1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * page_pool.c 4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com> 5 * Copyright (C) 2016 Red Hat, Inc. 6 */ 7 8 #include <linux/error-injection.h> 9 #include <linux/types.h> 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/device.h> 13 14 #include <net/netdev_lock.h> 15 #include <net/netdev_rx_queue.h> 16 #include <net/page_pool/helpers.h> 17 #include <net/page_pool/memory_provider.h> 18 #include <net/xdp.h> 19 20 #include <linux/dma-direction.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/page-flags.h> 23 #include <linux/mm.h> /* for put_page() */ 24 #include <linux/poison.h> 25 #include <linux/ethtool.h> 26 #include <linux/netdevice.h> 27 28 #include <trace/events/page_pool.h> 29 30 #include "dev.h" 31 #include "mp_dmabuf_devmem.h" 32 #include "netmem_priv.h" 33 #include "page_pool_priv.h" 34 35 DEFINE_STATIC_KEY_FALSE(page_pool_mem_providers); 36 37 #define DEFER_TIME (msecs_to_jiffies(1000)) 38 #define DEFER_WARN_INTERVAL (60 * HZ) 39 40 #define BIAS_MAX (LONG_MAX >> 1) 41 42 #ifdef CONFIG_PAGE_POOL_STATS 43 static DEFINE_PER_CPU(struct page_pool_recycle_stats, pp_system_recycle_stats); 44 45 /* alloc_stat_inc is intended to be used in softirq context */ 46 #define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++) 47 /* recycle_stat_inc is safe to use when preemption is possible. */ 48 #define recycle_stat_inc(pool, __stat) \ 49 do { \ 50 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 51 this_cpu_inc(s->__stat); \ 52 } while (0) 53 54 #define recycle_stat_add(pool, __stat, val) \ 55 do { \ 56 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 57 this_cpu_add(s->__stat, val); \ 58 } while (0) 59 60 static const char pp_stats[][ETH_GSTRING_LEN] = { 61 "rx_pp_alloc_fast", 62 "rx_pp_alloc_slow", 63 "rx_pp_alloc_slow_ho", 64 "rx_pp_alloc_empty", 65 "rx_pp_alloc_refill", 66 "rx_pp_alloc_waive", 67 "rx_pp_recycle_cached", 68 "rx_pp_recycle_cache_full", 69 "rx_pp_recycle_ring", 70 "rx_pp_recycle_ring_full", 71 "rx_pp_recycle_released_ref", 72 }; 73 74 /** 75 * page_pool_get_stats() - fetch page pool stats 76 * @pool: pool from which page was allocated 77 * @stats: struct page_pool_stats to fill in 78 * 79 * Retrieve statistics about the page_pool. This API is only available 80 * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``. 81 * A pointer to a caller allocated struct page_pool_stats structure 82 * is passed to this API which is filled in. The caller can then report 83 * those stats to the user (perhaps via ethtool, debugfs, etc.). 84 */ 85 bool page_pool_get_stats(const struct page_pool *pool, 86 struct page_pool_stats *stats) 87 { 88 int cpu = 0; 89 90 if (!stats) 91 return false; 92 93 /* The caller is responsible to initialize stats. */ 94 stats->alloc_stats.fast += pool->alloc_stats.fast; 95 stats->alloc_stats.slow += pool->alloc_stats.slow; 96 stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order; 97 stats->alloc_stats.empty += pool->alloc_stats.empty; 98 stats->alloc_stats.refill += pool->alloc_stats.refill; 99 stats->alloc_stats.waive += pool->alloc_stats.waive; 100 101 for_each_possible_cpu(cpu) { 102 const struct page_pool_recycle_stats *pcpu = 103 per_cpu_ptr(pool->recycle_stats, cpu); 104 105 stats->recycle_stats.cached += pcpu->cached; 106 stats->recycle_stats.cache_full += pcpu->cache_full; 107 stats->recycle_stats.ring += pcpu->ring; 108 stats->recycle_stats.ring_full += pcpu->ring_full; 109 stats->recycle_stats.released_refcnt += pcpu->released_refcnt; 110 } 111 112 return true; 113 } 114 EXPORT_SYMBOL(page_pool_get_stats); 115 116 u8 *page_pool_ethtool_stats_get_strings(u8 *data) 117 { 118 int i; 119 120 for (i = 0; i < ARRAY_SIZE(pp_stats); i++) { 121 memcpy(data, pp_stats[i], ETH_GSTRING_LEN); 122 data += ETH_GSTRING_LEN; 123 } 124 125 return data; 126 } 127 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings); 128 129 int page_pool_ethtool_stats_get_count(void) 130 { 131 return ARRAY_SIZE(pp_stats); 132 } 133 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count); 134 135 u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats) 136 { 137 const struct page_pool_stats *pool_stats = stats; 138 139 *data++ = pool_stats->alloc_stats.fast; 140 *data++ = pool_stats->alloc_stats.slow; 141 *data++ = pool_stats->alloc_stats.slow_high_order; 142 *data++ = pool_stats->alloc_stats.empty; 143 *data++ = pool_stats->alloc_stats.refill; 144 *data++ = pool_stats->alloc_stats.waive; 145 *data++ = pool_stats->recycle_stats.cached; 146 *data++ = pool_stats->recycle_stats.cache_full; 147 *data++ = pool_stats->recycle_stats.ring; 148 *data++ = pool_stats->recycle_stats.ring_full; 149 *data++ = pool_stats->recycle_stats.released_refcnt; 150 151 return data; 152 } 153 EXPORT_SYMBOL(page_pool_ethtool_stats_get); 154 155 #else 156 #define alloc_stat_inc(...) do { } while (0) 157 #define recycle_stat_inc(...) do { } while (0) 158 #define recycle_stat_add(...) do { } while (0) 159 #endif 160 161 static bool page_pool_producer_lock(struct page_pool *pool) 162 __acquires(&pool->ring.producer_lock) 163 { 164 bool in_softirq = in_softirq(); 165 166 if (in_softirq) 167 spin_lock(&pool->ring.producer_lock); 168 else 169 spin_lock_bh(&pool->ring.producer_lock); 170 171 return in_softirq; 172 } 173 174 static void page_pool_producer_unlock(struct page_pool *pool, 175 bool in_softirq) 176 __releases(&pool->ring.producer_lock) 177 { 178 if (in_softirq) 179 spin_unlock(&pool->ring.producer_lock); 180 else 181 spin_unlock_bh(&pool->ring.producer_lock); 182 } 183 184 static void page_pool_struct_check(void) 185 { 186 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_users); 187 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_page); 188 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_offset); 189 CACHELINE_ASSERT_GROUP_SIZE(struct page_pool, frag, 190 PAGE_POOL_FRAG_GROUP_ALIGN); 191 } 192 193 static int page_pool_init(struct page_pool *pool, 194 const struct page_pool_params *params, 195 int cpuid) 196 { 197 unsigned int ring_qsize = 1024; /* Default */ 198 struct netdev_rx_queue *rxq; 199 int err; 200 201 page_pool_struct_check(); 202 203 memcpy(&pool->p, ¶ms->fast, sizeof(pool->p)); 204 memcpy(&pool->slow, ¶ms->slow, sizeof(pool->slow)); 205 206 pool->cpuid = cpuid; 207 pool->dma_sync_for_cpu = true; 208 209 /* Validate only known flags were used */ 210 if (pool->slow.flags & ~PP_FLAG_ALL) 211 return -EINVAL; 212 213 if (pool->p.pool_size) 214 ring_qsize = min(pool->p.pool_size, 16384); 215 216 /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL. 217 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending, 218 * which is the XDP_TX use-case. 219 */ 220 if (pool->slow.flags & PP_FLAG_DMA_MAP) { 221 if ((pool->p.dma_dir != DMA_FROM_DEVICE) && 222 (pool->p.dma_dir != DMA_BIDIRECTIONAL)) 223 return -EINVAL; 224 225 pool->dma_map = true; 226 } 227 228 if (pool->slow.flags & PP_FLAG_DMA_SYNC_DEV) { 229 /* In order to request DMA-sync-for-device the page 230 * needs to be mapped 231 */ 232 if (!(pool->slow.flags & PP_FLAG_DMA_MAP)) 233 return -EINVAL; 234 235 if (!pool->p.max_len) 236 return -EINVAL; 237 238 pool->dma_sync = true; 239 240 /* pool->p.offset has to be set according to the address 241 * offset used by the DMA engine to start copying rx data 242 */ 243 } 244 245 pool->has_init_callback = !!pool->slow.init_callback; 246 247 #ifdef CONFIG_PAGE_POOL_STATS 248 if (!(pool->slow.flags & PP_FLAG_SYSTEM_POOL)) { 249 pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats); 250 if (!pool->recycle_stats) 251 return -ENOMEM; 252 } else { 253 /* For system page pool instance we use a singular stats object 254 * instead of allocating a separate percpu variable for each 255 * (also percpu) page pool instance. 256 */ 257 pool->recycle_stats = &pp_system_recycle_stats; 258 pool->system = true; 259 } 260 #endif 261 262 if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) { 263 #ifdef CONFIG_PAGE_POOL_STATS 264 if (!pool->system) 265 free_percpu(pool->recycle_stats); 266 #endif 267 return -ENOMEM; 268 } 269 270 atomic_set(&pool->pages_state_release_cnt, 0); 271 272 /* Driver calling page_pool_create() also call page_pool_destroy() */ 273 refcount_set(&pool->user_cnt, 1); 274 275 xa_init_flags(&pool->dma_mapped, XA_FLAGS_ALLOC1); 276 277 if (pool->slow.flags & PP_FLAG_ALLOW_UNREADABLE_NETMEM) { 278 netdev_assert_locked(pool->slow.netdev); 279 rxq = __netif_get_rx_queue(pool->slow.netdev, 280 pool->slow.queue_idx); 281 pool->mp_priv = rxq->mp_params.mp_priv; 282 pool->mp_ops = rxq->mp_params.mp_ops; 283 } 284 285 if (pool->mp_ops) { 286 if (!pool->dma_map || !pool->dma_sync) { 287 err = -EOPNOTSUPP; 288 goto free_ptr_ring; 289 } 290 291 if (WARN_ON(!is_kernel_rodata((unsigned long)pool->mp_ops))) { 292 err = -EFAULT; 293 goto free_ptr_ring; 294 } 295 296 err = pool->mp_ops->init(pool); 297 if (err) { 298 pr_warn("%s() mem-provider init failed %d\n", __func__, 299 err); 300 goto free_ptr_ring; 301 } 302 303 static_branch_inc(&page_pool_mem_providers); 304 } 305 306 return 0; 307 308 free_ptr_ring: 309 ptr_ring_cleanup(&pool->ring, NULL); 310 #ifdef CONFIG_PAGE_POOL_STATS 311 if (!pool->system) 312 free_percpu(pool->recycle_stats); 313 #endif 314 return err; 315 } 316 317 static void page_pool_uninit(struct page_pool *pool) 318 { 319 ptr_ring_cleanup(&pool->ring, NULL); 320 xa_destroy(&pool->dma_mapped); 321 322 #ifdef CONFIG_PAGE_POOL_STATS 323 if (!pool->system) 324 free_percpu(pool->recycle_stats); 325 #endif 326 } 327 328 /** 329 * page_pool_create_percpu() - create a page pool for a given cpu. 330 * @params: parameters, see struct page_pool_params 331 * @cpuid: cpu identifier 332 */ 333 struct page_pool * 334 page_pool_create_percpu(const struct page_pool_params *params, int cpuid) 335 { 336 struct page_pool *pool; 337 int err; 338 339 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid); 340 if (!pool) 341 return ERR_PTR(-ENOMEM); 342 343 err = page_pool_init(pool, params, cpuid); 344 if (err < 0) 345 goto err_free; 346 347 err = page_pool_list(pool); 348 if (err) 349 goto err_uninit; 350 351 return pool; 352 353 err_uninit: 354 page_pool_uninit(pool); 355 err_free: 356 pr_warn("%s() gave up with errno %d\n", __func__, err); 357 kfree(pool); 358 return ERR_PTR(err); 359 } 360 EXPORT_SYMBOL(page_pool_create_percpu); 361 362 /** 363 * page_pool_create() - create a page pool 364 * @params: parameters, see struct page_pool_params 365 */ 366 struct page_pool *page_pool_create(const struct page_pool_params *params) 367 { 368 return page_pool_create_percpu(params, -1); 369 } 370 EXPORT_SYMBOL(page_pool_create); 371 372 static void page_pool_return_netmem(struct page_pool *pool, netmem_ref netmem); 373 374 static noinline netmem_ref page_pool_refill_alloc_cache(struct page_pool *pool) 375 { 376 struct ptr_ring *r = &pool->ring; 377 netmem_ref netmem; 378 int pref_nid; /* preferred NUMA node */ 379 380 /* Quicker fallback, avoid locks when ring is empty */ 381 if (__ptr_ring_empty(r)) { 382 alloc_stat_inc(pool, empty); 383 return 0; 384 } 385 386 /* Softirq guarantee CPU and thus NUMA node is stable. This, 387 * assumes CPU refilling driver RX-ring will also run RX-NAPI. 388 */ 389 #ifdef CONFIG_NUMA 390 pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid; 391 #else 392 /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */ 393 pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */ 394 #endif 395 396 /* Refill alloc array, but only if NUMA match */ 397 do { 398 netmem = (__force netmem_ref)__ptr_ring_consume(r); 399 if (unlikely(!netmem)) 400 break; 401 402 if (likely(netmem_is_pref_nid(netmem, pref_nid))) { 403 pool->alloc.cache[pool->alloc.count++] = netmem; 404 } else { 405 /* NUMA mismatch; 406 * (1) release 1 page to page-allocator and 407 * (2) break out to fallthrough to alloc_pages_node. 408 * This limit stress on page buddy alloactor. 409 */ 410 page_pool_return_netmem(pool, netmem); 411 alloc_stat_inc(pool, waive); 412 netmem = 0; 413 break; 414 } 415 } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL); 416 417 /* Return last page */ 418 if (likely(pool->alloc.count > 0)) { 419 netmem = pool->alloc.cache[--pool->alloc.count]; 420 alloc_stat_inc(pool, refill); 421 } 422 423 return netmem; 424 } 425 426 /* fast path */ 427 static netmem_ref __page_pool_get_cached(struct page_pool *pool) 428 { 429 netmem_ref netmem; 430 431 /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */ 432 if (likely(pool->alloc.count)) { 433 /* Fast-path */ 434 netmem = pool->alloc.cache[--pool->alloc.count]; 435 alloc_stat_inc(pool, fast); 436 } else { 437 netmem = page_pool_refill_alloc_cache(pool); 438 } 439 440 return netmem; 441 } 442 443 static void __page_pool_dma_sync_for_device(const struct page_pool *pool, 444 netmem_ref netmem, 445 u32 dma_sync_size) 446 { 447 #if defined(CONFIG_HAS_DMA) && defined(CONFIG_DMA_NEED_SYNC) 448 dma_addr_t dma_addr = page_pool_get_dma_addr_netmem(netmem); 449 450 dma_sync_size = min(dma_sync_size, pool->p.max_len); 451 __dma_sync_single_for_device(pool->p.dev, dma_addr + pool->p.offset, 452 dma_sync_size, pool->p.dma_dir); 453 #endif 454 } 455 456 static __always_inline void 457 page_pool_dma_sync_for_device(const struct page_pool *pool, 458 netmem_ref netmem, 459 u32 dma_sync_size) 460 { 461 if (pool->dma_sync && dma_dev_need_sync(pool->p.dev)) { 462 rcu_read_lock(); 463 /* re-check under rcu_read_lock() to sync with page_pool_scrub() */ 464 if (pool->dma_sync) 465 __page_pool_dma_sync_for_device(pool, netmem, 466 dma_sync_size); 467 rcu_read_unlock(); 468 } 469 } 470 471 static int page_pool_register_dma_index(struct page_pool *pool, 472 netmem_ref netmem, gfp_t gfp) 473 { 474 int err = 0; 475 u32 id; 476 477 if (unlikely(!PP_DMA_INDEX_BITS)) 478 goto out; 479 480 if (in_softirq()) 481 err = xa_alloc(&pool->dma_mapped, &id, netmem_to_page(netmem), 482 PP_DMA_INDEX_LIMIT, gfp); 483 else 484 err = xa_alloc_bh(&pool->dma_mapped, &id, netmem_to_page(netmem), 485 PP_DMA_INDEX_LIMIT, gfp); 486 if (err) { 487 WARN_ONCE(err != -ENOMEM, "couldn't track DMA mapping, please report to netdev@"); 488 goto out; 489 } 490 491 netmem_set_dma_index(netmem, id); 492 out: 493 return err; 494 } 495 496 static int page_pool_release_dma_index(struct page_pool *pool, 497 netmem_ref netmem) 498 { 499 struct page *old, *page = netmem_to_page(netmem); 500 unsigned long id; 501 502 if (unlikely(!PP_DMA_INDEX_BITS)) 503 return 0; 504 505 id = netmem_get_dma_index(netmem); 506 if (!id) 507 return -1; 508 509 if (in_softirq()) 510 old = xa_cmpxchg(&pool->dma_mapped, id, page, NULL, 0); 511 else 512 old = xa_cmpxchg_bh(&pool->dma_mapped, id, page, NULL, 0); 513 if (old != page) 514 return -1; 515 516 netmem_set_dma_index(netmem, 0); 517 518 return 0; 519 } 520 521 static bool page_pool_dma_map(struct page_pool *pool, netmem_ref netmem, gfp_t gfp) 522 { 523 dma_addr_t dma; 524 int err; 525 526 /* Setup DMA mapping: use 'struct page' area for storing DMA-addr 527 * since dma_addr_t can be either 32 or 64 bits and does not always fit 528 * into page private data (i.e 32bit cpu with 64bit DMA caps) 529 * This mapping is kept for lifetime of page, until leaving pool. 530 */ 531 dma = dma_map_page_attrs(pool->p.dev, netmem_to_page(netmem), 0, 532 (PAGE_SIZE << pool->p.order), pool->p.dma_dir, 533 DMA_ATTR_SKIP_CPU_SYNC | 534 DMA_ATTR_WEAK_ORDERING); 535 if (dma_mapping_error(pool->p.dev, dma)) 536 return false; 537 538 if (page_pool_set_dma_addr_netmem(netmem, dma)) { 539 WARN_ONCE(1, "unexpected DMA address, please report to netdev@"); 540 goto unmap_failed; 541 } 542 543 err = page_pool_register_dma_index(pool, netmem, gfp); 544 if (err) 545 goto unset_failed; 546 547 page_pool_dma_sync_for_device(pool, netmem, pool->p.max_len); 548 549 return true; 550 551 unset_failed: 552 page_pool_set_dma_addr_netmem(netmem, 0); 553 unmap_failed: 554 dma_unmap_page_attrs(pool->p.dev, dma, 555 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 556 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 557 return false; 558 } 559 560 static struct page *__page_pool_alloc_page_order(struct page_pool *pool, 561 gfp_t gfp) 562 { 563 struct page *page; 564 565 gfp |= __GFP_COMP; 566 page = alloc_pages_node(pool->p.nid, gfp, pool->p.order); 567 if (unlikely(!page)) 568 return NULL; 569 570 if (pool->dma_map && unlikely(!page_pool_dma_map(pool, page_to_netmem(page), gfp))) { 571 put_page(page); 572 return NULL; 573 } 574 575 alloc_stat_inc(pool, slow_high_order); 576 page_pool_set_pp_info(pool, page_to_netmem(page)); 577 578 /* Track how many pages are held 'in-flight' */ 579 pool->pages_state_hold_cnt++; 580 trace_page_pool_state_hold(pool, page_to_netmem(page), 581 pool->pages_state_hold_cnt); 582 return page; 583 } 584 585 /* slow path */ 586 static noinline netmem_ref __page_pool_alloc_netmems_slow(struct page_pool *pool, 587 gfp_t gfp) 588 { 589 const int bulk = PP_ALLOC_CACHE_REFILL; 590 unsigned int pp_order = pool->p.order; 591 bool dma_map = pool->dma_map; 592 netmem_ref netmem; 593 int i, nr_pages; 594 595 /* Unconditionally set NOWARN if allocating from NAPI. 596 * Drivers forget to set it, and OOM reports on packet Rx are useless. 597 */ 598 if ((gfp & GFP_ATOMIC) == GFP_ATOMIC) 599 gfp |= __GFP_NOWARN; 600 601 /* Don't support bulk alloc for high-order pages */ 602 if (unlikely(pp_order)) 603 return page_to_netmem(__page_pool_alloc_page_order(pool, gfp)); 604 605 /* Unnecessary as alloc cache is empty, but guarantees zero count */ 606 if (unlikely(pool->alloc.count > 0)) 607 return pool->alloc.cache[--pool->alloc.count]; 608 609 /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk */ 610 memset(&pool->alloc.cache, 0, sizeof(void *) * bulk); 611 612 nr_pages = alloc_pages_bulk_node(gfp, pool->p.nid, bulk, 613 (struct page **)pool->alloc.cache); 614 if (unlikely(!nr_pages)) 615 return 0; 616 617 /* Pages have been filled into alloc.cache array, but count is zero and 618 * page element have not been (possibly) DMA mapped. 619 */ 620 for (i = 0; i < nr_pages; i++) { 621 netmem = pool->alloc.cache[i]; 622 if (dma_map && unlikely(!page_pool_dma_map(pool, netmem, gfp))) { 623 put_page(netmem_to_page(netmem)); 624 continue; 625 } 626 627 page_pool_set_pp_info(pool, netmem); 628 pool->alloc.cache[pool->alloc.count++] = netmem; 629 /* Track how many pages are held 'in-flight' */ 630 pool->pages_state_hold_cnt++; 631 trace_page_pool_state_hold(pool, netmem, 632 pool->pages_state_hold_cnt); 633 } 634 635 /* Return last page */ 636 if (likely(pool->alloc.count > 0)) { 637 netmem = pool->alloc.cache[--pool->alloc.count]; 638 alloc_stat_inc(pool, slow); 639 } else { 640 netmem = 0; 641 } 642 643 /* When page just alloc'ed is should/must have refcnt 1. */ 644 return netmem; 645 } 646 647 /* For using page_pool replace: alloc_pages() API calls, but provide 648 * synchronization guarantee for allocation side. 649 */ 650 netmem_ref page_pool_alloc_netmems(struct page_pool *pool, gfp_t gfp) 651 { 652 netmem_ref netmem; 653 654 /* Fast-path: Get a page from cache */ 655 netmem = __page_pool_get_cached(pool); 656 if (netmem) 657 return netmem; 658 659 /* Slow-path: cache empty, do real allocation */ 660 if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_ops) 661 netmem = pool->mp_ops->alloc_netmems(pool, gfp); 662 else 663 netmem = __page_pool_alloc_netmems_slow(pool, gfp); 664 return netmem; 665 } 666 EXPORT_SYMBOL(page_pool_alloc_netmems); 667 ALLOW_ERROR_INJECTION(page_pool_alloc_netmems, NULL); 668 669 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp) 670 { 671 return netmem_to_page(page_pool_alloc_netmems(pool, gfp)); 672 } 673 EXPORT_SYMBOL(page_pool_alloc_pages); 674 675 /* Calculate distance between two u32 values, valid if distance is below 2^(31) 676 * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution 677 */ 678 #define _distance(a, b) (s32)((a) - (b)) 679 680 s32 page_pool_inflight(const struct page_pool *pool, bool strict) 681 { 682 u32 release_cnt = atomic_read(&pool->pages_state_release_cnt); 683 u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt); 684 s32 inflight; 685 686 inflight = _distance(hold_cnt, release_cnt); 687 688 if (strict) { 689 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt); 690 WARN(inflight < 0, "Negative(%d) inflight packet-pages", 691 inflight); 692 } else { 693 inflight = max(0, inflight); 694 } 695 696 return inflight; 697 } 698 699 void page_pool_set_pp_info(struct page_pool *pool, netmem_ref netmem) 700 { 701 netmem_set_pp(netmem, pool); 702 netmem_or_pp_magic(netmem, PP_SIGNATURE); 703 704 /* Ensuring all pages have been split into one fragment initially: 705 * page_pool_set_pp_info() is only called once for every page when it 706 * is allocated from the page allocator and page_pool_fragment_page() 707 * is dirtying the same cache line as the page->pp_magic above, so 708 * the overhead is negligible. 709 */ 710 page_pool_fragment_netmem(netmem, 1); 711 if (pool->has_init_callback) 712 pool->slow.init_callback(netmem, pool->slow.init_arg); 713 } 714 715 void page_pool_clear_pp_info(netmem_ref netmem) 716 { 717 netmem_clear_pp_magic(netmem); 718 netmem_set_pp(netmem, NULL); 719 } 720 721 static __always_inline void __page_pool_release_netmem_dma(struct page_pool *pool, 722 netmem_ref netmem) 723 { 724 dma_addr_t dma; 725 726 if (!pool->dma_map) 727 /* Always account for inflight pages, even if we didn't 728 * map them 729 */ 730 return; 731 732 if (page_pool_release_dma_index(pool, netmem)) 733 return; 734 735 dma = page_pool_get_dma_addr_netmem(netmem); 736 737 /* When page is unmapped, it cannot be returned to our pool */ 738 dma_unmap_page_attrs(pool->p.dev, dma, 739 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 740 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 741 page_pool_set_dma_addr_netmem(netmem, 0); 742 } 743 744 /* Disconnects a page (from a page_pool). API users can have a need 745 * to disconnect a page (from a page_pool), to allow it to be used as 746 * a regular page (that will eventually be returned to the normal 747 * page-allocator via put_page). 748 */ 749 static void page_pool_return_netmem(struct page_pool *pool, netmem_ref netmem) 750 { 751 int count; 752 bool put; 753 754 put = true; 755 if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_ops) 756 put = pool->mp_ops->release_netmem(pool, netmem); 757 else 758 __page_pool_release_netmem_dma(pool, netmem); 759 760 /* This may be the last page returned, releasing the pool, so 761 * it is not safe to reference pool afterwards. 762 */ 763 count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt); 764 trace_page_pool_state_release(pool, netmem, count); 765 766 if (put) { 767 page_pool_clear_pp_info(netmem); 768 put_page(netmem_to_page(netmem)); 769 } 770 /* An optimization would be to call __free_pages(page, pool->p.order) 771 * knowing page is not part of page-cache (thus avoiding a 772 * __page_cache_release() call). 773 */ 774 } 775 776 static bool page_pool_recycle_in_ring(struct page_pool *pool, netmem_ref netmem) 777 { 778 bool in_softirq, ret; 779 780 /* BH protection not needed if current is softirq */ 781 in_softirq = page_pool_producer_lock(pool); 782 ret = !__ptr_ring_produce(&pool->ring, (__force void *)netmem); 783 if (ret) 784 recycle_stat_inc(pool, ring); 785 page_pool_producer_unlock(pool, in_softirq); 786 787 return ret; 788 } 789 790 /* Only allow direct recycling in special circumstances, into the 791 * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case. 792 * 793 * Caller must provide appropriate safe context. 794 */ 795 static bool page_pool_recycle_in_cache(netmem_ref netmem, 796 struct page_pool *pool) 797 { 798 if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) { 799 recycle_stat_inc(pool, cache_full); 800 return false; 801 } 802 803 /* Caller MUST have verified/know (page_ref_count(page) == 1) */ 804 pool->alloc.cache[pool->alloc.count++] = netmem; 805 recycle_stat_inc(pool, cached); 806 return true; 807 } 808 809 static bool __page_pool_page_can_be_recycled(netmem_ref netmem) 810 { 811 return netmem_is_net_iov(netmem) || 812 (page_ref_count(netmem_to_page(netmem)) == 1 && 813 !page_is_pfmemalloc(netmem_to_page(netmem))); 814 } 815 816 /* If the page refcnt == 1, this will try to recycle the page. 817 * If pool->dma_sync is set, we'll try to sync the DMA area for 818 * the configured size min(dma_sync_size, pool->max_len). 819 * If the page refcnt != 1, then the page will be returned to memory 820 * subsystem. 821 */ 822 static __always_inline netmem_ref 823 __page_pool_put_page(struct page_pool *pool, netmem_ref netmem, 824 unsigned int dma_sync_size, bool allow_direct) 825 { 826 lockdep_assert_no_hardirq(); 827 828 /* This allocator is optimized for the XDP mode that uses 829 * one-frame-per-page, but have fallbacks that act like the 830 * regular page allocator APIs. 831 * 832 * refcnt == 1 means page_pool owns page, and can recycle it. 833 * 834 * page is NOT reusable when allocated when system is under 835 * some pressure. (page_is_pfmemalloc) 836 */ 837 if (likely(__page_pool_page_can_be_recycled(netmem))) { 838 /* Read barrier done in page_ref_count / READ_ONCE */ 839 840 page_pool_dma_sync_for_device(pool, netmem, dma_sync_size); 841 842 if (allow_direct && page_pool_recycle_in_cache(netmem, pool)) 843 return 0; 844 845 /* Page found as candidate for recycling */ 846 return netmem; 847 } 848 849 /* Fallback/non-XDP mode: API user have elevated refcnt. 850 * 851 * Many drivers split up the page into fragments, and some 852 * want to keep doing this to save memory and do refcnt based 853 * recycling. Support this use case too, to ease drivers 854 * switching between XDP/non-XDP. 855 * 856 * In-case page_pool maintains the DMA mapping, API user must 857 * call page_pool_put_page once. In this elevated refcnt 858 * case, the DMA is unmapped/released, as driver is likely 859 * doing refcnt based recycle tricks, meaning another process 860 * will be invoking put_page. 861 */ 862 recycle_stat_inc(pool, released_refcnt); 863 page_pool_return_netmem(pool, netmem); 864 865 return 0; 866 } 867 868 static bool page_pool_napi_local(const struct page_pool *pool) 869 { 870 const struct napi_struct *napi; 871 u32 cpuid; 872 873 /* On PREEMPT_RT the softirq can be preempted by the consumer */ 874 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 875 return false; 876 877 if (unlikely(!in_softirq())) 878 return false; 879 880 /* Allow direct recycle if we have reasons to believe that we are 881 * in the same context as the consumer would run, so there's 882 * no possible race. 883 * __page_pool_put_page() makes sure we're not in hardirq context 884 * and interrupts are enabled prior to accessing the cache. 885 */ 886 cpuid = smp_processor_id(); 887 if (READ_ONCE(pool->cpuid) == cpuid) 888 return true; 889 890 napi = READ_ONCE(pool->p.napi); 891 892 return napi && READ_ONCE(napi->list_owner) == cpuid; 893 } 894 895 void page_pool_put_unrefed_netmem(struct page_pool *pool, netmem_ref netmem, 896 unsigned int dma_sync_size, bool allow_direct) 897 { 898 if (!allow_direct) 899 allow_direct = page_pool_napi_local(pool); 900 901 netmem = __page_pool_put_page(pool, netmem, dma_sync_size, 902 allow_direct); 903 if (netmem && !page_pool_recycle_in_ring(pool, netmem)) { 904 /* Cache full, fallback to free pages */ 905 recycle_stat_inc(pool, ring_full); 906 page_pool_return_netmem(pool, netmem); 907 } 908 } 909 EXPORT_SYMBOL(page_pool_put_unrefed_netmem); 910 911 void page_pool_put_unrefed_page(struct page_pool *pool, struct page *page, 912 unsigned int dma_sync_size, bool allow_direct) 913 { 914 page_pool_put_unrefed_netmem(pool, page_to_netmem(page), dma_sync_size, 915 allow_direct); 916 } 917 EXPORT_SYMBOL(page_pool_put_unrefed_page); 918 919 static void page_pool_recycle_ring_bulk(struct page_pool *pool, 920 netmem_ref *bulk, 921 u32 bulk_len) 922 { 923 bool in_softirq; 924 u32 i; 925 926 /* Bulk produce into ptr_ring page_pool cache */ 927 in_softirq = page_pool_producer_lock(pool); 928 929 for (i = 0; i < bulk_len; i++) { 930 if (__ptr_ring_produce(&pool->ring, (__force void *)bulk[i])) { 931 /* ring full */ 932 recycle_stat_inc(pool, ring_full); 933 break; 934 } 935 } 936 937 page_pool_producer_unlock(pool, in_softirq); 938 recycle_stat_add(pool, ring, i); 939 940 /* Hopefully all pages were returned into ptr_ring */ 941 if (likely(i == bulk_len)) 942 return; 943 944 /* 945 * ptr_ring cache is full, free remaining pages outside producer lock 946 * since put_page() with refcnt == 1 can be an expensive operation. 947 */ 948 for (; i < bulk_len; i++) 949 page_pool_return_netmem(pool, bulk[i]); 950 } 951 952 /** 953 * page_pool_put_netmem_bulk() - release references on multiple netmems 954 * @data: array holding netmem references 955 * @count: number of entries in @data 956 * 957 * Tries to refill a number of netmems into the ptr_ring cache holding ptr_ring 958 * producer lock. If the ptr_ring is full, page_pool_put_netmem_bulk() 959 * will release leftover netmems to the memory provider. 960 * page_pool_put_netmem_bulk() is suitable to be run inside the driver NAPI tx 961 * completion loop for the XDP_REDIRECT use case. 962 * 963 * Please note the caller must not use data area after running 964 * page_pool_put_netmem_bulk(), as this function overwrites it. 965 */ 966 void page_pool_put_netmem_bulk(netmem_ref *data, u32 count) 967 { 968 u32 bulk_len = 0; 969 970 for (u32 i = 0; i < count; i++) { 971 netmem_ref netmem = netmem_compound_head(data[i]); 972 973 if (page_pool_unref_and_test(netmem)) 974 data[bulk_len++] = netmem; 975 } 976 977 count = bulk_len; 978 while (count) { 979 netmem_ref bulk[XDP_BULK_QUEUE_SIZE]; 980 struct page_pool *pool = NULL; 981 bool allow_direct; 982 u32 foreign = 0; 983 984 bulk_len = 0; 985 986 for (u32 i = 0; i < count; i++) { 987 struct page_pool *netmem_pp; 988 netmem_ref netmem = data[i]; 989 990 netmem_pp = netmem_get_pp(netmem); 991 if (unlikely(!pool)) { 992 pool = netmem_pp; 993 allow_direct = page_pool_napi_local(pool); 994 } else if (netmem_pp != pool) { 995 /* 996 * If the netmem belongs to a different 997 * page_pool, save it for another round. 998 */ 999 data[foreign++] = netmem; 1000 continue; 1001 } 1002 1003 netmem = __page_pool_put_page(pool, netmem, -1, 1004 allow_direct); 1005 /* Approved for bulk recycling in ptr_ring cache */ 1006 if (netmem) 1007 bulk[bulk_len++] = netmem; 1008 } 1009 1010 if (bulk_len) 1011 page_pool_recycle_ring_bulk(pool, bulk, bulk_len); 1012 1013 count = foreign; 1014 } 1015 } 1016 EXPORT_SYMBOL(page_pool_put_netmem_bulk); 1017 1018 static netmem_ref page_pool_drain_frag(struct page_pool *pool, 1019 netmem_ref netmem) 1020 { 1021 long drain_count = BIAS_MAX - pool->frag_users; 1022 1023 /* Some user is still using the page frag */ 1024 if (likely(page_pool_unref_netmem(netmem, drain_count))) 1025 return 0; 1026 1027 if (__page_pool_page_can_be_recycled(netmem)) { 1028 page_pool_dma_sync_for_device(pool, netmem, -1); 1029 return netmem; 1030 } 1031 1032 page_pool_return_netmem(pool, netmem); 1033 return 0; 1034 } 1035 1036 static void page_pool_free_frag(struct page_pool *pool) 1037 { 1038 long drain_count = BIAS_MAX - pool->frag_users; 1039 netmem_ref netmem = pool->frag_page; 1040 1041 pool->frag_page = 0; 1042 1043 if (!netmem || page_pool_unref_netmem(netmem, drain_count)) 1044 return; 1045 1046 page_pool_return_netmem(pool, netmem); 1047 } 1048 1049 netmem_ref page_pool_alloc_frag_netmem(struct page_pool *pool, 1050 unsigned int *offset, unsigned int size, 1051 gfp_t gfp) 1052 { 1053 unsigned int max_size = PAGE_SIZE << pool->p.order; 1054 netmem_ref netmem = pool->frag_page; 1055 1056 if (WARN_ON(size > max_size)) 1057 return 0; 1058 1059 size = ALIGN(size, dma_get_cache_alignment()); 1060 *offset = pool->frag_offset; 1061 1062 if (netmem && *offset + size > max_size) { 1063 netmem = page_pool_drain_frag(pool, netmem); 1064 if (netmem) { 1065 recycle_stat_inc(pool, cached); 1066 alloc_stat_inc(pool, fast); 1067 goto frag_reset; 1068 } 1069 } 1070 1071 if (!netmem) { 1072 netmem = page_pool_alloc_netmems(pool, gfp); 1073 if (unlikely(!netmem)) { 1074 pool->frag_page = 0; 1075 return 0; 1076 } 1077 1078 pool->frag_page = netmem; 1079 1080 frag_reset: 1081 pool->frag_users = 1; 1082 *offset = 0; 1083 pool->frag_offset = size; 1084 page_pool_fragment_netmem(netmem, BIAS_MAX); 1085 return netmem; 1086 } 1087 1088 pool->frag_users++; 1089 pool->frag_offset = *offset + size; 1090 return netmem; 1091 } 1092 EXPORT_SYMBOL(page_pool_alloc_frag_netmem); 1093 1094 struct page *page_pool_alloc_frag(struct page_pool *pool, unsigned int *offset, 1095 unsigned int size, gfp_t gfp) 1096 { 1097 return netmem_to_page(page_pool_alloc_frag_netmem(pool, offset, size, 1098 gfp)); 1099 } 1100 EXPORT_SYMBOL(page_pool_alloc_frag); 1101 1102 static void page_pool_empty_ring(struct page_pool *pool) 1103 { 1104 netmem_ref netmem; 1105 1106 /* Empty recycle ring */ 1107 while ((netmem = (__force netmem_ref)ptr_ring_consume_bh(&pool->ring))) { 1108 /* Verify the refcnt invariant of cached pages */ 1109 if (!(netmem_ref_count(netmem) == 1)) 1110 pr_crit("%s() page_pool refcnt %d violation\n", 1111 __func__, netmem_ref_count(netmem)); 1112 1113 page_pool_return_netmem(pool, netmem); 1114 } 1115 } 1116 1117 static void __page_pool_destroy(struct page_pool *pool) 1118 { 1119 if (pool->disconnect) 1120 pool->disconnect(pool); 1121 1122 page_pool_unlist(pool); 1123 page_pool_uninit(pool); 1124 1125 if (pool->mp_ops) { 1126 pool->mp_ops->destroy(pool); 1127 static_branch_dec(&page_pool_mem_providers); 1128 } 1129 1130 kfree(pool); 1131 } 1132 1133 static void page_pool_empty_alloc_cache_once(struct page_pool *pool) 1134 { 1135 netmem_ref netmem; 1136 1137 if (pool->destroy_cnt) 1138 return; 1139 1140 /* Empty alloc cache, assume caller made sure this is 1141 * no-longer in use, and page_pool_alloc_pages() cannot be 1142 * call concurrently. 1143 */ 1144 while (pool->alloc.count) { 1145 netmem = pool->alloc.cache[--pool->alloc.count]; 1146 page_pool_return_netmem(pool, netmem); 1147 } 1148 } 1149 1150 static void page_pool_scrub(struct page_pool *pool) 1151 { 1152 unsigned long id; 1153 void *ptr; 1154 1155 page_pool_empty_alloc_cache_once(pool); 1156 if (!pool->destroy_cnt++ && pool->dma_map) { 1157 if (pool->dma_sync) { 1158 /* Disable page_pool_dma_sync_for_device() */ 1159 pool->dma_sync = false; 1160 1161 /* Make sure all concurrent returns that may see the old 1162 * value of dma_sync (and thus perform a sync) have 1163 * finished before doing the unmapping below. Skip the 1164 * wait if the device doesn't actually need syncing, or 1165 * if there are no outstanding mapped pages. 1166 */ 1167 if (dma_dev_need_sync(pool->p.dev) && 1168 !xa_empty(&pool->dma_mapped)) 1169 synchronize_net(); 1170 } 1171 1172 xa_for_each(&pool->dma_mapped, id, ptr) 1173 __page_pool_release_netmem_dma(pool, page_to_netmem((struct page *)ptr)); 1174 } 1175 1176 /* No more consumers should exist, but producers could still 1177 * be in-flight. 1178 */ 1179 page_pool_empty_ring(pool); 1180 } 1181 1182 static int page_pool_release(struct page_pool *pool) 1183 { 1184 bool in_softirq; 1185 int inflight; 1186 1187 page_pool_scrub(pool); 1188 inflight = page_pool_inflight(pool, true); 1189 /* Acquire producer lock to make sure producers have exited. */ 1190 in_softirq = page_pool_producer_lock(pool); 1191 page_pool_producer_unlock(pool, in_softirq); 1192 if (!inflight) 1193 __page_pool_destroy(pool); 1194 1195 return inflight; 1196 } 1197 1198 static void page_pool_release_retry(struct work_struct *wq) 1199 { 1200 struct delayed_work *dwq = to_delayed_work(wq); 1201 struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw); 1202 void *netdev; 1203 int inflight; 1204 1205 inflight = page_pool_release(pool); 1206 /* In rare cases, a driver bug may cause inflight to go negative. 1207 * Don't reschedule release if inflight is 0 or negative. 1208 * - If 0, the page_pool has been destroyed 1209 * - if negative, we will never recover 1210 * in both cases no reschedule is necessary. 1211 */ 1212 if (inflight <= 0) 1213 return; 1214 1215 /* Periodic warning for page pools the user can't see */ 1216 netdev = READ_ONCE(pool->slow.netdev); 1217 if (time_after_eq(jiffies, pool->defer_warn) && 1218 (!netdev || netdev == NET_PTR_POISON)) { 1219 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ; 1220 1221 pr_warn("%s() stalled pool shutdown: id %u, %d inflight %d sec\n", 1222 __func__, pool->user.id, inflight, sec); 1223 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 1224 } 1225 1226 /* Still not ready to be disconnected, retry later */ 1227 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 1228 } 1229 1230 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *), 1231 const struct xdp_mem_info *mem) 1232 { 1233 refcount_inc(&pool->user_cnt); 1234 pool->disconnect = disconnect; 1235 pool->xdp_mem_id = mem->id; 1236 } 1237 1238 /** 1239 * page_pool_enable_direct_recycling() - mark page pool as owned by NAPI 1240 * @pool: page pool to modify 1241 * @napi: NAPI instance to associate the page pool with 1242 * 1243 * Associate a page pool with a NAPI instance for lockless page recycling. 1244 * This is useful when a new page pool has to be added to a NAPI instance 1245 * without disabling that NAPI instance, to mark the point at which control 1246 * path "hands over" the page pool to the NAPI instance. In most cases driver 1247 * can simply set the @napi field in struct page_pool_params, and does not 1248 * have to call this helper. 1249 * 1250 * The function is idempotent, but does not implement any refcounting. 1251 * Single page_pool_disable_direct_recycling() will disable recycling, 1252 * no matter how many times enable was called. 1253 */ 1254 void page_pool_enable_direct_recycling(struct page_pool *pool, 1255 struct napi_struct *napi) 1256 { 1257 if (READ_ONCE(pool->p.napi) == napi) 1258 return; 1259 WARN_ON(!napi || pool->p.napi); 1260 1261 mutex_lock(&page_pools_lock); 1262 WRITE_ONCE(pool->p.napi, napi); 1263 mutex_unlock(&page_pools_lock); 1264 } 1265 EXPORT_SYMBOL(page_pool_enable_direct_recycling); 1266 1267 void page_pool_disable_direct_recycling(struct page_pool *pool) 1268 { 1269 /* Disable direct recycling based on pool->cpuid. 1270 * Paired with READ_ONCE() in page_pool_napi_local(). 1271 */ 1272 WRITE_ONCE(pool->cpuid, -1); 1273 1274 if (!pool->p.napi) 1275 return; 1276 1277 napi_assert_will_not_race(pool->p.napi); 1278 1279 mutex_lock(&page_pools_lock); 1280 WRITE_ONCE(pool->p.napi, NULL); 1281 mutex_unlock(&page_pools_lock); 1282 } 1283 EXPORT_SYMBOL(page_pool_disable_direct_recycling); 1284 1285 void page_pool_destroy(struct page_pool *pool) 1286 { 1287 if (!pool) 1288 return; 1289 1290 if (!page_pool_put(pool)) 1291 return; 1292 1293 page_pool_disable_direct_recycling(pool); 1294 page_pool_free_frag(pool); 1295 1296 if (!page_pool_release(pool)) 1297 return; 1298 1299 page_pool_detached(pool); 1300 pool->defer_start = jiffies; 1301 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 1302 1303 INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry); 1304 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 1305 } 1306 EXPORT_SYMBOL(page_pool_destroy); 1307 1308 /* Caller must provide appropriate safe context, e.g. NAPI. */ 1309 void page_pool_update_nid(struct page_pool *pool, int new_nid) 1310 { 1311 netmem_ref netmem; 1312 1313 trace_page_pool_update_nid(pool, new_nid); 1314 pool->p.nid = new_nid; 1315 1316 /* Flush pool alloc cache, as refill will check NUMA node */ 1317 while (pool->alloc.count) { 1318 netmem = pool->alloc.cache[--pool->alloc.count]; 1319 page_pool_return_netmem(pool, netmem); 1320 } 1321 } 1322 EXPORT_SYMBOL(page_pool_update_nid); 1323 1324 bool net_mp_niov_set_dma_addr(struct net_iov *niov, dma_addr_t addr) 1325 { 1326 return page_pool_set_dma_addr_netmem(net_iov_to_netmem(niov), addr); 1327 } 1328 1329 /* Associate a niov with a page pool. Should follow with a matching 1330 * net_mp_niov_clear_page_pool() 1331 */ 1332 void net_mp_niov_set_page_pool(struct page_pool *pool, struct net_iov *niov) 1333 { 1334 netmem_ref netmem = net_iov_to_netmem(niov); 1335 1336 page_pool_set_pp_info(pool, netmem); 1337 1338 pool->pages_state_hold_cnt++; 1339 trace_page_pool_state_hold(pool, netmem, pool->pages_state_hold_cnt); 1340 } 1341 1342 /* Disassociate a niov from a page pool. Should only be used in the 1343 * ->release_netmem() path. 1344 */ 1345 void net_mp_niov_clear_page_pool(struct net_iov *niov) 1346 { 1347 netmem_ref netmem = net_iov_to_netmem(niov); 1348 1349 page_pool_clear_pp_info(netmem); 1350 } 1351