cache full, free remaining pages outside producer lock 815 * since put_page() with refcnt == 1 can be an expensive operation 816 */ 817 for (; i < bulk_len; i++) 818 page_pool_return_page(pool, data[i]); 819 } 820 EXPORT_SYMBOL(page_pool_put_page_bulk); 821 822 static struct page *page_pool_drain_frag(struct page_pool *pool, 823 struct page *page) 824 { 825 long drain_count = BIAS_MAX - pool->frag_users; 826 827 /* Some user is still using the page frag */ 828 if (likely(page_pool_unref_page(page, drain_count))) 829 return NULL; 830 831 if (__page_pool_page_can_be_recycled(page)) { 832 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) 833 page_pool_dma_sync_for_device(pool, page, -1); 834 835 return page; 836 } 837 838 page_pool_return_page(pool, page); 839 return NULL; 840 } 841 842 static void page_pool_free_frag(struct page_pool *pool) 843 { 844 long drain_count = BIAS_MAX - pool->frag_users; 845 struct page *page = pool->frag_page; 846 847 pool->frag_page = NULL; 848 849 if (!page || page_pool_unref_page(page, drain_count)) 850 return; 851 852 page_pool_return_page(pool, page); 853 } 854 855 struct page *page_pool_alloc_frag(struct page_pool *pool, 856 unsigned int *offset, 857 unsigned int size, gfp_t gfp) 858 { 859 unsigned int max_size = PAGE_SIZE << pool->p.order; 860 struct page *page = pool->frag_page; 861 862 if (WARN_ON(size > max_size)) 863 return NULL; 864 865 size = ALIGN(size, dma_get_cache_alignment()); 866 *offset = pool->frag_offset; 867 868 if (page && *offset + size > max_size) { 869 page = page_pool_drain_frag(pool, page); 870 if (page) { 871 alloc_stat_inc(pool, fast); 872 goto frag_reset; 873 } 874 } 875 876 if (!page) { 877 page = page_pool_alloc_pages(pool, gfp); 878 if (unlikely(!page)) { 879 pool->frag_page = NULL; 880 return NULL; 881 } 882 883 pool->frag_page = page; 884 885 frag_reset: 886 pool->frag_users = 1; 887 *offset = 0; 888 pool->frag_offset = size; 889 page_pool_fragment_page(page, BIAS_MAX); 890 return page; 891 } 892 893 pool->frag_users++; 894 pool->frag_offset = *offset + size; 895 alloc_stat_inc(pool, fast); 896 return page; 897 } 898 EXPORT_SYMBOL(page_pool_alloc_frag); 899 900 static void page_pool_empty_ring(struct page_pool *pool) 901 { 902 struct page *page; 903 904 /* Empty recycle ring */ 905 while ((page = ptr_ring_consume_bh(&pool->ring))) { 906 /* Verify the refcnt invariant of cached pages */ 907 if (!(page_ref_count(page) == 1)) 908 pr_crit("%s() page_pool refcnt %d violation\n", 909 __func__, page_ref_count(page)); 910 911 page_pool_return_page(pool, page); 912 } 913 } 914 915 static void __page_pool_destroy(struct page_pool *pool) 916 { 917 if (pool->disconnect) 918 pool->disconnect(pool); 919 920 page_pool_unlist(pool); 921 page_pool_uninit(pool); 922 kfree(pool); 923 } 924 925 static void page_pool_empty_alloc_cache_once(struct page_pool *pool) 926 { 927 struct page *page; 928 929 if (pool->destroy_cnt) 930 return; 931 932 /* Empty alloc cache, assume caller made sure this is 933 * no-longer in use, and page_pool_alloc_pages() cannot be 934 * call concurrently. 935 */ 936 while (pool->alloc.count) { 937 page = pool->alloc.cache[--pool->alloc.count]; 938 page_pool_return_page(pool, page); 939 } 940 } 941 942 static void page_pool_scrub(struct page_pool *pool) 943 { 944 page_pool_empty_alloc_cache_once(pool); 945 pool->destroy_cnt++; 946 947 /* No more consumers should exist, but producers could still 948 * be in-flight. 949 */ 950 page_pool_empty_ring(pool); 951 } 952 953 static int page_pool_release(struct page_pool *pool) 954 { 955 int inflight; 956 957 page_pool_scrub(pool); 958 inflight = page_pool_inflight(pool, true); 959 if (!inflight) 960 __page_pool_destroy(pool); 961 962 return inflight; 963 } 964 965 static void page_pool_release_retry(struct work_struct *wq) 966 { 967 struct delayed_work *dwq = to_delayed_work(wq); 968 struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw); 969 void *netdev; 970 int inflight; 971 972 inflight = page_pool_release(pool); 973 if (!inflight) 974 return; 975 976 /* Periodic warning for page pools the user can't see */ 977 netdev = READ_ONCE(pool->slow.netdev); 978 if (time_after_eq(jiffies, pool->defer_warn) && 979 (!netdev || netdev == NET_PTR_POISON)) { 980 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ; 981 982 pr_warn("%s() stalled pool shutdown: id %u, %d inflight %d sec\n", 983 __func__, pool->user.id, inflight, sec); 984 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 985 } 986 987 /* Still not ready to be disconnected, retry later */ 988 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 989 } 990 991 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *), 992 const struct xdp_mem_info *mem) 993 { 994 refcount_inc(&pool->user_cnt); 995 pool->disconnect = disconnect; 996 pool->xdp_mem_id = mem->id; 997 } 998 999 static void page_pool_disable_direct_recycling(struct page_pool *pool) 1000 { 1001 /* Disable direct recycling based on pool->cpuid. 1002 * Paired with READ_ONCE() in page_pool_napi_local(). 1003 */ 1004 WRITE_ONCE(pool->cpuid, -1); 1005 1006 if (!pool->p.napi) 1007 return; 1008 1009 /* To avoid races with recycling and additional barriers make sure 1010 * pool and NAPI are unlinked when NAPI is disabled. 1011 */ 1012 WARN_ON(!test_bit(NAPI_STATE_SCHED, &pool->p.napi->state) || 1013 READ_ONCE(pool->p.napi->list_owner) != -1); 1014 1015 WRITE_ONCE(pool->p.napi, NULL); 1016 } 1017 1018 void page_pool_destroy(struct page_pool *pool) 1019 { 1020 if (!pool) 1021 return; 1022 1023 if (!page_pool_put(pool)) 1024 return; 1025 1026 page_pool_disable_direct_recycling(pool); 1027 page_pool_free_frag(pool); 1028 1029 if (!page_pool_release(pool)) 1030 return; 1031 1032 page_pool_detached(pool); 1033 pool->defer_start = jiffies; 1034 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 1035 1036 INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry); 1037 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 1038 } 1039 EXPORT_SYMBOL(page_pool_destroy); 1040 1041 /* Caller must provide appropriate safe context, e.g. NAPI. */ 1042 void page_pool_update_nid(struct page_pool *pool, int new_nid) 1043 { 1044 struct page *page; 1045 1046 trace_page_pool_update_nid(pool, new_nid); 1047 pool->p.nid = new_nid; 1048 1049 /* Flush pool alloc cache, as refill will check NUMA node */ 1050 while (pool->alloc.count) { 1051 page = pool->alloc.cache[--pool->alloc.count]; 1052 page_pool_return_page(pool, page); 1053 } 1054 } 1055 EXPORT_SYMBOL(page_pool_update_nid); 1056