1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * page_pool.c 4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com> 5 * Copyright (C) 2016 Red Hat, Inc. 6 */ 7 8 #include <linux/types.h> 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/device.h> 12 13 #include <net/page_pool/helpers.h> 14 #include <net/xdp.h> 15 16 #include <linux/dma-direction.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/page-flags.h> 19 #include <linux/mm.h> /* for put_page() */ 20 #include <linux/poison.h> 21 #include <linux/ethtool.h> 22 #include <linux/netdevice.h> 23 24 #include <trace/events/page_pool.h> 25 26 #include "page_pool_priv.h" 27 28 #define DEFER_TIME (msecs_to_jiffies(1000)) 29 #define DEFER_WARN_INTERVAL (60 * HZ) 30 31 #define BIAS_MAX (LONG_MAX >> 1) 32 33 #ifdef CONFIG_PAGE_POOL_STATS 34 static DEFINE_PER_CPU(struct page_pool_recycle_stats, pp_system_recycle_stats); 35 36 /* alloc_stat_inc is intended to be used in softirq context */ 37 #define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++) 38 /* recycle_stat_inc is safe to use when preemption is possible. */ 39 #define recycle_stat_inc(pool, __stat) \ 40 do { \ 41 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 42 this_cpu_inc(s->__stat); \ 43 } while (0) 44 45 #define recycle_stat_add(pool, __stat, val) \ 46 do { \ 47 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 48 this_cpu_add(s->__stat, val); \ 49 } while (0) 50 51 static const char pp_stats[][ETH_GSTRING_LEN] = { 52 "rx_pp_alloc_fast", 53 "rx_pp_alloc_slow", 54 "rx_pp_alloc_slow_ho", 55 "rx_pp_alloc_empty", 56 "rx_pp_alloc_refill", 57 "rx_pp_alloc_waive", 58 "rx_pp_recycle_cached", 59 "rx_pp_recycle_cache_full", 60 "rx_pp_recycle_ring", 61 "rx_pp_recycle_ring_full", 62 "rx_pp_recycle_released_ref", 63 }; 64 65 /** 66 * page_pool_get_stats() - fetch page pool stats 67 * @pool: pool from which page was allocated 68 * @stats: struct page_pool_stats to fill in 69 * 70 * Retrieve statistics about the page_pool. This API is only available 71 * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``. 72 * A pointer to a caller allocated struct page_pool_stats structure 73 * is passed to this API which is filled in. The caller can then report 74 * those stats to the user (perhaps via ethtool, debugfs, etc.). 75 */ 76 bool page_pool_get_stats(const struct page_pool *pool, 77 struct page_pool_stats *stats) 78 { 79 int cpu = 0; 80 81 if (!stats) 82 return false; 83 84 /* The caller is responsible to initialize stats. */ 85 stats->alloc_stats.fast += pool->alloc_stats.fast; 86 stats->alloc_stats.slow += pool->alloc_stats.slow; 87 stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order; 88 stats->alloc_stats.empty += pool->alloc_stats.empty; 89 stats->alloc_stats.refill += pool->alloc_stats.refill; 90 stats->alloc_stats.waive += pool->alloc_stats.waive; 91 92 for_each_possible_cpu(cpu) { 93 const struct page_pool_recycle_stats *pcpu = 94 per_cpu_ptr(pool->recycle_stats, cpu); 95 96 stats->recycle_stats.cached += pcpu->cached; 97 stats->recycle_stats.cache_full += pcpu->cache_full; 98 stats->recycle_stats.ring += pcpu->ring; 99 stats->recycle_stats.ring_full += pcpu->ring_full; 100 stats->recycle_stats.released_refcnt += pcpu->released_refcnt; 101 } 102 103 return true; 104 } 105 EXPORT_SYMBOL(page_pool_get_stats); 106 107 u8 *page_pool_ethtool_stats_get_strings(u8 *data) 108 { 109 int i; 110 111 for (i = 0; i < ARRAY_SIZE(pp_stats); i++) { 112 memcpy(data, pp_stats[i], ETH_GSTRING_LEN); 113 data += ETH_GSTRING_LEN; 114 } 115 116 return data; 117 } 118 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings); 119 120 int page_pool_ethtool_stats_get_count(void) 121 { 122 return ARRAY_SIZE(pp_stats); 123 } 124 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count); 125 126 u64 *page_pool_ethtool_stats_get(u64 *data, void *stats) 127 { 128 struct page_pool_stats *pool_stats = stats; 129 130 *data++ = pool_stats->alloc_stats.fast; 131 *data++ = pool_stats->alloc_stats.slow; 132 *data++ = pool_stats->alloc_stats.slow_high_order; 133 *data++ = pool_stats->alloc_stats.empty; 134 *data++ = pool_stats->alloc_stats.refill; 135 *data++ = pool_stats->alloc_stats.waive; 136 *data++ = pool_stats->recycle_stats.cached; 137 *data++ = pool_stats->recycle_stats.cache_full; 138 *data++ = pool_stats->recycle_stats.ring; 139 *data++ = pool_stats->recycle_stats.ring_full; 140 *data++ = pool_stats->recycle_stats.released_refcnt; 141 142 return data; 143 } 144 EXPORT_SYMBOL(page_pool_ethtool_stats_get); 145 146 #else 147 #define alloc_stat_inc(pool, __stat) 148 #define recycle_stat_inc(pool, __stat) 149 #define recycle_stat_add(pool, __stat, val) 150 #endif 151 152 static bool page_pool_producer_lock(struct page_pool *pool) 153 __acquires(&pool->ring.producer_lock) 154 { 155 bool in_softirq = in_softirq(); 156 157 if (in_softirq) 158 spin_lock(&pool->ring.producer_lock); 159 else 160 spin_lock_bh(&pool->ring.producer_lock); 161 162 return in_softirq; 163 } 164 165 static void page_pool_producer_unlock(struct page_pool *pool, 166 bool in_softirq) 167 __releases(&pool->ring.producer_lock) 168 { 169 if (in_softirq) 170 spin_unlock(&pool->ring.producer_lock); 171 else 172 spin_unlock_bh(&pool->ring.producer_lock); 173 } 174 175 static int page_pool_init(struct page_pool *pool, 176 const struct page_pool_params *params, 177 int cpuid) 178 { 179 unsigned int ring_qsize = 1024; /* Default */ 180 181 memcpy(&pool->p, ¶ms->fast, sizeof(pool->p)); 182 memcpy(&pool->slow, ¶ms->slow, sizeof(pool->slow)); 183 184 pool->cpuid = cpuid; 185 186 /* Validate only known flags were used */ 187 if (pool->p.flags & ~(PP_FLAG_ALL)) 188 return -EINVAL; 189 190 if (pool->p.pool_size) 191 ring_qsize = pool->p.pool_size; 192 193 /* Sanity limit mem that can be pinned down */ 194 if (ring_qsize > 32768) 195 return -E2BIG; 196 197 /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL. 198 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending, 199 * which is the XDP_TX use-case. 200 */ 201 if (pool->p.flags & PP_FLAG_DMA_MAP) { 202 if ((pool->p.dma_dir != DMA_FROM_DEVICE) && 203 (pool->p.dma_dir != DMA_BIDIRECTIONAL)) 204 return -EINVAL; 205 } 206 207 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) { 208 /* In order to request DMA-sync-for-device the page 209 * needs to be mapped 210 */ 211 if (!(pool->p.flags & PP_FLAG_DMA_MAP)) 212 return -EINVAL; 213 214 if (!pool->p.max_len) 215 return -EINVAL; 216 217 /* pool->p.offset has to be set according to the address 218 * offset used by the DMA engine to start copying rx data 219 */ 220 } 221 222 pool->has_init_callback = !!pool->slow.init_callback; 223 224 #ifdef CONFIG_PAGE_POOL_STATS 225 if (!(pool->p.flags & PP_FLAG_SYSTEM_POOL)) { 226 pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats); 227 if (!pool->recycle_stats) 228 return -ENOMEM; 229 } else { 230 /* For system page pool instance we use a singular stats object 231 * instead of allocating a separate percpu variable for each 232 * (also percpu) page pool instance. 233 */ 234 pool->recycle_stats = &pp_system_recycle_stats; 235 } 236 #endif 237 238 if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) { 239 #ifdef CONFIG_PAGE_POOL_STATS 240 if (!(pool->p.flags & PP_FLAG_SYSTEM_POOL)) 241 free_percpu(pool->recycle_stats); 242 #endif 243 return -ENOMEM; 244 } 245 246 atomic_set(&pool->pages_state_release_cnt, 0); 247 248 /* Driver calling page_pool_create() also call page_pool_destroy() */ 249 refcount_set(&pool->user_cnt, 1); 250 251 if (pool->p.flags & PP_FLAG_DMA_MAP) 252 get_device(pool->p.dev); 253 254 return 0; 255 } 256 257 static void page_pool_uninit(struct page_pool *pool) 258 { 259 ptr_ring_cleanup(&pool->ring, NULL); 260 261 if (pool->p.flags & PP_FLAG_DMA_MAP) 262 put_device(pool->p.dev); 263 264 #ifdef CONFIG_PAGE_POOL_STATS 265 if (!(pool->p.flags & PP_FLAG_SYSTEM_POOL)) 266 free_percpu(pool->recycle_stats); 267 #endif 268 } 269 270 /** 271 * page_pool_create_percpu() - create a page pool for a given cpu. 272 * @params: parameters, see struct page_pool_params 273 * @cpuid: cpu identifier 274 */ 275 struct page_pool * 276 page_pool_create_percpu(const struct page_pool_params *params, int cpuid) 277 { 278 struct page_pool *pool; 279 int err; 280 281 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid); 282 if (!pool) 283 return ERR_PTR(-ENOMEM); 284 285 err = page_pool_init(pool, params, cpuid); 286 if (err < 0) 287 goto err_free; 288 289 err = page_pool_list(pool); 290 if (err) 291 goto err_uninit; 292 293 return pool; 294 295 err_uninit: 296 page_pool_uninit(pool); 297 err_free: 298 pr_warn("%s() gave up with errno %d\n", __func__, err); 299 kfree(pool); 300 return ERR_PTR(err); 301 } 302 EXPORT_SYMBOL(page_pool_create_percpu); 303 304 /** 305 * page_pool_create() - create a page pool 306 * @params: parameters, see struct page_pool_params 307 */ 308 struct page_pool *page_pool_create(const struct page_pool_params *params) 309 { 310 return page_pool_create_percpu(params, -1); 311 } 312 EXPORT_SYMBOL(page_pool_create); 313 314 static void page_pool_return_page(struct page_pool *pool, struct page *page); 315 316 noinline 317 static struct page *page_pool_refill_alloc_cache(struct page_pool *pool) 318 { 319 struct ptr_ring *r = &pool->ring; 320 struct page *page; 321 int pref_nid; /* preferred NUMA node */ 322 323 /* Quicker fallback, avoid locks when ring is empty */ 324 if (__ptr_ring_empty(r)) { 325 alloc_stat_inc(pool, empty); 326 return NULL; 327 } 328 329 /* Softirq guarantee CPU and thus NUMA node is stable. This, 330 * assumes CPU refilling driver RX-ring will also run RX-NAPI. 331 */ 332 #ifdef CONFIG_NUMA 333 pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid; 334 #else 335 /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */ 336 pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */ 337 #endif 338 339 /* Refill alloc array, but only if NUMA match */ 340 do { 341 page = __ptr_ring_consume(r); 342 if (unlikely(!page)) 343 break; 344 345 if (likely(page_to_nid(page) == pref_nid)) { 346 pool->alloc.cache[pool->alloc.count++] = page; 347 } else { 348 /* NUMA mismatch; 349 * (1) release 1 page to page-allocator and 350 * (2) break out to fallthrough to alloc_pages_node. 351 * This limit stress on page buddy alloactor. 352 */ 353 page_pool_return_page(pool, page); 354 alloc_stat_inc(pool, waive); 355 page = NULL; 356 break; 357 } 358 } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL); 359 360 /* Return last page */ 361 if (likely(pool->alloc.count > 0)) { 362 page = pool->alloc.cache[--pool->alloc.count]; 363 alloc_stat_inc(pool, refill); 364 } 365 366 return page; 367 } 368 369 /* fast path */ 370 static struct page *__page_pool_get_cached(struct page_pool *pool) 371 { 372 struct page *page; 373 374 /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */ 375 if (likely(pool->alloc.count)) { 376 /* Fast-path */ 377 page = pool->alloc.cache[--pool->alloc.count]; 378 alloc_stat_inc(pool, fast); 379 } else { 380 page = page_pool_refill_alloc_cache(pool); 381 } 382 383 return page; 384 } 385 386 static void page_pool_dma_sync_for_device(struct page_pool *pool, 387 struct page *page, 388 unsigned int dma_sync_size) 389 { 390 dma_addr_t dma_addr = page_pool_get_dma_addr(page); 391 392 dma_sync_size = min(dma_sync_size, pool->p.max_len); 393 dma_sync_single_range_for_device(pool->p.dev, dma_addr, 394 pool->p.offset, dma_sync_size, 395 pool->p.dma_dir); 396 } 397 398 static bool page_pool_dma_map(struct page_pool *pool, struct page *page) 399 { 400 dma_addr_t dma; 401 402 /* Setup DMA mapping: use 'struct page' area for storing DMA-addr 403 * since dma_addr_t can be either 32 or 64 bits and does not always fit 404 * into page private data (i.e 32bit cpu with 64bit DMA caps) 405 * This mapping is kept for lifetime of page, until leaving pool. 406 */ 407 dma = dma_map_page_attrs(pool->p.dev, page, 0, 408 (PAGE_SIZE << pool->p.order), 409 pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC | 410 DMA_ATTR_WEAK_ORDERING); 411 if (dma_mapping_error(pool->p.dev, dma)) 412 return false; 413 414 if (page_pool_set_dma_addr(page, dma)) 415 goto unmap_failed; 416 417 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) 418 page_pool_dma_sync_for_device(pool, page, pool->p.max_len); 419 420 return true; 421 422 unmap_failed: 423 WARN_ON_ONCE("unexpected DMA address, please report to netdev@"); 424 dma_unmap_page_attrs(pool->p.dev, dma, 425 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 426 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 427 return false; 428 } 429 430 static void page_pool_set_pp_info(struct page_pool *pool, 431 struct page *page) 432 { 433 page->pp = pool; 434 page->pp_magic |= PP_SIGNATURE; 435 436 /* Ensuring all pages have been split into one fragment initially: 437 * page_pool_set_pp_info() is only called once for every page when it 438 * is allocated from the page allocator and page_pool_fragment_page() 439 * is dirtying the same cache line as the page->pp_magic above, so 440 * the overhead is negligible. 441 */ 442 page_pool_fragment_page(page, 1); 443 if (pool->has_init_callback) 444 pool->slow.init_callback(page, pool->slow.init_arg); 445 } 446 447 static void page_pool_clear_pp_info(struct page *page) 448 { 449 page->pp_magic = 0; 450 page->pp = NULL; 451 } 452 453 static struct page *__page_pool_alloc_page_order(struct page_pool *pool, 454 gfp_t gfp) 455 { 456 struct page *page; 457 458 gfp |= __GFP_COMP; 459 page = alloc_pages_node(pool->p.nid, gfp, pool->p.order); 460 if (unlikely(!page)) 461 return NULL; 462 463 if ((pool->p.flags & PP_FLAG_DMA_MAP) && 464 unlikely(!page_pool_dma_map(pool, page))) { 465 put_page(page); 466 return NULL; 467 } 468 469 alloc_stat_inc(pool, slow_high_order); 470 page_pool_set_pp_info(pool, page); 471 472 /* Track how many pages are held 'in-flight' */ 473 pool->pages_state_hold_cnt++; 474 trace_page_pool_state_hold(pool, page, pool->pages_state_hold_cnt); 475 return page; 476 } 477 478 /* slow path */ 479 noinline 480 static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool, 481 gfp_t gfp) 482 { 483 const int bulk = PP_ALLOC_CACHE_REFILL; 484 unsigned int pp_flags = pool->p.flags; 485 unsigned int pp_order = pool->p.order; 486 struct page *page; 487 int i, nr_pages; 488 489 /* Don't support bulk alloc for high-order pages */ 490 if (unlikely(pp_order)) 491 return __page_pool_alloc_page_order(pool, gfp); 492 493 /* Unnecessary as alloc cache is empty, but guarantees zero count */ 494 if (unlikely(pool->alloc.count > 0)) 495 return pool->alloc.cache[--pool->alloc.count]; 496 497 /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */ 498 memset(&pool->alloc.cache, 0, sizeof(void *) * bulk); 499 500 nr_pages = alloc_pages_bulk_array_node(gfp, pool->p.nid, bulk, 501 pool->alloc.cache); 502 if (unlikely(!nr_pages)) 503 return NULL; 504 505 /* Pages have been filled into alloc.cache array, but count is zero and 506 * page element have not been (possibly) DMA mapped. 507 */ 508 for (i = 0; i < nr_pages; i++) { 509 page = pool->alloc.cache[i]; 510 if ((pp_flags & PP_FLAG_DMA_MAP) && 511 unlikely(!page_pool_dma_map(pool, page))) { 512 put_page(page); 513 continue; 514 } 515 516 page_pool_set_pp_info(pool, page); 517 pool->alloc.cache[pool->alloc.count++] = page; 518 /* Track how many pages are held 'in-flight' */ 519 pool->pages_state_hold_cnt++; 520 trace_page_pool_state_hold(pool, page, 521 pool->pages_state_hold_cnt); 522 } 523 524 /* Return last page */ 525 if (likely(pool->alloc.count > 0)) { 526 page = pool->alloc.cache[--pool->alloc.count]; 527 alloc_stat_inc(pool, slow); 528 } else { 529 page = NULL; 530 } 531 532 /* When page just alloc'ed is should/must have refcnt 1. */ 533 return page; 534 } 535 536 /* For using page_pool replace: alloc_pages() API calls, but provide 537 * synchronization guarantee for allocation side. 538 */ 539 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp) 540 { 541 struct page *page; 542 543 /* Fast-path: Get a page from cache */ 544 page = __page_pool_get_cached(pool); 545 if (page) 546 return page; 547 548 /* Slow-path: cache empty, do real allocation */ 549 page = __page_pool_alloc_pages_slow(pool, gfp); 550 return page; 551 } 552 EXPORT_SYMBOL(page_pool_alloc_pages); 553 554 /* Calculate distance between two u32 values, valid if distance is below 2^(31) 555 * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution 556 */ 557 #define _distance(a, b) (s32)((a) - (b)) 558 559 s32 page_pool_inflight(const struct page_pool *pool, bool strict) 560 { 561 u32 release_cnt = atomic_read(&pool->pages_state_release_cnt); 562 u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt); 563 s32 inflight; 564 565 inflight = _distance(hold_cnt, release_cnt); 566 567 if (strict) { 568 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt); 569 WARN(inflight < 0, "Negative(%d) inflight packet-pages", 570 inflight); 571 } else { 572 inflight = max(0, inflight); 573 } 574 575 return inflight; 576 } 577 578 static __always_inline 579 void __page_pool_release_page_dma(struct page_pool *pool, struct page *page) 580 { 581 dma_addr_t dma; 582 583 if (!(pool->p.flags & PP_FLAG_DMA_MAP)) 584 /* Always account for inflight pages, even if we didn't 585 * map them 586 */ 587 return; 588 589 dma = page_pool_get_dma_addr(page); 590 591 /* When page is unmapped, it cannot be returned to our pool */ 592 dma_unmap_page_attrs(pool->p.dev, dma, 593 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 594 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 595 page_pool_set_dma_addr(page, 0); 596 } 597 598 /* Disconnects a page (from a page_pool). API users can have a need 599 * to disconnect a page (from a page_pool), to allow it to be used as 600 * a regular page (that will eventually be returned to the normal 601 * page-allocator via put_page). 602 */ 603 void page_pool_return_page(struct page_pool *pool, struct page *page) 604 { 605 int count; 606 607 __page_pool_release_page_dma(pool, page); 608 609 page_pool_clear_pp_info(page); 610 611 /* This may be the last page returned, releasing the pool, so 612 * it is not safe to reference pool afterwards. 613 */ 614 count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt); 615 trace_page_pool_state_release(pool, page, count); 616 617 put_page(page); 618 /* An optimization would be to call __free_pages(page, pool->p.order) 619 * knowing page is not part of page-cache (thus avoiding a 620 * __page_cache_release() call). 621 */ 622 } 623 624 static bool page_pool_recycle_in_ring(struct page_pool *pool, struct page *page) 625 { 626 int ret; 627 /* BH protection not needed if current is softirq */ 628 if (in_softirq()) 629 ret = ptr_ring_produce(&pool->ring, page); 630 else 631 ret = ptr_ring_produce_bh(&pool->ring, page); 632 633 if (!ret) { 634 recycle_stat_inc(pool, ring); 635 return true; 636 } 637 638 return false; 639 } 640 641 /* Only allow direct recycling in special circumstances, into the 642 * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case. 643 * 644 * Caller must provide appropriate safe context. 645 */ 646 static bool page_pool_recycle_in_cache(struct page *page, 647 struct page_pool *pool) 648 { 649 if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) { 650 recycle_stat_inc(pool, cache_full); 651 return false; 652 } 653 654 /* Caller MUST have verified/know (page_ref_count(page) == 1) */ 655 pool->alloc.cache[pool->alloc.count++] = page; 656 recycle_stat_inc(pool, cached); 657 return true; 658 } 659 660 static bool __page_pool_page_can_be_recycled(const struct page *page) 661 { 662 return page_ref_count(page) == 1 && !page_is_pfmemalloc(page); 663 } 664 665 /* If the page refcnt == 1, this will try to recycle the page. 666 * if PP_FLAG_DMA_SYNC_DEV is set, we'll try to sync the DMA area for 667 * the configured size min(dma_sync_size, pool->max_len). 668 * If the page refcnt != 1, then the page will be returned to memory 669 * subsystem. 670 */ 671 static __always_inline struct page * 672 __page_pool_put_page(struct page_pool *pool, struct page *page, 673 unsigned int dma_sync_size, bool allow_direct) 674 { 675 lockdep_assert_no_hardirq(); 676 677 /* This allocator is optimized for the XDP mode that uses 678 * one-frame-per-page, but have fallbacks that act like the 679 * regular page allocator APIs. 680 * 681 * refcnt == 1 means page_pool owns page, and can recycle it. 682 * 683 * page is NOT reusable when allocated when system is under 684 * some pressure. (page_is_pfmemalloc) 685 */ 686 if (likely(__page_pool_page_can_be_recycled(page))) { 687 /* Read barrier done in page_ref_count / READ_ONCE */ 688 689 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) 690 page_pool_dma_sync_for_device(pool, page, 691 dma_sync_size); 692 693 if (allow_direct && in_softirq() && 694 page_pool_recycle_in_cache(page, pool)) 695 return NULL; 696 697 /* Page found as candidate for recycling */ 698 return page; 699 } 700 /* Fallback/non-XDP mode: API user have elevated refcnt. 701 * 702 * Many drivers split up the page into fragments, and some 703 * want to keep doing this to save memory and do refcnt based 704 * recycling. Support this use case too, to ease drivers 705 * switching between XDP/non-XDP. 706 * 707 * In-case page_pool maintains the DMA mapping, API user must 708 * call page_pool_put_page once. In this elevated refcnt 709 * case, the DMA is unmapped/released, as driver is likely 710 * doing refcnt based recycle tricks, meaning another process 711 * will be invoking put_page. 712 */ 713 recycle_stat_inc(pool, released_refcnt); 714 page_pool_return_page(pool, page); 715 716 return NULL; 717 } 718 719 void page_pool_put_unrefed_page(struct page_pool *pool, struct page *page, 720 unsigned int dma_sync_size, bool allow_direct) 721 { 722 page = __page_pool_put_page(pool, page, dma_sync_size, allow_direct); 723 if (page && !page_pool_recycle_in_ring(pool, page)) { 724 /* Cache full, fallback to free pages */ 725 recycle_stat_inc(pool, ring_full); 726 page_pool_return_page(pool, page); 727 } 728 } 729 EXPORT_SYMBOL(page_pool_put_unrefed_page); 730 731 /** 732 * page_pool_put_page_bulk() - release references on multiple pages 733 * @pool: pool from which pages were allocated 734 * @data: array holding page pointers 735 * @count: number of pages in @data 736 * 737 * Tries to refill a number of pages into the ptr_ring cache holding ptr_ring 738 * producer lock. If the ptr_ring is full, page_pool_put_page_bulk() 739 * will release leftover pages to the page allocator. 740 * page_pool_put_page_bulk() is suitable to be run inside the driver NAPI tx 741 * completion loop for the XDP_REDIRECT use case. 742 * 743 * Please note the caller must not use data area after running 744 * page_pool_put_page_bulk(), as this function overwrites it. 745 */ 746 void page_pool_put_page_bulk(struct page_pool *pool, void **data, 747 int count) 748 { 749 int i, bulk_len = 0; 750 bool in_softirq; 751 752 for (i = 0; i < count; i++) { 753 struct page *page = virt_to_head_page(data[i]); 754 755 /* It is not the last user for the page frag case */ 756 if (!page_pool_is_last_ref(page)) 757 continue; 758 759 page = __page_pool_put_page(pool, page, -1, false); 760 /* Approved for bulk recycling in ptr_ring cache */ 761 if (page) 762 data[bulk_len++] = page; 763 } 764 765 if (unlikely(!bulk_len)) 766 return; 767 768 /* Bulk producer into ptr_ring page_pool cache */ 769 in_softirq = page_pool_producer_lock(pool); 770 for (i = 0; i < bulk_len; i++) { 771 if (__ptr_ring_produce(&pool->ring, data[i])) { 772 /* ring full */ 773 recycle_stat_inc(pool, ring_full); 774 break; 775 } 776 } 777 recycle_stat_add(pool, ring, i); 778 page_pool_producer_unlock(pool, in_softirq); 779 780 /* Hopefully all pages was return into ptr_ring */ 781 if (likely(i == bulk_len)) 782 return; 783 784 /* ptr_ring cache full, free remaining pages outside producer lock 785 * since put_page() with refcnt == 1 can be an expensive operation 786 */ 787 for (; i < bulk_len; i++) 788 page_pool_return_page(pool, data[i]); 789 } 790 EXPORT_SYMBOL(page_pool_put_page_bulk); 791 792 static struct page *page_pool_drain_frag(struct page_pool *pool, 793 struct page *page) 794 { 795 long drain_count = BIAS_MAX - pool->frag_users; 796 797 /* Some user is still using the page frag */ 798 if (likely(page_pool_unref_page(page, drain_count))) 799 return NULL; 800 801 if (__page_pool_page_can_be_recycled(page)) { 802 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) 803 page_pool_dma_sync_for_device(pool, page, -1); 804 805 return page; 806 } 807 808 page_pool_return_page(pool, page); 809 return NULL; 810 } 811 812 static void page_pool_free_frag(struct page_pool *pool) 813 { 814 long drain_count = BIAS_MAX - pool->frag_users; 815 struct page *page = pool->frag_page; 816 817 pool->frag_page = NULL; 818 819 if (!page || page_pool_unref_page(page, drain_count)) 820 return; 821 822 page_pool_return_page(pool, page); 823 } 824 825 struct page *page_pool_alloc_frag(struct page_pool *pool, 826 unsigned int *offset, 827 unsigned int size, gfp_t gfp) 828 { 829 unsigned int max_size = PAGE_SIZE << pool->p.order; 830 struct page *page = pool->frag_page; 831 832 if (WARN_ON(size > max_size)) 833 return NULL; 834 835 size = ALIGN(size, dma_get_cache_alignment()); 836 *offset = pool->frag_offset; 837 838 if (page && *offset + size > max_size) { 839 page = page_pool_drain_frag(pool, page); 840 if (page) { 841 alloc_stat_inc(pool, fast); 842 goto frag_reset; 843 } 844 } 845 846 if (!page) { 847 page = page_pool_alloc_pages(pool, gfp); 848 if (unlikely(!page)) { 849 pool->frag_page = NULL; 850 return NULL; 851 } 852 853 pool->frag_page = page; 854 855 frag_reset: 856 pool->frag_users = 1; 857 *offset = 0; 858 pool->frag_offset = size; 859 page_pool_fragment_page(page, BIAS_MAX); 860 return page; 861 } 862 863 pool->frag_users++; 864 pool->frag_offset = *offset + size; 865 alloc_stat_inc(pool, fast); 866 return page; 867 } 868 EXPORT_SYMBOL(page_pool_alloc_frag); 869 870 static void page_pool_empty_ring(struct page_pool *pool) 871 { 872 struct page *page; 873 874 /* Empty recycle ring */ 875 while ((page = ptr_ring_consume_bh(&pool->ring))) { 876 /* Verify the refcnt invariant of cached pages */ 877 if (!(page_ref_count(page) == 1)) 878 pr_crit("%s() page_pool refcnt %d violation\n", 879 __func__, page_ref_count(page)); 880 881 page_pool_return_page(pool, page); 882 } 883 } 884 885 static void __page_pool_destroy(struct page_pool *pool) 886 { 887 if (pool->disconnect) 888 pool->disconnect(pool); 889 890 page_pool_unlist(pool); 891 page_pool_uninit(pool); 892 kfree(pool); 893 } 894 895 static void page_pool_empty_alloc_cache_once(struct page_pool *pool) 896 { 897 struct page *page; 898 899 if (pool->destroy_cnt) 900 return; 901 902 /* Empty alloc cache, assume caller made sure this is 903 * no-longer in use, and page_pool_alloc_pages() cannot be 904 * call concurrently. 905 */ 906 while (pool->alloc.count) { 907 page = pool->alloc.cache[--pool->alloc.count]; 908 page_pool_return_page(pool, page); 909 } 910 } 911 912 static void page_pool_scrub(struct page_pool *pool) 913 { 914 page_pool_empty_alloc_cache_once(pool); 915 pool->destroy_cnt++; 916 917 /* No more consumers should exist, but producers could still 918 * be in-flight. 919 */ 920 page_pool_empty_ring(pool); 921 } 922 923 static int page_pool_release(struct page_pool *pool) 924 { 925 int inflight; 926 927 page_pool_scrub(pool); 928 inflight = page_pool_inflight(pool, true); 929 if (!inflight) 930 __page_pool_destroy(pool); 931 932 return inflight; 933 } 934 935 static void page_pool_release_retry(struct work_struct *wq) 936 { 937 struct delayed_work *dwq = to_delayed_work(wq); 938 struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw); 939 void *netdev; 940 int inflight; 941 942 inflight = page_pool_release(pool); 943 if (!inflight) 944 return; 945 946 /* Periodic warning for page pools the user can't see */ 947 netdev = READ_ONCE(pool->slow.netdev); 948 if (time_after_eq(jiffies, pool->defer_warn) && 949 (!netdev || netdev == NET_PTR_POISON)) { 950 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ; 951 952 pr_warn("%s() stalled pool shutdown: id %u, %d inflight %d sec\n", 953 __func__, pool->user.id, inflight, sec); 954 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 955 } 956 957 /* Still not ready to be disconnected, retry later */ 958 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 959 } 960 961 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *), 962 struct xdp_mem_info *mem) 963 { 964 refcount_inc(&pool->user_cnt); 965 pool->disconnect = disconnect; 966 pool->xdp_mem_id = mem->id; 967 } 968 969 static void page_pool_disable_direct_recycling(struct page_pool *pool) 970 { 971 /* Disable direct recycling based on pool->cpuid. 972 * Paired with READ_ONCE() in napi_pp_put_page(). 973 */ 974 WRITE_ONCE(pool->cpuid, -1); 975 976 if (!pool->p.napi) 977 return; 978 979 /* To avoid races with recycling and additional barriers make sure 980 * pool and NAPI are unlinked when NAPI is disabled. 981 */ 982 WARN_ON(!test_bit(NAPI_STATE_SCHED, &pool->p.napi->state) || 983 READ_ONCE(pool->p.napi->list_owner) != -1); 984 985 WRITE_ONCE(pool->p.napi, NULL); 986 } 987 988 void page_pool_destroy(struct page_pool *pool) 989 { 990 if (!pool) 991 return; 992 993 if (!page_pool_put(pool)) 994 return; 995 996 page_pool_disable_direct_recycling(pool); 997 page_pool_free_frag(pool); 998 999 if (!page_pool_release(pool)) 1000 return; 1001 1002 page_pool_detached(pool); 1003 pool->defer_start = jiffies; 1004 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 1005 1006 INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry); 1007 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 1008 } 1009 EXPORT_SYMBOL(page_pool_destroy); 1010 1011 /* Caller must provide appropriate safe context, e.g. NAPI. */ 1012 void page_pool_update_nid(struct page_pool *pool, int new_nid) 1013 { 1014 struct page *page; 1015 1016 trace_page_pool_update_nid(pool, new_nid); 1017 pool->p.nid = new_nid; 1018 1019 /* Flush pool alloc cache, as refill will check NUMA node */ 1020 while (pool->alloc.count) { 1021 page = pool->alloc.cache[--pool->alloc.count]; 1022 page_pool_return_page(pool, page); 1023 } 1024 } 1025 EXPORT_SYMBOL(page_pool_update_nid); 1026